WO2023071862A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2023071862A1
WO2023071862A1 PCT/CN2022/125857 CN2022125857W WO2023071862A1 WO 2023071862 A1 WO2023071862 A1 WO 2023071862A1 CN 2022125857 W CN2022125857 W CN 2022125857W WO 2023071862 A1 WO2023071862 A1 WO 2023071862A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
resource
resources
target
signal resource
Prior art date
Application number
PCT/CN2022/125857
Other languages
English (en)
French (fr)
Inventor
蒋琦
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2023071862A1 publication Critical patent/WO2023071862A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, in particular to a transmission scheme and device for flexible transmission direction configuration in wireless communication.
  • the application scenarios of future wireless communication systems are becoming more and more diversified, and different application scenarios put forward different performance requirements for the system.
  • the new air interface technology (NR , New Radio) (or 5G) research passed the WI (Work Item, work item) of the new air interface technology (NR, New Radio) at the 3GPP RAN#75 plenary session, and started to standardize NR.
  • NR Rel-17's SI Study Item, research project
  • WI Work Item, work project
  • enhanced mobile broadband eMBB, enhanced Mobile BroadBand
  • ultra-reliable and low-latency communications URLLC, Ultra-reliable and Low Latency Communications
  • mMTC massive Machine Type Communications
  • eMBB enhanced mobile broadband
  • URLLC Ultra-reliable and Low Latency Communications
  • mMTC massive Machine Type Communications
  • a major difference is that the symbol (Symbol) in a slot can be configured They are Downlink, Uplink and Flexible.
  • the terminal will receive downlink on this symbol, and this symbol can also be used for uplink scheduling.
  • the above method is more flexible than the LTE and LTE-A systems.
  • the concepts of unified (unified) TCI (Transmission Configuration Indication, transmission configuration indication) and Common (common) TCI are proposed to reduce signaling overhead.
  • the unified TCI means that for a terminal, two different physical channels can share the same QCL (Quasi Co-located, quasi-co-located) relationship, and the QCL relationship corresponding to the two different physical channels can be Simultaneous update or activation;
  • common TCI means that multiple carriers can share one TCI-State ID (TCI state identity), that is, one TCI-StateId can simultaneously update or activate the QCL relationship of multiple physical channels on multiple carriers.
  • the present application discloses a solution to the configuration problem of supporting link directions in a flexible duplex mode.
  • the flexible duplex mode is only used as a typical application scenario or example; this application is also applicable to other scenarios facing similar problems (such as scenarios where link direction changes, Or other scenarios that support multi-level configuration of transmission directions, or base stations or user equipment with stronger capabilities, such as scenarios that support same-frequency full-duplex, or for different application scenarios, such as eMBB and URLLC, similar technologies can also be obtained Effect.
  • different scenarios including but not limited to the scenarios of eMBB and URLLC
  • the embodiment in the first node device of the present application And the feature in the embodiment can be applied in the second node equipment, and vice versa.
  • the explanation (if not adding special instructions) to term (Terminology), noun, function, variable in this application can refer to the specification of 3GPP Definitions in the protocol TS (Technical Specification) 36 series, TS38 series, and TS37 series.
  • the present application discloses a method in a first node for wireless communication, including:
  • the first information block being used to indicate the identity of the target
  • the target identity is associated with K1 first-type reference signal resources, and the K1 first-type reference signal resources are associated with the first cell, and K1 is a positive integer greater than 1;
  • the first target reference signal The resource is one of the K1 first-type reference signal resources;
  • the frequency domain resource occupied by the first resource set belongs to the first cell;
  • the time domain resource occupied by the first resource set or the At least one of the frequency domain resources occupied by the first resource set is used to determine the first target reference signal resource from the K1 first type reference signal resources.
  • the present application discloses a method in a first node for wireless communication, including:
  • the first information block being used to indicate the identity of the target
  • the target identity is associated with K1 first-type reference signal resources, and the K1 first-type reference signal resources are associated with the first cell, and K1 is a positive integer greater than 1;
  • the first target reference signal The resource is one of the K1 first-type reference signal resources;
  • the frequency domain resource occupied by the first resource set belongs to the first cell;
  • the time domain resource occupied by the first resource set or the At least one of the frequency domain resources occupied by the first resource set is used to determine the first target reference signal resource from the K1 first type reference signal resources.
  • the K1 first-type reference signals correspond to K1 kinds of QCL relationships that can be indicated by a TCI-StateId associated with a carrier, and the K1 kinds of QCL relationships are respectively for different interference situations.
  • the target identity indicates one of the K1 QCL relationships to avoid special interference situations that may occur in a full-duplex scenario; when When the first signal is outside a resource supporting full duplex, the target identity indicates another one of the K1 QCL relationships to maximize system performance.
  • the target identity is associated with any candidate reference signal resource set in Q1 candidate reference signal resource sets, and the Q1 candidate reference signal resource sets are associated with Q2 cells;
  • the first reference The signal resource set includes the K1 first-type reference signal resources;
  • the first reference signal resource set is one of the Q1 candidate reference signal resource sets;
  • the first resource set is used to obtain from the The first reference signal resource set is determined from Q1 candidate reference signal resource sets;
  • the Q1 is a positive integer greater than 1
  • the Q2 is a positive integer greater than 1.
  • the technical feature of the above method is that: the Q2 cells can independently configure the QCL relationship associated with the same TCI-StateId, that is, the same TCI-StateId indicates different reference signal resources for different cells, This ensures greater flexibility.
  • the target identity is used to determine a second target reference signal resource
  • the second target reference signal resource is one of the K1 first-type reference signal resources
  • At least one of time domain resources or frequency domain resources occupied by the first set of resources is used to determine whether the second target reference signal resource and the first target reference signal resource are quasi-co-located.
  • the target identity is used to determine a second target reference signal resource
  • the second target reference signal resource is one of the K1 first-type reference signal resources
  • At least one of time domain resources or frequency domain resources occupied by the first set of resources is used to determine whether the second target reference signal resource and the first target reference signal resource are quasi-co-located.
  • the technical feature of the above method is that: the above method is aimed at a unified TCI scenario, when the first signal and the second signal can perform unified TCI indication, the unified TCI is only in the first signal It will take effect only when the duplex mode of the second signal is the same.
  • another technical feature of the above method is: when both the first signal and the second signal belong to resources that support full-duplex, or belong to resources that do not support full-duplex, the The QCL relationship of the first signal and the QCL relationship of the second signal can be the same and be updated uniformly; when the duplex mode of the resource where the first signal is located and the resource where the second signal is located When the duplex modes to which resources belong are different, the QCL relationship of the first signal and the QCL relationship of the second signal cannot be regarded as the same, and cannot be updated uniformly.
  • the first physical channel and the second physical channel respectively exist in two different cells of the Q2 cells, and the same TCI status identity is used to indicate or update or activate the first physical channel
  • the technical feature of the above method is that: the above method is aimed at a common TCI scenario, that is, channels of the same type on different carriers can be simultaneously activated, updated or indicated through one TCI-StateId.
  • another technical feature of the above method is: when both the first signal and the second signal belong to resources that support full-duplex, or belong to resources that do not support full-duplex, the The QCL relationship of the first signal and the QCL relationship of the second signal can be the same and be updated uniformly; when the duplex mode of the resource where the first signal is located and the resource where the second signal is located When the duplex modes to which resources belong are different, the QCL relationship of the first signal and the QCL relationship of the second signal cannot be regarded as the same, and cannot be updated uniformly.
  • a second information block is received, the second information block is used to indicate that the first signal and the second signal adopt the same TCI state.
  • the K1 is equal to 2, and the K1 first-type reference signal resources include the first reference signal resource and the second reference signal resource; the time-domain resources occupied by the first set of resources include the first reference signal resource A set of symbols; when the slot format used by the symbols in the first set of symbols is the first format, the first target reference signal resource is the first reference signal resource; when the slots in the first set of symbols The time slot format adopted by the symbol is a format other than the first format, and the first target reference signal resource is the second reference signal resource.
  • the technical feature of the above method is that: when whether to support full-duplex is distinguished through time-domain resources, the time-domain resources where the first resource set is located will be used to determine the first information
  • the reference signal resource actually corresponding to the TCI-StateId indicated by the block.
  • the K1 is equal to 2
  • the K1 first-type reference signal resources include first reference signal resources and second reference signal resources; when the frequency domain resources occupied by the first set of resources belong to For the first frequency domain resource set, the first target reference signal resource is the first reference signal resource; when the first resource set includes frequency domain resources that do not belong to the first frequency domain resource set in the frequency domain When , the first target reference signal resource is the second reference signal resource.
  • the technical feature of the above method is that: when whether to support full-duplex is distinguished through frequency domain resources, the frequency domain resources where the first resource set is located will be used to determine the first information
  • the reference signal resource actually corresponding to the TCI-StateId indicated by the block.
  • the K1 is equal to 2
  • the K1 first-type reference signal resources include first reference signal resources and second reference signal resources; when the time-frequency resources occupied by the first set of resources belong to For the first time-frequency resource set, the first target reference signal resource is the first reference signal resource; when the first resource set includes time-frequency resources that do not belong to the first time-frequency resource set, the The first target reference signal resource is the second reference signal resource.
  • the M1 candidate reference signal resource pools respectively correspond to M1 first-type identities, and the target identity is one of the M1 first-type identities;
  • a target candidate reference signal resource pool is determined in the candidate reference signal resource pool, and the target candidate reference signal resource pool includes the Q1 candidate reference signal resource sets;
  • the M1 is a positive integer greater than 1.
  • the technical feature of the above method is that: the M1 first-type identities correspond to M1 TCI-StateIds respectively; in a serving cell, each TCI-StateId will be associated with a candidate reference signal resource pool A set of candidate reference signal resources, and then determine which candidate reference signal in the set of candidate reference signal resources to use as the actually adopted QCL relationship according to the resource where the actual scheduling is located.
  • the present application discloses a method in a second node for wireless communication, including:
  • the target identity is associated with K1 first-type reference signal resources, and the K1 first-type reference signal resources are associated with the first cell, and K1 is a positive integer greater than 1;
  • the first target reference signal The resource is one of the K1 first-type reference signal resources;
  • the frequency domain resource occupied by the first resource set belongs to the first cell;
  • the time domain resource occupied by the first resource set or the At least one of the frequency domain resources occupied by the first resource set is used to determine the first target reference signal resource from the K1 first type reference signal resources.
  • the present application discloses a method in a second node for wireless communication, including:
  • the target identity is associated with K1 first-type reference signal resources, and the K1 first-type reference signal resources are associated with the first cell, and K1 is a positive integer greater than 1;
  • the first target reference signal The resource is one of the K1 first-type reference signal resources;
  • the frequency domain resource occupied by the first resource set belongs to the first cell;
  • the time domain resource occupied by the first resource set or the At least one of the frequency domain resources occupied by the first resource set is used to determine the first target reference signal resource from the K1 first type reference signal resources.
  • the target identity is associated with any candidate reference signal resource set in Q1 candidate reference signal resource sets, and the Q1 candidate reference signal resource sets are associated with Q2 cells;
  • the first reference The signal resource set includes the K1 first-type reference signal resources;
  • the first reference signal resource set is one of the Q1 candidate reference signal resource sets;
  • the first resource set is used to obtain from the The first reference signal resource set is determined from Q1 candidate reference signal resource sets;
  • the Q1 is a positive integer greater than 1
  • the Q2 is a positive integer greater than 1.
  • the target identity is used to determine a second target reference signal resource
  • the second target reference signal resource is one of the K1 first-type reference signal resources
  • At least one of time domain resources or frequency domain resources occupied by the first set of resources is used to determine whether the second target reference signal resource and the first target reference signal resource are quasi-co-located.
  • the target identity is used to determine a second target reference signal resource
  • the second target reference signal resource is one of the K1 first-type reference signal resources
  • At least one of time domain resources or frequency domain resources occupied by the first set of resources is used to determine whether the second target reference signal resource and the first target reference signal resource are quasi-co-located.
  • the first physical channel and the second physical channel respectively exist in two different cells of the Q2 cells, and the same TCI status identity is used to indicate or update or activate the first physical channel
  • the second information block is used to indicate that the first signal and the second signal adopt the same TCI state.
  • the K1 is equal to 2, and the K1 first-type reference signal resources include the first reference signal resource and the second reference signal resource; the time-domain resources occupied by the first set of resources include the first reference signal resource A set of symbols; when the slot format used by the symbols in the first set of symbols is the first format, the first target reference signal resource is the first reference signal resource; when the slots in the first set of symbols The time slot format adopted by the symbol is a format other than the first format, and the first target reference signal resource is the second reference signal resource.
  • the K1 is equal to 2
  • the K1 first-type reference signal resources include first reference signal resources and second reference signal resources; when the frequency domain resources occupied by the first set of resources belong to For the first frequency domain resource set, the first target reference signal resource is the first reference signal resource; when the first resource set includes frequency domain resources that do not belong to the first frequency domain resource set in the frequency domain When , the first target reference signal resource is the second reference signal resource.
  • the third information block is used to indicate M1 candidate reference signal resource pools, the M1 candidate reference signal resource pools respectively correspond to M1 first-type identities, and the target identities are the M1 first-type identities One of the identities; the target identity is used to determine a target candidate reference signal resource pool from the M1 candidate reference signal resource pools, and the target candidate reference signal resource pool includes the Q1 candidate reference signal resource sets ;
  • the M1 is a positive integer greater than 1.
  • This application discloses a first node for wireless communication, including:
  • a first receiver receiving a first information block, the first information block being used to indicate a target identity
  • the first transceiver receives the first signal in the first resource set, and the demodulation reference signal and the first target reference signal resource of the channel occupied by the first signal are quasi-co-located;
  • the target identity is associated with K1 first-type reference signal resources, and the K1 first-type reference signal resources are associated with the first cell, and K1 is a positive integer greater than 1;
  • the first target reference signal The resource is one of the K1 first-type reference signal resources;
  • the frequency domain resource occupied by the first resource set belongs to the first cell;
  • the time domain resource occupied by the first resource set or the At least one of the frequency domain resources occupied by the first resource set is used to determine the first target reference signal resource from the K1 first type reference signal resources.
  • This application discloses a first node for wireless communication, including:
  • a first receiver receiving a first information block, the first information block being used to indicate a target identity
  • the first transceiver sends the first signal in the first resource set, and the demodulation reference signal of the channel occupied by the first signal and the first target reference signal resource are quasi-co-located;
  • the target identity is associated with K1 first-type reference signal resources, and the K1 first-type reference signal resources are associated with the first cell, and K1 is a positive integer greater than 1;
  • the first target reference signal The resource is one of the K1 first-type reference signal resources;
  • the frequency domain resource occupied by the first resource set belongs to the first cell;
  • the time domain resource occupied by the first resource set or the At least one of the frequency domain resources occupied by the first resource set is used to determine the first target reference signal resource from the K1 first type reference signal resources.
  • the present application discloses a second node for wireless communication, including:
  • a first transmitter sending a first information block, the first information block being used to indicate a target identity
  • the second transceiver sends the first signal in the first resource set, and the demodulation reference signal and the first target reference signal resource of the channel occupied by the first signal are quasi-co-located;
  • the target identity is associated with K1 first-type reference signal resources, and the K1 first-type reference signal resources are associated with the first cell, and K1 is a positive integer greater than 1;
  • the first target reference signal The resource is one of the K1 first-type reference signal resources;
  • the frequency domain resource occupied by the first resource set belongs to the first cell;
  • the time domain resource occupied by the first resource set or the At least one of the frequency domain resources occupied by the first resource set is used to determine the first target reference signal resource from the K1 first type reference signal resources.
  • the present application discloses a second node for wireless communication, including:
  • a first transmitter sending a first information block, the first information block being used to indicate a target identity
  • the second transceiver receives the first signal in the first resource set, and the demodulation reference signal and the first target reference signal resource of the channel occupied by the first signal are quasi-co-located;
  • the target identity is associated with K1 first-type reference signal resources, and the K1 first-type reference signal resources are associated with the first cell, and K1 is a positive integer greater than 1;
  • the first target reference signal The resource is one of the K1 first-type reference signal resources;
  • the frequency domain resource occupied by the first resource set belongs to the first cell;
  • the time domain resource occupied by the first resource set or the At least one of the frequency domain resources occupied by the first resource set is used to determine the first target reference signal resource from the K1 first type reference signal resources.
  • this application has the following advantages:
  • the K1 first-type reference signals correspond to K1 kinds of QCL relationships that can be indicated by one TCI-StateId associated with one carrier, and the K1 kinds of QCL relationships are respectively used for different interference situations.
  • the target identity indicates one of the K1 QCL relationships to avoid special interference situations that may occur in a full-duplex scenario;
  • the target identity indicates another one of the K1 QCL relationships to maximize system performance;
  • the Q2 cells can independently configure the QCL relationship associated with the same TCI-StateId, that is, the same TCI-StateId indicates different reference signal resources for different cells, thereby ensuring greater flexibility;
  • the QCL relationship between the first signal and the second The QCL relationship of the signals can be the same and be updated uniformly;
  • the duplex mode to which the resource where the first signal belongs is different from the duplex mode to which the resource where the second signal belongs, the second the QCL relationship of a signal and the QCL relationship of said second signal cannot be considered the same and cannot be updated uniformly;
  • the M1 first-type identities correspond to M1 TCI-StateIds respectively; in a serving cell, each TCI-StateId will be associated with a candidate reference signal resource set in a candidate reference signal resource pool, and then according to The resource where the actual scheduling is located determines which candidate reference signal in the candidate reference signal resource set is used as the actually used QCL relationship.
  • Fig. 1 shows the processing flowchart of the first node according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG. 5 shows a flowchart of a first information block according to an embodiment of the present application
  • FIG. 6 shows a flowchart of a first information block according to another embodiment of the present application.
  • FIG. 7 shows a flowchart of a second signal according to an embodiment of the present application.
  • FIG. 8 shows a flowchart of a second signal according to another embodiment of the present application.
  • FIG. 9 shows a flowchart of a second information block according to an embodiment of the present application.
  • FIG. 10 shows a flowchart of a third information block according to an embodiment of the present application.
  • FIG. 11 shows a schematic diagram of K1 first-type reference signal resources according to an embodiment of the present application.
  • FIG. 12 shows a schematic diagram of Q1 candidate reference signal resource sets according to an embodiment of the present application.
  • Fig. 13 shows a schematic diagram of a first signal and a second signal according to an embodiment of the present application
  • FIG. 14 shows a schematic diagram of M1 candidate reference signal resource pools according to an embodiment of the present application.
  • Fig. 15 shows a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 16 shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application
  • Fig. 17 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flowchart of a first node, as shown in FIG. 1 .
  • each box represents a step.
  • the first node in this application receives the first information block in step 101, and the first information block is used to indicate the target identity; in step 102, it receives the first signal in the first resource set , or transmit the first signal in the first resource set, where the demodulation reference signal of the channel occupied by the first signal is quasi co-located with the first target reference signal resource.
  • the target identity is associated with K1 first-type reference signal resources, and the K1 first-type reference signal resources are associated with the first cell, where K1 is a positive integer greater than 1;
  • the first The target reference signal resource is one of the K1 first-type reference signal resources;
  • the frequency domain resource occupied by the first resource set belongs to the first cell;
  • the time domain resource occupied by the first resource set At least one of the resources or the frequency domain resources occupied by the first resource set is used to determine the first target reference signal resource from the K1 first type reference signal resources.
  • the first information block is transmitted through RRC (Radio Resource Control, radio resource control) signaling.
  • RRC Radio Resource Control, radio resource control
  • the first information block is transmitted through a PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel, Physical Downlink Control Channel
  • the first information block is transmitted through DCI (Downlink control information, downlink control information).
  • DCI Downlink control information, downlink control information
  • the first information block is transmitted through a MAC (Medium Access Control, Media Access Control) CE (Control Elements, control unit).
  • MAC Medium Access Control, Media Access Control
  • CE Control Elements, control unit
  • the first information block is a field in the DCI.
  • the first information block is a TCI field in the DCI.
  • the target identity is a non-negative integer.
  • the target identity identifies a TCI state.
  • the target identifier is a TCI state index.
  • the target identity is a TCI state identity.
  • the target identity is TCI-StateId.
  • the target identity is CRI (Channel State Information Reference Signal Resource Indicator, channel state information reference signal resource indicator).
  • the target identity is SRI (Sounding Reference Signal Resource Indicator, Sounding Reference Signal Resource Indicator).
  • the target identity is a reference signal resource index.
  • the first resource set includes at least one of time domain resources, frequency domain resources, or code domain resources.
  • the first resource set includes airspace resources.
  • the first resource set occupies a positive integer number of REs greater than 1.
  • the first resource set occupies a positive integer number of subcarriers greater than 1 in the frequency domain, and the first resource set occupies at least one OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) in the time domain time-domain resource corresponding to the technical symbol.
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • the first resource set occupies at least one code domain resource.
  • the first resource set occupies at least one multiple address signature.
  • the first signal is a wireless signal.
  • the first signal is a baseband signal.
  • the physical layer channel occupied by the first signal includes a PDSCH (Physical Downlink Shared Channel, Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel, Physical Downlink Shared Channel
  • the physical layer channel occupied by the first signal includes a PUSCH (Physical Uplink Shared Channel, Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel, Physical Uplink Shared Channel
  • the transmission channel occupied by the first signal includes a DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the transmission channel occupied by the first signal includes a UL-SCH (Uplink Shared Channel, uplink shared channel).
  • UL-SCH Uplink Shared Channel, uplink shared channel
  • the physical layer channel occupied by the first signal includes a PDCCH (Physical Downlink Control Channel, physical downlink control channel).
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • the physical layer channel occupied by the first signal includes a PUCCH (Physical Uplink Control Channel, physical uplink control channel).
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • the above phrase that the demodulation reference signal of the channel occupied by the first signal and the first target reference signal resource are quasi co-located means that the first signal and the first target reference signal resource
  • the reference signal sent in is QCL.
  • the meaning of the above phrase that the demodulation reference signal of the channel occupied by the first signal and the first target reference signal resource are quasi-co-located includes: the DMRS used to demodulate the first signal and the The reference signal sent in the first target reference signal resource is QCL.
  • the quasi-co-location of two signals means that the channel experienced by the other signal of the two signals can be deduced from the large-scale characteristics of the channel experienced by one of the two signals. Large scale properties.
  • the large-scale properties include delay spread (delay spread), Doppler spread (Doppler spread), Doppler shift (Doppler shift), average delay (average delay) , or one or more of the Spatial Rx parameters.
  • the first node assumes (assume) that the reference signal sent in the first target reference signal resource and the first signal are quasi co-located.
  • the first node may assume that the reference signal sent in the first target reference signal resource and the first signal are quasi co-located.
  • the sender of the reference signal sent in the first target reference signal resource assumes that the first node assumes that the reference signal sent in the first target reference signal resource is consistent with the first signal co-location.
  • the first node uses the same spatial domain filter to receive the reference signal sent in the first target reference signal resource and the first signal.
  • the sender of the reference signal sent in the first target reference signal resource assumes that the first node uses the same spatial filter to receive the reference signal sent in the first target reference signal resource and the first signal.
  • the first node may deduce the spatial reception parameter of the first signal from the spatial reception parameter of the reference signal sent in the first target reference signal resource.
  • the first node may deduce the spatial transmission parameter of the first signal from the spatial reception parameter of the reference signal transmitted in the first target reference signal resource.
  • the first target reference signal resource includes a CSI-RS (Channel-State Information Reference Signals, channel state information reference signal) resource.
  • CSI-RS Channel-State Information Reference Signals, channel state information reference signal
  • the first target reference signal resource includes SSB (SS/PBCH Block, synchronization signal/physical broadcast channel block).
  • SSB SS/PBCH Block, synchronization signal/physical broadcast channel block
  • the first target reference signal resource includes a DMRS (Demodulation Reference Signal, demodulation reference signal) resource.
  • DMRS Demodulation Reference Signal, demodulation reference signal
  • the first target reference signal resources include SRS (Sounding Reference Signal, sounding reference signal) resources.
  • SRS Sounding Reference Signal, sounding reference signal
  • the first target reference signal resource corresponds to one TCI.
  • the first target reference signal resource corresponds to one TCI-State.
  • the first target reference signal resource corresponds to one TCI-StateId.
  • the first target reference signal resource corresponds to one SRI.
  • the first target reference signal resource corresponds to one CRI.
  • At least one first-type reference signal resource among the K1 first-type reference signal resources includes a CSI-RS resource.
  • At least one first-type reference signal resource among the K1 first-type reference signal resources includes an SSB.
  • At least one first-type reference signal resource among the K1 first-type reference signal resources includes a DMRS resource.
  • At least one first-type reference signal resource among the K1 first-type reference signal resources includes an SRS resource.
  • At least one first-type reference signal resource among the K1 first-type reference signal resources corresponds to one TCI.
  • At least one first-type reference signal resource among the K1 first-type reference signal resources corresponds to one TCI-State.
  • At least one first-type reference signal resource among the K1 first-type reference signal resources corresponds to one TCI-StateId.
  • any first-type reference signal resource among the K1 first-type reference signal resources corresponds to one TCI-State.
  • any first-type reference signal resource among the K1 first-type reference signal resources corresponds to one TCI-StateId.
  • At least one first-type reference signal resource among the K1 first-type reference signal resources corresponds to one SRI.
  • At least one first-type reference signal resource among the K1 first-type reference signal resources corresponds to one CRI.
  • the meaning of the above sentence that the target identity is associated with K1 first-type reference signal resources includes: the target identity is used to indicate a first-type of the K1 first-type reference signal resources Reference signal resources.
  • the meaning of the above sentence that the target identity is associated with K1 first-type reference signal resources includes: the target identity is used to indicate at least one of the K1 first-type reference signal resources. class reference signal resources.
  • the meaning of the above sentence that the target identity is associated with K1 first-type reference signal resources includes: the target identity is used to indicate at least two of the K1 first-type reference signal resources A class of reference signal resources.
  • the K1 is equal to 2.
  • the first cell is a serving cell (Serving Cell).
  • the first cell corresponds to a carrier (Carrier).
  • the first cell corresponds to a PCI (Physical Cell Identity, physical cell identity).
  • PCI Physical Cell Identity, physical cell identity
  • the first cell corresponds to a ServCellIndex.
  • the first cell corresponds to one ServCellId.
  • the first cell corresponds to a ServCellIdentity.
  • the first cell is a serving cell of the first node.
  • the meaning of the sentence "the K1 first-type reference signal resources are associated with the first cell” includes: at least one first-type reference signal resource among the K1 first-type reference signal resources used to determine QCL parameters for channels transmitted on said first cell.
  • the meaning of the sentence "the K1 first-type reference signal resources are associated with the first cell” includes: any first-type reference signal resource among the K1 first-type reference signal resources used to determine QCL parameters for signals transmitted in said first cell.
  • the meaning of the sentence "the K1 first-type reference signal resources are associated with the first cell” includes: the K1 first-type reference signal resources are used to determine the QCL parameters of the transmitted signal.
  • the meaning of the sentence "the K1 first-type reference signal resources are associated with the first cell” includes: the K1 first-type reference signal resources are used to determine the QCL parameters of the PDSCH or PDCCH.
  • the meaning of the sentence "the K1 first-type reference signal resources are associated with the first cell” includes: the K1 first-type reference signal resources are configured for the first cell .
  • the meaning of the sentence "the K1 first-type reference signal resources are associated with the first cell” includes: the RRC signaling configuring the K1 first-type reference signal resources is also used to indicate An identity (Identity) or an identifier (Index) corresponding to the first cell.
  • the meaning of the sentence "the K1 first-type reference signal resources are associated with the first cell” includes: the RRC signaling configuring the K1 first-type reference signal resources is also used to indicate The identity or identifier of the BWP (Bandwidth Part, bandwidth part) included in the first cell.
  • the RRC signaling configuring the K1 first-type reference signal resources is also used to indicate The identity or identifier of the BWP (Bandwidth Part, bandwidth part) included in the first cell.
  • the type of quasi-co-location in this application includes QCL Type A.
  • the type of quasi-co-location in this application includes QCL Type B.
  • the type of quasi-co-location in this application includes QCL Type C.
  • the type of quasi-co-location in this application includes QCL Type D.
  • the time-domain resources occupied by the first resource set are used to determine the first target reference signal resource from the K1 first-type reference signal resources.
  • the frequency domain resources occupied by the first resource set are used to determine the first target reference signal resource from the K1 first type reference signal resources.
  • the time-frequency resources occupied by the first resource set are used to determine the first target reference signal resource from the K1 first-type reference signal resources.
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG. 2 .
  • FIG. 2 illustrates a diagram of a network architecture 200 of a 5G NR, LTE (Long-Term Evolution, long-term evolution) and LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution) system.
  • the 5G NR or LTE network architecture 200 may be referred to as EPS (Evolved Packet System, Evolved Packet System) 200 or some other suitable term.
  • EPS Evolved Packet System, Evolved Packet System
  • EPS 200 may include a UE (User Equipment, user equipment) 201, NR-RAN (next generation radio access network) 202, EPC (Evolved Packet Core, evolved packet core)/5G-CN (5G-Core Network, 5G core Network) 210, HSS (Home Subscriber Server, Home Subscriber Server) 220 and Internet service 230.
  • the EPS may be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown, the EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks providing circuit-switched services or other cellular networks.
  • NR-RAN includes NR Node B (gNB) 203 and other gNBs 204 .
  • the gNB 203 provides user and control plane protocol termination towards the UE 201 .
  • a gNB 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • a gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP or some other suitable terminology.
  • the gNB203 provides an access point to the EPC/5G-CN 210 for the UE201.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to the EPC/5G-CN 210 through the S1/NG interface.
  • EPC/5G-CN 210 includes MME (Mobility Management Entity, Mobility Management Entity)/AMF (Authentication Management Field, Authentication Management Field)/UPF (User Plane Function, User Plane Function) 211, other MME/AMF/UPF 214, S-GW (Service Gateway, service gateway) 212 and P-GW (Packet Date Network Gateway, packet data network gateway) 213.
  • MME/AMF/UPF 211 is a control node that handles signaling between UE 201 and EPC/5G-CN 210. In general, MME/AMF/UPF 211 provides bearer and connection management.
  • All user IP (Internet Protocol, Internet Protocol) packets are transmitted through the S-GW212, and the S-GW212 itself is connected to the P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • P-GW 213 is connected to Internet service 230 .
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and specifically may include the Internet, the intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet-switched streaming services.
  • the UE 201 corresponds to the first node in this application.
  • the UE201 supports an asymmetric spectrum (Unpaired Spectrum) scenario.
  • the UE201 supports flexible duplex (Flexible Duplex) frequency domain resource configuration.
  • the UE201 supports full duplex (Full Duplex) transmission.
  • the UE 201 supports dynamic adjustment of uplink and downlink transmission directions.
  • the gNB203 corresponds to the second node in this application.
  • the gNB203 supports an asymmetric spectrum scenario.
  • the gNB203 supports flexible duplex frequency domain resource configuration.
  • the gNB203 supports full duplex (Full Duplex) transmission.
  • the gNB203 supports dynamic adjustment of uplink and downlink transmission directions.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300.
  • FIG. 3 shows three layers for the first communication node device (UE, gNB or RSU in V2X) and the second The radio protocol architecture of the control plane 300 between communication node devices (gNB, UE or RSU in V2X): layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301 .
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device through the PHY 301.
  • L2 layer 305 includes MAC (Medium Access Control, Media Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers are terminated at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and the PDCP sublayer 304 also provides handoff support for the first communication node device to the second communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer packets, retransmission of lost packets, and reordering of packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (that is, radio bearers) and using the connection between the second communication node device and the first communication node device Inter- RRC signaling to configure the lower layer.
  • radio resources that is, radio bearers
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer), the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is for the physical layer 351, L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer) , to support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (e.g., IP layer) terminating at the P-GW on the network side and another layer terminating at the connection.
  • Application layer at one end eg, remote UE, server, etc.).
  • the wireless protocol architecture in Fig. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Fig. 3 is applicable to the second node in this application.
  • the PDCP 304 of the second communication node device is used to generate the schedule of the first communication node device.
  • the PDCP354 of the second communication node device is used to generate the schedule of the first communication node device.
  • the first information block is generated by the PHY301 or the PHY351.
  • the first information block is generated by the MAC302 or the MAC352.
  • the first information block is generated in the RRC306.
  • the first signal is generated by the PHY301 or the PHY351.
  • the first signal is generated by the MAC302 or the MAC352.
  • the first signal is generated by the RRC306.
  • the second signal is generated by the PHY301 or the PHY351.
  • the second signal is generated by the MAC302 or the MAC352.
  • the second signal is generated by the RRC306.
  • the second information block is generated by the MAC302 or the MAC352.
  • the second information block is generated by the RRC306.
  • the third information block is generated by the MAC302 or the MAC352.
  • the third information block is generated by the RRC306.
  • the first node is a terminal.
  • the second node is a terminal.
  • the second node is a TRP (Transmitter Receiver Point, sending and receiving point).
  • TRP Transmitter Receiver Point, sending and receiving point
  • the second node is a cell (Cell).
  • the second node is an eNB.
  • the second node is a base station.
  • the second node is used to manage multiple TRPs.
  • the second node is a node for managing multiple cells.
  • the second node is a node for managing multiple carriers.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Fig. 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in an access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452 .
  • Second communications device 410 includes controller/processor 475 , memory 476 , receive processor 470 , transmit processor 416 , multi-antenna receive processor 472 , multi-antenna transmit processor 471 , transmitter/receiver 418 and antenna 420 .
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels. Multiplexing, and allocation of radio resources to said first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communication device 450 .
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 410, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)).
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes with a reference signal (e.g., pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel that carries a time-domain multi-carrier symbol stream. Then the multi-antenna transmit processor 471 performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into an RF stream, which is then provided to a different antenna 420 .
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives a signal via its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto an RF carrier and converts the RF stream to a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • Receive processor 456 and multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454 .
  • Receive processor 456 converts the baseband multi-carrier symbol stream after the receive analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered in the multi-antenna detection in the multi-antenna receiving processor 458.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456 and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the second communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 can be associated with memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium.
  • controller/processor 459 In transmission from said second communication device 410 to said second communication device 450, controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459 .
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements a header based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implementing L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communication device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is provided to different antennas 452 via the transmitter 454 after undergoing analog precoding/beamforming operations in the multi-antenna transmit processor 457 .
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into an RF symbol stream, and then provides it to the antenna 452 .
  • each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 can be associated with memory 476 that stores program codes and data.
  • Memory 476 may be referred to as a computer-readable medium.
  • controller/processor 475 In transmission from said first communication device 450 to said second communication device 410, controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression . Control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be compatible with the used together with the at least one processor, the first communication device 450 means at least: first receive a first information block, the first information block is used to indicate the target identity; then receive a first signal in a first set of resources, Or the first signal is sent in the first resource set, and the demodulation reference signal of the channel occupied by the first signal is quasi-co-located with the first target reference signal resource; the target identity is associated with K1 first Class reference signal resources, the K1 first-type reference signal resources are associated with the first cell, K1 is a positive integer greater than 1; the first target reference signal resource is one of the K1 first-type reference signal resources one of; the frequency domain resources occupied by the first resource set belong to the first cell; the time domain resources occupied by the first resource set or the frequency domain resources occupied by the first resource set At least one of them is used
  • the first communication device 450 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: first receiving A first information block, the first information block is used to indicate the identity of the target; then the first signal is received in the first set of resources, or the first signal is sent in the first set of resources, and the space occupied by the first signal
  • the demodulation reference signal of the channel is quasi-co-located with the first target reference signal resource; the target identity is associated to K1 first-type reference signal resources, and the K1 first-type reference signal resources are associated to the first cell, K1 is a positive integer greater than 1;
  • the first target reference signal resource is one of the K1 first-type reference signal resources; the frequency domain resource occupied by the first resource set belongs to the first A cell; at least one of the time-domain resources occupied by the first resource set or the frequency-domain resources occupied by the first resource set is used to determine the K1 first-type reference signal resources.
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be compatible with the at least one of the processors described above.
  • the second communication device 410 means at least: first sending a first information block, the first information block is used to indicate the target identity; then sending a first signal in a first set of resources, or receiving a first signal in a first set of resources
  • the first signal, the demodulation reference signal of the channel occupied by the first signal and the first target reference signal resource are quasi-co-located; the target identity is associated to K1 first-type reference signal resources, and the K1 first-type reference signal resources are associated with the first cell, K1 is a positive integer greater than 1;
  • the first target reference signal resource is one of the K1 first-type reference signal resources; the first The frequency domain resource occupied by the resource set belongs to the first cell; at least one of the time domain resource occupied by the first resource set or the frequency domain resource occupied
  • the second communication device 410 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: first Sending a first information block, where the first information block is used to indicate the target identity; then sending a first signal in a first set of resources, or receiving a first signal in a first set of resources, the first signal occupies The demodulation reference signal of the channel and the first target reference signal resource are quasi-co-located; the target identity is associated to K1 first-type reference signal resources, and the K1 first-type reference signal resources are associated to the first A cell, K1 is a positive integer greater than 1; the first target reference signal resource is one of the K1 first-type reference signal resources; the frequency domain resource occupied by the first resource set belongs to the The first cell: at least one of the time-domain resources occupied by the first resource set or the frequency-domain resources occupied by the first resource set is used to determine from the K1 first-type reference signal resources The first target
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a UE.
  • the first communication device 450 is a terminal.
  • the second communication device 410 is a base station.
  • the second communications device 410 is a UE.
  • the second communication device 410 is a network device.
  • the second communication device 410 is a serving cell.
  • the second communication device 410 is a TRP.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive First information block; at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 are used to transmit first information block.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receive processor 458, the receive processor 456, and the controller/processor 459 are used to The first signal is received in the first resource set; at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 or are used to transmit the first signal in the first set of resources.
  • At least the first four of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 are used in the A first signal is sent in a resource set; at least the first four of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 Used for receiving a first signal in a first set of resources.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receive processor 458, the receive processor 456, and the controller/processor 459 are used to The second signal is received in the second resource set; at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 or are used to transmit the second signal in the second set of resources.
  • the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 are used in the The second signal is sent in two resource sets; at least the first four of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 is used to receive a second signal in a second set of resources.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive Second information block; at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 are used to transmit the second information block.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive The third information block; at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 are used to transmit third information block.
  • Embodiment 5 illustrates a flowchart of a first information block, as shown in FIG. 5 .
  • the communication between the first node U1 and the second node N2 is performed through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 5 can be applied to Embodiment 6, 7, 8, 9 or 10; otherwise, in the case of no conflict, the embodiment Embodiments, sub-embodiments, and subsidiary embodiments in 6, 7, 8, 9, or 10 can be applied to Embodiment 5.
  • the first information block is received in step S10; the first signal is received in the first resource set in step S11.
  • the first information block is sent in step S20; the first signal is sent in the first resource set in step S21.
  • the first information block is used to indicate the target identity; the demodulation reference signal of the channel occupied by the first signal is quasi-co-located with the first target reference signal resource; the target identity is Associated with K1 first-type reference signal resources, the K1 first-type reference signal resources are associated with the first cell, K1 is a positive integer greater than 1; the first target reference signal resource is the K1-th One of a type of reference signal resources; the frequency domain resources occupied by the first set of resources belong to the first cell; the time domain resources occupied by the first set of resources or the resources occupied by the first set of resources At least one of the frequency-domain resources is used to determine the first target reference signal resource from the K1 first-type reference signal resources.
  • the target identity is associated with any candidate reference signal resource set in the Q1 candidate reference signal resource sets, and the Q1 candidate reference signal resource sets are associated with Q2 cells;
  • the first reference signal resource The set includes the K1 first-type reference signal resources;
  • the first reference signal resource set is one of the Q1 candidate reference signal resource sets;
  • the first resource set is used to obtain from the Q1
  • the first reference signal resource set is determined in a candidate reference signal resource set;
  • the Q1 is a positive integer greater than 1
  • the Q2 is a positive integer greater than 1.
  • the Q2 cells include the first cell, and the frequency domain resources occupied by the first resource set belong to the frequency domain resources corresponding to the first cell.
  • the first cell is used to determine the first reference signal resource set from the Q1 candidate reference signal resource sets.
  • the Q2 is equal to the Q1
  • the Q1 candidate reference signal resource sets are respectively associated with the Q2 cells.
  • the Q2 is greater than the Q1, and at least one candidate reference signal resource set in the Q1 candidate reference signal resource sets is associated with at least two cells in the Q2 cells .
  • the given candidate reference signal resource set is any candidate reference signal resource set among the Q1 candidate reference signal resource sets, and the given candidate reference signal resource set is associated with To a given cell of the Q2 cells, the given set of candidate reference signal resources is used to determine QCL parameters for signals transmitted in the given cell.
  • the Q2 cells are respectively Q2 serving cells.
  • the Q2 cells respectively correspond to the Q2 carriers.
  • the Q2 cells respectively correspond to the Q2 PCIs.
  • the Q2 cells respectively correspond to the Q2 ServCellIndexes.
  • the Q2 cells respectively correspond to the Q2 ServCellIds.
  • the Q2 cells respectively correspond to the Q2 ServCellIdentities.
  • any candidate reference signal resource set in the Q1 candidate reference signal resource sets includes a plurality of candidate reference signal resources, and any candidate reference signal resource in the plurality of candidate reference signal resources
  • Signal resources include at least one of CSI-RS resources or SSBs.
  • any candidate reference signal resource set in the Q1 candidate reference signal resource sets includes a plurality of candidate reference signal resources, and any candidate reference signal resource in the plurality of candidate reference signal resources
  • Signal resources include DMRS resources or SRS resources.
  • the meaning of the above phrase that the first resource set is used to determine the first reference signal resource set from the Q1 candidate reference signal resource sets includes: the first resource The frequency domain resources occupied by the set are used to determine the first set of reference signal resources from the Q1 sets of candidate reference signal resources.
  • the meaning of the above phrase that the first resource set is used to determine the first reference signal resource set from the Q1 candidate reference signal resource sets includes: the first resource The first cell where the set is located is used to determine the first reference signal resource set from the Q1 candidate reference signal resource sets.
  • the meaning of the above phrase that the first resource set is used to determine the first reference signal resource set from the Q1 candidate reference signal resource sets includes: the first reference The signal resource set is configured to be associated with frequency domain resources occupied by the first resource set.
  • the meaning of the above phrase that the first resource set is used to determine the first reference signal resource set from the Q1 candidate reference signal resource sets includes: the first reference A set of signal resources is configured to be associated with the first cell in which the first set of resources is located.
  • the first physical channel and the second physical channel respectively exist in two different cells among the Q2 cells in this application, and the same TCI status identity is used to indicate or update or activate the first physical channel.
  • the meaning of the above two different cells includes: the two different cells respectively occupy different frequency domain resources.
  • the meaning of the above two different cells includes: the two different cells respectively correspond to two different PCIs.
  • the meaning of the above two different cells includes: the two different cells respectively correspond to two different ServCellIndexes.
  • the meaning of the above two different cells includes: the two different cells respectively correspond to two different ServCellIds.
  • the meaning of the above two different cells includes: the two different cells respectively correspond to two different ServCellIdentities.
  • the frequency domain resource occupied by the first physical channel belongs to the frequency domain resource corresponding to one of the two different cells
  • the frequency domain resource occupied by the second physical channel The domain resource belongs to the frequency domain resource corresponding to another cell of the two different cells.
  • the QCL parameters include QCL reference signal resources.
  • the QCL parameter includes a TCI state corresponding to a reference signal resource of the QCL.
  • the QCL parameter includes a TCI state identity corresponding to a reference signal resource of the QCL.
  • the QCL parameters include spatial reception parameters.
  • the QCL parameter includes a spatial transmission parameter.
  • the K1 is equal to 2, and the K1 first-type reference signal resources include the first reference signal resource and the second reference signal resource; the time-domain resources occupied by the first resource set include the first symbol set; when the slot format used by the symbols in the first symbol set is the first format, the first target reference signal resource is the first reference signal resource; when the symbols in the first symbol set use The time slot format is a format other than the first format, and the first target reference signal resource is the second reference signal resource.
  • the first symbol set includes at least one OFDM symbol in the time domain.
  • the first format is "F".
  • the formats other than the first format include the second format and the third format.
  • the second format is "D".
  • the third format is "U".
  • the first reference signal resource includes a CSI-RS resource.
  • the first reference signal resource includes SSB.
  • the first reference signal resources include DMRS resources.
  • the first reference signal resources include SRS resources.
  • the first reference signal resource corresponds to one TCI.
  • the first reference signal resource corresponds to one TCI-State.
  • the first reference signal resource corresponds to one TCI-StateId.
  • the first reference signal resource corresponds to one SRI.
  • the first reference signal resource corresponds to one CRI.
  • the second reference signal resources include CSI-RS resources.
  • the second reference signal resource includes SSB.
  • the second reference signal resources include DMRS resources.
  • the second reference signal resources include SRS resources.
  • the second reference signal resource corresponds to one TCI.
  • the second reference signal resource corresponds to one TCI-State.
  • the second reference signal resource corresponds to one TCI-StateId.
  • the second reference signal resource corresponds to one SRI.
  • the second reference signal resource corresponds to one CRI.
  • the K1 is equal to 2, and the K1 reference signal resources of the first type include the first reference signal resource and the second reference signal resource; when the frequency domain resource occupied by the first resource set belongs to the first When the frequency domain resource set is used, the first target reference signal resource is the first reference signal resource; when the first resource set includes frequency domain resources in the frequency domain that do not belong to the first frequency domain resource set, The first target reference signal resource is the second reference signal resource.
  • the meaning of the above phrase that the first set of resources includes frequency domain resources that do not belong to the first set of frequency domain resources in the frequency domain includes: the frequency occupied by the first set of resources
  • the domain resources are orthogonal to the frequency domain resources occupied by the first frequency domain resource set.
  • the K1 is equal to 2
  • the K1 first-type reference signal resources include first reference signal resources and second reference signal resources; when the time-frequency resources occupied by the first set of resources belong to the first
  • the first target reference signal resource is the first reference signal resource; when the first resource set includes time domain resources that do not belong to the first time-frequency resource set, the first target reference signal resource A target reference signal resource is the second reference signal resource.
  • the first format in this application is “F”
  • the formats other than the first format in this application are one of "D” or "U”.
  • the time domain resources corresponding to the first format in this application support dynamic adjustment of uplink and downlink transmission directions, and the time domain resources corresponding to formats other than the first format in this application do not support dynamic Adjust the direction of uplink and downlink transmission.
  • the time-domain resources corresponding to the first format in this application support full-duplex transmission, and the time-domain resources corresponding to formats other than the first format in this application do not support full-duplex transmission.
  • the time domain resources corresponding to the first format in this application support dynamic adjustment of uplink and downlink transmission directions, and the time domain resources corresponding to formats other than the first format in this application do not support dynamic Adjust the direction of uplink and downlink transmission.
  • the first frequency domain resource set in this application supports dynamic adjustment of uplink and downlink transmission directions.
  • the first frequency domain resource set in this application supports an asymmetric spectrum scenario.
  • the first frequency domain resource set in this application supports flexible duplex frequency domain resource configuration.
  • the first frequency domain resource set in this application supports full-duplex transmission.
  • the first set of time-frequency resources in this application supports dynamic adjustment of uplink and downlink transmission directions.
  • the first time-frequency resource set in this application supports an asymmetric spectrum scenario.
  • the first time-frequency resource set in this application supports flexible duplex frequency domain resource configuration.
  • the first time-frequency resource set in this application supports full-duplex transmission.
  • Embodiment 6 illustrates another flowchart of the first information block, as shown in FIG. 6 .
  • the communication between the first node U3 and the second node N4 is performed through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 6 can be applied to Embodiment 5, 7, 8, 9 or 10; otherwise, in the case of no conflict, the embodiment Embodiments, sub-embodiments, and subsidiary embodiments in 5, 7, 8, 9, or 10 can be applied to Embodiment 6.
  • the first information block is received in step S30; and the first signal is sent in the first resource set in step S31.
  • step S40 the first information block is sent; in step S41, the first signal is received in the first resource set.
  • the first information block is used to indicate the target identity; the demodulation reference signal of the channel occupied by the first signal is quasi-co-located with the first target reference signal resource; the target identity is Associated with K1 first-type reference signal resources, the K1 first-type reference signal resources are associated with the first cell, K1 is a positive integer greater than 1; the first target reference signal resource is the K1-th One of a type of reference signal resources; the frequency domain resources occupied by the first set of resources belong to the first cell; the time domain resources occupied by the first set of resources or the resources occupied by the first set of resources At least one of the frequency-domain resources is used to determine the first target reference signal resource from the K1 first-type reference signal resources.
  • Embodiment 7 illustrates a flowchart of a second signal, as shown in FIG. 7 .
  • the first node U5 communicates with the second node N6 through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 7 can be applied to Embodiment 5, 6, 8, 9 or 10; otherwise, in the case of no conflict, the embodiment Embodiments, sub-embodiments, and subsidiary embodiments in 5, 6, 8, 9, or 10 can be applied to Embodiment 7.
  • the second signal is received in the second resource set in step S50.
  • step S60 the second signal is sent in the second resource set.
  • the target identity is used to determine a second target reference signal resource
  • the second target reference signal resource is one of the K1 first-type reference signal resources
  • the first set of resources At least one of the occupied time domain resource or the frequency domain resource occupied by the first set of resources is used to determine whether the second target reference signal resource and the first target reference signal resource are quasi co-located of.
  • the first node receives the first signal in the first resource set, and the first node receives the second signal in the second resource set.
  • the physical layer channel occupied by the first signal includes a PDCCH
  • the physical layer channel occupied by the second signal includes a PDSCH
  • the physical layer channel occupied by the first signal includes a PDSCH
  • the physical layer channel occupied by the second signal includes a PDCCH
  • the first node sends the first signal in the first resource set, and the first node receives the second signal in the second resource set.
  • the physical layer channel occupied by the first signal includes a PUCCH
  • the physical layer channel occupied by the second signal includes a PDCCH
  • the physical layer channel occupied by the first signal includes a PUSCH
  • the physical layer channel occupied by the second signal includes a PDSCH
  • the physical layer channel occupied by the second signal includes a PDCCH.
  • the physical layer channel occupied by the second signal includes a PDSCH.
  • the transmission channel occupied by the second signal includes DL-SCH.
  • the second resource set includes at least one of time domain resources, frequency domain resources, or code domain resources.
  • the second resource set includes airspace resources.
  • the second resource set occupies a positive integer number of REs greater than 1.
  • the second resource set occupies a positive integer number of subcarriers greater than 1 in the frequency domain, and the second resource set occupies a time domain resource corresponding to at least one OFDM symbol in the time domain.
  • the second resource set occupies at least one code domain resource.
  • the second resource set occupies at least one multiple address signature.
  • the time-domain resources occupied by the first resource set are used to determine whether the second target reference signal resource and the first target reference signal resource are quasi-co-located.
  • the time slot format adopted by the OFDM symbols occupied by the first resource set in the time domain is the first format
  • the second target reference signal resource is the same as the first target reference signal resource.
  • the signal resources are not quasi-co-located; or the time slot format adopted by the OFDM symbols occupied by the first resource set in the time domain is a format other than the first format, and the second target reference signal resource and the first resource set A target reference signal resource is quasi-co-located.
  • the time slot format used in the time domain of the first resource set and the time slot format used in the time domain of the second resource set are used to determine the relationship between the second target reference signal resource and the time domain. Whether the first target reference signal resource is quasi-co-located.
  • the time slot format used by the OFDM symbols occupied by the first resource set in the time domain and the time slot used by the OFDM symbols occupied by the second resource set in the time domain are all in the first format, and the second target reference signal resource and the first target reference signal resource are quasi-co-located.
  • the time slot format used by the OFDM symbols occupied by the first resource set in the time domain and the time slot used by the OFDM symbols occupied by the second resource set in the time domain Only one of the formats is the first format, and the second target reference signal resource and the first target reference signal resource are not quasi-co-located.
  • the time slot format used by the OFDM symbols occupied by the first resource set in the time domain and the time slot used by the OFDM symbols occupied by the second resource set in the time domain are all formats other than the first format, and the second target reference signal resource and the first target reference signal resource are quasi-co-located.
  • the time slot format used by the OFDM symbols occupied by the first resource set in the time domain and the time slot used by the OFDM symbols occupied by the second resource set in the time domain The format is the same, and the second target reference signal resource is quasi-co-located with the first target reference signal resource.
  • the time domain resource occupied by the first resource set and the time domain resource occupied by the second resource set belong to the first time domain resource set, and the second target reference signal resource and the The first target reference signal resource is quasi-co-located; or the time domain resource occupied by the first resource set and the time domain resource occupied by the second resource set do not belong to the first time domain resource set at the same time, the The second target reference signal resource is not quasi-co-located with the first target reference signal resource.
  • the frequency domain resources occupied by the first resource set are used to determine whether the second target reference signal resource and the first target reference signal resource are quasi co-located.
  • the time-frequency resources occupied by the first resource set are used to determine whether the second target reference signal resource and the first target reference signal resource are quasi-co-located.
  • whether the frequency domain resources occupied by the first resource set and the frequency domain resources occupied by the second resource set belong to the first frequency domain resource set is used to determine the second target reference signal Whether the resource is quasi-co-located with the first target reference signal resource.
  • both the frequency domain resources occupied by the first resource set and the frequency domain resources occupied by the second resource set belong to the first frequency domain resource set, and the second target reference signal resource and the The first target reference signal resources are quasi-co-located; or the frequency domain resources occupied by the first resource set and the frequency domain resources occupied by the second resource set do not belong to the first frequency domain resource set at the same time, the The second target reference signal resource is not quasi-co-located with the first target reference signal resource.
  • the second signal is a wireless signal.
  • the second signal is a baseband signal.
  • the step S50 is located after the step S11 in the fifth embodiment.
  • the step S50 is located before the step S11 and after the step S10 in the fifth embodiment.
  • the step S50 is located after the step S31 in the sixth embodiment.
  • the step S50 is located before the step S31 and after the step S30 in the sixth embodiment.
  • the step S60 is located after the step S21 in the fifth embodiment.
  • the step S60 is located before the step S21 and after the step S20 in the fifth embodiment.
  • the step S60 is located after the step S41 in the sixth embodiment.
  • the step S60 is located before the step S41 and after the step S40 in the sixth embodiment.
  • Embodiment 8 illustrates another flow chart of the second signal, as shown in FIG. 8 .
  • the first node U7 communicates with the second node N8 through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 8 can be applied to Embodiment 5, 6, 7, 9 or 10; otherwise, in the case of no conflict, the embodiment Embodiments, sub-embodiments, and subsidiary embodiments in 5, 6, 7, 9, or 10 can be applied to Embodiment 8.
  • step S70 the second signal is sent in the second resource set.
  • the second signal is received in the second resource set in step S80.
  • the target identity is used to determine a second target reference signal resource
  • the second target reference signal resource is one of the K1 first-type reference signal resources
  • the first set of resources At least one of the occupied time domain resource or the frequency domain resource occupied by the first set of resources is used to determine whether the second target reference signal resource and the first target reference signal resource are quasi co-located of.
  • the first node sends the first signal in the first resource set, and the first node sends the second signal in the second resource set.
  • the physical layer channel occupied by the first signal includes a PUCCH
  • the physical layer channel occupied by the second signal includes a PUSCH
  • the physical layer channel occupied by the first signal includes a PUSCH
  • the physical layer channel occupied by the second signal includes a PUCCH
  • the first node receives the first signal in the first resource set, and the first node sends the second signal in the second resource set.
  • the physical layer channel occupied by the first signal includes a PDCCH
  • the physical layer channel occupied by the second signal includes a PUCCH
  • the physical layer channel occupied by the first signal includes a PDSCH
  • the physical layer channel occupied by the second signal includes a PUSCH
  • the physical layer channel occupied by the second signal includes PUSCH.
  • the transmission channel occupied by the second signal includes UL-SCH.
  • the step S70 is located after the step S11 in the fifth embodiment.
  • the step S70 is located before the step S11 and after the step S10 in the fifth embodiment.
  • the step S70 is located after the step S31 in the sixth embodiment.
  • the step S70 is located before the step S31 and after the step S30 in the sixth embodiment.
  • the step S80 is located after the step S21 in the fifth embodiment.
  • the step S80 is located before the step S21 and after the step S20 in the fifth embodiment.
  • the step S80 is located after the step S41 in the sixth embodiment.
  • the step S80 is located before the step S41 and after the step S40 in the sixth embodiment.
  • Embodiment 9 illustrates the flowchart of the second information block, as shown in FIG. 9 .
  • the first node U9 communicates with the second node N10 through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 9 can be applied to Embodiment 5, 6, 7, 8 or 10; otherwise, in the case of no conflict, the embodiment Embodiments, sub-embodiments, and subsidiary embodiments in 5, 6, 7, 8, or 10 can be applied to Embodiment 9.
  • the second information block is received in step S90.
  • the second information block is sent in step S100.
  • the second information block is used to indicate that the first signal and the second signal adopt the same TCI state.
  • the second information block is transmitted through RRC signaling.
  • the second information block is an RRC signaling.
  • the second information block is a field included in an RRC signaling.
  • the name of the RRC signaling used to transmit the second information block includes TCI.
  • the name of the RRC signaling used to transmit the second information block includes Unified.
  • the name of the RRC signaling used to transmit the second information block includes Common.
  • the second information block is transmitted through MAC CE.
  • the name of the MAC CE used to transmit the second information block includes TCI.
  • the name of the MAC CE used to transmit the second information block includes Unified.
  • the name of the MAC CE used to transmit the second information block includes Common.
  • the meaning of the above phrase that the first signal and the second signal adopt the same TCI state includes: when a given TCI state is used to operate the physical layer channel occupied by the first signal, the The given TCI state is also used to operate the physical layer channel occupied by the second signal; the operation includes one of indication, update or activation.
  • the meaning of the above phrase that the first signal and the second signal adopt the same TCI state includes: when a given TCI state is used to operate the physical layer channel occupied by the second signal, the The given TCI state is also used to indicate the physical layer channel occupied by the first signal; the operation includes one of indicating, updating or activating.
  • the first signal and the signal sent in the reference signal resource associated with the given TCI state are quasi-co-located.
  • the second signal and the signal sent in the reference signal resource associated with the given TCI state are quasi-co-located.
  • the demodulation reference signal of the channel occupied by the first signal and the signal sent in the reference signal resource associated with the given TCI state are quasi-co-located.
  • the demodulation reference signal of the channel occupied by the second signal and the signal sent in the reference signal resource associated with the given TCI state are quasi-co-located.
  • the above phrase that the first signal and the second signal adopt the same TCI state includes: the first signal and the second signal are quasi-co-located.
  • the above phrase that the first signal and the second signal adopt the same TCI state includes: the first signal and the second signal are quasi-co-located.
  • the meaning of the above phrase that the first signal and the second signal adopt the same TCI state includes: the demodulation reference signal of the channel occupied by the first signal is the same as that of the channel occupied by the second signal The channel's demodulation reference signal is quasi-co-located.
  • the step S90 is before the step S10 in the fifth embodiment.
  • the step S90 is located before the step S11 and after the step S10 in the fifth embodiment.
  • the step S90 is before the step S30 in the sixth embodiment.
  • the step S90 is located before the step S31 and after the step S30 in the sixth embodiment.
  • the step S100 is before the step S20 in the fifth embodiment.
  • the step S100 is located before the step S21 and after the step S20 in the fifth embodiment.
  • the step S100 is before the step S40 in the sixth embodiment.
  • the step S100 is located before the step S41 and after the step S40 in the sixth embodiment.
  • Embodiment 10 illustrates the flowchart of the third information block, as shown in FIG. 10 .
  • the first node U11 communicates with the second node N12 through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiments, sub-embodiments and sub-embodiments in Embodiment 10 can be applied to Embodiment 5, 6, 7, 8 or 9; otherwise, in the case of no conflict, the embodiment Embodiments, sub-embodiments, and subsidiary embodiments in 5, 6, 7, 8, or 9 can be applied to Embodiment 10.
  • the third information block is received in step S110.
  • the third information block is sent in step S120.
  • the third information block is used to indicate M1 candidate reference signal resource pools, the M1 candidate reference signal resource pools respectively correspond to M1 first-type identities, and the target identities are the M1 One of the first type of identities; the target identity is used to determine a target candidate reference signal resource pool from the M1 candidate reference signal resource pools, and the target candidate reference signal resource pool includes the Q1 candidate reference signal resource pools A set of signal resources; the M1 is a positive integer greater than 1.
  • the third information block is transmitted through RRC signaling.
  • the third information block is an RRC signaling.
  • the third information block is a field included in an RRC signaling.
  • the name of the RRC signaling used to transmit the third information block includes TCI.
  • the name of the RRC signaling used to transmit the third information block includes Unified.
  • the name of the RRC signaling used to transmit the third information block includes Common.
  • the third information block is transmitted through MAC CE.
  • the name of the RRC signaling used to transmit the third information block includes TCI.
  • the name of the RRC signaling used to transmit the third information block includes Unified.
  • the name of the RRC signaling used to transmit the third information block includes Common.
  • any candidate reference signal resource pool in the M1 candidate reference signal resource pools includes Q3 candidate reference signal resource sets, and the Q3 candidate reference signal resource sets are associated to the Q2 cells;
  • the Q3 is a positive integer greater than 1.
  • said Q3 is equal to Q1.
  • said Q3 is equal to Q2.
  • any candidate reference signal resource set in the Q3 candidate reference signal resource sets includes multiple candidate reference signal resources, and any candidate reference signal resource in the multiple candidate reference signal resource sets
  • Signal resources include at least one of CSI-RS resources or SSBs.
  • any candidate reference signal resource set in the Q3 candidate reference signal resource sets includes multiple candidate reference signal resources, and any candidate reference signal resource in the multiple candidate reference signal resource sets
  • Signal resources include DMRS resources or SRS resources.
  • the M1 is equal to one of 2, 4, 8, 16, 32 or 64.
  • any first-type identity among the M1 first-type identities is a non-negative integer.
  • any first-type identity among the M1 first-type identities is a TCI state.
  • any first-type identity among the M1 first-type identities is a TCI state index.
  • any first-type identity among the M1 first-type identities is a TCI status identity.
  • any first-type identity among the M1 first-type identities is a TCI-StateId.
  • any first-type identity among the M1 first-type identities is a CRI.
  • any first-type identity among the M1 first-type identities is an SRI.
  • the step S110 is before the step S10 in the fifth embodiment.
  • the step S110 is located before the step S11 and after the step S10 in the fifth embodiment.
  • the step S110 is before the step S30 in the sixth embodiment.
  • the step S110 is located before the step S31 and after the step S30 in the sixth embodiment.
  • the step S120 is before the step S20 in the fifth embodiment.
  • the step S120 is located before the step S21 and after the step S20 in the fifth embodiment.
  • the step S120 is before the step S40 in the sixth embodiment.
  • the step S120 is located before the step S41 and after the step S40 in the sixth embodiment.
  • the step S110 is before the step S90 in the ninth embodiment.
  • the step S110 is located after the step S90 in the ninth embodiment.
  • the step S120 is before the step S100 in the ninth embodiment.
  • the step S120 is located after the step S100 in the ninth embodiment.
  • Embodiment 11 illustrates a schematic diagram of K1 first-type reference signal resources, as shown in FIG. 11 .
  • the K1 first-type reference signal resources are all associated with one TCI-State.
  • the K1 first-type reference signal resources respectively correspond to K1 different QCL relationships.
  • the K1 first-type reference signal resources respectively correspond to K1 receiving beamforming vectors.
  • the K1 first-type reference signal resources correspond to K1 transmit beamforming vectors respectively.
  • any one of the K1 first-type reference signal resources occupies a positive integer number of REs (Resource Elements, resource units) greater than 1.
  • Embodiment 12 illustrates a schematic diagram of a set of Q1 candidate reference signal resources, as shown in FIG. 12 .
  • the Q1 candidate reference signal resource sets are respectively associated with Q1 cells; the candidate reference signal resources included in any candidate reference signal resource set in the Q1 candidate reference signal resource sets can be Indicated by an identical TCI-StateId.
  • Candidate reference signal resource set #0 to candidate reference signal resource set #(Q1-1) shown in Figure 12 correspond to Q1 candidate reference signal resource sets, and cell #0 to cell #(Q1-1) shown in Figure 12 -1) Corresponding to Q1 cells; the first reference signal resource set in this application is one of the candidate reference signal resource set #0 to candidate reference signal resource set #(Q1-1), the first A reference signal resource set includes K1 first-type reference signal resources, respectively corresponding to first-type reference signal resource #0 to first-type reference signal resource #(K1-1) in the figure.
  • Embodiment 13 illustrates a schematic diagram of a first signal and a second signal, as shown in FIG. 13 .
  • the first signal and the second signal respectively occupy orthogonal time-frequency resources.
  • the REs occupied by the first signal and the REs occupied by the second signal are orthogonal.
  • the first signal and the second signal are TDM (Time Division Multiplexing, time division multiplexing technology).
  • the first signal and the second signal are FDM (Frequency Division Multiplexing, frequency division multiplexing technology).
  • the TCI-StateId used by the first signal is indicated by the first information block in this application, no additional information is required to indicate the TCI-StateId used by the second signal .
  • the time domain resource occupied by the first signal is located before the time domain resource occupied by the second signal.
  • the time domain resource occupied by the first signal overlaps with the time domain resource occupied by the second signal, and the first signal and the second signal occupy different frequency domains respectively. resource.
  • the first signal is used to schedule the second signal.
  • the first signal is used to indicate the time-frequency resource occupied by the second signal.
  • the first signal is used to indicate the HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request) process number occupied by the second signal.
  • HARQ Hybrid Automatic Repeat reQuest, hybrid automatic repeat request
  • Embodiment 14 illustrates a schematic diagram of M1 candidate reference signal resource pools, as shown in FIG. 14 .
  • the M1 candidate reference signal resource pools correspond to M1 first-type identities respectively, and the M1 first-type identities respectively correspond to M1 TCI-StateIds;
  • the target identity is the M1 first-class identities One of a type of identity;
  • the target identity is used to determine a target candidate reference signal resource pool from the M1 candidate reference signal resource pools, and the target candidate reference signal resource pool includes the Q1 candidate reference signal resource pools Resource collection;
  • the M1 first-type identities shown in the figure are respectively the first-type identities #0 to the first-type identities #(M1-1), and the M1 candidate reference signal resource pools shown in the figure are candidate reference signal resource pools respectively Signal resource pool #0 to candidate reference signal resource pool #(M1-1)
  • Embodiment 15 illustrates a schematic diagram of an application scenario of the present application, as shown in FIG. 15 .
  • the third set of time-frequency resources is configured through RRC signaling or MAC (Medium Access Control, Media Access Control) CE (Control Elements, Control Elements); the third set of time-frequency resources can support dynamic adjustment Uplink and downlink transmission direction; whether the first resource set belongs to the third time-frequency resource set is used to determine the first target reference signal resource from the K1 first-type reference signal resources.
  • the K1 first-type reference signal resources include first reference signal resources and second reference signal resources; when the first resource set belongs to the third time-frequency resource set, the first The target reference signal resource is the first reference signal resource; when the first resource set does not belong to the third time-frequency resource set, the first target reference signal resource is the second reference signal resource.
  • the time-domain resources occupied by the third time-frequency resource set belong to the first time-domain resource set in this application.
  • the frequency domain resources occupied by the third time-frequency resource set belong to the first frequency domain resource set in this application.
  • the frequency domain resources occupied by the third time-frequency resource set belong to the first frequency domain resource set in this application.
  • the REs occupied by the third time-frequency resource set belong to the first time-frequency resource set in this application.
  • the third time-frequency resource set occupies a positive integer number of REs greater than 1.
  • the third time-frequency resource set occupies a positive integer number of time slots greater than 1 in the time domain.
  • the third time-frequency resource set occupies a positive integer number of OFDM symbols greater than 1 in the time domain.
  • the third time-frequency resource set occupies frequency domain resources corresponding to a positive integer number of RB (Resource Block, resource block) greater than 1 in the frequency domain.
  • the time domain resources in this application include at least one of OFDM symbols, time slots or subframes.
  • the frequency domain resources in this application include at least one of subcarriers, RBs, RB sets, or BWPs.
  • the time domain resources in this application include REs or RE sets.
  • Embodiment 16 illustrates a structural block diagram of a first node, as shown in FIG. 16 .
  • the first node 1600 includes a first receiver 1601 and a first transceiver 1602 .
  • the first receiver 1601 receives a first information block, where the first information block is used to indicate a target identity;
  • the first transceiver 1602 receives the first signal in the first resource set, or sends the first signal in the first resource set, and the demodulation reference signal and the first target reference signal resource of the channel occupied by the first signal is quasi-co-located;
  • the target identity is associated with K1 first-type reference signal resources, and the K1 first-type reference signal resources are associated with the first cell, where K1 is a positive integer greater than 1;
  • the first The target reference signal resource is one of the K1 first-type reference signal resources;
  • the frequency domain resource occupied by the first resource set belongs to the first cell;
  • the time domain resource occupied by the first resource set At least one of the resources or the frequency domain resources occupied by the first resource set is used to determine the first target reference signal resource from the K1 first type reference signal resources.
  • the target identity is associated with any candidate reference signal resource set in the Q1 candidate reference signal resource sets, and the Q1 candidate reference signal resource sets are associated with Q2 cells;
  • the first reference signal resource The set includes the K1 first-type reference signal resources;
  • the first reference signal resource set is one of the Q1 candidate reference signal resource sets;
  • the first resource set is used to obtain from the Q1
  • the first reference signal resource set is determined in a candidate reference signal resource set;
  • the Q1 is a positive integer greater than 1
  • the Q2 is a positive integer greater than 1.
  • the first transceiver 1602 receives a second signal in a second resource set; the target identity is used to determine a second target reference signal resource, and the second target reference signal resource is the K1 One of the first type of reference signal resources; at least one of the time domain resources occupied by the first resource set or the frequency domain resources occupied by the first resource set is used to determine the second Whether the target reference signal resource and the first target reference signal resource are quasi-co-located.
  • the first transceiver 1602 sends a second signal in a second resource set; the target identity is used to determine a second target reference signal resource, and the second target reference signal resource is the K1 One of the first type of reference signal resources; at least one of the time domain resources occupied by the first resource set or the frequency domain resources occupied by the first resource set is used to determine the second Whether the target reference signal resource and the first target reference signal resource are quasi-co-located.
  • the first physical channel and the second physical channel respectively exist in two different cells among the Q2 cells, and the same TCI status identity is used to indicate or update or activate the QCL of the first physical channel parameter and the QCL parameter of the second physical channel; the first physical channel and the second physical channel are both PDCCH or the first physical channel and the second physical channel are both PDSCH, or the first physical channel Both a physical channel and the second physical channel are PUCCHs, or both the first physical channel and the second physical channel are PUSCHs.
  • the first receiver 1601 receives a second information block, where the second information block is used to indicate that the first signal and the second signal adopt the same TCI state.
  • the K1 is equal to 2, and the K1 first-type reference signal resources include the first reference signal resource and the second reference signal resource; the time-domain resources occupied by the first resource set include the first symbol set; when the slot format used by the symbols in the first symbol set is the first format, the first target reference signal resource is the first reference signal resource; when the symbols in the first symbol set use The time slot format is a format other than the first format, and the first target reference signal resource is the second reference signal resource.
  • the K1 is equal to 2, and the K1 reference signal resources of the first type include the first reference signal resource and the second reference signal resource; when the frequency domain resource occupied by the first resource set belongs to the first When the frequency domain resource set is used, the first target reference signal resource is the first reference signal resource; when the first resource set includes frequency domain resources in the frequency domain that do not belong to the first frequency domain resource set, The first target reference signal resource is the second reference signal resource.
  • the K1 is equal to 2
  • the K1 first-type reference signal resources include first reference signal resources and second reference signal resources; when the time-frequency resources occupied by the first set of resources belong to the first
  • the first target reference signal resource is the first reference signal resource; when the first resource set includes time-frequency resources that do not belong to the first time-frequency resource set, the first target reference signal resource A target reference signal resource is the second reference signal resource.
  • the first receiver 1601 receives a third information block, and the third information block is used to indicate M1 candidate reference signal resource pools; the M1 candidate reference signal resource pools correspond to the M1th A type of identity, the target identity is one of the M1 first-type identities; the target identity is used to determine a target candidate reference signal resource pool from the M1 candidate reference signal resource pools, the The target candidate reference signal resource pool includes the Q1 candidate reference signal resource sets; the M1 is a positive integer greater than 1.
  • the first receiver 1601 includes at least the first four of the antenna 452 , the receiver 454 , the multi-antenna receiving processor 458 , the receiving processor 456 , and the controller/processor 459 in Embodiment 4.
  • the first transceiver 1602 includes the antenna 452, the receiver/transmitter 454, the multi-antenna receiving processor 458, the multi-antenna transmitting processor 457, the receiving processor 456, and the transmitting processor in Embodiment 4 468. At least the first six of the controller/processor 459.
  • the first information block is the TCI domain in DCI; the target identity is a TCI-StateId; the physical layer channel occupied by the first signal is PDSCH or PUSCH; the K1 first The reference signal-like resources are respectively associated to at least one of the K1 CSI-RS resources or SSBs.
  • the first information block is a domain in MAC CE or RRC signaling; the target identity is a TCI-StateId; the physical layer channel occupied by the first signal is PDCCH or PUCCH;
  • the K1 first-type reference signal resources are respectively associated with at least one of the K1 CSI-RS resources or SSBs.
  • Embodiment 17 illustrates a structural block diagram of a second node, as shown in FIG. 17 .
  • the second node 1700 includes a first transmitter 1701 and a second transceiver 1702 .
  • the first transmitter 1701 sends a first information block, where the first information block is used to indicate the identity of the target;
  • the second transceiver 1702 transmits the first signal in the first resource set, or receives the first signal in the first resource set, and the demodulation reference signal of the channel occupied by the first signal and the first target reference signal resource is quasi-co-located;
  • the target identity is associated with K1 first-type reference signal resources, and the K1 first-type reference signal resources are associated with the first cell, where K1 is a positive integer greater than 1;
  • the first The target reference signal resource is one of the K1 first-type reference signal resources;
  • the frequency domain resource occupied by the first resource set belongs to the first cell;
  • the time domain resource occupied by the first resource set At least one of the resources or the frequency domain resources occupied by the first resource set is used to determine the first target reference signal resource from the K1 first type reference signal resources.
  • the target identity is associated with any candidate reference signal resource set in the Q1 candidate reference signal resource sets, and the Q1 candidate reference signal resource sets are associated with Q2 cells;
  • the first reference signal resource The set includes the K1 first-type reference signal resources;
  • the first reference signal resource set is one of the Q1 candidate reference signal resource sets;
  • the first resource set is used to obtain from the Q1
  • the first reference signal resource set is determined in a candidate reference signal resource set;
  • the Q1 is a positive integer greater than 1
  • the Q2 is a positive integer greater than 1.
  • the second transceiver 1702 sends a second signal in a second resource set; the target identity is used to determine a second target reference signal resource, and the second target reference signal resource is the K1 One of the first type of reference signal resources; at least one of the time domain resources occupied by the first resource set or the frequency domain resources occupied by the first resource set is used to determine the second Whether the target reference signal resource and the first target reference signal resource are quasi-co-located.
  • the second transceiver 1702 receives a second signal in a second resource set; the target identity is used to determine a second target reference signal resource, and the second target reference signal resource is the K1 One of the first type of reference signal resources; at least one of the time domain resources occupied by the first resource set or the frequency domain resources occupied by the first resource set is used to determine the second Whether the target reference signal resource and the first target reference signal resource are quasi-co-located.
  • the first physical channel and the second physical channel respectively exist in two different cells among the Q2 cells, and the same TCI status identity is used to indicate or update or activate the QCL of the first physical channel parameter and the QCL parameter of the second physical channel; the first physical channel and the second physical channel are both PDCCH or the first physical channel and the second physical channel are both PDSCH, or the first physical channel Both a physical channel and the second physical channel are PUCCHs, or both the first physical channel and the second physical channel are PUSCHs.
  • the first transmitter 1701 sends a second information block; the second information block is used to indicate that the first signal and the second signal adopt the same TCI state.
  • the K1 is equal to 2, and the K1 first-type reference signal resources include the first reference signal resource and the second reference signal resource; the time-domain resources occupied by the first resource set include the first symbol set; when the slot format used by the symbols in the first symbol set is the first format, the first target reference signal resource is the first reference signal resource; when the symbols in the first symbol set use The time slot format is a format other than the first format, and the first target reference signal resource is the second reference signal resource.
  • the K1 is equal to 2, and the K1 reference signal resources of the first type include the first reference signal resource and the second reference signal resource; when the frequency domain resource occupied by the first resource set belongs to the first When the frequency domain resource set is used, the first target reference signal resource is the first reference signal resource; when the first resource set includes frequency domain resources in the frequency domain that do not belong to the first frequency domain resource set, The first target reference signal resource is the second reference signal resource.
  • the first transmitter 1701 sends a third information block; the third information block is used to indicate M1 candidate reference signal resource pools, and the M1 candidate reference signal resource pools correspond to the M1th A type of identity, the target identity is one of the M1 first-type identities; the target identity is used to determine a target candidate reference signal resource pool from the M1 candidate reference signal resource pools, the The target candidate reference signal resource pool includes the Q1 candidate reference signal resource sets; the M1 is a positive integer greater than 1.
  • the first transmitter 1701 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 414, and the controller/processor 475 in Embodiment 4.
  • the second transceiver 1702 includes the antenna 420, the transmitter/receiver 418, the multi-antenna transmit processor 471, the multi-antenna receive processor 472, the transmit processor 416, and the receive processor in Embodiment 4. 470. At least the first six of the controllers/processors 475.
  • the first information block is the TCI domain in DCI; the target identity is a TCI-StateId; the physical layer channel occupied by the first signal is PDSCH or PUSCH; the K1 first The reference signal-like resources are respectively associated to at least one of the K1 CSI-RS resources or SSBs.
  • the first information block is a domain in MAC CE or RRC signaling; the target identity is a TCI-StateId; the physical layer channel occupied by the first signal is PDCCH or PUCCH;
  • the K1 first-type reference signal resources are respectively associated with at least one of the K1 CSI-RS resources or SSBs.
  • the first node in this application includes but is not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, vehicles, vehicles, RSUs, aircrafts, airplanes, wireless Man-machine, remote control aircraft and other wireless communication equipment.
  • the second node in this application includes but not limited to macrocell base station, microcell base station, small cell base station, home base station, relay base station, eNB, gNB, transmission and receiving node TRP, GNSS, relay satellite, satellite base station, aerial base station , RSU, unmanned aerial vehicles, test equipment, such as transceiver devices or signaling testers that simulate some functions of base stations, and other wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。节点接收第一信息块,所述第一信息块被用于指示目标身份;随后在第一资源集合中接收或发送第一信号,所述第一信号与第一目标参考信号资源是准共址的;所述目标身份被关联到K1个第一类参考信号资源,所述K1个第一类参考信号资源被关联到第一小区;所述第一目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合属于所述第一小区;所述第一资源集合被用于从所述K1个第一类参考信号资源中确定所述第一目标参考信号资源。本申请改进TCI的确定方式,进而改进基于灵活的双工模式或可变的链路方向的频谱配置下波束赋形的传输方式,以优化系统性能。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中的灵活的传输方向配置的传输方案和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或5G)进行研究,在3GPP RAN#75次全会上通过了新空口技术(NR,New Radio)的WI(Work Item,工作项目),开始对NR进行标准化工作。在3GPP RAN#86次全会上决定开始NR Rel-17的SI(Study Item,研究项目)和WI(Work Item,工作项目)的工作并且预计在3GPP RAN#94e次全会上对NR Rel-18的SI和WI进行立项。
在新空口技术中,增强移动宽带(eMBB,enhanced Mobile BroadBand)、超可靠低时延通信(URLLC,Ultra-reliable and Low Latency Communications)、大规模机器类型通信(mMTC,massive Machine Type Communications)是三个主要的应用场景。在NR Rel-16系统中,相较LTE(Long-Term Evolution,长期演进)及LTE-A(增强的长期演进)帧结构,一个主要的不同在于一个时隙中的符号(Symbol)可以被配置为下行(Downlink),上行(Uplink)和灵活(Flexible),其中对于配置为“Flexible”的符号,终端会在该符号上接收下行,且该符号也可用于上行调度。上述方式较LTE及LTE-A系统更为灵活。
发明内容
在现有的NR系统中,unified(统一的)TCI(Transmission Configuration Indication,传输配置指示)和Common(公共的)TCI的概念被提出以降低信令开销。其中,统一的TCI是指对于一个终端而言,两种不同的物理信道可以共享同一种QCL(Quasi Co-located,准共址)关系,且两种不同的物理信道所对应的QCL关系可以被同时更新或激活;公共的TCI是指多个载波可以共享一个TCI-State ID(TCI状态身份),即一个TCI-StateId可以同时更新或激活多个载波上的多个物理信道的QCL关系。然而,当系统中的上下行配置变得更加灵活,尤其对于基站而言,在同一个时隙中的不同频段上会同时进行下行和上行传输。此种场景下,基于波束赋形的传输所面对的干扰环境将会变得更为复杂,现有统一的TCI、以及公共的TCI的更新或激活的方式需要被重新设计。
针对支持灵活的双工模式中的链路方向的配置问题,本申请公开了一种解决方案。需要说明的是,在本申请的描述中,只是将灵活的双工模式作为一个典型应用场景或者例子;本申请也同样适用于面临相似问题的其它场景(例如存在链路方向发生变化的场景,或者其它的支持多级配置传输方向的场景,或者具有更强能力基站或用户设备,比如支持同频全双工的场景,或者针对不同的应用场景,比如eMBB和URLLC,也可以取得类似的技术效果。此外,不同场景(包括但不限于eMBB和URLLC的场景)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的第一节点设备中的实施例和实施例中的特征可以应用到第二节点设备中,反之亦然。特别的,对本申请中的术语(Terminology)、名词、函数、变量的解释(如果未加特别说明)可以参考3GPP的规范协议TS(Technical Specification)36系列、TS38系列、TS37系列中的定义。
本申请公开了一种用于无线通信的第一节点中的方法,包括:
接收第一信息块,所述第一信息块被用于指示目标身份;
在第一资源集合中接收第一信号,所述第一信号所占用的信道的解调参考信号与第一目标参考信号资源是准共址的;
其中,所述目标身份被关联到K1个第一类参考信号资源,所述K1个第一类参考信号资源被关联到第一小区,K1是大于1的正整数;所述第一目标参考信号资源是所述K1个第一类参考信号资源 中的之一;所述第一资源集合所占用的频域资源属于所述第一小区;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于从所述K1个第一类参考信号资源中确定所述第一目标参考信号资源。
本申请公开了一种用于无线通信的第一节点中的方法,包括:
接收第一信息块,所述第一信息块被用于指示目标身份;
在第一资源集合中发送第一信号,所述第一信号所占用的信道的解调参考信号与第一目标参考信号资源是准共址的;
其中,所述目标身份被关联到K1个第一类参考信号资源,所述K1个第一类参考信号资源被关联到第一小区,K1是大于1的正整数;所述第一目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的频域资源属于所述第一小区;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于从所述K1个第一类参考信号资源中确定所述第一目标参考信号资源。
作为一个实施例,上述方法的一个技术特征在于:所述K1个第一类参考信号对应关联到一个载波上的一个TCI-StateId所能指示的K1种QCL关系,所述K1种QCL关系分别被用于不同的干扰情况。例如,当所述第一信号位于支持全双工的资源中时,所述目标身份指示所述K1种QCL关系中的一种关系以避免全双工场景下可能出现的特殊的干扰情况;当所述第一信号位于支持全双工的资源之外时,所述目标身份指示所述K1种QCL关系中的另一种关系以最大化系统性能。
根据本申请的一个方面,所述目标身份被关联到Q1个候选参考信号资源集合中的任一候选参考信号资源集合,所述Q1个候选参考信号资源集合被关联到Q2个小区;第一参考信号资源集合包括所述K1个第一类参考信号资源;所述第一参考信号资源集合是所述Q1个候选参考信号资源集合中的之一;所述第一资源集合被用于从所述Q1个候选参考信号资源集合中确定所述第一参考信号资源集合;所述Q1是大于1的正整数,所述Q2是大于1的正整数。
作为一个实施例,上述方法的技术特征在于:所述Q2个小区可以独立配置关联到同一个TCI-StateId下的QCL关系,即同一个TCI-StateId对于不同小区指示的是不同的参考信号资源,进而保证更大的灵活性。
根据本申请的一个方面,包括:
在第二资源集合中接收第二信号;
其中,所述目标身份被用于确定第二目标参考信号资源,所述第二目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于确定所述第二目标参考信号资源与所述第一目标参考信号资源是否是准共址的。
根据本申请的一个方面,包括:
在第二资源集合中发送第二信号;
其中,所述目标身份被用于确定第二目标参考信号资源,所述第二目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于确定所述第二目标参考信号资源与所述第一目标参考信号资源是否是准共址的。
作为一个实施例,上述方法的技术特征在于:上述方法针对统一的TCI场景,当所述第一信号和所述第二信号能够进行统一的TCI指示时,统一的TCI仅在所述第一信号和所述第二信号所处的双工方式相同时才能生效。
作为一个实施例,上述方法的另一个技术特征在于:当所述第一信号和所述第二信号都属于支持全双工的资源中,或者属于都不支持全双工的资源中时,所述第一信号的QCL关系和所述第二信号的QCL关系才能是相同的且被统一更新的;当所述第一信号所位于的资源所属的双工模式和所述第二信号所位于的资源所属的双工模式不同时,所述第一信号的QCL关系和所述第二信号的QCL关系不能认为是相同,且不能被统一更新。
根据本申请的一个方面,所述Q2个小区中的两个不同小区中分别存在第一物理信道和第二物理 信道,同一个TCI状态身份被用于指示或更新或激活所述第一物理信道的QCL参数和所述第二物理信道的QCL参数;所述第一物理信道和所述第二物理信道都是PDCCH或者所述第一物理信道和所述第二物理信道都是PDSCH,或者所述第一物理信道和所述第二物理信道都是PUCCH或者所述第一物理信道和所述第二物理信道都是PUSCH。
作为一个实施例,上述方法的技术特征在于:上述方法针对公共的TCI场景,即位于不同载波上的同类型的信道能够通过一个TCI-StateId同时进行激活、更新或指示。
作为一个实施例,上述方法的另一个技术特征在于:当所述第一信号和所述第二信号都属于支持全双工的资源中,或者属于都不支持全双工的资源中时,所述第一信号的QCL关系和所述第二信号的QCL关系才能是相同的且被统一更新的;当所述第一信号所位于的资源所属的双工模式和所述第二信号所位于的资源所属的双工模式不同时,所述第一信号的QCL关系和所述第二信号的QCL关系不能认为是相同,且不能被统一更新。
根据本申请的一个方面,包括:
接收第二信息块,所述第二信息块被用于指示所述第一信号和所述第二信号采用相同的TCI状态。
根据本申请的一个方面,所述K1等于2,所述K1个第一类参考信号资源包括第一参考信号资源和第二参考信号资源;所述第一资源集合所占用的时域资源包括第一符号集合;当所述第一符号集合中的符号采用的时隙格式是第一格式,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一符号集合中的符号采用的时隙格式是所述第一格式之外的格式,所述第一目标参考信号资源是所述第二参考信号资源。
作为一个实施例,上述方法的技术特征在于:当是否支持全双工是通过时域资源进行区分的时,所述第一资源集合所位于的时域资源将被用于确定所述第一信息块指示的TCI-StateId所实际对应的参考信号资源。
根据本申请的一个方面,所述K1等于2,所述K1个第一类参考信号资源包括第一参考信号资源和第二参考信号资源;当所述第一资源集合所占用的频域资源属于第一频域资源集合时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一资源集合在频域包括不属于所述第一频域资源集合的频域资源时,所述第一目标参考信号资源是所述第二参考信号资源。
作为一个实施例,上述方法的技术特征在于:当是否支持全双工是通过频域资源进行区分的时,所述第一资源集合所位于的频域资源将被用于确定所述第一信息块指示的TCI-StateId所实际对应的参考信号资源。
根据本申请的一个方面,所述K1等于2,所述K1个第一类参考信号资源包括第一参考信号资源和第二参考信号资源;当所述第一资源集合所占用的时频资源属于第一时频资源集合时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一资源集合包括不属于所述第一时频资源集合的时频资源时,所述第一目标参考信号资源是所述第二参考信号资源。
根据本申请的一个方面,包括:
接收第三信息块,所述第三信息块被用于指示M1个候选参考信号资源池;
其中,所述M1个候选参考信号资源池分别对应M1个第一类身份,所述目标身份是所述M1个第一类身份中的之一;所述目标身份被用于从所述M1个候选参考信号资源池中确定目标候选参考信号资源池,所述目标候选参考信号资源池包括所述Q1个候选参考信号资源集合;所述M1是大于1的正整数。
作为一个实施例,上述方法的技术特征在于:所述M1个第一类身份分别对应M1个TCI-StateId;在一个服务小区中,每一个TCI-StateId都会被关联到一个候选参考信号资源池中的一个候选参考信号资源集合,随后根据实际调度所位于的资源确定采用所述候选参考信号资源集合中的哪一个候选参考信号作为实际采用的QCL关系。
本申请公开了一种用于无线通信的第二节点中的方法,包括:
发送第一信息块,所述第一信息块被用于指示目标身份;
在第一资源集合中发送第一信号,所述第一信号所占用的信道的解调参考信号与第一目标参考信号资源是准共址的;
其中,所述目标身份被关联到K1个第一类参考信号资源,所述K1个第一类参考信号资源被关联到第一小区,K1是大于1的正整数;所述第一目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的频域资源属于所述第一小区;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于从所述K1个第一类参考信号资源中确定所述第一目标参考信号资源。
本申请公开了一种用于无线通信的第二节点中的方法,包括:
发送第一信息块,所述第一信息块被用于指示目标身份;
在第一资源集合中接收第一信号,所述第一信号所占用的信道的解调参考信号与第一目标参考信号资源是准共址的;
其中,所述目标身份被关联到K1个第一类参考信号资源,所述K1个第一类参考信号资源被关联到第一小区,K1是大于1的正整数;所述第一目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的频域资源属于所述第一小区;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于从所述K1个第一类参考信号资源中确定所述第一目标参考信号资源。
根据本申请的一个方面,所述目标身份被关联到Q1个候选参考信号资源集合中的任一候选参考信号资源集合,所述Q1个候选参考信号资源集合被关联到Q2个小区;第一参考信号资源集合包括所述K1个第一类参考信号资源;所述第一参考信号资源集合是所述Q1个候选参考信号资源集合中的之一;所述第一资源集合被用于从所述Q1个候选参考信号资源集合中确定所述第一参考信号资源集合;所述Q1是大于1的正整数,所述Q2是大于1的正整数。
根据本申请的一个方面,包括:
在第二资源集合中发送第二信号;
其中,所述目标身份被用于确定第二目标参考信号资源,所述第二目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于确定所述第二目标参考信号资源与所述第一目标参考信号资源是否是准共址的。
根据本申请的一个方面,包括:
在第二资源集合中接收第二信号;
其中,所述目标身份被用于确定第二目标参考信号资源,所述第二目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于确定所述第二目标参考信号资源与所述第一目标参考信号资源是否是准共址的。
根据本申请的一个方面,所述Q2个小区中的两个不同小区中分别存在第一物理信道和第二物理信道,同一个TCI状态身份被用于指示或更新或激活所述第一物理信道的QCL参数和所述第二物理信道的QCL参数;所述第一物理信道和所述第二物理信道都是PDCCH或者所述第一物理信道和所述第二物理信道都是PDSCH,或者所述第一物理信道和所述第二物理信道都是PUCCH或者所述第一物理信道和所述第二物理信道都是PUSCH。
根据本申请的一个方面,包括:
发送第二信息块;
其中,所述第二信息块被用于指示所述第一信号和所述第二信号采用相同的TCI状态。
根据本申请的一个方面,所述K1等于2,所述K1个第一类参考信号资源包括第一参考信号资源和第二参考信号资源;所述第一资源集合所占用的时域资源包括第一符号集合;当所述第一符号集合中的符号采用的时隙格式是第一格式,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一符号集合中的符号采用的时隙格式是所述第一格式之外的格式,所述第一目标参考信号资源是所述第二参考信号资源。
根据本申请的一个方面,所述K1等于2,所述K1个第一类参考信号资源包括第一参考信号资源和第二参考信号资源;当所述第一资源集合所占用的频域资源属于第一频域资源集合时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一资源集合在频域包括不属于所述第一频域资源集合的频域资源时,所述第一目标参考信号资源是所述第二参考信号资源。
根据本申请的一个方面,包括:
发送第三信息块;
其中,所述第三信息块被用于指示M1个候选参考信号资源池,所述M1个候选参考信号资源池分别对应M1个第一类身份,所述目标身份是所述M1个第一类身份中的之一;所述目标身份被用于从所述M1个候选参考信号资源池中确定目标候选参考信号资源池,所述目标候选参考信号资源池包括所述Q1个候选参考信号资源集合;所述M1是大于1的正整数。
本申请公开了一种用于无线通信的第一节点,包括:
第一接收机,接收第一信息块,所述第一信息块被用于指示目标身份;
第一收发机,在第一资源集合中接收第一信号,所述第一信号所占用的信道的解调参考信号与第一目标参考信号资源是准共址的;
其中,所述目标身份被关联到K1个第一类参考信号资源,所述K1个第一类参考信号资源被关联到第一小区,K1是大于1的正整数;所述第一目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的频域资源属于所述第一小区;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于从所述K1个第一类参考信号资源中确定所述第一目标参考信号资源。
本申请公开了一种用于无线通信的第一节点,包括:
第一接收机,接收第一信息块,所述第一信息块被用于指示目标身份;
第一收发机,在第一资源集合中发送第一信号,所述第一信号所占用的信道的解调参考信号与第一目标参考信号资源是准共址的;
其中,所述目标身份被关联到K1个第一类参考信号资源,所述K1个第一类参考信号资源被关联到第一小区,K1是大于1的正整数;所述第一目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的频域资源属于所述第一小区;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于从所述K1个第一类参考信号资源中确定所述第一目标参考信号资源。
本申请公开了一种用于无线通信的第二节点,包括:
第一发射机,发送第一信息块,所述第一信息块被用于指示目标身份;
第二收发机,在第一资源集合中发送第一信号,所述第一信号所占用的信道的解调参考信号与第一目标参考信号资源是准共址的;
其中,所述目标身份被关联到K1个第一类参考信号资源,所述K1个第一类参考信号资源被关联到第一小区,K1是大于1的正整数;所述第一目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的频域资源属于所述第一小区;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于从所述K1个第一类参考信号资源中确定所述第一目标参考信号资源。
本申请公开了一种用于无线通信的第二节点,包括:
第一发射机,发送第一信息块,所述第一信息块被用于指示目标身份;
第二收发机,在第一资源集合中接收第一信号,所述第一信号所占用的信道的解调参考信号与第一目标参考信号资源是准共址的;
其中,所述目标身份被关联到K1个第一类参考信号资源,所述K1个第一类参考信号资源被关联到第一小区,K1是大于1的正整数;所述第一目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的频域资源属于所述第一小区;所述第一资源集合所占用的时 域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于从所述K1个第一类参考信号资源中确定所述第一目标参考信号资源。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.所述K1个第一类参考信号对应关联到一个载波上的一个TCI-StateId所能指示的K1种QCL关系,所述K1种QCL关系分别被用于不同的干扰情况。例如,当所述第一信号位于支持全双工的资源中时,所述目标身份指示所述K1种QCL关系中的一种关系以避免全双工场景下可能出现的特殊的干扰情况;当所述第一信号位于支持全双工的资源之外时,所述目标身份指示所述K1种QCL关系中的另一种关系以最大化系统性能;
-.所述Q2个小区可以独立配置关联到同一个TCI-StateId下的QCL关系,即同一个TCI-StateId对于不同小区指示的是不同的参考信号资源,进而保证更大的灵活性;
-.当所述第一信号和所述第二信号都属于支持全双工的资源中,或者属于都不支持全双工的资源中时,所述第一信号的QCL关系和所述第二信号的QCL关系才能是相同的且被统一更新的;当所述第一信号所位于的资源所属的双工模式和所述第二信号所位于的资源所属的双工模式不同时,所述第一信号的QCL关系和所述第二信号的QCL关系不能认为是相同,且不能被统一更新;
-.所述M1个第一类身份分别对应M1个TCI-StateId;在一个服务小区中,每一个TCI-StateId都会被关联到一个候选参考信号资源池中的一个候选参考信号资源集合,随后根据实际调度所位于的资源确定采用所述候选参考信号资源集合中的哪一个候选参考信号作为实际采用的QCL关系。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的第一信息块的流程图;
图6示出了根据本申请的另一个实施例的第一信息块的流程图;
图7示出了根据本申请的一个实施例的第二信号的流程图;
图8示出了根据本申请的另一个实施例的第二信号的流程图;
图9示出了根据本申请的一个实施例的第二信息块的流程图;
图10示出了根据本申请的一个实施例的第三信息块的流程图;
图11示出了根据本申请的一个实施例的K1个第一类参考信号资源的示意图;
图12示出了根据本申请的一个实施例的Q1个候选参考信号资源集合的示意图;
图13示出了根据本申请的一个实施例的第一信号和第二信号的示意图;
图14示出了根据本申请的一个实施例的M1个候选参考信号资源池的示意图;
图15示出了根据本申请的一个实施例的应用场景的示意图;
图16示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图17示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个第一节点的处理流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。在实施例1中,本申请中的第一节点在步骤101中接收第一信息块,所述第一信息块被用于指 示目标身份;在步骤102中在第一资源集合中接收第一信号,或者在第一资源集合中发送第一信号,所述第一信号所占用的信道的解调参考信号与第一目标参考信号资源是准共址的。
实施例1中,所述目标身份被关联到K1个第一类参考信号资源,所述K1个第一类参考信号资源被关联到第一小区,K1是大于1的正整数;所述第一目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的频域资源属于所述第一小区;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于从所述K1个第一类参考信号资源中确定所述第一目标参考信号资源。
作为一个实施例,所述第一信息块通过RRC(Radio Resource Control,无线资源控制)信令传输。
作为一个实施例,所述第一信息块通过PDCCH(Physical Downlink Control Channel,物理下行控制信道)传输。
作为一个实施例,所述第一信息块通过DCI(Downlink control information,下行控制信息)传输。
作为一个实施例,所述第一信息块通过MAC(Medium Access Control,媒体接入控制)CE(Control Elements,控制单元)传输。
作为一个实施例,所述第一信息块是DCI中的一个域。
作为一个实施例,所述第一信息块是DCI中的TCI域。
作为一个实施例,所述目标身份是一个非负整数。
作为一个实施例,所述目标身份标识一个TCI状态。
作为一个实施例,所述目标身份标识是一个TCI状态索引。
作为一个实施例,所述目标身份标识是一个TCI状态身份。
作为一个实施例,所述目标身份标识是TCI-StateId。
作为一个实施例,所述目标身份是CRI(Channel State Information Reference Signal Resource Indicator,信道状态信息参考信号资源指示)。
作为一个实施例,所述目标身份是SRI(Sounding Reference Signal Resource Indicator,探测参考信号资源指示)。
作为一个实施例,所述目标身份是一个参考信号资源索引。
作为一个实施例,所述第一资源集合包括时域资源、频域资源或码域资源中的至少之一。
作为一个实施例,所述第一资源集合包括空域资源。
作为一个实施例,所述第一资源集合占用大于1的正整数个RE。
作为一个实施例,所述第一资源集合在频域占用大于1的正整数个子载波,且所述第一资源集合在时域占用至少一个OFDM(Orthogonal Frequency Division Multiplexing,正交频分多路复用技术)符号所对应的时域资源。
作为一个实施例,所述第一资源集合占用至少一个码域资源。
作为一个实施例,所述第一资源集合占用至少一个多址签名。
作为一个实施例,所述第一信号是无线信号。
作为一个实施例,所述第一信号是基带信号。
作为一个实施例,所述第一信号所占用的物理层信道包括PDSCH(Physical Downlink Shared Channel,物理下行共享信道)。
作为一个实施例,所述第一信号所占用的物理层信道包括PUSCH(Physical Uplink Shared Channel,物理上行共享信道)。
作为一个实施例,所述第一信号所占用的传输信道包括DL-SCH(Downlink Shared Channel,下行共享信道)。
作为一个实施例,所述第一信号所占用的传输信道包括UL-SCH(Uplink Shared Channel,上行共享信道)。
作为一个实施例,所述第一信号所占用的物理层信道包括PDCCH(Physical Downlink Control Channel,物理下行控制信道)。
作为一个实施例,所述第一信号所占用的物理层信道包括PUCCH(Physical Uplink Control  Channel,物理上行控制信道)。
作为一个实施例,上述短语所述第一信号所占用的信道的解调参考信号与第一目标参考信号资源是准共址的意思包括:所述第一信号与所述第一目标参考信号资源中所发送的参考信号是QCL的。
作为一个实施例,上述短语所述第一信号所占用的信道的解调参考信号与第一目标参考信号资源是准共址的意思包括:用于解调所述第一信号的DMRS与所述第一目标参考信号资源中所发送的参考信号是QCL的。
作为一个实施例,两个信号准共址是指:从所述两个信号中的一个信号所经历的信道的大尺度特性可以推断出所述两个信号中的另一个信号所经历的信道的大尺度特性。
作为一个实施例,所述大尺度特性(large-scale properties)包括延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒位移(Doppler shift),平均延时(average delay),或空间接收参数(Spatial Rx parameter)中的一种或者多种。
作为一个实施例,所述第一节点假设(assume)所述第一目标参考信号资源中所发送的参考信号和所述第一信号准共址。
作为一个实施例,所述第一节点可以(may)假设所述第一目标参考信号资源中所发送的参考信号和所述第一信号准共址。
作为一个实施例,所述第一目标参考信号资源中所发送的参考信号的发送者假设所述第一节点假设所述第一目标参考信号资源中所发送的参考信号和所述第一信号准共址。
作为一个实施例,所述第一节点用相同的空域滤波器接收所述第一目标参考信号资源中所发送的参考信号和所述第一信号。
作为一个实施例,所述第一目标参考信号资源中所发送的参考信号的发送者假设所述第一节点用相同的空域滤波器接收所述第一目标参考信号资源中所发送的参考信号和所述第一信号。
作为一个实施例,所述第一节点从所述第一目标参考信号资源中所发送的参考信号的空间接收参数可以推断出所述第一信号的空间接收参数。
作为一个实施例,所述第一节点从所述第一目标参考信号资源中所发送的参考信号的空间接收参数可以推断出所述第一信号的空间发送参数。
作为一个实施例,所述第一目标参考信号资源包括CSI-RS(Channel-State Information Reference Signals,信道状态信息参考信号)资源。
作为一个实施例,所述第一目标参考信号资源包括SSB(SS/PBCH Block,同步信号/物理广播信道块)。
作为一个实施例,所述第一目标参考信号资源包括DMRS(Demodulation Reference Signal,解调参考信号)资源。
作为一个实施例,所述第一目标参考信号资源包括SRS(Sounding Reference Signal,探测参考信号)资源。
作为一个实施例,所述第一目标参考信号资源对应一个TCI。
作为一个实施例,所述第一目标参考信号资源对应一个TCI-State。
作为一个实施例,所述第一目标参考信号资源对应一个TCI-StateId。
作为一个实施例,所述第一目标参考信号资源对应一个SRI。
作为一个实施例,所述第一目标参考信号资源对应一个CRI。
作为一个实施例,所述K1个第一类参考信号资源中的至少一个第一类参考信号资源包括CSI-RS资源。
作为一个实施例,所述K1个第一类参考信号资源中的至少一个第一类参考信号资源包括SSB。
作为一个实施例,所述K1个第一类参考信号资源中的至少一个第一类参考信号资源包括DMRS资源。
作为一个实施例,所述K1个第一类参考信号资源中的至少一个第一类参考信号资源包括SRS资源。
作为一个实施例,所述K1个第一类参考信号资源中的至少一个第一类参考信号资源对应一个TCI。
作为一个实施例,所述K1个第一类参考信号资源中的至少一个第一类参考信号资源对应一个TCI-State。
作为一个实施例,所述K1个第一类参考信号资源中的至少一个第一类参考信号资源对应一个TCI-StateId。
作为一个实施例,所述K1个第一类参考信号资源中的任一第一类参考信号资源对应一个TCI-State。
作为一个实施例,所述K1个第一类参考信号资源中的任一第一类参考信号资源对应一个TCI-StateId。
作为一个实施例,所述K1个第一类参考信号资源中的至少一个第一类参考信号资源对应一个SRI。
作为一个实施例,所述K1个第一类参考信号资源中的至少一个第一类参考信号资源对应一个CRI。
作为一个实施例,上述句子所述目标身份被关联到K1个第一类参考信号资源的意思包括:所述目标身份被用于指示所述K1个第一类参考信号资源中的一个第一类参考信号资源。
作为一个实施例,上述句子所述目标身份被关联到K1个第一类参考信号资源的意思包括:所述目标身份被用于指示所述K1个第一类参考信号资源中的至少一个第一类参考信号资源。
作为一个实施例,上述句子所述目标身份被关联到K1个第一类参考信号资源的意思包括:所述目标身份被用于指示所述K1个第一类参考信号资源中的至少两个第一类参考信号资源。
作为一个实施例,所述K1等于2。
作为一个实施例,所述第一小区是一个服务小区(Serving Cell)。
作为一个实施例,所述第一小区对应一个载波(Carrier)。
作为一个实施例,所述第一小区对应一个PCI(Physical Cell Identity,物理小区标识)。
作为一个实施例,所述第一小区对应一个ServCellIndex。
作为一个实施例,所述第一小区对应一个ServCellId。
作为一个实施例,所述第一小区对应一个ServCellIdentity。
作为一个实施例,所述第一小区是所述第一节点的服务小区。
作为一个实施例,所述句子“所述K1个第一类参考信号资源被关联到第一小区”的意思包括:所述K1个第一类参考信号资源中的至少一个第一类参考信号资源被用于确定在所述第一小区上传输的信道的QCL参数。
作为一个实施例,所述句子“所述K1个第一类参考信号资源被关联到第一小区”的意思包括:所述K1个第一类参考信号资源中的任一第一类参考信号资源被用于确定所述第一小区中传输的信号的QCL参数。
作为一个实施例,所述句子“所述K1个第一类参考信号资源被关联到第一小区”的意思包括:所述K1个第一类参考信号资源被用于确定所述第一小区中传输的信号的QCL参数。
作为一个实施例,所述句子“所述K1个第一类参考信号资源被关联到第一小区”的意思包括:所述K1个第一类参考信号资源被用于确定所述第一小区上的PDSCH或PDCCH的QCL参数。
作为一个实施例,所述句子“所述K1个第一类参考信号资源被关联到第一小区”的意思包括:所述K1个第一类参考信号资源是被配置给所述第一小区的。
作为一个实施例,所述句子“所述K1个第一类参考信号资源被关联到第一小区”的意思包括:配置所述K1个第一类参考信号资源的RRC信令还被用于指示所述第一小区所对应的身份(Identity)或标识(Index)。
作为一个实施例,所述句子“所述K1个第一类参考信号资源被关联到第一小区”的意思包括:配置所述K1个第一类参考信号资源的RRC信令还被用于指示所述第一小区所包括的BWP(Bandwidth Part,带宽部分)的身份或标识。
作为一个实施例,本申请中的准共址的类型包括QCL Type A。
作为一个实施例,本申请中的准共址的类型包括QCL Type B。
作为一个实施例,本申请中的准共址的类型包括QCL Type C。
作为一个实施例,本申请中的准共址的类型包括QCL Type D。
作为一个实施例,所述第一资源集合所占用的时域资源被用于从所述K1个第一类参考信号资源中确定所述第一目标参考信号资源。
作为一个实施例,所述第一资源集合所占用的频域资源被用于从所述K1个第一类参考信号资源中确定所述第一目标参考信号资源。
作为一个实施例,所述第一资源集合所占用的时频资源被用于从所述K1个第一类参考信号资源中确定所述第一目标参考信号资源。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个UE(User Equipment,用户设备)201,NR-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NR-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201支持非对称频谱(Unpaired Spectrum)场景。
作为一个实施例,所述UE201支持灵活双工(Flexible Duplex)的频域资源配置。
作为一个实施例,所述UE201支持全双工(Full Duplex)传输。
作为一个实施例,所述UE201支持动态调整上下行传输方向。
作为一个实施例,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述gNB203支持非对称频谱场景。
作为一个实施例,所述gNB203支持灵活双工的频域资源配置。
作为一个实施例,所述gNB203支持全双工(Full Duplex)传输。
作为一个实施例,所述gNB203支持动态调整上下行传输方向。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通 信节点设备与第二通信节点设备之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,PDCP子层304还提供第一通信节点设备对第二通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resouce Control,无线资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第二通信节点设备的PDCP304被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第二通信节点设备的PDCP354被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第一信息块生成于所述PHY301或者所述PHY351。
作为一个实施例,所述第一信息块生成于所述MAC302或者MAC352。
作为一个实施例,所述第一信息块生成于所述RRC306。
作为一个实施例,所述第一信号生成于所述PHY301或者所述PHY351。
作为一个实施例,所述第一信号生成于所述MAC302或者MAC352。
作为一个实施例,所述第一信号生成于所述RRC306。
作为一个实施例,所述第二信号生成于所述PHY301或者所述PHY351。
作为一个实施例,所述第二信号生成于所述MAC302或者MAC352。
作为一个实施例,所述第二信号生成于所述RRC306。
作为一个实施例,所述第二信息块生成于所述MAC302或者MAC352。
作为一个实施例,所述第二信息块生成于所述RRC306。
作为一个实施例,所述第三信息块生成于所述MAC302或者MAC352。
作为一个实施例,所述第三信息块生成于所述RRC306。
作为一个实施例,所述第一节点是一个终端。
作为一个实施例,所述第二节点是一个终端。
作为一个实施例,所述第二节点是一个TRP(Transmitter Receiver Point,发送接收点)。
作为一个实施例,所述第二节点是一个小区(Cell)。
作为一个实施例,所述第二节点是一个eNB。
作为一个实施例,所述第二节点是一个基站。
作为一个实施例,所述第二节点被用于管理多个TRP。
作为一个实施例,所述第二节点是用于管理多个小区的节点。
作为一个实施例,所述第二节点是用于管理多个载波的节点。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入 网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基 带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:首先接收第一信息块,所述第一信息块被用于指示目标身份;随后在第一资源集合中接收第一信号,或者在第一资源集合中发送第一信号,所述第一信号所占用的信道的解调参考信号与第一目标参考信号资源是准共址的;所述目标身份被关联到K1个第一类参考信号资源,所述K1个第一类参考信号资源被关联到第一小区,K1是大于1的正整数;所述第一目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的频域资源属于所述第一小区;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于从所述K1个第一类参考信号资源中确定所述第一目标参考信号资源。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先接收第一信息块,所述第一信息块被用于指示目标身份;随后在第一资源集合中接收第一信号,或者在第一资源集合中发送第一信号,所述第一信号所占用的信道的解调参考信号与第一目标参考信号资源是准共址的;所述目标身份被关联到K1个第一类参考信号资源,所述K1个第一类参考信号资源被关联到第一小区,K1是大于1的正整数;所述第一目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的频域资源属于所述第一小区;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于从所述K1个第一类参考信号资源中确定所述第一目标参考信号资源。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:首先发送第一信息块,所述第一信息块被用于指示目标身份;随后在第一资源集合中发送第一信号,或者在第一资源集合中接收第一信号,所述第一信号所占用的信道的解调参考信号与第一目标参考信号资源是准共址的;所述目标身份被关联到K1个第一类参考信号资源,所述K1个第一类参考信号资源被关联到第一小区,K1是大于1的正整数;所述第一目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的频域资源属于所述第一小区;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于从所述K1个第一类参考信号资源中确定所述第一目标参考信号资源。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先发送第一信息块,所述第一信息块被用于指示目标身份;随后在第一资源集合中发送第一信号,或者在第一资源集合中接收第一信号,所述第一信号所占用的信道的解调参考信号与第一目标参考信号资源是准共址的;所述目标身份被关联到K1个第一类参考信号资源,所述K1个第一类参考信号资源被关联到第一小区,K1是大于1的正整数;所述第一目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的频域资源属于所述第一小区;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于从所述K1个第一类参考信号资源中确定所述第一目标参考信号资源。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第一通信设备450是一个终端。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,所述第二通信设备410是一个UE。
作为一个实施例,所述第二通信设备410是一个网络设备。
作为一个实施例,所述第二通信设备410是一个服务小区。
作为一个实施例,所述第二通信设备410是一个TRP。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第一信息块;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第一信息块。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于在第一资源集合中接收第一信号;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于在第一资源集合中发送第一信号。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于在第一资源集合中发送第一信号;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于在第一资源集合中接收第一信号。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于在第二资源集合中接收第二信号;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于在第二资源集合中发送第二信号。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于在第二资源集合中发送第二信号;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于在第二资源集合中接收第二信号。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第二信息块;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第二信息块。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第三信息块;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第三信息块。
实施例5
实施例5示例了一个第一信息块的流程图,如附图5所示。在附图5中,第一节点U1与第二节点N2之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例5中的实施例、子实施例和附属实施例能够被应用到实施例6、7、8、9或10中;反之,在不冲突的情况下,实施例6、7、8、9或10中的实施例、子实施例和附属实施例能够被应用到实施例5中。
对于 第一节点U1,在步骤S10中接收第一信息块;在步骤S11中在第一资源集合中接收第一信号。
对于 第二节点N2,在步骤S20中发送第一信息块;在步骤S21中在第一资源集合中发送第一信号。
实施例5中,所述第一信息块被用于指示目标身份;所述第一信号所占用的信道的解调参考信号与第一目标参考信号资源是准共址的;所述目标身份被关联到K1个第一类参考信号资源,所述K1个第一类参考信号资源被关联到第一小区,K1是大于1的正整数;所述第一目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的频域资源属于所述第一小区;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于从所述K1个第一类参考信号资源中确定所述第一目标参考信号资源。
作为一个实施例,所述目标身份被关联到Q1个候选参考信号资源集合中的任一候选参考信号资源集合,所述Q1个候选参考信号资源集合被关联到Q2个小区;第一参考信号资源集合包括所述K1个第一类 参考信号资源;所述第一参考信号资源集合是所述Q1个候选参考信号资源集合中的之一;所述第一资源集合被用于从所述Q1个候选参考信号资源集合中确定所述第一参考信号资源集合;所述Q1是大于1的正整数,所述Q2是大于1的正整数。
作为该实施例的一个子实施例,所述Q2个小区包括所述第一小区,所述第一资源集合所占用的频域资源属于所述第一小区所对应的频域资源。
作为该子实施例的一个附属实施例,所述第一小区被用于从所述Q1个候选参考信号资源集合中确定所述第一参考信号资源集合。
作为该实施例的一个子实施例,所述Q2等于所述Q1,所述Q1个候选参考信号资源集合分别被关联到所述Q2个小区。
作为该实施例的一个子实施例,所述Q2大于所述Q1,所述Q1个候选参考信号资源集合中至少存在一个候选参考信号资源集合被关联到所述Q2个小区中的至少两个小区。
作为上述两个子实施例的一个附属实施例,给定候选参考信号资源集合是所述Q1个候选参考信号资源集合中的任一候选参考信号资源集合,所述给定候选参考信号资源集合被关联到所述Q2个小区中的给定小区,所述给定候选参考信号资源集合被用于确定所述给定小区中传输的信号的QCL参数。
作为该实施例的一个子实施例,所述Q2个小区分别是Q2个服务小区。
作为该实施例的一个子实施例,所述Q2个小区分别对应Q2个载波。
作为该实施例的一个子实施例,所述Q2个小区分别对应Q2个PCI。
作为该实施例的一个子实施例,所述Q2个小区分别对应Q2个ServCellIndex。
作为该实施例的一个子实施例,所述Q2个小区分别对应Q2个ServCellId。
作为该实施例的一个子实施例,所述Q2个小区分别对应Q2个ServCellIdentity。
作为该实施例的一个子实施例,所述Q1个候选参考信号资源集合中的任一候选参考信号资源集合包括多个候选参考信号资源,所述多个候选参考信号资源中的任一候选参考信号资源包括CSI-RS资源或SSB中的至少之一。
作为该实施例的一个子实施例,所述Q1个候选参考信号资源集合中的任一候选参考信号资源集合包括多个候选参考信号资源,所述多个候选参考信号资源中的任一候选参考信号资源包括DMRS资源或SRS资源。
作为该实施例的一个子实施例,上述短语所述第一资源集合被用于从所述Q1个候选参考信号资源集合中确定所述第一参考信号资源集合的意思包括:所述第一资源集合所占用的频域资源被用于从所述Q1个候选参考信号资源集合中确定所述第一参考信号资源集合。
作为该实施例的一个子实施例,上述短语所述第一资源集合被用于从所述Q1个候选参考信号资源集合中确定所述第一参考信号资源集合的意思包括:所述第一资源集合所位于的所述第一小区被用于从所述Q1个候选参考信号资源集合中确定所述第一参考信号资源集合。
作为该实施例的一个子实施例,上述短语所述第一资源集合被用于从所述Q1个候选参考信号资源集合中确定所述第一参考信号资源集合的意思包括:所述第一参考信号资源集合被配置为与所述第一资源集合所占用的频域资源相关联。
作为该实施例的一个子实施例,上述短语所述第一资源集合被用于从所述Q1个候选参考信号资源集合中确定所述第一参考信号资源集合的意思包括:所述第一参考信号资源集合被配置为与所述第一资源集合所位于的所述第一小区相关联。
作为一个实施例,本申请中的所述Q2个小区中的两个不同小区中分别存在第一物理信道和第二物理信道,同一个TCI状态身份被用于指示或更新或激活所述第一物理信道的QCL参数和所述第二物理信道的QCL参数;所述第一物理信道和所述第二物理信道都是PDCCH或者所述第一物理信道和所述第二物理信道都是PDSCH,或者所述第一物理信道和所述第二物理信道都是PUCCH或者所述第一物理信道和所述第二物理信道都是PUSCH。
作为该实施例的一个子实施例,上述两个不同的小区的意思包括:所述两个不同的小区分别占用不同的频域资源。
作为该实施例的一个子实施例,上述两个不同的小区的意思包括:所述两个不同的小区分别对应两 个不同的PCI。
作为该实施例的一个子实施例,上述两个不同的小区的意思包括:所述两个不同的小区分别对应两个不同的ServCellIndex。
作为该实施例的一个子实施例,上述两个不同的小区的意思包括:所述两个不同的小区分别对应两个不同的ServCellId。
作为该实施例的一个子实施例,上述两个不同的小区的意思包括:所述两个不同的小区分别对应两个不同的ServCellIdentity。
作为该实施例的一个子实施例,所述第一物理信道所占用的频域资源属于所述两个不同小区中的一个小区所对应的频域资源,所述第二物理信道所占用的频域资源属于所述两个不同小区中的另一个小区所对应的频域资源。
作为该实施例的一个子实施例,所述QCL参数包括QCL的参考信号资源。
作为该实施例的一个子实施例,所述QCL参数包括QCL的参考信号资源所对应的TCI状态。
作为该实施例的一个子实施例,所述QCL参数包括QCL的参考信号资源所对应的TCI状态身份。
作为该实施例的一个子实施例,所述QCL参数包括空间接收参数。
作为该实施例的一个子实施例,所述QCL参数包括空间发送参数。
作为一个实施例,所述K1等于2,所述K1个第一类参考信号资源包括第一参考信号资源和第二参考信号资源;所述第一资源集合所占用的时域资源包括第一符号集合;当所述第一符号集合中的符号采用的时隙格式是第一格式,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一符号集合中的符号采用的时隙格式是所述第一格式之外的格式,所述第一目标参考信号资源是所述第二参考信号资源。
作为该实施例的一个子实施例,所述第一符号集合在时域至少包括一个OFDM符号。
作为该实施例的一个子实施例,所述第一格式是“F”。
作为该实施例的一个子实施例,所述第一格式之外的格式包括第二格式和第三格式。
作为该子实施例的一个附属实施例,所述第二格式是“D”。
作为该子实施例的一个附属实施例,所述第三格式是“U”。
作为该实施例的一个子实施例,所述第一参考信号资源包括CSI-RS资源。
作为该实施例的一个子实施例,所述第一参考信号资源包括SSB。
作为该实施例的一个子实施例,所述第一参考信号资源包括DMRS资源。
作为该实施例的一个子实施例,所述第一参考信号资源包括SRS资源。
作为该实施例的一个子实施例,所述第一参考信号资源对应一个TCI。
作为一个实施例,所述第一参考信号资源对应一个TCI-State。
作为该实施例的一个子实施例,所述第一参考信号资源对应一个TCI-StateId。
作为该实施例的一个子实施例,所述第一参考信号资源对应一个SRI。
作为该实施例的一个子实施例,所述第一参考信号资源对应一个CRI。
作为该实施例的一个子实施例,所述第二参考信号资源包括CSI-RS资源。
作为该实施例的一个子实施例,所述第二参考信号资源包括SSB。
作为该实施例的一个子实施例,所述第二参考信号资源包括DMRS资源。
作为该实施例的一个子实施例,所述第二参考信号资源包括SRS资源。
作为一个实施例,所述第二参考信号资源对应一个TCI。
作为该实施例的一个子实施例,所述第二参考信号资源对应一个TCI-State。
作为该实施例的一个子实施例,所述第二参考信号资源对应一个TCI-StateId。
作为该实施例的一个子实施例,所述第二参考信号资源对应一个SRI。
作为该实施例的一个子实施例,所述第二参考信号资源对应一个CRI。
作为一个实施例,所述K1等于2,所述K1个第一类参考信号资源包括第一参考信号资源和第二参考信号资源;当所述第一资源集合所占用的频域资源属于第一频域资源集合时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一资源集合在频域包括不属于所述第一频域资源集 合的频域资源时,所述第一目标参考信号资源是所述第二参考信号资源。
作为该实施例的一个子实施例,上述短语所述第一资源集合在频域包括不属于所述第一频域资源集合的频域资源的意思包括:所述第一资源集合所占用的频域资源与所述第一频域资源集合所占用的频域资源正交。
作为一个实施例,所述K1等于2,所述K1个第一类参考信号资源包括第一参考信号资源和第二参考信号资源;当所述第一资源集合所占用的时频资源属于第一时频资源集合时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一资源集合包括不属于所述第一时频资源集合的时域资源时,所述第一目标参考信号资源是所述第二参考信号资源。
作为一个实施例,本申请中的所述第一格式是“F”,本申请中的所述第一格式之外的格式是“D”或“U”中的之一。
作为一个实施例,本申请中的所述第一格式所对应的时域资源支持动态调整上下行传输方向,本申请中的所述第一格式之外的格式所对应的时域资源不支持动态调整上下行传输方向。
作为一个实施例,本申请中的所述第一格式所对应的时域资源支持全双工传输,本申请中的所述第一格式之外的格式所对应的时域资源不支持全双工传输。
作为一个实施例,本申请中的所述第一格式所对应的时域资源支持动态调整上下行传输方向,本申请中的所述第一格式之外的格式所对应的时域资源不支持动态调整上下行传输方向。
作为一个实施例,本申请中的所述第一频域资源集合支持动态调整上下行传输方向。
作为一个实施例,本申请中的所述第一频域资源集合支持非对称频谱场景。
作为一个实施例,本申请中的所述第一频域资源集合支持灵活双工的频域资源配置。
作为一个实施例,本申请中的所述第一频域资源集合支持全双工传输。
作为一个实施例,本申请中的所述第一时频资源集合支持动态调整上下行传输方向。
作为一个实施例,本申请中的所述第一时频资源集合支持非对称频谱场景。
作为一个实施例,本申请中的所述第一时频资源集合支持灵活双工的频域资源配置。
作为一个实施例,本申请中的所述第一时频资源集合支持全双工传输。
实施例6
实施例6示例了另一个第一信息块的流程图,如附图6所示。在附图6中,第一节点U3与第二节点N4之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例6中的实施例、子实施例和附属实施例能够被应用到实施例5、7、8、9或10中;反之,在不冲突的情况下,实施例5、7、8、9或10中的实施例、子实施例和附属实施例能够被应用到实施例6中。
对于 第一节点U3,在步骤S30中接收第一信息块;在步骤S31中在第一资源集合中发送第一信号。
对于 第二节点N4,在步骤S40中发送第一信息块;在步骤S41中在第一资源集合中接收第一信号。
实施例6中,所述第一信息块被用于指示目标身份;所述第一信号所占用的信道的解调参考信号与第一目标参考信号资源是准共址的;所述目标身份被关联到K1个第一类参考信号资源,所述K1个第一类参考信号资源被关联到第一小区,K1是大于1的正整数;所述第一目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的频域资源属于所述第一小区;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于从所述K1个第一类参考信号资源中确定所述第一目标参考信号资源。
实施例7
实施例7示例了一个第二信号的流程图,如附图7所示。在附图7中,第一节点U5与第二节点N6之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例7中的实施例、子实施例和附属实施例能够被应用到实施例5、6、8、9或10中;反之,在不冲突的情况下,实施例5、6、8、9或10中的实施例、子实施例和附属实施例能够被应用到实施例7中。
对于 第一节点U5,在步骤S50中在第二资源集合中接收第二信号。
对于 第二节点N6,在步骤S60中在第二资源集合中发送第二信号。
实施例7中,所述目标身份被用于确定第二目标参考信号资源,所述第二目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于确定所述第二目标参考信号资源与所述第一目标参考信号资源是否是准共址的。
作为一个实施例,所述第一节点在所述第一资源集合中接收所述第一信号,且所述第一节点在所述第二资源集合中接收所述第二信号。
作为该实施例的一个子实施例,所述第一信号所占用的物理层信道包括PDCCH,所述第二信号所占用的物理层信道包括PDSCH。
作为该实施例的一个子实施例,所述第一信号所占用的物理层信道包括PDSCH,所述第二信号所占用的物理层信道包括PDCCH。
作为一个实施例,所述第一节点在所述第一资源集合中发送所述第一信号,且所述第一节点在所述第二资源集合中接收所述第二信号。
作为该实施例的一个子实施例,所述第一信号所占用的物理层信道包括PUCCH,所述第二信号所占用的物理层信道包括PDCCH。
作为该实施例的一个子实施例,所述第一信号所占用的物理层信道包括PUSCH,所述第二信号所占用的物理层信道包括PDSCH。
作为一个实施例,所述第二信号所占用的物理层信道包括PDCCH。
作为一个实施例,所述第二信号所占用的物理层信道包括PDSCH。
作为一个实施例,所述第二信号所占用的传输信道包括DL-SCH。
作为一个实施例,所述第二资源集合包括时域资源、频域资源或码域资源中的至少之一。
作为一个实施例,所述第二资源集合包括空域资源。
作为一个实施例,所述第二资源集合占用大于1的正整数个RE。
作为一个实施例,所述第二资源集合在频域占用大于1的正整数个子载波,且所述第二资源集合在时域占用至少一个OFDM符号所对应的时域资源。
作为一个实施例,所述第二资源集合占用至少一个码域资源。
作为一个实施例,所述第二资源集合占用至少一个多址签名。
作为一个实施例,所述第一资源集合所占用的时域资源被用于确定所述第二目标参考信号资源与所述第一目标参考信号资源是否是准共址的。
作为该实施例的一个子实施例,所述第一资源集合在时域所占用的OFDM符号所采用的时隙格式是第一格式,所述第二目标参考信号资源与所述第一目标参考信号资源是非准共址的;或者所述第一资源集合在时域所占用的OFDM符号所采用的时隙格式是第一格式之外的格式,所述第二目标参考信号资源与所述第一目标参考信号资源是准共址的。
作为一个实施例,所述第一资源集合在时域所采用的时隙格式和所述第二资源集合所在时域所采用的时隙格式被用于确定所述第二目标参考信号资源与所述第一目标参考信号资源是否是准共址的。
作为该实施例的一个子实施例,所述第一资源集合在时域所占用的OFDM符号所采用的时隙格式和所述第二资源集合在时域所占用的OFDM符号所采用的时隙格式都是第一格式,所述第二目标参考信号资源与所述第一目标参考信号资源是准共址的。
作为该实施例的一个子实施例,所述第一资源集合在时域所占用的OFDM符号所采用的时隙格式和所述第二资源集合在时域所占用的OFDM符号所采用的时隙格式中仅有一个是第一格式,所述第二目标参考信号资源与所述第一目标参考信号资源是非准共址的。
作为该实施例的一个子实施例,所述第一资源集合在时域所占用的OFDM符号所采用的时隙格式和所述第二资源集合在时域所占用的OFDM符号所采用的时隙格式都是第一格式之外的格式,所述第二目标参考信号资源与所述第一目标参考信号资源是准共址的。
作为该实施例的一个子实施例,所述第一资源集合在时域所占用的OFDM符号所采用的时隙格式和所述第二资源集合在时域所占用的OFDM符号所采用的时隙格式相同,所述第二目标参考信号资源与所述第一目标参考信号资源是准共址的。
作为一个实施例,所述第一资源集合所占用的时域资源和所述第二资源集合所占用的时域资源都属于第一时域资源集合,所述第二目标参考信号资源与所述第一目标参考信号资源是准共址的;或者所述第一资源集合所占用的时域资源和所述第二资源集合所占用的时域资源不同时属于第一时域资源集合,所述第二目标参考信号资源与所述第一目标参考信号资源是非准共址的。
作为一个实施例,所述第一资源集合所占用的频域资源被用于确定所述第二目标参考信号资源与所述第一目标参考信号资源是否是准共址的。
作为一个实施例,所述第一资源集合所占用的时频资源被用于确定所述第二目标参考信号资源与所述第一目标参考信号资源是否是准共址的。
作为一个实施例,所述第一资源集合所占用的频域资源和所述第二资源集合所占用的频域资源是否都属于第一频域资源集合被用于确定所述第二目标参考信号资源与所述第一目标参考信号资源是否是准共址的。
作为一个实施例,所述第一资源集合所占用的频域资源和所述第二资源集合所占用的频域资源都属于第一频域资源集合,所述第二目标参考信号资源与所述第一目标参考信号资源是准共址的;或者所述第一资源集合所占用的频域资源和所述第二资源集合所占用的频域资源不同时属于第一频域资源集合,所述第二目标参考信号资源与所述第一目标参考信号资源是非准共址的。
作为一个实施例,所述第二信号是无线信号。
作为一个实施例,所述第二信号是基带信号。
作为一个实施例,所述步骤S50位于实施例5中的步骤S11之后。
作为一个实施例,所述步骤S50位于实施例5中的步骤S11之前且步骤S10之后。
作为一个实施例,所述步骤S50位于实施例6中的步骤S31之后。
作为一个实施例,所述步骤S50位于实施例6中的步骤S31之前且步骤S30之后。
作为一个实施例,所述步骤S60位于实施例5中的步骤S21之后。
作为一个实施例,所述步骤S60位于实施例5中的步骤S21之前且步骤S20之后。
作为一个实施例,所述步骤S60位于实施例6中的步骤S41之后。
作为一个实施例,所述步骤S60位于实施例6中的步骤S41之前且步骤S40之后。
实施例8
实施例8示例了另一个第二信号的流程图,如附图8所示。在附图8中,第一节点U7与第二节点N8之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例8中的实施例、子实施例和附属实施例能够被应用到实施例5、6、7、9或10中;反之,在不冲突的情况下,实施例5、6、7、9或10中的实施例、子实施例和附属实施例能够被应用到实施例8中。
对于 第一节点U7,在步骤S70中在第二资源集合中发送第二信号。
对于 第二节点N8,在步骤S80中在第二资源集合中接收第二信号。
实施例8中,所述目标身份被用于确定第二目标参考信号资源,所述第二目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于确定所述第二目标参考信号资源与所述第一目标参考信号资源是否是准共址的。
作为一个实施例,所述第一节点在所述第一资源集合中发送所述第一信号,且所述第一节点在所述第二资源集合中发送所述第二信号。
作为该实施例的一个子实施例,所述第一信号所占用的物理层信道包括PUCCH,所述第二信号所占用的物理层信道包括PUSCH。
作为该实施例的一个子实施例,所述第一信号所占用的物理层信道包括PUSCH,所述第二信号所占用的物理层信道包括PUCCH。
作为一个实施例,所述第一节点在所述第一资源集合中接收所述第一信号,且所述第一节点在所述第二资源集合中发送所述第二信号。
作为该实施例的一个子实施例,所述第一信号所占用的物理层信道包括PDCCH,所述第二信号所 占用的物理层信道包括PUCCH。
作为该实施例的一个子实施例,所述第一信号所占用的物理层信道包括PDSCH,所述第二信号所占用的物理层信道包括PUSCH。
作为一个实施例,所述第二信号所占用的物理层信道包括PUSCH。
作为一个实施例,所述第二信号所占用的传输信道包括UL-SCH。
作为一个实施例,所述步骤S70位于实施例5中的步骤S11之后。
作为一个实施例,所述步骤S70位于实施例5中的步骤S11之前且步骤S10之后。
作为一个实施例,所述步骤S70位于实施例6中的步骤S31之后。
作为一个实施例,所述步骤S70位于实施例6中的步骤S31之前且步骤S30之后。
作为一个实施例,所述步骤S80位于实施例5中的步骤S21之后。
作为一个实施例,所述步骤S80位于实施例5中的步骤S21之前且步骤S20之后。
作为一个实施例,所述步骤S80位于实施例6中的步骤S41之后。
作为一个实施例,所述步骤S80位于实施例6中的步骤S41之前且步骤S40之后。
实施例9
实施例9示例了第二信息块的流程图,如附图9所示。在附图9中,第一节点U9与第二节点N10之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例9中的实施例、子实施例和附属实施例能够被应用到实施例5、6、7、8或10中;反之,在不冲突的情况下,实施例5、6、7、8或10中的实施例、子实施例和附属实施例能够被应用到实施例9中。
对于 第一节点U9,在步骤S90中接收第二信息块。
对于 第二节点N10,在步骤S100中发送第二信息块。
实施例9中,所述第二信息块被用于指示所述第一信号和所述第二信号采用相同的TCI状态。
作为一个实施例,所述第二信息块通过RRC信令传输。
作为一个实施例,所述第二信息块是一个RRC信令。
作为一个实施例,所述第二信息块是一个RRC信令所包括的一个域。
作为上述三个实施例的一个子实施例,用于传输所述第二信息块的RRC信令的名字中包括TCI。
作为上述三个实施例的一个子实施例,用于传输所述第二信息块的RRC信令的名字中包括Unified。
作为上述三个实施例的一个子实施例,用于传输所述第二信息块的RRC信令的名字中包括Common。
作为一个实施例,所述第二信息块通过MAC CE传输。
作为上述三个实施例的一个子实施例,用于传输所述第二信息块的MAC CE的名字中包括TCI。
作为上述三个实施例的一个子实施例,用于传输所述第二信息块的MAC CE的名字中包括Unified。
作为上述三个实施例的一个子实施例,用于传输所述第二信息块的MAC CE的名字中包括Common。
作为一个实施例,上述短语所述第一信号和所述第二信号采用相同的TCI状态的意思包括:当给定TCI状态被用于操作所述第一信号所占用的物理层信道时,所述给定TCI状态也被用于操作所述第二信号所占用的物理层信道;所述操作包括指示、更新或激活中的之一。
作为一个实施例,上述短语所述第一信号和所述第二信号采用相同的TCI状态的意思包括:当给定TCI状态被用于操作所述第二信号所占用的物理层信道时,所述给定TCI状态也被用于指示所述第一信号所占用的物理层信道;所述操作包括指示、更新或激活中的之一。
作为上述两个实施例的一个子实施例,所述第一信号和所述给定TCI状态所关联的参考信号资源中发送的信号是准共址的。
作为上述两个实施例的一个子实施例,所述第二信号和所述给定TCI状态所关联的参考信号资源中发送的信号是准共址的。
作为上述两个实施例的一个子实施例,所述第一信号所占用的信道的解调参考信号和所述给定TCI状态所关联的参考信号资源中发送的信号是准共址的。
作为上述两个实施例的一个子实施例,所述第二信号所占用的信道的解调参考信号和所述给定TCI状态所关联的参考信号资源中发送的信号是准共址的。
作为一个实施例,上述短语所述第一信号和所述第二信号采用相同的TCI状态的意思包括:所述第一信号和所述第二信号是准共址的。
作为一个实施例,上述短语所述第一信号和所述第二信号采用相同的TCI状态的意思包括:所述第一信号和所述第二信号是准共址的。
作为一个实施例,上述短语所述第一信号和所述第二信号采用相同的TCI状态的意思包括:所述第一信号所占用的信道的解调参考信号与所述第二信号所占用的信道的解调参考信号是准共址的。
作为一个实施例,所述步骤S90位于实施例5中的步骤S10之前。
作为一个实施例,所述步骤S90位于实施例5中的步骤S11之前且步骤S10之后。
作为一个实施例,所述步骤S90位于实施例6中的步骤S30之前。
作为一个实施例,所述步骤S90位于实施例6中的步骤S31之前且步骤S30之后。
作为一个实施例,所述步骤S100位于实施例5中的步骤S20之前。
作为一个实施例,所述步骤S100位于实施例5中的步骤S21之前且步骤S20之后。
作为一个实施例,所述步骤S100位于实施例6中的步骤S40之前。
作为一个实施例,所述步骤S100位于实施例6中的步骤S41之前且步骤S40之后。
实施例10
实施例10示例了第三信息块的流程图,如附图10所示。在附图10中,第一节点U11与第二节点N12之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例10中的实施例、子实施例和附属实施例能够被应用到实施例5、6、7、8或9中;反之,在不冲突的情况下,实施例5、6、7、8或9中的实施例、子实施例和附属实施例能够被应用到实施例10中。
对于 第一节点U11,在步骤S110中接收第三信息块。
对于 第二节点N12,在步骤S120中发送第三信息块。
实施例10中,所述第三信息块被用于指示M1个候选参考信号资源池,所述M1个候选参考信号资源池分别对应M1个第一类身份,所述目标身份是所述M1个第一类身份中的之一;所述目标身份被用于从所述M1个候选参考信号资源池中确定目标候选参考信号资源池,所述目标候选参考信号资源池包括所述Q1个候选参考信号资源集合;所述M1是大于1的正整数。
作为一个实施例,所述第三信息块通过RRC信令传输。
作为一个实施例,所述第三信息块是一个RRC信令。
作为一个实施例,所述第三信息块是一个RRC信令所包括的一个域。
作为上述三个实施例的一个子实施例,用于传输所述第三信息块的RRC信令的名字中包括TCI。
作为上述三个实施例的一个子实施例,用于传输所述第三信息块的RRC信令的名字中包括Unified。
作为上述三个实施例的一个子实施例,用于传输所述第三信息块的RRC信令的名字中包括Common。
作为一个实施例,所述第三信息块通过MAC CE传输。
作为上述三个实施例的一个子实施例,用于传输所述第三信息块的RRC信令的名字中包括TCI。
作为上述三个实施例的一个子实施例,用于传输所述第三信息块的RRC信令的名字中包括Unified。
作为上述三个实施例的一个子实施例,用于传输所述第三信息块的RRC信令的名字中包括Common。
作为一个实施例,所述M1个候选参考信号资源池中的任一候选参考信号资源池包括Q3个候选参考信号资源集合,所述Q3个候选参考信号资源集合被关联到所述Q2个小区;所述Q3是大于1的正整数。
作为该实施例的一个子实施例,所述Q3等于Q1。
作为该实施例的一个子实施例,所述Q3等于Q2。
作为该实施例的一个子实施例,所述Q3个候选参考信号资源集合中的任一候选参考信号资源集合包括多个候选参考信号资源,所述多个候选参考信号资源中的任一候选参考信号资源包括CSI-RS资源或SSB中的至少之一。
作为该实施例的一个子实施例,所述Q3个候选参考信号资源集合中的任一候选参考信号资源集合包括多个候选参考信号资源,所述多个候选参考信号资源中的任一候选参考信号资源包括DMRS资 源或SRS资源。
作为一个实施例,所述M1等于2、4、8、16、32或64中的之一。
作为一个实施例,所述M1个第一类身份中的任一第一类身份是一个非负整数。
作为一个实施例,所述M1个第一类身份中的任一第一类身份是一个TCI状态。
作为一个实施例,所述M1个第一类身份中的任一第一类身份是一个TCI状态索引。
作为一个实施例,所述M1个第一类身份中的任一第一类身份是一个TCI状态身份。
作为一个实施例,所述M1个第一类身份中的任一第一类身份是TCI-StateId。
作为一个实施例,所述M1个第一类身份中的任一第一类身份是CRI。
作为一个实施例,所述M1个第一类身份中的任一第一类身份是SRI。
作为一个实施例,所述步骤S110位于实施例5中的步骤S10之前。
作为一个实施例,所述步骤S110位于实施例5中的步骤S11之前且步骤S10之后。
作为一个实施例,所述步骤S110位于实施例6中的步骤S30之前。
作为一个实施例,所述步骤S110位于实施例6中的步骤S31之前且步骤S30之后。
作为一个实施例,所述步骤S120位于实施例5中的步骤S20之前。
作为一个实施例,所述步骤S120位于实施例5中的步骤S21之前且步骤S20之后。
作为一个实施例,所述步骤S120位于实施例6中的步骤S40之前。
作为一个实施例,所述步骤S120位于实施例6中的步骤S41之前且步骤S40之后。
作为一个实施例,所述步骤S110位于实施例9中的步骤S90之前。
作为一个实施例,所述步骤S110位于实施例9中的步骤S90之后。
作为一个实施例,所述步骤S120位于实施例9中的步骤S100之前。
作为一个实施例,所述步骤S120位于实施例9中的步骤S100之后。
实施例11
实施例11示例了一个K1个第一类参考信号资源的示意图,如附图11所示。在附图11中,所述K1个第一类参考信号资源均关联到一个TCI-State。
作为一个实施例,所述K1个第一类参考信号资源分别对应K1个不同的QCL关系。
作为一个实施例,所述K1个第一类参考信号资源分别对应K1个接收波束赋形向量。
作为一个实施例,所述K1个第一类参考信号资源分别对应K1个发送波束赋形向量。
作为一个实施例,所述K1个第一类参考信号资源中的任一第一类参考信号资源占用大于1的正整数个REs(Resource Elements,资源单元)。
实施例12
实施例12示例了一个Q1个候选参考信号资源集合的示意图,如附图12所示。在附图12中,所述Q1个候选参考信号资源集合分别被关联到Q1个小区;所述Q1个候选参考信号资源集合中任一候选参考信号资源集合中所包括的候选参考信号资源都能够被一个相同的TCI-StateId指示。
附图12中所示的候选参考信号资源集合#0至候选参考信号资源集合#(Q1-1)对应Q1个候选参考信号资源集合,附图12中所示的小区#0至小区#(Q1-1)对应Q1个小区;本申请中的所述第一参考信号资源集合是所述候选参考信号资源集合#0至候选参考信号资源集合#(Q1-1)中的之一,所述第一参考信号资源集合包括K1个第一类参考信号资源,分别对应图中的第一类参考信号资源#0至第一类参考信号资源#(K1-1)。
实施例13
实施例13示例了一个第一信号和第二信号的示意图,如附图13所示。在附图13中,所述第一信号和所述第二信号分别占用正交的时频资源。
作为一个实施例,所述第一信号所占用的REs和所述第二信号所占用的REs是正交的。
作为一个实施例,所述第一信号和所述第二信号是TDM(Time Division Multiplexing,时分复用技术)的。
作为一个实施例,所述第一信号和所述第二信号是FDM(Frequency Division Multiplexing,频分复用技术)的。
作为一个实施例,当所述第一信号所采用的QCL关系通过本申请中的所述第一信息块指示后,不需要采用额外的信息去指示所述第二信号所采用的QCL关系。
作为一个实施例,当所述第一信号所采用的TCI-StateId通过本申请中的所述第一信息块指示后,不需要采用额外的信息去指示所述第二信号所采用的TCI-StateId。
作为一个实施例,所述第一信号所占用的时域资源位于所述第二信号所占用的时域资源之前。
作为一个实施例,所述第一信号所占用的时域资源与所述第二信号所占用的时域资源存在交叠,且所述第一信号和所述第二信号分别占用不同的频域资源。
作为一个实施例,所述第一信号被用于调度所述第二信号。
作为一个实施例,所述第一信号被用于指示所述第二信号所占用的时频资源。
作为一个实施例,所述第一信号被用于指示所述第二信号所占用的HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号。
作为上述三个实施例的一个子实施例,所述第一信号中不存在TCI域。
实施例14
实施例14示例了一个M1个候选参考信号资源池的示意图,如附图14所示。在附图14中,所述M1个候选参考信号资源池分别对应M1个第一类身份,所述M1个第一类身份分别对应M1个TCI-StateId;所述目标身份是所述M1个第一类身份中的之一;所述目标身份被用于从所述M1个候选参考信号资源池中确定目标候选参考信号资源池,所述目标候选参考信号资源池包括所述Q1个候选参考信号资源集合;图中所示的M1个第一类身份分别是第一类身份#0至第一类身份#(M1-1),图中所示的M1个候选参考信号资源池分别是候选参考信号资源池#0至候选参考信号资源池#(M1-1)
实施例15
实施例15示例了一个本申请的应用场景的示意图,如附图15所示。在附图15中,第三时频资源集合通过RRC信令或MAC(Medium Access Control,媒体接入控制)CE(Control Elements,控制单元)配置;所述第三时频资源集合能够支持动态调整上下行传输方向;所述第一资源集合是否属于所述第三时频资源集合被用于从所述K1个第一类参考信号资源中确定所述第一目标参考信号资源。
作为一个实施例,所述K1个第一类参考信号资源包括第一参考信号资源和第二参考信号资源;当所述第一资源集合属于所述第三时频资源集合时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一资源集合不属于所述第三时频资源集合时,所述第一目标参考信号资源是所述第二参考信号资源。
作为一个实施例,所述第三时频资源集合所占用的时域资源属于本申请中的所述第一时域资源集合。
作为一个实施例,所述第三时频资源集合所占用的频域资源属于本申请中的所述第一频域资源集合。
作为一个实施例,所述第三时频资源集合所占用的频域资源属于本申请中的所述第一频域资源集合。
作为一个实施例,所述第三时频资源集合所占用的REs属于本申请中的所述第一时频资源集合。
作为一个实施例,所述第三时频资源集合占用大于1的正整数个REs。
作为一个实施例,所述第三时频资源集合在时域占用大于1的正整数个时隙。
作为一个实施例,所述第三时频资源集合在时域占用大于1的正整数个OFDM符号。
作为一个实施例,所述第三时频资源集合在频域占用大于1的正整数个RB(Resource Block,资源块)所对应的频域资源。
作为一个实施例,本申请中的所述时域资源包括OFDM符号、时隙或子帧中的至少之一。
作为一个实施例,本申请中的所述频域资源包括子载波、RB、RB集合或BWP中的至少之一。
作为一个实施例,本申请中的所述时域资源包括RE或RE集合。
实施例16
实施例16示例了一个第一节点中的结构框图,如附图16所示。附图16中,第一节点1600包括第一接收机1601和第一收发机1602。
第一接收机1601,接收第一信息块,所述第一信息块被用于指示目标身份;
第一收发机1602,在第一资源集合中接收第一信号,或者在第一资源集合中发送第一信号,所述第一信号所占用的信道的解调参考信号与第一目标参考信号资源是准共址的;
实施例16中,所述目标身份被关联到K1个第一类参考信号资源,所述K1个第一类参考信号资源被关联到第一小区,K1是大于1的正整数;所述第一目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的频域资源属于所述第一小区;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于从所述K1个第一类参考信号资源中确定所述第一目标参考信号资源。
作为一个实施例,所述目标身份被关联到Q1个候选参考信号资源集合中的任一候选参考信号资源集合,所述Q1个候选参考信号资源集合被关联到Q2个小区;第一参考信号资源集合包括所述K1个第一类参考信号资源;所述第一参考信号资源集合是所述Q1个候选参考信号资源集合中的之一;所述第一资源集合被用于从所述Q1个候选参考信号资源集合中确定所述第一参考信号资源集合;所述Q1是大于1的正整数,所述Q2是大于1的正整数。
作为一个实施例,所述第一收发机1602在第二资源集合中接收第二信号;所述目标身份被用于确定第二目标参考信号资源,所述第二目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于确定所述第二目标参考信号资源与所述第一目标参考信号资源是否是准共址的。
作为一个实施例,所述第一收发机1602在第二资源集合中发送第二信号;所述目标身份被用于确定第二目标参考信号资源,所述第二目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于确定所述第二目标参考信号资源与所述第一目标参考信号资源是否是准共址的。
作为一个实施例,所述Q2个小区中的两个不同小区中分别存在第一物理信道和第二物理信道,同一个TCI状态身份被用于指示或更新或激活所述第一物理信道的QCL参数和所述第二物理信道的QCL参数;所述第一物理信道和所述第二物理信道都是PDCCH或者所述第一物理信道和所述第二物理信道都是PDSCH,或者所述第一物理信道和所述第二物理信道都是PUCCH或者所述第一物理信道和所述第二物理信道都是PUSCH。
作为一个实施例,所述第一接收机1601接收第二信息块,所述第二信息块被用于指示所述第一信号和所述第二信号采用相同的TCI状态。
作为一个实施例,所述K1等于2,所述K1个第一类参考信号资源包括第一参考信号资源和第二参考信号资源;所述第一资源集合所占用的时域资源包括第一符号集合;当所述第一符号集合中的符号采用的时隙格式是第一格式,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一符号集合中的符号采用的时隙格式是所述第一格式之外的格式,所述第一目标参考信号资源是所述第二参考信号资源。
作为一个实施例,所述K1等于2,所述K1个第一类参考信号资源包括第一参考信号资源和第二参考信号资源;当所述第一资源集合所占用的频域资源属于第一频域资源集合时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一资源集合在频域包括不属于所述第一频域资源集合的频域资源时,所述第一目标参考信号资源是所述第二参考信号资源。
作为一个实施例,所述K1等于2,所述K1个第一类参考信号资源包括第一参考信号资源和第二参考信号资源;当所述第一资源集合所占用的时频资源属于第一时频资源集合时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一资源集合包括不属于所述第一时频资源集合的时频资源时,所述第一目标参考信号资源是所述第二参考信号资源。
作为一个实施例,所述第一接收机1601接收第三信息块,所述第三信息块被用于指示M1个候选参考信号资源池;所述M1个候选参考信号资源池分别对应M1个第一类身份,所述目标身份是所述M1个第一类身份中的之一;所述目标身份被用于从所述M1个候选参考信号资源池中确定目标候选参考信号资源池,所述目标候选参考信号资源池包括所述Q1个候选参考信号资源集合;所述M1是大于1的正整数。
作为一个实施例,所述第一接收机1601包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第一收发机1602包括实施例4中的天线452、接收器/发射器454、多天线接收处理器458、多天线发射处理器457、接收处理器456、发射处理器468、控制器/处理器459中的至少前6者。
作为一个实施例,所述第一信息块是DCI中的TCI域;所述目标身份是一个TCI-StateId;所述第一信号所占用的物理层信道是PDSCH或PUSCH;所述K1个第一类参考信号资源分别被关联到K1个CSI-RS资源或SSB中的至少之一。
作为一个实施例,所述第一信息块是MAC CE或RRC信令中的一个域;所述目标身份是一个TCI-StateId;所述第一信号所占用的物理层信道是PDCCH或PUCCH;所述K1个第一类参考信号资源分别被关联到K1个CSI-RS资源或SSB中的至少之一。
实施例17
实施例17示例了一个第二节点中的结构框图,如附图17所示。附图17中,第二节点1700包括第一发射机1701和第二收发机1702。
第一发射机1701,发送第一信息块,所述第一信息块被用于指示目标身份;
第二收发机1702,在第一资源集合中发送第一信号,或者在第一资源集合中接收第一信号,所述第一信号所占用的信道的解调参考信号与第一目标参考信号资源是准共址的;
实施例17中,所述目标身份被关联到K1个第一类参考信号资源,所述K1个第一类参考信号资源被关联到第一小区,K1是大于1的正整数;所述第一目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的频域资源属于所述第一小区;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于从所述K1个第一类参考信号资源中确定所述第一目标参考信号资源。
作为一个实施例,所述目标身份被关联到Q1个候选参考信号资源集合中的任一候选参考信号资源集合,所述Q1个候选参考信号资源集合被关联到Q2个小区;第一参考信号资源集合包括所述K1个第一类参考信号资源;所述第一参考信号资源集合是所述Q1个候选参考信号资源集合中的之一;所述第一资源集合被用于从所述Q1个候选参考信号资源集合中确定所述第一参考信号资源集合;所述Q1是大于1的正整数,所述Q2是大于1的正整数。
作为一个实施例,所述第二收发机1702在第二资源集合中发送第二信号;所述目标身份被用于确定第二目标参考信号资源,所述第二目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于确定所述第二目标参考信号资源与所述第一目标参考信号资源是否是准共址的。
作为一个实施例,所述第二收发机1702在第二资源集合中接收第二信号;所述目标身份被用于确定第二目标参考信号资源,所述第二目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于确定所述第二目标参考信号资源与所述第一目标参考信号资源是否是准共址的。
作为一个实施例,所述Q2个小区中的两个不同小区中分别存在第一物理信道和第二物理信道,同一个TCI状态身份被用于指示或更新或激活所述第一物理信道的QCL参数和所述第二物理信道的QCL参数;所述第一物理信道和所述第二物理信道都是PDCCH或者所述第一物理信道和所述第二物理信道都是PDSCH,或者所述第一物理信道和所述第二物理信道都是PUCCH或者所述第一物理信道和所述第二物理信道都是PUSCH。
作为一个实施例,所述第一发射机1701发送第二信息块;所述第二信息块被用于指示所述第一信号和所述第二信号采用相同的TCI状态。
作为一个实施例,所述K1等于2,所述K1个第一类参考信号资源包括第一参考信号资源和第二参考信号资源;所述第一资源集合所占用的时域资源包括第一符号集合;当所述第一符号集合中的符号采用的时隙格式是第一格式,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一符号集合中的符号采用的时隙格式是所述第一格式之外的格式,所述第一目标参考信号资源是所 述第二参考信号资源。
作为一个实施例,所述K1等于2,所述K1个第一类参考信号资源包括第一参考信号资源和第二参考信号资源;当所述第一资源集合所占用的频域资源属于第一频域资源集合时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一资源集合在频域包括不属于所述第一频域资源集合的频域资源时,所述第一目标参考信号资源是所述第二参考信号资源。
作为一个实施例,所述第一发射机1701发送第三信息块;所述第三信息块被用于指示M1个候选参考信号资源池,所述M1个候选参考信号资源池分别对应M1个第一类身份,所述目标身份是所述M1个第一类身份中的之一;所述目标身份被用于从所述M1个候选参考信号资源池中确定目标候选参考信号资源池,所述目标候选参考信号资源池包括所述Q1个候选参考信号资源集合;所述M1是大于1的正整数。
作为一个实施例,所述第一发射机1701包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器414、控制器/处理器475中的至少前4者。
作为一个实施例,所述第二收发机1702包括实施例4中的天线420、发射器/接收器418、多天线发射处理器471、多天线接收处理器472、发射处理器416、接收处理器470、控制器/处理器475中的至少前6者。
作为一个实施例,所述第一信息块是DCI中的TCI域;所述目标身份是一个TCI-StateId;所述第一信号所占用的物理层信道是PDSCH或PUSCH;所述K1个第一类参考信号资源分别被关联到K1个CSI-RS资源或SSB中的至少之一。
作为一个实施例,所述第一信息块是MAC CE或RRC信令中的一个域;所述目标身份是一个TCI-StateId;所述第一信号所占用的物理层信道是PDCCH或PUCCH;所述K1个第一类参考信号资源分别被关联到K1个CSI-RS资源或SSB中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,交通工具,车辆,RSU,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点包括但不限于宏蜂窝基站,微蜂窝基站,小蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站,RSU,无人机,测试设备、例如模拟基站部分功能的收发装置或信令测试仪,等无线通信设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (32)

  1. 一种用于无线通信中的第一节点,其特征在于包括:
    第一接收机,接收第一信息块,所述第一信息块被用于指示目标身份;
    第一收发机,在第一资源集合中接收第一信号,或者在第一资源集合中发送第一信号,所述第一信号所占用的信道的解调参考信号与第一目标参考信号资源是准共址的;
    其中,所述目标身份被关联到K1个第一类参考信号资源,所述K1个第一类参考信号资源被关联到第一小区,K1是大于1的正整数;所述第一目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的频域资源属于所述第一小区;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于从所述K1个第一类参考信号资源中确定所述第一目标参考信号资源。
  2. 根据权利要求1所述的第一节点,其特征在于,所述目标身份被关联到Q1个候选参考信号资源集合中的任一候选参考信号资源集合,所述Q1个候选参考信号资源集合被关联到Q2个小区;第一参考信号资源集合包括所述K1个第一类参考信号资源;所述第一参考信号资源集合是所述Q1个候选参考信号资源集合中的之一;所述第一资源集合被用于从所述Q1个候选参考信号资源集合中确定所述第一参考信号资源集合;所述Q1是大于1的正整数,所述Q2是大于1的正整数。
  3. 根据权利要求1或2所述的第一节点,其特征在于,所述第一收发机在第二资源集合中接收或发送第二信号,所述目标身份被用于确定第二目标参考信号资源,所述第二目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于确定所述第二目标参考信号资源与所述第一目标参考信号资源是否是准共址的。
  4. 根据权利要求2或3所述的第一节点,其特征在于,所述Q2个小区中的两个不同小区中分别存在第一物理信道和第二物理信道,同一个TCI状态身份被用于指示或更新或激活所述第一物理信道的QCL参数和所述第二物理信道的QCL参数;所述第一物理信道和所述第二物理信道都是PDCCH或者所述第一物理信道和所述第二物理信道都是PDSCH,或者所述第一物理信道和所述第二物理信道都是PUCCH或者所述第一物理信道和所述第二物理信道都是PUSCH。
  5. 根据权利要求3或4所述的第一节点,其特征在于,所述第一接收机接收第二信息块,所述第二信息块被用于指示所述第一信号和所述第二信号采用相同的TCI状态。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,所述K1等于2,所述K1个第一类参考信号资源包括第一参考信号资源和第二参考信号资源;所述第一资源集合所占用的时域资源包括第一符号集合;当所述第一符号集合中的符号采用的时隙格式是第一格式,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一符号集合中的符号采用的时隙格式是所述第一格式之外的格式,所述第一目标参考信号资源是所述第二参考信号资源。
  7. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,所述K1等于2,所述K1个第一类参考信号资源包括第一参考信号资源和第二参考信号资源;当所述第一资源集合所占用的频域资源属于第一频域资源集合时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一资源集合在频域包括不属于所述第一频域资源集合的频域资源时,所述第一目标参考信号资源是所述第二参考信号资源。
  8. 根据权利要求1至7中任一权利要求所述的第一节点,其特征在于,所述第一接收机接收第三信息块,所述第三信息块被用于指示M1个候选参考信号资源池,所述M1个候选参考信号资源池分别对应M1个第一类身份,所述目标身份是所述M1个第一类身份中的之一;所述目标身份被用于从所述M1个候选参考信号资源池中确定目标候选参考信号资源池,所述目标候选参考信号资源池包括所述Q1个候选参考信号资源集合;所述M1是大于1的正整数。
  9. 一种用于无线通信中的第二节点,其特征在于包括:
    第一发射机,发送第一信息块,所述第一信息块被用于指示目标身份;
    第二收发机,在第一资源集合中发送第一信号,或者在第一资源集合中接收第一信号,所述第一信号所占用的信道的解调参考信号与第一目标参考信号资源是准共址的;
    其中,所述目标身份被关联到K1个第一类参考信号资源,所述K1个第一类参考信号资源被关联到第 一小区,K1是大于1的正整数;所述第一目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的频域资源属于所述第一小区;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于从所述K1个第一类参考信号资源中确定所述第一目标参考信号资源。
  10. 根据权利要求9所述的第二节点,其特征在于,所述目标身份被关联到Q1个候选参考信号资源集合中的任一候选参考信号资源集合,所述Q1个候选参考信号资源集合被关联到Q2个小区;第一参考信号资源集合包括所述K1个第一类参考信号资源;所述第一参考信号资源集合是所述Q1个候选参考信号资源集合中的之一;所述第一资源集合被用于从所述Q1个候选参考信号资源集合中确定所述第一参考信号资源集合;所述Q1是大于1的正整数,所述Q2是大于1的正整数。
  11. 根据权利要求9或10所述的第二节点,其特征在于,所述第二收发机在第二资源集合中发送或接收第二信号,所述目标身份被用于确定第二目标参考信号资源,所述第二目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于确定所述第二目标参考信号资源与所述第一目标参考信号资源是否是准共址的。
  12. 根据权利要求10或11所述的第二节点,其特征在于,所述Q2个小区中的两个不同小区中分别存在第一物理信道和第二物理信道,同一个TCI状态身份被用于指示或更新或激活所述第一物理信道的QCL参数和所述第二物理信道的QCL参数;所述第一物理信道和所述第二物理信道都是PDCCH或者所述第一物理信道和所述第二物理信道都是PDSCH,或者所述第一物理信道和所述第二物理信道都是PUCCH或者所述第一物理信道和所述第二物理信道都是PUSCH。
  13. 根据权利要求11或12所述的第二节点,其特征在于,所述第一发射机发送第二信息块,所述第二信息块被用于指示所述第一信号和所述第二信号采用相同的TCI状态。
  14. 根据权利要求9至13中任一权利要求所述的第二节点,其特征在于,所述K1等于2,所述K1个第一类参考信号资源包括第一参考信号资源和第二参考信号资源;所述第一资源集合所占用的时域资源包括第一符号集合;当所述第一符号集合中的符号采用的时隙格式是第一格式,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一符号集合中的符号采用的时隙格式是所述第一格式之外的格式,所述第一目标参考信号资源是所述第二参考信号资源。
  15. 根据权利要求9至13中任一权利要求所述的第二节点,其特征在于,所述K1等于2,所述K1个第一类参考信号资源包括第一参考信号资源和第二参考信号资源;当所述第一资源集合所占用的频域资源属于第一频域资源集合时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一资源集合在频域包括不属于所述第一频域资源集合的频域资源时,所述第一目标参考信号资源是所述第二参考信号资源。
  16. 根据权利要求9至15中任一权利要求所述的第二节点,其特征在于,所述第一发射机发送第三信息块,所述第三信息块被用于指示M1个候选参考信号资源池,所述M1个候选参考信号资源池分别对应M1个第一类身份,所述目标身份是所述M1个第一类身份中的之一;所述目标身份被用于从所述M1个候选参考信号资源池中确定目标候选参考信号资源池,所述目标候选参考信号资源池包括所述Q1个候选参考信号资源集合;所述M1是大于1的正整数。
  17. 一种用于无线通信中的第一节点中的方法,其特征在于包括:
    接收第一信息块,所述第一信息块被用于指示目标身份;
    在第一资源集合中接收第一信号,或者在第一资源集合中发送第一信号,所述第一信号所占用的信道的解调参考信号与第一目标参考信号资源是准共址的;
    其中,所述目标身份被关联到K1个第一类参考信号资源,所述K1个第一类参考信号资源被关联到第一小区,K1是大于1的正整数;所述第一目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的频域资源属于所述第一小区;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于从所述K1个第一类参考信号资源中确定所述第一目标参考信号资源。
  18. 根据权利要求17所述的第一节点中的方法,其特征在于,所述目标身份被关联到Q1个候选 参考信号资源集合中的任一候选参考信号资源集合,所述Q1个候选参考信号资源集合被关联到Q2个小区;第一参考信号资源集合包括所述K1个第一类参考信号资源;所述第一参考信号资源集合是所述Q1个候选参考信号资源集合中的之一;所述第一资源集合被用于从所述Q1个候选参考信号资源集合中确定所述第一参考信号资源集合;所述Q1是大于1的正整数,所述Q2是大于1的正整数。
  19. 根据权利要求17或18所述的第一节点中的方法,其特征在于,包括:
    在第二资源集合中接收或发送第二信号;
    其中,所述目标身份被用于确定第二目标参考信号资源,所述第二目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于确定所述第二目标参考信号资源与所述第一目标参考信号资源是否是准共址的。
  20. 根据权利要求18或19所述的第一节点中的方法,其特征在于,所述Q2个小区中的两个不同小区中分别存在第一物理信道和第二物理信道,同一个TCI状态身份被用于指示或更新或激活所述第一物理信道的QCL参数和所述第二物理信道的QCL参数;所述第一物理信道和所述第二物理信道都是PDCCH或者所述第一物理信道和所述第二物理信道都是PDSCH,或者所述第一物理信道和所述第二物理信道都是PUCCH或者所述第一物理信道和所述第二物理信道都是PUSCH。
  21. 根据权利要求19或20所述的第一节点中的方法,其特征在于,包括:
    接收第二信息块,所述第二信息块被用于指示所述第一信号和所述第二信号采用相同的TCI状态。
  22. 根据权利要求17至21中任一权利要求所述的第一节点中的方法,其特征在于,所述K1等于2,所述K1个第一类参考信号资源包括第一参考信号资源和第二参考信号资源;所述第一资源集合所占用的时域资源包括第一符号集合;当所述第一符号集合中的符号采用的时隙格式是第一格式,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一符号集合中的符号采用的时隙格式是所述第一格式之外的格式,所述第一目标参考信号资源是所述第二参考信号资源。
  23. 根据权利要求17至21中任一权利要求所述的第一节点中的方法,其特征在于,所述K1等于2,所述K1个第一类参考信号资源包括第一参考信号资源和第二参考信号资源;当所述第一资源集合所占用的频域资源属于第一频域资源集合时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一资源集合在频域包括不属于所述第一频域资源集合的频域资源时,所述第一目标参考信号资源是所述第二参考信号资源。
  24. 根据权利要求17至23中任一权利要求所述的第一节点中的方法,其特征在于,包括:
    接收第三信息块;
    其中,所述第三信息块被用于指示M1个候选参考信号资源池,所述M1个候选参考信号资源池分别对应M1个第一类身份,所述目标身份是所述M1个第一类身份中的之一;所述目标身份被用于从所述M1个候选参考信号资源池中确定目标候选参考信号资源池,所述目标候选参考信号资源池包括所述Q1个候选参考信号资源集合;所述M1是大于1的正整数。
  25. 一种用于无线通信中的第二节点中的方法,其特征在于包括:
    发送第一信息块,所述第一信息块被用于指示目标身份;
    在第一资源集合中发送第一信号,或者在第一资源集合中接收第一信号,所述第一信号所占用的信道的解调参考信号与第一目标参考信号资源是准共址的;
    其中,所述目标身份被关联到K1个第一类参考信号资源,所述K1个第一类参考信号资源被关联到第一小区,K1是大于1的正整数;所述第一目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的频域资源属于所述第一小区;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于从所述K1个第一类参考信号资源中确定所述第一目标参考信号资源。
  26. 根据权利要求25所述的第二节点中的方法,其特征在于,所述目标身份被关联到Q1个候选参考信号资源集合中的任一候选参考信号资源集合,所述Q1个候选参考信号资源集合被关联到Q2个小区;第一参考信号资源集合包括所述K1个第一类参考信号资源;所述第一参考信号资源集合是所述Q1个候选参考信号资源集合中的之一;所述第一资源集合被用于从所述Q1个候选参考信号资 源集合中确定所述第一参考信号资源集合;所述Q1是大于1的正整数,所述Q2是大于1的正整数。
  27. 根据权利要求25或26所述的第二节点中的方法,其特征在于,包括:
    在第二资源集合中发送或接收第二信号;
    其中,所述目标身份被用于确定第二目标参考信号资源,所述第二目标参考信号资源是所述K1个第一类参考信号资源中的之一;所述第一资源集合所占用的时域资源或者所述第一资源集合所占用的频域资源中的至少之一被用于确定所述第二目标参考信号资源与所述第一目标参考信号资源是否是准共址的。
  28. 根据权利要求26或27所述的第二节点中的方法,其特征在于,所述Q2个小区中的两个不同小区中分别存在第一物理信道和第二物理信道,同一个TCI状态身份被用于指示或更新或激活所述第一物理信道的QCL参数和所述第二物理信道的QCL参数;所述第一物理信道和所述第二物理信道都是PDCCH或者所述第一物理信道和所述第二物理信道都是PDSCH,或者所述第一物理信道和所述第二物理信道都是PUCCH或者所述第一物理信道和所述第二物理信道都是PUSCH。
  29. 根据权利要求27或28所述的第二节点中的方法,其特征在于包括:
    发送第二信息块,所述第二信息块被用于指示所述第一信号和所述第二信号采用相同的TCI状态。
  30. 根据权利要求25至29中任一权利要求所述的第二节点中的方法,其特征在于,所述K1等于2,所述K1个第一类参考信号资源包括第一参考信号资源和第二参考信号资源;所述第一资源集合所占用的时域资源包括第一符号集合;当所述第一符号集合中的符号采用的时隙格式是第一格式,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一符号集合中的符号采用的时隙格式是所述第一格式之外的格式,所述第一目标参考信号资源是所述第二参考信号资源。
  31. 根据权利要求25至29中任一权利要求所述的第二节点中的方法,其特征在于,所述K1等于2,所述K1个第一类参考信号资源包括第一参考信号资源和第二参考信号资源;当所述第一资源集合所占用的频域资源属于第一频域资源集合时,所述第一目标参考信号资源是所述第一参考信号资源;当所述第一资源集合在频域包括不属于所述第一频域资源集合的频域资源时,所述第一目标参考信号资源是所述第二参考信号资源。
  32. 根据权利要求25至31中任一权利要求所述的第二节点中的方法,其特征在于,包括:
    发送第三信息块;
    其中,所述第三信息块被用于指示M1个候选参考信号资源池,所述M1个候选参考信号资源池分别对应M1个第一类身份,所述目标身份是所述M1个第一类身份中的之一;所述目标身份被用于从所述M1个候选参考信号资源池中确定目标候选参考信号资源池,所述目标候选参考信号资源池包括所述Q1个候选参考信号资源集合;所述M1是大于1的正整数。
PCT/CN2022/125857 2021-10-29 2022-10-18 一种被用于无线通信的节点中的方法和装置 WO2023071862A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111276054.7 2021-10-29
CN202111276054.7A CN116095835A (zh) 2021-10-29 2021-10-29 一种被用于无线通信的节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2023071862A1 true WO2023071862A1 (zh) 2023-05-04

Family

ID=86159144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125857 WO2023071862A1 (zh) 2021-10-29 2022-10-18 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN116095835A (zh)
WO (1) WO2023071862A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111543014A (zh) * 2018-02-05 2020-08-14 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111901083A (zh) * 2020-01-17 2020-11-06 中兴通讯股份有限公司 一种准共址信息获取方法、通信节点及存储介质
CN113114437A (zh) * 2020-01-13 2021-07-13 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2021160028A1 (zh) * 2020-02-14 2021-08-19 中兴通讯股份有限公司 控制信令的接收、发送方法和通信节点

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111543014A (zh) * 2018-02-05 2020-08-14 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN113114437A (zh) * 2020-01-13 2021-07-13 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN111901083A (zh) * 2020-01-17 2020-11-06 中兴通讯股份有限公司 一种准共址信息获取方法、通信节点及存储介质
WO2021160028A1 (zh) * 2020-02-14 2021-08-19 中兴通讯股份有限公司 控制信令的接收、发送方法和通信节点

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TCL COMMUNICATION LTD.: "Enhancements on multi-beam operation", 3GPP DRAFT; R1-2109180, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-Meeting; 20211011 - 20211019, 30 September 2021 (2021-09-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052058137 *

Also Published As

Publication number Publication date
CN116095835A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020088212A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN114900277A (zh) 一种被用于无线通信的节点中的方法和装置
WO2020057362A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022222765A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019228145A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021031901A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023071862A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023165344A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023083155A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023151671A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023179471A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024093883A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023103925A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023036040A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024022239A1 (zh) 一种用于无线通信的方法和装置
WO2024002020A1 (zh) 一种用于无线通信的方法和装置
WO2022257866A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023216894A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023134592A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024032425A1 (zh) 一种用于无线通信的方法和装置
WO2024032520A1 (zh) 一种用于无线通信的方法和装置
CN114793151B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023116482A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885740

Country of ref document: EP

Kind code of ref document: A1