WO2019170057A1 - 一种被用于无线通信的用户设备、基站中的方法和装置 - Google Patents

一种被用于无线通信的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2019170057A1
WO2019170057A1 PCT/CN2019/076876 CN2019076876W WO2019170057A1 WO 2019170057 A1 WO2019170057 A1 WO 2019170057A1 CN 2019076876 W CN2019076876 W CN 2019076876W WO 2019170057 A1 WO2019170057 A1 WO 2019170057A1
Authority
WO
WIPO (PCT)
Prior art keywords
signaling
time window
sub
band
wireless signal
Prior art date
Application number
PCT/CN2019/076876
Other languages
English (en)
French (fr)
Inventor
吴克颖
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2019170057A1 publication Critical patent/WO2019170057A1/zh
Priority to US17/005,308 priority Critical patent/US11291028B2/en
Priority to US17/671,598 priority patent/US11792787B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to methods and apparatus in a wireless communication system, and more particularly to a method and apparatus in a wireless communication system that supports data transmission over Unlicensed Spectrum.
  • the application scenarios of future wireless communication systems are increasingly diversified, and different application scenarios impose different performance requirements on the system.
  • 3rd Generation Partner Project 3rd Generation Partner Project
  • RAN Radio Access Network
  • #75 plenary meeting also passed NR (New Radio, The research project for access to unlicensed spectrum under the new radio, which is expected to be completed in the R15 version, and then the WI is launched in the R16 version to standardize the relevant technology.
  • LAA Long Term Evolution Assisted Access
  • the transmitter base station or user equipment
  • LBT Listen Before Talk
  • Pre-session listening to ensure no interference with other ongoing wireless transmissions on the unlicensed spectrum.
  • the beamforming based on large-scale antenna arrays will be widely used in the NR system, the channel occupancy and interference conditions in different beamforming directions may vary greatly. Therefore, the influence of the beam direction needs to be considered when performing LBT.
  • the transmission time of uplink data and uplink control information is made more difficult to predict.
  • the present application discloses a solution. It should be noted that, in the case of no conflict, the features in the embodiments and embodiments in the user equipment of the present application can be applied to the base station, and vice versa. The features of the embodiments and the embodiments of the present application may be combined with each other arbitrarily without conflict.
  • the present application discloses a method for use in a user equipment for wireless communication, including:
  • the first signaling includes a first type of scheduling information of the first wireless signal; the first signaling indicates a time interval between the third time window and the second time window; The first signaling is associated with the second signaling.
  • the problem to be solved by the present application is that in the unlicensed spectrum, the scheduling time of the uplink data and the uplink control information is difficult to be determined in advance due to factors such as MCOT and LBT.
  • the above method solves this problem by using a trigger signaling to trigger the transmission of uplink data and uplink control information, and establishing an association between the trigger signaling and the scheduling signaling.
  • the above method is characterized in that the second signaling is used to trigger transmission of the first wireless signal scheduled by the first signaling, and in the first signaling and the first An association is established between the two signalings.
  • the above method has the advantage that the base station is allowed to flexibly determine the specific transmission time of the first wireless signal according to the result of the MCOT or the LBT.
  • the foregoing method is advantageous in that, by establishing an association between the first signaling and the second signaling, the base station is allowed to selectively trigger a part of uplink transmission, so that the base station can be based on a specific situation, such as an LBT.
  • a specific situation such as an LBT.
  • the above method is advantageous in that the second signaling can also be used to determine a transmit antenna port of the first wireless signal, so that the base station can be based on a specific situation, such as a result of LBT or beamforming. Direction, etc., selecting an optimal transmit antenna port for the first wireless signal.
  • the first signaling indicates a time interval between the third time window and a reference time window; the first signaling includes a first domain, the first domain Determining whether the reference time window is the first time window; the first field in the first signaling indicates that the reference time window is not the first time window.
  • the above method has the advantage that the first domain can be used to flexibly indicate whether the transmission time of the first wireless signal is completely determined by its scheduling signaling or needs to wait for a trigger signaling to trigger.
  • the second signaling includes a second domain, where the second domain indicates whether the reference time window is the second time window;
  • the second field indicates that the reference time window is the second time window.
  • the above method has the advantage that the second domain can be used to flexibly indicate whether to trigger the transmission of the first wireless signal.
  • the method comprises:
  • the first signaling includes second type scheduling information of the second wireless signal; the first wireless signal is used to determine whether the second wireless signal is correctly received, or for the second wireless The measurement of the signal is used to determine the first wireless signal.
  • the first signaling is used to determine a first antenna port group
  • the second signaling is used to determine a first port group set
  • the first port group set A positive integer number of antenna port groups is included, and one antenna port group includes a positive integer number of antenna ports; the first antenna port group belongs to the first port group set.
  • the first signaling and the second signaling occupy the same time slice in a time domain, and the same time slice includes a positive integer multi-carrier symbol.
  • the method comprises:
  • the third signaling indicates that the first multi-carrier symbol group is occupied, the first multi-carrier symbol group includes a positive integer multi-carrier symbol; and the same time slice belongs to the first multi-carrier symbol group.
  • the time-frequency resource occupied by the first signaling and the time-frequency resource occupied by the second signaling belong to the same time-frequency resource pool, and the same time-frequency resource pool Includes a positive integer number of resource particles.
  • the first signaling is used to determine a first index
  • the second signaling is used to determine M indexes
  • the first index is the M indexes An index in ;
  • the M is a positive integer.
  • the present application discloses a method in a base station used for wireless communication, which includes:
  • the third sub-band If the second signaling is sent in the second time window on the second sub-band, the third sub-band
  • the first wireless signal
  • the first signaling includes a first type of scheduling information of the first wireless signal; the first signaling indicates a time interval between the third time window and the second time window; The first signaling is associated with the second signaling.
  • the first signaling indicates a time interval between the third time window and a reference time window; the first signaling includes a first domain, the first domain Determining whether the reference time window is the first time window; the first field in the first signaling indicates that the reference time window is not the first time window.
  • the second signaling includes a second domain, where the second domain indicates whether the reference time window is the second time window;
  • the second field indicates that the reference time window is the second time window.
  • the method comprises:
  • the first signaling includes second type scheduling information of the second wireless signal; the first wireless signal is used to determine whether the second wireless signal is correctly received, or for the second wireless The measurement of the signal is used to determine the first wireless signal.
  • the first signaling is used to determine a first antenna port group
  • the second signaling is used to determine a first port group set
  • the first port group set A positive integer number of antenna port groups is included, and one antenna port group includes a positive integer number of antenna ports; the first antenna port group belongs to the first port group set.
  • the first signaling and the second signaling occupy the same time slice in a time domain, and the same time slice includes a positive integer multi-carrier symbol.
  • the method comprises:
  • the third signaling indicates that the first multi-carrier symbol group is occupied, the first multi-carrier symbol group includes a positive integer multi-carrier symbol; and the same time slice belongs to the first multi-carrier symbol group.
  • the time-frequency resource occupied by the first signaling and the time-frequency resource occupied by the second signaling belong to the same time-frequency resource pool, and the same time-frequency resource pool Includes a positive integer number of resource particles.
  • the first signaling is used to determine a first index
  • the second signaling is used to determine M indexes
  • the first index is the M indexes An index in ;
  • the M is a positive integer.
  • the present application discloses a user equipment used for wireless communication, which includes:
  • the first receiver receives the first signaling in a first time window on the first sub-band
  • a second receiver monitoring the second signaling in a second time window on the second sub-band
  • the first signaling includes a first type of scheduling information of the first wireless signal; the first signaling indicates a time interval between the third time window and the second time window; The first signaling is associated with the second signaling.
  • the foregoing user equipment used for wireless communication is characterized in that the first signaling indicates a time interval between the third time window and a reference time window; the first signaling includes a first a domain, the first domain indicating whether the reference time window is the first time window; and the first field in the first signaling indicates that the reference time window is not the first time window.
  • the foregoing user equipment used for wireless communication is characterized in that the second signaling includes a second domain, and the second domain indicates whether the reference time window is the second time window; The second field in the second signaling indicates that the reference time window is the second time window.
  • the user equipment used for wireless communication is characterized in that the first processor further receives a second wireless signal; wherein the first signaling comprises a second class of the second wireless signal Scheduling information; the first wireless signal is used to determine if the second wireless signal is received correctly.
  • the user equipment used for wireless communication is characterized in that the first processor further receives a second wireless signal; wherein the first signaling comprises a second class of the second wireless signal Scheduling information; measurements for the second wireless signal are used to determine the first wireless signal.
  • the foregoing user equipment used for wireless communication is characterized in that the first signaling is used to determine a first antenna port group, and the second signaling is used to determine a first port group set;
  • the first port group set includes a positive integer number of antenna port groups, and one antenna port group includes a positive integer number of antenna ports; the first antenna port group belongs to the first port group set.
  • the user equipment used for wireless communication is characterized in that the first signaling and the second signaling occupy the same time slice in the time domain, and the same time slice includes a positive integer. Multi-carrier symbol.
  • the foregoing user equipment used for wireless communication is characterized in that the second receiver further receives third signaling, wherein the third signaling indicates that the first multi-carrier symbol group is occupied,
  • the first multi-carrier symbol group includes a positive integer number of multi-carrier symbols; the same time slice belongs to the first multi-carrier symbol group.
  • the user equipment used for the wireless communication is characterized in that the time-frequency resource occupied by the first signaling and the time-frequency resource occupied by the second signaling belong to the same time-frequency resource pool.
  • the same time-frequency resource pool includes a positive integer resource particle.
  • the foregoing user equipment used for wireless communication is characterized in that the first signaling is used to determine a first index, and the second signaling is used to determine M indexes, the first The index is one of the M indexes; the M is a positive integer.
  • the present application discloses a base station device used for wireless communication, which includes:
  • the first signaling includes a first type of scheduling information of the first wireless signal; the first signaling indicates a time interval between the third time window and the second time window; The first signaling is associated with the second signaling.
  • the foregoing base station device used for wireless communication is characterized in that the first signaling indicates a time interval between the third time window and a reference time window; the first signaling includes the first a domain, the first domain indicating whether the reference time window is the first time window; and the first field in the first signaling indicates that the reference time window is not the first time window.
  • the foregoing base station device used for wireless communication is characterized in that the second signaling includes a second domain, and the second domain indicates whether the reference time window is the second time window; The second field in the second signaling indicates that the reference time window is the second time window.
  • the base station device used for wireless communication is characterized in that the second processor further transmits a second wireless signal; wherein the first signaling includes a second class of the second wireless signal Scheduling information; the first wireless signal is used to determine if the second wireless signal is received correctly.
  • the base station device used for wireless communication is characterized in that the second processor further transmits a second wireless signal; wherein the first signaling includes a second class of the second wireless signal Scheduling information; measurements for the second wireless signal are used to determine the first wireless signal.
  • the foregoing base station device used for wireless communication is characterized in that the first signaling is used to determine a first antenna port group, and the second signaling is used to determine a first port group set;
  • the first port group set includes a positive integer number of antenna port groups, and one antenna port group includes a positive integer number of antenna ports; the first antenna port group belongs to the first port group set.
  • the foregoing base station device used for wireless communication is characterized in that the first signaling and the second signaling occupy the same time slice in the time domain, and the same time slice includes a positive integer. Multi-carrier symbol.
  • the foregoing base station device used for wireless communication is characterized in that the second transmitter further sends a third signaling, wherein the third signaling indicates that the first multi-carrier symbol group is occupied,
  • the first multi-carrier symbol group includes a positive integer number of multi-carrier symbols; the same time slice belongs to the first multi-carrier symbol group.
  • the base station device used for the wireless communication is characterized in that the time-frequency resource occupied by the first signaling and the time-frequency resource occupied by the second signaling belong to the same time-frequency resource pool.
  • the same time-frequency resource pool includes a positive integer resource particle.
  • the base station device used for wireless communication is characterized in that the first signaling is used to determine a first index, and the second signaling is used to determine M indexes, the first The index is one of the M indexes; the M is a positive integer.
  • the present application has the following advantages compared with the conventional solution:
  • a trigger signaling is used in addition to the scheduling signaling to trigger the transmission of the scheduled uplink data and uplink control information, and the scheduling-based uplink data and uplink control are solved due to factors such as MCOT and LBT.
  • the time at which the information is sent is difficult to determine in advance.
  • the base station By establishing an association between the scheduling signaling and the trigger signaling, the base station is allowed to selectively trigger a part of the uplink transmission, so that the base station can better control each uplink according to specific conditions, such as the result of the LBT or the direction of beamforming.
  • the transmission time of the transmission is allowed to selectively trigger a part of the uplink transmission, so that the base station can better control each uplink according to specific conditions, such as the result of the LBT or the direction of beamforming.
  • the trigger signaling may also be used to determine the transmit antenna port of the uplink transmission, so that the base station can select an optimal transmit antenna port for the uplink transmission according to a specific situation, such as the result of the LBT or the direction of the beamforming.
  • FIG. 1 shows a flow chart of first signaling, second signaling, and first wireless signal in accordance with an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 4 shows a schematic diagram of an NR (New Radio) node and a UE in accordance with one embodiment of the present application
  • FIG. 5 shows a flow chart of wireless transmission in accordance with one embodiment of the present application
  • FIG. 6 is a schematic diagram showing a timing relationship of a first signaling, a second signaling, and a first wireless signal in a time domain according to an embodiment of the present application;
  • Figure 7 shows a schematic diagram of a first domain and a second domain in accordance with one embodiment of the present application
  • Figure 8 shows a schematic diagram of a first domain in accordance with one embodiment of the present application.
  • FIG. 9 shows a schematic diagram of first signaling according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of second signaling according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram showing a timing relationship of a first signaling, a second signaling, a first wireless signal, and a second wireless signal in a time domain according to an embodiment of the present application;
  • FIG. 12 shows a schematic diagram of an antenna port and an antenna port group according to an embodiment of the present application
  • FIG. 13 is a diagram showing a relationship between a first antenna port group and a first port group set according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram showing a relationship between time resources occupied by first signaling and second signaling according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram showing a relationship between time-frequency resources occupied by first signaling and second signaling according to an embodiment of the present application.
  • 16 shows a schematic diagram of a relationship between a first index and M indexes according to an embodiment of the present application
  • FIG. 17 is a block diagram showing the structure of a processing device for use in a user equipment according to an embodiment of the present application.
  • FIG. 18 shows a block diagram of a structure for a processing device in a base station according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of the first signaling, the second signaling, and the second one-line signal; as shown in FIG.
  • the user equipment in the present application receives the first signaling in a first time window on the first sub-band; and monitors the second signaling in a second time window on the second sub-band; Transmitting the first wireless signal in a third time window on the third sub-band if the second signaling is successfully received in the second time window on the second sub-band, otherwise discarding in the The first wireless signal is transmitted in the third time window on the third sub-band.
  • the first signaling includes a first type of scheduling information of the first wireless signal; the first signaling indicates a time interval between the third time window and the second time window; The first signaling is associated with the second signaling.
  • the first sub-band and the second sub-band completely overlap.
  • the first sub-band and the second sub-band partially overlap.
  • the first sub-band and the second sub-band are orthogonal to each other (not overlapping).
  • the first sub-band and the third sub-band completely overlap.
  • the first sub-band and the third sub-band partially overlap.
  • the first sub-band and the third sub-band are orthogonal to each other (not overlapping).
  • the second sub-band and the third sub-band completely overlap.
  • the second sub-band and the third sub-band partially overlap.
  • the second sub-band and the third sub-band are orthogonal to each other (not overlapping).
  • the first sub-band, the second sub-band and the third sub-band completely overlap.
  • the first sub-band and the third sub-band are associated with each other.
  • the third sub-band is a frequency band associated with the first sub-band for uplink transmission, and the first sub-band is associated with the third sub-band for downlink transmission Frequency band.
  • the second sub-band and the third sub-band are associated with each other.
  • the third sub-band is a frequency band associated with the second sub-band for uplink transmission, and the second sub-band is associated with the third sub-band for downlink transmission Frequency band.
  • the first sub-band is deployed in an unlicensed spectrum.
  • the first sub-band is deployed in an authorized spectrum.
  • the first sub-band includes one carrier.
  • the first sub-band includes a plurality of carriers.
  • the first sub-band includes one BWP (Bandwidth Part) of one carrier.
  • the first sub-band includes a plurality of BWPs in one carrier.
  • the second sub-band is deployed in an unlicensed spectrum.
  • the second sub-band is deployed in an authorized spectrum.
  • the second sub-band includes one carrier.
  • the second sub-band includes a plurality of carriers.
  • the second sub-band includes one BWP of one carrier.
  • the second sub-band includes a plurality of BWPs in one carrier.
  • the third sub-band is deployed in an unlicensed spectrum.
  • the third sub-band includes one carrier.
  • the third sub-band includes a plurality of carriers.
  • the third sub-band includes one BWP of one carrier.
  • the third sub-band includes a plurality of BWPs in one carrier.
  • the first signaling explicitly indicates the second sub-band.
  • the first signaling implicitly indicates the second sub-band.
  • the first signaling explicitly indicates the third sub-band.
  • the first signaling implicitly indicates the third sub-band.
  • the third time window is later than the second time window in the time domain.
  • the time interval between the third time window and the second time window is between: a start time of the third time window and an end time of the second time window. Interval.
  • the first signaling is physical layer signaling.
  • the first signaling is dynamic signaling.
  • the first signaling includes DCI (Downlink Control Information).
  • the first signaling is dynamic signaling for downlink grant (DownLink Grant).
  • the first signaling is dynamic signaling for uplink grant (UpLink Grant).
  • the first signaling is UE specific.
  • the signaling identifier of the first signaling is a C (Cell, Cell)-RNTI (Radio Network Temporary Identifier).
  • the first signaling is a DCI identified by a C-RNTI.
  • the C-RNTI is used to generate an RS sequence of DMRS (DeModulation Reference Signals) corresponding to the first signaling.
  • DMRS Demonulation Reference Signals
  • the CRC (Cyclic Redundancy Check) bit sequence of the first signaling is scrambled by the C-RNTI.
  • the second signaling is physical layer signaling.
  • the second signaling is dynamic signaling.
  • the second signaling is common to the cell.
  • the second signaling is specific to a terminal group
  • the terminal group includes a positive integer number of terminals
  • the user equipment is one terminal in the terminal group.
  • the second signaling includes DCI.
  • the signaling identifier of the second signaling is a CC (Component Carrier)-RNTI.
  • the second signaling is a DCI identified by a CC-RNTI.
  • the CC-RNTI is used to generate an RS sequence of the DMRS corresponding to the second signaling.
  • the CRC bit sequence of the second signaling is scrambled by the CC-RNTI.
  • the signaling format of the second signaling is 1C.
  • the second signaling is repeatedly transmitted in a positive integer number of time units, the positive integer time units being mutually orthogonal (non-overlapping) in the time domain.
  • any one of the positive integer number of time units includes a positive integer number of multi-carrier symbols.
  • the positive integer number of time units are continuous in the time domain.
  • the positive integer number of time units are discontinuous in the time domain.
  • the second signaling is sent by the same antenna port group in the positive integer number of time units.
  • the second signaling is sent by different antenna port groups in different time units in the positive integer number of time units.
  • the user equipment receives the second signaling by using different spatial receiving parameters (Spatial Rx parameters) in different time units of the positive integer number of time units.
  • spatial Rx parameters spatial receiving parameters
  • the user equipment receives the second signaling by using the same spatial Rx parameters in the positive integer number of time units.
  • the user equipment if the user equipment successfully receives the second signaling in the second time window on the second sub-band, the user equipment is located on the third sub-band Transmitting the first wireless signal in a third time window; if the user equipment does not successfully receive the second signaling in the second time window on the second sub-band, the user equipment Transmitting the first wireless signal in the third time window on the third sub-band.
  • the monitoring refers to reception based on blind detection, ie the user equipment receives a signal in the second time window on the second sub-band and performs a decoding operation if determined according to a CRC bit Determining correctly, determining that the second signaling is successfully received in the second time window on the second sub-band; otherwise determining that there is no in the second time window on the second sub-band The second signaling is successfully received.
  • the monitoring refers to receiving based on coherent detection, that is, the RS sequence corresponding to the DMRS of the second signaling in the second time window of the user equipment in the second sub-band Coherent reception is performed on all wireless signals, and the energy of the signals obtained after the coherent reception is measured. Determining that the second signaling is successfully received in the second time window on the second sub-band if the energy of the signal obtained after the coherent reception is greater than a first given threshold; otherwise The second signaling is not successfully received in the second time window on the second sub-band.
  • the monitoring refers to the reception based on energy detection, that is, the user equipment senses the energy of all wireless signals in the second sub-band in the second time window, and at the time Average on to get the received energy. Determining that the second signaling is successfully received in the second time window on the second sub-band if the received energy is greater than a second given threshold; otherwise determining on the second sub-band The second signaling is not successfully received in the second time window.
  • the first wireless signal includes uplink data.
  • the first wireless signal includes UCI (Uplink Control Information).
  • UCI Uplink Control Information
  • the first wireless signal includes a HARQ-ACK (Acknowledgement).
  • the first wireless signal includes an SR (Scheduling Request).
  • the first wireless signal includes a CRI (Channel-State Information Reference Signal Resource Indicator).
  • CRI Channel-State Information Reference Signal Resource Indicator
  • the first wireless signal includes CSI (Channel State Information).
  • the CSI includes a CRI, a PMI (Precoding Matrix Indicator), an RSRP (Reference Signal Received Power), and an RSRQ (Reference Signal Received Quality). Receive quality) and one or more of CQI (Channel Quality Indicator).
  • the first type of scheduling information of the first wireless signal includes a ⁇ MCS (Modulation and Coding Scheme), DMRS configuration information, and a HARQ (Hybrid Automatic Repeat reQuest) process.
  • ⁇ MCS Modulation and Coding Scheme
  • DMRS configuration information includes a HARQ (Hybrid Automatic Repeat reQuest) process.
  • RV Redundancy Vers ion
  • NDI New Data Indicator
  • occupied time domain resources occupied frequency domain resources
  • corresponding spatial transmission parameters Spatial Tx parameters
  • At least one of the corresponding spatial reception parameters Spatial Rx parameters
  • the first wireless signal includes uplink data.
  • the first type of scheduling information of the first wireless signal includes ⁇ occupied time domain resources, occupied frequency domain resources, occupied code domain resources, cyclic shift, and OCC ( Orthogonal Cover Code, DMRS configuration information, corresponding spatial transmission parameters (Spatial Tx parameters), corresponding spatial reception parameters (Spatial Rx parameters), PUCCH format (format), UCI content ⁇ At least one.
  • OCC Orthogonal Cover Code
  • DMRS configuration information corresponding spatial transmission parameters (Spatial Tx parameters), corresponding spatial reception parameters (Spatial Rx parameters), PUCCH format (format), UCI content ⁇ At least one.
  • the first wireless signal includes uplink control information.
  • the configuration information of the DMRS includes ⁇ RS sequence, mapping mode, DMRS type, occupied time domain resources, occupied frequency domain resources, occupied code domain resources, cyclic shift, OCC One or more of the ⁇ .
  • the first signaling explicitly indicates a time interval between the third time window and the second time window.
  • the first signaling implicitly indicates a time interval between the third time window and the second time window.
  • the time interval between the third time window and the second time window is a non-negative integer number of slots.
  • the time interval between the third time window and the second time window is a non-negative integer number of sub-frames.
  • the time interval between the third time window and the second time window is a non-negative integer number of multi-carrier symbols.
  • the second signaling is used to determine a transmit antenna port of the first wireless signal.
  • the second signaling explicitly indicates a transmit antenna port of the first wireless signal.
  • the second signaling implicitly indicates a transmit antenna port of the first wireless signal.
  • the first signaling indicates K antenna ports, the K is a positive integer greater than 1; the transmit antenna port of the first wireless signal is one of the K antenna ports, The second signaling is used to determine a transmit antenna port of the first wireless signal from the K antenna ports.
  • the transmit antenna port of the second signaling is used to determine a transmit antenna port of the first wireless signal.
  • the time-frequency resource occupied by the second signaling is used to determine a transmit antenna port of the first wireless signal.
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG.
  • the LTE network architecture 200 may be referred to as an EPS (Evolved Packet System) 200.
  • the EPS 200 may include one or more UEs (User Equipment) 201, E-UTRAN-NR (Evolved UMTS Terrestrial Radio Access Network - New Wireless) 202, 5G-CN (5G-CoreNetwork, 5G core network)/ EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UMTS corresponds to the Universal Mobile Telecommunications System.
  • the EPS 200 can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in FIG. 2, EPS 200 provides packet switching services, although those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks that provide circuit switched services.
  • the E-UTRAN-NR 202 includes an NR (New Radio) Node B (gNB) 203 and other gNBs 204.
  • the gNB 203 provides user and control plane protocol termination towards the UE 201.
  • the gNB 203 can be connected to other gNBs 204 via an X2 interface (eg, a backhaul).
  • the gNB 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmission and reception point), or some other suitable terminology.
  • the gNB 203 provides the UE 201 with an access point to the 5G-CN/EPC 210.
  • Examples of UEs 201 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, an MP3 player), a camera, a game console, a drone, an aircraft, a narrowband physical network device, a machine type communication device, a land vehicle, a car, a wearable device, or any other similar functional device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • UE 201 may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB 203 is connected to the 5G-CN/EPC 210 through the S1 interface.
  • the 5G-CN/EPC 210 includes an MME 211, other MMEs 214, an S-GW (Service Gateway) 212, and a P-GW (Packet Date Network Gateway). 213.
  • the MME 211 is a control node that handles signaling between the UE 201 and the 5G-CN/EPC 210.
  • the MME 211 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 212, and the S-GW 212 itself is connected to the P-GW 213.
  • the P-GW 213 provides UE IP address allocation as well as other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a PS Streaming Service (PSS).
  • IMS IP Multimedia Subsystem
  • PSS PS Streaming Service
  • the gNB 203 corresponds to the base station in the present application.
  • the UE 201 corresponds to the user equipment in this application.
  • the UE 201 supports wireless communication for data transmission over an unlicensed spectrum.
  • the gNB 203 supports wireless communication for data transmission over an unlicensed spectrum.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane, as shown in FIG.
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 3 shows the radio protocol architecture for UE and gNB in three layers: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the UE and the gNB through PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol).
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • Convergence Protocol Sublayer 304 which terminates at the gNB on the network side.
  • the UE may have several protocol layers above the L2 layer 305, including a network layer (eg, an IP layer) terminated at the P-GW 213 on the network side and terminated at the other end of the connection (eg, Application layer at the remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handoff support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ (Hybrid Automatic Repeat reQuest).
  • the MAC sublayer 302 provides multiplexing between the logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in one cell between UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the wireless protocol architecture of Figure 3 is applicable to the user equipment in this application.
  • the radio protocol architecture of Figure 3 is applicable to the base station in this application.
  • the first signaling in the present application is generated by the PHY 301.
  • the first signaling in the present application is generated by the MAC sublayer 302.
  • the second signaling in the present application is generated by the PHY 301.
  • the second signaling in this application is generated by the MAC sublayer 302.
  • the first wireless signal in the present application is generated by the PHY 301.
  • the second wireless signal in the present application is generated by the PHY 301.
  • the third signaling in the present application is generated by the PHY 301.
  • the third signaling in this application is generated in the MAC sublayer 302.
  • Embodiment 4 illustrates a schematic diagram of an NR node and a UE, as shown in FIG. 4 is a block diagram of a UE 450 and a gNB 410 that communicate with each other in an access network.
  • the gNB 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the UE 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454, and an antenna 452.
  • DL Downlink
  • controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocation to the UE 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 450.
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, the physical layer).
  • Transmit processor 416 performs encoding and interleaving to facilitate forward error correction (FEC) at UE 450, and based on various modulation schemes (eg, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), Mapping of signal clusters of M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM).
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the encoded and modulated symbols, including codebook based precoding and non-codebook based precoding, and beamforming processing to generate one or more spatial streams.
  • Transmit processor 416 maps each spatial stream to subcarriers, multiplexes with reference signals (e.g., pilots) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a time-domain multi-carrier symbol stream.
  • the multi-antenna transmit processor 471 then transmits an analog precoding/beamforming operation to the time domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multicarrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • each receiver 454 receives a signal through its respective antenna 452. Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream for providing to the receive processor 456.
  • Receive processor 456 and multi-antenna receive processor 458 implement various signal processing functions of the L1 layer. Multi-antenna receive processor 458 performs a receive analog precoding/beamforming operation on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multicarrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receive processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered by the multi-antenna detection in the multi-antenna receive processor 458 with the UE 450 as Any spatial stream of destinations.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456 and a soft decision is generated.
  • the receive processor 456 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by the gNB 410 on the physical channel.
  • the upper layer data and control signals are then provided to controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • Controller/processor 459 can be associated with memory 460 that stores program codes and data. Memory 460 can be referred to as a computer readable medium.
  • the controller/processor 459 provides demultiplexing, packet reassembly, decryption, header decompression, and control signal processing between the transport and logical channels to recover upper layer packets from the core network. The upper layer packet is then provided to all protocol layers above the L2 layer. Various control signals can also be provided to L3 for L3 processing.
  • the controller/processor 459 is also responsible for error detection using an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • data source 467 is used to provide upper layer data packets to controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and multiplexing between the logical and transport channels based on the radio resource allocation of the gNB 410. Used to implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the gNB 410.
  • the transmit processor 468 performs modulation mapping, channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook based precoding and non-codebook based precoding, and beamforming processing, followed by transmission.
  • Processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is provided to different antennas 452 via transmitter 454 after an analog pre-coding/beamforming operation in multi-antenna transmit processor 457.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into a stream of radio frequency symbols and provides it to the antenna 452.
  • the function at gNB 410 is similar to the receiving function at UE 450 described in the DL.
  • Each receiver 418 receives a radio frequency signal through its respective antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to a multi-antenna receive processor 472 and a receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 collectively implement the functions of the L1 layer.
  • the controller/processor 475 implements the L2 layer function. Controller/processor 475 can be associated with memory 476 that stores program codes and data. Memory 476 can be referred to as a computer readable medium.
  • the controller/processor 475 provides demultiplexing, packet reassembly, decryption, header decompression, control signal processing between the transport and logical channels to recover upper layer data packets from the UE 450.
  • Upper layer data packets from controller/processor 475 can be provided to the core network.
  • the controller/processor 475 is also responsible for error detection using ACK and/or NACK protocols to support HARQ operations.
  • the UE 450 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be coupled to the at least one processor use together.
  • the UE 450 apparatus receives at least the first signaling in the application in the first time window on the first sub-band in the application; in the second sub-band in the application Monitoring the second signaling in the application in the second time window; if the second signaling is successfully received in the second time window on the second sub-band, in the present application
  • the first wireless signal in the present application is transmitted in the third time window on the third sub-band in the medium, otherwise the abandonment is sent in the third time window on the third sub-band
  • the first signaling includes a first type of scheduling information of the first wireless signal; the first signaling indicates a time interval between the third time window and the second time window; The first signaling is associated with the second signaling.
  • the UE 450 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: in the present application Receiving the first signaling in the present application in the first time window on the first sub-band; monitoring the second time window on the second sub-band in the application in the present application The second signaling; if the second signaling is successfully received in the second time window on the second sub-band, the said on the third sub-band in the present application Transmitting the first wireless signal in the present application in a third time window, otherwise discarding transmitting the first wireless signal in the third time window on the third sub-band.
  • the first signaling includes a first type of scheduling information of the first wireless signal; the first signaling indicates a time interval between the third time window and the second time window; The first signaling is associated with the second signaling.
  • the gNB 410 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be coupled to the at least one processor use together.
  • the gNB410 device transmits at least the first signaling in the application in the first time window on the first sub-band in the application; in the second sub-band in the application Transmitting the second signaling in the application in the second time window, or abandoning transmitting the second signaling in the second time window on the second sub-band; if Transmitting the second signaling in the second time window on the second sub-band, receiving the first in the application in the third time window on the third sub-band in the present application The wireless signal, otherwise discarding receiving the first wireless signal in the third time window on the third sub-band.
  • the first signaling includes a first type of scheduling information of the first wireless signal; the first signaling indicates a time interval between the third time window and the second time window; The first signaling is associated with the second signaling.
  • the gNB 410 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: in the present application Transmitting the first signaling in the application in the first time window on the first sub-band; sending in the second time window on the second sub-band in the application in the present application The second signaling, or abandoning transmitting the second signaling in the second time window on the second sub-band; if the second time window on the second sub-band Transmitting the second signaling, receiving the first wireless signal in the application in the third time window on the third sub-band in the application, and otherwise discarding in the third sub-band Receiving the first wireless signal in the third time window.
  • the first signaling includes a first type of scheduling information of the first wireless signal; the first signaling indicates a time interval between the third time window and the second time window; First signaling associated with the second signaling
  • the gNB 410 corresponds to the base station in this application.
  • the UE 450 corresponds to the user equipment in this application.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data
  • At least one of the sources 467 ⁇ is used to receive the first signaling in the present application in the first time window on the first sub-band in the present application
  • ⁇ the antenna 420, Transmitter 418, at least one of the transmit processor 416, the multi-antenna transmit processor 471, the controller/processor 475, the memory 476 ⁇ is used in the present application
  • the first signaling in the present application is transmitted in the first time window on the first sub-band.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to monitor the second signaling in the present application in the second time window on the second sub-band in the present application;
  • the antenna 420, Transmitter 418, at least one of the transmit processor 416, the multi-antenna transmit processor 471, the controller/processor 475, the memory 476 ⁇ is used in the present application
  • the second signaling in the present application is transmitted in the second time window on the second sub-band.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to determine whether the second signaling in the present application is successfully received in the second time window on the second sub-band in the present application.
  • At least one of the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, and the memory 476 ⁇ One of being used to receive the first wireless signal in the present application in the third time window on the third sub-band in the present application; ⁇ the antenna 452, the transmitter 454, a transmit processor 468, the multi-antenna transmit processor 457, the controller/processor 459, the memory 460, the data source 467 ⁇ being used in the present application
  • the first wireless signal is transmitted in the third time window on the third sub-band.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the third signaling in the present application;
  • the antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471 At least one of the controller/processor 475, the memory 476 ⁇ is used to transmit the third signaling in the present application.
  • Embodiment 5 illustrates a flow chart of wireless transmission, as shown in FIG.
  • base station N1 is a serving cell maintenance base station of user equipment U2.
  • the steps in blocks F1 through F5 are optional, respectively.
  • the third signaling is transmitted in step S101; the first signaling is transmitted in a first time window on the first sub-band in step S11; the second wireless signal is transmitted in step S102; in step S103 The second signaling is transmitted in a second time window on the second sub-band; the first wireless signal is received in a third time window on the third sub-band in step S104.
  • the third signaling is received in step S201; the first signaling is received in a first time window on the first sub-band in step S21; the second wireless signal is received in step S202; in step S22 The second signaling is monitored in a second time window on the second sub-band; the first wireless signal is transmitted in a third time window on the third sub-band in step S203.
  • Embodiment 5 if the U2 successfully receives the second signaling in the second time window on the second sub-band, the U2 is in the third sub-band Transmitting the first wireless signal in a third time window; otherwise the U2 discards transmitting the first wireless signal in the third time window on the third sub-band. If the N1 transmits the second signaling in the second time window on the second sub-band, the N1 receives the third time window in the third sub-band a first wireless signal, otherwise the N1 relinquishes receiving the first wireless signal in the third time window on the third sub-band.
  • the first signaling includes first type scheduling information of the first wireless signal; the first signaling indicates a time interval between the third time window and the second time window; the first Signaling is associated with the second signaling.
  • the first signaling includes second type of scheduling information of the second wireless signal; the first wireless signal is used by the N1 to determine whether the second wireless signal is correctly received, or for the second The measurement of the wireless signal is used by the U2 to determine the first wireless signal.
  • block F4 in FIG. 5 exists; if the U2 is in The second signaling is not successfully received in the second time window on the second sub-band, and block F4 in FIG. 5 does not exist.
  • the box F5 in FIG. 5 also exists; if the box F3 in FIG. 5 does not exist, the box F5 in FIG. 5 does not exist. .
  • block F3 and block F5 in Fig. 5 exist simultaneously or not at the same time.
  • the first wireless signal is used by the N1 to determine whether the second wireless signal is correctly received.
  • the measurement for the second wireless signal is used by the U2 to determine the first wireless signal.
  • the measurement for the second wireless signal is used by the U2 to determine a UCI carried by the first wireless signal.
  • the first signaling indicates a time interval between the third time window and a reference time window; the first signaling includes a first domain, and the first domain indicates the reference time window Whether is the first time window; the first field in the first signaling indicates that the reference time window is not the first time window.
  • the second signaling includes a second domain, where the second domain indicates whether the reference time window is the second time window; and the second domain indication in the second signaling The reference time window is the second time window.
  • the second type of scheduling information of the second wireless signal includes: ⁇ MCS, DMRS configuration information, HARQ process number, RV, NDI, occupied time domain resources, occupied frequency domain resources, corresponding to At least one of a spatial transmission parameter (Spatial Tx parameters) and a corresponding spatial reception parameter (Spatial Rx parameters).
  • the second wireless signal includes downlink data.
  • the second type of scheduling information of the second wireless signal includes ⁇ occupied time domain resources, occupied frequency domain resources, occupied code domain resources, RS sequences, cyclic shifts (cyclic shift) , OCC, corresponding to at least one of a spatial transmission parameter (Spatial Tx parameters) and a corresponding spatial reception parameter (Spatial Rx parameters).
  • the second wireless signal includes a downlink reference signal.
  • the second wireless signal is transmitted on the first sub-band.
  • the second wireless signal is transmitted on the second sub-band.
  • the second wireless signal is transmitted on the third sub-band.
  • the second wireless signal is transmitted on a frequency band other than the first sub-band, the second sub-band, and the third sub-band.
  • the second wireless signal is transmitted on a frequency band deployed in an unlicensed spectrum.
  • the second wireless signal is transmitted on a frequency band deployed in the licensed spectrum.
  • the first signaling is used by the U2 to determine a first antenna port group
  • the second signaling is used by the U2 to determine a first port group set
  • the first port group set A positive integer number of antenna port groups is included, and one antenna port group includes a positive integer number of antenna ports; the first antenna port group belongs to the first port group set.
  • the first signaling and the second signaling are related to: the first antenna port group belongs to the first port group set.
  • the first signaling and the second signaling occupy the same time slice in the time domain, and the same time slice includes a positive integer multi-carrier symbol.
  • the first signaling and the second signaling are related to: the first signaling and the second signaling occupy the same time slice in the time domain.
  • the third signaling indicates that the first multi-carrier symbol group is occupied, the first multi-carrier symbol group includes a positive integer multi-carrier symbol; the same time slice belongs to the first multi-carrier Symbol group.
  • the third signaling is physical layer signaling.
  • the third signaling is dynamic signaling.
  • the third signaling is common to the cell.
  • the third signaling is terminal group specific, the terminal group includes a positive integer number of terminals, and the U2 is one terminal in the terminal group.
  • the third signaling includes DCI.
  • the signaling identifier of the third signaling is a CC-RNTI.
  • the third signaling is a DCI identified by a CC-RNTI.
  • the CC-RNTI is used to generate an RS sequence of the DMRS corresponding to the third signaling.
  • the CRC bit sequence of the third signaling is scrambled by the CC-RNTI.
  • the signaling format of the third signaling is 1C.
  • the third signaling is transmitted on the first sub-band.
  • the third signaling is transmitted on the second sub-band.
  • the third signaling is transmitted on the third sub-band.
  • the third signaling is transmitted on a frequency band other than the first sub-band, the second sub-band, and the third sub-band.
  • the third signaling is transmitted on a frequency band deployed in an unlicensed spectrum.
  • the third signaling is transmitted on a frequency band deployed in the licensed spectrum.
  • the time-frequency resource occupied by the first signaling and the time-frequency resource occupied by the second signaling belong to the same time-frequency resource pool, and the same time-frequency resource pool includes a positive integer resource particle. .
  • the first signaling and the second signaling are related to: the time-frequency resource occupied by the first signaling is the same as the time-frequency resource occupied by the second signaling.
  • a time-frequency resource pool is provided.
  • the first signaling is used by the U2 to determine a first index
  • the second signaling is used by the U2 to determine M indexes
  • the first index is the M indexes An index in ;
  • the M is a positive integer.
  • the first signaling and the second signaling are related to: the first index is an index of the M indexes.
  • the first signaling is transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is a PDCCH (Physical Downlink Control CHannel).
  • the downlink physical layer control channel is an sPDCCH (short PDCCH).
  • the downlink physical layer control channel is an NR-PDCCH (New Radio PDCCH).
  • NR-PDCCH New Radio PDCCH
  • the downlink physical layer control channel is a NB-PDCCH (Narrow Band PDCCH).
  • NB-PDCCH Narrow Band PDCCH
  • the second signaling is transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is a PDCCH.
  • the downlink physical layer control channel is an sPDCCH.
  • the downlink physical layer control channel is an NR-PDCCH.
  • the downlink physical layer control channel is an NB-PDCCH.
  • the first wireless signal is transmitted on an uplink physical layer data channel (ie, an uplink channel that can be used to carry physical layer data).
  • an uplink physical layer data channel ie, an uplink channel that can be used to carry physical layer data.
  • the uplink physical layer data channel is a PUSCH (Physical Uplink Shared CHannel).
  • the uplink physical layer data channel is sPUSCH (short PUSCH).
  • the uplink physical layer data channel is an NR-PUSCH (New Radio PUSCH).
  • the uplink physical layer data channel is a NB-PUSCH (Narrow Band PUSCH).
  • the first radio signal corresponding transport channel is a UL-SCH (Uplink Shared Channel).
  • UL-SCH Uplink Shared Channel
  • the first wireless signal is transmitted on an uplink physical layer control channel (ie, an uplink channel that can only be used to carry physical layer signaling).
  • an uplink physical layer control channel ie, an uplink channel that can only be used to carry physical layer signaling.
  • the uplink physical layer control channel is a PUCCH (Physical Uplink Control CHannel).
  • the uplink physical layer control channel is sPUCCH (short PUCCH).
  • the uplink physical layer control channel is an NR-PUCCH (New Radio PUCCH).
  • the uplink physical layer control channel is a NB-PUCCH (Narrow Band PUCCH).
  • the second wireless signal is transmitted on a downlink physical layer data channel (ie, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel ie, a downlink channel that can be used to carry physical layer data.
  • the downlink physical layer data channel is a PDSCH (Physical Downlink Shared CHannel).
  • PDSCH Physical Downlink Shared CHannel
  • the downlink physical layer data channel is sPDSCH (short PDSCH).
  • the downlink physical layer data channel is an NR-PDSCH (New Radio PDSCH).
  • NR-PDSCH New Radio PDSCH
  • the downlink physical layer data channel is a NB-PDSCH (Narrow Band PDSCH).
  • the third signaling is transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is a PDCCH.
  • the downlink physical layer control channel is an sPDCCH.
  • the downlink physical layer control channel is an NR-PDCCH.
  • the downlink physical layer control channel is an NB-PDCCH.
  • Embodiment 6 exemplifies a timing relationship of the first signaling, the second signaling, and the first wireless signal in the time domain; as shown in FIG.
  • the user equipment in the application receives the first signaling in the first time window in the application, and receives the first in the second time window in the application.
  • Two signaling, the first wireless signal being transmitted in the third time window in the present application.
  • the start time of the second time window is not earlier than the end time of the first time window
  • the start time of the third time window is not earlier than the end time of the second time window.
  • the first time window includes a positive integer number of multi-carrier symbols in the time domain.
  • the first time window includes a positive integer number of consecutive multi-carrier symbols in the time domain.
  • the first time window is composed of 14 consecutive multi-carrier symbols.
  • the first time window is a slot.
  • the first time window is a slot occupied by the first signaling.
  • the first time window is a sub-frame.
  • the first time window is a sub-frame occupied by the first signaling.
  • the first signaling does not occupy the latest multi-carrier symbol in the first time window.
  • the second time window includes a positive integer number of multi-carrier symbols in the time domain.
  • the second time window includes a positive integer number of consecutive multi-carrier symbols in the time domain.
  • the second time window is composed of 14 consecutive multi-carrier symbols.
  • the second time window is a slot.
  • the second time window is a slot occupied by the second signaling.
  • the second time window is a sub-frame.
  • the second time window is a sub-frame occupied by the second signaling.
  • the second signaling does not occupy the latest multi-carrier symbol in the second time window.
  • the third time window includes a positive integer number of multi-carrier symbols in the time domain.
  • the third time window includes a positive integer number of consecutive multi-carrier symbols in the time domain.
  • the third time window is composed of 14 consecutive multi-carrier symbols.
  • the third time window is a slot.
  • the third time window is a slot occupied by the first wireless signal.
  • the third time window is a sub-frame.
  • the third time window is a sub-frame occupied by the first wireless signal.
  • the first wireless signal does not occupy the earliest multi-carrier symbol in the third time window.
  • the starting time of the second time window is not earlier than the ending time of the first time window.
  • the time interval between the first time window and the second time window is less than a first threshold, and the first signaling is used to determine the first threshold.
  • the unit of the first threshold is a slot.
  • the unit of the first threshold is a sub-frame.
  • the first threshold is a non-negative integer.
  • the starting time of the third time window is not earlier than the ending time of the second time window.
  • the first signaling indicates a time interval between the third time window and the second time window.
  • the multicarrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol is an SC-FDMA (Single Carrier-Frequency Division Multiple Access) symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • Embodiment 7 illustrates a schematic diagram of a first domain and a second domain; as shown in FIG.
  • the first given signaling includes the first domain
  • the second given signaling includes the second domain
  • the second given signaling is related to the first given signaling Union.
  • the first given signaling includes scheduling information for a given wireless signal, the first given signaling indicating a given offset, the given offset being a third given time window and a reference given The time interval between time windows.
  • the reference given time window is a first given time window or a second given time window.
  • the first field in the first given signaling is used to determine whether the reference given time window is the first given time window; when in the first given signaling
  • the second field in the second given signaling is used to determine the reference given time Whether the window is the second given time window.
  • the first given signaling, the time resources occupied by the second given signaling and the given wireless signal respectively belong to the first given time window, and the second given time window and the The third given time window is described.
  • the reference given time window is the first given time window; if the first given signaling is in the The first domain is not equal to the first value, and the reference given time window is not the first given time window. In a case where the first domain in the first given signaling is not equal to the first value, if the second domain in the second given signaling is equal to the second value, The reference given time window is the second given time window; if the second field in the second given signaling is not equal to the second value, the reference given time window is not the first Two given time windows.
  • the first domain in the first given signaling is not equal to the first value
  • the second domain in the second given signaling is equal to the second value
  • the reference given time window is the second given time window
  • the given offset is a time interval between the third given time window and the second given time window.
  • the first value is a non-negative integer.
  • the first value is equal to zero.
  • the first value is equal to one.
  • the reference time window in the present application is the first time window in the application; otherwise the reference time window is not the first Time Window.
  • the first domain in the first signaling in the application is not equal to the first value.
  • the first field in the first signaling in the present application is used to determine that the reference time window in the present application is not the first time window in the present application.
  • the second value is a non-negative integer.
  • the second value is equal to one.
  • the second value is equal to zero.
  • the reference time window in the present application is the second time window in the application; otherwise the reference time window is not the second Time Window.
  • the second domain in the second signaling in the present application is equal to the second value.
  • the second field in the second signaling in the present application is used to determine that the reference time window in the present application is the second time window in the present application.
  • the given offset is a non-negative integer.
  • the unit of the given offset is a slot.
  • the unit of the given offset is a sub-frame.
  • the unit of the given offset is milliseconds (ms).
  • the unit of the given offset is a multi-carrier symbol.
  • the first given time window is a slot.
  • the first given time window is a slot occupied by the first given signaling.
  • the first given time window is a sub-frame.
  • the first given time window is a sub-frame occupied by the first given signaling.
  • the second given time window is a slot.
  • the second given time window is a slot occupied by the second given signaling.
  • the second given time window is a sub-frame.
  • the second given time window is a sub-frame occupied by the second given signaling.
  • the third given time window is a slot.
  • the third given time window is a slot occupied by the given wireless signal.
  • the third given time window is a sub-frame.
  • the third given time window is a sub-frame occupied by the given wireless signal.
  • the given wireless signal is transmitted on a frequency band deployed in an unlicensed spectrum.
  • the given wireless signal includes uplink data.
  • the given wireless signal comprises UCI.
  • the first given signaling is dynamic signaling for downlink grant (DownLink Grant).
  • the first given signaling is dynamic signaling for UpLink Grant.
  • the first given signaling is UE specific.
  • the second given signaling is common to the cell.
  • the second given signaling is terminal group specific, and the sender of the given wireless signal is one of the terminal groups.
  • the signaling identifier of the second given signaling is a CC-RNTI.
  • the third given signaling is associated with the first given signaling, and the time resource occupied by the third given signaling belongs to a fourth given time window, the third given The signaling includes the second domain, and the second domain in the third given signaling is not equal to the second value.
  • the position of the third given time window in the time domain is independent of the fourth time window.
  • the third given signaling is common to the cell.
  • the third given signaling is terminal group specific.
  • the signaling identifier of the third given signaling is a CC-RNTI.
  • the sender of the given wireless signal is not associated with the first given signaling between the first given time window and the second given time window, including The second domain, and the second domain included is equal to signaling of the second value.
  • the user equipment in the application does not receive the first letter in the application between the first time window in the application and the second time window in the application.
  • the second domain included is equal to the signaling of the second value.
  • the index of the second given time window in the time domain is n
  • the index of the first given time window in the time domain is np
  • the third given time window is in the time domain.
  • the upper index is n+k; wherein n is a non-negative integer, the k is the given offset, the p is a positive integer not greater than the first threshold, the first given signaling indication The first threshold.
  • the first threshold is a positive integer.
  • the unit of the first threshold is a slot.
  • the unit of the first threshold is a sub-frame.
  • the unit of the first threshold is milliseconds (ms).
  • the unit of the first threshold is a multi-carrier symbol.
  • Embodiment 8 illustrates a schematic diagram of the first domain; as shown in FIG.
  • the first given signaling includes the first domain
  • the first given signaling includes scheduling information for a given wireless signal
  • the first given signaling indicating a given offset
  • the given offset is the time interval between the third given time window and the reference given time window.
  • the first field in the first given signaling is used to determine if the reference given time window is the first given time window.
  • the time resources occupied by the first given signaling and the given wireless signal belong to the first given time window and the third given time window, respectively.
  • the reference given time window is the first given time window; if the first given signaling is in the The first domain is not equal to the first value, and the reference given time window is not the first given time window.
  • the first domain in the first given signaling is equal to the first value
  • the reference given time window is the first given time window
  • the given bias The shift amount is a time interval between the third given time window and the first given time window.
  • the index of the first given time window in the time domain is n
  • the index of the third given time window in the time domain is n+k; wherein the n is a non-negative integer, Let k be the given offset.
  • Embodiment 9 illustrates a schematic diagram of the first signaling; as shown in FIG.
  • the first signaling includes scheduling information of the first wireless signal in the present application.
  • the time resources occupied by the first signaling and the first wireless signal respectively belong to the first time window and the third time window in the present application.
  • the first signaling includes the first domain and the third domain in the present application.
  • the third field in the first signaling indicates a time interval between the third time window and a reference time window, the first field indicating whether the reference time window is the first time window, The first field in the first signaling indicates that the reference time window is not the first time window.
  • the first domain is a PUSCH trigger A (PUSCH trigger A) domain
  • PUSCH trigger A PUSCH trigger A
  • the specific definition of the PUSCH trigger A domain is described in section 5.3.3 of 3GPP TS 36.212 and 8 chapters of 3GPP TS 36.213. .
  • the first field consists of 1 bit.
  • the first domain consists of 2 bits.
  • the third field in the first signaling indicates the third time window.
  • the third field in the first signaling indicates a time interval between the third time window and the second time window in the present application.
  • the time interval between the third time window and the reference time window refers to a time between a start time of the third time window and an end time between the reference time windows. interval.
  • the third domain consists of 1 bit.
  • the third domain consists of 2 bits.
  • the third domain consists of 3 bits.
  • the third domain consists of 4 bits.
  • the third domain is a Timing offset field, and the specific definition of the Timing offset is described in section 5.3.3 of 3GPP TS 36.212 and 8 sections of 3GPP TS 36.213.
  • the first wireless signal includes uplink data.
  • the first wireless signal is transmitted on an uplink physical layer data channel (ie, an uplink channel that can be used to carry physical layer data).
  • an uplink physical layer data channel ie, an uplink channel that can be used to carry physical layer data.
  • the first signaling is dynamic signaling for uplink grant.
  • the first S bits in the third domain indicate a time interval between the third time window and the reference time window, the S being a positive integer.
  • the S is equal to two.
  • the third domain is a Time domain resource assignment field, and the specific definition of the Time domain resource assignment field is described in section 7.3 of 3GPP TS 38.212 and 5.1 in 3GPP TS 38.214. chapter.
  • the first wireless signal includes uplink data.
  • the first wireless signal is transmitted on an uplink physical layer data channel (ie, an uplink channel that can be used to carry physical layer data).
  • an uplink physical layer data channel ie, an uplink channel that can be used to carry physical layer data.
  • the first signaling is dynamic signaling for uplink grant.
  • the third domain is a PDSCH-to-HARQ_feedback timing indicator (PUSCH-HARQ feedback time indication) field, and the specific definition of the PDSCH-to-HARQ_feedback timing indicator field is described in section 7.3 of 3GPP TS38.212. And Section 9.2 of 3GPP TS 38.213.
  • PUSCH-HARQ feedback time indication PUSCH-HARQ feedback time indication
  • the first wireless signal comprises a HARQ-ACK.
  • the first wireless signal is transmitted on an uplink physical layer control channel (ie, an uplink channel that can only be used to carry physical layer signaling).
  • an uplink physical layer control channel ie, an uplink channel that can only be used to carry physical layer signaling.
  • the first signaling is dynamic signaling for downlink grant.
  • the first signaling indicates a first offset
  • a time interval between the third time window and the reference time window is the first offset
  • the third field in the first signaling indicates the first offset.
  • the time interval between the third time window and the second time window is the first offset.
  • the first offset is a non-negative integer.
  • the unit of the first offset is a slot.
  • the unit of the first offset is a sub-frame.
  • the unit of the first offset is milliseconds (ms).
  • the unit of the first offset is a multi-carrier symbol.
  • Embodiment 10 illustrates a schematic diagram of the second signaling; as shown in FIG.
  • the second signaling is associated with the first signaling in the application; the first signaling and the second signaling respectively include the first domain in the application And the second domain.
  • the first signaling includes scheduling information of the first wireless signal in the present application.
  • the first signaling, the time resource occupied by the second signaling and the first wireless signal respectively belong to the first time window in the application, the second time window and the third time window.
  • the first signaling indicates a time interval between the third time window and a reference time window.
  • the first field in the first signaling indicates that the reference time window is not the first time window.
  • the second field indicates whether the reference time window is the second time window.
  • the second field in the second signaling indicates that the reference time window is the second time window.
  • the second domain is a PUSCH trigger B (PUSCH trigger B) domain
  • PUSCH trigger B PUSCH trigger B
  • the specific definition of the PUSCH trigger B domain is described in section 5.3.3 of 3GPP TS 36.212 and 8 chapters of 3GPP TS 36.213. .
  • the second domain consists of 1 bit.
  • the second domain consists of 2 bits.
  • Embodiment 11 illustrates a schematic diagram of the first signaling, the second signaling, the timing relationship of the first wireless signal and the second wireless signal in the time domain; as shown in FIG.
  • the first signaling includes first type scheduling information of the first wireless signal and second type scheduling information of the second wireless signal.
  • the time resource occupied by the second signaling is used to determine a time resource occupied by the first wireless signal.
  • the first signaling, the time resource occupied by the second signaling and the first wireless signal respectively belong to the first time window in the application, the second time window and the third time window.
  • the second wireless signal is used to determine the first wireless signal.
  • the second time window is later than the first time window in the time domain
  • the third time window is later in the time domain than the time resource occupied by the second time window and the second wireless signal.
  • the second wireless signal includes downlink data.
  • the first wireless signal comprises a HARQ-ACK.
  • the second wireless signal includes a downlink reference signal.
  • the first wireless signal comprises CSI.
  • the second wireless signal includes a CSI-RS (Channel State Information-Reference Signal).
  • CSI-RS Channel State Information-Reference Signal
  • the second wireless signal includes an SS (Synchronization Signal)/PBCH (Physical Broadcast CHannel) block (SS/PBCH block).
  • SS Synchronization Signal
  • PBCH Physical Broadcast CHannel
  • Embodiment 12 illustrates a schematic diagram of an antenna port and an antenna port group; as shown in FIG.
  • one antenna port group includes a positive integer number of antenna ports; one antenna port is formed by antenna virtualization in a positive integer number of antenna groups; and one antenna group includes a positive integer antenna.
  • An antenna group is connected to the baseband processor through an RF (Radio Frequency) chain, and different antenna groups correspond to different RF chains.
  • a mapping coefficient of all antennas within a positive integer number of antenna groups included in a given antenna port to the given antenna port constitutes a beamforming vector corresponding to the given antenna port.
  • the mapping coefficients of the plurality of antennas included in any given antenna group included in a given integer number of antenna groups included in the given antenna port to the given antenna port constitute an analog beamforming vector of the given antenna group.
  • the diagonal arrangement of the analog beamforming vectors corresponding to a positive integer number of antenna groups included in the given antenna port constitutes an analog beam shaping matrix corresponding to the given antenna port.
  • the mapping coefficients of a positive integer number of antenna groups included in the given antenna port to the given antenna port constitute a digital beamforming vector corresponding to the given antenna port.
  • the beamforming vector corresponding to the given antenna port is obtained by multiplying the analog beam shaping matrix and the digital beam shaping vector corresponding to the given antenna port.
  • Different antenna ports in one antenna port group are composed of the same antenna group, and different antenna ports in the same antenna port group correspond to different beamforming vectors.
  • antenna port group #0 and antenna port group #1 Two antenna port groups are shown in Figure 12: antenna port group #0 and antenna port group #1.
  • the antenna port group #0 is composed of an antenna group #0
  • the antenna port group #1 is composed of an antenna group #1 and an antenna group #2.
  • the mapping coefficients of the plurality of antennas in the antenna group #0 to one of the antenna port groups #0 constitute an analog beamforming vector #0
  • the mapping coefficients of one of the antenna ports constitute a digital beamforming vector #0.
  • the mapping coefficients of the plurality of antennas in the antenna group #1 and the plurality of antennas in the antenna group #2 to one antenna port in the antenna port group #1 respectively constitute an analog beamforming vector #1 and an analog
  • the beamforming vector #2, the mapping coefficient of the antenna group #1 and the antenna group #2 to one of the antenna port groups #1 constitutes a digital beam shaping vector #1.
  • a beamforming vector corresponding to one of the antenna port groups #0 is obtained by multiplying the analog beamforming vector #0 and the digital beamforming vector #0.
  • a beamforming vector corresponding to one antenna port in the antenna port group #1 is an analog beam shaping matrix formed by diagonally arranging the analog beamforming vector #1 and the analog beamforming vector #2 The product of the digital beamforming vector #1 is obtained.
  • an antenna port group includes only one antenna group, that is, an RF chain, for example, the antenna port group #0 in FIG.
  • the analog beam shaping matrix corresponding to the antenna port in the one antenna port group is reduced into an analog beamforming vector
  • the digital beam corresponding to the antenna port in the one antenna port group is The shaping vector is dimensioned into a scalar, and the beamforming vector corresponding to the antenna port in the one antenna port group is equal to its corresponding analog beamforming vector.
  • the antenna port group #0 in FIG. 12 includes only the antenna group #0, and the digital beamforming vector #0 in FIG. 12 is reduced to a scalar, the antenna port group #0.
  • the beamforming vector corresponding to the antenna port in the middle is the analog beamforming vector #0.
  • the one antenna port group includes one antenna port.
  • one antenna port group includes a plurality of antenna groups, that is, a plurality of RF chains, for example, the antenna port group #1 in FIG.
  • the one antenna port group includes a plurality of antenna ports.
  • different antenna ports in the one antenna port group correspond to the same analog beam shaping matrix.
  • different antenna ports in the one antenna port group correspond to different digital beamforming vectors.
  • antenna ports in different antenna port groups correspond to different analog beam shaping matrices.
  • an antenna port is an antenna port.
  • the small-scale channel parameters experienced by a wireless signal transmitted from one antenna port may infer small-scale channel parameters experienced by another wireless signal transmitted from the one antenna port.
  • the small-scale channel parameters include ⁇ CIR (Channel Impulse Response), PMI (Precoding Matrix Indicator), CQI, RI (Rank Indicator, rank) One or more of the identifiers).
  • CIR Channel Impulse Response
  • PMI Precoding Matrix Indicator
  • CQI Precoding Matrix Indicator
  • RI Rank Indicator, rank
  • any two antenna ports QCL (Quasi Co-Located) in one antenna port group.
  • one antenna port and another antenna port QCL means that all or part of the large-scale properties of the wireless signal that can be transmitted from the one antenna port can be inferred from the other. All or part of the large-scale characteristics of the wireless signal transmitted on the antenna port.
  • the large scale characteristics of a wireless signal include ⁇ delay spread, Doppler spread, Doppler shift, path loss, average gain. (average gain), one or more of average delay, spatial Rx parameters, and spatial Tx parameters.
  • the spatial Rx parameters include ⁇ receiving beam, receiving analog beamforming matrix, receiving analog beamforming vector, receiving beamforming vector, receiving spatial filtering, spatial domain filtering ( One or more of spatial domain reception filter) ⁇ .
  • the spatial transmission parameters include: a transmit antenna port, a transmit antenna port group, a transmit beam, an analog beamforming matrix, an analog beamforming vector, a transmit beamforming vector, and a transmit spatial filter. (spatial filtering), one or more of spatial domain transmission filters.
  • one antenna port and another antenna port QCL mean that the one antenna port and the other antenna port have at least one identical QCL parameter.
  • the QCL parameters include: ⁇ delay spread, Doppler spread, Doppler shift, path loss, average gain One or more of average delay, spatial Rx parameters, and Spatial Tx parameters.
  • one antenna port and another antenna port QCL means that at least one QCL parameter of the other antenna port can be inferred from at least one QCL parameter of the one antenna port.
  • Embodiment 13 illustrates a schematic diagram of the relationship between the first antenna port group and the first port group set; as shown in FIG.
  • the first signaling in the application is used to determine the first antenna port group
  • the second signaling in the application is used to determine the first port group set
  • the first port group set includes a positive integer number of antenna port groups
  • one antenna port group includes a positive integer number of antenna ports
  • the first antenna port group belongs to the first port group set.
  • one ellipse indicates one antenna port in the first port group set
  • the left oblique line filled ellipse indicates the first antenna port group.
  • the first port group set includes a plurality of antenna port groups.
  • the first port group set includes one antenna port group.
  • the first antenna port group includes a plurality of antenna ports.
  • the first antenna port group includes one antenna port.
  • the first reference antenna port group and the second reference antenna port group are any two antenna port groups included in the first port group set, and any one of the first reference antenna port groups and Any of the second reference antenna port groups is not QCL.
  • the first signaling explicitly indicates the first antenna port group.
  • the first signaling implicitly indicates the first antenna port group.
  • any one of the transmit antenna port of the first signaling and the at least one antenna port QCL of the first set of antenna ports are provided.
  • any of the transmit antenna ports of the first signaling and any of the first antenna port groups QCL are configured to be any of the first antenna port groups QCL.
  • At least one transmit antenna port of the first signaling and one of the first antenna port groups are QCL.
  • the time-frequency resource occupied by the first signaling belongs to a first time-frequency resource pool, and the first time-frequency resource pool is associated with the first antenna port group.
  • the first time-frequency resource pool includes a positive integer number of REs (Resource Elements).
  • the first time-frequency resource pool is a CORESET (COntrol REsource SET).
  • the first time-frequency resource pool is a search space.
  • the first time-frequency resource pool appears multiple times in the time domain.
  • the time interval between any two adjacent occurrences of the first time-frequency resource pool in the time domain is equal.
  • the first time-frequency resource pool appears only once in the time domain.
  • the given timing resource pool is associated with a given antenna port group, which may be assumed to be in a transmit antenna port of any wireless signal transmitted in the given time-frequency resource pool and in the given antenna port group.
  • One antenna port QCL One antenna port QCL.
  • the reference to the given frequency port group refers to: the spatial receiving parameter used by the user equipment in the application to receive the wireless signal sent on the given antenna port group (Spatial) Rx parameters) are used to determine spatial Rx parameters used by the user equipment to receive or monitor wireless signals in the given time-frequency resource pool.
  • the given time-frequency resource pool is associated with a given antenna port group, which means that the user equipment in the present application uses the same spatial Rx parameters to receive the given antenna port group.
  • the transmitted wireless signal and the wireless signal are received or monitored in the given time-frequency resource pool.
  • the second signaling explicitly indicates the first port group set.
  • the second signaling implicitly indicates the first port group set.
  • the second signaling is repeatedly transmitted by a plurality of different antenna ports.
  • any one of the transmit antenna ports of the second signaling and at least one of the antenna port groups of the first set of port groups are provided.
  • one of the antenna port groups in the first port group set and the at least one transmit antenna port QCL of the second signaling are configured to be configured to be configured to be configured to be configured to be configured to be configured to be configured to be configured to be configured to be configured to be configured to be configured to be configured to be configured to be configured to be configured to be configured to be configured to be configured to be configured to be configured to be configured to be configured to be configured to be configured to be configured to be configured to be configured to the first port group set and the at least one transmit antenna port QCL of the second signaling.
  • the first port group set includes K1 antenna port groups
  • the second signaling is respectively sent by K1 antenna ports
  • the K1 antenna ports and the K1 antenna port groups are in one-to-one correspondence.
  • the K1 is a positive integer.
  • the user equipment in the application receives the second signaling sent by different antenna ports by using the same spatial Rx parameters.
  • the user equipment in the present application receives the second signaling sent by different antenna ports by using different spatial receiving parameters (Spatial Rx parameters).
  • the time-frequency resource occupied by the second signaling is used to determine the first port group set.
  • the time-frequency resource occupied by the second signaling indicates the first port group set.
  • the time-frequency resource occupied by the second signaling belongs to a second time-frequency resource pool, and the second time-frequency resource pool is associated with a second antenna port group;
  • the spatial coverage of the transmit beams corresponding to any of the antenna ports is within a set of spatial coverage of the transmit beams of all of the antenna ports in the second set of antenna ports.
  • the first set of antenna ports is used to determine a transmit antenna port of the first wireless signal described in this application.
  • the spatial Rx parameters of the user equipment in the application for receiving the wireless signal from the first antenna port group are used to determine a spatial transmission parameter of the first wireless signal. (Spatial Tx parameters).
  • any of the transmit antenna ports of the second wireless signal and the at least one antenna port QCL of the first set of antenna ports in the present application are possible.
  • any of the transmit antenna ports of the second wireless signal and any of the first antenna port groups QCL are configured to be any of the transmit antenna ports of the second wireless signal and any of the first antenna port groups QCL.
  • any one of the transmit antenna ports of the DMRS and the any of the first antenna port groups QCL corresponding to the physical layer channel where the second wireless signal is located.
  • At least one transmit antenna port of the second wireless signal and one of the first antenna port groups are QCL.
  • Embodiment 14 illustrates a schematic diagram of the relationship between time resources occupied by the first signaling and the second signaling; as shown in FIG.
  • the first signaling and the second signaling occupy the same time slice in the time domain, and the same time slice includes a positive integer multiple carrier symbols.
  • the time resources occupied by the first signaling and the second signaling belong to the same time slice.
  • the first time window in the present application and the second time window in the present application belong to the same time slice.
  • the same time slice is composed of a positive integer number of consecutive multi-carrier symbols.
  • the same time slice is composed of a positive integer number of discrete multi-carrier symbols.
  • the same time slice includes 14 consecutive multi-carrier symbols.
  • the same time slice belongs to a slot.
  • the same time slice belongs to a sub-frame.
  • the same time slice belongs to a downlink burst (Downlink Burst).
  • the third signaling in the application indicates that the first multi-carrier symbol group is occupied, and the first multi-carrier symbol group includes a positive integer multi-carrier symbol; the same time slice belongs to the The first multi-carrier symbol group.
  • the third signaling in the application indicates that the first multi-carrier symbol group is occupied by a downlink physical channel or a downlink physical signal.
  • all of the multi-carrier symbols in the first set of multi-carrier symbols are contiguous.
  • At least two adjacent multi-carrier symbols in the first multi-carrier symbol group are discontinuous.
  • all multicarrier symbols in the first multicarrier symbol group belong to the same slot.
  • all multi-carrier symbols in the first multi-carrier symbol group belong to the same sub-frame.
  • At least two multi-carrier symbols in the first multi-carrier symbol group belong to different slots.
  • At least two multi-carrier symbols in the first multi-carrier symbol group belong to different sub-frames.
  • Embodiment 15 illustrates a schematic diagram of the relationship between time-frequency resources occupied by the first signaling and the second signaling; as shown in FIG.
  • the time-frequency resource occupied by the first signaling and the time-frequency resource occupied by the second signaling belong to the same time-frequency resource pool, and the same time-frequency resource pool includes a positive integer resource. particle.
  • a box of a thick solid border indicates the same time-frequency resource pool, and a left-lined filled box indicates a time-frequency resource occupied by the first signaling, and a cross-line filled box representation The time-frequency resource occupied by the second signaling.
  • the same time-frequency resource pool refers to the same CORESET.
  • the same time-frequency resource pool refers to the same search space.
  • a resource particle is an RE (Resource Element).
  • one resource particle occupies one multi-carrier symbol in the time domain and one sub-carrier in the frequency domain.
  • the same time-frequency resource pool appears multiple times in the time domain.
  • the time interval between any two adjacent occurrences of the same time-frequency resource pool in the time domain is equal.
  • the same time-frequency resource pool appears only once in the time domain.
  • the same time-frequency resource pool is associated with the first antenna port group in the present application.
  • Embodiment 16 illustrates a schematic diagram of the relationship between the first index and the M indexes; as shown in FIG.
  • the first signaling in the present application is used to determine the first index
  • the second signaling in the present application is used to determine the M indexes
  • the first The index is one of the M indexes; the M is a positive integer.
  • the M indexes are denoted by index #0, index #1, ..., index #M-1, respectively.
  • the first index is a non-negative integer.
  • any of the M indexes is a non-negative integer.
  • the M is greater than one.
  • the M is equal to one.
  • the first signaling explicitly indicates the first index.
  • the first signaling explicitly indicates the first index; If the first signaling indicates that the reference time window is the first time window, the first signaling does not explicitly indicate the first index.
  • the first signaling explicitly indicates the first index; if the first signaling is in the first signaling The first domain is equal to the first value, and the first signaling does not explicitly indicate the first index.
  • the first signaling implicitly indicates the first index.
  • the time-frequency resource occupied by the first signaling is used to determine the first index.
  • the time-frequency resource occupied by the first signaling belongs to a first time-frequency resource pool
  • the first time-frequency resource pool is a time-frequency resource pool of the N1 time-frequency resource pools.
  • An index of the first time-frequency resource pool in the N1 time-frequency resource pool is used to determine the first index.
  • the N1 is a positive integer greater than one.
  • the first signaling is used to determine a first antenna port group, the first antenna port group being used to determine the first index.
  • the first signaling is used to determine a first antenna port group
  • the first antenna port group is one of N2 antenna port groups
  • the first antenna port group is in the An index in the N2 antenna port groups is used to determine the first index.
  • the N2 is a positive integer greater than one.
  • the time-frequency resource occupied by the first wireless signal is used to determine the first index.
  • the time-frequency resource occupied by the first wireless signal belongs to a third time-frequency resource pool
  • the third time-frequency resource pool is a time-frequency resource pool of the N5 time-frequency resource pools.
  • An index of the third time-frequency resource pool in the N5 time-frequency resource pools is used to determine the first index.
  • the N5 is a positive integer greater than one.
  • the time-frequency resource occupied by the second wireless signal is used to determine the first index.
  • the time-frequency resource occupied by the second wireless signal belongs to a fourth time-frequency resource pool
  • the fourth time-frequency resource pool is a time-frequency resource pool of the N6 time-frequency resource pools.
  • An index of the fourth time-frequency resource pool in the N6 time-frequency resource pools is used to determine the first index.
  • the N6 is a positive integer greater than one.
  • the transmit antenna port group of the second wireless signal is used to determine the first index.
  • the transmit antenna port group of the second wireless signal is one of N7 antenna port groups, and the transmit antenna port group of the second wireless signal is in the N7 antenna port group.
  • An index is used to determine the first index.
  • the N7 is a positive integer greater than one.
  • the third sub-band is used to determine the first index.
  • the third sub-band is one candidate sub-band of N8 candidate sub-bands, and an index of the third sub-band in the N8 candidate sub-bands is used to determine the first index.
  • the N8 is a positive integer greater than one.
  • the second signaling explicitly indicates the M indexes.
  • the second signaling indicates that the reference time window in the application is the second time window in the application, the second signaling explicitly indicates the M indexes;
  • the second signaling indicates that the reference time window in the present application is not the second time window in the application, and the second signaling does not explicitly indicate the M indexes.
  • the second signaling explicitly indicates the M indexes; if in the second signaling The second domain is not equal to the second value, and the second signaling does not explicitly indicate the M indexes.
  • the second signaling implicitly indicates the M indexes.
  • time-frequency resources occupied by the second signaling are used to determine the M indexes.
  • the time-frequency resource occupied by the second signaling belongs to a second time-frequency resource pool
  • the second time-frequency resource pool is a time-frequency resource pool of the N3 time-frequency resource pools.
  • An index of the second time-frequency resource pool in the N3 time-frequency resource pools is used to determine the M indexes.
  • the N3 is a positive integer greater than one.
  • the second signaling is used to determine a first set of port groups, the first set of port groups being used to determine the M indexes.
  • the second signaling is used to determine a first port group set, where the first port group set includes M antenna port groups, the M antenna port groups and the M indexes one by one Corresponding; the M antenna port groups are a subset of N4 antenna port groups, and an index of any one of the first antenna port groups in the N4 antenna port groups is used to determine the The corresponding index in the M indexes.
  • the N4 is a positive integer greater than one.
  • Embodiment 17 exemplifies a structural block diagram of a processing device for use in a user equipment; as shown in FIG.
  • the processing device 1700 in the user equipment is mainly composed of a first receiver 1701, a second receiver 1702, and a first processor 1703.
  • the first receiver 1701 receives the first signaling in a first time window on the first sub-band; the second receiver 1702 monitors the second signal in a second time window on the second sub-band If the second receiver 1702 successfully receives the second signaling in the second time window on the second sub-band, the first processor 1703 has a third time window on the third sub-band Transmitting the first wireless signal, otherwise the first processor 1703 discards transmitting the first wireless signal in the third time window on the third sub-band.
  • the first signaling includes first type scheduling information of the first wireless signal; the first signaling indicates a time between the third time window and the second time window An interval; the first signaling is associated with the second signaling.
  • the first signaling indicates a time interval between the third time window and a reference time window; the first signaling includes a first domain, and the first domain indicates the reference time window Whether is the first time window; the first field in the first signaling indicates that the reference time window is not the first time window.
  • the second signaling includes a second domain, where the second domain indicates whether the reference time window is the second time window; and the second domain indication in the second signaling The reference time window is the second time window.
  • the first processor 1703 further receives a second wireless signal; wherein the first signaling includes a second type of scheduling information of the second wireless signal; the first wireless signal is used It is determined whether the second wireless signal is correctly received.
  • the first processor 1703 further receives a second wireless signal; wherein the first signaling includes a second type of scheduling information of the second wireless signal; and a measurement for the second wireless signal Used to determine the first wireless signal.
  • the first signaling is used to determine a first antenna port group
  • the second signaling is used to determine a first port group set
  • the first port group set includes a positive integer number of antenna ports Group
  • one antenna port group includes a positive integer number of antenna ports
  • the first antenna port group belongs to the first port group set.
  • the first signaling and the second signaling occupy the same time slice in the time domain, and the same time slice includes a positive integer multi-carrier symbol.
  • the second receiver 1702 further receives third signaling; wherein the third signaling indicates that the first multi-carrier symbol group is occupied, and the first multi-carrier symbol group includes a positive integer multiple a carrier symbol; the same time slice belongs to the first multi-carrier symbol group.
  • the time-frequency resource occupied by the first signaling and the time-frequency resource occupied by the second signaling belong to the same time-frequency resource pool, and one time-frequency resource pool includes a positive integer resource particle.
  • the first signaling is used to determine a first index
  • the second signaling is used to determine M indexes
  • the first index is one of the M indexes
  • M is a positive integer
  • the first receiver 1701 includes the ⁇ antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, and the data source in Embodiment 4. At least one of 467 ⁇ .
  • the second receiver 1702 includes the ⁇ antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, and the data source in Embodiment 4. At least one of 467 ⁇ .
  • the first processor 1703 includes ⁇ antenna 452, transmitter/receiver 454, transmit processor 468, receive processor 456, multi-antenna transmit processor 457, multi-antenna receive processing in embodiment 4.
  • Embodiment 18 exemplifies a structural block diagram of a processing device used in a base station, as shown in FIG.
  • the processing device 1800 in the base station is mainly composed of a first transmitter 1801, a second transmitter 1802, and a second processor 1803.
  • the first transmitter 1801 transmits the first signaling in a first time window on the first sub-band; the second transmitter 1802 transmits the second message in a second time window on the second sub-band Or discarding transmitting the second signaling in the second time window on the second sub-band; if the second transmitter 1802 is in the second time window on the second sub-band Transmitting the second signaling, the second processor 1803 receives the first wireless signal in a third time window on the third sub-band, and the second processor 1803 otherwise discards the first on the third sub-band The first wireless signal is received in a three time window.
  • the first signaling includes first type scheduling information of the first wireless signal; the first signaling indicates a time between the third time window and the second time window An interval; the first signaling is associated with the second signaling.
  • the first signaling indicates a time interval between the third time window and a reference time window; the first signaling includes a first domain, and the first domain indicates the reference time window Whether is the first time window; the first field in the first signaling indicates that the reference time window is not the first time window.
  • the second signaling includes a second domain, where the second domain indicates whether the reference time window is the second time window; and the second domain indication in the second signaling The reference time window is the second time window.
  • the second processor 1803 further transmits a second wireless signal; wherein the first signaling includes a second type of scheduling information of the second wireless signal; the first wireless signal is used It is determined whether the second wireless signal is correctly received.
  • the second processor 1803 further transmits a second wireless signal; wherein the first signaling includes a second type of scheduling information of the second wireless signal; and a measurement for the second wireless signal Used to determine the first wireless signal.
  • the first signaling is used to determine a first antenna port group
  • the second signaling is used to determine a first port group set
  • the first port group set includes a positive integer number of antenna ports Group
  • one antenna port group includes a positive integer number of antenna ports
  • the first antenna port group belongs to the first port group set.
  • the first signaling and the second signaling occupy the same time slice in the time domain, and the same time slice includes a positive integer multi-carrier symbol.
  • the second transmitter 1802 further sends a third signaling, where the third signaling indicates that the first multi-carrier symbol group is occupied, and the first multi-carrier symbol group includes a positive integer multiple a carrier symbol; the same time slice belongs to the first multi-carrier symbol group.
  • the time-frequency resource occupied by the first signaling and the time-frequency resource occupied by the second signaling belong to the same time-frequency resource pool, and one time-frequency resource pool includes a positive integer resource particle.
  • the first signaling is used to determine a first index
  • the second signaling is used to determine M indexes
  • the first index is one of the M indexes
  • M is a positive integer
  • the first transmitter 1801 includes the ⁇ antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471, the controller/processor 475, the memory 476 ⁇ in Embodiment 4. At least one.
  • the second transmitter 1802 includes the ⁇ antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471, the controller/processor 475, the memory 476 ⁇ in Embodiment 4. At least one.
  • the second processor 1803 includes ⁇ antenna 420, transmitter/receiver 418, transmit processor 416, receive processor 470, multi-antenna transmit processor 471, multi-antenna receive processing in embodiment 4. At least one of the controller 472, the controller/processor 475, and the memory 476 ⁇ .
  • the user equipment, terminal and UE in the present application include but are not limited to a drone, a communication module on the drone, a remote control aircraft, an aircraft, a small aircraft, a mobile phone, a tablet computer, a notebook, a vehicle communication device, a wireless sensor, an internet card, Internet of Things terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC), data card, network card, vehicle communication device, low-cost mobile phone, low Cost wireless communication devices such as tablets.
  • the base station or system equipment in this application includes, but is not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, a gNB (NR Node B), a TRP (Transmitter Receiver Point), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的用户设备、基站中的方法和装置。用户设备在第一子频带上的第一时间窗中接收第一信令;在第二子频带上的第二时间窗中监测第二信令;如果在所述第二子频带上的所述第二时间窗中成功接收到所述第二信令,在第三子频带上的第三时间窗中发送第一无线信号,否则放弃在所述第三子频带上的所述第三时间窗中发送所述第一无线信号。其中,所述第一信令包括所述第一无线信号的第一类调度信息;所述第一信令指示所述第三时间窗和所述第二时间窗之间的时间间隔;所述第一信令和所述第二信令相关联。上述方法允许基站在非授权频谱中根据具体情况,比如LBT的结果或者波束赋型的方向等,灵活控制每个上行传输的发送时刻。

Description

一种被用于无线通信的用户设备、基站中的方法和装置 技术领域
本申请涉及无线通信系统中的方法和装置,尤其是涉及支持在非授权频谱(Unlicensed Spectrum)上进行数据传输的无线通信系统中的方法和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#75次全会上还通过NR(New Radio,新无线电)下的非授权频谱(Unlicensed Spectrum)的接入的研究项目,该研究项目预期在R15版本完成,然后在R16版本中启动WI对相关技术进行标准化。
在LTE(Long Term Evolution,长期演进)的LAA(License Assisted Access,授权辅助接入)项目中,发射机(基站或者用户设备)在非授权频谱上发送数据之前需要先进行LBT(Listen Before Talk,会话前监听)以保证不对其他在非授权频谱上正在进行的无线传输造成干扰。
发明内容
发明人通过研究发现,在NR-U(NR-Unlicensed spectrum,NR非授权频谱)系统中,尤其是部署于SA(Stand Alone孤立的)场景下的NR-U系统中,由于MCOT(Max Channel Occupy Time,最大信道占用时间)和LBT等限制因素,基于调度的上行数据和上行控制信息的发送时间并不总能被基站准确预测。这给上行传输的调度带来了新的问题。考虑到NR系统中将广泛采用基于大规模天线阵列的波束赋型,不同波束赋型方向上的信道占用和干扰状况会存在很大差异,因此在进行LBT时需要考虑到波束方向的影响,这使得上行数据和上行控制信息的发送时间更加难以预测。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的用户设备中的方法,其特征在于,包括:
在第一子频带上的第一时间窗中接收第一信令;
在第二子频带上的第二时间窗中监测第二信令;
如果在所述第二子频带上的所述第二时间窗中成功接收到所述第二信令,在第三子频带
上的第三时间窗中发送第一无线信号,否则放弃在所述第三子频带上的所述第三时间窗
中发送所述第一无线信号;
其中,所述第一信令包括所述第一无线信号的第一类调度信息;所述第一信令指示所述第三时间窗和所述第二时间窗之间的时间间隔;所述第一信令和所述第二信令相关联。
作为一个实施例,本申请要解决的问题是:在非授权频谱中,由于MCOT和LBT等因素的限制,基于调度的上行数据和上行控制信息的发送时间难以预先确定的问题。上述方法通过使用一个触发信令来触发上行数据和上行控制信息的发送,并在触发信令和调度信令之间建立关联来解决这个问题。
作为一个实施例,上述方法的特质在于,用所述第二信令来触发所述第一信令所调度的所述第一无线信号的发送,并且在所述第一信令和所述第二信令之间建立关联。
作为一个实施例,上述方法的好处在于,允许基站根据MCOT或LBT的结果灵活决定所述第一无线信号的具体发送时间。
作为一个实施例,上述方法的好处在于,通过在所述第一信令和所述第二信令之间建立 关联,允许基站有选择的触发一部分上行发送,使基站能根据具体情况,比如LBT的结果或者波束赋型的方向等,更好控制的每个UE(User Equipment,用户设备)的上行发送时刻。
作为一个实施例,上述方法的好处在于,所述第二信令还可以被用于确定所述第一无线信号的发送天线端口,使基站能根据具体情况,比如LBT的结果或者波束赋型的方向等,为所述第一无线信号选择最优的发送天线端口。
根据本申请的一个方面,其特征在于,所述第一信令指示所述第三时间窗和参考时间窗之间的时间间隔;所述第一信令包括第一域,所述第一域指示所述参考时间窗是否是所述第一时间窗;所述第一信令中的所述第一域指示所述参考时间窗不是所述第一时间窗。
作为一个实施例,上述方法的好处在于,可以用所述第一域来灵活指示所述第一无线信号的发送时刻是完全由其调度信令决定还是需要等待一个触发信令来触发。
根据本申请的一个方面,其特征在于,所述第二信令包括第二域,所述第二域指示所述参考时间窗是否是所述第二时间窗;所述第二信令中的所述第二域指示所述参考时间窗是所述第二时间窗。
作为一个实施例,上述方法的好处在于,可以用所述第二域来灵活指示是否触发所述第一无线信号的发送。
根据本申请的一个方面,其特征在于,包括:
接收第二无线信号;
其中,所述第一信令包括所述第二无线信号的第二类调度信息;所述第一无线信号被用于确定所述第二无线信号是否被正确接收,或者针对所述第二无线信号的测量被用于确定所述第一无线信号。
根据本申请的一个方面,其特征在于,所述第一信令被用于确定第一天线端口组,所述第二信令被用于确定第一端口组集合;所述第一端口组集合包括正整数个天线端口组,一个天线端口组包括正整数个天线端口;所述第一天线端口组属于所述第一端口组集合。
根据本申请的一个方面,其特征在于,所述第一信令与所述第二信令在时域占用同一个时间片,所述同一个时间片包括正整数个多载波符号。
根据本申请的一个方面,其特征在于,包括:
接收第三信令;
其中,所述第三信令指示第一多载波符号组被占用,所述第一多载波符号组包括正整数个多载波符号;所述同一个时间片属于所述第一多载波符号组。
根据本申请的一个方面,其特征在于,所述第一信令占用的时频资源与所述第二信令占用的时频资源属于同一个时频资源池,所述同一个时频资源池包括正整数个资源粒子。
根据本申请的一个方面,其特征在于,所述第一信令被用于确定第一索引,所述第二信令被用于确定M个索引,所述第一索引是所述M个索引中的一个索引;所述M是正整数。
本申请公开了一种被用于无线通信的基站中的方法,其特征在于,包括:
在第一子频带上的第一时间窗中发送第一信令;
在第二子频带上的第二时间窗中发送第二信令,或者在所述第二子频带上的所述第二时
间窗中放弃发送所述第二信令;
如果在所述第二子频带上的所述第二时间窗中发送所述第二信令,在第三子频带上的第
三时间窗中接收第一无线信号,否则放弃在所述第三子频带上的所述第三时间窗中接收
所述第一无线信号;
其中,所述第一信令包括所述第一无线信号的第一类调度信息;所述第一信令指示所述第三时间窗和所述第二时间窗之间的时间间隔;所述第一信令和所述第二信令相关联。
根据本申请的一个方面,其特征在于,所述第一信令指示所述第三时间窗和参考时间窗之间的时间间隔;所述第一信令包括第一域,所述第一域指示所述参考时间窗是否是所述第一时间窗;所述第一信令中的所述第一域指示所述参考时间窗不是所述第一时间窗。
根据本申请的一个方面,其特征在于,所述第二信令包括第二域,所述第二域指示所述 参考时间窗是否是所述第二时间窗;所述第二信令中的所述第二域指示所述参考时间窗是所述第二时间窗。
根据本申请的一个方面,其特征在于,包括:
发送第二无线信号;
其中,所述第一信令包括所述第二无线信号的第二类调度信息;所述第一无线信号被用于确定所述第二无线信号是否被正确接收,或者针对所述第二无线信号的测量被用于确定所述第一无线信号。
根据本申请的一个方面,其特征在于,所述第一信令被用于确定第一天线端口组,所述第二信令被用于确定第一端口组集合;所述第一端口组集合包括正整数个天线端口组,一个天线端口组包括正整数个天线端口;所述第一天线端口组属于所述第一端口组集合。
根据本申请的一个方面,其特征在于,所述第一信令与所述第二信令在时域占用同一个时间片,所述同一个时间片包括正整数个多载波符号。
根据本申请的一个方面,其特征在于,包括:
发送第三信令;
其中,所述第三信令指示第一多载波符号组被占用,所述第一多载波符号组包括正整数个多载波符号;所述同一个时间片属于所述第一多载波符号组。
根据本申请的一个方面,其特征在于,所述第一信令占用的时频资源与所述第二信令占用的时频资源属于同一个时频资源池,所述同一个时频资源池包括正整数个资源粒子。
根据本申请的一个方面,其特征在于,所述第一信令被用于确定第一索引,所述第二信令被用于确定M个索引,所述第一索引是所述M个索引中的一个索引;所述M是正整数。
本申请公开了一种被用于无线通信的用户设备,其特征在于,包括:
第一接收机,在第一子频带上的第一时间窗中接收第一信令;
第二接收机,在第二子频带上的第二时间窗中监测第二信令;
第一处理机,如果在所述第二子频带上的所述第二时间窗中成功接收到所述第二信令,
在第三子频带上的第三时间窗中发送第一无线信号,否则放弃在所述第三子频带上的所
述第三时间窗中发送所述第一无线信号;
其中,所述第一信令包括所述第一无线信号的第一类调度信息;所述第一信令指示所述第三时间窗和所述第二时间窗之间的时间间隔;所述第一信令和所述第二信令相关联。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一信令指示所述第三时间窗和参考时间窗之间的时间间隔;所述第一信令包括第一域,所述第一域指示所述参考时间窗是否是所述第一时间窗;所述第一信令中的所述第一域指示所述参考时间窗不是所述第一时间窗。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第二信令包括第二域,所述第二域指示所述参考时间窗是否是所述第二时间窗;所述第二信令中的所述第二域指示所述参考时间窗是所述第二时间窗。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一处理机还接收第二无线信号;其中,所述第一信令包括所述第二无线信号的第二类调度信息;所述第一无线信号被用于确定所述第二无线信号是否被正确接收。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一处理机还接收第二无线信号;其中,所述第一信令包括所述第二无线信号的第二类调度信息;针对所述第二无线信号的测量被用于确定所述第一无线信号。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一信令被用于确定第一天线端口组,所述第二信令被用于确定第一端口组集合;所述第一端口组集合包括正整数个天线端口组,一个天线端口组包括正整数个天线端口;所述第一天线端口组属于所述第一端口组集合。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一信令与所述 第二信令在时域占用同一个时间片,所述同一个时间片包括正整数个多载波符号。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第二接收机还接收第三信令;其中,所述第三信令指示第一多载波符号组被占用,所述第一多载波符号组包括正整数个多载波符号;所述同一个时间片属于所述第一多载波符号组。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一信令占用的时频资源与所述第二信令占用的时频资源属于同一个时频资源池,所述同一个时频资源池包括正整数个资源粒子。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一信令被用于确定第一索引,所述第二信令被用于确定M个索引,所述第一索引是所述M个索引中的一个索引;所述M是正整数。
本申请公开了一种被用于无线通信的基站设备,其特征在于,包括:
第一发送机,在第一子频带上的第一时间窗中发送第一信令;
第二发送机,在第二子频带上的第二时间窗中发送第二信令,或者在所述第二子频带上
的所述第二时间窗中放弃发送所述第二信令;
第二处理机,如果在所述第二子频带上的所述第二时间窗中发送所述第二信令,在第三
子频带上的第三时间窗中接收第一无线信号,否则放弃在所述第三子频带上的所述第三
时间窗中接收所述第一无线信号;
其中,所述第一信令包括所述第一无线信号的第一类调度信息;所述第一信令指示所述第三时间窗和所述第二时间窗之间的时间间隔;所述第一信令和所述第二信令相关联。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第一信令指示所述第三时间窗和参考时间窗之间的时间间隔;所述第一信令包括第一域,所述第一域指示所述参考时间窗是否是所述第一时间窗;所述第一信令中的所述第一域指示所述参考时间窗不是所述第一时间窗。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第二信令包括第二域,所述第二域指示所述参考时间窗是否是所述第二时间窗;所述第二信令中的所述第二域指示所述参考时间窗是所述第二时间窗。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第二处理机还发送第二无线信号;其中,所述第一信令包括所述第二无线信号的第二类调度信息;所述第一无线信号被用于确定所述第二无线信号是否被正确接收。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第二处理机还发送第二无线信号;其中,所述第一信令包括所述第二无线信号的第二类调度信息;针对所述第二无线信号的测量被用于确定所述第一无线信号。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第一信令被用于确定第一天线端口组,所述第二信令被用于确定第一端口组集合;所述第一端口组集合包括正整数个天线端口组,一个天线端口组包括正整数个天线端口;所述第一天线端口组属于所述第一端口组集合。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第一信令与所述第二信令在时域占用同一个时间片,所述同一个时间片包括正整数个多载波符号。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第二发送机还发送第三信令;其中,所述第三信令指示第一多载波符号组被占用,所述第一多载波符号组包括正整数个多载波符号;所述同一个时间片属于所述第一多载波符号组。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第一信令占用的时频资源与所述第二信令占用的时频资源属于同一个时频资源池,所述同一个时频资源池包括正整数个资源粒子。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第一信令被用于确定第一索引,所述第二信令被用于确定M个索引,所述第一索引是所述M个索引中的一个索 引;所述M是正整数。
作为一个实施例,和传统方案相比,本申请具备如下优势:
在非授权频谱中,在调度信令以外再使用一个触发信令来触发被调度的上行数据和上行控制信息的发送,解决了由于MCOT和LBT等因素的限制,基于调度的上行数据和上行控制信息的发送时间难以预先确定的问题。
通过在调度信令和触发信令之间建立关联,允许基站有选择的触发一部分上行发送,使基站能根据具体情况,比如LBT的结果或者波束赋型的方向等,更好控制的每个上行传输的发送时刻。
触发信令还可以被用于确定上行传输的发送天线端口,使基站能根据具体情况,比如LBT的结果或者波束赋型的方向等,为上行传输选择最优的发送天线端口。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令,第二信令和第一无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的NR(New Radio,新无线)节点和UE的示意图;
图5示出了根据本申请的一个实施例的无线传输的流程图;
图6示出了根据本申请的一个实施例的第一信令,第二信令和第一无线信号在时域上的时序关系的示意图;
图7示出了根据本申请的一个实施例的第一域和第二域的示意图;
图8示出了根据本申请的一个实施例的第一域的示意图;
图9示出了根据本申请的一个实施例的第一信令的示意图;
图10示出了根据本申请的一个实施例的第二信令的示意图;
图11示出了根据本申请的一个实施例的第一信令,第二信令,第一无线信号和第二无线信号在时域上的时序关系的示意图;
图12示出了根据本申请的一个实施例的天线端口和天线端口组的示意图;
图13示出了根据本申请的一个实施例的第一天线端口组和第一端口组集合之间关系的示意图;
图14示出了根据本申请的一个实施例的第一信令和第二信令所占用的时间资源之间关系的示意图;
图15示出了根据本申请的一个实施例的第一信令和第二信令所占用的时频资源之间关系的示意图;
图16示出了根据本申请的一个实施例的第一索引和M个索引之间关系的示意图;
图17示出了根据本申请的一个实施例的用于用户设备中的处理装置的结构框图;
图18示出了根据本申请的一个实施例的用于基站中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了第一信令,第二信令和第二一线信号的流程图;如附图1所示。
在实施例1中,本申请中的所述用户设备在第一子频带上的第一时间窗中接收第一信令;在第二子频带上的第二时间窗中监测第二信令;如果在所述第二子频带上的所述第二时间窗中成功接收到所述第二信令,在第三子频带上的第三时间窗中发送第一无线信号,否则放弃在所述第三子频带上的所述第三时间窗中发送所述第一无线信号。其中,所述第一信令包括所述第一无线信号的第一类调度信息;所述第一信令指示所述第三时间窗和所述第二时间窗之间的时间间隔;所述第一信令和所述第二信令相关联。
作为一个实施例,所述第一子频带和所述第二子频带完全重叠。
作为一个实施例,所述第一子频带和所述第二子频带部分重叠。
作为一个实施例,所述第一子频带和所述第二子频带相互正交(不重叠)。
作为一个实施例,所述第一子频带和所述第三子频带完全重叠。
作为一个实施例,所述第一子频带和所述第三子频带部分重叠。
作为一个实施例,所述第一子频带和所述第三子频带相互正交(不重叠)。
作为一个实施例,所述第二子频带和所述第三子频带完全重叠。
作为一个实施例,所述第二子频带和所述第三子频带部分重叠。
作为一个实施例,所述第二子频带和所述第三子频带相互正交(不重叠)。
作为一个实施例,所述第一子频带,所述第二子频带和所述第三子频带完全重叠。
作为一个实施例,所述第一子频带和所述第三子频带相互关联。
作为一个实施例,所述第三子频带是和所述第一子频带相关联的用于上行传输的频带,所述第一子频带是和所述第三子频带相关联的用于下行传输的频带。
作为一个实施例,所述第二子频带和所述第三子频带相互关联。
作为一个实施例,所述第三子频带是和所述第二子频带相关联的用于上行传输的频带,所述第二子频带是和所述第三子频带相关联的用于下行传输的频带。
作为一个实施例,所述第一子频带部署于非授权频谱。
作为一个实施例,所述第一子频带部署于授权频谱。
作为一个实施例,所述第一子频带包括一个载波(Carrier)。
作为一个实施例,所述第一子频带包括多个载波(Carrier)。
作为一个实施例,所述第一子频带包括一个载波中的一个BWP(Bandwidth Part,带宽区间)。
作为一个实施例,所述第一子频带包括一个载波中的多个BWP。
作为一个实施例,所述第二子频带部署于非授权频谱。
作为一个实施例,所述第二子频带部署于授权频谱。
作为一个实施例,所述第二子频带包括一个载波(Carrier)。
作为一个实施例,所述第二子频带包括多个载波(Carrier)。
作为一个实施例,所述第二子频带包括一个载波中的一个BWP。
作为一个实施例,所述第二子频带包括一个载波中的多个BWP。
作为一个实施例,所述第三子频带部署于非授权频谱。
作为一个实施例,所述第三子频带包括一个载波(Carrier)。
作为一个实施例,所述第三子频带包括多个载波(Carrier)。
作为一个实施例,所述第三子频带包括一个载波中的一个BWP。
作为一个实施例,所述第三子频带包括一个载波中的多个BWP。
作为一个实施例,所述第一信令显式指示所述第二子频带。
作为一个实施例,所述第一信令隐式指示所述第二子频带。
作为一个实施例,所述第一信令显式指示所述第三子频带。
作为一个实施例,所述第一信令隐式指示所述第三子频带。
作为一个实施例,所述第三时间窗在时域上晚于所述第二时间窗。
作为一个实施例,所述所述第三时间窗和所述第二时间窗之间的时间间隔是指:所述第 三时间窗的起始时刻和所述第二时间窗的结束时刻之间的时间间隔。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是动态信令。
作为一个实施例,所述第一信令包括DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第一信令是用于下行授予(DownLink Grant)的动态信令。
作为一个实施例,所述第一信令是用于上行授予(UpLink Grant)的动态信令。
作为一个实施例,所述第一信令是UE特定(UE specific)的。
作为一个实施例,所述第一信令的信令标识是C(Cell,小区)-RNTI(Radio Network Temporary Identifier,无线网络暂定标识)。
作为一个实施例,所述第一信令是被C-RNTI所标识的DCI。
作为一个实施例,C-RNTI被用于生成所述第一信令对应的DMRS(DeModulation Reference Signals,解调参考信号)的RS序列。
作为一个实施例,所述第一信令的CRC(Cyclic Redundancy Check,循环冗余校验)比特序列被C-RNTI所加扰。
作为一个实施例,所述第二信令是物理层信令。
作为一个实施例,所述第二信令是动态信令。
作为一个实施例,所述第二信令是小区公共的。
作为一个实施例,所述第二信令是终端组特定的,所述终端组包括正整数个终端,所述用户设备是所述终端组中的一个终端。
作为一个实施例,所述第二信令包括DCI。
作为一个实施例,所述第二信令的信令标识是CC(Component Carrier,分量载波)-RNTI。
作为一个实施例,所述第二信令是被CC-RNTI所标识的DCI。
作为一个实施例,CC-RNTI被用于生成所述第二信令对应的DMRS的RS序列。
作为一个实施例,所述第二信令的CRC比特序列被CC-RNTI所加扰。
作为一个实施例,所述第二信令的信令格式(format)是1C。
作为一个实施例,所述第二信令在正整数个时间单位内被重复发送,所述正整数个时间单位在时域上是相互正交(不重叠)的。
作为上述实施例的一个子实施例,所述正整数个时间单位中的任一时间单位包括正整数个多载波符号。
作为上述实施例的一个子实施例,所述正整数个时间单位在时域上是连续的。
作为上述实施例的一个子实施例,所述正整数个时间单位在时域上是不连续的。
作为上述实施例的一个子实施例,所述第二信令在所述正整数个时间单位内被相同的天线端口组发送。
作为上述实施例的一个子实施例,所述第二信令在所述正整数个时间单位中的不同时间单位内被不同的天线端口组发送。
作为上述实施例的一个子实施例,所述用户设备在所述正整数个时间单位中的不同时间单位内用不同的空间接收参数(Spatial Rx parameters)接收所述第二信令。
作为上述实施例的一个子实施例,所述用户设备在所述正整数个时间单位内用相同的空间接收参数(Spatial Rx parameters)接收所述第二信令。
作为一个实施例,如果所述用户设备在所述第二子频带上的所述第二时间窗中成功接收到所述第二信令,所述用户设备在所述第三子频带上的所述第三时间窗中发送所述第一无线信号;如果所述用户设备在所述第二子频带上的所述第二时间窗中没有成功接收到所述第二信令,所述用户设备在所述第三子频带上的所述第三时间窗中放弃发送所述第一无线信号。
作为一个实施例,所述监测是指基于盲检测的接收,即所述用户设备在所述第二子频带上的所述第二时间窗中接收信号并执行译码操作,如果根据CRC比特确定译码正确则判断在 所述第二子频带上的所述第二时间窗中成功接收到所述第二信令;否则判断在所述第二子频带上的所述第二时间窗中没有成功接收到所述第二信令。
作为一个实施例,所述监测是指基于相干检测的接收,即所述用户设备在所述第二子频带上的所述第二时间窗中用所述第二信令的DMRS对应的RS序列对所有无线信号进行相干接收,并测量所述相干接收后得到的信号的能量。如果所述所述相干接收后得到的信号的能量大于第一给定阈值则判断在所述第二子频带上的所述第二时间窗中成功接收到所述第二信令;否则判断在所述第二子频带上的所述第二时间窗中没有成功接收到所述第二信令。
作为一个实施例,所述监测是指基于能量检测的接收,即所述用户设备在所述第二时间窗中在所述第二子频带中感知(Sense)所有无线信号的能量,并在时间上平均,以获得接收能量。如果所述接收能量大于第二给定阈值则判断在所述第二子频带上的所述第二时间窗中成功接收到所述第二信令;否则判断在所述第二子频带上的所述第二时间窗中没有成功接收到所述第二信令。
作为一个实施例,所述第一无线信号包括上行数据。
作为一个实施例,所述第一无线信号包括UCI(Uplink control information,上行控制信息)。
作为一个实施例,所述第一无线信号包括HARQ-ACK(Acknowledgement,确认)。
作为一个实施例,所述第一无线信号包括SR(Scheduling Request,调度请求)。
作为一个实施例,所述第一无线信号包括CRI(Channel-state information reference signals Resource Indicator,信道状态信息参考信号资源标识)。
作为一个实施例,所述第一无线信号包括CSI(Channel State Information,信道状态信息)。
作为上述实施例的一个子实施例,所述CSI包括CRI,PMI(Precoding Matrix Indicator,预编码矩阵标识),RSRP(Reference Signal Received Power,参考信号接收功率),RSRQ(Reference Signal Received Quality,参考信号接收质量)和CQI(Channel Quality Indicator,信道质量标识)中的一种或多种。
作为一个实施例,所述第一无线信号的第一类调度信息包括{MCS(Modulation and Coding Scheme,调制编码方式),DMRS的配置信息,HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号,RV(Redundancy Vers ion,冗余版本),NDI(New Data Indicator,新数据指示),所占用的时域资源,所占用的频域资源,所对应的空间发送参数(Spatial Tx parameters),所对应的空间接收参数(Spatial Rx parameters)}中的至少之一。
作为上述实施例的一个子实施例,所述第一无线信号包括上行数据。
作为一个实施例,所述第一无线信号的第一类调度信息包括{所占用的时域资源,所占用的频域资源,所占用的码域资源,循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码),DMRS的配置信息,所对应的空间发送参数(Spatial Tx parameters),所对应的空间接收参数(Spatial Rx parameters),PUCCH格式(format),UCI内容}中的至少之一。
作为上述实施例的一个子实施例,所述第一无线信号包括上行控制信息。
作为一个实施例,DMRS的配置信息包括{RS序列,映射方式,DMRS类型,所占用的时域资源,所占用的频域资源,所占用的码域资源,循环位移量(cyclic shift),OCC}中的一种或多种。
作为一个实施例,所述第一信令显式指示所述第三时间窗和所述第二时间窗之间的时间间隔。
作为一个实施例,所述第一信令隐式指示所述第三时间窗和所述第二时间窗之间的时间间隔。
作为一个实施例,所述所述第三时间窗和所述第二时间窗之间的时间间隔是非负整数个时隙(slot)。
作为一个实施例,所述所述第三时间窗和所述第二时间窗之间的时间间隔是非负整数个子帧(sub-frame)。
作为一个实施例,所述所述第三时间窗和所述第二时间窗之间的时间间隔是非负整数个多载波符号。
作为一个实施例,所述第二信令被用于确定所述第一无线信号的发送天线端口。
作为一个实施例,所述第二信令显式指示所述第一无线信号的发送天线端口。
作为一个实施例,所述第二信令隐式指示所述第一无线信号的发送天线端口。
作为一个实施例,所述第一信令指示K个天线端口,所述K是大于1的正整数;所述第一无线信号的发送天线端口是所述K个天线端口中的一个天线端口,所述第二信令被用于从所述K个天线端口中确定所述第一无线信号的发送天线端口。
作为一个实施例,所述第二信令的发送天线端口被用于确定所述第一无线信号的发送天线端口。
作为一个实施例,所述第二信令占用的时频资源被用于确定所述第一无线信号的发送天线端口。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,E-UTRAN-NR(演进UMTS陆地无线电接入网络-新无线)202,5G-CN(5G-CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。其中,UMTS对应通用移动通信业务(Universal Mobile Telecommunications System)。EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。E-UTRAN-NR202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由X2接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5G-CN/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1接口连接到5G-CN/EPC210。5G-CN/EPC210包括MME 211、其它MME214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME211是处理UE201与5G-CN/EPC210之间的信令的控制节点。大体上,MME211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个实施例,所述gNB203对应本申请中的所述基站。
作为一个实施例,所述UE201对应本申请中的所述用户设备。
作为一个实施例,所述UE201支持在非授权频谱上进行数据传输的无线通信。
作为一个实施例,所述gNB203支持在非授权频谱上进行数据传输的无线通信。
实施例3
实施例3示例了用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,附图3用三个层展示用于UE和gNB的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干协议层,包括终止于网络侧上的P-GW213处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述用户设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述基站。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第二信令生成于所述PHY301。
作为一个实施例,本申请中的所述第二信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第三信令生成于所述PHY301。
作为一个实施例,本申请中的所述第三信令生成于所述MAC子层302。
实施例4
实施例4示例了NR节点和UE的示意图,如附图4所示。附图4是在接入网络中相互通信的UE450以及gNB410的框图。
gNB410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
UE450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在DL(Downlink,下行)中,在gNB410处,来自核心网络的上层数据包被提供到控制器 /处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对UE450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到UE450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进UE450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在DL(Downlink,下行)中,在UE450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以UE450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由gNB410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在UL(Uplink,上行)中,在UE450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述gNB410处的发送功能,控制器/处理器459基于gNB410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到gNB410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在UL(Uplink,上行)中,gNB410处的功能类似于在DL中所描述的UE450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在UL中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据 包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述UE450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述UE450装置至少:在本申请中的所述第一子频带上的所述第一时间窗中接收本申请中的所述第一信令;在本申请中的所述第二子频带上的所述第二时间窗中监测本申请中的所述第二信令;如果在所述第二子频带上的所述第二时间窗中成功接收到所述第二信令,在本申请中的所述第三子频带上的所述第三时间窗中发送本申请中的所述第一无线信号,否则放弃在所述第三子频带上的所述第三时间窗中发送所述第一无线信号。其中,所述第一信令包括所述第一无线信号的第一类调度信息;所述第一信令指示所述第三时间窗和所述第二时间窗之间的时间间隔;所述第一信令和所述第二信令相关联。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在本申请中的所述第一子频带上的所述第一时间窗中接收本申请中的所述第一信令;在本申请中的所述第二子频带上的所述第二时间窗中监测本申请中的所述第二信令;如果在所述第二子频带上的所述第二时间窗中成功接收到所述第二信令,在本申请中的所述第三子频带上的所述第三时间窗中发送本申请中的所述第一无线信号,否则放弃在所述第三子频带上的所述第三时间窗中发送所述第一无线信号。其中,所述第一信令包括所述第一无线信号的第一类调度信息;所述第一信令指示所述第三时间窗和所述第二时间窗之间的时间间隔;所述第一信令和所述第二信令相关联。
作为一个实施例,所述gNB410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:在本申请中的所述第一子频带上的所述第一时间窗中发送本申请中的所述第一信令;在本申请中的所述第二子频带上的所述第二时间窗中发送本申请中的所述第二信令,或者在所述第二子频带上的所述第二时间窗中放弃发送所述第二信令;如果在所述第二子频带上的所述第二时间窗中发送所述第二信令,在本申请中的所述第三子频带上的所述第三时间窗中接收本申请中的所述第一无线信号,否则放弃在所述第三子频带上的所述第三时间窗中接收所述第一无线信号。其中,所述第一信令包括所述第一无线信号的第一类调度信息;所述第一信令指示所述第三时间窗和所述第二时间窗之间的时间间隔;所述第一信令和所述第二信令相关联。
作为一个实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在本申请中的所述第一子频带上的所述第一时间窗中发送本申请中的所述第一信令;在本申请中的所述第二子频带上的所述第二时间窗中发送本申请中的所述第二信令,或者在所述第二子频带上的所述第二时间窗中放弃发送所述第二信令;如果在所述第二子频带上的所述第二时间窗中发送所述第二信令,在本申请中的所述第三子频带上的所述第三时间窗中接收本申请中的所述第一无线信号,否则放弃在所述第三子频带上的所述第三时间窗中接收所述第一无线信号。其中,所述第一信令包括所述第一无线信号的第一类调度信息;所述第一信令指示所述第三时间窗和所述第二时间窗之间的时间间隔;所述第一信令和所述第二信令相关联
作为一个实施例,所述gNB410对应本申请中的所述基站。
作为一个实施例,所述UE450对应本申请中的所述用户设备。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在本申请中的所述第一子频带上的所述第一时间窗中接收本申请中的所述第一信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第一子频带上的 所述第一时间窗中发送本申请中的所述第一信令。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在本申请中的所述第二子频带上的所述第二时间窗中监测本申请中的所述第二信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第二子频带上的所述第二时间窗中发送本申请中的所述第二信令。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于判断是否在本申请中的所述第二子频带上的所述第二时间窗中成功接收到本申请中的所述第二信令。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第三子频带上的所述第三时间窗中接收本申请中的所述第一无线信号;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在本申请中的所述第三子频带上的所述第三时间窗中发送所述第一无线信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第二无线信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第二无线信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第三信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第三信令。
实施例5
实施例5示例了无线传输的流程图,如附图5所示。在附图5中,基站N1是用户设备U2的服务小区维持基站。附图5中,方框F1至方框F5中的步骤分别是可选的。
对于N1,在步骤S101中发送第三信令;在步骤S11中在第一子频带上的第一时间窗中发送第一信令;在步骤S102中发送第二无线信号;在步骤S103中在第二子频带上的第二时间窗中发送第二信令;在步骤S104中在第三子频带上的第三时间窗中接收第一无线信号。
对于U2,在步骤S201中接收第三信令;在步骤S21中在第一子频带上的第一时间窗中接收第一信令;在步骤S202中接收第二无线信号;在步骤S22中在第二子频带上的第二时间窗中监测第二信令;在步骤S203中在第三子频带上的第三时间窗中发送第一无线信号。
在实施例5中,如果所述U2在所述第二子频带上的所述第二时间窗中成功接收到所述第二信令,所述U2在所述第三子频带上的所述第三时间窗中发送所述第一无线信号;否则所述U2放弃在所述第三子频带上的所述第三时间窗中发送所述第一无线信号。如果所述N1在所述第二子频带上的所述第二时间窗中发送所述第二信令,所述N1在所述第三子频带上的所述第三时间窗中接收所述第一无线信号,否则所述N1放弃在所述第三子频带上的所述第三时间窗中接收所述第一无线信号。所述第一信令包括所述第一无线信号的第一类调度信息;所述第一信令指示所述第三时间窗和所述第二时间窗之间的时间间隔;所述第一信令和所述第二信令相关联。所述第一信令包括所述第二无线信号的第二类调度信息;所述第一无线信号被 所述N1用于确定所述第二无线信号是否被正确接收,或者针对所述第二无线信号的测量被所述U2用于确定所述第一无线信号。
作为一个实施例,如果所述U2在所述第二子频带上的所述第二时间窗中成功接收到所述第二信令,附图5中的方框F4存在;如果所述U2在所述第二子频带上的所述第二时间窗中没有成功接收到所述第二信令,附图5中的方框F4不存在。
作为一个实施例,如果附图5中的方框F3存在,附图5中的方框F5也存在;如果附图5中的方框F3不存在,附图5中的方框F5也不存在。
作为一个实施例,附图5中的方框F3和方框F5同时存在或者同时不存在。
作为一个实施例,所述第一无线信号被所述N1用于确定所述第二无线信号是否被正确接收。
作为一个实施例,针对所述第二无线信号的测量被所述U2用于确定所述第一无线信号。
作为一个实施例,针对所述第二无线信号的测量被所述U2用于确定所述第一无线信号携带的UCI。
作为一个实施例,所述第一信令指示所述第三时间窗和参考时间窗之间的时间间隔;所述第一信令包括第一域,所述第一域指示所述参考时间窗是否是所述第一时间窗;所述第一信令中的所述第一域指示所述参考时间窗不是所述第一时间窗。
作为一个实施例,所述第二信令包括第二域,所述第二域指示所述参考时间窗是否是所述第二时间窗;所述第二信令中的所述第二域指示所述参考时间窗是所述第二时间窗。
作为一个实施例,所述第二无线信号的第二类调度信息包括{MCS,DMRS的配置信息,HARQ进程号,RV,NDI,所占用的时域资源,所占用的频域资源,所对应的空间发送参数(Spatial Tx parameters),所对应的空间接收参数(Spatial Rx parameters)}中的至少之一。
作为上述实施例的一个子实施例,所述第二无线信号包括下行数据。
作为一个实施例,所述第二无线信号的第二类调度信息包括{所占用的时域资源,所占用的频域资源,所占用的码域资源,RS序列,循环位移量(cyclic shift),OCC,所对应的空间发送参数(Spatial Tx parameters),所对应的空间接收参数(Spatial Rx parameters)}中的至少之一。
作为上述实施例的一个子实施例,所述第二无线信号包括下行参考信号。
作为一个实施例,所述第二无线信号在所述第一子频带上传输。
作为一个实施例,所述第二无线信号在所述第二子频带上传输。
作为一个实施例,所述第二无线信号在所述第三子频带上传输。
作为一个实施例,所述第二无线信号在所述第一子频带,所述第二子频带和所述第三子频带以外的频带上传输。
作为一个实施例,所述第二无线信号在部署于非授权频谱的频带上传输。
作为一个实施例,所述第二无线信号在部署于授权频谱的频带上传输。
作为一个实施例,所述第一信令被所述U2用于确定第一天线端口组,所述第二信令被所述U2用于确定第一端口组集合;所述第一端口组集合包括正整数个天线端口组,一个天线端口组包括正整数个天线端口;所述第一天线端口组属于所述第一端口组集合。
作为一个实施例,所述所述第一信令和所述第二信令相关联是指:所述第一天线端口组属于所述第一端口组集合。
作为一个实施例,所述第一信令与所述第二信令在时域占用同一个时间片,所述同一个时间片包括正整数个多载波符号。
作为一个实施例,所述所述第一信令和所述第二信令相关联是指:所述第一信令与所述第二信令在时域占用同一个时间片。
作为一个实施例,所述第三信令指示第一多载波符号组被占用,所述第一多载波符号组包括正整数个多载波符号;所述同一个时间片属于所述第一多载波符号组。
作为一个实施例,所述第三信令是物理层信令。
作为一个实施例,所述第三信令是动态信令。
作为一个实施例,所述第三信令是小区公共的。
作为一个实施例,所述第三信令是终端组特定的,所述终端组包括正整数个终端,所述U2是所述终端组中的一个终端。
作为一个实施例,所述第三信令包括DCI。
作为一个实施例,所述第三信令的信令标识是CC-RNTI。
作为一个实施例,所述第三信令是被CC-RNTI所标识的DCI。
作为一个实施例,CC-RNTI被用于生成所述第三信令对应的DMRS的RS序列。
作为一个实施例,所述第三信令的CRC比特序列被CC-RNTI所加扰。
作为一个实施例,所述第三信令的信令格式(format)是1C。
作为一个实施例,所述第三信令在所述第一子频带上传输。
作为一个实施例,所述第三信令在所述第二子频带上传输。
作为一个实施例,所述第三信令在所述第三子频带上传输。
作为一个实施例,所述第三信令在所述第一子频带,所述第二子频带和所述第三子频带以外的频带上传输。
作为一个实施例,所述第三信令在部署于非授权频谱的频带上传输。
作为一个实施例,所述第三信令在部署于授权频谱的频带上传输。
作为一个实施例,所述第一信令占用的时频资源与所述第二信令占用的时频资源属于同一个时频资源池,所述同一个时频资源池包括正整数个资源粒子。
作为一个实施例,所述所述第一信令和所述第二信令相关联是指:所述第一信令占用的时频资源与所述第二信令占用的时频资源属于同一个时频资源池。
作为一个实施例,所述第一信令被所述U2用于确定第一索引,所述第二信令被所述U2用于确定M个索引,所述第一索引是所述M个索引中的一个索引;所述M是正整数。
作为一个实施例,所述所述第一信令和所述第二信令相关联是指:所述第一索引是所述M个索引中的一个索引。
作为一个实施例,所述第一信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH(Physical Downlink Control CHannel,物理下行控制信道)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH(short PDCCH,短PDCCH)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH(New Radio PDCCH,新无线PDCCH)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH(Narrow Band PDCCH,窄带PDCCH)。
作为一个实施例,所述第二信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH。
作为一个实施例,所述第一无线信号在上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。
作为上述实施例的一个子实施例,所述上行物理层数据信道是PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)。
作为上述实施例的一个子实施例,所述上行物理层数据信道是sPUSCH(short PUSCH, 短PUSCH)。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NR-PUSCH(New Radio PUSCH,新无线PUSCH)。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NB-PUSCH(Narrow Band PUSCH,窄带PUSCH)。
作为一个实施例,所述第一无线信号对应传输信道是UL-SCH(Uplink Shared Channel,上行共享信道)。
作为一个实施例,所述第一无线信号在上行物理层控制信道(即仅能用于承载物理层信令的上行信道)上传输。
作为上述实施例的一个子实施例,所述上行物理层控制信道是PUCCH(Physical Uplink Control CHannel,物理上行控制信道)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是sPUCCH(short PUCCH,短PUCCH)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是NR-PUCCH(New Radio PUCCH,新无线PUCCH)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是NB-PUCCH(Narrow Band PUCCH,窄带PUCCH)。
作为一个实施例,所述第二无线信号在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH(short PDSCH,短PDSCH)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH(New Radio PDSCH,新无线PDSCH)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH(Narrow Band PDSCH,窄带PDSCH)。
作为一个实施例,所述第三信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH。
实施例6
实施例6示例了第一信令,第二信令和第一无线信号在时域上的时序关系的示意图;如附图6所示。
在实施例6中,本申请中的所述用户设备在本申请中的所述第一时间窗中接收所述第一信令,在本申请中的所述第二时间窗中接收所述第二信令,在本申请中的所述第三时间窗中发送所述第一无线信号。所述第二时间窗的起始时刻不早于所述第一时间窗的结束时刻,所述第三时间窗的起始时刻不早于所述第二时间窗的结束时刻。
作为一个实施例,所述第一时间窗在时域上包括正整数个多载波符号。
作为一个实施例,所述第一时间窗在时域上包括正整数个连续的多载波符号。
作为一个实施例,所述第一时间窗由14个连续的多载波符号组成。
作为一个实施例,所述第一时间窗是一个时隙(slot)。
作为一个实施例,所述第一时间窗是所述第一信令所占用的时隙(slot)。
作为一个实施例,所述第一时间窗是一个子帧(sub-frame)。
作为一个实施例,所述第一时间窗是所述第一信令所占用的子帧(sub-frame)。
作为一个实施例,所述第一信令不占用所述第一时间窗中最晚的多载波符号。
作为一个实施例,所述第二时间窗在时域上包括正整数个多载波符号。
作为一个实施例,所述第二时间窗在时域上包括正整数个连续的多载波符号。
作为一个实施例,所述第二时间窗由14个连续的多载波符号组成。
作为一个实施例,所述第二时间窗是一个时隙(slot)。
作为一个实施例,所述第二时间窗是所述第二信令所占用的时隙(slot)。
作为一个实施例,所述第二时间窗是一个子帧(sub-frame)。
作为一个实施例,所述第二时间窗是所述第二信令所占用的子帧(sub-frame)。
作为一个实施例,所述第二信令不占用所述第二时间窗中最晚的多载波符号。
作为一个实施例,所述第三时间窗在时域上包括正整数个多载波符号。
作为一个实施例,所述第三时间窗在时域上包括正整数个连续的多载波符号。
作为一个实施例,所述第三时间窗由14个连续的多载波符号组成。
作为一个实施例,所述第三时间窗是一个时隙(slot)。
作为一个实施例,所述第三时间窗是所述第一无线信号所占用的时隙(slot)。
作为一个实施例,所述第三时间窗是一个子帧(sub-frame)。
作为一个实施例,所述第三时间窗是所述第一无线信号所占用的子帧(sub-frame)。
作为一个实施例,所述第一无线信号不占用所述第三时间窗中最早的多载波符号。
作为一个实施例,所述第二时间窗的起始时刻不早于所述第一时间窗的结束时刻。
作为一个实施例,所述第一时间窗和所述第二时间窗之间的时间间隔小于第一阈值,所述第一信令被用于确定所述第一阈值。
作为上述实施例的一个子实施例,所述第一阈值的单位是时隙(slot)。
作为上述实施例的一个子实施例,所述第一阈值的单位是子帧(sub-frame)。
作为上述实施例的一个子实施例,所述第一阈值是非负整数。
作为一个实施例,所述第三时间窗的起始时刻不早于所述第二时间窗的结束时刻。
作为一个实施例,所述第一信令指示所述第三时间窗和所述第二时间窗之间的时间间隔。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
实施例7
实施例7示例了第一域和第二域的示意图;如附图7所示。
在实施例7中,第一给定信令包括所述第一域,第二给定信令包括所述第二域,所述第二给定信令和所述第一给定信令相关联。所述第一给定信令包括给定无线信号的调度信息,所述第一给定信令指示给定偏移量,所述给定偏移量是第三给定时间窗和参考给定时间窗之间的时间间隔。所述参考给定时间窗是第一给定时间窗或者第二给定时间窗。所述第一给定信令中的所述第一域被用于确定所述参考给定时间窗是否是所述第一给定时间窗;当所述第一给定信令中的所述第一域被用于确定所述参考给定时间窗不是所述第一给定时间窗时,所述第二给定信令中的所述第二域被用于确定所述参考给定时间窗是否是所述第二给定时间窗。所述第一给定信令,所述第二给定信令和所述给定无线信号所占用的时间资源分别属于所述第一给定时间窗,所述第二给定时间窗和所述第三给定时间窗。
如果所述第一给定信令中的所述第一域等于第一数值,所述参考给定时间窗是所述第一给定时间窗;如果所述第一给定信令中的所述第一域不等于所述第一数值,所述参考给定时间窗不是所述第一给定时间窗。在所述第一给定信令中的所述第一域不等于所述第一数值的 情况下,如果所述第二给定信令中的所述第二域等于第二数值,所述参考给定时间窗是所述第二给定时间窗;如果所述第二给定信令中的所述第二域不等于所述第二数值,所述参考给定时间窗不是所述第二给定时间窗。
在实施例7中,所述第一给定信令中的所述第一域不等于所述第一数值,所述第二给定信令中的所述第二域等于所述第二数值,所述参考给定时间窗是所述第二给定时间窗,所述给定偏移量是所述第三给定时间窗和所述第二给定时间窗之间的时间间隔。
作为一个实施例,所述第一数值是非负整数。
作为一个实施例,所述第一数值等于0。
作为一个实施例,所述第一数值等于1。
作为一个实施例,如果所述第一域等于所述第一数值,本申请中的所述参考时间窗是本申请中的所述第一时间窗;否则所述参考时间窗不是所述第一时间窗。
作为一个实施例,本申请中的所述第一信令中的所述第一域不等于所述第一数值。
作为一个实施例,本申请中的所述第一信令中的所述第一域被用于确定本申请中的所述参考时间窗不是本申请中的所述第一时间窗。
作为一个实施例,所述第二数值是非负整数。
作为一个实施例,所述第二数值等于1。
作为一个实施例,所述第二数值等于0。
作为一个实施例,如果所述第二域等于所述第二数值,本申请中的所述参考时间窗是本申请中的所述第二时间窗;否则所述参考时间窗不是所述第二时间窗。
作为一个实施例,本申请中的所述第二信令中的所述第二域等于所述第二数值。
作为一个实施例,本申请中的所述第二信令中的所述第二域被用于确定本申请中的所述参考时间窗是本申请中的所述第二时间窗。
作为一个实施例,所述给定偏移量是非负整数。
作为一个实施例,所述给定偏移量的单位是时隙(slot)。
作为一个实施例,所述给定偏移量的单位是子帧(sub-frame)。
作为一个实施例,所述给定偏移量的单位是毫秒(ms)。
作为一个实施例,所述给定偏移量的单位是多载波符号。
作为一个实施例,所述第一给定时间窗是一个时隙(slot)。
作为一个实施例,所述第一给定时间窗是所述第一给定信令所占用的时隙(slot)。
作为一个实施例,所述第一给定时间窗是一个子帧(sub-frame)。
作为一个实施例,所述第一给定时间窗是所述第一给定信令所占用的子帧(sub-frame)。
作为一个实施例,所述第二给定时间窗是一个时隙(slot)。
作为一个实施例,所述第二给定时间窗是所述第二给定信令所占用的时隙(slot)。
作为一个实施例,所述第二给定时间窗是一个子帧(sub-frame)。
作为一个实施例,所述第二给定时间窗是所述第二给定信令所占用的子帧(sub-frame)。
作为一个实施例,所述第三给定时间窗是一个时隙(slot)。
作为一个实施例,所述第三给定时间窗是所述给定无线信号所占用的时隙(slot)。
作为一个实施例,所述第三给定时间窗是一个子帧(sub-frame)。
作为一个实施例,所述第三给定时间窗是所述给定无线信号所占用的子帧(sub-frame)。
作为一个实施例,所述给定无线信号在部署于非授权频谱的频带上传输。
作为一个实施例,所述给定无线信号包括上行数据。
作为一个实施例,所述给定无线信号包括UCI。
作为一个实施例,所述第一给定信令是用于下行授予(DownLink Grant)的动态信令。
作为一个实施例,所述第一给定信令是用于上行授予(UpLink Grant)的动态信令。
作为一个实施例,所述第一给定信令是UE特定(UE specific)的。
作为一个实施例,所述第二给定信令是小区公共的。
作为一个实施例,所述第二给定信令是终端组特定的,所述给定无线信号的发送者是所述终端组中的一个终端。
作为一个实施例,所述第二给定信令的信令标识是CC-RNTI。
作为一个实施例,第三给定信令和所述第一给定信令相关联,所述第三给定信令所占用的时间资源属于第四给定时间窗,所述第三给定信令包括所述第二域,所述第三给定信令中的所述第二域不等于所述第二数值。所述第三给定时间窗在时域上的位置和所述第四时间窗无关。
作为一个实施例,所述第三给定信令是小区公共的。
作为一个实施例,所述第三给定信令是终端组特定的。
作为一个实施例,所述第三给定信令的信令标识是CC-RNTI。
作为一个实施例,所述给定无线信号的发送者在所述第一给定时间窗和所述第二给定时间窗之间没有接收到和所述第一给定信令相关联,包括所述第二域,并且所包括的所述第二域等于所述第二数值的信令。
作为一个实施例,本申请中的所述用户设备在本申请中的所述第一时间窗和本申请中的所述第二时间窗之间没有接收到和本申请中的所述第一信令相关联,包括所述第二域,并且所包括的所述第二域等于所述第二数值的信令。
作为一个实施例,所述第二给定时间窗在时域上的索引为n,所述第一给定时间窗在时域上的索引为n-p,所述第三给定时间窗在时域上的索引为n+k;其中所述n是非负整数,所述k是所述给定偏移量,所述p是不大于第一阈值的正整数,所述第一给定信令指示所述第一阈值。
作为上述实施例的一个子实施例,所述第一阈值是正整数。
作为上述实施例的一个子实施例,所述第一阈值的单位是时隙(slot)。
作为上述实施例的一个子实施例,所述第一阈值的单位是子帧(sub-frame)。
作为上述实施例的一个子实施例,所述第一阈值的单位是毫秒(ms)。
作为上述实施例的一个子实施例,所述第一阈值的单位是多载波符号。
实施例8
实施例8示例了第一域的示意图;如附图8所示。
在实施例8中,第一给定信令包括所述第一域,所述第一给定信令包括给定无线信号的调度信息,所述第一给定信令指示给定偏移量,所述给定偏移量是第三给定时间窗和参考给定时间窗之间的时间间隔。所述第一给定信令中的所述第一域被用于确定所述参考给定时间窗是否是所述第一给定时间窗。所述第一给定信令和所述给定无线信号所占用的时间资源分别属于所述第一给定时间窗和所述第三给定时间窗。
如果所述第一给定信令中的所述第一域等于第一数值,所述参考给定时间窗是所述第一给定时间窗;如果所述第一给定信令中的所述第一域不等于所述第一数值,所述参考给定时间窗不是所述第一给定时间窗。
在实施例8中,所述第一给定信令中的所述第一域等于所述第一数值,所述参考给定时间窗是所述第一给定时间窗,所述给定偏移量是所述第三给定时间窗和所述第一给定时间窗之间的时间间隔。
作为一个实施例,所述第一给定时间窗在时域上的索引为n,所述第三给定时间窗在时域上的索引为n+k;其中所述n是非负整数,所述k是所述给定偏移量。
实施例9
实施例9示例了第一信令的示意图;如附图9所示。
在实施例9中,所述第一信令包括本申请中的所述第一无线信号的调度信息。所述第一信令和所述第一无线信号所占用的时间资源分别属于本申请中的所述第一时间窗和所述第三时间窗。所述第一信令包括本申请中的所述第一域和所述第三域。所述第一信令中的所述第三域指示所述第三时间窗和参考时间窗之间的时间间隔,所述第一域指示所述参考时间窗是 否是所述第一时间窗,所述第一信令中的所述第一域指示所述参考时间窗不是所述第一时间窗。
作为一个实施例,所述第一域是PUSCH trigger A(PUSCH触发A)域,所述PUSCH trigger A域的具体定义参见3GPP TS36.212中的5.3.3章节和3GPP TS36.213中的8章节。
作为一个实施例,所述第一域由1个比特组成。
作为一个实施例,所述第一域由2个比特组成。
作为一个实施例,所述第一信令中的所述第三域指示所述第三时间窗。
作为一个实施例,所述第一信令中的所述第三域指示所述第三时间窗和本申请中的所述第二时间窗之间的时间间隔。
作为一个实施例,所述所述第三时间窗和参考时间窗之间的时间间隔是指:所述第三时间窗的起始时刻和所述参考时间窗之间的结束时刻之间的时间间隔。
作为一个实施例,所述第三域由1个比特组成。
作为一个实施例,所述第三域由2个比特组成。
作为一个实施例,所述第三域由3个比特组成。
作为一个实施例,所述第三域由4个比特组成。
作为一个实施例,所述第三域是Timing offset(时间偏移量)域,所述Timing offset的具体定义参见3GPP TS36.212中的5.3.3章节和3GPP TS36.213中的8章节。
作为上述实施例的一个子实施例,所述第一无线信号包括上行数据。
作为上述实施例的一个子实施例,所述第一无线信号在上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。
作为上述实施例的一个子实施例,所述第一信令是用于上行授予的动态信令。
作为一个实施例,所述第三域中的前S个比特指示所述第三时间窗和所述参考时间窗之间的时间间隔,所述S是正整数。
作为上述实施例的一个子实施例,所述S等于2。
作为一个实施例,所述第三域是Time domain resource assignment(时域资源分配)域,所述Time domain resource assignment域的具体定义参见3GPP TS38.212中的7.3章节和3GPP TS38.214中的5.1章节。
作为上述实施例的一个子实施例,所述第一无线信号包括上行数据。
作为上述实施例的一个子实施例,所述第一无线信号在上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。
作为上述实施例的一个子实施例,所述第一信令是用于上行授予的动态信令。
作为一个实施例,所述第三域是PDSCH-to-HARQ_feedback timing indicator(PUSCH-HARQ反馈时间指示)域,所述PDSCH-to-HARQ_feedback timing indicator域的具体定义参见3GPP TS38.212中的7.3章节和3GPP TS38.213中的9.2章节。
作为上述实施例的一个子实施例,所述第一无线信号包括HARQ-ACK。
作为上述实施例的一个子实施例,所述第一无线信号在上行物理层控制信道(即仅能用于承载物理层信令的上行信道)上传输。
作为上述实施例的一个子实施例,所述第一信令是用于下行授予的动态信令。
作为一个实施例,所述第一信令指示第一偏移量,所述第三时间窗和所述参考时间窗之间的时间间隔是所述第一偏移量。
作为上述实施例的一个子实施例,所述第一信令中的所述第三域指示所述第一偏移量。
作为上述实施例的一个子实施例,所述第三时间窗和所述第二时间窗之间的时间间隔是所述第一偏移量。
作为上述实施例的一个子实施例,所述第一偏移量是非负整数。
作为上述实施例的一个子实施例,所述第一偏移量的单位是时隙(slot)。
作为上述实施例的一个子实施例,所述第一偏移量的单位是子帧(sub-frame)。
作为上述实施例的一个子实施例,所述第一偏移量的单位是毫秒(ms)。
作为上述实施例的一个子实施例,所述第一偏移量的单位是多载波符号。
实施例10
实施例10示例了第二信令的示意图;如附图10所示。
在实施例10中,所述第二信令和本申请中的所述第一信令相关联;所述第一信令和所述第二信令分别包括本申请中的所述第一域和所述第二域。所述第一信令包括本申请中的所述第一无线信号的调度信息。所述第一信令,所述第二信令和所述第一无线信号所占用的时间资源分别属于本申请中的所述第一时间窗,所述第二时间窗和所述第三时间窗。所述第一信令指示所述第三时间窗和参考时间窗之间的时间间隔。所述第一信令中的所述第一域指示所述参考时间窗不是所述第一时间窗。当所述第一信令中的所述第一域指示所述参考时间窗不是所述第一时间窗,所述第二域指示所述参考时间窗是否是所述第二时间窗。所述第二信令中的所述第二域指示所述参考时间窗是所述第二时间窗。
作为一个实施例,所述第二域是PUSCH trigger B(PUSCH触发B)域,所述PUSCH trigger B域的具体定义参见3GPP TS36.212中的5.3.3章节和3GPP TS36.213中的8章节。
作为一个实施例,所述第二域由1个比特组成。
作为一个实施例,所述第二域由2个比特组成。
实施例11
实施例11示例了第一信令,第二信令,第一无线信号和第二无线信号在时域上的时序关系的示意图;如附图11所示。
在实施例11中,所述第一信令包括所述第一无线信号的第一类调度信息和所述第二无线信号的第二类调度信息。所述第二信令所占用的时间资源被用于确定所述第一无线信号所占用的时间资源。所述第一信令,所述第二信令和所述第一无线信号所占用的时间资源分别属于本申请中的所述第一时间窗,所述第二时间窗和所述第三时间窗。所述第二无线信号被用于确定所述第一无线信号。所述第二时间窗在时域上晚于所述第一时间窗,所述第三时间窗在时域上晚于所述第二时间窗和所述第二无线信号占用的时间资源。
作为一个实施例,所述第二无线信号包括下行数据。
作为上述实施例的一个子实施例,所述第一无线信号包括HARQ-ACK。
作为一个实施例,所述第二无线信号包括下行参考信号。
作为上述实施例的一个子实施例,所述第一无线信号包括CSI。
作为一个实施例,所述第二无线信号包括CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)。
作为一个实施例,所述第二无线信号包括SS(Synchronization Signal,同步信号)/PBCH(Physical Broadcast CHannel,物理广播信道)块(SS/PBCH block)。
实施例12
实施例12示例了天线端口和天线端口组的示意图;如附图12所示。
在实施例12中,一个天线端口组包括正整数个天线端口;一个天线端口由正整数个天线组中的天线通过天线虚拟化(Virtualization)叠加而成;一个天线组包括正整数根天线。一个天线组通过一个RF(Radio Frequency,射频)chain(链)连接到基带处理器,不同天线组对应不同的RF chain。给定天线端口包括的正整数个天线组内的所有天线到所述给定天线端口的映射系数组成所述给定天线端口对应的波束赋型向量。所述给定天线端口包括的正整数个天线组内的任一给定天线组包括的多根天线到所述给定天线端口的映射系数组成所述给定天线组的模拟波束赋型向量。所述给定天线端口包括的正整数个天线组对应的模拟波束赋型向量对角排列构成所述给定天线端口对应的模拟波束赋型矩阵。所述给定天线端口包括的正整数个天线组到所述给定天线端口的映射系数组成所述给定天线端口对应的数字波束赋型向量。所述给定天线端口对应的波束赋型向量是由所述给定天线端口对应的模拟波束赋型矩阵和数字波束赋型向量的乘积得到的。一个天线端口组中的不同天线 端口由相同的天线组构成,同一个天线端口组中的不同天线端口对应不同的波束赋型向量。
附图12中示出了两个天线端口组:天线端口组#0和天线端口组#1。其中,所述天线端口组#0由天线组#0构成,所述天线端口组#1由天线组#1和天线组#2构成。所述天线组#0中的多个天线到所述天线端口组#0中的一个天线端口的映射系数组成模拟波束赋型向量#0,所述天线组#0到所述天线端口组#0中的一个天线端口的映射系数组成数字波束赋型向量#0。所述天线组#1中的多个天线和所述天线组#2中的多个天线到所述天线端口组#1中的一个天线端口的映射系数分别组成模拟波束赋型向量#1和模拟波束赋型向量#2,所述天线组#1和所述天线组#2到所述天线端口组#1中的一个天线端口的映射系数组成数字波束赋型向量#1。所述天线端口组#0中的一个天线端口对应的波束赋型向量是由所述模拟波束赋型向量#0和所述数字波束赋型向量#0的乘积得到的。所述天线端口组#1中的一个天线端口对应的波束赋型向量是由所述模拟波束赋型向量#1和所述模拟波束赋型向量#2对角排列构成的模拟波束赋型矩阵和所述数字波束赋型向量#1的乘积得到的。
作为一个实施例,一个天线端口组只包括一个天线组,即一个RF chain,例如,附图12中的所述天线端口组#0。
作为上述实施例的一个子实施例,所述一个天线端口组中的天线端口对应的模拟波束赋型矩阵降维成模拟波束赋型向量,所述一个天线端口组中的天线端口对应的数字波束赋型向量降维成一个标量,所述一个天线端口组中的天线端口对应的波束赋型向量等于其对应的模拟波束赋型向量。例如,附图12中的所述天线端口组#0只包括所述天线组#0,附图12中的所述数字波束赋型向量#0降维成一个标量,所述天线端口组#0中的天线端口对应的波束赋型向量是所述模拟波束赋型向量#0。
作为上述实施例的一个子实施例,所述一个天线端口组包括1个天线端口。
作为一个实施例,一个天线端口组包括多个天线组,即多个RF chain,例如,附图12中的所述天线端口组#1。
作为上述实施例的一个子实施例,所述一个天线端口组包括多个天线端口。
作为上述实施例的一个子实施例,所述一个天线端口组中的不同天线端口对应相同的模拟波束赋型矩阵。
作为上述实施例的一个子实施例,所述一个天线端口组中的不同天线端口对应不同的数字波束赋型向量。
作为一个实施例,不同的天线端口组中的天线端口对应不同的模拟波束赋型矩阵。
作为一个实施例,一个天线端口是一个antenna port。
作为一个实施例,从一个天线端口上发送的一个无线信号所经历的小尺度信道参数可以推断出从所述一个天线端口上发送的另一个无线信号所经历的小尺度信道参数。
作为上述实施例的一个子实施例,所述小尺度信道参数包括{CIR(Channel Impulse Response,信道冲激响应),PMI(Precoding Matrix Indicator,预编码矩阵标识),CQI,RI(Rank Indicator,秩标识)}中的一种或多种。
作为一个实施例,一个天线端口组中的任意两个天线端口QCL(Quasi Co-Located,准共址)。
作为一个实施例,QCL的具体定义参见3GPP TS38.214中的5.1.5章节。
作为一个实施例,一个天线端口和另一个天线端口QCL是指:能够从所述一个天线端口上发送的无线信号的全部或者部分大尺度(large-scale)特性(properties)推断出所述另一个天线端口上发送的无线信号的全部或者部分大尺度特性。
作为一个实施例,一个无线信号的大尺度特性包括{延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒移位(Doppler shift),路径损耗(path loss),平均增益(average gain),平均延时(average delay),空间接收参数(Spatial Rx parameters),空间发送参数(Spatial Tx parameters)}中的一种或者多种。
作为一个实施例,空间接收参数(Spatial Rx parameters)包括{接收波束,接收模拟波束赋型矩阵,接收模拟波束赋型向量,接收波束赋型向量,接收空间滤波(spatial filter),空域接收滤波(spatial domain reception filter)}中的一种或多种。
作为一个实施例,空间发送参数(Spatial Tx parameters)包括{发送天线端口,发送天线端口组,发送波束,发送模拟波束赋型矩阵,发送模拟波束赋型向量,发送波束赋型向量,发送空间滤波(spatial filtering),空域发送滤波(spatial domain transmission filter)}中的一种或多种。
作为一个实施例,一个天线端口和另一个天线端口QCL是指:所述一个天线端口和所述另一个天线端口至少有一个相同的QCL参数(QCL parameter)。
作为一个实施例,QCL参数包括:{延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒移位(Doppler shift),路径损耗(path loss),平均增益(average gain),平均延时(average delay),空间接收参数(Spatial Rx parameters),空间发送参数(Spatial Tx parameters)}中的一种或多种。
作为一个实施例,一个天线端口和另一个天线端口QCL是指:能够从所述一个天线端口的至少一个QCL参数推断出所述另一个天线端口的至少一个QCL参数。
实施例13
实施例13示例了第一天线端口组和第一端口组集合之间关系的示意图;如附图13所示。
在实施例13中,本申请中的所述第一信令被用于确定所述第一天线端口组,本申请中的所述第二信令被用于确定所述第一端口组集合;所述第一端口组集合包括正整数个天线端口组,一个天线端口组包括正整数个天线端口;所述第一天线端口组属于所述第一端口组集合。在附图13中,一个椭圆表示所述第一端口组集合中的一个天线端口,左斜线填充的椭圆表示所述第一天线端口组。
作为一个实施例,所述第一端口组集合包括多个天线端口组。
作为一个实施例,所述第一端口组集合包括1个天线端口组。
作为一个实施例,所述第一天线端口组包括多个天线端口。
作为一个实施例,所述第一天线端口组包括1个天线端口。
作为一个实施例,第一参考天线端口组和第二参考天线端口组是所述第一端口组集合包括的任意两个天线端口组,所述第一参考天线端口组中的任一天线端口和所述第二参考天线端口组中的任一天线端口不是QCL的。
作为一个实施例,所述第一信令显式指示所述第一天线端口组。
作为一个实施例,所述第一信令隐式指示所述第一天线端口组。
作为一个实施例,所述第一信令的任一发送天线端口和所述第一天线端口组中的至少一个天线端口QCL。
作为一个实施例,所述第一信令所在的物理层信道所对应的DMRS的任一发送天线端口和所述第一天线端口组中的至少一个天线端口QCL。
作为一个实施例,所述第一信令的任一发送天线端口和所述第一天线端口组中的任一天线端口QCL。
作为一个实施例,所述第一信令所在的物理层信道所对应的DMRS的任一发送天线端口和所述第一天线端口组中的任一天线端口QCL。
作为一个实施例,所述第一信令的至少一个发送天线端口和所述第一天线端口组中的一个天线端口QCL。
作为一个实施例,所述第一信令所在的物理层信道所对应的DMRS的至少一个发送天线端口和所述第一天线端口组中的一个天线端口QCL。
作为一个实施例,所述第一信令占用的时频资源属于第一时频资源池,所述第一时频资源池被关联到所述第一天线端口组。
作为上述实施例的一个子实施例,所述第一时频资源池包括正整数个RE(Resource  Element,资源粒子)。
作为上述实施例的一个子实施例,所述第一时频资源池是一个CORESET(COntrol REsource SET,控制资源集合)。
作为上述实施例的一个子实施例,所述第一时频资源池是一个搜索空间(search space)。
作为上述实施例的一个子实施例,所述第一时频资源池在时域上多次出现。
作为上述子实施例的一个参考实施例,所述第一时频资源池在时域上的任意两次相邻出现之间的时间间隔是相等的。
作为上述实施例的一个子实施例,所述第一时频资源池在时域上仅出现一次。
作为一个实施例,给定时频资源池被关联到给定天线端口组是指:可以假设在所述给定时频资源池内发送的任意无线信号的发送天线端口和所述给定天线端口组中的一个天线端口QCL。
作为一个实施例,给定时频资源池被关联到给定天线端口组是指:本申请中的所述用户设备接收所述给定天线端口组上发送的无线信号所使用的空间接收参数(Spatial Rx parameters)被用于确定所述用户设备在所述给定时频资源池中接收或监测无线信号所使用的空间接收参数(Spatial Rx parameters)。
作为一个实施例,给定时频资源池被关联到给定天线端口组是指:本申请中的所述用户设备使用相同的空间接收参数(Spatial Rx parameters)来接收所述给定天线端口组上发送的无线信号和在所述给定时频资源池中接收或监测无线信号。
作为一个实施例,所述第二信令显式指示所述第一端口组集合。
作为一个实施例,所述第二信令隐式指示所述第一端口组集合。
作为一个实施例,所述第二信令被多个不同的天线端口重复发送。
作为一个实施例,所述第二信令的任一发送天线端口和所述第一端口组集合中的一个天线端口组中的至少一个天线端口QCL。
作为一个实施例,所述第二信令所在的物理层信道所对应的DMRS的任一发送天线端口和所述第一端口组集合中的一个天线端口组中的至少一个天线端口QCL。
作为一个实施例,所述第一端口组集合中的任一天线端口组中的一个天线端口和所述第二信令的至少一个发送天线端口QCL。
作为一个实施例,所述第一端口组集合中的任一天线端口组中的一个天线端口和所述第二信令所在的物理层信道所对应的DMRS的至少一个发送天线端口QCL。
作为一个实施例,所述第一端口组集合包括K1个天线端口组,所述第二信令分别被K1个天线端口发送,所述K1个天线端口和所述K1个天线端口组一一对应,所述K1个天线端口中的任一天线端口和对应的天线端口组中的一个天线端口QCL。所述K1是正整数。
作为上述实施例的一个子实施例,本申请中的所述用户设备用相同的空间接收参数(Spatial Rx parameters)接收不同天线端口发送的所述第二信令。
作为上述实施例的一个子实施例,本申请中的所述用户设备用不同的空间接收参数(Spatial Rx parameters)接收不同天线端口发送的所述第二信令。
作为一个实施例,所述第二信令所占用的时频资源被用于确定所述第一端口组集合。
作为一个实施例,所述第二信令所占用的时频资源指示所述第一端口组集合。
作为一个实施例,所述第二信令占用的时频资源属于第二时频资源池,所述第二时频资源池被关联到第二天线端口组;所述第一端口组集合中的任一天线端口对应的发送波束在空间上的覆盖范围位于所述第二天线端口组中所有天线端口的发送波束在空间上的覆盖范围的集合之内。
作为一个实施例,所述第一天线端口组被用于确定本申请中所述第一无线信号的发送天线端口。
作为一个实施例,本申请中的所述用户设备用于接收来自所述第一天线端口组的无线信号的空间接收参数(Spatial Rx parameters)被用于确定所述第一无线信号的空间发送 参数(Spatial Tx parameters)。
作为一个实施例,本申请中的所述第二无线信号的任一发送天线端口和所述第一天线端口组中的至少一个天线端口QCL。
作为一个实施例,所述第二无线信号所在的物理层信道所对应的DMRS的任一发送天线端口和所述第一天线端口组中的至少一个天线端口QCL。
作为一个实施例,所述第二无线信号的任一发送天线端口和所述第一天线端口组中的任一天线端口QCL。
作为一个实施例,所述第二无线信号所在的物理层信道所对应的DMRS的任一发送天线端口和所述第一天线端口组中的任一天线端口QCL。
作为一个实施例,所述第二无线信号的至少一个发送天线端口和所述第一天线端口组中的一个天线端口QCL。
作为一个实施例,所述第二无线信号所在的物理层信道所对应的DMRS的至少一个发送天线端口和所述第一天线端口组中的一个天线端口QCL。
实施例14
实施例14示例了第一信令和第二信令所占用的时间资源之间关系的示意图;如附图14所示。
在实施例14中,所述第一信令与所述第二信令在时域占用同一个时间片,所述同一个时间片包括正整数个多载波符号。
作为一个实施例,所述第一信令和所述第二信令所占用的时间资源都属于所述同一个时间片。
作为一个实施例,本申请中的所述第一时间窗和本申请中的所述第二时间窗都属于所述同一个时间片。
作为一个实施例,所述同一个时间片由正整数个连续的多载波符号组成。
作为一个实施例,所述同一个时间片由正整数个不连续的多载波符号组成。
作为一个实施例,所述同一个时间片包括14个连续的多载波符号。
作为一个实施例,所述同一个时间片属于一个时隙(slot)。
作为一个实施例,所述同一个时间片属于一个子帧(sub-frame)。
作为一个实施例,所述同一个时间片属于一个下行突发(Downlink Burst)。
作为一个实施例,本申请中的所述第三信令指示第一多载波符号组被占用,所述第一多载波符号组包括正整数个多载波符号;所述同一个时间片属于所述第一多载波符号组。
作为一个实施例,本申请中的所述第三信令指示所述第一多载波符号组被下行物理信道或者下行物理信号所占用。
作为一个实施例,所述第一多载波符号组中的所有多载波符号是连续的。
作为一个实施例,所述第一多载波符号组中至少存在两个相邻的多载波符号是不连续的。
作为一个实施例,所述第一多载波符号组中的所有多载波符号属于同一个时隙(slot)。
作为一个实施例,所述第一多载波符号组中的所有多载波符号属于同一个子帧(sub-frame)。
作为一个实施例,所述第一多载波符号组中至少存在两个多载波符号属于不同的时隙(slot)。
作为一个实施例,所述第一多载波符号组中至少存在两个多载波符号属于不同的子帧(sub-frame)。
实施例15
实施例15示例了第一信令和第二信令所占用的时频资源之间关系的示意图;如附图15所示。
在实施例15中,所述第一信令占用的时频资源与所述第二信令占用的时频资源属于同一个时频资源池,所述同一个时频资源池包括正整数个资源粒子。在附图15中,粗实线边框的 方框表示所述同一个时频资源池,左斜线填充的方框表示所述第一信令占用的时频资源,交叉线填充的方框表示所述第二信令占用的时频资源。
作为一个实施例,所述同一个时频资源池是指同一个CORESET。
作为一个实施例,所述同一个时频资源池是指同一个搜索空间(search space)。
作为一个实施例,一个资源粒子是一个RE(Resource Element,资源粒子)。
作为一个实施例,一个资源粒子在时域占用一个多载波符号,在频域占用一个子载波。
作为一个实施例,所述同一个时频资源池在时域上是多次出现的。
作为上述实施例的一个子实施例,所述同一个时频资源池在时域上的任意两次相邻出现之间的时间间隔是相等的。
作为一个实施例,所述同一个时频资源池在时域上只出现一次。
作为一个实施例,所述同一个时频资源池被关联到本申请中的所述第一天线端口组。
实施例16
实施例16示例了第一索引和M个索引之间关系的示意图;如附图16所示。
在实施例16中,本申请中的所述第一信令被用于确定所述第一索引,本申请中的所述第二信令被用于确定所述M个索引,所述第一索引是所述M个索引中的一个索引;所述M是正整数。在附图16中,所述M个索引分别用索引#0,索引#1,...,索引#M-1表示。
作为一个实施例,所述第一索引是非负整数。
作为一个实施例,所述M个索引中的任一索引是非负整数。
作为一个实施例,所述M大于1。
作为一个实施例,所述M等于1。
作为一个实施例,所述第一信令显式指示所述第一索引。
作为一个实施例,如果所述第一信令中指示本申请中的所述参考时间窗不是本申请中的所述第一时间窗,所述第一信令显式指示所述第一索引;如果所述第一信令指示所述参考时间窗是所述第一时间窗,所述第一信令不显式指示所述第一索引。
作为一个实施例,如果所述第一信令中的所述第一域不等于所述第一数值,所述第一信令显式指示所述第一索引;如果所述第一信令中的所述第一域等于所述第一数值,所述第一信令不显式指示所述第一索引。
作为一个实施例,所述第一信令隐式指示所述第一索引。
作为一个实施例,所述第一信令所占用的时频资源被用于确定所述第一索引。
作为一个实施例,所述第一信令所占用的时频资源属于第一时频资源池,所述第一时频资源池是N1个时频资源池中的一个时频资源池,所述第一时频资源池在所述N1个时频资源池中的索引被用于确定所述第一索引。所述N1是大于1的正整数。
作为一个实施例,所述第一信令被用于确定第一天线端口组,所述第一天线端口组被用于确定所述第一索引。
作为一个实施例,所述第一信令被用于确定第一天线端口组,所述第一天线端口组是N2个天线端口组中的一个天线端口组,所述第一天线端口组在所述N2个天线端口组中的索引被用于确定所述第一索引。所述N2是大于1的正整数。
作为一个实施例,所述第一无线信号所占用的时频资源被用于确定所述第一索引。
作为一个实施例,所述第一无线信号所占用的时频资源属于第三时频资源池,所述第三时频资源池是N5个时频资源池中的一个时频资源池,所述第三时频资源池在所述N5个时频资源池中的索引被用于确定所述第一索引。所述N5是大于1的正整数。
作为一个实施例,所述第二无线信号所占用的时频资源被用于确定所述第一索引。
作为一个实施例,所述第二无线信号所占用的时频资源属于第四时频资源池,所述第四时频资源池是N6个时频资源池中的一个时频资源池,所述第四时频资源池在所述N6个时频资源池中的索引被用于确定所述第一索引。所述N6是大于1的正整数。
作为一个实施例,所述第二无线信号的发送天线端口组被用于确定所述第一索引。
作为一个实施例,所述第二无线信号的发送天线端口组是N7个天线端口组中的一个天线端口组,所述第二无线信号的发送天线端口组在所述N7个天线端口组中的索引被用于确定所述第一索引。所述N7是大于1的正整数。
作为一个实施例,所述第三子频带被用于确定所述第一索引。
作为一个实施例,所述第三子频带是N8个候选子频带中的一个候选子频带,所述第三子频带在所述N8个候选子频带中的索引被用于确定所述第一索引。所述N8是大于1的正整数。
作为一个实施例,所述第二信令显式指示所述M个索引。
作为一个实施例,如果所述第二信令指示本申请中的所述参考时间窗是本申请中的所述第二时间窗,所述第二信令显式指示所述M个索引;如果所述第二信令指示本申请中的所述参考时间窗不是本申请中的所述第二时间窗,所述第二信令不显式指示所述M个索引。
作为一个实施例,如果所述第二信令中的所述第二域等于所述第二数值,所述第二信令显式指示所述M个索引;如果所述第二信令中的所述第二域不等于所述第二数值,所述第二信令不显式指示所述M个索引。
作为一个实施例,所述第二信令隐式指示所述M个索引。
作为一个实施例,所述第二信令所占用的时频资源被用于确定所述M个索引。
作为一个实施例,所述第二信令所占用的时频资源属于第二时频资源池,所述第二时频资源池是N3个时频资源池中的一个时频资源池,所述第二时频资源池在所述N3个时频资源池中的索引被用于确定所述M个索引。所述N3是大于1的正整数。
作为一个实施例,所述第二信令被用于确定第一端口组集合,所述第一端口组集合被用于确定所述M个索引。
作为一个实施例,所述第二信令被用于确定第一端口组集合,所述第一端口组集合包括M个天线端口组,所述M个天线端口组和所述M个索引一一对应;所述M个天线端口组是N4个天线端口组的子集,所述第一天线端口组中的任一天线端口组在所述N4个天线端口组中的索引被用于确定所述M个索引中对应的索引。所述N4是大于1的正整数。
实施例17
实施例17示例了用于用户设备中的处理装置的结构框图;如附图17所示。在附图17中,用户设备中的处理装置1700主要由第一接收机1701,第二接收机1702和第一处理机1703组成。
在实施例17中,第一接收机1701在第一子频带上的第一时间窗中接收第一信令;第二接收机1702在第二子频带上的第二时间窗中监测第二信令;如果第二接收机1702在所述第二子频带上的所述第二时间窗中成功接收到所述第二信令,第一处理机1703在第三子频带上的第三时间窗中发送第一无线信号,否则第一处理机1703放弃在所述第三子频带上的所述第三时间窗中发送所述第一无线信号。
在实施例17中,所述第一信令包括所述第一无线信号的第一类调度信息;所述第一信令指示所述第三时间窗和所述第二时间窗之间的时间间隔;所述第一信令和所述第二信令相关联。
作为一个实施例,所述第一信令指示所述第三时间窗和参考时间窗之间的时间间隔;所述第一信令包括第一域,所述第一域指示所述参考时间窗是否是所述第一时间窗;所述第一信令中的所述第一域指示所述参考时间窗不是所述第一时间窗。
作为一个实施例,所述第二信令包括第二域,所述第二域指示所述参考时间窗是否是所述第二时间窗;所述第二信令中的所述第二域指示所述参考时间窗是所述第二时间窗。
作为一个实施例,所述第一处理机1703还接收第二无线信号;其中,所述第一信令包括所述第二无线信号的第二类调度信息;所述第一无线信号被用于确定所述第二无线信号是否被正确接收。
作为一个实施例,所述第一处理机1703还接收第二无线信号;其中,所述第一信令包括所述第二无线信号的第二类调度信息;针对所述第二无线信号的测量被用于确定所述第一 无线信号。
作为一个实施例,所述第一信令被用于确定第一天线端口组,所述第二信令被用于确定第一端口组集合;所述第一端口组集合包括正整数个天线端口组,一个天线端口组包括正整数个天线端口;所述第一天线端口组属于所述第一端口组集合。
作为一个实施例,所述第一信令与所述第二信令在时域占用同一个时间片,所述同一个时间片包括正整数个多载波符号。
作为一个实施例,所述第二接收机1702还接收第三信令;其中,所述第三信令指示第一多载波符号组被占用,所述第一多载波符号组包括正整数个多载波符号;所述同一个时间片属于所述第一多载波符号组。
作为一个实施例,所述第一信令占用的时频资源与所述第二信令占用的时频资源属于同一个时频资源池,一个时频资源池包括正整数个资源粒子。
作为一个实施例,所述第一信令被用于确定第一索引,所述第二信令被用于确定M个索引,所述第一索引是所述M个索引中的一个索引;所述M是正整数。
作为一个实施例,所述第一接收机1701包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第二接收机1702包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一处理机1703包括实施例4中的{天线452,发射器/接收器454,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
实施例18
实施例18示例了用于基站中的处理装置的结构框图,如附图18所示。在附图18中,基站中的处理装置1800主要由第一发送机1801,第二发送机1802和第二处理机1803组成。
在实施例18中,第一发送机1801在第一子频带上的第一时间窗中发送第一信令;第二发送机1802在第二子频带上的第二时间窗中发送第二信令,或者在所述第二子频带上的所述第二时间窗中放弃发送所述第二信令;如果第二发送机1802在所述第二子频带上的所述第二时间窗中发送所述第二信令,第二处理机1803在第三子频带上的第三时间窗中接收第一无线信号,第二处理机1803否则放弃在所述第三子频带上的所述第三时间窗中接收所述第一无线信号。
在实施例18中,所述第一信令包括所述第一无线信号的第一类调度信息;所述第一信令指示所述第三时间窗和所述第二时间窗之间的时间间隔;所述第一信令和所述第二信令相关联。
作为一个实施例,所述第一信令指示所述第三时间窗和参考时间窗之间的时间间隔;所述第一信令包括第一域,所述第一域指示所述参考时间窗是否是所述第一时间窗;所述第一信令中的所述第一域指示所述参考时间窗不是所述第一时间窗。
作为一个实施例,所述第二信令包括第二域,所述第二域指示所述参考时间窗是否是所述第二时间窗;所述第二信令中的所述第二域指示所述参考时间窗是所述第二时间窗。
作为一个实施例,所述第二处理机1803还发送第二无线信号;其中,所述第一信令包括所述第二无线信号的第二类调度信息;所述第一无线信号被用于确定所述第二无线信号是否被正确接收。
作为一个实施例,所述第二处理机1803还发送第二无线信号;其中,所述第一信令包括所述第二无线信号的第二类调度信息;针对所述第二无线信号的测量被用于确定所述第一无线信号。
作为一个实施例,所述第一信令被用于确定第一天线端口组,所述第二信令被用于确定第一端口组集合;所述第一端口组集合包括正整数个天线端口组,一个天线端口组包括正整数个天线端口;所述第一天线端口组属于所述第一端口组集合。
作为一个实施例,所述第一信令与所述第二信令在时域占用同一个时间片,所述同一个时间片包括正整数个多载波符号。
作为一个实施例,所述第二发送机1802还发送第三信令;其中,所述第三信令指示第一多载波符号组被占用,所述第一多载波符号组包括正整数个多载波符号;所述同一个时间片属于所述第一多载波符号组。
作为一个实施例,所述第一信令占用的时频资源与所述第二信令占用的时频资源属于同一个时频资源池,一个时频资源池包括正整数个资源粒子。
作为一个实施例,所述第一信令被用于确定第一索引,所述第二信令被用于确定M个索引,所述第一索引是所述M个索引中的一个索引;所述M是正整数。
作为一个实施例,所述第一发送机1801包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二发送机1802包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二处理机1803包括实施例4中的{天线420,发射器/接收器418,发射处理器416,接收处理器470,多天线发射处理器471,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B),TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种被用于无线通信的用户设备中的方法,其特征在于,包括:
    在第一子频带上的第一时间窗中接收第一信令;
    在第二子频带上的第二时间窗中监测第二信令;
    如果在所述第二子频带上的所述第二时间窗中成功接收到所述第二信令,在第三子频带上的第三时间窗中发送第一无线信号,否则放弃在所述第三子频带上的所述第三时间窗中发送所述第一无线信号;
    其中,所述第一信令包括所述第一无线信号的第一类调度信息;所述第一信令指示所述第三时间窗和所述第二时间窗之间的时间间隔;所述第一信令和所述第二信令相关联。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信令指示所述第三时间窗和参考时间窗之间的时间间隔;所述第一信令包括第一域,所述第一域指示所述参考时间窗是否是所述第一时间窗;所述第一信令中的所述第一域指示所述参考时间窗不是所述第一时间窗。
  3. 根据权利要求2所述的方法,其特征在于,所述第二信令包括第二域,所述第二域指示所述参考时间窗是否是所述第二时间窗;所述第二信令中的所述第二域指示所述参考时间窗是所述第二时间窗。
  4. 根据权利要求1至3中的任一权利要求所述的方法,其特征在于,包括:
    接收第二无线信号;
    其中,所述第一信令包括所述第二无线信号的第二类调度信息;所述第一无线信号被用于确定所述第二无线信号是否被正确接收,或者针对所述第二无线信号的测量被用于确定所述第一无线信号。
  5. 根据权利要求1至4中任一权利要求所述的方法,其特征在于,所述第一信令被用于确定第一天线端口组,所述第二信令被用于确定第一端口组集合;所述第一端口组集合包括正整数个天线端口组,一个天线端口组包括正整数个天线端口;所述第一天线端口组属于所述第一端口组集合。
  6. 根据权利要求1至5中任一权利要求所述的方法,其特征在于,所述第一信令与所述第二信令在时域占用同一个时间片,所述同一个时间片包括正整数个多载波符号。
  7. 根据权利要求6所述的方法,其特征在于,包括:
    接收第三信令;
    其中,所述第三信令指示第一多载波符号组被占用,所述第一多载波符号组包括正整数个多载波符号;所述同一个时间片属于所述第一多载波符号组。
  8. 根据权利要求1至7中任一权利要求所述的方法,其特征在于,所述第一信令占用的时频资源与所述第二信令占用的时频资源属于同一个时频资源池,所述同一个时频资源池包括正整数个资源粒子。
  9. 根据权利要求1至8中任一权利要求所述的方法,其特征在于,所述第一信令被用于确定第一索引,所述第二信令被用于确定M个索引,所述第一索引是所述M个索引中的一个索引;所述M是正整数。
  10. 一种被用于无线通信的基站中的方法,其特征在于,包括:
    在第一子频带上的第一时间窗中发送第一信令;
    在第二子频带上的第二时间窗中发送第二信令,或者在所述第二子频带上的所述第二时间窗中放弃发送所述第二信令;
    如果在所述第二子频带上的所述第二时间窗中发送所述第二信令,在第三子频带上的第三时间窗中接收第一无线信号,否则放弃在所述第三子频带上的所述第三时间窗中接收所述第一无线信号;
    其中,所述第一信令包括所述第一无线信号的第一类调度信息;所述第一信令指示所述第三时间窗和所述第二时间窗之间的时间间隔;所述第一信令和所述第二信令相关联。
  11. 根据权利要求10所述的方法,其特征在于,所述第一信令指示所述第三时间窗和参考时间窗之间的时间间隔;所述第一信令包括第一域,所述第一域指示所述参考时间窗是否 是所述第一时间窗;所述第一信令中的所述第一域指示所述参考时间窗不是所述第一时间窗。
  12. 根据权利要求11所述的方法,其特征在于,所述第二信令包括第二域,所述第二域指示所述参考时间窗是否是所述第二时间窗;所述第二信令中的所述第二域指示所述参考时间窗是所述第二时间窗。
  13. 根据权利要求10至12中的任一权利要求所述的方法,其特征在于,包括:
    发送第二无线信号;
    其中,所述第一信令包括所述第二无线信号的第二类调度信息;所述第一无线信号被用于确定所述第二无线信号是否被正确接收,或者针对所述第二无线信号的测量被用于确定所述第一无线信号。
  14. 根据权利要求10至13中任一权利要求所述的方法,其特征在于,所述第一信令被用于确定第一天线端口组,所述第二信令被用于确定第一端口组集合;所述第一端口组集合包括正整数个天线端口组,一个天线端口组包括正整数个天线端口;所述第一天线端口组属于所述第一端口组集合。
  15. 根据权利要求10至14中任一权利要求所述的方法,其特征在于,所述第一信令与所述第二信令在时域占用同一个时间片,所述同一个时间片包括正整数个多载波符号。
  16. 根据权利要求15所述的方法,其特征在于,包括:
    发送第三信令;
    其中,所述第三信令指示第一多载波符号组被占用,所述第一多载波符号组包括正整数个多载波符号;所述同一个时间片属于所述第一多载波符号组。
  17. 根据权利要求10至16中任一权利要求所述的方法,其特征在于,所述第一信令占用的时频资源与所述第二信令占用的时频资源属于同一个时频资源池,所述同一个时频资源池包括正整数个资源粒子。
  18. 根据权利要求10至17中任一权利要求所述的方法,其特征在于,所述第一信令被用于确定第一索引,所述第二信令被用于确定M个索引,所述第一索引是所述M个索引中的一个索引;所述M是正整数。
  19. 一种被用于无线通信的用户设备,其特征在于,包括:
    第一接收机,在第一子频带上的第一时间窗中接收第一信令;
    第二接收机,在第二子频带上的第二时间窗中监测第二信令;
    第一处理机,如果在所述第二子频带上的所述第二时间窗中成功接收到所述第二信令,在第三子频带上的第三时间窗中发送第一无线信号,否则放弃在所述第三子频带上的所述第三时间窗中发送所述第一无线信号;
    其中,所述第一信令包括所述第一无线信号的第一类调度信息;所述第一信令指示所述第三时间窗和所述第二时间窗之间的时间间隔;所述第一信令和所述第二信令相关联。
  20. 一种被用于无线通信的基站设备,其特征在于,包括:
    第一发送机,在第一子频带上的第一时间窗中发送第一信令;
    第二发送机,在第二子频带上的第二时间窗中发送第二信令,或者在所述第二子频带上的所述第二时间窗中放弃发送所述第二信令;
    第二处理机,如果在所述第二子频带上的所述第二时间窗中发送所述第二信令,在第三子频带上的第三时间窗中接收第一无线信号,否则放弃在所述第三子频带上的所述第三时间窗中接收所述第一无线信号;
    其中,所述第一信令包括所述第一无线信号的第一类调度信息;所述第一信令指示所述第三时间窗和所述第二时间窗之间的时间间隔;所述第一信令和所述第二信令相关联。
PCT/CN2019/076876 2018-03-06 2019-03-04 一种被用于无线通信的用户设备、基站中的方法和装置 WO2019170057A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/005,308 US11291028B2 (en) 2018-03-06 2020-08-27 Method and device for wireless communication in UE and base station
US17/671,598 US11792787B2 (en) 2018-03-06 2022-02-15 Method and device for wireless communication in UE and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810184730.XA CN110234170B (zh) 2018-03-06 2018-03-06 一种被用于无线通信的用户设备、基站中的方法和装置
CN201810184730.X 2018-03-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/005,308 Continuation US11291028B2 (en) 2018-03-06 2020-08-27 Method and device for wireless communication in UE and base station

Publications (1)

Publication Number Publication Date
WO2019170057A1 true WO2019170057A1 (zh) 2019-09-12

Family

ID=67846815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076876 WO2019170057A1 (zh) 2018-03-06 2019-03-04 一种被用于无线通信的用户设备、基站中的方法和装置

Country Status (3)

Country Link
US (2) US11291028B2 (zh)
CN (1) CN110234170B (zh)
WO (1) WO2019170057A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110234170B (zh) * 2018-03-06 2020-09-01 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019213891A1 (zh) * 2018-05-10 2019-11-14 南通朗恒通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113891469A (zh) * 2019-05-23 2022-01-04 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
WO2021062853A1 (zh) * 2019-10-01 2021-04-08 Oppo广东移动通信有限公司 信号传输方法、装置、移动终端以及存储介质
CN112788732B (zh) * 2019-11-09 2022-08-19 上海朗帛通信技术有限公司 一种被用于无线通信的方法和装置
US11991692B2 (en) * 2019-11-22 2024-05-21 Huawei Technologies Co., Ltd. Systems and methods for configuring symbol and symbol block parameters in wireless communication
CN114900276A (zh) * 2019-11-25 2022-08-12 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114900213A (zh) * 2020-01-30 2022-08-12 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115225235A (zh) * 2020-02-04 2022-10-21 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113541889B (zh) * 2020-04-14 2022-07-08 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2021180052A1 (zh) * 2020-03-11 2021-09-16 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114727421B (zh) * 2021-01-05 2024-09-06 展讯通信(上海)有限公司 上行信号传输方法及装置、存储介质、终端、基站
CN117499958A (zh) * 2021-07-28 2024-02-02 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013107036A1 (en) * 2012-01-20 2013-07-25 Renesas Mobile Corporation Handling random access failure
CN105099612A (zh) * 2014-05-20 2015-11-25 上海朗帛通信技术有限公司 一种利用非授权频谱传输的方法和装置
CN105338568A (zh) * 2015-09-25 2016-02-17 宇龙计算机通信科技(深圳)有限公司 非授权频谱上的lte的传输方法及装置
CN107027179A (zh) * 2016-02-01 2017-08-08 上海朗帛通信技术有限公司 一种无线通信中的调度方法和装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8300757B2 (en) * 2008-08-08 2012-10-30 Motorola Mobility Llc Methods for detection of failure and recovery in a radio link
US10009128B2 (en) * 2014-03-05 2018-06-26 Lg Electronics Inc. Method for reporting channel state reflecting interference cancellation performance and apparatus for same
WO2017004774A1 (zh) * 2015-07-06 2017-01-12 华为技术有限公司 一种数据传输的方法、无线网络设备和通信系统
US10742562B2 (en) * 2015-07-16 2020-08-11 Samsung Electronics Co., Ltd. Method and apparatus for adaptive control of contention window in LAA
CN106658718A (zh) * 2015-10-30 2017-05-10 中国电信股份有限公司 提升laa上行传输性能的方法以及系统
JP7362480B2 (ja) * 2017-02-03 2023-10-17 ユニバーシティ・オブ・ノートル・ダム・デュ・ラック コヒーレント信号分散を用いた心臓および肺の監視
CN110915145B (zh) * 2017-08-09 2023-04-04 上海朗帛通信技术有限公司 一种用于无线通信的用户设备、基站中的方法和装置
CN110234170B (zh) * 2018-03-06 2020-09-01 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013107036A1 (en) * 2012-01-20 2013-07-25 Renesas Mobile Corporation Handling random access failure
CN105099612A (zh) * 2014-05-20 2015-11-25 上海朗帛通信技术有限公司 一种利用非授权频谱传输的方法和装置
CN105338568A (zh) * 2015-09-25 2016-02-17 宇龙计算机通信科技(深圳)有限公司 非授权频谱上的lte的传输方法及装置
CN107027179A (zh) * 2016-02-01 2017-08-08 上海朗帛通信技术有限公司 一种无线通信中的调度方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE, ZTE MICROELECTRONICS: "Discussion on NR Operation in Unlicensed Spectrum", 3GPP TSG RAN WG1 MEETING #88, RL-1701619, vol. RAN WG1, 6 February 2017 (2017-02-06), XP051220509 *

Also Published As

Publication number Publication date
CN110234170A (zh) 2019-09-13
US11792787B2 (en) 2023-10-17
US11291028B2 (en) 2022-03-29
US20220174702A1 (en) 2022-06-02
CN110234170B (zh) 2020-09-01
US20200396754A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
WO2019170057A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019174530A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11206638B2 (en) Method and device for wireless communication in UE and base station
WO2019174489A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US10945310B2 (en) Method and device for wireless communication in UE and base station
WO2019134656A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019109345A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN112333776B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN110120859B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020088212A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11950272B2 (en) Method and device in wireless transmission
CN111278110A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019014882A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2023072136A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022166702A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021129251A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN114189884B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024032520A1 (zh) 一种用于无线通信的方法和装置
WO2024037474A1 (zh) 一种用于无线通信的方法和装置
WO2024212914A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024022239A1 (zh) 一种用于无线通信的方法和装置
CN113890694B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024093877A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099209A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/12/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19764785

Country of ref document: EP

Kind code of ref document: A1