WO2019134121A1 - 一种被用于无线通信的用户设备、基站中的方法和装置 - Google Patents

一种被用于无线通信的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2019134121A1
WO2019134121A1 PCT/CN2018/071585 CN2018071585W WO2019134121A1 WO 2019134121 A1 WO2019134121 A1 WO 2019134121A1 CN 2018071585 W CN2018071585 W CN 2018071585W WO 2019134121 A1 WO2019134121 A1 WO 2019134121A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
signals
wireless signals
type
given
Prior art date
Application number
PCT/CN2018/071585
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
南通朗恒通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通朗恒通信技术有限公司 filed Critical 南通朗恒通信技术有限公司
Priority to CN202211471267.XA priority Critical patent/CN115843035A/zh
Priority to PCT/CN2018/071585 priority patent/WO2019134121A1/zh
Priority to CN201880083153.3A priority patent/CN111543074B/zh
Publication of WO2019134121A1 publication Critical patent/WO2019134121A1/zh
Priority to US16/917,940 priority patent/US11375389B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA

Definitions

  • the present application relates to a transmission method and apparatus in a wireless communication system, and more particularly to a communication method and apparatus for supporting data transmission on an Unlicensed Spectrum.
  • LTE Long-term Evolution
  • LAA Licensed Assisted Access
  • the transmitter base station or user equipment also performs backoff after a certain delay period (DeferDuration).
  • the time is counted in units of CCA (Clear Channel Assessment) slot time period, and the number of back slot time slots is obtained by randomly selecting the transmitter within CWS (ContentionWindow Size).
  • CCA Carrier Channel Assessment
  • the CWS is adjusted according to the HARQ (Hybrid Automatic Repeat reQuest) feedback corresponding to the data in a reference sub-frame previously transmitted on the unlicensed spectrum.
  • the CWS is adjusted based on whether new data is included in the data in a reference subframe preceding the unlicensed spectrum.
  • Massive MIMO Multi-Input Multi-Output
  • LBT Long Term Evolution
  • the inventors found through research that beamforming will be used on a large scale in the NR system. How to reduce the co-channel interference between multiple transmitters and thus increase the system capacity is a key problem to be solved.
  • the present application discloses a method in a first node for wireless communication, including:
  • the T second type radio signals and the T first type radio signals are in one-to-one correspondence; at least one multi-carrier symbol is occupied by the T second type radio signals; the T first Only T1 first-class wireless signals in the class-like wireless signal are used to determine the Q, the T is a positive integer greater than 1, the Q is a positive integer, and the T1 is a positive integer less than the T; The T1 second type wireless signals of the T second type wireless signals corresponding to the T1 first type wireless signals are spatially associated to the Q times by all of the T second type wireless signals A second type of wireless signal consisting of energy detection; the first node is a base station, or the first node is a user equipment.
  • the problem to be solved by the present application is that in the NR system, since large-scale MIMO technology is adopted, interference conditions in different beam directions may be greatly different, so the beam needs to be considered when determining the CWS. The influence of direction. If the transmitting node uses a particular beam when doing LBT, the CWS needs to be able to correctly reflect the interference condition in this particular beam direction, which puts new demands on the CWS adjustment method.
  • the above solution solves this problem by selectively counting the data in the reference subframe, thereby reducing the probability that multiple transmitters occupy the same frequency resource at the same time, thereby reducing the co-channel interference caused thereby.
  • the above method is essential in that the first time window represents a reference subframe, and the specific definition of the reference subframe is referred to 15 in 3GPP TS 36.213, allowing the first The node selects part of the data in a reference subframe for CWS adjustment, which takes into account the multi-antenna related configuration of the data, such as the transmit antenna port group, the transmit beam, and the like.
  • the advantage of using the above method is that the CWS can more accurately reflect the interference condition in the beam direction pointed by the Q energy detection, thereby configuring an optimal backoff collision window for the Q energy detection ( ContentionWindow).
  • the method is characterized in that the first node is a base station, and the T first type of wireless signals respectively indicate whether the T second type wireless signals are correctly received.
  • the method is characterized in that the T1 second type wireless signals include W sub-signals, and the T1 first type wireless signals indicate whether any one of the W sub-signals is correctly Receiving, the W is a positive integer not less than the T1; at least one sub-signal of all the sub-signals belonging to the same second-class wireless signal in the T1 second-type wireless signals among the W sub-signals
  • the Q energy detections are spatially correlated; whether the W sub-signals are correctly received are used to determine the Q.
  • the method has the following advantages: the transmit beam direction of at least one of the second type of wireless signals of the T1 second type wireless signals is covered by the Q energy detection.
  • the T1 first type wireless signals can accurately reflect the interference condition in the beam direction pointed by the Q energy detection, and configure an optimal collision window (ContentionWindow) for the Q energy detection. .
  • the method is characterized in that the first node is a user equipment, and the T first type of wireless signals respectively include scheduling information of the T second type wireless signals.
  • the method is characterized in that the T1 second type wireless signals include V sub-signals, and the T1 first-type wireless signals indicate whether any one of the V sub-signals includes a new one.
  • the V is a positive integer not less than the T1; at least one of the V sub-signals belonging to the same second-class wireless signal of the T1 second-type wireless signals and The Q energy detection space is spatially correlated; whether the V sub-signals include new data is used to determine the Q.
  • the above method is characterized in that said T1 first type radio signals are used to determine K candidate integers, Q1 being one of said K candidate integers; said The Q1 detection values of the Q detection values are all lower than the first threshold, the K is a positive integer, and the Q1 is a positive integer not greater than the Q.
  • the above method is characterized by further comprising:
  • the S fourth type wireless signals and the S third type wireless signals are in one-to-one correspondence; the S third type wireless signals and the T1 first type wireless signals are used together to determine Q, the S is a positive integer; the S fourth type wireless signals are spatially associated to the Q energy detection.
  • the foregoing method is characterized in that the second time window includes one or more reference subframes, and the specific definition of the reference subframes is referred to 15 chapters in 3GPP TS 36.213, and the first node selection Part of the plurality of reference subframes included in the first time window and the second time window are used for CWS adjustment, and the multi-antenna related configuration of the data is taken into consideration, such as a transmit antenna port group, a transmit beam, etc. .
  • the advantage of using the above method is that the CWS can more accurately reflect the interference condition in the beam direction pointed by the Q energy detection, thereby configuring an optimal back-off collision window for the Q-th energy detection.
  • the above method is characterized by further comprising:
  • the start time of the time domain resource occupied by the fifth wireless signal is not earlier than the end time of the Q time subpools.
  • the above method is characterized by further comprising:
  • the first information includes scheduling information of the fifth wireless signal; the operation is receiving, the first node is a user equipment; or the operation is sending, and the first node is a base station.
  • the present application discloses a device in a first node for wireless communication, which includes:
  • the first processing module receives T first type wireless signals, and sends T second type wireless signals in a first time window;
  • the first receiver module performs Q energy detections in Q time sub-pools on the first sub-band to obtain Q detection values
  • the T second type radio signals and the T first type radio signals are in one-to-one correspondence; at least one multi-carrier symbol is occupied by the T second type radio signals; the T first Only T1 first-class wireless signals in the class-like wireless signal are used to determine the Q, the T is a positive integer greater than 1, the Q is a positive integer, and the T1 is a positive integer less than the T; The T1 second type wireless signals of the T second type wireless signals corresponding to the T1 first type wireless signals are spatially associated to the Q times by all of the T second type wireless signals A second type of wireless signal consisting of energy detection; the first node is a base station, or the first node is a user equipment.
  • the device in the first node is characterized in that the first node is a base station, and the T first type of wireless signals respectively indicate whether the T second type wireless signals are correctly received.
  • the device in the foregoing first node is characterized in that the T1 second type wireless signals include W sub-signals, and the T1 first-type wireless signals indicate any one of the W sub-signals Whether it is correctly received, the W is a positive integer not less than the T1; at least one of the W sub-signals belonging to the same second-class wireless signal of the T1 second-type wireless signals A sub-signal is associated with the Q-th energy detection space; whether the W sub-signals are correctly received is used to determine the Q.
  • the device in the first node is characterized in that the first node is a user equipment, and the T first type of wireless signals respectively include scheduling information of the T second type wireless signals.
  • the device in the first node is characterized in that the T1 second type wireless signals include V sub-signals, and the T1 first-type wireless signals indicate any one of the V sub-signals.
  • the V is a positive integer not less than the T1; at least one of all the sub-signals belonging to the same second-class wireless signal of the T1 second-type wireless signals among the V sub-signals
  • a sub-signal is spatially related to the Q-th energy detection; whether the V sub-signals include new data is used to determine the Q.
  • the device in the foregoing first node is characterized in that the T1 first type radio signals are used to determine K candidate integers, and Q1 is an alternative integer of the K candidate integers
  • the Q1 detection values of the Q detection values are all lower than the first threshold, the K is a positive integer, and the Q1 is a positive integer not greater than the Q.
  • the device in the foregoing first node is characterized in that the first processing module further receives S third type wireless signals, and sends S fourth type wireless signals in a second time window;
  • the S fourth type wireless signals and the S third type wireless signals are in one-to-one correspondence; the S third type wireless signals and the T1 first type wireless signals are used together to determine the Q,
  • the S is a positive integer; the S fourth type wireless signals are spatially associated to the Q energy detection.
  • the device in the foregoing first node is characterized in that:
  • a first transmitter module that transmits a fifth wireless signal
  • the start time of the time domain resource occupied by the fifth wireless signal is not earlier than the end time of the Q time subpools.
  • the device in the foregoing first node is characterized in that the first processing module further operates the first information; wherein the first information includes scheduling information of the fifth wireless signal; Receiving, the first node is a user equipment; or the operation is sending, and the first node is a base station.
  • the present application has the following advantages compared with the conventional solution:
  • the transmitting node For each LBT, the transmitting node considers the beam direction pointed by the LBT in the selection of the CWS, and selects the data in the reference subframe in which the transmit beams are covered in the receive beam of the current LBT for CWS adjustment. This method ensures that the interference information on the selected data can accurately reflect the interference state in the beam direction of the LBT, thereby configuring an optimal CWS for the LBT.
  • the transmitting node For each LBT, the transmitting node considers the beam direction pointed by the LBT in the selection of the CWS, and selects those transmission beams in each of the plurality of reference subframes to be covered in the reception of the LBT.
  • the data in the beam is used for CWS adjustment. This method ensures that the interference information on the selected data can accurately reflect the interference state in the beam direction of the LBT, thereby configuring an optimal CWS for the LBT.
  • T first type wireless signals shows a flow chart of T first type wireless signals, T second type wireless signals and Q energy detection according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 4 shows a schematic diagram of an NR (New Radio) node and a UE in accordance with one embodiment of the present application
  • FIG. 5 shows a flow chart of wireless transmission in accordance with one embodiment of the present application
  • FIG. 6 shows a flow chart of wireless transmission in accordance with another embodiment of the present application.
  • FIG. 7 illustrates a schematic diagram of a process of performing Q energy detections in Q time subpools, respectively, in accordance with one embodiment of the present application
  • FIG. 8 is a schematic diagram showing a process of performing Q energy detections respectively in Q time subpools according to another embodiment of the present application.
  • Figure 9 shows a schematic diagram of an antenna port and an antenna port group in accordance with one embodiment of the present application.
  • 10A-10B respectively show schematic diagrams of a given wireless signal associated with a given energy detection space, in accordance with one embodiment of the present application
  • 11A-11D respectively show schematic diagrams of X given first wireless signals, X given second wireless signals, and Q in accordance with one embodiment of the present application;
  • Figure 13 shows a schematic diagram of X given first wireless signals being used to determine Q, in accordance with one embodiment of the present application
  • FIG. 14 shows a schematic diagram of X given first wireless signals being used to determine K candidate integers, in accordance with one embodiment of the present application
  • Figure 16 shows a block diagram of a structure for a processing device in a first node in accordance with one embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of T first type wireless signals, T second type wireless signals and Q energy detection, as shown in FIG.
  • the first node in the present application receives T first type radio signals, and transmits T second type radio signals in a first time window; then Q times in the first subband Q energy detection is performed in the sub-pools respectively, and Q detection values are obtained.
  • the T second type radio signals and the T first type radio signals are in one-to-one correspondence; at least one multi-carrier symbol is occupied by the T second type radio signals; the T first Only T1 first-class wireless signals in the class-like wireless signal are used to determine the Q, the T is a positive integer greater than 1, the Q is a positive integer, and the T1 is a positive integer less than the T; The T1 second type wireless signals of the T second type wireless signals corresponding to the T1 first type wireless signals are spatially associated to the Q times by all of the T second type wireless signals A second type of wireless signal consisting of energy detection; the first node is a base station, or the first node is a user equipment.
  • any one of the T first type of wireless signals includes control information.
  • the T first type wireless signals are transmitted on the first sub-band.
  • the T first type wireless signals are transmitted on a frequency band other than the first sub-band.
  • the T first type of wireless signals are transmitted on a licensed spectrum band outside the first sub-band.
  • the T first type of wireless signals are transmitted on the unlicensed frequency band outside the first sub-band.
  • the T first type of wireless signals are transmitted on a frequency band deployed in the licensed spectrum.
  • any of the T second type of wireless signals includes data.
  • any of the T second type of wireless signals includes a reference signal.
  • any one of the T second type of wireless signals includes one of data and a reference signal.
  • the T second type wireless signals are composed of data and reference signals.
  • the T second type of wireless signals comprise data.
  • the T second type wireless signals comprise reference signals.
  • the T second type wireless signals are transmitted on the first sub-band.
  • the frequency domain resources occupied by the T second type radio signals belong to the first sub-band.
  • the frequency domain resources occupied by the T second type wireless signals include the first sub-band.
  • the time domain resources occupied by the T second type wireless signals are the same.
  • the multi-carrier symbols occupied by the T second-type wireless signals are the same.
  • the frequency domain resources occupied by the T second type radio signals are orthogonal to each other (not overlapping).
  • At least one subcarrier is occupied by the T second type of wireless signals.
  • the frequency domain resources occupied by the T second type wireless signals are the same.
  • At least two of the T second type wireless signals occupy the same frequency domain resources.
  • the frequency domain resources occupied by at least two of the T second type wireless signals are orthogonal (non-overlapping).
  • the first time window is a sub-frame.
  • the first time window is a slot.
  • the first time window comprises a positive integer number of multi-carrier symbols.
  • the first time window includes a positive integer number of consecutive multi-carrier symbols.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol is an SC-FDMA (Single Carrier-Frequency Division Multiple Access) symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the multi-carrier symbol is a DFT-S-OFDM (Discrete Fourier Transform Spread OFDM) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM
  • the multi-carrier symbol is an FBMC (Filter Bank Multi Carrier) symbol.
  • the multi-carrier symbol includes a CP (Cyclic Prefix).
  • the first time window is a continuous time period.
  • the burst to which the first time window belongs is located before the Q time subpools in the time domain.
  • the first sub-band is deployed in an unlicensed spectrum.
  • the first sub-band is a carrier.
  • the first sub-band is a BWP (Bandwidth Part).
  • the first sub-band includes a positive integer number of PRBs (Physical Resource Blocks) in the frequency domain.
  • PRBs Physical Resource Blocks
  • the first sub-band includes a positive integer number of consecutive PRBs in the frequency domain.
  • the first sub-band includes a positive integer number of consecutive sub-carriers in the frequency domain.
  • the multi-antenna related reception used by the Q energy detection is the same.
  • the Qth energy detection is used to determine if the first subband is idle (Idle).
  • the Qth energy detection is used to determine whether the first subband can be used by the first node to transmit a wireless signal.
  • the Qth energy detection is used to determine whether the first subband can be used by the first node to transmit a wireless signal related to the Qth energy detection space.
  • the Q-th energy detection is energy detection in an LBT (Listen Before Talk), and the specific definition and implementation manner of the LBT are referred to 3GPP TR36.889.
  • the Q-th energy detection is energy detection in CCA (Clear Channel Assessment), and the specific definition and implementation manner of the CCA is referred to 3GPP TR36.889.
  • any one of the Q energy detections is implemented by means defined in section 15 of 3GPP TS 36.213.
  • any one of the Q energy detections is implemented by an energy detection method in WiFi.
  • any one of the Q energy detections is performed by measuring RSSI (Received Signal Strength Indication).
  • any one of the Q energy detections is implemented by an energy detection method in the LTE LAA.
  • any time sub-pool of the Q time sub-pools is contiguous in the occupied time domain resources.
  • the Q time subpools are orthogonal to each other (non-overlapping) in the time domain.
  • the duration of any of the Q time subpools is one of ⁇ 16 microseconds, 9 microseconds ⁇ .
  • At least two time sub-pools in the Q time sub-pools have unequal durations.
  • the durations of any two of the Q time subpools are equal.
  • the time domain resources occupied by the Q time subpools are continuous.
  • the time domain resources occupied by at least two time sub-pools in the Q time sub-pools are discontinuous.
  • the time domain resources occupied by any two time sub-pools in the Q time sub-pools are discontinuous.
  • any one of the Q time subpools is a slot duration.
  • any one of the Q time subpools is Tsl, and the Ts1 is a slot duration.
  • Ts1 refer to section 15 of 3GPP TS 36.213.
  • any one of the Q time subpools except the earliest time subpool is a slot duration.
  • any one of the Q time subpools except the earliest time subpool is Tsl, and the Ts1 is a slot duration.
  • Tsl the time subpool
  • Ts1 the Ts1 is a slot duration.
  • Ts1 refer to 3GPP TS36. 15 chapters in .213.
  • At least one time sub-pool having a duration of 16 microseconds exists in the Q time sub-pools.
  • At least one time sub-pool having a duration of 9 microseconds exists in the Q time sub-pools.
  • the earliest time sub-pool of the Q time sub-pools has a duration of 16 microseconds.
  • the last time subpool of the Q time subpools has a duration of 9 microseconds.
  • the Q time subpools include a listening time in a Cat 4 (fourth class) LBT.
  • the Q time subpools include a slot period in a delay period (DeferDuration) in a Cat 4 (fourth type) LBT and a slot period in a backoff time.
  • the Q time subpools include a slot period and a backoff time in a delay period (DeferDuration) in a Type 1 UL channel access procedure.
  • the slot time period, the first node is a user equipment.
  • the Q time subpools include slot periods in an initial CCA and an eCCA (Enhanced Clear Channel Assessment, enhanced idle channel assessment).
  • eCCA Enhanced Clear Channel Assessment, enhanced idle channel assessment
  • the Q energy detections respectively obtain the Q detection values.
  • the Q detection values are respectively that the first node senses the power of all wireless signals on the first sub-band in Q time units, and averages over time to obtain Received power; the Q time units are each one of the Q time subpools.
  • the duration of any one of the Q time units is not shorter than 4 microseconds.
  • the Q detection values are respectively that the first node senses the energy of all wireless signals on the first sub-band in the Q time units, and averages over time to obtain Received energy; the Q time units are each one of the Q time subpools.
  • the duration of any one of the Q time units is not shorter than 4 microseconds.
  • any one of the Q energy detections refers to: the first node monitors received power in a given time unit, and the given time unit is the Q time sub A duration of time in the pool and the time subpool corresponding to the given energy detection.
  • any given energy detection in the Q energy detection means that the first node monitors received energy in a given time unit, and the given time unit is the Q time sub- A duration of time in the pool and the time subpool corresponding to the given energy detection.
  • a given wireless signal is spatially correlated to a given energy detection means that the given wireless signal includes k sub-signals, at least one of the k sub-signals and the given energy detection Spatially related, the k is a positive integer.
  • a given wireless signal is spatially correlated to a given energy detection means that the given wireless signal includes k sub-signals, one of the k sub-signals and the given energy detection Spatially related, the k is a positive integer.
  • a given wireless signal is spatially correlated to a given energy detection means that the given wireless signal includes k sub-signals, each of which is associated with the given energy detection space, Let k be a positive integer.
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG.
  • Embodiment 2 illustrates a schematic diagram of a network architecture in accordance with the present application, as shown in FIG. 2 is a diagram illustrating an NR 5G, LTE (Long-Term Evolution, Long Term Evolution) and LTE-A (Long-Term Evolution Advanced) system network architecture 200.
  • the NR 5G or LTE network architecture 200 may be referred to as an EPS (Evolved Packet System) 200 in some other suitable terminology.
  • EPS Evolved Packet System
  • the EPS 200 may include one or more UEs (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UEs User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core
  • 5G-Core Network 5G-Core Network
  • 5G core network 5G core network
  • HSS Home Subscriber Server
  • Internet service 230 Internet service 230.
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity.
  • the EPS provides packet switching services, although those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks or other cellular networks that provide circuit switched services.
  • the NG-RAN includes an NR Node B (gNB) 203 and other gNBs 204
  • the gNB 203 provides user and control plane protocol termination for the UE 201.
  • the gNB 203 can be connected to other gNBs 204 via an Xn interface (eg, a backhaul).
  • the gNB 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmission and reception point), or some other suitable terminology.
  • the gNB 203 provides the UE 201 with an access point to the EPC/5G-CN 210.
  • Examples of UEs 201 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video device, digital audio player (eg, MP3 player), camera, game console, drone, aircraft, narrowband physical network device, machine type communication device, land vehicle, car, wearable device, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video device, digital audio player (eg, MP3 player), camera, game console, drone, aircraft, narrowband physical network device, machine type communication device, land vehicle, car, wearable device, or any Other similar functional devices.
  • multimedia devices video device, digital audio player (eg, MP3 player), camera, game console, drone, aircraft, narrowband physical network device, machine type communication device, land vehicle
  • UE 201 may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to the EPC/5G-CN210 through the S1/NG interface.
  • EPC/5G-CN210 includes MME/AMF/UPF211, other MME (Mobility Management Entity)/AMF (Authentication Management Field)/UPF (User Plane Function) 214, S - GW (Service Gateway) 212 and P-GW (Packet Date Network Gateway) 213.
  • the MME/AMF/UPF 211 is a control node that handles signaling between the UE 201 and the EPC/5G-CN 210.
  • MME/AMF/UPF 211 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 212, and the S-GW 212 itself is connected to the P-GW 213.
  • the P-GW 213 provides UE IP address allocation as well as other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a PS Streaming
  • the UE 201 corresponds to the first node in the application, and the first node is a user equipment.
  • the gNB 203 corresponds to the first node in the application, and the first node is a base station.
  • the UE 201 supports wireless communication for data transmission over an unlicensed spectrum.
  • the gNB 203 supports wireless communication for data transmission over an unlicensed spectrum.
  • the UE 201 supports wireless communication of massive MIMO.
  • the gNB 203 supports wireless communication for massive MIMO.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with the present application, as shown in FIG.
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 3 shows a radio protocol architecture for user equipment (UE) and base station equipment (gNB or eNB) in three layers: layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the UE and the gNB through PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol). Convergence Protocol) Sublayer 304, which terminates at the gNB on the network side.
  • the UE may have several upper layers above the L2 layer 305, including a network layer (eg, an IP layer) terminated at the P-GW on the network side and terminated at the other end of the connection (eg, Application layer at the remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handoff support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between the logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in one cell between UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the wireless protocol architecture of Figure 3 is applicable to the first node in the present application.
  • the T first type wireless signals in the present application are generated by the PHY 301.
  • the T second type wireless signals in the present application are generated by the PHY 301.
  • the Q energy detection in the present application is generated by the PHY 301.
  • the third type of wireless signal in the present application is generated by the PHY 301.
  • the S fourth type wireless signals in the present application are generated by the PHY 301.
  • the fifth wireless signal in the present application is generated by the PHY 301.
  • the first information in the present application is generated by the PHY 301.
  • the first information in the present application is generated in the MAC sublayer 302.
  • the first information in this application is generated in the RRC sublayer 306.
  • Embodiment 4 shows a schematic diagram of an NR node and user equipment according to the present application, as shown in FIG. 4 is a block diagram of a gNB 410 in communication with a UE 450 in an access network.
  • the base station device (410) includes a controller/processor 440, a memory 430, a receive processor 412, a transmit processor 415, a transmitter/receiver 416, and an antenna 420.
  • the user equipment (450) includes a controller/processor 490, a memory 480, a data source 467, a transmit processor 455, a receive processor 452, a transmitter/receiver 456, and an antenna 460.
  • the processing related to the base station device (410) includes:
  • a controller/processor 440 the upper layer packet arrives, the controller/processor 440 provides header compression, encryption, packet segmentation and reordering, and multiplexing and demultiplexing between the logical and transport channels for implementation
  • the L2 layer protocol of the user plane and the control plane; the upper layer packet may include data or control information, such as a DL-SCH (Downlink Shared Channel);
  • controller/processor 440 associated with a memory 430 storing program code and data, which may be a computer readable medium;
  • controller/processor 440 including a scheduling unit to transmit a demand, and a scheduling unit, configured to schedule an air interface resource corresponding to the transmission requirement;
  • a beam processor 471 determining T first type wireless signals, determining S third type wireless signals, and performing Q energy detection;
  • the transmit processor 415 receives the output bit stream of the controller/processor 440 and implements various signal transmission processing functions for the L1 layer (ie, the physical layer) including encoding, interleaving, scrambling, modulation, power control/allocation, and physics. Layer control signaling (including PBCH, PDCCH, PHICH, PCFICH, reference signal) generation, etc.;
  • a transmitter 416 is configured to convert the baseband signals provided by the transmit processor 415 into radio frequency signals and transmit them via the antenna 420; each of the transmitters 416 samples the respective input symbol streams to obtain respective sampled signal streams. Each transmitter 416 performs further processing (eg, digital to analog conversion, amplification, filtering, upconversion, etc.) on the respective sample streams to obtain a downlink signal.
  • further processing eg, digital to analog conversion, amplification, filtering, upconversion, etc.
  • the processing related to the user equipment (450) may include:
  • Receiver 456, for converting the radio frequency signal received through the antenna 460 into a baseband signal is provided to the receiving processor 452;
  • the receiving processor 452 implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, and the like;
  • the controller/processor 490 receives the bit stream output by the receiving processor 452, provides header decompression, decryption, packet segmentation and reordering, and multiplexing and demultiplexing between the logical and transport channels for implementation.
  • Controller/processor 490 is associated with memory 480 that stores program codes and data.
  • Memory 480 can be a computer readable medium.
  • the processing related to the base station device (410) includes:
  • the receiver 416 receives the radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and supplies the baseband signal to the receiving processor 412;
  • the receiving processor 412 implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, and the like;
  • Controller/processor 440 implementing L2 layer functions, and associated with memory 430 storing program code and data;
  • Controller/processor 440 provides demultiplexing, packet reassembly, decryption, header decompression, control signal processing between the transport and logical channels to recover upper layer data packets from UE 450; from controller/processor 440 Upper layer packets can be provided to the core network;
  • the processing related to the user equipment (450) includes:
  • Data source 467 provides the upper layer data packet to controller/processor 490.
  • Data source 467 represents all protocol layers above the L2 layer;
  • the transmitter 456, transmits a radio frequency signal through its corresponding antenna 460, converts the baseband signal into a radio frequency signal, and provides the radio frequency signal to the corresponding antenna 460;
  • the transmitter processor 455 implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, and the like;
  • the controller/processor 490 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels based on the radio resource allocation of the gNB 410, implementing the L2 layer for the user plane and the control plane Features;
  • the controller/processor 490 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the gNB 410;
  • a beam processor 441 determining T first type wireless signals, determining S third type wireless signals, and performing Q energy detection;
  • the UE 450 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be
  • the processor is used together, the UE 450 device at least: receiving T first type wireless signals, transmitting T second type wireless signals in a first time window; performing respectively in Q time subpools on the first subband Q energy detection, obtaining Q detection values; wherein the T second type wireless signals and the T first type wireless signals are in one-to-one correspondence; at least one multi-carrier symbol is represented by the T second classes
  • the wireless signals are occupied; only T1 of the first type of wireless signals are used to determine the Q, the T is a positive integer greater than 1, and the Q is a positive integer, T1 is a positive integer smaller than the T; the T1 second type wireless signals of the T second type wireless signals corresponding to the T1 first type wireless signals are included in the T second type wireless signals All in space A second type of wireless signal component associated with the Q energy detection
  • the UE 450 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: receiving T first a class-like wireless signal, transmitting T second-type wireless signals in a first time window; performing Q energy detections in Q time sub-pools on the first sub-band, respectively, to obtain Q detection values; wherein, the T The second type of wireless signal and the T first type of wireless signals are in one-to-one correspondence; at least one multi-carrier symbol is occupied by the T second type of wireless signals; and only the T first type of wireless signals There are T1 first type wireless signals used to determine the Q, the T is a positive integer greater than 1, the Q is a positive integer, the T1 is a positive integer less than the T; the T1 first T1 second type wireless signals of the T second type wireless signals corresponding to the wireless-like signals are all spatially associated with the second of the Q second-order wireless signals Class-like wireless signal composition; the first
  • the gNB 410 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be The processor is used together.
  • the gNB410 device receives at least T first type wireless signals, and transmits T second type wireless signals in a first time window; and performs Q energy detections respectively in Q time subpools on the first subband, Obtaining Q detection values; wherein the T second type wireless signals and the T first type wireless signals are in one-to-one correspondence; at least one multi-carrier symbol is occupied by the T second type wireless signals; Only T1 of the first type of wireless signals are used to determine the Q, the T is a positive integer greater than 1, the Q is a positive integer, and the T1 is less than the a positive integer of T; the T1 second type wireless signals of the T second type wireless signals corresponding to the T1 first type wireless signals are spatially surrounded by all of the T second type wireless signals A second type of wireless signal
  • the gNB 410 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: receiving T first a class-like wireless signal, transmitting T second-type wireless signals in a first time window; performing Q energy detections in Q time sub-pools on the first sub-band, respectively, to obtain Q detection values; wherein, the T The second type of wireless signal and the T first type of wireless signals are in one-to-one correspondence; at least one multi-carrier symbol is occupied by the T second type of wireless signals; and only the T first type of wireless signals There are T1 first type wireless signals used to determine the Q, the T is a positive integer greater than 1, the Q is a positive integer, the T1 is a positive integer less than the T; the T1 first T1 second type wireless signals of the T second type wireless signals corresponding to the wireless-like signals are all spatially associated with the second of the Q second-order wireless signals A class-like wireless signal consists
  • the UE 450 corresponds to the first node in the application, and the first node is a user equipment.
  • the gNB 410 corresponds to the first node in the application, and the first node is a base station.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to receive the T first type of wireless signals in the present application;
  • the first node is a user equipment.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the T first type of wireless signals in the present application;
  • the first node is a user equipment.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to receive the S third type wireless signals in the present application;
  • the first node is a user equipment.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the S third type wireless signals in the present application;
  • the first node is a user equipment.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to receive the first information in the present application; the operation in the present application is to receive The first node in the present application is a user equipment.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the first information in the present application; the operation in the present application is to receive The first node in the present application is a user equipment.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used for the Q time subpools on the first sub-band in the present application.
  • the Q energy detection in the present application is separately performed; the first node in the present application is a user equipment.
  • At least two of the transmitter 456, the transmit processor 455, and the controller/processor 490 are used to transmit the T in the present application in the first time window in the present application.
  • a second type of wireless signal; the first node in the present application is a user equipment.
  • At least two of the receiver 416, the receive processor 412, and the controller/processor 440 are used to receive the T in the present application in the first time window in the present application.
  • a second type of wireless signal; the first node in the present application is a user equipment.
  • At least two of the transmitter 456, the transmit processor 455, and the controller/processor 490 are used to transmit the S in the present application in the second time window in the present application.
  • a fourth type of wireless signal; the first node in the present application is a user equipment.
  • At least two of the receiver 416, the receiving processor 412, and the controller/processor 440 are used to receive the S in the present application in the second time window in the present application.
  • a fourth type of wireless signal; the first node in the present application is a user equipment.
  • At least two of the transmitter 456, the transmit processor 455, and the controller/processor 490 are used to transmit the fifth wireless signal in the present application; the first in the present application A node is a user device.
  • At least two of the receiver 416, the receive processor 412, and the controller/processor 440 are used to receive the fifth wireless signal in the present application; the first in the application.
  • a node is a user device.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to receive the T in the present application in the first time window in the present application.
  • a second type of wireless signal; the first node in the present application is a base station.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the T in the present application in the first time window in the present application.
  • a second type of wireless signal; the first node in the present application is a base station.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to receive the S in the present application in the second time window in the present application.
  • a fourth type of wireless signal; the first node in the present application is a base station.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the S in the present application in the second time window in the present application.
  • a fourth type of wireless signal; the first node in the present application is a base station.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to receive the fifth wireless signal in the present application; the first in the application.
  • the node is a base station.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the fifth wireless signal in the present application; the first in the present application
  • the node is a base station.
  • At least two of the receiver 456, the receiving processor 452, and the controller/processor 490 are used to receive the first information in the present application; the first node in the present application It is a base station.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the first information in the present application; the first node in the present application It is a base station.
  • At least two of the transmitter 456, the transmit processor 455, and the controller/processor 490 are used to transmit the T first type of wireless signals in the present application;
  • the first node is a base station.
  • At least two of the receiver 416, the receive processor 412, and the controller/processor 440 are used to receive the T first type of wireless signals in the present application;
  • the first node is a base station.
  • At least two of the transmitter 456, the transmit processor 455, and the controller/processor 490 are used to transmit the S third type wireless signals in the present application;
  • the first node is a base station.
  • At least two of the receiver 416, the receiving processor 412, and the controller/processor 440 are used to receive the S third type wireless signals in the present application;
  • the first node is a base station.
  • At least two of the receiver 416, the receive processor 412, and the controller/processor 440 are used for the Q time subpools on the first subband in the present application.
  • the Q energy detection in the present application is separately performed; the first node in the present application is a base station.
  • Embodiment 5 illustrates a flow chart of a wireless transmission, as shown in FIG.
  • base station N01 is a serving cell maintenance base station of user equipment U02.
  • blocks F1, F2 and F3 are optional, respectively.
  • T second type wireless signals are transmitted in the first time window in step S11; T first type wireless signals are received in step S12; and S fourth are transmitted in the second time window in step S13 a class-like wireless signal; receiving S third-type wireless signals in step S14; performing Q energy detections in Q time sub-pools on the first sub-band in step S15 to obtain Q detection values; in step S16 Transmitting the first information; transmitting the fifth wireless signal in step S17.
  • T second type wireless signals are received in the first time window in step S21; T first type wireless signals are transmitted in step S22; and S fourth are received in the second time window in step S23 a class-like wireless signal; transmitting S third-type wireless signals in step S24; receiving first information in step S25; receiving a fifth wireless signal in step S26.
  • the T second type radio signals and the T first type radio signals are in one-to-one correspondence; at least one multi-carrier symbol is occupied by the T second type radio signals; Only T1 of the first type of wireless signals are used by the base station N01 to determine the Q, the T is a positive integer greater than 1, the Q is a positive integer, and the T1 is less than a positive integer of T; T1 second type wireless signals of the T second type wireless signals corresponding to the T1 first type wireless signals are all in space by the T second type wireless signals A second type of wireless signal is associated with the Q energy detection.
  • the first node is a base station, and the T first type of wireless signals respectively indicate whether the T second type wireless signals are correctly received.
  • the S fourth type wireless signals and the S third type wireless signals are in one-to-one correspondence; the S third type wireless signals and the T1 first type wireless signals are commonly used by the base station N01 Determining the Q, the S is a positive integer; the S fourth type wireless signals are spatially associated to the Q energy detection.
  • the start time of the time domain resource occupied by the fifth wireless signal is not earlier than the end time of the Q time subpools.
  • the first information includes scheduling information of the fifth wireless signal.
  • the Q energy detection is energy detection in downlink access detection, respectively.
  • the T first type wireless signals respectively indicate whether the T second type wireless signals are correctly received.
  • the T first type wireless signals respectively implicitly indicate whether the T second type wireless signals are correctly received.
  • each of the T first type of wireless signals includes a HARQ-ACK (Hybrid Automatic Repeat reQuest ACKnowledgement).
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
  • any one of the T first type of radio signals includes UCI (Uplink Control Information), and the first node is a base station.
  • UCI Uplink Control Information
  • the T first type of radio signals are respectively transmitted on T uplink physical layer control channels (ie, uplink channels that can only be used to carry physical layer signaling).
  • the T uplink physical layer control channels are respectively a PUCCH (Physical Uplink Control CHannel).
  • the T uplink physical layer control channels are respectively sPUCCH (short PUCCH).
  • the T uplink physical layer control channels are respectively NR-PUCCH (New Radio PUCCH).
  • the T uplink physical layer control channels are respectively NB-PUCCH (NarrowBand PUCCH, narrowband PUCCH).
  • the T first type of radio signals are respectively transmitted on T uplink physical layer data channels (ie, uplink channels that can be used to carry physical layer data).
  • T uplink physical layer data channels ie, uplink channels that can be used to carry physical layer data.
  • the T uplink physical layer data channels are respectively a PUSCH (Physical Uplink Shared CHannel).
  • the T uplink physical layer data channels are respectively sPUSCH (short PUSCH).
  • the T uplink physical layer data channels are respectively NR-PUSCH (New Radio PUSCH).
  • the T uplink physical layer data channels are respectively NB-PUSCH (NarrowBand PUSCH, narrowband PUSCH).
  • any of the T second type of wireless signals includes data.
  • the T second type radio signals are respectively transmitted on T downlink physical layer data channels (ie, downlink channels that can be used to carry physical layer data).
  • T downlink physical layer data channels ie, downlink channels that can be used to carry physical layer data.
  • the T downlink physical layer data channels are respectively a PDSCH (Physical Downlink Shared CHannel).
  • PDSCH Physical Downlink Shared CHannel
  • the T downlink physical layer data channels are respectively sPDSCH (short PDSCH).
  • the T downlink physical layer data channels are respectively NR-PDSCH (New Radio PDSCH).
  • the T downlink physical layer data channels are respectively NB-PDSCH (NarrowBand PDSCH, narrowband PDSCH).
  • the T second type of radio signal corresponding transport channels are respectively DL-SCH (DownLink Shared Channel).
  • the T1 second type wireless signals include W sub-signals, and the T1 first type wireless signals indicate whether any one of the W sub-signals is correctly received, and the W is not less than a positive integer of T1; at least one of all the sub-signals belonging to the same second-class wireless signal of the T1 second-type wireless signals among the W sub-signals is related to the Q-th energy detection space Whether the W sub-signals are correctly received is used to determine the Q.
  • the T1 second type wireless signals include W sub-signals, and the T1 first type wireless signals explicitly indicate whether any one of the W sub-signals is correctly Receiving, the W is a positive integer not less than the T1; at least one sub-signal of all the sub-signals belonging to the same second-class wireless signal in the T1 second-type wireless signals among the W sub-signals
  • the Q energy detections are spatially correlated; whether the W sub-signals are correctly received are used to determine the Q.
  • the T1 second type wireless signals include W sub-signals, and the T1 first type wireless signals implicitly indicate whether any one of the W sub-signals is correctly Receiving, the W is a positive integer not less than the T1; at least one sub-signal of all the sub-signals belonging to the same second-class wireless signal in the T1 second-type wireless signals among the W sub-signals
  • the Q energy detections are spatially correlated; whether the W sub-signals are correctly received are used to determine the Q.
  • the T1 first type radio signals are used to determine K candidate integers, Q1 is one of the K candidate integers; Q1 of the Q detection values The detected values are all lower than a first threshold, the K being a positive integer, and the Q1 being a positive integer not greater than the Q.
  • any of the S third type wireless signals includes control information.
  • the S third type wireless signals are transmitted on the first sub-band.
  • the S third type wireless signals are transmitted on a frequency band other than the first sub-band.
  • the S third type wireless signals are transmitted on the licensed spectrum band outside the first sub-band.
  • the S third type wireless signals are transmitted on the unlicensed frequency band outside the first sub-band.
  • the S third type of wireless signals are transmitted on a frequency band deployed in the licensed spectrum.
  • each of the S third type wireless signals includes a HARQ-ACK.
  • any of the S third type wireless signals includes a UCI, and the first node is a base station.
  • the S third type radio signals are respectively transmitted on S uplink physical layer control channels (that is, uplink channels that can only be used to carry physical layer signaling).
  • the S uplink physical layer control channels are respectively PUCCH.
  • the S uplink physical layer control channels are respectively sPUCCH.
  • the S uplink physical layer control channels are respectively NR-PUCCH.
  • the S uplink physical layer control channels are respectively NB-PUCCH.
  • the S third type radio signals are respectively transmitted on S uplink physical layer data channels (ie, uplink channels that can be used to carry physical layer data).
  • S uplink physical layer data channels ie, uplink channels that can be used to carry physical layer data.
  • the S uplink physical layer data channels are respectively a PUSCH.
  • the S uplink physical layer data channels are respectively sPUSCH.
  • the S uplink physical layer data channels are respectively NR-PUSCH.
  • the S uplink physical layer data channels are respectively NB-PUSCH.
  • any of the fourth fourth type of wireless signals includes data.
  • the S fourth type wireless signals are transmitted on the first sub-band.
  • the frequency domain resources occupied by the S fourth type wireless signals belong to the first sub-band.
  • the frequency domain resources occupied by the S fourth type wireless signals include the first sub-band.
  • the time domain resources occupied by the S fourth type wireless signals are the same.
  • At least two of the S fourth type wireless signals occupy the same time domain resources.
  • the multiple carrier symbols occupied by the S fourth type wireless signals are the same.
  • the time domain resources occupied by the S fourth type wireless signals are orthogonal to each other.
  • the time domain resources occupied by at least two of the S fourth type wireless signals are orthogonal to each other.
  • the frequency domain resources occupied by the S fourth type wireless signals are orthogonal to each other (not overlapping).
  • At least one subcarrier is occupied by the S fourth type of wireless signals.
  • the frequency domain resources occupied by the S fourth type wireless signals are the same.
  • At least two of the S fourth type wireless signals occupy the same frequency domain resources.
  • the frequency domain resources occupied by at least two of the S fourth type wireless signals are orthogonal (non-overlapping).
  • the S fourth type radio signals are respectively transmitted on S downlink physical layer data channels (ie, downlink channels that can be used to carry physical layer data).
  • the S downlink physical layer data channels are respectively PDSCH.
  • the S downlink physical layer data channels are respectively sPDSCH.
  • the S downlink physical layer data channels are respectively NR-PDSCH.
  • the S downlink physical layer data channels are respectively NB-PDSCH.
  • the S fourth type wireless signal corresponding transmission channels are respectively DL-SCH.
  • the second time window includes one or more sub-frames.
  • the second time window includes a sub-frame.
  • the second time window includes a plurality of sub-frames.
  • the second time window includes one or more slots.
  • the second time window includes a slot.
  • the second time window includes a plurality of slots.
  • the second time window comprises a positive integer number of multi-carrier symbols.
  • the second time window includes a positive integer number of consecutive multi-carrier symbols.
  • the second time window is a continuous time period.
  • the burst to which the second time window belongs is located before the Q time subpools in the time domain.
  • the second time window and the first time window are orthogonal (not overlapping) in the time domain.
  • the second time window and the first time window belong to the same burst.
  • the second time window and the first time window belong to different bursts respectively.
  • a time interval between a burst of the second time window and the latest time window in the first time window and a time domain resource occupied by the first information is not less than The first time interval.
  • the first time interval is a positive integer number of sub-frames.
  • the first time interval is 3 subframes.
  • the first time interval is a positive integer number of slots.
  • the first time interval is a positive integer number of multi-carrier symbols.
  • the first time interval is predefined.
  • the first time interval is default.
  • the first node is a base station
  • the S third type wireless signals respectively indicate whether the S fourth type wireless signals are correctly received.
  • the first node is a base station
  • the S third type wireless signals respectively indicate whether the S fourth type wireless signals are correctly received.
  • the first node is a base station
  • the S third type wireless signals respectively implicitly indicate whether the S fourth type wireless signals are correctly received.
  • the S fourth type wireless signals include S1 sub-signals, and the S third-type wireless signals indicate whether any one of the S1 sub-signals is correctly received, and the S1 is not less than a positive integer of S; at least one of all sub-signals of the S1 sub-signals belonging to the same fourth-class wireless signal of the S fourth-type wireless signals is related to the Q-th energy detection space Whether the S1 sub-signals are correctly received and whether the W sub-signals are correctly received are used to determine the Q.
  • the S fourth type wireless signals include S1 sub-signals, and the S third-type wireless signals explicitly indicate whether any one of the S1 sub-signals is correctly Receiving, the S1 is a positive integer not less than the S; at least one sub-signal of all sub-signals belonging to the same fourth-class wireless signal in the S fourth-type wireless signals among the S1 sub-signals
  • the Qth energy detection is spatially correlated; whether the S1 sub-signals are correctly received and whether the W sub-signals are correctly received are used to determine the Q.
  • the S fourth type wireless signals include S1 sub-signals, and the S third type wireless signals implicitly indicate whether any one of the S1 sub-signals is correctly Receiving, the S1 is a positive integer not less than the S; at least one sub-signal of all sub-signals belonging to the same fourth-class wireless signal in the S fourth-type wireless signals among the S1 sub-signals
  • the Qth energy detection is spatially correlated; whether the S1 sub-signals are correctly received and whether the W sub-signals are correctly received are used to determine the Q.
  • the S third type radio signals and the T1 first type radio signals are used together to determine K candidate integers, and Q1 is an alternative integer of the K candidate integers.
  • the Q1 detection values of the Q detection values are all lower than the first threshold, the K is a positive integer, and the Q1 is a positive integer not greater than the Q.
  • the start time of the time domain resource occupied by the fifth wireless signal is the end time of the Q time subpools.
  • the start time of the time domain resource occupied by the fifth wireless signal is later than the end time of the Q time subpools.
  • the fifth wireless signal includes at least one of data, control information, and a reference signal.
  • the fifth wireless signal comprises data.
  • the fifth wireless signal includes control information.
  • the fifth wireless signal includes a reference signal.
  • the fifth wireless signal includes data, control information, and a reference signal.
  • the fifth wireless signal includes data and control information.
  • the fifth wireless signal includes control information and a reference signal.
  • the fifth wireless signal includes data and a reference signal.
  • the data is downlink data
  • the control information is DCI (Downlink Control Information)
  • the reference signal includes DMRS (DeModulation Reference Signals), CSI-RS (Channel State Information-Reference Signal), TRS (finetime/frequencyTracking Reference Signals), and PRTS (Phase Error Tracking Reference Signals) One or more.
  • the fifth wireless signal is transmitted on the first sub-band.
  • the scheduling information of the fifth radio signal includes an MCS (Modulation and Coding Scheme), configuration information of the DMRS, a HARQ process number, an RV (Redundancy Version), and an NDI (New Data). At least one of the indicator, the new data indication, the occupied time-frequency resource, the corresponding multi-antenna related transmission, and the corresponding multi-antenna related reception.
  • MCS Modulation and Coding Scheme
  • RV Redundancy Version
  • NDI New Data
  • the fifth wireless signal comprises data.
  • the scheduling information of the fifth radio signal includes the occupied time domain resource, the occupied frequency domain resource, the occupied code domain resource, a cyclic shift, and an OCC (Orthogonal Cover Code, At least one of an orthogonal mask), an occupied antenna port, a corresponding multi-antenna related transmission, and a corresponding multi-antenna related reception.
  • OCC Orthogonal Cover Code
  • the fifth wireless signal includes a reference signal.
  • the fifth wireless signal is transmitted on a downlink physical layer data channel (ie, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel ie, a downlink channel that can be used to carry physical layer data.
  • the downlink physical layer data channel is a PDSCH.
  • the downlink physical layer data channel is sPDSCH.
  • the downlink physical layer data channel is an NR-PDSCH.
  • the downlink physical layer data channel is an NB-PDSCH.
  • the fifth wireless signal corresponding transmission channel is a DL-SCH.
  • the fifth wireless signal is related to the Qth energy detection space.
  • the first information is dynamically configured.
  • the first information is carried by physical layer signaling.
  • the first information belongs to DCI (Downlink Control Information).
  • the first information belongs to a DCI of a DownLink Grant.
  • the first information is a field in a DCI, and the field includes a positive integer number of bits.
  • the first information consists of a plurality of fields in a DCI, the domains comprising a positive integer number of bits.
  • the first information is carried by a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the first information is carried by a PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the first information is carried by an sPDCCH (short PDCCH).
  • the first information is carried by an NR-PDCCH (New Radio PDCCH).
  • NR-PDCCH New Radio PDCCH
  • the first information is carried by an NB-PDCCH (Narrow Band PDCCH).
  • NB-PDCCH Narrow Band PDCCH
  • the first information is semi-statically configured.
  • the first information is carried by higher layer signaling.
  • the first information is carried by RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the first information is all or a part of an IE (Information Element) in one RRC signaling.
  • the first information is carried by a MAC (Medium Access Control) CE (Control Element) signaling.
  • MAC Medium Access Control
  • CE Control Element
  • the first information is transmitted in an SIB (System Information Block).
  • SIB System Information Block
  • the first information is transmitted on the first sub-band.
  • the first information is transmitted on a frequency band other than the first sub-band.
  • the first information is transmitted on a licensed spectrum band outside the first sub-band.
  • the first information is transmitted on an unlicensed spectrum band outside the first sub-band.
  • the first information is transmitted on a frequency band deployed in the licensed spectrum.
  • the first information is transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is a PDCCH (Physical Downlink Control CHannel).
  • the downlink physical layer control channel is an sPDCCH (short PDCCH).
  • the downlink physical layer control channel is an NR-PDCCH (New Radio PDCCH).
  • NR-PDCCH New Radio PDCCH
  • the downlink physical layer control channel is an NB-PDCCH (Narrow Band PDCCH).
  • NB-PDCCH Narrow Band PDCCH
  • the first information is transmitted on a downlink physical layer data channel (ie, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel ie, a downlink channel that can be used to carry physical layer data.
  • the downlink physical layer data channel is a PDSCH.
  • the downlink physical layer data channel is sPDSCH.
  • the downlink physical layer data channel is an NR-PDSCH.
  • the downlink physical layer data channel is an NB-PDSCH.
  • Embodiment 6 illustrates a flow chart of another wireless transmission, as shown in FIG.
  • base station N03 is a serving cell maintenance base station of user equipment U04.
  • blocks F4, F5 and F6 are optional.
  • T first type wireless signals are transmitted in step S31; T second type wireless signals are received in the first time window in step S32; S third type wireless signals are transmitted in step S33; S fourth type wireless signals are received in the second time window in S34; the first information is transmitted in step S35; and the fifth wireless signal is received in step S36.
  • T first type wireless signals are received in step S41; T second type wireless signals are transmitted in a first time window in step S42; S third type wireless signals are received in step S43; S44 transmitting the fourth fourth type wireless signals in the second time window; receiving the first information in step S45; performing Q energy detections in the Q time subpools on the first subband in step S46, Q detection values are obtained; the fifth wireless signal is transmitted in step S47.
  • the T second type radio signals and the T first type radio signals are in one-to-one correspondence; at least one multi-carrier symbol is occupied by the T second type radio signals; Only T1 of the first type of wireless signals are used by the user equipment U04 to determine the Q, the T is a positive integer greater than 1, the Q is a positive integer, and the T1 is a T1 second type wireless signal of the T second type wireless signals corresponding to the T1 first type wireless signals is all of the T second type wireless signals a second type of wireless signal that is spatially associated with the Qth energy detection; the first node is a user equipment, and the T first type of wireless signals respectively include scheduling of the T second type wireless signals information.
  • the S fourth type wireless signals and the S third type wireless signals are in one-to-one correspondence; the S third type wireless signals and the T1 first type wireless signals are commonly used by the user equipment U04 In determining the Q, the S is a positive integer; the S fourth type wireless signals are spatially associated to the Q energy detection.
  • the start time of the time domain resource occupied by the fifth wireless signal is not earlier than the end time of the Q time subpools.
  • the first information includes scheduling information of the fifth wireless signal.
  • the Q energy detection is energy detection in uplink access detection, respectively.
  • any one of the T first type of wireless signals includes a DCI, and the first node is a user equipment.
  • the T first type radio signals are respectively transmitted on T downlink physical layer control channels (ie, downlink channels that can only be used to carry physical layer signaling).
  • the T downlink physical layer control channels are respectively a PDCCH.
  • the T downlink physical layer control channels are respectively sPDCCH.
  • the T downlink physical layer control channels are respectively NR-PDCCH.
  • the T downlink physical layer control channels are respectively NB-PDCCH.
  • the T second type radio signals are respectively transmitted on T uplink physical layer data channels (ie, uplink channels that can be used to carry physical layer data).
  • T uplink physical layer data channels ie, uplink channels that can be used to carry physical layer data.
  • the T uplink physical layer data channels are respectively a PUSCH.
  • the T uplink physical layer data channels are respectively sPUSCH.
  • the T uplink physical layer data channels are respectively NR-PUSCH.
  • the T uplink physical layer data channels are respectively NB-PUSCH.
  • the T second type of radio signal corresponding transmission channels are respectively UL-SCH (Uplink Shared Channel).
  • the scheduling information of any one of the T second type radio signals includes: ⁇ MCS, DMRS configuration information, HARQ process number, RV, NDI, occupied time-frequency resources, At least one of the corresponding multi-antenna related transmission, the corresponding multi-antenna related reception ⁇ .
  • the configuration information of the DMRS includes occupied time domain resources, occupied frequency domain resources, occupied code domain resources, cyclic shift, and one of OCC. Kind or more.
  • the T1 second type wireless signals include V sub-signals, and the T1 first-type wireless signals indicate whether any one of the V sub-signals includes new data, and the V is not less than a positive integer of the T1; at least one of the V sub-signals belonging to the same second-class wireless signal of the T1 second-type wireless signals is related to the Q-th energy detection space Whether the V sub-signals include new data is used to determine the Q.
  • the T1 second type wireless signals include V sub-signals, and the T1 first-type wireless signals explicitly indicate whether any one of the V sub-signals includes a new one.
  • the V is a positive integer not less than the T1; at least one of the V sub-signals belonging to the same second-class wireless signal of the T1 second-type wireless signals and The Q energy detection space is spatially correlated; whether the V sub-signals include new data is used to determine the Q.
  • the T1 second type wireless signals include V sub-signals, and the T1 first-type wireless signals implicitly indicate whether any one of the V sub-signals includes a new one.
  • the V is a positive integer not less than the T1; at least one of the V sub-signals belonging to the same second-class wireless signal of the T1 second-type wireless signals and The Q energy detection space is spatially correlated; whether the V sub-signals include new data is used to determine the Q.
  • the T1 first type radio signals are used to determine K candidate integers, Q1 is one of the K candidate integers; Q1 of the Q detection values The detected values are all lower than a first threshold, the K being a positive integer, and the Q1 being a positive integer not greater than the Q.
  • any third type of wireless signal of the S third type of wireless signals includes DCI, and the first node is a user equipment.
  • the S third type radio signals are respectively transmitted on S downlink physical layer control channels (ie, downlink channels that can only be used to carry physical layer signaling).
  • the S downlink physical layer control channels are respectively a PDCCH.
  • the S downlink physical layer control channels are respectively sPDCCH.
  • the S downlink physical layer control channels are respectively NR-PDCCH.
  • the S downlink physical layer control channels are respectively NB-PDCCH.
  • the S fourth type radio signals are respectively transmitted on S uplink physical layer data channels (ie, uplink channels that can be used to carry physical layer data).
  • the S uplink physical layer data channels are respectively a PUSCH.
  • the S uplink physical layer data channels are respectively sPUSCH.
  • the S uplink physical layer data channels are respectively NR-PUSCH.
  • the S uplink physical layer data channels are respectively NB-PUSCH.
  • the S fourth type radio signal corresponding transmission channels are respectively UL-SCH (Uplink Shared Channel).
  • the first node is a user equipment
  • the S third type wireless signals respectively include scheduling information of the S fourth type wireless signals.
  • the scheduling information of any fourth type of radio signals of the S fourth type radio signals includes ⁇ MCS, DMRS configuration information, HARQ process number, RV, NDI, occupied time-frequency resources, At least one of the corresponding multi-antenna related transmission, the corresponding multi-antenna related reception ⁇ .
  • the configuration information of the DMRS includes occupied time domain resources, occupied frequency domain resources, occupied code domain resources, cyclic shift, and one of OCC. Kind or more.
  • the S fourth type radio signals include S2 sub-signals
  • the S third type radio signals indicate whether any one of the S2 sub-signals includes new data, and the S2 is not less than a positive integer of S; at least one of the S2 sub-signals belonging to the same fourth-class wireless signal of the S fourth-type wireless signals is related to the Q-th energy detection space Whether the S2 sub-signals include new data and whether the V sub-signals include new data are used together to determine the Q.
  • the S fourth type wireless signals include S2 sub-signals, and the S third-type wireless signals explicitly indicate whether any one of the S2 sub-signals includes a new one.
  • the S2 is a positive integer not less than the S; at least one of the S2 sub-signals belonging to the same fourth-class wireless signal of the S fourth-type wireless signals and The Q energy detection space is spatially correlated; whether the S2 sub-signals include new data and whether the V sub-signals include new data are used together to determine the Q.
  • the S fourth type wireless signals include S2 sub-signals, and the S third type wireless signals implicitly indicate whether any one of the S2 sub-signals includes a new one.
  • the S2 is a positive integer not less than the S; at least one of the S2 sub-signals belonging to the same fourth-class wireless signal of the S fourth-type wireless signals and The Q energy detection space is spatially correlated; whether the S2 sub-signals include new data and whether the V sub-signals include new data are used together to determine the Q.
  • the S third type radio signals and the T1 first type radio signals are used together to determine K candidate integers, and Q1 is an alternative integer of the K candidate integers.
  • the Q1 detection values of the Q detection values are all lower than the first threshold, the K is a positive integer, and the Q1 is a positive integer not greater than the Q.
  • the first information belongs to the DCI of the UpLink Grant.
  • the fifth wireless signal includes at least one of data, control information, and a reference signal.
  • the fifth wireless signal comprises data.
  • the fifth wireless signal includes control information.
  • the fifth wireless signal includes a reference signal.
  • the fifth wireless signal includes data, control information, and a reference signal.
  • the fifth wireless signal includes data and control information.
  • the fifth wireless signal includes control information and a reference signal.
  • the fifth wireless signal includes data and a reference signal.
  • the data is uplink data
  • the control information is UCI
  • the reference signal includes one or more of DMRS, SRS (Sounding Reference Signal), and PTRS. .
  • the fifth wireless signal is transmitted on an uplink physical layer data channel (ie, an uplink channel that can be used to carry physical layer data).
  • an uplink physical layer data channel ie, an uplink channel that can be used to carry physical layer data.
  • the uplink physical layer data channel is a PUSCH.
  • the uplink physical layer data channel is sPUSCH.
  • the uplink physical layer data channel is an NR-PUSCH.
  • the uplink physical layer data channel is an NB-PUSCH.
  • the fifth wireless signal corresponding transmission channel is a UL-SCH.
  • Embodiment 7 illustrates a schematic diagram of a process of performing Q energy detections respectively in Q time subpools; as shown in FIG.
  • the first node in the application performs the Q energy detection in the Q time sub-pools on the first sub-band in the present application, and obtains Q detection values.
  • the Q1 detection values of the Q detection values are lower than the first threshold in the application, and the Q1 is a positive integer not greater than the Q.
  • the Q1 time subpools are time subpools corresponding to the Q1 detection values in the Q time subpools. The process of the Qth energy detection can be described by the flowchart in FIG.
  • the first node is in an idle state in step S1001, and it is determined in step S1002 whether or not transmission is required; in step 1003, energy detection is performed in a delay period; in step S1004, this is determined. Whether all the slot periods in the delay period are idle, if yes, proceed to step S1005 to set the first counter equal to Q1; otherwise, return to step S1004; in step S1006, determine whether the first counter is 0, and if yes, proceed Transmitting the wireless signal on the first sub-band in the present application in step S1007; otherwise proceeding to perform energy detection in an additional slot duration in step S1008; determining the additional time in step S1009 Whether the gap period is idle, if yes, proceeding to step S1010 to decrement the first counter by 1, and then returning to step 1006; otherwise proceeding to step S1011 to perform energy detection in an additional delay period (additional deferduration); in step S1012 Determining whether all time slot periods in this additional delay period are idle, and if so, proceeding Step
  • the first given time period includes a positive integer number of time sub-pools in the Q time sub-pools, the first given time period is ⁇ all delay time periods included in FIG. 7, all additional The slot period, any one of all additional delay periods ⁇ .
  • the second given time period includes one time sub-pool of the Q1 time sub-pools, and the second given time period is ⁇ all additional time slot periods judged to be idle by energy detection in FIG. 7 , all additional Any time period in the delay period ⁇ .
  • any one slot time period in a given time period includes one time sub-pool of the Q time sub-pools; the given time period is ⁇ all delays included in FIG. 7 Time period, any additional time slot period, any one of all additional delay periods ⁇ .
  • performing energy detection within a given time period means performing energy detection within all slot time periods within the given time period; the given time period is included in FIG. Any of the ⁇ all delay periods, all additional slot periods, all additional delay periods ⁇ .
  • determining that the energy is detected as idle during a given time period means that all time slot periods included in the given time period are judged to be idle by energy detection; the given time period is a drawing Any of the ⁇ all delay periods, all additional slot periods, all additional delay periods ⁇ included in 7.
  • the determination of idle by energy detection for a given time slot period means that the first node senses the power of all wireless signals on the first sub-band in a given time unit, and In time averaging, the received received power is lower than the first threshold; the given time unit is one of the given time slot periods.
  • the duration of the given time unit is not shorter than 4 microseconds.
  • the determination of idle time by energy detection for a given time slot period means that the first node senses the energy of all wireless signals on the first sub-band in a given time unit, and Averaged over time, the received received energy is below the first threshold; the given time unit is one of the given time slot periods.
  • the duration of the given time unit is not shorter than 4 microseconds.
  • performing energy detection within a given time period means performing energy detection in all time sub-pools within the given time period; the given time period is ⁇ all delays included in FIG. 7 Time period, any additional time slot period, any one of all additional delay periods ⁇ , all of the time subpools belonging to the Q time subpools.
  • determining that the energy is detected as idle by the energy detection in a given time period means that: the detected values obtained by the energy detection for all the time sub-pools included in the given time period are lower than the first threshold;
  • the given time period is any one of ⁇ all delay periods, all additional slot periods, all additional delay periods ⁇ included in FIG. 7, and all of the time sub-pools belong to the Q time sub-pools.
  • the detected value belongs to the Q detected values.
  • the duration of a defer duration is 16 microseconds plus M1 9 microseconds, which is a positive integer.
  • one delay period includes M1+1 time sub-pools in the Q time sub-pools.
  • the duration of the first time sub-pool in the M1+1 time sub-pool does not exceed 16 microseconds, and the duration of other M1 time sub-pools does not exceed 9 Microseconds.
  • the priority level corresponding to the third wireless signal in the present application is used to determine the M1.
  • the priority level is a Channel Access Priority Class
  • the channel access priority level is defined in section 15 of 3GPP TS 36.213.
  • the M1 belongs to ⁇ 1, 2, 3, 7 ⁇ .
  • a defer duration includes a plurality of slot durations.
  • the first one of the plurality of slot periods and the second slot period are discontinuous.
  • the time interval between the first slot period and the second slot period of the plurality of slot periods is 7 milliseconds.
  • the duration of an additional defer duration is 16 microseconds plus M2 9 microseconds, which is a positive integer.
  • an additional delay period includes M2+1 time sub-pools in the Q time sub-pools.
  • the duration of the first time sub-pool in the M2+1 time sub-pool does not exceed 16 microseconds, and the duration of the other M2 time sub-pools does not exceed 9 Microseconds.
  • the priority level corresponding to the third wireless signal in the present application is used to determine the M2.
  • the M2 belongs to ⁇ 1, 2, 3, 7 ⁇ .
  • the duration of one delay period is equal to the duration of an additional delay period.
  • the M1 is equal to the M2.
  • an additional defer duration includes a plurality of slot durations.
  • the first one of the plurality of slot periods and the second slot period are discontinuous.
  • the time interval between the first slot period and the second slot period of the plurality of slot periods is 7 milliseconds.
  • the duration of one slot duration is 9 microseconds.
  • one slot period includes one time sub-pool of the Q time sub-pools.
  • the duration of the one time sub-pool is no more than 9 microseconds.
  • the duration of an additional slot duration is 9 microseconds.
  • an additional slot period includes one of the Q time subpools.
  • the duration of the one time sub-pool is no more than 9 microseconds.
  • the Qth energy detection is used to determine if the first subband is idle (Idle).
  • the Qth energy detection is used to determine whether the first subband can be used by the first node to transmit a wireless signal.
  • the Q detection value units are both dBm (millimeters).
  • the units of the Q detection values are all milliwatts (mW).
  • the units of the Q detection values are all Joules.
  • the Q1 is smaller than the Q.
  • the Q is greater than one.
  • the unit of the first threshold is dBm (millimeters).
  • the unit of the first threshold is milliwatts (mW).
  • the unit of the first threshold is joule.
  • the first threshold is equal to or less than -72 dBm.
  • the first threshold is any value equal to or smaller than the first given value.
  • the first given value is predefined.
  • the first given value is configured by higher layer signaling, and the first node is a user equipment.
  • the first threshold is freely selected by the first node under conditions equal to or less than a first given value.
  • the first given value is predefined.
  • the first given value is configured by higher layer signaling, and the first node is a user equipment.
  • the Q1 is one of the K candidate integers; the T1 first type wireless signals are used to determine K candidate integers, and the K is a positive integer.
  • the Q1 is one of the K candidate integers; the S third type wireless signals and the T1 first type wireless signals are used together to determine K devices. An integer is selected, and the K is a positive integer.
  • the K belongs to ⁇ 3, 7, 15, 31, 63, 127, 255, 511, 1023 ⁇ .
  • the Q energy detection is energy detection in a LBT (Listen Before Talk) process of Cat4, the Q1 is CWp in the LBT process of the Cat4, and the CWp is a competition.
  • the size of the contention window For the specific definition of the CWp, see section 15 of 3GPP TS36.213.
  • At least one of the detected values that do not belong to the Q1 detection values of the Q detection values is lower than the first threshold.
  • At least one of the detected values that do not belong to the Q1 detection values of the Q detection values is not lower than the first threshold.
  • the duration of any two of the Q1 time subpools is equal.
  • At least two time sub-pools in the Q1 time sub-pools have unequal durations.
  • the Q1 time subpool includes the latest time subpool of the Q time subpools.
  • the Q1 time sub-pools only include slot time periods in the eCCA.
  • the Q time subpools include the Q1 time subpools and Q2 time subpools, and any one of the Q2 time subpools does not belong to the Q1 time subpools.
  • the Q2 is a positive integer not greater than the Q minus the Q1.
  • the Q2 time sub-pools include slot time periods in the initial CCA.
  • the locations of the Q2 time subpools in the Q time subpools are continuous.
  • the detection value corresponding to at least one time sub-pool of the Q2 time sub-pools is lower than the first threshold.
  • the detection value corresponding to at least one time sub-pool of the Q2 time sub-pools is not lower than the first threshold.
  • the Q2 time sub-pools include all slot periods in all delay periods.
  • the Q2 time sub-pools include all slot periods within at least one additional delay period.
  • the Q2 time subpools include at least one additional slot period.
  • the Q2 time sub-pools include all of the additional slot periods that are determined to be non-idle by energy detection in FIG. 7, and all slot periods in all of the additional delay periods.
  • the Q1 time sub-pools belong to the Q1 sub-pool set, and any one of the Q1 sub-pool sets includes a positive integer time sub-pool in the Q time sub-pools;
  • the detected value corresponding to any one of the Q1 sub-pool sets is lower than the first threshold.
  • the number of time sub-pools included in the at least one sub-pool set in the Q1 sub-pool set is equal to 1.
  • At least one of the Q1 sub-pool sets has a number of time sub-pools greater than one.
  • the number of time sub-pools included in the at least two sub-pool sets in the Q1 sub-pool set is unequal.
  • one time sub-pool does not exist in the Q time sub-pools and belongs to two sub-pool sets in the Q1 sub-pool set.
  • all time sub-pools in any one of the Q1 sub-pool sets belong to the same additional delay period or additional slot period determined to be idle by energy detection.
  • the detected value corresponding to at least one time sub-pool in the time sub-pool that does not belong to the Q1 sub-pool set in the Q time sub-pools is lower than the first threshold.
  • the detection value corresponding to at least one time sub-pool in the time sub-pool that does not belong to the Q1 sub-pool set in the Q time sub-pools is not lower than the first threshold.
  • Embodiment 8 illustrates a schematic diagram of a process of performing Q energy detections in another Q time subpools; as shown in FIG.
  • the first node in the application performs the Q energy detection in the Q time subpools on the first subband of the present application, and obtains Q detection values.
  • the Q1 detection values of the Q detection values are lower than the first threshold in the application, and the Q1 is a positive integer not greater than the Q.
  • the Q1 time subpools are time subpools corresponding to the Q1 detection values in the Q time subpools. The process of the Qth energy detection can be described by the flowchart in FIG.
  • the first node is in an idle state in step S1101, and it is determined in step S1102 whether or not transmission is required; in step 1103, energy detection is performed in a delay period; in step S1104, this is determined. Whether all the slot periods in the delay period are idle, if yes, proceeding to send the wireless signal on the first sub-band in the present application in step S1105; otherwise proceeding to perform energy detection in a delay period in step S1106 Determining in step S1107 whether all the slot periods in this delay period are idle, if yes, proceeding to step S1108 to set the first counter equal to Q1; otherwise returning to step S1106; in step S1109, determining whether the first counter is 0, if yes, proceeding to send a wireless signal on the first sub-band in step S1105; otherwise proceeding to step S1110 to perform energy detection in an additional slot period; determining in step S1111 this additional slot period Whether it is idle, if yes, proceeds to step S1112 to decrement the first counter, and then returns to
  • the first given time period includes a positive integer number of time sub-pools in the Q time sub-pools, and the first given time period is ⁇ all delay time periods included in FIG. 8 , all additional The slot period, any one of all additional delay periods ⁇ .
  • the second given time period includes one time sub-pool of the Q1 time sub-pools, and the second given time period is ⁇ all additional time slot periods judged to be idle by energy detection in FIG. 8 , all additional Any time period in the delay period ⁇ .
  • the Q1 is equal to 0, and the first node determines in the step S1104 that all time slot periods in the delay period are idle.
  • the Q1 is one of the K alternative integers in the application, and the K is a positive integer, and the first node determines in step S1104 that not all of the delay periods are The slot time period is idle.
  • Embodiment 9 illustrates a schematic diagram of an antenna port and an antenna port group, as shown in FIG.
  • one antenna port group includes a positive integer number of antenna ports; one antenna port is formed by superposing antennas in a positive integer number of antenna groups by antenna virtualization; one antenna group includes a positive integer antenna.
  • An antenna group is connected to the baseband processor through an RF (Radio Frequency) chain, and different antenna groups correspond to different RF chains.
  • a mapping coefficient of all antennas within a positive integer number of antenna groups included in a given antenna port to the given antenna port constitutes a beamforming vector corresponding to the given antenna port.
  • the mapping coefficients of the plurality of antennas included in any given antenna group included in a given integer number of antenna groups included in the given antenna port to the given antenna port constitute an analog beamforming vector of the given antenna group.
  • the diagonal arrangement of the analog beamforming vectors corresponding to the positive integer antenna groups constitutes an analog beam shaping matrix corresponding to the given antenna port.
  • the mapping coefficients of the positive integer number of antenna groups to the given antenna port constitute a digital beamforming vector corresponding to the given antenna port.
  • the beamforming vector corresponding to the given antenna port is obtained by multiplying the analog beam shaping matrix and the digital beam shaping vector corresponding to the given antenna port.
  • Different antenna ports in one antenna port group are composed of the same antenna group, and different antenna ports in the same antenna port group correspond to different beamforming vectors.
  • antenna port group #0 and antenna port group #1 Two antenna port groups are shown in Figure 9: antenna port group #0 and antenna port group #1.
  • the antenna port group #0 is composed of an antenna group #0
  • the antenna port group #1 is composed of an antenna group #1 and an antenna group #2.
  • the mapping coefficients of the plurality of antennas in the antenna group #0 to the antenna port group #0 constitute an analog beamforming vector #0
  • the mapping coefficients of the antenna group #0 to the antenna port group #0 constitute a number Beamforming vector #0
  • the mapping coefficients of the plurality of antennas in the antenna group #1 and the plurality of antennas in the antenna group #2 to the antenna port group #1 constitute an analog beamforming vector #1 and an analog beamforming vector #, respectively. 2.
  • the mapping coefficients of the antenna group #1 and the antenna group #2 to the antenna port group #1 constitute a digital beamforming vector #1.
  • a beamforming vector corresponding to any one of the antenna port groups #0 is obtained by multiplying the analog beamforming vector #0 and the digital beamforming vector #0.
  • the beamforming vector corresponding to any antenna port in the antenna port group #1 is an analog beam shaping matrix formed by diagonally arranging the analog beamforming vector #1 and the analog beamforming vector #2 Obtained from the product of the digital beamforming vector #1.
  • one antenna port group includes one antenna port.
  • the antenna port group #0 in FIG. 9 includes one antenna port.
  • the analog beamforming matrix corresponding to the one antenna port is reduced into an analog beamforming vector, and the digital beamforming vector corresponding to the one antenna port is reduced to a scalar.
  • the beamforming vector corresponding to one antenna port is equal to the analog beamforming vector corresponding to the one antenna port.
  • the digital beamforming vector #0 in FIG. 9 is reduced to a scalar, and the beamforming vector corresponding to the antenna port in the antenna port group #0 is the analog beamforming vector #0.
  • one antenna port group includes a plurality of antenna ports.
  • the antenna port group #1 in FIG. 9 includes a plurality of antenna ports.
  • the plurality of antenna ports correspond to the same analog beam shaping matrix.
  • At least two of the plurality of antenna ports correspond to the same analog beam shaping matrix.
  • At least two of the plurality of antenna ports correspond to different analog beam shaping matrices.
  • the plurality of antenna ports correspond to different digital beamforming vectors.
  • At least two of the plurality of antenna ports correspond to the same digital beamforming vector.
  • At least two of the plurality of antenna ports correspond to different digital beamforming vectors.
  • any two antenna ports of different antenna port groups correspond to different analog beam shaping matrices.
  • At least two of the different antenna port groups correspond to different analog beam shaping matrices.
  • At least two of the different antenna port groups correspond to the same analog beam shaping matrix.
  • two different antenna port groups are QCL (Quasi Co-Located).
  • two different antenna port groups are not QCLs.
  • any two of the antenna port groups are QCLs.
  • any two of the antenna port groups are not QCL.
  • At least two of the antenna port groups are QCLs.
  • At least two of the antenna port groups are not QCL.
  • any two of the antenna port groups are spatial QCLs.
  • any two antenna ports in an antenna port group are not spatial QCLs.
  • At least two of the antenna port groups are spatial QCLs.
  • At least two of the antenna port groups are not spatial QCLs.
  • the fact that the two antenna ports are QCL means that all or part of the large-scale properties of the wireless signal that can be transmitted from one of the two antenna ports can be inferred. All or part of the large-scale characteristics of the wireless signal transmitted on the other of the antenna ports.
  • the two antenna ports being QCL means that the two antenna ports have at least one identical QCL parameter (QCL parameter), and the QCL parameters include multiple antenna related QCL parameters and multiple antenna independent QCL parameters.
  • QCL parameter QCL parameter
  • the two antenna ports being QCL means that at least one QCL of the other of the two antenna ports can be inferred from at least one QCL parameter of one of the two antenna ports. parameter.
  • the fact that the two antenna ports are QCL means that the multi-antenna related reception of the wireless signal that can be transmitted from one of the two antenna ports infers the other of the two antenna ports. Multi-antenna related reception of wireless signals transmitted on antenna ports.
  • the two antenna ports being QCL means that the multi-antenna related transmission of the wireless signal that can be transmitted from one of the two antenna ports infers the other of the two antenna ports Multi-antenna related transmission of wireless signals transmitted on antenna ports.
  • the fact that the two antenna ports are QCL means that the multi-antenna related reception of the wireless signal that can be transmitted from one of the two antenna ports infers the other of the two antenna ports.
  • Multi-antenna related transmission of a wireless signal transmitted on an antenna port, a receiver of a wireless signal transmitted on one of the two antenna ports, and another antenna port of the two antenna ports The sender of the wireless signal sent on is the same.
  • the fact that two antenna ports are not QCL means that all or part of the large-scale nature of the wireless signal transmitted from one of the two antenna ports cannot be inferred. All or part of the large-scale characteristics of the wireless signal transmitted on the other of the two antenna ports.
  • the fact that the two antenna ports are not QCL means that the two antenna ports have at least one different QCL parameter (QCL parameter), and the QCL parameters include multiple antenna related QCL parameters and multiple antenna independent QCL parameters.
  • QCL parameter QCL parameter
  • the fact that the two antenna ports are not QCL means that at least one of the two antenna ports cannot be inferred from at least one QCL parameter of one of the two antenna ports. QCL parameters.
  • the fact that the two antenna ports are not QCL means that the multi-antenna related reception of the wireless signal that cannot be transmitted from one of the two antenna ports is inferred to be another of the two antenna ports. Multi-antenna related reception of wireless signals transmitted on one antenna port.
  • the fact that the two antenna ports are not QCL means that the multi-antenna related transmission of the wireless signal that cannot be transmitted from one of the two antenna ports is inferred to be another of the two antenna ports. Multi-antenna related transmission of wireless signals transmitted on one antenna port.
  • the fact that the two antenna ports are not QCL means that the multi-antenna related reception of the wireless signal that cannot be transmitted from one of the two antenna ports is inferred to be another of the two antenna ports.
  • Multi-antenna related transmission of a wireless signal transmitted on one antenna port, a receiver of a wireless signal transmitted on one of the two antenna ports, and another antenna of the two antenna ports The sender of the wireless signal sent on the port is the same.
  • the multi-antenna related QCL parameters include one or more of an angle of arrival, an angle of departure, a spatial correlation, a multi-antenna related transmission, and a multi-antenna related reception.
  • an angle of arrival an angle of departure
  • a spatial correlation a multi-antenna related transmission
  • a multi-antenna related reception a multi-antenna related reception.
  • multi-antenna-independent QCL parameters include: delay spread, Doppler spread, Doppler shift, path loss, average gain (average) One or more of gains.
  • the two antenna ports are spatial QCL refers to all or part of a multi-antenna related large-scale characteristic of a wireless signal that can be transmitted from one of the two antenna ports ( Properties) Inferring all or part of the multi-antenna-related large-scale characteristics of the wireless signal transmitted on the other of the two antenna ports.
  • the two antenna ports are spatial QCL, which means that the two antenna ports have at least one identical multi-antenna related QCL parameter (spatialQCLparameter).
  • the two antenna ports are spatial QCL, which means that the other of the two antenna ports can be inferred from at least one multi-antenna related QCL parameter of one of the two antenna ports. At least one multi-antenna related QCL parameter of the antenna port.
  • the two antenna ports are spatial QCL, which means that the multi-antenna related reception of the wireless signal that can be transmitted from one of the two antenna ports infers the other of the two antenna ports. Multi-antenna related reception of wireless signals transmitted on one antenna port.
  • the two antenna ports are spatial QCL means that the multi-antenna related transmission of the wireless signal that can be transmitted from one of the two antenna ports infers the other of the two antenna ports Multi-antenna related transmission of wireless signals transmitted on one antenna port.
  • the two antenna ports are spatial QCL, which means that the multi-antenna related reception of the wireless signal that can be transmitted from one of the two antenna ports infers the other of the two antenna ports.
  • Multi-antenna related transmission of a wireless signal transmitted on one antenna port, a receiver of a wireless signal transmitted on one of the two antenna ports, and another antenna of the two antenna ports The sender of the wireless signal sent on the port is the same.
  • the two antenna ports are not spatial QCL refers to all or part of the multi-antenna related large-scale characteristics of the wireless signal that cannot be transmitted from one of the two antenna ports. (properties) Inferring all or part of the multi-antenna-related large-scale characteristics of the wireless signal transmitted on the other of the two antenna ports.
  • the two antenna ports are not spatial QCL, which means that the two antenna ports have at least one different multi-antenna related QCL parameter (spatialQCLparameter).
  • the fact that the two antenna ports are not spatial QCL means that one of the two antenna ports cannot be inferred from at least one multi-antenna related QCL parameter of one of the two antenna ports. At least one multi-antenna related QCL parameter of an antenna port.
  • the two antenna ports are not spatial QCL, meaning that the multi-antenna related reception of the wireless signal that cannot be transmitted from one of the two antenna ports is inferred from the two antenna ports. Multi-antenna related reception of wireless signals transmitted on another antenna port.
  • the two antenna ports are not spatial QCL, meaning that the multi-antenna related transmission of the wireless signal that cannot be transmitted from one of the two antenna ports is inferred from the two antenna ports. Multi-antenna related transmission of wireless signals transmitted on another antenna port.
  • the two antenna ports are not spatial QCL, meaning that the multi-antenna related reception of the wireless signal that cannot be transmitted from one of the two antenna ports is inferred from the two antenna ports.
  • Multi-antenna related transmission of a wireless signal transmitted on another antenna port, a receiver of a wireless signal transmitted on one of the two antenna ports, and another of the two antenna ports The sender of the wireless signal transmitted on the antenna port is the same.
  • the multi-element related large-scale characteristics of a given wireless signal include angle of arrival, angle of departure, spatial correlation, multi-antenna related transmission, multi-antenna related reception. One or more.
  • Embodiments 10A through 10B respectively illustrate schematic diagrams of a given wireless signal associated with a given energy detection space.
  • the given energy detection corresponds to any one of the Q energy detections in the present application
  • the given wireless signal corresponds to the T1 second type wireless signals in the present application.
  • Any one of the sub-signals included in any of the second type of wireless signals associated with the Q-th energy detection space; or the given wireless signal corresponds to the S fourth-class in the present application
  • Any of the sub-signals included in any of the fourth type of wireless signals included in the wireless signal is associated with the Q-th energy detection space; the given wireless signal corresponds to the fifth wireless signal in the present application.
  • a given wireless signal spatially correlated with a given energy detection means that the multiple antenna related reception used by the given energy detection can be used to infer multi-antenna correlation of the given wireless signal. Transmitting, or multi-antenna related transmission of the given wireless signal can be used to infer multi-antenna related reception used by the given energy detection.
  • a given wireless signal is spatially correlated with a given energy detection means that the multiple antenna related reception used for the given energy detection is the same as the multiple antenna related transmission of the given wireless signal.
  • a given wireless signal is spatially correlated with a given energy detection means that the multiple antenna related reception used by the given energy detection includes multiple antenna related transmissions of a given wireless signal.
  • a given wireless signal is spatially correlated with a given energy detection means that the beamwidth corresponding to the received beamforming matrix used for the given energy detection is not less than the transmit beamforming of the given wireless signal.
  • the beam width corresponding to the matrix is not less than the transmit beamforming of the given wireless signal.
  • a given wireless signal is spatially correlated with a given energy detection means that the beam direction corresponding to the received beam shaping matrix used for the given energy detection comprises a transmit beam shaping matrix of the given wireless signal. Corresponding beam direction.
  • a given wireless signal is spatially correlated with a given energy detection means that the beamwidth corresponding to the received beam used for the given energy detection is greater than the beamwidth corresponding to the transmit beam of the given wireless signal.
  • a given wireless signal is spatially correlated with a given energy detection means that the receive beam used by the given energy detection includes a transmit beam of the given wireless signal.
  • a given wireless signal is not correlated with a given energy detection space means that the multiple antenna related reception used for the given energy detection cannot be used to infer multi-antenna correlation of the given wireless signal
  • the transmission, or multi-antenna related transmission of the given wireless signal cannot be used to infer the multi-antenna related reception used by the given energy detection.
  • a given wireless signal is not correlated with a given energy detection space means that the multiple antenna related reception used for the given energy detection is different from the multiple antenna related transmission of the given wireless signal.
  • a given wireless signal is not correlated with a given energy detection space means that the multi-antenna related reception used by the given energy detection does not include multi-antenna related transmission of a given wireless signal.
  • the given wireless signal is not correlated with a given energy detection space, meaning that the beamwidth corresponding to the received beamforming matrix used for the given energy detection is smaller than the transmit beamforming of the given wireless signal.
  • the beam width corresponding to the matrix is smaller than the transmit beamforming of the given wireless signal.
  • the given wireless signal is not correlated with a given energy detection space, meaning that the beam direction corresponding to the received beamforming matrix used by the given energy detection does not include the transmit beam assignment of the given wireless signal.
  • the beam direction corresponding to the type matrix is not correlated with a given energy detection space, meaning that the beam direction corresponding to the received beamforming matrix used by the given energy detection does not include the transmit beam assignment of the given wireless signal.
  • a given wireless signal is not correlated with a given energy detection space, meaning that the beamwidth corresponding to the received beam used for the given energy detection is less than the beamwidth corresponding to the transmit beam of the given wireless signal.
  • a given wireless signal is not correlated with a given energy detection space means that the receive beam used by the given energy detection does not include the transmit beam of the given wireless signal.
  • the multi-antenna related reception is a spatial Rx parameter.
  • the multi-antenna related reception is a receive beam.
  • the multi-antenna related reception is a receive beamforming matrix.
  • the multi-antenna related reception is a receive analog beam shaping matrix.
  • the multi-antenna related reception is to receive an analog beamforming vector.
  • the multi-antenna related reception is a receive beamforming vector.
  • the multi-antenna related reception is receive spatial filtering.
  • the multi-antenna related transmission is a spatial transmission parameter (Spatial Tx parameters).
  • the multi-antenna related transmission is a transmit beam.
  • the multi-antenna related transmission is a transmit beam shaping matrix.
  • the multi-antenna related transmission is to transmit an analog beamforming matrix.
  • the multi-antenna related transmission is to transmit an analog beamforming vector.
  • the multi-antenna related transmission is a transmit beamforming vector.
  • the multi-antenna related transmission is transmission spatial filtering.
  • the Spatial Tx parameters include a transmit antenna port, a transmit antenna port group, a transmit beam, an transmit analog beam shaping matrix, a transmit analog beamforming vector, a transmit beamforming matrix, and a transmit beam.
  • One or more of the shaping vector and the transmission spatial filtering include a transmit antenna port, a transmit antenna port group, a transmit beam, an transmit analog beam shaping matrix, a transmit analog beamforming vector, a transmit beamforming matrix, and a transmit beam.
  • the spatial transmission parameter comprises a transmit antenna port.
  • the spatial transmission parameter comprises a transmit antenna port group.
  • the spatial transmission parameter comprises a transmit beam.
  • the spatial transmission parameter comprises transmitting an analog beam shaping matrix.
  • the spatial transmission parameter includes transmitting an analog beamforming vector.
  • the spatial transmission parameter comprises a transmit beam shaping matrix.
  • the spatial transmission parameter comprises a transmit beamforming vector.
  • the spatial transmission parameters include a transmit antenna port and a transmit beam.
  • the spatial transmission parameters include a transmit antenna port and a transmit analog beam shaping matrix.
  • the spatial transmission parameters include a transmit antenna port and a transmit analog beamform vector.
  • the spatial transmission parameters include a transmit antenna port and a transmit beam shaping matrix.
  • the spatial transmission parameters include a transmit antenna port and a transmit beamforming vector.
  • the spatial transmission parameters include a transmit antenna port group and a transmit beam.
  • the spatial transmission parameters include a transmit antenna port group and a transmit analog beam shaping matrix.
  • the spatial transmission parameters include a transmit antenna port group and a transmit analog beamform vector.
  • the spatial transmission parameters include a transmit antenna port group and a transmit beam shaping matrix.
  • the spatial transmission parameters include a transmit antenna port group and a transmit beam assignment vector.
  • the spatial Rx parameters include a receive beam, a receive analog beamforming matrix, a receive analog beamforming vector, a receive beamforming matrix, a receive beamforming vector, and a receive spatial filter (spatial). One or more of filtering).
  • the spatial reception parameter comprises a receive beam.
  • the spatial reception parameter comprises receiving an analog beamforming matrix.
  • the spatial reception parameter comprises receiving an analog beamforming vector.
  • the spatial reception parameter comprises a receive beamforming matrix.
  • the spatial receive parameter comprises a receive beamform vector.
  • the spatial reception parameter comprises receive spatial filtering.
  • the number of antennas used for the given energy detection is less than the number of transmit antennas for the given wireless signal.
  • the number of antennas used for the given energy detection is greater than one.
  • the number of transmit antennas for a given wireless signal is greater than one.
  • the embodiment 10A is related to the given energy detection space by using the same received wireless signal as the received beam of the given energy detection and the given wireless signal of the given wireless signal.
  • the embodiment 10B corresponds to a schematic diagram in which the received beam used by the given energy detection includes the given wireless signal of the transmit beam of the given wireless signal and is related to the given energy detection space. .
  • Embodiments 11A through 11D respectively illustrate schematic diagrams of the relationship of one X given first wireless signal, X given second wireless signals, and Q, respectively.
  • the first node in the present application is a base station, and the X given first wireless signals respectively indicate whether the X given second wireless signals are correctly received; Determining that the second wireless signal comprises Y sub-signals, the X given first radio signals indicating whether any one of the Y sub-signals is correctly received, and the Y is a positive integer not less than the X; At least one of the Y sub-signals belonging to the same given second radio signal of the X given second radio signals is related to the Q-th energy detection space in the present application; Whether the Y sub-signals are correctly received is used to determine the Q.
  • the X given first wireless signals correspond to the T1 first type wireless signals in the present application
  • the X given second wireless signals correspond to the T1 second type wireless signals in the present application
  • the Y sub-signals correspond to the W sub-signals in the present application
  • the X given first radio signals correspond to the S third-type radio signals and the T1 first-class in the present application.
  • a wireless signal where the X predetermined second wireless signals correspond to the S fourth type wireless signals and the T1 second type wireless signals in the application, where the Y sub signals correspond to the foregoing in the application. S1 sub-signals and the W sub-signals.
  • the Y is greater than the X.
  • At least one of the sub-signals included in one of the X given second radio signals is not correlated with the Q-th energy detection space.
  • At least one of all sub-signals included in any given second wireless signal of the X given second wireless signals is related to the Q-th energy detection space.
  • At least one given second wireless signal of the X given second wireless signals includes a plurality of sub-signals.
  • any given second wireless signal of the X given second wireless signals includes a plurality of sub-signals.
  • the first reference wireless signal includes Y2 sub-signals, and the first reference wireless signal is any given second wireless signal of the X given second wireless signals, and the Y2 sub-signals belong to Describe Y sub-signals.
  • the Y2 is greater than 1, and the Y2 sub-signals occupy the same time domain resource.
  • the Y2 is greater than 1, and at least one multi-carrier symbol is occupied by the Y2 sub-signals.
  • the Y2 is greater than 1, and the Y2 sub-signals occupy the same frequency domain resource.
  • the Y2 is greater than 1, and at least one subcarrier is occupied by the Y2 sub-signals.
  • the Y2 is greater than 1, and the multi-antenna related transmissions of the Y2 sub-signals are different from each other.
  • the Y2 is greater than 1, and the multi-antenna related transmissions of the Y2 sub-signals are the same.
  • the Y2 is a positive integer not greater than 2.
  • the Y2 is equal to one.
  • the Y2 is equal to two.
  • the Y2 is equal to the number of codewords of the first reference wireless signal.
  • the first reference wireless signal includes Y2 codewords, and the Y2 sub-signals respectively correspond to the Y2 codewords.
  • the Y2 is greater than 1, and the Y2 sub-signals respectively occupy antenna ports or antenna port groups that are different from each other.
  • one of the X given first wireless signals corresponding to the first reference wireless signal, the given first wireless signal includes Y2 first sub-signals, and the Y2 The first sub-signals are respectively used to determine whether the Y2 sub-signals are correctly received.
  • the first ratio is equal to the ratio of the number of sub-signals not correctly received in the Y sub-signals to the Y, the first ratio being used to determine the Q.
  • the embodiment 11A includes a total of Y HARQ-ACK feedbacks corresponding to the X given first wireless signals, where the Y HARQ-ACK feedbacks respectively correspond to the Y sub-signals, and the Y
  • the value of any HARQ-ACK feedback in the HARQ-ACK feedback belongs to one of ⁇ ACK (ACKnowledgement), NACK (Negative ACKnowledgement), and the first ratio is equal to the NACK in the Y HARQ-ACK feedbacks.
  • the Y is greater than the X
  • Y1 sub-signals are all sub-signals of the Y sub-signals related to the Q-th energy detection space
  • the Y1 is a positive integer smaller than the Y; Only information of whether or not the Y1 sub-signals are correctly received among the Y sub-signals is used to determine the Q.
  • the Y is greater than the X
  • Y1 sub-signals are all sub-signals of the Y sub-signals related to the Q-th energy detection space
  • the Y1 is a positive integer smaller than the Y
  • a ratio is equal to the ratio of the number of sub-signals not correctly received in the Y1 sub-signals to the Y1, the first ratio being used to determine the Q.
  • the embodiment 11B includes a total of Y HARQ-ACK feedbacks corresponding to the X given first wireless signals, where the Y HARQ-ACK feedbacks respectively correspond to the Y sub-signals, and the Y
  • the value of any HARQ-ACK feedback in the HARQ-ACK feedback belongs to one of ⁇ ACK, NACK ⁇ ;
  • the Y1 HARQ-ACK feedback is the HARQ corresponding to the Y1 sub-signals in the Y HARQ-ACK feedbacks.
  • - ACK feedback the first ratio is equal to the X given first wireless signals, the X given second wireless signals, and the number of NACKs in the Y1 HARQ-ACK feedback and the ratio of the Y1
  • the Y is greater than the X
  • whether the Y sub-signals are correctly received are used to determine X first statistic values, the X first statistic values respectively indicating the X given metrics Whether the two wireless signals are counted as being correctly received, the X first statistical values are used to determine the Q.
  • the first reference wireless signal is any given second wireless signal of the X given second wireless signals, and the Y reference signals belong to the first reference wireless signal At least one of the sub-signals of all of the sub-signals is not correlated with the Q-th energy detection space.
  • the first reference wireless signal is any given second wireless signal of the X given second wireless signals, and the first reference wireless signal is used by the Y sub-signals All of the included sub-signals are correctly received, and the first reference radio signal is counted as being correctly received.
  • the first reference wireless signal is any given second wireless signal of the X given second wireless signals, and the first reference wireless signal is used by the Y sub-signals At least one of the included sub-signals is not correctly received, and the first reference radio signal is counted as not being correctly received.
  • whether the Y sub-signals are correctly received are used to determine X first statistic values, respectively, the X first statistic values respectively indicating whether the X given second radio signals are counted as correct Receiving, the first ratio is equal to a ratio of the number of the given second wireless signals that are counted as not correctly received, and the ratio of the X, of the X given second wireless signals indicated by the X first statistical values, The first ratio is used to determine the Q.
  • the embodiment 11C includes a total of Y HARQ-ACK feedbacks corresponding to the X given first wireless signals, where the Y HARQ-ACK feedbacks respectively correspond to the Y sub-signals, and the Y The value of any HARQ-ACK feedback in the HARQ-ACK feedback belongs to one of ⁇ ACK, NACK ⁇ ; the Y HARQ-ACK feedback is used to determine X first statistic values, the X first The value of any one of the statistic values belongs to one of ⁇ ACK, NACK ⁇ ; the first ratio is equal to the X of the number of NACKs and the ratio of the X of the X first statistic values A schematic diagram of the relationship of the first wireless signal, the X given second wireless signals, and the Q is given.
  • the Y is greater than the X
  • the X given second wireless signals are composed of t1 given second wireless signals and t2 given second wireless signals
  • the t1 given first All sub-signals included in any given second radio signal are associated with the Q-th energy detection space
  • any given second radio signal of the t2 given second radio signals is included
  • At least one of the sub-signals of the plurality of sub-signals is uncorrelated with the Q-th energy detection space, the t1 being a positive integer greater than 1 and less than the X, the t2 being a positive integer greater than 1 and less than the X,
  • the X is equal to the sum of the t1 and the t2.
  • the t1 given second wireless signals include w1 sub-signals
  • the t2 given second wireless signals include w2 sub-signals
  • the Y sub-signals are composed of the w1 sub-signals and the w2 sub-signals; Whether the w2 sub-signals are correctly received is used to determine t2 first statistic values, the t2 first statistic values respectively indicating whether the t2 given second radio signals are counted as correctly receiving, the t2
  • the first statistic value and whether the w1 sub-signals are correctly received are used to determine the Q.
  • the first reference wireless signal is any given second wireless signal of the t2 given second wireless signals, and the first reference wireless signal is used in the w2 sub-signals All of the included sub-signals are correctly received, and the first reference radio signal is counted as being correctly received.
  • the first reference wireless signal is any given second wireless signal of the t2 given second wireless signals, and the first reference wireless signal is used in the w2 sub-signals At least one of the included sub-signals is not correctly received, and the first reference radio signal is counted as not being correctly received.
  • the first reference value is equal to the number of sub-signals that are not correctly received in the w1 sub-signals and the t2 given second radio signals indicated by the t2 first statistic values are counted as The sum of the number of given second wireless signals that are not correctly received, the second reference value being equal to the sum of the w1 and the t2, the first ratio being equal to the ratio of the first reference value to the second reference value, The first ratio is used to determine the Q.
  • the embodiment 11D includes a total of Y HARQ-ACK feedbacks corresponding to the X given first wireless signals, where the Y HARQ-ACK feedbacks respectively correspond to the Y sub-signals, and the Y
  • the value of any HARQ-ACK feedback in the HARQ-ACK feedback belongs to one of ⁇ ACK, NACK ⁇ ; the Y HARQ-ACK feedback consists of w1 HARQ-ACK feedback and w2 HARQ-ACK feedback.
  • the w1 HARQ-ACK feedbacks respectively indicate whether the w1 sub-signals are correctly received; the w2 HARQ-ACK feedbacks are used to determine t2 first statistic values, and any one of the t2 first statistic values
  • the value of a statistic value belongs to one of ⁇ ACK, NACK ⁇ ; the first ratio is equal to the number of the w1 HARQ-ACK feedbacks and the t2 first statistic values, and the w1 and the t2
  • Embodiments 12A through 12H respectively illustrate schematic diagrams of the relationship of another X given first wireless signals, X given second wireless signals, and Q.
  • the first node in the application is a user equipment
  • the X given first wireless signals respectively include X pieces of second information
  • the X pieces of second information respectively include the X pieces.
  • the X given second wireless signals include Z sub-signals, the X second information indicating whether any one of the Z sub-signals includes new data, Z is a positive integer not less than the X; at least one of the Z sub-signals belonging to the same second wireless signal of the X given second wireless signals and the sub-signal of the present application
  • the Q energy detection space is spatially correlated; whether the Z sub-signals include new data is used to determine the Q.
  • the X given first wireless signals correspond to the T1 first type wireless signals in the present application
  • the X given second wireless signals correspond to the T1 second type wireless signals in the present application
  • the Z sub-signals correspond to the V sub-signals in the present application
  • the X given first radio signals correspond to the S third-type wireless signals and the T1 first-class in the present application.
  • a wireless signal where the X predetermined second wireless signals correspond to the S fourth type wireless signals and the T1 second type wireless signals in the present application, where the Z sub-signals correspond to the foregoing in the application.
  • the X pieces of second information are dynamic signaling, respectively.
  • the X pieces of second information are physical layer signaling respectively.
  • the X pieces of second information are dynamic signaling for uplink granting, respectively.
  • the X pieces of second information respectively include a DCI.
  • the X pieces of second information respectively include an UpLink GrantDCI.
  • each of the X pieces of second information includes a first domain, and a first one of the second pieces of the second information indicates a corresponding one of the X Determining whether each of the second wireless signals of each of the second wireless signals includes new data.
  • the first field in any one of the X pieces of second information is an NDI.
  • the first field of any one of the X pieces of second information includes a positive integer number of bits.
  • the first field of any one of the X pieces of second information includes 1 bit.
  • the first field of any one of the X pieces of second information includes 2 bits.
  • the Z is greater than the X.
  • At least one of the sub-signals included in one of the X given second radio signals is not correlated with the Q-th energy detection space.
  • At least one of all sub-signals included in any given second wireless signal of the X given second wireless signals is related to the Q-th energy detection space.
  • At least one given second wireless signal of the X given second wireless signals includes a plurality of sub-signals.
  • any given second wireless signal of the X given second wireless signals includes a plurality of sub-signals.
  • the second reference wireless signal includes Z2 sub-signals, and the second reference wireless signal is any given second wireless signal of the X given second wireless signals, and the Z2 sub-signals belong to the Said Z sub-signals.
  • the Z2 is greater than 1, and the Z2 sub-signals occupy the same time domain resource.
  • the Z2 is greater than 1, and at least one multi-carrier symbol is occupied by the Z2 sub-signals.
  • the Z2 is greater than 1, and the Z2 sub-signals occupy the same frequency domain resource.
  • the Z2 is greater than 1, and at least one subcarrier is occupied by the Z2 sub-signals.
  • the Z2 is greater than 1, and the multi-antenna related transmissions of the Z2 sub-signals are different from each other.
  • the Z2 is greater than 1, and the multi-antenna related transmissions of the Z2 sub-signals are the same.
  • the Z2 is a positive integer not greater than 2.
  • the Z2 is equal to one.
  • the Z2 is equal to two.
  • the Z2 is equal to the number of codewords of the second reference wireless signal.
  • the second reference wireless signal includes Z2 codewords, and the Z2 sub-signals respectively correspond to the Z2 codewords.
  • the Z2 is greater than 1, and the Z2 sub-signals respectively occupy antenna ports or antenna port groups that are different from each other.
  • the second information of the X pieces of second information corresponding to the second reference wireless signal indicates whether each of the Z2 sub-signals includes new data.
  • the first value is equal to the number of sub-signals including new data in the Z sub-signals, the first value being used to determine the Q.
  • the embodiment 12A corresponds to the X first given first wireless signals, the X given second wirelesss whose first value is equal to the number of sub-signals including new data among the Z sub-signals Schematic diagram of the relationship between the signal and the Q.
  • the first value is equal to a ratio of the number of sub-signals including new data in the Z sub-signals to the Z, the first value being used to determine the Q.
  • the embodiment 12B corresponds to the X first given first wireless signals, the X whose first value is equal to the ratio of the number of sub-signals including new data in the Z sub-signals to the Z
  • a schematic diagram of the relationship between the second wireless signal and the Q is given.
  • the Z is greater than the X
  • Z1 sub-signals are all sub-signals of the Z sub-signals related to the Q-th energy detection space
  • the Z1 is a positive integer smaller than the Z
  • the Z is greater than the X
  • Z1 sub-signals are all sub-signals of the Z sub-signals related to the Q-th energy detection space
  • the Z1 is a positive integer smaller than the Z
  • a value equal to the number of sub-signals including new data in the Z1 sub-signals, the first value being used to determine the Q.
  • the embodiment 12C corresponds to the first given value being equal to the number X of the Z1 sub-signals including the new data, and the X given second wireless signals.
  • the Z is greater than the X
  • Z1 sub-signals are all sub-signals of the Z sub-signals related to the Q-th energy detection space
  • the Z1 is a positive integer smaller than the Z
  • a value equal to a ratio of the number of sub-signals including new data in the Z1 sub-signals to the Z1, the first value being used to determine the Q.
  • the embodiment 12D corresponds to the X first given first wireless signals, the X whose first value is equal to the ratio of the number of sub-signals including new data in the Z1 sub-signals to the Z1.
  • a schematic diagram of the relationship between the second wireless signal and the Q is given.
  • the Z is greater than the X, whether the Z sub-signals include new data is used to determine X second statistic values, and the X second statistic values respectively indicate the X given Whether the two wireless signals are counted to include new data, the X second statistical values are used to determine the Q.
  • the second reference radio signal is any given second radio signal of the X given second radio signals, and the Z sub-signals belong to the second reference radio signal At least one of the sub-signals of all of the sub-signals is not correlated with the Q-th energy detection space.
  • the second reference wireless signal is any given second wireless signal of the X given second wireless signals, and the second reference wireless signal is used by the Z sub-signals All of the sub-signals included include new data, and the second reference radio signal is counted to include new data.
  • the second reference wireless signal is any given second wireless signal of the X given second wireless signals, and the second reference wireless signal is used by the Z sub-signals At least one of the included sub-signals does not include new data, and the second reference wireless signal is counted as not including new data.
  • the first value is equal to the number of the given second wireless signals that are counted as including the new data in the X given second wireless signals indicated by the X second statistical values, the first Values are used to determine the Q.
  • the value of any of the second statistic values corresponding to the second statistic value of the embodiment 12E belongs to one of ⁇ including new data, not including new data ⁇ , and the first value is equal to Determining, among the X second statistical values, the relationship between the X given first wireless signals, the X given second wireless signals, and the Q, including the number of second statistical values of the new data.
  • the first value is equal to the number of the given second wireless signals that are counted to include the new data in the X given second wireless signals indicated by the X second statistical values and the X The ratio, the first value is used to determine the Q.
  • the value of any of the second statistic values corresponding to the second statistic value of the embodiment 12F belongs to one of ⁇ including new data, not including new data ⁇ , and the first value is equal to Determining, among the X second statistical values, the X given first wireless signals, the X given second wireless signals, and the ratio of the number of second statistical values including the new data to the X Schematic diagram of the relationship of the Q.
  • the Z is greater than the X
  • the X given second wireless signals are composed of t3 given second wireless signals and t4 given second wireless signals
  • the t3 given All sub-signals included in any given second radio signal are associated with the Q-th energy detection space
  • any given second radio signal of the t4 given second radio signals is included
  • At least one of all of the sub-signals is uncorrelated with the Q-th energy detection space, the t3 being a positive integer greater than 1 and less than the X, the t4 being a positive integer greater than 1 and less than the X
  • the X is equal to the sum of the t3 and the t4.
  • the t3 given second wireless signals include w3 sub-signals
  • the t4 given second wireless signals include w4 sub-signals
  • the Z sub-signals are composed of the w3 sub-signals and the w4 sub-signals; Whether the w4 sub-signals include new data is used to determine t4 second statistic values, the t4 second statistic values respectively indicating whether the t4 given second radio signals are counted as including new data, the t4
  • the second statistical value and whether the w3 sub-signals include new data are used to determine the Q.
  • the second reference wireless signal is any given second wireless signal of the t4 given second wireless signals, and the second reference wireless signal is used by the w4 sub-signals All of the sub-signals included include new data, and the second reference radio signal is counted to include new data.
  • the second reference wireless signal is any given second wireless signal of the t4 given second wireless signals, and the second reference wireless signal is used by the w4 sub-signals At least one of the included sub-signals does not include new data, and the second reference wireless signal is counted as not including new data.
  • the first value is equal to the number of sub-signals including the new data in the w3 sub-signals and the t4 second radio signals indicated by the t4 second statistic values are counted as including new The sum of the number of second wireless signals given by the data, the first value being used to determine the Q.
  • the value of any second statistic value corresponding to the t4 second statistic values of the embodiment 12G belongs to one of ⁇ including new data, not including new data ⁇ , and the first value is equal to Describe the X given first wireless signals, the sum of the number of sub-signals including new data in the w3 sub-signals and the sum of the second statistical values of the t4 second statistical values including the second statistical value including the new data, A schematic diagram of the relationship of the X given second wireless signals and the Q.
  • the third reference value is equal to the number of the sub-signals including the new data in the w3 sub-signals and the t4 given second radio signals indicated by the t4 second statistic values are counted as being included a sum of the number of given second wireless signals of the new data, the fourth reference value being equal to the sum of the w3 and the t4, the first value being equal to the ratio of the third reference value and the fourth reference value, The first value is used to determine the Q.
  • the value of any one of the t4 second statistic values of the embodiment 12H belongs to one of ⁇ including new data, not including new data ⁇ , and the third reference value is equal to And the sum of the number of the sub-signals including the new data in the w3 sub-signals and the number of the second statistical values in the t4 second statistic values including the second statistic value including the new data, the fourth reference value being equal to the w3 and the a sum of t4, the first value is equal to the ratio of the third reference value and the fourth reference value, the X given first wireless signals, the X given second wireless signals, and the Q Schematic diagram of the relationship.
  • Embodiment 13 illustrates a schematic diagram of an X given first wireless signal being used to determine Q, as shown in FIG.
  • the X given first radio signals are used to determine K candidate integers, and Q1 is one of the K candidate integers; among the Q detected values
  • the Q1 detection values are all lower than the first threshold, the K is a positive integer, and the Q1 is a positive integer not greater than the Q.
  • the X given first wireless signals correspond to the T1 first type wireless signals in the present application, or the X given first wireless signals correspond to the S third type wireless signals in the present application. And the T1 first type wireless signals.
  • the first node randomly selects a value of the Q1 among the K candidate integers.
  • the probability that the first node selects any candidate integer as the value of the Q1 among the K candidate integers is equal.
  • the K candidate integers are 0, 1, 2, ..., K-1.
  • the K is CWp
  • the CWp is the size of a contention window.
  • the specific definition of the CWp refer to section 15 in 3GPP TS36.213.
  • any of the K alternative integers is a non-negative integer.
  • 0 is included in the K candidate integers.
  • any two of the K alternative integers are unequal.
  • the K is a positive integer greater than one.
  • Embodiment 14 illustrates a schematic diagram of an X given first wireless signal being used to determine K candidate integers, as shown in FIG.
  • the K is a positive integer in the first integer set, the first integer set includes a positive integer positive integer; if the first condition is satisfied, the K is equal to K1, otherwise the K Equal to a minimum positive integer in the first set of integers; if K0 is not the largest positive integer in the first set of integers, the K1 is equal to a smallest positive integer greater than the K0 in the first set of integers, otherwise Said K1 is equal to said K0; said K0 being a positive integer in said first set of integers.
  • Q1 is one of the K candidate integers; the Q1 detection values in the Q detection values in the present application are lower than the first threshold in the present application;
  • the first node is a base station; the first condition is: a given ratio corresponding to the X given first wireless signals is not less than the first target value; the X given first wireless signals correspond to the current application Describe the T1 first type wireless signals, or the X given first wireless signals correspond to the S third type wireless signals and the T1 first type wireless signals in the present application; the given ratio corresponds to The first ratio in the application.
  • the first integer set is ⁇ 15, 31, 63 ⁇ , the K0 is equal to 31, and the K1 is equal to 63. If the given ratio is not less than the first target value, the K is equal to the K1; otherwise the K is equal to 15.
  • the priority level corresponding to the fifth wireless signal in the present application is used to determine the first integer set.
  • the priority level of the fifth wireless signal is 3.
  • the K0 is the CWp in the LBT process of the most recent Cat 4 before the Q time subpools, and the CWp is the size of the contention window.
  • the CWp is the size of the contention window.
  • the first target value is predefined.
  • the first target value is a non-negative real number.
  • the first target value is equal to 80%.
  • Embodiment 15 illustrates a schematic diagram of another X given first wireless signals being used to determine K candidate integers, as shown in FIG.
  • the K is a positive integer in the first integer set, the first integer set includes a positive integer positive integer; if the second condition is satisfied, the K is equal to K1, otherwise the K Equal to a minimum positive integer in the first set of integers; if K0 is not the largest positive integer in the first set of integers, the K1 is equal to a smallest positive integer greater than the K0 in the first set of integers, otherwise Said K1 is equal to said K0; said K0 being a positive integer in said first set of integers.
  • Q1 is one of the K alternative integers; the Q1 detection values of the Q detection values in the present application are lower than the first threshold in the present application.
  • the first node in the present application is a user equipment; the second condition is: the X given first wireless signals are used for a corresponding given value not greater than a second target value .
  • the X given first wireless signals correspond to the T1 first type wireless signals in the present application, or the X given first wireless signals correspond to the S third type wireless signals in the application.
  • the T1 first type wireless signals; the given value corresponds to the first value in the present application.
  • the first set of integers is ⁇ 15, 31, 63 ⁇
  • the K0 is equal to 63
  • the K0 is the largest positive integer in the first set of integers
  • the K1 is equal to the K0 . If the given value is not greater than the second target value, the K is equal to the K0; otherwise the K is equal to 15.
  • the second target value is predefined.
  • the second target value is a non-negative real number.
  • the second target value is a non-negative integer.
  • the second target value is equal to zero.
  • Embodiment 16 illustrates a structural block diagram for a processing device in a first node; as shown in FIG.
  • the processing device 1800 in the first node is mainly composed of a first processing module 1801 and a first receiver module 1802.
  • a first processing module 1801 receiving T first type wireless signals, and transmitting T second type wireless signals in a first time window;
  • the T second type radio signals and the T first type radio signals are in one-to-one correspondence; at least one multi-carrier symbol is occupied by the T second type radio signals; Only T1 of the first type of wireless signals are used to determine the Q, the T is a positive integer greater than 1, the Q is a positive integer, and the T1 is less than the T a positive integer; the T1 second type wireless signals of the T second type wireless signals corresponding to the T1 first type wireless signals are spatially associated by all of the T second type wireless signals The second type of wireless signal of the Qth energy detection is composed; the first node is a base station, or the first node is a user equipment.
  • the first node is a base station, and the T first type of wireless signals respectively indicate whether the T second type wireless signals are correctly received.
  • the T1 second type wireless signals include W sub-signals, and the T1 first type wireless signals indicate whether any one of the W sub-signals is correctly received, and the W is not less than a positive integer of T1; at least one of all the sub-signals belonging to the same second-class wireless signal of the T1 second-type wireless signals among the W sub-signals is related to the Q-th energy detection space Whether the W sub-signals are correctly received is used to determine the Q.
  • the first node is a user equipment
  • the T first type of wireless signals respectively include scheduling information of the T second type wireless signals.
  • the T1 second type wireless signals include V sub-signals, and the T1 first-type wireless signals indicate whether any one of the V sub-signals includes new data, and the V is not less than a positive integer of the T1; at least one of the V sub-signals belonging to the same second-class wireless signal of the T1 second-type wireless signals is related to the Q-th energy detection space Whether the V sub-signals include new data is used to determine the Q.
  • the T1 first type radio signals are used to determine K candidate integers, Q1 is one of the K candidate integers; Q1 of the Q detection values The detected values are all lower than a first threshold, the K being a positive integer, and the Q1 being a positive integer not greater than the Q.
  • the first processing module 1801 further receives S third type wireless signals, and sends S fourth type wireless signals in a second time window; wherein the S fourth type wireless signals and the Said S third type wireless signals are in one-to-one correspondence; said S third type wireless signals and said T1 first type wireless signals are used together to determine said Q, said S being a positive integer; said S The fourth type of wireless signal is spatially associated to the Qth energy detection.
  • the first processing module 1801 further sends a fifth wireless signal, where the start time of the time domain resource occupied by the fifth wireless signal is not earlier than the end time of the Q time subpools.
  • the first processing module 1801 further operates first information; wherein the first information includes scheduling information of the fifth wireless signal; the operation is receiving, and the first node is a user equipment Or the operation is to send, the first node is a base station.
  • the first node is a user equipment
  • the first processing module 1801 includes a transmitter/receiver 456, a transmitting processor 455, a receiving processor 452, and a controller/processor in Embodiment 4. 490.
  • the first node is a user equipment
  • the first processing module 1801 includes a transmitter/receiver 456, a transmitting processor 455, a receiving processor 452, and a controller/processor in Embodiment 4. At least the first three of 490.
  • the first node is a user equipment
  • the first receiver module 1802 includes a receiver 456, a receiving processor 452, and a controller/processor 490 in Embodiment 4.
  • the first node is a user equipment
  • the first receiver module 1802 includes at least two of the receiver 456, the receiving processor 452, and the controller/processor 490 in Embodiment 4. .
  • the first node is a base station
  • the first processing module 1801 includes a transmitter/receiver 416, a transmit processor 415, a receive processor 412, and a controller/processor 440 in Embodiment 4. .
  • the first node is a base station
  • the first processing module 1801 includes a transmitter/receiver 416, a transmit processor 415, a receive processor 412, and a controller/processor 440 in Embodiment 4. At least the first three of them.
  • the first node is a base station
  • the first receiver module 1802 includes a receiver 416, a receiving processor 412, and a controller/processor 440 in Embodiment 4.
  • the first node is a base station
  • the first receiver module 1802 includes at least two of the receiver 416, the receiving processor 412, and the controller/processor 440 in Embodiment 4.
  • the user equipment, terminal and UE in the present application include but are not limited to a drone, a communication module on the drone, a remote control aircraft, an aircraft, a small aircraft, a mobile phone, a tablet computer, a notebook, a vehicle communication device, a wireless sensor, an internet card, Internet of Things terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC), data card, network card, vehicle communication device, low-cost mobile phone, low Cost wireless communication devices such as tablets.
  • the base station or system equipment in the present application includes, but is not limited to, a macro cell base station, a micro cell base station, a home base station, a relay base station, a gNB (NR node B) NR node B, a TRP (Transmitter Receiver Point), and the like. device.
  • a macro cell base station a micro cell base station
  • a home base station a relay base station
  • a gNB NR node B
  • TRP Transmitter Receiver Point

Abstract

本申请公开了一种被用于无线通信的用户设备、基站中的方法和装置。第一节点接收T个第一类无线信号,在第一时间窗中发送T个第二类无线信号;然后在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;所述T个第二类无线信号和所述T个第一类无线信号一一对应;至少存在一个多载波符号被所述T个第二类无线信号都占用;所述T个第一类无线信号中仅有T1个第一类无线信号被用于确定所述Q;所述T1个第一类无线信号对应的所述T个第二类无线信号中的T1个第二类无线信号由所述T个第二类无线信号中所有在空间上被关联到所述Q次能量检测的第二类无线信号组成;所述第一节点是基站,或者所述第一节点是用户设备。

Description

一种被用于无线通信的用户设备、基站中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是涉及支持在非授权频谱(Unlicensed Spectrum)上进行数据传输的通信方法和装置。
背景技术
传统的3GPP(3rd GenerationPartner Project,第三代合作伙伴项目)LTE(Long-term Evolution,长期演进)系统中,数据传输只能发生在授权频谱上,然而随着业务量的急剧增大,尤其在一些城市地区,授权频谱可能难以满足业务量的需求。Release 13及Release 14中非授权频谱上的通信被蜂窝系统引入,并用于下行和上行数据的传输。为保证和其它非授权频谱上的接入技术兼容,LBT(Listen Before Talk,会话前侦听)技术被LAA(Licensed Assisted Access,授权频谱辅助接入)采纳以避免因多个发射机同时占用相同的频率资源而带来的干扰。LTE系统的发射机采纳准全向天线来执行LBT。
在LTE的Cat 4LBT(第四类型的LBT,参见3GPPTR36.889)过程中,发射机(基站或者用户设备)在一定的延时时段(DeferDuration)之后还要进行回退(backoff),回退的时间以CCA(ClearChannelAssessment,空闲信道评估)时隙时段为单位进行计数,回退的时隙时段数量是发射机在CWS(ContentionWindowSize,冲突窗口大小)内进行随机选择得到的。对于下行传输,CWS是根据在该非授权频谱上的之前传输的一个参考子帧(referencesub-frame)中的数据所对应的HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)反馈进行调整的。对于上行传输,CWS是根据在该非授权频谱上之前的一个参考子帧中的数据中是否包括新数据来进行调整的。
目前,5G NR(New Radio Access Technology,新无线接入技术)的技术讨论正在进行中,其中大规模(Massive)MIMO(Multi-Input Multi-Output)成为下一代移动通信的一个研究热点。大规模MIMO中,多个天线通过波束赋形(Beamforming),形成指向一个特定空间方向的波束来提高通信质量,当考虑到波束赋形带来的覆盖特性时,传统的LAA技术需要被重新考虑,比如LBT方案。
发明内容
发明人通过研究发现,在NR系统中,波束赋形将会被大规模使用,如何减少多个发射机之间的同频干扰,从而提升系统容量是需要解决的一个关键问题。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种用于无线通信的第一节点中的方法,其特征在于,包括:
接收T个第一类无线信号,在第一时间窗中发送T个第二类无线信号;
在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;
其中,所述T个第二类无线信号和所述T个第一类无线信号一一对应;至少存在一个多载波符号被所述T个第二类无线信号都占用;所述T个第一类无线信号中仅有T1个第一类无线信号被用于确定所述Q,所述T是大于1的正整数,所述Q是正整数,所述T1是小于所述T的正整数;所述T1个第一类无线信号对应的所述T个第二类无线信号中的T1个第二类无线信号由所述T个第二类无线信号中所有在空间上被关联到所述Q次能量检测的第二类无线信号组成;所述第一节点是基站,或者所述第一节点是用户设备。
作为一个实施例,本申请要解决的问题是:在NR系统中,由于采用了大规模MIMO技术,在不同波束方向上的干扰状况会存在很大差异,因此在确定CWS的时候需要考虑到波束方向的影响。如果发送节点在做LBT时使用了某个特定的波束,CWS需要能够正 确反应这个特定波束方向上的干扰状况,这对于CWS的调整方法提出了新的要求。上述方案通过对参考子帧中的数据进行选择性的统计解决了这个问题,从而减少了多个发射机同时占用相同的频率资源的几率,因而减少了由此带来的同频干扰。
作为一个实施例,上述方法的实质在于,所述第一时间窗表示一个参考子帧(reference subframe),所述参考子帧的具体定义参见3GPP TS36.213中的15章节,允许所述第一节点选择一个参考子帧中的部分数据用于CWS调整,选择时考虑到数据的多天线相关的配置,比如发送天线端口组,发送波束等。采用上述方法的好处在于,使CWS能更准确的反应所述Q次能量检测指向的波束方向上的干扰状况,从而为所述Q次能量检测配置一个最优的回退(backoff)冲突窗口(ContentionWindow)。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是基站,所述T个第一类无线信号分别指示所述T个第二类无线信号是否被正确接收。
根据本申请的一个方面,上述方法的特征在于,所述T1个第二类无线信号包括W个子信号,所述T1个第一类无线信号指示所述W个子信号中任一子信号是否被正确接收,所述W是不小于所述T1的正整数;所述W个子信号中属于所述T1个第二类无线信号中同一个第二类无线信号的所有子信号中的至少一个子信号与所述Q次能量检测空间相关;所述W个子信号是否被正确接收被用于确定所述Q。
作为一个实施例,上述方法的好处在于,所述T1个第二类无线信号中任一第二类无线信号中的至少一个子信号的发送波束方向都被涵盖在所述Q次能量检测对应的接收波束方向以内,因此所述T1个第一类无线信号能准确反应所述Q次能量检测指向的波束方向上的干扰状况,为所述Q次能量检测配置一个最优的冲突窗口(ContentionWindow)。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是用户设备,所述T个第一类无线信号分别包括所述T个第二类无线信号的调度信息。
根据本申请的一个方面,上述方法的特征在于,所述T1个第二类无线信号包括V个子信号,所述T1个第一类无线信号指示所述V个子信号中任一子信号是否包括新数据,所述V是不小于所述T1的正整数;所述V个子信号中属于所述T1个第二类无线信号中同一个第二类无线信号的所有子信号中的至少一个子信号与所述Q次能量检测空间相关;所述V个子信号是否包括新数据被用于确定所述Q。
根据本申请的一个方面,上述方法的特征在于,所述T1个第一类无线信号被用于确定K个备选整数,Q1是所述K个备选整数中的一个备选整数;所述Q个检测值中的Q1个检测值都低于第一阈值,所述K是正整数,所述Q1是不大于所述Q的正整数。
根据本申请的一个方面,上述方法的特征在于,还包括:
接收S个第三类无线信号,在第二时间窗中发送S个第四类无线信号;
其中,所述S个第四类无线信号和所述S个第三类无线信号一一对应;所述S个第三类无线信号和所述T1个第一类无线信号共同被用于确定所述Q,所述S是正整数;所述S个第四类无线信号在空间上都被关联到所述Q次能量检测。
作为一个实施例,上述方法的实质在于,所述第二时间窗包括一个或多个参考子帧,所述参考子帧的具体定义参见3GPP TS36.213中的15章节,所述第一节点选择所述第一时间窗和所述第二时间窗包括的多个参考子帧中的部分数据用于CWS调整,选择时考虑到数据的多天线相关的配置,比如发送天线端口组,发送波束等。采用上述方法的好处在于,使CWS能更准确的反应所述Q次能量检测指向的波束方向上的干扰状况,从而为所述Q次能量检测配置一个最优的回退冲突窗口。
根据本申请的一个方面,上述方法的特征在于,还包括:
发送第五无线信号;
其中,所述第五无线信号占用的时域资源的起始时刻不早于所述Q个时间子池的结束时刻。
根据本申请的一个方面,上述方法的特征在于,还包括:
操作第一信息;
其中,所述第一信息包括所述第五无线信号的调度信息;所述操作是接收,所述第一节点是用户设备;或者所述操作是发送,所述第一节点是基站。
本申请公开了一种用于无线通信的第一节点中的设备,其特征在于,包括:
第一处理模块,接收T个第一类无线信号,在第一时间窗中发送T个第二类无线信号;
第一接收机模块,在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;
其中,所述T个第二类无线信号和所述T个第一类无线信号一一对应;至少存在一个多载波符号被所述T个第二类无线信号都占用;所述T个第一类无线信号中仅有T1个第一类无线信号被用于确定所述Q,所述T是大于1的正整数,所述Q是正整数,所述T1是小于所述T的正整数;所述T1个第一类无线信号对应的所述T个第二类无线信号中的T1个第二类无线信号由所述T个第二类无线信号中所有在空间上被关联到所述Q次能量检测的第二类无线信号组成;所述第一节点是基站,或者所述第一节点是用户设备。
作为一个实施例,上述第一节点中的设备的特征在于,所述第一节点是基站,所述T个第一类无线信号分别指示所述T个第二类无线信号是否被正确接收。
作为一个实施例,上述第一节点中的设备的特征在于,所述T1个第二类无线信号包括W个子信号,所述T1个第一类无线信号指示所述W个子信号中任一子信号是否被正确接收,所述W是不小于所述T1的正整数;所述W个子信号中属于所述T1个第二类无线信号中同一个第二类无线信号的所有子信号中的至少一个子信号与所述Q次能量检测空间相关;所述W个子信号是否被正确接收被用于确定所述Q。
作为一个实施例,上述第一节点中的设备的特征在于,所述第一节点是用户设备,所述T个第一类无线信号分别包括所述T个第二类无线信号的调度信息。
作为一个实施例,上述第一节点中的设备的特征在于,所述T1个第二类无线信号包括V个子信号,所述T1个第一类无线信号指示所述V个子信号中任一子信号是否包括新数据,所述V是不小于所述T1的正整数;所述V个子信号中属于所述T1个第二类无线信号中同一个第二类无线信号的所有子信号中的至少一个子信号与所述Q次能量检测空间相关;所述V个子信号是否包括新数据被用于确定所述Q。
作为一个实施例,上述第一节点中的设备的特征在于,所述T1个第一类无线信号被用于确定K个备选整数,Q1是所述K个备选整数中的一个备选整数;所述Q个检测值中的Q1个检测值都低于第一阈值,所述K是正整数,所述Q1是不大于所述Q的正整数。
作为一个实施例,上述第一节点中的设备的特征在于,所述第一处理模块还接收S个第三类无线信号,在第二时间窗中发送S个第四类无线信号;其中,所述S个第四类无线信号和所述S个第三类无线信号一一对应;所述S个第三类无线信号和所述T1个第一类无线信号共同被用于确定所述Q,所述S是正整数;所述S个第四类无线信号在空间上都被关联到所述Q次能量检测。
作为一个实施例,上述第一节点中的设备的特征在于,还包括:
第一发射机模块,发送第五无线信号;
其中,所述第五无线信号占用的时域资源的起始时刻不早于所述Q个时间子池的结束时刻。
作为一个实施例,上述第一节点中的设备的特征在于,所述第一处理模块还操作第一信息;其中,所述第一信息包括所述第五无线信号的调度信息;所述操作是接收,所述第一节点是用户设备;或者所述操作是发送,所述第一节点是基站。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.对于每次LBT,发送节点在选择CWS的时候考虑到本次LBT指向的波束方向,挑选一个参考子帧中那些发送波束被覆盖在本次LBT的接收波束中的数据用于CWS调整。这种方法保证了所选择的数据上的干扰信息能准确反应LBT的波束方向上的干扰状态,从而为LBT配置一个最优的CWS。
-.对于每次LBT,发送节点在选择CWS的时候考虑到本次LBT指向的波束方向,在多个参考子帧中的每个参考子帧中挑选那些发送波束被覆盖在本次LBT的接收波束中的数据用于CWS调整。这种方法保证了所选择的数据上的干扰信息能准确反应LBT的波束方向上的干扰状态,从而为LBT配置一个最优的CWS。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的T个第一类无线信号,T个第二类无线信号和Q次能量检测的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的NR(NewRadio,新无线)节点和UE的示意图;
图5示出了根据本申请的一个实施例的无线传输的流程图;
图6示出了根据本申请的另一个实施例的无线传输的流程图;
图7示出了根据本申请的一个实施例的在Q个时间子池中分别执行Q次能量检测的过程的示意图;
图8示出了根据本申请的另一个实施例的Q个时间子池中分别执行Q次能量检测的过程的示意图;
图9示出了根据本申请的一个实施例的天线端口和天线端口组的示意图;
图10A-10B分别示出了根据本申请的一个实施例的给定无线信号与给定能量检测空间相关的示意图;
图11A-11D分别示出了根据本申请的一个实施例的X个给定第一无线信号、X个给定第二无线信号和Q的关的示意图;
图12A-12H分别示出了根据本申请的另一个实施例的X个给定第一无线信号、X个给定第二无线信号和Q的关的示意图;
图13示出了根据本申请的一个实施例的X个给定第一无线信号被用于确定Q的示意图;
图14示出了根据本申请的一个实施例的X个给定第一无线信号被用于确定K个备选整数的示意图;
图15示出了根据本申请的另一个实施例的X个给定第一无线信号被用于确定K个备选整数的示意图;
图16示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个T个第一类无线信号,T个第二类无线信号和Q次能量检测的流程图,如附图1所示。
在实施例1中,本申请中的所述第一节点接收T个第一类无线信号,在第一时间窗 中发送T个第二类无线信号;然后在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值。其中,所述T个第二类无线信号和所述T个第一类无线信号一一对应;至少存在一个多载波符号被所述T个第二类无线信号都占用;所述T个第一类无线信号中仅有T1个第一类无线信号被用于确定所述Q,所述T是大于1的正整数,所述Q是正整数,所述T1是小于所述T的正整数;所述T1个第一类无线信号对应的所述T个第二类无线信号中的T1个第二类无线信号由所述T个第二类无线信号中所有在空间上被关联到所述Q次能量检测的第二类无线信号组成;所述第一节点是基站,或者所述第一节点是用户设备。
作为一个实施例,所述T个第一类无线信号中的任一第一类无线信号包括控制信息。
作为一个实施例,所述T个第一类无线信号都在所述第一子频带上传输。
作为一个实施例,所述T个第一类无线信号都在所述第一子频带以外的频带上传输。
作为一个实施例,所述T个第一类无线信号都在所述第一子频带以外的部署于授权频谱频带上传输。
作为一个实施例,所述T个第一类无线信号都在所述第一子频带以外的部署于非授权频谱频带上传输。
作为一个实施例,所述T个第一类无线信号都在部署于授权频谱的频带上传输。
作为一个实施例,所述T个第二类无线信号中的任一第二类无线信号包括数据。
作为一个实施例,所述T个第二类无线信号中的任一第二类无线信号包括参考信号。
作为一个实施例,所述T个第二类无线信号中的任一第二类无线信号包括数据和参考信号中之一。
作为一个实施例,所述T个第二类无线信号由数据和参考信号组成。
作为一个实施例,所述T个第二类无线信号包括数据。
作为一个实施例,所述T个第二类无线信号包括参考信号。
作为一个实施例,所述T个第二类无线信号都在所述第一子频带上传输。
作为一个实施例,所述T个第二类无线信号所占的频域资源属于所述第一子频带。
作为一个实施例,所述T个第二类无线信号所占的频域资源包括所述第一子频带。
作为一个实施例,所述T个第二类无线信号所占用的时域资源都相同。
作为一个实施例,所述T个第二类无线信号所占用的多载波符号都相同。
作为一个实施例,所述T个第二类无线信号所占的频域资源相互正交(不重叠)。
作为一个实施例,至少存在一个子载波被所述T个第二类无线信号都占用。
作为一个实施例,所述T个第二类无线信号所占的频域资源都相同。
作为一个实施例,所述T个第二类无线信号中至少两个第二类无线信号所占的频域资源都相同。
作为一个实施例,所述T个第二类无线信号中至少两个第二类无线信号所占的频域资源相互正交(不重叠)。
作为一个实施例,所述第一时间窗是一个子帧(sub-frame)。
作为一个实施例,所述第一时间窗是一个时隙(slot)。
作为一个实施例,所述第一时间窗包括正整数个多载波符号。
作为一个实施例,所述第一时间窗包括正整数个连续的多载波符号。
作为一个实施例,所述多载波符号是OFDM(OrthogonalFrequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(SingleCarrier-Frequency Division MultipleAccess,单载波频分多址接入)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述多载波符号是FBMC(Filter Bank Multi Carrier,滤波器 组多载波)符号。
作为一个实施例,所述多载波符号包括CP(Cyclic Prefix,循环前缀)。
作为一个实施例,所述第一时间窗是一个连续的时间段。
作为一个实施例,所述第一时间窗所属的突发(burst)在时域上位于所述Q个时间子池之前。
作为一个实施例,所述第一子频带部署于非授权频谱。
作为一个实施例,所述第一子频带是一个载波(Carrier)。
作为一个实施例,所述第一子频带是一个BWP(Bandwidth Part,带宽区间)。
作为一个实施例,所述第一子频带在频域上包括正整数个PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述第一子频带在频域上包括正整数个连续的PRB。
作为一个实施例,所述第一子频带在频域上包括正整数个连续的子载波。
作为一个实施例,所述Q次能量检测所分别使用的多天线相关的接收都相同。
作为一个实施例,所述Q次能量检测被用于确定所述第一子频带是否闲置(Idle)。
作为一个实施例,所述Q次能量检测被用于确定所述第一子频带是否能被所述第一节点用于传输无线信号。
作为一个实施例,所述Q次能量检测被用于确定所述第一子频带是否能被所述第一节点用于传输与所述Q次能量检测空间相关的无线信号。
作为一个实施例,所述Q次能量检测是LBT(Listen Before Talk,先听后发)中的能量检测,所述LBT的具体定义和实现方式参见3GPPTR36.889。
作为一个实施例,所述Q次能量检测是CCA(ClearChannelAssessment,空闲信道评估)中的能量检测,所述CCA的具体定义和实现方式参见3GPPTR36.889。
作为一个实施例,所述Q次能量检测中的任意一次能量检测是通过3GPP TS36.213中的15章节所定义的方式实现的。
作为一个实施例,所述Q次能量检测中的任意一次能量检测是通过WiFi中的能量检测方式实现的。
作为一个实施例,所述Q次能量检测中的任意一次能量检测是通过对RSSI(Received Signal Strength Indication,接收信号强度指示)进行测量实现的。
作为一个实施例,所述Q次能量检测中的任意一次能量检测是通过LTE LAA中的能量检测方式实现的。
作为一个实施例,所述Q个时间子池中的任一时间子池在占用的时域资源是连续的。
作为一个实施例,所述Q个时间子池在时域上是两两相互正交(不重叠)的。
作为一个实施例,所述Q个时间子池中的任一时间子池的持续时间是{16微秒、9微秒}中之一。
作为一个实施例,所述Q个时间子池中至少存在两个时间子池的持续时间不相等。
作为一个实施例,所述Q个时间子池中任意两个时间子池的持续时间都相等。
作为一个实施例,所述Q个时间子池占用的时域资源是连续的。
作为一个实施例,所述Q个时间子池中至少存在两个时间子池占用的时域资源是不连续。
作为一个实施例,所述Q个时间子池中任意两个时间子池占用的时域资源是不连续。
作为一个实施例,所述Q个时间子池中任一时间子池是一个时隙时段(slotduration)。
作为一个实施例,所述Q个时间子池中任一时间子池是Tsl,所述Tsl是一个时隙时段(slotduration),所述Tsl的具体定义参见3GPP TS36.213中的15章节。
作为一个实施例,所述Q个时间子池中除了最早的时间子池以外的任一时间子池是一个时隙时段(slotduration)。
作为一个实施例,所述Q个时间子池中除了最早的时间子池以外的任一时间子池是Tsl,所述Tsl是一个时隙时段(slotduration),所述Tsl的具体定义参见3GPP TS36.213中的15章节。
作为一个实施例,所述Q个时间子池中至少存在一个持续时间为16微秒的时间子池。
作为一个实施例,所述Q个时间子池中至少存在一个持续时间为9微秒的时间子池。
作为一个实施例,所述Q个时间子池中的最早的时间子池的持续时间为16微秒。
作为一个实施例,所述Q个时间子池中的最晚的时间子池的持续时间为9微秒。
作为一个实施例,所述Q个时间子池包括Cat 4(第四类)LBT中的监听时间。
作为一个实施例,所述Q个时间子池包括Cat 4(第四类)LBT中的延时时段(DeferDuration)中的时隙时段和回退时间(Backoff Time)中的时隙时段。
作为一个实施例,所述Q个时间子池包括Type 1UL channel access procedure(第一类上行信道接入过程)中的延时时段(DeferDuration)中的时隙时段和回退时间(Backoff Time)中的时隙时段,所述第一节点是用户设备。
作为一个实施例,所述Q个时间子池包括了初始CCA和eCCA(EnhancedClearChannelAssessment,增强的空闲信道评估)中的时隙时段。
作为一个实施例,所述Q次能量检测分别得到所述Q个检测值。
作为一个实施例,所述Q个检测值分别是所述第一节点在Q个时间单元中在所述第一子频带上感知(Sense)所有无线信号的功率,并在时间上平均,以获得的接收功率;所述Q个时间单元分别是所述Q个时间子池中的一个持续时间段。
作为上述实施例的一个子实施例,所述Q个时间单元中的任一时间单元的持续时间不短于4微秒。
作为一个实施例,所述Q个检测值分别是所述第一节点在Q个时间单元中在所述第一子频带上感知(Sense)所有无线信号的能量,并在时间上平均,以获得的接收能量;所述Q个时间单元分别是所述Q个时间子池中的一个持续时间段。
作为上述实施例的一个子实施例,所述Q个时间单元中的任一时间单元的持续时间不短于4微秒。
作为一个实施例,所述Q次能量检测中的任意一次给定能量检测是指:所述第一节点在给定时间单元中监测接收功率,所述给定时间单元是所述Q个时间子池中和所述给定能量检测对应的时间子池中的一个持续时间段。
作为一个实施例,所述Q次能量检测中的任意一次给定能量检测是指:所述第一节点在给定时间单元中监测接收能量,所述给定时间单元是所述Q个时间子池中和所述给定能量检测对应的时间子池中的一个持续时间段。
作为一个实施例,给定无线信号在空间上被关联到给定能量检测是指:所述给定无线信号包括k个子信号,所述k个子信号中至少一个子信号与所述给定能量检测空间相关,所述k是正整数。
作为一个实施例,给定无线信号在空间上被关联到给定能量检测是指:所述给定无线信号包括k个子信号,所述k个子信号中的一个子信号与所述给定能量检测空间相关,所述k是正整数。
作为一个实施例,给定无线信号在空间上被关联到给定能量检测是指:所述给定无线信号包括k个子信号,所述k个子信号都与所述给定能量检测空间相关,所述k是正整数。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统网络架构200的图。NR 5G或LTE网络架构200可称为EPS(Evolved  Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供面向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME/AMF/UPF211、其它MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个实施例,所述UE201对应本申请中的所述第一节点,所述第一节点是用户设备。
作为一个实施例,所述gNB203对应本申请中的所述第一节点,所述第一节点是基站。
作为一个子实施例,所述UE201支持在非授权频谱上进行数据传输的无线通信。
作为一个子实施例,所述gNB203支持在非授权频谱上进行数据传输的无线通信。
作为一个子实施例,所述UE201支持大规模MIMO的无线通信。
作为一个子实施例,所述gNB203支持大规模MIMO的无线通信。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于用户设备(UE)和基站设备(gNB或eNB)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干上部层,包括终止于网络侧上的 P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,本申请中的所述T个第一类无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述T个第二类无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述Q次能量检测生成于所述PHY301。
作为一个实施例,本申请中的所述第三类无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述S个第四类无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第五无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一信息生成于所述PHY301。
作为一个实施例,本申请中的所述第一信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信息生成于所述RRC子层306。
实施例4
实施例4示出了根据本申请的一个NR节点和用户设备的示意图,如附图4所示。图4是在接入网络中与UE450通信的gNB410的框图。
基站设备(410)包括控制器/处理器440,存储器430,接收处理器412,发射处理器415,发射器/接收器416和天线420。
用户设备(450)包括控制器/处理器490,存储器480,数据源467,发射处理器455,接收处理器452,发射器/接收器456和天线460。
在下行传输中,与基站设备(410)有关的处理包括:
-控制器/处理器440,上层包到达,控制器/处理器440提供包头压缩、加密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;上层包中可以包括数据或者控制信息,例如DL-SCH(Downlink Shared Channel,下行共享信道);
控制器/处理器440,与存储程序代码和数据的存储器430相关联,存储器430可以为计算机可读媒体;
控制器/处理器440,包括调度单元以传输需求,调度单元用于调度与传输需求对应的空口资源;
波束处理器471,确定T个第一类无线信号、确定S个第三类无线信号以及执行Q次能量检测;
发射处理器415,接收控制器/处理器440的输出比特流,实施用于L1层(即物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配和物理层控制信令(包括PBCH,PDCCH,PHICH,PCFICH,参考信号)生成等;
发射器416,用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去;每个发射器416对各自的输入符号流进行采样处理得到各自的采样信号流。每个发射器416对各自的采样流进行进一步处理(比如数模转换,放大,过滤,上变频等)得到下行信号。
在下行传输中,与用户设备(450)有关的处理可以包括:
接收器456,用于将通过天线460接收的射频信号转换成基带信号提供给接收处理器452;
接收处理器452,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
波束处理器441,确定T个第一类无线信号以及确定S个第三类无线信号;
控制器/处理器490,接收接收处理器452输出的比特流,提供包头解压缩、解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;
控制器/处理器490与存储程序代码和数据的存储器480相关联。存储器480可以为计算机可读媒体。
在UL(Uplink,上行)中,与基站设备(410)有关的处理包括:
接收器416,通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到接收处理器412;
接收处理器412,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
控制器/处理器440,实施L2层功能,以及与存储程序代码和数据的存储器430相关联;
控制器/处理器440提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包;来自控制器/处理器440的上层数据包可提供到核心网络;
波束处理器471,确定T个第一类无线信号以及确定S个第三类无线信号;
在UL(Uplink,上行)中,与用户设备(450)有关的处理包括:
数据源467,将上层数据包提供到控制器/处理器490。数据源467表示L2层之上的所有协议层;
发射器456,通过其相应天线460发射射频信号,把基带信号转化成射频信号,并把射频信号提供到相应天线460;
发射处理器455,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
控制器/处理器490基于gNB410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能;
控制器/处理器490还负责HARQ操作、丢失包的重新发射,和到gNB410的信令;
波束处理器441,确定T个第一类无线信号、确定S个第三类无线信号以及执行Q次能量检测;
作为一个子实施例,所述UE450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述UE450装置至少:接收T个第一类无线信号,在第一时间窗中发送T个第二类无线信号;在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;其中,所述T个第二类无线信号和所述T个第一类无线信号一一对应;至少存在一个多载波符号被所述T个第二类无线信号都占用;所述T个第一类无线信号中仅有T1个第一类无线信号被用于确定所述Q,所述T是大于1的正整数,所述Q是正整数,所述T1是小于所述T的正整数;所述T1个第一类无线信号对应的所述T个第二类无线信号中的T1个第二类无线信号由所述T个第二类无线信号中所有在空间上被关联到所述Q次能量检测的第二类无线信号组成;所述第一节点是用户设备。
作为一个子实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收T个 第一类无线信号,在第一时间窗中发送T个第二类无线信号;在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;其中,所述T个第二类无线信号和所述T个第一类无线信号一一对应;至少存在一个多载波符号被所述T个第二类无线信号都占用;所述T个第一类无线信号中仅有T1个第一类无线信号被用于确定所述Q,所述T是大于1的正整数,所述Q是正整数,所述T1是小于所述T的正整数;所述T1个第一类无线信号对应的所述T个第二类无线信号中的T1个第二类无线信号由所述T个第二类无线信号中所有在空间上被关联到所述Q次能量检测的第二类无线信号组成;所述第一节点是用户设备。
作为一个子实施例,所述gNB410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:接收T个第一类无线信号,在第一时间窗中发送T个第二类无线信号;在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;其中,所述T个第二类无线信号和所述T个第一类无线信号一一对应;至少存在一个多载波符号被所述T个第二类无线信号都占用;所述T个第一类无线信号中仅有T1个第一类无线信号被用于确定所述Q,所述T是大于1的正整数,所述Q是正整数,所述T1是小于所述T的正整数;所述T1个第一类无线信号对应的所述T个第二类无线信号中的T1个第二类无线信号由所述T个第二类无线信号中所有在空间上被关联到所述Q次能量检测的第二类无线信号组成;所述第一节点是基站。
作为一个子实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收T个第一类无线信号,在第一时间窗中发送T个第二类无线信号;在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;其中,所述T个第二类无线信号和所述T个第一类无线信号一一对应;至少存在一个多载波符号被所述T个第二类无线信号都占用;所述T个第一类无线信号中仅有T1个第一类无线信号被用于确定所述Q,所述T是大于1的正整数,所述Q是正整数,所述T1是小于所述T的正整数;所述T1个第一类无线信号对应的所述T个第二类无线信号中的T1个第二类无线信号由所述T个第二类无线信号中所有在空间上被关联到所述Q次能量检测的第二类无线信号组成;所述第一节点是基站。
作为一个实施例,所述UE450对应本申请中的所述第一节点,所述第一节点是用户设备。
作为一个实施例,所述gNB410对应本申请中的所述第一节点,所述第一节点是基站。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述T个第一类无线信号;本申请中的所述第一节点是用户设备。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述T个第一类无线信号;本申请中的所述第一节点是用户设备。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述S个第三类无线信号;本申请中的所述第一节点是用户设备。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述S个第三类无线信号;本申请中的所述第一节点是用户设备。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第一信息;本申请中的所述操作是接收;本申请中的所述第一节点是用户设备。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第一信息;本申请中的所述操作是接收;本申请中的 所述第一节点是用户设备。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于在本申请中的所述第一子频带上的所述Q个时间子池中分别执行本申请中的所述Q次能量检测;本申请中的所述第一节点是用户设备。
作为一个子实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于在本申请中的所述第一时间窗中发送本申请中的所述T个第二类无线信号;本申请中的所述第一节点是用户设备。
作为一个子实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于在本申请中的所述第一时间窗中接收本申请中的所述T个第二类无线信号;本申请中的所述第一节点是用户设备。
作为一个子实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于在本申请中的所述第二时间窗中发送本申请中的所述S个第四类无线信号;本申请中的所述第一节点是用户设备。
作为一个子实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于在本申请中的所述第二时间窗中接收本申请中的所述S个第四类无线信号;本申请中的所述第一节点是用户设备。
作为一个子实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于发送本申请中的所述第五无线信号;本申请中的所述第一节点是用户设备。
作为一个子实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于接收本申请中的所述第五无线信号;本申请中的所述第一节点是用户设备。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于在本申请中的所述第一时间窗中接收本申请中的所述T个第二类无线信号;本申请中的所述第一节点是基站。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于在本申请中的所述第一时间窗中发送本申请中的所述T个第二类无线信号;本申请中的所述第一节点是基站。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于在本申请中的所述第二时间窗中接收本申请中的所述S个第四类无线信号;本申请中的所述第一节点是基站。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于在本申请中的所述第二时间窗中发送本申请中的所述S个第四类无线信号;本申请中的所述第一节点是基站。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第五无线信号;本申请中的所述第一节点是基站。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第五无线信号;本申请中的所述第一节点是基站。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第一信息;本申请中的所述第一节点是基站。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第一信息;本申请中的所述第一节点是基站。
作为一个子实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于发送本申请中的所述T个第一类无线信号;本申请中的所述第一节点是基站。
作为一个子实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于接收本申请中的所述T个第一类无线信号;本申请中的所述第一节点是基站。
作为一个子实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于发送本申请中的所述S个第三类无线信号;本申请中的所述第一节点是基站。
作为一个子实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于接收本申请中的所述S个第三类无线信号;本申请中的所述第一节点是基站。
作为一个子实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于在本申请中的所述第一子频带上的所述Q个时间子池中分别执行本申请中的所述Q次能量检测;本申请中的所述第一节点是基站。
实施例5
实施例5示例了一个无线传输的流程图,如附图5所示。在附图5中,基站N01是用户设备U02的服务小区维持基站。附图5中,方框F1、F2和F3分别是可选的。
对于N01,在步骤S11中在第一时间窗中发送T个第二类无线信号;在步骤S12中接收T个第一类无线信号;在步骤S13中在第二时间窗中发送S个第四类无线信号;在步骤S14中接收S个第三类无线信号;在步骤S15中在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;在步骤S16中发送第一信息;在步骤S17中发送第五无线信号。
对于U02,在步骤S21中在第一时间窗中接收T个第二类无线信号;在步骤S22中发送T个第一类无线信号;在步骤S23中在第二时间窗中接收S个第四类无线信号;在步骤S24中发送S个第三类无线信号;在步骤S25中接收第一信息;在步骤S26.接收第五无线信号。
在实施例5中,所述T个第二类无线信号和所述T个第一类无线信号一一对应;至少存在一个多载波符号被所述T个第二类无线信号都占用;所述T个第一类无线信号中仅有T1个第一类无线信号被所述基站N01用于确定所述Q,所述T是大于1的正整数,所述Q是正整数,所述T1是小于所述T的正整数;所述T1个第一类无线信号对应的所述T个第二类无线信号中的T1个第二类无线信号由所述T个第二类无线信号中所有在空间上被关联到所述Q次能量检测的第二类无线信号组成。所述第一节点是基站,所述T个第一类无线信号分别指示所述T个第二类无线信号是否被正确接收。所述S个第四类无线信号和所述S个第三类无线信号一一对应;所述S个第三类无线信号和所述T1个第一类无线信号共同被所述基站N01用于确定所述Q,所述S是正整数;所述S个第四类无线信号在空间上都被关联到所述Q次能量检测。所述第五无线信号占用的时域资源的起始时刻不早于所述Q个时间子池的结束时刻。所述第一信息包括所述第五无线信号的调度信息。
作为一个实施例,所述Q次能量检测分别是下行接入检测中的能量检测。
作为一个实施例,所述T个第一类无线信号分别显式的指示所述T个第二类无线信号是否被正确接收。
作为一个实施例,所述T个第一类无线信号分别隐式的指示所述T个第二类无线信号是否被正确接收。
作为一个实施例,所述T个第一类无线信号中的每一个第一类无线信号包括HARQ-ACK(Hybrid Automatic Repeat reQuest ACKnowledgement,混合自动重传请求确认)。
作为一个实施例,所述T个第一类无线信号中的任一第一类无线信号包括UCI(Uplink control information,上行控制信息),所述第一节点是基站。
作为一个实施例,所述T个第一类无线信号分别在T个上行物理层控制信道(即仅能用于承载物理层信令的上行信道)上传输。
作为上述实施例的一个子实施例,所述T个上行物理层控制信道分别是PUCCH(Physical UplinkControl CHannel,物理上行控制信道)。
作为上述实施例的一个子实施例,所述T个上行物理层控制信道分别是sPUCCH(short PUCCH,短PUCCH)。
作为上述实施例的一个子实施例,所述T个上行物理层控制信道分别是NR-PUCCH(New  Radio PUCCH,新无线PUCCH)。
作为上述实施例的一个子实施例,所述T个上行物理层控制信道分别是NB-PUCCH(NarrowBand PUCCH,窄带PUCCH)。
作为一个实施例,所述T个第一类无线信号分别在T个上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。
作为上述实施例的一个子实施例,所述T个上行物理层数据信道分别是PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)。
作为上述实施例的一个子实施例,所述T个上行物理层数据信道分别是sPUSCH(short PUSCH,短PUSCH)。
作为上述实施例的一个子实施例,所述T个上行物理层数据信道分别是NR-PUSCH(NewRadio PUSCH,新无线PUSCH)。
作为上述实施例的一个子实施例,所述T个上行物理层数据信道分别是NB-PUSCH(NarrowBand PUSCH,窄带PUSCH)。
作为一个实施例,所述T个第二类无线信号中的任一第二类无线信号包括数据。
作为一个实施例,所述T个第二类无线信号分别在T个下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为上述实施例的一个子实施例,所述T个下行物理层数据信道分别是PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)。
作为上述实施例的一个子实施例,所述T个下行物理层数据信道分别是sPDSCH(short PDSCH,短PDSCH)。
作为上述实施例的一个子实施例,所述T个下行物理层数据信道分别是NR-PDSCH(NewRadio PDSCH,新无线PDSCH)。
作为上述实施例的一个子实施例,所述T个下行物理层数据信道分别是NB-PDSCH(NarrowBand PDSCH,窄带PDSCH)。
作为一个实施例,所述T个第二类无线信号对应传输信道分别是DL-SCH(DownLinkShared Channel,下行共享信道)。
作为一个实施例,所述T1个第二类无线信号包括W个子信号,所述T1个第一类无线信号指示所述W个子信号中任一子信号是否被正确接收,所述W是不小于所述T1的正整数;所述W个子信号中属于所述T1个第二类无线信号中同一个第二类无线信号的所有子信号中的至少一个子信号与所述Q次能量检测空间相关;所述W个子信号是否被正确接收被用于确定所述Q。
作为上述实施例的一个子实施例,所述T1个第二类无线信号包括W个子信号,所述T1个第一类无线信号显式的指示所述W个子信号中任一子信号是否被正确接收,所述W是不小于所述T1的正整数;所述W个子信号中属于所述T1个第二类无线信号中同一个第二类无线信号的所有子信号中的至少一个子信号与所述Q次能量检测空间相关;所述W个子信号是否被正确接收被用于确定所述Q。
作为上述实施例的一个子实施例,所述T1个第二类无线信号包括W个子信号,所述T1个第一类无线信号隐式的指示所述W个子信号中任一子信号是否被正确接收,所述W是不小于所述T1的正整数;所述W个子信号中属于所述T1个第二类无线信号中同一个第二类无线信号的所有子信号中的至少一个子信号与所述Q次能量检测空间相关;所述W个子信号是否被正确接收被用于确定所述Q。
作为一个实施例,所述T1个第一类无线信号被用于确定K个备选整数,Q1是所述K个备选整数中的一个备选整数;所述Q个检测值中的Q1个检测值都低于第一阈值,所述K是正整数,所述Q1是不大于所述Q的正整数。
作为一个实施例,所述S个第三类无线信号中的任一第三类无线信号包括控制信息。
作为一个实施例,所述S个第三类无线信号都在所述第一子频带上传输。
作为一个实施例,所述S个第三类无线信号都在所述第一子频带以外的频带上传输。
作为一个实施例,所述S个第三类无线信号都在所述第一子频带以外的部署于授权频谱频带上传输。
作为一个实施例,所述S个第三类无线信号都在所述第一子频带以外的部署于非授权频谱频带上传输。
作为一个实施例,所述S个第三类无线信号都在部署于授权频谱的频带上传输。
作为一个实施例,所述S个第三类无线信号中的每一个第三类无线信号包括HARQ-ACK。
作为一个实施例,所述S个第三类无线信号中的任一第三类无线信号包括UCI,所述第一节点是基站。
作为一个实施例,所述S个第三类无线信号分别在S个上行物理层控制信道(即仅能用于承载物理层信令的上行信道)上传输。
作为上述实施例的一个子实施例,所述S个上行物理层控制信道分别是PUCCH。
作为上述实施例的一个子实施例,所述S个上行物理层控制信道分别是sPUCCH。
作为上述实施例的一个子实施例,所述S个上行物理层控制信道分别是NR-PUCCH。
作为上述实施例的一个子实施例,所述S个上行物理层控制信道分别是NB-PUCCH。
作为一个实施例,所述S个第三类无线信号分别在S个上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。
作为上述实施例的一个子实施例,所述S个上行物理层数据信道分别是PUSCH。
作为上述实施例的一个子实施例,所述S个上行物理层数据信道分别是sPUSCH。
作为上述实施例的一个子实施例,所述S个上行物理层数据信道分别是NR-PUSCH。
作为上述实施例的一个子实施例,所述S个上行物理层数据信道分别是NB-PUSCH。
作为一个实施例,所述S个第四类无线信号中的任一第四类无线信号包括数据。
作为一个实施例,所述S个第四类无线信号都在所述第一子频带上传输。
作为一个实施例,所述S个第四类无线信号所占的频域资源属于所述第一子频带。
作为一个实施例,所述S个第四类无线信号所占的频域资源包括所述第一子频带。
作为一个实施例,所述S个第四类无线信号所占用的时域资源都相同。
作为一个实施例,所述S个第四类无线信号中至少两个第四类无线信号所占用的时域资源都相同。
作为一个实施例,所述S个第四类无线信号所占用的多载波符号都相同。
作为一个实施例,所述S个第四类无线信号所占用的时域资源相互正交。
作为一个实施例,所述S个第四类无线信号中至少两个第四类无线信号所占用的时域资源相互正交。
作为一个实施例,所述S个第四类无线信号所占的频域资源相互正交(不重叠)。
作为一个实施例,至少存在一个子载波被所述S个第四类无线信号都占用。
作为一个实施例,所述S个第四类无线信号所占的频域资源都相同。
作为一个实施例,所述S个第四类无线信号中至少两个第四类无线信号所占的频域资源都相同。
作为一个实施例,所述S个第四类无线信号中至少两个第四类无线信号所占的频域资源相互正交(不重叠)。
作为一个实施例,所述S个第四类无线信号分别在S个下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为上述实施例的一个子实施例,所述S个下行物理层数据信道分别是PDSCH。
作为上述实施例的一个子实施例,所述S个下行物理层数据信道分别是sPDSCH。
作为上述实施例的一个子实施例,所述S个下行物理层数据信道分别是NR-PDSCH。
作为上述实施例的一个子实施例,所述S个下行物理层数据信道分别是NB-PDSCH。
作为一个实施例,所述S个第四类无线信号对应传输信道分别是DL-SCH。
作为一个实施例,所述第二时间窗包括一个或多个子帧(sub-frame)。
作为一个实施例,所述第二时间窗包括一个子帧(sub-frame)。
作为一个实施例,所述第二时间窗包括多个子帧(sub-frame)。
作为一个实施例,所述第二时间窗包括一个或多个时隙(slot)。
作为一个实施例,所述第二时间窗包括一个时隙(slot)。
作为一个实施例,所述第二时间窗包括多个时隙(slot)。
作为一个实施例,所述第二时间窗包括正整数个多载波符号。
作为一个实施例,所述第二时间窗包括正整数个连续的多载波符号。
作为一个实施例,所述第二时间窗是一个连续的时间段。
作为一个实施例,所述第二时间窗所属的突发(burst)在时域上位于所述Q个时间子池之前。
作为一个实施例,所述第二时间窗和所述第一时间窗在时域上正交(不重叠)。
作为一个实施例,所述第二时间窗和所述第一时间窗属于同一个突发。
作为一个实施例,所述第二时间窗和所述第一时间窗分别属于不同的突发。
作为一个实施例,所述第二时间窗和所述第一时间窗中最晚的时间窗所属的突发(burst)和所述第一信息所占用的时域资源之间的时间间隔不小于第一时间间隔。
作为上述实施例的一个子实施例,所述第一时间间隔是正整数个子帧(sub-frame)。
作为上述实施例的一个子实施例,所述第一时间间隔是3个子帧。
作为上述实施例的一个子实施例,所述第一时间间隔是正整数个时隙(slot)。
作为上述实施例的一个子实施例,所述第一时间间隔是正整数个多载波符号。
作为上述实施例的一个子实施例,所述第一时间间隔是预先定义的。
作为上述实施例的一个子实施例,所述第一时间间隔是默认的。
作为一个实施例,所述第一节点是基站,所述S个第三类无线信号分别指示所述S个第四类无线信号是否被正确接收。
作为上述实施例的一个子实施例,所述第一节点是基站,所述S个第三类无线信号分别显式的指示所述S个第四类无线信号是否被正确接收。
作为上述实施例的一个子实施例,所述第一节点是基站,所述S个第三类无线信号分别隐式的指示所述S个第四类无线信号是否被正确接收。
作为一个实施例,所述S个第四类无线信号包括S1个子信号,所述S个第三类无线信号指示所述S1个子信号中任一子信号是否被正确接收,所述S1是不小于所述S的正整数;所述S1个子信号中属于所述S个第四类无线信号中同一个第四类无线信号的所有子信号中的至少一个子信号与所述Q次能量检测空间相关;所述S1个子信号是否被正确接收和所述W个子信号是否被正确接收共同被用于确定所述Q。
作为上述实施例的一个子实施例,所述S个第四类无线信号包括S1个子信号,所述S个第三类无线信号显式的指示所述S1个子信号中任一子信号是否被正确接收,所述S1是不小于所述S的正整数;所述S1个子信号中属于所述S个第四类无线信号中同一个第四类无线信号的所有子信号中的至少一个子信号与所述Q次能量检测空间相关;所述S1个子信号是否被正确接收和所述W个子信号是否被正确接收共同被用于确定所述Q。
作为上述实施例的一个子实施例,所述S个第四类无线信号包括S1个子信号,所述S个第三类无线信号隐式的指示所述S1个子信号中任一子信号是否被正确接收,所述S1是不小于所述S的正整数;所述S1个子信号中属于所述S个第四类无线信号中同一个第四类无线信号的所有子信号中的至少一个子信号与所述Q次能量检测空间相关;所述S1个子信号是否被正确接收和所述W个子信号是否被正确接收共同被用于确定所述Q。
作为一个实施例,所述S个第三类无线信号和所述T1个第一类无线信号共同被用于确定K个备选整数,Q1是所述K个备选整数中的一个备选整数;所述Q个检测值中的Q1个检测值都低于第一阈值,所述K是正整数,所述Q1是不大于所述Q的正整数。
作为一个实施例,所述第五无线信号占用的时域资源的起始时刻是所述Q个时间子池的结束时刻。
作为一个实施例,所述第五无线信号占用的时域资源的起始时刻晚于所述Q个时间子池的结束时刻。
作为一个实施例,所述第五无线信号包括数据,控制信息和参考信号中的至少之一。
作为一个实施例,所述第五无线信号包括数据。
作为一个实施例,所述第五无线信号包括控制信息。
作为一个实施例,所述第五无线信号包括参考信号。
作为一个实施例,所述第五无线信号包括数据,控制信息和参考信号。
作为一个实施例,所述第五无线信号包括数据和控制信息。
作为一个实施例,所述第五无线信号包括控制信息和参考信号。
作为一个实施例,所述第五无线信号包括数据和参考信号。
作为上述实施例的一个子实施例,所述数据是下行数据,所述控制信息是DCI(Downlink Control Information,下行控制信息),所述参考信号包括DMRS(DeModulation Reference Signals,解调参考信号)、CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)、TRS(finetime/frequencyTrackingReferenceSignals,精细时域/频域跟踪参考信号)和PRTS(Phase error TrackingReferenceSignals,相位误差跟踪参考信号)}中的一种或多种。
作为一个实施例,所述第五无线信号在所述第一子频带上传输。
作为一个实施例,所述第五无线信号的调度信息包括MCS(Modulation and Coding Scheme,调制编码方式)、DMRS的配置信息、HARQ进程号、RV(Redundancy Version,冗余版本)、NDI(New Data Indicator,新数据指示)、所占用的时频资源、所对应的多天线相关的发送和所对应的多天线相关的接收中的至少之一。
作为上述实施例的一个子实施例,所述第五无线信号包括数据。
作为一个实施例,所述第五无线信号的调度信息包括所占用的时域资源、所占用的频域资源、所占用的码域资源、循环位移量(cyclic shift)、OCC(Orthogonal Cover Code,正交掩码)、所占用的天线端口、所对应的多天线相关的发送和所对应的多天线相关的接收中的至少之一。
作为上述实施例的一个子实施例,所述第五无线信号包括参考信号。
作为一个实施例,所述第五无线信号在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH。
作为一个实施例,所述第五无线信号对应传输信道是DL-SCH。
作为一个实施例,所述第五无线信号与所述Q次能量检测空间相关。
作为一个实施例,所述第一信息是动态配置的。
作为一个实施例,所述第一信息由物理层信令承载。
作为一个实施例,所述第一信息属于DCI(下行控制信息,Downlink Control Information)。
作为一个实施例,所述第一信息属于下行授予(DownLink Grant)的DCI。
作为一个实施例,所述第一信息是一个DCI中的一个域(Field),所述域包括正整数个比特。
作为一个实施例,所述第一信息由一个DCI中的多个域(Field)组成,所述域包括正整数个比特。
作为一个实施例,所述第一信息由下行物理层控制信道(即仅能用于承载物理层信令的下行信道)承载。
作为一个实施例,所述第一信息由PDCCH(Physical Downlink Control Channel,物理下行控制信道)承载。
作为一个实施例,所述第一信息由sPDCCH(short PDCCH,短PDCCH)承载。
作为一个实施例,所述第一信息由NR-PDCCH(New Radio PDCCH,新无线PDCCH)承载。
作为一个实施例,所述第一信息由NB-PDCCH(NarrowBand PDCCH,窄带PDCCH)承载。
作为一个实施例,所述第一信息是半静态配置的。
作为一个实施例,所述第一信息由更高层信令承载。
作为一个实施例,所述第一信息由RRC(Radio Resource Control,无线电资源控制)信令承载。
作为一个实施例,所述第一信息是一个RRC信令中的一个IE(InformationElement,信息单元)的全部或一部分。
作为一个实施例,所述第一信息由MAC(Medium Acess Control,媒体接入控制)CE(Control Element,控制单元)信令承载。
作为一个实施例,所述第一信息在SIB(System Information Block,系统信息块)中传输。
作为一个实施例,所述第一信息在所述第一子频带上传输。
作为一个实施例,所述第一信息在所述第一子频带以外的频带上传输。
作为一个实施例,所述第一信息在所述第一子频带以外的部署于授权频谱频带上传输。
作为一个实施例,所述第一信息在所述第一子频带以外的部署于非授权频谱频带上传输。
作为一个实施例,所述第一信息在部署于授权频谱的频带上传输。
作为一个实施例,所述第一信息在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH(Physical DownlinkControl CHannel,物理下行控制信道)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH(short PDCCH,短PDCCH)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH(New Radio PDCCH,新无线PDCCH)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH(NarrowBand PDCCH,窄带PDCCH)。
作为一个实施例,所述第一信息在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH。
实施例6
实施例6示例了另一个无线传输的流程图,如附图6所示。在附图6中,基站N03是用户设备U04的服务小区维持基站。附图6中,方框F4、F5和F6是可选的。
对于N03,在步骤S31中发送T个第一类无线信号;在步骤S32中在第一时间窗中接收T个第二类无线信号;在步骤S33中发送S个第三类无线信号;在步骤S34中在第二时间窗中接收S个第四类无线信号;在步骤S35中发送第一信息;在步骤S36中接收第五无线信号。
对于U04,在步骤S41中接收T个第一类无线信号;在步骤S42中在第一时间窗中发送T个第二类无线信号;在步骤S43中接收S个第三类无线信号;在步骤S44中在第二时间窗中 发送S个第四类无线信号;在步骤S45中接收第一信息;在步骤S46中在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;在步骤S47中发送第五无线信号。
在实施例6中,所述T个第二类无线信号和所述T个第一类无线信号一一对应;至少存在一个多载波符号被所述T个第二类无线信号都占用;所述T个第一类无线信号中仅有T1个第一类无线信号被所述用户设备U04用于确定所述Q,所述T是大于1的正整数,所述Q是正整数,所述T1是小于所述T的正整数;所述T1个第一类无线信号对应的所述T个第二类无线信号中的T1个第二类无线信号由所述T个第二类无线信号中所有在空间上被关联到所述Q次能量检测的第二类无线信号组成;所述第一节点是用户设备,所述T个第一类无线信号分别包括所述T个第二类无线信号的调度信息。所述S个第四类无线信号和所述S个第三类无线信号一一对应;所述S个第三类无线信号和所述T1个第一类无线信号共同被所述用户设备U04用于确定所述Q,所述S是正整数;所述S个第四类无线信号在空间上都被关联到所述Q次能量检测。所述第五无线信号占用的时域资源的起始时刻不早于所述Q个时间子池的结束时刻。所述第一信息包括所述第五无线信号的调度信息。
作为一个实施例,所述Q次能量检测分别是上行接入检测中的能量检测。
作为一个实施例,所述T个第一类无线信号中的任一第一类无线信号包括DCI,所述第一节点是用户设备。
作为一个实施例,所述T个第一类无线信号分别在T个下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述T个下行物理层控制信道分别是PDCCH。
作为上述实施例的一个子实施例,所述T个下行物理层控制信道分别是sPDCCH。
作为上述实施例的一个子实施例,所述T个下行物理层控制信道分别是NR-PDCCH。
作为上述实施例的一个子实施例,所述T个下行物理层控制信道分别是NB-PDCCH。
作为一个实施例,所述T个第二类无线信号分别在T个上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。
作为上述实施例的一个子实施例,所述T个上行物理层数据信道分别是PUSCH。
作为上述实施例的一个子实施例,所述T个上行物理层数据信道分别是sPUSCH。
作为上述实施例的一个子实施例,所述T个上行物理层数据信道分别是NR-PUSCH。
作为上述实施例的一个子实施例,所述T个上行物理层数据信道分别是NB-PUSCH。
作为一个实施例,所述T个第二类无线信号对应传输信道分别是UL-SCH(UplinkShared Channel,上行共享信道)。
作为一个实施例,所述T个第二类无线信号中的任一第二类无线信号的调度信息包括{MCS,DMRS的配置信息,HARQ进程号,RV,NDI,所占用的时频资源,所对应的多天线相关的发送,所对应的多天线相关的接收}中的至少之一。
作为上述实施例的一个子实施例,所述DMRS的配置信息包括所占用的时域资源、所占用的频域资源、所占用的码域资源、循环位移量(cyclic shift)和OCC中的一种或多种。
作为一个实施例,所述T1个第二类无线信号包括V个子信号,所述T1个第一类无线信号指示所述V个子信号中任一子信号是否包括新数据,所述V是不小于所述T1的正整数;所述V个子信号中属于所述T1个第二类无线信号中同一个第二类无线信号的所有子信号中的至少一个子信号与所述Q次能量检测空间相关;所述V个子信号是否包括新数据被用于确定所述Q。
作为上述实施例的一个子实施例,所述T1个第二类无线信号包括V个子信号,所述T1个第一类无线信号显式的指示所述V个子信号中任一子信号是否包括新数据,所述V是不小于所述T1的正整数;所述V个子信号中属于所述T1个第二类无线信号中同一个第二类无线信号的所有子信号中的至少一个子信号与所述Q次能量检测空间相关;所述V个子信号是否包括新数据被用于确定所述Q。
作为上述实施例的一个子实施例,所述T1个第二类无线信号包括V个子信号,所述T1 个第一类无线信号隐式的指示所述V个子信号中任一子信号是否包括新数据,所述V是不小于所述T1的正整数;所述V个子信号中属于所述T1个第二类无线信号中同一个第二类无线信号的所有子信号中的至少一个子信号与所述Q次能量检测空间相关;所述V个子信号是否包括新数据被用于确定所述Q。
作为一个实施例,所述T1个第一类无线信号被用于确定K个备选整数,Q1是所述K个备选整数中的一个备选整数;所述Q个检测值中的Q1个检测值都低于第一阈值,所述K是正整数,所述Q1是不大于所述Q的正整数。
作为一个实施例,所述S个第三类无线信号中的任一第三类无线信号包括DCI,所述第一节点是用户设备。
作为一个实施例,所述S个第三类无线信号分别在S个下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述S个下行物理层控制信道分别是PDCCH。
作为上述实施例的一个子实施例,所述S个下行物理层控制信道分别是sPDCCH。
作为上述实施例的一个子实施例,所述S个下行物理层控制信道分别是NR-PDCCH。
作为上述实施例的一个子实施例,所述S个下行物理层控制信道分别是NB-PDCCH。
作为一个实施例,所述S个第四类无线信号分别在S个上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。
作为上述实施例的一个子实施例,所述S个上行物理层数据信道分别是PUSCH。
作为上述实施例的一个子实施例,所述S个上行物理层数据信道分别是sPUSCH。
作为上述实施例的一个子实施例,所述S个上行物理层数据信道分别是NR-PUSCH。
作为上述实施例的一个子实施例,所述S个上行物理层数据信道分别是NB-PUSCH。
作为一个实施例,所述S个第四类无线信号对应传输信道分别是UL-SCH(UplinkShared Channel,上行共享信道)。
作为一个实施例,所述第一节点是用户设备,所述S个第三类无线信号分别包括所述S个第四类无线信号的调度信息。
作为一个实施例,所述S个第四类无线信号中的任一第四类无线信号的调度信息包括{MCS,DMRS的配置信息,HARQ进程号,RV,NDI,所占用的时频资源,所对应的多天线相关的发送,所对应的多天线相关的接收}中的至少之一。
作为上述实施例的一个子实施例,所述DMRS的配置信息包括所占用的时域资源、所占用的频域资源、所占用的码域资源、循环位移量(cyclic shift)和OCC中的一种或多种。
作为一个实施例,所述S个第四类无线信号包括S2个子信号,所述S个第三类无线信号指示所述S2个子信号中任一子信号是否包括新数据,所述S2是不小于所述S的正整数;所述S2个子信号中属于所述S个第四类无线信号中同一个第四类无线信号的所有子信号中的至少一个子信号与所述Q次能量检测空间相关;所述S2个子信号是否包括新数据和所述V个子信号是否包括新数据共同被用于确定所述Q。
作为上述实施例的一个子实施例,所述S个第四类无线信号包括S2个子信号,所述S个第三类无线信号显式的指示所述S2个子信号中任一子信号是否包括新数据,所述S2是不小于所述S的正整数;所述S2个子信号中属于所述S个第四类无线信号中同一个第四类无线信号的所有子信号中的至少一个子信号与所述Q次能量检测空间相关;所述S2个子信号是否包括新数据和所述V个子信号是否包括新数据共同被用于确定所述Q。
作为上述实施例的一个子实施例,所述S个第四类无线信号包括S2个子信号,所述S个第三类无线信号隐式的指示所述S2个子信号中任一子信号是否包括新数据,所述S2是不小于所述S的正整数;所述S2个子信号中属于所述S个第四类无线信号中同一个第四类无线信号的所有子信号中的至少一个子信号与所述Q次能量检测空间相关;所述S2个子信号是否包括新数据和所述V个子信号是否包括新数据共同被用于确定所述Q。
作为一个实施例,所述S个第三类无线信号和所述T1个第一类无线信号共同被用于确定 K个备选整数,Q1是所述K个备选整数中的一个备选整数;所述Q个检测值中的Q1个检测值都低于第一阈值,所述K是正整数,所述Q1是不大于所述Q的正整数。
作为一个实施例,所述第一信息属于上行授予(UpLink Grant)的DCI。
作为一个实施例,所述第五无线信号包括数据、控制信息和参考信号中的至少之一。
作为一个实施例,所述第五无线信号包括数据。
作为一个实施例,所述第五无线信号包括控制信息。
作为一个实施例,所述第五无线信号包括参考信号。
作为一个实施例,所述第五无线信号包括数据,控制信息和参考信号。
作为一个实施例,所述第五无线信号包括数据和控制信息。
作为一个实施例,所述第五无线信号包括控制信息和参考信号。
作为一个实施例,所述第五无线信号包括数据和参考信号。
作为上述实施例的一个子实施例,所述数据是上行数据,所述控制信息是UCI,所述参考信号包括DMRS、SRS(Sounding Reference Signal,探测参考信号)和PTRS中的一种或多种。
作为一个实施例,所述第五无线信号在上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。
作为上述实施例的一个子实施例,所述上行物理层数据信道是PUSCH。
作为上述实施例的一个子实施例,所述上行物理层数据信道是sPUSCH。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NR-PUSCH。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NB-PUSCH。
作为一个实施例,所述第五无线信号对应传输信道是UL-SCH。
实施例7
实施例7示例了一个在Q个时间子池中分别执行Q次能量检测的过程的示意图;如附图7所示。
在实施例7中,本申请中的所述第一节点在本申请中的所述第一子频带上的所述Q个时间子池中分别执行所述Q次能量检测,得到Q个检测值。所述Q个检测值中的Q1个检测值都低于本申请中的所述第一阈值,所述Q1是不大于所述Q的正整数。Q1个时间子池是所述Q个时间子池中分别和所述Q1个检测值对应的时间子池。所述Q次能量检测的过程可以由附图7中的流程图来描述。
在附图7中,所述第一节点在步骤S1001中处于闲置状态,在步骤S1002中判断是否需要发送;在步骤1003中在一个延迟时段(deferduration)内执行能量检测;在步骤S1004中判断这个延迟时段内的所有时隙时段是否都空闲,如果是,进行到步骤S1005中设置第一计数器等于Q1;否则返回步骤S1004;在步骤S1006中判断所述第一计数器是否为0,如果是,进行到步骤S1007中在本申请中的所述第一子频带上发送无线信号;否则进行到步骤S1008中在一个附加时隙时段(additional slot duration)内执行能量检测;在步骤S1009中判断这个附加时隙时段是否空闲,如果是,进行到步骤S1010中把所述第一计数器减1,然后返回步骤1006;否则进行到步骤S1011中在一个附加延迟时段(additional deferduration)内执行能量检测;在步骤S1012中判断这个附加延迟时段内的所有时隙时段是否都空闲,如果是,进行到步骤S1010;否则返回步骤S1011。
在实施例7中,第一给定时段包括所述Q个时间子池中的正整数个时间子池,所述第一给定时段是附图7中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。第二给定时段包括所述Q1个时间子池中的1个时间子池,所述第二给定时段是附图7中通过能量检测被判断为空闲的{所有附加时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,给定时间时段内的任意一个时隙时段(slotduration)包括所述Q个时间子池中的一个时间子池;所述给定时间时段是附图7中包括的{所有延时时段,所有附加 时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,在给定时间时段内执行能量检测是指:在所述给定时间时段内的所有时隙时段(slotduration)内执行能量检测;所述给定时间时段是附图7中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,在给定时间时段通过能量检测被判断为空闲是指:所述给定时段中包括的所有时隙时段通过能量检测都被判断为空闲;所述给定时间时段是附图7中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,给定时隙时段通过能量检测都被判断为空闲是指:所述第一节点在给定时间单元中在所述第一子频带上感知(Sense)所有无线信号的功率,并在时间上平均,所获得的接收功率低于所述第一阈值;所述给定时间单元是所述给定时隙时段中的一个持续时间段。
作为上述实施例的一个子实施例,所述给定时间单元的持续时间不短于4微秒。
作为一个实施例,给定时隙时段通过能量检测都被判断为空闲是指:所述第一节点在给定时间单元中在所述第一子频带上感知(Sense)所有无线信号的能量,并在时间上平均,所获得的接收能量低于所述第一阈值;所述给定时间单元是所述给定时隙时段中的一个持续时间段。
作为上述实施例的一个子实施例,所述给定时间单元的持续时间不短于4微秒。
作为一个实施例,给定时隙时段通过能量检测都被判断为空闲是指:所述第一节点在所述给定时隙时段包括的时间子池上进行能量检测,得到的检测值低于所述第一阈值;所述时间子池属于所述Q个时间子池,所述检测值属于所述Q个检测值。
作为一个实施例,在给定时间时段内执行能量检测是指:在所述给定时间时段内的所有时间子池内执行能量检测;所述给定时间时段是附图7中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段,所述所有时间子池属于所述Q个时间子池。
作为一个实施例,在给定时间时段通过能量检测被判断为空闲是指:所述给定时段中包括的所有时间子池通过能量检测得到的检测值都低于所述第一阈值;所述给定时间时段是附图7中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段,所述所有时间子池属于所述Q个时间子池,所述检测值属于所述Q个检测值。
作为一个实施例,一个延时时段(defer duration)的持续时间是16微秒再加上M1个9微秒,所述M1是正整数。
作为上述实施例的一个子实施例,一个延时时段包括所述Q个时间子池中的M1+1个时间子池。
作为上述子实施例的一个参考实施例,所述M1+1个时间子池中的第一个时间子池的持续时间不超过16微秒,其他M1个时间子池的持续时间均不超过9微秒。
作为上述实施例的一个子实施例,本申请中的所述第三无线信号所对应的优先等级被用于确定所述M1。
作为上述子实施例的一个参考实施例,所述优先等级是信道接入优先等级(Channel Access Priority Class),所述信道接入优先等级的定义参见3GPP TS36.213中的15章节。
作为上述实施例的一个子实施例,所述M1属于{1,2,3,7}。
作为一个实施例,一个延时时段(defer duration)包括多个时隙时段(slotduration)。
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间是不连续的。
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间的时间间隔是7毫秒。
作为一个实施例,一个附加延时时段(additional defer duration)的持续时间是16微秒再加上M2个9微秒,所述M2是正整数。
作为上述实施例的一个子实施例,一个附加延时时段包括所述Q个时间子池中的M2+1个 时间子池。
作为上述子实施例的一个参考实施例,所述M2+1个时间子池中的第一个时间子池的持续时间不超过16微秒,其他M2个时间子池的持续时间均不超过9微秒。
作为上述实施例的一个子实施例,本申请中的所述第三无线信号所对应的优先等级被用于确定所述M2。
作为上述实施例的一个子实施例,所述M2属于{1,2,3,7}。
作为一个实施例,一个延时时段的持续时间等于一个附加延时时段的持续时间。
作为一个实施例,所述M1等于所述M2。
作为一个实施例,一个附加延时时段(additional defer duration)包括多个时隙时段(slotduration)。
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间是不连续的。
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间的时间间隔是7毫秒。
作为一个实施例,一个时隙时段(slot duration)的持续时间是9微秒。
作为一个实施例,一个时隙时段包括所述Q个时间子池中的1个时间子池。
作为上述实施例的一个子实施例,所述1个时间子池的持续时间均不超过9微秒。
作为一个实施例,一个附加时隙时段(additional slotduration)的持续时间是9微秒。
作为一个实施例,一个附加时隙时段包括所述Q个时间子池中的1个时间子池。
作为上述实施例的一个子实施例,所述1个时间子池的持续时间均不超过9微秒。
作为一个实施例,所述Q次能量检测被用于确定所述第一子频带是否闲置(Idle)。
作为一个实施例,所述Q次能量检测被用于确定所述第一子频带是否能被所述第一节点用于传输无线信号。
作为一个实施例,所述Q个检测值单位都是dBm(毫分贝)。
作为一个实施例,所述Q个检测值的单位都是毫瓦(mW)。
作为一个实施例,所述Q个检测值的单位都是焦耳。
作为一个实施例,所述Q1小于所述Q。
作为一个实施例,所述Q大于1。
作为一个实施例,所述第一阈值的单位是dBm(毫分贝)。
作为一个实施例,所述第一阈值的单位是毫瓦(mW)。
作为一个实施例,所述第一阈值的单位是焦耳。
作为一个实施例,所述第一阈值等于或小于-72dBm。
作为一个实施例,所述第一阈值是等于或小于第一给定值的任意值。
作为上述实施例的一个子实施例,所述第一给定值是预定义的。
作为上述实施例的一个子实施例,所述第一给定值是由高层信令配置的,所述第一节点是用户设备。
作为一个实施例,所述第一阈值是由所述第一节点在等于或小于第一给定值的条件下自由选择的。
作为上述实施例的一个子实施例,所述第一给定值是预定义的。
作为上述实施例的一个子实施例,所述第一给定值是由高层信令配置的,所述第一节点是用户设备。
作为一个实施例,所述Q1是所述K个备选整数中的一个备选整数;所述T1个第一类无线信号被用于确定K个备选整数,所述K是正整数。
作为一个实施例,所述Q1是所述K个备选整数中的一个备选整数;所述S个第三类无线信号和所述T1个第一类无线信号共同被用于确定K个备选整数,所述K是正整数。
作为上述实施例的一个子实施例,所述K属于{3,7,15,31,63,127,255,511,1023}。
作为一个实施例,所述Q次能量检测是Cat4的LBT(Listen Before Talk,先听后发)过程中的能量检测,所述Q1是所述Cat4的LBT过程中的CWp,所述CWp是竞争窗口(contention window)的大小,所述CWp的具体定义参见3GPP TS36.213中的15章节。
作为一个实施例,所述Q个检测值中不属于所述Q1个检测值的检测值中至少有一个检测值低于所述第一阈值。
作为一个实施例,所述Q个检测值中不属于所述Q1个检测值的检测值中至少有一个检测值不低于所述第一阈值。
作为一个实施例,所述Q1个时间子池中的任意两个时间子池的持续时间都相等。
作为一个实施例,所述Q1个时间子池中至少存在两个时间子池的持续时间不相等。
作为一个实施例,所述Q1个时间子池中包括所述Q个时间子池中的最晚的时间子池。
作为一个实施例,所述Q1个时间子池只包括了eCCA中的时隙时段。
作为一个实施例,所述Q个时间子池包括所述Q1个时间子池和Q2个时间子池,所述Q2个时间子池中的任一时间子池不属于所述Q1个时间子池;所述Q2是不大于所述Q减所述Q1的正整数。
作为上述实施例的一个子实施例,所述Q2个时间子池包括了初始CCA中的时隙时段。
作为上述实施例的一个子实施例,所述Q2个时间子池在所述Q个时间子池中的位置是连续的。
作为上述实施例的一个子实施例,所述Q2个时间子池中至少有一个时间子池对应的检测值低于所述第一阈值。
作为上述实施例的一个子实施例,所述Q2个时间子池中至少有一个时间子池对应的检测值不低于所述第一阈值。
作为上述实施例的一个子实施例,所述Q2个时间子池包括所有延时时段内的所有时隙时段。
作为上述实施例的一个子实施例,所述Q2个时间子池包括至少一个附加延时时段内的所有时隙时段。
作为上述实施例的一个子实施例,所述Q2个时间子池包括至少一个附加时隙时段。
作为上述实施例的一个子实施例,所述Q2个时间子池包括附图7中通过能量检测被判断为非空闲的所有附加时隙时段和所有附加延时时段内的所有时隙时段。
作为一个实施例,所述Q1个时间子池分别属于Q1个子池集合,所述Q1个子池集合中的任一子池集合包括所述Q个时间子池中的正整数个时间子池;所述Q1个子池集合中的任一时间子池对应的检测值低于所述第一阈值。
作为上述实施例的一个子实施例,所述Q1个子池集合中至少存在一个子池集合包括的时间子池的数量等于1。
作为上述实施例的一个子实施例,所述Q1个子池集合中至少存在一个子池集合包括的时间子池的数量大于1。
作为上述实施例的一个子实施例,所述Q1个子池集合中至少存在两个子池集合包括的时间子池的数量是不相等的。
作为上述实施例的一个子实施例,所述Q个时间子池中不存在一个时间子池同时属于所述Q1个子池集合中的两个子池集合。
作为上述实施例的一个子实施例,所述Q1个子池集合中任意一个子池集合中的所有时间子池属于同一个通过能量检测被判断为空闲的附加延时时段或附加时隙时段。
作为上述实施例的一个子实施例,所述Q个时间子池中不属于所述Q1个子池集合的时间子池中至少存在一个时间子池对应的检测值低于所述第一阈值。
作为上述实施例的一个子实施例,所述Q个时间子池中不属于所述Q1个子池集合的时间子池中至少存在一个时间子池对应的检测值不低于所述第一阈值。
实施例8
实施例8示例了另一个Q个时间子池中分别执行Q次能量检测的过程的示意图;如附图8所示。
在实施例8中,本申请中的所述第一节点在本申请中的所述第一子频带上的所述Q个时间子池中分别执行所述Q次能量检测,得到Q个检测值。所述Q个检测值中的Q1个检测值都低于本申请中的所述第一阈值,所述Q1是不大于所述Q的正整数。Q1个时间子池是所述Q个时间子池中分别和所述Q1个检测值对应的时间子池。所述Q次能量检测的过程可以由附图8中的流程图来描述。
在实施例8中,所述第一节点在步骤S1101中处于闲置状态,在步骤S1102中判断是否需要发送;在步骤1103中在一个延迟时段(deferduration)内执行能量检测;在步骤S1104中判断这个延迟时段内的所有时隙时段是否都空闲,如果是,进行到步骤S1105中在本申请中的所述第一子频带上发送无线信号;否则进行到步骤S1106中在一个延迟时段内执行能量检测;在步骤S1107中判断这个延迟时段内的所有时隙时段是否都空闲,如果是,进行到步骤S1108中设置第一计数器等于Q1;否则返回步骤S1106;在步骤S1109中判断所述第一计数器是否为0,如果是,进行到步骤S1105中在所述第一子频带上发送无线信号;否则进行到步骤S1110中在一个附加时隙时段内执行能量检测;在步骤S1111中判断这个附加时隙时段是否空闲,如果是,进行到步骤S1112中把所述第一计数器减1,然后返回步骤1109;否则进行到步骤S1113中在一个附加延迟时段内执行能量检测;在步骤S1114中判断这个附加延迟时段内的所有时隙时段是否都空闲,如果是,进行到步骤S1112;否则返回步骤S1113。
在实施例8中,第一给定时段包括所述Q个时间子池中的正整数个时间子池,所述第一给定时段是附图8中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。第二给定时段包括所述Q1个时间子池中的1个时间子池,所述第二给定时段是附图8中通过能量检测被判断为空闲的{所有附加时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,所述Q1等于0,所述第一节点在所述步骤S1104中判断这个延迟时段内的所有时隙时段都空闲。
作为一个实施例,所述Q1是本申请中的所述K个备选整数中的一个备选整数,所述K是正整数,所述第一节点在步骤S1104中判断这个延迟时段内的并非所有时隙时段都空闲。
实施例9
实施例9示例了一个天线端口和天线端口组的示意图,如附图9所示。
在实施例9中,一个天线端口组包括正整数个天线端口;一个天线端口由正整数个天线组中的天线通过天线虚拟化(Virtualization)叠加而成;一个天线组包括正整数根天线。一个天线组通过一个RF(Radio Frequency,射频)chain(链)连接到基带处理器,不同天线组对应不同的RFchain。给定天线端口包括的正整数个天线组内的所有天线到所述给定天线端口的映射系数组成所述给定天线端口对应的波束赋型向量。所述给定天线端口包括的正整数个天线组内的任一给定天线组包括的多根天线到所述给定天线端口的映射系数组成所述给定天线组的模拟波束赋型向量。所述正整数个天线组对应的模拟波束赋型向量对角排列构成所述给定天线端口对应的模拟波束赋型矩阵。所述正整数个天线组到所述给定天线端口的映射系数组成所述给定天线端口对应的数字波束赋型向量。所述给定天线端口对应的波束赋型向量是由所述给定天线端口对应的模拟波束赋型矩阵和数字波束赋型向量的乘积得到的。一个天线端口组中的不同天线端口由相同的天线组构成,同一个天线端口组中的不同天线端口对应不同的波束赋型向量。
附图9中示出了两个天线端口组:天线端口组#0和天线端口组#1。其中,所述天线端口组#0由天线组#0构成,所述天线端口组#1由天线组#1和天线组#2构成。所述天线组#0中的多个天线到所述天线端口组#0的映射系数组成模拟波束赋型向量#0,所述天线组#0到所述天线端口组#0的映射系数组成数字波束赋型向量#0。所述天线组#1中的多个天线和所述天线组#2中的多个天线到所述天线端口组#1的映射系数分别组成模拟波 束赋型向量#1和模拟波束赋型向量#2,所述天线组#1和所述天线组#2到所述天线端口组#1的映射系数组成数字波束赋型向量#1。所述天线端口组#0中的任一天线端口对应的波束赋型向量是由所述模拟波束赋型向量#0和所述数字波束赋型向量#0的乘积得到的。所述天线端口组#1中的任一天线端口对应的波束赋型向量是由所述模拟波束赋型向量#1和所述模拟波束赋型向量#2对角排列构成的模拟波束赋型矩阵和所述数字波束赋型向量#1的乘积得到的。
作为一个实施例,一个天线端口组包括一个天线端口。例如,附图9中的所述天线端口组#0包括一个天线端口。
作为上述实施例的一个子实施例,所述一个天线端口对应的模拟波束赋型矩阵降维成模拟波束赋型向量,所述一个天线端口对应的数字波束赋型向量降维成一个标量,所述一个天线端口对应的波束赋型向量等于所述一个天线端口对应的模拟波束赋型向量。例如,附图9中的所述数字波束赋型向量#0降维成一个标量,所述天线端口组#0中的天线端口对应的波束赋型向量是所述模拟波束赋型向量#0。
作为一个实施例,一个天线端口组包括多个天线端口。例如,附图9中的所述天线端口组#1包括多个天线端口。
作为上述实施例的一个子实施例,所述多个天线端口对应相同的模拟波束赋型矩阵。
作为上述实施例的一个子实施例,所述多个天线端口中至少两个天线端口对应相同的模拟波束赋型矩阵。
作为上述实施例的一个子实施例,所述多个天线端口中至少两个天线端口对应不同的模拟波束赋型矩阵。
作为上述实施例的一个子实施例,所述多个天线端口对应不同的数字波束赋型向量。
作为上述实施例的一个子实施例,所述多个天线端口中至少两个天线端口对应相同的数字波束赋型向量。
作为上述实施例的一个子实施例,所述多个天线端口中至少两个天线端口对应不同的数字波束赋型向量。
作为一个实施例,不同的天线端口组中的任意两个天线端口对应不同的模拟波束赋型矩阵。
作为一个实施例,不同的天线端口组中的至少两个天线端口对应不同的模拟波束赋型矩阵。
作为一个实施例,不同的天线端口组中的至少两个天线端口对应相同的模拟波束赋型矩阵。
作为一个实施例,两个不同的天线端口组是QCL(Quasi Co-Located,准共址)。
作为一个实施例,两个不同的天线端口组不是QCL。
作为一个实施例,一个天线端口组中的任意两个天线端口是QCL。
作为一个实施例,一个天线端口组中的任意两个天线端口不是QCL。
作为一个实施例,一个天线端口组中的至少两个天线端口是QCL。
作为一个实施例,一个天线端口组中的至少两个天线端口不是QCL。
作为一个实施例,一个天线端口组中的任意两个天线端口是spatial QCL。
作为一个实施例,一个天线端口组中的任意两个天线端口不是spatial QCL。
作为一个实施例,一个天线端口组中的至少两个天线端口是spatial QCL。
作为一个实施例,一个天线端口组中的至少两个天线端口不是spatial QCL。
作为一个实施例,两个天线端口是QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的全部或者部分大尺度(large-scale)特性(properties)推断出两个天线端口中的另一个天线端口上发送的无线信号的全部或者部分大尺度特性。
作为一个实施例,两个天线端口是QCL是指:所述两个天线端口至少有一个相同的QCL参数(QCLparameter),所述QCL参数包括多天线相关的QCL参数和多天线无关的QCL 参数。
作为一个实施例,两个天线端口是QCL是指:能够从所述两个天线端口中的一个天线端口的至少一个QCL参数推断出所述两个天线端口中的另一个天线端口的至少一个QCL参数。
作为一个实施例,两个天线端口是QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的接收。
作为一个实施例,两个天线端口是QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的发送推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送。
作为一个实施例,两个天线端口是QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送,所述所述两个天线端口中的一个天线端口上发送的无线信号的接收者和所述所述两个天线端口中的另一个天线端口上发送的无线信号的发送者相同。
作为一个实施例,两个天线端口不是QCL是指:不能够从所述两个天线端口中的一个天线端口上发送的无线信号的全部或者部分大尺度(large-scale)特性(properties)推断出两个天线端口中的另一个天线端口上发送的无线信号的全部或者部分大尺度特性。
作为一个实施例,两个天线端口不是QCL是指:所述两个天线端口至少有一个不同的QCL参数(QCLparameter),所述QCL参数包括多天线相关的QCL参数和多天线无关的QCL参数。
作为一个实施例,两个天线端口不是QCL是指:不能够从所述两个天线端口中的一个天线端口的至少一个QCL参数推断出所述两个天线端口中的另一个天线端口的至少一个QCL参数。
作为一个实施例,两个天线端口不是QCL是指:不能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的接收。
作为一个实施例,两个天线端口不是QCL是指:不能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的发送推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送。
作为一个实施例,两个天线端口不是QCL是指:不能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送,所述所述两个天线端口中的一个天线端口上发送的无线信号的接收者和所述所述两个天线端口中的另一个天线端口上发送的无线信号的发送者相同。
作为一个实施例,多天线相关的QCL参数包括:到达角(angle of arrival)、离开角(angle of departure)、空间相关性、多天线相关的发送、多天线相关的接收中的一种或多种。
作为一个实施例,多天线无关的QCL参数包括:延时扩展(delay spread)、多普勒扩展(Doppler spread)、多普勒移位(Doppler shift)、路径损耗(pathloss)、平均增益(average gain)中的一种或多种。
作为一个实施例,两个天线端口是spatial QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的全部或者部分多天线相关的大尺度(large-scale)特性(properties)推断出两个天线端口中的另一个天线端口上发送的无线信号的全部或者部分多天线相关的大尺度特性。
作为一个实施例,两个天线端口是spatial QCL是指:所述两个天线端口至少有一 个相同的多天线相关的QCL参数(spatialQCLparameter)。
作为一个实施例,两个天线端口是spatial QCL的是指:能够从所述两个天线端口中的一个天线端口的至少一个多天线相关的QCL参数推断出所述两个天线端口中的另一个天线端口的至少一个多天线相关的QCL参数。
作为一个实施例,两个天线端口是spatial QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的接收。
作为一个实施例,两个天线端口是spatial QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的发送推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送。
作为一个实施例,两个天线端口是spatial QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送,所述所述两个天线端口中的一个天线端口上发送的无线信号的接收者和所述所述两个天线端口中的另一个天线端口上发送的无线信号的发送者相同。
作为一个实施例,两个天线端口不是spatial QCL是指:不能够从所述两个天线端口中的一个天线端口上发送的无线信号的全部或者部分多天线相关的大尺度(large-scale)特性(properties)推断出两个天线端口中的另一个天线端口上发送的无线信号的全部或者部分多天线相关的大尺度特性。
作为一个实施例,两个天线端口不是spatial QCL是指:所述两个天线端口至少有一个不同的多天线相关的QCL参数(spatialQCLparameter)。
作为一个实施例,两个天线端口不是spatial QCL的是指:不能够从所述两个天线端口中的一个天线端口的至少一个多天线相关的QCL参数推断出所述两个天线端口中的另一个天线端口的至少一个多天线相关的QCL参数。
作为一个实施例,两个天线端口不是spatial QCL是指:不能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的接收。
作为一个实施例,两个天线端口不是spatial QCL是指:不能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的发送推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送。
作为一个实施例,两个天线端口不是spatial QCL是指:不能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送,所述所述两个天线端口中的一个天线端口上发送的无线信号的接收者和所述所述两个天线端口中的另一个天线端口上发送的无线信号的发送者相同。
作为一个实施例,给定无线信号的多天线相关的大尺度特性包括到达角(angle of arrival)、离开角(angle of departure)、空间相关性、多天线相关的发送、多天线相关的接收中的一种或者多种。
实施例10
实施例10A至实施例10B分别示例了一个给定无线信号与给定能量检测空间相关的示意图。
在实施例10中,所述给定能量检测对应本申请中的所述Q次能量检测中的任一次能量检测,所述给定无线信号对应本申请中的所述T1个第二类无线信号中的任一第二类无线信号所包括的子信号中与所述Q次能量检测空间相关的任一子信号;或者,所述给定无线信号对应本申请中的所述S个第四类无线信号中的任一第四类无线信号所包括的子信号中与所述Q次能量检测空间相关的任一子信号;所述给定无线信号对应本申请中的所述第五无线信 号。
作为一个实施例,给定无线信号与给定能量检测空间相关是指:所述给定能量检测所使用的多天线相关的接收能被用于推断出所述给定无线信号的多天线相关的发送,或者所述给定无线信号的多天线相关的发送能被用于推断出所述给定能量检测所使用的多天线相关的接收。
作为一个实施例,给定无线信号与给定能量检测空间相关是指:所述给定能量检测所使用的多天线相关的接收和所述给定无线信号的多天线相关的发送相同。
作为一个实施例,给定无线信号与给定能量检测空间相关是指:所述给定能量检测所使用的多天线相关的接收包括给定无线信号的多天线相关的发送。
作为一个实施例,给定无线信号与给定能量检测空间相关是指:所述给定能量检测所使用的接收波束赋型矩阵对应的波束宽度不小于所述给定无线信号的发送波束赋型矩阵对应的波束宽度。
作为一个实施例,给定无线信号与给定能量检测空间相关是指:所述给定能量检测所使用的接收波束赋型矩阵对应的波束方向包括所述给定无线信号的发送波束赋型矩阵对应的波束方向。
作为一个实施例,给定无线信号与给定能量检测空间相关是指:所述给定能量检测所使用的接收波束对应的波束宽度大于所述给定无线信号的发送波束对应的波束宽度。
作为一个实施例,给定无线信号与给定能量检测空间相关是指:所述给定能量检测所使用的接收波束包括所述给定无线信号的发送波束。
作为一个实施例,给定无线信号与给定能量检测空间不相关是指:所述给定能量检测所使用的多天线相关的接收不能被用于推断出所述给定无线信号的多天线相关的发送,或者所述给定无线信号的多天线相关的发送不能被用于推断出所述给定能量检测所使用的多天线相关的接收。
作为一个实施例,给定无线信号与给定能量检测空间不相关是指:所述给定能量检测所使用的多天线相关的接收和所述给定无线信号的多天线相关的发送不相同。
作为一个实施例,给定无线信号与给定能量检测空间不相关是指:所述给定能量检测所使用的多天线相关的接收不包括给定无线信号的多天线相关的发送。
作为一个实施例,给定无线信号与给定能量检测空间不相关是指:所述给定能量检测所使用的接收波束赋型矩阵对应的波束宽度小于所述给定无线信号的发送波束赋型矩阵对应的波束宽度。
作为一个实施例,给定无线信号与给定能量检测空间不相关是指:所述给定能量检测所使用的接收波束赋型矩阵对应的波束方向不包括所述给定无线信号的发送波束赋型矩阵对应的波束方向。
作为一个实施例,给定无线信号与给定能量检测空间不相关是指:所述给定能量检测所使用的接收波束对应的波束宽度小于所述给定无线信号的发送波束对应的波束宽度。
作为一个实施例,给定无线信号与给定能量检测空间不相关是指:所述给定能量检测所使用的接收波束不包括所述给定无线信号的发送波束。
作为一个实施例,所述多天线相关的接收是空间接收参数(Spatial Rx parameters)。
作为一个实施例,所述多天线相关的接收是接收波束。
作为一个实施例,所述多天线相关的接收是接收波束赋型矩阵。
作为一个实施例,所述多天线相关的接收是接收模拟波束赋型矩阵。
作为一个实施例,所述多天线相关的接收是接收模拟波束赋型向量。
作为一个实施例,所述多天线相关的接收是接收波束赋型向量。
作为一个实施例,所述多天线相关的接收是接收空间滤波(spatial filtering)。
作为一个实施例,所述多天线相关的发送是空间发送参数(Spatial Tx parameters)。
作为一个实施例,所述多天线相关的发送是发送波束。
作为一个实施例,所述多天线相关的发送是发送波束赋型矩阵。
作为一个实施例,所述多天线相关的发送是发送模拟波束赋型矩阵。
作为一个实施例,所述多天线相关的发送是发送模拟波束赋型向量。
作为一个实施例,所述多天线相关的发送是发送波束赋型向量。
作为一个实施例,所述多天线相关的发送是发送空间滤波。
作为一个实施例,所述空间发送参数(Spatial Tx parameters)包括发送天线端口、发送天线端口组、发送波束、发送模拟波束赋型矩阵、发送模拟波束赋型向量、发送波束赋型矩阵、发送波束赋型向量和发送空间滤波(spatial filtering)中的一种或多种。
作为一个实施例,所述空间发送参数包括发送天线端口。
作为一个实施例,所述空间发送参数包括发送天线端口组。
作为一个实施例,所述空间发送参数包括发送波束。
作为一个实施例,所述空间发送参数包括发送模拟波束赋型矩阵。
作为一个实施例,所述空间发送参数包括发送模拟波束赋型向量。
作为一个实施例,所述空间发送参数包括发送波束赋型矩阵。
作为一个实施例,所述空间发送参数包括发送波束赋型向量。
作为一个实施例,所述空间发送参数包括发送天线端口和发送波束。
作为一个实施例,所述空间发送参数包括发送天线端口和发送模拟波束赋型矩阵。
作为一个实施例,所述空间发送参数包括发送天线端口和发送模拟波束赋型向量。
作为一个实施例,所述空间发送参数包括发送天线端口和发送波束赋型矩阵。
作为一个实施例,所述空间发送参数包括发送天线端口和发送波束赋型向量。
作为一个实施例,所述空间发送参数包括发送天线端口组和发送波束。
作为一个实施例,所述空间发送参数包括发送天线端口组和发送模拟波束赋型矩阵。
作为一个实施例,所述空间发送参数包括发送天线端口组和发送模拟波束赋型向量。
作为一个实施例,所述空间发送参数包括发送天线端口组和发送波束赋型矩阵。
作为一个实施例,所述空间发送参数包括发送天线端口组和发送波束赋型向量。
作为一个实施例,所述空间接收参数(Spatial Rx parameters)包括接收波束、接收模拟波束赋型矩阵、接收模拟波束赋型向量、接收波束赋型矩阵、接收波束赋型向量和接收空间滤波(spatial filtering)中的一种或多种。
作为一个实施例,所述空间接收参数包括接收波束。
作为一个实施例,所述空间接收参数包括接收模拟波束赋型矩阵。
作为一个实施例,所述空间接收参数包括接收模拟波束赋型向量。
作为一个实施例,所述空间接收参数包括接收波束赋型矩阵。
作为一个实施例,所述空间接收参数包括接收波束赋型向量。
作为一个实施例,所述空间接收参数包括接收空间滤波。
作为一个实施例,所述给定能量检测所使用的天线数目小于所述给定无线信号的发送天线数目。
作为一个实施例,所述给定能量检测所使用的天线数目大于1。
作为一个实施例,所述给定无线信号的发送天线数目大于1。
作为一个实施例,所述实施例10A对应所述给定能量检测所使用的接收波束和所述给定无线信号的发送波束相同的所述给定无线信号与所述给定能量检测空间相关的示意图。
作为一个实施例,所述实施例10B对应所述给定能量检测所使用的接收波束包括所述给定无线信号的发送波束的所述给定无线信号与所述给定能量检测空间相关的示意图。
实施例11
实施例11A至实施例11D分别示例了一个X个给定第一无线信号、X个给定第二无线信号和Q的关系的示意图。
在实施例11中,本申请中的所述第一节点是基站,所述X个给定第一无线信号分别指 示所述X个给定第二无线信号是否被正确接收;所述X个给定第二无线信号包括Y个子信号,所述X个给定第一无线信号指示所述Y个子信号中任一子信号是否被正确接收,所述Y是不小于所述X的正整数;所述Y个子信号中属于所述X个给定第二无线信号中同一个给定第二无线信号的所有子信号中的至少一个子信号与本申请中的所述Q次能量检测空间相关;所述Y个子信号是否被正确接收被用于确定所述Q。所述X个给定第一无线信号对应本申请中的所述T1个第一类无线信号,所述X个给定第二无线信号对应本申请中的所述T1个第二类无线信号,所述Y个子信号对应本申请中的所述W个子信号;或者,所述X个给定第一无线信号对应本申请中的所述S个第三类无线信号和所述T1个第一类无线信号,所述X个给定第二无线信号对应本申请中的所述S个第四类无线信号和所述T1个第二类无线信号,所述Y个子信号对应本申请中的所述S1个子信号和所述W个子信号。
作为一个实施例,所述Y大于所述X。
作为一个实施例,所述X个给定第二无线信号中之一所包括的所有子信号中的至少一个子信号与所述Q次能量检测空间不相关。
作为一个实施例,所述X个给定第二无线信号中任一给定第二无线信号所包括的所有子信号中的至少一个子信号与所述Q次能量检测空间相关。
作为一个实施例,所述X个给定第二无线信号中至少存在一个给定第二无线信号包括多个子信号。
作为一个实施例,所述X个给定第二无线信号中任一给定第二无线信号包括多个子信号。
作为一个实施例,第一参考无线信号包括Y2个子信号,所述第一参考无线信号是所述X个给定第二无线信号中任一给定第二无线信号,所述Y2个子信号属于所述Y个子信号。
作为上述实施例的一个子实施例,所述Y2大于1,所述Y2个子信号都占用相同的时域资源。
作为上述实施例的一个子实施例,所述Y2大于1,至少一个多载波符号被所述Y2个子信号都占用。
作为上述实施例的一个子实施例,所述Y2大于1,所述Y2个子信号都占用相同的频域资源。
作为上述实施例的一个子实施例,所述Y2大于1,至少一个子载波被所述Y2个子信号都占用。
作为上述实施例的一个子实施例,所述Y2大于1,所述Y2个子信号的多天线相关的发送互不相同。
作为上述实施例的一个子实施例,所述Y2大于1,所述Y2个子信号的多天线相关的发送都相同。
作为上述实施例的一个子实施例,所述Y2是不大于2的正整数。
作为上述实施例的一个子实施例,所述Y2等于1。
作为上述实施例的一个子实施例,所述Y2等于2。
作为上述实施例的一个子实施例,所述Y2等于所述第一参考无线信号的码字(codeword)的数目。
作为上述实施例的一个子实施例,所述第一参考无线信号包括Y2个码字,所述Y2个子信号分别和所述Y2个码字对应。
作为上述实施例的一个子实施例,所述Y2大于1,所述Y2个子信号分别占用互不相同的天线端口或天线端口组。
作为上述实施例的一个子实施例,所述第一参考无线信号对应的所述X个给定第一无线信号中的一个给定第一无线信号包括Y2个第一子信号,所述Y2个第一子信号分别被用于确定所述Y2个子信号是否被正确接收。
作为一个实施例,第一比值等于所述Y个子信号中没有被正确接收的子信号的数量和所述Y的比值,所述第一比值被用于确定所述Q。
作为一个实施例,所述实施例11A对应所述X个给定第一无线信号总共包括Y个HARQ-ACK反馈,所述Y个HARQ-ACK反馈分别对应所述Y个子信号,所述Y个HARQ-ACK反馈中的任一HARQ-ACK反馈的取值属于{ACK(ACKnowledgement,确认),NACK(Negative ACKnowledgement,否认)}中之一,第一比值等于所述Y个HARQ-ACK反馈中NACK的数量和所述Y的比值的所述X个给定第一无线信号、所述X个给定第二无线信号和所述Q的关系的示意图。
作为一个实施例,所述Y大于所述X,Y1个子信号是所述Y个子信号中与所述Q次能量检测空间相关的所有子信号,所述Y1是小于所述Y的正整数;所述Y个子信号中仅有所述Y1个子信号的是否被正确接收的信息被用于确定所述Q。
作为一个实施例,所述Y大于所述X,Y1个子信号是所述Y个子信号中与所述Q次能量检测空间相关的所有子信号,所述Y1是小于所述Y的正整数;第一比值等于所述Y1个子信号中没有被正确接收的子信号的数量和所述Y1的比值,所述第一比值被用于确定所述Q。
作为一个实施例,所述实施例11B对应所述X个给定第一无线信号总共包括Y个HARQ-ACK反馈,所述Y个HARQ-ACK反馈分别对应所述Y个子信号,所述Y个HARQ-ACK反馈中的任一HARQ-ACK反馈的取值属于{ACK,NACK}中之一;Y1个HARQ-ACK反馈是所述Y个HARQ-ACK反馈中与所述Y1个子信号对应的HARQ-ACK反馈;第一比值等于所述Y1个HARQ-ACK反馈中NACK的数量和所述Y1的比值的所述X个给定第一无线信号、所述X个给定第二无线信号和所述Q的关系的示意图。
作为一个实施例,所述Y大于所述X,所述Y个子信号是否被正确接收被用于确定X个第一统计值,所述X个第一统计值分别指示所述X个给定第二无线信号是否被统计为正确接收,所述X个第一统计值被用于确定所述Q。
作为上述实施例的一个子实施例,第一参考无线信号是所述X个给定第二无线信号中任一给定第二无线信号,所述Y个子信号中属于所述第一参考无线信号的所有子信号中至少一个子信号与所述Q次能量检测空间不相关。
作为上述实施例的一个子实施例,第一参考无线信号是所述X个给定第二无线信号中任一给定第二无线信号,所述Y个子信号中被所述第一参考无线信号包括的所有子信号全部都被正确接收,所述第一参考无线信号被统计为正确接收。
作为上述实施例的一个子实施例,第一参考无线信号是所述X个给定第二无线信号中任一给定第二无线信号,所述Y个子信号中被所述第一参考无线信号包括的所有子信号中至少一个子信号没有被正确接收,所述第一参考无线信号被统计为没有正确接收。
作为一个实施例,所述Y个子信号是否被正确接收被用于确定X个第一统计值,所述X个第一统计值分别指示所述X个给定第二无线信号是否被统计为正确接收,第一比值等于所述X个第一统计值指示的所述X个给定第二无线信号中被统计为没有正确接收的给定第二无线信号的数量和所述X的比值,所述第一比值被用于确定所述Q。
作为一个实施例,所述实施例11C对应所述X个给定第一无线信号总共包括Y个HARQ-ACK反馈,所述Y个HARQ-ACK反馈分别对应所述Y个子信号,所述Y个HARQ-ACK反馈中的任一HARQ-ACK反馈的取值属于{ACK,NACK}中之一;所述Y个HARQ-ACK反馈被用于确定X个第一统计值,所述X个第一统计值中的任一第一统计值的取值属于{ACK,NACK}中之一;第一比值等于所述X个第一统计值中NACK的数量和所述X的比值的所述X个给定第一无线信号、所述X个给定第二无线信号和所述Q的关系的示意图。
作为一个实施例,所述Y大于所述X,所述X个给定第二无线信号由t1个给定第二无线信号和t2个给定第二无线信号组成,所述t1个给定第二无线信号中任一给定第二无线信号所包括的所有子信号都与所述Q次能量检测空间相关,所述t2个给定第二无线信号中任一给定第二无线信号所包括的所有子信号中至少一个子信号与所述Q次能量检测空间不相关,所述t1是大于1且小于所述X的正整数,所述t2是大于1且小于所述X的正整数,所述X等于所述t1和所述t2之和。所述t1个给定第二无线信号包括w1个子信号,所述t2个给定第二无线信号包括w2个子信号,所述Y个子信号由所述w1个子信号和所述w2个子信号组成; 所述w2个子信号是否被正确接收被用于确定t2个第一统计值,所述t2个第一统计值分别指示所述t2个给定第二无线信号否被统计为正确接收,所述t2个第一统计值和所述w1个子信号是否被正确接收被用于确定所述Q。
作为上述实施例的一个子实施例,第一参考无线信号是所述t2个给定第二无线信号中任一给定第二无线信号,所述w2个子信号中被所述第一参考无线信号包括的所有子信号全部都被正确接收,所述第一参考无线信号被统计为正确接收。
作为上述实施例的一个子实施例,第一参考无线信号是所述t2个给定第二无线信号中任一给定第二无线信号,所述w2个子信号中被所述第一参考无线信号包括的所有子信号中至少一个子信号没有被正确接收,所述第一参考无线信号被统计为没有正确接收。
作为一个实施例,第一参考数值等于所述w1个子信号中没有被正确接收的子信号的数量与所述t2个第一统计值指示的所述t2个给定第二无线信号中被统计为没有正确接收的给定第二无线信号的数量之和,第二参考数值等于所述w1与所述t2之和,第一比值等于所述第一参考数值和所述第二参考数值的比值,所述第一比值被用于确定所述Q。
作为一个实施例,所述实施例11D对应所述X个给定第一无线信号总共包括Y个HARQ-ACK反馈,所述Y个HARQ-ACK反馈分别对应所述Y个子信号,所述Y个HARQ-ACK反馈中的任一HARQ-ACK反馈的取值属于{ACK,NACK}中之一;所述Y个HARQ-ACK反馈由w1个HARQ-ACK反馈和w2个HARQ-ACK反馈组成,所述w1个HARQ-ACK反馈分别指示所述w1个子信号是否正确接收;所述w2个HARQ-ACK反馈被用于确定t2个第一统计值,所述t2个第一统计值中的任一第一统计值的取值属于{ACK,NACK}中之一;第一比值等于所述w1个HARQ-ACK反馈和所述t2个第一统计值中NACK的数量和所述w1与所述t2之和的比值的所述X个给定第一无线信号、所述X个给定第二无线信号和所述Q的关系的示意图。
实施例12
实施例12A至实施例12H分别示例了另一个X个给定第一无线信号、X个给定第二无线信号和Q的关系的示意图。
在实施例12中,本申请中的所述第一节点是用户设备,所述X个给定第一无线信号分别包括X个第二信息,所述X个第二信息分别包括所述X个给定第二无线信号的调度信息;所述X个给定第二无线信号包括Z个子信号,所述X个第二信息指示所述Z个子信号中任一子信号是否包括新数据,所述Z是不小于所述X的正整数;所述Z个子信号中属于所述X个给定第二无线信号中同一个第二无线信号的所有子信号中的至少一个子信号与本申请中的所述Q次能量检测空间相关;所述Z个子信号是否包括新数据被用于确定所述Q。所述X个给定第一无线信号对应本申请中的所述T1个第一类无线信号,所述X个给定第二无线信号对应本申请中的所述T1个第二类无线信号,所述Z个子信号对应本申请中的所述V个子信号;或者,所述X个给定第一无线信号对应本申请中的所述S个第三类无线信号和所述T1个第一类无线信号,所述X个给定第二无线信号对应本申请中的所述S个第四类无线信号和所述T1个第二类无线信号,所述Z个子信号对应本申请中的所述S2个子信号和所述V个子信号。
作为一个实施例,所述X个第二信息分别是动态信令。
作为一个实施例,所述X个第二信息分别是物理层信令。
作为一个实施例,所述X个第二信息分别是用于上行授予的动态信令。
作为一个实施例,所述X个第二信息分别包括DCI。
作为一个实施例,所述X个第二信息分别包括UpLink GrantDCI。
作为一个实施例,所述X个第二信息中的每一个第二信息包括第一域,所述X个第二信息中任一第二信息中的第一域指示对应的所述X个给定第二无线信号中的一个给定第二无线信号的每个子信号是否包括新数据。
作为上述实施例的一个子实施例,所述X个第二信息中的任一第二信息中的第一域是NDI。
作为上述实施例的一个子实施例,所述X个第二信息中的任一第二信息中的第一域包括 正整数个比特。
作为上述实施例的一个子实施例,所述X个第二信息中的任一第二信息中的第一域包括1比特。
作为上述实施例的一个子实施例,所述X个第二信息中的任一第二信息中的第一域包括2比特。
作为一个实施例,所述Z大于所述X。
作为一个实施例,所述X个给定第二无线信号中之一所包括的所有子信号中的至少一个子信号与所述Q次能量检测空间不相关。
作为一个实施例,所述X个给定第二无线信号中任一给定第二无线信号所包括的所有子信号中的至少一个子信号与所述Q次能量检测空间相关。
作为一个实施例,所述X个给定第二无线信号中至少存在一个给定第二无线信号包括多个子信号。
作为一个实施例,所述X个给定第二无线信号中任一给定第二无线信号包括多个子信号。
作为一个实施例,第二参考无线信号包括Z2个子信号,所述第二参考无线信号是所述X个给定第二无线信号中任一给定第二无线信号,所述Z2个子信号属于所述Z个子信号。
作为上述实施例的一个子实施例,所述Z2大于1,所述Z2个子信号都占用相同的时域资源。
作为上述实施例的一个子实施例,所述Z2大于1,至少一个多载波符号被所述Z2个子信号都占用。
作为上述实施例的一个子实施例,所述Z2大于1,所述Z2个子信号都占用相同的频域资源。
作为上述实施例的一个子实施例,所述Z2大于1,至少一个子载波被所述Z2个子信号都占用。
作为上述实施例的一个子实施例,所述Z2大于1,所述Z2个子信号的多天线相关的发送互不相同。
作为上述实施例的一个子实施例,所述Z2大于1,所述Z2个子信号的多天线相关的发送都相同。
作为上述实施例的一个子实施例,所述Z2是不大于2的正整数。
作为上述实施例的一个子实施例,所述Z2等于1。
作为上述实施例的一个子实施例,所述Z2等于2。
作为上述实施例的一个子实施例,所述Z2等于所述第二参考无线信号的码字(codeword)的数目。
作为上述实施例的一个子实施例,所述第二参考无线信号包括Z2个码字,所述Z2个子信号分别和所述Z2个码字对应。
作为上述实施例的一个子实施例,所述Z2大于1,所述Z2个子信号分别占用互不相同的天线端口或天线端口组。
作为上述实施例的一个子实施例,所述第二参考无线信号对应的所述X个第二信息中的一个第二信息指示所述Z2个子信号中的每一个子信号是否包括新数据。
作为一个实施例,第一数值等于所述Z个子信号中包括新数据的子信号的数量,所述第一数值被用于确定所述Q。
作为一个实施例,所述实施例12A对应第一数值等于所述Z个子信号中包括新数据的子信号的数量的所述X个给定第一无线信号、所述X个给定第二无线信号和所述Q的关系的示意图。
作为一个实施例,第一数值等于所述Z个子信号中包括新数据的子信号的数量与所述Z的比值,所述第一数值被用于确定所述Q。
作为一个实施例,所述实施例12B对应第一数值等于所述Z个子信号中包括新数据的子 信号的数量与所述Z的比值的所述X个给定第一无线信号、所述X个给定第二无线信号和所述Q的关系的示意图。
作为一个实施例,所述Z大于所述X,Z1个子信号是所述Z个子信号中与所述Q次能量检测空间相关的所有子信号,所述Z1是小于所述Z的正整数;所述Z个子信号中仅有所述Z1个子信号的是否包括新数据的信息被用于确定所述Q。
作为一个实施例,所述Z大于所述X,Z1个子信号是所述Z个子信号中与所述Q次能量检测空间相关的所有子信号,所述Z1是小于所述Z的正整数;第一数值等于所述Z1个子信号中包括新数据的子信号的数量,所述第一数值被用于确定所述Q。
作为一个实施例,所述实施例12C对应第一数值等于所述Z1个子信号中包括新数据的子信号的数量的所述X个给定第一无线信号、所述X个给定第二无线信号和所述Q的关系的示意图。
作为一个实施例,所述Z大于所述X,Z1个子信号是所述Z个子信号中与所述Q次能量检测空间相关的所有子信号,所述Z1是小于所述Z的正整数;第一数值等于所述Z1个子信号中包括新数据的子信号的数量与所述Z1的比值,所述第一数值被用于确定所述Q。
作为一个实施例,所述实施例12D对应第一数值等于所述Z1个子信号中包括新数据的子信号的数量与所述Z1的比值的所述X个给定第一无线信号、所述X个给定第二无线信号和所述Q的关系的示意图。
作为一个实施例,所述Z大于所述X,所述Z个子信号是否包括新数据被用于确定X个第二统计值,所述X个第二统计值分别指示所述X个给定第二无线信号是否被统计为包括新数据,所述X个第二统计值被用于确定所述Q。
作为上述实施例的一个子实施例,第二参考无线信号是所述X个给定第二无线信号中任一给定第二无线信号,所述Z个子信号中属于所述第二参考无线信号的所有子信号中至少一个子信号与所述Q次能量检测空间不相关。
作为上述实施例的一个子实施例,第二参考无线信号是所述X个给定第二无线信号中任一给定第二无线信号,所述Z个子信号中被所述第二参考无线信号包括的所有子信号全部都包括新数据,所述第二参考无线信号被统计为包括新数据。
作为上述实施例的一个子实施例,第二参考无线信号是所述X个给定第二无线信号中任一给定第二无线信号,所述Z个子信号中被所述第二参考无线信号包括的所有子信号中至少一个子信号不包括新数据,所述第二参考无线信号被统计为不包括新数据。
作为一个实施例,第一数值等于所述X个第二统计值指示的所述X个给定第二无线信号中被统计为包括新数据的给定第二无线信号的数量,所述第一数值被用于确定所述Q。
作为一个实施例,所述实施例12E对应所述X个第二统计值中的任一第二统计值的取值属于{包括新数据,不包括新数据}中之一,第一数值等于所述X个第二统计值中取值为包括新数据的第二统计值的数量的所述X个给定第一无线信号、所述X个给定第二无线信号和所述Q的关系的示意图。
作为一个实施例,第一数值等于所述X个第二统计值指示的所述X个给定第二无线信号中被统计为包括新数据的给定第二无线信号的数量与所述X的比值,所述第一数值被用于确定所述Q。
作为一个实施例,所述实施例12F对应所述X个第二统计值中的任一第二统计值的取值属于{包括新数据,不包括新数据}中之一,第一数值等于所述X个第二统计值中取值为包括新数据的第二统计值的数量与所述X的比值的所述X个给定第一无线信号、所述X个给定第二无线信号和所述Q的关系的示意图。
作为一个实施例,所述Z大于所述X,所述X个给定第二无线信号由t3个给定第二无线信号和t4个给定第二无线信号组成,所述t3个给定第二无线信号中任一给定第二无线信号所包括的所有子信号都与所述Q次能量检测空间相关,所述t4个给定第二无线信号中任一给定第二无线信号所包括的所有子信号中至少一个子信号与所述Q次能量检测空间不相关,所 述t3是大于1且小于所述X的正整数,所述t4是大于1且小于所述X的正整数,所述X等于所述t3和所述t4之和。所述t3个给定第二无线信号包括w3个子信号,所述t4个给定第二无线信号包括w4个子信号,所述Z个子信号由所述w3个子信号和所述w4个子信号组成;所述w4个子信号是否包括新数据被用于确定t4个第二统计值,所述t4个第二统计值分别指示所述t4个给定第二无线信号否被统计为包括新数据,所述t4个第二统计值和所述w3个子信号是否包括新数据被用于确定所述Q。
作为上述实施例的一个子实施例,第二参考无线信号是所述t4个给定第二无线信号中任一给定第二无线信号,所述w4个子信号中被所述第二参考无线信号包括的所有子信号全部都包括新数据,所述第二参考无线信号被统计为包括新数据。
作为上述实施例的一个子实施例,第二参考无线信号是所述t4个给定第二无线信号中任一给定第二无线信号,所述w4个子信号中被所述第二参考无线信号包括的所有子信号中至少一个子信号不包括新数据,所述第二参考无线信号被统计为不包括新数据。
作为一个实施例,第一数值等于所述w3个子信号中包括新数据的子信号的数量与所述t4个第二统计值指示的所述t4个给定第二无线信号中被统计为包括新数据的给定第二无线信号的数量之和,所述第一数值被用于确定所述Q。
作为一个实施例,所述实施例12G对应所述t4个第二统计值中的任一第二统计值的取值属于{包括新数据,不包括新数据}中之一,第一数值等于所述w3个子信号中包括新数据的子信号的数量与所述t4个第二统计值中取值为包括新数据的第二统计值的数量之和的所述X个给定第一无线信号、所述X个给定第二无线信号和所述Q的关系的示意图。
作为一个实施例,第三参考数值等于所述w3个子信号中包括新数据的子信号的数量与所述t4个第二统计值指示的所述t4个给定第二无线信号中被统计为包括新数据的给定第二无线信号的数量之和,第四参考数值等于所述w3与所述t4之和,第一数值等于所述第三参考数值和所述第四参考数值的比值,所述第一数值被用于确定所述Q。
作为一个实施例,所述实施例12H对应所述t4个第二统计值中的任一第二统计值的取值属于{包括新数据,不包括新数据}中之一,第三参考数值等于所述w3个子信号中包括新数据的子信号的数量与所述t4个第二统计值中取值为包括新数据的第二统计值的数量之和,第四参考数值等于所述w3与所述t4之和,第一数值等于所述第三参考数值和所述第四参考数值的比值的所述X个给定第一无线信号、所述X个给定第二无线信号和所述Q的关系的示意图。
实施例13
实施例13示例了一个X个给定第一无线信号被用于确定Q的示意图,如附图13所示。
在实施例13中,所述X个给定第一无线信号被用于确定K个备选整数,Q1是所述K个备选整数中的一个备选整数;所述Q个检测值中的Q1个检测值都低于第一阈值,所述K是正整数,所述Q1是不大于所述Q的正整数。所述X个给定第一无线信号对应本申请中的所述T1个第一类无线信号,或者所述X个给定第一无线信号对应本申请中的所述S个第三类无线信号和所述T1个第一类无线信号。
作为一个实施例,所述第一节点在所述K个备选整数中随机选取所述Q1的值。
作为一个实施例,所述第一节点在所述K个备选整数中选取任一备选整数作为所述Q1的值的概率都相等。
作为一个实施例,所述K个备选整数为0,1,2,…,K-1。
作为一个实施例,所述K是CWp,所述CWp是竞争窗口(contention window)的大小,所述CWp的具体定义参见3GPP TS36.213中的15章节。
作为一个实施例,所述K个备选整数中的任一备选整数为非负整数。
作为一个实施例,所述K个备选整数中包括0。
作为一个实施例,所述K个备选整数中的任意两个备选整数不等。
作为一个实施例,所述K为一个大于1的正整数。
实施例14
实施例14示例了一个X个给定第一无线信号被用于确定K个备选整数的示意图,如附图14所示。
在实施例14中,所述K是第一整数集合中的一个正整数,所述第一整数集合中包括正整数个正整数;如果第一条件满足,所述K等于K1,否则所述K等于所述第一整数集合中的最小正整数;如果K0不是所述第一整数集合中的最大正整数,所述K1等于所述第一整数集合中大于所述K0的最小正整数,否则所述K1等于所述K0;所述K0为所述第一整数集合中的一个正整数。Q1是所述K个备选整数中的一个备选整数;本申请中的所述Q个检测值中的Q1个检测值均低于本申请中的所述第一阈值;本申请中的所述第一节点是基站;所述第一条件是:X个给定第一无线信号对应的给定比值不小于第一目标数值;所述X个给定第一无线信号对应本申请中的所述T1个第一类无线信号,或者,所述X个给定第一无线信号对应本申请中的S个第三类无线信号和所述T1个第一类无线信号;所述给定比值对应本申请中的所述第一比值。
在附图14中,所述第一整数集合是{15,31,63},所述K0等于31,所述K1等于63。如果所述给定比值不小于所述第一目标数值,所述K等于所述K1;否则所述K等于15。
作为一个实施例,本申请中的所述第五无线信号所对应的优先等级被用于确定所述第一整数集合。
作为上述实施例的一个子实施例,所述第五无线信号所对应的优先等级是3。
作为一个实施例,所述K0为所述Q个时间子池之前最近的一次Cat 4的LBT过程中的CWp,所述CWp是竞争窗口(contention window)的大小,所述CWp的具体定义参见3GPP TS36.213中的15章节。
作为一个实施例,所述第一目标数值是预定义的。
作为一个实施例,所述第一目标数值非负实数。
作为一个实施例,所述第一目标数值等于80%。
实施例15
实施例15示例了另一个X个给定第一无线信号被用于确定K个备选整数的示意图,如附图15所示。
在实施例15中,所述K是第一整数集合中的一个正整数,所述第一整数集合中包括正整数个正整数;如果第二条件满足,所述K等于K1,否则所述K等于所述第一整数集合中的最小正整数;如果K0不是所述第一整数集合中的最大正整数,所述K1等于所述第一整数集合中大于所述K0的最小正整数,否则所述K1等于所述K0;所述K0为所述第一整数集合中的一个正整数。Q1是所述K个备选整数中的一个备选整数;本申请中的所述Q个检测值中的Q1个检测值均低于本申请中的所述第一阈值。
在实施例15中,本申请中的所述第一节点是用户设备;所述第二条件是:所述X个给定第一无线信号被用于对应的给定数值不大于第二目标数值。所述X个给定第一无线信号对应本申请中的所述T1个第一类无线信号,或者,所述X个给定第一无线信号对应本申请中的S个第三类无线信号和所述T1个第一类无线信号;所述给定数值对应本申请中的所述第一数值。
在附图15中,所述第一整数集合是{15,31,63},所述K0等于63,所述K0是所述第一整数集合中的最大正整数,所述K1等于所述K0。如果所述给定数值不大于所述第二目标数值,所述K等于所述K0;否则所述K等于15。
作为一个实施例,所述第二目标数值是预定义的。
作为一个实施例,所述第二目标数值非负实数。
作为一个实施例,所述第二目标数值非负整数。
作为一个实施例,所述第二目标数值等于0。
实施例16
实施例16示例了一个用于第一节点中的处理装置的结构框图;如附图16所示。在附图16中,第一节点中的处理装置1800主要由第一处理模块1801和第一接收机模块1802组成。
-第一处理模块1801:接收T个第一类无线信号,在第一时间窗中发送T个第二类无线信号;
-第一接收机模块1802,在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;
在实施例16中,所述T个第二类无线信号和所述T个第一类无线信号一一对应;至少存在一个多载波符号被所述T个第二类无线信号都占用;所述T个第一类无线信号中仅有T1个第一类无线信号被用于确定所述Q,所述T是大于1的正整数,所述Q是正整数,所述T1是小于所述T的正整数;所述T1个第一类无线信号对应的所述T个第二类无线信号中的T1个第二类无线信号由所述T个第二类无线信号中所有在空间上被关联到所述Q次能量检测的第二类无线信号组成;所述第一节点是基站,或者所述第一节点是用户设备。
作为一个实施例,所述第一节点是基站,所述T个第一类无线信号分别指示所述T个第二类无线信号是否被正确接收。
作为一个实施例,所述T1个第二类无线信号包括W个子信号,所述T1个第一类无线信号指示所述W个子信号中任一子信号是否被正确接收,所述W是不小于所述T1的正整数;所述W个子信号中属于所述T1个第二类无线信号中同一个第二类无线信号的所有子信号中的至少一个子信号与所述Q次能量检测空间相关;所述W个子信号是否被正确接收被用于确定所述Q。
作为一个实施例,所述第一节点是用户设备,所述T个第一类无线信号分别包括所述T个第二类无线信号的调度信息。
作为一个实施例,所述T1个第二类无线信号包括V个子信号,所述T1个第一类无线信号指示所述V个子信号中任一子信号是否包括新数据,所述V是不小于所述T1的正整数;所述V个子信号中属于所述T1个第二类无线信号中同一个第二类无线信号的所有子信号中的至少一个子信号与所述Q次能量检测空间相关;所述V个子信号是否包括新数据被用于确定所述Q。
作为一个实施例,所述T1个第一类无线信号被用于确定K个备选整数,Q1是所述K个备选整数中的一个备选整数;所述Q个检测值中的Q1个检测值都低于第一阈值,所述K是正整数,所述Q1是不大于所述Q的正整数。
作为一个实施例,所述第一处理模块1801还接收S个第三类无线信号,在第二时间窗中发送S个第四类无线信号;其中,所述S个第四类无线信号和所述S个第三类无线信号一一对应;所述S个第三类无线信号和所述T1个第一类无线信号共同被用于确定所述Q,所述S是正整数;所述S个第四类无线信号在空间上都被关联到所述Q次能量检测。
作为一个实施例,所述第一处理模块1801还发送第五无线信号;其中,所述第五无线信号占用的时域资源的起始时刻不早于所述Q个时间子池的结束时刻。
作为一个实施例,所述第一处理模块1801还操作第一信息;其中,所述第一信息包括所述第五无线信号的调度信息;所述操作是接收,所述第一节点是用户设备;或者所述操作是发送,所述第一节点是基站。
作为一个子实施例,所述第一节点是用户设备,所述第一处理模块1801包括实施例4中的发射器/接收器456、发射处理器455、接收处理器452和控制器/处理器490。
作为一个子实施例,所述第一节点是用户设备,所述第一处理模块1801包括实施例4中的发射器/接收器456、发射处理器455、接收处理器452和控制器/处理器490中的至少前三者。
作为一个子实施例,所述第一节点是用户设备,所述第一接收机模块1802包括实施例4中的接收器456、接收处理器452和控制器/处理器490。
作为一个子实施例,所述第一节点是用户设备,所述第一接收机模块1802包括实施例4中的接收器456、接收处理器452和控制器/处理器490中的至少前二者。
作为一个子实施例,所述第一节点是基站,所述第一处理模块1801包括实施例4中的发 射器/接收器416、发射处理器415、接收处理器412和控制器/处理器440。
作为一个子实施例,所述第一节点是基站,所述第一处理模块1801包括实施例4中的发射器/接收器416、发射处理器415、接收处理器412和控制器/处理器440中的至少前三者。
作为一个子实施例,所述第一节点是基站,所述第一接收机模块1802包括实施例4中的接收器416、接收处理器412和控制器/处理器440。
作为一个子实施例,所述第一节点是基站,所述第一接收机模块1802包括实施例4中的接收器416、接收处理器412和控制器/处理器440中的至少前二者。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种用于无线通信的第一节点中的方法,其特征在于,包括:
    接收T个第一类无线信号,在第一时间窗中发送T个第二类无线信号;
    在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;
    其中,所述T个第二类无线信号和所述T个第一类无线信号一一对应;至少存在一个多载波符号被所述T个第二类无线信号都占用;所述T个第一类无线信号中仅有T1个第一类无线信号被用于确定所述Q,所述T是大于1的正整数,所述Q是正整数,所述T1是小于所述T的正整数;所述T1个第一类无线信号对应的所述T个第二类无线信号中的T1个第二类无线信号由所述T个第二类无线信号中所有在空间上被关联到所述Q次能量检测的第二类无线信号组成;所述第一节点是基站,或者所述第一节点是用户设备。
  2. 根据权利要求1所述的方法,其特征在于,所述第一节点是基站,所述T个第一类无线信号分别指示所述T个第二类无线信号是否被正确接收。
  3. 根据权利要求2所述的方法,其特征在于,所述T1个第二类无线信号包括W个子信号,所述T1个第一类无线信号指示所述W个子信号中任一子信号是否被正确接收,所述W是不小于所述T1的正整数;所述W个子信号中属于所述T1个第二类无线信号中同一个第二类无线信号的所有子信号中的至少一个子信号与所述Q次能量检测空间相关;所述W个子信号是否被正确接收被用于确定所述Q。
  4. 根据权利要求1所述的方法,其特征在于,所述第一节点是用户设备,所述T个第一类无线信号分别包括所述T个第二类无线信号的调度信息。
  5. 根据权利要求4所述的方法,其特征在于,所述T1个第二类无线信号包括V个子信号,所述T1个第一类无线信号指示所述V个子信号中任一子信号是否包括新数据,所述V是不小于所述T1的正整数;所述V个子信号中属于所述T1个第二类无线信号中同一个第二类无线信号的所有子信号中的至少一个子信号与所述Q次能量检测空间相关;所述V个子信号是否包括新数据被用于确定所述Q。
  6. 根据权利要求1至5中任一权利要求所述的方法,其特征在于,所述T1个第一类无线信号被用于确定K个备选整数,Q1是所述K个备选整数中的一个备选整数;所述Q个检测值中的Q1个检测值都低于第一阈值,所述K是正整数,所述Q1是不大于所述Q的正整数。
  7. 根据权利要求1至6中任一权利要求所述的方法,其特征在于,还包括:
    接收S个第三类无线信号,在第二时间窗中发送S个第四类无线信号;
    其中,所述S个第四类无线信号和所述S个第三类无线信号一一对应;所述S个第三类无线信号和所述T1个第一类无线信号共同被用于确定所述Q,所述S是正整数;所述S个第四类无线信号在空间上都被关联到所述Q次能量检测。
  8. 根据权利要求1至7中任一权利要求所述的方法,其特征在于,还包括:
    发送第五无线信号;
    其中,所述第五无线信号占用的时域资源的起始时刻不早于所述Q个时间子池的结束时刻。
  9. 根据权利要求8所述的方法,其特征在于,还包括:
    操作第一信息;
    其中,所述第一信息包括所述第五无线信号的调度信息;所述操作是接收,所述第一节点是用户设备;或者所述操作是发送,所述第一节点是基站。
  10. 一种用于无线通信的第一节点中的设备,其特征在于,包括:
    第一处理模块,接收T个第一类无线信号,在第一时间窗中发送T个第二类无线信号;
    第一接收机模块,在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;
    其中,所述T个第二类无线信号和所述T个第一类无线信号一一对应;至少存在一个多载波符号被所述T个第二类无线信号都占用;所述T个第一类无线信号中仅有T1个第一类无线信号被用于确定所述Q,所述T是大于1的正整数,所述Q是正整数,所述T1是小于所述 T的正整数;所述T1个第一类无线信号对应的所述T个第二类无线信号中的T1个第二类无线信号由所述T个第二类无线信号中所有在空间上被关联到所述Q次能量检测的第二类无线信号组成;所述第一节点是基站,或者所述第一节点是用户设备。
PCT/CN2018/071585 2018-01-05 2018-01-05 一种被用于无线通信的用户设备、基站中的方法和装置 WO2019134121A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202211471267.XA CN115843035A (zh) 2018-01-05 2018-01-05 一种被用于无线通信的用户设备、基站中的方法和装置
PCT/CN2018/071585 WO2019134121A1 (zh) 2018-01-05 2018-01-05 一种被用于无线通信的用户设备、基站中的方法和装置
CN201880083153.3A CN111543074B (zh) 2018-01-05 2018-01-05 一种被用于无线通信的用户设备、基站中的方法和装置
US16/917,940 US11375389B2 (en) 2018-01-05 2020-07-01 Method and device of channel access for wireless communication on unlicensed spectrum in UE and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/071585 WO2019134121A1 (zh) 2018-01-05 2018-01-05 一种被用于无线通信的用户设备、基站中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/917,940 Continuation US11375389B2 (en) 2018-01-05 2020-07-01 Method and device of channel access for wireless communication on unlicensed spectrum in UE and base station

Publications (1)

Publication Number Publication Date
WO2019134121A1 true WO2019134121A1 (zh) 2019-07-11

Family

ID=67143575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071585 WO2019134121A1 (zh) 2018-01-05 2018-01-05 一种被用于无线通信的用户设备、基站中的方法和装置

Country Status (3)

Country Link
US (1) US11375389B2 (zh)
CN (2) CN111543074B (zh)
WO (1) WO2019134121A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385882B (zh) * 2018-12-28 2023-02-03 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US11510243B2 (en) * 2019-07-24 2022-11-22 Qualcomm Incorporated Transmission countdown and improvements for a beam based channel access procedure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105474569A (zh) * 2013-08-23 2016-04-06 高通股份有限公司 公共harq处理
EP3139671A1 (en) * 2015-09-07 2017-03-08 MediaTek Inc. Spatial reuse parameters for opportunistic adaptive tpc and cca
CN106658751A (zh) * 2016-12-14 2017-05-10 北京佰才邦技术有限公司 多天线设备的信道接入方法及装置
CN107211451A (zh) * 2014-11-26 2017-09-26 Idac控股公司 高频无线系统中的初始接入
US20170303313A1 (en) * 2016-04-13 2017-10-19 Laurent Cariou Spatial reuse with training in rts-cts

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2494204B (en) * 2011-09-05 2017-05-24 Roke Manor Research Method and apparatus for signal detection
CN106304097B (zh) * 2015-05-15 2021-09-03 中兴通讯股份有限公司 资源使用方法、装置及系统
EP3547596B1 (en) * 2015-08-07 2021-09-29 Panasonic Intellectual Property Corporation of America Self- and cross-carrier scheduling
JP6239672B2 (ja) * 2016-03-31 2017-11-29 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
US10568136B2 (en) * 2016-05-23 2020-02-18 FG Innovation Company Limited Method and apparatus for control plane and user plane transmissions in a customized C-RAN
WO2018174613A1 (en) * 2017-03-24 2018-09-27 Samsung Electronics Co., Ltd. Method for wireless communication and user equipment
US10362593B2 (en) * 2017-09-01 2019-07-23 Huawei Technologies Co., Ltd. Grant-free uplink transmission in unlicensed spectrum
US10945172B2 (en) * 2017-11-16 2021-03-09 Comcast Cable Communications, Llc Power control for bandwidth part switching

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105474569A (zh) * 2013-08-23 2016-04-06 高通股份有限公司 公共harq处理
CN107211451A (zh) * 2014-11-26 2017-09-26 Idac控股公司 高频无线系统中的初始接入
EP3139671A1 (en) * 2015-09-07 2017-03-08 MediaTek Inc. Spatial reuse parameters for opportunistic adaptive tpc and cca
US20170303313A1 (en) * 2016-04-13 2017-10-19 Laurent Cariou Spatial reuse with training in rts-cts
CN106658751A (zh) * 2016-12-14 2017-05-10 北京佰才邦技术有限公司 多天线设备的信道接入方法及装置

Also Published As

Publication number Publication date
US11375389B2 (en) 2022-06-28
CN111543074A (zh) 2020-08-14
CN115843035A (zh) 2023-03-24
US20200336927A1 (en) 2020-10-22
CN111543074B (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
WO2019134656A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019154254A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11626945B2 (en) Method and device for wireless communication in UE and base station
WO2019109345A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019148488A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020207245A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019109362A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019119479A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019184710A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019136681A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN111264086B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN110248368B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11375389B2 (en) Method and device of channel access for wireless communication on unlicensed spectrum in UE and base station
WO2019144821A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019144315A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN111512683B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019119197A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN115988670A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN114124335A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019184711A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019127012A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN113765638B (zh) 一种被用于无线通信的节点中的方法和装置
WO2019213852A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019119174A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/11/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18898893

Country of ref document: EP

Kind code of ref document: A1