WO2019134656A1 - 一种被用于无线通信的用户设备、基站中的方法和装置 - Google Patents

一种被用于无线通信的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2019134656A1
WO2019134656A1 PCT/CN2019/070213 CN2019070213W WO2019134656A1 WO 2019134656 A1 WO2019134656 A1 WO 2019134656A1 CN 2019070213 W CN2019070213 W CN 2019070213W WO 2019134656 A1 WO2019134656 A1 WO 2019134656A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
time
sub
signals
wireless
Prior art date
Application number
PCT/CN2019/070213
Other languages
English (en)
French (fr)
Inventor
吴克颖
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Priority to EP19736057.1A priority Critical patent/EP3737182B1/en
Priority to EP23182983.9A priority patent/EP4240089A3/en
Publication of WO2019134656A1 publication Critical patent/WO2019134656A1/zh
Priority to US16/917,929 priority patent/US11424882B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application relates to a transmission method and apparatus in a wireless communication system, and more particularly to a communication method and apparatus for supporting data transmission on an Unlicensed Spectrum.
  • the application scenarios of future wireless communication systems are increasingly diversified, and different application scenarios impose different performance requirements on the system.
  • the 3GPP (3rd Generation Partner Project) RAN (Radio Access Network) #75 plenary meeting also passed NR (NewRadio, new radio)
  • NR NewRadio, new radio
  • the research project is expected to be completed in the R15 version, and then the WI is launched in the R16 version to standardize related technologies.
  • the LAA LienseAssisted Access
  • LTE Long Term Evolution
  • LBT Listen Before Talk
  • Massive MIMO Multi-Input Multi-Output
  • multiple antennas are beamformed to form a narrower beam (Beam) pointing in a specific direction to improve communication quality.
  • Beam narrower beam
  • massive MIMO is applied to the unlicensed spectrum of the millimeter wave band. Due to the introduction of massive MIMO, beam-based communication will be a specificity of the NR system, especially in the millimeter wave band.
  • the narrow beam is very effective for compensating for severe path loss in the millimeter wave band using multi-antenna gain of massive MIMO, but it also brings problems such as beam management and beam recovery (BeamRecovery).
  • the UE User Equipment
  • the UE periodically detects the channel quality of the current multiple serving beams.
  • the UE sends a beam recovery request to the base station (Beam). Recovery Request) and recommend a new candidate beam for the service beam.
  • Beammanagement Beammanagement
  • BeamRecovery BeamRecovery
  • Beammanagement beam management
  • BeamRecovery beam recovery
  • the present application discloses a solution. It should be noted that, in the case of no conflict, the features in the embodiments and embodiments in the user equipment of the present application can be applied to the base station, and vice versa. The features of the embodiments and the embodiments of the present application may be combined with each other arbitrarily without conflict.
  • the present application discloses a method in a user equipment used for wireless communication, which includes:
  • the first signaling is used to indicate M first type time windows on the first subband, the first
  • the M first type time windows on the subband are reserved for the first type of reference signal, the M being a positive integer;
  • the first type of reference signal the M1 is a positive integer not greater than the M;
  • the first condition set includes the M1 being not greater than the first threshold.
  • the method is characterized in that the first type of reference signal is a periodic reference signal for serving beam quality detection, and the first wireless signal is a BRR (Beam Recovery Request). Request) or BFRQ (Beam Failure Recovery reQuest).
  • the user equipment determines, by the first type of reference signal, whether the first condition set is satisfied, and if yes, sends the first wireless signal.
  • the first condition set includes the number of times the first type reference signal is not successfully transmitted, which has the advantage of avoiding the unlicensed spectrum, the first class due to LBT, etc. If the reference signal is not sent on time, the user equipment fails to determine and send the first wireless signal in time, and the user equipment can still fail to beam link failure in the unlicensed spectrum. React.
  • the method comprises:
  • the first type of reference signal includes the M1 first type reference sub-signals, and the M1 first-type time windows are respectively reserved for the M1 first-class reference sub-signals; for the M1
  • the measurements of the first type of reference sub-signals are respectively used to determine M1 first-class values, and the M1 first-class values have M3 first-class values lower than the second threshold; the first condition set includes The M3 is greater than a third threshold.
  • the above method is advantageous in that the first condition set is simultaneously considered for the number of times the first reference signal is successfully transmitted but the reception quality is lower than the second threshold, and the first reference The number of times the signal is not successfully transmitted enables the user equipment to more flexibly and accurately determine the Beam Link Failure and react.
  • the method comprises:
  • the M second wireless signals and the M first type time windows are in one-to-one correspondence; the M1 second wireless signals in the M2 second wireless signals are respectively used to indicate the M1 Receiving the first type of reference signal in a first type of time window; the M2 is equal to the M1, or the M2 is greater than the M1 and the M1 second wireless signals are apart from the M1 second wireless The second wireless signals other than the signals are respectively used to indicate that the first type of reference signals are not received in the corresponding first type of time window.
  • the method comprises:
  • the user equipment sends the first wireless signal in the first time-frequency resource, where the first wireless signal is transmitted on the first sub-band, and the first type of access detection includes:
  • the Q1 detection values of the Q detection values are all lower than the fourth threshold; the Q is a positive integer, and the Q1 is a positive integer not greater than the Q.
  • the method comprises:
  • the second signaling is used to determine that the first wireless signal is correctly received.
  • the first wireless signal is used to determine a first antenna port group, one of any of the transmit antenna ports of the second signaling and the first antenna port group Antenna port quasi-co-location.
  • the method comprises:
  • the measurement for the N second type reference signals is used to determine the first wireless signal, the N being a positive integer.
  • the method comprises:
  • the first information is used to determine the first set of conditions.
  • the present application discloses a method in a base station used for wireless communication, which includes:
  • the M first type time windows on the subband are reserved for the first type of reference signal, the M being a positive integer;
  • the first type of reference signal the M1 is a positive integer not greater than the M;
  • the first condition set is used to determine whether the first wireless signal is sent, and the first condition set includes that the M1 is not greater than a first threshold.
  • the method comprises:
  • the first type of reference signal includes the M1 first type reference sub-signals, and the M1 first-type time windows are respectively reserved for the M1 first-class reference sub-signals; for the M1
  • the measurements of the first type of reference sub-signals are respectively used to determine M1 first-class values, and the M1 first-class values have M3 first-class values lower than the second threshold; the first condition set includes The M3 is greater than a third threshold.
  • the method comprises:
  • the M second wireless signals and the M first type time windows are in one-to-one correspondence; the M1 second wireless signals in the M2 second wireless signals are respectively used to indicate the M1 Receiving the first type of reference signal in a first type of time window; the M2 is equal to the M1, or the M2 is greater than the M1 and the M1 second wireless signals are apart from the M1 second wireless The second wireless signals other than the signals are respectively used to indicate that the first type of reference signals are not received in the corresponding first type of time window.
  • the method comprises:
  • the start time of the M first type time windows is not earlier than the end time of the M times second type access detection; and the second type of access detection includes:
  • the given second type of access detection is a second type of access detection in the M times second type access detection, and the P1 detection values in the P detection values are lower than the fifth.
  • Threshold P is a positive integer
  • P1 is a non-negative integer not greater than the P.
  • the method comprises:
  • the first wireless signal is detected in the first time-frequency resource, and the second signaling is used to determine that the first wireless signal is correctly received.
  • the first wireless signal is used to determine a first antenna port group, one of any of the transmit antenna ports of the second signaling and the first antenna port group Antenna port quasi-co-location.
  • the method comprises:
  • the start time of the time resource occupied by the third time-frequency resource is not earlier than the end time of the third type of access detection;
  • the third type of access detection includes:
  • the W1 detection values of the W detection values are all lower than a seventh threshold; the W is a positive integer, and the W1 is a positive integer not greater than the W.
  • the method comprises:
  • the measurement for the N second type reference signals is used to determine the first wireless signal, the N being a positive integer.
  • the method comprises:
  • the first information is used to determine the first set of conditions.
  • the present application discloses a user equipment used for wireless communication, which includes:
  • a first receiver receiving first signaling, the first signaling being used to indicate M first type times on the first subband
  • the M first type time windows on the first sub-band are reserved for a first type of reference signal, the M being positive
  • a first processor determining that only M1 first classes in the M first class time windows on the first subband are needed
  • a first transmitter if the first condition set is satisfied, transmitting the first wireless signal in the first time-frequency resource
  • the first condition set includes the M1 being not greater than the first threshold.
  • the foregoing user equipment used for wireless communication is characterized in that the first receiver receives M1 first-type reference sub-signals in the M1 first-type time windows respectively;
  • the first type of reference signal includes the M1 first type reference sub-signals, and the M1 first-type time windows are respectively reserved for the M1 first-type reference sub-signals; for the M1 first-class sub-signals;
  • the measurements of the reference sub-signals are respectively used to determine M1 first-class values, wherein the M1 first-class values have M3 first-class values lower than the second threshold; the first condition set includes the M3 being greater than The third threshold.
  • the foregoing user equipment used for wireless communication is characterized in that the first receiver separately monitors M second wireless signals in M second time-frequency resources, and detects the M first And M2 second wireless signals in the two wireless signals; wherein the M second wireless signals and the M first type time windows are in one-to-one correspondence; and M1 seconds in the M2 second wireless signals
  • the wireless signals are respectively used to indicate that the first type of reference signals are received in the M1 first type of time windows; the M2 is equal to the M1, or the M2 is greater than the M1 and the M2
  • the second wireless signals other than the M1 second wireless signals in the two wireless signals are respectively used to indicate that the first type of reference signals are not received in the corresponding first type of time window.
  • the user equipment used for wireless communication is characterized in that the first receiver performs a first type of access detection on the first sub-band; wherein the user equipment is in the Transmitting the first wireless signal in a time-frequency resource, where the first wireless signal is transmitted on the first sub-band, and the first type of access detection includes:
  • the Q1 detection values of the Q detection values are all lower than the fourth threshold; the Q is a positive integer, and the Q1 is a positive integer not greater than the Q.
  • the foregoing user equipment used for wireless communication is characterized in that the first receiver monitors second signaling in a third time-frequency resource; wherein the second signaling is used to determine The first wireless signal is correctly received.
  • the user equipment used for wireless communication is characterized in that the first wireless signal is used to determine a first antenna port group, any of the second antenna signaling antenna ports and the first One of the antenna port groups is quasi-co-located.
  • the user equipment used for wireless communication is characterized in that the first receiver module receives N second type reference signals; wherein, the measurement for the N second type reference signals is used And determining the first wireless signal, the N is a positive integer.
  • the user equipment used for wireless communication is characterized in that the first receiver receives first information; wherein the first information is used to determine the first set of conditions.
  • the present application discloses a base station device used for wireless communication, which includes:
  • the M first type time windows on the first sub-band are reserved for a first type of reference signal, the M being positive
  • a second processor determining that only M1 first classes in the M first type time windows on the first subband are needed
  • a second receiver monitoring the first wireless signal in the first time-frequency resource
  • the first condition set is used to determine whether the first wireless signal is sent, and the first condition set includes the M1 being not greater than a first threshold.
  • the foregoing base station device used for wireless communication is characterized in that the second transmitter separately transmits M1 first-type reference sub-signals in the M1 first-type time windows;
  • the first type of reference signal includes the M1 first type reference sub-signals, and the M1 first-type time windows are respectively reserved for the M1 first-type reference sub-signals; for the M1 first-class sub-signals;
  • the measurements of the reference sub-signals are respectively used to determine M1 first-class values, wherein the M1 first-class values have M3 first-class values lower than the second threshold; the first condition set includes the M3 being greater than The third threshold.
  • the base station device used for wireless communication is characterized in that: the second transmitter transmits M2 second wireless signals of the M second wireless signals in the M2 second time-frequency resources respectively;
  • the M second wireless signals and the M first type time windows are in one-to-one correspondence;
  • the M1 second wireless signals in the M2 second wireless signals are respectively used to indicate the M1 Receiving the first type of reference signal in a first type of time window;
  • the M2 is equal to the M1, or the M2 is greater than the M1 and the M1 second wireless signals are apart from the M1 second wireless
  • the second wireless signals other than the signals are respectively used to indicate that the first type of reference signals are not received in the corresponding first type of time window.
  • the base station device used for wireless communication is characterized in that the second receiver performs M times of second type access detection on the first sub-band; wherein the M The start time of a type of time window is not earlier than the end time of the M-th type access detection, respectively; given the second type of access detection includes:
  • the given second type of access detection is a second type of access detection in the M times second type access detection, and the P1 detection values in the P detection values are lower than the fifth.
  • Threshold P is a positive integer
  • P1 is a non-negative integer not greater than the P.
  • the foregoing base station device used for wireless communication is characterized in that the second transmitter transmits second signaling in a third time-frequency resource; wherein, detecting, in the first time-frequency resource The first wireless signal, the second signaling is used to determine that the first wireless signal is correctly received.
  • the base station device used for wireless communication is characterized in that the first wireless signal is used to determine a first antenna port group, any one of the second antenna signaling antenna ports and the first One of the antenna port groups is quasi-co-located.
  • the base station device used for wireless communication is characterized in that the second receiver performs a third type of access detection on the first sub-band; wherein the third time-frequency resource is occupied.
  • the start time of the time resource is not earlier than the end time of the third type of access detection; the third type of access detection includes:
  • the W1 detection values of the W detection values are all lower than a seventh threshold; the W is a positive integer, and the W1 is a positive integer not greater than the W.
  • the base station device used for wireless communication is characterized in that the second transmitter transmits N second type reference signals; wherein measurements for the N second type reference signals are used Determining the first wireless signal, the N being a positive integer.
  • the above-described base station device used for wireless communication is characterized in that the second transmitter transmits first information; wherein the first information is used to determine the first condition set.
  • the present application has the following advantages compared with the conventional solution:
  • the reference signal for detecting the quality of the Serving Beam channel is successfully transmitted but the reception quality is lower than a certain one.
  • the number of thresholds, and the number of times the reference signal used to detect the quality of the Serving Beam channel has not been successfully transmitted. This method avoids the fact that the UE fails to timely determine the Beam Link Failure in the unlicensed spectrum due to the LBT and other reasons, and the UE can still determine the Beam Link Failure in time. Accurate and fast judgment of the Beam Link Failure and timely recovery ensures the quality of Beam-based communication in the unlicensed spectrum.
  • FIG. 1 shows a flow chart of first signaling, a first type of reference signal and a first wireless signal, in accordance with an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 4 shows a schematic diagram of an NR (New Radio) node and a UE in accordance with one embodiment of the present application
  • FIG. 5 shows a flow chart of wireless transmission in accordance with one embodiment of the present application
  • FIG. 6 is a schematic diagram showing timing relationships of M first time-frequency resources and M second-order access detections in a time domain according to an embodiment of the present application
  • FIG. 7 is a schematic diagram showing timing relationships of M first time-frequency resources and M second-order access detections in a time domain according to an embodiment of the present application
  • FIG. 8 is a diagram showing timing relationships of M first type time windows and N second type reference signals in the time domain according to an embodiment of the present application
  • FIG. 9 is a schematic diagram showing resource mapping of M1 first-type reference sub-signals in a time-frequency domain according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram showing resource mapping of N second type reference signals in a time-frequency domain according to an embodiment of the present application.
  • Figure 11 shows a schematic diagram of a given access detection in accordance with one embodiment of the present application.
  • Figure 12 shows a schematic diagram of a given access detection in accordance with one embodiment of the present application.
  • Figure 13 shows a schematic diagram of a given access detection in accordance with one embodiment of the present application.
  • FIG. 14 is a schematic diagram showing resource mapping of M second time-frequency resources in a time-frequency domain according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram showing resource mapping of M second time-frequency resources in a time-frequency domain according to an embodiment of the present application.
  • 16 is a schematic diagram of resource mapping of a third time-frequency resource in a time-frequency domain according to an embodiment of the present application.
  • FIG. 17 is a schematic diagram showing resource mapping of a third time-frequency resource in a time-frequency domain according to an embodiment of the present application.
  • FIG. 18 is a schematic diagram showing resource mapping of a third time-frequency resource in a time-frequency domain according to an embodiment of the present application.
  • FIG. 19 shows a schematic diagram of an antenna port and an antenna port group in accordance with an embodiment of the present application
  • 20 is a diagram showing the relationship between N second type reference signals and a first antenna port group according to an embodiment of the present application
  • 21 is a schematic diagram of a user equipment determining whether to transmit a first wireless signal in a first time-frequency resource according to an embodiment of the present application
  • FIG. 22 is a schematic diagram of a user equipment determining whether to transmit a first wireless signal in a first time-frequency resource according to an embodiment of the present application
  • FIG. 23 is a block diagram showing the structure of a processing device for use in a user equipment according to an embodiment of the present application.
  • 24 is a block diagram showing the structure of a processing device for use in a base station according to an embodiment of the present application.
  • 25 is a diagram showing the timing relationship of M first type time windows and M second type access detections in the time domain according to an embodiment of the present application.
  • Embodiment 1 illustrates a first signaling, a flow chart of a first type of reference signal and a first wireless signal, as shown in FIG.
  • the user equipment in the application receives the first signaling, where the first signaling is used to indicate M first type time windows on the first sub-band, the first sub-band
  • the M first type time windows are reserved for the first type of reference signal, and the M is a positive integer.
  • the user equipment determines that only the first type of reference signal needs to be received in the M1 first type of time windows in the M first type of time windows on the first subband, the M1 is not A positive integer greater than the M.
  • the user equipment determines if the first set of conditions is satisfied. And if the first condition set is satisfied, the user is configured to send the first wireless signal in the first time-frequency resource; wherein the first condition set includes the M1 being not greater than the first threshold.
  • the first signaling explicitly indicates the M first type time windows on the first sub-band.
  • the first signaling implicitly indicates the M first type time windows on the first sub-band.
  • the first sub-band is deployed in an unlicensed spectrum.
  • the first sub-band includes one carrier.
  • the first sub-band includes a plurality of carriers.
  • the first sub-band includes a plurality of BWPs (Bandwidth Part) in one carrier.
  • the first sub-band includes one BWP of one carrier.
  • the first sub-band includes a positive integer number of PRBs (Physical Resource Blocks) in the frequency domain.
  • PRBs Physical Resource Blocks
  • the first sub-band includes a positive integer number of consecutive PRBs in the frequency domain.
  • the first sub-band includes a positive integer number of RBs (Resource Blocks) in the frequency domain.
  • the first sub-band includes a positive integer number of consecutive RBs in the frequency domain.
  • the first sub-band includes a positive integer number of consecutive sub-carriers in the frequency domain.
  • the M first type time windows are orthogonal to each other (non-overlapping) in the time domain.
  • any one of the M first type of time windows is a sub-frame.
  • any one of the M first type of time windows is a slot.
  • any one of the M first type of time windows is a positive integer number of consecutive sub-frames.
  • any one of the M first type of time windows is a positive integer number of consecutive slots.
  • any one of the M first type of time windows is a positive integer number of consecutive multicarrier symbols.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol is an SC-FDMA (Single Carrier-Frequency Division Multiple Access) symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the multi-carrier symbol is a DFT-S-OFDM (Discrete Fourier Transform Spread OFDM) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM
  • the multi-carrier symbol is an FBMC (Filter Bank Multi Carrier) symbol.
  • the multi-carrier symbol includes a CP (Cyclic Prefix).
  • the first type of reference signal is transmitted on the first sub-band.
  • the first signaling is transmitted on the first sub-band.
  • the first signaling is transmitted on a frequency band other than the first sub-band.
  • the first signaling is transmitted on a frequency band deployed in the licensed spectrum.
  • the first signaling is higher layer signaling.
  • the first signaling is high layer signaling.
  • the first signaling is RRC (Radio Resource Control) signaling.
  • the first signaling is a MACCE (Medium Access Control Layer Control Element) signaling.
  • MACCE Medium Access Control Layer Control Element
  • the first signaling is physical layer signaling.
  • the first signaling is UE specific.
  • the M first type time windows are reserved for multicarrier symbols carrying the first type of reference signals.
  • the user equipment abandons receiving the first type reference signal in any of the first time window of the M first type time windows that does not belong to the M1 first type time windows.
  • the first time-frequency resource includes a positive integer number of multi-carrier symbols in the time domain.
  • the first time-frequency resource includes a positive integer number of consecutive multi-carrier symbols in the time domain.
  • the first time-frequency resource includes one slot in the time domain.
  • the first time-frequency resource includes a positive integer number of consecutive slots in the time domain.
  • the first time-frequency resource includes one sub-frame in the time domain.
  • the first time-frequency resource includes a positive integer number of consecutive sub-frames in the time domain.
  • the first time-frequency resource includes a positive integer number of subcarriers in the frequency domain.
  • the first time-frequency resource includes a positive integer number of consecutive subcarriers in the frequency domain.
  • the first time-frequency resource includes a positive integer number of consecutive PRBs in the frequency domain.
  • the first time-frequency resource includes a positive integer number of consecutive RBs in the frequency domain.
  • the first time-frequency resource is located after the M first type time windows in the time domain.
  • the first time-frequency resource is a first arriving PRACH (Physical Random Access CHannel) located after the M first-type time windows.
  • PRACH Physical Random Access CHannel
  • the first time-frequency resource is a first arriving PUCCH (Physical Uplink Control CHannel) located after the M first-type time windows.
  • PUCCH Physical Uplink Control CHannel
  • the first time-frequency resource is a first arriving PRACH on a second sub-band after the M first-type time windows.
  • the first time-frequency resource is a first arriving PUCCH located on a second sub-band after the M first-type time windows.
  • the second sub-band is deployed in an unlicensed spectrum.
  • the second sub-band is deployed in an authorized spectrum.
  • the first wireless signal is generated by modulation of a first signature sequence.
  • the first sequence of features comprises a pseudo-random sequence.
  • the first feature sequence comprises a Zadoff-Chu sequence.
  • the first feature sequence includes a CP (Cyclic Prefix).
  • the first time-frequency resource and the first feature sequence comprise a first air interface resource
  • the first air interface resource belongs to a first air interface resource pool
  • the first air interface resource pool includes a positive integer air interface.
  • a resource, an air interface resource includes a time-frequency resource and a sequence of features.
  • the sequence of features comprises a pseudo-random sequence.
  • the feature sequence comprises a Zadoff-Chu sequence.
  • the feature sequence includes a CP (Cyclic Prefix).
  • the first air interface resource pool is reserved for the user equipment.
  • the user equipment selects the first air interface resource in the first air interface resource pool.
  • the first time-frequency resource includes W RUs (Resource Units), and the W is a positive integer.
  • the first wireless signal is modulated by a first characteristic sequence of length W, that is, one modulation symbol is multiplied by the first characteristic sequence and then mapped into the W RUs.
  • one RU occupies one multi-carrier symbol in the time domain and occupies one sub-carrier in the frequency domain.
  • the first wireless signal includes a RACH (Random Access Channel) preamble.
  • RACH Random Access Channel
  • the first wireless signal includes UCI (Uplink Control Information).
  • UCI Uplink Control Information
  • the first wireless signal includes CSI (Channel State Information).
  • the first wireless signal includes a CRI (Channel-State Information Reference Signal Resource Indicator).
  • CRI Channel-State Information Reference Signal Resource Indicator
  • the first wireless signal includes a PMI (Precoding Matrix Indicator).
  • PMI Precoding Matrix Indicator
  • the first wireless signal includes an RSRP (Reference Signal Received Power).
  • RSRP Reference Signal Received Power
  • the first wireless signal includes an RSRQ (Reference Signal Received Quality).
  • RSRQ Reference Signal Received Quality
  • the first wireless signal includes a CQI (Channel Quality Indicator).
  • CQI Channel Quality Indicator
  • the first wireless signal includes a BRR (Beam Recovery Request).
  • BRR Beam Recovery Request
  • the first wireless signal includes a BFRQ (Beam Failure Recovery reQuest).
  • BFRQ Beam Failure Recovery reQuest
  • the first threshold is a positive integer.
  • the first threshold is independent of the M.
  • the first threshold is related to the M.
  • the M is fixed.
  • the M is configurable.
  • the M is configured by higher layer signaling.
  • the M is greater than one.
  • the M1 is smaller than the M.
  • the energy detection means that the energy of all wireless signals is sensed in a given first type of time window and averaged over time to obtain received energy. If the received energy is greater than the first given threshold, determining that the first type of reference signal needs to be received in the given first type of time window; otherwise determining that it is not required to receive in the given first type of time window The first type of reference signal.
  • the given first type of time window is any one of the M first type of time windows.
  • the reference signal sequence of the first type of reference signal using coherent detection to determine whether each of the M first type of time windows on the first subband is required to be in the first type of time
  • the first type of reference signal is received in a window.
  • the coherent detection refers to: coherently receiving all wireless signals with a reference signal sequence of the first type of reference signals in a given first type of time window, and measuring the The energy of the signal obtained after coherent reception. If the energy of the signal obtained after the coherent reception is greater than a second given threshold, determining that the first type of reference signal needs to be received in the given first type of time window; otherwise, determining that the The first type of reference signal is received in a first type of time window.
  • the given first type of time window is any one of the M first type of time windows.
  • the reference signal sequence of the first type of reference signal comprises a pseudo-random sequence.
  • the reference signal sequence of the first type of reference signal comprises a Zadoff-Chu sequence.
  • the blind detection refers to: receiving a signal in a given timing resource and performing a decoding operation, and if it is determined that the decoding is correct according to the check bit, determining that the first type of time is required The first type of reference signal is received in the window; otherwise it is determined that the first type of reference signal is not required to be received in the given first type of time window.
  • the given first type time window is any one of the M first type time windows, and the given timing frequency resource is one of M second time frequency resources, the M The second time-frequency resource and the M first-type time windows are in one-to-one correspondence, and the given timing resource corresponds to the given first-type time window.
  • the check bit refers to a CRC (Cyclic Redundancy Check) bit.
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG.
  • the LTE network architecture 200 may be referred to as an EPS (Evolved Packet System) 200.
  • the EPS 200 may include one or more UEs (User Equipment) 201, E-UTRAN-NR (Evolved UMTS Terrestrial Radio Access Network - New Wireless) 202, 5G-CN (5G-CoreNetwork, 5G core network)/ EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UMTS corresponds to the Universal Mobile Telecommunications System.
  • the EPS 200 can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in FIG. 2, EPS 200 provides packet switching services, although those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks that provide circuit switched services.
  • the E-UTRAN-NR 202 includes an NR (New Radio) Node B (gNB) 203 and other gNBs 204.
  • the gNB 203 provides user and control plane protocol termination towards the UE 201.
  • the gNB 203 can be connected to other gNBs 204 via an X2 interface (eg, a backhaul).
  • the gNB 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmission and reception point), or some other suitable terminology.
  • the gNB 203 provides the UE 201 with an access point to the 5G-CN/EPC 210.
  • Examples of UEs 201 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, an MP3 player), a camera, a game console, a drone, an aircraft, a narrowband physical network device, a machine type communication device, a land vehicle, a car, a wearable device, or any other similar functional device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • UE 201 may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB 203 is connected to the 5G-CN/EPC 210 through the S1 interface.
  • the 5G-CN/EPC 210 includes an MME 211, other MMEs 214, an S-GW (Service Gateway) 212, and a P-GW (Packet Date Network Gateway). 213.
  • the MME 211 is a control node that handles signaling between the UE 201 and the 5G-CN/EPC 210.
  • the MME 211 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 212, and the S-GW 212 itself is connected to the P-GW 213.
  • the P-GW 213 provides UE IP address allocation as well as other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a PS Streaming Service (PSS).
  • IMS IP Multimedia Subsystem
  • PSS PS Streaming Service
  • the UE 201 corresponds to the user equipment in this application.
  • the gNB 203 corresponds to the base station in the present application.
  • the UE 201 supports wireless communication for data transmission over an unlicensed spectrum.
  • the gNB 203 supports wireless communication for data transmission over an unlicensed spectrum.
  • the UE 201 supports wireless communication of massive MIMO.
  • the gNB 203 supports wireless communication for massive MIMO.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane, as shown in FIG.
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 3 shows the radio protocol architecture for UE and gNB in three layers: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the UE and the gNB through PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol).
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • Convergence Protocol Sublayer 304 which terminates at the gNB on the network side.
  • the UE may have several protocol layers above the L2 layer 305, including a network layer (eg, an IP layer) terminated at the P-GW 213 on the network side and terminated at the other end of the connection (eg, Application layer at the remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handoff support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ (Hybrid Automatic Repeat reQuest).
  • the MAC sublayer 302 provides multiplexing between the logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in one cell between UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the wireless protocol architecture of Figure 3 is applicable to the user equipment in this application.
  • the radio protocol architecture of Figure 3 is applicable to the base station in this application.
  • the first signaling in the present application is generated by the PHY 301.
  • the first signaling in the present application is generated by the MAC sublayer 302.
  • the first signaling in the present application is generated by the RRC sublayer 306.
  • the first type of reference signal in the present application is generated by the PHY 301.
  • the first wireless signal in the present application is generated by the PHY 301.
  • the M2 second wireless signals in the present application are generated by the PHY 301.
  • the second signaling in the present application is generated by the PHY 301.
  • the second signaling in this application is generated by the MAC sublayer 302.
  • the second signaling in this application is generated by the RRC sublayer 306.
  • the N second type reference signals in the present application are generated by the PHY 301.
  • the first information in the present application is formed in the MAC sublayer 302.
  • the first information in the present application is formed in the RRC sublayer 306.
  • Embodiment 4 illustrates a schematic diagram of an NR node and a UE, as shown in FIG. 4 is a block diagram of a UE 450 and a gNB 410 that communicate with each other in an access network.
  • the gNB 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the UE 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454, and an antenna 452.
  • DL Downlink
  • controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocation to the UE 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 450.
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, the physical layer).
  • Transmit processor 416 performs encoding and interleaving to facilitate forward error correction (FEC) at UE 450, and based on various modulation schemes (eg, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), Mapping of signal clusters of M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM).
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding/beamforming processing on the encoded and modulated symbols to generate one or more spatial streams.
  • Transmit processor 416 maps each spatial stream to subcarriers, multiplexes with reference signals (e.g., pilots) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a time-domain multi-carrier symbol stream.
  • the multi-antenna transmit processor 471 then transmits an analog precoding/beamforming operation to the time domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multicarrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • each receiver 454 receives a signal through its respective antenna 452. Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream for providing to the receive processor 456.
  • Receive processor 456 and multi-antenna receive processor 458 implement various signal processing functions of the L1 layer. Multi-antenna receive processor 458 performs a receive analog precoding/beamforming operation on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multicarrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receive processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered by the multi-antenna detection in the multi-antenna receive processor 458 with the UE 450 as Any spatial stream of destinations.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456 and a soft decision is generated.
  • the receive processor 456 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by the gNB 410 on the physical channel.
  • the upper layer data and control signals are then provided to controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • Controller/processor 459 can be associated with memory 460 that stores program codes and data. Memory 460 can be referred to as a computer readable medium.
  • the controller/processor 459 provides demultiplexing, packet reassembly, decryption, header decompression, and control signal processing between the transport and logical channels to recover upper layer packets from the core network. The upper layer packet is then provided to all protocol layers above the L2 layer. Various control signals can also be provided to L3 for L3 processing.
  • the controller/processor 459 is also responsible for error detection using an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • data source 467 is used to provide upper layer data packets to controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and multiplexing between the logical and transport channels based on the radio resource allocation of the gNB 410. Used to implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the gNB 410.
  • the transmit processor 468 performs modulation mapping, channel coding processing, the multi-antenna transmit processor 457 performs digital multi-antenna spatial pre-coding/beamforming processing, and then the transmit processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream.
  • the analog precoding/beamforming operation is performed in the multi-antenna transmit processor 457 and then provided to the different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into a stream of radio frequency symbols and provides it to the antenna 452.
  • the function at gNB 410 is similar to the receiving function at UE 450 described in the DL.
  • Each receiver 418 receives a radio frequency signal through its respective antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to a multi-antenna receive processor 472 and a receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 collectively implement the functions of the L1 layer.
  • the controller/processor 475 implements the L2 layer function. Controller/processor 475 can be associated with memory 476 that stores program codes and data. Memory 476 can be referred to as a computer readable medium.
  • the controller/processor 475 provides demultiplexing, packet reassembly, decryption, header decompression, control signal processing between the transport and logical channels to recover upper layer data packets from the UE 450.
  • Upper layer data packets from controller/processor 475 can be provided to the core network.
  • the controller/processor 475 is also responsible for error detection using ACK and/or NACK protocols to support HARQ operations.
  • the UE 450 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be coupled to the at least one processor use together.
  • the UE 450 apparatus at least: receiving the first signaling in the application, where the first signaling is used to indicate M first type time windows on the first subband, on the first subband The M first type time windows are reserved for the first type of reference signals; determining that only the M1 first type time windows in the M first type time windows on the first subband are needed Receiving the first type of reference signal; determining whether the first condition set in the application is satisfied; and sending the first wireless signal in the application in the first time-frequency resource in the application.
  • the UE 450 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by at least one processor, the action comprising: receiving a location in the present application Decoding first signaling, the first signaling is used to indicate M first type time windows on the first subband, and the M first type time windows on the first subband are reserved Giving a first type of reference signal; determining that only the first type of reference signal needs to be received in the M1 first type of time windows in the M first type of time windows on the first subband; determining the present application Whether the first condition set in the medium is satisfied; the first wireless signal in the application is sent in the first time-frequency resource in the present application.
  • the gNB 410 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be coupled to the at least one processor use together.
  • the gNB410 device transmits at least the first signaling in the application, where the first signaling is used to indicate M first type time windows on the first subband, on the first subband
  • the M first type time windows are reserved for the first type of reference signals; determining that only the M1 first type time windows in the M first type time windows on the first subband are needed Transmitting the first type of reference signal; monitoring the first wireless signal in the present application in the first time-frequency resource in the present application.
  • the gNB 410 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by at least one processor, the action comprising: transmitting the Decoding first signaling, the first signaling is used to indicate M first type time windows on the first subband, and the M first type time windows on the first subband are reserved Giving a first type of reference signal; determining that only the first type of reference signal needs to be transmitted in the M1 first type of time windows in the M first type of time windows on the first subband; The first wireless signal in the present application is monitored in the first time-frequency resource.
  • the UE 450 corresponds to the user equipment in this application.
  • the gNB 410 corresponds to the base station in this application.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459 ⁇ is used Receiving the first signaling in the present application; ⁇ the antenna 420, the transmitter 418, the transmitting processor 416, the multi-antenna transmitting processor 471, the controller/processor 475 ⁇ At least one of is used to transmit the first signaling in the present application.
  • At least one of ⁇ the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459 ⁇ is used to determine that only the first sub-band needs to be Receiving the first type of reference signal in M1 first type time windows of the M first type of time windows; ⁇ the receiving processor 470, the multiple antenna receiving processor 472, the controller At least one of /processor 475 ⁇ is used to determine that only the first class in the M first class time windows of the M first class time windows on the first subband is required to be sent Reference signal.
  • At least one of ⁇ the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459 ⁇ is used to determine the first set of conditions in the present application. Is it satisfied?
  • At least one of ⁇ the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475 ⁇ is used Monitoring the first wireless signal in the present application in the first time-frequency resource in the present application; ⁇ the antenna 452, the transmitter 454, the transmitting processor 468, the multi-antenna transmission processing At least one of the controller 457, the controller/processor 459 ⁇ is configured to transmit the first wireless signal in the present application in the first time-frequency resource in the present application.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459 ⁇ is used
  • the M1 first-type reference sub-signals in the present application are respectively received in the M1 first-type time windows in the present application; the antenna 420, the transmitter 418, and the transmit processor 416.
  • At least one of the multi-antenna transmit processor 471, the controller/processor 475 ⁇ is used to transmit the respectively described in the present application in the M1 first-type time windows in the present application M1 first type reference sub-signals.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459 ⁇ is used Monitoring the M second wireless signals in the present application in the M second time-frequency resources in the present application respectively; ⁇ the antenna 420, the transmitter 418, the transmitting processor 416, At least one of the multi-antenna transmission processor 471, the controller/processor 475 ⁇ is used to transmit the M devices in the present application in the M2 second time-frequency resources in the present application, respectively. M2 second wireless signals in the second wireless signal.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459 ⁇ is used.
  • the first type of access detection in the present application is performed on the first sub-band in the present application.
  • At least one of ⁇ the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475 ⁇ is used Performing the M second type access detection in the present application on the first sub-band in the present application.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459 ⁇ is used Monitoring the second signaling in the present application in the third time-frequency resource in the present application; the antenna 420, the transmitter 418, the transmitting processor 416, and the multi-antenna transmission processing
  • At least one of the controller 471, the controller/processor 475 ⁇ is configured to transmit the second signaling in the present application in the third time-frequency resource in the present application.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459 ⁇ is used Receiving the N second type reference signals in the present application; ⁇ the antenna 420, the transmitter 418, the transmitting processor 416, the multiple antenna transmitting processor 471, the controller/processor At least one of 475 ⁇ is used to transmit the N second type reference signals in the present application.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459 ⁇ is used Receiving the first information in the present application; ⁇ the antenna 420, the transmitter 418, the transmitting processor 416, the multi-antenna transmitting processor 471, the controller/processor 475 ⁇ At least one of is used to transmit the first information in the present application.
  • Embodiment 5 illustrates a flow chart of wireless transmission, as shown in FIG.
  • base station N1 is a serving cell maintenance base station of user equipment U2.
  • the steps in blocks F1 through F9 are optional, respectively.
  • the first information is sent in step S101; the first signaling is sent in step S11, the first signaling is used to indicate M first class time windows on the first sub-band, the first The M first type time windows on the subband are reserved for the first type of reference signal; in the step S102, M times of the second type of access detection are respectively performed on the first subband; in step S12 Determining that only the first type of reference signals need to be sent in the M1 first type time windows in the M first type time windows on the first subband; in the step S103, respectively in the M2 second Transmitting M2 second radio signals of the M second radio signals in the time-frequency resource; respectively transmitting M1 first-class reference sub-signals in the M1 first-type time windows in step S13; Transmitting N second type reference signals; monitoring the first wireless signal in the first time frequency resource in step S14; performing third type access detection on the first subband in step S105; in step S106 Transmitting the second signaling in the third time-frequency resource.
  • the first information is received in step S201; the first signaling is received in step S21, the first signaling is used to indicate M first class time windows on the first sub-band, the first The M first type time windows on the subband are reserved for the first type of reference signal; in the step S202, the M second radio signals are respectively monitored in the M second time frequency resources; and the step S22 is determined in step S22.
  • the M is a positive integer
  • the M1 is a positive integer not greater than the M
  • the U2 sends the first in the first time-frequency resource a wireless signal; the first set of conditions comprising the M1 being no greater than a first threshold.
  • the first type of reference signal includes the M1 first type reference sub-signals, and the M1 first-type time windows are respectively reserved for the M1 first-class reference sub-signals; for the M1
  • the measurement of a class of reference sub-signals is used by the U2 to determine M1 first-class values, and the M1 first-class values have M3 first-class values lower than a second threshold; the first condition set The M3 is included to be greater than a third threshold.
  • the M second wireless signals and the M first type time windows are in one-to-one correspondence; the U2 detects the M2 second wireless signals in the M second wireless signals.
  • the M1 second wireless signals of the M2 second wireless signals are respectively used to indicate that the first type of reference signals are received in the M1 first type time windows.
  • the first type of access detection includes: performing Q energy detections in Q time sub-pools on the first sub-band to obtain Q detection values; wherein Q1 of the Q detection values are The detected values are all lower than a fourth threshold; the Q is a positive integer, and the Q1 is a positive integer not greater than the Q.
  • the start times of the M first type time windows are not earlier than the end times of the M times second type access detection.
  • the given second type of access detection Is a second type of access detection in the Mth second type of access detection, wherein P1 detection values of the P detection values are lower than a fifth threshold; the P is a positive integer, and the P1 is Not more than the non-negative integer of the P.
  • the start time of the time resource occupied by the third time-frequency resource is not earlier than the end time of the third type of access detection.
  • the third type of access detection includes: performing W energy detections in W time sub-pools on the first sub-band to obtain W detection values; wherein, W1 of the W detection values The detected values are all lower than a seventh threshold; the W is a positive integer, and the W1 is a positive integer not greater than the W.
  • the second signaling is used by the U2 to determine that the first wireless signal is correctly received.
  • the measurements for the N second type of reference signals are used by the U2 to determine the first wireless signal, the N being a positive integer.
  • the first information is used by the U2 to determine the first set of conditions.
  • the M1 first type time windows are respectively reserved for multicarrier symbols carrying the M1 first type reference sub-signals.
  • only the M3 first class values of the M1 first class values are lower than the second threshold.
  • the M1 first type values only have at least one of the first type of values other than the M3 first type of values being lower than the second threshold.
  • the positions of the M3 first class values in the M1 first class values are continuous.
  • the positions of the M3 first-type time windows in the M1 first-type time windows are continuous, and the M3 first-type time windows are the M1 first A first type of time window corresponding to the M3 first class values in the class time window.
  • the M1 first type values are respectively BLER (BLock Error Rate).
  • the M3 is a non-negative integer.
  • the M3 is greater than zero.
  • the M3 is equal to zero.
  • the M3 is equal to the M1.
  • the M3 is smaller than the M1.
  • the M2 is equal to the M1.
  • the M2 is greater than the M1, and the second wireless signals of the M2 second wireless signals except the M1 second wireless signals are used to indicate the corresponding first time The first type of reference signal is not received in the window.
  • the M2 second wireless signals are respectively transmitted on the first sub-band.
  • the M second time-frequency resources are respectively located in the first sub-band in the frequency domain.
  • the monitoring the M second wireless signals in the M second time-frequency resources respectively means: receiving the M-based blind detection methods in the M second time-frequency resources respectively a second wireless signal, that is, receiving a signal in a given second time-frequency resource and performing a decoding operation, if it is determined that the decoding is correct according to the check bit, determining that a given second wireless signal is detected; otherwise determining that the A second wireless signal is given.
  • the given second time-frequency resource is any second time-frequency resource of the M second time-frequency resources, and the given second wireless signal is the M second wireless signals and the A second wireless signal corresponding to the second time-frequency resource is given.
  • the check bit refers to a CRC bit.
  • the monitoring the M second wireless signals in the M second time-frequency resources respectively means: determining whether the M devices are detected according to the energy detection in the M second time-frequency resources respectively Second wireless signal.
  • the energy of all wireless signals is sensed in a given second time-frequency resource and averaged over time to obtain received energy. If the received energy is greater than the fourth given threshold, it is determined that the given second wireless signal is detected; otherwise, the second wireless signal is not detected.
  • the given second time-frequency resource is any second time-frequency resource of the M second time-frequency resources, and the given second wireless signal is the M second wireless signals and the A second wireless signal corresponding to the second time-frequency resource is given.
  • each of the M2 second wireless signals explicitly indicates whether the first type of reference signal is received in a corresponding first type of time window.
  • each of the M2 second wireless signals implicitly indicates whether the first type of reference signal is received in a corresponding first type of time window.
  • each of the M1 second wireless signals explicitly indicates that the first type of reference signal is received in a corresponding first type of time window.
  • each of the M1 second wireless signals implicitly indicates that the first type of reference signal is received in a corresponding first type of time window.
  • any second wireless signal of the M2 second wireless signals except the M1 second wireless signals explicitly indicates that the first one is not received in the corresponding first type of time window.
  • Class reference signal
  • any one of the M2 second wireless signals except the M1 second wireless signals implicitly indicates that the first one is not received in the corresponding first type of time window. Class reference signal.
  • each of the M2 second wireless signals is used to indicate the number of occupied multi-carrier symbols in the corresponding first type of time window.
  • each of the M2 second wireless signals is used to indicate a multi-carrier symbol occupied by a sender of the first type of reference signal in a corresponding first type of time window. Quantity.
  • the U2 is in any of The first type of reference signal is received in a first type of time window; otherwise the U2 abandons receiving the first type of reference signal in any given first type of time window.
  • the M2 first type time windows are first time windows corresponding to the M2 second wireless signals in the M first type time windows.
  • the N1 is given in any of the The first type of reference signal is transmitted in a first type of time window; otherwise the N1 abandons transmitting the first type of reference signal in any given first type of time window.
  • the third given threshold is a positive integer not greater than 14.
  • the third given threshold is a positive integer not less than 7.
  • the third given threshold is a positive integer greater than one.
  • the third given threshold is configurable.
  • the third given threshold is related to the length of a TTI (Transmission Time Interval).
  • the third given threshold is fixed, ie not configurable.
  • the third given threshold is UE specific.
  • the third given threshold is common to the cell.
  • a given second wireless signal is used by the U2 to determine a reference antenna port set, if the reference antenna port set includes all antenna ports in a reference antenna port group, the U2 is at the given Receiving the first type of reference signal in a first type of time window corresponding to the second wireless signal; otherwise, the U2 does not receive the first type of reference signal in the first type of time window corresponding to the given second wireless signal .
  • the given second wireless signal is any one of the M2 second wireless signals, and the reference antenna port group is associated with a transmit antenna port group of the first type of reference signal,
  • the reference antenna port set includes a positive integer number of antenna ports, and one antenna port group includes a positive integer number of antenna ports.
  • the N1 if the reference antenna port set includes the reference antenna port group, the N1 sends the first in a first type of time window corresponding to the given second wireless signal. Class reference signal; otherwise the N1 abandons transmitting the first type of reference signal in a first type of time window corresponding to the given second wireless signal.
  • the given second wireless signal explicitly indicates the reference antenna port set.
  • the given second wireless signal implicitly indicates the reference antenna port set.
  • any one of the transmit antenna port of the first type of reference signal and one of the reference antenna port groups (Quasi Co-Located).
  • any one of the transmitting antenna port of the first type of reference signal and one of the reference antenna port groups are spatial QCL.
  • the spatial coverage of the transmit beam corresponding to any transmit antenna port of the first type of reference signal is corresponding to one of the reference antenna port groups.
  • the beam is within the coverage of the space.
  • the reference antenna port set includes a number of antenna ports not less than the number of antenna ports included in the reference antenna port group.
  • the reference antenna port group includes one antenna port.
  • the reference antenna port group includes a plurality of antenna ports.
  • any two of the reference antenna port groups are QCL.
  • any two antenna ports in the reference antenna port group are spatialQCL.
  • At least two antenna ports in the reference antenna port group are not QCL.
  • At least two antenna ports in the reference antenna port group are not spatialQCL.
  • any one of the M second wireless signals includes DCI (Downlink Control Information).
  • any one of the M second wireless signals includes a DCI identified by a CC (Component Carrier)-RNTI (Radio Network Temporary Identifier).
  • CC Component Carrier
  • RTI Radio Network Temporary Identifier
  • the CC-RNTI is used to generate an RS sequence of DMRS (DeModulation Reference Signals) corresponding to any of the M second radio signals.
  • DMRS Demodulation Reference Signals
  • the CRC bit sequence of any of the M second wireless signals is scrambled by the CC-RNTI.
  • the M2 is a positive integer.
  • the M2 is smaller than the M.
  • the M2 is equal to the M1.
  • the M2 is greater than the M1.
  • the Q time subpools are located in front of the time resource occupied by the first time-frequency resource in the time domain.
  • the first type of access detection is used by the U2 to determine whether the first sub-band is idle (Idle).
  • the first type of access detection is used by the U2 to determine whether the first sub-band can be used by the U2 to transmit a wireless signal.
  • the first type of access detection is uplink access detection.
  • the first type of access detection is a Cat4 LBT (a fourth type of LBT), and the specific definition of the Cat4 LBT is referred to 3GPP TR 36.889.
  • the first type of access detection is a Cat2LBT (LBT of the second type), and the specific definition of the Cat2LBT is referred to 3GPP TR36.889.
  • the first type of access detection is a Type 1 UL channel access procedure, and the specific definition of the first type of uplink channel access procedure is described in 3GPP TS36.213. Section 15.2.
  • the first type of access detection is a Type 1 UL channel access procedure
  • the specific definition of the second type of uplink channel access procedure is described in 3GPP TS36.213. Section 15.2.
  • the first type of access detection is implemented in the manner defined by Section 15.2 of 3GPP TS 36.213.
  • the M times second type access detection is used by the N1 to determine whether the first sub-band is idle (Idle).
  • the M times second type access detection is used by the N1 to determine whether the first subband can be used by the N1 to transmit a wireless signal.
  • the M times second type access detection is downlink access detection.
  • the given second type of access detection is a Cat4LBT (fourth type of LBT), and the specific definition of the Cat4LBT is referred to 3GPP TR 36.889.
  • the given second type of access detection is a Cat2LBT (LBT of the second type), and the specific definition of the Cat2LBT is referred to 3GPP TR 36.889.
  • the M times second type access detection is implemented by means defined in section 15.1 of 3GPP TS 36.213, respectively.
  • any one of the M times of the second type of access detection includes the positive integer energy detection in a positive integer number of time subpools on the first subband, Get a positive integer number of detections.
  • the number of times the energy detection included in the second type of access detection is not equal in the M times of the second type of access detection is unequal.
  • the M times second type access detection is used by the N1 to determine whether to send the first type reference in the M first type time windows on the first subband. signal.
  • the N1 if the first sub-band is idle according to the result of any one of the M-type second-type access detections, the N1 is in the corresponding first class. Transmitting the first type of reference signal in a time window; otherwise, the N1 abandons transmitting the first type of reference signal in a corresponding first type of time window.
  • the N1 if the first sub-band is determined to be used for downlink transmission according to the result of any one of the M-type second-type access detections, the N1 is in the corresponding The first type of reference signal is sent in a type of time window; otherwise, the N1 abandons sending the first type of reference signal in a corresponding first type of time window.
  • the monitoring the first wireless signal in the first time-frequency resource means: receiving, by using the blind detection-based method, the first wireless signal in the first time-frequency resource, that is, in the first time The signal is received in the frequency resource and performs a decoding operation. If it is determined that the decoding is correct according to the check bit, it is determined that the reception of the first wireless signal is successful, otherwise it is determined that the reception of the first wireless signal fails.
  • the check bit refers to a CRC bit.
  • the N1 determines whether to send the M second wireless signals according to the results of the M times second type access detection.
  • the N1 sends the M-th a second wireless signal corresponding to the second wireless signal; otherwise, the N1 abandons sending the corresponding second wireless signal of the M second wireless signals.
  • the N1 sends the M Corresponding second wireless signals of the second wireless signals; otherwise, the N1 abandons sending the corresponding second wireless signals of the M second wireless signals.
  • the third type of access detection is used by the N1 to determine whether the first sub-band is idle (Idle).
  • the third type of access detection is used by the N1 to determine whether the first sub-band can be used by the N1 to transmit a wireless signal.
  • the third type of access detection is downlink access detection.
  • the third type of access detection is Cat4LBT (the fourth type of LBT), and the specific definition of the Cat4LBT is referred to 3GPP TR36.889.
  • the third type of access detection is a Cat2LBT (LBT of the second type), and the specific definition of the Cat2LBT is referred to 3GPP TR36.889.
  • the third type of access detection is implemented in the manner defined by section 15.1 of 3GPP TS 36.213.
  • the second signaling is transmitted on the first sub-band.
  • the third time-frequency resource is located in the first sub-band in the frequency domain.
  • the second signaling is transmitted on a frequency band other than the first sub-band.
  • the third time-frequency resource is located in a frequency band other than the first sub-band in the frequency domain.
  • the second signaling includes a BRR response.
  • the second signaling includes a BFRQ response.
  • the second signaling explicitly indicates that the first wireless signal is correctly received.
  • the second signaling implicitly indicates that the first wireless signal is correctly received.
  • the first wireless signal is used by the N1 to determine a first antenna port group, and any one of the transmit antenna ports of the second signaling and the first antenna port group is Co-location.
  • the quasi co-location refers to a QCL.
  • the quasi co-location refers to spatialQCL.
  • the N second type reference signals are all transmitted on the first sub-band.
  • the first information is carried by higher layer signaling.
  • the first information is carried by higher layer signaling.
  • the first information is carried by MAC CE signaling.
  • the first information is carried by physical layer signaling.
  • the first information indicates the first set of conditions.
  • the first information indicates at least one of the first threshold, the second threshold, and the third threshold.
  • the first information is transmitted on the first sub-band.
  • the first information is transmitted on a frequency band other than the first sub-band.
  • the first information is transmitted on a frequency band deployed in the licensed spectrum.
  • the first signaling is transmitted on a downlink physical layer data channel (ie, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel ie, a downlink channel that can be used to carry physical layer data.
  • the downlink physical layer data channel is a PDSCH (Physical Downlink Shared CHannel).
  • PDSCH Physical Downlink Shared CHannel
  • the downlink physical layer data channel is sPDSCH (short PDSCH).
  • the downlink physical layer data channel is an NR-PDSCH (New Radio PDSCH).
  • NR-PDSCH New Radio PDSCH
  • the downlink physical layer data channel is a NB-PDSCH (Narrow Band PDSCH).
  • the first signaling is transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is a PDCCH (Physical Downlink Control CHannel).
  • the downlink physical layer control channel is an sPDCCH (short PDCCH).
  • the downlink physical layer control channel is an NR-PDCCH (New Radio PDCCH).
  • NR-PDCCH New Radio PDCCH
  • the downlink physical layer control channel is an NB-PDCCH (Narrow Band PDCCH).
  • NB-PDCCH Narrow Band PDCCH
  • the first wireless signal is transmitted on an uplink physical layer control channel (ie, an uplink channel that can only be used to carry physical layer signaling).
  • an uplink physical layer control channel ie, an uplink channel that can only be used to carry physical layer signaling.
  • the uplink physical layer control channel is a PUCCH (Physical Uplink Control CHannel).
  • the uplink physical layer control channel is sPUCCH (short PUCCH).
  • the uplink physical layer control channel is an NR-PUCCH (New Radio PUCCH).
  • the uplink physical layer control channel is NB-PUCCH (NarrowBand PUCCH, narrowband PUCCH).
  • the first wireless signal is transmitted on the PRACH.
  • the second signaling is transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is a PDCCH.
  • the downlink physical layer control channel is an sPDCCH.
  • the downlink physical layer control channel is an NR-PDCCH.
  • the downlink physical layer control channel is an NB-PDCCH.
  • the first information is transmitted on a downlink physical layer data channel (ie, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel ie, a downlink channel that can be used to carry physical layer data.
  • the downlink physical layer data channel is a PDSCH.
  • the downlink physical layer data channel is sPDSCH.
  • the downlink physical layer data channel is an NR-PDSCH.
  • the downlink physical layer data channel is an NB-PDSCH.
  • the first information is transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is a PDCCH.
  • the downlink physical layer control channel is an sPDCCH.
  • the downlink physical layer control channel is an NR-PDCCH.
  • the downlink physical layer control channel is an NB-PDCCH.
  • block F5 in FIG. 5 if the U2 transmits the first wireless signal in the first time-frequency resource and the first wireless signal is transmitted on the first sub-band, block F5 in FIG. There is, ie the U2 performs the first type of access detection on the first sub-band. If the U2 does not transmit the first wireless signal in the first time-frequency resource or the first wireless signal is transmitted on a frequency band other than the first sub-band, block F5 in FIG. 5 does not There is, that is, the U2 does not perform the first type of access detection on the first sub-band.
  • block F6 in FIG. 5 exists, that is, the U2 transmits the first wireless signal in the first time-frequency resource.
  • FIG. 5 Block F7 is present, i.e., said N1 performs said third type of access detection on said first sub-band. If the N1 does not detect the first wireless signal in the first time-frequency resource and the third time-frequency resource is located in a frequency band other than the first sub-band in a frequency domain, in FIG. 5 The block F7 does not exist, that is, the N1 does not perform the third type of access detection on the first sub-band.
  • the block F8 in FIG. 5 exists, that is, the N1 is in the third time-frequency resource. Sending the second signaling. If the N1 does not detect the first wireless signal in the first time-frequency resource, the block F8 in FIG. 5 does not exist, that is, the N1 does not send in the third time-frequency resource. The second signaling is described.
  • the box F9 in FIG. 5 exists, that is, the U2 is monitored in the third time-frequency resource.
  • the second signaling If the U2 does not send the first wireless signal in the first time-frequency resource, the block F9 in FIG. 5 does not exist, that is, the U2 does not monitor the third time-frequency resource. Second signaling.
  • Embodiment 6 illustrates a schematic diagram of timing relationships of M first time-frequency resources and M second-order access detections in the time domain, as shown in FIG.
  • the M first type time windows are reserved for the first type of reference signals in the present application, and the user equipment in the present application determines that only the M first classes are needed.
  • the base station in the present application determining that only the M1 first classes in the M first type time windows are needed.
  • the first type of reference signal is transmitted in a time window.
  • the user equipment monitors the M second wireless signals in the application, and detects M2 second wireless signals in the M second wireless signals, respectively, in the M second time-frequency resources;
  • the M second wireless signals and the M first type time windows are in one-to-one correspondence.
  • the base station determines, by the base station, whether to send the first type reference signal in the M first type time windows according to the result of the M times second type access detection.
  • the M2 is greater than the M1, and the M1 second wireless signals of the M2 second wireless signals and the M1 first type time windows are in one-to-one correspondence.
  • the M is a positive integer
  • the M2 is a positive integer not greater than the M
  • the M1 is a positive integer not greater than the M2.
  • the start time of the M first type time windows is not earlier than the end time of the time resources occupied by the M second time frequency resources, and the start time of the time resources occupied by the M second time frequency resources Not earlier than the end time of the M-th type second access detection.
  • the M first type time windows, the M second time frequency resources, and the M times second type access detection indexes are ⁇ #0,...,#x, respectively. , ..., #M-1 ⁇ , where x is a positive integer less than the M-1.
  • the base station determines, according to the results of the second type access detection #0, the second type access detection #x and the second type access detection #M-1, that the first is sent in the first type time window #0.
  • the class reference signal does not transmit the first type of reference signal in the first type of time window #x and the first type of time window #M-1.
  • the user equipment determines that the first type reference signal is received in the first type time window #0, and does not receive the first type reference in the first type time window #x and the first type time window #M-1. signal.
  • the base station separately transmits a corresponding second wireless signal in the second time-frequency resource #0 and the second time-frequency resource #x, and does not send the corresponding second wireless signal in the second time-frequency resource #M-1.
  • the blank filled box represents the time resource occupied by the M second type access detection
  • the left oblique line filled box represents M2 second of the M second time frequency resources.
  • the time resource occupied by the time-frequency resource indicates the time resource occupied by the second time-frequency resource that does not belong to the M2 second time-frequency resources of the M second time-frequency resources, and the right slash
  • the filled box represents time resources occupied by the M1 first type time windows in the M first type time windows, and the cross line filled box indicates that the M first type time windows do not belong to the The time resources occupied by the first type of time window of the M1 first type time windows.
  • the M2 second time-frequency resources are second time-frequency resources corresponding to the M2 second wireless signals in the M second time-frequency resources.
  • the M first type time windows are orthogonal to each other (non-overlapping) in the time domain.
  • any one of the M first type time windows is a continuous time period.
  • any two of the M first type time windows are discontinuous in the time domain.
  • the time intervals between any two adjacent first type time windows of the M first type time windows are equal.
  • the durations of any two of the M first type time windows are the same.
  • the durations of at least two first type time windows in the M first type time windows are different.
  • the user equipment abandons receiving the first type reference signal in any of the first time window of the M first type time windows that does not belong to the M1 first type time windows.
  • the base station abandons sending the first type reference signal in any of the first time windows of the M first type time windows that do not belong to the M1 first type time windows.
  • the positions of the M1 first type time windows in the M first type time windows are continuous.
  • the positions of the M1 first type time windows in the M first type time windows are discontinuous.
  • the user equipment respectively receives M1 first-type reference sub-signals in the M1 first-type time windows; the first-type reference signal includes the M1 first-type reference sub-signals,
  • the M1 first type time windows are respectively reserved for the M1 first type reference sub-signals.
  • the measurements for the M1 first-type reference sub-signals are used to determine M1 first-class values, respectively, and M3 first-class values of the M1 first-class values are lower than the second threshold.
  • the M3 first type time windows are first time windows corresponding to the M3 first class values in the M first type time windows.
  • the positions of the M3 first type time windows in the M first type time windows are continuous.
  • the positions of the M3 first type time windows in the M first type time windows are discontinuous.
  • the start time of the first type of time window corresponding to the given second type of access detection in the M first type of time windows is not earlier than that in the present application.
  • any of the M second time-frequency resources is located in front of the corresponding first type of time window in the time domain.
  • any second time-frequency resource of the M second time-frequency resources is located in the time domain after the time resource occupied by the corresponding second type of access detection.
  • the M1 second wireless signals in the M2 second wireless signals are respectively used to indicate that the first type of reference signals are received in the M1 first type of time windows.
  • the second wireless signals of the M2 second wireless signals except the M1 second wireless signals are respectively used to indicate that the first one is not received in the corresponding first type of time window.
  • Class reference signal
  • Embodiment 7 illustrates a schematic diagram of timing relationships of M first time-frequency resources and M second-order access detections in the time domain, as shown in FIG.
  • the M first type time windows are reserved for the first type of reference signals in the present application, and the user equipment in the present application determines that only the M first classes are needed. Receiving the first type of reference signals in the M1 first type time windows in the time window, the base station in the present application determining that only the M1 first classes in the M first type time windows are needed. The first type of reference signal is transmitted in a time window.
  • the user equipment monitors the M second wireless signals in the application, and detects M2 second wireless signals in the M second wireless signals, respectively, in the M second time-frequency resources; The M second wireless signals and the M first type time windows are in one-to-one correspondence.
  • the base station determines, by the base station, whether to send the first type reference signal in the M first type time windows according to the result of the M times second type access detection.
  • the M2 is equal to the M1, and the M2 second wireless signals are in one-to-one correspondence with the M1 first type time windows.
  • the M is a positive integer and the M2 is a positive integer not greater than the M.
  • the start time of the M first type time windows is not earlier than the end time of the time resources occupied by the M second time frequency resources, and the start time of the time resources occupied by the M second time frequency resources Not earlier than the end time of the M-th type second access detection.
  • the M first type time windows, the M second time frequency resources, and the M times second type access detection indexes are ⁇ #0,...,#x, respectively. , ..., #M-1 ⁇ , where x is a positive integer less than the M-1.
  • the base station determines, according to the second type of access detection #0, the second type of access detection #x, and the second type of access detection #M-1, the first type of time window #0 and the first type of time window.
  • the first type reference signal is transmitted in #x, and the first type reference signal is not transmitted in the first type time window #M-1.
  • the user equipment determines to receive the first type reference signal in the first type time window #0 and the first type time window #x, and does not receive the first type reference in the first type time window #M-1 signal.
  • the base station separately transmits a corresponding second wireless signal in the second time-frequency resource #0 and the second time-frequency resource #x, and does not send the corresponding second wireless signal in the second time-frequency resource #M-1.
  • the blank filled box represents the time resource occupied by the M second type access detection
  • the left oblique line filled box represents M2 second of the M second time frequency resources.
  • the time resource occupied by the time-frequency resource indicates the time resource occupied by the second time-frequency resource that does not belong to the M2 second time-frequency resources of the M second time-frequency resources, and the right slash
  • the filled box represents time resources occupied by the M1 first type time windows in the M first type time windows, and the cross line filled box indicates that the M first type time windows do not belong to the The time resources occupied by the first type of time window of the M1 first type time windows.
  • the M2 second time-frequency resources are second time-frequency resources corresponding to the M2 second wireless signals in the M second time-frequency resources.
  • Embodiment 8 exemplifies a timing relationship of M first type time windows and N second type reference signals in the time domain; as shown in FIG.
  • the N second type reference signals appear multiple times in the time domain, the time resources occupied by the N second type reference signals, and the time resources occupied by the M first type time windows. It is orthogonal (not overlapping).
  • the blank filled boxes represent the M first type time windows, and the left oblique filled boxes represent the time resources occupied by the N second type reference signals.
  • the time intervals between any two adjacent occurrences of the N second type reference signals in the time domain are equal.
  • the time intervals between any two adjacent occurrences of the N second type reference signals in the time domain are unequal.
  • Embodiment 9 illustrates a schematic diagram of resource mapping of M1 first-type reference sub-signals in the time-frequency domain; as shown in FIG.
  • the M first type time windows in the present application are reserved for the first type reference signal in the present application, and the user equipment in the present application determines that only the M first Receiving the first type of reference signal in M1 first type time windows in a type of time window; the first type of reference signal includes the M1 first type reference sub-signals, and the M1 first-class time signals
  • the windows are reserved for the M1 first class reference sub-signals, respectively.
  • the M1 first-type reference sub-signals occupy the same frequency domain resource, and the pattern of any two of the first-type reference sub-signals in the M1 first-class reference sub-signals in a time-frequency resource block is identical.
  • the indexes of the M first type time windows are ⁇ #0, . . . , #x, . . . , #y, . . . , #M-1 ⁇ , respectively.
  • x and the y are respectively a positive integer smaller than the M-1, the x is smaller than the y;
  • the indexes of the M1 first-type reference sub-signals are ⁇ #0,...,#z, respectively ..., #M1-1 ⁇ , the z is a positive integer smaller than the M1-1.
  • the box of the thick solid border represents a time-frequency resource block; the left-lined filled box represents the first type of reference sub-signal #0 of the M1 first-type reference sub-signals; a first type of reference sub-signal #z of the M1 first-type reference sub-signals; a cross-line filled box indicating a first-type reference sub-signal #M1-1 of the M1 first-type reference sub-signals .
  • the first type of time window #0, the first type of time window #y, and the first type of time window #M-1 of the M first type of time windows belong to the M1 first type time windows,
  • the first type of time window #x in the M first type time windows does not belong to the M1 first type time windows.
  • the M first type time windows are discontinuous in the time domain.
  • the time intervals in any two adjacent first type time windows of the M first type time windows are equal.
  • the M1 first type time windows are consecutive in the positions of the M first type time windows.
  • the M1 first type time windows are discontinuous at positions of the M first type time windows.
  • the first type of reference signal includes a CSI-RS (Channel State Information-Reference Signal).
  • CSI-RS Channel State Information-Reference Signal
  • the first type of reference signal includes DMRS (DeModulation Reference Signals).
  • the first type of reference signal includes one or more of a PSS (Primary Synchronization Signal) and an SSS (Secondary Synchronization Signal).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the first type of reference signal includes one or more of a MIB (Master Information Block) and an SIB (System Information Block).
  • MIB Master Information Block
  • SIB System Information Block
  • the first type of reference signal includes TRS (finetime/frequencyTrackingReferenceSignals, fine time domain/frequency domain tracking reference signal).
  • the first type of reference signal includes a PRTS (Phase Error Tracking Reference Signals).
  • the first type of reference signal is periodic.
  • the first type of reference signal is semi-persistent.
  • the first type of reference signal appears multiple times in the time domain.
  • the time interval between any two adjacent occurrences of the first type of reference signal in the time domain is equal.
  • the time interval between any two adjacent occurrences of the first type of reference signal in the time domain is unequal.
  • the first type of reference signal is broadband.
  • the first sub-band is divided into positive integer frequency domain regions, and the first type of reference signal appears on each of the positive integer frequency domain regions, the positive integer Any of the frequency domain regions includes a positive integer number of consecutive subcarriers.
  • the number of subcarriers included in any two of the positive integer frequency domain regions is the same.
  • the first type of reference signal is narrowband.
  • the first sub-band is divided into a positive integer frequency domain region, and the first type of reference signal appears only in a part of the frequency domain region of the positive integer frequency domain region, the positive integer Any of the frequency domain regions includes a positive integer number of consecutive subcarriers.
  • the number of subcarriers included in any two of the positive integer frequency domain regions is the same.
  • the time domain resources occupied by the M1 first type reference sub-signals are mutually orthogonal (non-overlapping).
  • one time-frequency resource block is a PRBP (Physical Resource Block Pair).
  • PRBP Physical Resource Block Pair
  • a time-frequency resource block occupies a positive integer number of subcarriers in the frequency domain and a positive integer number of multicarrier symbols in the time domain.
  • Embodiment 10 illustrates a schematic diagram of resource mapping of N second type reference signals in the time-frequency domain; as shown in FIG.
  • the N second type reference signals appear multiple times in the time domain.
  • the indexes of the N second type reference signals are ⁇ #0, #1, ..., #N-1 ⁇ , respectively.
  • a box filled with a left oblique line represents a second type of reference signal #0 of the N second type of reference signals;
  • a box filled with small dots represents a second type of reference signal of the N second type of reference signals #1;
  • the cross-line filled box represents the second type of reference signal #N-1 of the N second type of reference signals.
  • any one of the N second type reference signals includes a CSI-RS.
  • any one of the N second type reference signals includes a DMRS.
  • any one of the N second type reference signals includes one or more of a PSS and an SSS.
  • any one of the N second type reference signals includes one or more of an MIB and an SIB.
  • any one of the N second type of reference signals includes a TRS.
  • any of the N second type of reference signals includes a PRTS.
  • the N second type of reference signals are periodic.
  • the N second type of reference signals are semi-persistent.
  • the time interval between any two adjacent occurrences of the second type of reference signals in the time domain is equal.
  • the time interval between any two adjacent occurrences of the second second type of reference signals in the time domain is unequal.
  • any of the N second type of reference signals is broadband.
  • the first sub-band is divided into a positive integer frequency domain region, and any one of the N second-type reference signals is in each of the positive integer frequency domain regions. Appearing on a frequency domain region, any one of the positive integer frequency domain regions includes a positive integer number of consecutive subcarriers.
  • the number of subcarriers included in any two of the positive integer frequency domain regions is the same.
  • any of the N second type of reference signals is narrowband.
  • the first sub-band is divided into a positive integer frequency domain region, and any of the N second-type reference signals is only in the positive integer frequency domain region. Appearing in a portion of the frequency domain region, any one of the positive integer frequency domain regions includes a positive integer number of consecutive subcarriers.
  • the number of subcarriers included in any two of the positive integer frequency domain regions is the same.
  • Embodiment 11 illustrates a schematic diagram of a given access detection; as shown in FIG.
  • the given access detection is the first type of access detection in the present application, the given second type of access detection in the present application, or the third type of access detection in the present application.
  • the given access detection includes: performing T energy detections in T time sub-pools on the first sub-band in the present application, to obtain T detection values;
  • the T1 detection values in the T detection values are all lower than the reference threshold; the T is a positive integer, and the T1 is a positive integer not greater than the T.
  • the T1 time sub-pools are time sub-pools corresponding to the T1 detection values in the T time sub-pools. The process of the T-th energy detection can be described by the flowchart in FIG. If the given access detection is the first type of access detection, the T is equal to the Q in the application, and the T1 is equal to the Q1 in the application, and the reference threshold is in the present application.
  • the fourth threshold if the given access detection is the given second type of access detection, the T is equal to the P in the application, and the T1 is equal to the P1 in the present application.
  • the reference threshold is the fifth threshold in the application; if the given access detection is the third type of access detection, the T is equal to the W in the application, and the T1 is equal to In the W1 in the present application, the reference threshold is the seventh threshold in the present application.
  • a given node is in an idle state in step S1101, it is determined in step S1102 whether or not transmission is required; in step 1103, energy detection is performed in a delay period; in step S1104, the delay period is judged. Whether all the slot periods within the slot are idle (Idle), if yes, proceed to step S1105 to set the first counter equal to K1; otherwise, return to step S1104; in step S1106, determine whether the first counter is 0, and if so, Going to step S1107 to transmit a wireless signal on the first sub-band in the present application; otherwise proceeding to step S1108 to perform energy detection in an additional slot duration; determining this addition in step S1109 Whether the slot period is idle (Idle), if yes, proceeding to step S1110 to decrement the first counter by 1, and then returning to step 1106; otherwise proceeding to step S1111 to perform energy detection in an additional delay period (additional deferduration) Determining in step S1112 whether all time slot periods in this additional delay period are
  • the given node is the user equipment in the present application; if the given access detection is the given second type Ingress detection or the third type of access detection, the given node is the base station in the present application.
  • the K1 is one of the K alternative integers, and the K is a positive integer.
  • the first given time period includes a positive integer number of time sub-pools in the T time sub-pools, the first given time period is ⁇ all delay time periods included in FIG. 11 , all additional The slot period, any one of all additional delay periods ⁇ .
  • the second given time period includes one time sub-pool of the T1 time sub-pools, and the second given time period is ⁇ all additional time slot periods judged to be idle by energy detection in FIG. 11 , all additional Any time period in the delay period ⁇ .
  • any one slot time period within a given time period includes one time sub-pool of the T time sub-pools; the given time period is ⁇ all delay periods included in FIG. 11 , any additional time slot period, any one of all additional delay periods ⁇ .
  • performing energy detection within a given time period means performing energy detection within all slot time periods within the given time period; the given time period is ⁇ all included in FIG. Delay period, any additional time slot period, any one of all additional delay periods ⁇ .
  • determining Idle by energy detection in a given period of time means that all slot periods included in the given period are judged to be idle (Idle) by energy detection;
  • the segment is any one of ⁇ all delay periods, all additional slot periods, all additional delay periods ⁇ included in FIG.
  • the determination of idle (Idle) by energy detection for a given time slot period means that the given node senses all wireless signals on the first sub-band in a given time unit. The power, and averaged over time, the received received power is below the reference threshold; the given time unit is one of the given time slot periods.
  • the duration of the given time unit is not shorter than 4 microseconds.
  • the determination of idle (Idle) by energy detection for a given time slot period means that the given node senses all wireless signals on the first sub-band in a given time unit. The energy, and averaged over time, the received energy received is below the reference threshold; the given time unit is one of the given time slot periods.
  • the duration of the given time unit is not shorter than 4 microseconds.
  • determining, by the energy detection, that the given time slot period is idle (Idle) means that the given node performs energy detection on the time sub-pool included in the given time slot period, and the obtained detection value is lower than The reference threshold; the time subpool belongs to the T time subpools, and the detected value belongs to the T detection values.
  • performing energy detection in a given time period means performing energy detection in all time sub-pools within the given time period; the given time period is ⁇ all delay time periods included in FIG. 11 All of the additional time slot periods, any of the additional time delay periods, all of which belong to the T time subpools.
  • determining, by the energy detection, that the given time period is idle means that: the detected values obtained by the energy detection for all the time sub-pools included in the given time period are lower than the reference threshold;
  • the given time period is any one of ⁇ all delay periods, all additional time slot periods, all additional delay periods ⁇ included in FIG. 11, and all of the time subpools belong to the T time subpools.
  • the detected values belong to the T detected values.
  • the duration of a defer duration is 16 microseconds plus S1 9 microseconds, and S1 is a positive integer.
  • one delay period includes S1+1 time sub-pools in the T time sub-pools.
  • the duration of the first time sub-pool in the S1+1 time sub-pool does not exceed 16 microseconds, and the durations of other S1 time sub-pools do not exceed 9 Microseconds.
  • the S1 belongs to ⁇ 1, 2, 3, 7 ⁇ .
  • a defer duration includes a plurality of slot durations.
  • the first one of the plurality of slot periods and the second slot period are discontinuous.
  • the time interval between the first slot period and the second slot period of the plurality of slot periods is 7 milliseconds.
  • the duration of an additional defer duration is 16 microseconds plus S2 9 microseconds, which is a positive integer.
  • an additional delay period includes S2+1 time sub-pools in the T time sub-pools.
  • the duration of the first time sub-pool in the S2+1 time sub-pools does not exceed 16 microseconds, and the durations of other S2 time sub-pools do not exceed 9 Microseconds.
  • the S2 belongs to ⁇ 1, 2, 3, 7 ⁇ .
  • the duration of one delay period is equal to the duration of an additional delay period.
  • the S1 is equal to the S2.
  • an additional defer duration includes a plurality of slot durations.
  • the first one of the plurality of slot periods and the second slot period are discontinuous.
  • the time interval between the first slot period and the second slot period of the plurality of slot periods is 7 milliseconds.
  • the duration of one slot duration is 9 microseconds.
  • one slot period includes one time sub-pool of the T time sub-pools.
  • the duration of the one time sub-pool is no more than 9 microseconds.
  • the duration of an additional slot duration is 9 microseconds.
  • an additional slot period includes one of the T time subpools.
  • the duration of the one time sub-pool is no more than 9 microseconds.
  • the K belongs to ⁇ 3, 7, 15, 31, 63, 127, 255, 511, 1023 ⁇ .
  • the K is the CW p in the LBT process of the Cat4, and the CW p is the size of a contention window.
  • the CW p refers to the 15 chapters in 3GPP TS 36.213. .
  • the K candidate integers are 0, 1, 2, ..., K-1.
  • the given node randomly selects the value of the K1 among the K candidate integers.
  • the probability that any one of the K candidate integers is selected as the value of the K1 is equal.
  • the T-th energy detection is energy detection in an LBT, and the specific definition and implementation manner of the LBT is referred to 3GPP TR36.889.
  • the T-th energy detection is energy detection in CCA (Clear Channel Assessment), and the specific definition and implementation manner of the CCA is referred to 3GPP TR36.889.
  • any one of the T-th energy measurements is implemented by means defined in section 15 of 3GPP TS 36.213.
  • any one of the T-th energy detections is implemented by an energy detection method in WiFi.
  • any one of the T-th energy detections is performed by measuring RSSI (Received Signal Strength Indication).
  • any one of the T-th energy detections is implemented by an energy detection method in the LTE LAA.
  • the time domain resources occupied by any one of the T time subpools are consecutive.
  • the T time subpools are orthogonal to each other (non-overlapping) in the time domain.
  • the duration of any of the T time subpools is one of ⁇ 16 microseconds, 9 microseconds ⁇ .
  • At least two time sub-pools in the T time sub-pools have unequal durations.
  • the durations of any two of the T time subpools are equal.
  • the time domain resources occupied by the T time subpools are continuous.
  • the time domain resources occupied by at least two adjacent time sub-pools in the T time sub-pools are discontinuous.
  • the time domain resources occupied by any two adjacent time sub-pools in the T time sub-pools are discontinuous.
  • any one of the T time subpools is a slot duration.
  • any one of the T time subpools is T sl , and the T sl is a slot duration.
  • T sl is a slot duration.
  • any time sub-pool other than the earliest time sub-pool in the T time sub-pools is a slot duration.
  • any time sub-pool other than the earliest time sub-pool in the T time sub-pools is T sl , the T sl is a slot duration, and the specific definition of the T sl See section 15 of 3GPP TS 36.213.
  • At least one time sub-pool having a duration of 16 microseconds exists in the T time sub-pools.
  • At least one time sub-pool having a duration of 9 microseconds exists in the T time sub-pools.
  • the earliest time sub-pool of the T time sub-pools has a duration of 16 microseconds.
  • the last time subpool of the T time subpools has a duration of 9 microseconds.
  • the T time subpools include a listening time in a Cat 4 (fourth class) LBT.
  • the T time subpools include a slot period in a delay period (DeferDuration) in a Cat 4 (fourth type) LBT and a slot period in a backoff time.
  • the T time subpools include a slot period and a backoff time in a delay period (DeferDuration) in a Type 1 UL channel access procedure.
  • the given access detection is the first type of access detection.
  • the T time subpools include slot periods in an initial CCA and an eCCA (Enhanced Clear Channel Assessment, enhanced idle channel assessment).
  • eCCA Enhanced Clear Channel Assessment, enhanced idle channel assessment
  • the T-th energy detection respectively obtains the T detection values.
  • the T detection values are respectively that the given node senses the power of all wireless signals on the first sub-band in T time units, and averages over time to obtain Received power; the T time units are each one of the T time subpools.
  • the duration of any one of the T time units is not shorter than 4 microseconds.
  • the T detection values are respectively that the given node senses the energy of all wireless signals on the first sub-band in T time units, and averages over time to obtain Received energy; the T time units are each one of the T time subpools.
  • the duration of any one of the T time units is not shorter than 4 microseconds.
  • any given energy detection in the T-th energy detection means that the given node monitors received power in a given time unit, and the given time unit is the T time sub- A duration of time in the pool and the time subpool corresponding to the given energy detection.
  • any given energy detection in the T-th energy detection means that the given node monitors received energy in a given time unit, and the given time unit is the T time sub- A duration of time in the pool and the time subpool corresponding to the given energy detection.
  • the T-th power detection is used to determine if the first sub-band is idle (Idle).
  • the T-th power detection is used to determine whether the first sub-band can be used by the given node to transmit a wireless signal.
  • the T detection value units are both dBm (millimeters).
  • the units of the T detection values are all milliwatts (mW).
  • the units of the T detection values are all Joules.
  • the T1 is smaller than the T.
  • the T1 is equal to zero.
  • the T1 is greater than zero.
  • the T is greater than one.
  • the unit of the reference threshold is dBm (millimeters).
  • the unit of the reference threshold is milliwatts (mW).
  • the unit of the reference threshold is joules.
  • the reference threshold is equal to or less than -72 dBm.
  • the reference threshold is any value equal to or less than the first given value.
  • the first given value is predefined.
  • the first given value is configured by higher layer signaling, and the given access detection is the first type of access detection.
  • the reference threshold is freely selected by the given node under conditions equal to or less than the first given value.
  • the first given value is predefined.
  • the first given value is configured by higher layer signaling, and the given access detection is the first type of access detection.
  • the T1 is equal to the K1
  • the given access detection is the first type of access detection or the third type of access detection.
  • the T1 is equal to the K1
  • the given access detection is the given second type of access detection
  • the given second type of access detection and the M2 in the present application
  • One of the second wireless signals corresponds to the second wireless signal.
  • the T1 is equal to the K1
  • the given access detection is the given second type of access detection
  • the given second type of access detection and the M1 in the present application
  • One of the first type of time windows corresponds to a first type of time window.
  • the T1 is smaller than the K1
  • the given access detection is the given second type access detection, the given second type access detection and the M second wireless
  • the signal corresponds to a second wireless signal other than the M2 second wireless signals.
  • the T1 is smaller than the K1
  • the given access detection is the given second type access detection
  • the given second type access detection and the M first classes
  • a time window corresponding to the M1 first type time windows corresponds to the time window.
  • At least one of the detected values that do not belong to the T1 detection values among the T detection values is lower than the reference threshold.
  • At least one of the detected values that do not belong to the T1 detection values of the T detection values is not lower than the reference threshold.
  • the T1 time sub-pools only include slot time periods in the eCCA.
  • the T time sub-pools include the T1 time sub-pools and the T2 time sub-pools, and any one of the T2 time sub-pools does not belong to the T1 time sub-pools.
  • the T2 is a positive integer not greater than the T minus the T1.
  • the T2 time sub-pools include slot time periods in the initial CCA.
  • the positions of the T2 time subpools in the T time subpools are continuous.
  • the detection value corresponding to at least one time sub-pool in the T2 time sub-pools is lower than the reference threshold.
  • the detection value corresponding to at least one time sub-pool in the T2 time sub-pools is not lower than the reference threshold.
  • the T2 time sub-pools include all slot periods in all delay periods.
  • the T2 time sub-pools include all slot periods within at least one additional delay period.
  • the T2 time sub-pools include at least one additional time slot period.
  • the T2 time sub-pools include all the additional slot periods judged to be non-idle by energy detection in FIG. 11 and all slot periods in all the additional delay periods.
  • the T1 time sub-pools belong to T1 sub-pool sets, and any one of the T1 sub-pool sets includes a positive integer time sub-pool in the T time sub-pools;
  • the detected value corresponding to any one of the T1 sub-pool sets is lower than the reference threshold.
  • the number of time sub-pools included in the at least one sub-pool set in the T1 sub-pool set is equal to 1.
  • At least one sub-pool set in the T1 sub-pool set includes a number of time sub-pools greater than one.
  • the number of time sub-pools included in the at least two sub-pool sets in the T1 sub-pool set is unequal.
  • one time sub-pool does not exist in the T time sub-pools and belongs to two sub-pool sets in the T1 sub-pool set.
  • all time sub-pools in any one of the T1 sub-pool sets belong to the same additional delay period or additional slot period determined to be idle by energy detection.
  • the detected value corresponding to at least one time sub-pool in the time sub-pool that does not belong to the T1 sub-pool set in the T time sub-pools is lower than the given threshold.
  • the detected value corresponding to at least one time sub-pool in the time sub-pool that does not belong to the T1 sub-pool set in the T time sub-pools is not lower than the given threshold.
  • Embodiment 12 illustrates a schematic diagram of a given access detection, as shown in FIG.
  • the given access detection is the first type of access detection in the present application, the given second type of access detection in the present application, or the third type of access detection in the present application.
  • the given access detection includes: performing T energy detections respectively in T time sub-pools on the first sub-band in the present application, to obtain T detection values;
  • the T1 detection values in the T detection values are all lower than the reference threshold; the T is a positive integer, and the T1 is a positive integer not greater than the T.
  • the T1 time sub-pools are time sub-pools corresponding to the T1 detection values in the T time sub-pools.
  • the fourth threshold if the given access detection is the given second type of access detection, the T is equal to the P in the application, and the T1 is equal to the P1 in the present application.
  • the reference threshold is the fifth threshold in the application; if the given access detection is the third type of access detection, the T is equal to the W in the application, and the T1 is equal to In the W1 in the present application, the reference threshold is the seventh threshold in the present application.
  • the given node is in an idle state in step S1201, it is determined in step S1202 whether or not transmission is required; in step 1203, energy detection is performed in a delay period; in step S1204, the delay period is judged. Whether all the slot periods within the slot are idle (Idle), if yes, proceeding to send the wireless signal on the first sub-band in the present application in step S1205; otherwise proceeding to step S1206 to perform energy in a delay period Detecting; determining in step S1207 whether all slot periods in this delay period are idle (Idle), if yes, proceeding to step S1208 to set the first counter equal to K1; otherwise returning to step S1206; determining in step S1209 Whether the first counter is 0, if yes, proceeding to send a wireless signal on the first sub-band in step S1205; otherwise proceeding to step S1210 to perform energy detection in an additional time slot period; determining this in step S1211 Whether the additional slot period is idle (Idle), if yes, proceeding to step
  • the given node is the user equipment in the present application; if the given access detection is the given second type Ingress detection or the third type of access detection, the given node is the base station in the present application.
  • the K1 is one of the K alternative integers, and the K is a positive integer.
  • the first given time period includes a positive integer number of time sub-pools in the T time sub-pools, the first given time period is ⁇ all delay time periods included in FIG. 12, all additional The slot period, any one of all additional delay periods ⁇ .
  • the second given time period includes one time sub-pool of the T1 time sub-pools, and the second given time period is ⁇ all additional time slot periods judged as idle (Idle) by energy detection in FIG. , any of the additional delay periods ⁇ .
  • the T1 is equal to 0, and the given node determines in the step S1204 that all time slot periods in the delay period are idle.
  • the T1 is equal to the K1, and the given node determines in step S1204 that not all time slot periods are idle during the delay period, and the given access detection is the first type of connection. Ingress detection or the third type of access detection.
  • the T1 is equal to the K1
  • the given node determines in step S1204 that not all time slot periods are idle during the delay period
  • the given access detection is the given second Class access detection
  • the given second type of access detection corresponds to one of the M2 second wireless signals in the present application.
  • the T1 is equal to the K1
  • the given node determines in step S1204 that not all time slot periods are idle during the delay period
  • the given access detection is the given second Class access detection
  • the given second type of access detection corresponds to a first type of time window of the M1 first type of time windows in the present application.
  • Embodiment 13 illustrates a schematic diagram of a given access detection; as shown in FIG.
  • the given access detection is the first type of access detection in the present application, the given second type of access detection in the present application, or the third type of access detection in the present application.
  • the given access detection includes: performing T energy detections in T time sub-pools on the first sub-band in the present application, to obtain T detection values;
  • the T1 detection values in the T detection values are all lower than the reference threshold; the T is a positive integer, and the T1 is a positive integer not greater than the T.
  • the T1 time sub-pools are time sub-pools corresponding to the T1 detection values in the T time sub-pools.
  • the process of the T-th energy detection can be described by the flowchart in FIG. If the given access detection is the first type of access detection, the T is equal to the Q in the application, and the T1 is equal to the Q1 in the application, and the reference threshold is in the present application.
  • the fourth threshold if the given access detection is the given second type of access detection, the T is equal to the P in the application, and the T1 is equal to the P1 in the present application.
  • the reference threshold is the fifth threshold in the application; if the given access detection is the third type of access detection, the T is equal to the W in the application, and the T1 is equal to In the W1 in the present application, the reference threshold is the seventh threshold in the present application.
  • the given node is in an idle state in step S1301, it is determined in step S1302 whether or not transmission is required; in step 1303, energy detection is performed in a sensing time; in step S1304, the sensing is judged. Whether all the slot periods in the time are idle (Idle), if yes, proceed to step S1305 to transmit a wireless signal on the first sub-band in the present application; otherwise, return to step S1303. If the given access detection is the first type of access detection, the given node is the user equipment in the present application; if the given access detection is the given second type Ingress detection or the third type of access detection, the given node is the base station in the present application.
  • the first given time period includes a positive integer number of time subpools in the T time subpools, and the first given time period is any of ⁇ all sensing time ⁇ included in FIG. A time period.
  • the second given time period includes one time sub-pool of the T1 time sub-pools, and the second given time period is the sensing time judged to be idle (Idle) by energy detection in FIG.
  • the T1 is equal to two.
  • the T1 is equal to the T.
  • the T1 is smaller than the T.
  • the T1 is less than 2.
  • the T1 is equal to zero.
  • the duration of a sensing time is 25 microseconds.
  • one sensing time includes two slot periods, the two slot periods being discontinuous in the time domain.
  • the time interval in the two slot periods is 7 microseconds.
  • the T time subpools include a listening time in a Cat 2 (second class) LBT.
  • the T time subpools include time slots in a sensing interval in a Type 2 UL channel access procedure, and the specific definition of the sensing time interval is as follows.
  • the given access detection is the first type of access detection.
  • the duration of the sensing time interval is 25 microseconds.
  • the T time subpools include T f and T sl in a sensing interval in a Type 2 UL channel access procedure, the T f and the T sl is two time intervals, and the specific definition of the T f and the T sl is described in section 15.2 of 3GPP TS 36.213.
  • the duration of the Tf is 16 microseconds.
  • the duration of the T sl is 9 microseconds.
  • the duration of the first time sub-pool in the T1 time sub-pool is 16 microseconds, and the duration of the second time sub-pool in the T1 time sub-pool is 9 microseconds.
  • the T1 is equal to 2.
  • the duration of the T1 time sub-pools is 9 microseconds; the time interval between the first time sub-pool and the second time sub-pool of the T1 time sub-pools is 7 micro In seconds, the T1 is equal to two.
  • Embodiment 14 illustrates a schematic diagram of resource mapping of M second time-frequency resources in the time-frequency domain; as shown in FIG.
  • the user equipment in the present application monitors the M second wireless signals in the application in the M second time-frequency resources, and detects the M second wireless signals.
  • the M2 second time-frequency resources are second time-frequency resources corresponding to the M2 second wireless signals respectively in the M second time-frequency resources. Any of the M second time-frequency resources includes a positive integer number of consecutive subcarriers in the frequency domain.
  • the indexes of the M second time-frequency resources are ⁇ #0, . . . , #x, . . . , #M-1 ⁇ , respectively, wherein the x is smaller than the M- A positive integer of 1.
  • the blank-filled box represents the M2 second time-frequency resources of the M second time-frequency resources, and the left-slash filled box indicates that the M second time-frequency resources do not belong to the M2 The second time-frequency resource of the second time-frequency resource.
  • the base station in this application sends the M2 second wireless signals in the M2 second time-frequency resources.
  • the base station in the present application abandons sending the corresponding second wireless signal in the second time-frequency resource that does not belong to the M2 second time-frequency resources among the M second time-frequency resources.
  • the time resources occupied by the M second time-frequency resources are mutually orthogonal (non-overlapping).
  • any one of the M second time-frequency resources includes a positive integer multi-carrier symbol in the time domain.
  • any one of the M second time-frequency resources includes a positive integer number of consecutive multi-carrier symbols in the time domain.
  • any of the M second time-frequency resources includes a positive integer number of consecutive PRBs in the frequency domain.
  • any of the M second time-frequency resources includes a positive integer number of consecutive RBs in the frequency domain.
  • the size of the time resources occupied by any two of the M second time-frequency resources is equal.
  • the size of the frequency resources occupied by any two of the M second time-frequency resources is equal.
  • Embodiment 15 illustrates a schematic diagram of resource mapping of M second time-frequency resources in the time-frequency domain; as shown in FIG.
  • the user equipment in the present application monitors the M second wireless signals in the application in the M second time-frequency resources, and detects the M second wireless signals.
  • the M2 second time-frequency resources are second time-frequency resources corresponding to the M2 second wireless signals respectively in the M second time-frequency resources. Any one of the M second time-frequency resources includes a positive integer number of discontinuous sub-carriers in the frequency domain.
  • the indexes of the M second time-frequency resources are ⁇ #0, . . . , #x, . . . , #M-1 ⁇ , respectively, wherein the x is smaller than the M- A positive integer of 1.
  • the blank-filled box represents the M2 second time-frequency resources of the M second time-frequency resources, and the left-slash filled box indicates that the M second time-frequency resources do not belong to the M2 The second time-frequency resource of the second time-frequency resource.
  • any of the M second time-frequency resources includes a positive integer number of discontinuous PRBs in the frequency domain.
  • any one of the M second time-frequency resources includes a positive integer number of discontinuous RBs in the frequency domain.
  • Embodiment 16 illustrates a schematic diagram of resource mapping of a third time-frequency resource in a time-frequency domain; as shown in FIG.
  • the user equipment in the application monitors the second signaling in the application in the third time-frequency resource.
  • the third time-frequency resource is multiple occurrences in the time domain, and the third time-frequency resource includes a positive integer number of consecutive sub-carriers in the frequency domain.
  • the third time-frequency resource is a CORESET (COntrol REsource SET).
  • the third time-frequency resource is a dedicated (Dedicated) CORESET.
  • the third time-frequency resource is a search space.
  • the third time-frequency resource is a dedicated search space.
  • the third time-frequency resource includes a positive integer number of multi-carrier symbols in the time domain.
  • the third time-frequency resource includes a positive integer number of discontinuous multi-carrier symbols in the time domain.
  • the third time-frequency resource includes a positive integer number of consecutive PRBs in the frequency domain.
  • the third time-frequency resource includes a positive integer number of consecutive RBs in the frequency domain.
  • the time interval between any two adjacent occurrences of the third time-frequency resource in the time domain is equal.
  • Embodiment 17 illustrates a schematic diagram of resource mapping of a third time-frequency resource in a time-frequency domain; as shown in FIG.
  • the user equipment in the application monitors the second signaling in the application in the third time-frequency resource.
  • the third time-frequency resource is multiple occurrences in the time domain, and the third time-frequency resource includes a positive integer number of discontinuous sub-carriers in the frequency domain.
  • the third time-frequency resource includes a positive integer number of discontinuous PRBs in the frequency domain.
  • the third time-frequency resource includes a positive integer number of discontinuous RBs in the frequency domain.
  • Embodiment 18 illustrates a schematic diagram of resource mapping of a third time-frequency resource in a time-frequency domain; as shown in FIG.
  • the user equipment in the application monitors the second signaling in the application in the third time-frequency resource.
  • the third time-frequency resource only appears once in the time domain, and the third time-frequency resource includes a positive integer number of discontinuous sub-carriers in the frequency domain.
  • Embodiment 19 illustrates a schematic diagram of an antenna port and an antenna port group; as shown in FIG.
  • one antenna port group includes a positive integer number of antenna ports; one antenna port is formed by antenna virtualization in a positive integer number of antenna groups; one antenna group includes a positive integer antenna.
  • An antenna group is connected to the baseband processor through an RF (Radio Frequency) chain, and different antenna groups correspond to different RF chains.
  • a mapping coefficient of all antennas within a positive integer number of antenna groups included in a given antenna port to the given antenna port constitutes a beamforming vector corresponding to the given antenna port.
  • the mapping coefficients of the plurality of antennas included in any given antenna group included in a given integer number of antenna groups included in the given antenna port to the given antenna port constitute an analog beamforming vector of the given antenna group.
  • the diagonal arrangement of the analog beamforming vectors corresponding to the positive integer antenna groups constitutes an analog beam shaping matrix corresponding to the given antenna port.
  • the mapping coefficients of the positive integer number of antenna groups to the given antenna port constitute a digital beamforming vector corresponding to the given antenna port.
  • the beamforming vector corresponding to the given antenna port is obtained by multiplying the analog beam shaping matrix and the digital beam shaping vector corresponding to the given antenna port.
  • Different antenna ports in one antenna port group are composed of the same antenna group, and different antenna ports in the same antenna port group correspond to different beamforming vectors.
  • antenna port group #0 and antenna port group #1 Two antenna port groups are shown in Figure 19: antenna port group #0 and antenna port group #1.
  • the antenna port group #0 is composed of an antenna group #0
  • the antenna port group #1 is composed of an antenna group #1 and an antenna group #2.
  • the mapping coefficients of the plurality of antennas in the antenna group #0 to the antenna port group #0 constitute an analog beamforming vector #0
  • the mapping coefficients of the antenna group #0 to the antenna port group #0 constitute a number Beamforming vector #0
  • the mapping coefficients of the plurality of antennas in the antenna group #1 and the plurality of antennas in the antenna group #2 to the antenna port group #1 constitute an analog beamforming vector #1 and an analog beamforming vector #, respectively. 2.
  • the mapping coefficients of the antenna group #1 and the antenna group #2 to the antenna port group #1 constitute a digital beamforming vector #1.
  • a beamforming vector corresponding to any one of the antenna port groups #0 is obtained by multiplying the analog beamforming vector #0 and the digital beamforming vector #0.
  • the beamforming vector corresponding to any antenna port in the antenna port group #1 is an analog beam shaping matrix formed by diagonally arranging the analog beamforming vector #1 and the analog beamforming vector #2 Obtained from the product of the digital beamforming vector #1.
  • an antenna port group includes only one antenna group, i.e., an RF chain, for example, the antenna port group #0 in FIG.
  • the analog beam shaping matrix corresponding to the antenna port in the one antenna port group is reduced into an analog beamforming vector
  • the digital beam corresponding to the antenna port in the one antenna port group is The shaping vector is dimensioned into a scalar, and the beamforming vector corresponding to the antenna port in the one antenna port group is equal to its corresponding analog beamforming vector.
  • the antenna port group #0 in FIG. 19 includes only the antenna group #0, and the digital beamforming vector #0 in FIG. 19 is reduced to a scalar, and the antenna port group #0
  • the beamforming vector corresponding to the antenna port in the middle is the analog beamforming vector #0.
  • the one antenna port group includes one antenna port.
  • one antenna port group includes a plurality of antenna groups, that is, a plurality of RF chains, for example, the antenna port group #1 in FIG.
  • the one antenna port group includes a plurality of antenna ports.
  • different antenna ports in the one antenna port group correspond to the same analog beam shaping matrix.
  • different antenna ports in the one antenna port group correspond to different digital beamforming vectors.
  • antenna ports in different antenna port groups correspond to different analog beam shaping matrices.
  • any two of the antenna port groups are QCL.
  • any two antenna ports in an antenna port group are spatial QCL.
  • the antenna port is an antennaport.
  • the small-scale channel parameters experienced by a wireless signal transmitted from one antenna port may infer small-scale channel parameters experienced by another wireless signal transmitted from the one antenna port.
  • the small-scale channel parameters include ⁇ CIR (Channel Impulse Response), PMI (Precoding Matrix Indicator), CQI, RI (Rank Indicator, rank) One or more of the identifiers).
  • CIR Channel Impulse Response
  • PMI Precoding Matrix Indicator
  • CQI Precoding Matrix Indicator
  • RI Rank Indicator, rank
  • Embodiment 20 illustrates a schematic diagram of the relationship between N second type reference signals and a first antenna port group; as shown in FIG.
  • the N second type reference signals are respectively sent by N antenna port groups; the measurement for the N second type reference signals is used by the user equipment in the application to determine the present application.
  • the first wireless signal; the first wireless signal is used by the base station in the application to determine a first antenna port group, and the first antenna port group is one of the N antenna port groups An antenna port group; any one of the transmitting antenna ports of the second signaling and the first antenna port group of the second signaling port in the present application; the first wireless signal is at the first time frequency Sent in the resource.
  • the indexes of the N second type reference signals are ⁇ #0, . . . , #N-1 ⁇ , respectively, and the left oblique line filled ellipse represents the target second type reference signal, the target The second type of reference signal is a second type of reference signal transmitted by the first antenna port group among the N second type of reference signals.
  • the quasi co-location refers to a QCL.
  • the quasi co-location refers to a spatialQCL.
  • the measurements for the N second type reference signals are respectively used to determine N reception qualities, and the reception quality corresponding to the target second type reference signal is the largest reception among the N reception qualities quality.
  • the N receiving qualities are respectively RSRP.
  • the N reception qualities are respectively RSRQ.
  • the N reception qualities are respectively CQI.
  • the N reception qualities are respectively SNR (Signal-to-Noise Ratio).
  • the N reception qualities are respectively SINR (Signal-to-Interference plus Noise Ratio).
  • the N is greater than one.
  • the first wireless signal explicitly indicates the first antenna port group.
  • the first wireless signal implicitly indicates the first antenna port group.
  • the first wireless signal explicitly indicates an index of the first antenna port group in the N antenna port groups.
  • the first wireless signal implicitly indicates an index of the first antenna port group in the N antenna port groups.
  • an index of the first antenna port group in the N antenna port groups is used by the user equipment to determine the first time-frequency resource.
  • the first time-frequency resource is used by the base station to determine an index of the first antenna port group in the N antenna port groups.
  • the first time-frequency resource belongs to a first time-frequency resource pool, and the first time-frequency resource pool includes a positive integer time-frequency resource.
  • an index of the first time-frequency resource in the first time-frequency resource pool is used to determine the first antenna port group.
  • an index of the first time-frequency resource in the first time-frequency resource pool is used to determine that the first antenna port group is in the N antenna port groups. index.
  • the first time-frequency resource pool is reserved for the user equipment.
  • the user equipment selects the first time-frequency resource by itself in the first time-frequency resource pool.
  • the first wireless signal is generated by modulation of a first signature sequence.
  • an index of the first antenna port group in the N antenna port groups is used by the user equipment to determine the first feature sequence.
  • the first feature sequence is used by the base station to determine an index of the first antenna port group in the N antenna port groups.
  • the first feature sequence belongs to a first feature sequence set, and the first feature sequence set includes a positive integer number of feature sequences.
  • an index of the first feature sequence in the first feature sequence set is used to determine the first antenna port group.
  • an index of the first feature sequence in the first feature sequence set is used to determine an index of the first antenna port group in the N antenna port groups.
  • the first feature sequence set is reserved for the user equipment.
  • the user equipment selects the first feature sequence by itself in the first feature sequence set.
  • the first radio signal is generated by the first feature sequence; the first time-frequency resource and the first feature sequence form a first air interface resource, and the first air interface resource belongs to the first air interface.
  • the resource pool, the first air interface resource pool includes a positive integer number of air interface resources, and one air interface resource includes a time-frequency resource and a feature sequence.
  • an index of the first air interface resource in the first air interface resource pool is used to determine the first antenna port group.
  • an index of the first air interface resource in the first air interface resource pool is used to determine an index of the first antenna port group in the N antenna port groups.
  • the first air interface resource pool is reserved for the user equipment.
  • the user equipment selects the first air interface resource in the first air interface resource pool.
  • the first antenna port group includes one antenna port.
  • the first antenna port group includes a plurality of antenna ports.
  • the second signaling is sent by one antenna port.
  • the second signaling is separately sent by multiple antenna ports.
  • the two antenna ports QCL mean that all or part of the large-scale properties of the wireless signals that can be transmitted from one of the two antenna ports can be inferred. All or part of the large-scale characteristics of the wireless signal transmitted on the other of the two antenna ports, including large-scale characteristics associated with multiple antennas and large-scale characteristics independent of multiple antennas.
  • the multi-element related large-scale characteristics of a given wireless signal include ⁇ angle of arrival, angle of departure, spatial correlation, spatial Tx parameters, spatial reception One or more of the parameters (Spatial Rx parameters) ⁇ .
  • the spatial transmission parameters include: a transmit antenna port, a transmit antenna port group, a transmit beam, an analog beamforming matrix, an analog beamforming vector, a transmit beamforming vector, and a transmit spatial filter.
  • a transmit antenna port a transmit antenna port group
  • a transmit beam an analog beamforming matrix
  • an analog beamforming vector an analog beamforming vector
  • a transmit beamforming vector a transmit beamforming vector
  • a transmit spatial filter One or more of (spatial filtering) ⁇ .
  • the spatial Rx parameters include one of a ⁇ receiving beam, receiving an analog beamforming matrix, receiving an analog beamforming vector, receiving a beamforming vector, and receiving spatial filtering ⁇ . Or a variety.
  • the multi-radio-related large-scale characteristics of a given wireless signal include ⁇ delay spread, Doppler spread, Doppler shift, path loss (pathloss) ), one or more of average gain, average delay.
  • the two antenna ports QCL mean that the two antenna ports have at least one identical QCL parameter (QCL parameter), and the QCL parameters include multi-antenna related QCL parameters and multi-antenna-independent QCL parameters.
  • QCL parameter QCL parameter
  • the multi-antenna related QCL parameters include: ⁇ angle of arrival, angle of departure, spatial correlation, spatial Tx parameters, and spatial Rx parameters. One or more of them.
  • the multi-antenna-independent QCL parameters include: ⁇ delay spread, Doppler spread, Doppler shift, path loss, average gain ( One or more of average gain) ⁇ .
  • two antenna ports QCL means that at least one QCL parameter of the other of the two antenna ports can be inferred from at least one QCL parameter of one of the two antenna ports.
  • the two antenna ports are spatial QCL refers to all or part of the multi-antenna related large-scale characteristics of the wireless signal that can be transmitted from one of the two antenna ports. (properties) Inferring all or part of the multi-antenna-related large-scale characteristics of the wireless signal transmitted on the other of the two antenna ports.
  • the two antenna ports are spatial QCL, that is, the two antenna ports have at least one identical multi-antenna related QCL parameter (spatialQCLparameter).
  • the two antenna ports are spatial QCL, which means that the other of the two antenna ports can be inferred from at least one multi-antenna related QCL parameter of one of the two antenna ports. At least one multi-antenna related QCL parameter of the antenna port.
  • Embodiment 21 illustrates a schematic diagram of the user equipment determining whether to transmit the first wireless signal in the first time-frequency resource; as shown in FIG.
  • M first type time windows on the first sub-band in the present application are reserved for the first type reference signal in the present application, and the user equipment determines that only the The first type of reference signals are received in M1 first type time windows of the M first type time windows on the first subband.
  • the user equipment receives M1 first-type reference sub-signals in the M1 first-type time windows, where the first-type reference signal includes the M1 first-class reference sub-signals, and the M1 The first type of time windows are reserved for the M1 first class reference sub-signals, respectively.
  • the measurements for the M1 first-type reference sub-signals are used to determine M1 first-class values, respectively; and only M3 first-class values of the M1 first-class values are lower than the second threshold.
  • the M1 and the M3 are used by the user equipment to determine whether the first condition set and the second condition set are satisfied. And if the at least one of the first condition set and the second condition set is satisfied, the user equipment sends the first wireless signal in the first time-frequency resource. If the first condition set and the second condition set are both unsatisfied, the user equipment discards transmitting the first wireless signal in the first time-frequency resource.
  • the first set of conditions includes the M1 being no greater than a first threshold and the M3 being greater than a third threshold; the second set of conditions comprising the M3 being greater than a sixth threshold.
  • FIG. 21 The flow of the entire judging process in Embodiment 21 is as shown in FIG. 21.
  • one of the M first type time windows is represented by the first type time window #i.
  • One of the M1 first-type reference sub-signals is represented by a first-type reference sub-signal #j, and one of the first-class values of the M1 first-class values uses a first-valued value.
  • #j indicates. Wherein i is a non-negative integer not greater than the M, and the j is a non-negative integer not greater than the M1.
  • the first type of reference signal is received in the time window #i; if so, the j is incremented by 1 in step S2103, otherwise proceeds to step S2107; in the first type of time window #i in step S2104 Receiving a first type of reference sub-signal #j-1 of the M1 first-type reference sub-signals, and obtaining a first-class value #j-1 of the M1 first-class values; determining in step S2105 Whether the first type of value #j-1 is lower than the second threshold, and if so, the k is incremented by 1 in step S2106, otherwise proceeds to step S2107; the i is incremented by 1 in step S2107.
  • the M1 first type values are respectively BLER (BLock Error Rate).
  • the M1 first class values are respectively hypothetical BLERs.
  • the M1 first type values are respectively BER (Bit Error Rate).
  • the M1 first class values are respectively hypothetical BERs.
  • the M1 first type values are respectively RSRP.
  • the M1 first type values are respectively RSRQ.
  • the M1 first type values are respectively CQI.
  • the M1 first type values are respectively SNR.
  • the M1 first type values are respectively SINR.
  • the measurements for the M1 first-type reference sub-signals are used to determine M1 reception qualities, respectively, which are used to determine the M1 first-class values, respectively.
  • the M1 reception qualities are respectively RSRP.
  • the M1 reception qualities are respectively RSRQ.
  • the M1 reception qualities are respectively CQI.
  • the M1 reception qualities are respectively SNR.
  • the M1 reception qualities are respectively SINR.
  • the first threshold is a positive integer.
  • the first threshold is independent of the M.
  • the first threshold is related to the M.
  • the first threshold is equal to a product of the M and a first factor, and the first factor is a positive real number greater than 0 and not greater than 1.
  • the first factor is fixed.
  • the first factor is configurable.
  • the first threshold is equal to the M minus a first value, and the first value is a positive integer not greater than the M.
  • the first value is fixed.
  • the first value is configurable.
  • the first threshold is equal to the M.
  • the first threshold is less than the M.
  • the first threshold is fixed.
  • the first threshold is configurable.
  • the first threshold is UE specific.
  • the first threshold is common to the cell.
  • the first threshold is configured by higher layer signaling.
  • the second threshold is a positive real number.
  • the second threshold is a real number.
  • the second threshold is fixed.
  • the second threshold is configurable.
  • the second threshold is UE specific.
  • the second threshold is common to the cell.
  • the second threshold is configured by higher layer signaling.
  • the third threshold is a positive integer.
  • the third threshold is fixed.
  • the third threshold is configurable.
  • the third threshold is UE specific.
  • the third threshold is common to the cell.
  • the third threshold is configured by higher layer signaling.
  • the user equipment discards transmitting the first wireless signal in the first time-frequency resource.
  • the sixth threshold is greater than the third threshold.
  • the sixth threshold is a positive integer.
  • the sixth threshold is fixed.
  • the sixth threshold is configurable.
  • the sixth threshold is UE specific.
  • the sixth threshold is common to the cell.
  • the sixth threshold is configured by higher layer signaling.
  • the first information in the present application is used to determine the second set of conditions.
  • the positions of the M3 first type time windows in the M first type time windows are continuous, and the M3 first type time windows are respectively in the M first type time windows.
  • the positions of the M3 first type time windows in the M first type time windows are discontinuous, and the M3 first type time windows are in the M first type time windows.
  • Embodiment 22 illustrates a schematic diagram of the user equipment determining whether to transmit the first wireless signal in the first time-frequency resource; as shown in FIG.
  • M first type time windows on the first sub-band in the present application are reserved for the first type reference signal in the present application, and the user equipment determines that only the The first type of reference signals are received in M1 first type time windows of the M first type time windows on the first subband.
  • the user equipment receives M1 first-type reference sub-signals in the M1 first-type time windows, where the first-type reference signal includes the M1 first-class reference sub-signals, and the M1 The first type of time windows are reserved for the M1 first class reference sub-signals, respectively.
  • the measurements for the M1 first-type reference sub-signals are used to determine M1 first-class values, respectively; and M1 first-class values in the M1 first-class values are lower than the second threshold.
  • the M1 and the M3 are used by the user equipment to determine whether the first condition set and the second condition set are satisfied. And if the at least one of the first condition set and the second condition set is satisfied, the user equipment sends the first wireless signal in the first time-frequency resource. If the first condition set and the second condition set are both unsatisfied, the user equipment discards transmitting the first wireless signal in the first time-frequency resource.
  • the first set of conditions includes the M1 being no greater than a first threshold and the M3 being greater than a third threshold; the second set of conditions comprising the M3 being greater than a sixth threshold.
  • FIG. 22 The flow of the entire judging process in Embodiment 22 is as shown in FIG. 22.
  • one of the M first type time windows is represented by the first type time window #i
  • One of the M1 first-type reference sub-signals is represented by a first-type reference sub-signal #j
  • one of the first-class values of the M1 first-class values uses a first-valued value.
  • #j indicates. Wherein i is a non-negative integer not greater than the M, and the j is a non-negative integer not greater than the M1.
  • the positions of the M3 first class values in the M1 first class values are continuous.
  • the positions of the M3 first type time windows in the M first type time windows are continuous, and the M3 first type time windows are respectively in the M first type time windows.
  • only the M3 first class values of the M1 first class values are lower than the second threshold.
  • At least one of the first class of values other than the M3 first class values of the M1 first class values is lower than the second threshold.
  • Embodiment 23 exemplifies a structural block diagram of a processing device for use in a user equipment; as shown in FIG.
  • the processing device 2300 in the user equipment includes a first receiver 2301, a first processor 2302, and a first transmitter 2303.
  • the first receiver 2301 receives the first signaling, the first signaling being used to indicate M first type time windows on the first sub-band, where the first sub-band
  • the M first type time windows are reserved for the first type of reference signals;
  • the first processor 2302 determines that only M1 of the M first type time windows on the first subband are needed.
  • the first type of reference signal is received in a time-like window;
  • the first transmitter 2303 transmits the first wireless signal in the first time-frequency resource when the first set of conditions is satisfied.
  • the M is a positive integer
  • the M1 is a positive integer not greater than the M
  • the first condition set includes the M1 being not greater than a first threshold.
  • the first receiver 2301 respectively receives M1 first-type reference sub-signals in the M1 first-type time windows; wherein the first-type reference signal includes the M1 first a class reference sub-signal, the M1 first-type time windows are respectively reserved for the M1 first-class reference sub-signals; and the measurements for the M1 first-class reference sub-signals are respectively used to determine M1 The first type of value, wherein the M1 first type values are lower than the second threshold; the first condition set includes the M3 being greater than the third threshold.
  • the first receiver 2301 monitors M second wireless signals in M second time-frequency resources, and detects M2 second wireless signals in the M second wireless signals;
  • the M second wireless signals and the M first type time windows are in one-to-one correspondence;
  • the M1 second wireless signals in the M2 second wireless signals are respectively used to indicate the M1
  • the first type of reference signal is received in a first type of time window.
  • the M2 is equal to the M1.
  • the M2 is greater than the M1, and the second wireless signals of the M2 second wireless signals except the M1 second wireless signals are used to indicate corresponding The first type of reference signal is not received in the first type of time window.
  • the first receiver 2301 performs a first type of access detection on the first sub-band; wherein the user equipment sends the first wireless signal in the first time-frequency resource.
  • the first wireless signal is transmitted on the first sub-band, and the first type of access detection includes:
  • the Q1 detection values of the Q detection values are all lower than the fourth threshold; the Q is a positive integer, and the Q1 is a positive integer not greater than the Q.
  • the first receiver 2301 monitors the second signaling in the third time-frequency resource; wherein the second signaling is used to determine that the first wireless signal is correctly received.
  • the first wireless signal is used to determine a first antenna port group, and any one of the transmit antenna ports of the second signaling and the first antenna port group are quasi-co-located.
  • the first receiver 2301 receives N second type reference signals; wherein measurements for the N second type reference signals are used to determine the first wireless signal, the N is positive Integer.
  • the first receiver 2301 receives first information; wherein the first information is used to determine the first set of conditions.
  • the first receiver 2301 includes the ⁇ antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, and the data source in Embodiment 4. At least one of 467 ⁇ .
  • the first processor 2302 includes at least one of a ⁇ receiver processor 456, a multi-antenna receiving processor 458, a controller/processor 459, a memory 460, and a data source 467 ⁇ in Embodiment 4. .
  • the first transmitter 2303 includes ⁇ antenna 452, transmitter 454, transmit processor 468, multi-antenna transmit processor 457, controller/processor 459, memory 460, data source in embodiment 4. At least one of 467 ⁇ .
  • Embodiment 24 illustrates a structural block diagram of a processing device for use in a base station; as shown in FIG. In FIG. 24, the processing device 2400 in the base station includes a second transmitter 2401, a second processor 2402, and a second receiver 2403.
  • the second transmitter 2401 transmits a first signaling, where the first signaling is used to indicate M first type time windows on the first sub-band, where the first sub-band
  • the M first type time windows are reserved for the first type of reference signals; the second processor 2402 determines that only M1 first of the M first type time windows on the first subband are needed.
  • the first type of reference signal is transmitted in a time-like window; the second receiver 2403 monitors the first wireless signal in the first time-frequency resource.
  • the M is a positive integer
  • the M1 is a positive integer not greater than the M
  • the first condition set is used to determine whether the first wireless signal is sent, the first condition set includes The M1 is not greater than the first threshold.
  • the second transmitter 2401 separately transmits M1 first-type reference sub-signals in the M1 first-type time windows; wherein the first-type reference signal includes the M1 first a class reference sub-signal, the M1 first-type time windows are respectively reserved for the M1 first-class reference sub-signals; and the measurements for the M1 first-class reference sub-signals are respectively used to determine M1 The first type of value, wherein the M1 first type values are lower than the second threshold; the first condition set includes the M3 being greater than the third threshold.
  • the second transmitter 2401 transmits M2 second wireless signals of the M second wireless signals in the M2 second time-frequency resources, where the M second wireless signals and the The M first time windows are respectively associated with one another; the M1 second wireless signals of the M2 second wireless signals are respectively used to indicate that the first class is received in the M1 first type time windows Reference signal.
  • the M2 is equal to the M1.
  • the M2 is greater than the M1, and the second wireless signals of the M2 second wireless signals except the M1 second wireless signals are used to indicate corresponding The first type of reference signal is not received in the first type of time window.
  • the second receiver 2403 performs M times of second type access detection on the first sub-band; wherein the start times of the M first-type time windows are not earlier than The ending time of the Mth second type access detection; given the second type of access detection includes:
  • the given second type of access detection is a second type of access detection in the M times second type access detection, and the P1 detection values in the P detection values are lower than the fifth.
  • Threshold P is a positive integer
  • P1 is a non-negative integer not greater than the P.
  • the second transmitter 2401 sends the second signaling in the third time-frequency resource; wherein the first wireless signal is detected in the first time-frequency resource, the second signal The order is used to determine that the first wireless signal was received correctly.
  • the first wireless signal is used to determine a first antenna port group, and any one of the transmit antenna ports of the second signaling and the first antenna port group are quasi-co-located.
  • the second receiver 2403 performs a third type of access detection on the first sub-band; wherein, the start time of the time resource occupied by the third time-frequency resource is not earlier than the The third type of access detection end time; the third type of access detection includes:
  • the W1 detection values of the W detection values are all lower than a seventh threshold; the W is a positive integer, and the W1 is a positive integer not greater than the W.
  • the second transmitter 2401 transmits N second type reference signals; wherein measurements for the N second type reference signals are used to determine the first wireless signal, the N is positive Integer.
  • the second transmitter 2401 transmits first information; wherein the first information is used to determine the first set of conditions.
  • the second transmitter 2401 includes the ⁇ antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471, the controller/processor 475, the memory 476 ⁇ in Embodiment 4. At least one.
  • the second processor 2402 includes at least one of ⁇ receiver processor 470, multi-antenna receiving processor 472, controller/processor 475, memory 476 ⁇ in Embodiment 4.
  • the second receiver 2403 includes the ⁇ antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, the memory 476 ⁇ in Embodiment 4. At least one.
  • Embodiment 25 exemplifies a timing relationship of M first type time windows and M times second type access detection in the time domain; as shown in FIG.
  • the M first type time windows are reserved for the first type reference signal in the application, and the user equipment in the present application determines that only the M first classes are needed.
  • the base station in the present application receiving the first type of reference signals in the M1 first type time windows in the time window, the base station in the present application determining that only the M1 first classes in the M first type time windows are needed.
  • the first type of reference signal is transmitted in a time window. And determining, by the base station, whether to send the first type reference signal in the M first type time windows according to the result of the M times second type access detection.
  • the M is a positive integer
  • the M1 is a positive integer not greater than the M.
  • the start times of the M first type time windows are not earlier than the end times of the M times second type access detection.
  • the indexes of the M first type time windows and the M second type access detections are ⁇ #0,...,#x,...,#M-1 ⁇ , respectively.
  • x is a positive integer less than the M-1.
  • the base station determines, according to the results of the second type access detection #0, the second type access detection #x and the second type access detection #M-1, that the first is sent in the first type time window #0.
  • the class reference signal does not transmit the first type of reference signal in the first type of time window #x and the first type of time window #M-1.
  • the user equipment determines that the first type reference signal is received in the first type time window #0, and does not receive the first type reference in the first type time window #x and the first type time window #M-1. signal.
  • a blank filled box indicates time resources occupied by the M second type access detection
  • a right oblique line filled box indicates the M1 of the M first type time windows.
  • the time resource occupied by the first type of time window, the cross-line filled box represents the time resource occupied by the first type of time window of the M first type time windows that do not belong to the M1 first type time windows.
  • the user equipment, terminal and UE in the present application include but are not limited to a drone, a communication module on the drone, a remote control aircraft, an aircraft, a small aircraft, a mobile phone, a tablet computer, a notebook, a vehicle communication device, a wireless sensor, an internet card, Internet of Things terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC), data card, network card, vehicle communication device, low-cost mobile phone, low Cost wireless communication devices such as tablets.
  • the base station or system equipment in this application includes, but is not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, a gNB (NR Node B), a TRP (Transmitter Receiver Point), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的用户设备、基站中的方法和装置。用户设备先接收第一信令,所述第一信令被用于指示第一子频带上的M个第一类时间窗,所述第一子频带上的所述M个第一类时间窗被预留给第一类参考信号,所述M是正整数;用户设备然后判断仅需要在所述第一子频带上的所述M个第一类时间窗中的M1个第一类时间窗中接收所述第一类参考信号,所述M1是不大于所述M的正整数;如果第一条件集合被满足,在第一时频资源中发送第一无线信号;其中,所述第一条件集合包括所述M1不大于第一阈值。上述方法的好处在于避免了在非授权频谱中,由于参考信号无法按时发送而造成未能及时判断波束链路失败,因此带来的性能损失。

Description

一种被用于无线通信的用户设备、基站中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是涉及支持在非授权频谱(Unlicensed Spectrum)上进行数据传输的通信方法和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd GenerationPartner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#75次全会上还通过NR(NewRadio,新无线电)下的非授权频谱(UnlicensedSpectrum)的接入的研究项目,该研究项目预期在R15版本完成,然后在R16版本中启动WI对相关技术进行标准化。为保证和其它非授权频谱上的接入技术兼容,在LTE(LongTermEvolution,长期演进)的LAA(LicenseAssistedAccess,授权辅助接入)项目中,发射机(基站或者用户设备)在非授权频谱上发送数据之前需要先进行LBT(Listen Before Talk,会话前监听)以避免对其他在非授权频谱上正在进行的无线传输造成干扰。
大规模(Massive)MIMO(Multi-Input Multi-Output)是NR系统的另一个研究热点。大规模MIMO中,多个天线通过波束赋型,形成较窄的波束(Beam)指向一个特定方向来提高通信质量。在NR系统中,大规模MIMO会被应用于毫米波频段的非授权频谱。由于大规模MIMO的引入,基于波束的通信将会是NR系统的一个特定,特别是在毫米波频段。狭窄的波束对于利用大规模MIMO的多天线增益来补偿毫米波频段中的严重路径损耗十分有效,但同时也带来了波束管理(Beammanagement)和波束恢复(BeamRecovery)等问题。5G系统中,波束链路失败(Beam Link Failure)的概念及失败后快速有效的波束恢复(BeamRecovery)机制正在被讨论中。UE(User Equipment,用户设备)周期性的检测当前的多个服务波束(Serving Beam)的信道质量,当检测到多个服务波束的信道质量都变差时,UE向基站发送波束恢复请求(Beam Recovery Request)并推荐新的候选波束用于服务波束。
目前3GPP中关于波束管理(Beammanagement)和波束恢复(BeamRecovery)机制的讨论主要适用于授权频谱。当应用于非授权频谱时,需要对目前的机制进行适当的调整以适应非授权频谱的特点。
发明内容
发明人通过研究发现,当应用于非授权频谱时,由于LBT的不确定性,用于波束管理(Beammanagement)和波束恢复(BeamRecovery)的参考信号的发送将无法保证。检测不到相关的参考信号,UE就无法判断当前服务波束(Serving Beam)的信道质量,从而无法进行有效的波束管理和迅速的波束恢复(BeamRecovery)。
针对上述发现,本申请公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了被用于无线通信的用户设备中的方法,其特征在于,包括:
接收第一信令,所述第一信令被用于指示第一子频带上的M个第一类时间窗,所述第一
子频带上的所述M个第一类时间窗被预留给第一类参考信号,所述M是正整数;
判断仅需要在所述第一子频带上的所述M个第一类时间窗中的M1个第一类时间窗中接收
所述第一类参考信号,所述M1是不大于所述M的正整数;
如果第一条件集合被满足,在第一时频资源中发送第一无线信号;
其中,所述第一条件集合包括所述M1不大于第一阈值。
作为一个实施例,上述方法的特质在于,所述第一类参考信号是用于服务波束(Serving Beam)信道质量检测的周期参考信号,所述第一无线信号是BRR(Beam Recovery Request,波束恢复请求)或者BFRQ(Beam Failure Recovery reQuest,波束失败恢复请求)。所述用户设备通过所述第一类参考信号来判断所述第一条件集合是否被满足,如果满足则发送所述第一无线信号。在上述方法中,所述第一条件集合包括了所述第一类参考信号未被成功发送的次数,这样做的好处在于避免了在非授权频谱中,由于LBT等原因,所述第一类参考信号无法按时发送而造成所述用户设备未能及时判断并发送所述第一无线信号的情况,保证了所述用户设备在非授权频谱中仍然能对波束链路失败(Beam Link Failure)迅速做出反应。
根据本申请的一个方面,其特征在于,包括:
在所述M1个第一类时间窗中分别接收M1个第一类参考子信号;
其中,所述第一类参考信号包括所述M1个第一类参考子信号,所述M1个第一类时间窗分别被预留给所述M1个第一类参考子信号;针对所述M1个第一类参考子信号的测量分别被用于确定M1个第一类数值,所述M1个第一类数值中有M3个第一类数值低于第二阈值;所述第一条件集合包括所述M3大于第三阈值。
作为一个实施例,上述方法的好处在于,在所述第一条件集合中同时考虑了所述第一参考信号被成功发送但接收质量低于所述第二阈值的次数,和所述第一参考信号未被成功发送的次数,使所述用户设备能更加灵活和准确的判断波束链路失败(Beam Link Failure)并做出反应。
根据本申请的一个方面,其特征在于,包括:
分别在M个第二时频资源中监测M个第二无线信号,并检测到所述M个第二无线信号中的M2个第二无线信号;
其中,所述M个第二无线信号和所述M个第一类时间窗一一对应;所述M2个第二无线信号中的M1个第二无线信号分别被用于指示在所述M1个第一类时间窗中接收所述第一类参考信号;所述M2等于所述M1,或者,所述M2大于所述M1且所述M2个第二无线信号中除了所述M1个第二无线信号之外的第二无线信号分别被用于指示在对应的第一类时间窗中不接收所述第一类参考信号。
根据本申请的一个方面,其特征在于,包括:
在所述第一子频带上执行第一类接入检测;
其中,所述用户设备在所述第一时频资源中发送所述第一无线信号,所述第一无线信号在所述第一子频带上传输,所述第一类接入检测包括:
在所述第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;
其中,所述Q个检测值中的Q1个检测值均低于第四阈值;所述Q是正整数,所述Q1是不大于所述Q的正整数。
根据本申请的一个方面,其特征在于,包括:
在第三时频资源中监测第二信令;
其中,所述第二信令被用于确定所述第一无线信号被正确接收。
根据本申请的一个方面,其特征在于,所述第一无线信号被用于确定第一天线端口组,所述第二信令的任一发送天线端口和所述第一天线端口组中的一个天线端口准共址。
根据本申请的一个方面,其特征在于,包括:
接收N个第二类参考信号;
其中,针对所述N个第二类参考信号的测量被用于确定所述第一无线信号,所述N是正整数。
根据本申请的一个方面,其特征在于,包括:
接收第一信息;
其中,所述第一信息被用于确定所述第一条件集合。
本申请公开了被用于无线通信的基站中的方法,其特征在于,包括:
发送第一信令,所述第一信令被用于指示第一子频带上的M个第一类时间窗,所述第一
子频带上的所述M个第一类时间窗被预留给第一类参考信号,所述M是正整数;
判断仅需要在所述第一子频带上的所述M个第一类时间窗中的M1个第一类时间窗中发送
所述第一类参考信号,所述M1是不大于所述M的正整数;
在第一时频资源中监测第一无线信号;
其中,第一条件集合被用于确定所述第一无线信号是否被发送,所述第一条件集合包括所述M1不大于第一阈值。
根据本申请的一个方面,其特征在于,包括:
在所述M1个第一类时间窗中分别发送M1个第一类参考子信号;
其中,所述第一类参考信号包括所述M1个第一类参考子信号,所述M1个第一类时间窗分别被预留给所述M1个第一类参考子信号;针对所述M1个第一类参考子信号的测量分别被用于确定M1个第一类数值,所述M1个第一类数值中有M3个第一类数值低于第二阈值;所述第一条件集合包括所述M3大于第三阈值。
根据本申请的一个方面,其特征在于,包括:
分别在M2个第二时频资源中发送M个第二无线信号中的M2个第二无线信号;
其中,所述M个第二无线信号和所述M个第一类时间窗一一对应;所述M2个第二无线信号中的M1个第二无线信号分别被用于指示在所述M1个第一类时间窗中接收所述第一类参考信号;所述M2等于所述M1,或者,所述M2大于所述M1且所述M2个第二无线信号中除了所述M1个第二无线信号之外的第二无线信号分别被用于指示在对应的第一类时间窗中不接收所述第一类参考信号。
根据本申请的一个方面,其特征在于,包括:
在所述第一子频带上分别执行M次第二类接入检测;
其中,所述M个第一类时间窗的起始时刻分别不早于所述M次第二类接入检测的结束时刻;给定第二类接入检测包括:
在所述第一子频带上的P个时间子池中分别执行P次能量检测,得到P个检测值;
其中,所述给定第二类接入检测是所述M次第二类接入检测中的一次第二类接入检测,所述P个检测值中的P1个检测值均低于第五阈值;所述P是正整数,所述P1是不大于所述P的非负整数。
根据本申请的一个方面,其特征在于,包括:
在第三时频资源中发送第二信令;
其中,在所述第一时频资源中检测到所述第一无线信号,所述第二信令被用于确定所述第一无线信号被正确接收。
根据本申请的一个方面,其特征在于,所述第一无线信号被用于确定第一天线端口组,所述第二信令的任一发送天线端口和所述第一天线端口组中的一个天线端口准共址。
根据本申请的一个方面,其特征在于,包括:
在所述第一子频带上执行第三类接入检测;
其中,所述第三时频资源占用的时间资源的起始时刻不早于所述第三类接入检测的结束时刻;所述第三类接入检测包括:
在所述第一子频带上的W个时间子池中分别执行W次能量检测,得到W个检测值;
其中,所述W个检测值中的W1个检测值均低于第七阈值;所述W是正整数,所述W1是不大于所述W的正整数。
根据本申请的一个方面,其特征在于,包括:
发送N个第二类参考信号;
其中,针对所述N个第二类参考信号的测量被用于确定所述第一无线信号,所述N是正整数。
根据本申请的一个方面,其特征在于,包括:
发送第一信息;
其中,所述第一信息被用于确定所述第一条件集合。
本申请公开了被用于无线通信的用户设备,其特征在于,包括:
第一接收机,接收第一信令,所述第一信令被用于指示第一子频带上的M个第一类时间
窗,所述第一子频带上的所述M个第一类时间窗被预留给第一类参考信号,所述M是正
整数;
第一处理器,判断仅需要在所述第一子频带上的所述M个第一类时间窗中的M1个第一类
时间窗中接收所述第一类参考信号,所述M1是不大于所述M的正整数;
第一发送机,如果第一条件集合被满足,在第一时频资源中发送第一无线信号;
其中,所述第一条件集合包括所述M1不大于第一阈值。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一接收机在所述M1个第一类时间窗中分别接收M1个第一类参考子信号;其中,所述第一类参考信号包括所述M1个第一类参考子信号,所述M1个第一类时间窗分别被预留给所述M1个第一类参考子信号;针对所述M1个第一类参考子信号的测量分别被用于确定M1个第一类数值,所述M1个第一类数值中有M3个第一类数值低于第二阈值;所述第一条件集合包括所述M3大于第三阈值。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一接收机分别在M个第二时频资源中监测M个第二无线信号,并检测到所述M个第二无线信号中的M2个第二无线信号;其中,所述M个第二无线信号和所述M个第一类时间窗一一对应;所述M2个第二无线信号中的M1个第二无线信号分别被用于指示在所述M1个第一类时间窗中接收所述第一类参考信号;所述M2等于所述M1,或者,所述M2大于所述M1且所述M2个第二无线信号中除了所述M1个第二无线信号之外的第二无线信号分别被用于指示在对应的第一类时间窗中不接收所述第一类参考信号。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一接收机在所述第一子频带上执行第一类接入检测;其中,所述用户设备在所述第一时频资源中发送所述第一无线信号,所述第一无线信号在所述第一子频带上传输,所述第一类接入检测包括:
在所述第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;
其中,所述Q个检测值中的Q1个检测值均低于第四阈值;所述Q是正整数,所述Q1是不大于所述Q的正整数。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一接收机在第三时频资源中监测第二信令;其中,所述第二信令被用于确定所述第一无线信号被正确接收。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一无线信号被用于确定第一天线端口组,所述第二信令的任一发送天线端口和所述第一天线端口组中的一个天线端口准共址。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一接收机模块接收N个第二类参考信号;其中,针对所述N个第二类参考信号的测量被用于确定所述第一无线信号,所述N是正整数。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一接收机接收第一信息;其中,所述第一信息被用于确定所述第一条件集合。
本申请公开了被用于无线通信的基站设备,其特征在于,包括:
第二发送机,发送第一信令,所述第一信令被用于指示第一子频带上的M个第一类时间
窗,所述第一子频带上的所述M个第一类时间窗被预留给第一类参考信号,所述M是正
整数;
第二处理器,判断仅需要在所述第一子频带上的所述M个第一类时间窗中的M1个第一类
时间窗中发送所述第一类参考信号,所述M1是不大于所述M的正整数;
第二接收机,在第一时频资源中监测第一无线信号;
其中,第一条件集合被用于确定所述第一无线信号是否被发送,所述第一条件集合包括 所述M1不大于第一阈值。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第二发送机在所述M1个第一类时间窗中分别发送M1个第一类参考子信号;其中,所述第一类参考信号包括所述M1个第一类参考子信号,所述M1个第一类时间窗分别被预留给所述M1个第一类参考子信号;针对所述M1个第一类参考子信号的测量分别被用于确定M1个第一类数值,所述M1个第一类数值中有M3个第一类数值低于第二阈值;所述第一条件集合包括所述M3大于第三阈值。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第二发送机分别在M2个第二时频资源中发送M个第二无线信号中的M2个第二无线信号;其中,所述M个第二无线信号和所述M个第一类时间窗一一对应;所述M2个第二无线信号中的M1个第二无线信号分别被用于指示在所述M1个第一类时间窗中接收所述第一类参考信号;所述M2等于所述M1,或者,所述M2大于所述M1且所述M2个第二无线信号中除了所述M1个第二无线信号之外的第二无线信号分别被用于指示在对应的第一类时间窗中不接收所述第一类参考信号。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第二接收机在所述第一子频带上分别执行M次第二类接入检测;其中,所述M个第一类时间窗的起始时刻分别不早于所述M次第二类接入检测的结束时刻;给定第二类接入检测包括:
在所述第一子频带上的P个时间子池中分别执行P次能量检测,得到P个检测值;
其中,所述给定第二类接入检测是所述M次第二类接入检测中的一次第二类接入检测,所述P个检测值中的P1个检测值均低于第五阈值;所述P是正整数,所述P1是不大于所述P的非负整数。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第二发送机在第三时频资源中发送第二信令;其中,在所述第一时频资源中检测到所述第一无线信号,所述第二信令被用于确定所述第一无线信号被正确接收。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第一无线信号被用于确定第一天线端口组,所述第二信令的任一发送天线端口和所述第一天线端口组中的一个天线端口准共址。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第二接收机在所述第一子频带上执行第三类接入检测;其中,所述第三时频资源占用的时间资源的起始时刻不早于所述第三类接入检测的结束时刻;所述第三类接入检测包括:
在所述第一子频带上的W个时间子池中分别执行W次能量检测,得到W个检测值;
其中,所述W个检测值中的W1个检测值均低于第七阈值;所述W是正整数,所述W1是不大于所述W的正整数。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第二发送机发送N个第二类参考信号;其中,针对所述N个第二类参考信号的测量被用于确定所述第一无线信号,所述N是正整数。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第二发送机发送第一信息;其中,所述第一信息被用于确定所述第一条件集合。
作为一个实施例,和传统方案相比,本申请具备如下优势:
在非授权频谱中,UE在判断是否出现了波束链路失败(Beam Link Failure)时,同时考虑了用于检测服务波束(Serving Beam)信道质量的参考信号被成功发送但接收质量低于某一阈值的次数,和用于检测服务波束(Serving Beam)信道质量的参考信号未被成功发送的次数。这种方法避免了在非授权频谱中,由于LBT等原因,参考信号无法按时发送而造成UE未能及时判断波束链路失败(Beam Link Failure)的情况,保证了UE在非授权频谱中仍然能对波束链路失败(Beam Link Failure)做出准确快速的判断并及时恢复,确保了在非授权频谱中基于波束(Beam)的通信的质量。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令,第一类参考信号和第一无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的NR(NewRadio,新无线)节点和UE的示意图;
图5示出了根据本申请的一个实施例的无线传输的流程图;
图6示出了根据本申请的一个实施例的M个第一类时间窗,M个第二时频资源和M次第二类接入检测在时域上的时序关系的示意图;
图7示出了根据本申请的一个实施例的M个第一类时间窗,M个第二时频资源和M次第二类接入检测在时域上的时序关系的示意图;
图8示出了根据本申请的一个实施例的M个第一类时间窗和N个第二类参考信号在时域上的时序关系的示意图;
图9示出了根据本申请的一个实施例的M1个第一类参考子信号在时频域上的资源映射的示意图;
图10示出了根据本申请的一个实施例的N个第二类参考信号在时频域上的资源映射的示意图;
图11示出了根据本申请的一个实施例的给定接入检测的示意图;
图12示出了根据本申请的一个实施例的给定接入检测的示意图;
图13示出了根据本申请的一个实施例的给定接入检测的示意图;
图14示出了根据本申请的一个实施例的M个第二时频资源在时频域上的资源映射的示意图;
图15示出了根据本申请的一个实施例的M个第二时频资源在时频域上的资源映射的示意图;
图16示出了根据本申请的一个实施例的第三时频资源在时频域上的资源映射的示意图;
图17示出了根据本申请的一个实施例的第三时频资源在时频域上的资源映射的示意图;
图18示出了根据本申请的一个实施例的第三时频资源在时频域上的资源映射的示意图;
图19示出了根据本申请的一个实施例的天线端口和天线端口组的示意图;
图20示出了根据本申请的一个实施例的N个第二类参考信号和第一天线端口组之间关系的示意图;
图21示出了根据本申请的一个实施例的用户设备判断是否在第一时频资源中发送第一无线信号的示意图;
图22示出了根据本申请的一个实施例的用户设备判断是否在第一时频资源中发送第一无线信号的示意图;
图23示出了根据本申请的一个实施例的用于用户设备中的处理装置的结构框图;
图24示出了根据本申请的一个实施例的用于基站中的处理装置的结构框图;
图25示出了根据本申请的一个实施例的M个第一类时间窗和M次第二类接入检测在时域上的时序关系的示意图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了第一信令,第一类参考信号和第一无线信号的流程图,如附图1所示。
在实施例1中,本申请中的所述用户设备接收第一信令,所述第一信令被用于指示第一子频带上的M个第一类时间窗,所述第一子频带上的所述M个第一类时间窗被预留给第一类参考信号,所述M是正整数。所述用户设备然后判断仅需要在所述第一子频带上的所述M个第一类时间窗中的M1个第一类时间窗中接收所述第一类参考信号,所述M1是不大于所述M的正整数。所述用户设备然后判断第一条件集合是否被满足。如果所述第一条件集合被满足,所述用户设在第一时频资源中发送第一无线信号;其中,所述第一条件集合包括所述M1不大于第一阈值。
作为一个实施例,所述第一信令显式指示所述第一子频带上的所述M个第一类时间窗。
作为一个实施例,所述第一信令隐式指示所述第一子频带上的所述M个第一类时间窗。
作为一个实施例,所述第一子频带部署于非授权频谱。
作为一个实施例,所述第一子频带包括一个载波(Carrier)。
作为一个实施例,所述第一子频带包括多个载波(Carrier)。
作为一个实施例,所述第一子频带包括一个载波中的多个BWP(Bandwidth Part,带宽区间)。
作为一个实施例,所述第一子频带包括一个载波中的一个BWP。
作为一个实施例,所述第一子频带在频域上包括正整数个PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述第一子频带在频域上包括正整数个连续的PRB。
作为一个实施例,所述第一子频带在频域上包括正整数个RB(Resource Block,资源块)。
作为一个实施例,所述第一子频带在频域上包括正整数个连续的RB。
作为一个实施例,所述第一子频带在频域上包括正整数个连续的子载波。
作为一个实施例,所述M个第一类时间窗在时域上是两两相互正交(不重叠)的。
作为一个实施例,所述M个第一类时间窗中的任一第一类时间窗是一个子帧(sub-frame)。
作为一个实施例,所述M个第一类时间窗中的任一第一类时间窗是一个时隙(slot)。
作为一个实施例,所述M个第一类时间窗中的任一第一类时间窗是正整数个连续的子帧(sub-frame)。
作为一个实施例,所述M个第一类时间窗中的任一第一类时间窗是正整数个连续的时隙(slot)。
作为一个实施例,所述M个第一类时间窗中的任一第一类时间窗是正整数个连续的多载波符号。
作为一个实施例,所述多载波符号是OFDM(OrthogonalFrequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(SingleCarrier-Frequency Division MultipleAccess,单载波频分多址接入)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述多载波符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,所述多载波符号包括CP(Cyclic Prefix,循环前缀)。
作为一个实施例,所述第一类参考信号在所述第一子频带上传输。
作为一个实施例,所述第一信令在所述第一子频带上传输。
作为一个实施例,所述第一信令在所述第一子频带以外的频带上传输。
作为一个实施例,所述第一信令在部署于授权频谱的频带上传输。
作为一个实施例,所述第一信令是更高层信令。
作为一个实施例,所述第一信令是高层信令。
作为一个实施例,所述第一信令是RRC(Radio Resource Control,无线电资源控制)信令。
作为一个实施例,所述第一信令是MACCE(Medium Access Control layer Control Element,媒体接入控制层控制元素)信令。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是UE特定(UEspecific)的。
作为一个实施例,所述M个第一类时间窗被预留给承载所述第一类参考信号的多载波符号。
作为一个实施例,所述用户设备在所述M个第一类时间窗中不属于所述M1个第一类时间窗的任一第一类时间窗中放弃接收所述第一类参考信号。
作为一个实施例,所述第一时频资源在时域上包括正整数个多载波符号。
作为一个实施例,所述第一时频资源在时域上包括正整数个连续的多载波符号。
作为一个实施例,所述第一时频资源在时域上包括1个时隙(slot)。
作为一个实施例,所述第一时频资源在时域上包括正整数个连续的时隙(slot)。
作为一个实施例,所述第一时频资源在时域上包括1个子帧(sub-frame)。
作为一个实施例,所述第一时频资源在时域上包括正整数个连续的子帧(sub-frame)。
作为一个实施例,所述第一时频资源在频域上包括正整数个子载波。
作为一个实施例,所述第一时频资源在频域上包括正整数个连续的子载波。
作为一个实施例,所述第一时频资源在频域上包括正整数个连续的PRB。
作为一个实施例,所述第一时频资源在频域上包括正整数个连续的RB。
作为一个实施例,所述第一时频资源在时域上位于所述M个第一类时间窗之后。
作为一个实施例,所述第一时频资源是位于所述M个第一类时间窗之后的第一个到达的PRACH(Physical Random Access CHannel,物理随机接入信道)。
作为一个实施例,所述第一时频资源是位于所述M个第一类时间窗之后的第一个到达的PUCCH(Physical UplinkControl CHannel,物理上行控制信道)。
作为一个实施例,所述第一时频资源是位于所述M个第一类时间窗之后的第二子频带上的第一个到达的PRACH。
作为一个实施例,所述第一时频资源是位于所述M个第一类时间窗之后的第二子频带上的第一个到达的PUCCH。
作为一个实施例,所述第二子频带部署于非授权频谱。
作为一个实施例,所述第二子频带部署于授权频谱。
作为一个实施例,所述第一无线信号是由第一特征序列调制生成。
作为上述实施例的一个子实施例,所述第一特征序列包括伪随机序列。
作为上述实施例的一个子实施例,所述第一特征序列包括Zadoff-Chu序列。
作为上述实施例的一个子实施例,所述第一特征序列包括CP(Cyclic Prefix,循环前缀)。
作为一个实施例,所述第一时频资源和所述第一特征序列组成第一空口资源,所述第一空口资源属于第一空口资源池,所述第一空口资源池包括正整数个空口资源,一个空口资源包括一个时频资源和一个特征序列。
作为上述实施例的一个子实施例,所述特征序列包括伪随机序列。
作为上述实施例的一个子实施例,所述特征序列包括Zadoff-Chu序列。
作为上述实施例的一个子实施例,所述特征序列包括CP(Cyclic Prefix,循环前缀)。
作为上述实施例的一个子实施例,所述第一空口资源池被预留给所述用户设备。
作为上述实施例的一个子实施例,所述用户设备在所述第一空口资源池中自行选择所述第一空口资源。
作为一个实施例,所述第一时频资源包括W个RU(Resource Unit,资源单位),所述W 是正整数。所述第一无线信号由长度为W的第一特征序列调制生成,即一个调制符号乘以所述第一特征序列后被映射到所述W个RU中。
作为上述子实施例的一个参考实施例,一个RU在时域占用一个多载波符号的持续时间,在频域占用一个子载波。
作为一个实施例,所述第一无线信号包括RACH(Random Access Channel,随机接入信道)前导(Preamble)。
作为一个实施例,所述第一无线信号包括UCI(Uplink control information,上行控制信息)。
作为一个实施例,所述第一无线信号包括CSI(ChannelStateInformation,信道状态信息)。
作为一个实施例,所述第一无线信号包括CRI(Channel-state information reference signals Resource Indicator,信道状态信息参考信号资源标识)。
作为一个实施例,所述第一无线信号包括PMI(Precoding Matrix Indicator,预编码矩阵标识)。
作为一个实施例,所述第一无线信号包括RSRP(Reference Signal Received Power,参考信号接收功率)。
作为一个实施例,所述第一无线信号包括RSRQ(Reference Signal Received Quality,参考信号接收质量)。
作为一个实施例,所述第一无线信号包括CQI(Channel Quality Indicator,信道质量标识)。
作为一个实施例,所述第一无线信号包括BRR(Beam Recovery Request,波束恢复请求)。
作为一个实施例,所述第一无线信号包括BFRQ(Beam Failure Recovery reQuest,波束失败恢复请求)。
作为一个实施例,所述第一阈值是正整数。
作为一个实施例,所述第一阈值与所述M无关。
作为一个实施例,所述第一阈值与所述M有关。
作为一个实施例,所述M是固定的。
作为一个实施例,所述M是可配置的。
作为一个实施例,所述M是由高层信令配置的。
作为一个实施例,所述M大于1。
作为一个实施例,所述M1小于所述M。
作为一个实施例,根据能量检测判断是否需要在所述第一子频带上的所述M个第一类时间窗中的每一个第一类时间窗中接收所述第一类参考信号。
作为上述实施例的一个子实施例,所述能量检测是指:在给定第一类时间窗中感知(Sense)所有无线信号的能量,并在时间上平均,以获得接收能量。如果所述接收能量大于第一给定阈值,判断需要在所述给定第一类时间窗中接收所述第一类参考信号;否则判断不需要在所述给定第一类时间窗中接收所述第一类参考信号。所述给定第一类时间窗是所述M个第一类时间窗中的任一第一类时间窗。
作为一个实施例,根据所述第一类参考信号的参考信号序列,利用相干检测判断是否需要在所述第一子频带上的所述M个第一类时间窗中的每一个第一类时间窗中接收所述第一类参考信号。
作为上述实施例的一个子实施例,所述相干检测是指:在给定第一类时间窗中用所述第一类参考信号的参考信号序列对所有无线信号进行相干接收,并测量所述相干接收后得到的信号的能量。如果所述所述相干接收后得到的信号的能量大于第二给定阈值,判断需要在所述给定第一类时间窗中接收所述第一类参考信号;否则判断不需要在所述给定第一类时间窗中接收所述第一类参考信号。所述给定第一类时间窗是所述M个第一类时间窗中的任一第一 类时间窗。
作为上述实施例的一个子实施例,所述第一类参考信号的参考信号序列包括伪随机序列。
作为上述实施例的一个子实施例,所述第一类参考信号的参考信号序列包括Zadoff-Chu序列。
作为一个实施例,根据盲检测判断是否需要在所述第一子频带上的所述M个第一类时间窗中的每一个第一类时间窗中接收所述第一类参考信号。
作为上述实施例的一个子实施例,所述盲检测是指:在给定时频资源中接收信号并执行译码操作,如果根据校验比特确定译码正确则判断需要在给定第一类时间窗中接收所述第一类参考信号;否则判断不需要在所述给定第一类时间窗中接收所述第一类参考信号。所述给定第一类时间窗是所述M个第一类时间窗中的任一第一类时间窗,所述给定时频资源是M个第二时频资源中的一个,所述M个第二时频资源和所述M个第一类时间窗一一对应,所述给定时频资源和所述给定第一类时间窗对应。
作为上述子实施例的一个参考实施例,所述校验比特是指CRC(Cyclic Redundancy Check,循环冗余校验)比特。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,E-UTRAN-NR(演进UMTS陆地无线电接入网络-新无线)202,5G-CN(5G-CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。其中,UMTS对应通用移动通信业务(Universal Mobile Telecommunications System)。EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。E-UTRAN-NR202包括NR(NewRadio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由X2接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5G-CN/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1接口连接到5G-CN/EPC210。5G-CN/EPC210包括MME 211、其它MME214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME211是处理UE201与5G-CN/EPC210之间的信令的控制节点。大体上,MME211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个实施例,所述UE201对应本申请中的所述用户设备。
作为一个实施例,所述gNB203对应本申请中的所述基站。
作为一个子实施例,所述UE201支持在非授权频谱上进行数据传输的无线通信。
作为一个子实施例,所述gNB203支持在非授权频谱上进行数据传输的无线通信。
作为一个子实施例,所述UE201支持大规模MIMO的无线通信。
作为一个子实施例,所述gNB203支持大规模MIMO的无线通信。
实施例3
实施例3示例了用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,附图3用三个层展示用于UE和gNB的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干协议层,包括终止于网络侧上的P-GW213处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述用户设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述基站。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信令生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一类参考信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述M2个第二无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二信令生成于所述PHY301。
作为一个实施例,本申请中的所述第二信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第二信令生成于所述RRC子层306。
作为一个实施例,本申请中的所述N个第二类参考信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一信息成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信息成于所述RRC子层306。
实施例4
实施例4示例了NR节点和UE的示意图,如附图4所示。附图4是在接入网络中相互通信的UE450以及gNB410的框图。
gNB410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
UE450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在DL(Downlink,下行)中,在gNB410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对UE450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到UE450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进UE450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码/波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在DL(Downlink,下行)中,在UE450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以UE450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由gNB410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在UL(Uplink,上行)中,在UE450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述gNB410处的发送功能,控制器/处理器459基于gNB410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到gNB410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码/波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在UL(Uplink,上行)中,gNB410处的功能类似于在DL中所描述的UE450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器 475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在UL中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述UE450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述UE450装置至少:接收本申请中的所述第一信令,所述第一信令被用于指示第一子频带上的M个第一类时间窗,所述第一子频带上的所述M个第一类时间窗被预留给第一类参考信号;判断仅需要在所述第一子频带上的所述M个第一类时间窗中的M1个第一类时间窗中接收所述第一类参考信号;判断本申请中的所述第一条件集合是否被满足;在本申请中的所述第一时频资源中发送本申请中的所述第一无线信号。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收本申请中的所述第一信令,所述第一信令被用于指示第一子频带上的M个第一类时间窗,所述第一子频带上的所述M个第一类时间窗被预留给第一类参考信号;判断仅需要在所述第一子频带上的所述M个第一类时间窗中的M1个第一类时间窗中接收所述第一类参考信号;判断本申请中的所述第一条件集合是否被满足;在本申请中的所述第一时频资源中发送本申请中的所述第一无线信号。
作为一个实施例,所述gNB410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:发送本申请中的所述第一信令,所述第一信令被用于指示第一子频带上的M个第一类时间窗,所述第一子频带上的所述M个第一类时间窗被预留给第一类参考信号;判断仅需要在所述第一子频带上的所述M个第一类时间窗中的M1个第一类时间窗中发送所述第一类参考信号;在本申请中的所述第一时频资源中监测本申请中的所述第一无线信号。
作为一个实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送本申请中的所述第一信令,所述第一信令被用于指示第一子频带上的M个第一类时间窗,所述第一子频带上的所述M个第一类时间窗被预留给第一类参考信号;判断仅需要在所述第一子频带上的所述M个第一类时间窗中的M1个第一类时间窗中发送所述第一类参考信号;在本申请中的所述第一时频资源中监测本申请中的所述第一无线信号。
作为一个实施例,所述UE450对应本申请中的所述用户设备。
作为一个实施例,所述gNB410对应本申请中的所述基站。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459}中的至少之一被用于接收本申请中的所述第一信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459}中的至少之一被用于判断仅需要在所述第一子频带上的所述M个第一类时间窗中的M1个第一类时间窗中接收所述第一类参考信号;{所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475}中的至少之一被用于判断仅需要在所述第一子频带上的所述M个第一类时间窗中的M1个第一类时间窗中发送所述第一类参考信号。
作为一个实施例,{所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459}中的至少之一被用于判断本申请中的所述第一条件集合是否被满足。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线 接收处理器472,所述控制器/处理器475}中的至少之一被用于在本申请中的所述第一时频资源中监测本申请中的所述第一无线信号;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459}中的至少之一被用于在本申请中的所述第一时频资源中发送本申请中的所述第一无线信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459}中的至少之一被用于在本申请中的所述M1个第一类时间窗中分别接收本申请中的所述M1个第一类参考子信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475}中的至少之一被用于在本申请中的所述M1个第一类时间窗中分别发送本申请中的所述M1个第一类参考子信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459}中的至少之一被用于分别在本申请中的所述M个第二时频资源中监测本申请中的所述M个第二无线信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475}中的至少之一被用于分别在本申请中的所述M2个第二时频资源中发送本申请中的所述M个第二无线信号中的M2个第二无线信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459}中的至少之一被用于在本申请中的所述第一子频带上执行本申请中的所述第一类接入检测。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475}中的至少之一被用于在本申请中的所述第一子频带上分别执行本申请中的所述M次第二类接入检测。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459}中的至少之一被用于在本申请中的所述第三时频资源中监测本申请中的所述第二信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475}中的至少之一被用于在本申请中的所述第三时频资源中发送本申请中的所述第二信令。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459}中的至少之一被用于接收本申请中的所述N个第二类参考信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475}中的至少之一被用于发送本申请中的所述N个第二类参考信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459}中的至少之一被用于接收本申请中的所述第一信息;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475}中的至少之一被用于发送本申请中的所述第一信息。
实施例5
实施例5示例了无线传输的流程图,如附图5所示。在附图5中,基站N1是用户设备U2的服务小区维持基站。附图5中,方框F1至方框F9中的步骤分别是可选的。
对于N1,在步骤S101中发送第一信息;在步骤S11中发送第一信令,所述第一信令被用于指示第一子频带上的M个第一类时间窗,所述第一子频带上的所述M个第一类时间窗被预留给第一类参考信号;在步骤S102中在所述第一子频带上分别执行M次第二类接入检测;在步骤S12中判断仅需要在所述第一子频带上的所述M个第一类时间窗中的M1个第一类时间窗中发送所述第一类参考信号;在步骤S103中分别在M2个第二时频资源中发送M个第二无线信号中的M2个第二无线信号;在步骤S13中在所述M1个第一类时间窗中分别发送M1个第一类参考子信号;在步骤S104中发送N个第二类参考信号;在步骤S14中在第一时 频资源中监测第一无线信号;在步骤S105中在所述第一子频带上执行第三类接入检测;在步骤S106中在第三时频资源中发送第二信令。
对于U2,在步骤S201中接收第一信息;在步骤S21中接收第一信令,所述第一信令被用于指示第一子频带上的M个第一类时间窗,所述第一子频带上的所述M个第一类时间窗被预留给第一类参考信号;在步骤S202中分别在M个第二时频资源中监测M个第二无线信号;在步骤S22中判断仅需要在所述第一子频带上的所述M个第一类时间窗中的M1个第一类时间窗中接收所述第一类参考信号;在步骤S23中在所述M1个第一类时间窗中分别接收M1个第一类参考子信号;在步骤S203中接收N个第二类参考信号;在步骤S204中在所述第一子频带上执行第一类接入检测;在步骤S205中在第一时频资源中发送第一无线信号;在步骤S206中在第三时频资源中监测第二信令。
在实施例5中,所述M是正整数,所述M1是不大于所述M的正整数;如果第一条件集合被满足,所述U2在所述第一时频资源中发送所述第一无线信号;所述第一条件集合包括所述M1不大于第一阈值。所述第一类参考信号包括所述M1个第一类参考子信号,所述M1个第一类时间窗分别被预留给所述M1个第一类参考子信号;针对所述M1个第一类参考子信号的测量分别被所述U2用于确定M1个第一类数值,所述M1个第一类数值中有M3个第一类数值低于第二阈值;所述第一条件集合包括所述M3大于第三阈值。所述M个第二无线信号和所述M个第一类时间窗一一对应;所述U2检测到所述M个第二无线信号中的所述M2个第二无线信号。所述M2个第二无线信号中的M1个第二无线信号分别被用于指示在所述M1个第一类时间窗中接收所述第一类参考信号。所述第一类接入检测包括:在所述第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;其中,所述Q个检测值中的Q1个检测值均低于第四阈值;所述Q是正整数,所述Q1是不大于所述Q的正整数。所述M个第一类时间窗的起始时刻分别不早于所述M次第二类接入检测的结束时刻。给定第二类接入检测包括:在所述第一子频带上的P个时间子池中分别执行P次能量检测,得到P个检测值;其中,所述给定第二类接入检测是所述M次第二类接入检测中的一次第二类接入检测,所述P个检测值中的P1个检测值均低于第五阈值;所述P是正整数,所述P1是不大于所述P的非负整数。所述第三时频资源占用的时间资源的起始时刻不早于所述第三类接入检测的结束时刻。所述第三类接入检测包括:在所述第一子频带上的W个时间子池中分别执行W次能量检测,得到W个检测值;其中,所述W个检测值中的W1个检测值均低于第七阈值;所述W是正整数,所述W1是不大于所述W的正整数。所述第二信令被所述U2用于确定所述第一无线信号被正确接收。针对所述N个第二类参考信号的测量被所述U2用于确定所述第一无线信号,所述N是正整数。所述第一信息被所述U2用于确定所述第一条件集合。
作为一个实施例,所述M1个第一类时间窗分别被预留给承载所述M1个第一类参考子信号的多载波符号。
作为一个实施例,所述M1个第一类数值中只有所述M3个第一类数值低于所述第二阈值。
作为一个实施例,所述M1个第一类数值只除了所述M3个第一类数值以外的第一类数值中至少有一个第一类数值低于所述第二阈值。
作为上述实施例的一个子实施例,所述M3个第一类数值在所述M1个第一类数值中的位置是连续的。
作为上述实施例的一个子实施例,M3个第一类时间窗在所述M1个第一类时间窗中的位置是连续的,所述M3个第一类时间窗是所述M1个第一类时间窗中分别和所述M3个第一类数值对应的第一类时间窗。
作为一个实施例,所述M1个第一类数值分别是BLER(BLock Error Rate,误块率)。
作为一个实施例,所述M3是非负整数。
作为一个实施例,所述M3大于0。
作为一个实施例,所述M3等于0。
作为一个实施例,所述M3等于所述M1。
作为一个实施例,所述M3小于所述M1。
作为一个实施例,所述M2等于所述M1。
作为一个实施例,所述M2大于所述M1,所述M2个第二无线信号中除了所述M1个第二无线信号之外的第二无线信号分别被用于指示在对应的第一类时间窗中不接收所述第一类参考信号。
作为一个实施例,所述M2个第二无线信号分别在所述第一子频带上传输。
作为一个实施例,所述M个第二时频资源在频域上分别位于所述第一子频带中。
作为一个实施例,所述分别在M个第二时频资源中监测M个第二无线信号是指:分别在所述M个第二时频资源中用基于盲检测方法来接收所述M个第二无线信号,即在给定第二时频资源中接收信号并执行译码操作,如果根据校验比特确定译码正确则判断检测到给定第二无线信号;否则判断未检测到所述给定第二无线信号。所述给定第二时频资源是所述M个第二时频资源中的任一第二时频资源,所述给定第二无线信号是所述M个第二无线信号中和所述给定第二时频资源对应的第二无线信号。
作为上述实施例的一个子实施例,所述校验比特是指CRC比特。
作为一个实施例,所述分别在M个第二时频资源中监测M个第二无线信号是指:分别在所述M个第二时频资源中根据能量检测判断是否检测到所述M个第二无线信号。
作为一个实施例,在给定第二时频资源中感知(Sense)所有无线信号的能量,并在时间上平均,以获得接收能量。如果所述接收能量大于第四给定阈值,判断检测到给定第二无线信号;否则判断未检测到所述第二无线信号。所述给定第二时频资源是所述M个第二时频资源中的任一第二时频资源,所述给定第二无线信号是所述M个第二无线信号中和所述给定第二时频资源对应的第二无线信号。
作为一个实施例,所述M2个第二无线信号中的每一个第二无线信号显式指示在对应的第一类时间窗中是否接收所述第一类参考信号。
作为一个实施例,所述M2个第二无线信号中的每一个第二无线信号隐式指示在对应的第一类时间窗中是否接收所述第一类参考信号。
作为一个实施例,所述M1个第二无线信号中的每一个第二无线信号显式指示在对应的第一类时间窗中接收所述第一类参考信号。
作为一个实施例,所述M1个第二无线信号中的每一个第二无线信号隐式指示在对应的第一类时间窗中接收所述第一类参考信号。
作为一个实施例,所述M2个第二无线信号中除了所述M1个第二无线信号之外的任一第二无线信号显式指示在对应的第一类时间窗中不接收所述第一类参考信号。
作为一个实施例,所述M2个第二无线信号中除了所述M1个第二无线信号之外的任一第二无线信号隐式指示在对应的第一类时间窗中不接收所述第一类参考信号。
作为一个实施例,所述M2个第二无线信号中的每个第二无线信号被用于指示对应的第一类时间窗中被占用的多载波符号的数量。
作为一个实施例,所述M2个第二无线信号中的每个第二无线信号被用于指示对应的第一类时间窗中被所述第一类参考信号的发送者占用的多载波符号的数量。
作为一个实施例,对于M2个第一类时间窗中的任一给定第一类时间窗,如果其中被占用的多载波符号的数量大于第三给定阈值,所述U2在所述任一给定第一类时间窗中接收所述第一类参考信号;否则所述U2在所述任一给定第一类时间窗中放弃接收所述第一类参考信号。所述M2个第一类时间窗是所述M个第一类时间窗中分别和所述M2个第二无线信号对应的第一类时间窗。
作为上述实施例的一个子实施例,如果所述任一给定第一类时间窗中被占用的多载波符号的数量大于所述第三给定阈值,所述N1在所述任一给定第一类时间窗中发送所述第一类参考信号;否则所述N1在所述任一给定第一类时间窗中放弃发送所述第一类参考信号。
作为上述实施例的一个子实施例,所述第三给定阈值是不大于14的正整数。
作为上述实施例的一个子实施例,所述第三给定阈值是不小于7的正整数。
作为上述实施例的一个子实施例,所述第三给定阈值是大于1的正整数。
作为上述实施例的一个子实施例,所述第三给定阈值是可配置的。
作为上述实施例的一个子实施例,所述第三给定阈值与TTI(Transmission Time Interval,传输时间间隔)的长度有关。
作为上述实施例的一个子实施例,所述第三给定阈值是固定的,即不可配置的。
作为上述实施例的一个子实施例,所述第三给定阈值是UE特定(UEspecific)的。
作为上述实施例的一个子实施例,所述第三给定阈值是小区公共的。
作为一个实施例,给定第二无线信号被所述U2用于确定参考天线端口集合,如果所述参考天线端口集合包括参考天线端口组中的所有天线端口,所述U2在所述给定第二无线信号对应的第一类时间窗中接收所述第一类参考信号;否则所述U2在所述给定第二无线信号对应的第一类时间窗中不接收所述第一类参考信号。所述给定第二无线信号是所述M2个第二无线信号中的任一第二无线信号,所述参考天线端口组和所述第一类参考信号的发送天线端口组相关联,所述参考天线端口集合包括正整数个天线端口,一个天线端口组包括正整数个天线端口
作为上述实施例的一个子实施例,如果所述参考天线端口集合包括所述参考天线端口组,所述N1在所述给定第二无线信号对应的第一类时间窗中发送所述第一类参考信号;否则所述N1在所述给定第二无线信号对应的第一类时间窗中放弃发送所述第一类参考信号。
作为上述实施例的一个子实施例,所述给定第二无线信号显式指示所述参考天线端口集合。
作为上述实施例的一个子实施例,所述给定第二无线信号隐式指示所述参考天线端口集合。
作为上述实施例的一个子实施例,所述第一类参考信号的任一发送天线端口和所述参考天线端口组中的一个天线端口QCL(Quasi Co-Located,准共址)。
作为上述实施例的一个子实施例,所述第一类参考信号的任一发送天线端口和所述参考天线端口组中的一个天线端口spatialQCL。
作为上述实施例的一个子实施例,所述第一类参考信号的任一发送天线端口所对应的发送波束在空间上的覆盖范围在所述参考天线端口组中的一个天线端口所对应的发送波束在空间上的覆盖范围之内。
作为上述实施例的一个子实施例,所述参考天线端口集合包括的天线端口的数量不小于所述参考天线端口组包括的天线端口的数量。
作为上述实施例的一个子实施例,所述参考天线端口组包括1个天线端口。
作为上述实施例的一个子实施例,所述参考天线端口组包括多个天线端口。
作为上述实施例的一个子实施例,所述参考天线端口组中的任意两个天线端口是QCL的。
作为上述实施例的一个子实施例,所述参考天线端口组中的任意两个天线端口是spatialQCL的。
作为上述实施例的一个子实施例,所述参考天线端口组中至少存在两个天线端口不是QCL的。
作为上述实施例的一个子实施例,所述参考天线端口组中至少存在两个天线端口不是spatialQCL的。
作为一个实施例,所述M个第二无线信号中的任一第二无线信号包括DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述M个第二无线信号中的任一第二无线信号包括被CC(ComponentCarrier,分量载波)-RNTI(Radio Network Temporary Identifier,无线网络暂定标识)所标识的DCI。
作为一个实施例,CC-RNTI被用于生成所述M个第二无线信号中的任一第二无线信号对 应的DMRS(DeModulation Reference Signals,解调参考信号)的RS序列。
作为一个实施例,所述M个第二无线信号中的任一第二无线信号的CRC比特序列被CC-RNTI所加扰。
作为一个实施例,所述M2是正整数。
作为一个实施例,所述M2小于所述M。
作为一个实施例,所述M2等于所述M1。
作为一个实施例,所述M2大于所述M1。
作为一个实施例,所述Q个时间子池在时域上均位于所述第一时频资源占用的时间资源之前。
作为一个实施例,所述第一类接入检测被所述U2用于确定所述第一子频带是否空闲(Idle)。
作为一个实施例,所述第一类接入检测被所述U2用于确定所述第一子频带是否能被所述U2用于传输无线信号。
作为一个实施例,所述第一类接入检测是上行接入检测。
作为一个实施例,所述第一类接入检测是Cat4LBT(第四类型的LBT),所述Cat4LBT的具体定义参见3GPPTR36.889。
作为一个实施例,所述第一类接入检测是Cat2LBT(第二类型的LBT),所述Cat2LBT的具体定义参见3GPPTR36.889。
作为一个实施例,所述第一类接入检测是第一类上行信道接入过程(Type 1 UL channel access procedure),所述第一类上行信道接入过程的具体定义参见3GPP TS36.213中的15.2章节。
作为一个实施例,所述第一类接入检测是第二类上行信道接入过程(Type 1 UL channel access procedure),所述第二类上行信道接入过程的具体定义参见3GPP TS36.213中的15.2章节。
作为一个实施例,所述第一类接入检测是通过3GPP TS36.213中的15.2章节所定义的方式实现的。
作为一个实施例,所述M次第二类接入检测分别被所述N1用于确定所述第一子频带是否空闲(Idle)。
作为一个实施例,所述M次第二类接入检测分别被所述N1用于确定所述第一子频带是否能被所述N1用于传输无线信号。
作为一个实施例,所述M次第二类接入检测分别是下行接入检测。
作为一个实施例,所述给定第二类接入检测是Cat4LBT(第四类型的LBT),所述Cat4LBT的具体定义参见3GPPTR36.889。
作为一个实施例,所述给定第二类接入检测是Cat2LBT(第二类型的LBT),所述Cat2LBT的具体定义参见3GPPTR36.889。
作为一个实施例,所述M次第二类接入检测分别是通过3GPP TS36.213中的15.1章节所定义的方式实现的。
作为一个实施例,所述M次第二类接入检测中的任意一次第二类接入检测包括在所述第一子频带上的正整数个时间子池中分别执行正整数次能量检测,得到正整数个检测值。
作为一个实施例,所述M次第二类接入检测中至少存在两次第二类接入检测包括的能量检测的次数是不相等的。
作为一个实施例,所述M次第二类接入检测分别被所述N1用于确定是否在所述第一子频带上的所述M个第一类时间窗中发送所述第一类参考信号。
作为一个实施例,如果根据所述M次第二类接入检测中的任一次第二类接入检测的结果判断所述第一子频带空闲(idle),所述N1在对应的第一类时间窗中发送所述第一类参考信号;否则所述N1在对应的第一类时间窗中放弃发送所述第一类参考信号。
作为一个实施例,如果根据所述M次第二类接入检测中的任一次第二类接入检测的结果判断所述第一子频带可以被用于下行传输,所述N1在对应的第一类时间窗中发送所述第一类参考信号;否则所述N1在对应的第一类时间窗中放弃发送所述第一类参考信号。
作为一个实施例,所述在第一时频资源中监测第一无线信号是指:在所述第一时频资源中用基于盲检测的方法接收第一无线信号,即在所述第一时频资源中接收信号并执行译码操作,如果根据校验比特确定译码正确则判断对所述第一无线信号的接收成功,否则判断对所述第一无线信号的接收失败。
作为上述实施例的一个子实施例,所述校验比特是指CRC比特。
作为一个实施例,所述N1根据所述M次第二类接入检测的结果分别判断是否发送所述M个第二无线信号。
作为一个实施例,如果根据所述M次第二类接入检测中的任一次第二类接入检测的结果判断所述第一子频带空闲(idle),所述N1发送所述M个第二无线信号中对应的第二无线信号;否则所述N1放弃发送所述M个第二无线信号中对应的第二无线信号。
作为一个实施例,如果根据所述M次第二类接入检测中的任一次第二类接入检测的结果判断所述第一子频带可以被用于下行传输,所述N1发送所述M个第二无线信号中对应的第二无线信号;否则所述N1放弃发送所述M个第二无线信号中对应的第二无线信号。
作为一个实施例,所述第三类接入检测被所述N1用于确定所述第一子频带是否空闲(Idle)。
作为一个实施例,所述第三类接入检测被所述N1用于确定所述第一子频带是否能被所述N1用于传输无线信号。
作为一个实施例,所述第三类接入检测是下行接入检测。
作为一个实施例,所述第三类接入检测是Cat4LBT(第四类型的LBT),所述Cat4LBT的具体定义参见3GPPTR36.889。
作为一个实施例,所述第三类接入检测是Cat2LBT(第二类型的LBT),所述Cat2LBT的具体定义参见3GPPTR36.889。
作为一个实施例,所述第三类接入检测是通过3GPP TS36.213中的15.1章节所定义的方式实现的。
作为一个实施例,所述第二信令在所述第一子频带上传输。
作为一个实施例,所述第三时频资源在频域上位于所述第一子频带中。
作为一个实施例,所述第二信令在所述第一子频带以外的频带上传输。
作为一个实施例,所述第三时频资源在频域上位于所述第一子频带以外的频带中。
作为一个实施例,所述第二信令包括BRR答复(response)。
作为一个实施例,所述第二信令包括BFRQ答复(response)。
作为一个实施例,所述第二信令显式指示所述第一无线信号被正确接收。
作为一个实施例,所述第二信令隐式指示所述第一无线信号被正确接收。
作为一个实施例,所述第一无线信号被所述N1用于确定第一天线端口组,所述第二信令的任一发送天线端口和所述第一天线端口组中的一个天线端口准共址。
作为上述实施例的一个子实施例,所述准共址是指QCL。
作为上述实施例的一个子实施例,所述准共址是指spatialQCL。
作为一个实施例,所述N个第二类参考信号均在所述第一子频带上传输。
作为一个实施例,所述第一信息由高层信令承载。
作为一个实施例,所述第一信息由更高层信令承载。
作为一个实施例,所述第一信息由MACCE信令承载。
作为一个实施例,所述第一信息由物理层信令承载。
作为一个实施例,所述第一信息指示所述第一条件集合。
作为一个实施例,所述第一信息指示所述第一阈值,所述第二阈值和所述第三阈值中的 至少之一。
作为一个实施例,所述第一信息在所述第一子频带上传输。
作为一个实施例,所述第一信息在所述第一子频带以外的频带上传输。
作为一个实施例,所述第一信息在部署于授权频谱的频带上传输。
作为一个实施例,所述第一信令在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH(short PDSCH,短PDSCH)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH(NewRadio PDSCH,新无线PDSCH)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH(NarrowBand PDSCH,窄带PDSCH)。
作为一个实施例,所述第一信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH(Physical DownlinkControl CHannel,物理下行控制信道)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH(short PDCCH,短PDCCH)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH(New Radio PDCCH,新无线PDCCH)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH(NarrowBand PDCCH,窄带PDCCH)。
作为一个实施例,所述第一无线信号在上行物理层控制信道(即仅能用于承载物理层信令的上行信道)上传输。
作为上述实施例的一个子实施例,所述上行物理层控制信道是PUCCH(Physical UplinkControl CHannel,物理上行控制信道)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是sPUCCH(short PUCCH,短PUCCH)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是NR-PUCCH(New Radio PUCCH,新无线PUCCH)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是NB-PUCCH(NarrowBand PUCCH,窄带PUCCH)。
作为一个实施例,所述第一无线信号在PRACH上传输。
作为一个实施例,所述第二信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH。
作为一个实施例,所述第一信息在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH。
作为一个实施例,所述第一信息在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH。
作为一个实施例,如果所述U2在所述第一时频资源中发送所述第一无线信号并且所述第一无线信号在所述第一子频带上传输,附图5中的方框F5存在,即所述U2在所述第一子频带上执行所述第一类接入检测。如果所述U2在所述第一时频资源中不发送所述第一无线信号或者所述第一无线信号在所述第一子频带以外的频带上传输,附图5中的方框F5不存在,即所述U2在所述第一子频带上不执行所述第一类接入检测。
作为一个实施例,如果所述第一条件集合被满足,附图5中的方框F6存在,即所述U2在所述第一时频资源中发送所述第一无线信号。
作为一个实施例,如果所述N1在所述第一时频资源中检测到所述第一无线信号并且所述第三时频资源在频域上位于所述第一子频带中,附图5中的方框F7存在,即所述N1在所述第一子频带上执行所述第三类接入检测。如果所述N1在所述第一时频资源中未检测到所述第一无线信号并且所述第三时频资源在频域上位于所述第一子频带以外的频带中,附图5中的方框F7不存在,即所述N1在所述第一子频带上不执行所述第三类接入检测。
作为一个实施例,如果所述N1在所述第一时频资源中检测到所述第一无线信号,附图5中的方框F8存在,即所述N1在所述第三时频资源中发送所述第二信令。如果所述N1在所述第一时频资源中未检测到所述第一无线信号,附图5中的方框F8不存在,即所述N1在所述第三时频资源中不发送所述第二信令。
作为一个实施例,如果所述U2在所述第一时频资源中发送所述第一无线信号,附图5中的方框F9存在,即所述U2在所述第三时频资源中监测所述第二信令。如果所述U2在所述第一时频资源中不发送所述第一无线信号,附图5中的方框F9不存在,即所述U2在所述第三时频资源中不监测所述第二信令。
实施例6
实施例6示例了M个第一类时间窗,M个第二时频资源和M次第二类接入检测在时域上的时序关系的示意图;如附图6所示。
在实施例6中,所述M个第一类时间窗被预留给本申请中的所述第一类参考信号,本申请中的所述用户设备判断仅需要在所述M个第一类时间窗中的M1个第一类时间窗中接收所述第一类参考信号,本申请中的所述基站判断仅需要在所述M个第一类时间窗中的所述M1个第一类时间窗中发送所述第一类参考信号。所述用户设备分别在所述M个第二时频资源中监测本申请中的所述M个第二无线信号,并检测到所述M个第二无线信号中的M2个第二无线信号;所述M个第二无线信号和所述M个第一类时间窗一一对应。所述基站根据所述M次第二类接入检测的结果分别判断是否在所述M个第一类时间窗中发送所述第一类参考信号。所述M2大于所述M1,所述M2个第二无线信号中的M1个第二无线信号和所述M1个第一类时间窗一一对应。所述M是正整数,所述M2是不大于所述M的正整数,所述M1是不大于所述M2的正整数。所述M个第一类时间窗的开始时刻分别不早于所述M个第二时频资源占用的时间资源的结束时刻,所述M个第二时频资源占用的时间资源的起始时刻分别不早于所述M次第二类接入检测的结束时刻。
在附图6中,所述M个第一类时间窗,所述M个第二时频资源和所述M次第二类接入检测的索引分别是{#0,...,#x,...,#M-1},其中所述x是小于所述M-1的正整数。所述基站根据第二类接入检测#0,第二类接入检测#x和第二类接入检测#M-1的结果分别判断在第一类时间窗#0中发送所述第一类参考信号,在第一类时间窗#x和第一类时间窗#M-1中不发送所 述第一类参考信号。所述用户设备判断在第一类时间窗#0中接收所述第一类参考信号,在第一类时间窗#x和第一类时间窗#M-1中不接收所述第一类参考信号。所述基站在第二时频资源#0和第二时频资源#x中分别发送对应的第二无线信号,在第二时频资源#M-1中不发送对应的第二无线信号。在附图6中,空白填充的方框表示所述M次第二类接入检测占用的时间资源,左斜线填充的方框表示所述M个第二时频资源中的M2个第二时频资源占用的时间资源,小点填充的方框表示所述M个第二时频资源中不属于所述M2个第二时频资源的第二时频资源占用的时间资源,右斜线填充的方框表示所述M个第一类时间窗中的所述M1个第一类时间窗占用的时间资源,交叉线填充的方框表示所述M个第一类时间窗中不属于所述M1个第一类时间窗的第一类时间窗占用的时间资源。所述M2个第二时频资源是所述M个第二时频资源中分别和所述M2个第二无线信号对应的第二时频资源。
作为一个实施例,所述M个第一类时间窗在时域上是两两相互正交(不重叠)的。
作为一个实施例,所述M个第一类时间窗中的任一第一类时间窗是一个连续的时间段。
作为一个实施例,所述M个第一类时间窗中的任意两个第一类时间窗在时域上是不连续的。
作为一个实施例,所述M个第一类时间窗中的任意两个相邻的第一类时间窗之间的时间间隔是相等的。
作为一个实施例,所述M个第一类时间窗中的任意两个第一类时间窗的持续时间是相同的。
作为一个实施例,所述M个第一类时间窗中至少存在两个第一类时间窗的持续时间是不同的。
作为一个实施例,所述用户设备在所述M个第一类时间窗中不属于所述M1个第一类时间窗的任一第一类时间窗中放弃接收所述第一类参考信号。
作为一个实施例,所述基站在所述M个第一类时间窗中不属于所述M1个第一类时间窗的任一第一类时间窗中放弃发送所述第一类参考信号。
作为一个实施例,所述M1个第一类时间窗在所述M个第一类时间窗中的位置是连续的。
作为一个实施例,所述M1个第一类时间窗在所述M个第一类时间窗中的位置是不连续的。
作为一个实施例,所述用户设备在所述M1个第一类时间窗中分别接收M1个第一类参考子信号;所述第一类参考信号包括所述M1个第一类参考子信号,所述M1个第一类时间窗分别被预留给所述M1个第一类参考子信号。针对所述M1个第一类参考子信号的测量分别被用于确定M1个第一类数值,所述M1个第一类数值中有M3个第一类数值低于第二阈值。M3个第一类时间窗是所述M个第一类时间窗中分别和所述M3个第一类数值对应的第一类时间窗。
作为上述实施例的一个子实施例,所述M3个第一类时间窗在所述M个第一类时间窗中的位置是连续的。
作为上述实施例的一个子实施例,所述M3个第一类时间窗在所述M个第一类时间窗中的位置是不连续的。
作为上述实施例的一个子实施例,所述M1个第一类数值中只有所述M3个第一类数值低于所述第二阈值。
作为一个实施例,所述M个第一类时间窗中和本申请中的所述给定第二类接入检测对应的第一类时间窗的起始时刻不早于本申请中的所述P个时间子池的结束时刻。
作为一个实施例,所述M个第二时频资源中的任一第二时频资源在时域上位于对应的第一类时间窗之前。
作为一个实施例,所述M个第二时频资源中的任一第二时频资源在时域上位于对应的第二类接入检测占用的时间资源之后。
作为一个实施例,所述M2个第二无线信号中的所述M1个第二无线信号分别被用于指示在所述M1个第一类时间窗中接收所述第一类参考信号。
作为一个实施例,所述M2个第二无线信号中除了所述M1个第二无线信号之外的第二无 线信号分别被用于指示在对应的第一类时间窗中不接收所述第一类参考信号。
实施例7
实施例7示例了M个第一类时间窗,M个第二时频资源和M次第二类接入检测在时域上的时序关系的示意图;如附图7所示。
在实施例7中,所述M个第一类时间窗被预留给本申请中的所述第一类参考信号,本申请中的所述用户设备判断仅需要在所述M个第一类时间窗中的M1个第一类时间窗中接收所述第一类参考信号,本申请中的所述基站判断仅需要在所述M个第一类时间窗中的所述M1个第一类时间窗中发送所述第一类参考信号。所述用户设备分别在所述M个第二时频资源中监测本申请中的所述M个第二无线信号,并检测到所述M个第二无线信号中的M2个第二无线信号;所述M个第二无线信号和所述M个第一类时间窗一一对应。所述基站根据所述M次第二类接入检测的结果分别判断是否在所述M个第一类时间窗中发送所述第一类参考信号。所述M2等于所述M1,所述M2个第二无线信号和所述M1个第一类时间窗一一对应。所述M是正整数,所述M2是不大于所述M的正整数。所述M个第一类时间窗的开始时刻分别不早于所述M个第二时频资源占用的时间资源的结束时刻,所述M个第二时频资源占用的时间资源的起始时刻分别不早于所述M次第二类接入检测的结束时刻。
在附图7中,所述M个第一类时间窗,所述M个第二时频资源和所述M次第二类接入检测的索引分别是{#0,...,#x,...,#M-1},其中所述x是小于所述M-1的正整数。所述基站根据第二类接入检测#0,第二类接入检测#x和第二类接入检测#M-1的结果分别判断在第一类时间窗#0和第一类时间窗#x中发送所述第一类参考信号,在第一类时间窗#M-1中不发送所述第一类参考信号。所述用户设备判断在第一类时间窗#0和第一类时间窗#x中接收所述第一类参考信号,在第一类时间窗#M-1中不接收所述第一类参考信号。所述基站在第二时频资源#0和第二时频资源#x中分别发送对应的第二无线信号,在第二时频资源#M-1中不发送对应的第二无线信号。在附图7中,空白填充的方框表示所述M次第二类接入检测占用的时间资源,左斜线填充的方框表示所述M个第二时频资源中的M2个第二时频资源占用的时间资源,小点填充的方框表示所述M个第二时频资源中不属于所述M2个第二时频资源的第二时频资源占用的时间资源,右斜线填充的方框表示所述M个第一类时间窗中的所述M1个第一类时间窗占用的时间资源,交叉线填充的方框表示所述M个第一类时间窗中不属于所述M1个第一类时间窗的第一类时间窗占用的时间资源。所述M2个第二时频资源是所述M个第二时频资源中分别和所述M2个第二无线信号对应的第二时频资源。
实施例8
实施例8示例了M个第一类时间窗和N个第二类参考信号在时域的时序关系的示意图;如附图8所示。
在实施例8中,所述N个第二类参考信号在时域上多次出现,所述N个第二类参考信号占用的时间资源和所述M个第一类时间窗占用的时间资源是正交(不重叠)的。在附图8中,空白填充的方框表示所述M个第一类时间窗,左斜线填充的方框表示所述N个第二类参考信号占用的时间资源。
作为一个实施例,所述N个第二类参考信号在时域上任意两次相邻出现之间的时间间隔是相等的。
作为一个实施例,所述N个第二类参考信号在时域上任意两次相邻出现之间的时间间隔是不相等的。
实施例9
实施例9示例了M1个第一类参考子信号在时频域上的资源映射的示意图;如附图9所示。
在实施例9中,本申请中的所述M个第一类时间窗被预留给本申请中的所述第一类参考信号,本申请中的用户设备判断仅需要在所述M个第一类时间窗中的M1个第一类时间窗中接收所述第一类参考信号;所述第一类参考信号包括所述M1个第一类参考子信号,所述M1个第一类时间窗分别被预留给所述M1个第一类参考子信号。所述M1个第一类参考子信号占用 相同的频域资源,所述M1个第一类参考子信号中任意两个第一类参考子信号在一个时频资源块内的图案(Pattern)是相同的。
在附图9中,所述M个第一类时间窗的索引分别是{#0,...,#x,...,#y,...,#M-1},其中所述x和所述y分别是小于所述M-1的正整数,所述x小于所述y;所述M1个第一类参考子信号的索引分别是{#0,...,#z,...,#M1-1},所述z是小于所述M1-1的正整数。粗实线边框的方框表示一个时频资源块;左斜线填充的方框表示所述M1个第一类参考子信号中的第一类参考子信号#0;小点填充的方框表示所述M1个第一类参考子信号中的第一类参考子信号#z;交叉线填充的方框表示所述M1个第一类参考子信号中的第一类参考子信号#M1-1。所述M个第一类时间窗中的第一类时间窗#0,第一类时间窗#y和第一类时间窗#M-1均属于所述M1个第一类时间窗,所述M个第一类时间窗中的第一类时间窗#x不属于所述M1个第一类时间窗。
作为一个实施例,所述M个第一类时间窗在时域上是不连续的。
作为一个实施例,所述M个第一类时间窗中任意两个相邻的第一类时间窗中的时间间隔是相等的。
作为一个实施例,所述M1个第一类时间窗在所述M个第一类时间窗的位置是连续的。
作为一个实施例,所述M1个第一类时间窗在所述M个第一类时间窗的位置是不连续的。
作为一个实施例,所述第一类参考信号包括CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)。
作为一个实施例,所述第一类参考信号包括DMRS(DeModulation Reference Signals,解调参考信号)。
作为一个实施例,所述第一类参考信号包括PSS(Primary Synchronization Signal,主同步信号)和SSS(Secondary Synchronization Signal,辅同步信号)中的一种或多种。
作为一个实施例,所述第一类参考信号包括MIB(Master Information Block,主信息块)和SIB(System Information Block,系统信息块)中的一种或多种。
作为一个实施例,所述第一类参考信号包括TRS(finetime/frequencyTrackingReferenceSignals,精细时域/频域跟踪参考信号)。
作为一个实施例,所述第一类参考信号包括PRTS(Phase error TrackingReferenceSignals,相位误差跟踪参考信号)。
作为一个实施例,所述第一类参考信号是周期性(periodic)的。
作为一个实施例,所述第一类参考信号是半静态(semi-persistent)的。
作为一个实施例,所述第一类参考信号在时域上多次出现。
作为上述实施例的一个子实施例,所述第一类参考信号在时域上任意两次相邻出现之间的时间间隔是相等的。
作为上述实施例的一个子实施例,所述第一类参考信号在时域上任意两次相邻出现之间的时间间隔是不相等的。
作为一个实施例,所述第一类参考信号是宽带的。
作为一个实施例,所述第一子频带被划分成正整数个频域区域,所述第一类参考信号在所述正整数个频域区域中的每一个频域区域上出现,所述正整数个频域区域中的任一频域区域包括正整数个连续子载波。
作为上述实施例的一个子实施例,所述正整数个频域区域中的任意两个频域区域包括的子载波的数目是相同的。
作为一个实施例,所述第一类参考信号是窄带的。
作为一个实施例,所述第一子频带被划分成正整数个频域区域,所述第一类参考信号只在所述正整数个频域区域中的部分频域区域上出现,所述正整数个频域区域中的任一频域区域包括正整数个连续子载波。
作为上述实施例的一个子实施例,所述正整数个频域区域中的任意两个频域区域包括的 子载波的数目是相同的。
作为一个实施例,所述M1个第一类参考子信号占用的时域资源是两两相互正交(不重叠)的。
作为一个实施例,一个时频资源块是PRBP(Physical Resource Block Pair,物理资源块对)。
作为一个实施例,一个时频资源块在频域上占用正整数个子载波,在时域上占用正整数个多载波符号。
实施例10
实施例10示例了N个第二类参考信号在时频域上的资源映射的示意图;如附图10所示。
在实施例10中,所述N个第二类参考信号在时域上多次出现。在附图10中,所述N个第二类参考信号的索引分别是{#0,#1,...,#N-1}。左斜线填充的方框表示所述N个第二类参考信号中的第二类参考信号#0;小点填充的方框表示所述N个第二类参考信号中的第二类参考信号#1;交叉线填充的方框表示所述N个第二类参考信号中的第二类参考信号#N-1。
作为一个实施例,所述N个第二类参考信号中的任一第二类参考信号包括CSI-RS。
作为一个实施例,所述N个第二类参考信号中的任一第二类参考信号包括DMRS。
作为一个实施例,所述N个第二类参考信号中的任一第二类参考信号包括PSS和SSS中的一种或多种。
作为一个实施例,所述N个第二类参考信号中的任一第二类参考信号包括MIB和SIB中的一种或多种。
作为一个实施例,所述N个第二类参考信号中的任一第二类参考信号包括TRS。
作为一个实施例,所述N个第二类参考信号中的任一第二类参考信号包括PRTS。
作为一个实施例,所述N个第二类参考信号均是周期性(periodic)的。
作为一个实施例,所述N个第二类参考信号均是半静态(semi-persistent)的。
作为一个实施例,所述N个第二类参考信号中的任一第二类参考信号在时域上任意两次相邻出现之间的时间间隔是相等的。
作为一个实施例,所述N个第二类参考信号中的至少一个第二类参考信号在时域上任意两次相邻出现之间的时间间隔是不相等的。
作为一个实施例,所述N个第二类参考信号中的任一第二类参考信号是宽带的。
作为一个实施例,所述第一子频带被划分成正整数个频域区域,所述N个第二类参考信号中的任一第二类参考信号在所述正整数个频域区域中的每一个频域区域上出现,所述正整数个频域区域中的任一频域区域包括正整数个连续子载波。
作为上述实施例的一个子实施例,所述正整数个频域区域中的任意两个频域区域包括的子载波的数目是相同的。
作为一个实施例,所述N个第二类参考信号中的任一第二类参考信号是窄带的。
作为一个实施例,所述第一子频带被划分成正整数个频域区域,所述N个第二类参考信号中的任一第二类参考信号只在所述正整数个频域区域中的部分频域区域上出现,所述正整数个频域区域中的任一频域区域包括正整数个连续子载波。
作为上述实施例的一个子实施例,所述正整数个频域区域中的任意两个频域区域包括的子载波的数目是相同的。
实施例11
实施例11示例了给定接入检测的示意图;如附图11所示。所述给定接入检测是本申请中的所述第一类接入检测,本申请中的所述给定第二类接入检测,或者本申请中的所述第三类接入检测。
在实施例11中,所述给定接入检测包括:在本申请中的所述第一子频带上的T个时间子池中分别执行T次能量检测,得到T个检测值;其中,所述T个检测值中的T1个检测值均低于参考阈值;所述T是正整数,所述T1是不大于所述T的正整数。T1个时间子池是所述T 个时间子池中分别和所述T1个检测值对应的时间子池。所述T次能量检测的过程可以由附图11中的流程图来描述。如果所述给定接入检测是所述第一类接入检测,所述T等于本申请中的所述Q,所述T1等于本申请中的所述Q1,所述参考阈值是本申请中的所述第四阈值;如果所述给定接入检测是所述给定第二类接入检测,所述T等于本申请中的所述P,所述T1等于本申请中的所述P1,所述参考阈值是本申请中的所述第五阈值;如果所述给定接入检测是所述第三类接入检测,所述T等于本申请中的所述W,所述T1等于本申请中的所述W1,所述参考阈值是本申请中的所述第七阈值。
在附图11中,给定节点在步骤S1101中处于闲置状态,在步骤S1102中判断是否需要发送;在步骤1103中在一个延迟时段(deferduration)内执行能量检测;在步骤S1104中判断这个延迟时段内的所有时隙时段是否都空闲(Idle),如果是,进行到步骤S1105中设置第一计数器等于K1;否则返回步骤S1104;在步骤S1106中判断所述第一计数器是否为0,如果是,进行到步骤S1107中在本申请中的所述第一子频带上发送无线信号;否则进行到步骤S1108中在一个附加时隙时段(additional slot duration)内执行能量检测;在步骤S1109中判断这个附加时隙时段是否空闲(Idle),如果是,进行到步骤S1110中把所述第一计数器减1,然后返回步骤1106;否则进行到步骤S1111中在一个附加延迟时段(additional deferduration)内执行能量检测;在步骤S1112中判断这个附加延迟时段内的所有时隙时段是否都空闲(Idle),如果是,进行到步骤S1110;否则返回步骤S1111。如果所述给定接入检测是所述第一类接入检测,所述给定节点是本申请中的所述用户设备;如果所述给定接入检测是所述给定第二类接入检测或所述第三类接入检测,所述给定节点是本申请中的所述基站。所述K1是K个备选整数中的一个备选整数,所述K是正整数。
在实施例11中,第一给定时段包括所述T个时间子池中的正整数个时间子池,所述第一给定时段是附图11中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。第二给定时段包括所述T1个时间子池中的1个时间子池,所述第二给定时段是附图11中通过能量检测被判断为空闲的{所有附加时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,给定时段内的任意一个时隙时段(slotduration)包括所述T个时间子池中的一个时间子池;所述给定时段是附图11中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,在给定时段内执行能量检测是指:在所述给定时段内的所有时隙时段(slotduration)内执行能量检测;所述给定时段是附图11中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,在给定时段通过能量检测被判断为空闲(Idle)是指:所述给定时段中包括的所有时隙时段通过能量检测都被判断为空闲(Idle);所述给定时段是附图11中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,给定时隙时段通过能量检测都被判断为空闲(Idle)是指:所述给定节点在给定时间单元中在所述第一子频带上感知(Sense)所有无线信号的功率,并在时间上平均,所获得的接收功率低于所述参考阈值;所述给定时间单元是所述给定时隙时段中的一个持续时间段。
作为上述实施例的一个子实施例,所述给定时间单元的持续时间不短于4微秒。
作为一个实施例,给定时隙时段通过能量检测都被判断为空闲(Idle)是指:所述给定节点在给定时间单元中在所述第一子频带上感知(Sense)所有无线信号的能量,并在时间上平均,所获得的接收能量低于所述参考阈值;所述给定时间单元是所述给定时隙时段中的一个持续时间段。
作为上述实施例的一个子实施例,所述给定时间单元的持续时间不短于4微秒。
作为一个实施例,给定时隙时段通过能量检测都被判断为空闲(Idle)是指:所述给定节点在所述给定时隙时段包括的时间子池上进行能量检测,得到的检测值低于所述参考阈值; 所述时间子池属于所述T个时间子池,所述检测值属于所述T个检测值。
作为一个实施例,在给定时段内执行能量检测是指:在所述给定时段内的所有时间子池内执行能量检测;所述给定时段是附图11中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段,所述所有时间子池属于所述T个时间子池。
作为一个实施例,给定时段通过能量检测被判断为空闲(Idle)是指:所述给定时段中包括的所有时间子池通过能量检测得到的检测值都低于所述参考阈值;所述给定时段是附图11中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段,所述所有时间子池属于所述T个时间子池,所述检测值属于所述T个检测值。
作为一个实施例,一个延时时段(defer duration)的持续时间是16微秒再加上S1个9微秒,所述S1是正整数。
作为上述实施例的一个子实施例,一个延时时段包括所述T个时间子池中的S1+1个时间子池。
作为上述子实施例的一个参考实施例,所述S1+1个时间子池中的第一个时间子池的持续时间不超过16微秒,其他S1个时间子池的持续时间均不超过9微秒。
作为上述实施例的一个子实施例,所述S1属于{1,2,3,7}。
作为一个实施例,一个延时时段(defer duration)包括多个时隙时段(slotduration)。
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间是不连续的。
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间的时间间隔是7毫秒。
作为一个实施例,一个附加延时时段(additional defer duration)的持续时间是16微秒再加上S2个9微秒,所述S2是正整数。
作为上述实施例的一个子实施例,一个附加延时时段包括所述T个时间子池中的S2+1个时间子池。
作为上述子实施例的一个参考实施例,所述S2+1个时间子池中的第一个时间子池的持续时间不超过16微秒,其他S2个时间子池的持续时间均不超过9微秒。
作为上述实施例的一个子实施例,所述S2属于{1,2,3,7}。
作为一个实施例,一个延时时段的持续时间等于一个附加延时时段的持续时间。
作为一个实施例,所述S1等于所述S2。
作为一个实施例,一个附加延时时段(additional defer duration)包括多个时隙时段(slotduration)。
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间是不连续的。
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间的时间间隔是7毫秒。
作为一个实施例,一个时隙时段(slot duration)的持续时间是9微秒。
作为一个实施例,一个时隙时段包括所述T个时间子池中的1个时间子池。
作为上述实施例的一个子实施例,所述1个时间子池的持续时间均不超过9微秒。
作为一个实施例,一个附加时隙时段(additional slot duration)的持续时间是9微秒。
作为一个实施例,一个附加时隙时段包括所述T个时间子池中的1个时间子池。
作为上述实施例的一个子实施例,所述1个时间子池的持续时间均不超过9微秒。
作为一个实施例,所述K属于{3,7,15,31,63,127,255,511,1023}。
作为一个实施例,所述K是所述Cat4的LBT过程中的CW p,所述CW p是竞争窗口(contention window)的大小,所述CW p的具体定义参见3GPP TS36.213中的15章节。
作为一个实施例,所述K个备选整数为0,1,2,…,K-1。
作为一个实施例,所述给定节点在所述K个备选整数中随机选取所述K1的值。
作为一个实施例,所述K个备选整数中任一备选整数被选取作为所述K1的值的概率都相等。
作为一个实施例,所述T次能量检测是LBT中的能量检测,所述LBT的具体定义和实现方式参见3GPPTR36.889。
作为一个实施例,所述T次能量检测是CCA(ClearChannelAssessment,空闲信道评估)中的能量检测,所述CCA的具体定义和实现方式参见3GPPTR36.889。
作为一个实施例,所述T次能量检测中的任意一次能量检测是通过3GPP TS36.213中的15章节所定义的方式实现的。
作为一个实施例,所述T次能量检测中的任意一次能量检测是通过WiFi中的能量检测方式实现的。
作为一个实施例,所述T次能量检测中的任意一次能量检测是通过对RSSI(Received Signal Strength Indication,接收信号强度指示)进行测量实现的。
作为一个实施例,所述T次能量检测中的任意一次能量检测是通过LTE LAA中的能量检测方式实现的。
作为一个实施例,所述T个时间子池中的任一时间子池占用的时域资源是连续的。
作为一个实施例,所述T个时间子池在时域上是两两相互正交(不重叠)的。
作为一个实施例,所述T个时间子池中的任一时间子池的持续时间是{16微秒、9微秒}中之一。
作为一个实施例,所述T个时间子池中至少存在两个时间子池的持续时间不相等。
作为一个实施例,所述T个时间子池中任意两个时间子池的持续时间都相等。
作为一个实施例,所述T个时间子池占用的时域资源是连续的。
作为一个实施例,所述T个时间子池中至少存在两个相邻的时间子池占用的时域资源是不连续。
作为一个实施例,所述T个时间子池中任意两个相邻的时间子池占用的时域资源是不连续。
作为一个实施例,所述T个时间子池中任一时间子池是一个时隙时段(slotduration)。
作为一个实施例,所述T个时间子池中任一时间子池是T sl,所述T sl是一个时隙时段(slotduration),所述T sl的具体定义参见3GPP TS36.213中的15章节。
作为一个实施例,所述T个时间子池中除了最早的时间子池以外的任一时间子池是一个时隙时段(slotduration)。
作为一个实施例,所述T个时间子池中除了最早的时间子池以外的任一时间子池是T sl,所述T sl是一个时隙时段(slotduration),所述T sl的具体定义参见3GPP TS36.213中的15章节。
作为一个实施例,所述T个时间子池中至少存在一个持续时间为16微秒的时间子池。
作为一个实施例,所述T个时间子池中至少存在一个持续时间为9微秒的时间子池。
作为一个实施例,所述T个时间子池中的最早的时间子池的持续时间为16微秒。
作为一个实施例,所述T个时间子池中的最晚的时间子池的持续时间为9微秒。
作为一个实施例,所述T个时间子池包括Cat 4(第四类)LBT中的监听时间。
作为一个实施例,所述T个时间子池包括Cat 4(第四类)LBT中的延时时段(DeferDuration)中的时隙时段和回退时间(Backoff Time)中的时隙时段。
作为一个实施例,所述T个时间子池包括Type 1UL channel access procedure(第一类上行信道接入过程)中的延时时段(DeferDuration)中的时隙时段和回退时间(Backoff Time)中的时隙时段,所述给定接入检测是所述第一类接入检测。
作为一个实施例,所述T个时间子池包括了初始CCA和eCCA(EnhancedClearChannelAssessment,增强的空闲信道评估)中的时隙时段。
作为一个实施例,所述T次能量检测分别得到所述T个检测值。
作为一个实施例,所述T个检测值分别是所述给定节点在T个时间单元中在所述第一子频带上感知(Sense)所有无线信号的功率,并在时间上平均,以获得的接收功率;所述T个时间单元分别是所述T个时间子池中的一个持续时间段。
作为上述实施例的一个子实施例,所述T个时间单元中的任一时间单元的持续时间不短于4微秒。
作为一个实施例,所述T个检测值分别是所述给定节点在T个时间单元中在所述第一子频带上感知(Sense)所有无线信号的能量,并在时间上平均,以获得的接收能量;所述T个时间单元分别是所述T个时间子池中的一个持续时间段。
作为上述实施例的一个子实施例,所述T个时间单元中的任一时间单元的持续时间不短于4微秒。
作为一个实施例,所述T次能量检测中的任意一次给定能量检测是指:所述给定节点在给定时间单元中监测接收功率,所述给定时间单元是所述T个时间子池中和所述给定能量检测对应的时间子池中的一个持续时间段。
作为一个实施例,所述T次能量检测中的任意一次给定能量检测是指:所述给定节点在给定时间单元中监测接收能量,所述给定时间单元是所述T个时间子池中和所述给定能量检测对应的时间子池中的一个持续时间段。
作为一个实施例,所述T次能量检测被用于确定所述第一子频带是否闲置(Idle)。
作为一个实施例,所述T次能量检测被用于确定所述第一子频带是否能被所述给定节点用于传输无线信号。
作为一个实施例,所述T个检测值单位都是dBm(毫分贝)。
作为一个实施例,所述T个检测值的单位都是毫瓦(mW)。
作为一个实施例,所述T个检测值的单位都是焦耳。
作为一个实施例,所述T1小于所述T。
作为一个实施例,所述T1等于0。
作为一个实施例,所述T1大于0。
作为一个实施例,所述T大于1。
作为一个实施例,所述参考阈值的单位是dBm(毫分贝)。
作为一个实施例,所述参考阈值的单位是毫瓦(mW)。
作为一个实施例,所述参考阈值的单位是焦耳。
作为一个实施例,所述参考阈值等于或小于-72dBm。
作为一个实施例,所述参考阈值是等于或小于第一给定值的任意值。
作为上述实施例的一个子实施例,所述第一给定值是预定义的。
作为上述实施例的一个子实施例,所述第一给定值是由高层信令配置的,所述给定接入检测是所述第一类接入检测。
作为一个实施例,所述参考阈值是由所述给定节点在等于或小于第一给定值的条件下自由选择的。
作为上述实施例的一个子实施例,所述第一给定值是预定义的。
作为上述实施例的一个子实施例,所述第一给定值是由高层信令配置的,所述给定接入检测是所述第一类接入检测。
作为一个实施例,所述T1等于所述K1,所述给定接入检测是所述第一类接入检测或所述第三类接入检测。
作为一个实施例,所述T1等于所述K1,所述给定接入检测是所述给定第二类接入检测,所述给定第二类接入检测和本申请中的所述M2个第二无线信号中的一个第二无线信号对应。
作为一个实施例,所述T1等于所述K1,所述给定接入检测是所述给定第二类接入检测,所述给定第二类接入检测和本申请中的所述M1个第一类时间窗中的一个第一类时间窗对应。
作为一个实施例,所述T1小于所述K1,所述给定接入检测是所述给定第二类接入检测, 所述给定第二类接入检测和所述M个第二无线信号中除了所述M2个第二无线信号之外的一个第二无线信号对应。
作为一个实施例,所述T1小于所述K1,所述给定接入检测是所述给定第二类接入检测,所述给定第二类接入检测和所述M个第一类时间窗中除了所述M1个第一类时间窗之外的一个一类时间窗对应。
作为一个实施例,所述T个检测值中不属于所述T1个检测值的检测值中至少有一个检测值低于所述参考阈值。
作为一个实施例,所述T个检测值中不属于所述T1个检测值的检测值中至少有一个检测值不低于所述参考阈值。
作为一个实施例,所述T1个时间子池只包括了eCCA中的时隙时段。
作为一个实施例,所述T个时间子池包括所述T1个时间子池和T2个时间子池,所述T2个时间子池中的任一时间子池不属于所述T1个时间子池;所述T2是不大于所述T减所述T1的正整数。
作为上述实施例的一个子实施例,所述T2个时间子池包括了初始CCA中的时隙时段。
作为上述实施例的一个子实施例,所述T2个时间子池在所述T个时间子池中的位置是连续的。
作为上述实施例的一个子实施例,所述T2个时间子池中至少有一个时间子池对应的检测值低于所述参考阈值。
作为上述实施例的一个子实施例,所述T2个时间子池中至少有一个时间子池对应的检测值不低于所述参考阈值。
作为上述实施例的一个子实施例,所述T2个时间子池包括所有延时时段内的所有时隙时段。
作为上述实施例的一个子实施例,所述T2个时间子池包括至少一个附加延时时段内的所有时隙时段。
作为上述实施例的一个子实施例,所述T2个时间子池包括至少一个附加时隙时段。
作为上述实施例的一个子实施例,所述T2个时间子池包括附图11中通过能量检测被判断为非空闲的所有附加时隙时段和所有附加延时时段内的所有时隙时段。
作为一个实施例,所述T1个时间子池分别属于T1个子池集合,所述T1个子池集合中的任一子池集合包括所述T个时间子池中的正整数个时间子池;所述T1个子池集合中的任一时间子池对应的检测值低于所述参考阈值。
作为上述实施例的一个子实施例,所述T1个子池集合中至少存在一个子池集合包括的时间子池的数量等于1。
作为上述实施例的一个子实施例,所述T1个子池集合中至少存在一个子池集合包括的时间子池的数量大于1。
作为上述实施例的一个子实施例,所述T1个子池集合中至少存在两个子池集合包括的时间子池的数量是不相等的。
作为上述实施例的一个子实施例,所述T个时间子池中不存在一个时间子池同时属于所述T1个子池集合中的两个子池集合。
作为上述实施例的一个子实施例,所述T1个子池集合中任意一个子池集合中的所有时间子池属于同一个通过能量检测被判断为空闲的附加延时时段或附加时隙时段。
作为上述实施例的一个子实施例,所述T个时间子池中不属于所述T1个子池集合的时间子池中至少存在一个时间子池对应的检测值低于所述给定阈值。
作为上述实施例的一个子实施例,所述T个时间子池中不属于所述T1个子池集合的时间子池中至少存在一个时间子池对应的检测值不低于所述给定阈值。
实施例12
实施例12示例了给定接入检测的示意图,如附图12所示。所述给定接入检测是本申请 中的所述第一类接入检测,本申请中的所述给定第二类接入检测,或者本申请中的所述第三类接入检测。
在实施例12中,所述给定接入检测包括:在本申请中的所述第一子频带上的T个时间子池中分别执行T次能量检测,得到T个检测值;其中,所述T个检测值中的T1个检测值均低于参考阈值;所述T是正整数,所述T1是不大于所述T的正整数。T1个时间子池是所述T个时间子池中分别和所述T1个检测值对应的时间子池。所述T次能量检测的过程可以由附图12中的流程图来描述。如果所述给定接入检测是所述第一类接入检测,所述T等于本申请中的所述Q,所述T1等于本申请中的所述Q1,所述参考阈值是本申请中的所述第四阈值;如果所述给定接入检测是所述给定第二类接入检测,所述T等于本申请中的所述P,所述T1等于本申请中的所述P1,所述参考阈值是本申请中的所述第五阈值;如果所述给定接入检测是所述第三类接入检测,所述T等于本申请中的所述W,所述T1等于本申请中的所述W1,所述参考阈值是本申请中的所述第七阈值。
在实施例12中,给定节点在步骤S1201中处于闲置状态,在步骤S1202中判断是否需要发送;在步骤1203中在一个延迟时段(deferduration)内执行能量检测;在步骤S1204中判断这个延迟时段内的所有时隙时段是否都空闲(Idle),如果是,进行到步骤S1205中在本申请中的所述第一子频带上发送无线信号;否则进行到步骤S1206中在一个延迟时段内执行能量检测;在步骤S1207中判断这个延迟时段内的所有时隙时段是否都空闲(Idle),如果是,进行到步骤S1208中设置第一计数器等于K1;否则返回步骤S1206;在步骤S1209中判断所述第一计数器是否为0,如果是,进行到步骤S1205中在所述第一子频带上发送无线信号;否则进行到步骤S1210中在一个附加时隙时段内执行能量检测;在步骤S1211中判断这个附加时隙时段是否空闲(Idle),如果是,进行到步骤S1212中把所述第一计数器减1,然后返回步骤1209;否则进行到步骤S1213中在一个附加延迟时段内执行能量检测;在步骤S1214中判断这个附加延迟时段内的所有时隙时段是否都空闲(Idle),如果是,进行到步骤S1212;否则返回步骤S1213。如果所述给定接入检测是所述第一类接入检测,所述给定节点是本申请中的所述用户设备;如果所述给定接入检测是所述给定第二类接入检测或所述第三类接入检测,所述给定节点是本申请中的所述基站。所述K1是K个备选整数中的一个备选整数,所述K是正整数。
在实施例12中,第一给定时段包括所述T个时间子池中的正整数个时间子池,所述第一给定时段是附图12中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。第二给定时段包括所述T1个时间子池中的1个时间子池,所述第二给定时段是附图12中通过能量检测被判断为空闲(Idle)的{所有附加时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,所述T1等于0,所述给定节点在所述步骤S1204中判断这个延迟时段内的所有时隙时段都空闲。
作为一个实施例,所述T1等于所述K1,所述给定节点在步骤S1204中判断这个延迟时段内的并非所有时隙时段都空闲,所述给定接入检测是所述第一类接入检测或所述第三类接入检测。
作为一个实施例,所述T1等于所述K1,所述给定节点在步骤S1204中判断这个延迟时段内的并非所有时隙时段都空闲,所述给定接入检测是所述给定第二类接入检测,所述给定第二类接入检测和本申请中的所述M2个第二无线信号中的一个第二无线信号对应。
作为一个实施例,所述T1等于所述K1,所述给定节点在步骤S1204中判断这个延迟时段内的并非所有时隙时段都空闲,所述给定接入检测是所述给定第二类接入检测,所述给定第二类接入检测和本申请中的所述M1个第一类时间窗中的一个第一类时间窗对应。
实施例13
实施例13示例了给定接入检测的示意图;如附图13所示。所述给定接入检测是本申请中的所述第一类接入检测,本申请中的所述给定第二类接入检测,或者本申请中的所述第三 类接入检测。
在实施例13中,所述给定接入检测包括:在本申请中的所述第一子频带上的T个时间子池中分别执行T次能量检测,得到T个检测值;其中,所述T个检测值中的T1个检测值均低于参考阈值;所述T是正整数,所述T1是不大于所述T的正整数。T1个时间子池是所述T个时间子池中分别和所述T1个检测值对应的时间子池。所述T次能量检测的过程可以由附图13中的流程图来描述。如果所述给定接入检测是所述第一类接入检测,所述T等于本申请中的所述Q,所述T1等于本申请中的所述Q1,所述参考阈值是本申请中的所述第四阈值;如果所述给定接入检测是所述给定第二类接入检测,所述T等于本申请中的所述P,所述T1等于本申请中的所述P1,所述参考阈值是本申请中的所述第五阈值;如果所述给定接入检测是所述第三类接入检测,所述T等于本申请中的所述W,所述T1等于本申请中的所述W1,所述参考阈值是本申请中的所述第七阈值。
在实施例13中,给定节点在步骤S1301中处于闲置状态,在步骤S1302中判断是否需要发送;在步骤1303中在一个感知时间(Sensing interval)内执行能量检测;在步骤S1304中判断这个感知时间内的所有时隙时段是否都空闲(Idle),如果是,进行到步骤S1305中在本申请中的所述第一子频带上发送无线信号;否则返回步骤S1303。如果所述给定接入检测是所述第一类接入检测,所述给定节点是本申请中的所述用户设备;如果所述给定接入检测是所述给定第二类接入检测或所述第三类接入检测,所述给定节点是本申请中的所述基站。
在实施例13中,第一给定时段包括所述T个时间子池中的正整数个时间子池,所述第一给定时段是附图13中包括的{所有感知时间}中的任意一个时段。第二给定时段包括所述T1个时间子池中的1个时间子池,所述第二给定时段是附图13中通过能量检测被判断为空闲(Idle)的感知时间。
作为一个实施例,所述T1等于2。
作为一个实施例,所述T1等于所述T。
作为一个实施例,所述T1小于所述T。
作为一个实施例,所述T1小于2。
作为一个实施例,所述T1等于0。
作为一个实施例,一个感知时间(Sensing interval)的持续时间是25微秒。
作为一个实施例,一个感知时间包括2个时隙时段,所述2个时隙时段在时域是不连续的。
作为上述实施例的一个子实施例,所述2个时隙时段中的时间间隔是7微秒。
作为一个实施例,所述T个时间子池包括Cat 2(第二类)LBT中的监听时间。
作为一个实施例,所述T个时间子池包括Type2UL channel access procedure(第二类上行信道接入过程)中的感知时间间隔(sensing interval)中的时隙,所述感知时间间隔的具体定义参见3GPP TS36.213中的15.2章节,所述给定接入检测是所述第一类接入检测。
作为上述实施例的一个子实施例,所述感知时间间隔的持续时间是25微秒。
作为一个实施例,所述T个时间子池包括Type2UL channel access procedure(第二类上行信道接入过程)中的感知时间间隔(sensing interval)中的T f和T sl,所述T f和所述T sl是两个时间间隔,所述T f和所述T sl的具体定义参见3GPP TS36.213中的15.2章节。
作为上述实施例的一个子实施例,所述T f的持续时间是16微秒。
作为上述实施例的一个子实施例,所述T sl的持续时间是9微秒。
作为一个实施例,所述T1个时间子池中的第一个时间子池的持续时间是16微秒,所述T1个时间子池中的第二个时间子池的持续时间是9微秒,所述T1等于2。
作为一个实施例,所述T1个时间子池的持续时间都是9微秒;所述T1个时间子池中的第一个时间子池和第二个时间子池之间的时间间隔是7微秒,所述T1等于2。
实施例14
实施例14示例了M个第二时频资源在时频域上的资源映射的示意图;如附图14所示。
在实施例14中,本申请中的用户设备分别在所述M个第二时频资源中监测本申请中的所述M个第二无线信号,并检测到所述M个第二无线信号中的M2个第二无线信号。M2个第二时频资源是所述M个第二时频资源中分别和所述M2个第二无线信号对应的第二时频资源。所述M个第二时频资源中的任一第二时频资源在频域上包括正整数个连续的子载波。
在附图14中,所述M个第二时频资源的索引分别是{#0,...,#x,...,#M-1},其中所述x是小于所述M-1的正整数。空白填充的方框表示所述M个第二时频资源中的所述M2个第二时频资源,左斜线填充的方框表示所述M个第二时频资源中不属于所述M2个第二时频资源的第二时频资源。
作为一个实施例,本申请中的基站分别在所述M2个第二时频资源中发送所述M2个第二无线信号。
作为一个实施例,本申请中的基站在所述M个第二时频资源中不属于所述M2个第二时频资源的第二时频资源中放弃发送对应的第二无线信号。
作为一个实施例,所述M个第二时频资源占用的时间资源是两两相互正交(不重叠)的。
作为一个实施例,所述M个第二时频资源中的任一第二时频资源在时域上包括正整数个多载波符号。
作为一个实施例,所述M个第二时频资源中的任一第二时频资源在时域上包括正整数个连续的多载波符号。
作为一个实施例,所述M个第二时频资源中的任一第二时频资源在频域上包括正整数个连续的PRB。
作为一个实施例,所述M个第二时频资源中的任一第二时频资源在频域上包括正整数个连续的RB。
作为一个实施例,所述M个第二时频资源中的任意两个第二时频资源占用的时间资源的大小是相等的。
作为一个实施例,所述M个第二时频资源中的任意两个第二时频资源占用的频率资源的大小是相等的。
实施例15
实施例15示例了M个第二时频资源在时频域上的资源映射的示意图;如附图15所示。
在实施例15中,本申请中的用户设备分别在所述M个第二时频资源中监测本申请中的所述M个第二无线信号,并检测到所述M个第二无线信号中的M2个第二无线信号。M2个第二时频资源是所述M个第二时频资源中分别和所述M2个第二无线信号对应的第二时频资源。所述M个第二时频资源中的任一第二时频资源在频域上包括正整数个不连续的子载波。
在附图15中,所述M个第二时频资源的索引分别是{#0,...,#x,...,#M-1},其中所述x是小于所述M-1的正整数。空白填充的方框表示所述M个第二时频资源中的所述M2个第二时频资源,左斜线填充的方框表示所述M个第二时频资源中不属于所述M2个第二时频资源的第二时频资源。
作为一个实施例,所述M个第二时频资源中的任一第二时频资源在频域上包括正整数个不连续的PRB。
作为一个实施例,所述M个第二时频资源中的任一第二时频资源在频域上包括正整数个不连续的RB。
实施例16
实施例16示例了第三时频资源在时频域上的资源映射的示意图;如附图16所示。
在实施例16中,本申请中的所述用户设备在所述第三时频资源中监测本申请中的所述第二信令。所述第三时频资源在时域上是多次出现的,所述第三时频资源在频域上包括正整数个连续的子载波。
作为一个实施例,所述第三时频资源是一个CORESET(COntrol REsource SET,控制资源集合)。
作为一个实施例,所述第三时频资源是一个专用的(Dedicated)CORESET。
作为一个实施例,所述第三时频资源是一个搜索空间(searchspace)。
作为一个实施例,所述第三时频资源是一个专用的(Dedicated)搜索空间(searchspace)。
作为一个实施例,所述第三时频资源在时域上包括正整数个多载波符号。
作为一个实施例,所述第三时频资源在时域上包括正整数个不连续的多载波符号。
作为一个实施例,所述第三时频资源在频域上包括正整数个连续的PRB。
作为一个实施例,所述第三时频资源在频域上包括正整数个连续的RB。
作为一个实施例,所述第三时频资源在时域上任意两次相邻出现之间的时间间隔是相等的。
实施例17
实施例17示例了第三时频资源在时频域上的资源映射的示意图;如附图17所示。
在实施例17中,本申请中的所述用户设备在所述第三时频资源中监测本申请中的所述第二信令。所述第三时频资源在时域上是多次出现的,所述第三时频资源在频域上包括正整数个不连续的子载波。
作为一个实施例,所述第三时频资源在频域上包括正整数个不连续的PRB。
作为一个实施例,所述第三时频资源在频域上包括正整数个不连续的RB。
实施例18
实施例18示例了第三时频资源在时频域上的资源映射的示意图;如附图18所示。
在实施例18中,本申请中的所述用户设备在所述第三时频资源中监测本申请中的所述第二信令。所述第三时频资源在时域上只出现一次,所述第三时频资源在频域上包括正整数个不连续的子载波。
实施例19
实施例19示例了天线端口和天线端口组的示意图;如附图19所示。
在实施例19中,一个天线端口组包括正整数个天线端口;一个天线端口由正整数个天线组中的天线通过天线虚拟化(Virtualization)叠加而成;一个天线组包括正整数根天线。一个天线组通过一个RF(Radio Frequency,射频)chain(链)连接到基带处理器,不同天线组对应不同的RFchain。给定天线端口包括的正整数个天线组内的所有天线到所述给定天线端口的映射系数组成所述给定天线端口对应的波束赋型向量。所述给定天线端口包括的正整数个天线组内的任一给定天线组包括的多根天线到所述给定天线端口的映射系数组成所述给定天线组的模拟波束赋型向量。所述正整数个天线组对应的模拟波束赋型向量对角排列构成所述给定天线端口对应的模拟波束赋型矩阵。所述正整数个天线组到所述给定天线端口的映射系数组成所述给定天线端口对应的数字波束赋型向量。所述给定天线端口对应的波束赋型向量是由所述给定天线端口对应的模拟波束赋型矩阵和数字波束赋型向量的乘积得到的。一个天线端口组中的不同天线端口由相同的天线组构成,同一个天线端口组中的不同天线端口对应不同的波束赋型向量。
附图19中示出了两个天线端口组:天线端口组#0和天线端口组#1。其中,所述天线端口组#0由天线组#0构成,所述天线端口组#1由天线组#1和天线组#2构成。所述天线组#0中的多个天线到所述天线端口组#0的映射系数组成模拟波束赋型向量#0,所述天线组#0到所述天线端口组#0的映射系数组成数字波束赋型向量#0。所述天线组#1中的多个天线和所述天线组#2中的多个天线到所述天线端口组#1的映射系数分别组成模拟波束赋型向量#1和模拟波束赋型向量#2,所述天线组#1和所述天线组#2到所述天线端口组#1的映射系数组成数字波束赋型向量#1。所述天线端口组#0中的任一天线端口对应的波束赋型向量是由所述模拟波束赋型向量#0和所述数字波束赋型向量#0的乘积得到的。所述天线端口组#1中的任一天线端口对应的波束赋型向量是由所述模拟波束赋型向量#1和所述模拟波束赋型向量#2对角排列构成的模拟波束赋型矩阵和所述数字波束赋型向量#1的乘积得到的。
作为一个实施例,一个天线端口组只包括一个天线组,即一个RFchain,例如,附图 19中的所述天线端口组#0。
作为上述实施例的一个子实施例,所述一个天线端口组中的天线端口对应的模拟波束赋型矩阵降维成模拟波束赋型向量,所述一个天线端口组中的天线端口对应的数字波束赋型向量降维成一个标量,所述一个天线端口组中的天线端口对应的波束赋型向量等于其对应的模拟波束赋型向量。例如,附图19中的所述天线端口组#0只包括所述天线组#0,附图19中的所述数字波束赋型向量#0降维成一个标量,所述天线端口组#0中的天线端口对应的波束赋型向量是所述模拟波束赋型向量#0。
作为上述实施例的一个子实施例,所述一个天线端口组包括1个天线端口。
作为一个实施例,一个天线端口组包括多个天线组,即多个RFchain,例如,附图19中的所述天线端口组#1。
作为上述实施例的一个子实施例,所述一个天线端口组包括多个天线端口。
作为上述实施例的一个子实施例,所述一个天线端口组中的不同天线端口对应相同的模拟波束赋型矩阵。
作为上述实施例的一个子实施例,所述一个天线端口组中的不同天线端口对应不同的数字波束赋型向量。
作为一个实施例,不同的天线端口组中的天线端口对应不同的模拟波束赋型矩阵。
作为一个实施例,一个天线端口组中的任意两个天线端口是QCL的。
作为一个实施例,一个天线端口组中的任意两个天线端口是spatial QCL的。
作为一个实施例,所述天线端口是antennaport。
作为一个实施例,从一个天线端口上发送的一个无线信号所经历的小尺度信道参数可以推断出从所述一个天线端口上发送的另一个无线信号所经历的小尺度信道参数。
作为上述实施例的一个子实施例,所述小尺度信道参数包括{CIR(Channel Impulse Response,信道冲激响应),PMI(Precoding Matrix Indicator,预编码矩阵标识),CQI,RI(Rank Indicator,秩标识)}中的一种或多种。
实施例20
实施例20示例了N个第二类参考信号和第一天线端口组之间关系的示意图;如附图20所示。
在实施例20中,所述N个第二类参考信号分别被N个天线端口组发送;针对所述N个第二类参考信号的测量被本申请中的所述用户设备用于确定本申请中的所述第一无线信号;所述第一无线信号被本申请中的所述基站用于确定第一天线端口组,所述第一天线端口组是所述N个天线端口组中的一个天线端口组;本申请中的所述第二信令的任一发送天线端口和所述第一天线端口组中的一个天线端口准共址;所述第一无线信号在所述第一时频资源中被发送。
在附图20中,所述N个第二类参考信号的索引分别是{#0,...,#N-1},左斜线填充的椭圆表示目标第二类参考信号,所述目标第二类参考信号是所述N个第二类参考信号中被所述第一天线端口组发送的第二类参考信号。
作为一个实施例,所述准共址是指QCL。
作为一个实施例,所述准共址是指spatialQCL。
作为一个实施例,针对所述N个第二类参考信号的测量分别被用于确定N个接收质量,所述目标第二类参考信号对应的接收质量是所述N个接收质量中最大的接收质量。
作为上述实施例的一个子实施例,所述N个接收质量分别是RSRP。
作为上述实施例的一个子实施例,所述N个接收质量分别是RSRQ。
作为上述实施例的一个子实施例,所述N个接收质量分别是CQI。作为上述实施例的一个子实施例,所述N个接收质量分别是SNR(Signal-to-Noise Ratio,信噪比)。
作为上述实施例的一个子实施例,所述N个接收质量分别是SINR (Signal-to-Interference plus Noise Ratio,信干噪比)。
作为一个实施例,所述N大于1。
作为一个实施例,所述第一无线信号显式指示所述第一天线端口组。
作为一个实施例,所述第一无线信号隐式指示所述第一天线端口组。
作为一个实施例,所述第一无线信号显式指示所述第一天线端口组在所述N个天线端口组中的索引。
作为一个实施例,所述第一无线信号隐式指示所述第一天线端口组在所述N个天线端口组中的索引。
作为一个实施例,所述第一天线端口组在所述N个天线端口组中的索引被所述用户设备用于确定所述第一时频资源。
作为一个实施例,所述第一时频资源被所述基站用于确定所述第一天线端口组在所述N个天线端口组中的索引。
作为一个实施例,所述第一时频资源属于第一时频资源池,所述第一时频资源池包括正整数个时频资源。
作为上述实施例的一个子实施例,所述第一时频资源在所述第一时频资源池中的索引被用于确定所述第一天线端口组。
作为上述实施例的一个子实施例,所述第一时频资源在所述第一时频资源池中的索引被用于确定所述第一天线端口组在所述N个天线端口组中的索引。
作为上述实施例的一个子实施例,所述第一时频资源池被预留给所述用户设备。
作为上述实施例的一个子实施例,所述用户设备在所述第一时频资源池中自行选择所述第一时频资源。
作为一个实施例,所述第一无线信号是由第一特征序列调制生成。
作为上述实施例的一个子实施例,所述第一天线端口组在所述N个天线端口组中的索引被所述用户设备用于确定所述第一特征序列。
作为上述实施例的一个子实施例,所述第一特征序列被所述基站用于确定所述第一天线端口组在所述N个天线端口组中的索引。
作为上述实施例的一个子实施例,所述第一特征序列属于第一特征序列集合,所述第一特征序列集合包括正整数个特征序列。
作为上述子实施例的一个参考实施例,所述第一特征序列在所述第一特征序列集合中的索引被用于确定所述第一天线端口组。
作为上述子实施例的一个参考实施例,所述第一特征序列在所述第一特征序列集合中的索引被用于确定所述第一天线端口组在所述N个天线端口组中的索引。
作为上述子实施例的一个参考实施例,所述第一特征序列集合被预留给所述用户设备。
作为上述子实施例的一个参考实施例,所述用户设备在所述第一特征序列集合中自行选择所述第一特征序列。
作为一个实施例,所述第一无线信号是由第一特征序列调制生成;所述第一时频资源和所述第一特征序列组成第一空口资源,所述第一空口资源属于第一空口资源池,所述第一空口资源池包括正整数个空口资源,一个空口资源包括一个时频资源和一个特征序列。
作为上述实施例的一个子实施例,所述第一空口资源在所述第一空口资源池中的索引被用于确定所述第一天线端口组。
作为上述实施例的一个子实施例,所述第一空口资源在所述第一空口资源池中的索引被用于确定所述第一天线端口组在所述N个天线端口组中的索引。
作为上述实施例的一个子实施例,所述第一空口资源池被预留给所述用户设备。
作为上述实施例的一个子实施例,所述用户设备在所述第一空口资源池中自行选择所述第一空口资源。
作为一个实施例,所述第一天线端口组包括一个天线端口。
作为一个实施例,所述第一天线端口组包括多个天线端口。
作为一个实施例,所述第二信令被一个天线端口发送。
作为一个实施例,所述第二信令被多个天线端口分别发送。
作为一个实施例,两个天线端口QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的全部或者部分大尺度(large-scale)特性(properties)推断出所述两个天线端口中的另一个天线端口上发送的无线信号的全部或者部分大尺度特性,所述大尺度特性包括多天线相关的大尺度特性和多天线无关的大尺度特性。
作为一个实施例,给定无线信号的多天线相关的大尺度特性包括{到达角(angle of arrival),离开角(angle of departure),空间相关性,空间发送参数(Spatial Tx parameters),空间接收参数(Spatial Rx parameters)}中的一种或者多种。
作为一个实施例,空间发送参数(Spatial Tx parameters)包括{发送天线端口,发送天线端口组,发送波束,发送模拟波束赋型矩阵,发送模拟波束赋型向量,发送波束赋型向量,发送空间滤波(spatial filtering)}中的一种或多种。
作为一个实施例,空间接收参数(Spatial Rx parameters)包括{接收波束,接收模拟波束赋型矩阵,接收模拟波束赋型向量,接收波束赋型向量,接收空间滤波(spatial filtering)}中的一种或多种。
作为一个实施例,给定无线信号的多无线相关的大尺度特性包括{延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒移位(Doppler shift),路径损耗(pathloss),平均增益(average gain),平均延时(average delay)}中的一种或者多种。
作为一个实施例,两个天线端口QCL是指:所述两个天线端口至少有一个相同的QCL参数(QCLparameter),所述QCL参数包括多天线相关的QCL参数和多天线无关的QCL参数。
作为一个实施例,多天线相关的QCL参数包括:{到达角(angle of arrival),离开角(angle of departure),空间相关性,空间发送参数(Spatial Tx parameters),空间接收参数(Spatial Rx parameters)}中的一种或多种。
作为一个实施例,多天线无关的QCL参数包括:{延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒移位(Doppler shift),路径损耗(pathloss),平均增益(average gain)}中的一种或多种。
作为一个实施例,两个天线端口QCL是指:能够从所述两个天线端口中的一个天线端口的至少一个QCL参数推断出所述两个天线端口中的另一个天线端口的至少一个QCL参数。
作为一个实施例,两个天线端口是spatial QCL的是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的全部或者部分多天线相关的大尺度(large-scale)特性(properties)推断出所述两个天线端口中的另一个天线端口上发送的无线信号的全部或者部分多天线相关的大尺度特性。
作为一个实施例,两个天线端口是spatial QCL的是指:所述两个天线端口至少有一个相同的多天线相关的QCL参数(spatialQCLparameter)。
作为一个实施例,两个天线端口是spatial QCL的是指:能够从所述两个天线端口中的一个天线端口的至少一个多天线相关的QCL参数推断出所述两个天线端口中的另一个天线端口的至少一个多天线相关的QCL参数。
实施例21
实施例21示例了用户设备判断是否在第一时频资源中发送第一无线信号的示意图;如附图21所示。
在实施例21中,本申请中的所述第一子频带上的M个第一类时间窗被预留给本申请中的所述第一类参考信号,所述用户设备判断仅需要在所述第一子频带上的所述M个第一类时间窗中的M1个第一类时间窗中接收所述第一类参考信号。所述用户设备在所述M1个第一类时 间窗中分别接收M1个第一类参考子信号,其中,所述第一类参考信号包括所述M1个第一类参考子信号,所述M1个第一类时间窗分别被预留给所述M1个第一类参考子信号。针对所述M1个第一类参考子信号的测量分别被用于确定M1个第一类数值;所述M1个第一类数值中只有M3个第一类数值低于第二阈值。所述M1和所述M3被所述用户设备用于判断第一条件集合和第二条件集合是否被满足。如果所述第一条件集合和所述第二条件集合中的至少之一被满足,所述用户设备在所述第一时频资源中发送所述第一无线信号。如果所述第一条件集合和所述第二条件集合都未被满足,所述用户设备放弃在所述第一时频资源中发送所述第一无线信号。所述第一条件集合包括所述M1不大于第一阈值和所述M3大于第三阈值;所述第二条件集合包括所述M3大于第六阈值。
实施例21中的整个判断过程的流程如附图21所示,在附图21中,所述M个第一类时间窗中的一个第一类时间窗用第一类时间窗#i表示,所述M1个第一类参考子信号中的一个第一类参考子信号用第一类参考子信号#j表示,所述M1个第一类数值中的一个第一类数值用第一类数值#j表示。其中,所述i是不大于所述M的非负整数,所述j是不大于所述M1的非负整数。
在附图21中,所述用户设备首先在步骤S2101中设置i=0,j=0,和k=0;在步骤S2102中判断是否在所述M个第一类时间窗中的第一类时间窗#i中接收所述第一类参考信号;如果是,在步骤S2103中把所述j增加1,否则进行到步骤S2107中;在步骤S2104中在所述第一类时间窗#i中接收所述M1个第一类参考子信号中的第一类参考子信号#j-1,并得到所述M1个第一类数值中的第一类数值#j-1;在步骤S2105中判断所述第一类数值#j-1是否低于所述第二阈值,如果是,在步骤S2106中把所述k增加1,否则进行到步骤S2107中;在步骤S2107中把所述i增加1;在步骤S2108中判断所述i是否等于所述M,如果是,进行到步骤S2109,否则返回步骤S2102;在步骤S2109中设置M1=j和M3=k;在步骤S2110中判断所述第一条件集合是否被满足,如果是,在步骤S2111中在所述第一时频资源中发送所述第一无线信号,否则进行到步骤S2112中;在步骤S2112中判断所述第二条件集合是否被满足,如果是,进行到步骤S2111中,否则在步骤S2113中放弃在所述第一时频资源中发送所述第一无线信号。
作为一个实施例,所述M1个第一类数值分别是BLER(BLock Error Rate,误块率)。
作为一个实施例,所述M1个第一类数值分别是假设的(hypothetical)BLER。
作为一个实施例,所述M1个第一类数值分别是BER(Bit Error Rate,误比特率)。
作为一个实施例,所述M1个第一类数值分别是假设的(hypothetical)BER。
作为一个实施例,所述M1个第一类数值分别是RSRP。
作为一个实施例,所述M1个第一类数值分别是RSRQ。
作为一个实施例,所述M1个第一类数值分别是CQI。
作为一个实施例,所述M1个第一类数值分别是SNR。
作为一个实施例,所述M1个第一类数值分别是SINR。
作为一个实施例,针对所述M1个第一类参考子信号的测量分别被用于确定M1个接收质量,所述M1个接收质量分别被用于确定所述M1个第一类数值。
作为上述实施例的一个子实施例,所述M1个接收质量分别是RSRP。
作为上述实施例的一个子实施例,所述M1个接收质量分别是RSRQ。
作为上述实施例的一个子实施例,所述M1个接收质量分别是CQI。
作为上述实施例的一个子实施例,所述M1个接收质量分别是SNR。
作为上述实施例的一个子实施例,所述M1个接收质量分别是SINR。
作为一个实施例,所述第一阈值是正整数。
作为一个实施例,所述第一阈值与所述M无关。
作为一个实施例,所述第一阈值与所述M有关。
作为一个实施例,所述第一阈值等于所述M与第一因子的乘积,所述第一因子是大于0 且不大于1的正实数。
作为上述实施例的一个子实施例,所述第一因子是固定的。
作为上述实施例的一个子实施例,所述第一因子是可配置的。
作为一个实施例,所述第一阈值等于所述M减去第一数值,所述第一数值是不大于所述M的正整数。
作为上述实施例的一个子实施例,所述第一数值是固定的。
作为上述实施例的一个子实施例,所述第一数值是可配置的。
作为一个实施例,所述第一阈值等于所述M。
作为一个实施例,所述第一阈值小于所述M。
作为一个实施例,所述第一阈值是固定的。
作为一个实施例,所述第一阈值是可配置的。
作为一个实施例,所述第一阈值是UE特定(UEspecific)的。
作为一个实施例,所述第一阈值是小区公共的。
作为一个实施例,所述第一阈值是由高层信令配置的。
作为一个实施例,所述第二阈值是正实数。
作为一个实施例,所述第二阈值是实数。
作为一个实施例,所述第二阈值是固定的。
作为一个实施例,所述第二阈值是可配置的。
作为一个实施例,所述第二阈值是UE特定(UEspecific)的。
作为一个实施例,所述第二阈值是小区公共的。
作为一个实施例,所述第二阈值是由高层信令配置的。
作为一个实施例,所述第三阈值是正整数。
作为一个实施例,所述第三阈值是固定的。
作为一个实施例,所述第三阈值是可配置的。
作为一个实施例,所述第三阈值是UE特定(UEspecific)的。
作为一个实施例,所述第三阈值是小区公共的。
作为一个实施例,所述第三阈值是由高层信令配置的。
作为一个实施例,如果所述第一条件集合和第二条件集合都不被满足,所述用户设备放弃在所述第一时频资源中发送所述第一无线信号。
作为一个实施例,所述第六阈值大于所述第三阈值。
作为一个实施例,所述第六阈值是正整数。
作为一个实施例,所述第六阈值是固定的。
作为一个实施例,所述第六阈值是可配置的。
作为一个实施例,所述第六阈值是UE特定(UEspecific)的。
作为一个实施例,所述第六阈值是小区公共的。
作为一个实施例,所述第六阈值是由高层信令配置的。
作为一个实施例,本申请中的所述第一信息被用于确定所述第二条件集合。
作为一个实施例,M3个第一类时间窗在所述M个第一类时间窗中的位置是连续的,所述M3个第一类时间窗是所述M个第一类时间窗中分别和所述M3个第一类数值对应的第一类时间窗。
作为一个实施例,M3个第一类时间窗在所述M个第一类时间窗中的位置是不连续的,所述M3个第一类时间窗是所述M个第一类时间窗中分别和所述M3个第一类数值对应的第一类时间窗。
实施例22
实施例22示例了用户设备判断是否在第一时频资源中发送第一无线信号的示意图;如附图22所示。
在实施例22中,本申请中的所述第一子频带上的M个第一类时间窗被预留给本申请中的所述第一类参考信号,所述用户设备判断仅需要在所述第一子频带上的所述M个第一类时间窗中的M1个第一类时间窗中接收所述第一类参考信号。所述用户设备在所述M1个第一类时间窗中分别接收M1个第一类参考子信号,其中,所述第一类参考信号包括所述M1个第一类参考子信号,所述M1个第一类时间窗分别被预留给所述M1个第一类参考子信号。针对所述M1个第一类参考子信号的测量分别被用于确定M1个第一类数值;所述M1个第一类数值中有M3个第一类数值低于第二阈值。所述M1和所述M3被所述用户设备用于判断第一条件集合和第二条件集合是否被满足。如果所述第一条件集合和所述第二条件集合中的至少之一被满足,所述用户设备在所述第一时频资源中发送所述第一无线信号。如果所述第一条件集合和所述第二条件集合都未被满足,所述用户设备放弃在所述第一时频资源中发送所述第一无线信号。所述第一条件集合包括所述M1不大于第一阈值和所述M3大于第三阈值;所述第二条件集合包括所述M3大于第六阈值。
实施例22中的整个判断过程的流程如附图22所示,在附图22中,所述M个第一类时间窗中的一个第一类时间窗用第一类时间窗#i表示,所述M1个第一类参考子信号中的一个第一类参考子信号用第一类参考子信号#j表示,所述M1个第一类数值中的一个第一类数值用第一类数值#j表示。其中,所述i是不大于所述M的非负整数,所述j是不大于所述M1的非负整数。
在附图22中,所述用户设备首先在步骤S2201中设置i=0,j=0,和k=0;在步骤S2202中判断是否在所述M个第一类时间窗中的第一类时间窗#i中接收所述第一类参考信号;如果是,在步骤S2203中把所述j增加1,否则进行到步骤S2208中;在步骤S2204中在所述第一类时间窗#i中接收所述M1个第一类参考子信号中的第一类参考子信号#j-1,并得到所述M1个第一类数值中的第一类数值#j-1;在步骤S2205中判断所述第一类数值#j-1是否低于所述第二阈值,如果是,在步骤S2206中把所述k增加1,否则进行到步骤S2207中;在步骤S2207中设置k=0;在步骤S2208中把所述i增加1;在步骤S2209中判断所述i是否等于所述M,如果是,进行到步骤S2210,否则返回步骤S2202;在步骤S2210中设置M1=j和M3=k;在步骤S2211中判断所述第一条件集合是否被满足,如果是,在步骤S2212中在所述第一时频资源中发送所述第一无线信号,否则进行到步骤S2213中;在步骤S2213中判断所述第二条件集合是否被满足,如果是,进行到步骤S2212中,否则在步骤S2214中放弃在所述第一时频资源中发送所述第一无线信号。
作为一个实施例,所述M3个第一类数值在所述M1个第一类数值中的位置是连续的。
作为一个实施例,M3个第一类时间窗在所述M个第一类时间窗中的位置是连续的,所述M3个第一类时间窗是所述M个第一类时间窗中分别和所述M3个第一类数值对应的第一类时间窗。
作为一个实施例,所述M1个第一类数值中只有所述M3个第一类数值低于所述第二阈值。
作为一个实施例,所述M1个第一类数值中除了所述M3个第一类数值以外的第一类数值中至少存在一个第一类数值低于所述第二阈值。
实施例23
实施例23示例了用于用户设备中的处理装置的结构框图;如附图23所示。在附图23中,用户设备中的处理装置2300包括第一接收机2301,第一处理器2302和第一发送机2303。
在实施例23中,第一接收机2301接收第一信令,所述第一信令被用于指示第一子频带上的M个第一类时间窗,所述第一子频带上的所述M个第一类时间窗被预留给第一类参考信号;第一处理器2302判断仅需要在所述第一子频带上的所述M个第一类时间窗中的M1个第一类时间窗中接收所述第一类参考信号;第一发送机2303当第一条件集合被满足时在第一时频资源中发送第一无线信号。
在实施例23中,所述M是正整数,所述M1是不大于所述M的正整数,所述第一条件集合包括所述M1不大于第一阈值。
作为一个实施例,所述第一接收机2301在所述M1个第一类时间窗中分别接收M1个第一类参考子信号;其中,所述第一类参考信号包括所述M1个第一类参考子信号,所述M1个第一类时间窗分别被预留给所述M1个第一类参考子信号;针对所述M1个第一类参考子信号的测量分别被用于确定M1个第一类数值,所述M1个第一类数值中有M3个第一类数值低于第二阈值;所述第一条件集合包括所述M3大于第三阈值。
作为一个实施例,所述第一接收机2301分别在M个第二时频资源中监测M个第二无线信号,并检测到所述M个第二无线信号中的M2个第二无线信号;其中,所述M个第二无线信号和所述M个第一类时间窗一一对应;所述M2个第二无线信号中的M1个第二无线信号分别被用于指示在所述M1个第一类时间窗中接收所述第一类参考信号。
作为上述实施例的一个子实施例,所述M2等于所述M1。
作为上述实施例的一个子实施例,所述M2大于所述M1,所述M2个第二无线信号中除了所述M1个第二无线信号之外的第二无线信号分别被用于指示在对应的第一类时间窗中不接收所述第一类参考信号。
作为一个实施例,所述第一接收机2301在所述第一子频带上执行第一类接入检测;其中,所述用户设备在所述第一时频资源中发送所述第一无线信号,所述第一无线信号在所述第一子频带上传输,所述第一类接入检测包括:
在所述第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;
其中,所述Q个检测值中的Q1个检测值均低于第四阈值;所述Q是正整数,所述Q1是不大于所述Q的正整数。
作为一个实施例,所述第一接收机2301在第三时频资源中监测第二信令;其中,所述第二信令被用于确定所述第一无线信号被正确接收。
作为一个实施例,所述第一无线信号被用于确定第一天线端口组,所述第二信令的任一发送天线端口和所述第一天线端口组中的一个天线端口准共址。
作为一个实施例,所述第一接收机2301接收N个第二类参考信号;其中,针对所述N个第二类参考信号的测量被用于确定所述第一无线信号,所述N是正整数。
作为一个实施例,所述第一接收机2301接收第一信息;其中,所述第一信息被用于确定所述第一条件集合。
作为一个实施例,所述第一接收机2301包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一处理器2302包括实施例4中的{接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一发送机2303包括实施例4中的{天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一。
实施例24
实施例24示例了用于基站中的处理装置的结构框图;如附图24所示。在附图24中,基站中的处理装置2400包括第二发送机2401,第二处理器2402和第二接收机2403。
在实施例24中,第二发送机2401发送第一信令,所述第一信令被用于指示第一子频带上的M个第一类时间窗,所述第一子频带上的所述M个第一类时间窗被预留给第一类参考信号;第二处理器2402判断仅需要在所述第一子频带上的所述M个第一类时间窗中的M1个第一类时间窗中发送所述第一类参考信号;第二接收机2403在第一时频资源中监测第一无线信号。
在实施例24中,所述M是正整数,所述M1是不大于所述M的正整数,第一条件集合被用于确定所述第一无线信号是否被发送,所述第一条件集合包括所述M1不大于第一阈值。
作为一个实施例,所述第二发送机2401在所述M1个第一类时间窗中分别发送M1个第一 类参考子信号;其中,所述第一类参考信号包括所述M1个第一类参考子信号,所述M1个第一类时间窗分别被预留给所述M1个第一类参考子信号;针对所述M1个第一类参考子信号的测量分别被用于确定M1个第一类数值,所述M1个第一类数值中有M3个第一类数值低于第二阈值;所述第一条件集合包括所述M3大于第三阈值。
作为一个实施例,所述第二发送机2401分别在M2个第二时频资源中发送M个第二无线信号中的M2个第二无线信号;其中,所述M个第二无线信号和所述M个第一类时间窗一一对应;所述M2个第二无线信号中的M1个第二无线信号分别被用于指示在所述M1个第一类时间窗中接收所述第一类参考信号。
作为上述实施例的一个子实施例,所述M2等于所述M1。
作为上述实施例的一个子实施例,所述M2大于所述M1,所述M2个第二无线信号中除了所述M1个第二无线信号之外的第二无线信号分别被用于指示在对应的第一类时间窗中不接收所述第一类参考信号。
作为一个实施例,所述第二接收机2403在所述第一子频带上分别执行M次第二类接入检测;其中,所述M个第一类时间窗的起始时刻分别不早于所述M次第二类接入检测的结束时刻;给定第二类接入检测包括:
在所述第一子频带上的P个时间子池中分别执行P次能量检测,得到P个检测值;
其中,所述给定第二类接入检测是所述M次第二类接入检测中的一次第二类接入检测,所述P个检测值中的P1个检测值均低于第五阈值;所述P是正整数,所述P1是不大于所述P的非负整数。
作为一个实施例,所述第二发送机2401在第三时频资源中发送第二信令;其中,在所述第一时频资源中检测到所述第一无线信号,所述第二信令被用于确定所述第一无线信号被正确接收。
作为一个实施例,所述第一无线信号被用于确定第一天线端口组,所述第二信令的任一发送天线端口和所述第一天线端口组中的一个天线端口准共址。
作为一个实施例,所述第二接收机2403在所述第一子频带上执行第三类接入检测;其中,所述第三时频资源占用的时间资源的起始时刻不早于所述第三类接入检测的结束时刻;所述第三类接入检测包括:
在所述第一子频带上的W个时间子池中分别执行W次能量检测,得到W个检测值;
其中,所述W个检测值中的W1个检测值均低于第七阈值;所述W是正整数,所述W1是不大于所述W的正整数。
作为一个实施例,所述第二发送机2401发送N个第二类参考信号;其中,针对所述N个第二类参考信号的测量被用于确定所述第一无线信号,所述N是正整数。
作为一个实施例,所述第二发送机2401发送第一信息;其中,所述第一信息被用于确定所述第一条件集合。
作为一个实施例,所述第二发送机2401包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二处理器2402包括实施例4中的{接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二接收机2403包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
实施例25
实施例25示例了M个第一类时间窗和M次第二类接入检测在时域上的时序关系的示意图;如附图25所示。
在实施例25中,所述M个第一类时间窗被预留给本申请中的所述第一类参考信号,本申请中的所述用户设备判断仅需要在所述M个第一类时间窗中的M1个第一类时间窗中接收所述第一类参考信号,本申请中的所述基站判断仅需要在所述M个第一类时间窗中的所述M1个第 一类时间窗中发送所述第一类参考信号。所述基站根据所述M次第二类接入检测的结果分别判断是否在所述M个第一类时间窗中发送所述第一类参考信号。所述M是正整数,所述M1是不大于所述M的正整数。所述M个第一类时间窗的开始时刻分别不早于所述M次第二类接入检测的结束时刻。
在附图25中,所述M个第一类时间窗和所述M次第二类接入检测的索引分别是{#0,...,#x,...,#M-1},其中所述x是小于所述M-1的正整数。所述基站根据第二类接入检测#0,第二类接入检测#x和第二类接入检测#M-1的结果分别判断在第一类时间窗#0中发送所述第一类参考信号,在第一类时间窗#x和第一类时间窗#M-1中不发送所述第一类参考信号。所述用户设备判断在第一类时间窗#0中接收所述第一类参考信号,在第一类时间窗#x和第一类时间窗#M-1中不接收所述第一类参考信号。在附图25中,空白填充的方框表示所述M次第二类接入检测占用的时间资源,右斜线填充的方框表示所述M个第一类时间窗中的所述M1个第一类时间窗占用的时间资源,交叉线填充的方框表示所述M个第一类时间窗中不属于所述M1个第一类时间窗的第一类时间窗占用的时间资源。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B),TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (19)

  1. 被用于无线通信的用户设备中的方法,其特征在于,包括:
    接收第一信令,所述第一信令被用于指示第一子频带上的M个第一类时间窗,所述第一子频带上的所述M个第一类时间窗被预留给第一类参考信号,所述M是正整数;
    判断仅需要在所述第一子频带上的所述M个第一类时间窗中的M1个第一类时间窗中接收所述第一类参考信号,所述M1是不大于所述M的正整数;
    如果第一条件集合被满足,在第一时频资源中发送第一无线信号;
    其中,所述第一条件集合包括所述M1不大于第一阈值。
  2. 根据权利要求1所述的方法,其特征在于,包括:
    在所述M1个第一类时间窗中分别接收M1个第一类参考子信号;
    其中,所述第一类参考信号包括所述M1个第一类参考子信号,所述M1个第一类时间窗分别被预留给所述M1个第一类参考子信号;针对所述M1个第一类参考子信号的测量分别被用于确定M1个第一类数值,所述M1个第一类数值中有M3个第一类数值低于第二阈值;所述第一条件集合包括所述M3大于第三阈值。
  3. 根据权利要求1或2所述的方法,其特征在于,包括:
    分别在M个第二时频资源中监测M个第二无线信号,并检测到所述M个第二无线信号中的M2个第二无线信号;
    其中,所述M个第二无线信号和所述M个第一类时间窗一一对应;所述M2个第二无线信号中的M1个第二无线信号分别被用于指示在所述M1个第一类时间窗中接收所述第一类参考信号;所述M2等于所述M1,或者,所述M2大于所述M1且所述M2个第二无线信号中除了所述M1个第二无线信号之外的第二无线信号分别被用于指示在对应的第一类时间窗中不接收所述第一类参考信号。
  4. 根据权利要求1至3中任一权利要求所述的方法,其特征在于,包括:
    在所述第一子频带上执行第一类接入检测;
    其中,所述用户设备在所述第一时频资源中发送所述第一无线信号,所述第一无线信号在所述第一子频带上传输,所述第一类接入检测包括:
    在所述第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;
    其中,所述Q个检测值中的Q1个检测值均低于第四阈值;所述Q是正整数,所述Q1是不大于所述Q的正整数。
  5. 根据权利要求1至4中任一权利要求所述的方法,其特征在于,包括:
    在第三时频资源中监测第二信令;
    其中,所述第二信令被用于确定所述第一无线信号被正确接收。
  6. 根据权利要求5所述的方法,其特征在于,所述第一无线信号被用于确定第一天线端口组,所述第二信令的任一发送天线端口和所述第一天线端口组中的一个天线端口准共址。
  7. 根据权利要求1至6中任一权利要求所述的方法,其特征在于,包括:
    接收N个第二类参考信号;
    其中,针对所述N个第二类参考信号的测量被用于确定所述第一无线信号,所述N是正整数。
  8. 根据权利要求1至7中任一权利要求所述的方法,其特征在于,包括:
    接收第一信息;
    其中,所述第一信息被用于确定所述第一条件集合。
  9. 被用于无线通信的基站中的方法,其特征在于,包括:
    发送第一信令,所述第一信令被用于指示第一子频带上的M个第一类时间窗,所述第一子频带上的所述M个第一类时间窗被预留给第一类参考信号,所述M是正整数;
    判断仅需要在所述第一子频带上的所述M个第一类时间窗中的M1个第一类时间窗中发送所述第一类参考信号,所述M1是不大于所述M的正整数;
    在第一时频资源中监测第一无线信号;
    其中,第一条件集合被用于确定所述第一无线信号是否被发送,所述第一条件集合包括所述M1不大于第一阈值。
  10. 根据权利要求9所述的方法,其特征在于,包括:
    在所述M1个第一类时间窗中分别发送M1个第一类参考子信号;
    其中,所述第一类参考信号包括所述M1个第一类参考子信号,所述M1个第一类时间窗分别被预留给所述M1个第一类参考子信号;针对所述M1个第一类参考子信号的测量分别被用于确定M1个第一类数值,所述M1个第一类数值中有M3个第一类数值低于第二阈值;所述第一条件集合包括所述M3大于第三阈值。
  11. 根据权利要求9或10所述的方法,其特征在于,包括:
    分别在M2个第二时频资源中发送M个第二无线信号中的M2个第二无线信号;
    其中,所述M个第二无线信号和所述M个第一类时间窗一一对应;所述M2个第二无线信号中的M1个第二无线信号分别被用于指示在所述M1个第一类时间窗中接收所述第一类参考信号;所述M2等于所述M1,或者,所述M2大于所述M1且所述M2个第二无线信号中除了所述M1个第二无线信号之外的第二无线信号分别被用于指示在对应的第一类时间窗中不接收所述第一类参考信号。
  12. 根据权利要求9至11中任一权利要求所述的方法,其特征在于,包括:
    在所述第一子频带上分别执行M次第二类接入检测;
    其中,所述M个第一类时间窗的起始时刻分别不早于所述M次第二类接入检测的结束时刻;给定第二类接入检测包括:
    在所述第一子频带上的P个时间子池中分别执行P次能量检测,得到P个检测值;
    其中,所述给定第二类接入检测是所述M次第二类接入检测中的一次第二类接入检测,所述P个检测值中的P1个检测值均低于第五阈值;所述P是正整数,所述P1是不大于所述P的非负整数。
  13. 根据权利要求9至12中任一权利要求所述的方法,其特征在于,包括:
    在第三时频资源中发送第二信令;
    其中,在所述第一时频资源中检测到所述第一无线信号,所述第二信令被用于确定所述第一无线信号被正确接收。
  14. 根据权利要求13所述的方法,其特征在于,所述第一无线信号被用于确定第一天线端口组,所述第二信令的任一发送天线端口和所述第一天线端口组中的一个天线端口准共址。
  15. 根据权利要求13或14所述的方法,其特征在于,包括:
    在所述第一子频带上执行第三类接入检测;
    其中,所述第三时频资源占用的时间资源的起始时刻不早于所述第三类接入检测的结束时刻;所述第三类接入检测包括:
    在所述第一子频带上的W个时间子池中分别执行W次能量检测,得到W个检测值;
    其中,所述W个检测值中的W1个检测值均低于第七阈值;所述W是正整数,所述W1是不大于所述W的正整数。
  16. 根据权利要求9至15中任一权利要求所述的方法,其特征在于,包括:
    发送N个第二类参考信号;
    其中,针对所述N个第二类参考信号的测量被用于确定所述第一无线信号,所述N是正整数。
  17. 根据权利要求9至16中任一权利要求所述的方法,其特征在于,包括:
    发送第一信息;
    其中,所述第一信息被用于确定所述第一条件集合。
  18. 被用于无线通信的用户设备,其特征在于,包括:
    第一接收机,接收第一信令,所述第一信令被用于指示第一子频带上的M个第一类时间窗,所述第一子频带上的所述M个第一类时间窗被预留给第一类参考信号,所述M是正 整数;
    第一处理器,判断仅需要在所述第一子频带上的所述M个第一类时间窗中的M1个第一类时间窗中接收所述第一类参考信号,所述M1是不大于所述M的正整数;
    第一发送机,如果第一条件集合被满足,在第一时频资源中发送第一无线信号;
    其中,所述第一条件集合包括所述M1不大于第一阈值。
  19. 被用于无线通信的基站设备,其特征在于,包括:
    第二发送机,发送第一信令,所述第一信令被用于指示第一子频带上的M个第一类时间窗,所述第一子频带上的所述M个第一类时间窗被预留给第一类参考信号,所述M是正整数;
    第二处理器,判断仅需要在所述第一子频带上的所述M个第一类时间窗中的M1个第一类时间窗中发送所述第一类参考信号,所述M1是不大于所述M的正整数;
    第二接收机,在第一时频资源中监测第一无线信号;
    其中,第一条件集合被用于确定所述第一无线信号是否被发送,所述第一条件集合包括所述M1不大于第一阈值。
PCT/CN2019/070213 2018-01-05 2019-01-03 一种被用于无线通信的用户设备、基站中的方法和装置 WO2019134656A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19736057.1A EP3737182B1 (en) 2018-01-05 2019-01-03 Method and apparatus for use in user equipment and base station for wireless communication
EP23182983.9A EP4240089A3 (en) 2018-01-05 2019-01-03 Method and apparatus for use in user equipment and base station for wireless communication
US16/917,929 US11424882B2 (en) 2018-01-05 2020-07-01 Method and device for wireless communication in UE and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810011633.0A CN110012542B (zh) 2018-01-05 2018-01-05 一种被用于无线通信的用户设备、基站中的方法和装置
CN201810011633.0 2018-01-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/917,929 Continuation US11424882B2 (en) 2018-01-05 2020-07-01 Method and device for wireless communication in UE and base station

Publications (1)

Publication Number Publication Date
WO2019134656A1 true WO2019134656A1 (zh) 2019-07-11

Family

ID=67144369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070213 WO2019134656A1 (zh) 2018-01-05 2019-01-03 一种被用于无线通信的用户设备、基站中的方法和装置

Country Status (4)

Country Link
US (1) US11424882B2 (zh)
EP (2) EP3737182B1 (zh)
CN (3) CN111970101B (zh)
WO (1) WO2019134656A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021136081A1 (en) * 2020-01-02 2021-07-08 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication
US11405153B2 (en) 2020-01-02 2022-08-02 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019227280A1 (zh) * 2018-05-28 2019-12-05 南通朗恒通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN112423389B (zh) * 2019-08-20 2022-07-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113709911B (zh) * 2020-05-20 2024-04-12 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113938170B (zh) * 2020-07-13 2024-04-19 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
WO2022073490A1 (zh) * 2020-10-09 2022-04-14 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114337741B (zh) * 2020-10-09 2022-11-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN116488685A (zh) * 2020-11-26 2023-07-25 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置
CN115714635A (zh) * 2021-08-20 2023-02-24 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244564A (zh) * 2010-05-11 2011-11-16 中兴通讯股份有限公司 多输入多输出mimo系统的下行传输方法和基站
CN102739593A (zh) * 2011-04-08 2012-10-17 华为技术有限公司 发送资源块、进行联合信道估计的方法及基站、用户设备
WO2014031989A1 (en) * 2012-08-23 2014-02-27 Interdigital Patent Holdings, Inc. Operating with multiple schedulers in a wireless system
CN106685498A (zh) * 2015-11-10 2017-05-17 上海朗帛通信技术有限公司 一种mimo传输方法和装置
CN106877984A (zh) * 2015-12-10 2017-06-20 上海朗帛通信技术有限公司 一种窄带无线传输中的方法和装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102201750B1 (ko) * 2012-08-11 2021-01-12 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치
JP6389905B2 (ja) * 2014-07-07 2018-09-12 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるデータ送受信方法及びその装置
CN104219180B (zh) * 2014-09-24 2017-10-31 京信通信系统(中国)有限公司 探测参考信号的处理方法和装置
WO2016090567A1 (zh) * 2014-12-10 2016-06-16 华为技术有限公司 一种发送、接收信号的方法、装置
CN106034018A (zh) * 2015-03-17 2016-10-19 中兴通讯股份有限公司 一种载波复用的方法和站点
WO2017000263A1 (zh) * 2015-06-30 2017-01-05 华为技术有限公司 一种参考信号发送方法及装置
EP3335353B8 (en) * 2015-08-13 2021-01-20 Apple Inc. Discovery reference signal transmission for lte in unlicensed band
US10193656B2 (en) * 2015-10-30 2019-01-29 Huawei Technologies Co., Ltd. Systems and methods for adaptive downlink control information set for wireless transmissions
US10736076B2 (en) * 2016-02-04 2020-08-04 Qualcomm Incorporated Methods and apparatus for paging in unlicensed communication channels
CN107241780A (zh) * 2016-03-28 2017-10-10 北京信威通信技术股份有限公司 小区的上行同步方法及系统
CN107371168A (zh) * 2016-05-12 2017-11-21 电信科学技术研究院 一种非授权频谱中的测量方法和设备
CN107483166B (zh) * 2016-06-08 2019-10-01 上海朗帛通信技术有限公司 一种无线通信中的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244564A (zh) * 2010-05-11 2011-11-16 中兴通讯股份有限公司 多输入多输出mimo系统的下行传输方法和基站
CN102739593A (zh) * 2011-04-08 2012-10-17 华为技术有限公司 发送资源块、进行联合信道估计的方法及基站、用户设备
WO2014031989A1 (en) * 2012-08-23 2014-02-27 Interdigital Patent Holdings, Inc. Operating with multiple schedulers in a wireless system
CN106685498A (zh) * 2015-11-10 2017-05-17 上海朗帛通信技术有限公司 一种mimo传输方法和装置
CN106877984A (zh) * 2015-12-10 2017-06-20 上海朗帛通信技术有限公司 一种窄带无线传输中的方法和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021136081A1 (en) * 2020-01-02 2021-07-08 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication
US11405153B2 (en) 2020-01-02 2022-08-02 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication
US11722272B2 (en) 2020-01-02 2023-08-08 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication

Also Published As

Publication number Publication date
EP4240089A2 (en) 2023-09-06
EP3737182B1 (en) 2023-09-13
CN111970101B (zh) 2022-07-05
CN111970100A (zh) 2020-11-20
EP4240089A3 (en) 2023-11-15
CN110012542A (zh) 2019-07-12
EP3737182A1 (en) 2020-11-11
US20200366432A1 (en) 2020-11-19
US11424882B2 (en) 2022-08-23
CN110012542B (zh) 2020-09-01
EP3737182A4 (en) 2021-03-03
CN111970101A (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
WO2019134656A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019170057A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019109345A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018130125A1 (zh) 一种用于功率调整的用户设备、基站中的方法和装置
WO2019154254A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019119479A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US10581505B2 (en) Method and device in UE and base station used for wireless communication
WO2020052446A1 (zh) 一种被用于无线通信的节点中的方法和装置
US11283500B2 (en) Method and device in UE and base station for wireless communication
WO2020199976A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN111615213B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020020004A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2022063145A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019184710A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2022016933A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019136681A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11051335B2 (en) Method and device for wireless communication in a first node and base station
WO2019144821A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019144315A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019134121A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019119197A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN115967960A (zh) 被用于无线通信的用户设备、基站中的方法和装置
CN110602785B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019184711A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019137328A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19736057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019736057

Country of ref document: EP

Effective date: 20200805