WO2019144821A1 - 一种被用于无线通信的用户设备、基站中的方法和装置 - Google Patents

一种被用于无线通信的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2019144821A1
WO2019144821A1 PCT/CN2019/071529 CN2019071529W WO2019144821A1 WO 2019144821 A1 WO2019144821 A1 WO 2019144821A1 CN 2019071529 W CN2019071529 W CN 2019071529W WO 2019144821 A1 WO2019144821 A1 WO 2019144821A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
band
time
wireless signal
antenna port
Prior art date
Application number
PCT/CN2019/071529
Other languages
English (en)
French (fr)
Inventor
吴克颖
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2019144821A1 publication Critical patent/WO2019144821A1/zh
Priority to US16/937,573 priority Critical patent/US11418966B2/en
Priority to US17/860,061 priority patent/US20220345898A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present application relates to methods and apparatus in a wireless communication system, and more particularly to a method and apparatus in a wireless communication system that supports data transmission over Unlicensed Spectrum.
  • the application scenarios of future wireless communication systems are increasingly diversified, and different application scenarios impose different performance requirements on the system.
  • 3rd Generation Partner Project 3rd Generation Partner Project
  • RAN Radio Access Network
  • #75 plenary meeting also passed NR (New Radio, The research project for access to unlicensed spectrum under the new radio, which is expected to be completed in the R15 version, and then the WI is launched in the R16 version to standardize the relevant technology.
  • NR New Radio
  • the transmitter base station or user equipment
  • LAA Liense Assisted Access
  • LTE Long Term Evolution
  • LBT Listen Before Talk
  • the LTE system defines a Cat 4LBT (a fourth type of LBT) including a fallback and a Cat 2LBT (a second type of LBT) that does not include a fallback.
  • the LTE system supports selecting one carrier from multiple carriers for Cat 4LBT, and other carriers can be selected carriers. Based on the Cat 4LBT, it is transmitted immediately after passing a short Cat 2LBT.
  • the present application discloses a solution. It should be noted that, in the case of no conflict, the features in the embodiments and embodiments in the user equipment of the present application can be applied to the base station, and vice versa. The features of the embodiments and the embodiments of the present application may be combined with each other arbitrarily without conflict.
  • the present application discloses a method in a first node used for wireless communication, comprising:
  • Q energy detection is performed in Q time sub-pools on the first sub-band, and Q detection values are obtained;
  • the Q is a positive integer
  • the P detection values are used to determine whether to send the second wireless signal at the first moment on the second sub-band
  • the Q-th energy detection is associated To the first antenna port group; if the P energy detections are all associated with the first antenna port group, the P is P1, otherwise the P is P2; the P1 and the P2 are two mutual An unequal positive integer; one antenna port group includes a positive integer number of antenna ports; the first node is a base station, or the first node is a user equipment.
  • the problem to be solved by the present application is that in the case of multiple carriers, the beam used on each carrier has an impact on the design of the LBT. If the beam direction used on multiple carriers is different, the result of the LBT on one carrier has no reference significance for judging whether the channel on other carriers is idle.
  • the first node determines whether the result of the Q energy detection is used to reduce the P energy according to whether the P energy detection is all associated with the first antenna port group. Detecting the time taken, this method provides a solution to the above problem.
  • the method is characterized in that the first antenna port group reflects a beam used by the Q energy detection performed on the first sub-band, and the first node passes the Whether P energy detections are all associated with the first antenna port group to determine whether the P energy detection and the beam used by the Q energy detection are related. If relevant, the result of the Qth energy detection has a reference value for determining whether the channel is idle in the second subband, and therefore, when the Qth energy detection determines that the first subband is idle, the A node only needs to perform energy detection in the shorter P1 time sub-pools on the second sub-band; otherwise, the first node needs to be in a longer P2 time on the second sub-band Energy detection in the pool.
  • the method is characterized in that, if the P-th energy detection is related to the beam used in the Q-th energy detection, when the Q-th energy detection determines that the first sub-band is idle, The first node does not need to include a backoff process when performing the P-th energy detection; otherwise, the first node needs to include a backoff process to perform the P-th energy detection to ensure that The fairness of competition in the occupation of unlicensed spectrum in all directions.
  • the above method has the advantage that, in determining whether the result of the LBT on one carrier can reflect the occupancy of the channel on the other carrier, the correlation between the beams used on the two carriers is considered. Since the LBT based on a certain beam can only reflect the occupancy of the channel in the direction of the beam, this method avoids interference to the ongoing wireless transmission in other directions on the unlicensed spectrum, and guarantees unauthorized access in all directions. The spectrum is occupied by the fairness of competition.
  • the method comprises:
  • the Q detection values are used to determine that the first wireless signal is sent at the first time on the first sub-band; the Q3 detection values of the Q detection values are lower than the first A threshold, the Q3 being one of the K1 alternative integers, the K1 being a positive integer.
  • the P is the P1
  • the P1 is a fixed value; if the P detected values are both lower than a second threshold, on the second sub-band Transmitting the second wireless signal at the first moment, otherwise discarding transmitting the second wireless signal at the first moment on the second sub-band.
  • the above method is advantageous in that, if the P-th energy detection is related to the beam used in the Q-th energy detection, when the Q-th energy detection determines that the first sub-band is idle, before the transmitting the second wireless signal, the first node only needs to perform a short Cat 2LBT (second type LBT) that does not include a backoff on the second sub-band, and adds the The probability of a node accessing the second sub-band and speeding up access to the second sub-band.
  • a short Cat 2LBT second type LBT
  • the P is the P2, the P2 is greater than P3, and the P3 is an alternate integer of K2 candidate integers; if the P detection values are P3 detected values are all lower than a third threshold, and the second wireless signal is sent at the first moment on the second sub-band, otherwise the first time transmission on the second sub-band is discarded The second wireless signal; the K2 is a positive integer.
  • the above method is advantageous in that if the P-th energy detection and the Q-th energy detection use beam are not correlated, the result of the Q-th energy detection cannot reflect the channel on the second sub-band Occupancy, therefore, before transmitting the second wireless signal, it is necessary to perform a Cat4LBT (fourth type of LBT) including backoff on the second sub-band, thereby ensuring that the The fairness of the occupation of the second sub-band.
  • Cat4LBT fourth type of LBT
  • the method comprises:
  • the first signaling and the second signaling respectively include scheduling information of the first wireless signal and scheduling information of the second wireless signal; the operation is sending, and the first node is a base station Or the operation is receiving, the first node is a user equipment.
  • the method comprises:
  • the first node is a user equipment; the first information is used to determine a first sub-band combination, the first sub-band combination includes a positive integer sub-band, the first sub-band and the second The sub-bands all belong to the first sub-band combination.
  • At least one of the transmit antenna port of the first wireless signal and one of the first set of antenna ports are quasi-co-located; at least one of the second wireless signals is transmitted One of the antenna port and the second antenna port group is quasi-co-located, and the P-th energy detection is associated with the second antenna port group.
  • the above method has the advantage of avoiding interference with wireless communications in other directions than the LBT direction.
  • the present application discloses a method for use in a second node for wireless communication, comprising:
  • the Q detection values are used to determine that the first wireless signal is sent at the first time on the first sub-band, and the Q detection values are respectively obtained by Q energy detection, the Q times Energy detection is performed in Q time sub-pools on the first sub-band, respectively; P detection values are used to determine whether to transmit the second wireless at the first time on the second sub-band a signal, the P detection values are respectively obtained by P energy detection, and the P energy detections are respectively performed in P time subpools on the second subband; the Q energy detections are all associated To the first antenna port group; if the P energy detections are all associated with the first antenna port group, the P is P1, otherwise the P is P2; the P1 and the P2 are two mutual Non-equal positive integers; the Q is a positive integer; one antenna port group includes a positive integer number of antenna ports; the second node is a user equipment, or the second node is a base station.
  • the Q3 detection values of the Q detection values are all lower than a first threshold, and the Q3 is an alternative integer of K1 candidate integers, and the K1 is positive Integer.
  • the P is the P1, and the P1 is a fixed value; if the P detection values are both lower than a second threshold, the second wireless signal is in the The first time instant on the second sub-band is transmitted, otherwise the second wireless signal is not transmitted at the first time on the second sub-band.
  • the P is the P2, the P2 is greater than P3, and the P3 is an alternate integer of K2 candidate integers; if the P detection values are P3 detected values are all lower than a third threshold, the second wireless signal is transmitted at the first time on the second sub-band, otherwise the second wireless signal is on the second sub-band The first moment is not transmitted; the K2 is a positive integer.
  • the method comprises:
  • the first signaling and the second signaling respectively include scheduling information of the first wireless signal and scheduling information of the second wireless signal; the processing is receiving, and the second node is a user.
  • the device; or the process is a transmission, and the second node is a base station.
  • the method comprises:
  • the second node is a base station; the first information is used to determine a first sub-band combination, the first sub-band combination includes a positive integer sub-band, the first sub-band and the second sub- The frequency bands all belong to the first sub-band combination.
  • At least one of the transmit antenna port of the first wireless signal and one of the first set of antenna ports are quasi-co-located; at least one of the second wireless signals is transmitted One of the antenna port and the second antenna port group is quasi-co-located, and the P-th energy detection is associated with the second antenna port group.
  • the present application discloses a device in a first node that is used for wireless communication, and includes:
  • the first processor performs Q energy detections in Q time sub-pools on the first sub-band to obtain Q detections.
  • the first receiver performs P energy detections in P time subpools on the second subband to obtain P detections
  • the Q is a positive integer
  • the P detection values are used to determine whether to send the second wireless signal at the first moment on the second sub-band
  • the Q-th energy detection is associated To the first antenna port group; if the P energy detections are all associated with the first antenna port group, the P is P1, otherwise the P is P2; the P1 and the P2 are two mutual An unequal positive integer; one antenna port group includes a positive integer number of antenna ports; the first node is a base station, or the first node is a user equipment.
  • the device in the first node used for wireless communication is characterized in that: P is the P1, and the P1 is a fixed value; if the P detection values are lower than the second a threshold, the first transmitter transmitting the second wireless signal at the first time on the second sub-band, otherwise the first transmitter abandons the first on the second sub-band
  • the second wireless signal is transmitted at a time.
  • the device in the first node used for wireless communication is characterized in that: P is the P2, the P2 is greater than P3, and the P3 is an candidate of K2 candidate integers.
  • the device in the first node used for wireless communication is characterized in that at least one transmit antenna port of the first wireless signal and one antenna port of the first antenna port group are quasi-co-located And one of the at least one transmit antenna port and the second antenna port group of the second wireless signal is quasi-co-located, and the P-th energy detection is associated with the second antenna port group.
  • the device in the first node used for wireless communication is characterized in that it comprises:
  • the Q detection values are used to determine that the first wireless signal is sent at the first time on the first sub-band; the Q3 detection values of the Q detection values are lower than the first A threshold, the Q3 being one of the K1 alternative integers, the K1 being a positive integer.
  • the device in the first node used for wireless communication is characterized in that it comprises:
  • a second processor operating at least one of the first signaling and the second signaling
  • the first signaling and the second signaling respectively include scheduling information of the first wireless signal and scheduling information of the second wireless signal; the operation is sending, and the first node is a base station Or the operation is receiving, the first node is a user equipment.
  • the device in the first node used for wireless communication is characterized in that the second processor further receives first information; wherein the first node is a user equipment; the first information Used to determine a first sub-band combination, the first sub-band combination comprising a positive integer number of sub-bands, the first sub-band and the second sub-band all belonging to the first sub-band combination.
  • the present application discloses a device in a second node that is used for wireless communication, and includes:
  • a second receiver receiving the first wireless signal at a first time on the first sub-band
  • a third receiver monitoring the second wireless signal at the first time on the second sub-band
  • the Q detection values are used to determine that the first wireless signal is sent at the first time on the first sub-band, and the Q detection values are respectively obtained by Q energy detection, the Q times Energy detection is performed in Q time sub-pools on the first sub-band, respectively; P detection values are used to determine whether to transmit the second wireless at the first time on the second sub-band a signal, the P detection values are respectively obtained by P energy detection, and the P energy detections are respectively performed in P time subpools on the second subband; the Q energy detections are all associated To the first antenna port group; if the P energy detections are all associated with the first antenna port group, the P is P1, otherwise the P is P2; the P1 and the P2 are two mutual Non-equal positive integers; the Q is a positive integer; one antenna port group includes a positive integer number of antenna ports; the second node is a user equipment, or the second node is a base station.
  • the device in the second node used for wireless communication is characterized in that Q3 detection values of the Q detection values are lower than a first threshold, and the Q3 is K1 candidate integers.
  • the device in the second node used for wireless communication is characterized in that: P is the P1, and the P1 is a fixed value; if the P detection values are lower than the second a threshold, the second wireless signal being transmitted at the first time on the second sub-band, otherwise the second wireless signal is not transmitted at the first time on the second sub-band.
  • the device in the second node used for wireless communication is characterized in that: P is the P2, the P2 is greater than P3, and the P3 is an candidate of K2 candidate integers.
  • the device in the second node used for wireless communication is characterized in that at least one transmit antenna port of the first wireless signal and one of the first antenna port groups are quasi-co-located And one of the at least one transmit antenna port and the second antenna port group of the second wireless signal is quasi-co-located, and the P-th energy detection is associated with the second antenna port group.
  • the device in the second node used for wireless communication is characterized in that it comprises:
  • a third processor processing at least one of the first signaling and the second signaling
  • the first signaling and the second signaling respectively include scheduling information of the first wireless signal and scheduling information of the second wireless signal; the processing is receiving, and the second node is a user.
  • the device; or the process is a transmission, and the second node is a base station.
  • the device in the second node used for wireless communication is characterized in that the third processor sends the first information; wherein the second node is a base station; the first information is used
  • the first sub-band combination is determined to include a positive integer number of sub-bands, and the first sub-band and the second sub-band all belong to the first sub-band combination.
  • the present application has the following advantages compared with the conventional solution:
  • the correlation between the beams used on the two carriers is considered in judging whether the result of the LBT on one carrier can reflect the occupancy of the channel on the other carrier. Since the LBT based on a certain beam can only reflect the occupancy of the channel in the direction of the beam, this method avoids interference to the ongoing wireless transmission in other directions on the unlicensed spectrum, and also ensures non-authorization in all directions.
  • the spectrum is occupied by the fairness of competition.
  • the beam used on the two carriers is related, in the case where one carrier is judged to be idle by Cat 4LBT (the fourth type of LBT), only the Cat 2LBT that does not include the backoff needs to be performed on the other carrier. (The second type of LBT) increases the probability of accessing another carrier and speeds up access.
  • the Cat 4LBT (the fourth type of LBT) including the fallback needs to be performed on both carriers, ensuring fairness in competing with other devices for the occupation of unlicensed spectrum. .
  • FIG. 1 shows a flow chart of Q energy detection, P energy detection, and second wireless signal in accordance with an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 4 shows a schematic diagram of an NR (New Radio) node and a UE in accordance with one embodiment of the present application
  • FIG. 5 shows a flow chart of wireless transmission in accordance with one embodiment of the present application
  • FIG. 6 shows a flow diagram of wireless transmissions in accordance with one embodiment of the present application.
  • Figure 7 shows a schematic diagram of an antenna port and an antenna port group in accordance with one embodiment of the present application
  • FIG. 8 is a schematic diagram showing timing relationships of Q time subpools, P time subpools, and first time in the time domain according to an embodiment of the present application;
  • FIG. 9 is a schematic diagram showing timing relationships of Q time subpools, P time subpools, and first time in the time domain according to an embodiment of the present application.
  • Figure 10 shows a schematic diagram of Q energy detection in accordance with one embodiment of the present application.
  • Figure 11 shows a schematic diagram of P-order energy detection in accordance with one embodiment of the present application.
  • Figure 12 shows a schematic diagram of P-order energy detection in accordance with one embodiment of the present application.
  • Figure 13 illustrates a schematic diagram of a given energy detection being associated to a given set of antenna ports, in accordance with one embodiment of the present application
  • FIG. 14 shows a schematic diagram of a given energy detection being associated to a given set of antenna ports, in accordance with one embodiment of the present application
  • FIG. 15 shows a schematic diagram of a given energy detection being associated to a given set of antenna ports, in accordance with one embodiment of the present application
  • Figure 16 shows a schematic diagram of a first sub-band combination in accordance with one embodiment of the present application.
  • Figure 17 is a block diagram showing the structure of a processing device for use in a first node in accordance with one embodiment of the present application.
  • Figure 18 shows a block diagram of a structure for a processing device in a second node in accordance with one embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of Q energy detection, P energy detection, and second wireless signal; as shown in FIG.
  • the first node in the present application performs Q energy detections in Q time sub-pools on the first sub-band, respectively, to obtain Q detection values; P in the second sub-band Performing P energy detections in the time sub-pools respectively, obtaining P detection values; determining, based on the Q detection values, the first wireless signal to be transmitted at the first time on the first sub-band; Transmitting the second wireless signal at the first time on the frequency band or discarding transmitting the second wireless signal at the first time on the second sub-band.
  • the Q is a positive integer
  • the P detection values are used to determine whether to send the second wireless signal at the first moment on the second sub-band
  • the Q-th energy detection is associated To the first antenna port group; if the P energy detections are all associated with the first antenna port group, the P is P1, otherwise the P is P2; the P1 and the P2 are two mutual An unequal positive integer; one antenna port group includes a positive integer number of antenna ports; the first node is a base station, or the first node is a user equipment.
  • the P1 is smaller than the P2.
  • the first moment is an end moment of the Q time subpools.
  • the first moment is an end time of the P time subpools.
  • the Q time subpools and the P time subpools end at the same time.
  • the first moment is later in the time domain than the end time of the Q time subpools.
  • the first moment is later in the time domain than the end time of the P time subpools.
  • the first sub-band is deployed in an unlicensed spectrum.
  • the first sub-band includes one carrier.
  • the first sub-band includes a plurality of carriers.
  • the first sub-band includes one BWP (Bandwidth Part) of one carrier.
  • the first sub-band includes a plurality of BWPs in one carrier.
  • the first sub-band includes a positive integer number of PRBs (Physical Resource Blocks) in the frequency domain.
  • PRBs Physical Resource Blocks
  • the first sub-band includes a positive integer number of consecutive PRBs in the frequency domain.
  • the first sub-band includes a positive integer number of RBs (Resource Blocks) in the frequency domain.
  • the first sub-band includes a positive integer number of consecutive RBs in the frequency domain.
  • the first sub-band includes a positive integer number of consecutive sub-carriers in the frequency domain.
  • the second sub-band is deployed in an unlicensed spectrum.
  • the second sub-band includes one carrier.
  • the second sub-band includes a plurality of carriers.
  • the second sub-band includes one BWP of one carrier.
  • the second sub-band includes a plurality of BWPs in one carrier.
  • the second sub-band includes a positive integer number of PRBs in the frequency domain.
  • the second sub-band includes a positive integer number of consecutive PRBs in the frequency domain.
  • the second sub-band includes a positive integer number of RBs in the frequency domain.
  • the second sub-band includes a positive integer number of consecutive RBs in the frequency domain.
  • the second sub-band includes a positive integer number of consecutive sub-carriers in the frequency domain.
  • the P-th energy detection is associated with the first antenna port group, or the P-th energy detection is not associated with the first antenna port group.
  • the Qth energy detection is used to determine if the first subband is idle (Idle).
  • the Qth energy detection is used to determine whether the first subband is capable of being used by the first node to transmit a wireless signal.
  • the Qth energy detection is used to determine that the first subband is idle (Idle).
  • the Qth energy detection is used to determine that the first subband is capable of being used by the first node to transmit a wireless signal.
  • the Q-th energy detection is energy detection in an LBT, and the specific definition and implementation manner of the LBT is referred to 3GPP TR36.889.
  • the Q-th energy detection is energy detection in CCA (Clear Channel Assessment), and the specific definition and implementation manner of the CCA is referred to 3GPP TR36.889.
  • any one of the Q energy detections is implemented by means defined in section 15 of 3GPP TS 36.213.
  • the Q energy detection refers to: the first node monitors received power in the first sub-band in Q time units, and the Q time units are respectively the Q times A duration period in the child pool.
  • the Q energy detection refers to: the first node monitors received energy in the first sub-band in Q time units, and the Q time units are respectively the Q time A duration period in the child pool.
  • the Q-th energy detection refers to: the first node senses the power of all wireless signals on the first sub-band in Q time units, and averages in time;
  • the Q time units are respectively one of the Q time subpools.
  • the Q energy detection refers to: the first node senses the energy of all wireless signals on the first sub-band in Q time units, and averages in time;
  • the Q time units are respectively one of the Q time subpools.
  • the duration of any of the Q time units is not shorter than 4 microseconds.
  • the P-th energy detection is used to determine if the second sub-band is idle (Idle).
  • the P-th energy detection is used to determine whether the second sub-band can be used by the first node to transmit a wireless signal.
  • the P-th energy detection is energy detection in an LBT, and the specific definition and implementation manner of the LBT is referred to 3GPP TR36.889.
  • the P-th energy detection is energy detection in CCA, and the specific definition and implementation manner of the CCA is referred to 3GPP TR36.889.
  • any one of the P-th energy measurements is implemented by means defined in section 15 of 3GPP TS 36.213.
  • the P-th power detection refers to: the first node senses the power of all wireless signals on the second sub-band in P time units, and averages in time;
  • the P time units are respectively one of the P time subpools.
  • the P-th power detection refers to: the first node senses the energy of all wireless signals on the second sub-band in P time units, and averages in time;
  • the P time units are respectively one of the P time subpools.
  • the duration of any of the P time units is no shorter than 4 microseconds.
  • the time domain resources occupied by any one of the Q time subpools are consecutive.
  • the Q time subpools are orthogonal to each other (non-overlapping) in the time domain.
  • the time domain resources occupied by any one of the P time subpools are consecutive.
  • the P time subpools are orthogonal to each other (non-overlapping) in the time domain.
  • the Q detection values are respectively obtained by the Q energy detection.
  • the P detection values are respectively obtained by the P-th energy detection.
  • the Qth energy detection uses the same spatial Rx parameters.
  • the Qth energy detections all use the same receive beam.
  • the Qth energy detection uses the same receive spatial filtering.
  • the Q energy detection is all associated with the first antenna port group, wherein the first antenna port group is used to determine each energy detection in the Q energy detection. Spatial Rx parameters.
  • the Q-th energy detection is associated with the first antenna port group, that is, the spatial transmission parameter (Spatial Tx parameters) corresponding to the antenna port in the first antenna port group is used to determine Spatial Rx parameters used for each energy detection in the Q energy detection.
  • the spatial transmission parameter Spatial Tx parameters
  • the Q-th energy detection is associated with the first antenna port group, that is, the transmission spatial filtering corresponding to the antenna port in the first antenna port group is used to determine The spatial filtering used for each energy detection in the Q energy detection is described.
  • the Q-th energy detection is associated with the first antenna port group, which means that the spatial coverage of the receiving beam corresponding to each energy detection in the Q-th energy detection is located.
  • the transmit beams corresponding to all antenna ports in the first antenna port group are within a set of spatial coverage.
  • the Q-th energy detection is associated with the first antenna port group, which means that the spatial coverage of the transmit beam corresponding to any one of the first antenna port groups is The receive beam corresponding to any one of the Q energy detections is within the spatial coverage.
  • the Q-th energy detection is associated with the first antenna port group, which refers to: a set of spatial coverage of the transmit beams corresponding to all the antenna ports in the first antenna port group.
  • the spatial coverage of the receive beams corresponding to each energy detection in the Q energy detection is coincident.
  • the P-th energy detections all use the same spatial Rx parameters.
  • the P-th energy detections all use the same receive beam.
  • the P-th energy detections all use the same receive spatial filtering.
  • the P-th energy detection is associated with the first antenna port group, wherein the first antenna port group is used to determine each energy detection in the P-th energy detection. Spatial Rx parameters used.
  • the P-th energy detection is associated with the first antenna port group, that is, the spatial transmission parameter (Spatial Tx parameters) corresponding to the antenna port in the first antenna port group is used.
  • the spatial Rx parameters used for each energy detection in the P-th energy detection are determined.
  • the P-th energy detection is associated with the first antenna port group, that is, the transmission spatial filtering corresponding to the antenna port in the first antenna port group is used to determine The spatial filtering used for each energy detection in the P-th energy detection is described.
  • the P-th energy detection is associated with the first antenna port group, which means that the coverage of the receiving beam corresponding to each energy detection in the P-th energy detection is spatially covered.
  • the transmit beams corresponding to all of the antenna ports in the first set of antenna ports are within a set of spatial coverage.
  • the P-th energy detection is associated with the first antenna port group, which means that the transmission beam corresponding to any one of the first antenna port groups is spatially covered.
  • the coverage of the receive beam corresponding to each energy detection in the P-th energy detection is within the spatial coverage.
  • the P-th energy detection is associated with the first antenna port group, which means that the transmission beam corresponding to all the antenna ports in the first antenna port group is spatially covered.
  • the set of coverage and the coverage of the receive beam corresponding to each energy detection in the P-th energy detection are coincident in space.
  • the spatial Rx parameters include one of a ⁇ receiving beam, receiving an analog beamforming matrix, receiving an analog beamforming vector, receiving a beamforming vector, and receiving spatial filtering ⁇ . Or a variety.
  • the spatial transmission parameters include: a transmit antenna port, a transmit antenna port group, a transmit beam, an analog beamforming matrix, an analog beamforming vector, a transmit beamforming vector, and a transmit spatial filter.
  • a transmit antenna port a transmit antenna port group
  • a transmit beam an analog beamforming matrix
  • an analog beamforming vector an analog beamforming vector
  • a transmit beamforming vector a transmit beamforming vector
  • a transmit spatial filter One or more of (spatial filtering) ⁇ .
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG.
  • the LTE network architecture 200 may be referred to as an EPS (Evolved Packet System) 200.
  • the EPS 200 may include one or more UEs (User Equipment) 201, E-UTRAN-NR (Evolved UMTS Terrestrial Radio Access Network - New Wireless) 202, 5G-CN (5G-CoreNetwork, 5G core network)/ EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UMTS corresponds to the Universal Mobile Telecommunications System.
  • the EPS 200 can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in FIG. 2, EPS 200 provides packet switching services, although those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks that provide circuit switched services.
  • the E-UTRAN-NR 202 includes an NR (New Radio) Node B (gNB) 203 and other gNBs 204.
  • the gNB 203 provides user and control plane protocol termination towards the UE 201.
  • the gNB 203 can be connected to other gNBs 204 via an X2 interface (eg, a backhaul).
  • the gNB 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmission and reception point), or some other suitable terminology.
  • the gNB 203 provides the UE 201 with an access point to the 5G-CN/EPC 210.
  • Examples of UEs 201 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, an MP3 player), a camera, a game console, a drone, an aircraft, a narrowband physical network device, a machine type communication device, a land vehicle, a car, a wearable device, or any other similar functional device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • UE 201 may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB 203 is connected to the 5G-CN/EPC 210 through the S1 interface.
  • the 5G-CN/EPC 210 includes an MME 211, other MMEs 214, an S-GW (Service Gateway) 212, and a P-GW (Packet Date Network Gateway). 213.
  • the MME 211 is a control node that handles signaling between the UE 201 and the 5G-CN/EPC 210.
  • the MME 211 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 212, and the S-GW 212 itself is connected to the P-GW 213.
  • the P-GW 213 provides UE IP address allocation as well as other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a PS Streaming Service (PSS).
  • IMS IP Multimedia Subsystem
  • PSS PS Streaming Service
  • the gNB 203 corresponds to the first node in the application
  • the UE 201 corresponds to the second node in the application.
  • the UE 201 corresponds to the first node in the application
  • the gNB 203 corresponds to the second node in this application.
  • the UE 201 supports wireless communication for data transmission over an unlicensed spectrum.
  • the gNB 203 supports wireless communication for data transmission over an unlicensed spectrum.
  • the UE 201 supports carrier aggregation (Carrier Aggregation).
  • the gNB 203 supports carrier aggregation (Carrier Aggregation).
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane, as shown in FIG.
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 3 shows the radio protocol architecture for UE and gNB in three layers: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the UE and the gNB through PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol).
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • Convergence Protocol Sublayer 304 which terminates at the gNB on the network side.
  • the UE may have several protocol layers above the L2 layer 305, including a network layer (eg, an IP layer) terminated at the P-GW 213 on the network side and terminated at the other end of the connection (eg, Application layer at the remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handoff support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ (Hybrid Automatic Repeat reQuest).
  • the MAC sublayer 302 provides multiplexing between the logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in one cell between UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the wireless protocol architecture of Figure 3 is applicable to the first node in the present application.
  • the wireless protocol architecture of Figure 3 is applicable to the second node in this application.
  • the Q detection values in the present application are generated by the PHY 301.
  • the P detection values in the present application are generated by the PHY 301.
  • the first wireless signal in the present application is generated by the PHY 301.
  • the second wireless signal in the present application is generated by the PHY 301.
  • the first signaling in the present application is generated by the PHY 301.
  • the first signaling in the present application is generated by the MAC sublayer 302.
  • the first signaling in the present application is generated by the RRC sublayer 306.
  • the second signaling in the present application is generated by the PHY 301.
  • the second signaling in this application is generated by the MAC sublayer 302.
  • the second signaling in this application is generated by the RRC sublayer 306.
  • the first information in the present application is generated in the MAC sublayer 302.
  • the first information in this application is generated in the RRC sublayer 306.
  • Embodiment 4 illustrates a schematic diagram of an NR node and a UE, as shown in FIG. 4 is a block diagram of a UE 450 and a gNB 410 that communicate with each other in an access network.
  • the gNB 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the UE 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454, and an antenna 452.
  • DL Downlink
  • controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocation to the UE 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 450.
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, the physical layer).
  • Transmit processor 416 performs encoding and interleaving to facilitate forward error correction (FEC) at UE 450, and based on various modulation schemes (eg, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), Mapping of signal clusters of M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM).
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the encoded and modulated symbols, including codebook based precoding and non-codebook based precoding, and beamforming processing to generate one or more spatial streams.
  • Transmit processor 416 maps each spatial stream to subcarriers, multiplexes with reference signals (e.g., pilots) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a time-domain multi-carrier symbol stream.
  • the multi-antenna transmit processor 471 then transmits an analog precoding/beamforming operation to the time domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multicarrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • each receiver 454 receives a signal through its respective antenna 452. Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream for providing to the receive processor 456.
  • Receive processor 456 and multi-antenna receive processor 458 implement various signal processing functions of the L1 layer. Multi-antenna receive processor 458 performs a receive analog precoding/beamforming operation on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multicarrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receive processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered by the multi-antenna detection in the multi-antenna receive processor 458 with the UE 450 as Any spatial stream of destinations.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456 and a soft decision is generated.
  • the receive processor 456 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by the gNB 410 on the physical channel.
  • the upper layer data and control signals are then provided to controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • Controller/processor 459 can be associated with memory 460 that stores program codes and data. Memory 460 can be referred to as a computer readable medium.
  • the controller/processor 459 provides demultiplexing, packet reassembly, decryption, header decompression, and control signal processing between the transport and logical channels to recover upper layer packets from the core network. The upper layer packet is then provided to all protocol layers above the L2 layer. Various control signals can also be provided to L3 for L3 processing.
  • the controller/processor 459 is also responsible for error detection using an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • data source 467 is used to provide upper layer data packets to controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and multiplexing between the logical and transport channels based on the radio resource allocation of the gNB 410. Used to implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the gNB 410.
  • the transmit processor 468 performs modulation mapping, channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook based precoding and non-codebook based precoding, and beamforming processing, followed by transmission.
  • Processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is provided to different antennas 452 via transmitter 454 after an analog pre-coding/beamforming operation in multi-antenna transmit processor 457.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into a stream of radio frequency symbols and provides it to the antenna 452.
  • the function at gNB 410 is similar to the receiving function at UE 450 described in the DL.
  • Each receiver 418 receives a radio frequency signal through its respective antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to a multi-antenna receive processor 472 and a receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 collectively implement the functions of the L1 layer.
  • the controller/processor 475 implements the L2 layer function. Controller/processor 475 can be associated with memory 476 that stores program codes and data. Memory 476 can be referred to as a computer readable medium.
  • the controller/processor 475 provides demultiplexing, packet reassembly, decryption, header decompression, control signal processing between the transport and logical channels to recover upper layer data packets from the UE 450.
  • Upper layer data packets from controller/processor 475 can be provided to the core network.
  • the controller/processor 475 is also responsible for error detection using ACK and/or NACK protocols to support HARQ operations.
  • the UE 450 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be coupled to the at least one processor use together.
  • the UE 450 apparatus performs at least: Q energy detections in Q time sub-pools on the first sub-band in the present application, to obtain Q detection values; and determining, according to the Q detection values, Transmitting a first wireless signal at a first time on the first sub-band; performing P energy detections in P time sub-pools on the second sub-band in the present application, to obtain P detection values; Transmitting the second wireless signal at the first time on the second sub-band or discarding transmitting the second wireless signal at the first time on the second sub-band.
  • the P detection values are used to determine whether to send the second wireless signal at the first moment on the second sub-band; the Q-th energy detection is associated with a first antenna port group If the P energy detections are all associated with the first antenna port group, the P is P1, otherwise the P is P2; the P1 and the P2 are two positive integers that are not equal to each other.
  • the first node in this application is a user equipment.
  • the UE 450 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: in the present application Performing Q energy detections in Q time sub-pools on the first sub-band, respectively, obtaining Q detection values; determining, according to the Q detection values, transmitting the first time at the first time on the first sub-band a wireless signal; performing P energy detections in P time sub-pools on the second sub-band in the present application to obtain P detection values; transmitting at the first time on the second sub-band And transmitting, by the second wireless signal, the second wireless signal at the first time on the second sub-band.
  • the P detection values are used to determine whether to send the second wireless signal at the first moment on the second sub-band; the Q-th energy detection is associated with a first antenna port group If the P energy detections are all associated with the first antenna port group, the P is P1, otherwise the P is P2; the P1 and the P2 are two positive integers that are not equal to each other.
  • the first node in this application is a user equipment.
  • the UE 450 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be coupled to the at least one processor use together.
  • the UE 450 device receives at least a first wireless signal at a first time on the first sub-band in the present application; and monitors a second wireless at the first time on the second sub-band in the present application. signal.
  • the Q detection values are used to determine that the first wireless signal is sent at the first time on the first sub-band, and the Q detection values are respectively obtained by Q energy detection, the Q times Energy detection is performed in Q time sub-pools on the first sub-band, respectively; P detection values are used to determine whether to transmit the second wireless at the first time on the second sub-band a signal, the P detection values are respectively obtained by P energy detection, and the P energy detections are respectively performed in P time subpools on the second subband; the Q energy detections are all associated To the first antenna port group; if the P energy detections are all associated with the first antenna port group, the P is P1, otherwise the P is P2; the P1 and the P2 are two mutual Non-equal positive integers.
  • the second node in this application is a user equipment.
  • the UE 450 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: in the present application Receiving a first wireless signal at a first time on the first sub-band; monitoring the second wireless signal at the first time on the second sub-band in the present application.
  • the Q detection values are used to determine that the first wireless signal is sent at the first time on the first sub-band, and the Q detection values are respectively obtained by Q energy detection, the Q times Energy detection is performed in Q time sub-pools on the first sub-band, respectively; P detection values are used to determine whether to transmit the second wireless at the first time on the second sub-band a signal, the P detection values are respectively obtained by P energy detection, and the P energy detections are respectively performed in P time subpools on the second subband; the Q energy detections are all associated To the first antenna port group; if the P energy detections are all associated with the first antenna port group, the P is P1, otherwise the P is P2; the P1 and the P2 are two mutual Non-equal positive integers.
  • the second node in this application is a user equipment.
  • the gNB 410 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be coupled to the at least one processor use together.
  • the gNB410 device performs at least: performing Q energy detections in Q time sub-pools on the first sub-band in the present application to obtain Q detection values; determining, according to the Q detection values, Transmitting a first wireless signal at a first time on the first sub-band; performing P energy detections in P time sub-pools on the second sub-band in the present application, to obtain P detection values; Transmitting the second wireless signal at the first time on the second sub-band or discarding transmitting the second wireless signal at the first time on the second sub-band.
  • the P detection values are used to determine whether to send the second wireless signal at the first moment on the second sub-band; the Q-th energy detection is associated with a first antenna port group If the P energy detections are all associated with the first antenna port group, the P is P1, otherwise the P is P2; the P1 and the P2 are two positive integers that are not equal to each other.
  • the first node in this application is a base station.
  • the gNB 410 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: in the present application Performing Q energy detections in Q time sub-pools on the first sub-band, respectively, obtaining Q detection values; determining, according to the Q detection values, transmitting the first time at the first time on the first sub-band a wireless signal; performing P energy detections in P time sub-pools on the second sub-band in the present application to obtain P detection values; transmitting at the first time on the second sub-band And transmitting, by the second wireless signal, the second wireless signal at the first time on the second sub-band.
  • the P detection values are used to determine whether to send the second wireless signal at the first moment on the second sub-band; the Q-th energy detection is associated with a first antenna port group If the P energy detections are all associated with the first antenna port group, the P is P1, otherwise the P is P2; the P1 and the P2 are two positive integers that are not equal to each other.
  • the first node in this application is a base station.
  • the gNB 410 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be coupled to the at least one processor use together.
  • the gNB410 device receives at least a first wireless signal at a first time on the first sub-band in the present application; and monitors a second wireless at the first time on the second sub-band in the present application. signal.
  • the Q detection values are used to determine that the first wireless signal is sent at the first time on the first sub-band, and the Q detection values are respectively obtained by Q energy detection, the Q times Energy detection is performed in Q time sub-pools on the first sub-band, respectively; P detection values are used to determine whether to transmit the second wireless at the first time on the second sub-band a signal, the P detection values are respectively obtained by P energy detection, and the P energy detections are respectively performed in P time subpools on the second subband; the Q energy detections are all associated To the first antenna port group; if the P energy detections are all associated with the first antenna port group, the P is P1, otherwise the P is P2; the P1 and the P2 are two mutual Non-equal positive integers.
  • the second node in this application is a base station.
  • the gNB 410 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: in the present application Receiving a first wireless signal at a first time on the first sub-band; monitoring the second wireless signal at the first time on the second sub-band in the present application.
  • the Q detection values are used to determine that the first wireless signal is sent at the first time on the first sub-band, and the Q detection values are respectively obtained by Q energy detection, the Q times Energy detection is performed in Q time sub-pools on the first sub-band, respectively; P detection values are used to determine whether to transmit the second wireless at the first time on the second sub-band a signal, the P detection values are respectively obtained by P energy detection, and the P energy detections are respectively performed in P time subpools on the second subband; the Q energy detections are all associated To the first antenna port group; if the P energy detections are all associated with the first antenna port group, the P is P1, otherwise the P is P2; the P1 and the P2 are two mutual Non-equal positive integers.
  • the second node in this application is a base station.
  • the gNB 410 corresponds to the first node in the application
  • the UE 450 corresponds to the second node in the application.
  • the UE 450 corresponds to the first node in the application
  • the gNB 410 corresponds to the second node in this application.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459 ⁇ is used
  • the Q energy detection is performed in the Q time sub-pools on the first sub-band in the present application; the first node in the present application is a user equipment.
  • At least one of ⁇ the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475 ⁇ is used
  • the Q energy detection is performed in the Q time subpools on the first sub-band in the present application; the first node in the present application is a base station.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459 ⁇ is used
  • the P-th energy detection is performed in the P time sub-pools on the second sub-band of the present application; the first node in the present application is a user equipment.
  • At least one of ⁇ the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475 ⁇ is used
  • the P-th energy detection is performed in the P time sub-pools on the second sub-band in the present application; the first node in the present application is a base station.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459 ⁇ is used only for Determining, according to the Q detection values in the present application, that the first wireless signal is sent at the first moment on the first sub-band in the application; the first node in the application is a user equipment .
  • At least one of ⁇ the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475 ⁇ is used Determining, according to the Q detection values in the present application, that the first wireless signal is sent at the first moment on the first sub-band in the present application; the first node in the application is a base station .
  • the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first wireless signal at the first time on the first sub-band in the present application; ⁇ the antenna 420, the transmitter 418, a transmit processor 416, the multi-antenna transmit processor 471, the controller/processor 475, the memory 476 ⁇ being used on the first sub-band in the present application
  • the first moment transmits the first wireless signal.
  • the first node in this application is a base station, and the second node in this application is a user equipment.
  • At least one of the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, and the memory 476 ⁇ One of being used to receive the first wireless signal at the first time on the first sub-band in the present application; ⁇ the antenna 452, the transmitter 454, the transmit processor 468, At least one of the multi-antenna transmit processor 457, the controller/processor 459, the memory 460, the data source 467 ⁇ is used on the first sub-band in the present application The first moment transmits the first wireless signal.
  • the first node in this application is a user equipment, and the second node in this application is a base station.
  • the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is configured to monitor the second wireless signal at the first time on the second sub-band in the present application; ⁇ the antenna 420, the transmitter 418, a transmit processor 416, the multi-antenna transmit processor 471, the controller/processor 475, at least one of the memories 476 ⁇ being used on the second sub-band in the present application
  • the first moment transmits the second wireless signal.
  • the first node in this application is a base station, and the second node in this application is a user equipment.
  • At least one of the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, and the memory 476 ⁇ One of being used to monitor the second wireless signal at the first time on the second sub-band in the present application; ⁇ the antenna 452, the transmitter 454, the transmit processor 468, At least one of the multi-antenna transmit processor 457, the controller/processor 459, the memory 460, the data source 467 ⁇ is used on the second sub-band in the present application
  • the first moment transmits the second wireless signal.
  • the first node in this application is a user equipment, and the second node in this application is a base station.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signaling in the present application;
  • the antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471 At least one of the controller/processor 475, the memory 476 ⁇ is used to transmit the first signaling in the present application.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the second signaling in the present application;
  • the antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471 At least one of the controller/processor 475, the memory 476 ⁇ is used to transmit the second signaling in the present application.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first information in the present application;
  • Embodiment 5 illustrates a flow chart of wireless transmission, as shown in FIG.
  • the base station N1 is the first node in the present application
  • the user equipment U2 is the second node in the present application
  • the base station N1 is a serving cell maintenance base station of the user equipment U2.
  • the steps in block F1, block F2 and block F3 are optional, respectively.
  • the first signaling is sent in step S101; the second signaling is sent in step S102; in the Q time subpools on the first subband, Q energy detection is performed in step S11, and Q is obtained.
  • Detecting values performing P energy detections in P time subpools on the second sub-band in step S12 to obtain P detection values; and determining, in step S13, based on the Q detection values Transmitting a first wireless signal at a first time on a sub-band; transmitting the first wireless signal at the first time on the first sub-band in step S14; in the second sub-step in step S103
  • the first moment on the frequency band transmits a second wireless signal.
  • the first signaling is received in step S201; the second signaling is received in step S202; the first wireless signal is received at a first time on the first sub-band in step S21; The first time on the sub-band monitors the second wireless signal.
  • the P detection values are used by the N1 to determine whether to transmit the second wireless signal at the first time on the second sub-band; the Q-th energy detection is Associated to a first antenna port group; if the P energy detections are all associated with the first antenna port group, the P is P1, otherwise the P is P2; the Q is a positive integer; the P1 and The P2 is two positive integers that are unequal to each other; one antenna port group includes a positive integer number of antenna ports.
  • the first signaling and the second signaling respectively include scheduling information of the first wireless signal and scheduling information of the second wireless signal.
  • the Q detection values are used by the N1 to determine that the first wireless signal is sent at the first time on the first sub-band; Q3 of the Q detection values.
  • the detected values are all lower than a first threshold, the Q3 being one of the K1 alternative integers, and the K1 is a positive integer.
  • the P is the P1, and the P1 is a fixed value; if the P detection values are lower than the second threshold, the N1 is in the second sub-band Transmitting the second wireless signal at a time, otherwise the N1 discards transmitting the second wireless signal at the first time on the second sub-band.
  • block F3 in FIG. 5 exists; otherwise, block F3 in FIG. 5 does not exist.
  • the P is the P2, the P2 is greater than P3, and the P3 is an alternate integer of K2 candidate integers; if the P3 detection values of the P detection values are low At a third threshold, the N1 transmits the second wireless signal at the first time on the second sub-band, otherwise the N1 abandons the first time transmission on the second sub-band The second wireless signal; the K2 is a positive integer.
  • the monitoring refers to energy detection, that is, determining whether the second wireless signal is detected at the first moment on the second sub-band according to energy detection.
  • the energy detection means that the energy of all wireless signals is sensed on the second sub-band and averaged over time to obtain received energy. Determining that the second wireless signal is detected at the first time on the second sub-band if the received energy is greater than a first given threshold; otherwise determining the first on the second sub-band The second wireless signal is not detected at a time.
  • the second wireless signal includes a first reference signal
  • the monitoring refers to coherent detection by using an RS (Reference Signal) sequence of the first reference signal, that is, according to the first
  • the RS sequence of the reference signal is determined by coherent detection to determine whether the second wireless signal is detected at the first time on the second sub-band.
  • the coherent detection refers to: coherently receiving all radio signals with the RS sequence of the first reference signal on the second sub-band, and measuring the coherent reception The energy of the resulting signal. If the energy of the signal obtained after the coherent reception is greater than a second given threshold, determining that the second wireless signal is detected at the first time on the second sub-band; otherwise determining The second wireless signal is not detected at the first time on the two sub-bands.
  • the first reference signal includes a DMRS (DeModulation Reference Signals).
  • DMRS Demodulation Reference Signals
  • the first reference signal includes a PTRS (Phase Error Tracking Reference Signals).
  • PTRS Phase Error Tracking Reference Signals
  • the monitoring refers to blind detection, that is, determining whether the second wireless signal is detected at the first moment on the second sub-band according to blind detection.
  • the blind detection refers to: receiving a signal on the second sub-band and performing a decoding operation, and determining if the decoding is correct according to the check bit, determining the second sub- The second wireless signal is detected at the first time on the frequency band; otherwise the second wireless signal is not detected at the first time on the second sub-band.
  • the check bit refers to a CRC (Cyclic Redundancy Check) bit.
  • the first signaling is transmitted on the first sub-band.
  • the first signaling is transmitted on a frequency band other than the first sub-band.
  • the first signaling is transmitted on a frequency band deployed in the licensed spectrum.
  • the scheduling information of the first radio signal includes ⁇ occupied time domain resources, occupied frequency domain resources, MCS (Modulation and Coding Scheme), HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request) At least one of a process number, RV (Redundancy Version), NDI (New Data Indicator), DMRS sequence, and transmit antenna port ⁇ .
  • the first signaling is high layer signaling.
  • the first signaling is RRC (Radio Resource Control) signaling.
  • the first signaling is a MAC CE (Medium Access Control Layer Control Element) signaling.
  • MAC CE Medium Access Control Layer Control Element
  • the first signaling is physical layer signaling.
  • the first signaling is dynamic signaling.
  • the first signaling is dynamic signaling for downlink grant (DownLink Grant), and the first node is a base station.
  • the first signaling includes DCI (Downlink Control Information).
  • the first signaling includes a downlink grant DCI (DownLink Grant DCI), and the first node is a base station.
  • DCI Downlink Grant DCI
  • the second signaling is transmitted on the second sub-band.
  • the second signaling is transmitted on a frequency band other than the second sub-band.
  • the second signaling is transmitted on a frequency band deployed in the licensed spectrum.
  • the scheduling information of the second wireless signal includes at least one of ⁇ occupied time domain resources, occupied frequency domain resources, MCS, HARQ process numbers, RV, NDI, DMRS sequences, and transmit antenna ports ⁇ . one.
  • the second signaling is high layer signaling.
  • the second signaling is RRC signaling.
  • the second signaling is MAC CE signaling.
  • the second signaling is physical layer signaling.
  • the second signaling is dynamic signaling.
  • the second signaling is dynamic signaling for downlink grant (DownLink Grant), and the first node is a base station.
  • the second signaling includes DCI.
  • the second signaling includes a downlink grant DCI (DownLink Grant DCI), and the first node is a base station.
  • DCI Downlink Grant DCI
  • the first signaling is used to determine the first time instant.
  • the first signaling explicitly indicates the first moment.
  • the first signaling implicitly indicates the first moment.
  • the first signaling explicitly indicates that a start time of a time resource occupied by the first wireless signal is the first moment.
  • the first signaling implicitly indicates that the starting time of the time resource occupied by the first wireless signal is the first moment.
  • the second signaling is used to determine the first time instant.
  • the second signaling explicitly indicates the first moment.
  • the second signaling implicitly indicates the first moment.
  • the second signaling explicitly indicates that the starting time of the time resource occupied by the second wireless signal is the first moment.
  • the second signaling implicitly indicates that the starting time of the time resource occupied by the second wireless signal is the first moment.
  • At least one transmit antenna port of the first wireless signal and one of the first antenna port groups are quasi-co-located; at least one transmit antenna port and a second antenna of the second wireless signal One antenna port in the port group is quasi-co-located, and the P-th energy detection is associated with the second antenna port group.
  • the P-th energy detection is associated with the second antenna port group, wherein the second antenna port group is used to determine each energy detection in the P-th energy detection. Spatial Rx parameters used.
  • the P-th energy detection is associated with the second antenna port group, and the spatial transmission parameter (Spatial Tx parameters) corresponding to the antenna port in the second antenna port group is used.
  • the spatial Rx parameters used for each energy detection in the P-th energy detection are determined.
  • the P-th energy detection is associated with the second antenna port group, that is, the transmission spatial filtering corresponding to the antenna port in the second antenna port group is used to determine The spatial filtering used for each energy detection in the P-th energy detection is described.
  • the P-th energy detection is associated with the second antenna port group, which means that the coverage of the receiving beam corresponding to each energy detection in the P-th energy detection is spatially covered.
  • the transmit beams corresponding to all of the antenna ports in the second set of antenna ports are within a set of spatial coverage.
  • the P-th energy detection is associated with the second antenna port group, which means that the transmission beam corresponding to any one of the second antenna port groups is spatially covered.
  • the range is within the spatial coverage of the receive beam corresponding to each energy detection in the P-th energy detection.
  • the P-th energy detection is associated with the second antenna port group, which means that the transmission beam corresponding to all antenna ports in the second antenna port group is spatially covered.
  • the set of coverage and the coverage of the receive beam corresponding to each of the P-th energy detections are spatially coincident.
  • any one of the second antenna port groups and one of the first antenna port groups Quasi-co-location.
  • any one of the second antenna port group and at least one of the first antenna port groups Port quasi co-location.
  • any one of the second antenna port group and any one of the first antenna port groups Port quasi co-location.
  • the second antenna port group is the first antenna port group.
  • any one of the second antenna port group and the first antenna port group is not quasi-co-located.
  • two antenna port quasi co-locations refer to the two antenna ports QCL (Quasi Co-Located).
  • two antenna port quasi co-locations refer to the two antenna ports spatial QCL.
  • the first wireless signal is transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling), and the first node is a base station.
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling
  • the downlink physical layer control channel is a PDCCH (Physical Downlink Control CHannel).
  • the downlink physical layer control channel is an sPDCCH (short PDCCH).
  • the downlink physical layer control channel is an NR-PDCCH (New Radio PDCCH).
  • NR-PDCCH New Radio PDCCH
  • the downlink physical layer control channel is a NB-PDCCH (Narrow Band PDCCH).
  • NB-PDCCH Narrow Band PDCCH
  • the second wireless signal is transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling), and the first node is a base station.
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling
  • the first node is a base station.
  • the downlink physical layer control channel is a PDCCH.
  • the downlink physical layer control channel is an sPDCCH.
  • the downlink physical layer control channel is an NR-PDCCH.
  • the downlink physical layer control channel is an NB-PDCCH.
  • the first wireless signal is transmitted on a downlink physical layer data channel (ie, a downlink channel that can be used to carry physical layer data), and the first node is a base station.
  • a downlink physical layer data channel ie, a downlink channel that can be used to carry physical layer data
  • the first node is a base station.
  • the downlink physical layer data channel is a PDSCH (Physical Downlink Shared CHannel).
  • PDSCH Physical Downlink Shared CHannel
  • the downlink physical layer data channel is sPDSCH (short PDSCH).
  • the downlink physical layer data channel is an NR-PDSCH (New Radio PDSCH).
  • NR-PDSCH New Radio PDSCH
  • the downlink physical layer data channel is a NB-PDSCH (Narrow Band PDSCH).
  • the first radio signal corresponding transport channel is a DL-SCH (DownLink Shared Channel), and the first node is a base station.
  • DL-SCH DownLink Shared Channel
  • the second wireless signal is transmitted on a downlink physical layer data channel (ie, a downlink channel that can be used to carry physical layer data), and the first node is a base station.
  • a downlink physical layer data channel ie, a downlink channel that can be used to carry physical layer data
  • the first node is a base station.
  • the downlink physical layer data channel is a PDSCH.
  • the downlink physical layer data channel is sPDSCH.
  • the downlink physical layer data channel is an NR-PDSCH.
  • the downlink physical layer data channel is an NB-PDSCH.
  • the second wireless signal corresponding transport channel is a DL-SCH
  • the first node is a base station
  • the first signaling is transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is a PDCCH.
  • the downlink physical layer control channel is an sPDCCH.
  • the downlink physical layer control channel is an NR-PDCCH.
  • the downlink physical layer control channel is an NB-PDCCH.
  • the first signaling is transmitted on a downlink physical layer data channel (ie, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel ie, a downlink channel that can be used to carry physical layer data.
  • the downlink physical layer data channel is a PDSCH.
  • the downlink physical layer data channel is sPDSCH.
  • the downlink physical layer data channel is an NR-PDSCH.
  • the downlink physical layer data channel is an NB-PDSCH.
  • the second signaling is transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is a PDCCH.
  • the downlink physical layer control channel is an sPDCCH.
  • the downlink physical layer control channel is an NR-PDCCH.
  • the downlink physical layer control channel is an NB-PDCCH.
  • the second signaling is transmitted on a downlink physical layer data channel (ie, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel ie, a downlink channel that can be used to carry physical layer data.
  • the downlink physical layer data channel is a PDSCH.
  • the downlink physical layer data channel is sPDSCH.
  • the downlink physical layer data channel is an NR-PDSCH.
  • the downlink physical layer data channel is an NB-PDSCH.
  • Embodiment 6 illustrates a flow chart of wireless transmission; as shown in FIG.
  • the base station N3 is the second node in the present application
  • the user equipment U4 is the first node in the present application
  • the base station N3 is a serving cell maintenance base station of the user equipment U4.
  • the steps in blocks F4 through F7 are optional, respectively.
  • step S301 For N3, transmitting the first information in step S301; transmitting the first signaling in step S302; transmitting the second signaling in step S303; receiving the first wireless in the first time on the first sub-band in step S31 Signal; monitoring the second wireless signal at the first time on the second sub-band in step S32.
  • the first information is received in step S401; the first signaling is received in step S402; the second signaling is received in step S403; in the Q time subpools on the first subband in step S41, respectively Performing Q energy detections to obtain Q detection values; performing P energy detections in P time sub-pools on the second sub-band in step S42 to obtain P detection values; in step S43, only according to the The Q detection values determine that the first wireless signal is transmitted at the first time on the first sub-band; the first wireless signal is transmitted at the first time on the first sub-band in step S44; The second wireless signal is transmitted at the first time on the second sub-band in step S404.
  • the P detection values are used to determine whether to transmit the second wireless signal at the first time on the second sub-band; the Q-th energy detection is associated with An antenna port group; if the P energy detections are all associated with the first antenna port group, the P is P1, otherwise the P is P2; the P1 and the P2 are two unequal Positive integer; the Q is a positive integer; an antenna port group includes a positive integer number of antenna ports.
  • the first signaling and the second signaling respectively include scheduling information of the first wireless signal and scheduling information of the second wireless signal.
  • the first information is used to determine a first sub-band combination, the first sub-band combination includes a positive integer number of sub-bands, and the first sub-band and the second sub-band all belong to the first sub-band combination .
  • the P is the P1
  • the P1 is a fixed value
  • the U4 is in the second sub-band Transmitting the second wireless signal at a time, otherwise the U4 discards transmitting the second wireless signal at the first moment on the second sub-band.
  • the P is the P2, the P2 is greater than P3, and the P3 is an alternate integer of K2 candidate integers; if the P3 detection values of the P detection values are low At a third threshold, the U4 transmits the second wireless signal at the first time on the second sub-band, otherwise the U4 abandons sending at the first time on the second sub-band The second wireless signal; the K2 is a positive integer.
  • the block F7 in FIG. 6 exists, otherwise the Box F7 does not exist.
  • the scheduling information of the first wireless signal includes ⁇ occupied time domain resources, occupied frequency domain resources, occupied code domain resources, cyclic shift, and OCC (Orthogonal Cover Code) At least one of a Orthogonal Mask, a DMRS sequence, a PUCCH format, and UCI (Uplink Control Information) content.
  • OCC Orthogonal Cover Code
  • the first signaling is dynamic signaling for an uplink grant (UpLink Grant), and the first node is a user equipment.
  • UpLink Grant uplink grant
  • the first signaling includes an uplink grant DCI (UpLink Grant DCI), and the first node is a user equipment.
  • UpLink Grant DCI UpLink Grant DCI
  • the scheduling information of the second wireless signal includes ⁇ occupied time domain resources, occupied frequency domain resources, occupied code domain resources, cyclic shift, OCC, DMRS sequences, At least one of PUCCH format (UCCCH format), UCI content ⁇ .
  • the second signaling is dynamic signaling for an uplink grant (UpLink Grant), and the first node is a user equipment.
  • UpLink Grant uplink grant
  • the second signaling includes an uplink grant DCI (UpLink Grant DCI), and the first node is a user equipment.
  • DCI UpLink Grant DCI
  • the first information is transmitted on the first sub-band.
  • the first information is transmitted on the second sub-band.
  • the first information is transmitted on a frequency band other than the first sub-band and the second sub-band.
  • the first information is transmitted on a frequency band deployed in the licensed spectrum.
  • the first information is carried by higher layer signaling.
  • the first information is carried by higher layer signaling.
  • the first information is carried by RRC signaling.
  • the first information is carried by MAC CE signaling.
  • the carrier frequency of all subbands in the first subband combination constitutes a subset of a set of carrier frequencies defined in section 5.7.4 of 3GPP TS 36.104.
  • the first wireless signal is transmitted on an uplink physical layer control channel (ie, an uplink channel that can only be used to carry physical layer signaling), and the first node is a user equipment.
  • an uplink physical layer control channel ie, an uplink channel that can only be used to carry physical layer signaling
  • the uplink physical layer control channel is a PUCCH (Physical Uplink Control CHannel).
  • the uplink physical layer control channel is sPUCCH (short PUCCH).
  • the uplink physical layer control channel is an NR-PUCCH (New Radio PUCCH).
  • the uplink physical layer control channel is a NB-PUCCH (Narrow Band PUCCH).
  • the second wireless signal is transmitted on an uplink physical layer control channel (ie, an uplink channel that can only be used to carry physical layer signaling), and the first node is a user equipment.
  • an uplink physical layer control channel ie, an uplink channel that can only be used to carry physical layer signaling
  • the first node is a user equipment.
  • the uplink physical layer control channel is a PUCCH.
  • the uplink physical layer control channel is an sPUCCH.
  • the uplink physical layer control channel is an NR-PUCCH.
  • the uplink physical layer control channel is an NB-PUCCH.
  • the first wireless signal is transmitted on an uplink physical layer data channel (ie, an uplink channel that can be used to carry physical layer data), and the first node is a user equipment.
  • an uplink physical layer data channel ie, an uplink channel that can be used to carry physical layer data
  • the uplink physical layer data channel is a PUSCH (Physical Uplink Shared CHannel).
  • the uplink physical layer data channel is sPUSCH (short PUSCH).
  • the uplink physical layer data channel is an NR-PUSCH (New Radio PUSCH).
  • the uplink physical layer data channel is a NB-PUSCH (Narrow Band PUSCH).
  • the first wireless signal corresponding transport channel is a UL-SCH (UpLink Shared Channel), and the first node is a user equipment.
  • UL-SCH UpLink Shared Channel
  • the second wireless signal is transmitted on an uplink physical layer data channel (ie, an uplink channel that can be used to carry physical layer data), and the first node is a user equipment.
  • an uplink physical layer data channel ie, an uplink channel that can be used to carry physical layer data
  • the uplink physical layer data channel is a PUSCH.
  • the uplink physical layer data channel is sPUSCH.
  • the uplink physical layer data channel is an NR-PUSCH.
  • the uplink physical layer data channel is an NB-PUSCH.
  • the second wireless signal corresponding transport channel is a UL-SCH
  • the first node is a user equipment
  • the first information is transmitted on a downlink physical layer data channel (ie, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel ie, a downlink channel that can be used to carry physical layer data.
  • the downlink physical layer data channel is a PDSCH.
  • the downlink physical layer data channel is sPDSCH.
  • the downlink physical layer data channel is an NR-PDSCH.
  • the downlink physical layer data channel is an NB-PDSCH.
  • Embodiment 7 illustrates a schematic diagram of an antenna port and an antenna port group; as shown in FIG.
  • one antenna port group includes a positive integer number of antenna ports; one antenna port is formed by antenna virtualization in a positive integer number of antenna groups; one antenna group includes a positive integer antenna.
  • An antenna group is connected to the baseband processor through an RF (Radio Frequency) chain, and different antenna groups correspond to different RF chains.
  • a mapping coefficient of all antennas within a positive integer number of antenna groups included in a given antenna port to the given antenna port constitutes a beamforming vector corresponding to the given antenna port.
  • the mapping coefficients of the plurality of antennas included in any given antenna group included in a given integer number of antenna groups included in the given antenna port to the given antenna port constitute an analog beamforming vector of the given antenna group.
  • the diagonal arrangement of the analog beamforming vectors corresponding to a positive integer number of antenna groups included in the given antenna port constitutes an analog beam shaping matrix corresponding to the given antenna port.
  • the mapping coefficient of the given antenna port including a positive integer number of antenna groups to the given antenna port constitutes a digital beamforming vector corresponding to the given antenna port.
  • the beamforming vector corresponding to the given antenna port is obtained by multiplying the analog beam shaping matrix and the digital beam shaping vector corresponding to the given antenna port.
  • Different antenna ports in one antenna port group are composed of the same antenna group, and different antenna ports in the same antenna port group correspond to different beamforming vectors.
  • antenna port group #0 and antenna port group #1 Two antenna port groups are shown in Figure 7: antenna port group #0 and antenna port group #1.
  • the antenna port group #0 is composed of an antenna group #0
  • the antenna port group #1 is composed of an antenna group #1 and an antenna group #2.
  • the mapping coefficients of the plurality of antennas in the antenna group #0 to the antenna port group #0 constitute an analog beamforming vector #0
  • the mapping coefficients of the antenna group #0 to the antenna port group #0 constitute a number Beamforming vector #0
  • the mapping coefficients of the plurality of antennas in the antenna group #1 and the plurality of antennas in the antenna group #2 to the antenna port group #1 constitute an analog beamforming vector #1 and an analog beamforming vector #, respectively. 2.
  • the mapping coefficients of the antenna group #1 and the antenna group #2 to the antenna port group #1 constitute a digital beamforming vector #1.
  • a beamforming vector corresponding to any one of the antenna port groups #0 is obtained by multiplying the analog beamforming vector #0 and the digital beamforming vector #0.
  • the beamforming vector corresponding to any antenna port in the antenna port group #1 is an analog beam shaping matrix formed by diagonally arranging the analog beamforming vector #1 and the analog beamforming vector #2 Obtained from the product of the digital beamforming vector #1.
  • an antenna port group includes only one antenna group, i.e., an RF chain, for example, the antenna port group #0 in FIG.
  • the analog beam shaping matrix corresponding to the antenna port in the one antenna port group is reduced into an analog beamforming vector
  • the digital beam corresponding to the antenna port in the one antenna port group is The shaping vector is dimensioned into a scalar, and the beamforming vector corresponding to the antenna port in the one antenna port group is equal to its corresponding analog beamforming vector.
  • the antenna port group #0 in FIG. 7 includes only the antenna group #0, and the digital beamforming vector #0 in FIG. 7 is reduced to a scalar, and the antenna port group #0
  • the beamforming vector corresponding to the antenna port in the middle is the analog beamforming vector #0.
  • the one antenna port group includes one antenna port.
  • one antenna port group includes a plurality of antenna groups, that is, a plurality of RF chains, for example, the antenna port group #1 in FIG.
  • the one antenna port group includes a plurality of antenna ports.
  • different antenna ports in the one antenna port group correspond to the same analog beam shaping matrix.
  • different antenna ports in the one antenna port group correspond to different digital beamforming vectors.
  • antenna ports in different antenna port groups correspond to different analog beam shaping matrices.
  • the antenna port is an antenna port.
  • the small-scale channel parameters experienced by a wireless signal transmitted from one antenna port may infer small-scale channel parameters experienced by another wireless signal transmitted from the one antenna port.
  • the small-scale channel parameters include ⁇ CIR (Channel Impulse Response), PMI (Precoding Matrix Indicator), CQI, RI (Rank Indicator, rank) One or more of the identifiers).
  • CIR Channel Impulse Response
  • PMI Precoding Matrix Indicator
  • CQI Precoding Matrix Indicator
  • RI Rank Indicator, rank
  • any two antenna ports in an antenna port group are quasi-co-located.
  • two antenna port quasi co-locations refer to the two antenna ports QCL (Quasi Co-Located).
  • two antenna port quasi co-locations refer to the two antenna ports spatial QCL.
  • two antenna port quasi co-locations mean that all or part of the large-scale properties of the wireless signal that can be transmitted from one of the two antenna ports can be inferred. All or a portion of the large-scale characteristics of the wireless signals transmitted on the other of the two antenna ports, the large-scale characteristics including multi-antenna-related large-scale characteristics and multi-antenna-independent large-scale characteristics.
  • the multi-element related large-scale characteristics of a given wireless signal include ⁇ angle of arrival, angle of departure, spatial correlation, spatial Tx parameters, spatial reception One or more of the parameters (Spatial Rx parameters) ⁇ .
  • the Spatial Tx parameters include ⁇ antenna port, antenna port group, transmit beam, transmit analog beamforming matrix, transmit analog beamforming vector, transmit beamforming vector, and transmit spatial filtering (spatial) One or more of filtering) ⁇ .
  • the spatial Rx parameters include one of a ⁇ receiving beam, receiving an analog beamforming matrix, receiving an analog beamforming vector, receiving a beamforming vector, and receiving spatial filtering ⁇ . Or a variety.
  • the multi-radio-related large-scale characteristics of a given wireless signal include ⁇ delay spread, Doppler spread, Doppler shift, path loss (path) Loss), one or more of average gain, average delay.
  • the two antenna ports quasi-co-location means that the two antenna ports have at least one identical QCL parameter, and the QCL parameters include multiple antenna related QCL parameters and multiple antenna independent QCL parameters. parameter.
  • the multi-antenna related QCL parameters include: ⁇ angle of arrival, angle of departure, spatial correlation, spatial Tx parameters, and spatial Rx parameters. One or more of them.
  • the multi-antenna-independent QCL parameters include: ⁇ delay spread, Doppler spread, Doppler shift, path loss, average gain One or more of (average gain) ⁇ .
  • two antenna port quasi co-locations means that at least one of the two antenna ports can be inferred from at least one QCL parameter of one of the two antenna ports. QCL parameters.
  • two antenna port quasi co-locations refer to all or part of a multi-antenna related large-scale characteristic of a wireless signal that can be transmitted from one of the two antenna ports ( Properties) inferring all or part of the multi-antenna-related large-scale characteristics of the wireless signals transmitted on the other of the two antenna ports.
  • the quasi-co-location of the two antenna ports means that the two antenna ports have at least one identical multi-antenna related QCL parameter.
  • two antenna port quasi-co-location means that another antenna of the two antenna ports can be inferred from at least one multi-antenna related QCL parameter of one of the two antenna ports At least one multi-antenna related QCL parameter of the port.
  • Embodiment 8 exemplifies a timing relationship of Q time subpools, P time subpools, and first time in the time domain; as shown in FIG.
  • the first node in the application performs Q energy detection in the Q time sub-pools on the first sub-band in the present application to obtain Q detection values;
  • the first node in the application performs P energy detections in the P time sub-pools on the second sub-band of the present application to obtain P detection values. Determining, by the first node, that the first wireless signal is sent at the first time on the first sub-band according to the Q detection values; the first node determining, according to the P detection values, whether Transmitting the second wireless signal at the first time on the second sub-band.
  • the Q energy detections are all associated with a first antenna port group;
  • the P energy detections are all associated with the first antenna port group, the P being the P1 in the present application.
  • an ellipse filled with a thin solid border blank indicates the first antenna port group.
  • the first moment is an end moment of the Q time subpools.
  • the first moment is an end time of the P time subpools.
  • the Q time subpools and the P time subpools end at the same time.
  • the P1 is equal to two.
  • the P1 is smaller than the Q.
  • any two antenna ports in the first antenna port group are quasi-co-located.
  • the first antenna port group includes one antenna port.
  • the first antenna port group includes a positive integer number of antenna ports.
  • At least one of the transmit antenna port of the first wireless signal and the at least one of the first set of antenna ports are quasi-co-located.
  • any one of the transmit antenna ports of the first wireless signal and one of the first antenna port groups are quasi-co-located.
  • any one of the transmit antenna ports of the first wireless signal and the at least one of the first set of antenna ports are quasi-co-located.
  • any one of the transmit antenna ports of the first wireless signal and the first antenna port group are quasi-co-located.
  • At least one of the transmit antenna port of the second wireless signal and the at least one of the first set of antenna ports are quasi-co-located.
  • any one of the transmit antenna ports of the second wireless signal and one of the first set of antenna ports are quasi-co-located.
  • any one of the transmit antenna ports of the second wireless signal and the at least one of the first set of antenna ports are quasi-co-located.
  • any one of the transmit antenna ports of the second wireless signal and the first antenna port group are quasi-co-located.
  • any one of the second antenna port groups in the application and one of the first antenna port groups are quasi-co-located.
  • any one of the second antenna port groups and the first antenna port group in the present application are quasi-co-located.
  • any one of the antenna ports in the second antenna port group and the first antenna port group in the present application are quasi-co-located.
  • the second antenna port group in this application is the first antenna port group.
  • At least one of the transmit antenna port of the second wireless signal and the at least one of the second set of antenna ports in the present application are quasi-co-located.
  • any one of the transmit antenna ports of the second wireless signal and one of the second antenna port groups in the present application are quasi-co-located.
  • At least one of the transmit antenna ports of the second wireless signal and the second antenna port group of the present application are quasi-co-located.
  • any one of the transmit antenna ports of the second wireless signal and the second antenna port group of the present application are quasi-co-located.
  • Embodiment 9 exemplifies a timing relationship of Q time subpools, P time subpools, and first time in the time domain; as shown in FIG.
  • the first node in the application performs Q energy detection in the Q time sub-pools on the first sub-band in the application, and obtains Q detection values;
  • the first node in the application performs P energy detections in the P time sub-pools on the second sub-band of the present application to obtain P detection values. Determining, by the first node, that the first wireless signal is sent at the first time on the first sub-band according to the Q detection values; the first node determining, according to the P detection values, whether Transmitting the second wireless signal at the first time on the second sub-band.
  • the Q energy detections are all associated with a first antenna port group; the P energy detections are not associated with the first antenna port group, and the P is the P2 in the present application.
  • the P energy detections are all associated with the second antenna port group.
  • an ellipse filled with a thin solid border blank indicates the first antenna port group
  • an ellipse filled with a thin solid border crossing line indicates the second antenna port group.
  • the P2 is independent of the Q.
  • the P2 is greater than the Q.
  • the P2 is smaller than the Q.
  • the P2 is equal to the Q.
  • any two antenna ports in the second antenna port group are quasi-co-located.
  • any one of the antenna ports of the second antenna port group and the first antenna port group is not quasi-co-located.
  • the second antenna port group includes one antenna port.
  • the second antenna port group includes a positive integer number of antenna ports.
  • At least one of the at least one transmit antenna port and the second antenna port of the second wireless signal is quasi-co-located.
  • any one of the transmit antenna ports of the second wireless signal and one of the second antenna port groups are quasi-co-located.
  • At least one of the transmit antenna port and the second antenna port of the second wireless signal is quasi-co-located.
  • any one of the transmit antenna port and the second antenna port of the second wireless signal is quasi-co-located.
  • Embodiment 10 illustrates a schematic diagram of Q energy detection; as shown in FIG.
  • the first node in the application performs the Q energy detection in the Q time subpools on the first sub-band in the present application, and obtains Q detection values.
  • the Q3 detection values of the Q detection values are all lower than the first threshold, and the Q3 is one of the K1 candidate integers, and the K1 is a positive integer.
  • the Q3 time sub-pools are time sub-pools corresponding to the Q3 detection values in the Q time sub-pools.
  • the first node in the present application is in an idle state in step S1001, and it is determined in step S1002 whether transmission is required; a delay period on the first sub-band in the step S1003 (defer Performing energy detection in the duration); determining whether all the time slot periods in the delay period are idle (Idle) in step S1004, if yes, proceeding to step S1005, setting the first counter equal to the Q3; otherwise returning to step S1004; Determining whether the first counter is 0 in step S1006, if yes, proceeding to send a wireless signal on the first sub-band in step S1007; otherwise proceeding to one in the first sub-band in step S1008 Energy detection is performed in an additional slot duration; it is determined in step S1009 whether or not the additional slot period is idle (Idle), and if yes, proceeding to step S1010 to decrement the first counter by one, and then returning to the step S1006; otherwise proceeding to perform an energy detection in an additional delay period on the first sub-band in step S1011;
  • the first given time period includes a positive integer number of time sub-pools in the Q time sub-pools, the first given time period is ⁇ all delay time periods included in FIG. 10, all additional The slot period, any one of all additional delay periods ⁇ .
  • the second given time period includes one time sub-pool of the Q3 time sub-pools, and the second given time period is ⁇ all additional time slot periods judged to be idle by energy detection in FIG. 10, all additional times Any time period in the delay period ⁇ .
  • any one of the slot durations in a given time period includes one of the Q time subpools; the given time period is ⁇ all delays included in FIG. Time period, any additional time slot period, any one of all additional delay periods ⁇ .
  • performing energy detection in a given time period means performing energy detection within all slot durations within the given time period; the given time period is included in FIG. All delay periods, all additional slot periods, any of the additional delay periods ⁇ .
  • performing energy detection in a given time period means performing energy detection in all time sub-pools within the given time period; the given time period is ⁇ all delay time periods included in FIG. 10, All of the additional time slot periods, any of the additional time delay periods, the all time subpools belonging to the Q time subpools, and the energy detection performed in the all time subpools is the Q energy Detecting energy detection corresponding to all of the time subpools.
  • the determination of idle (Idle) by energy detection for a given period of time means that all slot periods included in the given period are judged to be idle (Idle) by energy detection; the given period of time It is any one of ⁇ all delay periods, all additional slot periods, all additional delay periods ⁇ included in FIG.
  • determining, by the energy detection, that the given period is idle (Idle) means that the detected values obtained by the energy detection in all the time sub-pools included in the given period are lower than the first threshold.
  • the given time period is any one of ⁇ all delay periods, all additional time slot periods, all additional delay periods ⁇ included in FIG. 10, and all of the time subpools belong to the Q time slots
  • the detection value is a detection value corresponding to the all time subpools in the Q detection values.
  • the determination of idle (Idle) by energy detection for a given time slot period means that the first node senses the power of all wireless signals on the first sub-band in a given time unit. And averaging in time, the received received power is lower than the first threshold; the given time unit is one of the given time slot periods.
  • the duration of the given time unit is not shorter than 4 microseconds.
  • determining the idle time (Idle) by energy detection for a given time slot period means that the first node senses the energy of all wireless signals on the first sub-band in a given time unit. And averaging over time, the received received energy is below the first threshold; the given time unit is one of the given time slot periods.
  • the duration of the given time unit is not shorter than 4 microseconds.
  • determining, by the energy detection, that the given time slot period is idle (Idle) means that the first node performs energy detection on the time sub-pool included in the given time slot period, and the obtained detection value is lower than The first threshold is used; the time sub-pool belongs to the Q time sub-pools, and the detection value is a detection value corresponding to the time sub-pool among the Q detection values.
  • the duration of a defer duration is 16 microseconds plus S1 9 microseconds, and S1 is a positive integer.
  • one delay period includes S1+1 time sub-pools in the Q time sub-pools.
  • the duration of the first time sub-pool in the S1+1 time sub-pool does not exceed 16 microseconds, and the durations of other S1 time sub-pools do not exceed 9 Microseconds.
  • the S1 belongs to ⁇ 1, 2, 3, 7 ⁇ .
  • a defer duration includes a plurality of slot durations.
  • the first one of the plurality of slot periods and the second slot period are discontinuous.
  • the time interval between the first slot period and the second slot period of the plurality of slot periods is 7 microseconds.
  • the duration of an additional defer duration is 16 microseconds plus S2 9 microseconds, which is a positive integer.
  • an additional delay period includes S2+1 time sub-pools in the Q time sub-pools.
  • the duration of the first time sub-pool in the S2+1 time sub-pools does not exceed 16 microseconds, and the durations of other S2 time sub-pools do not exceed 9 Microseconds.
  • the S2 belongs to ⁇ 1, 2, 3, 7 ⁇ .
  • the duration of one delay period is equal to the duration of an additional delay period.
  • the S1 is equal to the S2.
  • an additional defer duration includes a plurality of slot durations.
  • the first one of the plurality of slot periods and the second slot period are discontinuous.
  • the time interval between the first slot period and the second slot period of the plurality of slot periods is 7 microseconds.
  • the duration of one slot duration is 9 microseconds.
  • one slot period includes one time sub-pool of the Q time sub-pools.
  • the duration of the one time sub-pool is no more than 9 microseconds.
  • the duration of an additional slot duration is 9 microseconds.
  • an additional slot period includes one of the Q time subpools.
  • the duration of the one time sub-pool is no more than 9 microseconds.
  • the Q energy detection is energy detection in Cat 4LBT (the fourth type of LBT), and the specific definition of the Cat 4LBT is referred to 3GPP TR36.889.
  • the Q-th energy detection is energy detection in a Type 1 UL channel access procedure
  • the first node is a user equipment
  • the first type of uplink channel is connected.
  • the K1 belongs to ⁇ 3, 7, 15, 31, 63, 127, 255, 511, 1023 ⁇ .
  • the K1CW p , the CW p is a size of a contention window, and the specific definition of the CW p is as described in section 15 of 3GPP TS 36.213.
  • the K1 is a Cat 4LBT (fourth type of LBT) during CW p, the Cat Referring specifically defined 4LBT the 3GPP TR36.889.
  • the K1 candidate integers are each a non-negative integer.
  • the K1 alternative integers are 0, 1, 2, ..., K1-1.
  • the first node randomly selects the Q3 among the K1 candidate integers.
  • the probability that any one of the K1 candidate integers is selected as the Q3 is equal.
  • the time domain resources occupied by any one of the Q time subpools are consecutive.
  • the Q time subpools are orthogonal to each other (non-overlapping) in the time domain.
  • the duration of any of the Q time subpools is one of ⁇ 16 microseconds, 9 microseconds ⁇ .
  • At least two time sub-pools in the Q time sub-pools have unequal durations.
  • the durations of any two of the Q time subpools are equal.
  • the time domain resources occupied by the Q time subpools are continuous.
  • the time domain resources occupied by at least two adjacent time sub-pools in the Q time sub-pools are discontinuous.
  • the time domain resources occupied by any two adjacent time sub-pools of the Q time sub-pools are discontinuous.
  • any one of the Q time subpools is a slot duration.
  • any one of the Q time subpools is T sl , and the T sl is a slot duration, and the specific definition of the T sl is as described in 3GPP TS 36.213. 15 chapters.
  • any one of the Q time subpools except the earliest time subpool is a slot duration.
  • any one of the Q time subpools except the earliest time subpool is T sl , and the T sl is a slot duration, and the T sl is specific. See Section 15 of 3GPP TS 36.213 for definitions.
  • At least one time sub-pool having a duration of 16 microseconds exists in the Q time sub-pools.
  • At least one time sub-pool having a duration of 9 microseconds exists in the Q time sub-pools.
  • the earliest time sub-pool of the Q time sub-pools has a duration of 16 microseconds.
  • the last time subpool of the Q time subpools has a duration of 9 microseconds.
  • the Q time subpools include a listening time in a Cat 4 (fourth class) LBT.
  • the Q time subpools include a slot period in a Defer Duration and a slot period in a Backoff Time in a Cat 4 (Category 4) LBT.
  • the Q time subpools include a slot period and a backoff time in a Defer Duration in a Type 1 UL channel access procedure.
  • the slot time period in the middle.
  • the Q time subpools include slot periods in an initial CCA and an eCCA (Enhanced Clear Channel Assessment).
  • the Q detection values are respectively that the first node senses the power of all wireless signals on the first sub-band in Q time units, and averages over time to obtain Received power; the Q time units are each one of the Q time subpools.
  • the duration of any one of the Q time units is not shorter than 4 microseconds.
  • the Q detection values are respectively that the first node senses the energy of all wireless signals on the first sub-band in the Q time units, and averages over time to obtain Received energy; the Q time units are each one of the Q time subpools.
  • the duration of any one of the Q time units is not shorter than 4 microseconds.
  • the Q3 is a non-negative integer not greater than the Q.
  • the Q3 is a non-negative integer less than the Q.
  • the Q3 is greater than zero.
  • the Q3 is equal to zero.
  • the Q is greater than one.
  • the Q detection value units are both dBm (millimeters).
  • the units of the Q detection values are all milliwatts (mW).
  • the units of the Q detection values are all Joules.
  • the unit of the first threshold is dBm (millimeters).
  • the unit of the first threshold is milliwatts (mW).
  • the unit of the first threshold is joule.
  • the first threshold is equal to or less than -72 dBm.
  • the first threshold is any value equal to or smaller than the first given value.
  • the first given value is predefined.
  • the first given value is configured by higher layer signaling, and the first node is a user equipment.
  • the first threshold is freely selected by the first node under conditions equal to or less than a first given value.
  • the first given value is predefined.
  • the first given value is configured by higher layer signaling, and the first node is a user equipment.
  • At least one of the detected values that do not belong to the Q3 detection values of the Q detection values is lower than the first threshold.
  • the Q detection values are both lower than the first threshold.
  • At least one of the detected values that do not belong to the Q3 detection values of the Q detection values is not lower than the first threshold.
  • the Q3 time subpools only include slot time periods in the eCCA.
  • the Q time subpools include the Q3 time subpools and Q4 time subpools, and any one of the Q4 time subpools does not belong to the Q3 time subpools.
  • the Q4 is a positive integer not greater than the Q minus the Q3.
  • the Q4 is equal to the Q minus the Q3.
  • the Q4 time sub-pools include slot periods in the initial CCA.
  • the positions of the Q4 time subpools in the Q time subpools are continuous.
  • the Q4 time sub-pools include all slot periods in all delay periods in Figure 10.
  • the Q4 time sub-pools include at least one of all slot periods within the additional delay period in FIG.
  • the Q4 time subpools include at least one additional slot period in FIG.
  • the Q3 time sub-pools belong to the Q3 sub-pool set respectively, and any one of the Q3 sub-pool sets includes a positive integer time sub-pool in the Q time sub-pools;
  • the detected value corresponding to any one of the Q3 sub-pool sets is lower than the first threshold.
  • the number of time sub-pools included in the at least one sub-pool set of the Q3 sub-pool sets is equal to 1.
  • At least one of the Q3 sub-pool sets has a number of time sub-pools greater than one.
  • the number of time sub-pools included in the at least two sub-pool sets in the Q3 sub-pool set is unequal.
  • one time sub-pool does not exist in the Q time sub-pools and belongs to two sub-pool sets in the Q3 sub-pool set.
  • all time sub-pools in any one of the Q3 sub-pool sets belong to the same additional delay period or additional slot period determined to be idle by energy detection.
  • the detection value corresponding to at least one time sub-pool in the time sub-pool that does not belong to the Q3 sub-pool set in the Q time sub-pools is lower than the first threshold.
  • the detected value corresponding to at least one time sub-pool in the time sub-pool that does not belong to the Q3 sub-pool set in the Q time sub-pools is not lower than the first threshold.
  • Embodiment 11 illustrates a schematic diagram of P-order energy detection; as shown in FIG.
  • the first node in the present application performs the Pth energy detection in P time subpools on the second subband of the present application, respectively, to obtain P detection values.
  • the P is the P2 in the present application, the P2 is greater than P3, and the P3 is an alternative integer of K2 candidate integers, and the K2 is a positive integer.
  • the P detected values are used by the first node to determine whether to transmit a second wireless signal at a first time on the second sub-band. If the P3 detection values of the P detection values are all lower than the third threshold, the first node sends the second wireless signal at the first moment on the second sub-band, otherwise The first node relinquishes transmitting the second wireless signal at the first time on the second sub-band.
  • the P3 time sub-pools are time sub-pools corresponding to the P3 detection values in the P time sub-pools.
  • the first node in the present application is in an idle state in step S1101, in step S1102, it is determined whether transmission is required; in step S1103, a delay period on the second sub-band (defer) The energy detection is performed in the duration); in step S1104, it is determined whether all the time slot periods in this delay period are idle (Idle), and if so, proceed to step S1105 to set the first counter equal to the P3; otherwise, return to step S1104; Determining whether the first counter is 0 in step S1106, if yes, proceeding to send a wireless signal on the second sub-band in step S1107; otherwise proceeding to one in the second sub-band in step S1108 Energy detection is performed in an additional slot duration; it is determined in step S1109 whether or not the additional slot period is idle (Idle), and if so, proceeding to step S1110 to decrement the first counter by one, and then returning to the step S1106; otherwise proceeding to perform an energy detection in an additional delay period on the second sub-band in step
  • the first given time period includes a positive integer number of time sub-pools in the P time sub-pools, the first given time period is ⁇ all delay time periods included in FIG. 11 , all additional The slot period, any one of all additional delay periods ⁇ .
  • the second given time period includes one time sub-pool of the P3 time sub-pools, and the second given time period is one additional time slot period or one additional delay time period in FIG.
  • ⁇ all delay periods, all additional slot periods, all additional delay periods ⁇ included in FIG. 11 are in the time domain before the first moment in the present application.
  • the P-th energy detection process shown in FIG. 11 is terminated.
  • the P-th energy detection determines that the second sub-band is idle; otherwise, the P-th energy detection determines the first The two subbands are not idle.
  • the first node sends the second wireless signal at the first moment on the second subband Otherwise, the first node discards transmitting the second wireless signal at the first moment on the second sub-band.
  • any one of the slot durations in a given time period includes one of the P time subpools; the given time period is ⁇ all delays included in FIG. 11 Time period, any additional time slot period, any one of all additional delay periods ⁇ .
  • performing energy detection within a given time period means performing energy detection within all slot durations within the given time period; the given time period is included in FIG. All delay periods, all additional slot periods, any of the additional delay periods ⁇ .
  • performing energy detection in a given time period means performing energy detection in all time sub-pools within the given time period; the given time period is ⁇ all delay time periods included in FIG. 11 All of the additional time slot periods, any of the additional time delay periods ⁇ , the all time subpools belonging to the P time subpools, and the energy detection performed in the all time subpools is the P energy Detecting energy detection corresponding to all of the time subpools.
  • the determination of idle (Idle) by energy detection for a given period of time means that all slot periods included in the given period are judged to be idle (Idle) by energy detection; the given period of time It is any one of ⁇ all delay periods, all additional slot periods, all additional delay periods ⁇ included in FIG.
  • determining, by the energy detection, that the given period is idle (Idle) means that the detected values obtained by the energy detection in all the time sub-pools included in the given period are lower than the third threshold.
  • the given time period is any one of ⁇ all delay periods, all additional time slot periods, all additional delay periods ⁇ included in FIG. 11, and all of the time subpools belong to the P time periods
  • the detection value is a detection value corresponding to the all time sub-pools in the P detection values.
  • determining the idle time (Idle) by energy detection for a given time slot period means that the first node senses the power of all wireless signals on the second sub-band in a given time unit. And averaging in time, the received received power is lower than the third threshold; the given time unit is one of the given time slot periods.
  • the duration of the given time unit is not shorter than 4 microseconds.
  • the determination of idle (Idle) by energy detection for a given time slot period means that the first node senses the energy of all wireless signals on the second sub-band in a given time unit. And averaging over time, the received received energy is below the third threshold; the given time unit is one of the given time slot periods.
  • the duration of the given time unit is not shorter than 4 microseconds.
  • determining, by the energy detection, that the given time slot period is idle (Idle) means that the first node performs energy detection on the time sub-pool included in the given time slot period, and the obtained detection value is lower than
  • the third threshold is included; the time sub-pool belongs to the P time sub-pools, and the detection value is a detection value corresponding to the time sub-pool among the P detection values.
  • the duration of a defer duration is 16 microseconds plus S1 9 microseconds, and S1 is a positive integer.
  • a delay period includes S1+1 time sub-pools in the P time sub-pools.
  • the duration of an additional defer duration is 16 microseconds plus S2 9 microseconds, which is a positive integer.
  • an additional delay period includes S2+1 time sub-pools in the P time sub-pools.
  • one slot period includes one time sub-pool of the P time sub-pools.
  • an additional slot period includes one of the P time subpools.
  • the P-th energy detection is energy detection in Cat 4LBT (the fourth type of LBT), and the specific definition of the Cat 4LBT is referred to 3GPP TR36.889.
  • the P-th energy detection is energy detection in a Type 1 UL channel access procedure, where the first node is a user.
  • the first type of uplink channel access procedure refer to section 15.2 of 3GPP TS 36.213.
  • the K2 belongs to ⁇ 3, 7, 15, 31, 63, 127, 255, 511, 1023 ⁇ .
  • the K2CW p , the CW p is a size of a contention window, and the specific definition of the CW p is as described in section 15 of 3GPP TS 36.213.
  • K2 is the Cat 4LBT (fourth type of LBT) during CW p, the Cat Referring specifically defined 4LBT the 3GPP TR36.889.
  • the K2 candidate integers are each a non-negative integer.
  • the K2 alternative integers are 0, 1, 2, ..., K2-1.
  • the first node randomly selects the P3 among the K2 candidate integers.
  • the probability that any one of the K2 candidate integers is selected as the P3 is equal.
  • the time domain resources occupied by any one of the P time subpools are consecutive.
  • the P time subpools are orthogonal to each other (non-overlapping) in the time domain.
  • the duration of any of the P time subpools is one of ⁇ 16 microseconds, 9 microseconds ⁇ .
  • At least two time sub-pools in the P time sub-pools have unequal durations.
  • the durations of any two of the P time subpools are equal.
  • the time domain resources occupied by the P time subpools are continuous.
  • the time domain resources occupied by at least two adjacent time sub-pools in the P time sub-pools are discontinuous.
  • the time domain resources occupied by any two adjacent time sub-pools in the P time sub-pools are discontinuous.
  • any one of the P time subpools is a slot duration.
  • any one of the P time subpools is T sl , and the T sl is a slot duration, and the specific definition of the T sl is as described in 3GPP TS 36.213. 15 chapters.
  • any time sub-pool other than the earliest time sub-pool in the P time sub-pools is a slot duration.
  • any one of the P time subpools except the earliest time subpool is T sl , and the T sl is a slot duration, and the T sl is specific. See Section 15 of 3GPP TS 36.213 for definitions.
  • At least one time sub-pool having a duration of 16 microseconds exists in the P time sub-pools.
  • At least one time sub-pool having a duration of 9 microseconds exists in the P time sub-pools.
  • the earliest time sub-pool of the P time sub-pools has a duration of 16 microseconds.
  • the last time subpool of the P time subpools has a duration of 9 microseconds.
  • the P time subpools include a listening time in a Cat 4 (fourth class) LBT.
  • the P time subpools include a slot period in a Defer Duration and a slot period in a Backoff Time in a Cat 4 (Category 4) LBT.
  • the P time subpools include a slot period and a backoff time in a Defer Duration in a Type 1 UL channel access procedure.
  • the slot time period in the middle.
  • the P time subpools include slot periods in an initial CCA and an eCCA (Enhanced Clear Channel Assessment).
  • eCCA Enhanced Clear Channel Assessment
  • the P detection values are respectively that the first node senses the power of all wireless signals on the second sub-band in the P time units, and averages over time to obtain Received power; the P time units are each one of the P time subpools.
  • the duration of any one of the P time units is not shorter than 4 microseconds.
  • the P detection values are respectively that the first node senses energy of all wireless signals on the second sub-band in P time units, and averages over time to obtain Received energy; the P time units are each one of the P time subpools.
  • the duration of any one of the P time units is not shorter than 4 microseconds.
  • the P3 is a non-negative integer not greater than the P2.
  • the P3 is a non-negative integer less than the P2.
  • the P3 is greater than zero.
  • the P3 is equal to zero.
  • the P2 is greater than one.
  • the P2 is not less than the P3 plus 2.
  • the P detection value units are all dBm (millimeters).
  • the units of the P detection values are all milliwatts (mW).
  • the units of the P detection values are all Joules.
  • the unit of the third threshold is dBm (millimeters).
  • the unit of the third threshold is milliwatts (mW).
  • the unit of the third threshold is joules.
  • the third threshold is equal to or less than -72 dBm.
  • the third threshold is any value equal to or less than a third given value.
  • the third given value is predefined.
  • the third given value is configured by higher layer signaling, and the first node is a user equipment.
  • the third threshold is freely selected by the first node under conditions equal to or less than a third given value.
  • the third given value is predefined.
  • the third given value is configured by higher layer signaling, and the first node is a user equipment.
  • At least one of the detected values that are not among the P3 detection values among the P detection values is lower than the third threshold.
  • the P detection values are both lower than the third threshold.
  • At least one of the detected values that do not belong to the P3 detection values of the P detection values is not lower than the third threshold.
  • the P3 time subpools only include slot time periods in the eCCA.
  • the third given time period includes one time sub-pool of the P3 time sub-pools, and the third given time period is any one of the additional time slot periods in FIG.
  • the P time subpools include the P3 time subpools and P4 time subpools, and any one of the P4 time subpools does not belong to the P3 time subpools.
  • the P4 is a positive integer not greater than the P minus the P3.
  • the P4 is equal to the P minus the P3.
  • the P4 time sub-pools include slot periods in the initial CCA.
  • the positions of the P4 time subpools in the P time subpools are continuous.
  • the P4 time subpools include all slot periods in all delay periods in FIG.
  • the P4 time sub-pools include at least one of all slot periods within the additional delay period in FIG.
  • the P4 time subpools include at least one additional slot period in FIG.
  • the P3 time sub-pools belong to a P3 sub-pool set, and any one of the P3 sub-pool sets includes a positive integer time sub-pool in the P time sub-pools. All time sub-pools in any one of the P3 sub-pool sets belong to the same additional delay period or additional slot period.
  • the number of time sub-pools included in the at least one sub-pool set of the P3 sub-pool sets is equal to 1.
  • At least one of the P3 sub-pool sets has a number of time sub-pools greater than one.
  • the number of time sub-pools included in the at least two sub-pool sets in the P3 sub-pool sets is unequal.
  • one time sub-pool does not exist in the P time sub-pools and belongs to two sub-pool sets in the P3 sub-pool sets.
  • Embodiment 12 illustrates a schematic diagram of P-order energy detection; as shown in FIG.
  • the first node in the present application performs the Pth energy detection in P time subpools on the second subband of the present application, respectively, to obtain P detection values.
  • the P is the P1 in the present application, and the P1 is a fixed value.
  • the P detected values are used by the first node to determine whether to transmit a second wireless signal at a first time on the second sub-band. If the P detection values are both lower than the second threshold, the first node sends the second wireless signal at the first moment on the second sub-band, and the first node otherwise gives up Transmitting the second wireless signal at the first time on the second sub-band.
  • the process of the P-th energy detection can be described by the flowchart in FIG.
  • the first node in the present application is in an idle state in step S1201, and it is determined in step S1202 whether or not transmission is required; in step S1203, energy detection is performed in a sensing time; It is determined in step S1204 whether all the slot periods in this sensing time are idle (Idle), and if so, proceeding to step S1205 to transmit a wireless signal on the second sub-band; otherwise, returning to step S1203.
  • any one of ⁇ all perceptual time ⁇ included in FIG. 12 perceives a positive integer number of time subpools in the P time subpools.
  • any time slot period included in any one of the sensing times included in FIG. 12 includes one time sub-pool of the P time sub-pools.
  • all of the perceptual time included in FIG. 12 is located in the time domain before the first time in the present application.
  • the P energy detection determines the second child The frequency band is idle; otherwise the P energy detection determines that the second sub-band is not idle.
  • the first node if all time slot periods in the time domain that are located before the first time instant and are adjacent to the first time instant are idle, the first node is in the second sub-band Transmitting, by the first moment, the second wireless signal, otherwise the first node abandons sending the second wireless signal at the first moment on the second sub-band.
  • the duration of a sensing time is 25 microseconds.
  • one sensing time includes two slot periods, the two slot periods being discontinuous in the time domain.
  • the time interval in the two slot periods is 7 microseconds.
  • the P1 is equal to two.
  • the P1 is the default (no configuration required).
  • the P1 is predefined.
  • the P1 is pre-configured.
  • the P-th energy detection is energy detection in a Cat 2LBT (LBT of the second type), and the specific definition of the Cat 2LBT is referred to 3GPP TR36.889.
  • the P-th energy detection is energy detection in a Type 2 UL channel access procedure, where the first node is a user.
  • the second type of uplink channel access procedure refer to section 15.2 of 3GPP TS 36.213.
  • the P time subpools include a listening time in a Cat 2 (second class) LBT.
  • the P time subpools include a slot time period in a sensing interval in a Type 2 UL channel access procedure, the specific time interval of the sensing time interval See Section 15.2 of 3GPP TS 36.213 for definitions.
  • the duration of the sensing time interval is 25 microseconds.
  • the P time subpools include T f and T sl in a sensing interval in a Type 2 UL channel access procedure, and the T f and The T sl is two time intervals, and the specific definition of the T f and the T sl is described in section 15.2 of 3GPP TS 36.213.
  • the duration of the Tf is 16 microseconds.
  • the duration of the T sl is 9 microseconds.
  • the duration of the first time sub-pool of the P time sub-pools is 16 microseconds, and the duration of the second time sub-pool of the P time sub-pools is 9 microseconds.
  • the P is equal to 2.
  • the duration of the P time subpools is 9 microseconds; the time interval between the first time subpool and the second temporal subpool of the P time subpools is 7 micro In seconds, the P is equal to 2.
  • the P detection value units are all dBm (millimeters).
  • the units of the P detection values are all milliwatts (mW).
  • the units of the P detection values are all Joules.
  • the unit of the second threshold is dBm (millimeters).
  • the unit of the second threshold is milliwatts (mW).
  • the unit of the second threshold is joule.
  • the second threshold is equal to or less than -72 dBm.
  • the second threshold is any value equal to or smaller than the second given value.
  • the second given value is predefined.
  • the second given value is configured by higher layer signaling
  • the first node is a user equipment.
  • the second threshold is freely selected by the first node under conditions equal to or less than a second given value.
  • the second given value is predefined.
  • the second given value is configured by higher layer signaling
  • the first node is a user equipment.
  • Embodiment 13 illustrates a schematic diagram of a given energy detection being associated to a given set of antenna ports; as shown in FIG.
  • the given energy detection is a primary energy detection in the Q energy detection in the present application, the given antenna port group is the first antenna port group in the present application; or the given energy detection Is the primary energy detection in the P-th energy detection in the application, the given antenna port group is the first antenna port group in the present application; or the given energy detection is in the present application
  • the given antenna port group is the second antenna port group in the present application.
  • an ellipse of a thick solid border represents a set of spatial coverage of a transmit beam corresponding to all antenna ports in the given set of antenna ports, and a small filled ellipse represents the given energy. Detecting the spatial coverage of the corresponding receive beam.
  • the given energy detection is associated with the given antenna port group, which refers to: a set of spatial coverage of transmission beams corresponding to all antenna ports in the given antenna port group.
  • the spatial coverage of the receive beams corresponding to the given energy detection is coincident.
  • given that energy detection is associated to a given set of antenna ports means that a beamforming vector corresponding to an antenna port in the given set of antenna ports is used as the reception used in the given energy detection Beamforming vector.
  • given that energy detection is associated to a given set of antenna ports means that an analog beam shaping matrix corresponding to the antenna ports in the given set of antenna ports is used as the reference for use in the given energy detection Receive an analog beamforming matrix.
  • given that energy detection is associated to a given set of antenna ports means that transmission spatial filtering corresponding to antenna ports in the given set of antenna ports is used as the given energy detection. Receive spatial filtering used.
  • given that the energy detection is associated to a given antenna port group means that the first node in the present application corresponds to the antenna port in the given antenna port group in the given energy detection
  • the beamforming vector monitors the received power or received energy.
  • the beamforming vector senses the power or energy of all wireless signals.
  • the analog beam shaping matrix monitors received power or received energy.
  • the analog beamforming matrix senses the power or energy of all wireless signals.
  • given that the energy detection is associated to a given antenna port group means that the first node in the present application corresponds to the antenna port in the given antenna port group in the given energy detection Spatial filtering monitors received power or received energy.
  • given that the energy detection is associated to a given antenna port group means that the first node in the present application corresponds to the antenna port in the given antenna port group in the given energy detection Spatial filtering senses the power or energy of all wireless signals.
  • Embodiment 14 illustrates a schematic diagram of a given energy detection being associated to a given set of antenna ports; as shown in FIG.
  • the given energy detection is a primary energy detection in the Q energy detection in the present application, the given antenna port group is the first antenna port group in the present application; or the given energy detection Is the primary energy detection in the P-th energy detection in the application, the given antenna port group is the first antenna port group in the present application; or the given energy detection is in the present application
  • the given antenna port group is the second antenna port group in the present application.
  • an ellipse of a thick solid border represents a set of spatial coverage of a transmit beam corresponding to all antenna ports in the given set of antenna ports, and a small filled ellipse represents the given energy. Detecting the spatial coverage of the corresponding receive beam.
  • the given energy detection is associated with the given antenna port group, that is, the spatial coverage of the receiving beam corresponding to the given energy detection is located in the first antenna port group.
  • the transmit beams corresponding to all antenna ports are within the set of spatial coverage.
  • Embodiment 15 illustrates a schematic diagram of a given energy detection being associated to a given set of antenna ports; as shown in FIG.
  • the given energy detection is a primary energy detection in the Q energy detection in the present application, the given antenna port group is the first antenna port group in the present application; or the given energy detection Is the primary energy detection in the P-th energy detection in the application, the given antenna port group is the first antenna port group in the present application; or the given energy detection is in the present application
  • the given antenna port group is the second antenna port group in the present application.
  • an ellipse of a thick solid border represents a set of spatial coverage of a transmit beam corresponding to all antenna ports in the given set of antenna ports, and a small filled ellipse represents the given energy. Detecting the spatial coverage of the corresponding receive beam.
  • the reference to the given antenna port group refers to: the spatial coverage of the transmit beam corresponding to any one of the antenna ports in the given antenna port group is The receive beam corresponding to the fixed energy detection is within the spatial coverage.
  • Embodiment 16 illustrates a schematic diagram of a first sub-band combination; as shown in FIG.
  • the first sub-band combination includes a positive integer number of sub-bands, and the first sub-band in the present application and the second sub-band in the present application belong to the first sub-band combination.
  • the indices of the positive integer subbands are ⁇ #0, . . . , #x, . . . , #y, . . . , respectively, wherein the x and the y are positive, respectively.
  • An integer, the y being greater than the x.
  • a carrier frequency of all subbands in the first subband combination constitutes a subset of a set of carrier frequencies, and the definition of the set of carrier frequencies is described in section 5.7.4 of 3GPP TS 36.104.
  • the first sub-band combination is composed of the first sub-band and the second sub-band.
  • the first sub-band combination includes word bands outside the first sub-band and the second sub-band.
  • the first sub-band combination constitutes one carrier, and the positive integer sub-band is a positive integer BWP in the carrier.
  • any one of the positive integer subbands is a carrier.
  • the first sub-band combination belongs to a given carrier, and the given carrier corresponds to one serving cell.
  • the positive integer subbands correspond to one serving cell.
  • any two of the first sub-band combinations have a guard interval in the frequency domain between sub-bands adjacent in the frequency domain.
  • Embodiment 17 illustrates a structural block diagram of a processing device for use in a first node; as shown in FIG.
  • the processing device 1700 in the first node is mainly composed of a first processor 1701, a first receiver 1702, a first transmitter 1703, a second transmitter 1704, and a second processor 1705.
  • the dashed box is optional.
  • the first processor 1701 performs Q energy detections in the Q time subpools on the first subband, respectively, to obtain Q detection values, and judges only according to the Q detection values.
  • the first wireless signal is transmitted at a first time on the first sub-band;
  • the first receiver 1702 performs P energy detections in P time sub-pools on the second sub-band to obtain P detection values;
  • the first transmitter 1703 transmitting the second wireless signal at the first moment on the second subband, or discarding transmitting the second wireless signal at the first moment on the second subband;
  • the second transmitter 1704 transmitting the first wireless signal at the first time on the first sub-band;
  • the second processor 1705 operating at least one of the first signaling and the second signaling.
  • the P detection values are used by the first transmitter 1703 to determine whether to transmit the second wireless signal at the first time on the second sub-band;
  • the energy detection is all associated with the first antenna port group; if the P energy detections are all associated with the first antenna port group, the P is P1, otherwise the P is P2; the Q is a positive integer;
  • the P1 and the P2 are two positive integers that are unequal to each other; one antenna port group includes a positive integer number of antenna ports; the first node is a base station, or the first node is a user equipment.
  • the first signaling and the second signaling respectively include scheduling information of the first wireless signal and scheduling information of the second wireless signal; the operation is sending, the first node is a base station; or The operation is receiving, and the first node is a user equipment.
  • the P is the P1, and the P1 is a fixed value; if the P detection values are lower than the second threshold, the first transmitter 1703 is on the second subband Transmitting the second wireless signal at the first time, otherwise the first transmitter 1703 discards transmitting the second wireless signal at the first time on the second sub-band.
  • the P is the P2, the P2 is greater than P3, and the P3 is an alternate integer of K2 candidate integers; if the P3 detection values of the P detection values are low At a third threshold, the first transmitter 1703 transmits the second wireless signal at the first time on the second sub-band, otherwise the first transmitter 1703 discards in the second sub-band Transmitting the second wireless signal at the first time; the K2 is a positive integer.
  • At least one transmit antenna port of the first wireless signal and one of the first antenna port groups are quasi-co-located; at least one transmit antenna port and a second antenna of the second wireless signal One antenna port in the port group is quasi-co-located, and the P-th energy detection is associated with the second antenna port group.
  • the Q detection values are used by the second transmitter 1704 to determine that the first wireless signal is sent at the first moment on the first sub-band; the Q detection values.
  • the Q3 detected values are all lower than the first threshold, and the Q3 is one of the K1 alternative integers, and the K1 is a positive integer.
  • the second processor 1705 further receives first information; wherein the first node is a user equipment; the first information is used to determine a first sub-band combination, the first sub-band The combination includes a positive integer number of sub-bands, the first sub-band and the second sub-band all belonging to the first sub-band combination.
  • the first processor 1701 includes at least one of ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459 ⁇ in Embodiment 4.
  • the first node is a user equipment.
  • the first processor 1701 includes at least one of ⁇ antenna 420, receiver 418, receiving processor 470, multi-antenna receiving processor 472, controller/processor 475 ⁇ in Embodiment 4.
  • the first node is a base station.
  • the first receiver 1702 includes at least one of ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459 ⁇ in Embodiment 4.
  • the first node is a user equipment.
  • the first receiver 1702 includes at least one of ⁇ antenna 420, receiver 418, receiving processor 470, multi-antenna receiving processor 472, controller/processor 475 ⁇ in Embodiment 4.
  • the first node is a base station.
  • the first transmitter 1703 includes ⁇ antenna 452, transmitter 454, transmit processor 468, multi-antenna transmit processor 457, controller/processor 459, memory 460, data source in embodiment 4. At least one of 467 ⁇ , the first node is a user equipment.
  • the first transmitter 1703 includes the ⁇ antenna 420, transmitter 418, transmit processor 416, multi-antenna transmit processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4. At least one of the first nodes is a base station.
  • the second transmitter 1704 includes ⁇ antenna 452, transmitter 454, transmit processor 468, multi-antenna transmit processor 457, controller/processor 459, memory 460, data source in embodiment 4. At least one of 467 ⁇ , the first node is a user equipment.
  • the second transmitter 1704 includes the ⁇ antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471, the controller/processor 475, the memory 476 ⁇ in Embodiment 4.
  • At least one of the first nodes is a base station.
  • the second processor 1705 includes an ⁇ antenna 452, a receiver 454, a receiving processor 456, a multi-antenna receiving processor 458, a controller/processor 459, a memory 460, and a data source in Embodiment 4. At least one of 467 ⁇ , the first node is a user equipment.
  • the second processor 1705 includes the ⁇ antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471, the controller/processor 475, the memory 476 ⁇ in Embodiment 4.
  • At least one of the first nodes is a base station.
  • Embodiment 18 illustrates a structural block diagram of a processing device for use in a second node, as shown in FIG.
  • the processing device 1800 in the second node is mainly composed of a second receiver 1801, a third receiver 1802, and a third processor 1803.
  • the dashed box is optional.
  • the second receiver 1801 receives the first wireless signal at a first time on the first sub-band; the third receiver 1802 monitors the second wireless signal at the first time on the second sub-band; The third processor 1803 processes at least one of the first signaling and the second signaling.
  • the Q detection values are used to determine that the first wireless signal is transmitted at the first time on the first sub-band, and the Q detection values are respectively obtained by Q energy detection.
  • the Q energy detections are respectively performed in Q time subpools on the first subband;
  • P detection values are used to determine whether to transmit at the first time on the second subband a second wireless signal, wherein the P detection values are respectively obtained by P energy detection, and the P energy detections are respectively performed in P time subpools on the second subband;
  • the Q energy The detection is all associated with the first antenna port group; if the P energy detections are all associated with the first antenna port group, the P is P1, otherwise the P is P2; the P1 and the P2 Is a positive integer that is unequal to each other; the Q is a positive integer; one antenna port group includes a positive integer number of antenna ports; the second node is a user equipment, or the second node is a base station.
  • the first signaling and the second signaling respectively include scheduling information of the first wireless signal and
  • all of the Q detection values of the Q detection values are lower than a first threshold, and the Q3 is an alternative integer of K1 candidate integers, and the K1 is a positive integer.
  • the P is the P1
  • the P1 is a fixed value
  • the second wireless signal is on the second sub-band The first time instant is transmitted, otherwise the second wireless signal is not transmitted at the first time on the second sub-band.
  • the P is the P2, the P2 is greater than P3, and the P3 is an alternate integer of K2 candidate integers; if the P3 detection values of the P detection values are low At a third threshold, the second wireless signal is transmitted at the first time on the second sub-band, otherwise the second wireless signal is not at the first time on the second sub-band Is sent; the K2 is a positive integer.
  • At least one transmit antenna port of the first wireless signal and one of the first antenna port groups are quasi-co-located; at least one transmit antenna port and a second antenna of the second wireless signal One antenna port in the port group is quasi-co-located, and the P-th energy detection is associated with the second antenna port group.
  • the third processor 1803 transmits first information; wherein the second node is a base station; the first information is used to determine a first sub-band combination, and the first sub-band combination includes A positive integer number of sub-bands, the first sub-band and the second sub-band all belong to the first sub-band combination.
  • the second receiver 1801 includes the ⁇ antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, and the data source in Embodiment 4. At least one of 467 ⁇ , the second node is a user equipment.
  • the second receiver 1801 includes the ⁇ antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, the memory 476 ⁇ in Embodiment 4. At least one of the second nodes is a base station.
  • the third receiver 1802 includes the ⁇ antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, and the data source in Embodiment 4. At least one of 467 ⁇ , the second node is a user equipment.
  • the third receiver 1802 includes the ⁇ antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, the memory 476 ⁇ in Embodiment 4.
  • At least one of the second nodes is a base station.
  • the third processor 1803 includes the ⁇ antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, and the data source in Embodiment 4. At least one of 467 ⁇ , the second node is a user equipment.
  • the third processor 1803 includes the ⁇ antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471, the controller/processor 475, the memory 476 ⁇ in Embodiment 4.
  • At least one of the second nodes is a base station.
  • the user equipment, terminal and UE in the present application include but are not limited to a drone, a communication module on the drone, a remote control aircraft, an aircraft, a small aircraft, a mobile phone, a tablet computer, a notebook, a vehicle communication device, a wireless sensor, an internet card, Internet of Things terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC), data card, network card, vehicle communication device, low-cost mobile phone, low Cost wireless communication devices such as tablets.
  • the base station or system equipment in this application includes, but is not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, a gNB (NR Node B), a TRP (Transmitter Receiver Point), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的用户设备、基站中的方法和装置。第一节点在第一子频带上执行Q次能量检测,得到Q个检测值;根据Q个检测值判断在第一子频带上的第一时刻发送第一无线信号;在第二子频带上执行P次能量检测,得到P个检测值;在第二子频带上的第一时刻发送或者放弃发送第二无线信号。所述P个检测值被用于确定是否在所述第一时刻发送所述第二无线信号;所述Q次能量检测均被关联到第一天线端口组;如果所述P次能量检测均被关联到第一天线端口组,所述P为P1,否则所述P为P2;P1和P2不相等;所述第一节点是基站或者是用户设备。上述方法的好处在于,在支持多载波的非授权频谱通信中保证了在对频谱的占用竞争中的公平性。

Description

一种被用于无线通信的用户设备、基站中的方法和装置 技术领域
本申请涉及无线通信系统中的方法和装置,尤其是涉及支持在非授权频谱(Unlicensed Spectrum)上进行数据传输的无线通信系统中的方法和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#75次全会上还通过NR(New Radio,新无线电)下的非授权频谱(Unlicensed Spectrum)的接入的研究项目,该研究项目预期在R15版本完成,然后在R16版本中启动WI对相关技术进行标准化。为保证和其它非授权频谱上的接入技术兼容,在LTE(Long Term Evolution,长期演进)的LAA(License Assisted Access,授权辅助接入)项目中,发射机(基站或者用户设备)在非授权频谱上发送数据之前需要先进行LBT(Listen Before Talk,会话前监听)以避免对其他在非授权频谱上正在进行的无线传输造成干扰。LTE系统定义了包括回退的Cat 4LBT(第四类型的LBT)和不包括回退的Cat 2LBT(第二类型的LBT)。
如果一个UE(User Equipment,用户设备)可以工作在多个部署于非授权频谱的载波(Carrier)上,LTE系统支持在多个载波中挑选一个载波进行Cat 4LBT,其他载波可以在挑选出来的载波通过Cat 4LBT的基础上,在通过一个简短的Cat 2LBT后立即进行传输。
发明内容
发明人通过研究发现,在NR系统中,由于采用了大规模MIMO技术,在不同波束方向上的干扰状况会存在很大差异,因此在进行LBT时需要考虑到波束方向的影响。如果做LBT时使用了某个特定的波束,LBT的结果只能反映这个波束方向上信道的占用情况,不能反映其他波束方式上信道的占用情况。在多载波的情况下,LBT过程的设计需要考虑到各个载波上波束的影响。如果多个载波上使用的波束指向方向不同,一个载波上LBT的结果对于判断其他载波上的信道是否空闲(Idle)不具有参考意义。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;仅根据所
述Q个检测值判断在所述第一子频带上的第一时刻发送第一无线信号;
在第二子频带上的P个时间子池中分别执行P次能量检测,得到P个检测值;
在所述第二子频带上的所述第一时刻发送第二无线信号,或者,放弃在所述第二子频带
上的所述第一时刻发送所述第二无线信号;
其中,所述Q是正整数;所述P个检测值被用于确定是否在所述第二子频带上的所述第一时刻发送所述第二无线信号;所述Q次能量检测均被关联到第一天线端口组;如果所述P次能量检测均被关联到所述第一天线端口组,所述P为P1,否则所述P为P2;所述P1和所述P2是两个互不相等的正整数;一个天线端口组包括正整数个天线端口;所述第一节点是基站,或者所述第一节点是用户设备。
作为一个实施例,本申请要解决的问题是:在多载波的情况下,各个载波上使用的波束对LBT的设计会产生影响。如果多个载波上使用的波束指向方向不同,一个载波上LBT的结果对于判断其他载波上的信道是否空闲不具有参考意义。在上述方法中,所述第一 节点根据所述P次能量检测是否均被关联到所述第一天线端口组来决定所述Q次能量检测的结果能否被用于减少所述P次能量检测占用的时间,这一方法为上述问题提供了一个解决方案。
作为一个实施例,上述方法的特质在于,所述第一天线端口组反映了在所述第一子频带上被执行的所述Q次能量检测所使用的波束,所述第一节点通过所述P次能量检测是否均被关联到所述第一天线端口组来判断所述P次能量检测和所述Q次能量检测使用的波束是否相关。如果相关,所述Q次能量检测的结果对于判断所述第二子频带上信道是否空闲具有参考价值,因此在所述Q次能量检测判断所述第一子频带空闲的情况下,所述第一节点只需要在所述第二子频带上在较短的P1个时间子池中进行能量检测;否则,所述第一节点需要在所述第二子频带上在较长的P2个时间子池中进行能量检测。
作为一个实施例,上述方法的特质在于,如果所述P次能量检测和所述Q次能量检测使用的波束相关,在所述Q次能量检测判断所述第一子频带空闲的情况下,所述第一节点在进行所述P次能量检测时不需要包括回退(backoff)过程;否则,所述第一节点在进行所述P次能量检测时需要包括回退(backoff)过程以保证在各个方向上对非授权频谱的占用竞争中的公平性。
作为一个实施例,上述方法的好处在于,在判断一个载波上的LBT的结果是否能反映另一个载波上的信道的占用情况时,考虑到了两个载波上使用的波束之间的相关性。由于基于某个波束的LBT只能反映这个波束方向上信道的占用情况,这种方法避免了对非授权频谱上其他方向上正在进行的无线传输造成干扰,并保证了在各个方向上对非授权频谱的占用竞争中的公平性。
根据本申请的一个方面,其特征在于,包括:
在所述第一子频带上的所述第一时刻发送所述第一无线信号;
其中,所述Q个检测值被用于判断在所述第一子频带上的所述第一时刻发送所述第一无线信号;所述Q个检测值中的Q3个检测值均低于第一阈值,所述Q3是K1个备选整数中的一个备选整数,所述K1是正整数。
根据本申请的一个方面,其特征在于,所述P为所述P1,所述P1是一个固定值;如果所述P个检测值均低于第二阈值,在所述第二子频带上的所述第一时刻发送所述第二无线信号,否则放弃在所述第二子频带上的所述第一时刻发送所述第二无线信号。
作为一个实施例,上述方法的好处在于,如果所述P次能量检测和所述Q次能量检测使用的波束相关,在所述Q次能量检测判断所述第一子频带空闲的情况下,所述第一节点在发送所述第二无线信号之前,只需要在所述第二子频带上执行简短的不包括回退(backoff)的Cat 2LBT(第二类型的LBT),增加了所述第一节点接入所述第二子频带的几率,并加快了接入所述第二子频带的速度。
根据本申请的一个方面,其特征在于,所述P为所述P2,所述P2大于P3,所述P3是K2个备选整数中的一个备选整数;如果所述P个检测值中的P3个检测值均低于第三阈值,在所述第二子频带上的所述第一时刻发送所述第二无线信号,否则放弃在所述第二子频带上的所述第一时刻发送所述第二无线信号;所述K2是正整数。
作为一个实施例,上述方法的好处在于,如果所述P次能量检测和所述Q次能量检测使用的波束不相关,所述Q次能量检测的结果不能反映所述第二子频带上的信道占用情况,因此在发送所述第二无线信号之前,需要在所述第二子频带上执行包括回退(backoff)的Cat4LBT(第四类型的LBT),从而保证在和其他设备对所述第二子频带的占用竞争中的公平性。
根据本申请的一个方面,其特征在于,包括:
操作第一信令和第二信令中的至少之一;
其中,所述第一信令和所述第二信令分别包括所述第一无线信号的调度信息和所述第二无线信号的调度信息;所述操作是发送,所述第一节点是基站;或者所述操作是接收,所述第一节点是用户设备。
根据本申请的一个方面,其特征在于,包括:
接收第一信息;
其中,所述第一节点是用户设备;所述第一信息被用于确定第一子频带组合,所述第一子频带组合包括正整数个子频带,所述第一子频带和所述第二子频带都属于所述第一子频带组合。
根据本申请的一个方面,其特征在于,所述第一无线信号的至少一个发送天线端口和所述第一天线端口组中的一个天线端口准共址;所述第二无线信号的至少一个发送天线端口和第二天线端口组中的一个天线端口准共址,所述P次能量检测均被关联到所述第二天线端口组。
作为一个实施例,上述方法的好处在于,避免了对LBT方向之外的其他方向上进行的无线通信的干扰。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
在第一子频带上的第一时刻接收第一无线信号;
在第二子频带上的所述第一时刻监测第二无线信号;
其中,Q个检测值被用于判断在所述第一子频带上的所述第一时刻发送所述第一无线信号,所述Q个检测值分别由Q次能量检测得到,所述Q次能量检测分别在所述第一子频带上的Q个时间子池中被执行;P个检测值被用于判断是否在所述第二子频带上的所述第一时刻发送所述第二无线信号,所述P个检测值分别由P次能量检测得到,所述P次能量检测分别在所述第二子频带上的P个时间子池中被执行;所述Q次能量检测均被关联到第一天线端口组;如果所述P次能量检测均被关联到所述第一天线端口组,所述P为P1,否则所述P为P2;所述P1和所述P2是两个互不相等的正整数;所述Q是正整数;一个天线端口组包括正整数个天线端口;所述第二节点是用户设备,或者所述第二节点是基站。
根据本申请的一个方面,其特征在于,所述Q个检测值中的Q3个检测值均低于第一阈值,所述Q3是K1个备选整数中的一个备选整数,所述K1是正整数。
根据本申请的一个方面,其特征在于,所述P为所述P1,所述P1是一个固定值;如果所述P个检测值均低于第二阈值,所述第二无线信号在所述第二子频带上的所述第一时刻被发送,否则所述第二无线信号在所述第二子频带上的所述第一时刻不被发送。
根据本申请的一个方面,其特征在于,所述P为所述P2,所述P2大于P3,所述P3是K2个备选整数中的一个备选整数;如果所述P个检测值中的P3个检测值均低于第三阈值,所述第二无线信号在所述第二子频带上的所述第一时刻被发送,否则所述第二无线信号在所述第二子频带上的所述第一时刻不被发送;所述K2是正整数。
根据本申请的一个方面,其特征在于,包括:
处理第一信令和第二信令中的至少之一;
其中,所述第一信令和所述第二信令分别包括所述第一无线信号的调度信息和所述第二无线信号的调度信息;所述处理是接收,所述第二节点是用户设备;或者所述处理是发送,所述第二节点是基站。
根据本申请的一个方面,其特征在于,包括:
发送第一信息;
其中,所述第二节点是基站;所述第一信息被用于确定第一子频带组合,所述第一子频带组合包括正整数个子频带,所述第一子频带和所述第二子频带都属于所述第一子频带组合。
根据本申请的一个方面,其特征在于,所述第一无线信号的至少一个发送天线端口和所述第一天线端口组中的一个天线端口准共址;所述第二无线信号的至少一个发送天线端口和第二天线端口组中的一个天线端口准共址,所述P次能量检测均被关联到所述第二天线端口组。
本申请公开了一种被用于无线通信的第一节点中的设备,其特征在于,包括:
第一处理器,在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测
值;仅根据所述Q个检测值判断在所述第一子频带上的第一时刻发送第一无线信号;
第一接收机,在第二子频带上的P个时间子池中分别执行P次能量检测,得到P个检测
值;
第一发送机,在所述第二子频带上的所述第一时刻发送第二无线信号,或者,放弃在所
述第二子频带上的所述第一时刻发送所述第二无线信号;
其中,所述Q是正整数;所述P个检测值被用于确定是否在所述第二子频带上的所述第一时刻发送所述第二无线信号;所述Q次能量检测均被关联到第一天线端口组;如果所述P次能量检测均被关联到所述第一天线端口组,所述P为P1,否则所述P为P2;所述P1和所述P2是两个互不相等的正整数;一个天线端口组包括正整数个天线端口;所述第一节点是基站,或者所述第一节点是用户设备。
作为一个实施例,上述被用于无线通信的第一节点中的设备的特征在于,所述P为所述P1,所述P1是一个固定值;如果所述P个检测值均低于第二阈值,所述第一发送机在所述第二子频带上的所述第一时刻发送所述第二无线信号,否则所述第一发送机放弃在所述第二子频带上的所述第一时刻发送所述第二无线信号。
作为一个实施例,上述被用于无线通信的第一节点中的设备的特征在于,所述P为所述P2,所述P2大于P3,所述P3是K2个备选整数中的一个备选整数;如果所述P个检测值中的P3个检测值均低于第三阈值,所述第一发送机在所述第二子频带上的所述第一时刻发送所述第二无线信号,否则所述第一发送机放弃在所述第二子频带上的所述第一时刻发送所述第二无线信号;所述K2是正整数。
作为一个实施例,上述被用于无线通信的第一节点中的设备的特征在于,所述第一无线信号的至少一个发送天线端口和所述第一天线端口组中的一个天线端口准共址;所述第二无线信号的至少一个发送天线端口和第二天线端口组中的一个天线端口准共址,所述P次能量检测均被关联到所述第二天线端口组。
作为一个实施例,上述被用于无线通信的第一节点中的设备的特征在于,包括:
第二发送机,在所述第一子频带上的所述第一时刻发送所述第一无线信号;
其中,所述Q个检测值被用于判断在所述第一子频带上的所述第一时刻发送所述第一无线信号;所述Q个检测值中的Q3个检测值均低于第一阈值,所述Q3是K1个备选整数中的一个备选整数,所述K1是正整数。
作为一个实施例,上述被用于无线通信的第一节点中的设备的特征在于,包括:
第二处理器,操作第一信令和第二信令中的至少之一;
其中,所述第一信令和所述第二信令分别包括所述第一无线信号的调度信息和所述第二无线信号的调度信息;所述操作是发送,所述第一节点是基站;或者所述操作是接收,所述第一节点是用户设备。
作为一个实施例,上述被用于无线通信的第一节点中的设备的特征在于,所述第二处理器还接收第一信息;其中,所述第一节点是用户设备;所述第一信息被用于确定第一子频带组合,所述第一子频带组合包括正整数个子频带,所述第一子频带和所述第二子频带都属于所述第一子频带组合。
本申请公开了一种被用于无线通信的第二节点中的设备,其特征在于,包括:
第二接收机,在第一子频带上的第一时刻接收第一无线信号;
第三接收机,在第二子频带上的所述第一时刻监测第二无线信号;
其中,Q个检测值被用于判断在所述第一子频带上的所述第一时刻发送所述第一无线信号,所述Q个检测值分别由Q次能量检测得到,所述Q次能量检测分别在所述第一子频带上的Q个时间子池中被执行;P个检测值被用于判断是否在所述第二子频带上的所述第一时刻发送所述第二无线信号,所述P个检测值分别由P次能量检测得到,所述P次能量检测分别在所述第二子频带上的P个时间子池中被执行;所述Q次能量检测均被关联到第一天线端口组;如果所述P次能量检测均被关联到所述第一天线端口组,所述P为P1,否则所述P为P2; 所述P1和所述P2是两个互不相等的正整数;所述Q是正整数;一个天线端口组包括正整数个天线端口;所述第二节点是用户设备,或者所述第二节点是基站。
作为一个实施例,上述被用于无线通信的第二节点中的设备的特征在于,所述Q个检测值中的Q3个检测值均低于第一阈值,所述Q3是K1个备选整数中的一个备选整数,所述K1是正整数。
作为一个实施例,上述被用于无线通信的第二节点中的设备的特征在于,所述P为所述P1,所述P1是一个固定值;如果所述P个检测值均低于第二阈值,所述第二无线信号在所述第二子频带上的所述第一时刻被发送,否则所述第二无线信号在所述第二子频带上的所述第一时刻不被发送。
作为一个实施例,上述被用于无线通信的第二节点中的设备的特征在于,所述P为所述P2,所述P2大于P3,所述P3是K2个备选整数中的一个备选整数;如果所述P个检测值中的P3个检测值均低于第三阈值,所述第二无线信号在所述第二子频带上的所述第一时刻被发送,否则所述第二无线信号在所述第二子频带上的所述第一时刻不被发送;所述K2是正整数。
作为一个实施例,上述被用于无线通信的第二节点中的设备的特征在于,所述第一无线信号的至少一个发送天线端口和所述第一天线端口组中的一个天线端口准共址;所述第二无线信号的至少一个发送天线端口和第二天线端口组中的一个天线端口准共址,所述P次能量检测均被关联到所述第二天线端口组。
作为一个实施例,上述被用于无线通信的第二节点中的设备的特征在于,包括:
第三处理器,处理第一信令和第二信令中的至少之一;
其中,所述第一信令和所述第二信令分别包括所述第一无线信号的调度信息和所述第二无线信号的调度信息;所述处理是接收,所述第二节点是用户设备;或者所述处理是发送,所述第二节点是基站。
作为一个实施例,上述被用于无线通信的第二节点中的设备的特征在于,所述第三处理器发送第一信息;其中,所述第二节点是基站;所述第一信息被用于确定第一子频带组合,所述第一子频带组合包括正整数个子频带,所述第一子频带和所述第二子频带都属于所述第一子频带组合。
作为一个实施例,和传统方案相比,本申请具备如下优势:
在支持多载波的非授权频谱通信中,在判断一个载波上的LBT的结果是否能反映另一个载波上的信道的占用情况时,考虑到了两个载波上使用的波束之间的相关性。由于基于某个波束的LBT只能反映这个波束方向上信道的占用情况,这种方法避免了对非授权频谱上其他方向上正在进行的无线传输造成干扰,也保证了在各个方向上对非授权频谱的占用竞争中的公平性。
如果两个载波上使用的波束相关,在一个载波通过Cat 4LBT(第四类型的LBT)被判断为空闲的情况下,只需要在另一个载波上执行简短不包括回退(backoff)的Cat 2LBT(第二类型的LBT),增加了接入另一个载波的几率并加快了接入的速度。
如果两个载波上使用的波束不相关,在两个载波上都需要执行包括回退的Cat 4LBT(第四类型的LBT),保证了在和其他设备对非授权频谱的占用竞争中的公平性。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的Q次能量检测,P次能量检测和第二无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施 例的示意图;
图4示出了根据本申请的一个实施例的NR(New Radio,新无线)节点和UE的示意图;
图5示出了根据本申请的一个实施例的无线传输的流程图;
图6示出了根据本申请的一个实施例的无线传输的流程图;
图7示出了根据本申请的一个实施例的天线端口和天线端口组的示意图;
图8示出了根据本申请的一个实施例的Q个时间子池,P个时间子池和第一时刻在时域上的时序关系的示意图;
图9示出了根据本申请的一个实施例的Q个时间子池,P个时间子池和第一时刻在时域上的时序关系的示意图;
图10示出了根据本申请的一个实施例的Q次能量检测的示意图;
图11示出了根据本申请的一个实施例的P次能量检测的示意图;
图12示出了根据本申请的一个实施例的P次能量检测的示意图;
图13示出了根据本申请的一个实施例的给定能量检测被关联到给定天线端口组的示意图;
图14示出了根据本申请的一个实施例的给定能量检测被关联到给定天线端口组的示意图;
图15示出了根据本申请的一个实施例的给定能量检测被关联到给定天线端口组的示意图;
图16示出了根据本申请的一个实施例的第一子频带组合的示意图;
图17示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;
图18示出了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了Q次能量检测,P次能量检测和第二无线信号的流程图;如附图1所示。
在实施例1中,本申请中的所述第一节点在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;在第二子频带上的P个时间子池中分别执行P次能量检测,得到P个检测值;仅根据所述Q个检测值判断在所述第一子频带上的第一时刻发送第一无线信号;在所述第二子频带上的所述第一时刻发送第二无线信号,或者,放弃在所述第二子频带上的所述第一时刻发送所述第二无线信号。其中,所述Q是正整数;所述P个检测值被用于确定是否在所述第二子频带上的所述第一时刻发送所述第二无线信号;所述Q次能量检测均被关联到第一天线端口组;如果所述P次能量检测均被关联到所述第一天线端口组,所述P为P1,否则所述P为P2;所述P1和所述P2是两个互不相等的正整数;一个天线端口组包括正整数个天线端口;所述第一节点是基站,或者所述第一节点是用户设备。
作为一个实施例,所述P1小于所述P2。
作为一个实施例,所述第一时刻是所述Q个时间子池的结束时刻。
作为一个实施例,所述第一时刻是所述P个时间子池的结束时刻。
作为一个实施例,所述Q个时间子池和所述P个时间子池在同一个时刻结束。
作为一个实施例,所述第一时刻在时域上晚于所述Q个时间子池的结束时刻。
作为一个实施例,所述第一时刻在时域上晚于所述P个时间子池的结束时刻。
作为一个实施例,所述第一子频带部署于非授权频谱。
作为一个实施例,所述第一子频带包括一个载波(Carrier)。
作为一个实施例,所述第一子频带包括多个载波(Carrier)。
作为一个实施例,所述第一子频带包括一个载波中的一个BWP(Bandwidth Part,带宽区间)。
作为一个实施例,所述第一子频带包括一个载波中的多个BWP。
作为一个实施例,所述第一子频带在频域上包括正整数个PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述第一子频带在频域上包括正整数个连续的PRB。
作为一个实施例,所述第一子频带在频域上包括正整数个RB(Resource Block,资源块)。
作为一个实施例,所述第一子频带在频域上包括正整数个连续的RB。
作为一个实施例,所述第一子频带在频域上包括正整数个连续的子载波。
作为一个实施例,所述第二子频带部署于非授权频谱。
作为一个实施例,所述第二子频带包括一个载波(Carrier)。
作为一个实施例,所述第二子频带包括多个载波(Carrier)。
作为一个实施例,所述第二子频带包括一个载波中的一个BWP。
作为一个实施例,所述第二子频带包括一个载波中的多个BWP。
作为一个实施例,所述第二子频带在频域上包括正整数个PRB。
作为一个实施例,所述第二子频带在频域上包括正整数个连续的PRB。
作为一个实施例,所述第二子频带在频域上包括正整数个RB。
作为一个实施例,所述第二子频带在频域上包括正整数个连续的RB。
作为一个实施例,所述第二子频带在频域上包括正整数个连续的子载波。
作为一个实施例,所述P次能量检测均被关联到所述第一天线端口组,或者所述P次能量检测均不被关联到所述第一天线端口组。
作为一个实施例,所述Q次能量检测被用于确定所述第一子频带是否空闲(Idle)。
作为一个实施例,所述Q次能量检测被用于确定所述第一子频带是否能够被所述第一节点用于传输无线信号。
作为一个实施例,所述Q次能量检测被用于确定所述第一子频带空闲(Idle)。
作为一个实施例,所述Q次能量检测被用于确定所述第一子频带能够被所述第一节点用于传输无线信号。
作为一个实施例,所述Q次能量检测是LBT中的能量检测,所述LBT的具体定义和实现方式参见3GPP TR36.889。
作为一个实施例,所述Q次能量检测是CCA(Clear Channel Assessment,空闲信道评估)中的能量检测,所述CCA的具体定义和实现方式参见3GPP TR36.889。
作为一个实施例,所述Q次能量检测中的任意一次能量检测是通过3GPP TS36.213中的15章节所定义的方式实现的。
作为一个实施例,所述Q次能量检测是指:所述第一节点在Q个时间单元中在所述第一子频带上监测接收功率,所述Q个时间单元分别是所述Q个时间子池中的一个持续时间段。
作为一个实施例,所述Q次能量检测是指:所述第一节点在Q个时间单元中在所述第一子频带上监测接收能量,所述Q个时间单元分别是所述Q个时间子池中的一个持续时间段。
作为一个实施例,所述Q次能量检测是指:所述第一节点在Q个时间单元中在所述第一子频带上感知(Sense)所有无线信号的功率,并在时间上平均;所述Q个时间单元分别是所述Q个时间子池中的一个持续时间段。
作为一个实施例,所述Q次能量检测是指:所述第一节点在Q个时间单元中在所述第一子频带上感知(Sense)所有无线信号的能量,并在时间上平均;所述Q个时间单元分别是所述Q个时间子池中的一个持续时间段。
作为一个实施例,所述Q个时间单元中的任一时间单元的持续时间不短于4微秒。
作为一个实施例,所述P次能量检测被用于确定所述第二子频带是否空闲(Idle)。
作为一个实施例,所述P次能量检测被用于确定所述第二子频带是否能被所述第一节点 用于传输无线信号。
作为一个实施例,所述P次能量检测是LBT中的能量检测,所述LBT的具体定义和实现方式参见3GPP TR36.889。
作为一个实施例,所述P次能量检测是CCA中的能量检测,所述CCA的具体定义和实现方式参见3GPP TR36.889。
作为一个实施例,所述P次能量检测中的任意一次能量检测是通过3GPP TS36.213中的15章节所定义的方式实现的。
作为一个实施例,所述P次能量检测是指:所述第一节点在P个时间单元中在所述第二子频带上监测接收功率,所述P个时间单元分别是所述P个时间子池中的一个持续时间段。
作为一个实施例,所述P次能量检测是指:所述第一节点在P个时间单元中在所述第二子频带上监测接收能量,所述P个时间单元分别是所述P个时间子池中的一个持续时间段。
作为一个实施例,所述P次能量检测是指:所述第一节点在P个时间单元中在所述第二子频带上感知(Sense)所有无线信号的功率,并在时间上平均;所述P个时间单元分别是所述P个时间子池中的一个持续时间段。
作为一个实施例,所述P次能量检测是指:所述第一节点在P个时间单元中在所述第二子频带上感知(Sense)所有无线信号的能量,并在时间上平均;所述P个时间单元分别是所述P个时间子池中的一个持续时间段。
作为一个实施例,所述P个时间单元中的任一时间单元的持续时间不短于4微秒。
作为一个实施例,所述Q个时间子池中的任一时间子池占用的时域资源是连续的。
作为一个实施例,所述Q个时间子池在时域上是两两相互正交(不重叠)的。
作为一个实施例,所述P个时间子池中的任一时间子池占用的时域资源是连续的。
作为一个实施例,所述P个时间子池在时域上是两两相互正交(不重叠)的。
作为一个实施例,所述Q个检测值分别由所述Q次能量检测得到。
作为一个实施例,所述P个检测值分别由所述P次能量检测得到。
作为一个实施例,所述Q次能量检测均使用相同的空间接收参数(Spatial Rx parameters)。
作为一个实施例,所述Q次能量检测均使用相同的接收波束。
作为一个实施例,所述Q次能量检测均使用相同的接收空间滤波(spatial filtering)。
作为一个实施例,所述所述Q次能量检测均被关联到第一天线端口组是指:所述第一天线端口组被用于确定所述Q次能量检测中的每次能量检测使用的空间接收参数(Spatial Rx parameters)。
作为一个实施例,所述所述Q次能量检测均被关联到第一天线端口组是指:所述第一天线端口组中的天线端口对应的空间发送参数(Spatial Tx parameters)被用于确定所述Q次能量检测中的每次能量检测使用的空间接收参数(Spatial Rx parameters)。
作为一个实施例,所述所述Q次能量检测均被关联到第一天线端口组是指:所述第一天线端口组中的天线端口对应的发送空间滤波(spatial filtering)被用于确定所述Q次能量检测中的每次能量检测使用的接收空间滤波(spatial filtering)。
作为一个实施例,所述所述Q次能量检测均被关联到第一天线端口组是指:所述Q次能量检测中的每次能量检测所对应的接收波束在空间上的覆盖范围都位于所述第一天线端口组中的所有天线端口所对应的发送波束在空间上的覆盖范围的集合之内。
作为一个实施例,所述所述Q次能量检测均被关联到第一天线端口组是指:所述第一天线端口组中的任一天线端口所对应的发送波束在空间上的覆盖范围在所述Q次能量检测中的任意一次能量检测所对应的接收波束在空间上的覆盖范围之内。
作为一个实施例,所述所述Q次能量检测均被关联到第一天线端口组是指:所述第一天线端口组中的所有天线端口所对应的发送波束在空间上的覆盖范围的集合和所述Q次能量检测中的每次能量检测所对应的接收波束在空间上的覆盖范围是重合的。
作为一个实施例,所述P次能量检测均使用相同的空间接收参数(Spatial Rx parameters)。
作为一个实施例,所述P次能量检测均使用相同的接收波束。
作为一个实施例,所述P次能量检测均使用相同的接收空间滤波(spatial filtering)。
作为一个实施例,所述所述P次能量检测均被关联到所述第一天线端口组是指:所述第一天线端口组被用于确定所述P次能量检测中的每次能量检测使用的空间接收参数(Spatial Rx parameters)。
作为一个实施例,所述所述P次能量检测均被关联到所述第一天线端口组是指:所述第一天线端口组中的天线端口对应的空间发送参数(Spatial Tx parameters)被用于确定所述P次能量检测中的每次能量检测使用的空间接收参数(Spatial Rx parameters)。
作为一个实施例,所述所述P次能量检测均被关联到第一天线端口组是指:所述第一天线端口组中的天线端口对应的发送空间滤波(spatial filtering)被用于确定所述P次能量检测中的每次能量检测使用的接收空间滤波(spatial filtering)。
作为一个实施例,所述所述P次能量检测均被关联到所述第一天线端口组是指:所述P次能量检测中的每次能量检测所对应的接收波束在空间上的覆盖范围在所述第一天线端口组中的所有天线端口所对应的发送波束在空间上的覆盖范围的集合之内。
作为一个实施例,所述所述P次能量检测均被关联到所述第一天线端口组是指:所述第一天线端口组中的任一天线端口所对应的发送波束在空间上的覆盖范围在所述P次能量检测中的每次能量检测所对应的接收波束在空间上的覆盖范围之内。
作为一个实施例,所述所述P次能量检测均被关联到所述第一天线端口组是指:所述第一天线端口组中的所有天线端口所对应的发送波束在空间上的覆盖范围的集合和所述P次能量检测中的每次能量检测所对应的接收波束在空间上的覆盖范围是重合的。
作为一个实施例,空间接收参数(Spatial Rx parameters)包括{接收波束,接收模拟波束赋型矩阵,接收模拟波束赋型向量,接收波束赋型向量,接收空间滤波(spatial filtering)}中的一种或多种。
作为一个实施例,空间发送参数(Spatial Tx parameters)包括{发送天线端口,发送天线端口组,发送波束,发送模拟波束赋型矩阵,发送模拟波束赋型向量,发送波束赋型向量,发送空间滤波(spatial filtering)}中的一种或多种。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,E-UTRAN-NR(演进UMTS陆地无线电接入网络-新无线)202,5G-CN(5G-CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。其中,UMTS对应通用移动通信业务(Universal Mobile Telecommunications System)。EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。E-UTRAN-NR202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由X2接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5G-CN/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数 字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1接口连接到5G-CN/EPC210。5G-CN/EPC210包括MME 211、其它MME214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME211是处理UE201与5G-CN/EPC210之间的信令的控制节点。大体上,MME211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个实施例,所述gNB203对应本申请中的所述第一节点,所述UE201对应本申请中的所述第二节点。
作为一个实施例,所述UE201对应本申请中的所述第一节点,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述UE201支持在非授权频谱上进行数据传输的无线通信。
作为一个实施例,所述gNB203支持在非授权频谱上进行数据传输的无线通信。
作为一个实施例,所述UE201支持载波聚合(Carrier Aggregation)。
作为一个实施例,所述gNB203支持载波聚合(Carrier Aggregation)。
实施例3
实施例3示例了用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,附图3用三个层展示用于UE和gNB的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干协议层,包括终止于网络侧上的P-GW213处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述Q个检测值生成于所述PHY301。
作为一个实施例,本申请中的所述P个检测值生成于所述PHY301。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信令生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二信令生成于所述PHY301。
作为一个实施例,本申请中的所述第二信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第二信令生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信息生成于所述RRC子层306。
实施例4
实施例4示例了NR节点和UE的示意图,如附图4所示。附图4是在接入网络中相互通信的UE450以及gNB410的框图。
gNB410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
UE450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在DL(Downlink,下行)中,在gNB410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对UE450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到UE450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进UE450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在DL(Downlink,下行)中,在UE450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以UE450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由gNB410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数 据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在UL(Uplink,上行)中,在UE450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述gNB410处的发送功能,控制器/处理器459基于gNB410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到gNB410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在UL(Uplink,上行)中,gNB410处的功能类似于在DL中所描述的UE450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在UL中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述UE450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述UE450装置至少:在本申请中的所述第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;仅根据所述Q个检测值判断在所述第一子频带上的第一时刻发送第一无线信号;在本申请中的所述第二子频带上的P个时间子池中分别执行P次能量检测,得到P个检测值;在所述第二子频带上的所述第一时刻发送第二无线信号,或者,放弃在所述第二子频带上的所述第一时刻发送所述第二无线信号。其中,所述P个检测值被用于确定是否在所述第二子频带上的所述第一时刻发送所述第二无线信号;所述Q次能量检测均被关联到第一天线端口组;如果所述P次能量检测均被关联到所述第一天线端口组,所述P为P1,否则所述P为P2;所述P1和所述P2是两个互不相等的正整数。本申请中的所述第一节点是用户设备。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在本申请中的所述第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;仅根据所述Q个检测值判断在所述第一子频带上的第一时刻发送第一无线信号;在本申请中的所述第二子频带上的P个时间子池中分别执行P次能量检测,得到P个检测值;在所述第二子频带上的所述第一时刻发送第二无线信号,或者,放弃在所述第二子频带上的所述第一时刻发送所述第二无线信号。其中,所述P个检测值被用于确定是否在所述第二子频带上的所述第一时刻发送所述第二无线信号;所述Q次能量检测均被关联到第一天线端口组;如果所述P次能量检测均被关联到所述第一天线端口组,所述P为P1,否则所述P为P2;所述P1和所述P2是两个互不相等的正整数。本申请中的所述第一节点是用户设备。
作为一个实施例,所述UE450包括:至少一个处理器以及至少一个存储器,所述至 少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述UE450装置至少:在本申请中的所述第一子频带上的第一时刻接收第一无线信号;在本申请中的所述第二子频带上的所述第一时刻监测第二无线信号。其中,Q个检测值被用于判断在所述第一子频带上的所述第一时刻发送所述第一无线信号,所述Q个检测值分别由Q次能量检测得到,所述Q次能量检测分别在所述第一子频带上的Q个时间子池中被执行;P个检测值被用于判断是否在所述第二子频带上的所述第一时刻发送所述第二无线信号,所述P个检测值分别由P次能量检测得到,所述P次能量检测分别在所述第二子频带上的P个时间子池中被执行;所述Q次能量检测均被关联到第一天线端口组;如果所述P次能量检测均被关联到所述第一天线端口组,所述P为P1,否则所述P为P2;所述P1和所述P2是两个互不相等的正整数。本申请中的所述第二节点是用户设备。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在本申请中的所述第一子频带上的第一时刻接收第一无线信号;在本申请中的所述第二子频带上的所述第一时刻监测第二无线信号。其中,Q个检测值被用于判断在所述第一子频带上的所述第一时刻发送所述第一无线信号,所述Q个检测值分别由Q次能量检测得到,所述Q次能量检测分别在所述第一子频带上的Q个时间子池中被执行;P个检测值被用于判断是否在所述第二子频带上的所述第一时刻发送所述第二无线信号,所述P个检测值分别由P次能量检测得到,所述P次能量检测分别在所述第二子频带上的P个时间子池中被执行;所述Q次能量检测均被关联到第一天线端口组;如果所述P次能量检测均被关联到所述第一天线端口组,所述P为P1,否则所述P为P2;所述P1和所述P2是两个互不相等的正整数。本申请中的所述第二节点是用户设备。
作为一个实施例,所述gNB410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:在本申请中的所述第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;仅根据所述Q个检测值判断在所述第一子频带上的第一时刻发送第一无线信号;在本申请中的所述第二子频带上的P个时间子池中分别执行P次能量检测,得到P个检测值;在所述第二子频带上的所述第一时刻发送第二无线信号,或者,放弃在所述第二子频带上的所述第一时刻发送所述第二无线信号。其中,所述P个检测值被用于确定是否在所述第二子频带上的所述第一时刻发送所述第二无线信号;所述Q次能量检测均被关联到第一天线端口组;如果所述P次能量检测均被关联到所述第一天线端口组,所述P为P1,否则所述P为P2;所述P1和所述P2是两个互不相等的正整数。本申请中的所述第一节点是基站。
作为一个实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在本申请中的所述第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;仅根据所述Q个检测值判断在所述第一子频带上的第一时刻发送第一无线信号;在本申请中的所述第二子频带上的P个时间子池中分别执行P次能量检测,得到P个检测值;在所述第二子频带上的所述第一时刻发送第二无线信号,或者,放弃在所述第二子频带上的所述第一时刻发送所述第二无线信号。其中,所述P个检测值被用于确定是否在所述第二子频带上的所述第一时刻发送所述第二无线信号;所述Q次能量检测均被关联到第一天线端口组;如果所述P次能量检测均被关联到所述第一天线端口组,所述P为P1,否则所述P为P2;所述P1和所述P2是两个互不相等的正整数。本申请中的所述第一节点是基站。
作为一个实施例,所述gNB410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:在本申请中的所述第一子频带上的第一时刻接收第一无线信号;在本申请中的所述第二子频带上的所述第一时刻监测第 二无线信号。其中,Q个检测值被用于判断在所述第一子频带上的所述第一时刻发送所述第一无线信号,所述Q个检测值分别由Q次能量检测得到,所述Q次能量检测分别在所述第一子频带上的Q个时间子池中被执行;P个检测值被用于判断是否在所述第二子频带上的所述第一时刻发送所述第二无线信号,所述P个检测值分别由P次能量检测得到,所述P次能量检测分别在所述第二子频带上的P个时间子池中被执行;所述Q次能量检测均被关联到第一天线端口组;如果所述P次能量检测均被关联到所述第一天线端口组,所述P为P1,否则所述P为P2;所述P1和所述P2是两个互不相等的正整数。本申请中的所述第二节点是基站。
作为一个实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在本申请中的所述第一子频带上的第一时刻接收第一无线信号;在本申请中的所述第二子频带上的所述第一时刻监测第二无线信号。其中,Q个检测值被用于判断在所述第一子频带上的所述第一时刻发送所述第一无线信号,所述Q个检测值分别由Q次能量检测得到,所述Q次能量检测分别在所述第一子频带上的Q个时间子池中被执行;P个检测值被用于判断是否在所述第二子频带上的所述第一时刻发送所述第二无线信号,所述P个检测值分别由P次能量检测得到,所述P次能量检测分别在所述第二子频带上的P个时间子池中被执行;所述Q次能量检测均被关联到第一天线端口组;如果所述P次能量检测均被关联到所述第一天线端口组,所述P为P1,否则所述P为P2;所述P1和所述P2是两个互不相等的正整数。本申请中的所述第二节点是基站。
作为一个实施例,所述gNB410对应本申请中的所述第一节点,所UE450对应本申请中的所述第二节点。
作为一个实施例,所述UE450对应本申请中的所述第一节点,所述gNB410对应本申请中的所述第二节点。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459}中的至少之一被用于在本申请中的所述第一子频带上的所述Q个时间子池中分别执行所述Q次能量检测;本申请中的所述第一节点是用户设备。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475}中的至少之一被用于在本申请中的所述第一子频带上的所述Q个时间子池中分别执行所述Q次能量检测;本申请中的所述第一节点是基站。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459}中的至少之一被用于在本申请中的所述第二子频带上的所述P个时间子池中分别执行所述P次能量检测;本申请中的所述第一节点是用户设备。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475}中的至少之一被用于在本申请中的所述第二子频带上的所述P个时间子池中分别执行所述P次能量检测;本申请中的所述第一节点是基站。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459}中至少之一被用于仅根据本申请中的所述Q个检测值判断在本申请中的所述第一子频带上的所述第一时刻发送所述第一无线信号;本申请中的所述第一节点是用户设备。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475}中的至少之一被用于仅根据本申请中的所述Q个检测值判断在本申请中的所述第一子频带上的所述第一时刻发送所述第一无线信号;本申请中的所述第一节点是基站。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之 一被用于在本申请中的所述第一子频带上的所述第一时刻接收所述第一无线信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第一子频带上的所述第一时刻发送所述第一无线信号。本申请中的所述第一节点是基站,本申请中的所述第二节点是用户设备。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第一子频带上的所述第一时刻接收所述第一无线信号;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在本申请中的所述第一子频带上的所述第一时刻发送所述第一无线信号。本申请中的所述第一节点是用户设备,本申请中的所述第二节点是基站。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在本申请中的所述第二子频带上的所述第一时刻监测所述第二无线信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第二子频带上的所述第一时刻发送所述第二无线信号。本申请中的所述第一节点是基站,本申请中的所述第二节点是用户设备。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第二子频带上的所述第一时刻监测所述第二无线信号;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在本申请中的所述第二子频带上的所述第一时刻发送所述第二无线信号。本申请中的所述第一节点是用户设备,本申请中的所述第二节点是基站。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第二信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第二信令。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信息;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信息。
实施例5
实施例5示例了无线传输的流程图,如附图5所示。在附图5中,基站N1是本申请中的所述第一节点,用户设备U2是本申请中的所述第二节点;基站N1是用户设备U2的服务小区维持基站。附图5中,方框F1,方框F2和方框F3中的步骤分别是可选的。
对于N1,在步骤S101中发送第一信令;在步骤S102中发送第二信令;在步骤S11中在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;在步骤S12中在第二子频带上的P个时间子池中分别执行P次能量检测,得到P个检测值;在步骤S13中仅根据所述Q个检测值判断在所述第一子频带上的第一时刻发送第一无线信号;在步骤S14中在所述第一子频带上的所述第一时刻发送所述第一无线信号;在步骤S103中在所述第二子频带上的所述第一时刻发送第二无线信号。
对于U2,在步骤S201中接收第一信令;在步骤S202中接收第二信令;在步骤S21中在第一子频带上的第一时刻接收第一无线信号;在步骤S22中在第二子频带上的所述第一时刻监测第二无线信号。
在实施例5中,所述P个检测值被所述N1用于确定是否在所述第二子频带上的所述第一时刻发送所述第二无线信号;所述Q次能量检测均被关联到第一天线端口组;如果所述P次能量检测均被关联到所述第一天线端口组,所述P为P1,否则所述P为P2;所述Q是正整数;所述P1和所述P2是两个互不相等的正整数;一个天线端口组包括正整数个天线端口。所述第一信令和所述第二信令分别包括所述第一无线信号的调度信息和所述第二无线信号的调度信息。
作为一个实施例,所述Q个检测值被所述N1用于判断在所述第一子频带上的所述第一时刻发送所述第一无线信号;所述Q个检测值中的Q3个检测值均低于第一阈值,所述Q3是K1个备选整数中的一个备选整数,所述K1是正整数。
作为一个实施例,所述P为所述P1,所述P1是一个固定值;如果所述P个检测值均低于第二阈值,所述N1在所述第二子频带上的所述第一时刻发送所述第二无线信号,否则所述N1放弃在所述第二子频带上的所述第一时刻发送所述第二无线信号。
作为上述实施例的一个子实施例,如果所述P个检测值均低于所述第二阈值,附图5中的方框F3存在;否则附图5中的方框F3不存在。
作为一个实施例,所述P为所述P2,所述P2大于P3,所述P3是K2个备选整数中的一个备选整数;如果所述P个检测值中的P3个检测值均低于第三阈值,所述N1在所述第二子频带上的所述第一时刻发送所述第二无线信号,否则所述N1放弃在所述第二子频带上的所述第一时刻发送所述第二无线信号;所述K2是正整数。
作为上述实施例的一个子实施例,如果所述P个检测值中的所述P3个检测值均低于所述第三阈值,附图5中的方框F3存在;否则附图5中的方框F3不存在。
作为一个实施例,所述监测是指能量检测,即根据能量检测判断是否在所述第二子频带上的所述第一时刻检测到所述第二无线信号。
作为上述实施例的一个子实施例,所述能量检测是指:在所述第二子频带上感知(Sense)所有无线信号的能量,并在时间上平均,以获得接收能量。如果所述接收能量大于第一给定阈值,判断在所述第二子频带上的所述第一时刻检测到所述第二无线信号;否则判断在所述第二子频带上的所述第一时刻未检测到所述第二无线信号。
作为一个实施例,所述第二无线信号包括第一参考信号,所述监测是指利用所述第一参考信号的RS(Reference Signal,参考信号)序列进行的相干检测,即根据所述第一参考信号的RS序列,利用相干检测判断是否在所述第二子频带上的所述第一时刻检测到所述第二无线信号。
作为上述实施例的一个子实施例,所述相干检测是指:在所述第二子频带上用所述第一参考信号的RS序列对所有无线信号进行相干接收,并测量所述相干接收后得到的信号的能量。如果所述所述相干接收后得到的信号的能量大于第二给定阈值,判断在所述第二子频带上的所述第一时刻检测到所述第二无线信号;否则判断在所述第二子频带上的所述第一时刻未检测到所述第二无线信号。
作为上述实施例的一个子实施例,所述第一参考信号包括DMRS(DeModulation Reference Signals,解调参考信号)。
作为上述实施例的一个子实施例,所述第一参考信号包括PTRS(Phase error Tracking Reference Signals,相位误差跟踪参考信号)。
作为一个实施例,所述监测是指盲检测,即根据盲检测判断是否在所述第二子频带上的所述第一时刻检测到所述第二无线信号。
作为上述实施例的一个子实施例,所述盲检测是指:在所述第二子频带上接收信号并执行译码操作,如果根据校验比特确定译码正确则判断在所述第二子频带上的所述第一时刻检测到所述第二无线信号;否则判断在所述第二子频带上的所述第一时刻未检测到所述第二无线信号。
作为上述子实施例的一个参考实施例,所述校验比特是指CRC(Cyclic Redundancy Check,循环冗余校验)比特。
作为一个实施例,所述第一信令在所述第一子频带上传输。
作为一个实施例,所述第一信令在所述第一子频带以外的频带上传输。
作为一个实施例,所述第一信令在部署于授权频谱的频带上传输。
作为一个实施例,所述第一无线信号的调度信息包括{所占用的时域资源,所占用的频域资源,MCS(Modulation and Coding Scheme),HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号,RV(Redundancy Version,冗余版本),NDI(New Data Indicator,新数据指示),DMRS序列,发送天线端口}中的至少之一。
作为一个实施例,所述第一信令是高层信令。
作为一个实施例,所述第一信令是RRC(Radio Resource Control,无线电资源控制)信令。
作为一个实施例,所述第一信令是MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)信令。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是动态信令。
作为一个实施例,所述第一信令是用于下行授予(DownLink Grant)的动态信令,所述第一节点是基站。
作为一个实施例,所述第一信令包括DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第一信令包括下行授予DCI(DownLink Grant DCI),所述第一节点是基站。
作为一个实施例,所述第二信令在所述第二子频带上传输。
作为一个实施例,所述第二信令在所述第二子频带以外的频带上传输。
作为一个实施例,所述第二信令在部署于授权频谱的频带上传输。
作为一个实施例,所述第二无线信号的调度信息包括{所占用的时域资源,所占用的频域资源,MCS,HARQ进程号,RV,NDI,DMRS序列,发送天线端口}中的至少之一。
作为一个实施例,所述第二信令是高层信令。
作为一个实施例,所述第二信令是RRC信令。
作为一个实施例,所述第二信令是MAC CE信令。
作为一个实施例,所述第二信令是物理层信令。
作为一个实施例,所述第二信令是动态信令。
作为一个实施例,所述第二信令是用于下行授予(DownLink Grant)的动态信令,所述第一节点是基站。
作为一个实施例,所述第二信令包括DCI。
作为一个实施例,所述第二信令包括下行授予DCI(DownLink Grant DCI),所述第一节点是基站。
作为一个实施例,所述第一信令被用于确定所述第一时刻。
作为一个实施例,所述第一信令显式指示所述第一时刻。
作为一个实施例,所述第一信令隐式指示所述第一时刻。
作为一个实施例,所述第一信令显式指示所述第一无线信号占用的时间资源的起始时刻是所述第一时刻。
作为一个实施例,所述第一信令隐式指示所述第一无线信号占用的时间资源的起始时刻是所述第一时刻。
作为一个实施例,所述第二信令被用于确定所述第一时刻。
作为一个实施例,所述第二信令显式指示所述第一时刻。
作为一个实施例,所述第二信令隐式指示所述第一时刻。
作为一个实施例,所述第二信令显式指示所述第二无线信号占用的时间资源的起始时刻是所述第一时刻。
作为一个实施例,所述第二信令隐式指示所述第二无线信号占用的时间资源的起始时刻是所述第一时刻。
作为一个实施例,所述第一无线信号的至少一个发送天线端口和所述第一天线端口组中的一个天线端口准共址;所述第二无线信号的至少一个发送天线端口和第二天线端口组中的一个天线端口准共址,所述P次能量检测均被关联到所述第二天线端口组。
作为一个实施例,所述所述P次能量检测均被关联到所述第二天线端口组是指:所述第二天线端口组被用于确定所述P次能量检测中的每一次能量检测使用的空间接收参数(Spatial Rx parameters)。
作为一个实施例,所述所述P次能量检测均被关联到所述第二天线端口组是指:所述第二天线端口组中的天线端口对应的空间发送参数(Spatial Tx parameters)被用于确定所述P次能量检测中的每一次能量检测使用的空间接收参数(Spatial Rx parameters)。
作为一个实施例,所述所述P次能量检测均被关联到第二天线端口组是指:所述第二天线端口组中的天线端口对应的发送空间滤波(spatial filtering)被用于确定所述P次能量检测中的每一次能量检测使用的接收空间滤波(spatial filtering)。
作为一个实施例,所述所述P次能量检测均被关联到所述第二天线端口组是指:所述P次能量检测中的每一次能量检测所对应的接收波束在空间上的覆盖范围位于所述第二天线端口组中的所有天线端口所对应的发送波束在空间上的覆盖范围的集合之内。
作为一个实施例,所述所述P次能量检测均被关联到所述第二天线端口组是指:所述第二天线端口组中的任一天线端口所对应的发送波束在空间上的覆盖范围位于所述P次能量检测中的每一次能量检测所对应的接收波束在空间上的覆盖范围之内。
作为一个实施例,所述所述P次能量检测均被关联到所述第二天线端口组是指:所述第二天线端口组中的所有天线端口所对应的发送波束在空间上的覆盖范围的集合和所述P次能量检测中的每一次能量检测所对应的接收波束在空间上的覆盖范围是重合的。
作为一个实施例,如果所述P次能量检测均被关联到所述第一天线端口组,所述第二天线端口组中的任一天线端口和所述第一天线端口组中的一个天线端口准共址。
作为一个实施例,如果所述P次能量检测均被关联到所述第一天线端口组,所述第二天线端口组中的任一天线端口和所述第一天线端口组中的至少一个天线端口准共址。
作为一个实施例,如果所述P次能量检测均被关联到所述第一天线端口组,所述第二天线端口组中的任一天线端口和所述第一天线端口组中的任一天线端口准共址。
作为一个实施例,如果所述P次能量检测均被关联到所述第一天线端口组,所述第二天线端口组是所述第一天线端口组。
作为一个实施例,如果所述P次能量检测均不被关联到所述第一天线端口组,所述第二天线端口组中的任一天线端口和所述第一天线端口组中的任一天线端口不是准共址的。
作为一个实施例,两个天线端口准共址是指所述两个天线端口QCL(Quasi Co-Located)。
作为一个实施例,两个天线端口准共址是指所述两个天线端口spatial QCL。
作为一个实施例,所述第一无线信号在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输,所述第一节点是基站。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH(Physical Downlink Control CHannel,物理下行控制信道)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH(short PDCCH,短PDCCH)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH(New Radio PDCCH,新无线PDCCH)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH(Narrow Band PDCCH,窄带PDCCH)。
作为一个实施例,所述第二无线信号在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输,所述第一节点是基站。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH。
作为一个实施例,所述第一无线信号在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输,所述第一节点是基站。
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH(short PDSCH,短PDSCH)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH(New Radio PDSCH,新无线PDSCH)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH(Narrow Band PDSCH,窄带PDSCH)。
作为一个实施例,所述第一无线信号对应传输信道是DL-SCH(DownLink Shared Channel,上行共享信道),所述第一节点是基站。
作为一个实施例,所述第二无线信号在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输,所述第一节点是基站。
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH。
作为一个实施例,所述第二无线信号对应传输信道是DL-SCH,所述第一节点是基站。
作为一个实施例,所述第一信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH。
作为一个实施例,所述第一信令在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH。
作为一个实施例,所述第二信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH。
作为一个实施例,所述第二信令在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH。
实施例6
实施例6示例了无线传输的流程图;如附图6所示。在附图6中,基站N3是本申请中的所述第二节点,用户设备U4是本申请中的所述第一节点;基站N3是用户设备U4的服务小区维持基站。附图6中,方框F4至方框F7中的步骤分别是可选的。
对于N3,在步骤S301中发送第一信息;在步骤S302中发送第一信令;在步骤S303中发送第二信令;在步骤S31中在第一子频带上的第一时刻接收第一无线信号;在步骤S32中在第二子频带上的所述第一时刻监测第二无线信号。
对于U4,在步骤S401中接收第一信息;在步骤S402中接收第一信令;在步骤S403中接收第二信令;在步骤S41中在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;在步骤S42中在第二子频带上的P个时间子池中分别执行P次能量检测,得到P个检测值;在步骤S43中仅根据所述Q个检测值判断在所述第一子频带上的第一时刻发送第一无线信号;在步骤S44中在所述第一子频带上的所述第一时刻发送所述第一无线信号;在步骤S404中在所述第二子频带上的所述第一时刻发送第二无线信号。
在实施例6中,所述P个检测值被用于确定是否在所述第二子频带上的所述第一时刻发送所述第二无线信号;所述Q次能量检测均被关联到第一天线端口组;如果所述P次能量检测均被关联到所述第一天线端口组,所述P为P1,否则所述P为P2;所述P1和所述P2是两个互不相等的正整数;所述Q是正整数;一个天线端口组包括正整数个天线端口。所述第一信令和所述第二信令分别包括所述第一无线信号的调度信息和所述第二无线信号的调度信息。所述第一信息被用于确定第一子频带组合,所述第一子频带组合包括正整数个子频带,所述第一子频带和所述第二子频带都属于所述第一子频带组合。
作为一个实施例,所述P为所述P1,所述P1是一个固定值;如果所述P个检测值均低于第二阈值,所述U4在所述第二子频带上的所述第一时刻发送所述第二无线信号,否则所述U4放弃在所述第二子频带上的所述第一时刻发送所述第二无线信号。
作为上述实施例的一个子实施例,如果所述P个检测值均低于所述第二阈值,附图6中的方框F7存在,否则附图6中的方框F7不存在。
作为一个实施例,所述P为所述P2,所述P2大于P3,所述P3是K2个备选整数中的一个备选整数;如果所述P个检测值中的P3个检测值均低于第三阈值,所述U4在所述第二子频带上的所述第一时刻发送所述第二无线信号,否则所述U4放弃在所述第二子频带上的所述第一时刻发送所述第二无线信号;所述K2是正整数。
作为上述实施例的一个子实施例,如果所述P个检测值中的所述P3个检测值均低于所述第三阈值,附图6中的方框F7存在,否则附图6中的方框F7不存在。
作为一个实施例,所述第一无线信号的调度信息包括{所占用的时域资源,所占用的频域 资源,所占用的码域资源,循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码),DMRS序列,PUCCH格式(PUCCH format),UCI(Uplink control information,上行控制信息)内容}中的至少之一。
作为一个实施例,所述第一信令是用于上行授予(UpLink Grant)的动态信令,所述第一节点是用户设备。
作为一个实施例,所述第一信令包括上行授予DCI(UpLink Grant DCI),所述第一节点是用户设备。
作为一个实施例,所述第二无线信号的调度信息包括{所占用的时域资源,所占用的频域资源,所占用的码域资源,循环位移量(cyclic shift),OCC,DMRS序列,PUCCH格式(PUCCH format),UCI内容}中的至少之一。
作为一个实施例,所述第二信令是用于上行授予(UpLink Grant)的动态信令,所述第一节点是用户设备。
作为一个实施例,所述第二信令包括上行授予DCI(UpLink Grant DCI),所述第一节点是用户设备。
作为一个实施例,所述第一信息在所述第一子频带上传输。
作为一个实施例,所述第一信息在所述第二子频带上传输。
作为一个实施例,所述第一信息在所述第一子频带和所述第二子频带以外的频带上传输。
作为一个实施例,所述第一信息在部署于授权频谱的频带上传输。
作为一个实施例,所述第一信息是由更高层信令承载的。
作为一个实施例,所述第一信息是由高层信令承载的。
作为一个实施例,所述第一信息是由RRC信令承载的。
作为一个实施例,所述第一信息是由MAC CE信令承载的。
作为一个实施例,所述第一子频带组合中所有子频带的载波频率(carrier frequency)组成3GPP TS36.104的5.7.4章节中定义的一个载波频率集合的子集。
作为一个实施例,所述第一无线信号在上行物理层控制信道(即仅能用于承载物理层信令的上行信道)上传输,所述第一节点是用户设备。
作为上述实施例的一个子实施例,所述上行物理层控制信道是PUCCH(Physical Uplink Control CHannel,物理上行控制信道)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是sPUCCH(short PUCCH,短PUCCH)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是NR-PUCCH(New Radio PUCCH,新无线PUCCH)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是NB-PUCCH(Narrow Band PUCCH,窄带PUCCH)。
作为一个实施例,所述第二无线信号在上行物理层控制信道(即仅能用于承载物理层信令的上行信道)上传输,所述第一节点是用户设备。
作为上述实施例的一个子实施例,所述上行物理层控制信道是PUCCH。
作为上述实施例的一个子实施例,所述上行物理层控制信道是sPUCCH。
作为上述实施例的一个子实施例,所述上行物理层控制信道是NR-PUCCH。
作为上述实施例的一个子实施例,所述上行物理层控制信道是NB-PUCCH。
作为一个实施例,所述第一无线信号在上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输,所述第一节点是用户设备。
作为上述实施例的一个子实施例,所述上行物理层数据信道是PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)。
作为上述实施例的一个子实施例,所述上行物理层数据信道是sPUSCH(short PUSCH,短PUSCH)。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NR-PUSCH(New Radio PUSCH,新无线PUSCH)。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NB-PUSCH(Narrow Band PUSCH,窄带PUSCH)。
作为一个实施例,所述第一无线信号对应传输信道是UL-SCH(UpLink Shared Channel,上行共享信道),所述第一节点是用户设备。
作为一个实施例,所述第二无线信号在上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输,所述第一节点是用户设备。
作为上述实施例的一个子实施例,所述上行物理层数据信道是PUSCH。
作为上述实施例的一个子实施例,所述上行物理层数据信道是sPUSCH。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NR-PUSCH。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NB-PUSCH。
作为一个实施例,所述第二无线信号对应传输信道是UL-SCH,所述第一节点是用户设备。
作为一个实施例,所述第一信息在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH。
实施例7
实施例7示例了天线端口和天线端口组的示意图;如附图7所示。
在实施例7中,一个天线端口组包括正整数个天线端口;一个天线端口由正整数个天线组中的天线通过天线虚拟化(Virtualization)叠加而成;一个天线组包括正整数根天线。一个天线组通过一个RF(Radio Frequency,射频)chain(链)连接到基带处理器,不同天线组对应不同的RF chain。给定天线端口包括的正整数个天线组内的所有天线到所述给定天线端口的映射系数组成所述给定天线端口对应的波束赋型向量。所述给定天线端口包括的正整数个天线组内的任一给定天线组包括的多根天线到所述给定天线端口的映射系数组成所述给定天线组的模拟波束赋型向量。所述给定天线端口包括的正整数个天线组对应的模拟波束赋型向量对角排列构成所述给定天线端口对应的模拟波束赋型矩阵。所述给定天线端口包括正整数个天线组到所述给定天线端口的映射系数组成所述给定天线端口对应的数字波束赋型向量。所述给定天线端口对应的波束赋型向量是由所述给定天线端口对应的模拟波束赋型矩阵和数字波束赋型向量的乘积得到的。一个天线端口组中的不同天线端口由相同的天线组构成,同一个天线端口组中的不同天线端口对应不同的波束赋型向量。
附图7中示出了两个天线端口组:天线端口组#0和天线端口组#1。其中,所述天线端口组#0由天线组#0构成,所述天线端口组#1由天线组#1和天线组#2构成。所述天线组#0中的多个天线到所述天线端口组#0的映射系数组成模拟波束赋型向量#0,所述天线组#0到所述天线端口组#0的映射系数组成数字波束赋型向量#0。所述天线组#1中的多个天线和所述天线组#2中的多个天线到所述天线端口组#1的映射系数分别组成模拟波束赋型向量#1和模拟波束赋型向量#2,所述天线组#1和所述天线组#2到所述天线端口组#1的映射系数组成数字波束赋型向量#1。所述天线端口组#0中的任一天线端口对应的波束赋型向量是由所述模拟波束赋型向量#0和所述数字波束赋型向量#0的乘积得到的。所述天线端口组#1中的任一天线端口对应的波束赋型向量是由所述模拟波束赋型向量#1和所述模拟波束赋型向量#2对角排列构成的模拟波束赋型矩阵和所述数字波束赋型向量#1的乘积得到的。
作为一个实施例,一个天线端口组只包括一个天线组,即一个RF chain,例如,附图 7中的所述天线端口组#0。
作为上述实施例的一个子实施例,所述一个天线端口组中的天线端口对应的模拟波束赋型矩阵降维成模拟波束赋型向量,所述一个天线端口组中的天线端口对应的数字波束赋型向量降维成一个标量,所述一个天线端口组中的天线端口对应的波束赋型向量等于其对应的模拟波束赋型向量。例如,附图7中的所述天线端口组#0只包括所述天线组#0,附图7中的所述数字波束赋型向量#0降维成一个标量,所述天线端口组#0中的天线端口对应的波束赋型向量是所述模拟波束赋型向量#0。
作为上述实施例的一个子实施例,所述一个天线端口组包括1个天线端口。
作为一个实施例,一个天线端口组包括多个天线组,即多个RF chain,例如,附图7中的所述天线端口组#1。
作为上述实施例的一个子实施例,所述一个天线端口组包括多个天线端口。
作为上述实施例的一个子实施例,所述一个天线端口组中的不同天线端口对应相同的模拟波束赋型矩阵。
作为上述实施例的一个子实施例,所述一个天线端口组中的不同天线端口对应不同的数字波束赋型向量。
作为一个实施例,不同的天线端口组中的天线端口对应不同的模拟波束赋型矩阵。
作为一个实施例,所述天线端口是antenna port。
作为一个实施例,从一个天线端口上发送的一个无线信号所经历的小尺度信道参数可以推断出从所述一个天线端口上发送的另一个无线信号所经历的小尺度信道参数。
作为上述实施例的一个子实施例,所述小尺度信道参数包括{CIR(Channel Impulse Response,信道冲激响应),PMI(Precoding Matrix Indicator,预编码矩阵标识),CQI,RI(Rank Indicator,秩标识)}中的一种或多种。
作为一个实施例,一个天线端口组中的任意两个天线端口准共址。
作为一个实施例,两个天线端口准共址是指所述两个天线端口QCL(Quasi Co-Located)。
作为一个实施例,两个天线端口准共址是指所述两个天线端口spatial QCL。
作为一个实施例,两个天线端口准共址是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的全部或者部分大尺度(large-scale)特性(properties)推断出所述两个天线端口中的另一个天线端口上发送的无线信号的全部或者部分大尺度特性,所述大尺度特性包括多天线相关的大尺度特性和多天线无关的大尺度特性。
作为一个实施例,给定无线信号的多天线相关的大尺度特性包括{到达角(angle of arrival),离开角(angle of departure),空间相关性,空间发送参数(Spatial Tx parameters),空间接收参数(Spatial Rx parameters)}中的一种或者多种。
作为一个实施例,空间发送参数(Spatial Tx parameters)包括{天线端口,天线端口组,发送波束,发送模拟波束赋型矩阵,发送模拟波束赋型向量,发送波束赋型向量,发送空间滤波(spatial filtering)}中的一种或多种。
作为一个实施例,空间接收参数(Spatial Rx parameters)包括{接收波束,接收模拟波束赋型矩阵,接收模拟波束赋型向量,接收波束赋型向量,接收空间滤波(spatial filtering)}中的一种或多种。
作为一个实施例,给定无线信号的多无线相关的大尺度特性包括{延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒移位(Doppler shift),路径损耗(path loss),平均增益(average gain),平均延时(average delay)}中的一种或者多种。
作为一个实施例,两个天线端口准共址是指:所述两个天线端口至少有一个相同的QCL参数(QCL parameter),所述QCL参数包括多天线相关的QCL参数和多天线无关的QCL参数。
作为一个实施例,多天线相关的QCL参数包括:{到达角(angle of arrival),离开角(angle of departure),空间相关性,空间发送参数(Spatial Tx parameters),空 间接收参数(Spatial Rx parameters)}中的一种或多种。
作为一个实施例,多天线无关的QCL参数包括:{延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒移位(Doppler shift),路径损耗(path loss),平均增益(average gain)}中的一种或多种。
作为一个实施例,两个天线端口准共址是指:能够从所述两个天线端口中的一个天线端口的至少一个QCL参数推断出所述两个天线端口中的另一个天线端口的至少一个QCL参数。
作为一个实施例,两个天线端口准共址是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的全部或者部分多天线相关的大尺度(large-scale)特性(properties)推断出所述两个天线端口中的另一个天线端口上发送的无线信号的全部或者部分多天线相关的大尺度特性。
作为一个实施例,两个天线端口准共址是指:所述两个天线端口至少有一个相同的多天线相关的QCL参数(spatial QCL parameter)。
作为一个实施例,两个天线端口准共址是指:能够从所述两个天线端口中的一个天线端口的至少一个多天线相关的QCL参数推断出所述两个天线端口中的另一个天线端口的至少一个多天线相关的QCL参数。
实施例8
实施例8示例了Q个时间子池,P个时间子池和第一时刻在时域上的时序关系的示意图;如附图8所示。
在实施例8中,本申请中的所述第一节点在本申请中的所述第一子频带上的所述Q个时间子池中分别执行Q次能量检测,得到Q个检测值;本申请中的所述第一节点在本申请中的所述第二子频带上的所述P个时间子池中分别执行P次能量检测,得到P个检测值。所述第一节点仅根据所述Q个检测值判断在所述第一子频带上的所述第一时刻发送第一无线信号;所述第一节点根据所述P个检测值判断是否在所述第二子频带上的所述第一时刻发送第二无线信号。所述Q次能量检测均被关联到第一天线端口组;所述P次能量检测均被关联到所述第一天线端口组,所述P为所述本申请中的所述P1。在附图8中,细实线边框空白填充的椭圆表示所述第一天线端口组。
作为一个实施例,所述第一时刻是所述Q个时间子池的结束时刻。
作为一个实施例,所述第一时刻是所述P个时间子池的结束时刻。
作为一个实施例,所述Q个时间子池和所述P个时间子池在同一个时刻结束。
作为一个实施例,所述P1等于2。
作为一个实施例,所述P1小于所述Q。
作为一个实施例,所述第一天线端口组中的任意两个天线端口准共址。
作为一个实施例,所述第一天线端口组包括一个天线端口。
作为一个实施例,所述第一天线端口组包括正整数个天线端口。
作为一个实施例,所述第一无线信号的至少一个发送天线端口和所述第一天线端口组中的至少一个天线端口准共址。
作为一个实施例,所述第一无线信号的任一发送天线端口和所述第一天线端口组中的一个天线端口准共址。
作为一个实施例,所述第一无线信号的任一发送天线端口和所述第一天线端口组中的至少一个天线端口准共址。
作为一个实施例,所述第一无线信号的任一发送天线端口和所述第一天线端口组中的任一天线端口准共址。
作为一个实施例,所述第二无线信号的至少一个发送天线端口和所述第一天线端口组中的至少一个天线端口准共址。
作为一个实施例,所述第二无线信号的任一发送天线端口和所述第一天线端口组中的一个天线端口准共址。
作为一个实施例,所述第二无线信号的任一发送天线端口和所述第一天线端口组中的至少一个天线端口准共址。
作为一个实施例,所述第二无线信号的任一发送天线端口和所述第一天线端口组中的任一天线端口准共址。
作为一个实施例,本申请中的所述第二天线端口组中的任一天线端口和所述第一天线端口组中的一个天线端口准共址。
作为一个实施例,本申请中的所述第二天线端口组中的任一天线端口和所述第一天线端口组中的至少一个天线端口准共址。
作为一个实施例,本申请中的所述第二天线端口组中的任一天线端口和所述第一天线端口组中的任一天线端口准共址。
作为一个实施例,本申请中的所述第二天线端口组是所述第一天线端口组。
作为一个实施例,所述第二无线信号的至少一个发送天线端口和本申请中的所述第二天线端口组中的至少一个天线端口准共址。
作为一个实施例,所述第二无线信号的任一发送天线端口和本申请中的所述第二天线端口组中的一个天线端口准共址。
作为一个实施例,所述第二无线信号的任一发送天线端口和本申请中的所述第二天线端口组中的至少一个天线端口准共址。
作为一个实施例,所述第二无线信号的任一发送天线端口和本申请中的所述第二天线端口组中的任一天线端口准共址。
实施例9
实施例9示例了Q个时间子池,P个时间子池和第一时刻在时域上的时序关系的示意图;如附图9所示。
在实施例9中,本申请中的所述第一节点在本申请中的所述第一子频带上的所述Q个时间子池中分别执行Q次能量检测,得到Q个检测值;本申请中的所述第一节点在本申请中的所述第二子频带上的所述P个时间子池中分别执行P次能量检测,得到P个检测值。所述第一节点仅根据所述Q个检测值判断在所述第一子频带上的所述第一时刻发送第一无线信号;所述第一节点根据所述P个检测值判断是否在所述第二子频带上的所述第一时刻发送第二无线信号。所述Q次能量检测均被关联到第一天线端口组;所述P次能量检测均不被关联到所述第一天线端口组,所述P为所述本申请中的所述P2。所述P次能量检测均被关联到所述第二天线端口组。在附图9中,细实线边框空白填充的椭圆表示所述第一天线端口组,细实线边框交叉线填充的椭圆表示所述第二天线端口组。
作为一个实施例,所述P2和所述Q无关。
作为一个实施例,所述P2大于所述Q。
作为一个实施例,所述P2小于所述Q。
作为一个实施例,所述P2等于所述Q。
作为一个实施例,所述第二天线端口组中的任意两个天线端口准共址。
作为一个实施例,所述第二天线端口组中的任一天线端口和所述第一天线端口组中的任一天线端口不是准共址的。
作为一个实施例,所述第二天线端口组包括一个天线端口。
作为一个实施例,所述第二天线端口组包括正整数个天线端口。
作为一个实施例,所述第二无线信号的至少一个发送天线端口和所述第二天线端口组中的至少一个天线端口准共址。
作为一个实施例,所述第二无线信号的任一发送天线端口和所述第二天线端口组中的一 个天线端口准共址。
作为一个实施例,所述第二无线信号的任一发送天线端口和所述第二天线端口组中的至少一个天线端口准共址。
作为一个实施例,所述第二无线信号的任一发送天线端口和所述第二天线端口组中的任一天线端口准共址。
实施例10
实施例10示例了Q次能量检测的示意图;如附图10所示。
在实施例10中,本申请中的所述第一节点在本申请中的所述第一子频带上的Q个时间子池中分别执行所述Q次能量检测,得到Q个检测值。所述Q个检测值中的Q3个检测值均低于第一阈值,所述Q3是K1个备选整数中的一个备选整数,所述K1是正整数。Q3个时间子池是所述Q个时间子池中分别和所述Q3个检测值对应的时间子池。所述Q次能量检测的过程可以由附图10中的流程图来描述。
在附图10中,本申请中的所述第一节点在步骤S1001中处于闲置状态,在步骤S1002中判断是否需要发送;在步骤S1003中在所述第一子频带上的一个延迟时段(defer duration)内执行能量检测;在步骤S1004中判断这个延迟时段内的所有时隙时段是否都空闲(Idle),如果是,进行到步骤S1005中设置第一计数器等于所述Q3;否则返回步骤S1004;在步骤S1006中判断所述第一计数器是否为0,如果是,进行到步骤S1007中在所述第一子频带上发送无线信号;否则进行到步骤S1008中在所述第一子频带上的一个附加时隙时段(additional slot duration)内执行能量检测;在步骤S1009中判断这个附加时隙时段是否空闲(Idle),如果是,进行到步骤S1010中把所述第一计数器减1,然后返回步骤S1006;否则进行到步骤S1011中在所述第一子频带上的一个附加延迟时段(additional defer duration)内执行能量检测;在步骤S1012中判断这个附加延迟时段内的所有时隙时段是否都空闲(Idle),如果是,进行到步骤S1010;否则返回步骤S1011。
在实施例10中,第一给定时段包括所述Q个时间子池中的正整数个时间子池,所述第一给定时段是附图10中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。第二给定时段包括所述Q3个时间子池中的1个时间子池,所述第二给定时段是附图10中通过能量检测被判断为空闲的{所有附加时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,给定时段内的任意一个时隙时段(slot duration)包括所述Q个时间子池中的一个时间子池;所述给定时段是附图10中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,在给定时段内执行能量检测是指:在所述给定时段内的所有时隙时段(slot duration)内执行能量检测;所述给定时段是附图10中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,在给定时段内执行能量检测是指:在所述给定时段内的所有时间子池内执行能量检测;所述给定时段是附图10中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段,所述所有时间子池属于所述Q个时间子池,在所述所有时间子池内执行的能量检测是所述Q次能量检测中和所述所有时间子池对应的能量检测。
作为一个实施例,给定时段通过能量检测被判断为空闲(Idle)是指:所述给定时段中包括的所有时隙时段通过能量检测都被判断为空闲(Idle);所述给定时段是附图10中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,给定时段通过能量检测被判断为空闲(Idle)是指:在所述给定时段中包括的所有时间子池中通过能量检测得到的检测值都低于所述第一阈值;所述给定时段是附图10中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段,所述所有时间子池属于所述Q个时间子池,所述检测值是所述Q个检测值中和所述所有时间 子池对应的检测值。
作为一个实施例,给定时隙时段通过能量检测被判断为空闲(Idle)是指:所述第一节点在给定时间单元中在所述第一子频带上感知(Sense)所有无线信号的功率,并在时间上平均,所获得的接收功率低于所述第一阈值;所述给定时间单元是所述给定时隙时段中的一个持续时间段。
作为上述实施例的一个子实施例,所述给定时间单元的持续时间不短于4微秒。
作为一个实施例,给定时隙时段通过能量检测被判断为空闲(Idle)是指:所述第一节点在给定时间单元中在所述第一子频带上感知(Sense)所有无线信号的能量,并在时间上平均,所获得的接收能量低于所述第一阈值;所述给定时间单元是所述给定时隙时段中的一个持续时间段。
作为上述实施例的一个子实施例,所述给定时间单元的持续时间不短于4微秒。
作为一个实施例,给定时隙时段通过能量检测被判断为空闲(Idle)是指:所述第一节点在所述给定时隙时段包括的时间子池上进行能量检测,得到的检测值低于所述第一阈值;所述时间子池属于所述Q个时间子池,所述检测值是所述Q个检测值中和所述时间子池对应的检测值。
作为一个实施例,一个延时时段(defer duration)的持续时间是16微秒再加上S1个9微秒,所述S1是正整数。
作为上述实施例的一个子实施例,一个延时时段包括所述Q个时间子池中的S1+1个时间子池。
作为上述子实施例的一个参考实施例,所述S1+1个时间子池中的第一个时间子池的持续时间不超过16微秒,其他S1个时间子池的持续时间均不超过9微秒。
作为上述实施例的一个子实施例,所述S1属于{1,2,3,7}。
作为一个实施例,一个延时时段(defer duration)包括多个时隙时段(slot duration)。
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间是不连续的。
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间的时间间隔是7微秒。
作为一个实施例,一个附加延时时段(additional defer duration)的持续时间是16微秒再加上S2个9微秒,所述S2是正整数。
作为上述实施例的一个子实施例,一个附加延时时段包括所述Q个时间子池中的S2+1个时间子池。
作为上述子实施例的一个参考实施例,所述S2+1个时间子池中的第一个时间子池的持续时间不超过16微秒,其他S2个时间子池的持续时间均不超过9微秒。
作为上述实施例的一个子实施例,所述S2属于{1,2,3,7}。
作为一个实施例,一个延时时段的持续时间等于一个附加延时时段的持续时间。
作为一个实施例,所述S1等于所述S2。
作为一个实施例,一个附加延时时段(additional defer duration)包括多个时隙时段(slot duration)。
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间是不连续的。
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间的时间间隔是7微秒。
作为一个实施例,一个时隙时段(slot duration)的持续时间是9微秒。
作为一个实施例,一个时隙时段包括所述Q个时间子池中的1个时间子池。
作为上述实施例的一个子实施例,所述1个时间子池的持续时间均不超过9微秒。
作为一个实施例,一个附加时隙时段(additional slot duration)的持续时间是9微秒。
作为一个实施例,一个附加时隙时段包括所述Q个时间子池中的1个时间子池。
作为上述实施例的一个子实施例,所述1个时间子池的持续时间均不超过9微秒。
作为一个实施例,所述Q次能量检测都是Cat 4LBT(第四类型的LBT)中的能量检测,所述Cat 4LBT的具体定义参见3GPP TR36.889。
作为一个实施例,所述Q次能量检测都是第一类上行信道接入过程(Type 1UL channel access procedure)中的能量检测,所述第一节点是用户设备,所述第一类上行信道接入过程的具体定义参见3GPP TS36.213中的15.2章节。
作为一个实施例,所述K1属于{3,7,15,31,63,127,255,511,1023}。
作为一个实施例,所述K1CW p,所述CW p是竞争窗口(contention window)的大小,所述CW p的具体定义参见3GPP TS36.213中的15章节。
作为上述实施例的一个子实施例,所述K1是Cat 4LBT(第四类型的LBT)过程中的CW p,所述Cat 4LBT的具体定义参见3GPP TR36.889。
作为一个实施例,所述K1个备选整数分别是非负整数。
作为一个实施例,所述K1个备选整数为0,1,2,…,K1-1。
作为一个实施例,所述第一节点在所述K1个备选整数中随机选取所述Q3。
作为一个实施例,所述K1个备选整数中任一备选整数被选取作为所述Q3的概率都相等。
作为一个实施例,所述Q个时间子池中的任一时间子池占用的时域资源是连续的。
作为一个实施例,所述Q个时间子池在时域上是两两相互正交(不重叠)的。
作为一个实施例,所述Q个时间子池中的任一时间子池的持续时间是{16微秒、9微秒}中之一。
作为一个实施例,所述Q个时间子池中至少存在两个时间子池的持续时间不相等。
作为一个实施例,所述Q个时间子池中任意两个时间子池的持续时间都相等。
作为一个实施例,所述Q个时间子池占用的时域资源是连续的。
作为一个实施例,所述Q个时间子池中至少存在两个相邻的时间子池占用的时域资源是不连续。
作为一个实施例,所述Q个时间子池中任意两个相邻的时间子池占用的时域资源是不连续。
作为一个实施例,所述Q个时间子池中任一时间子池是一个时隙时段(slot duration)。
作为一个实施例,所述Q个时间子池中任一时间子池是T sl,所述T sl是一个时隙时段(slot duration),所述T sl的具体定义参见3GPP TS36.213中的15章节。
作为一个实施例,所述Q个时间子池中除了最早的时间子池以外的任一时间子池是一个时隙时段(slot duration)。
作为一个实施例,所述Q个时间子池中除了最早的时间子池以外的任一时间子池是T sl,所述T sl是一个时隙时段(slot duration),所述T sl的具体定义参见3GPP TS36.213中的15章节。
作为一个实施例,所述Q个时间子池中至少存在一个持续时间为16微秒的时间子池。
作为一个实施例,所述Q个时间子池中至少存在一个持续时间为9微秒的时间子池。
作为一个实施例,所述Q个时间子池中的最早的时间子池的持续时间为16微秒。
作为一个实施例,所述Q个时间子池中的最晚的时间子池的持续时间为9微秒。
作为一个实施例,所述Q个时间子池包括Cat 4(第四类)LBT中的监听时间。
作为一个实施例,所述Q个时间子池包括Cat 4(第四类)LBT中的延时时段(Defer Duration)中的时隙时段和回退时间(Backoff Time)中的时隙时段。
作为一个实施例,所述Q个时间子池包括Type 1UL channel access procedure(第一类上行信道接入过程)中的延时时段(Defer Duration)中的时隙时段和回退时间(Backoff Time)中的时隙时段。
作为一个实施例,所述Q个时间子池包括了初始CCA和eCCA(Enhanced Clear Channel  Assessment,增强的空闲信道评估)中的时隙时段。
作为一个实施例,所述Q个检测值分别是所述第一节点在Q个时间单元中在所述第一子频带上感知(Sense)所有无线信号的功率,并在时间上平均,以获得的接收功率;所述Q个时间单元分别是所述Q个时间子池中的一个持续时间段。
作为上述实施例的一个子实施例,所述Q个时间单元中的任一时间单元的持续时间不短于4微秒。
作为一个实施例,所述Q个检测值分别是所述第一节点在Q个时间单元中在所述第一子频带上感知(Sense)所有无线信号的能量,并在时间上平均,以获得的接收能量;所述Q个时间单元分别是所述Q个时间子池中的一个持续时间段。
作为上述实施例的一个子实施例,所述Q个时间单元中的任一时间单元的持续时间不短于4微秒。
作为一个实施例,所述Q3是不大于所述Q的非负整数。
作为一个实施例,所述Q3是小于所述Q的非负整数。
作为一个实施例,所述Q3大于0。
作为一个实施例,所述Q3等于0。
作为一个实施例,所述Q大于1。
作为一个实施例,所述Q个检测值单位都是dBm(毫分贝)。
作为一个实施例,所述Q个检测值的单位都是毫瓦(mW)。
作为一个实施例,所述Q个检测值的单位都是焦耳。
作为一个实施例,所述第一阈值的单位是dBm(毫分贝)。
作为一个实施例,所述第一阈值的单位是毫瓦(mW)。
作为一个实施例,所述第一阈值的单位是焦耳。
作为一个实施例,所述第一阈值等于或小于-72dBm。
作为一个实施例,所述第一阈值是等于或小于第一给定值的任意值。
作为上述实施例的一个子实施例,所述第一给定值是预定义的。
作为上述实施例的一个子实施例,所述第一给定值是由高层信令配置的,所述第一节点是用户设备。
作为一个实施例,所述第一阈值是由所述第一节点在等于或小于第一给定值的条件下自由选择的。
作为上述实施例的一个子实施例,所述第一给定值是预定义的。
作为上述实施例的一个子实施例,所述第一给定值是由高层信令配置的,所述第一节点是用户设备。
作为一个实施例,所述Q个检测值中不属于所述Q3个检测值的检测值中至少有一个检测值低于所述第一阈值。
作为一个实施例,所述Q个检测值均低于所述第一阈值。
作为一个实施例,所述Q个检测值中不属于所述Q3个检测值的检测值中至少有一个检测值不低于所述第一阈值。
作为一个实施例,所述Q3个时间子池只包括了eCCA中的时隙时段。
作为一个实施例,所述Q个时间子池包括所述Q3个时间子池和Q4个时间子池,所述Q4个时间子池中的任一时间子池不属于所述Q3个时间子池;所述Q4是不大于所述Q减所述Q3的正整数。
作为上述实施例的一个子实施例,所述Q4等于所述Q减所述Q3。
作为上述实施例的一个子实施例,所述Q4个时间子池包括了初始CCA中的时隙时段。
作为上述实施例的一个子实施例,所述Q4个时间子池在所述Q个时间子池中的位置是连续的。
作为上述实施例的一个子实施例,所述Q4个时间子池包括在附图10中的所有延时时段 内的所有时隙时段。
作为上述实施例的一个子实施例,所述Q4个时间子池包括至少一个附图10中的附加延时时段内的所有时隙时段。
作为上述实施例的一个子实施例,所述Q4个时间子池包括至少一个附图10中的附加时隙时段。
作为一个实施例,所述Q3个时间子池分别属于Q3个子池集合,所述Q3个子池集合中的任一子池集合包括所述Q个时间子池中的正整数个时间子池;所述Q3个子池集合中的任一时间子池对应的检测值低于所述第一阈值。
作为上述实施例的一个子实施例,所述Q3个子池集合中至少存在一个子池集合包括的时间子池的数量等于1。
作为上述实施例的一个子实施例,所述Q3个子池集合中至少存在一个子池集合包括的时间子池的数量大于1。
作为上述实施例的一个子实施例,所述Q3个子池集合中至少存在两个子池集合包括的时间子池的数量是不相等的。
作为上述实施例的一个子实施例,所述Q个时间子池中不存在一个时间子池同时属于所述Q3个子池集合中的两个子池集合。
作为上述实施例的一个子实施例,所述Q3个子池集合中任意一个子池集合中的所有时间子池属于同一个通过能量检测被判断为空闲的附加延时时段或附加时隙时段。
作为上述实施例的一个子实施例,所述Q个时间子池中不属于所述Q3个子池集合的时间子池中至少存在一个时间子池对应的检测值低于所述第一阈值。
作为上述实施例的一个子实施例,所述Q个时间子池中不属于所述Q3个子池集合的时间子池中至少存在一个时间子池对应的检测值不低于所述第一阈值。
实施例11
实施例11示例了P次能量检测的示意图;如附图11所示。
在实施例11中,本申请中的所述第一节点在本申请中的所述第二子频带上的P个时间子池中分别执行所述P次能量检测,得到P个检测值。所述P为本申请中的所述P2,所述P2大于P3,所述P3是K2个备选整数中的一个备选整数,所述K2是正整数。所述P个检测值被所述第一节点用于确定是否在所述第二子频带上的第一时刻发送第二无线信号。如果所述P个检测值中的P3个检测值均低于第三阈值,所述第一节点在所述第二子频带上的所述第一时刻发送所述第二无线信号,否则所述第一节点放弃在所述第二子频带上的所述第一时刻发送所述第二无线信号。P3个时间子池是所述P个时间子池中分别和所述P3个检测值对应的时间子池。所述P次能量检测的过程可以由附图11中的流程图来描述。
在附图11中,本申请中的所述第一节点在步骤S1101中处于闲置状态,在步骤S1102中判断是否需要发送;在步骤S1103中在所述第二子频带上的一个延迟时段(defer duration)内执行能量检测;在步骤S1104中判断这个延迟时段内的所有时隙时段是否都空闲(Idle),如果是,进行到步骤S1105中设置第一计数器等于所述P3;否则返回步骤S1104;在步骤S1106中判断所述第一计数器是否为0,如果是,进行到步骤S1107中在所述第二子频带上发送无线信号;否则进行到步骤S1108中在所述第二子频带上的一个附加时隙时段(additional slot duration)内执行能量检测;在步骤S1109中判断这个附加时隙时段是否空闲(Idle),如果是,进行到步骤S1110中把所述第一计数器减1,然后返回步骤S1106;否则进行到步骤S1111中在所述第二子频带上的一个附加延迟时段(additional defer duration)内执行能量检测;在步骤S1112中判断这个附加延迟时段内的所有时隙时段是否都空闲(Idle),如果是,进行到步骤S1110;否则返回步骤S1111。
在实施例11中,第一给定时段包括所述P个时间子池中的正整数个时间子池,所述第一给定时段是附图11中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任 意一个时段。第二给定时段包括所述P3个时间子池中的1个时间子池,所述第二给定时段是附图11中的一个附加时隙时段或者一个附加延时时段。
作为一个实施例,附图11中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中在时域上都位于本申请中的所述第一时刻之前。
作为一个实施例,如果所述第一计数器的值到本申请中的所述第一时刻尚未等于0,附图11中所示的所述P次能量检测过程被终止。
作为一个实施例,如果所述第一计数器在本申请中的所述第一时刻等于0,所述P次能量检测判断所述第二子频带空闲;否则所述P次能量检测判断所述第二子频带非空闲。
作为一个实施例,如果所述第一计数器在本申请中的所述第一时刻等于0,所述第一节点在所述第二子频带上的所述第一时刻发送所述第二无线信号,否则所述第一节点放弃在所述第二子频带上的所述第一时刻发送所述第二无线信号。
作为一个实施例,给定时段内的任意一个时隙时段(slot duration)包括所述P个时间子池中的一个时间子池;所述给定时段是附图11中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,在给定时段内执行能量检测是指:在所述给定时段内的所有时隙时段(slot duration)内执行能量检测;所述给定时段是附图11中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,在给定时段内执行能量检测是指:在所述给定时段内的所有时间子池内执行能量检测;所述给定时段是附图11中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段,所述所有时间子池属于所述P个时间子池,在所述所有时间子池内执行的能量检测是所述P次能量检测中和所述所有时间子池对应的能量检测。
作为一个实施例,给定时段通过能量检测被判断为空闲(Idle)是指:所述给定时段中包括的所有时隙时段通过能量检测都被判断为空闲(Idle);所述给定时段是附图11中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,给定时段通过能量检测被判断为空闲(Idle)是指:在所述给定时段中包括的所有时间子池中通过能量检测得到的检测值都低于所述第三阈值;所述给定时段是附图11中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段,所述所有时间子池属于所述P个时间子池,所述检测值是所述P个检测值中和所述所有时间子池对应的检测值。
作为一个实施例,给定时隙时段通过能量检测被判断为空闲(Idle)是指:所述第一节点在给定时间单元中在所述第二子频带上感知(Sense)所有无线信号的功率,并在时间上平均,所获得的接收功率低于所述第三阈值;所述给定时间单元是所述给定时隙时段中的一个持续时间段。
作为上述实施例的一个子实施例,所述给定时间单元的持续时间不短于4微秒。
作为一个实施例,给定时隙时段通过能量检测被判断为空闲(Idle)是指:所述第一节点在给定时间单元中在所述第二子频带上感知(Sense)所有无线信号的能量,并在时间上平均,所获得的接收能量低于所述第三阈值;所述给定时间单元是所述给定时隙时段中的一个持续时间段。
作为上述实施例的一个子实施例,所述给定时间单元的持续时间不短于4微秒。
作为一个实施例,给定时隙时段通过能量检测被判断为空闲(Idle)是指:所述第一节点在所述给定时隙时段包括的时间子池上进行能量检测,得到的检测值低于所述第三阈值;所述时间子池属于所述P个时间子池,所述检测值是所述P个检测值中和所述时间子池对应的检测值。
作为一个实施例,一个延时时段(defer duration)的持续时间是16微秒再加上S1个9微秒,所述S1是正整数。
作为上述实施例的一个子实施例,一个延时时段包括所述P个时间子池中的S1+1个时间 子池。
作为一个实施例,一个附加延时时段(additional defer duration)的持续时间是16微秒再加上S2个9微秒,所述S2是正整数。
作为上述实施例的一个子实施例,一个附加延时时段包括所述P个时间子池中的S2+1个时间子池。
作为一个实施例,一个时隙时段包括所述P个时间子池中的1个时间子池。
作为一个实施例,一个附加时隙时段包括所述P个时间子池中的1个时间子池。
作为一个实施例,当所述P为所述P2时,所述P次能量检测都是Cat 4LBT(第四类型的LBT)中的能量检测,所述Cat 4LBT的具体定义参见3GPP TR36.889。
作为一个实施例,当所述P为所述P2时,所述P次能量检测都是第一类上行信道接入过程(Type 1UL channel access procedure)中的能量检测,所述第一节点是用户设备,所述第一类上行信道接入过程的具体定义参见3GPP TS36.213中的15.2章节。
作为一个实施例,所述K2属于{3,7,15,31,63,127,255,511,1023}。
作为一个实施例,所述K2CW p,所述CW p是竞争窗口(contention window)的大小,所述CW p的具体定义参见3GPP TS36.213中的15章节。
作为上述实施例的一个子实施例,所述K2是Cat 4LBT(第四类型的LBT)过程中的CW p,所述Cat 4LBT的具体定义参见3GPP TR36.889。
作为一个实施例,所述K2个备选整数分别是非负整数。
作为一个实施例,所述K2个备选整数为0,1,2,…,K2-1。
作为一个实施例,所述第一节点在所述K2个备选整数中随机选取所述P3。
作为一个实施例,所述K2个备选整数中任一备选整数被选取作为所述P3的概率都相等。
作为一个实施例,所述P个时间子池中的任一时间子池占用的时域资源是连续的。
作为一个实施例,所述P个时间子池在时域上是两两相互正交(不重叠)的。
作为一个实施例,所述P个时间子池中的任一时间子池的持续时间是{16微秒、9微秒}中之一。
作为一个实施例,所述P个时间子池中至少存在两个时间子池的持续时间不相等。
作为一个实施例,所述P个时间子池中任意两个时间子池的持续时间都相等。
作为一个实施例,所述P个时间子池占用的时域资源是连续的。
作为一个实施例,所述P个时间子池中至少存在两个相邻的时间子池占用的时域资源是不连续。
作为一个实施例,所述P个时间子池中任意两个相邻的时间子池占用的时域资源是不连续。
作为一个实施例,所述P个时间子池中任一时间子池是一个时隙时段(slot duration)。
作为一个实施例,所述P个时间子池中任一时间子池是T sl,所述T sl是一个时隙时段(slot duration),所述T sl的具体定义参见3GPP TS36.213中的15章节。
作为一个实施例,所述P个时间子池中除了最早的时间子池以外的任一时间子池是一个时隙时段(slot duration)。
作为一个实施例,所述P个时间子池中除了最早的时间子池以外的任一时间子池是T sl,所述T sl是一个时隙时段(slot duration),所述T sl的具体定义参见3GPP TS36.213中的15章节。
作为一个实施例,所述P个时间子池中至少存在一个持续时间为16微秒的时间子池。
作为一个实施例,所述P个时间子池中至少存在一个持续时间为9微秒的时间子池。
作为一个实施例,所述P个时间子池中的最早的时间子池的持续时间为16微秒。
作为一个实施例,所述P个时间子池中的最晚的时间子池的持续时间为9微秒。
作为一个实施例,所述P个时间子池包括Cat 4(第四类)LBT中的监听时间。
作为一个实施例,所述P个时间子池包括Cat 4(第四类)LBT中的延时时段(Defer  Duration)中的时隙时段和回退时间(Backoff Time)中的时隙时段。
作为一个实施例,所述P个时间子池包括Type 1UL channel access procedure(第一类上行信道接入过程)中的延时时段(Defer Duration)中的时隙时段和回退时间(Backoff Time)中的时隙时段。
作为一个实施例,所述P个时间子池包括了初始CCA和eCCA(Enhanced Clear Channel Assessment,增强的空闲信道评估)中的时隙时段。
作为一个实施例,所述P个检测值分别是所述第一节点在P个时间单元中在所述第二子频带上感知(Sense)所有无线信号的功率,并在时间上平均,以获得的接收功率;所述P个时间单元分别是所述P个时间子池中的一个持续时间段。
作为上述实施例的一个子实施例,所述P个时间单元中的任一时间单元的持续时间不短于4微秒。
作为一个实施例,所述P个检测值分别是所述第一节点在P个时间单元中在所述第二子频带上感知(Sense)所有无线信号的能量,并在时间上平均,以获得的接收能量;所述P个时间单元分别是所述P个时间子池中的一个持续时间段。
作为上述实施例的一个子实施例,所述P个时间单元中的任一时间单元的持续时间不短于4微秒。
作为一个实施例,所述P3是不大于所述P2的非负整数。
作为一个实施例,所述P3是小于所述P2的非负整数。
作为一个实施例,所述P3大于0。
作为一个实施例,所述P3等于0。
作为一个实施例,所述P2大于1。
作为一个实施例,所述P2不小于所述P3加2。
作为一个实施例,所述P个检测值单位都是dBm(毫分贝)。
作为一个实施例,所述P个检测值的单位都是毫瓦(mW)。
作为一个实施例,所述P个检测值的单位都是焦耳。
作为一个实施例,所述第三阈值的单位是dBm(毫分贝)。
作为一个实施例,所述第三阈值的单位是毫瓦(mW)。
作为一个实施例,所述第三阈值的单位是焦耳。
作为一个实施例,所述第三阈值等于或小于-72dBm。
作为一个实施例,所述第三阈值是等于或小于第三给定值的任意值。
作为上述实施例的一个子实施例,所述第三给定值是预定义的。
作为上述实施例的一个子实施例,所述第三给定值是由高层信令配置的,所述第一节点是用户设备。
作为一个实施例,所述第三阈值是由所述第一节点在等于或小于第三给定值的条件下自由选择的。
作为上述实施例的一个子实施例,所述第三给定值是预定义的。
作为上述实施例的一个子实施例,所述第三给定值是由高层信令配置的,所述第一节点是用户设备。
作为一个实施例,所述P个检测值中不属于所述P3个检测值的检测值中至少有一个检测值低于所述第三阈值。
作为一个实施例,所述P个检测值均低于所述第三阈值。
作为一个实施例,所述P个检测值中不属于所述P3个检测值的检测值中至少有一个检测值不低于所述第三阈值。
作为一个实施例,所述P3个时间子池只包括了eCCA中的时隙时段。
作为一个实施例,第三给定时段包括所述P3个时间子池中的1个时间子池,所述第三给定时段是附图11中的任意一个附加时隙时段。
作为一个实施例,所述P个时间子池包括所述P3个时间子池和P4个时间子池,所述P4个时间子池中的任一时间子池不属于所述P3个时间子池;所述P4是不大于所述P减所述P3的正整数。
作为上述实施例的一个子实施例,所述P4等于所述P减所述P3。
作为上述实施例的一个子实施例,所述P4个时间子池包括了初始CCA中的时隙时段。
作为上述实施例的一个子实施例,所述P4个时间子池在所述P个时间子池中的位置是连续的。
作为上述实施例的一个子实施例,所述P4个时间子池包括在附图11中的所有延时时段内的所有时隙时段。
作为上述实施例的一个子实施例,所述P4个时间子池包括至少一个附图11中的附加延时时段内的所有时隙时段。
作为上述实施例的一个子实施例,所述P4个时间子池包括至少一个附图11中的附加时隙时段。
作为一个实施例,所述P3个时间子池分别属于P3个子池集合,所述P3个子池集合中的任一子池集合包括所述P个时间子池中的正整数个时间子池,所述P3个子池集合中任意一个子池集合中的所有时间子池属于同一个附加延时时段或附加时隙时段。
作为上述实施例的一个子实施例,所述P3个子池集合中至少存在一个子池集合包括的时间子池的数量等于1。
作为上述实施例的一个子实施例,所述P3个子池集合中至少存在一个子池集合包括的时间子池的数量大于1。
作为上述实施例的一个子实施例,所述P3个子池集合中至少存在两个子池集合包括的时间子池的数量是不相等的。
作为上述实施例的一个子实施例,所述P个时间子池中不存在一个时间子池同时属于所述P3个子池集合中的两个子池集合。
实施例12
实施例12示例了P次能量检测的示意图;如附图12所示。
在实施例12中,本申请中的所述第一节点在本申请中的所述第二子频带上的P个时间子池中分别执行所述P次能量检测,得到P个检测值。所述P为本申请中的所述P1,所述P1是一个固定值。所述P个检测值被所述第一节点用于确定是否在所述第二子频带上的第一时刻发送第二无线信号。如果所述P个检测值均低于第二阈值,所述第一节点在所述第二子频带上的所述第一时刻发送所述第二无线信号,所述第一节点否则放弃在所述第二子频带上的所述第一时刻发送所述第二无线信号。所述P次能量检测的过程可以由附图12中的流程图来描述。
在实施例12中,本申请中的所述第一节点在步骤S1201中处于闲置状态,在步骤S1202中判断是否需要发送;在步骤S1203中在一个感知时间(Sensing interval)内执行能量检测;在步骤S1204中判断这个感知时间内的所有时隙时段是否都空闲(Idle),如果是,进行到步骤S1205中在所述第二子频带上发送无线信号;否则返回步骤S1203。
在实施例12中,附图12中包括的{所有感知时间}中的任意一个感知时间所述P个时间子池中的正整数个时间子池。
作为一个实施例,附图12中包括的任意一个感知时间包括的任一时隙时段包括所述P个时间子池中的1个时间子池。
作为一个实施例,附图12中包括的所有感知时间中在时域上都位于本申请中的所述第一时刻之前。
作为一个实施例,如果在时域上位于本申请中的所述第一时刻之前并和所述第一时刻相邻的感知时间中的所有时隙时段并非都空闲,附图12中所示的所述P次能量检测过程被 终止。
作为一个实施例,如果在时域上位于所述第一时刻之前并和所述第一时刻相邻的感知时间中的所有时隙时段都空闲,所述P次能量检测判断所述第二子频带空闲;否则所述P次能量检测判断所述第二子频带非空闲。
作为一个实施例,如果在时域上位于所述第一时刻之前并和所述第一时刻相邻的感知时间中的所有时隙时段都空闲,所述第一节点在所述第二子频带上的所述第一时刻发送所述第二无线信号,否则所述第一节点放弃在所述第二子频带上的所述第一时刻发送所述第二无线信号。
作为一个实施例,一个感知时间(Sensing interval)的持续时间是25微秒。
作为一个实施例,一个感知时间包括2个时隙时段,所述2个时隙时段在时域是不连续的。
作为上述实施例的一个子实施例,所述2个时隙时段中的时间间隔是7微秒。
作为一个实施例,所述P1等于2。
作为一个实施例,所述P1是默认的(不需要配置的)。
作为一个实施例,所述P1是预定义的。
作为一个实施例,所述P1是预先配置的。
作为一个实施例,当所述P为所述P1时,所述P次能量检测都是Cat 2LBT(第二类型的LBT)中的能量检测,所述Cat 2LBT的具体定义参见3GPP TR36.889。
作为一个实施例,当所述P为所述P1时,所述P次能量检测都是第二类上行信道接入过程(Type 2UL channel access procedure)中的能量检测,所述第一节点是用户设备,所述第二类上行信道接入过程的具体定义参见3GPP TS36.213中的15.2章节。
作为一个实施例,所述P个时间子池包括Cat 2(第二类)LBT中的监听时间。
作为一个实施例,所述P个时间子池包括Type 2UL channel access procedure(第二类上行信道接入过程)中的感知时间间隔(sensing interval)中的时隙时段,所述感知时间间隔的具体定义参见3GPP TS36.213中的15.2章节。
作为上述实施例的一个子实施例,所述感知时间间隔的持续时间是25微秒。
作为一个实施例,所述P个时间子池包括Type 2UL channel access procedure(第二类上行信道接入过程)中的感知时间间隔(sensing interval)中的T f和T sl,所述T f和所述T sl是两个时间间隔,所述T f和所述T sl的具体定义参见3GPP TS36.213中的15.2章节。
作为上述实施例的一个子实施例,所述T f的持续时间是16微秒。
作为上述实施例的一个子实施例,所述T sl的持续时间是9微秒。
作为一个实施例,所述P个时间子池中的第一个时间子池的持续时间是16微秒,所述P个时间子池中的第二个时间子池的持续时间是9微秒,所述P等于2。
作为一个实施例,所述P个时间子池的持续时间都是9微秒;所述P个时间子池中的第一个时间子池和第二个时间子池之间的时间间隔是7微秒,所述P等于2。
作为一个实施例,所述P个检测值单位都是dBm(毫分贝)。
作为一个实施例,所述P个检测值的单位都是毫瓦(mW)。
作为一个实施例,所述P个检测值的单位都是焦耳。
作为一个实施例,所述第二阈值的单位是dBm(毫分贝)。
作为一个实施例,所述第二阈值的单位是毫瓦(mW)。
作为一个实施例,所述第二阈值的单位是焦耳。
作为一个实施例,所述第二阈值等于或小于-72dBm。
作为一个实施例,所述第二阈值是等于或小于第二给定值的任意值。
作为上述实施例的一个子实施例,所述第二给定值是预定义的。
作为上述实施例的一个子实施例,所述第二给定值是由高层信令配置的,所述第一节点是用户设备。
作为一个实施例,所述第二阈值是由所述第一节点在等于或小于第二给定值的条件下自由选择的。
作为上述实施例的一个子实施例,所述第二给定值是预定义的。
作为上述实施例的一个子实施例,所述第二给定值是由高层信令配置的,所述第一节点是用户设备。
实施例13
实施例13示例了给定能量检测被关联到给定天线端口组的示意图;如附图13所示。所述给定能量检测是本申请中的所述Q次能量检测中的一次能量检测,所述给定天线端口组是本申请中的所述第一天线端口组;或者所述给定能量检测是本申请中的所述P次能量检测中的一次能量检测,所述给定天线端口组是本申请中的所述第一天线端口组;或者所述给定能量检测是本申请中的所述P次能量检测中的一次能量检测,所述给定天线端口组是本申请中的所述第二天线端口组。
在附图13中,粗实线边框的椭圆表示所述给定天线端口组中的所有天线端口所对应的发送波束在空间上的覆盖范围的集合,小点填充的椭圆表示所述给定能量检测所对应的接收波束在空间上的覆盖范围。
作为一个实施例,所述给定能量检测均被关联到所述给定天线端口组是指:所述给定天线端口组中的所有天线端口所对应的发送波束在空间上的覆盖范围的集合和所述给定能量检测所对应的接收波束在空间上的覆盖范围是重合的。
作为一个实施例,给定能量检测被关联到给定天线端口组是指:所述给定天线端口组中的天线端口对应的波束赋型向量被用作所述给定能量检测中使用的接收波束赋型向量。
作为一个实施例,给定能量检测被关联到给定天线端口组是指:所述给定天线端口组中的天线端口对应的模拟波束赋型矩阵被用作所述给定能量检测中使用的接收模拟波束赋型矩阵。
作为一个实施例,给定能量检测被关联到给定天线端口组是指:所述给定天线端口组中的天线端口对应的发送空间滤波(spatial filtering)被用作所述给定能量检测中使用的接收空间滤波(spatial filtering)。
作为一个实施例,给定能量检测被关联到给定天线端口组是指:本申请中的所述第一节点在所述给定能量检测中用所述给定天线端口组中的天线端口对应的波束赋型向量监测接收功率或接收能量。
作为一个实施例,给定能量检测被关联到给定天线端口组是指:本申请中的所述第一节点在所述给定能量检测中用所述给定天线端口组中的天线端口对应的波束赋型向量感知所有无线信号的功率或能量。
作为一个实施例,给定能量检测被关联到给定天线端口组是指:本申请中的所述第一节点在所述给定能量检测中用所述给定天线端口组中的天线端口对应的模拟波束赋型矩阵监测接收功率或接收能量。
作为一个实施例,给定能量检测被关联到给定天线端口组是指:本申请中的所述第一节点在所述给定能量检测中用所述给定天线端口组中的天线端口对应的模拟波束赋型矩阵感知所有无线信号的功率或能量。
作为一个实施例,给定能量检测被关联到给定天线端口组是指:本申请中的所述第一节点在所述给定能量检测中用所述给定天线端口组中的天线端口对应的空间滤波(spatial filtering)监测接收功率或接收能量。
作为一个实施例,给定能量检测被关联到给定天线端口组是指:本申请中的所述第一节点在所述给定能量检测中用所述给定天线端口组中的天线端口对应的空间滤波(spatial filtering)感知所有无线信号的功率或能量。
实施例14
实施例14示例了给定能量检测被关联到给定天线端口组的示意图;如附图14所示。所述给定能量检测是本申请中的所述Q次能量检测中的一次能量检测,所述给定天线端口组是本申请中的所述第一天线端口组;或者所述给定能量检测是本申请中的所述P次能量检测中的一次能量检测,所述给定天线端口组是本申请中的所述第一天线端口组;或者所述给定能量检测是本申请中的所述P次能量检测中的一次能量检测,所述给定天线端口组是本申请中的所述第二天线端口组。
在附图14中,粗实线边框的椭圆表示所述给定天线端口组中的所有天线端口所对应的发送波束在空间上的覆盖范围的集合,小点填充的椭圆表示所述给定能量检测所对应的接收波束在空间上的覆盖范围。
作为一个实施例,所述给定能量检测被关联到所述给定天线端口组是指:所述给定能量检测所对应的接收波束在空间上的覆盖范围位于所述第一天线端口组中的所有天线端口所对应的发送波束在空间上的覆盖范围的集合之内。
实施例15
实施例15示例了给定能量检测被关联到给定天线端口组的示意图;如附图15所示。所述给定能量检测是本申请中的所述Q次能量检测中的一次能量检测,所述给定天线端口组是本申请中的所述第一天线端口组;或者所述给定能量检测是本申请中的所述P次能量检测中的一次能量检测,所述给定天线端口组是本申请中的所述第一天线端口组;或者所述给定能量检测是本申请中的所述P次能量检测中的一次能量检测,所述给定天线端口组是本申请中的所述第二天线端口组。
在附图15中,粗实线边框的椭圆表示所述给定天线端口组中的所有天线端口所对应的发送波束在空间上的覆盖范围的集合,小点填充的椭圆表示所述给定能量检测所对应的接收波束在空间上的覆盖范围。
作为一个实施例,所述给定能量检测被关联到给定天线端口组是指:所述给定天线端口组中的任一天线端口所对应的发送波束在空间上的覆盖范围在所述给定能量检测所对应的接收波束在空间上的覆盖范围之内。
实施例16
实施例16示例了第一子频带组合的示意图;如附图16所示。
在实施例16中,所述第一子频带组合包括正整数个子频带,本申请中的所述第一子频带和本申请中的所述第二子频带都属于所述第一子频带组合。在附图16中,所述正整数个子频带的索引分别是{#0,...,#x,...,#y,...},其中,所述x和所述y分别是正整数,所述y大于所述x。
作为一个实施例,所述第一子频带组合中所有子频带的载波频率(carrier frequency)组成一个载波频率集合的子集,所述载波频率集合的定义参见3GPP TS36.104的5.7.4章节。
作为一个实施例,所述第一子频带组合由所述第一子频带和所述第二子频带组成。
作为一个实施例,所述第一子频带组合包括所述第一子频带和所述第二子频带之外的字频带。
作为一个实施例,所述第一子频带组合组成一个载波(Carrier),所述正整数个子频带是所述载波中的正整数个BWP。
作为一个实施例,所述正整数个子频带中的任意一个子频带是一个载波(Carrier)。
作为一个实施例,所述第一子频带组合属于给定载波,所述给定载波对应一个服务小区。
作为一个实施例,所述正整数个子频带对应一个服务小区。
作为一个实施例,所述第一子频带组合中任意两个在频域相邻的子频带之间在频域存在 保护间隔。
实施例17
实施例17示例了用于第一节点中的处理装置的结构框图;如附图17所示。在附图17中,第一节点中的处理装置1700主要由第一处理器1701,第一接收机1702,第一发送机1703,第二发送机1704和第二处理器1705组成。在附图17中,虚线框是可选的。
在实施例17中,第一处理器1701在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值,并仅根据所述Q个检测值判断在所述第一子频带上的第一时刻发送第一无线信号;第一接收机1702在第二子频带上的P个时间子池中分别执行P次能量检测,得到P个检测值;第一发送机1703在所述第二子频带上的所述第一时刻发送第二无线信号,或者,放弃在所述第二子频带上的所述第一时刻发送所述第二无线信号;第二发送机1704在所述第一子频带上的所述第一时刻发送所述第一无线信号;第二处理器1705操作第一信令和第二信令中的至少之一。
在实施例17中,所述P个检测值被所述第一发送机1703用于确定是否在所述第二子频带上的所述第一时刻发送所述第二无线信号;所述Q次能量检测均被关联到第一天线端口组;如果所述P次能量检测均被关联到所述第一天线端口组,所述P为P1,否则所述P为P2;所述Q是正整数;所述P1和所述P2是两个互不相等的正整数;一个天线端口组包括正整数个天线端口;所述第一节点是基站,或者所述第一节点是用户设备。所述第一信令和所述第二信令分别包括所述第一无线信号的调度信息和所述第二无线信号的调度信息;所述操作是发送,所述第一节点是基站;或者所述操作是接收,所述第一节点是用户设备。
作为一个实施例,所述P为所述P1,所述P1是一个固定值;如果所述P个检测值均低于第二阈值,所述第一发送机1703在所述第二子频带上的所述第一时刻发送所述第二无线信号,否则所述第一发送机1703放弃在所述第二子频带上的所述第一时刻发送所述第二无线信号。
作为一个实施例,所述P为所述P2,所述P2大于P3,所述P3是K2个备选整数中的一个备选整数;如果所述P个检测值中的P3个检测值均低于第三阈值,所述第一发送机1703在所述第二子频带上的所述第一时刻发送所述第二无线信号,否则所述第一发送机1703放弃在所述第二子频带上的所述第一时刻发送所述第二无线信号;所述K2是正整数。
作为一个实施例,所述第一无线信号的至少一个发送天线端口和所述第一天线端口组中的一个天线端口准共址;所述第二无线信号的至少一个发送天线端口和第二天线端口组中的一个天线端口准共址,所述P次能量检测均被关联到所述第二天线端口组。
作为一个实施例,所述Q个检测值被所述第二发送机1704用于判断在所述第一子频带上的所述第一时刻发送所述第一无线信号;所述Q个检测值中的Q3个检测值均低于第一阈值,所述Q3是K1个备选整数中的一个备选整数,所述K1是正整数。
作为一个实施例,所述第二处理器1705还接收第一信息;其中,所述第一节点是用户设备;所述第一信息被用于确定第一子频带组合,所述第一子频带组合包括正整数个子频带,所述第一子频带和所述第二子频带都属于所述第一子频带组合。
作为一个实施例,所述第一处理器1701包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459}中的至少之一,所述第一节点是用户设备。
作为一个实施例,所述第一处理器1701包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475}中的至少之一,所述第一节点是基站。
作为一个实施例,所述第一接收机1702包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459}中的至少之一,所述第一节点是用户设备。
作为一个实施例,所述第一接收机1702包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475}中的至少之一,所述第一节点是基站。
作为一个实施例,所述第一发送机1703包括实施例4中的{天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一,所述第一节点是用户设备。
作为一个实施例,所述第一发送机1703包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一,所述第一节点是基站。
作为一个实施例,所述第二发送机1704包括实施例4中的{天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一,所述第一节点是用户设备。
作为一个实施例,所述第二发送机1704包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一,所述第一节点是基站。
作为一个实施例,所述第二处理器1705包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一,所述第一节点是用户设备。
作为一个实施例,所述第二处理器1705包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一,所述第一节点是基站。
实施例18
实施例18示例了用于第二节点中的处理装置的结构框图,如附图18所示。在附图18中,第二节点中的处理装置1800主要由第二接收机1801,第三接收机1802和第三处理器1803组成。在附图18中,虚线框是可选的。
在实施例18中,第二接收机1801在第一子频带上的第一时刻接收第一无线信号;第三接收机1802在第二子频带上的所述第一时刻监测第二无线信号;第三处理器1803处理第一信令和第二信令中的至少之一。
在实施例18中,Q个检测值被用于判断在所述第一子频带上的所述第一时刻发送所述第一无线信号,所述Q个检测值分别由Q次能量检测得到,所述Q次能量检测分别在所述第一子频带上的Q个时间子池中被执行;P个检测值被用于判断是否在所述第二子频带上的所述第一时刻发送所述第二无线信号,所述P个检测值分别由P次能量检测得到,所述P次能量检测分别在所述第二子频带上的P个时间子池中被执行;所述Q次能量检测均被关联到第一天线端口组;如果所述P次能量检测均被关联到所述第一天线端口组,所述P为P1,否则所述P为P2;所述P1和所述P2是两个互不相等的正整数;所述Q是正整数;一个天线端口组包括正整数个天线端口;所述第二节点是用户设备,或者所述第二节点是基站。所述第一信令和所述第二信令分别包括所述第一无线信号的调度信息和所述第二无线信号的调度信息;所述处理是接收,所述第二节点是用户设备;或者所述处理是发送,所述第二节点是基站。
作为一个实施例,所述Q个检测值中的Q3个检测值均低于第一阈值,所述Q3是K1个备选整数中的一个备选整数,所述K1是正整数。
作为一个实施例,所述P为所述P1,所述P1是一个固定值;如果所述P个检测值均低于第二阈值,所述第二无线信号在所述第二子频带上的所述第一时刻被发送,否则所述第二无线信号在所述第二子频带上的所述第一时刻不被发送。
作为一个实施例,所述P为所述P2,所述P2大于P3,所述P3是K2个备选整数中的一个备选整数;如果所述P个检测值中的P3个检测值均低于第三阈值,所述第二无线信号在所 述第二子频带上的所述第一时刻被发送,否则所述第二无线信号在所述第二子频带上的所述第一时刻不被发送;所述K2是正整数。
作为一个实施例,所述第一无线信号的至少一个发送天线端口和所述第一天线端口组中的一个天线端口准共址;所述第二无线信号的至少一个发送天线端口和第二天线端口组中的一个天线端口准共址,所述P次能量检测均被关联到所述第二天线端口组。
作为一个实施例,所述第三处理器1803发送第一信息;其中,所述第二节点是基站;所述第一信息被用于确定第一子频带组合,所述第一子频带组合包括正整数个子频带,所述第一子频带和所述第二子频带都属于所述第一子频带组合。
作为一个实施例,所述第二接收机1801包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一,所述第二节点是用户设备。
作为一个实施例,所述第二接收机1801包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一,所述第二节点是基站。
作为一个实施例,所述第三接收机1802包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一,所述第二节点是用户设备。
作为一个实施例,所述第三接收机1802包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一,所述第二节点是基站。
作为一个实施例,所述第三处理器1803包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一,所述第二节点是用户设备。
作为一个实施例,所述第三处理器1803包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一,所述第二节点是基站。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B),TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;仅根据所述Q个检测值判断在所述第一子频带上的第一时刻发送第一无线信号;
    在第二子频带上的P个时间子池中分别执行P次能量检测,得到P个检测值;
    在所述第二子频带上的所述第一时刻发送第二无线信号,或者,放弃在所述第二子频带上的所述第一时刻发送所述第二无线信号;
    其中,所述Q是正整数;所述P个检测值被用于确定是否在所述第二子频带上的所述第一时刻发送所述第二无线信号;所述Q次能量检测均被关联到第一天线端口组;如果所述P次能量检测均被关联到所述第一天线端口组,所述P为P1,否则所述P为P2;所述P1和所述P2是两个互不相等的正整数;一个天线端口组包括正整数个天线端口;所述第一节点是基站,或者所述第一节点是用户设备。
  2. 根据权利要求1所述的方法,其特征在于,包括:
    在所述第一子频带上的所述第一时刻发送所述第一无线信号,其中,所述Q个检测值被用于判断在所述第一子频带上的所述第一时刻发送所述第一无线信号,所述Q个检测值中的Q3个检测值均低于第一阈值,所述Q3是K1个备选整数中的一个备选整数,所述K1是正整数;
    或者,接收第一信息,其中,所述第一节点是用户设备,所述第一信息被用于确定第一子频带组合,所述第一子频带组合包括正整数个子频带,所述第一子频带和所述第二子频带都属于所述第一子频带组合;
    或者,接收第一信息,并且在所述第一子频带上的所述第一时刻发送所述第一无线信号,其中,所述Q个检测值被用于判断在所述第一子频带上的所述第一时刻发送所述第一无线信号,所述Q个检测值中的Q3个检测值均低于第一阈值,所述Q3是K1个备选整数中的一个备选整数,所述K1是正整数,所述第一节点是用户设备,所述第一信息被用于确定第一子频带组合,所述第一子频带组合包括正整数个子频带,所述第一子频带和所述第二子频带都属于所述第一子频带组合。
  3. 根据权利要求1所述的方法,其特征在于,所述P为所述P1,所述P1是一个固定值,如果所述P个检测值均低于第二阈值,在所述第二子频带上的所述第一时刻发送所述第二无线信号,否则放弃在所述第二子频带上的所述第一时刻发送所述第二无线信号;或者,所述P为所述P2,所述P2大于P3,所述P3是K2个备选整数中的一个备选整数,如果所述P个检测值中的P3个检测值均低于第三阈值,在所述第二子频带上的所述第一时刻发送所述第二无线信号,否则放弃在所述第二子频带上的所述第一时刻发送所述第二无线信号,所述K2是正整数。
  4. 根据权利要求1所述的方法,其特征在于,包括:
    操作第一信令和第二信令中的至少之一;
    其中,所述第一信令和所述第二信令分别包括所述第一无线信号的调度信息和所述第二无线信号的调度信息;所述操作是发送,所述第一节点是基站;或者所述操作是接收,所述第一节点是用户设备。
  5. 根据权利要求1所述的方法,其特征在于,所述第一无线信号的至少一个发送天线端口和所述第一天线端口组中的一个天线端口准共址;所述第二无线信号的至少一个发送天线端口和第二天线端口组中的一个天线端口准共址,所述P次能量检测均被关联到所述第二天线端口组。
  6. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    在第一子频带上的第一时刻接收第一无线信号;
    在第二子频带上的所述第一时刻监测第二无线信号;
    其中,Q个检测值被用于判断在所述第一子频带上的所述第一时刻发送所述第一无线信号,所述Q个检测值分别由Q次能量检测得到,所述Q次能量检测分别在所述第一子频带上 的Q个时间子池中被执行;P个检测值被用于判断是否在所述第二子频带上的所述第一时刻发送所述第二无线信号,所述P个检测值分别由P次能量检测得到,所述P次能量检测分别在所述第二子频带上的P个时间子池中被执行;所述Q次能量检测均被关联到第一天线端口组;如果所述P次能量检测均被关联到所述第一天线端口组,所述P为P1,否则所述P为P2;所述P1和所述P2是两个互不相等的正整数;所述Q是正整数;一个天线端口组包括正整数个天线端口;所述第二节点是用户设备,或者所述第二节点是基站。
  7. 根据权利要求6所述的方法,其特征在于,所述Q个检测值中的Q3个检测值均低于第一阈值,所述Q3是K1个备选整数中的一个备选整数,所述K1是正整数;
    或者,所述第一无线信号的至少一个发送天线端口和所述第一天线端口组中的一个天线端口准共址,所述第二无线信号的至少一个发送天线端口和第二天线端口组中的一个天线端口准共址,所述P次能量检测均被关联到所述第二天线端口组;
    或者,所述Q个检测值中的Q3个检测值均低于第一阈值,所述Q3是K1个备选整数中的一个备选整数,所述K1是正整数,所述第一无线信号的至少一个发送天线端口和所述第一天线端口组中的一个天线端口准共址,所述第二无线信号的至少一个发送天线端口和第二天线端口组中的一个天线端口准共址,所述P次能量检测均被关联到所述第二天线端口组。
  8. 根据权利要求6所述的方法,其特征在于,所述P为所述P1,所述P1是一个固定值,如果所述P个检测值均低于第二阈值,所述第二无线信号在所述第二子频带上的所述第一时刻被发送,否则所述第二无线信号在所述第二子频带上的所述第一时刻不被发送;或者,所述P为所述P2,所述P2大于P3,所述P3是K2个备选整数中的一个备选整数,如果所述P个检测值中的P3个检测值均低于第三阈值,所述第二无线信号在所述第二子频带上的所述第一时刻被发送,否则所述第二无线信号在所述第二子频带上的所述第一时刻不被发送,所述K2是正整数。
  9. 根据权利要求6所述的方法,其特征在于,包括:
    处理第一信令和第二信令中的至少之一,其中,所述第一信令和所述第二信令分别包括所述第一无线信号的调度信息和所述第二无线信号的调度信息,所述处理是接收且所述第二节点是用户设备或所述处理是发送且所述第二节点是基站;
    或者,发送第一信息,其中,所述第二节点是基站,所述第一信息被用于确定第一子频带组合,所述第一子频带组合包括正整数个子频带,所述第一子频带和所述第二子频带都属于所述第一子频带组合;
    或者,发送第一信令和第二信令中的至少之一,并发送第一信息,其中,所述第一信令和所述第二信令分别包括所述第一无线信号的调度信息和所述第二无线信号的调度信息,所述第二节点是基站,所述第一信息被用于确定第一子频带组合,所述第一子频带组合包括正整数个子频带,所述第一子频带和所述第二子频带都属于所述第一子频带组合。
  10. 一种被用于无线通信的第一节点中的设备,其特征在于,包括:
    第一处理器,在第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值;仅根据所述Q个检测值判断在所述第一子频带上的第一时刻发送第一无线信号;
    第一接收机,在第二子频带上的P个时间子池中分别执行P次能量检测,得到P个检测值;
    第一发送机,在所述第二子频带上的所述第一时刻发送第二无线信号,或者,放弃在所述第二子频带上的所述第一时刻发送所述第二无线信号;
    其中,所述Q是正整数;所述P个检测值被用于确定是否在所述第二子频带上的所述第一时刻发送所述第二无线信号;所述Q次能量检测均被关联到第一天线端口组;如果所述P次能量检测均被关联到所述第一天线端口组,所述P为P1,否则所述P为P2;所述P1和所述P2是两个互不相等的正整数;一个天线端口组包括正整数个天线端口;所述第一节点是基站,或者所述第一节点是用户设备。
  11. 根据权利要求10所述的第一节点中的设备,其特征在于,包括:
    第二发送机,在所述第一子频带上的所述第一时刻发送所述第一无线信号;
    其中,所述Q个检测值被用于判断在所述第一子频带上的所述第一时刻发送所述第一无线信号;所述Q个检测值中的Q3个检测值均低于第一阈值,所述Q3是K1个备选整数中的一个备选整数,所述K1是正整数。
  12. 根据权利要求10所述的第一节点中的设备,其特征在于,包括:
    第二处理器,操作第一信令和第二信令中的至少之一;
    其中,所述第一信令和所述第二信令分别包括所述第一无线信号的调度信息和所述第二无线信号的调度信息;所述操作是发送,所述第一节点是基站;或者所述操作是接收,所述第一节点是用户设备。
  13. 根据权利要求10所述的第一节点中的设备,其特征在于,所述P为所述P1,所述P1是一个固定值;如果所述P个检测值均低于第二阈值,在所述第二子频带上的所述第一时刻发送所述第二无线信号,否则放弃在所述第二子频带上的所述第一时刻发送所述第二无线信号。
  14. 根据权利要求10所述的第一节点中的设备,其特征在于,所述P为所述P2,所述P2大于P3,所述P3是K2个备选整数中的一个备选整数;如果所述P个检测值中的P3个检测值均低于第三阈值,在所述第二子频带上的所述第一时刻发送所述第二无线信号,否则放弃在所述第二子频带上的所述第一时刻发送所述第二无线信号;所述K2是正整数。
  15. 根据权利要求10所述的第一节点中的设备,其特征在于,所述第二处理器还接收第一信息;其中,所述第一节点是用户设备;所述第一信息被用于确定第一子频带组合,所述第一子频带组合包括正整数个子频带,所述第一子频带和所述第二子频带都属于所述第一子频带组合。
  16. 根据权利要求10所述的第一节点中的设备,其特征在于,所述第一无线信号的至少一个发送天线端口和所述第一天线端口组中的一个天线端口准共址;所述第二无线信号的至少一个发送天线端口和第二天线端口组中的一个天线端口准共址,所述P次能量检测均被关联到所述第二天线端口组。
  17. 一种被用于无线通信的第二节点中的设备,其特征在于,包括:
    第二接收机,在第一子频带上的第一时刻接收第一无线信号;
    第三接收机,在第二子频带上的所述第一时刻监测第二无线信号;
    其中,Q个检测值被用于判断在所述第一子频带上的所述第一时刻发送所述第一无线信号,所述Q个检测值分别由Q次能量检测得到,所述Q次能量检测分别在所述第一子频带上的Q个时间子池中被执行;P个检测值被用于判断是否在所述第二子频带上的所述第一时刻发送所述第二无线信号,所述P个检测值分别由P次能量检测得到,所述P次能量检测分别在所述第二子频带上的P个时间子池中被执行;所述Q次能量检测均被关联到第一天线端口组;如果所述P次能量检测均被关联到所述第一天线端口组,所述P为P1,否则所述P为P2;所述P1和所述P2是两个互不相等的正整数;所述Q是正整数;一个天线端口组包括正整数个天线端口;所述第二节点是用户设备,或者所述第二节点是基站。
  18. 根据权利要求17所述的第二节点中的设备,其特征在于,
    包括第三处理器,处理第一信令和第二信令中的至少之一,其中,所述第一信令和所述第二信令分别包括所述第一无线信号的调度信息和所述第二无线信号的调度信息,所述处理是接收且所述第二节点是用户设备或所述处理是发送且所述第二节点是基站;
    或者,包括第三处理器,发送第一信息,其中,所述第二节点是基站,所述第一信息被用于确定第一子频带组合,所述第一子频带组合包括正整数个子频带,所述第一子频带和所述第二子频带都属于所述第一子频带组合;
    或者,包括第三处理器,发送第一信令和第二信令中的至少之一,并发送第一信息,其中,所述第一信令和所述第二信令分别包括所述第一无线信号的调度信息和所述第二无线信号的调度信息,所述第二节点是基站,所述第一信息被用于确定第一子频带组合,所述第一 子频带组合包括正整数个子频带,所述第一子频带和所述第二子频带都属于所述第一子频带组合。
  19. 根据权利要求17所述的第二节点中的设备,其特征在于,所述Q个检测值中的Q3个检测值均低于第一阈值,所述Q3是K1个备选整数中的一个备选整数,所述K1是正整数;
    或者,所述第一无线信号的至少一个发送天线端口和所述第一天线端口组中的一个天线端口准共址,所述第二无线信号的至少一个发送天线端口和第二天线端口组中的一个天线端口准共址,所述P次能量检测均被关联到所述第二天线端口组;
    或者,所述Q个检测值中的Q3个检测值均低于第一阈值,所述Q3是K1个备选整数中的一个备选整数,所述K1是正整数,所述第一无线信号的至少一个发送天线端口和所述第一天线端口组中的一个天线端口准共址,所述第二无线信号的至少一个发送天线端口和第二天线端口组中的一个天线端口准共址,所述P次能量检测均被关联到所述第二天线端口组。
  20. 根据权利要求17所述的第二节点中的设备,其特征在于,所述P为所述P1,所述P1是一个固定值,如果所述P个检测值均低于第二阈值,所述第二无线信号在所述第二子频带上的所述第一时刻被发送,否则所述第二无线信号在所述第二子频带上的所述第一时刻不被发送;或者,所述P为所述P2,所述P2大于P3,所述P3是K2个备选整数中的一个备选整数,如果所述P个检测值中的P3个检测值均低于第三阈值,所述第二无线信号在所述第二子频带上的所述第一时刻被发送,否则所述第二无线信号在所述第二子频带上的所述第一时刻不被发送,所述K2是正整数。
PCT/CN2019/071529 2018-01-29 2019-01-14 一种被用于无线通信的用户设备、基站中的方法和装置 WO2019144821A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/937,573 US11418966B2 (en) 2018-01-29 2020-07-23 Method and device for wireless communication in UE and base station
US17/860,061 US20220345898A1 (en) 2018-01-29 2022-07-07 Method and device for wireless communication in ue and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810084834.3 2018-01-29
CN201810084834.3A CN110099454B (zh) 2018-01-29 2018-01-29 一种被用于无线通信的用户设备、基站中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/937,573 Continuation US11418966B2 (en) 2018-01-29 2020-07-23 Method and device for wireless communication in UE and base station

Publications (1)

Publication Number Publication Date
WO2019144821A1 true WO2019144821A1 (zh) 2019-08-01

Family

ID=67395195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071529 WO2019144821A1 (zh) 2018-01-29 2019-01-14 一种被用于无线通信的用户设备、基站中的方法和装置

Country Status (3)

Country Link
US (2) US11418966B2 (zh)
CN (1) CN110099454B (zh)
WO (1) WO2019144821A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114080032A (zh) * 2020-08-14 2022-02-22 大唐移动通信设备有限公司 多天线系统的资源复用方法、网络设备、装置和存储介质
CN114245396A (zh) * 2020-09-09 2022-03-25 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103686827A (zh) * 2012-09-18 2014-03-26 电信科学技术研究院 频谱感知及其控制方法、装置以及一种基站
WO2017034237A1 (ko) * 2015-08-21 2017-03-02 엘지전자 주식회사 무선 통신 시스템에서 채널 엑세스 방법 및 이를 수행하는 장치
CN106664723A (zh) * 2014-07-29 2017-05-10 华为技术有限公司 用于利用空间‑特定感测进行通信的设备、网络和方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9860776B2 (en) * 2014-06-20 2018-01-02 Qualcomm Incorporated Method and apparatus for reducing self-jamming of transmissions on adjacent carriers
US9743363B2 (en) * 2014-06-24 2017-08-22 Qualcomm Incorporated CCA clearance in unlicensed spectrum
US9912438B2 (en) * 2015-02-11 2018-03-06 Qualcomm Incorporated Techniques for managing a plurality of radio access technologies accessing a shared radio frequency spectrum band
CN106686727B (zh) * 2015-11-05 2022-04-29 中兴通讯股份有限公司 多载波的竞争接入方法、装置及系统
CN113518455A (zh) * 2017-12-19 2021-10-19 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019136681A1 (zh) * 2018-01-12 2019-07-18 南通朗恒通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019144315A1 (zh) * 2018-01-24 2019-08-01 南通朗恒通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103686827A (zh) * 2012-09-18 2014-03-26 电信科学技术研究院 频谱感知及其控制方法、装置以及一种基站
CN106664723A (zh) * 2014-07-29 2017-05-10 华为技术有限公司 用于利用空间‑特定感测进行通信的设备、网络和方法
WO2017034237A1 (ko) * 2015-08-21 2017-03-02 엘지전자 주식회사 무선 통신 시스템에서 채널 엑세스 방법 및 이를 수행하는 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Draft CR on Multi-carrier LBT for Uplink Transmission", 3GPP TSG-RAN MEETING #87 RL-1612769, 18 November 2016 (2016-11-18), XP051176711 *
HUAWEI ET AL.: "Coexistence and channel access for NR-based unlicensed band operation", 3GPP TSG RAN WG1 MEETING 90BIS RL-1717914, 13 October 2017 (2017-10-13), XP051341098 *

Also Published As

Publication number Publication date
CN110099454B (zh) 2021-04-27
CN110099454A (zh) 2019-08-06
US20220345898A1 (en) 2022-10-27
US20200359231A1 (en) 2020-11-12
US11418966B2 (en) 2022-08-16

Similar Documents

Publication Publication Date Title
US11206638B2 (en) Method and device for wireless communication in UE and base station
WO2019214537A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019170057A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019134656A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019109345A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11109388B2 (en) Method and device in user equipment and base station for wireless communication
WO2019154254A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019119479A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11283500B2 (en) Method and device in UE and base station for wireless communication
WO2020199976A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20220345898A1 (en) Method and device for wireless communication in ue and base station
WO2020020004A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019184710A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019136681A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN113766552A (zh) 一种被用于无线通信的节点中的方法和装置
WO2019134121A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019227280A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019144315A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019137328A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019184711A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN113905450A (zh) 一种被用于无线通信的节点中的方法和装置
WO2019222952A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2024093877A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113765638B (zh) 一种被用于无线通信的节点中的方法和装置
CN114070362B (zh) 一种被用于无线通信的节点及其方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/11/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 19743661

Country of ref document: EP

Kind code of ref document: A1