WO2024067798A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2024067798A1
WO2024067798A1 PCT/CN2023/122532 CN2023122532W WO2024067798A1 WO 2024067798 A1 WO2024067798 A1 WO 2024067798A1 CN 2023122532 W CN2023122532 W CN 2023122532W WO 2024067798 A1 WO2024067798 A1 WO 2024067798A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
resource set
power value
threshold value
signal resource
Prior art date
Application number
PCT/CN2023/122532
Other languages
English (en)
French (fr)
Inventor
蒋琦
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024067798A1 publication Critical patent/WO2024067798A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, and more particularly to a transmission scheme and device for determining uplink power in wireless communication.
  • the 5G wireless cellular communication network system enhances the uplink power control of UE (User Equipment) based on the original LTE (Long-Term Evolution).
  • UE User Equipment
  • LTE Long-Term Evolution
  • CRS Common Reference Signal
  • the path loss measurement required for uplink power control needs to be performed using CSI-RS (Channel State Information Reference Signal) and SSB (SS/PBCH Block).
  • CSI-RS Channel State Information Reference Signal
  • SSB SS/PBCH Block
  • the biggest feature of the NR system is the introduction of a beam management mechanism.
  • the terminal can communicate using multiple different transmit and receive beams, and then the terminal needs to be able to measure multiple path losses corresponding to multiple beams.
  • One way to determine the path loss is to use the SRI (Sounding Reference Signal Resource Indicator) in the DCI (Downlink Control Information) to indicate a certain associated downlink RS (Reference Signal) resource.
  • SRI Sounding Reference Signal Resource Indicator
  • DCI Downlink Control Information
  • the transmission of the terminal was enhanced.
  • One important aspect is the introduction of two panels.
  • the terminal can use two panels to transmit on two transmission beams at the same time to obtain better spatial diversity gain.
  • an important indicator of uplink transmission is power control.
  • the maximum transmission power of the existing UE is determined based on the design of one panel, and the relationship and limitation of the transmission power between the two panels are not considered.
  • the present application discloses a solution.
  • the multi-panel is only used as a typical application scenario or example; the present application is also applicable to other scenarios facing similar problems, such as the scenario of a single panel, or to different technical fields, such as technical fields other than uplink power control, such as measurement reporting fields, uplink data transmission and other non-uplink power control fields to achieve similar technical effects.
  • the use of a unified solution for different scenarios also helps to reduce hardware complexity and cost.
  • the embodiments and features in any node of the present application can be applied to any other node.
  • the present application discloses a method in a first node for wireless communication, comprising:
  • the transmission power of the first signal is the first power value
  • the spatial transmission parameter of the first signal is related to the first reference signal resource set
  • the first power value is not greater than the target power value
  • the target power value is not greater than the first threshold value
  • the first threshold value is associated with the first reference signal resource set
  • whether the first signaling is used to determine whether the second reference signal resource set is used to determine whether the target power value is related to a threshold value other than the first threshold value
  • the second reference signal resource set is different from the first reference signal resource set.
  • the above method is characterized in that: the first node is enabled to share a transmission power value between two panels.
  • another feature of the above method is that the method for determining the maximum value of the transmission power under a single panel is different from the method for determining the maximum value of the transmission power under multiple panels.
  • a second threshold value is associated with the second reference signal resource set, and the first threshold value and the second threshold value are jointly used to determine the target power value; when the first signaling is not used to determine the second reference signal resource set, only the first threshold value of the first threshold value and the second threshold value is used to determine the target power value.
  • another feature of the above method is that when two panels are used simultaneously, the maximum transmission power value on one panel is affected by the transmission power value of the other panel.
  • the time domain resources occupied by the second signal overlap with the time domain resources occupied by the first signal;
  • the transmission power of the second signal is a second power value, the second power value is not greater than the second threshold value, and the spatial transmission parameter of the second signal is related to the second reference signal resource set;
  • the first target reference signal is used to determine the first path loss
  • the second target reference signal is used to determine the second path loss
  • the first path loss is used to determine the first candidate power value
  • the second path loss is used to determine the second power value; when the sum of the first threshold value and the second threshold value is greater than the third threshold value and the sum of the first candidate power value and the second power value is greater than the third threshold value
  • the target power value is equal to the difference between the third threshold value and the second power value; when the sum of the first threshold value and the second threshold value is not greater than the third threshold value, the target power value is equal to the first candidate power value.
  • a feature of the above method is that the maximum transmit power value of the UE, the maximum transmit power value on each Panel, and the actual transmit power value on one of the Panels will affect the determination of the transmit power value of another Panel.
  • the sum of the first threshold value and the second threshold value is greater than the third threshold value and the sum of the first candidate power value and the second power value is greater than the third threshold value; the difference between the third threshold value and the second power value is equal to the first residual power value; when the value obtained by subtracting the first residual power value from the first candidate power value is greater than the target threshold, the first power value is equal to 0; when the value obtained by subtracting the first residual power value from the first candidate power value is not greater than the target threshold, the first power value is not greater than the target power value, and the target power value is equal to the first power difference.
  • a feature of the above method is that when the transmission power of the first signal decreases too much, the transmission of the first signal is abandoned.
  • the third threshold value is exclusive to the first node, and the third threshold value is independent of the first reference signal resource set or the second reference signal resource set.
  • the second reference signal resource set is indicated by RRC signaling, or the second reference signal resource set is predefined.
  • the priority corresponding to the second signal is higher than the priority corresponding to the first signal.
  • the present application discloses a method in a second node for wireless communication, comprising:
  • the transmission power of the first signal is the first power value
  • the spatial transmission parameter of the first signal is related to the first reference signal resource set
  • the first power value is not greater than the target power value
  • the target power value is not greater than the first threshold value
  • the first threshold value is associated with the first reference signal resource set
  • whether the first signaling is used to determine whether the second reference signal resource set is used to determine whether the target power value is related to a threshold value other than the first threshold value
  • the second reference signal resource set is different from the first reference signal resource set.
  • a second threshold value is associated with the second reference signal resource set, and the first threshold value and the second threshold value are jointly used to determine the target power value; when the first signaling is not used to determine the second reference signal resource set, only the first threshold value of the first threshold value and the second threshold value is used to determine the target power value.
  • the time domain resources occupied by the second signal overlap with the time domain resources occupied by the first signal;
  • the transmission power of the second signal is a second power value, the second power value is not greater than the second threshold value, and the spatial transmission parameter of the second signal is related to the second reference signal resource set;
  • the first target reference signal is used to determine the first path loss
  • the second target reference signal is used to determine the second path loss
  • the first path loss is used to determine the first candidate power value
  • the second path loss is used to determine the second power value; when the sum of the first threshold value and the second threshold value is greater than the third threshold value and the sum of the first candidate power value and the second power value is greater than the third threshold value
  • the target power value is equal to the difference between the third threshold value and the second power value; when the sum of the first threshold value and the second threshold value is not greater than the third threshold value, the target power value is equal to the first candidate power value.
  • the sum of the first threshold value and the second threshold value is greater than the third threshold value and the sum of the first candidate power value and the second power value is greater than the third threshold value; the difference between the third threshold value and the second power value is equal to the first residual power value; when the value obtained by subtracting the first residual power value from the first candidate power value is greater than the target threshold, the first power value is equal to 0; when the value obtained by subtracting the first residual power value from the first candidate power value is not greater than the target threshold, the first power value is not greater than the target power value, and the target power value is equal to the first power difference.
  • the third threshold value is exclusive to the first node, and the third threshold value is independent of the first reference signal resource set or the second reference signal resource set.
  • the second reference signal resource set is indicated by RRC signaling, or the second reference signal resource set is predefined.
  • the priority corresponding to the second signal is higher than the priority corresponding to the first signal.
  • the present application discloses a first node for wireless communication, comprising:
  • a first receiver receives a first signaling, where the first signaling is used to determine a first reference signal resource set;
  • a first transmitter determines a first power value, and sends a first signal when the first power value is greater than 0;
  • the transmission power of the first signal is the first power value
  • the spatial transmission parameter of the first signal is related to the first reference signal resource set
  • the first power value is not greater than the target power value
  • the target power value is not greater than the first threshold value
  • the first threshold value is associated with the first reference signal resource set
  • whether the first signaling is used to determine whether the second reference signal resource set is used to determine whether the target power value is related to a threshold value other than the first threshold value
  • the second reference signal resource set is different from the first reference signal resource set.
  • the present application discloses a second node for wireless communication, comprising:
  • a second receiver receives the first signal
  • the transmission power of the first signal is the first power value
  • the spatial transmission parameter of the first signal is related to the first reference signal resource set
  • the first power value is not greater than the target power value
  • the target power value is not greater than the first threshold value
  • the first threshold value is associated with the first reference signal resource set
  • whether the first signaling is used to determine whether the second reference signal resource set is used to determine whether the target power value is related to a threshold value other than the first threshold value
  • the second reference signal resource set is different from the first reference signal resource set.
  • the benefit of the solution in the present application is to optimize the determination of the uplink transmission power value to improve performance.
  • FIG1 shows a processing flow chart of a first node according to an embodiment of the present application
  • FIG2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG3 is a schematic diagram showing an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • FIG4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG5 shows a flowchart of a first signaling according to an embodiment of the present application
  • FIG6 shows a flow chart of a second signal according to an embodiment of the present application.
  • FIG7 shows a schematic diagram of a first reference signal resource set and a second reference signal resource set according to an embodiment of the present application
  • FIG8 shows a schematic diagram of a first node according to an embodiment of the present application.
  • FIG9 shows a schematic diagram of antenna ports and antenna port groups according to an embodiment of the present application.
  • FIG10 shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application
  • FIG. 11 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flow chart of a first node, as shown in FIG1.
  • each box represents a step.
  • the first node in the present application receives a first signaling in step 101, and the first signaling is used to determine a first reference signal resource set; determines a first power value in step 102, and sends a first signal when the first power value is greater than 0.
  • the transmission power of the first signal is the first power value
  • the spatial transmission parameter of the first signal is related to the first reference signal resource set
  • the first power value is not greater than the target power value
  • the target power value is not greater than the first threshold value
  • the first threshold value is associated with the first reference signal resource set
  • whether the first signaling is used to determine whether the second reference signal resource set is used to determine whether the target power value is related to a threshold value other than the first threshold value
  • the second reference signal resource set is different from the first reference signal resource set.
  • the first signaling includes RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the first signaling includes MAC (Medium Access Control) signaling.
  • MAC Medium Access Control
  • the first signaling includes MAC CE (Control Elements).
  • the first signaling includes physical layer dynamic signaling.
  • the physical layer channel occupied by the first signaling includes PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the first signaling includes a DCI.
  • the first signaling is used to indicate the first reference signal resource set.
  • the first reference signal resource set includes K1 reference signal resources, the first signaling is used to determine at least one reference signal resource among the K1 reference signal resources, and K1 is a positive integer.
  • the first reference signal resource set includes K1 reference signal resources, the first signaling is used to indicate at least one reference signal resource among the K1 reference signal resources, and K1 is a positive integer.
  • the first reference signal resource set corresponds to an SRS (Sounding Reference Signal) resource set.
  • SRS Sounding Reference Signal
  • the first reference signal resource set is associated with an SRS resource set identifier.
  • the first reference signal resource set is associated with an SRS resource set.
  • the first reference signal resource set includes K1 reference signal resources, and the K1 reference signal resource sets correspond to K1 SRS resources respectively.
  • the first reference signal resource set corresponds to a CSI-RS resource set.
  • the first reference signal resource set is associated with a CSI-RS resource set.
  • the first reference signal resource set is associated with a CSI-RS resource set identifier.
  • the first reference signal resource set includes K1 reference signal resources, and the K1 reference signal resource sets correspond to K1 CSI-RS resources respectively.
  • the first reference signal resource set includes K1 reference signal resources, and the K1 reference signal resource sets correspond to K1 TCIs (Transmission Configuration Indications) respectively.
  • K1 TCIs Transmission Configuration Indications
  • the first reference signal resource set includes K1 reference signal resources, and the K1 reference signal resource sets correspond to K1 TCI-States respectively.
  • the first reference signal resource set includes K1 reference signal resources, and the K1 reference signal resource sets correspond to K1 TCI-StateIds respectively.
  • the first reference signal resource set includes K1 reference signal resources, and the K1 reference signal resource sets correspond to K1 SRIs respectively.
  • the first reference signal resource set is associated with a Panel.
  • the first reference signal resource set is associated with an identifier.
  • the first reference signal resource set is associated with a CORESET (Control Resource Set) Pool.
  • CORESET Control Resource Set
  • the second reference signal resource set includes K2 reference signal resources
  • the first signaling is used to determine at least one reference signal resource among the K2 reference signal resources
  • K2 is a positive integer
  • the second reference signal resource set includes K2 reference signal resources
  • the first signaling is used to indicate at least one reference signal resource among the K2 reference signal resources
  • K2 is a positive integer
  • the second reference signal resource set corresponds to an SRS resource set.
  • the second reference signal resource set is associated with an SRS resource set identifier.
  • the second reference signal resource set is associated with an SRS resource set.
  • the second reference signal resource set includes K2 reference signal resources, and the K2 reference signal resource sets correspond to K2 SRS resources respectively.
  • the second reference signal resource set corresponds to a CSI-RS resource set.
  • the second reference signal resource set is associated with a CSI-RS resource set.
  • the second reference signal resource set is associated with a CSI-RS resource set identifier.
  • the second reference signal resource set includes K2 reference signal resources, and the K2 reference signal resource sets correspond to K2 CSI-RS resources respectively.
  • the second reference signal resource set includes K2 reference signal resources, and the K2 reference signal resource sets correspond to K2 TCIs respectively.
  • the second reference signal resource set includes K2 reference signal resources, and the K2 reference signal resource sets correspond to K2 TCI-States respectively.
  • the second reference signal resource set includes K2 reference signal resources, and the K2 reference signal resource sets correspond to K2 TCI-StateIds respectively.
  • the second reference signal resource set includes K2 reference signal resources, and the K2 reference signal resource sets correspond to K2 SRIs respectively.
  • the second reference signal resource set is associated with a Panel.
  • the second reference signal resource set is associated with an identifier.
  • the second reference signal resource set is associated with a CORESET Pool.
  • the first reference signal resource set and the second reference signal resource set are different.
  • the first reference signal resource set and the second reference signal resource set correspond to different identifiers respectively.
  • the first reference signal resource set and the second reference signal resource set correspond to different SRS resource sets respectively.
  • the first reference signal resource set and the second reference signal resource set correspond to different CSI-RS resource sets respectively.
  • the first reference signal resource set and the second reference signal resource set correspond to different panels respectively.
  • the unit of the first power value is dBm.
  • the unit of the first power value is milliwatt.
  • the unit of the first power value is watt.
  • the first node includes:
  • a first transmitter determines a first power value, and when the first power value is equal to 0, abandons sending a first signal
  • the physical layer channel occupied by the first signal includes PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the physical layer channel occupied by the first signal includes PUCCH (Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel
  • the transmission channel corresponding to the first signal includes UL-SCH (Uplink Shared Channel).
  • UL-SCH Uplink Shared Channel
  • the first signal is generated by at least one TB (Transport Block).
  • the first signal is generated by at least one bit block.
  • the meaning that the spatial transmission parameter of the first signal is related to the first reference signal resource set includes: at least one reference signal resource in the first reference signal resource set is used to determine the spatial transmission parameter of the first signal.
  • the meaning that the spatial transmission parameter of the first signal is related to the first reference signal resource set includes: the first signal and at least one reference signal resource in the first reference signal resource set are QCL (Quasi Co-located).
  • the meaning that the spatial transmission parameter of the first signal is related to the first reference signal resource set includes: at least one reference signal resource in the first reference signal resource set is used to determine the TCI corresponding to the first signal.
  • the unit of the target power value is dBm.
  • the unit of the target power value is milliwatt.
  • the unit of the target power value is watt.
  • the unit of the first threshold value is dBm.
  • the unit of the first threshold value is milliwatt.
  • the unit of the first threshold value is watt.
  • the first threshold value is Panel-specific.
  • the spatial transmission parameters in the present application include TCI.
  • the spatial transmission parameters in the present application include TCI-State.
  • the spatial transmission parameters in the present application include TCI-StateId.
  • the first threshold value is associated with the first reference signal resource set.
  • the first threshold value corresponds to the maximum transmission power used by the first node when sending a wireless signal using a spatial transmission parameter corresponding to a reference signal resource in the first reference signal resource set.
  • the first threshold value corresponds to the maximum transmission power used by the first node when sending a wireless signal using Panel 1 corresponding to the first reference signal resource set.
  • the first threshold value is configured through RRC signaling.
  • the first threshold value is related to the Category of the first node.
  • the first threshold value is related to the Capability of the first node.
  • the first threshold value corresponds to the maximum transmission power value when the first node adopts a single panel for transmission.
  • the first threshold value corresponds to a maximum transmission power value when the first node uses any reference signal resource in the first reference signal resource set as a spatial transmission parameter to send a wireless signal.
  • the first threshold value corresponds to a maximum transmission power value when the first node uses at least one reference signal resource in the first reference signal resource set as a spatial transmission parameter to send a wireless signal.
  • the first threshold value corresponds to a maximum transmission power value when the first node transmits a wireless signal using a spatial transmission parameter corresponding to an SRS resource set.
  • the first threshold value is configured for the first reference signal resource set.
  • the first threshold value corresponds to
  • the first threshold value corresponds to
  • the first threshold value corresponds to
  • the first threshold value corresponds to
  • the first signaling when the first signaling is used to determine the second reference signal resource set, the first signaling is used to indicate the second reference signal resource set.
  • the first signaling when the first signaling is used to determine the second reference signal resource set, the first signaling is used to indicate at least one reference signal resource among K2 reference signal resources included in the second reference signal resource set.
  • the first signaling includes a first field, and the first field included in the first signaling is used to indicate a reference signal resource in the first reference signal resource set.
  • the first field included in the first signaling is used to indicate a reference signal resource in the second reference signal resource set.
  • the first signaling when the first signaling is used to determine the second reference signal resource set, the first signaling also includes a second field, and the second field included in the first signaling is used to indicate a reference signal resource in the second reference signal resource set.
  • the higher-layer parameter "usage" associated with the first reference signal resource set and the second reference signal resource set are both set to “codebook” or both set to “nonCodebook”.
  • the meaning that the first signaling is used to determine the first reference signal resource set includes: the first signaling indicates that one of the first domain and the second domain in the first signaling is associated with the first reference signal resource set.
  • whether the first signaling is used to determine the second reference signal resource set includes: whether the first signaling indicates that one of the first domain and the second domain in the first signaling is associated with the second reference signal resource set.
  • the first power value is equal to the target power value.
  • the first signal includes a wireless signal.
  • the first signal includes a baseband signal.
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG2 .
  • FIG. 2 illustrates a diagram of a network architecture 200 for 5G NR, LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) systems.
  • the 5G NR or LTE network architecture 200 may be referred to as an EPS (Evolved Packet System) 200 or some other suitable term.
  • the EPS 200 may include a UE (User Equipment) 201, an NR-RAN (Next Generation Radio Access Network) 202, an EPC (Evolved Packet Core)/5G-CN (5G-Core Network) 210, an HSS (Home Subscriber Server) 220, and an Internet service 230.
  • the EPS may be interconnected with other access networks, but these entities/interfaces are not shown for simplicity.
  • NR-RAN includes NR Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB 203 can be connected to other gNBs 204 via an Xn interface (e.g., backhaul).
  • Xn interface e.g., backhaul
  • gNB 203 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), a TRP (transmit receive node), or some other suitable term.
  • gNB 203 provides an access point to EPC/5G-CN 210 for UE 201.
  • Examples of UE 201 include cellular phones, smart phones, session initiation protocol (SIP) phones, laptops, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices, video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communication devices, land vehicles, cars, wearable devices, or any other similar functional devices.
  • SIP session initiation protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, narrowband IoT devices, machine type communication devices, land vehicles, cars, wearable devices, or any other similar functional devices.
  • a person skilled in the art may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable term.
  • the gNB 203 is connected to the EPC/5G-CN 210 via an S1/NG interface.
  • the EPC/5G-CN 210 includes an MME (Mobility Management Entity)/AMF (Authentication Management Field)/UPF (User Plane Function) 211, other MME/AMF/UPF 214, an S-GW (Service Gateway) 212, and a P-GW (Packet Data Network Gateway) 213.
  • MME/AMF/UPF 211 is a control node that processes signaling between the UE 201 and the EPC/5G-CN 210.
  • MME/AMF/UPF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW212, which itself is connected to P-GW213.
  • P-GW213 provides UE IP address allocation and P-GW 213 is connected to Internet service 230.
  • Internet service 230 includes operator-specific Internet protocol services, which may include Internet, Intranet, IMS (IP Multimedia Subsystem) and packet-switched streaming services.
  • IMS IP Multimedia Subsystem
  • the UE201 corresponds to the first node in the present application.
  • the UE 201 supports sending multiple panels simultaneously.
  • the UE 201 supports power sharing among multiple panels.
  • the UE201 supports multiple uplink RF (Radio Frequency).
  • the UE 201 supports simultaneous transmission of multiple uplink RFs.
  • the UE 201 supports reporting multiple UE capability value sets.
  • the NR node B corresponds to the second node in this application.
  • the NR Node B supports simultaneously receiving signals from multiple Panels of a terminal.
  • the NR Node B supports receiving multiple uplink RF (Radio Frequency) signals sent from the same terminal.
  • RF Radio Frequency
  • the NR Node B is a base station.
  • the NR Node B is a cell.
  • the NR Node B includes multiple cells.
  • the first node in the present application corresponds to the UE201
  • the second node in the present application corresponds to the NR node B.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture for a user plane and a control plane according to the present application, as shown in FIG3.
  • FIG3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
  • FIG3 shows the radio protocol architecture of the control plane 300 between a first communication node device (UE, gNB, or RSU in V2X) and a second communication node device (gNB, UE, or RSU in V2X) using three layers: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first communication node device and the second communication node device through PHY301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol) sublayer 304, which terminate at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and the PDCP sublayer 304 also provides inter-zone mobility support for the first communication node device to the second communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in a cell between the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (i.e., radio bearers) and configuring the lower layers using RRC signaling between the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is substantially the same as the corresponding layers and sublayers in the control plane 300 for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355, but the PDCP sublayer 354 also provides header compression for upper layer data packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol) sublayer 356, which is responsible for mapping between QoS flows and data radio bearers (DRBs) to support the diversity of services.
  • SDAP Service Data Adaptation Protocol
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (e.g., an IP layer) terminated at the P-GW on the network side and an application layer terminated at the other end of the connection (e.g., a remote UE, a server, etc.).
  • a network layer e.g., an IP layer
  • an application layer terminated at the other end of the connection (e.g., a remote UE, a server, etc.).
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in the present application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in the present application.
  • the PDCP 304 of the second communication node device is used to generate the scheduling of the first communication node device.
  • the PDCP 354 of the second communication node device is used to generate the schedule of the first communication node device.
  • the first signaling is generated in the PHY301 or the PHY351.
  • the first signaling is generated by the MAC302 or MAC352.
  • the first signaling is generated in the RRC306.
  • the first signal is generated by the MAC302 or MAC352.
  • the first signal is generated by the RRC306.
  • the first target reference signal is generated by the PHY301 or the PHY351.
  • the first target reference signal is generated by the MAC302 or MAC352.
  • the first target reference signal is generated in the RRC306.
  • the second target reference signal is generated by the PHY301 or the PHY351.
  • the second target reference signal is generated by the MAC302 or MAC352.
  • the second target reference signal is generated in the RRC306.
  • the second signal is generated by the MAC302 or MAC352.
  • the second signal is generated by the RRC306.
  • the first node is a terminal.
  • the first node is a relay.
  • the second node is a relay.
  • the second node is a base station.
  • the second node is a gNB.
  • the second node is a TRP (Transmitter Receiver Point).
  • the second node is used to manage multiple TRPs.
  • the second node is a node for managing multiple cells.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in Figure 4.
  • Figure 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in an access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and an antenna 452.
  • the second communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • controller/processor 475 In transmission from the second communication device 410 to the first communication device 450, at the second communication device 410, upper layer data packets from the core network are provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 In transmission from the second communication device 410 to the first communication device 450, the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocation to the first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets and signaling to the first communication device 450.
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (i.e., the physical layer).
  • the transmit processor 416 implements coding and interleaving to facilitate forward error correction (FEC) at the second communication device 410, as well as mapping of signal constellations based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing on the coded and modulated symbols to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to a subcarrier, multiplexes with a reference signal (e.g., a pilot) in the time domain and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate a physical channel carrying a time-domain multi-carrier symbol stream.
  • IFFT inverse fast Fourier transform
  • the multi-antenna transmit processor 471 then performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated onto the RF carrier and converts the RF stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receiving processor 458 performs a receiving analog precoding/beamforming operation on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a fast Fourier transform (FFT) to convert the baseband after the receiving analog precoding/beamforming operation into a baseband signal.
  • FFT fast Fourier transform
  • the multi-carrier symbol stream is converted from the time domain to the frequency domain.
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458 to any spatial stream destined for the first communication device 450.
  • the symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the second communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 In transmission from the second communication device 410 to the second communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover the upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals may also be provided to the L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels based on radio resource allocation, and implements L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for the retransmission of lost packets and signaling to the second communication device 410.
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing. Then, the transmit processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is then provided to different antennas 452 via the transmitter 454 after analog precoding/beamforming operations in the multi-antenna transmit processor 457. Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the function at the second communication device 410 is similar to the reception function at the first communication device 450 described in the transmission from the second communication device 410 to the first communication device 450.
  • Each receiver 418 receives a radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the multi-antenna reception processor 472 and the reception processor 470.
  • the reception processor 470 and the multi-antenna reception processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements the L2 layer functions.
  • the controller/processor 475 can be associated with a memory 476 storing program codes and data.
  • the memory 476 can be referred to as a computer-readable medium.
  • the controller/processor 475 In the transmission from the first communication device 450 to the second communication device 410, the controller/processor 475 provides multiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover the upper layer data packets from the UE 450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be used together with the at least one processor, and the first communication device 450 apparatus at least: first receives a first signaling, the first signaling is used to determine a first reference signal resource set; then determines a first power value, and sends a first signal when the first power value is greater than 0; the transmission power of the first signal is the first power value, and the spatial transmission parameter of the first signal is related to the first reference signal resource set; the first power value is not greater than a target power value, the target power value is not greater than a first threshold value, and the first threshold value is associated with the first reference signal resource set; the first signaling is used to determine whether the second reference signal resource set is used to determine whether the target power value is related to a threshold value other than the first threshold value; the second reference signal resource set is different from the first reference signal resource set.
  • the first communication device 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, the action including: first receiving a first signaling, the first signaling being used to determine a first reference signal resource set; then determining a first power value, and sending a first signal when the first power value is greater than 0; the transmission power of the first signal is the first power value, and the spatial transmission parameter of the first signal is related to the first reference signal resource set; the first power value is not greater than a target power value, the target power value is not greater than a first threshold value, and the first threshold value is associated with the first reference signal resource set; the first signaling is used to determine whether the second reference signal resource set is used to determine whether the target power value is related to a threshold value other than the first threshold value; the second reference signal resource set is different from the first reference signal resource set.
  • the second communication device 410 comprises: at least one processor and at least one memory, At least one memory includes computer program code; the at least one memory and the computer program code are configured to be used with the at least one processor.
  • the second communication device 410 device at least: first sends a first signaling, the first signaling is used to determine a first reference signal resource set; then receives a first signal; the transmission power of the first signal is the first power value, and the spatial transmission parameter of the first signal is related to the first reference signal resource set; the first power value is not greater than the target power value, the target power value is not greater than the first threshold value, and the first threshold value is associated with the first reference signal resource set; the first signaling is used to determine whether the second reference signal resource set is used to determine whether the target power value is related to a threshold value other than the first threshold value; the second reference signal resource set is different from the first reference signal resource set.
  • the second communication device 410 apparatus includes: a memory storing a computer-readable instruction program, wherein the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: first sending a first signaling, wherein the first signaling is used to determine a first reference signal resource set; then receiving a first signal; the transmission power of the first signal is the first power value, and the spatial transmission parameter of the first signal is related to the first reference signal resource set; the first power value is not greater than a target power value, and the target power value is not greater than a first threshold value, and the first threshold value is associated with the first reference signal resource set; the first signaling is used to determine whether the second reference signal resource set is used to determine whether the target power value is related to a threshold value other than the first threshold value; the second reference signal resource set is different from the first reference signal resource set.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a UE.
  • the first communication device 450 is a terminal.
  • the first communication device 450 is a relay.
  • the second communication device 410 is a base station.
  • the second communication device 410 is a relay.
  • the second communication device 410 is a network device.
  • the second communication device 410 is a serving cell.
  • the second communication device 410 is a TRP.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive the first signaling; and at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmitting processor 471, the transmitting processor 416, and the controller/processor 475 are used to send the first signaling.
  • At least the first four of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 are used to determine a first power value, and send a first signal when the first power value is greater than 0; and at least the first four of the antenna 420, the receiver 418, the multi-antenna receive processor 472, the receive processor 470, and the controller/processor 475 are used to receive the first signal.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receive processor 458, the receive processor 456, and the controller/processor 459 are used to receive a first target reference signal; and at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 are used to send a first target reference signal.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receive processor 458, the receive processor 456, and the controller/processor 459 are used to receive a second target reference signal; and at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 are used to send a second target reference signal.
  • At least the first four of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 are used to send a second signal; and at least the first four of the antenna 420, the receiver 418, the multi-antenna receive processor 472, the receive processor 470, and the controller/processor 475 are used to receive a second signal.
  • Embodiment 5 illustrates a flowchart of a first signaling, as shown in FIG5.
  • the first node U1 and the second node N2 communicates via a wireless link.
  • the order in this embodiment does not limit the signal transmission order and implementation order in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 5 can be applied to Embodiment 6; conversely, in the absence of conflict, any embodiment, sub-embodiment and subsidiary embodiment in Embodiment 6 can be applied to Embodiment 5.
  • a first signaling is received in step S10 ; and a first signal is sent in step S11 .
  • a first signaling is sent in step S20; and a first signal is received in step S21.
  • the first signaling is used to determine a first reference signal resource set; the first node determines that a first power value is greater than 0; the transmit power of the first signal is the first power value, and the spatial transmit parameter of the first signal is related to the first reference signal resource set; the first power value is not greater than a target power value, the target power value is not greater than a first threshold value, and the first threshold value is associated with the first reference signal resource set; the first signaling is used to determine whether a second reference signal resource set is used to determine whether the target power value is related to a threshold value other than the first threshold value; the second reference signal resource set is different from the first reference signal resource set.
  • the second threshold value is associated with the second reference signal resource set, and the first threshold value and the second threshold value are used together to determine the target power value; when the first signaling is not used to determine the second reference signal resource set, only the first threshold value of the first threshold value and the second threshold value is used to determine the target power value.
  • the second threshold value is associated with the second reference signal resource set.
  • the second threshold value corresponds to the maximum transmission power used by the first node when sending a wireless signal using a spatial transmission parameter corresponding to a reference signal resource in the second reference signal resource set.
  • the second threshold value corresponds to the maximum transmission power used by the first node when sending a wireless signal using the Panel corresponding to the second reference signal resource set.
  • the second threshold value is configured through RRC signaling.
  • the second threshold value is related to the Category of the first node.
  • the second threshold value is related to the Capability of the first node.
  • the second threshold value corresponds to the maximum transmission power value when the first node adopts a single panel for transmission.
  • the second threshold value corresponds to the maximum transmission power value when the first node uses any reference signal resource in the second reference signal resource set as a spatial transmission parameter to send a wireless signal.
  • the second threshold value corresponds to the maximum transmission power value when the first node uses at least one reference signal resource in the second reference signal resource set as a spatial transmission parameter to send a wireless signal.
  • the second threshold value corresponds to a maximum transmission power value when the first node transmits a wireless signal using a spatial transmission parameter corresponding to an SRS resource set.
  • the second threshold value is configured for the second reference signal resource set.
  • the second threshold value corresponds to
  • the second threshold value corresponds to
  • the second threshold value corresponds to
  • the second threshold value corresponds to
  • the first threshold value is equal to the second threshold value.
  • the first threshold value and the second threshold value are independently configured.
  • the second threshold value is linearly correlated with the first threshold value.
  • the unit of the second threshold value is dBm.
  • the unit of the second threshold value is milliwatt.
  • the unit of the second threshold value is watt.
  • the second threshold value is Panel-specific.
  • the first threshold value and the second threshold value are used together to determine the target power value, which means that the target power value is not greater than the sum of the first threshold value and the second threshold value.
  • the first threshold value and the second threshold value are used together to determine the target power value, which means that the target power value is not greater than any one of the first threshold value and the second threshold value.
  • the first threshold value and the second threshold value are jointly used to determine the target power value, which means that the target power value is not greater than the product of the sum of the first threshold value and the second threshold value and a first coefficient, and the first coefficient is fixed, or the first coefficient is configured through RRC signaling.
  • the first threshold value is commonly used to determine the target power value, which means that the target power value is not greater than the first threshold value.
  • the first threshold value is commonly used to determine the target power value, which means that the target power value is not greater than the product of the first threshold value and a second coefficient, the second coefficient is fixed, or the second coefficient is configured through RRC signaling.
  • the second reference signal resource set is indicated by RRC signaling, or the second reference signal resource set is predefined.
  • the priority corresponding to the second signal is higher than the priority corresponding to the first signal.
  • the meaning that the priority corresponding to the second signal is higher than the priority corresponding to the first signal includes: power is allocated preferentially to the second signal compared to the first signal.
  • the meaning that the priority corresponding to the second signal is higher than the priority corresponding to the first signal includes: the priority index corresponding to the first signal is smaller than the priority index corresponding to the second signal.
  • the meaning that the priority corresponding to the second signal is higher than the priority corresponding to the first signal includes: the priority index corresponding to the first signal is greater than the priority index corresponding to the second signal.
  • Embodiment 6 illustrates a flow chart of a second signal, as shown in FIG6.
  • the first node U3 communicates with the second node N4 via a wireless link.
  • the order in this embodiment does not limit the signal transmission order and implementation order in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 6 can be applied to Embodiment 5; conversely, in the absence of conflict, any embodiment, sub-embodiment and subsidiary embodiment in Embodiment 5 can be applied to Embodiment 6.
  • a first target reference signal and a second target reference signal are received in step S30; and a second signal is sent in step S31.
  • a first target reference signal and a second target reference signal are sent in step S40; and a second signal is received in step S41.
  • Example 6 the time domain resources occupied by the second signal overlap with the time domain resources occupied by the first signal; the transmission power of the second signal is a second power value, the second power value is not greater than the second threshold value, and the spatial transmission parameter of the second signal is related to the second reference signal resource set; the first target reference signal is used to determine a first path loss, the second target reference signal is used to determine a second path loss, the first path loss is used to determine a first candidate power value, and the second path loss is used to determine the second power value; when the sum of the first threshold value and the second threshold value is greater than a third threshold value and the sum of the first candidate power value and the second power value is greater than the third threshold value, the target power value is equal to the difference between the third threshold value and the second power value; when the sum of the first threshold value and the second threshold value is not greater than the third threshold value, the target power value is equal to the first candidate power value.
  • the physical layer channel occupied by the second signal includes PUSCH.
  • the transmission channel corresponding to the second signal includes UL-SCH.
  • the physical layer channel occupied by the second signal includes PUCCH.
  • the second signal is generated by at least one TB.
  • the second signal is generated by at least one bit block.
  • the first signal and the second signal are generated by a same TB.
  • the first signal and the second signal are generated by two independent TBs respectively.
  • the time slot occupied by the first signal and the time slot occupied by the second signal overlap in time domain.
  • the meaning that the spatial transmission parameter of the second signal is related to the second reference signal resource set includes: at least one reference signal resource in the second reference signal resource set is used to determine the spatial transmission parameter of the second signal.
  • the spatial transmission parameter of the second signal is related to the second reference signal resource set, which means that: The second signal and at least one reference signal resource in the second reference signal resource set are QCL.
  • the meaning that the spatial transmission parameter of the second signal is related to the second reference signal resource set includes: at least one reference signal resource in the second reference signal resource set is used to determine the TCI corresponding to the second signal.
  • the first target reference signal includes CSI-RS.
  • the first target reference signal includes SSB (Synchronization Signal/physical broadcast channel Block).
  • SSB Synchronization Signal/physical broadcast channel Block
  • the first target reference signal corresponds to a CSI-RS resource.
  • the first target reference signal corresponds to an SSB.
  • the first target reference signal corresponds to a TCI.
  • the first target reference signal corresponds to a TCI-State.
  • the first target reference signal corresponds to a TCI-StateId.
  • the second target reference signal includes CSI-RS.
  • the second target reference signal includes SSB.
  • the second target reference signal corresponds to a CSI-RS resource.
  • the second target reference signal corresponds to an SSB.
  • the second target reference signal corresponds to a TCI.
  • the second target reference signal corresponds to a TCI-State.
  • the second target reference signal corresponds to a TCI-StateId.
  • the first target reference signal is associated with the first reference signal resource set.
  • the second target reference signal is associated with the second reference signal resource set.
  • the first target reference signal corresponds to a CSI-RS resource.
  • the second target reference signal corresponds to a CSI-RS resource.
  • the unit of the first path loss is dB.
  • the unit of the second path loss is dB.
  • the first candidate power value is not greater than the first threshold value.
  • the first target reference signal and the first signal are QCL.
  • the second target reference signal and the second signal are QCL.
  • the first target reference signal and one reference signal resource in the first reference signal resource set are QCL.
  • the second target reference signal and one reference signal resource in the second reference signal resource set are QCL.
  • the sum of the first threshold value and the second threshold value is greater than the third threshold value and the sum of the first candidate power value and the second power value is greater than the third threshold value; the difference between the third threshold value and the second power value is equal to the first residual power value; when the value obtained by subtracting the first residual power value from the first candidate power value is greater than the target threshold, the first power value is equal to 0; when the value obtained by subtracting the first residual power value from the first candidate power value is not greater than the target threshold, the first power value is not greater than the target power value, and the target power value is equal to the first power difference.
  • the target threshold is determined through RRC signaling.
  • the first node when the first power value is equal to 0, the first node gives up sending the first signal.
  • the first power value is equal to the target power value.
  • the third threshold value is specific to the first node, and the third threshold value is independent of the first reference signal resource set or the second reference signal resource set.
  • the third threshold value corresponds to
  • the third threshold value corresponds to P Total .
  • the third threshold value corresponds to P cmax .
  • the third threshold value corresponds to the maximum transmission power of the first node.
  • the third threshold value is related to the Category of the first node.
  • the third threshold value is related to the Capability of the first node.
  • the second signal includes a wireless signal.
  • the second signal includes a baseband signal.
  • step S30 is located before step S10 in embodiment 5.
  • step S30 is located after step S10 and before step S11 in embodiment 5.
  • step S40 is located before step S20 in embodiment 5.
  • step S40 is located after step S20 and before step S21 in embodiment 5.
  • step S31 is located before step S11 in embodiment 5.
  • step S31 occurs simultaneously with step S11 in embodiment 5.
  • step S31 is located after step S11 in embodiment 5.
  • step S41 is located before step S21 in embodiment 5.
  • step S41 occurs simultaneously with step S21 in embodiment 5.
  • step S41 is located after step S21 in embodiment 5.
  • Embodiment 7 illustrates a schematic diagram of a first reference signal resource set and a second reference signal resource set, as shown in Figure 7.
  • the first reference signal resource set includes K1 reference signal resources, corresponding to reference signal resources 1_1 to reference signal resources 1_K1 in the figure
  • the second reference signal resource set includes K2 reference signal resources, corresponding to reference signal resources 2_1 to reference signal resources 2_K2 in the figure
  • K1 is a positive integer
  • K2 is a positive integer.
  • K1 is equal to 1.
  • K2 is equal to 1.
  • K1 is greater than 1.
  • K2 is greater than 1.
  • the first threshold value is applicable to all reference signal resources in the first reference signal resource set.
  • the second threshold value is applicable to all reference signal resources in the second reference signal resource set.
  • the third threshold value is applicable to all reference signal resources in the first reference signal resource set and all reference signal resources in the second reference signal resource set.
  • the first reference signal resource set and the second reference signal resource set correspond to two different Panel IDs respectively.
  • the first reference signal resource set and the second reference signal resource set correspond to two panels included in the first node respectively.
  • the first reference signal resource set and the second reference signal resource set respectively correspond to two RFs (Radio Frequency) included in the first node.
  • the first reference signal resource set and the second reference signal resource set respectively correspond to two radio frequency channels included in the first node.
  • Embodiment 8 illustrates a schematic diagram of a first node, as shown in FIG8.
  • the first node has two panels, namely a first panel and a second panel, the first panel and the second panel are associated with a first reference signal resource set and a second reference signal resource set respectively; the two panels can send two independent wireless signals in the same block of time-frequency resources.
  • the first panel and the second panel may dynamically share a maximum transmission power value.
  • the sum of the maximum transmit power value of the first panel and the maximum transmit power value of the second panel is not greater than the third threshold value.
  • the maximum transmit power value of the first panel is not greater than the first threshold value, or the maximum transmit power value of the second panel is not greater than the second threshold value.
  • the first threshold value in the present application is not greater than the second threshold value.
  • Embodiment 9 illustrates a schematic diagram of antenna ports and antenna port groups, as shown in FIG9 .
  • an antenna port group includes a positive integer number of antenna ports; an antenna port is formed by superimposing antennas in a positive integer number of antenna groups through antenna virtualization; and an antenna group includes a positive integer number of antennas.
  • An antenna group is connected to a baseband processor through an RF (Radio Frequency) chain, and different antenna groups correspond to different RF chains.
  • the mapping coefficients of all antennas in the positive integer number of antenna groups included in a given antenna port to the given antenna port constitute a beamforming vector corresponding to the given antenna port.
  • the mapping coefficients of multiple antennas included in any given antenna group in the positive integer number of antenna groups included in the given antenna port to the given antenna port constitute an analog beamforming vector of the given antenna group.
  • the analog beamforming vectors corresponding to the positive integer number of antenna groups are arranged diagonally to form an analog beamforming matrix corresponding to the given antenna port.
  • the mapping coefficients of the positive integer number of antenna groups to the given antenna port constitute a digital beamforming vector corresponding to the given antenna port.
  • the beamforming vector corresponding to the given antenna port is obtained by multiplying the analog beamforming matrix corresponding to the given antenna port and the digital beamforming vector.
  • Different antenna ports in an antenna port group are composed of the same antenna group, and different antenna ports in the same antenna port group correspond to different beamforming vectors.
  • FIG. 9 shows two antenna port groups: antenna port group #0 and antenna port group #1.
  • the antenna port group #0 is composed of antenna group #0
  • the antenna port group #1 is composed of antenna group #1 and antenna group #2.
  • the mapping coefficients of the multiple antennas in the antenna group #0 to the antenna port group #0 constitute the analog beamforming vector #0
  • the mapping coefficients of the antenna group #0 to the antenna port group #0 constitute the digital beamforming vector #0
  • the mapping coefficients of the multiple antennas in the antenna group #1 and the multiple antennas in the antenna group #2 to the antenna port group #1 respectively constitute the analog beamforming vector #1 and the analog beamforming vector #2
  • the mapping coefficients of the antenna group #1 and the antenna group #2 to the antenna port group #1 constitute the digital beamforming vector #1.
  • the beamforming vector corresponding to any antenna port in the antenna port group #0 is obtained by the product of the analog beamforming vector #0 and the digital beamforming vector #0.
  • the beamforming vector corresponding to any antenna port in the antenna port group #1 is obtained by multiplying the analog beamforming matrix formed by diagonally arranging the analog beamforming vector #1 and the analog beamforming vector #2 and the digital beamforming vector #1.
  • an antenna port group includes one antenna port.
  • the antenna port group #0 in FIG. 9 includes one antenna port.
  • the analog beamforming matrix corresponding to the one antenna port is reduced to an analog beamforming vector
  • the digital beamforming vector corresponding to the one antenna port is reduced to a scalar
  • the beamforming vector corresponding to the one antenna port is equal to the analog beamforming vector corresponding to the one antenna port.
  • an antenna port group includes multiple antenna ports.
  • the antenna port group #1 in FIG. 9 includes multiple antenna ports.
  • the multiple antenna ports correspond to the same analog beamforming matrix and different digital beamforming vectors.
  • antenna ports in different antenna port groups correspond to different analog beamforming matrices.
  • any two antenna ports in an antenna port group are QCL (Quasi-Colocated).
  • any two antenna ports in an antenna port group are spatial QCL.
  • the multiple antenna port groups in the figure correspond to a Panel in the present application.
  • the first reference signal resource set corresponds to multiple antenna port groups.
  • the second reference signal resource set corresponds to multiple antenna port groups.
  • one reference signal resource in the first reference signal resource set corresponds to one antenna port group.
  • one reference signal resource in the second reference signal resource set corresponds to one antenna port group.
  • Embodiment 10 illustrates a structural block diagram of a first node, as shown in FIG10 .
  • the first node 1000 includes a first receiver 1001 and a first transmitter 1002 .
  • a first receiver 1001 receives a first signaling, where the first signaling is used to determine a first reference signal resource set;
  • the first transmitter 1002 determines a first power value, and sends a first signal when the first power value is greater than 0;
  • the transmit power of the first signal is the first power value
  • the spatial transmit parameter of the first signal is related to the first reference signal resource set
  • the first power value is not greater than the target power value
  • the target power value is not greater than the first threshold value
  • the The first threshold value is associated with the first reference signal resource set; whether the first signaling is used to determine whether the second reference signal resource set is used to determine whether the target power value is related to a threshold value other than the first threshold value
  • the second reference signal resource set is different from the first reference signal resource set.
  • the second threshold value is associated with the second reference signal resource set, and the first threshold value and the second threshold value are jointly used to determine the target power value; when the first signaling is not used to determine the second reference signal resource set, only the first threshold value of the first threshold value and the second threshold value is used to determine the target power value.
  • it includes:
  • the first receiver 1001 receives a first target reference signal and a second target reference signal
  • the first transmitter 1002 sends a second signal
  • the time domain resources occupied by the second signal overlap with the time domain resources occupied by the first signal;
  • the transmission power of the second signal is a second power value, the second power value is not greater than the second threshold value, and the spatial transmission parameter of the second signal is related to the second reference signal resource set;
  • the first target reference signal is used to determine the first path loss
  • the second target reference signal is used to determine the second path loss
  • the first path loss is used to determine the first candidate power value
  • the second path loss is used to determine the second power value; when the sum of the first threshold value and the second threshold value is greater than the third threshold value and the sum of the first candidate power value and the second power value is greater than the third threshold value
  • the target power value is equal to the difference between the third threshold value and the second power value; when the sum of the first threshold value and the second threshold value is not greater than the third threshold value, the target power value is equal to the first candidate power value.
  • the sum of the first threshold value and the second threshold value is greater than the third threshold value and the sum of the first candidate power value and the second power value is greater than the third threshold value; the difference between the third threshold value and the second power value is equal to the first residual power value; when the value obtained by subtracting the first residual power value from the first candidate power value is greater than the target threshold, the first power value is equal to 0; when the value obtained by subtracting the first residual power value from the first candidate power value is not greater than the target threshold, the first power value is not greater than the target power value, and the target power value is equal to the first power difference.
  • the third threshold value is exclusive to the first node, and the third threshold value is independent of the first reference signal resource set or the second reference signal resource set.
  • the second reference signal resource set is indicated by RRC signaling, or the second reference signal resource set is predefined.
  • the priority corresponding to the second signal is higher than the priority corresponding to the first signal.
  • the first receiver 1001 includes at least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 in Embodiment 4.
  • the first transmitter 1002 includes at least the first four of the antenna 452, transmitter 454, multi-antenna transmit processor 457, transmit processor 468, and controller/processor 459 in Embodiment 4.
  • Embodiment 11 illustrates a structural block diagram of a second node, as shown in FIG11 .
  • the second node 1100 includes a second transmitter 1101 and a second receiver 1102 .
  • the second transmitter 1101 sends a first signaling, where the first signaling is used to determine a first reference signal resource set;
  • a second receiver 1102 receives a first signal
  • the transmission power of the first signal is the first power value
  • the spatial transmission parameter of the first signal is related to the first reference signal resource set
  • the first power value is not greater than the target power value
  • the target power value is not greater than the first threshold value
  • the first threshold value is associated with the first reference signal resource set
  • whether the first signaling is used to determine whether the second reference signal resource set is used to determine whether the target power value is related to a threshold value other than the first threshold value
  • the second reference signal resource set is different from the first reference signal resource set.
  • a second threshold value is associated with the second reference signal resource set, and the first threshold value and the second threshold value are jointly used to determine the target power value; when the first signaling is not used to determine the second reference signal resource set, only the first threshold value of the first threshold value and the second threshold value is used to determine the target power value.
  • it includes:
  • the second transmitter 1101 sends a first target reference signal and a second target reference signal
  • the second receiver 1102 receives a second signal
  • the time domain resources occupied by the second signal overlap with the time domain resources occupied by the first signal;
  • the transmission power of the second signal is a second power value, the second power value is not greater than the second threshold value, and the spatial transmission parameter of the second signal is related to the second reference signal resource set;
  • the first target reference signal is used to determine the first path loss
  • the second target reference signal is used to determine the second path loss
  • the first path loss is used to determine the first candidate power value
  • the second path loss is used to determine the second power value; when the sum of the first threshold value and the second threshold value is greater than the third threshold value and the sum of the first candidate power value and the second power value is greater than the third threshold value
  • the target power value is equal to the difference between the third threshold value and the second power value; when the sum of the first threshold value and the second threshold value is not greater than the third threshold value, the target power value is equal to the first candidate power value.
  • the sum of the first threshold value and the second threshold value is greater than the third threshold value and the sum of the first candidate power value and the second power value is greater than the third threshold value; the difference between the third threshold value and the second power value is equal to the first residual power value; when the value obtained by subtracting the first residual power value from the first candidate power value is greater than the target threshold, the first power value is equal to 0; when the value obtained by subtracting the first residual power value from the first candidate power value is not greater than the target threshold, the first power value is not greater than the target power value, and the target power value is equal to the first power difference.
  • the third threshold value is exclusive to the first node, and the third threshold value is independent of the first reference signal resource set or the second reference signal resource set.
  • the second reference signal resource set is indicated by RRC signaling, or the second reference signal resource set is predefined.
  • the priority corresponding to the second signal is higher than the priority corresponding to the first signal.
  • the second transmitter 1101 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 414, and the controller/processor 475 in Embodiment 4.
  • the second receiver 1102 includes at least the first four of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475 in Embodiment 4.
  • each module unit in the above embodiment can be implemented in the form of hardware or in the form of a software functional module.
  • the present application is not limited to any specific form of combination of software and hardware.
  • the first node in the present application includes but is not limited to mobile phones, tablet computers, notebooks, Internet cards, low-power devices, eMTC devices, NB-IoT devices, vehicle-mounted communication equipment, transportation vehicles, vehicles, RSU (Road Side Unit), aircraft, airplanes, drones, remote-controlled aircraft and other wireless communication devices.
  • the second node in the present application includes but is not limited to macrocell base stations, microcell base stations, small cell base stations, home base stations, relay base stations, eNB, gNB, transmission receiving node TRP, GNSS (Global Navigation Satellite System), relay satellite, satellite base station, aerial base station, RSU, drone, test equipment, such as transceiver devices or signaling testers that simulate some functions of base stations, and other wireless communication equipment.
  • GNSS Global Navigation Satellite System

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。节点首先接收第一信令,所述第一信令被用于确定第一参考信号资源集合;随后确定第一功率值,且当第一功率值大于0时发送第一信号;所述第一信号的发送功率是所述第一功率值,所述第一信号的空间发送参数与所述第一参考信号资源集合有关;所述第一功率值不大于目标功率值,所述目标功率值不大于第一门限值,所述第一门限值与所述第一参考信号资源集合相关联;所述第一信令是否被用于确定第二参考信号资源集合被用于确定所述目标功率值是否与所述第一门限值之外的门限值有关。本申请改进当终端配置多个参考信号资源集合情况下的发送功率上限的确定方式,以避免功率浪费,提升系统性能。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中上行功率确定的传输方案和装置。
背景技术
5G无线蜂窝通信网络系统(5G-RAN)在原有LTE(Long-Term Evolution,长期演进)的基础上对UE(User Equipment,用户设备)的上行功率控制进行了增强。相较于LTE,因为5G NR系统没有CRS(Common Reference Signal,公共参考信号),上行功控所需要的路损(Pathloss)测量需要采用CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号)和SSB(SS/PBCH Block,同步信号/物理广播信道块)进行。除此之外,NR系统最大的特点是引入了波束管理机制,终端可以用多个不同的发射和接收波束进行通信,进而终端需要能够测量多个波束所对应的多个路损,其中,确定路损的一种方式是通过DCI(Downlink Control Information,下行控制信息)中的SRI(Sounding Reference Signal Resource Indicator,探测参考信道资源指示)指示到某个关联的下行RS(Reference Signal,参考信号)资源以实现。
在NR R17以及R18的讨论中,终端侧配置多个Panel(面板)的场景已经被采纳,而引入多个Panel所带来的对功率控制的影响也相应的需要被考虑。
发明内容
在NR R17以及R18的讨论中,对终端的发送进行了增强,其中一个重要的方面就是引入了两个Panel,终端可以采用两个Panel同时在两个发送波束上进行发送以获得更好的空间分集增益。然而,上行发送的一个重要的指标是功率控制,现有UE的最大发送功率的确定均基于一个Panel的情况设计,且没有考虑两个Panel之间的发送功率的关系和限制。
针对上述多面板场景下的上行功控的问题,本申请公开了一种解决方案。需要说明的是,在本申请的描述中,只是将多面板作为一个典型应用场景或者例子;本申请也同样适用于面临相似问题的其它场景,例如单面板的场景,或者针对不同的技术领域,比如除了上行功控之外的技术领域,例如测量上报领域,上行数据传输等其它非上行功控领域以取得类似的技术效果。此外,不同场景(包括但不限于多面板的场景)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。特别的,对本申请中的术语(Terminology)、名词、函数、变量的解释(如果未加特别说明)可以参考3GPP的规范协议TS36系列、TS38系列、TS37系列中的定义。在需要的情况下,可以参考3GPP标准TS38.211,TS38.212,TS38.213,TS38.214,TS38.215,TS38.321,TS38.331,TS38.305,TS37.355以辅助对本申请的理解。
本申请公开了一种用于无线通信的第一节点中的方法,包括:
接收第一信令,所述第一信令被用于确定第一参考信号资源集合;
确定第一功率值,且当第一功率值大于0时发送第一信号;
其中,所述第一信号的发送功率是所述第一功率值,所述第一信号的空间发送参数与所述第一参考信号资源集合有关;所述第一功率值不大于目标功率值,所述目标功率值不大于第一门限值,所述第一门限值与所述第一参考信号资源集合相关联;所述第一信令是否被用于确定第二参考信号资源集合被用于确定所述目标功率值是否与所述第一门限值之外的门限值有关;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
作为一个实施例,上述方法的特征在于:实现第一节点在两个Panel之间共享发送功率值。
作为一个实施例,上述方法的另一个特征在于:单Panel下的发送功率的最大值的确定方式和多Panel下的发送功率的最大值的确定方式不同。
根据本申请的一个方面,当所述第一信令被用于确定所述第二参考信号资源集合时,第二门限值与所述第二参考信号资源集合相关联,且所述第一门限值和所述第二门限值被共同用于确定所述目标功率值;当所述第一信令不被用于确定所述第二参考信号资源集合时,所述第一门限值和所述第二门限值中的仅所述第一门限值被用于确定所述目标功率值。
作为一个实施例,上述方法的另一个特征在于:当两个Panel被同时使用时,其中一个Panel上的最大发送功率值受到另一个Panel的发送功率值的影响。
根据本申请的一个方面,包括:
接收第一目标参考信号和第二目标参考信号;
发送第二信号;
其中,所述第二信号所占用的时域资源与所述第一信号所占用的时域资源存在交叠;所述第二信号的发送功率是第二功率值,所述第二功率值不大于所述第二门限值,所述第二信号的空间发送参数与所述第二参考信号资源集合有关;所述第一目标参考信号被用于确定第一路径损耗,所述第二目标参考信号被用于确定第二路径损耗,所述第一路径损耗被用于确定第一候选功率值,所述第二路径损耗被用于确定所述第二功率值;当所述第一门限值与所述第二门限值的和大于第三门限值且所述第一候选功率值与所述第二功率值的和大于所述第三门限值时,所述目标功率值等于所述第三门限值减去所述第二功率值的差;当所述第一门限值与所述第二门限值的和不大于第三门限值时,所述目标功率值等于所述第一候选功率值。
作为一个实施例,上述方法的一个特征在于:UE的最大发送功率值、每个Panel上的最大发送功率值、以及其中一个Panel上的实际发送功率值,都会影响另一个Panel的发送功率值的确定。
根据本申请的一个方面,所述第一门限值与所述第二门限值的和大于所述第三门限值且所述第一候选功率值与所述第二功率值的和大于所述第三门限值;所述第三门限值减去所述第二功率值的差等于第一剩余功率值;当所述第一候选功率值减去所述第一剩余功率值得到的值大于目标阈值时,所述第一功率值等于0;当所述第一候选功率值减去所述第一剩余功率值得到的值不大于目标阈值时,所述第一功率值不大于所述目标功率值,所述目标功率值等于所述第一功率差值。
作为一个实施例,上述方法的一个特征在于:当所述第一信号的发送功率降幅过大,就放弃所述第一信号的发送。
根据本申请的一个方面,所述第三门限值是所述第一节点专属的,且所述第三门限值与所述第一参考信号资源集合或所述第二参考信号资源集合无关。
根据本申请的一个方面,所述第二参考信号资源集合是被RRC信令指示的,或者所述第二参考信号资源集合是预定义的。
根据本申请的一个方面,所述第二信号所对应的优先级高于所述第一信号所对应的优先级。
本申请公开了一种用于无线通信的第二节点中的方法,包括:
发送第一信令,所述第一信令被用于确定第一参考信号资源集合;
接收第一信号;
其中,所述第一信号的发送功率是所述第一功率值,所述第一信号的空间发送参数与所述第一参考信号资源集合有关;所述第一功率值不大于目标功率值,所述目标功率值不大于第一门限值,所述第一门限值与所述第一参考信号资源集合相关联;所述第一信令是否被用于确定第二参考信号资源集合被用于确定所述目标功率值是否与所述第一门限值之外的门限值有关;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
根据本申请的一个方面,当所述第一信令被用于确定所述第二参考信号资源集合时,第二门限值与所述第二参考信号资源集合相关联,且所述第一门限值和所述第二门限值被共同用于确定所述目标功率值;当所述第一信令不被用于确定所述第二参考信号资源集合时,所述第一门限值和所述第二门限值中的仅所述第一门限值被用于确定所述目标功率值。
根据本申请的一个方面,包括:
发送第一目标参考信号和第二目标参考信号;
接收第二信号;
其中,所述第二信号所占用的时域资源与所述第一信号所占用的时域资源存在交叠;所述第二信号的发送功率是第二功率值,所述第二功率值不大于所述第二门限值,所述第二信号的空间发送参数与所述第二参考信号资源集合有关;所述第一目标参考信号被用于确定第一路径损耗,所述第二目标参考信号被用于确定第二路径损耗,所述第一路径损耗被用于确定第一候选功率值,所述第二路径损耗被用于确定所述第二功率值;当所述第一门限值与所述第二门限值的和大于第三门限值且所述第一候选功率值与所述第二功率值的和大于所述第三门限值时,所述目标功率值等于所述第三门限值减去所述第二功率值的差;当所述第一门限值与所述第二门限值的和不大于第三门限值时,所述目标功率值等于所述第一候选功率值。
根据本申请的一个方面,所述第一门限值与所述第二门限值的和大于所述第三门限值且所述第一候选功率值与所述第二功率值的和大于所述第三门限值;所述第三门限值减去所述第二功率值的差等于第一剩余功率值;当所述第一候选功率值减去所述第一剩余功率值得到的值大于目标阈值时,所述第一功率值等于0;当所述第一候选功率值减去所述第一剩余功率值得到的值不大于目标阈值时,所述第一功率值不大于所述目标功率值,所述目标功率值等于所述第一功率差值。
根据本申请的一个方面,所述第三门限值是所述第一节点专属的,且所述第三门限值与所述第一参考信号资源集合或所述第二参考信号资源集合无关。
根据本申请的一个方面,所述第二参考信号资源集合是被RRC信令指示的,或者所述第二参考信号资源集合是预定义的。
根据本申请的一个方面,所述第二信号所对应的优先级高于所述第一信号所对应的优先级。
本申请公开了一种用于无线通信的第一节点,包括:
第一接收机,接收第一信令,所述第一信令被用于确定第一参考信号资源集合;
第一发射机,确定第一功率值,且当第一功率值大于0时发送第一信号;
其中,所述第一信号的发送功率是所述第一功率值,所述第一信号的空间发送参数与所述第一参考信号资源集合有关;所述第一功率值不大于目标功率值,所述目标功率值不大于第一门限值,所述第一门限值与所述第一参考信号资源集合相关联;所述第一信令是否被用于确定第二参考信号资源集合被用于确定所述目标功率值是否与所述第一门限值之外的门限值有关;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
本申请公开了一种用于无线通信的第二节点,包括:
第二发射机,发送第一信令,所述第一信令被用于确定第一参考信号资源集合;
第二接收机,接收第一信号;
其中,所述第一信号的发送功率是所述第一功率值,所述第一信号的空间发送参数与所述第一参考信号资源集合有关;所述第一功率值不大于目标功率值,所述目标功率值不大于第一门限值,所述第一门限值与所述第一参考信号资源集合相关联;所述第一信令是否被用于确定第二参考信号资源集合被用于确定所述目标功率值是否与所述第一门限值之外的门限值有关;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
作为一个实施例,本申请中的方案的好处在于:优化上行的发送功率值的确定,以提升性能。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的第一信令的流程图;
图6示出了根据本申请的一个实施例的第二信号的流程图;
图7示出了根据本申请的一个实施例的第一参考信号资源集合和第二参考信号资源集合的示意图;
图8示出了根据本申请的一个实施例的第一节点的示意图;
图9示出了根据本申请的一个实施例的天线端口和天线端口组的示意图;
图10示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图11示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个第一节点的处理流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。在实施例1中,本申请中的第一节点在步骤101中接收第一信令,所述第一信令被用于确定第一参考信号资源集合;在步骤102中确定第一功率值,且当第一功率值大于0时发送第一信号。
实施例1中,所述第一信号的发送功率是所述第一功率值,所述第一信号的空间发送参数与所述第一参考信号资源集合有关;所述第一功率值不大于目标功率值,所述目标功率值不大于第一门限值,所述第一门限值与所述第一参考信号资源集合相关联;所述第一信令是否被用于确定第二参考信号资源集合被用于确定所述目标功率值是否与所述第一门限值之外的门限值有关;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
作为一个实施例,所述第一信令包括RRC(Radio Resource Control,无线资源控制)信令。
作为一个实施例,所述第一信令包括MAC(Medium Access Control,媒体接入控制)信令。
作为一个实施例,所述第一信令包括MAC CE(Control Elements,控制单元)。
作为一个实施例,所述第一信令包括物理层动态信令。
作为一个实施例,所述第一信令所占用的物理层信道包括PDCCH(Physical Downlink Control Channel,物理下行控制信道)。
作为一个实施例,所述第一信令包括一个DCI。
作为一个实施例,所述第一信令被用于指示所述第一参考信号资源集合。
作为一个实施例,所述第一参考信号资源集合包括K1个参考信号资源,所述第一信令被用于确定所述K1个参考信号资源中的至少一个参考信号资源,所述K1是正整数。
作为一个实施例,所述第一参考信号资源集合包括K1个参考信号资源,所述第一信令被用于指示所述K1个参考信号资源中的至少一个参考信号资源,所述K1是正整数。
作为一个实施例,所述第一参考信号资源集合对应一个SRS(Sounding Reference Signal,探测参考信号)资源集合。
作为一个实施例,所述第一参考信号资源集合被关联到一个SRS资源集合标识。
作为一个实施例,所述第一参考信号资源集合被关联到一个SRS资源集合。
作为一个实施例,所述第一参考信号资源集合包括K1个参考信号资源,所述K1个参考信号资源集合分别对应K1个SRS资源。
作为一个实施例,所述第一参考信号资源集合对应一个CSI-RS资源集合。
作为一个实施例,所述第一参考信号资源集合被关联一个CSI-RS资源集合。
作为一个实施例,所述第一参考信号资源集合被关联一个CSI-RS资源集合标识。
作为一个实施例,所述第一参考信号资源集合包括K1个参考信号资源,所述K1个参考信号资源集合分别对应K1个CSI-RS资源。
作为一个实施例,所述第一参考信号资源集合包括K1个参考信号资源,所述K1个参考信号资源集合分别对应K1个TCI(Transmission Configuration Indication,传输配置指示)。
作为一个实施例,所述第一参考信号资源集合包括K1个参考信号资源,所述K1个参考信号资源集合分别对应K1个TCI-State。
作为一个实施例,所述第一参考信号资源集合包括K1个参考信号资源,所述K1个参考信号资源集合分别对应K1个TCI-StateId。
作为一个实施例,所述第一参考信号资源集合包括K1个参考信号资源,所述K1个参考信号资源集合分别对应K1个SRI。
作为一个实施例,所述第一参考信号资源集合被关联到一个Panel。
作为一个实施例,所述第一参考信号资源集合被关联到一个标识。
作为一个实施例,所述第一参考信号资源集合被关联到一个CORESET(Control Resource Set,控制资源块)Pool。
作为一个实施例,所述第二参考信号资源集合包括K2个参考信号资源,所述第一信令被用于确定所述K2个参考信号资源中的至少一个参考信号资源,所述K2是正整数。
作为一个实施例,所述第二参考信号资源集合包括K2个参考信号资源,所述第一信令被用于指示所述K2个参考信号资源中的至少一个参考信号资源,所述K2是正整数。
作为一个实施例,所述第二参考信号资源集合对应一个SRS资源集合。
作为一个实施例,所述第二参考信号资源集合被关联到一个SRS资源集合标识。
作为一个实施例,所述第二参考信号资源集合被关联到一个SRS资源集合。
作为一个实施例,所述第二参考信号资源集合包括K2个参考信号资源,所述K2个参考信号资源集合分别对应K2个SRS资源。
作为一个实施例,所述第二参考信号资源集合对应一个CSI-RS资源集合。
作为一个实施例,所述第二参考信号资源集合被关联一个CSI-RS资源集合。
作为一个实施例,所述第二参考信号资源集合被关联一个CSI-RS资源集合标识。
作为一个实施例,所述第二参考信号资源集合包括K2个参考信号资源,所述K2个参考信号资源集合分别对应K2个CSI-RS资源。
作为一个实施例,所述第二参考信号资源集合包括K2个参考信号资源,所述K2个参考信号资源集合分别对应K2个TCI。
作为一个实施例,所述第二参考信号资源集合包括K2个参考信号资源,所述K2个参考信号资源集合分别对应K2个TCI-State。
作为一个实施例,所述第二参考信号资源集合包括K2个参考信号资源,所述K2个参考信号资源集合分别对应K2个TCI-StateId。
作为一个实施例,所述第二参考信号资源集合包括K2个参考信号资源,所述K2个参考信号资源集合分别对应K2个SRI。
作为一个实施例,所述第二参考信号资源集合被关联到一个Panel。
作为一个实施例,所述第二参考信号资源集合被关联到一个标识。
作为一个实施例,所述第二参考信号资源集合被关联到一个CORESET Pool。
作为一个实施例,所述第一参考信号资源集合和所述第二参考信号资源集合不同。
作为一个实施例,所述第一参考信号资源集合和所述第二参考信号资源集合分别对应不同的标识。
作为一个实施例,所述第一参考信号资源集合和所述第二参考信号资源集合分别对应不同的SRS资源集合。
作为一个实施例,所述第一参考信号资源集合和所述第二参考信号资源集合分别对应不同的CSI-RS资源集合。
作为一个实施例,所述第一参考信号资源集合和所述第二参考信号资源集合分别对应不同的Panel。
作为一个实施例,所述第一功率值的单位是dBm。
作为一个实施例,所述第一功率值的单位是毫瓦。
作为一个实施例,所述第一功率值的单位是瓦。
作为一个实施例,所述第一节点包括:
第一发射机,确定第一功率值,且当第一功率值等于0时放弃发送第一信号;
作为一个实施例,所述第一信号所占用的物理层信道包括PUSCH(Physical Uplink Shared Channel,物理上行共享信道)。
作为一个实施例,所述第一信号所占用的物理层信道包括PUCCH(Physical Uplink Control Channel,物理上行控制信道)。
作为一个实施例,所述第一信号对应的传输信道包括UL-SCH(Uplink Shared Channel,上行共享信道)。
作为一个实施例,所述第一信号由至少一个TB(Transport Block,传输块)生成。
作为一个实施例,所述第一信号由至少一个比特块生成。
作为一个实施例,所述第一信号的空间发送参数与所述第一参考信号资源集合有关的意思包括:所述第一参考信号资源集合中的至少一个参考信号资源被用于确定所述第一信号的空间发送参数。
作为一个实施例,所述第一信号的空间发送参数与所述第一参考信号资源集合有关的意思包括:所述第一信号与所述第一参考信号资源集合中的至少一个参考信号资源是QCL(Quasi Co-located,准共址)的。
作为一个实施例,所述第一信号的空间发送参数与所述第一参考信号资源集合有关的意思包括:所述第一参考信号资源集合中的至少一个参考信号资源被用于确定所述第一信号所对应的TCI。
作为一个实施例,所述目标功率值的单位是dBm。
作为一个实施例,所述目标功率值的单位是毫瓦。
作为一个实施例,所述目标功率值的单位是瓦。
作为一个实施例,所述第一门限值的单位是dBm。
作为一个实施例,所述第一门限值的单位是毫瓦。
作为一个实施例,所述第一门限值的单位是瓦。
作为一个实施例,所述第一门限值是Panel专属的。
作为一个实施例,本申请中的所述空间发送参数包括TCI。
作为一个实施例,本申请中的所述空间发送参数包括TCI-State。
作为一个实施例,本申请中的所述空间发送参数包括TCI-StateId。
作为一个实施例,所述第一门限值被关联到所述第一参考信号资源集合。
作为一个实施例,所述第一门限值对应所述第一节点采用所述第一参考信号资源集合中的一个参考信号资源所对应的空间发送参数发送无线信号时所采用的最大发送功率。
作为一个实施例,所述第一门限值对应所述第一节点采用所述第一参考信号资源集合所对应的Pane l发送无线信号时所采用的最大发送功率。
作为一个实施例,所述第一门限值通过RRC信令配置。
作为一个实施例,所述第一门限值与所述第一节点的Category有关。
作为一个实施例,所述第一门限值与所述第一节点的Capability有关。
作为一个实施例,所述第一门限值对应所述第一节点采用单个Panel发送时的最大发送功率值。
作为一个实施例,所述第一门限值对应所述第一节点采用所述第一参考信号资源集合中的任一参考信号资源作为空间发送参数发送无线信号时的最大发送功率值。
作为一个实施例,所述第一门限值对应所述第一节点采用所述第一参考信号资源集合中的至少一个参考信号资源作为空间发送参数发送无线信号时的最大发送功率值。
作为一个实施例,所述第一门限值对应所述第一节点采用一个SRS资源集合所对应的空间发送参数发送无线信号时的最大发送功率值。
作为一个实施例,所述第一门限值被配置给所述第一参考信号资源集合。
作为一个实施例,所述第一门限值对应
作为一个实施例,所述第一门限值对应
作为一个实施例,所述第一门限值对应
作为一个实施例,所述第一门限值对应
作为一个实施例,当所述第一信令被用于确定所述第二参考信号资源集合时,所述第一信令被用于指示所述第二参考信号资源集合。
作为一个实施例,当所述第一信令被用于确定所述第二参考信号资源集合时,所述第一信令被用于指示所述第二参考信号资源集合所包括的K2个参考信号资源中的至少一个参考信号资源。
作为一个实施例,所述第一信令包括第一域,所述第一信令所包括的所述第一域被用于指示所述第一参考信号资源集合中的一个参考信号资源。
作为该实施例的一个子实施例,当所述第一信令被用于确定所述第二参考信号资源集合时,所述第一信令所包括的所述第一域被用于指示所述第二参考信号资源集合中的一个参考信号资源。
作为该实施例的一个子实施例,当所述第一信令被用于确定所述第二参考信号资源集合时,所述第一信令还包括第二域,所述第一信令所包括的所述第二域被用于指示所述第二参考信号资源集合中的一个参考信号资源。
作为一个实施例,所述第一参考信号资源集合和所述第二参考信号资源集合关联的更高层参数“usage”都被设置为“codebook”或都被设置为“nonCodebook”。
作为一个实施例,所述第一信令被用于确定第一参考信号资源集合的意思包括:所述第一信令指示所述第一信令中的第一域和第二域中之一和所述第一参考信号资源集合关联。
作为一个实施例,所述第一信令是否被用于确定第二参考信号资源集合的意思包括:所述第一信令是否指示所述第一信令中的第一域和第二域中之一和所述第二参考信号资源集合关联。
作为一个实施例,所述第一功率值等于所述目标功率值。
作为一个实施例,所述第一信号包括无线信号。
作为一个实施例,所述第一信号包括基带信号。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个UE(User Equipment,用户设备)201,NR-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NR-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以 及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201支持多个Panel同时发送。
作为一个实施例,所述UE201支持基于多Panel之间的功率分享。
作为一个实施例,所述UE201支持多个上行RF(Radio Frequency,射频)。
作为一个实施例,所述UE201支持多个上行RF同时发送。
作为一个实施例,所述UE201支持上报多个UE能力值集合。
作为一个实施例,所述NR节点B对应本申请中的所述第二节点。
作为一个实施例,所述NR节点B支持同时接收来自一个终端的多个Panel的信号。
作为一个实施例,所述NR节点B支持接收来自同一个终端的多个上行RF(Radio Frequency,射频)发送的信号。
作为一个实施例,所述NR节点B是一个基站。
作为一个实施例,所述NR节点B是一个小区。
作为一个实施例,所述NR节点B包括多个小区。
作为一个实施例,本申请中的所述第一节点对应所述UE201,本申请中的所述第二节点对应所述NR节点B。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,PDCP子层304还提供第一通信节点设备对第二通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第二通信节点设备的PDCP304被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第二通信节点设备的PDCP354被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第一信令生成于所述PHY301或者所述PHY351。
作为一个实施例,所述第一信令生成于所述MAC302或者MAC352。
作为一个实施例,所述第一信令生成于所述RRC306。
作为一个实施例,所述第一信号生成于所述MAC302或者MAC352。
作为一个实施例,所述第一信号生成于所述RRC306。
作为一个实施例,所述第一目标参考信号生成于所述PHY301或者所述PHY351。
作为一个实施例,所述第一目标参考信号生成于所述MAC302或者MAC352。
作为一个实施例,所述第一目标参考信号生成于所述RRC306。
作为一个实施例,所述第二目标参考信号生成于所述PHY301或者所述PHY351。
作为一个实施例,所述第二目标参考信号生成于所述MAC302或者MAC352。
作为一个实施例,所述第二目标参考信号生成于所述RRC306。
作为一个实施例,所述第二信号生成于所述MAC302或者MAC352。
作为一个实施例,所述第二信号生成于所述RRC306。
作为一个实施例,所述第一节点是一个终端。
作为一个实施例,所述第一节点是一个中继。
作为一个实施例,所述第二节点是一个中继。
作为一个实施例,所述第二节点是一个基站。
作为一个实施例,所述第二节点是一个gNB。
作为一个实施例,所述第二节点是一个TRP(Transmitter Receiver Point,发送接收点)。
作为一个实施例,所述第二节点被用于管理多个TRP。
作为一个实施例,所述第二节点是用于管理多个小区的节点。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带 多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:首先接收第一信令,所述第一信令被用于确定第一参考信号资源集合;随后确定第一功率值,且当第一功率值大于0时发送第一信号;所述第一信号的发送功率是所述第一功率值,所述第一信号的空间发送参数与所述第一参考信号资源集合有关;所述第一功率值不大于目标功率值,所述目标功率值不大于第一门限值,所述第一门限值与所述第一参考信号资源集合相关联;所述第一信令是否被用于确定第二参考信号资源集合被用于确定所述目标功率值是否与所述第一门限值之外的门限值有关;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先接收第一信令,所述第一信令被用于确定第一参考信号资源集合;随后确定第一功率值,且当第一功率值大于0时发送第一信号;所述第一信号的发送功率是所述第一功率值,所述第一信号的空间发送参数与所述第一参考信号资源集合有关;所述第一功率值不大于目标功率值,所述目标功率值不大于第一门限值,所述第一门限值与所述第一参考信号资源集合相关联;所述第一信令是否被用于确定第二参考信号资源集合被用于确定所述目标功率值是否与所述第一门限值之外的门限值有关;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至 少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:首先发送第一信令,所述第一信令被用于确定第一参考信号资源集合;随后接收第一信号;所述第一信号的发送功率是所述第一功率值,所述第一信号的空间发送参数与所述第一参考信号资源集合有关;所述第一功率值不大于目标功率值,所述目标功率值不大于第一门限值,所述第一门限值与所述第一参考信号资源集合相关联;所述第一信令是否被用于确定第二参考信号资源集合被用于确定所述目标功率值是否与所述第一门限值之外的门限值有关;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先发送第一信令,所述第一信令被用于确定第一参考信号资源集合;随后接收第一信号;所述第一信号的发送功率是所述第一功率值,所述第一信号的空间发送参数与所述第一参考信号资源集合有关;所述第一功率值不大于目标功率值,所述目标功率值不大于第一门限值,所述第一门限值与所述第一参考信号资源集合相关联;所述第一信令是否被用于确定第二参考信号资源集合被用于确定所述目标功率值是否与所述第一门限值之外的门限值有关;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第一通信设备450是一个终端。
作为一个实施例,所述第一通信设备450是一个中继。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,所述第二通信设备410是一个中继。
作为一个实施例,所述第二通信设备410是一个网络设备。
作为一个实施例,所述第二通信设备410是一个服务小区。
作为一个实施例,所述第二通信设备410是一个TRP。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第一信令;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第一信令。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于确定第一功率值,且当第一功率值大于0时发送第一信号;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于接收第一信号。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第一目标参考信号;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第一目标参考信号。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第二目标参考信号;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第二目标参考信号。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于发送第二信号;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于接收第二信号。
实施例5
实施例5示例了一个第一信令的流程图,如附图5所示。在附图5中,第一节点U1与第二节点 N2之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例5中的实施例、子实施例和附属实施例能够被应用到实施例6中;反之,在不冲突的情况下,实施例6中的任一实施例、子实施例和附属实施例能够被应用到实施例5中。
对于第一节点U1,在步骤S10中接收第一信令;在步骤S11中发送第一信号。
对于第二节点N2,在步骤S20中发送第一信令;在步骤S21中接收第一信号。
实施例5中,所述第一信令被用于确定第一参考信号资源集合;所述第一节点确定第一功率值大于0;所述第一信号的发送功率是所述第一功率值,所述第一信号的空间发送参数与所述第一参考信号资源集合有关;所述第一功率值不大于目标功率值,所述目标功率值不大于第一门限值,所述第一门限值与所述第一参考信号资源集合相关联;所述第一信令是否被用于确定第二参考信号资源集合被用于确定所述目标功率值是否与所述第一门限值之外的门限值有关;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
典型的,当所述第一信令被用于确定所述第二参考信号资源集合时,第二门限值与所述第二参考信号资源集合相关联,且所述第一门限值和所述第二门限值被共同用于确定所述目标功率值;当所述第一信令不被用于确定所述第二参考信号资源集合时,所述第一门限值和所述第二门限值中的仅所述第一门限值被用于确定所述目标功率值。
作为一个实施例,所述第二门限值被关联到所述第二参考信号资源集合。
作为一个实施例,所述第二门限值对应所述第一节点采用所述第二参考信号资源集合中的一个参考信号资源所对应的空间发送参数发送无线信号时所采用的最大发送功率。
作为一个实施例,所述第二门限值对应所述第一节点采用所述第二参考信号资源集合所对应的Panel发送无线信号时所采用的最大发送功率。
作为一个实施例,所述第二门限值通过RRC信令配置。
作为一个实施例,所述第二门限值与所述第一节点的Category有关。
作为一个实施例,所述第二门限值与所述第一节点的Capability有关。
作为一个实施例,所述第二门限值对应所述第一节点采用单个Panel发送时的最大发送功率值。
作为一个实施例,所述第二门限值对应所述第一节点采用所述第二参考信号资源集合中的任一参考信号资源作为空间发送参数发送无线信号时的最大发送功率值。
作为一个实施例,所述第二门限值对应所述第一节点采用所述第二参考信号资源集合中的至少一个参考信号资源作为空间发送参数发送无线信号时的最大发送功率值。
作为一个实施例,所述第二门限值对应所述第一节点采用一个SRS资源集合所对应的空间发送参数发送无线信号时的最大发送功率值。
作为一个实施例,所述第二门限值被配置给所述第二参考信号资源集合。
作为一个实施例,所述第二门限值对应
作为一个实施例,所述第二门限值对应
作为一个实施例,所述第二门限值对应
作为一个实施例,所述第二门限值对应
作为一个实施例,所述第一门限值等于所述第二门限值。
作为一个实施例,所述第一门限值和所述第二门限值是独立配置的。
作为一个实施例,所述第二门限值与所述第一门限值线性相关。
作为一个实施例,所述第二门限值的单位是dBm。
作为一个实施例,所述第二门限值的单位是毫瓦。
作为一个实施例,所述第二门限值的单位是瓦。
作为一个实施例,所述第二门限值是Panel专属的。
作为一个实施例,所述第一门限值和所述第二门限值被共同用于确定所述目标功率值的意思包括:所述目标功率值不大于所述第一门限值与所述第二门限值的和。
作为一个实施例,所述第一门限值和所述第二门限值被共同用于确定所述目标功率值的意思包括:所述目标功率值不大于所述第一门限值与所述第二门限值中的任何一个。
作为一个实施例,所述第一门限值和所述第二门限值被共同用于确定所述目标功率值的意思包括:所述目标功率值不大于所述第一门限值与所述第二门限值的和与第一系数的乘积,所述第一系数是固定的,或者所述第一系数是通过RRC信令配置的。
作为一个实施例,所述第一门限值被共同用于确定所述目标功率值的意思包括:所述目标功率值不大于所述第一门限值。
作为一个实施例,所述第一门限值被共同用于确定所述目标功率值的意思包括:所述目标功率值不大于所述第一门限值与第二系数的乘积,所述第二系数是固定的,或者所述第二系数是通过RRC信令配置的。
典型的,所述第二参考信号资源集合是被RRC信令指示的,或者所述第二参考信号资源集合是预定义的。
典型的,所述第二信号所对应的优先级高于所述第一信号所对应的优先级。
作为一个实施例,所述第二信号所对应的优先级高于所述第一信号所对应的优先级的意思包括:所述第二信号相较所述第一信号被优先分配功率。
作为一个实施例,所述第二信号所对应的优先级高于所述第一信号所对应的优先级的意思包括:所述第一信号所对应的优先级索引小于所述第二信号所对应的优先级索引。
作为一个实施例,所述第二信号所对应的优先级高于所述第一信号所对应的优先级的意思包括:所述第一信号所对应的优先级索引大于所述第二信号所对应的优先级索引。
实施例6
实施例6示例了一个第二信号的流程图,如附图6所示。在附图6中,第一节点U3与第二节点N4之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例6中的实施例、子实施例和附属实施例能够被应用到实施例5中;反之,在不冲突的情况下,实施例5中的任一实施例、子实施例和附属实施例能够被应用到实施例6中。
对于第一节点U3,在步骤S30中接收第一目标参考信号和第二目标参考信号;在步骤S31中发送第二信号。
对于第二节点N4,在步骤S40中发送第一目标参考信号和第二目标参考信号;在步骤S41中接收第二信号。
实施例6中,所述第二信号所占用的时域资源与所述第一信号所占用的时域资源存在交叠;所述第二信号的发送功率是第二功率值,所述第二功率值不大于所述第二门限值,所述第二信号的空间发送参数与所述第二参考信号资源集合有关;所述第一目标参考信号被用于确定第一路径损耗,所述第二目标参考信号被用于确定第二路径损耗,所述第一路径损耗被用于确定第一候选功率值,所述第二路径损耗被用于确定所述第二功率值;当所述第一门限值与所述第二门限值的和大于第三门限值且所述第一候选功率值与所述第二功率值的和大于所述第三门限值时,所述目标功率值等于所述第三门限值减去所述第二功率值的差;当所述第一门限值与所述第二门限值的和不大于第三门限值时,所述目标功率值等于所述第一候选功率值。
作为一个实施例,所述第二信号所占用的物理层信道包括PUSCH。
作为一个实施例,所述第二信号对应的传输信道包括UL-SCH。
作为一个实施例,所述第二信号所占用的物理层信道包括PUCCH。
作为一个实施例,所述第二信号由至少一个TB生成。
作为一个实施例,所述第二信号由至少一个比特块生成。
作为一个实施例,所述第一信号和所述第二信号由一个相同的TB生成。
作为一个实施例,所述第一信号和所述第二信号分别由两个独立的TB生成。
作为一个实施例,所述第一信号所占用的时隙和所述第二信号所占用的时隙在时域存在交叠(overlap in time with)。
作为一个实施例,所述第二信号的空间发送参数与所述第二参考信号资源集合有关的意思包括:所述第二参考信号资源集合中的至少一个参考信号资源被用于确定所述第二信号的空间发送参数。
作为一个实施例,所述第二信号的空间发送参数与所述第二参考信号资源集合有关的意思包括:所 述第二信号与所述第二参考信号资源集合中的至少一个参考信号资源是QCL的。
作为一个实施例,所述第二信号的空间发送参数与所述第二参考信号资源集合有关的意思包括:所述第二参考信号资源集合中的至少一个参考信号资源被用于确定所述第二信号所对应的TCI。
作为一个实施例,所述第一目标参考信号包括CSI-RS。
作为一个实施例,所述第一目标参考信号包括SSB(Synchronization Signal/physical broadcast channel Block,同步信号/物理广播信道块)。
作为一个实施例,所述第一目标参考信号对应一个CSI-RS资源。
作为一个实施例,所述第一目标参考信号对应一个SSB。
作为一个实施例,所述第一目标参考信号对应一个TCI。
作为一个实施例,所述第一目标参考信号对应一个TCI-State。
作为一个实施例,所述第一目标参考信号对应一个TCI-StateId。
作为一个实施例,所述第二目标参考信号包括CSI-RS。
作为一个实施例,所述第二目标参考信号包括SSB。
作为一个实施例,所述第二目标参考信号对应一个CSI-RS资源。
作为一个实施例,所述第二目标参考信号对应一个SSB。
作为一个实施例,所述第二目标参考信号对应一个TCI。
作为一个实施例,所述第二目标参考信号对应一个TCI-State。
作为一个实施例,所述第二目标参考信号对应一个TCI-StateId。
作为一个实施例,所述第一目标参考信号与所述第一参考信号资源集合相关联。
作为一个实施例,所述第二目标参考信号与所述第二参考信号资源集合相关联。
作为一个实施例,所述第一目标参考信号对应一个CSI-RS资源。
作为一个实施例,所述第二目标参考信号对应一个CSI-RS资源。
作为一个实施例,所述第一路径损耗的单位是dB。
作为一个实施例,所述第二路径损耗的单位是dB。
作为一个实施例,所述第一候选功率值不大于所述第一门限值。
作为一个实施例,所述第一目标参考信号与所述第一信号是QCL的。
作为一个实施例,所述第二目标参考信号与所述第二信号是QCL的。
作为一个实施例,所述第一目标参考信号与所述第一参考信号资源集合中的一个参考信号资源是QCL的。
作为一个实施例,所述第二目标参考信号与所述第二参考信号资源集合中的一个参考信号资源是QCL的。
典型的,所述第一门限值与所述第二门限值的和大于第三门限值且所述第一候选功率值与所述第二功率值的和大于所述第三门限值;所述第三门限值减去所述第二功率值的差等于第一剩余功率值;当所述第一候选功率值减去所述第一剩余功率值得到的值大于目标阈值时,所述第一功率值等于0;当所述第一候选功率值减去所述第一剩余功率值得到的值不大于目标阈值时,所述第一功率值不大于所述目标功率值,所述目标功率值等于所述第一功率差值。
作为一个实施例,所述目标阈值通过RRC信令确定。
作为一个实施例,当所述第一功率值等于0时,所述第一节点放弃发送所述第一信号。
作为一个实施例,当所述第一候选功率值减去所述第一剩余功率值得到的值不大于所述目标阈值时,所述第一功率值等于所述目标功率值。
典型的,所述第三门限值是所述第一节点专属的,且所述第三门限值与所述第一参考信号资源集合或所述第二参考信号资源集合无关。
作为一个实施例,所述第三门限值对应
作为一个实施例,所述第三门限值对应PTotal
作为一个实施例,所述第三门限值对应Pcmax
作为一个实施例,所述第三门限值对应所述第一节点的最大发送功率。
作为一个实施例,所述第三门限值与所述第一节点的Category有关。
作为一个实施例,所述第三门限值与所述第一节点的Capability有关。
作为一个实施例,所述第二信号包括无线信号。
作为一个实施例,所述第二信号包括基带信号。
作为一个实施例,所述步骤S30位于实施例5中步骤S10之前。
作为一个实施例,所述步骤S30位于实施例5中步骤S10之后,且步骤S11之前。
作为一个实施例,所述步骤S40位于实施例5中步骤S20之前。
作为一个实施例,所述步骤S40位于实施例5中步骤S20之后,且步骤S21之前。
作为一个实施例,所述步骤S31位于实施例5中步骤S11之前。
作为一个实施例,所述步骤S31与实施例5中步骤S11同时发生。
作为一个实施例,所述步骤S31位于实施例5中步骤S11之后。
作为一个实施例,所述步骤S41位于实施例5中步骤S21之前。
作为一个实施例,所述步骤S41与实施例5中步骤S21同时发生。
作为一个实施例,所述步骤S41位于实施例5中步骤S21之后。
实施例7
实施例7示例了一个第一参考信号资源集合和第二参考信号资源集合的示意图,如附图7所示。在附图7中,所述第一参考信号资源集合包括K1个参考信号资源,分别对应图中的参考信号资源1_1至参考信号资源1_K1;所述第二参考信号资源集合包括K2个参考信号资源,分别对应图中的参考信号资源2_1至参考信号资源2_K2;所述K1是正整数,所述K2是正整数。
作为一个实施例,所述K1等于1。
作为一个实施例,所述K2等于1。
作为一个实施例,所述K1大于1。
作为一个实施例,所述K2大于1。
作为一个实施例,所述第一门限值适用于所述第一参考信号资源集合中的所有参考信号资源。
作为一个实施例,所述第二门限值适用于所述第二参考信号资源集合中的所有参考信号资源。
作为一个实施例,所述第三门限值适用于所述第一参考信号资源集合中的所有参考信号资源和所述第二参考信号资源集合中的所有参考信号资源。
作为一个实施例,所述第一参考信号资源集合和所述第二参考信号资源集合分别对应两个不同的Panel ID。
作为一个实施例,所述第一参考信号资源集合和所述第二参考信号资源集合分别对应所述第一节点所包括的两个Panel。
作为一个实施例,所述第一参考信号资源集合和所述第二参考信号资源集合分别对应所述第一节点所包括的两个RF(Radio Frequency,射频)。
作为一个实施例,所述第一参考信号资源集合和所述第二参考信号资源集合分别对应所述第一节点所包括的两个射频通道。
实施例8
实施例8示例了一个第一节点的示意图,如附图8所示。在附图8中,所述第一节点具有两个Panel,分别是第一Panel和第二Panel,所述第一Panel和所述第二Panel分别被关联到第一参考信号资源集合和第二参考信号资源集合;所述两个Panel能够在同一块时频资源中发送两个独立的无线信号。
作为一个实施例,所述第一Panel和所述第二Panel之间可以动态分享(Share)最大发送功率值。
作为一个实施例,当所述第一Panel和所述第二Panel被同时使用时,所述第一Panel的最大发送功率值和所述第二Panel的最大发送功率值的和不大于所述第三门限值。
作为一个实施例,当所述第一Panel或所述第二Panel被单独使用时,所述第一Panel的最大发送功率值不大于所述第一门限值,或所述第二Panel的最大发送功率值不大于所述第二门限值。
作为一个实施例,本申请中的所述第一门限值不大于所述第二门限值。
实施例9
实施例9示例了天线端口和天线端口组的示意图,如附图9所示。
在实施例9中,一个天线端口组包括正整数个天线端口;一个天线端口由正整数个天线组中的天线通过天线虚拟化(Virtualization)叠加而成;一个天线组包括正整数根天线。一个天线组通过一个RF(Radio Frequency,射频)chain(链)连接到基带处理器,不同天线组对应不同的RF chain。给定天线端口包括的正整数个天线组内的所有天线到所述给定天线端口的映射系数组成所述给定天线端口对应的波束赋型向量。所述给定天线端口包括的正整数个天线组内的任一给定天线组包括的多根天线到所述给定天线端口的映射系数组成所述给定天线组的模拟波束赋型向量。所述正整数个天线组对应的模拟波束赋型向量对角排列构成所述给定天线端口对应的模拟波束赋型矩阵。所述正整数个天线组到所述给定天线端口的映射系数组成所述给定天线端口对应的数字波束赋型向量。所述给定天线端口对应的波束赋型向量是由所述给定天线端口对应的模拟波束赋型矩阵和数字波束赋型向量的乘积得到的。一个天线端口组中的不同天线端口由相同的天线组构成,同一个天线端口组中的不同天线端口对应不同的波束赋型向量。
附图9中示出了两个天线端口组:天线端口组#0和天线端口组#1。其中,所述天线端口组#0由天线组#0构成,所述天线端口组#1由天线组#1和天线组#2构成。所述天线组#0中的多个天线到所述天线端口组#0的映射系数组成模拟波束赋型向量#0,所述天线组#0到所述天线端口组#0的映射系数组成数字波束赋型向量#0。所述天线组#1中的多个天线和所述天线组#2中的多个天线到所述天线端口组#1的映射系数分别组成模拟波束赋型向量#1和模拟波束赋型向量#2,所述天线组#1和所述天线组#2到所述天线端口组#1的映射系数组成数字波束赋型向量#1。所述天线端口组#0中的任一天线端口对应的波束赋型向量是由所述模拟波束赋型向量#0和所述数字波束赋型向量#0的乘积得到的。所述天线端口组#1中的任一天线端口对应的波束赋型向量是由所述模拟波束赋型向量#1和所述模拟波束赋型向量#2对角排列构成的模拟波束赋型矩阵和所述数字波束赋型向量#1的乘积得到的。
作为一个子实施例,一个天线端口组包括一个天线端口。例如,附图9中的所述天线端口组#0包括一个天线端口。
作为上述子实施例的一个附属实施例,所述一个天线端口对应的模拟波束赋型矩阵降维成模拟波束赋型向量,所述一个天线端口对应的数字波束赋型向量降维成一个标量,所述一个天线端口对应的波束赋型向量等于所述一个天线端口对应的模拟波束赋型向量。
作为一个子实施例,一个天线端口组包括多个天线端口。例如,附图9中的所述天线端口组#1包括多个天线端口。
作为上述子实施例的一个附属实施例,所述多个天线端口对应相同的模拟波束赋型矩阵和不同的数字波束赋型向量。
作为一个子实施例,不同的天线端口组中的天线端口对应不同的模拟波束赋型矩阵。
作为一个子实施例,一个天线端口组中的任意两个天线端口是QCL(Quasi-Colocated,准共址)的。
作为一个子实施例,一个天线端口组中的任意两个天线端口是spatial QCL的。
作为一个实施例,图中的多个天线端口组对应本申请中的一个Panel。
作为一个实施例,所述第一参考信号资源集合对应多个天线端口组。
作为一个实施例,所述第二参考信号资源集合对应多个天线端口组。
作为一个实施例,所述第一参考信号资源集合中的一个参考信号资源对应一个天线端口组。
作为一个实施例,所述第二参考信号资源集合中的一个参考信号资源对应一个天线端口组。
实施例10
实施例10示例了一个第一节点中的结构框图,如附图10所示。附图10中,第一节点1000包括第一接收机1001和第一发射机1002。
第一接收机1001,接收第一信令,所述第一信令被用于确定第一参考信号资源集合;
第一发射机1002,确定第一功率值,且当第一功率值大于0时发送第一信号;
实施例10中,所述第一信号的发送功率是所述第一功率值,所述第一信号的空间发送参数与所述第一参考信号资源集合有关;所述第一功率值不大于目标功率值,所述目标功率值不大于第一门限值,所 述第一门限值与所述第一参考信号资源集合相关联;所述第一信令是否被用于确定第二参考信号资源集合被用于确定所述目标功率值是否与所述第一门限值之外的门限值有关;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
作为一个实施例,当所述第一信令被用于确定所述第二参考信号资源集合时,第二门限值与所述第二参考信号资源集合相关联,且所述第一门限值和所述第二门限值被共同用于确定所述目标功率值;当所述第一信令不被用于确定所述第二参考信号资源集合时,所述第一门限值和所述第二门限值中的仅所述第一门限值被用于确定所述目标功率值。
作为一个实施例,包括:
所述第一接收机1001,接收第一目标参考信号和第二目标参考信号;
所述第一发射机1002,发送第二信号;
其中,所述第二信号所占用的时域资源与所述第一信号所占用的时域资源存在交叠;所述第二信号的发送功率是第二功率值,所述第二功率值不大于所述第二门限值,所述第二信号的空间发送参数与所述第二参考信号资源集合有关;所述第一目标参考信号被用于确定第一路径损耗,所述第二目标参考信号被用于确定第二路径损耗,所述第一路径损耗被用于确定第一候选功率值,所述第二路径损耗被用于确定所述第二功率值;当所述第一门限值与所述第二门限值的和大于第三门限值且所述第一候选功率值与所述第二功率值的和大于所述第三门限值时,所述目标功率值等于所述第三门限值减去所述第二功率值的差;当所述第一门限值与所述第二门限值的和不大于第三门限值时,所述目标功率值等于所述第一候选功率值。
作为一个实施例,所述第一门限值与所述第二门限值的和大于所述第三门限值且所述第一候选功率值与所述第二功率值的和大于所述第三门限值;所述第三门限值减去所述第二功率值的差等于第一剩余功率值;当所述第一候选功率值减去所述第一剩余功率值得到的值大于目标阈值时,所述第一功率值等于0;当所述第一候选功率值减去所述第一剩余功率值得到的值不大于目标阈值时,所述第一功率值不大于所述目标功率值,所述目标功率值等于所述第一功率差值。
作为一个实施例,所述第三门限值是所述第一节点专属的,且所述第三门限值与所述第一参考信号资源集合或所述第二参考信号资源集合无关。
作为一个实施例,所述第二参考信号资源集合是被RRC信令指示的,或者所述第二参考信号资源集合是预定义的。
作为一个实施例,所述第二信号所对应的优先级高于所述第一信号所对应的优先级。
作为一个实施例,所述第一接收机1001包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第一发射机1002包括实施例4中的天线452、发射器454、多天线发射处理器457、发射处理器468、控制器/处理器459中的至少前4者。
实施例11
实施例11示例了一个第二节点中的结构框图,如附图11所示。附图11中,第二节点1100包括第二发射机1101和第二接收机1102。
第二发射机1101,发送第一信令,所述第一信令被用于确定第一参考信号资源集合;
第二接收机1102,接收第一信号;
实施例11中,所述第一信号的发送功率是所述第一功率值,所述第一信号的空间发送参数与所述第一参考信号资源集合有关;所述第一功率值不大于目标功率值,所述目标功率值不大于第一门限值,所述第一门限值与所述第一参考信号资源集合相关联;所述第一信令是否被用于确定第二参考信号资源集合被用于确定所述目标功率值是否与所述第一门限值之外的门限值有关;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
根据本申请的一个方面,当所述第一信令被用于确定所述第二参考信号资源集合时,第二门限值与所述第二参考信号资源集合相关联,且所述第一门限值和所述第二门限值被共同用于确定所述目标功率值;当所述第一信令不被用于确定所述第二参考信号资源集合时,所述第一门限值和所述第二门限值中的仅所述第一门限值被用于确定所述目标功率值。
作为一个实施例,包括:
所述第二发射机1101,发送第一目标参考信号和第二目标参考信号;
所述第二接收机1102,接收第二信号;
其中,所述第二信号所占用的时域资源与所述第一信号所占用的时域资源存在交叠;所述第二信号的发送功率是第二功率值,所述第二功率值不大于所述第二门限值,所述第二信号的空间发送参数与所述第二参考信号资源集合有关;所述第一目标参考信号被用于确定第一路径损耗,所述第二目标参考信号被用于确定第二路径损耗,所述第一路径损耗被用于确定第一候选功率值,所述第二路径损耗被用于确定所述第二功率值;当所述第一门限值与所述第二门限值的和大于第三门限值且所述第一候选功率值与所述第二功率值的和大于所述第三门限值时,所述目标功率值等于所述第三门限值减去所述第二功率值的差;当所述第一门限值与所述第二门限值的和不大于第三门限值时,所述目标功率值等于所述第一候选功率值。
作为一个实施例,所述第一门限值与所述第二门限值的和大于所述第三门限值且所述第一候选功率值与所述第二功率值的和大于所述第三门限值;所述第三门限值减去所述第二功率值的差等于第一剩余功率值;当所述第一候选功率值减去所述第一剩余功率值得到的值大于目标阈值时,所述第一功率值等于0;当所述第一候选功率值减去所述第一剩余功率值得到的值不大于目标阈值时,所述第一功率值不大于所述目标功率值,所述目标功率值等于所述第一功率差值。
作为一个实施例,所述第三门限值是所述第一节点专属的,且所述第三门限值与所述第一参考信号资源集合或所述第二参考信号资源集合无关。
作为一个实施例,所述第二参考信号资源集合是被RRC信令指示的,或者所述第二参考信号资源集合是预定义的。
作为一个实施例,所述第二信号所对应的优先级高于所述第一信号所对应的优先级。
作为一个实施例,所述第二发射机1101包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器414、控制器/处理器475中的至少前4者。
作为一个实施例,所述第二接收机1102包括实施例4中的天线420、接收器418、多天线接收处理器472、接收处理器470、控制器/处理器475中的至少前4者。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,交通工具,车辆,RSU(Road Side Unit,路侧单元),飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点包括但不限于宏蜂窝基站,微蜂窝基站,小蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS(Global Navigation Satellite System,全球导航卫星系统),中继卫星,卫星基站,空中基站,RSU,无人机,测试设备、例如模拟基站部分功能的收发装置或信令测试仪,等无线通信设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (10)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一接收机,接收第一信令,所述第一信令被用于确定第一参考信号资源集合;
    第一发射机,确定第一功率值,且当第一功率值大于0时发送第一信号;
    其中,所述第一信号的发送功率是所述第一功率值,所述第一信号的空间发送参数与所述第一参考信号资源集合有关;所述第一功率值不大于目标功率值,所述目标功率值不大于第一门限值,所述第一门限值与所述第一参考信号资源集合相关联;所述第一信令是否被用于确定第二参考信号资源集合被用于确定所述目标功率值是否与所述第一门限值之外的门限值有关;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
  2. 根据权利要求1所述的第一节点,其特征在于;当所述第一信令被用于确定所述第二参考信号资源集合时,第二门限值与所述第二参考信号资源集合相关联,且所述第一门限值和所述第二门限值被共同用于确定所述目标功率值;当所述第一信令不被用于确定所述第二参考信号资源集合时,所述第一门限值和所述第二门限值中的仅所述第一门限值被用于确定所述目标功率值。
  3. 根据权利要求2所述的第一节点,其特征在于包括:
    所述第一接收机,接收第一目标参考信号和第二目标参考信号;
    所述第一发射机,发送第二信号;
    其中,所述第二信号所占用的时域资源与所述第一信号所占用的时域资源存在交叠;所述第二信号的发送功率是第二功率值,所述第二功率值不大于所述第二门限值,所述第二信号的空间发送参数与所述第二参考信号资源集合有关;所述第一目标参考信号被用于确定第一路径损耗,所述第二目标参考信号被用于确定第二路径损耗,所述第一路径损耗被用于确定第一候选功率值,所述第二路径损耗被用于确定所述第二功率值;当所述第一门限值与所述第二门限值的和大于第三门限值且所述第一候选功率值与所述第二功率值的和大于所述第三门限值时,所述目标功率值等于所述第三门限值减去所述第二功率值的差;当所述第一门限值与所述第二门限值的和不大于第三门限值时,所述目标功率值等于所述第一候选功率值。
  4. 根据权利要求3所述的第一节点,其特征在于,所述第一门限值与所述第二门限值的和大于所述第三门限值且所述第一候选功率值与所述第二功率值的和大于所述第三门限值;所述第三门限值减去所述第二功率值的差等于第一剩余功率值;当所述第一候选功率值减去所述第一剩余功率值得到的值大于目标阈值时,所述第一功率值等于0;当所述第一候选功率值减去所述第一剩余功率值得到的值不大于目标阈值时,所述第一功率值不大于所述目标功率值,所述目标功率值等于所述第一功率差值。
  5. 根据权利要求3或4所述的第一节点,其特征在于,所述第三门限值是所述第一节点专属的,且所述第三门限值与所述第一参考信号资源集合或所述第二参考信号资源集合无关。
  6. 根据权利要求2至5中任一权利要求所述的第一节点,其特征在于,所述第二参考信号资源集合是被RRC信令指示的,或者所述第二参考信号资源集合是预定义的。
  7. 根据权利要求2至6中任一权利要求所述的第一节点,其特征在于,所述第二信号所对应的优先级高于所述第一信号所对应的优先级。
  8. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二发射机,发送第一信令,所述第一信令被用于确定第一参考信号资源集合;
    第二接收机,接收第一信号;
    其中,所述第一信号的发送功率是所述第一功率值,所述第一信号的空间发送参数与所述第一参考信号资源集合有关;所述第一功率值不大于目标功率值,所述目标功率值不大于第一门限值,所述第一门限值与所述第一参考信号资源集合相关联;所述第一信令是否被用于确定第二参考信号资源集合被用于确定所述目标功率值是否与所述第一门限值之外的门限值有关;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信令,所述第一信令被用于确定第一参考信号资源集合;
    确定第一功率值,且当第一功率值大于0时发送第一信号;
    其中,所述第一信号的发送功率是所述第一功率值,所述第一信号的空间发送参数与所述第一参考信号资源集合有关;所述第一功率值不大于目标功率值,所述目标功率值不大于第一门限值,所述第一门限 值与所述第一参考信号资源集合相关联;所述第一信令是否被用于确定第二参考信号资源集合被用于确定所述目标功率值是否与所述第一门限值之外的门限值有关;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
  10. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信令,所述第一信令被用于确定第一参考信号资源集合;
    接收第一信号;
    其中,所述第一信号的发送功率是所述第一功率值,所述第一信号的空间发送参数与所述第一参考信号资源集合有关;所述第一功率值不大于目标功率值,所述目标功率值不大于第一门限值,所述第一门限值与所述第一参考信号资源集合相关联;所述第一信令是否被用于确定第二参考信号资源集合被用于确定所述目标功率值是否与所述第一门限值之外的门限值有关;所述第二参考信号资源集合与所述第一参考信号资源集合不同。
PCT/CN2023/122532 2022-09-28 2023-09-28 一种被用于无线通信的节点中的方法和装置 WO2024067798A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211191293.7 2022-09-28
CN202211191293.7A CN117835383A (zh) 2022-09-28 2022-09-28 一种被用于无线通信的节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2024067798A1 true WO2024067798A1 (zh) 2024-04-04

Family

ID=90476302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/122532 WO2024067798A1 (zh) 2022-09-28 2023-09-28 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN117835383A (zh)
WO (1) WO2024067798A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972251A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 信号传输方法、相关设备及系统
WO2020118574A1 (zh) * 2018-12-12 2020-06-18 Oppo广东移动通信有限公司 一种上行传输的功率控制方法及终端设备
CN114844540A (zh) * 2021-02-01 2022-08-02 上海推络通信科技合伙企业(有限合伙) 一种被用于无线通信的节点中的方法和装置
US20220264475A1 (en) * 2021-02-16 2022-08-18 Ofinno, Llc Pathloss Determination for Beam Management Sounding Reference Signals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972251A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 信号传输方法、相关设备及系统
WO2020118574A1 (zh) * 2018-12-12 2020-06-18 Oppo广东移动通信有限公司 一种上行传输的功率控制方法及终端设备
CN114844540A (zh) * 2021-02-01 2022-08-02 上海推络通信科技合伙企业(有限合伙) 一种被用于无线通信的节点中的方法和装置
US20220264475A1 (en) * 2021-02-16 2022-08-18 Ofinno, Llc Pathloss Determination for Beam Management Sounding Reference Signals

Also Published As

Publication number Publication date
CN117835383A (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
CN110913483B (zh) 一种被用于无线通信节点中的方法和装置
US11949482B2 (en) Method and device in UE and base station for multi-antenna transmission
CN113078927B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN110972110B (zh) 一种被用于无线通信节点中的方法和装置
WO2020038208A1 (zh) 一种被用于无线通信节点中的方法和装置
US11985605B2 (en) Method and device in nodes used for wireless communication
WO2024067798A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099211A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023147763A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023134592A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024093883A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023138552A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023160463A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024114347A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024109570A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024037474A1 (zh) 一种用于无线通信的方法和装置
WO2024022239A1 (zh) 一种用于无线通信的方法和装置
CN114070362B (zh) 一种被用于无线通信的节点及其方法
WO2024032520A1 (zh) 一种用于无线通信的方法和装置
CN112787782B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024032425A1 (zh) 一种用于无线通信的方法和装置
WO2023216894A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024088259A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023165344A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871023

Country of ref document: EP

Kind code of ref document: A1