WO2019184710A1 - 一种被用于无线通信的用户设备、基站中的方法和装置 - Google Patents

一种被用于无线通信的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2019184710A1
WO2019184710A1 PCT/CN2019/078020 CN2019078020W WO2019184710A1 WO 2019184710 A1 WO2019184710 A1 WO 2019184710A1 CN 2019078020 W CN2019078020 W CN 2019078020W WO 2019184710 A1 WO2019184710 A1 WO 2019184710A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel state
state information
antenna port
air interface
antenna
Prior art date
Application number
PCT/CN2019/078020
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2019184710A1 publication Critical patent/WO2019184710A1/zh
Priority to US17/012,029 priority Critical patent/US11088733B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • the present application relates to a transmission method and apparatus in a wireless communication system, and more particularly to a communication method and apparatus for supporting data transmission on an Unlicensed Spectrum.
  • a user equipment In a wireless communication system supporting multi-antenna transmission, a user equipment (UE) generates and feeds back CSI (Channel Status Information) based on channel and interference measurement to assist the base station to perform multi-antenna processing.
  • CSI includes ⁇ CRI (CSI-RS Resource Indicator), RI (Rank indication), PMI (Precoding matrix indicator), CQI (Channel quality indicator). At least one of the channel quality indicators) ⁇ .
  • Massive MIMO Multi-Input Multi-Output
  • the 5G NR standard has agreed to configure one or two multi-CSI PUCCH (Physical Uplink Control CHannel) resources for higher-level signaling.
  • multi-CSI PUCCH Physical Uplink Control CHannel
  • selecting a multi-CSI PUCCH resource to carry the multiple CSIs that are in conflict selecting a multi-CSI PUCCH resource to carry the multiple CSIs that are in conflict.
  • massive MIMO multiple antennas are beamforming to form a beam directed to a specific spatial direction to improve communication quality. When considering the impact of beamforming, multiple CSI reported conflict resolution mechanisms. Need to be further studied.
  • multiple CSIs report conflicts, how to resolve conflicts efficiently and obtain the most CSI as much as possible is a key problem to be solved.
  • the present application discloses a method in a user equipment for wireless communication, which includes:
  • the first information is used to indicate N channel state information reporting settings, and the N channel state information reporting settings are respectively associated with N air interface resources, where N is a positive integer greater than one;
  • the second information is used to indicate J air interface resources, and the J is a positive integer
  • the first air interface resource is corresponding to the first antenna port group, and the N air interface resources are respectively associated with the N antenna port groups, and the N antenna port groups are spatially associated with the first An antenna port group is used to determine the M channel state information reporting settings from the N channel state information reporting settings.
  • the problem to be solved by the present application is: in the NR system, when multiple CSIs report a collision, that is, any two CSI reports occupy at least one of the same multi-carrier symbols, and the multiple CSIs are reported. Some or all of the CSIs are carried by alternative air interface resources (ie, multiple CSI PUCCH resources).
  • the multiple CSI reports may be for different base stations or TRPs (Transmit-Receive Point), so their transmit beams may also point to different base stations or TRPs. How to select one or more resources from the configured multiple candidate air interface resources, and which CSIs in the multiple CSI reports are used to be supported by each of the selected air interface resources is a problem to be solved.
  • the essence of the foregoing method is that the N channel state information reports the corresponding N CSI reports, and the N air interface resources are respectively reserved for the N CSI reporting resources, and the N antenna port groups respectively indicate
  • the transmit beam is reported by the N CSIs
  • the J air interface resources are J candidate air interface resources (that is, J multiple CSI PUCCH resources)
  • the first air interface resource is an candidate air interface resource of the J candidate air interface resources.
  • An antenna port group indicates a transmission beam corresponding to the first air interface resource; when the N CSI reports a collision, the first air interface resource is used to carry M CSI reports in the C CSI reports, and the M CSIs are reported.
  • the spatial relationship of the transmit beams corresponding to the transmit beams and the first air interface resources reported by the N CSIs is selected.
  • the advantage of using the above method is that the N CSI reports are classified according to the transmit beam of the candidate air interface resource, so that the base station or the TRP pointed to by the transmit beam of the candidate air interface resource can obtain as many of the CSIs as possible. Base station or CSI of the TRP.
  • the method is characterized in that the M antenna port groups of the N antenna port groups respectively corresponding to the M channel state information reporting settings are spatially associated to the first Antenna port group.
  • the method of the foregoing method is that the MSIs report the corresponding base station or the TRP and the base station or the TRP of the first air interface resource, so that the CSI can be correctly reported to the corresponding base station or TRP.
  • the method is characterized in that at least one of the M antenna port groups of the N antenna port groups respectively corresponding to the M channel state information reporting settings is spatially
  • the M channel state information reporting settings include all one of the N antenna port groups corresponding to the N channel state information reporting settings.
  • the group is spatially associated with the channel state information reporting setting of the first antenna port group.
  • the foregoing method has the following advantages: the base station or the TRP corresponding to the N CSI reporting, and the CSI reporting of the same base station or the TRP that the transmitting beam of the first air interface resource is directed to belong to the M CSI reports, so the first The base station or TRP to which the transmit beam of the air interface resource is directed may obtain the total CSI of the corresponding CSI corresponding to the base station or the TRP.
  • the above method is characterized by comprising:
  • the second air interface resource is an air interface resource of the J air interface resources except the first air interface resource, where the second air interface resource corresponds to the second antenna port group; the M antenna ports The group is not spatially associated with the second antenna port group; the K air interface resources of the N air interface resources associated with the K channel state information reporting settings are respectively associated with the N antenna port groups One of the K antenna port groups in the one-to-one correspondence, the K antenna port groups are spatially associated to the second antenna port group, the K antenna port groups are not spatially associated with the The first antenna port group.
  • the essence of the foregoing method is that the K channel state information reports the K CSI reports corresponding to the N CSI reports, and the K CSI reports are different from the M CSI reports and the second air interface resources. It is another candidate air interface resource that is different from the first air interface resource.
  • the user equipment carries the M CSI reports and the K CSI reports respectively on the two candidate air interface resources.
  • the advantage of the above method is that the N CSI reports are classified according to the transmit beams of the multiple candidate air interface resources, so that the base station or the TRP to which the transmit beam of each candidate air interface resource is directed can obtain the corresponding CSIs. All or part of the CSI of the base station or TRP.
  • the above method is characterized by comprising:
  • J is greater than 1.
  • the essence of the foregoing method is that the J air interface resources respectively correspond to J different transmit beams, and the first air interface resource is the only one of the J air interface resources that can use the corresponding transmit beam access channel.
  • the advantage of using the above method is that the beam-based channel access can more realistically reflect the interference situation in a specific beam direction, and can also improve the sharing of the unlicensed spectrum.
  • the method is characterized in that the reference channel state information reporting setting is a channel state information reporting setting with the highest reference priority in the N channel state information reporting settings, and the reference antenna port group is the N One of the N antenna port groups corresponding to one air interface resource associated with the reference channel state information report setting in the air interface resource, the reference antenna port group being associated to the first antenna port group.
  • the essence of the foregoing method is that the transmit beam of the first air interface resource may be dynamically determined by the transmit beam reported by the CSI with the highest priority among the N conflicting CSI reports.
  • the method is characterized in that the second information is further used to indicate J antenna port groups, and the J air interface resources are respectively in one-to-one correspondence with the J antenna port groups,
  • the first antenna port group is an antenna port group corresponding to the first air interface resource among the J antenna port groups.
  • the essence of the foregoing method is that the transmit beam of the first air interface resource may be semi-statically configured.
  • the above method is characterized by comprising:
  • the third information is used to indicate configuration information of the N air interface resources.
  • the present invention discloses a method in a base station device for wireless communication, which includes:
  • the first information is used to indicate N channel state information reporting settings, and the N channel state information reporting settings are respectively associated with N air interface resources, where N is a positive integer greater than 1.
  • the second information is used to indicate J air interface resources, and the J is a positive integer
  • the first air interface resource And receiving, by the first air interface resource, the M channel state information, where the M channel state information is respectively corresponding to the M channel state information reporting settings in the N channel state information reporting settings, where the first air interface resource is the One of the J air interface resources, where M is a positive integer not greater than the N;
  • the first air interface resource is corresponding to the first antenna port group, and the N air interface resources are respectively associated with the N antenna port groups, and the N antenna port groups are spatially associated with the first An antenna port group is used to determine the M channel state information reporting settings from the N channel state information reporting settings.
  • the method is characterized in that the M antenna port groups of the N antenna port groups respectively corresponding to the M channel state information reporting settings are spatially associated to the first Antenna port group.
  • the method is characterized in that at least one of the M antenna port groups of the N antenna port groups respectively corresponding to the M channel state information reporting settings is spatially
  • the M channel state information reporting settings include all one of the N antenna port groups corresponding to the N channel state information reporting settings.
  • the group is spatially associated with the channel state information reporting setting of the first antenna port group.
  • the above method is characterized by comprising:
  • the K is a positive integer not greater than NM;
  • the second air interface resource is an air interface resource of the J air interface resources except the first air interface resource, where the second air interface resource corresponds to the second antenna port group; the M antenna ports The group is not spatially associated with the second antenna port group; the K air interface resources of the N air interface resources associated with the K channel state information reporting settings are respectively associated with the N antenna port groups One of the K antenna port groups in the one-to-one correspondence, the K antenna port groups are spatially associated to the second antenna port group, the K antenna port groups are not spatially associated with the The first antenna port group.
  • the above method is characterized by comprising:
  • the receiver of the first information performs access detection to determine the first air interface resource from the J air interface resources, where J is greater than 1.
  • the method is characterized in that the reference channel state information reporting setting is a channel state information reporting setting with the highest reference priority in the N channel state information reporting settings, and the reference antenna port group is the N One of the N antenna port groups corresponding to one air interface resource associated with the reference channel state information report setting in the air interface resource, the reference antenna port group being associated to the first antenna port group.
  • the method is characterized in that the second information is further used to indicate J antenna port groups, and the J air interface resources are respectively in one-to-one correspondence with the J antenna port groups,
  • the first antenna port group is an antenna port group corresponding to the first air interface resource among the J antenna port groups.
  • the above method is characterized by comprising:
  • the third information is used to indicate configuration information of the N air interface resources.
  • the present application discloses a user equipment for wireless communication, which includes:
  • the first receiver receives the first information, where the first information is used to indicate N channel state information reporting settings, and the N channel state information reporting settings are respectively associated with N air interface resources, where the N is greater than 1. a positive integer; receiving second information, the second information being used to indicate J air interface resources, the J being a positive integer;
  • the first air interface resource is corresponding to the first antenna port group, and the N air interface resources are respectively associated with the N antenna port groups, and the N antenna port groups are spatially associated with the first An antenna port group is used to determine the M channel state information reporting settings from the N channel state information reporting settings.
  • the user equipment is characterized in that the M antenna port groups of the N antenna port groups corresponding to the M channel state information reporting settings are spatially associated with the first antenna. Port group.
  • the foregoing user equipment is characterized in that at least one of the M antenna port groups in the N antenna port groups respectively corresponding to the M channel state information reporting settings is spatially Not being associated with the first antenna port group, the M channel state information reporting settings include all one of the N antenna port groups corresponding to the N channel state information reporting settings.
  • the channel state information is spatially associated with the first antenna port group.
  • the foregoing user equipment is characterized in that: the first transmitter further includes: sending, on the second air interface resource, K channel state information, where the K channel state information respectively report the N channel state information Setting K channel state information reporting settings in addition to the M channel state information reporting settings, where K is a positive integer not greater than NM; wherein the second air interface resource is in the J air interface resources The second air interface resource corresponds to the second antenna port group, and the M antenna port groups are not spatially associated with the second antenna port group.
  • the K air interface resources in the N air interface resources associated with the K channel state information reporting settings are respectively associated with the K antenna port groups in the N antenna port groups, the K antennas The port group is spatially associated to the second antenna port group, and the K antenna port groups are not spatially associated with the first antenna port group.
  • the foregoing user equipment is characterized in that the first receiver further performs access detection to determine the first air interface resource from the J air interface resources; wherein the J is greater than 1.
  • the user equipment is characterized in that the reference channel state information reporting setting is a channel state information reporting setting with the highest reference priority in the N channel state information reporting settings, and the reference antenna port group is the N One of the N antenna port groups corresponding to one air interface resource associated with the reference channel state information report setting in the air interface resource, the reference antenna port group being associated to the first antenna port group .
  • the foregoing user equipment is characterized in that the second information is further used to indicate J antenna port groups, and the J air interface resources are respectively in one-to-one correspondence with the J antenna port groups, where the An antenna port group is an antenna port group corresponding to the first air interface resource among the J antenna port groups.
  • the foregoing user equipment is characterized in that the first receiver further receives third information, wherein the third information is used to indicate configuration information of the N air interface resources.
  • the present application discloses a base station device for wireless communication, which includes:
  • the second transmitter sends the first information, where the first information is used to indicate N channel state information reporting settings, and the N channel state information reporting settings are respectively associated with N air interface resources, where N is greater than 1 a positive integer; transmitting second information, the second information is used to indicate J air interface resources, and the J is a positive integer;
  • the second receiver receives the M channel state information on the first air interface resource, where the M channel state information respectively correspond to the M channel state information report settings in the N channel state information report settings, where the first
  • the air interface resource is one of the J air interface resources, and the M is a positive integer not greater than the N;
  • the first air interface resource is corresponding to the first antenna port group, and the N air interface resources are respectively associated with the N antenna port groups, and the N antenna port groups are spatially associated with the first An antenna port group is used to determine the M channel state information reporting settings from the N channel state information reporting settings.
  • the foregoing base station device is characterized in that the M antenna port groups of the N antenna port groups respectively corresponding to the M channel state information reporting settings are spatially associated to the first antenna. Port group.
  • the foregoing base station device is characterized in that at least one of the M antenna port groups in the N antenna port groups respectively corresponding to the M channel state information reporting settings is spatially Not being associated with the first antenna port group, the M channel state information reporting settings include all one of the N antenna port groups corresponding to the N channel state information reporting settings.
  • the channel state information is spatially associated with the first antenna port group.
  • the foregoing base station device is characterized in that: the second receiver further receives K channel state information on the second air interface resource, where the K channel state information respectively correspond to the N channel state information report settings
  • the K channel state information reporting setting is performed in addition to the M channel state information reporting settings, where K is a positive integer not greater than NM, wherein the second air interface resource is other than the J air interface resources.
  • the K air interface resources in the N air interface resources associated with the K channel state information reporting settings are respectively associated with the K antenna port groups in the N antenna port groups, the K antenna ports.
  • the groups are spatially associated to the second set of antenna ports, the K antenna port groups being spatially unassociated to the first set of antenna ports.
  • the foregoing base station device is characterized in that the second receiver further monitors the J air interface resources to determine the first air interface resource; wherein, the receiver of the first information performs access detection to Determining the first air interface resource from the J air interface resources, where J is greater than 1.
  • the base station device is characterized in that the reference channel state information reporting setting is a channel state information reporting setting with the highest reference priority in the N channel state information reporting settings, and the reference antenna port group is the N One of the N antenna port groups corresponding to one air interface resource associated with the reference channel state information report setting in the air interface resource, the reference antenna port group being associated to the first antenna port group .
  • the foregoing base station device is characterized in that the second information is further used to indicate J antenna port groups, and the J air interface resources respectively correspond to the J antenna port groups, the first An antenna port group is an antenna port group corresponding to the first air interface resource among the J antenna port groups.
  • the foregoing base station device is characterized in that the second transmitter further sends third information; wherein the third information is used to indicate configuration information of the N air interface resources.
  • the present application has the following advantages compared with the conventional solution:
  • the N conflicting CSI reports are classified according to the transmit beam of the candidate air interface resource.
  • the base station or the TRP to which the transmit beam of the candidate air interface resource is directed may obtain as many CSIs as possible corresponding to the base station or the TRP among the plurality of CSIs.
  • the candidate air interface resources are not only loaded with the CSIs of the corresponding base stations or TRPs, It can also carry some or all CSI reports of other base stations or TRPs.
  • the N CSI reports are classified according to the transmit beams of the multiple candidate air interface resources, so that the transmit beams of each candidate air interface resource are directed.
  • the base station or the TRP can obtain all or part of the CSIs of the multiple CSIs corresponding to the base station or the TRP, and also enable the CSI to be correctly reported to the corresponding base station or TRP, and effectively solve the conflict problem reported by multiple CSIs.
  • each candidate air interface resource only carries all the CSI reports of the corresponding base station or TRP, and does not carry any CSI report of other base stations or TRPs.
  • the transmit beam of the candidate air interface resource may be semi-statically configured, or may be dynamically determined by the transmit beam reported by the CSI with the highest priority among the N conflicting CSI reports.
  • the candidate air interface resource that is used for carrying some or all of the CSIs in the C-CSR reporting is the candidate air interface resource.
  • FIG. 1 shows a flow chart of first information, second information, first air interface resources, and M channel state information according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 4 shows a schematic diagram of an NR (New Radio) node and a UE in accordance with one embodiment of the present application
  • FIG. 5 shows a flow chart of wireless transmission in accordance with one embodiment of the present application
  • FIGS. 6A-6B respectively illustrate whether N antenna port groups are spatially associated to a first antenna port group for determining M channel states from N channel state information reporting settings, in accordance with an embodiment of the present application. Schematic diagram of information reporting settings;
  • N antenna port groups are spatially associated to a first antenna port group and are used to determine M channel state information reporting settings from N channel state information reporting settings, in accordance with an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of determining a first antenna port group according to an embodiment of the present application
  • FIG. 9 shows a schematic diagram of determining a first antenna port group according to another embodiment of the present application.
  • 10A-10B respectively show schematic diagrams of a first given set of antenna ports being spatially associated to a second given set of antenna ports, in accordance with one embodiment of the present application;
  • 11A-11B respectively show schematic diagrams of a first given set of antenna ports not spatially associated to a second given set of antenna ports, in accordance with an embodiment of the present application;
  • Figure 12 illustrates a schematic diagram of a given sub-access detection used to determine whether to transmit a given wireless signal on a given air interface resource, in accordance with one embodiment of the present application
  • FIGS. 13A-13B respectively show schematic diagrams of a given antenna port associated with a given energy detection space, in accordance with one embodiment of the present application
  • FIG. 14 is a block diagram showing the structure of a processing device in a UE according to an embodiment of the present application.
  • FIG. 15 is a block diagram showing the structure of a processing device in a base station device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of a first information, a second information, a first air interface resource, and M channel state information, as shown in FIG.
  • the user equipment in the application receives the first information, where the first information is used to indicate N channel state information reporting settings, and the N channel state information reporting settings are respectively associated with N air interfaces.
  • Resource association the N is a positive integer greater than 1;
  • the second information is received, the second information is used to indicate J air interface resources, the J is a positive integer; and M channel state information is sent on the first air interface resource
  • the M channel state information is respectively corresponding to the M channel state information reporting settings in the N channel state information reporting settings, where the first air interface resource is one of the J air interface resources, and the M is
  • the first air interface resource is corresponding to the first antenna port group, and the N air interface resources are respectively associated with the N antenna port groups, and the N antenna port groups are respectively Spatially associated to the first set of antenna ports is used to determine the M channel state information reporting settings from the N channel state information reporting settings.
  • the first information explicitly indicates N channel state information reporting settings.
  • the first information implicitly indicates N channel state information reporting settings.
  • the first information is semi-statically configured.
  • the first information is carried by higher layer signaling.
  • the first information is carried by RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the first information includes one or more IEs (Information Element) in one RRC signaling.
  • the first information includes all or a part of an IE in one RRC signaling.
  • the first information includes multiple IEs in one RRC signaling.
  • the time domain behaviors corresponding to the N channel state information report settings are periodic (Periodic) reports.
  • the time domain behaviors corresponding to the N channel state information reporting settings are semi-persistent.
  • the time domain behavior corresponding to the reporting of the N channel state information reports is a periodic report or a semi-persistent report.
  • the semi-persistent channel state information reporting is activated and deactivated by a MAC (Medium Access Control) CE (Control Element) signaling.
  • MAC Medium Access Control
  • CE Control Element
  • the given channel state information reporting setting is any channel state information reporting setting in the N channel state information reporting settings, and the given channel state information reporting setting includes a reporting setting index, channel state information, and a cell.
  • Cell Identity reporting time domain behavior
  • CSI Channel State Information
  • Type codebook configuration
  • reporting frequency domain granularity reporting period, and time domain deviation.
  • the given channel state information reporting is periodic reporting or semi-persistent reporting
  • the given channel state information The escalation setting includes the reporting period and the time domain deviation.
  • the given channel state information reporting setting includes only the reporting period and the The time domain deviation in the time domain deviation.
  • the given channel state information reporting setting is any channel state information reporting setting in the N channel state information reporting settings, where the given channel state information reporting setting includes ⁇ up reporting setting index, channel state information, At least one of a cell identity (Cell Identity), a reported time domain behavior, a CSI (Channel State Information) type, a codebook configuration, a reported frequency domain granularity, a reporting period, and a time domain deviation.
  • Cell Identity Cell Identity
  • CSI Channel State Information
  • the given channel state information reporting is periodic reporting or semi-persistent reporting
  • the given channel state information The escalation setting includes the reporting period and the time domain deviation.
  • the given channel state information reporting setting includes only the reporting period and the The time domain deviation in the time domain deviation.
  • the specific definition of the CSI Reporting Setting participates in the fifth chapter of 3GPP TS 38.214.
  • the channel state information includes a ⁇ RI (Rank indication), a PMI (Precoding matrix indicator), a CQI (Channel quality indicator), and a CRI (Csi-reference signal).
  • a resource indicator a SLI (Strongest Layer Indicator), an RSRP (Reference Signal Received Power), and an SSBRI (Synchronization Signal Block Resource Indicator).
  • the reporting time domain behavior includes periodic reporting, semi-persistent reporting, and aperiodic reporting.
  • the CSI type is a codebook type corresponding to the PMI.
  • the CSI type includes Type I and Type II, and the specific definition of the CSI type participates in Section 5 of 3GPP TS 38.214.
  • the codebook configuration includes a Codebook Subset Restriction.
  • the reported frequency domain granularity includes a subband, a partial band, and a wideband.
  • the reported frequency domain granularity includes subbands and wideband.
  • the reported frequency domain granularity includes a partial bandwidth and a wideband.
  • the reported frequency domain granularity is applicable to the PMI.
  • the reported frequency domain granularity is applicable to CQI.
  • the reported frequency domain granularity is applicable to PMI and CQI.
  • the unit of the time domain deviation is a time domain resource unit.
  • the unit of time domain deviation is milliseconds (ms).
  • the unit of the period is a time domain resource unit.
  • the unit of the period is milliseconds (ms).
  • the time domain resource unit is a slot.
  • the time domain resource unit is a subframe.
  • the time domain resource unit is a mini-slot.
  • the time domain resource unit is composed of a positive integer number of consecutive multi-carrier symbols.
  • the time domain resource unit is composed of 14 consecutive multi-carrier symbols.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency-Division Multiplexing) symbol.
  • the multi-carrier symbol is a SC-FDMA (Single-Carrier Frequency-Division Multiple Access) symbol.
  • SC-FDMA Single-Carrier Frequency-Division Multiple Access
  • the multi-carrier symbol is a FBMC (Filter Bank Multi Carrier) symbol.
  • the association of the channel state information reporting with the given air interface resource means that the given air interface resource is reserved for reporting the channel state information corresponding to the report of the given channel state information.
  • the given channel state information is any channel state information report setting in the N channel state information report settings.
  • the given air interface resource is any one of the N air interface resources.
  • the association of the given channel state information reporting setting with the given air interface resource means that the given channel state information reporting setting further includes configuration information of the given air interface resource.
  • the given channel state information is any channel state information report setting in the N channel state information report settings.
  • the given air interface resource is any one of the N air interface resources.
  • the association of the given channel state information reporting setting with the given air interface resource means that the given channel state information reporting setting further includes partial configuration information of the given air interface resource.
  • the given channel state information is any channel state information report setting in the N channel state information report settings.
  • the given air interface resource is any one of the N air interface resources.
  • the association of the given channel state information reporting setting with the given air interface resource means that the given channel state information reporting setting further includes an index of the given air interface resource.
  • the given channel state information is any channel state information report setting in the N channel state information report settings.
  • the given air interface resource is any one of the N air interface resources.
  • the index of the given air interface resource is an index of the given air interface resource in a given air interface resource set, and the given air interface resource set includes a positive integer air interface. Resources.
  • any two of the N air interface resources include at least one identical multi-carrier symbol in the time domain.
  • the N air interface resources belong to the same time domain resource unit in the time domain.
  • At least two of the N air interface resources belong to the same time domain resource unit in the time domain.
  • At least two air interface resources of the N air interface resources belong to different time domain resource units in the time domain.
  • the N air interface resources belong to the licensed spectrum in the frequency domain.
  • the N air interface resources belong to an unlicensed spectrum in the frequency domain.
  • the N air interface resources belong to the same carrier in the frequency domain.
  • At least two air interface resources of the N air interface resources belong to the same carrier in the frequency domain.
  • At least two of the N air interface resources belong to different carriers in the frequency domain.
  • the N air interface resources belong to the same BWP (Bandwidth Part) in the frequency domain.
  • At least two of the N air interface resources belong to the same BWP in the frequency domain.
  • At least two of the N air interface resources belong to different BWPs in the frequency domain.
  • the N air interface resources are resources allocated to an uplink physical layer control channel (i.e., an uplink channel that can only be used to carry physical layer signaling).
  • the uplink physical layer control channel is a PUCCH (Physical Uplink Control CHannel).
  • the uplink physical layer control channel is sPUCCH (short PUCCH).
  • the uplink physical layer control channel is an NR-PUCCH (New Radio PUCCH).
  • the uplink physical layer control channel is a NB-PUCCH (Narrow Band PUCCH).
  • any air interface resource of the N air interface resources includes one or more of a time domain resource, a frequency domain resource, and a code domain resource.
  • the time domain resource is composed of a positive integer number of multi-carrier symbols.
  • the frequency domain resource is composed of a positive integer number of subcarriers.
  • the frequency domain resource is composed of a positive integer number of RBs (Resource Blocks).
  • the J air interface resources belong to the same time domain resource unit in the time domain.
  • At least two air interface resources of the J air interface resources belong to the same time domain resource unit in the time domain.
  • At least two air interface resources of the J air interface resources belong to different time domain resource units in the time domain.
  • the J air interface resources belong to the licensed spectrum in the frequency domain.
  • the J air interface resources belong to an unlicensed spectrum in the frequency domain.
  • the J air interface resources belong to the same carrier in the frequency domain.
  • At least two air interface resources of the J air interface resources belong to the same carrier in the frequency domain.
  • At least two air interface resources of the J air interface resources belong to different carriers in the frequency domain.
  • the J air interface resources belong to the same BWP in the frequency domain.
  • At least two air interface resources of the J air interface resources belong to the same BWP in the frequency domain.
  • At least two air interface resources of the J air interface resources belong to different BWPs in the frequency domain.
  • the J air interface resources are resources allocated to the uplink physical layer control channel.
  • the uplink physical layer control channel is a PUCCH.
  • the uplink physical layer control channel is an sPUCCH.
  • the uplink physical layer control channel is an NR-PUCCH.
  • the uplink physical layer control channel is an NB-PUCCH.
  • any air interface resource of the J air interface resources includes one or more of a time domain resource, a frequency domain resource, and a code domain resource.
  • the time domain resource is composed of a positive integer number of multi-carrier symbols.
  • the frequency domain resource is composed of a positive integer number of subcarriers.
  • the frequency domain resource is composed of a positive integer number of RBs.
  • the second information explicitly indicates J air interface resources.
  • the second information implicitly indicates J air interface resources.
  • the second information is semi-statically configured.
  • the second information is carried by higher layer signaling.
  • the second information is carried by RRC signaling.
  • the second information includes one or more IEs in one RRC signaling.
  • the second information includes all or a part of an IE in one RRC signaling.
  • the second information includes multiple IEs in one RRC signaling.
  • the first information and the second information belong to the same IE in one RRC signaling.
  • the first information and the second information respectively belong to different IEs in one RRC signaling.
  • the second information includes configuration information of the J air interface resources.
  • the configuration information of any air interface resource of the J air interface resources includes the occupied time domain resource, the occupied code domain resource, the occupied frequency domain resource, and the corresponding antenna. At least one of the port groups.
  • the configuration information of any air interface resource of the J air interface resources includes the occupied time domain resource, the occupied code domain resource, the occupied frequency domain resource, and the corresponding antenna. Port group.
  • the configuration information of any air interface resource in the J air interface resources includes the occupied initial multi-carrier symbol, the number of multi-carrier numbers occupied, or the frequency hopping or non-frequency hopping situation.
  • the starting PRB Physical Resource Block
  • the starting PRB after frequency hopping the number of PRBs occupied, the frequency hopping setting
  • CS Cyclic Shift
  • OCC Orthogonal Cover Code
  • the configuration information of any air interface resource in the J air interface resources includes the occupied initial multi-carrier symbol, the number of multi-carrier numbers occupied, or the frequency hopping or non-frequency hopping situation.
  • the J is a positive integer greater than one.
  • the J is equal to two.
  • the J is equal to one.
  • the M is equal to the N.
  • the M is smaller than the N.
  • a given air interface resource corresponding to a given antenna port group means that a transmit antenna port group of wireless signals transmitted on the given air interface resource is spatially associated to the given antenna port group.
  • any one of the M channel state information includes a ⁇ RI (Rank indication), a PMI (Precoding matrix indicator), and a CQI (Channel quality indicator).
  • CRI Ci-reference signal resource indicator
  • SLI Shortest Layer Indicator
  • RSRP Reference Signal Received Power
  • SSBRI Synchronization Signal Block Resource Indicator
  • the M channel state information respectively includes the same parameter group.
  • the parameter group includes at least one of ⁇ RI, CQI, CRI, SLI, RSRP, SSBRI ⁇ .
  • At least two of the M channel state information respectively comprise the same parameter group.
  • the parameter group includes at least one of ⁇ RI, CQI, CRI, SLI, RSRP, SSBRI ⁇ .
  • At least two of the M channel state information respectively include different parameter groups.
  • the parameter group includes at least one of ⁇ RI, CQI, CRI, SLI, RSRP, SSBRI ⁇ .
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG.
  • Embodiment 2 illustrates a schematic diagram of a network architecture in accordance with the present application, as shown in FIG. 2 is a diagram illustrating an NR 5G, LTE (Long-Term Evolution, Long Term Evolution) and LTE-A (Long-Term Evolution Advanced) system network architecture 200.
  • the NR 5G or LTE network architecture 200 may be referred to as an EPS (Evolved Packet System) 200 in some other suitable terminology.
  • EPS Evolved Packet System
  • the EPS 200 may include one or more UEs (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UEs User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core
  • 5G-Core Network 5G-Core Network
  • 5G core network 5G core network
  • HSS Home Subscriber Server
  • Internet service 230 Internet service 230.
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity.
  • the EPS provides packet switching services, although those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks or other cellular networks that provide circuit switched services.
  • the NG-RAN includes an NR Node B (gNB) 203 and other gNBs 204
  • the gNB 203 provides user and control plane protocol termination for the UE 201.
  • the gNB 203 can be connected to other gNBs 204 via an Xn interface (eg, a backhaul).
  • the gNB 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmission and reception point), or some other suitable terminology.
  • the gNB 203 provides the UE 201 with an access point to the EPC/5G-CN 210.
  • Examples of UEs 201 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video device, digital audio player (eg, MP3 player), camera, game console, drone, aircraft, narrowband physical network device, machine type communication device, land vehicle, car, wearable device, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video device, digital audio player (eg, MP3 player), camera, game console, drone, aircraft, narrowband physical network device, machine type communication device, land vehicle, car, wearable device, or any Other similar functional devices.
  • multimedia devices video device, digital audio player (eg, MP3 player), camera, game console, drone, aircraft, narrowband physical network device, machine type communication device, land vehicle
  • UE 201 may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to the EPC/5G-CN210 through the S1/NG interface.
  • EPC/5G-CN210 includes MME/AMF/UPF211, other MME (Mobility Management Entity)/AMF (Authentication Management Field)/UPF (User Plane Function) 214, S - GW (Service Gateway) 212 and P-GW (Packet Date Network Gateway) 213.
  • the MME/AMF/UPF 211 is a control node that handles signaling between the UE 201 and the EPC/5G-CN 210.
  • MME/AMF/UPF 211 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 212, and the S-GW 212 itself is connected to the P-GW 213.
  • the P-GW 213 provides UE IP address allocation as well as other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a PS Streaming
  • the UE 201 corresponds to the user equipment in this application.
  • the gNB 203 corresponds to the base station in the present application.
  • the UE 201 supports wireless communication for data transmission over an unlicensed spectrum.
  • the UE 201 supports wireless communication for data transmission over the licensed spectrum.
  • the gNB 203 supports wireless communication for data transmission over an unlicensed spectrum.
  • the gNB 203 supports wireless communication for data transmission over a licensed spectrum.
  • the UE 201 supports wireless communication of massive MIMO.
  • the gNB 203 supports wireless communication for massive MIMO.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with the present application, as shown in FIG.
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 3 shows a radio protocol architecture for user equipment (UE) and base station equipment (gNB or eNB) in three layers: layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the UE and the gNB through PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol). Convergence Protocol) Sublayer 304, which terminates at the gNB on the network side.
  • the UE may have several upper layers above the L2 layer 305, including a network layer (eg, an IP layer) terminated at the P-GW on the network side and terminated at the other end of the connection (eg, Application layer at the remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handoff support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between the logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in one cell between UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the wireless protocol architecture of Figure 3 is applicable to the user equipment in this application.
  • the radio protocol architecture of Figure 3 is applicable to the base station in this application.
  • the first information in this application is generated in the RRC sublayer 306.
  • the second information in this application is generated in the RRC sublayer 306.
  • the M channel state information in the present application is generated by the PHY 301.
  • the K channel state information in the present application is generated by the PHY 301.
  • the access detection in the present application is generated by the PHY 301.
  • the third information in this application is generated in the RRC sublayer 306.
  • Embodiment 4 shows a schematic diagram of a base station device and a user equipment according to the present application, as shown in FIG. 4 is a block diagram of a gNB 410 in communication with a UE 450 in an access network.
  • the base station device (410) includes a controller/processor 440, a memory 430, a receive processor 412, a beam processor 471, a transmit processor 415, a transmitter/receiver 416, and an antenna 420.
  • the user equipment (450) includes a controller/processor 490, a memory 480, a data source 467, a beam processor 441, a transmit processor 455, a receive processor 452, a transmitter/receiver 456, and an antenna 460.
  • the processing related to the base station device (410) includes:
  • a controller/processor 440 the upper layer packet arrives, the controller/processor 440 provides header compression, encryption, packet segmentation and reordering, and multiplexing and demultiplexing between the logical and transport channels for implementation
  • the L2 layer protocol of the user plane and the control plane; the upper layer packet may include data or control information, such as a DL-SCH (Downlink Shared Channel);
  • controller/processor 440 associated with a memory 430 storing program code and data, which may be a computer readable medium;
  • controller/processor 440 comprising a scheduling unit for transmitting a demand, the scheduling unit for scheduling air interface resources corresponding to the transmission requirements;
  • a beam processor 471 which determines the first information and the second information
  • a transmit processor 415 that receives the output bitstream of the controller/processor 440, implementing various signal transmission processing functions for the L1 layer (ie, the physical layer) including coding, interleaving, scrambling, modulation, power control/allocation, and Physical layer control signaling (including PBCH, PDCCH, PHICH, PCFICH, reference signal) generation, etc.;
  • a transmit processor 415 that receives the output bit stream of the controller/processor 440 and implements various signal transmission processing functions for the L1 layer (ie, the physical layer) including multi-antenna transmission, spread spectrum, code division multiplexing, precoding Wait;
  • each transmitter 416 samples the respective input symbol streams to obtain a respective sampled signal stream.
  • Each transmitter 416 performs further processing (eg, digital to analog conversion, amplification, filtering, upconversion, etc.) on the respective sample streams to obtain a downlink signal.
  • the processing related to the user equipment (450) may include:
  • a receiver 456, for converting the radio frequency signal received through the antenna 460 into a baseband signal is provided to the receiving processor 452;
  • Receive processor 452 implementing various signal reception processing functions for the L1 layer (ie, physical layer) including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, etc.;
  • Receiving processor 452 implementing various signal receiving processing functions for the L1 layer (ie, physical layer) including multi-antenna reception, despreading, code division multiplexing, precoding, etc.;
  • controller/processor 490 that receives the bit stream output by the receive processor 452, provides header decompression, decryption, packet segmentation and reordering, and multiplexing demultiplexing between the logical and transport channels to implement L2 layer protocol for user plane and control plane;
  • the controller/processor 490 is associated with a memory 480 that stores program codes and data.
  • Memory 480 can be a computer readable medium.
  • the processing related to the base station device (410) includes:
  • Receiver 416 receiving a radio frequency signal through its corresponding antenna 420, converting the received radio frequency signal into a baseband signal, and providing the baseband signal to the receiving processor 412;
  • Receiving processor 412 implementing various signal receiving processing functions for the L1 layer (ie, physical layer) including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, etc.;
  • Receive processor 412 implementing various signal reception processing functions for the L1 layer (ie, physical layer) including multi-antenna reception, despreading, code division multiplexing, precoding, etc.
  • controller/processor 440 that implements L2 layer functions and is associated with a memory 430 that stores program codes and data;
  • Controller/processor 440 provides demultiplexing, packet reassembly, decryption, header decompression, control signal processing between the transport and logical channels to recover upper layer data packets from UE 450; from controller/processor 440 Upper layer packets can be provided to the core network;
  • the processing related to the user equipment (450) includes:
  • Data source 467 which provides the upper layer data packet to controller/processor 490.
  • Data source 467 represents all protocol layers above the L2 layer;
  • Transmitter 456 transmitting a radio frequency signal through its corresponding antenna 460, converting the baseband signal into a radio frequency signal, and providing the radio frequency signal to the corresponding antenna 460;
  • a transmit processor 455 that implements various signal reception processing functions for the L1 layer (ie, the physical layer) including coding, interleaving, scrambling, modulation, and physical layer signaling generation, and the like;
  • Controller/Processor 490 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels based on radio resource allocation of gNB 410, implementing L2 for user plane and control plane Layer function
  • the controller/processor 490 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the gNB 410;
  • a beam processor 441, configured to determine M channel state information that is sent on the first air interface resource
  • the UE 450 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be in process with the at least one
  • the UE 450 device is configured to: at least: receive first information, where the first information is used to indicate N channel state information reporting settings, and the N channel state information reporting settings are respectively associated with N air interface resources, where N is a positive integer greater than 1; receiving second information, the second information is used to indicate J air interface resources, the J is a positive integer; and M channel state information is sent on the first air interface resource, the M The channel state information is respectively corresponding to the M channel state information reporting settings in the N channel state information reporting settings, the first air interface resource is one of the J air interface resources, and the M is not greater than the a positive integer of N; wherein the first air interface resource corresponds to the first antenna port group, and the N air interface resources are respectively corresponding to the N antenna port groups. If the groups are N antenna ports to spatially associated with the first antenna
  • the UE 450 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by the at least one processor, the action comprising: receiving the first information, The first information is used to indicate N channel state information reporting settings, the N channel state information reporting settings are respectively associated with N air interface resources, the N is a positive integer greater than 1, and the second information is received, The second information is used to indicate the J air interface resources, and the J is a positive integer; the M channel state information is sent on the first air interface resource, where the M channel state information respectively correspond to the N channel state information report settings.
  • the first air interface resource is one of the J air interface resources, and the M is a positive integer that is not greater than the N; wherein the first air interface resource is the first Corresponding to the antenna port group, the N air interface resources are respectively in one-to-one correspondence with the N antenna port groups, and whether the N antenna port groups are spatially associated to the first antenna port group are used for Determining, by the N channel state information reporting settings, the M channel state information reporting settings.
  • the gNB 410 device comprises: at least one processor and at least one memory, the at least one memory comprising computer program code; the at least one memory and the computer program code being configured to be in process with the at least one Used together.
  • the gNB410 device is configured to: at least: send the first information, where the first information is used to indicate N channel state information reporting settings, and the N channel state information reporting settings are respectively associated with N air interface resources, where the N is greater than a positive integer of 1; transmitting second information, the second information is used to indicate J air interface resources, the J is a positive integer; receiving M channel state information, the M channel state information on the first air interface resource Corresponding to the M channel state information reporting settings in the N channel state information reporting settings, the first air interface resource is one of the J air interface resources, and the M is a positive integer not greater than the N
  • the first air interface resource is corresponding to the first antenna port group, and the N air interface resources are respectively associated with the N antenna port groups, and the N antenna port groups are spatially associated with the The
  • the gNB 410 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by at least one processor, the action comprising: transmitting the first information,
  • the first information is used to indicate N channel state information reporting settings, the N channel state information reporting settings are respectively associated with N air interface resources, the N is a positive integer greater than 1, and the second information is sent,
  • the second information is used to indicate J air interface resources, and the J is a positive integer;
  • the M channel state information is received on the first air interface resource, where the M channel state information respectively correspond to the N channel state information report settings.
  • the first air interface resource is one of the J air interface resources, and the M is a positive integer that is not greater than the N; wherein the first air interface resource is the first Corresponding to the antenna port group, the N air interface resources are respectively associated with the N antenna port groups, and the N antenna port groups are spatially associated with the first antenna port group.
  • the N channel state information report setting determines the M channel state information report set.
  • the UE 450 corresponds to the user equipment in this application.
  • gNB 410 corresponds to the base station in this application.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to receive the first information in the present application.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the first information in the present application.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to receive the second information in the present application.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the second information in the present application.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to receive the third information in the present application.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the third information in the present application.
  • At least two of the transmitter 456, the transmit processor 455, and the controller/processor 490 are used to transmit the M of the present application on the first air interface resource in the present application.
  • Channel status information are used to transmit the M of the present application on the first air interface resource in the present application.
  • At least two of the receiver 416, the receiving processor 412, and the controller/processor 440 are used to receive the M of the present application on the first air interface resource in the present application.
  • Channel status information are used to determine whether the M of the present application is accessed by the receiving processor 412, and the controller/processor 440 .
  • At least two of the transmitter 456, the transmit processor 455, and the controller/processor 490 are used to transmit the K of the present application on the second air interface resource in the present application.
  • Channel status information are used to transmit the K of the present application on the second air interface resource in the present application.
  • At least two of the receiver 416, the receiving processor 412, and the controller/processor 440 are used to receive the K of the present application on the second air interface resource in the present application.
  • Channel status information are used to determine whether the K of the present application is a channel that is a channel that is a channel that is a channel that is a channel that is a channel that is a channel that is a channel that is a channel that is a channel that is accessed.
  • At least two of the receiver 456, the receiving processor 452, and the controller/processor 490 are used to perform the access detection in the present application to the J air ports in the present application.
  • the first air interface resource in the present application is determined in the resource.
  • At least two of the receiver 416, the receive processor 412, and the controller/processor 440 are used to monitor the J air interface resources in the present application to determine the first in the application. Air interface resources.
  • Embodiment 5 illustrates a flow chart of a wireless transmission, as shown in FIG.
  • base station N01 is a serving cell maintenance base station of user equipment U02.
  • blocks F1, F2, F3 and F4 are optional.
  • the first information is transmitted in step S11; the third information is transmitted in step S12; the second information is transmitted in step S13; the J air interface resources are monitored to determine the first air interface resource in step S14; M channel state information is received on the first air interface resource; K channel state information is received on the second air interface resource in step S16.
  • the first information is received in step S21; the third information is received in step S22; the second information is received in step S23; and the access detection is performed in step S24 to determine the first air interface resource from the J air interface resources Transmitting M channel state information on the first air interface resource in step S25; transmitting K channel state information on the second air interface resource in step S26;
  • the first information is used to indicate N channel state information reporting settings, and the N channel state information reporting settings are respectively associated with N air interface resources, where N is a positive integer greater than 1.
  • the second information is used to indicate J air interface resources, and the J is a positive integer; the M channel state information respectively corresponding to the M channel state information reporting settings in the N channel state information reporting settings,
  • the first air interface resource is one of the J air interface resources, and the M is a positive integer that is not greater than the N; wherein the first air interface resource corresponds to the first antenna port group, and the N air interface resources Corresponding to one of the N antenna port groups, respectively, whether the N antenna port groups are spatially associated to the first antenna port group is used to determine the M from the N channel state information reporting settings Channel status information reporting settings.
  • the K channel state information respectively corresponding to the K channel state information reporting settings except the M channel state information reporting settings in the N channel state information reporting settings, where K is a positive integer not greater than NM
  • the second air interface resource is an air interface resource other than the first air interface resource, and the second air interface resource corresponds to a second antenna port group;
  • the M antennas The port group is not spatially associated with the second antenna port group;
  • the K air interface resources of the N air interface resources associated with the K channel state information reporting settings are respectively associated with the N antenna ports
  • One of the K antenna port groups in the group is associated with each other, and the K antenna port groups are spatially associated with the second antenna port group, and the K antenna port groups are not spatially associated with each other.
  • the first antenna port group is described.
  • the third information is used to indicate configuration information of the N air interface resources.
  • the second antenna port group is not spatially associated with the first antenna port group.
  • the K is equal to the N-M.
  • the K is smaller than the N-M.
  • the code rate corresponding to the K channel state information on the second air interface resource is not greater than the maximum code rate of the second air interface resource.
  • the N2 channel state information reporting settings are spatially associated with the antenna port group of all the corresponding N antenna port groups in the N channel state information reporting settings.
  • the channel state information reporting configuration of the two antenna port groups is configured, and the N2 channel state information reporting settings respectively correspond to N2 channel state information, and the N2 is a positive integer not greater than NM.
  • the N2 channel state information reporting settings include the K channel state information reporting settings.
  • the N2 channel state information includes the K channel state information.
  • the N2 is equal to the K.
  • the N2 is greater than the K.
  • the N2 is equal to the K
  • the K channel state information reporting settings include all the corresponding N antenna port groups in the N channel state information reporting settings.
  • One of the antenna port groups is spatially associated with the channel state information reporting setting of the second antenna port group.
  • the N2 is greater than the K
  • the K channel state information reporting settings are the K with the highest transmission priority of the channel state information corresponding to the N2 channel state information reporting settings.
  • Channel status information reporting settings are the K with the highest transmission priority of the channel state information corresponding to the N2 channel state information reporting settings.
  • the N2 is greater than the K
  • the code rate corresponding to the K channel state information and the third reference channel state information on the second air interface resource is greater than the a maximum code rate of the second air interface resource, where the third reference channel state information corresponds to any channel state information report setting in the N2 channel state information report settings except the K channel state information report settings.
  • the reporting priority index, the parameter group included in the channel state information, the cell index, and the reporting time respectively corresponding to the sending priority of the N2 channel state information and the N2 channel state information reporting settings respectively Related to domain behavior.
  • the corresponding reporting time domain behavior is that the channel priority information reported by the semi-persistent reporting is higher than the corresponding reporting time domain behavior.
  • the channel priority information of the corresponding parameter group including at least one of ⁇ CRI, RSRP, SSBRI ⁇ has a higher transmission priority than the corresponding parameter group including ⁇ RI, PMI, CQI, Channel state information of at least one of SLI ⁇ .
  • the corresponding cell index is that the channel state information of the index of the primary cell (PCell, Primary Cell) is higher than the corresponding cell index is the secondary cell (SCell, Secondary Cell). Channel state information for the index.
  • the channel state information with the smaller reporting index is smaller than the channel state information with the corresponding reporting index.
  • the channel state information with the corresponding report setting index is larger than the channel state information with the corresponding report setting index.
  • the reporting priority index, the parameter group included in the channel state information, the cell index, and the reporting time respectively corresponding to the sending priority of the N2 channel state information and the N2 channel state information reporting settings respectively At least one of the domain behaviors is related.
  • the corresponding reporting time domain behavior is that the channel priority information reported by the semi-persistent reporting is higher than the corresponding reporting time domain behavior.
  • the channel priority information of the corresponding parameter group including at least one of ⁇ CRI, RSRP, SSBRI ⁇ has a higher transmission priority than the corresponding parameter group including ⁇ RI, PMI, CQI, Channel state information of at least one of SLI ⁇ .
  • the corresponding cell index is that the channel state information of the index of the primary cell (PCell, Primary Cell) is higher than the corresponding cell index is the secondary cell (SCell, Secondary Cell). Channel state information for the index.
  • the channel state information with the smaller reporting index is smaller than the channel state information with the corresponding reporting index.
  • the channel state information with the corresponding report setting index is larger than the channel state information with the corresponding report setting index.
  • the reporting priority index corresponding to the K channel state information reporting settings, the parameter group included in the channel state information, the cell index, and the reporting time are respectively included in the sending priority of the K channel state information.
  • the reporting priority index corresponding to the K channel state information reporting settings, the parameter group included in the channel state information, the cell index, and the reporting time are respectively included in the sending priority of the K channel state information.
  • the corresponding reporting time domain behavior is that the channel priority information reported by the semi-persistent reporting is higher than the corresponding reporting time domain behavior.
  • the channel priority information of the corresponding parameter group including at least one of ⁇ CRI, RSRP, SSBRI ⁇ has a higher transmission priority than the corresponding parameter group including ⁇ RI, PMI, CQI, Channel state information of at least one of SLI ⁇ .
  • the corresponding cell index is that the channel state information of the index of the primary cell (PCell, Primary Cell) is higher than the corresponding cell index is the secondary cell (SCell, Secondary Cell). Channel state information for the index.
  • the channel state information with the smaller reporting index is smaller than the channel state information with the corresponding reporting index.
  • the channel state information with the corresponding report setting index is larger than the channel state information with the corresponding report setting index.
  • the reporting priority index corresponding to the K channel state information reporting settings, the parameter group included in the channel state information, the cell index, and the reporting time are respectively included in the sending priority of the K channel state information. At least one of the domain behaviors is related.
  • the corresponding reporting time domain behavior is that the channel priority information reported by the semi-persistent reporting is higher than the corresponding reporting time domain behavior.
  • the channel priority information of the corresponding parameter group including at least one of ⁇ CRI, RSRP, SSBRI ⁇ has a higher transmission priority than the corresponding parameter group including ⁇ RI, PMI, CQI, Channel state information of at least one of SLI ⁇ .
  • the corresponding cell index is that the channel state information of the index of the primary cell (PCell, Primary Cell) is higher than the corresponding cell index is the secondary cell (SCell, Secondary Cell). Channel state information for the index.
  • the channel state information with the smaller reporting index is smaller than the channel state information with the corresponding reporting index.
  • the channel state information with the corresponding report setting index is larger than the channel state information with the corresponding report setting index.
  • the access detection includes J1 sub-access detection, and any one of the J1 sub-access detections is used to determine whether it is on at least one air interface resource of the J air interface resources. Sending part or all of the channel state information corresponding to the N channel state information report setting, whether to send the portion corresponding to the N channel state information report settings on any of the J air interface resources or The total channel state information is determined by one of the J1 sub-access detections, and J1 is a positive integer not greater than the J.
  • the J1 is equal to the J.
  • the J1 is smaller than the J.
  • any one of the J1 sub-access detections includes positive integer energy detection, and any antenna port in the first antenna port group is connected to the first sub-access. Detecting, in the detection, the energy detection space is related, the first sub-access detection is one of the J1 sub-access detections; at least one antenna port in the first antenna port group is detected with the J1 sub-accesses Any one of the energy detection spaces included in any sub-access detection except the first sub-access detection is irrelevant; the result of the first sub-access detection is that the first air interface resource is sent on the first air interface resource.
  • any one of the J1 sub-access detections includes positive integer energy detection, and any antenna port in the first antenna port group is connected to the first sub-access. Detecting, in the detection, the energy detection space is related, the first sub-access detection is one of the J1 sub-access detections; at least one antenna port in the first antenna port group is detected with the J1 sub-accesses Any one of the energy detection spaces included in any sub-access detection except the first sub-access detection is irrelevant; the result of the first sub-access detection is that the first air interface resource is sent on the first air interface resource.
  • the N channel state information reports some or all of the channel state information corresponding to the channel state information.
  • any one of the J1 sub-access detections includes positive integer energy detection, and any one of the second antenna port groups is connected to the second sub-access. Detecting any of the energy detection spatial correlations, the second sub-access detection is one of the J1 sub-access detections; at least one antenna port of the second antenna port group is detected with the J1 sub-accesses Any one of the energy detection spaces included in any sub-access detection except the second sub-access detection is not correlated; the result of the second sub-access detection is that the second air interface resource is sent on the second air interface resource
  • the N channel state information reports some or all of the channel state information corresponding to the channel state information.
  • the access detection includes J sub-access detections, where the J sub-access detections are respectively used to determine whether to send the N channel state information report settings on the J air interface resources. Part or all of the channel status information;
  • any one of the J sub-access detections includes a positive integer energy detection, and any one of the antenna ports in the first antenna port group is connected to the third sub-access.
  • Any one of the J sub-access detections is one of the J sub-access detections; and at least one antenna port of the first antenna port group is detected with the J sub-accesses Any one of the energy detection spaces included in any sub-access detection except the third sub-access detection is not correlated; the result of the third sub-access detection is that the first air interface resource is sent Determining part or all of the channel state information corresponding to the N channel state information reporting; the result of any sub-access detection except the third sub-access detection in the J sub-access detections is abandoning And transmitting, on one of the J air interface resources, part or all of the channel state information corresponding to the N channel state information report settings.
  • any one of the J sub-access detections includes a positive integer energy detection, and any one of the antenna ports in the first antenna port group is connected to the third sub-access.
  • Any one of the J sub-access detections is one of the J sub-access detections; and at least one antenna port of the first antenna port group is detected with the J sub-accesses Any one of the energy detection spaces included in any sub-access detection except the third sub-access detection is not correlated; the result of the third sub-access detection is that the first air interface resource is sent
  • the N channel state information reports some or all of the channel state information corresponding to the channel state information.
  • any one of the J sub-access detections includes a positive integer energy detection, and any one of the antenna ports in the second antenna port group is connected to the fourth sub-access. Detecting, in the detection, the energy detection space is related, the fourth sub-access detection is one of the J sub-access detections; and at least one antenna port in the second antenna port group is detected with the J sub-accesses Any one of the energy detection spaces included in any sub-access detection except the fourth sub-access detection is not correlated; the result of the fourth sub-access detection is that the second air interface resource is sent on the second air interface resource
  • the N channel state information reports some or all of the channel state information corresponding to the channel state information.
  • the monitoring of the J air interface resources to determine the first air interface resource means: monitoring, on the J air interface resources, the N corresponding to the sending of the N channel state information reporting settings respectively. Whether the wireless signal of the at least one channel state information of the channel state information is sent, the first air interface resource is the only one of the J air interface resources, and the N corresponding to the N channel state information report settings are respectively sent.
  • the J air interface resources are monitored to determine the first air interface resource and the second air interface resource.
  • the monitoring of the J air interface resources to determine the first air interface resource and the second air interface resource means: monitoring, on the J air interface resources, respectively, used to send the N channel states And transmitting, by the information reporting, whether the wireless signal of the at least one channel state information of the corresponding N channel state information is sent, where the second air interface resource and the first air interface resource are sent by the J air interface resources.
  • the N channel state information reports an air interface resource of a wireless signal that sets at least one of the N channel state information corresponding to each of the channel state information.
  • the monitoring of the J air interface resources to determine the first air interface resource means: monitoring, on the J air interface resources, the N corresponding to the sending of the N channel state information reporting settings respectively. Whether the wireless signal of the at least one channel state information of the channel state information is sent, the first air interface resource is one of the J air interface resources, and the N corresponding to the N channel state information report settings are respectively sent.
  • monitoring whether a given wireless signal is transmitted on a given air interface resource means determining whether a given wireless signal is sent on the given air interface resource based on energy of the received signal on a given air interface resource .
  • the given air interface resource is any air interface resource of the J air interface resources
  • the given wireless signal is used to send the N channel state information report settings respectively a wireless signal of at least one of the corresponding N channel state information.
  • the given wireless signal if the energy of the received signal on the given air interface resource is low, the given wireless signal is considered not to be sent on the given air interface resource; otherwise, the A given wireless signal is sent on the given air interface resource.
  • the given wireless signal is considered not to be sent on the given air interface resource;
  • the given wireless signal is considered to be transmitted on the given air interface resource;
  • the reference energy threshold is self-configured by the base station device.
  • monitoring whether a given wireless signal is transmitted on a given air interface resource means determining whether a given wireless signal is sent on the given air interface resource based on the power of the received signal on the given air interface resource.
  • the given air interface resource is any air interface resource of the J air interface resources
  • the given wireless signal is used to send the N channel state information report settings respectively a wireless signal of at least one of the corresponding N channel state information.
  • the given wireless signal if the power of the received signal on the given air interface resource is low, the given wireless signal is considered not to be sent on the given air interface resource; otherwise, the A given wireless signal is sent on the given air interface resource.
  • the given wireless signal if the power of the received signal on the given air interface resource is lower than a reference power threshold, the given wireless signal is considered not to be sent on the given air interface resource; otherwise, The given wireless signal is considered to be transmitted on the given air interface resource; the reference power threshold is self-configured by the base station device.
  • monitoring whether a given wireless signal is transmitted on a given air interface resource means: determining, according to the correlation between the received signal on the given air interface resource and the given wireless signal, the given wireless signal Whether it is sent on the given air interface resource.
  • the given air interface resource is any air interface resource of the J air interface resources
  • the given wireless signal is used to send the N channel state information report settings respectively a wireless signal of at least one of the corresponding N channel state information.
  • the given wireless signal is considered not to be on the given air interface resource. Sent, otherwise, the given wireless signal is considered to be sent on the given air interface resource.
  • the given wireless signal is considered to be in the given The air interface resource is not sent. Otherwise, the given wireless signal is considered to be sent on the given air interface resource; the reference correlation threshold is configured by the base station device.
  • monitoring whether a given wireless signal is transmitted on a given air interface resource means: measuring a received signal on a given air interface resource according to a configuration parameter of a given wireless signal to estimate a channel, according to the estimated The channel determines whether the given wireless signal is transmitted on the given air interface resource.
  • the given air interface resource is any air interface resource of the J air interface resources
  • the given wireless signal is used to send the N channel state information report settings respectively a wireless signal of at least one of the corresponding N channel state information.
  • the given wireless signal if the estimated energy of the channel is low, the given wireless signal is considered not to be transmitted on the given air interface resource; otherwise, the given wireless signal is considered Sent on the given air interface resource.
  • the given wireless signal if the estimated energy of the channel is lower than a reference channel energy threshold, the given wireless signal is considered not to be sent on the given air interface resource; otherwise, the A given wireless signal is transmitted on the given air interface resource; the reference channel energy threshold is self-configured by the base station device.
  • the given wireless signal if the estimated power of the channel is low, the given wireless signal is considered not to be transmitted on the given air interface resource; otherwise, the given wireless signal is considered Sent on the given air interface resource.
  • the given wireless signal if the estimated power of the channel is lower than a reference channel power threshold, the given wireless signal is considered not to be sent on the given air interface resource; otherwise, the A given wireless signal is transmitted on the given air interface resource; the reference channel power threshold is self-configured by the base station.
  • the given wireless signal is considered not to be sent on the given air interface resource; A given wireless signal is transmitted on the given air interface resource.
  • the third information explicitly indicates configuration information of the N air interface resources.
  • the third information implicitly indicates configuration information of the N air interface resources.
  • the third information is semi-statically configured.
  • the third information is carried by higher layer signaling.
  • the third information is carried by RRC signaling.
  • the third information includes one or more IEs in one RRC signaling.
  • the third information includes all or a part of an IE in one RRC signaling.
  • the third information includes multiple IEs in one RRC signaling.
  • the first information, the second information, and the third information all belong to the same IE in one RRC signaling.
  • the first information and the third information belong to the same IE in one RRC signaling.
  • the second information and the third information belong to the same IE in one RRC signaling.
  • the first information and the third information respectively belong to different IEs in one RRC signaling.
  • the second information and the third information respectively belong to different IEs in one RRC signaling.
  • the configuration information of any of the N air interface resources includes the occupied time domain resource, the occupied code domain resource, the occupied frequency domain resource, and at least the corresponding antenna port group. one.
  • the configuration information of any of the N air interface resources includes the occupied time domain resource, the occupied code domain resource, the occupied frequency domain resource, and the corresponding antenna port group.
  • the configuration information of any of the N air interface resources includes the initial multicarrier symbol occupied, the number of multicarrier numbers occupied, and the initial PRB before or after the frequency hopping.
  • the configuration information of any of the N air interface resources includes the initial multicarrier symbol occupied, the number of multicarrier numbers occupied, and the initial PRB before or after the frequency hopping. At least one of a starting PRB after frequency hopping, a number of PRBs occupied, a frequency hopping setting, a CS, an OCC, an OCC length, a corresponding antenna port group, and a maximum code rate.
  • Embodiments 6A to 6B respectively illustrate whether a N antenna port group is spatially associated to a first antenna port group and is used to determine M channel state information reporting settings from N channel state information reporting settings. .
  • the M antenna port groups of the N antenna port groups respectively corresponding to the M channel state information reporting settings are spatially associated to the first antenna port group.
  • the M antenna port groups are respectively in the N antenna port groups corresponding to the M air interface resources of the N air interface resources that are associated with the M channel state information reporting settings. M antenna port groups.
  • the given channel state information reporting setting is any channel state information reporting setting in the N channel state information reporting settings, and the N channel port groups corresponding to the given channel state information reporting settings.
  • One of the N antenna port groups corresponding to one of the N air interface resources associated with the given channel state information reporting setting is one of the N antenna port groups; a given channel
  • the state information is channel state information included in the report of the given channel state information, and one of the N antenna port groups corresponding to the given channel state information is reported by the given channel state information. Setting one of the N antenna port groups corresponding to the antenna port group.
  • a code rate corresponding to the M channel state information on the first air interface resource is not greater than a maximum code rate of the first air interface resource.
  • the N1 channel state information reporting settings are spatially associated with the antenna port group of all the corresponding N antenna port groups in the N channel state information reporting settings.
  • the channel state information reporting setting of the antenna port group is configured, and the N1 channel state information reporting settings respectively correspond to N1 channel state information, where the N1 is a positive integer not greater than the N.
  • the N1 channel state information reporting settings include the M channel state information reporting settings.
  • the N1 channel state information includes the M channel state information.
  • the N1 is equal to the M.
  • the N1 is greater than the M.
  • the N1 is equal to the M
  • the M channel state information reporting settings include all the corresponding N antenna port groups in the N channel state information reporting settings.
  • One of the antenna port groups is spatially associated with the channel state information reporting setting of the first antenna port group.
  • the N1 is greater than the M
  • the M channel state information reporting settings are the M with the highest transmission priority of the channel state information corresponding to the N1 channel state information reporting settings.
  • Channel status information reporting settings are the M with the highest transmission priority of the channel state information corresponding to the N1 channel state information reporting settings.
  • the N1 is greater than the M
  • the code rate corresponding to the M channel state information and the first reference channel state information on the first air interface resource is greater than the The maximum code rate of the first air interface resource, where the first reference channel state information corresponds to any channel state information report setting in the N1 channel state information report settings except the M channel state information report settings.
  • the reporting priority index corresponding to the N1 channel state information reporting settings and the parameter group, the cell index, and the reporting time included in the channel state information respectively Related to domain behavior.
  • the corresponding reporting time domain behavior is that the channel priority information reported by the semi-persistent reporting is higher than the corresponding reporting time domain behavior.
  • the channel priority information of the corresponding parameter group including at least one of ⁇ CRI, RSRP, SSBRI ⁇ has a higher transmission priority than the corresponding parameter group including ⁇ RI, PMI, CQI, Channel state information of at least one of SLI ⁇ .
  • the corresponding cell index is that the channel state information of the index of the primary cell (PCell, Primary Cell) is higher than the corresponding cell index is the secondary cell (SCell, Secondary Cell). Channel state information for the index.
  • the channel state information with the smaller reporting index is smaller than the channel state information with the corresponding reporting index.
  • the channel priority information of the corresponding reporting setting index is higher than the corresponding channel state information of the corresponding reporting setting index.
  • the reporting priority index corresponding to the N1 channel state information reporting settings and the parameter group, the cell index, and the reporting time included in the channel state information respectively At least one of the domain behaviors is related.
  • the corresponding reporting time domain behavior is that the channel priority information reported by the semi-persistent reporting is higher than the corresponding reporting time domain behavior.
  • the channel priority information of the corresponding parameter group including at least one of ⁇ CRI, RSRP, SSBRI ⁇ has a higher transmission priority than the corresponding parameter group including ⁇ RI, PMI, CQI, Channel state information of at least one of SLI ⁇ .
  • the corresponding cell index is that the channel state information of the index of the primary cell (PCell, Primary Cell) is higher than the corresponding cell index is the secondary cell (SCell, Secondary Cell). Channel state information for the index.
  • the channel state information with the smaller reporting index is smaller than the channel state information with the corresponding reporting index.
  • the channel state information with the corresponding report setting index is larger than the channel state information with the corresponding report setting index.
  • the reporting priority index corresponding to the M channel state information reporting settings, the parameter group included in the channel state information, the cell index, and the reporting time are respectively included in the sending priority of the M channel state information.
  • the reporting priority index corresponding to the M channel state information reporting settings, the parameter group included in the channel state information, the cell index, and the reporting time are respectively included in the sending priority of the M channel state information.
  • the corresponding reporting time domain behavior is that the channel priority information reported by the semi-persistent reporting is higher than the corresponding reporting time domain behavior.
  • the channel priority information of the corresponding parameter group including at least one of ⁇ CRI, RSRP, SSBRI ⁇ has a higher transmission priority than the corresponding parameter group including ⁇ RI, PMI, CQI, Channel state information of at least one of SLI ⁇ .
  • the corresponding cell index is that the channel state information of the index of the primary cell (PCell, Primary Cell) is higher than the corresponding cell index is the secondary cell (SCell, Secondary Cell). Channel state information for the index.
  • the channel state information with the smaller reporting index is smaller than the channel state information with the corresponding reporting index.
  • the channel state information with the corresponding report setting index is larger than the channel state information with the corresponding report setting index.
  • the reporting priority index corresponding to the M channel state information reporting settings, the parameter group included in the channel state information, the cell index, and the reporting time are respectively included in the sending priority of the M channel state information. At least one of the domain behaviors is related.
  • the corresponding reporting time domain behavior is that the channel priority information reported by the semi-persistent reporting is higher than the corresponding reporting time domain behavior.
  • the channel priority information of the corresponding parameter group including at least one of ⁇ CRI, RSRP, SSBRI ⁇ has a higher transmission priority than the corresponding parameter group including ⁇ RI, PMI, CQI, Channel state information of at least one of SLI ⁇ .
  • the corresponding cell index is that the channel state information of the index of the primary cell (PCell, Primary Cell) is higher than the corresponding cell index is the secondary cell (SCell, Secondary Cell). Channel state information for the index.
  • the channel state information with the smaller reporting index is smaller than the channel state information with the corresponding reporting index.
  • the channel state information with the corresponding report setting index is larger than the channel state information with the corresponding report setting index.
  • the embodiment 6A is configured to report, by using N1 channel state information reports, one of the N antenna port groups corresponding to all the corresponding N antenna port groups in the N channel state information reporting settings. Formed by a channel state information reporting setting associated with the first antenna port group, the N1 being equal to whether the N antenna port groups of the M are spatially associated to the first antenna port group are used Determining, by the N channel state information reporting settings, a schematic diagram of the M channel state information reporting settings.
  • the embodiment 6B is configured to report, by using N1 channel state information reports, one of the N antenna port groups corresponding to all the corresponding N antenna port groups in the N channel state information reporting settings. Formed by a channel state information reporting setting associated with the first antenna port group, whether the N1 is greater than the N antenna port groups of the M are associated with the first antenna port group is used for Determining, by the N channel state information reporting settings, a schematic diagram of the M channel state information reporting settings.
  • Embodiment 7 illustrates a schematic diagram of whether another N antenna port groups are spatially associated to a first antenna port group for determining M channel state information reporting settings from N channel state information reporting settings, as shown in the attached drawing 7 is shown.
  • At least one of the M antenna port groups in the N antenna port groups respectively corresponding to the M channel state information reporting settings is not spatially associated with the a first antenna port group, the M channel state information reporting settings including all one of the N antenna port groups corresponding to the N channel state information reporting settings are spatially associated to The channel state information of the first antenna port group is reported and set.
  • whether the M antenna port groups are spatially associated to the first antenna port group is used to determine a transmission priority of the M channel state information.
  • the order of the M channel state information from first to last is consistent with the order of sending priority of the M channel state information from high to low.
  • the ordering of the M channel state information from the lower bit to the higher bit position is consistent with the order of the sending priority of the M channel state information from high to low.
  • the ordering of the M channel state information from the higher bit to the lower bit position is consistent with the order of the sending priority of the M channel state information from high to low.
  • the first air interface resource is used to carry uplink control information (UCI, Uplink Control Information), and the M channel state information is first to last in the uplink control information and the M is The transmission priority of the channel state information is consistent from high to low.
  • UCI Uplink Control Information
  • UCI Uplink Control Information
  • the first air interface resource is used to carry uplink control information
  • the M channel state information is sorted from the lower bit to the higher bit position in the uplink control information, and the M The transmission priority of channel state information is consistent from high to low.
  • the first air interface resource is used to carry uplink control information
  • the M channel state information is sorted from the higher bit to the lower bit position in the uplink control information, and the M The transmission priority of channel state information is consistent from high to low.
  • the first air interface resource is used to carry uplink control information, where the location of the channel state information with higher priority in the uplink channel control information precedes the M
  • the channel state information transmits the location of the channel state information with lower priority in the uplink control information.
  • the first air interface resource is used to carry uplink control information, and the channel state information with higher priority is sent in the M channel state information in a lower bit position in the uplink control information.
  • the first air interface resource is used to carry uplink control information, and the M channel state information sends a higher priority channel state information in a higher bit position in the uplink control information.
  • a code rate corresponding to the M channel state information on the first air interface resource is not greater than a maximum code rate of the first air interface resource.
  • the N1 channel state information reporting settings are spatially associated with the antenna port group of all the corresponding N antenna port groups in the N channel state information reporting settings.
  • the channel state information reporting setting of the antenna port group is configured, and the N1 channel state information reporting settings respectively correspond to N1 channel state information, and the N channel state information reporting settings respectively correspond to N channel state information, where the N1 is A positive integer smaller than the N.
  • the M channel state information reporting settings include the N1 channel state information reporting settings.
  • the M channel state information includes the N1 channel state information.
  • the N channel state information includes the M channel state information.
  • the N channel state information includes the N1 channel state information.
  • the N1 is smaller than the M.
  • the transmission priority of any one of the N1 channel state information is higher than the M of the M channel state information except the N1 channel state information. - The transmission priority of N1 channel state information.
  • the M is equal to the N.
  • the M is smaller than the N, and the M-N1 channel state information except the N1 channel state information in the M channel state information is the N channels.
  • the M-N1 channel state information having the highest priority is transmitted in the N-N1 channel state information except the N1 channel state information in the state information.
  • the M is smaller than the N, if a code rate corresponding to the M channel state information and the second reference channel state information on the first air interface resource is greater than the foregoing a maximum code rate of the first air interface resource, where the second reference channel state information is one of the N channel state information except the M channel state information.
  • the M is smaller than the N, if a code rate corresponding to the M channel state information and the second reference channel state information on the first air interface resource is greater than the foregoing a maximum code rate of the first air interface resource, where the second reference channel state information is the M-N1+ of the N-N1 channel state information except the N1 channel state information in the N channel state information. 1 channel status information with the highest transmission priority.
  • the reporting priority index corresponding to the N1 channel state information reporting settings and the parameter group, the cell index, and the reporting time included in the channel state information respectively Related to domain behavior.
  • the corresponding reporting time domain behavior is that the channel priority information reported by the semi-persistent reporting is higher than the corresponding reporting time domain behavior.
  • the channel priority information of the corresponding parameter group including at least one of ⁇ CRI, RSRP, SSBRI ⁇ has a higher transmission priority than the corresponding parameter group including ⁇ RI, PMI, CQI, Channel state information of at least one of SLI ⁇ .
  • the corresponding cell index is that the channel state information of the index of the primary cell (PCell, Primary Cell) is higher than the corresponding cell index is the secondary cell (SCell, Secondary Cell). Channel state information for the index.
  • the channel state information with the smaller reporting index is smaller than the channel state information with the corresponding reporting index.
  • the channel state information with the corresponding report setting index is larger than the channel state information with the corresponding report setting index.
  • the reporting priority index corresponding to the N1 channel state information reporting settings and the parameter group, the cell index, and the reporting time included in the channel state information respectively At least one of the domain behaviors is related.
  • the corresponding reporting time domain behavior is that the channel priority information reported by the semi-persistent reporting is higher than the corresponding reporting time domain behavior.
  • the channel priority information of the corresponding parameter group including at least one of ⁇ CRI, RSRP, SSBRI ⁇ has a higher transmission priority than the corresponding parameter group including ⁇ RI, PMI, CQI, Channel state information of at least one of SLI ⁇ .
  • the corresponding cell index is that the channel state information of the index of the primary cell (PCell, Primary Cell) is higher than the corresponding cell index is the secondary cell (SCell, Secondary Cell). Channel state information for the index.
  • the channel state information with the smaller reporting index is smaller than the channel state information with the corresponding reporting index.
  • the channel state information with the corresponding report setting index is larger than the channel state information with the corresponding report setting index.
  • the sending priority between the N-N1 channel state information except the N1 channel state information in the N channel state information is in the N channel state information reporting setting
  • the N-N1 channel state information reporting settings other than the N1 channel state information reporting settings are respectively related to the report setting index, the parameter group included in the channel state information, the cell index, and the reporting time domain behavior.
  • the corresponding reporting time domain behavior is that the channel priority information reported by the semi-persistent reporting is higher than the corresponding reporting time domain behavior.
  • the channel priority information of the corresponding parameter group including at least one of ⁇ CRI, RSRP, SSBRI ⁇ has a higher transmission priority than the corresponding parameter group including ⁇ RI, PMI, CQI, Channel state information of at least one of SLI ⁇ .
  • the corresponding cell index is that the channel state information of the index of the primary cell (PCell, Primary Cell) is higher than the corresponding cell index is the secondary cell (SCell, Secondary Cell). Channel state information for the index.
  • the channel state information with the smaller reporting index is smaller than the channel state information with the corresponding reporting index.
  • the channel state information with the corresponding report setting index is larger than the channel state information with the corresponding report setting index.
  • the sending priority between the N-N1 channel state information except the N1 channel state information in the N channel state information is in the N channel state information reporting setting
  • the N-N1 channel state information reporting settings other than the N1 channel state information reporting settings respectively correspond to at least one of a report setting index, a parameter group included in the channel state information, a cell index, and a reporting time domain behavior.
  • the corresponding reporting time domain behavior is that the channel priority information reported by the semi-persistent reporting is higher than the corresponding reporting time domain behavior.
  • the channel priority information of the corresponding parameter group including at least one of ⁇ CRI, RSRP, SSBRI ⁇ has a higher transmission priority than the corresponding parameter group including ⁇ RI, PMI, CQI, Channel state information of at least one of SLI ⁇ .
  • the corresponding cell index is that the channel state information of the index of the primary cell (PCell, Primary Cell) is higher than the corresponding cell index is the secondary cell (SCell, Secondary Cell). Channel state information for the index.
  • the channel state information with the smaller reporting index is smaller than the channel state information with the corresponding reporting index.
  • the channel state information with the corresponding report setting index is larger than the channel state information with the corresponding report setting index.
  • the transmission priority between the M-N1 channel state information except the N1 channel state information in the M channel state information is in the M channel state information reporting setting
  • the M-N1 channel state information reporting settings other than the N1 channel state information reporting settings are respectively related to the report setting index, the parameter group included in the channel state information, the cell index, and the reporting time domain behavior.
  • the corresponding reporting time domain behavior is that the channel priority information reported by the semi-persistent reporting is higher than the channel state information periodically reported by the corresponding reporting time domain behavior.
  • the channel priority information of the corresponding parameter group including at least one of ⁇ CRI, RSRP, SSBRI ⁇ has a higher transmission priority than the corresponding parameter group including ⁇ RI, PMI, CQI, Channel state information of at least one of SLI ⁇ .
  • the corresponding cell index is that the channel state information of the index of the primary cell (PCell, Primary Cell) is higher than the corresponding cell index is the secondary cell (SCell, Secondary Cell). Channel state information for the index.
  • the channel state information with the smaller reporting index is smaller than the channel state information with the corresponding reporting index.
  • the channel state information with the corresponding report setting index is larger than the channel state information with the corresponding report setting index.
  • the transmission priority between the M-N1 channel state information except the N1 channel state information in the M channel state information is in the M channel state information reporting setting
  • the M-N1 channel state information reporting settings respectively correspond to at least one of a report setting index, a parameter group included in the channel state information, a cell index, and a reporting time domain behavior.
  • the corresponding reporting time domain behavior is that the channel priority information reported by the semi-persistent reporting is higher than the corresponding reporting time domain behavior.
  • the channel priority information of the corresponding parameter group including at least one of ⁇ CRI, RSRP, SSBRI ⁇ has a higher transmission priority than the corresponding parameter group including ⁇ RI, PMI, CQI, Channel state information of at least one of SLI ⁇ .
  • the corresponding cell index is that the channel state information of the index of the primary cell (PCell, Primary Cell) is higher than the corresponding cell index is the secondary cell (SCell, Secondary Cell). Channel state information for the index.
  • the channel state information with the smaller reporting index is smaller than the channel state information with the corresponding reporting index.
  • the channel state information with the corresponding report setting index is larger than the channel state information with the corresponding report setting index.
  • the embodiment 7 is configured to report, by using N1 channel state information reports, one of the N antenna port groups corresponding to all the corresponding N antenna port groups in the N channel state information reporting settings.
  • a channel state information report setting associated with the first antenna port group, wherein the N1 is smaller than the N antenna port groups of the M are spatially associated to the first antenna port group is used Determining, by the N channel state information reporting settings, a schematic diagram of the M channel state information reporting settings.
  • Embodiment 8 exemplifies a schematic diagram for determining a first antenna port group, as shown in FIG.
  • the reference channel state information reporting setting is a channel state information reporting setting with the highest reference priority in the N channel state information reporting settings in the present application
  • the reference antenna port group is described in the present application.
  • One of the N antenna port groups in the present application corresponding to an air interface resource associated with the reference channel state information report setting in the N air interface resources, the reference antenna port group is associated with the The first antenna port group is described.
  • the first antenna port group includes the reference antenna port group.
  • the M is equal to the N
  • the first air interface resource is a resource unit that is capable of transmitting all channel state information corresponding to the N channel state information report settings in the J air interface resources.
  • RE The smallest number of air interface resources.
  • the M is smaller than the N, and the first air interface resource is an air interface resource with the largest number of resource units included in the J air interface resources.
  • the reporting priority index corresponding to the N channel state information reporting settings, the parameter group included in the channel state information, the cell index, and the reporting time are respectively included in the reference priority of the N channel state information.
  • the reporting priority index corresponding to the N channel state information reporting settings, the parameter group included in the channel state information, the cell index, and the reporting time are respectively included in the reference priority of the N channel state information.
  • the corresponding reporting time domain behavior is that the reference priority of the channel state information reported by the semi-persistent is higher than the channel state information that is periodically reported by the corresponding reporting time domain behavior.
  • the channel priority information of the corresponding parameter group including at least one of ⁇ CRI, RSRP, SSBRI ⁇ has a higher reference priority than the corresponding parameter group, including ⁇ RI, PMI, CQI, Channel state information of at least one of SLI ⁇ .
  • the corresponding cell index is the reference priority of the channel state information of the index of the primary cell (PCell, Primary Cell), and the corresponding cell index is the secondary cell (SCell, Secondary Cell). Channel state information for the index.
  • the reference priority of the corresponding channel state information with a smaller index is higher than the corresponding channel state information of the corresponding report setting index.
  • the reference priority of the corresponding channel state information with a larger index is higher than the channel state information with a smaller report index.
  • the reporting priority index corresponding to the N channel state information reporting settings, the parameter group included in the channel state information, the cell index, and the reporting time are respectively included in the reference priority of the N channel state information. At least one of the domain behaviors is related.
  • the corresponding reporting time domain behavior is that the reference priority of the channel state information reported by the semi-persistent is higher than the channel state information that is periodically reported by the corresponding reporting time domain behavior.
  • the channel priority information of the corresponding parameter group including at least one of ⁇ CRI, RSRP, SSBRI ⁇ has a higher reference priority than the corresponding parameter group, including ⁇ RI, PMI, CQI, Channel state information of at least one of SLI ⁇ .
  • the corresponding cell index is the reference priority of the channel state information of the index of the primary cell (PCell, Primary Cell), and the corresponding cell index is the secondary cell (SCell, Secondary Cell). Channel state information for the index.
  • the reference priority of the corresponding channel state information with a smaller index is higher than the corresponding channel state information of the corresponding report setting index.
  • the reference priority of the corresponding channel state information with a larger index is higher than the channel state information with a smaller report index.
  • Embodiment 9 exemplifies another schematic diagram for determining the first antenna port group, as shown in FIG.
  • the second information in the application is used to indicate the J antenna port groups, and the J air interface resources in the present application are respectively corresponding to the J antenna port groups.
  • the first antenna port group is an antenna port group corresponding to the first air interface resource among the J antenna port groups.
  • the second antenna port group is an antenna port group corresponding to the second air interface resource in the J antenna port groups.
  • the second information also explicitly indicates J antenna port groups.
  • the second information also implicitly indicates J antenna port groups.
  • Embodiments 10A through 10B respectively illustrate a schematic diagram in which a first given set of antenna ports is spatially associated to a second given set of antenna ports.
  • the first given antenna port group corresponds to one of the M antenna port groups in the N antenna port groups respectively corresponding to the M channel state information reporting settings in the present application.
  • the first given antenna port group corresponds to one of the N antenna port groups corresponding to any channel state information reporting setting in the N1 channel state information reporting settings in the present application.
  • the second given antenna port group corresponds to the first antenna port group in the present application; or the first given antenna port group corresponds to one of the K antenna port groups in the present application, Or the first given antenna port group corresponds to one of the N antenna port groups corresponding to any channel state information reporting setting in the N2 channel state information reporting settings in the present application;
  • the second given antenna port group corresponds to the second antenna port group in the present application; or the first given antenna port group corresponds to the reference antenna port group in the present application; Fixed antenna
  • the port group corresponds to the first antenna port group in this application.
  • the first given antenna port group being spatially associated to the second given antenna port group means that the second given antenna port group includes the first given antenna port All antenna ports in the group.
  • the first given antenna port group is spatially associated to the second given antenna port group, the transmitting or receiving antenna for transmitting a wireless signal on the second given antenna port group or
  • the antenna group includes all transmit or receive antennas or antenna groups that transmit wireless signals on the first given set of antenna ports.
  • the first given antenna port group is spatially associated to the second given antenna port group, and the transmit antenna or antenna group transmitting the wireless signal on the second given antenna port group Included are all transmit antennas or antenna groups that transmit wireless signals on the first given set of antenna ports.
  • the first given antenna port group is spatially associated to the second given antenna port group, and the receiving antenna or antenna group transmitting a wireless signal on the second given antenna port group All receive antennas or antenna groups that transmit wireless signals on the first given set of antenna ports are included.
  • the first given antenna port group is spatially associated to the second given antenna port group, and the transmit antenna or antenna group transmitting the wireless signal on the second given antenna port group All receive antennas or antenna groups that transmit wireless signals on the first given set of antenna ports are included.
  • the first given antenna port group is spatially associated to the second given antenna port group, and the receiving antenna or antenna group transmitting a wireless signal on the second given antenna port group Included are all transmit antennas or antenna groups that transmit wireless signals on the first given set of antenna ports.
  • the first given antenna port group is spatially associated to the second given antenna port group, and the second antenna group is configured to generate a transmit wireless signal on the second given antenna port group.
  • Multiple antenna-related transmission or multiple antenna-related received one or more antenna groups the first antenna group being a multi-antenna-related transmission or multi-antenna correlation that generates a transmitted wireless signal on the first given antenna port group
  • the first given antenna port group is spatially associated to the second given antenna port group, and the second antenna group is configured to generate a transmit wireless signal on the second given antenna port group.
  • Multiple antenna-related transmitted one or more antenna groups the first antenna group being one or more antenna groups that generate multiple antenna-related transmissions of the transmitted wireless signals on the first given antenna port group
  • the second antenna group includes all of the antennas or antenna groups in the first antenna group.
  • the first given antenna port group is spatially associated to the second given antenna port group, and the second antenna group is configured to generate a transmit wireless signal on the second given antenna port group.
  • Multiple antenna-related received one or more antenna groups the first antenna group being one or more antenna groups that generate multiple antenna-related receptions of transmitted wireless signals on the first given antenna port group
  • the second antenna group includes all of the antennas or antenna groups in the first antenna group.
  • the first given antenna port group is spatially associated to the second given antenna port group, and the second antenna group is configured to generate a transmit wireless signal on the second given antenna port group.
  • Multiple antenna-related transmitted one or more antenna groups the first antenna group being one or more antenna groups that generate multiple antenna-related receptions of transmitted wireless signals on the first given antenna port group
  • the second antenna group includes all of the antennas or antenna groups in the first antenna group.
  • the first given antenna port group being spatially associated to the second given antenna port group means that the second given antenna port group includes the first given antenna port a partial antenna port in the group, wherein any one of the first given antenna port groups that does not belong to the second given antenna port group and at least one of the second given antenna ports is QCL (Quasi Co-Located).
  • the first given antenna port group being spatially associated to the second given antenna port group means that the second given antenna port group includes the first given antenna port a partial antenna port in the group, wherein any one of the first given antenna port groups that does not belong to the second given antenna port group and one of the second given antenna ports is a QCL .
  • the first given antenna port group being spatially associated to the second given antenna port group means that the second given antenna port group includes the first given antenna port a partial antenna port in the group, wherein any one of the first given antenna port groups that does not belong to the second given antenna port group and at least one of the second given antenna ports is Spatial QCL.
  • the first given antenna port group being spatially associated to the second given antenna port group means that the second given antenna port group includes the first given antenna port a partial antenna port in the group, wherein any one of the first given antenna port groups that does not belong to the second given antenna port group and one of the second given antenna ports is a spatial QCL.
  • the first given antenna port group is spatially associated to the second given antenna port group, meaning that any one of the first given antenna port groups is At least one of the second given antenna port groups is a QCL.
  • the first given antenna port group is spatially associated to the second given antenna port group, meaning that any one of the first given antenna port groups is One of the second given antenna port groups is a QCL.
  • the first given antenna port group is spatially associated to the second given antenna port group, meaning that any one of the first given antenna port groups is At least one of the second given antenna port groups is a spatial QCL.
  • the first given antenna port group is spatially associated to the second given antenna port group, meaning that any one of the first given antenna port groups is One of the antenna ports of the second given antenna port group is a spatial QCL.
  • the fact that the two antenna ports are QCL means that all or part of the large-scale properties of the wireless signal that can be transmitted from one of the two antenna ports can be inferred. All or part of the large-scale characteristics of the wireless signal transmitted on the other of the antenna ports.
  • the two antenna ports being QCL means that the two antenna ports have at least one identical QCL parameter, and the QCL parameters include multiple antenna related QCL parameters and multiple antenna independent QCL parameters. .
  • the two antenna ports being QCL means that at least one QCL of the other of the two antenna ports can be inferred from at least one QCL parameter of one of the two antenna ports. parameter.
  • the fact that the two antenna ports are QCL means that the multi-antenna related reception of the wireless signal that can be transmitted from one of the two antenna ports infers the other of the two antenna ports. Multi-antenna related reception of wireless signals transmitted on antenna ports.
  • the two antenna ports being QCL means that the multi-antenna related transmission of the wireless signal that can be transmitted from one of the two antenna ports infers the other of the two antenna ports Multi-antenna related transmission of wireless signals transmitted on antenna ports.
  • the fact that the two antenna ports are QCL means that the multi-antenna related reception of the wireless signal that can be transmitted from one of the two antenna ports infers the other of the two antenna ports.
  • Multi-antenna related transmission of a wireless signal transmitted on an antenna port, a receiver of a wireless signal transmitted on one of the two antenna ports, and another antenna port of the two antenna ports The sender of the wireless signal sent on is the same.
  • the multi-antenna related QCL parameters include one or more of an angle of arrival, an angle of departure, a spatial correlation, a multi-antenna related transmission, and a multi-antenna related reception.
  • an angle of arrival an angle of departure
  • a spatial correlation a multi-antenna related transmission
  • a multi-antenna related reception a multi-antenna related reception.
  • the multi-antenna-independent QCL parameters include: delay spread, Doppler spread, Doppler shift, path loss, average gain ( One or more of average gain).
  • the two antenna ports are spatial QCL refers to all or part of a multi-antenna related large-scale characteristic of a wireless signal that can be transmitted from one of the two antenna ports ( Properties) Inferring all or part of the multi-antenna-related large-scale characteristics of the wireless signal transmitted on the other of the two antenna ports.
  • the two antenna ports are spatial QCL, which means that the two antenna ports have at least one identical multi-antenna related QCL parameter.
  • the two antenna ports are spatial QCL, which means that the other of the two antenna ports can be inferred from at least one multi-antenna related QCL parameter of one of the two antenna ports. At least one multi-antenna related QCL parameter of the antenna port.
  • the two antenna ports are spatial QCL, which means that the multi-antenna related reception of the wireless signal that can be transmitted from one of the two antenna ports infers the other of the two antenna ports. Multi-antenna related reception of wireless signals transmitted on one antenna port.
  • the two antenna ports are spatial QCL means that the multi-antenna related transmission of the wireless signal that can be transmitted from one of the two antenna ports infers the other of the two antenna ports Multi-antenna related transmission of wireless signals transmitted on one antenna port.
  • the two antenna ports are spatial QCL, which means that the multi-antenna related reception of the wireless signal that can be transmitted from one of the two antenna ports infers the other of the two antenna ports.
  • Multi-antenna related transmission of a wireless signal transmitted on one antenna port, a receiver of a wireless signal transmitted on one of the two antenna ports, and another antenna of the two antenna ports The sender of the wireless signal sent on the port is the same.
  • the multi-element related large-scale characteristics of a given wireless signal include angle of arrival, angle of departure, spatial correlation, multi-antenna related transmission, multi-antenna related reception. One or more.
  • the multi-antenna related reception is a spatial Rx parameter.
  • the multi-antenna related reception is a receive beam.
  • the multi-antenna related reception is a receive beamforming matrix.
  • the multi-antenna related reception is a receive analog beam shaping matrix.
  • the multi-antenna related reception is a receive beamforming vector.
  • the multi-antenna related reception is receive spatial filtering.
  • the multi-antenna related transmission is a spatial transmission parameter (Spatial Tx parameters).
  • the multi-antenna related transmission is a transmit beam.
  • the multi-antenna related transmission is a transmit beam shaping matrix.
  • the multi-antenna related transmission is to transmit an analog beamforming matrix.
  • the multi-antenna related transmission is a transmit beamforming vector.
  • the multi-antenna related transmission is transmission spatial filtering.
  • the embodiment 10A is spatially corresponding to the first given antenna port group in which the transmit beam of the first given antenna port group and the transmit beam of the second given antenna port group are the same.
  • the embodiment 10B corresponding to the transmit beam of the second given antenna port group includes the first given antenna port group of the transmit beam of the first given antenna port group is spatially A schematic diagram associated with the second given set of antenna ports.
  • Embodiments 11A through 11B respectively illustrate a schematic diagram in which a first given set of antenna ports is not spatially associated with a second given set of antenna ports.
  • the first given antenna port group corresponds to one of the N antenna port groups in the present application, or the first given antenna port group corresponds to the N2 in the present application.
  • One of the N antenna port groups corresponding to any channel state information reporting setting in the channel state information reporting setting; the second given antenna port group corresponding to the first antenna in the application a port group; or, the first given antenna port group corresponds to the second antenna port group in the present application, and the second given antenna port group corresponds to the first antenna port group in the present application; or
  • the first given antenna port group corresponds to one of the M antenna port groups in the present application, and the second given antenna port group corresponds to the second antenna port group in the present application; or
  • the first given antenna port group corresponds to one of the K antenna port groups in the present application, and the second given antenna port group corresponds to the first antenna port group in the present application.
  • the first given antenna port group is not spatially associated with the second given antenna port group, meaning that the second given antenna port group does not include the first given antenna group All antenna ports in the antenna port group.
  • the first given antenna port group is not spatially associated with the second given antenna port group, meaning that the second given antenna port group does not include the first given antenna group At least one antenna port in the antenna port group.
  • the first given antenna port group is not spatially associated with the second given antenna port group, meaning that all antenna ports in the second given antenna port group can All antenna ports in the first given antenna port group simultaneously transmit wireless signals.
  • the first given antenna port group is not spatially associated with the second given antenna port group, meaning that the antenna is sent on any one of the second given antenna port groups.
  • the wireless signal can be received simultaneously with the wireless signal transmitted on any of the first given antenna port groups.
  • the first given antenna port group is not spatially associated with the second given antenna port group, meaning that any antenna in the second given antenna port group can be simultaneously Transmitting a wireless signal on the port and receiving a wireless signal transmitted on any of the first given antenna port groups.
  • the first given antenna port group is not spatially associated with the second given antenna port group, meaning that any antenna in the first given antenna port group can be simultaneously Transmitting a wireless signal on the port and receiving a wireless signal transmitted on any of the antenna ports of the second given antenna port group.
  • the first given antenna port group is not spatially associated with the second given antenna port group, meaning that any antenna in the first given antenna port group can be simultaneously
  • the wireless signal on the port transmits or receives and simultaneously transmits or receives a wireless signal transmitted on any of the antenna ports of the second given antenna port group.
  • the first given antenna port group is not spatially associated with the second given antenna port group, meaning that the transmission is performed on any one of the second given antenna port groups.
  • the transmitting or receiving antenna or antenna group transmitting the wireless signal on the transmitting or receiving antenna or antenna group of the wireless signal and any one of the first given antenna port groups does not include the same antenna or antenna group.
  • the first given antenna port group is not spatially associated with the second given antenna port group, meaning that the antenna is sent on any one of the second given antenna port groups.
  • the antenna or antenna group of the wireless signal and the antenna or antenna group transmitting the wireless signal on any of the first given antenna port groups do not include the same antenna or antenna group.
  • the first given antenna port group is not spatially associated with the second given antenna port group, meaning that the transmission is performed on any one of the second given antenna port groups.
  • the receiving antenna or antenna group of the wireless signal and the receiving antenna or antenna group transmitting the wireless signal on any of the first given antenna port groups do not include the same antenna or antenna group.
  • the first given antenna port group is not spatially associated with the second given antenna port group, meaning that the antenna is sent on any one of the second given antenna port groups.
  • the antenna or antenna group of the wireless signal and the receiving antenna or antenna group transmitting the wireless signal on any of the first given antenna port groups do not include the same antenna or antenna group.
  • the first given antenna port group is not spatially associated with the second given antenna port group, meaning that: sending any one of the antenna ports of the first given antenna port group
  • the antenna or antenna group of the wireless signal and the receiving antenna or antenna group transmitting the wireless signal on any of the second given antenna port groups do not include the same antenna or antenna group.
  • the first given antenna port group is not spatially associated with the second given antenna port group
  • the second antenna group is configured to generate the second given antenna port group.
  • One or more antenna groups transmitting one or more antenna-related transmissions of a wireless signal on an antenna port, the first antenna group generating a plurality of antenna ports in the first given antenna port group Antenna-related transmission or multi-antenna related received one or more antenna groups, the first antenna group and the second antenna group not including the same antenna or antenna group.
  • the first given antenna port group is not spatially associated with the second given antenna port group
  • the second antenna group is configured to generate the second given antenna port group.
  • One or more antenna groups transmitting multiple antennas associated with transmitting wireless signals on an antenna port, the first antenna group being one of transmitting multiple antennas associated with any one of the antenna ports of the first given antenna port group Or a plurality of antenna groups, the first antenna group and the second antenna group not including the same antenna or antenna group.
  • the first given antenna port group is not spatially associated with the second given antenna port group
  • the second antenna group is configured to generate the second given antenna port group.
  • a plurality of antenna-related received one or more antenna groups transmitting wireless signals on an antenna port
  • the first antenna group being a multi-antenna related receiving one of generating any one of the first given antenna port groups Or a plurality of antenna groups, the first antenna group and the second antenna group not including the same antenna or antenna group.
  • the first given antenna port group is not spatially associated with the second given antenna port group
  • the second antenna group is configured to generate the second given antenna port group.
  • One or more antenna groups transmitting multiple antennas associated with transmitting wireless signals on an antenna port, the first antenna group being a multi-antenna related receiving one of generating any one of the first given antenna port groups Or a plurality of antenna groups, the first antenna group and the second antenna group not including the same antenna or antenna group.
  • the first given antenna port group is not spatially associated with the second given antenna port group
  • the second antenna group is configured to generate the second given antenna port group.
  • a plurality of antenna-related received one or more antenna groups transmitting wireless signals on an antenna port, the first antenna group being a one of generating multiple antenna-related transmissions of any one of the first given antenna port groups Or a plurality of antenna groups, the first antenna group and the second antenna group not including the same antenna or antenna group.
  • the first given antenna port group is not spatially associated with the second given antenna port group, meaning that at least one of the first given antenna port groups cannot and At least one of the second given antenna port groups simultaneously transmits a wireless signal.
  • the first given antenna port group is not spatially associated with the second given antenna port group, meaning that at least one of the first given antenna port groups is on the antenna port.
  • the transmission or reception of the wireless signal and the transmission or reception of the wireless signal on at least one of the second given antenna port groups cannot be performed simultaneously.
  • the first given antenna port group is not spatially associated with the second given antenna port group, meaning that at least one of the first given antenna port groups is on the antenna port.
  • the reception of the transmitted wireless signal and the reception of the transmitted wireless signal on at least one of the second given antenna port groups cannot be performed simultaneously.
  • the first given antenna port group is not spatially associated with the second given antenna port group, meaning that at least one of the first given antenna port groups is on the antenna port.
  • the transmission of the wireless signal and the reception of the transmitted wireless signal on at least one of the second given antenna port groups cannot be performed simultaneously.
  • the first given antenna port group is not spatially associated with the second given antenna port group, meaning that at least one of the second given antenna port groups is on the antenna port.
  • the transmission of the wireless signal and the reception of the transmitted wireless signal on at least one of the first given antenna port groups cannot be performed simultaneously.
  • the first given antenna port group is not spatially associated with the second given antenna port group, meaning that any one of the first given antenna port groups cannot At least one of the second given antenna port groups simultaneously transmits a wireless signal.
  • the first given antenna port group is not spatially associated with the second given antenna port group, meaning that any antenna port in the first given antenna port group is The transmission or reception of the wireless signal and the transmission or reception of the wireless signal on at least one of the second given antenna port groups cannot be performed simultaneously.
  • the first given antenna port group is not spatially associated with the second given antenna port group, meaning that any antenna port in the first given antenna port group is The reception of the transmitted wireless signal and the reception of the transmitted wireless signal on at least one of the second given antenna port groups cannot be performed simultaneously.
  • the first given antenna port group is not spatially associated with the second given antenna port group, meaning that any antenna port in the first given antenna port group is The transmission of the wireless signal and the reception of the transmitted wireless signal on at least one of the second given antenna port groups cannot be performed simultaneously.
  • the first given antenna port group is not spatially associated with the second given antenna port group, meaning that at least one of the second given antenna port groups is on the antenna port.
  • the transmission of the wireless signal and the reception of the transmitted wireless signal on any of the first given antenna port groups cannot be performed simultaneously.
  • the first given antenna port group is not spatially associated with the second given antenna port group, and the transmitting or receiving antenna for transmitting a wireless signal on the second given antenna port group is
  • the antenna group includes at least one transmit or receive antenna or antenna group transmitting wireless signals on the first given set of antenna ports.
  • the first given antenna port group is not spatially associated with the second given antenna port group, and the transmit antenna or antenna group of the wireless signal on the second given antenna port group At least one transmit antenna or antenna group including wireless signals on the first given set of antenna ports.
  • the first given antenna port group is not spatially associated with the second given antenna port group, and the receiving antenna or antenna for transmitting a wireless signal on the second given antenna port group is The group includes at least one receive antenna or antenna group that transmits wireless signals on the first given set of antenna ports.
  • the first given antenna port group is not spatially associated with the second given antenna port group, and the transmitting antenna or antenna transmitting the wireless signal on the second given antenna port group is The group includes at least one receive antenna or antenna group that transmits wireless signals on the first given set of antenna ports.
  • the first given antenna port group is not spatially associated with the second given antenna port group, and the receiving antenna or antenna for transmitting a wireless signal on the second given antenna port group is The group includes at least one transmit antenna or antenna group that transmits wireless signals on the first given set of antenna ports.
  • the first given antenna port group is not spatially associated with the second given antenna port group, and the second antenna group is configured to generate transmit wireless on the second given antenna port group.
  • a plurality of antenna-related transmissions of the signal or a plurality of antenna-related received one or more antenna groups the first antenna group being a multi-antenna-related transmission or multi-antenna that generates a transmitted wireless signal on the first given antenna port group
  • the second antenna group comprising at least one antenna or antenna group of the first antenna group.
  • the first given antenna port group is not spatially associated with the second given antenna port group, and the second antenna group is configured to generate transmit wireless on the second given antenna port group.
  • One or more antenna groups transmitted by multiple antennas of the signal the first antenna group being one or more antenna groups that generate multiple antenna related transmissions of the transmitted wireless signals on the first given antenna port group
  • the second antenna group includes at least one antenna or antenna group in the first antenna group.
  • the first given antenna port group is not spatially associated with the second given antenna port group, and the second antenna group is configured to generate transmit wireless on the second given antenna port group.
  • a plurality of antenna-related received one or more antenna groups of the signal the first antenna group being one or more antenna groups that generate multiple antenna-related receptions of the transmitted wireless signals on the first given antenna port group
  • the second antenna group includes at least one antenna or antenna group in the first antenna group.
  • the first given antenna port group is not spatially associated with the second given antenna port group, and the second antenna group is configured to generate transmit wireless on the second given antenna port group.
  • One or more antenna groups transmitted by multiple antennas of the signal the first antenna group being one or more antenna groups that generate multiple antenna related receptions of the transmitted wireless signals on the first given antenna port group
  • the second antenna group includes at least one antenna or antenna group in the first antenna group.
  • the first given antenna port group is not spatially associated with the second given antenna port group, and the second antenna group is configured to generate transmit wireless on the second given antenna port group.
  • a plurality of antenna-related received one or more antenna groups the first antenna group being one or more antenna groups that generate multi-antenna related transmissions of the transmitted wireless signals on the first given antenna port group
  • the second antenna group includes at least one antenna or antenna group in the first antenna group.
  • the first given antenna port group is not spatially associated with the second given antenna port group, meaning that any one of the first given antenna port groups is Any of the second given antenna port groups is not a QCL.
  • the first given antenna port group is not spatially associated with the second given antenna port group, meaning that at least one of the first given antenna port groups is Any of the second given antenna port groups is not a QCL.
  • the first given antenna port group is not spatially associated with the second given antenna port group, meaning that any one of the first given antenna port groups is Any of the second given antenna port groups is not a spatial QCL.
  • the first given antenna port group is not spatially associated with the second given antenna port group, meaning that at least one of the first given antenna port groups is Any of the second given antenna port groups is not a spatial QCL.
  • the fact that two antenna ports are not QCL means that all or part of the large-scale nature of the wireless signal transmitted from one of the two antenna ports cannot be inferred. All or part of the large-scale characteristics of the wireless signal transmitted on the other of the two antenna ports.
  • the fact that the two antenna ports are not QCL means that the two antenna ports have at least one different QCL parameter, and the QCL parameters include multiple antenna related QCL parameters and multiple antenna independent QCL parameters. .
  • the fact that the two antenna ports are not QCL means that at least one of the two antenna ports cannot be inferred from at least one QCL parameter of one of the two antenna ports. QCL parameters.
  • the fact that the two antenna ports are not QCL means that the multi-antenna related reception of the wireless signal that cannot be transmitted from one of the two antenna ports is inferred to be another of the two antenna ports. Multi-antenna related reception of wireless signals transmitted on one antenna port.
  • the fact that the two antenna ports are not QCL means that the multi-antenna related transmission of the wireless signal that cannot be transmitted from one of the two antenna ports is inferred to be another of the two antenna ports. Multi-antenna related transmission of wireless signals transmitted on one antenna port.
  • the fact that the two antenna ports are not QCL means that the multi-antenna related reception of the wireless signal that cannot be transmitted from one of the two antenna ports is inferred to be another of the two antenna ports.
  • Multi-antenna related transmission of a wireless signal transmitted on one antenna port, a receiver of a wireless signal transmitted on one of the two antenna ports, and another antenna of the two antenna ports The sender of the wireless signal sent on the port is the same.
  • the two antenna ports are not spatial QCL refers to all or part of the multi-antenna related large-scale characteristics of the wireless signal that cannot be transmitted from one of the two antenna ports. (properties) Inferring all or part of the multi-antenna-related large-scale characteristics of the wireless signal transmitted on the other of the two antenna ports.
  • the two antenna ports are not spatial QCL, which means that the two antenna ports have at least one different multi-antenna related QCL parameter.
  • the fact that the two antenna ports are not spatial QCL means that one of the two antenna ports cannot be inferred from at least one multi-antenna related QCL parameter of one of the two antenna ports. At least one multi-antenna related QCL parameter of an antenna port.
  • the two antenna ports are not spatial QCL, meaning that the multi-antenna related reception of the wireless signal that cannot be transmitted from one of the two antenna ports is inferred from the two antenna ports. Multi-antenna related reception of wireless signals transmitted on another antenna port.
  • the two antenna ports are not spatial QCL, meaning that the multi-antenna related transmission of the wireless signal that cannot be transmitted from one of the two antenna ports is inferred from the two antenna ports. Multi-antenna related transmission of wireless signals transmitted on another antenna port.
  • the two antenna ports are not spatial QCL, meaning that the multi-antenna related reception of the wireless signal that cannot be transmitted from one of the two antenna ports is inferred from the two antenna ports.
  • Multi-antenna related transmission of a wireless signal transmitted on another antenna port, a receiver of a wireless signal transmitted on one of the two antenna ports, and another of the two antenna ports The sender of the wireless signal transmitted on the antenna port is the same.
  • the embodiment 11A is spatially corresponding to the first given antenna port group different from the transmit beam of the first given antenna port group and the second given antenna port group.
  • the embodiment 11B corresponds to the second given antenna port group, and the transmit beam includes only the first given antenna port group of the partial transmit beam of the first given antenna port group in space.
  • Embodiment 12 illustrates a schematic diagram of a given sub-access detection used to determine whether to transmit a given wireless signal on a given air interface resource; as shown in FIG.
  • the given time is the start time of the given air interface resource
  • the given sub-band includes the frequency domain resource of the given air interface resource
  • the given sub-access detection is included in the given sub-band
  • X energy detections are performed in each of the X time subpools, and X detection values are obtained, and the X is a positive integer.
  • the adjacence access detection corresponds to one of the J1 sub-access detections in the present application, or the sub-station access detection corresponds to one of the J sub-access detections in the present application
  • the given air interface resource corresponds to one of the J air interface resources in the application
  • the given wireless signal is corresponding to the part or all channel state information corresponding to the N channel state information reporting settings in the present application. wireless signal.
  • the process of the given access detection can be described by the flowchart in FIG.
  • the user equipment in the present application is in an idle state in step S1101, and it is determined in step S1102 whether transmission is required; in step 1103, energy detection is performed in a defer duration; It is determined in S1104 whether all the slot periods in the delay period are idle, and if so, proceeding to send a given radio signal on the given air interface resource in step S1105; otherwise proceeding to step S1106 to perform energy detection in a delay period Determining in step S1107 whether all the slot periods in this delay period are idle, if yes, proceeding to step S1108 to set the first counter equal to X1; otherwise returning to step S1106; in step S1109, determining whether the first counter is 0, if yes, proceeding to send a given wireless signal on a given air interface resource in step S1105; otherwise proceeding to step S1110 to perform energy detection in an additional time slot period; determining this additional time slot period in step S1111 Whether it is idle, if yes, proceeding to step S1112 to decrement the first counter by 1,
  • the X1 is equal to 0, and the user equipment determines in the step S1104 or the step S1108 that all the time slot periods in the delay period are idle, and the result of the given substation access detection is a channel. Idle, the given wireless signal can be transmitted at the given moment; otherwise the given wireless signal cannot be transmitted at the given moment.
  • the X1 is not less than 0, and the user equipment determines in step S1104 that not all of the slot periods are idle during the delay period.
  • the first counter in FIG. 12 is cleared before the given moment, and the result of the given sub-access detection is that the channel is idle, and the given wireless signal can be transmitted at the given moment; otherwise, The given wireless signal is transmitted at the given moment.
  • the condition that the first counter is cleared is that X1 detection values of the X detection values corresponding to the X1 time sub-pools in the X time sub-pools are lower than the first reference threshold, and the X1 The start time of the time subpool is after step S1108 in FIG.
  • the X time subpools include all of the delay periods in FIG.
  • the X time subpools include a partial delay period in FIG.
  • the X time subpools include all delay periods and all additional time slot periods in FIG.
  • the X time subpools include all of the delay periods and a portion of the additional time slot periods in FIG.
  • the X time subpools include all delay periods in FIG. 12, all additional time slot periods, and all additional delay periods.
  • the X time subpools include all delay periods, partial additional time slot periods, and all additional delay periods in FIG.
  • the X time subpools include all delay periods, partial additional time slot periods, and partial additional delay periods in FIG.
  • the duration of any of the X time subpools is one of ⁇ 16 microseconds, 9 microseconds ⁇ .
  • any one of the slot durations in a given time period is one of the X time subpools; the given time period is ⁇ all included in FIG. Delay period, any additional time slot period, any one of all additional delay periods ⁇ .
  • performing energy detection within a given time period means performing energy detection during all slot durations within the given time period; the given time period is in FIG. Any of the ⁇ all delay periods, all additional slot periods, all additional delay periods ⁇ included.
  • determining that the energy is detected as idle during a given time period means that all time slot periods included in the given time period are judged to be idle by energy detection; the given time period is a drawing Any of the ⁇ all delay periods, all additional slot periods, all additional delay periods ⁇ included in 12.
  • the determination of idle time by energy detection for a given time slot period means that the user equipment senses the power of all wireless signals on the given sub-band in a given time unit, and at time Upper averaging, the received received power is lower than the first reference threshold; the given time unit is one of the given time slot periods.
  • the duration of the given time unit is not shorter than 4 microseconds.
  • the determination of idle time by energy detection for a given time slot period means that the user equipment senses the energy of all wireless signals on the given sub-band in a given time unit, and at time Upper averaging, the received received energy is lower than the first reference threshold; the given time unit is one of the given time slot periods.
  • the duration of the given time unit is not shorter than 4 microseconds.
  • performing energy detection within a given time period means performing energy detection in all time sub-pools within the given time period; the given time period is ⁇ all delays included in FIG. Time period, any additional time slot period, any one of all additional delay periods ⁇ , all of the time subpools belonging to the X time subpools.
  • determining that the energy is detected as idle during a given time period means that: the detected values obtained by the energy detection for all the time sub-pools included in the given time period are lower than the first reference threshold;
  • the given time period is any one of ⁇ all delay periods, all additional slot periods, all additional delay periods ⁇ included in FIG. 12, and all time sub-pools belong to the X time sub-pools
  • the detected value belongs to the X detected values.
  • the duration of a defer duration is 16 microseconds plus Z1 9 microseconds, which is a positive integer.
  • a delay period includes Z1+1 time sub-pools in the X time sub-pools.
  • the duration of the first time sub-pool in the Z1+1 time sub-pool is 16 microseconds, and the duration of the other Z1 time sub-pools is 9 microseconds. .
  • the given priority level is used to determine the Z1.
  • the given priority level is a Channel Access Priority Class
  • the channel access priority level is defined in section 15 of 3GPP TS 36.213.
  • the Z1 belongs to ⁇ 1, 2, 3, 7 ⁇ .
  • a defer duration includes a plurality of slot durations.
  • the first one of the plurality of slot periods and the second slot period are discontinuous.
  • the time interval between the first slot period and the second slot period of the plurality of slot periods is 7 milliseconds.
  • the duration of an additional defer duration is 16 microseconds plus Z2 9 microseconds, which is a positive integer.
  • an additional delay period includes Z2+1 time sub-pools in the X time sub-pools.
  • the duration of the first time sub-pool in the Z2+1 time sub-pool is 16 microseconds, and the duration of the other Z2 time sub-pools is 9 microseconds. .
  • the given priority level is used to determine the Z2.
  • the Z2 belongs to ⁇ 1, 2, 3, 7 ⁇ .
  • the duration of one delay period is equal to the duration of an additional delay period.
  • the Z1 is equal to the Z2.
  • an additional defer duration includes a plurality of slot durations.
  • the first one of the plurality of slot periods and the second slot period are discontinuous.
  • the time interval between the first slot period and the second slot period of the plurality of slot periods is 7 milliseconds.
  • the duration of one slot duration is 9 microseconds.
  • one slot period is one time sub-pool of the X time sub-pools.
  • the duration of an additional slot duration is 9 microseconds.
  • an additional slot period includes one of the X time subpools.
  • the X-th power detection is used to determine if the given sub-band is idle (Idle).
  • the X-th power detection is used to determine whether the given sub-band is capable of being used by the user equipment to transmit the given wireless signal.
  • the X detection value units are both dBm (millimeters).
  • the units of the X detection values are all milliwatts (mW).
  • the units of the X detection values are all Joules.
  • the X1 is smaller than the X.
  • the X is greater than one.
  • the unit of the first reference threshold is dBm (millimeters).
  • the unit of the first reference threshold is milliwatts (mW).
  • the unit of the first reference threshold is joule.
  • the first reference threshold is equal to or less than -72 dBm.
  • the first reference threshold is any value equal to or less than the first given value.
  • the first given value is predefined.
  • the first given value is configured by higher layer signaling.
  • the first reference threshold is freely selected by the user equipment under conditions equal to or less than a first given value.
  • the first given value is predefined.
  • the first given value is configured by higher layer signaling.
  • the X-th energy detection is energy detection in a LBT (Listen Before Talk) process of Cat 4, the X1 being CWp in the LBT process of the Cat 4, the CWp It is the size of the contention window.
  • LBT Listen Before Talk
  • the CWp It is the size of the contention window.
  • At least one of the detected values that do not belong to the X1 detection values of the X detection values is lower than the first reference threshold.
  • At least one of the detected values that do not belong to the X1 detection values of the X detection values is not lower than the first reference threshold.
  • the durations of any two of the X1 time subpools are equal.
  • the duration of at least two time sub-pools in the X1 time sub-pools is not equal.
  • the X1 time subpools include the latest time subpool of the X time subpools.
  • the X1 time subpools only include slot periods in the eCCA.
  • the X time subpools include the X1 time subpools and X2 time subpools, and any one of the X2 time subpools does not belong to the X1 time subpools.
  • the X2 is a positive integer not greater than the X minus the X1.
  • the X2 time subpools include slot periods in the initial CCA.
  • the positions of the X2 time subpools in the X time subpools are continuous.
  • the detection value corresponding to at least one time sub-pool of the X2 time sub-pools is lower than the first reference threshold.
  • the detection value corresponding to at least one time sub-pool of the X2 time sub-pools is not lower than the first reference threshold.
  • the X2 time sub-pools include all slot periods in all delay periods.
  • the X2 time sub-pools include all slot periods within at least one additional delay period.
  • the X2 time subpools include at least one additional slot period.
  • the X2 time sub-pools include all of the additional slot periods that are determined to be non-idle by energy detection in FIG. 12 and all slot periods within all of the additional delay periods.
  • the X1 time sub-pools respectively belong to X1 sub-pool sets, and any one of the X1 sub-pool sets includes a positive integer number of time sub-pools in the X time sub-pools;
  • the detected value corresponding to any one of the X1 sub-pool sets is lower than the first reference threshold.
  • the number of time sub-pools included in the at least one sub-pool set of the X1 sub-pool sets is equal to 1.
  • At least one of the X1 sub-pool sets has a number of time sub-pools greater than one.
  • the number of time sub-pools included in the at least two sub-pool sets in the X1 sub-pool sets is unequal.
  • a time sub-pool does not exist in the X time sub-pools and belongs to two sub-pool sets in the X1 sub-pool set.
  • all time sub-pools in any one of the X1 sub-pool sets belong to the same additional delay period or additional slot period determined to be idle by energy detection.
  • the detected value corresponding to at least one time sub-pool in the time sub-pool that does not belong to the X1 sub-pool set in the X time sub-pools is lower than the first reference threshold.
  • the detected value corresponding to at least one time sub-pool in the time sub-pool that does not belong to the X1 sub-pool set in the X time sub-pools is not lower than the first reference threshold.
  • Embodiments 13A through 13B respectively illustrate a schematic representation of a given antenna port associated with a given energy detection space.
  • the given antenna port corresponds to any one of the first antenna port groups in the application, and the given energy detection corresponds to the first sub-access detection in the present application. Any one of the first antenna port groups in the present application, the given energy detection corresponding to the third sub-access detection in the present application. Any one of the energy detections; or the given antenna port corresponds to any one of the second antenna port groups in the application, the given energy detection corresponding to the second sub-access in the present application Detecting any one of the energy detections; or the given antenna port corresponds to any one of the second antenna port groups in the present application, and the given energy detection corresponds to the fourth sub-connection in the present application.
  • the given antenna port corresponds to one of the J antenna port groups in the application
  • the given energy detection corresponds to the J1 sub-access detection in the present application.
  • one of the detected energy given sub-J corresponding to the access detection in this application.
  • a given antenna port is spatially related to a given energy detection means that the multi-antenna related reception used for the given energy detection can be used to infer multi-antenna correlation of the given antenna port. Transmit, or multiple antenna related transmissions of the given antenna port can be used to infer the multi-antenna related reception used by the given energy detection.
  • a given antenna port is spatially related to a given energy detection means that the multi-antenna related reception used for the given energy detection is the same as the multi-antenna related transmission of the given antenna port.
  • a given antenna port is spatially related to a given energy detection means that the multi-antenna related reception used by the given energy detection includes multiple antenna related transmissions of the given antenna port.
  • a given antenna port is spatially correlated with a given energy detection means that the beamwidth corresponding to the received beamforming matrix used for the given energy detection is not less than the transmit beamforming of the given antenna port.
  • the beam width corresponding to the matrix is not less than the transmit beamforming of the given antenna port.
  • the given antenna port is spatially correlated with a given energy detection means that the beam direction corresponding to the received beamforming matrix used for the given energy detection includes the transmit beam shaping matrix of the given antenna port. Corresponding beam direction.
  • the reference of a given antenna port to a given energy detection space means that the beam width corresponding to the received beam used by the given energy detection is greater than the beam width corresponding to the transmit beam of the given antenna port.
  • a given antenna port is spatially related to a given energy detection means that the receive beam used for the given energy detection includes a transmit beam for the given antenna port.
  • a given antenna port is uncorrelated with a given energy detection space means that the multi-antenna related reception used for the given energy detection cannot be used to infer multi-antenna correlation of the given antenna port The transmission, or multi-antenna related transmission of the given antenna port, cannot be used to infer the multi-antenna related reception used by the given energy detection.
  • a given antenna port is uncorrelated with a given energy detection space means that the multiple antenna related reception used for the given energy detection is different from the multiple antenna related transmission of the given antenna port.
  • a given antenna port is uncorrelated with a given energy detection space means that the multiple antenna related reception used by the given energy detection does not include multiple antenna related transmissions for a given antenna port.
  • the fact that a given antenna port is not related to a given energy detection space means that the beamwidth corresponding to the received beamforming matrix used for the given energy detection is smaller than the transmit beamforming of the given antenna port.
  • the beam width corresponding to the matrix is smaller than the transmit beamforming of the given antenna port.
  • the fact that a given antenna port is not related to a given energy detection space means that the beam direction corresponding to the received beamforming matrix used for the given energy detection does not include the transmit beam assignment of the given antenna port.
  • the beam direction corresponding to the type matrix means that the beam direction corresponding to the type matrix.
  • the given antenna port is not related to a given energy detection space, that is, the beam width corresponding to the received beam used by the given energy detection is smaller than the beam width corresponding to the transmit beam of the given antenna port.
  • a given antenna port is uncorrelated with a given energy detection space means that the receive beam used by the given energy detection does not include the transmit beam of the given antenna port.
  • the number of antennas used for the given energy detection is less than the number of transmit antennas for the given antenna port.
  • the number of antennas used for the given energy detection is greater than one.
  • the number of transmit antennas of the given antenna port is greater than one.
  • the embodiment 13A is related to the given energy detection space, where the given beam used by the given energy detection and the same antenna port of the given antenna port are the same. schematic diagram.
  • the embodiment 13B corresponds to a schematic diagram of the received beam used by the given energy detection including the given antenna port of the transmit beam of the given antenna port and the given energy detection space. .
  • Embodiment 14 exemplifies a structural block diagram of a processing device in a UE, as shown in FIG.
  • the UE processing apparatus 1200 is mainly composed of a first receiver 1201 and a first transmitter 1202.
  • the first receiver 1201 includes the receiver 456, the receiving processor 452, and the controller/processor 490 in Embodiment 4.
  • the first receiver 1201 includes at least two of the receiver 456, the receiving processor 452, and the controller/processor 490 in Embodiment 4.
  • the first transmitter 1202 includes a transmitter 456, a transmit processor 455, and a controller/processor 490 in Embodiment 4.
  • the first transmitter 1202 includes at least the first two of the transmitter 456, the transmit processor 455, and the controller/processor 490 in Embodiment 4.
  • a first receiver 1201 receiving first information, the first information is used to indicate N channel state information reporting settings, and the N channel state information reporting settings are respectively associated with N air interface resources, the N is a positive integer greater than 1; receiving second information, the second information being used to indicate J air interface resources, the J being a positive integer;
  • a first transmitter 1202 configured to send M channel state information on the first air interface resource, where the M channel state information respectively correspond to M channel state information report settings in the N channel state information report settings,
  • the first air interface resource is one of the J air interface resources, and the M is a positive integer not greater than the N.
  • the first air interface resource is corresponding to the first antenna port group, and the N air interface resources are respectively associated with the N antenna port groups, and the N antenna port groups are spatially associated.
  • the first antenna port group is used to determine the M channel state information reporting settings from the N channel state information reporting settings.
  • the M antenna port groups of the N antenna port groups respectively corresponding to the M channel state information reporting settings are spatially associated with the first antenna port group.
  • the M channel state information reporting settings including all one of the N antenna port groups corresponding to the N channel state information reporting settings are spatially associated with the antenna port group
  • the channel state information reporting setting of the first antenna port group is described.
  • the first transmitter 1202 further includes transmitting, on the second air interface resource, K channel state information, where the K channel state information respectively correspond to the M channel state information reporting settings except the M The K channel state information reporting settings other than the channel state information reporting, wherein the K is a positive integer not greater than NM, wherein the second air interface resource is the first air interface except the first air interface resource An air interface resource, the second air interface resource corresponding to the second antenna port group; the M antenna port groups are not spatially associated with the second antenna port group; and the K The K air interface resources in the N air interface resources associated with the channel state information report are respectively associated with the K antenna port groups in the N antenna port groups, and the K antenna port groups are spatially Associated with the second antenna port group, the K antenna port groups are not spatially associated with the first antenna port group.
  • the first receiver 1201 further performs access detection to determine the first air interface resource from the J air interface resources; wherein the J is greater than 1.
  • the reference channel state information reporting setting is a channel state information reporting setting with the highest reference priority in the N channel state information reporting settings
  • the reference antenna port group is the N air interface resources and the reference
  • the channel state information report is set to one of the N antenna port groups corresponding to an air interface resource, and the reference antenna port group is associated with the first antenna port group.
  • the second information is further used to indicate J antenna port groups, where the J air interface resources are respectively in one-to-one correspondence with the J antenna port groups, and the first antenna port group is the An antenna port group corresponding to the first air interface resource among the J antenna port groups.
  • the first receiver 1201 further receives third information, where the third information is used to indicate configuration information of the N air interface resources.
  • Embodiment 15 exemplifies a structural block diagram of a processing device in a base station device, as shown in FIG.
  • the processing device 1300 in the base station device is mainly composed of a second transmitter 1301 and a second receiver 1302.
  • the second transmitter 1301 includes the transmitter 416, the transmission processor 415, and the controller/processor 440 in Embodiment 4.
  • the second transmitter 1301 includes at least the first two of the transmitter 416, the transmit processor 415, and the controller/processor 440 in Embodiment 4.
  • the second receiver 1303 includes a receiver 416, a receiving processor 412, and a controller/processor 440 in Embodiment 4.
  • the second receiver 1303 includes at least the first two of the receiver 416, the receiving processor 412, and the controller/processor 440 in Embodiment 4.
  • the second transmitter 1301 transmits the first information, the first information is used to indicate N channel state information reporting settings, and the N channel state information reporting settings are respectively associated with N air interface resources, the N is a positive integer greater than 1; transmitting second information, the second information is used to indicate J air interface resources, and the J is a positive integer;
  • the second receiver 1302 receives, on the first air interface resource, M channel state information, where the M channel state information respectively correspond to M channel state information report settings in the N channel state information report settings,
  • the first air interface resource is one of the J air interface resources, and the M is a positive integer not greater than the N.
  • the first air interface resource is corresponding to the first antenna port group, and the N air interface resources are respectively associated with the N antenna port groups, and the N antenna port groups are spatially associated.
  • the first antenna port group is used to determine the M channel state information reporting settings from the N channel state information reporting settings.
  • the M antenna port groups of the N antenna port groups respectively corresponding to the M channel state information reporting settings are spatially associated with the first antenna port group.
  • the M channel state information reporting settings including all one of the N antenna port groups corresponding to the N channel state information reporting settings are spatially associated with the antenna port group
  • the channel state information reporting setting of the first antenna port group is described.
  • the second receiver 1302 further receives K channel state information corresponding to the N air interface resources, where the K channel state information respectively correspond to the M channel state information reporting settings.
  • the K channel state information reporting settings other than the channel state information reporting, wherein the K is a positive integer not greater than NM, wherein the second air interface resource is the first air interface resource except the first air interface resource An air interface resource, the second air interface resource corresponding to the second antenna port group; the M antenna port groups are not spatially associated with the second antenna port group; and the K channels
  • the K air interface resources in the N air interface resources associated with the status information report are respectively associated with the K antenna port groups in the N antenna port groups, and the K antenna port groups are spatially Associated with the second antenna port group, the K antenna port groups are not spatially associated with the first antenna port group.
  • the second receiver 1302 further monitors the J air interface resources to determine the first air interface resource; wherein, the receiver of the first information performs access detection to use the J air interfaces.
  • the first air interface resource is determined in the resource, and the J is greater than 1.
  • the reference channel state information reporting setting is a channel state information reporting setting with the highest reference priority in the N channel state information reporting settings
  • the reference antenna port group is the N air interface resources and the reference
  • the channel state information report is set to one of the N antenna port groups corresponding to an air interface resource, and the reference antenna port group is associated with the first antenna port group.
  • the second information is further used to indicate J antenna port groups, where the J air interface resources are respectively in one-to-one correspondence with the J antenna port groups, and the first antenna port group is the An antenna port group corresponding to the first air interface resource among the J antenna port groups.
  • the second transmitter 1301 further sends third information, where the third information is used to indicate configuration information of the N air interface resources.
  • the user equipment, terminal and UE in the present application include but are not limited to a drone, a communication module on the drone, a remote control aircraft, an aircraft, a small aircraft, a mobile phone, a tablet computer, a notebook, a vehicle communication device, a wireless sensor, an internet card, Internet of Things terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC), data card, network card, vehicle communication device, low-cost mobile phone, low Cost wireless communication devices such as tablets.
  • the base station or system equipment in the present application includes, but is not limited to, a macro cell base station, a micro cell base station, a home base station, a relay base station, a gNB (NR node B) NR node B, a TRP (Transmitter Receiver Point), and the like. device.
  • a macro cell base station a micro cell base station
  • a home base station a relay base station
  • a gNB NR node B
  • TRP Transmitter Receiver Point

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的用户设备、基站中的方法和装置。用户设备接收第一信息,所述第一信息被用于指示N个信道状态信息上报设置,所述N个信道状态信息上报设置分别与N个空口资源关联;接收第二信息,所述第二信息被用于指示J个空口资源;在第一空口资源上发送M个信道状态信息,所述M个信道状态信息分别对应所述N个信道状态信息上报设置中的M个信道状态信息上报设置,所述第一空口资源是所述J个空口资源中之一。所述第一空口资源与第一天线端口组对应,所述N个空口资源分别与N个天线端口组一一对应,所述N个天线端口组是否在空间上被关联到所述第一天线端口组被用于确定所述M个信道状态信息上报设置。

Description

一种被用于无线通信的用户设备、基站中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是涉及支持在非授权频谱(Unlicensed Spectrum)上进行数据传输的通信方法和装置。
背景技术
在支持多天线传输的无线通信系统中,UE(User Equipment,用户设备)基于信道和干扰测量生成并反馈CSI(Channel Status Information,信道状态信息)以辅助基站进行多天线处理是一种常用的技术。在LTE中,CSI包括{CRI(CSI-RS Resource Indicator,信道状态信息参考信号资源指示),RI(Rank indication,秩指示),PMI(Precoding matrix indicator,预编码矩阵指示),CQI(Channel quality indicator,信道质量指示)}中的至少一个。
在5G NR(New Radio Access Technology,新无线接入技术)中,大规模(Massive)MIMO(Multi-Input Multi-Output)是一个重点技术。5G NR标准已经同意由更高层信令配置一个或两个多CSI PUCCH(Physical Uplink Control CHannel,物理上行控制信道)资源,当有多个CSI上报发生冲突时(即任意两个CSI上报都占用至少一个相同的多载波符号),选择一个多CSI PUCCH资源来承载发生冲突的这多个CSI。在大规模MIMO中,多个天线通过波束赋形(Beamforming),形成指向一个特定空间方向的波束来提高通信质量,当考虑到波束赋形带来的影响时,多个CSI上报的冲突解决机制需要被进一步研究。
发明内容
发明人通过研究发现,在NR系统中,大规模MIMO将会被大规模使用,多个CSI上报发生冲突时,如何高效的解决冲突,尽可能的获取最多的CSI是需要解决的一个关键问题。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种用于无线通信的用户设备中的方法,其特征在于,包括:
接收第一信息,所述第一信息被用于指示N个信道状态信息上报设置,所述N个信道状态信息上报设置分别与N个空口资源关联,所述N是大于1的正整数;
接收第二信息,所述第二信息被用于指示J个空口资源,所述J是正整数;
在第一空口资源上发送M个信道状态信息,所述M个信道状态信息分别对应所述N个信道状态信息上报设置中的M个信道状态信息上报设置,所述第一空口资源是所述J个空口资源中之一,所述M是不大于所述N的正整数;
其中,所述第一空口资源与第一天线端口组对应,所述N个空口资源分别与N个天线端口组一一对应,所述N个天线端口组是否在空间上被关联到所述第一天线端口组被用于从所述N个信道状态信息上报设置中确定所述M个信道状态信息上报设置。
作为一个实施例,本申请要解决的问题是:在NR系统中,当多个CSI上报发生冲突时,即其中任意两个CSI上报都占用至少一个相同的多载波符号,这多个CSI上报中的部分或全部CSI由备选空口资源(即多CSI PUCCH资源)进行承载。这多个CSI上报可能是针对不同的基站或TRP(Transmit-Receive Point),因此它们的发送波束也可能是指向不同的基站或TRP。如何从配置的多个备选空口资源中选择一个或多个资源,以及被选择的每个备选空口资源被用于承载这多个CSI上报中的哪些CSI是需要解决的问题。
作为一个实施例,上述方法的实质在于,N个信道状态信息上报设置对应N个CSI上报,N个空口资源分别是被预留给这N个CSI上报的资源,N个天线端口组分别指示了 N个CSI上报的发送波束,J个空口资源是J个备选空口资源(即J个多CSI PUCCH资源),第一空口资源是这J个备选空口资源中的一个备选空口资源,第一天线端口组指示了第一空口资源对应的发送波束;当这N个CSI上报发生冲突时,第一空口资源被用于承载N个CSI上报中的M个CSI上报,这M个CSI上报的选择与这N个CSI上报的发送波束和第一空口资源对应的发送波束的空间关系有关。采用上述方法的好处在于,根据备选空口资源的发送波束对这N个CSI上报进行分类,使得备选空口资源的发送波束指向的基站或TRP可以尽可能多的获得这多个CSI中对应该基站或TRP的CSI。
根据本申请的一个方面,上述方法的特征在于,所述M个信道状态信息上报设置分别对应的所述N个天线端口组中的M个天线端口组在空间上都被关联到所述第一天线端口组。
作为一个实施例,上述方法的好处在于,M个CSI上报对应的基站或TRP和第一空口资源的发送波束指向的基站或TRP相同,使得CSI可以正确的上报到所对应的基站或TRP。
根据本申请的一个方面,上述方法的特征在于,如果与所述M个信道状态信息上报设置分别对应的所述N个天线端口组中的M个天线端口组中至少一个天线端口组在空间上都不被关联到所述第一天线端口组,所述M个信道状态信息上报设置包括所述N个信道状态信息上报设置中的所有所对应的所述N个天线端口组中的一个天线端口组在空间上被关联到所述第一天线端口组的信道状态信息上报设置。
作为一个实施例,上述方法的好处在于,N个CSI上报中所对应的基站或TRP和第一空口资源的发送波束指向的基站或TRP相同的所有CSI上报都属于M个CSI上报,因此第一空口资源的发送波束指向的基站或TRP可以获得这多个CSI中对应该基站或TRP的全部CSI。
根据本申请的一个方面,上述方法的特征在于,包括:
在第二空口资源上发送K个信道状态信息,所述K个信道状态信息分别对应所述N个信道状态信息上报设置中除了所述M个信道状态信息上报设置之外的K个信道状态信息上报设置,所述K是不大于N-M的正整数;
其中,所述第二空口资源是所述J个空口资源中除了所述第一空口资源之外的一个空口资源,所述第二空口资源与第二天线端口组对应;所述M个天线端口组在空间上都不被关联到所述第二天线端口组;与所述K个信道状态信息上报设置关联的所述N个空口资源中的K个空口资源分别与所述N个天线端口组中的K个天线端口组一一对应,所述K个天线端口组在空间上都被关联到所述第二天线端口组,所述K个天线端口组在空间上都不被关联到所述第一天线端口组。
作为一个实施例,上述方法的实质在于,K个信道状态信息上报设置对应N个CSI上报中的K个CSI上报,这K个CSI上报不同于前面所述的M个CSI上报,第二空口资源是不同于第一空口资源的另一个备选空口资源,用户设备在这两个备选空口资源上分别承载这M个CSI上报和这K个CSI上报。采用上述方法的好处在于,根据多个备选空口资源的发送波束对这N个CSI上报进行分类,使得每个备选空口资源的发送波束指向的基站或TRP可以获得这多个CSI中对应该基站或TRP的全部或部分CSI。
根据本申请的一个方面,上述方法的特征在于,包括:
执行接入检测以从所述J个空口资源中确定所述第一空口资源;
其中,所述J大于1。
作为一个实施例,上述方法的实质在于,J个空口资源分别对应J个不同的发送波束,第一空口资源是这J个空口资源中唯一一个可以使用对应的发送波束接入信道的空口资源。采用上述方法的好处在于,采用基于波束的信道接入可以更真实的反应一个特定波束方向上的干扰情况,还可以提高对非授权频谱的共享。
根据本申请的一个方面,上述方法的特征在于,参考信道状态信息上报设置是所述 N个信道状态信息上报设置中参考优先级最高的一个信道状态信息上报设置,参考天线端口组是所述N个空口资源中与所述参考信道状态信息上报设置关联的一个空口资源所对应的所述N个天线端口组中的一个天线端口组,所述参考天线端口组被关联到所述第一天线端口组。
作为一个实施例,上述方法的实质在于,第一空口资源的发送波束可以是由N个冲突的CSI上报中优先级最高的CSI上报的发送波束动态确定的。
根据本申请的一个方面,上述方法的特征在于,所述第二信息还被用于指示J个天线端口组,所述J个空口资源分别与所述J个天线端口组一一对应,所述第一天线端口组是所述J个天线端口组中与所述第一空口资源对应的天线端口组。
作为一个实施例,上述方法的实质在于,第一空口资源的发送波束可以是半静态配置的。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第三信息;
其中,所述第三信息被用于指示所述N个空口资源的配置信息。
本申请公开了一种用于无线通信的基站设备中的方法,其特征在于,包括:
发送第一信息,所述第一信息被用于指示N个信道状态信息上报设置,所述N个信道状态信息上报设置分别与N个空口资源关联,所述N是大于1的正整数;
发送第二信息,所述第二信息被用于指示J个空口资源,所述J是正整数;
在第一空口资源上接收M个信道状态信息,所述M个信道状态信息分别对应所述N个信道状态信息上报设置中的M个信道状态信息上报设置,所述第一空口资源是所述J个空口资源中之一,所述M是不大于所述N的正整数;
其中,所述第一空口资源与第一天线端口组对应,所述N个空口资源分别与N个天线端口组一一对应,所述N个天线端口组是否在空间上被关联到所述第一天线端口组被用于从所述N个信道状态信息上报设置中确定所述M个信道状态信息上报设置。
根据本申请的一个方面,上述方法的特征在于,所述M个信道状态信息上报设置分别对应的所述N个天线端口组中的M个天线端口组在空间上都被关联到所述第一天线端口组。
根据本申请的一个方面,上述方法的特征在于,如果与所述M个信道状态信息上报设置分别对应的所述N个天线端口组中的M个天线端口组中至少一个天线端口组在空间上都不被关联到所述第一天线端口组,所述M个信道状态信息上报设置包括所述N个信道状态信息上报设置中的所有所对应的所述N个天线端口组中的一个天线端口组在空间上被关联到所述第一天线端口组的信道状态信息上报设置。
根据本申请的一个方面,上述方法的特征在于,包括:
在第二空口资源上接收K个信道状态信息,所述K个信道状态信息分别对应所述N个信道状态信息上报设置中除了所述M个信道状态信息上报设置之外的K个信道状态信息上报设置,所述K是不大于N-M的正整数;
其中,所述第二空口资源是所述J个空口资源中除了所述第一空口资源之外的一个空口资源,所述第二空口资源与第二天线端口组对应;所述M个天线端口组在空间上都不被关联到所述第二天线端口组;与所述K个信道状态信息上报设置关联的所述N个空口资源中的K个空口资源分别与所述N个天线端口组中的K个天线端口组一一对应,所述K个天线端口组在空间上都被关联到所述第二天线端口组,所述K个天线端口组在空间上都不被关联到所述第一天线端口组。
根据本申请的一个方面,上述方法的特征在于,包括:
监测所述J个空口资源以确定所述第一空口资源;
其中,所述第一信息的接收者执行接入检测以从所述J个空口资源中确定所述第一 空口资源,所述J大于1。
根据本申请的一个方面,上述方法的特征在于,参考信道状态信息上报设置是所述N个信道状态信息上报设置中参考优先级最高的一个信道状态信息上报设置,参考天线端口组是所述N个空口资源中与所述参考信道状态信息上报设置关联的一个空口资源所对应的所述N个天线端口组中的一个天线端口组,所述参考天线端口组被关联到所述第一天线端口组。
根据本申请的一个方面,上述方法的特征在于,所述第二信息还被用于指示J个天线端口组,所述J个空口资源分别与所述J个天线端口组一一对应,所述第一天线端口组是所述J个天线端口组中与所述第一空口资源对应的天线端口组。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第三信息;
其中,所述第三信息被用于指示所述N个空口资源的配置信息。
本申请公开了一种用于无线通信的用户设备,其特征在于,包括:
第一接收机,接收第一信息,所述第一信息被用于指示N个信道状态信息上报设置,所述N个信道状态信息上报设置分别与N个空口资源关联,所述N是大于1的正整数;接收第二信息,所述第二信息被用于指示J个空口资源,所述J是正整数;
第一发射机,在第一空口资源上发送M个信道状态信息,所述M个信道状态信息分别对应所述N个信道状态信息上报设置中的M个信道状态信息上报设置,所述第一空口资源是所述J个空口资源中之一,所述M是不大于所述N的正整数;
其中,所述第一空口资源与第一天线端口组对应,所述N个空口资源分别与N个天线端口组一一对应,所述N个天线端口组是否在空间上被关联到所述第一天线端口组被用于从所述N个信道状态信息上报设置中确定所述M个信道状态信息上报设置。
作为一个实施例,上述用户设备的特征在于,所述M个信道状态信息上报设置分别对应的所述N个天线端口组中的M个天线端口组在空间上都被关联到所述第一天线端口组。
作为一个实施例,上述用户设备的特征在于,如果与所述M个信道状态信息上报设置分别对应的所述N个天线端口组中的M个天线端口组中至少一个天线端口组在空间上都不被关联到所述第一天线端口组,所述M个信道状态信息上报设置包括所述N个信道状态信息上报设置中的所有所对应的所述N个天线端口组中的一个天线端口组在空间上被关联到所述第一天线端口组的信道状态信息上报设置。
作为一个实施例,上述用户设备的特征在于,所述第一发射机还包括在第二空口资源上发送K个信道状态信息,所述K个信道状态信息分别对应所述N个信道状态信息上报设置中除了所述M个信道状态信息上报设置之外的K个信道状态信息上报设置,所述K是不大于N-M的正整数;其中,所述第二空口资源是所述J个空口资源中除了所述第一空口资源之外的一个空口资源,所述第二空口资源与第二天线端口组对应;所述M个天线端口组在空间上都不被关联到所述第二天线端口组;与所述K个信道状态信息上报设置关联的所述N个空口资源中的K个空口资源分别与所述N个天线端口组中的K个天线端口组一一对应,所述K个天线端口组在空间上都被关联到所述第二天线端口组,所述K个天线端口组在空间上都不被关联到所述第一天线端口组。
作为一个实施例,上述用户设备的特征在于,所述第一接收机还执行接入检测以从所述J个空口资源中确定所述第一空口资源;其中,所述J大于1。
作为一个实施例,上述用户设备的特征在于,参考信道状态信息上报设置是所述N个信道状态信息上报设置中参考优先级最高的一个信道状态信息上报设置,参考天线端口组是所述N个空口资源中与所述参考信道状态信息上报设置关联的一个空口资源所对应的所述N个天线端口组中的一个天线端口组,所述参考天线端口组被关联到所述第一 天线端口组。
作为一个实施例,上述用户设备的特征在于,所述第二信息还被用于指示J个天线端口组,所述J个空口资源分别与所述J个天线端口组一一对应,所述第一天线端口组是所述J个天线端口组中与所述第一空口资源对应的天线端口组。
作为一个实施例,上述用户设备的特征在于,所述第一接收机还接收第三信息;其中,所述第三信息被用于指示所述N个空口资源的配置信息。
本申请公开了一种用于无线通信的基站设备,其特征在于,包括:
第二发射机,发送第一信息,所述第一信息被用于指示N个信道状态信息上报设置,所述N个信道状态信息上报设置分别与N个空口资源关联,所述N是大于1的正整数;发送第二信息,所述第二信息被用于指示J个空口资源,所述J是正整数;
第二接收机,在第一空口资源上接收M个信道状态信息,所述M个信道状态信息分别对应所述N个信道状态信息上报设置中的M个信道状态信息上报设置,所述第一空口资源是所述J个空口资源中之一,所述M是不大于所述N的正整数;
其中,所述第一空口资源与第一天线端口组对应,所述N个空口资源分别与N个天线端口组一一对应,所述N个天线端口组是否在空间上被关联到所述第一天线端口组被用于从所述N个信道状态信息上报设置中确定所述M个信道状态信息上报设置。
作为一个实施例,上述基站设备的特征在于,所述M个信道状态信息上报设置分别对应的所述N个天线端口组中的M个天线端口组在空间上都被关联到所述第一天线端口组。
作为一个实施例,上述基站设备的特征在于,如果与所述M个信道状态信息上报设置分别对应的所述N个天线端口组中的M个天线端口组中至少一个天线端口组在空间上都不被关联到所述第一天线端口组,所述M个信道状态信息上报设置包括所述N个信道状态信息上报设置中的所有所对应的所述N个天线端口组中的一个天线端口组在空间上被关联到所述第一天线端口组的信道状态信息上报设置。
作为一个实施例,上述基站设备的特征在于,所述第二接收机还在第二空口资源上接收K个信道状态信息,所述K个信道状态信息分别对应所述N个信道状态信息上报设置中除了所述M个信道状态信息上报设置之外的K个信道状态信息上报设置,所述K是不大于N-M的正整数;其中,所述第二空口资源是所述J个空口资源中除了所述第一空口资源之外的一个空口资源,所述第二空口资源与第二天线端口组对应;所述M个天线端口组在空间上都不被关联到所述第二天线端口组;与所述K个信道状态信息上报设置关联的所述N个空口资源中的K个空口资源分别与所述N个天线端口组中的K个天线端口组一一对应,所述K个天线端口组在空间上都被关联到所述第二天线端口组,所述K个天线端口组在空间上都不被关联到所述第一天线端口组。
作为一个实施例,上述基站设备的特征在于,所述第二接收机还监测所述J个空口资源以确定所述第一空口资源;其中,所述第一信息的接收者执行接入检测以从所述J个空口资源中确定所述第一空口资源,所述J大于1。
作为一个实施例,上述基站设备的特征在于,参考信道状态信息上报设置是所述N个信道状态信息上报设置中参考优先级最高的一个信道状态信息上报设置,参考天线端口组是所述N个空口资源中与所述参考信道状态信息上报设置关联的一个空口资源所对应的所述N个天线端口组中的一个天线端口组,所述参考天线端口组被关联到所述第一天线端口组。
作为一个实施例,上述基站设备的特征在于,所述第二信息还被用于指示J个天线端口组,所述J个空口资源分别与所述J个天线端口组一一对应,所述第一天线端口组是所述J个天线端口组中与所述第一空口资源对应的天线端口组。
作为一个实施例,上述基站设备的特征在于,所述第二发射机还发送第三信息;其 中,所述第三信息被用于指示所述N个空口资源的配置信息。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.如果从多个备选空口资源中只选择一个备选空口资源承载N个冲突的CSI上报中的部分或全部CSI,根据该备选空口资源的发送波束对N个冲突的CSI上报进行分类,使得该备选空口资源的发送波束指向的基站或TRP可以尽可能多的获得这多个CSI中对应该基站或TRP的CSI。
-.如果从多个备选空口资源中只选择一个备选空口资源承载N个冲突的CSI上报中的部分或全部CSI,该备选空口资源除了承载与其对应的基站或TRP的全部CSI上报,还可以承载其他基站或TRP的部分或全部CSI上报。
-.如果在多个备选空口资源上承载N个冲突的CSI上报,根据多个备选空口资源的发送波束对这N个CSI上报进行分类,使得每个备选空口资源的发送波束指向的基站或TRP可以获得这多个CSI中对应该基站或TRP的全部或部分CSI,也使得CSI可以正确的上报到所对应的基站或TRP,高效的解决了多个CSI上报的冲突问题。
-.如果在多个备选空口资源上承载N个冲突的CSI上报,每个备选空口资源只承载与其对应的基站或TRP的全部CSI上报,不承载其他基站或TRP的任一CSI上报。
-.备选空口资源的发送波束可以是半静态配置的,也可以是由N个冲突的CSI上报中优先级最高的CSI上报的发送波束动态确定的。
-.如果采用基于波束的信道接入,被用于承载N个冲突的CSI上报中的部分或全部CSI上报的备选空口资源是多个备选空口资源中采用所对应发送波束可以接入信道的备选空口资源;基于波束的信道接入可以更真实的反应一个特定波束方向上的干扰情况,还可以提高对非授权频谱的共享。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信息、第二信息、第一空口资源和M个信道状态信息的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的NR(New Radio,新无线)节点和UE的示意图;
图5示出了根据本申请的一个实施例的无线传输的流程图;
图6A-6B分别示出了根据本申请的一个实施例的N个天线端口组是否在空间上被关联到第一天线端口组被用于从N个信道状态信息上报设置中确定M个信道状态信息上报设置的示意图;
图7示出了根据本申请的一个实施例的N个天线端口组是否在空间上被关联到第一天线端口组被用于从N个信道状态信息上报设置中确定M个信道状态信息上报设置的示意图;
图8示出了根据本申请的一个实施例的确定第一天线端口组的示意图;
图9示出了根据本申请的另一个实施例的确定第一天线端口组的示意图;
图10A-10B分别示出了根据本申请的一个实施例的第一给定天线端口组在空间上被关联到第二给定天线端口组的示意图;
图11A-11B分别示出了根据本申请的一个实施例的第一给定天线端口组在空间上不被关联到第二给定天线端口组的示意图;
图12示出了根据本申请的一个实施例的给定子接入检测被用于确定是否在给定空口资 源上发送给定无线信号的示意图;
图13A-13B分别示出了根据本申请的一个实施例的给定天线端口与给定能量检测空间相关的示意图;
图14示出了根据本申请的一个实施例的UE中的处理装置的结构框图。
图15示出了根据本申请的一个实施例的基站设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个第一信息、第二信息、第一空口资源和M个信道状态信息的流程图,如附图1所示。
在实施例1中,本申请中的所述用户设备接收第一信息,所述第一信息被用于指示N个信道状态信息上报设置,所述N个信道状态信息上报设置分别与N个空口资源关联,所述N是大于1的正整数;接收第二信息,所述第二信息被用于指示J个空口资源,所述J是正整数;在第一空口资源上发送M个信道状态信息,所述M个信道状态信息分别对应所述N个信道状态信息上报设置中的M个信道状态信息上报设置,所述第一空口资源是所述J个空口资源中之一,所述M是不大于所述N的正整数;其中,所述第一空口资源与第一天线端口组对应,所述N个空口资源分别与N个天线端口组一一对应,所述N个天线端口组是否在空间上被关联到所述第一天线端口组被用于从所述N个信道状态信息上报设置中确定所述M个信道状态信息上报设置。
作为一个实施例,所述第一信息显式的指示N个信道状态信息上报设置。
作为一个实施例,所述第一信息隐式的指示N个信道状态信息上报设置。
作为一个实施例,所述第一信息是半静态配置的。
作为一个实施例,所述第一信息由更高层信令承载。
作为一个实施例,所述第一信息由RRC(Radio Resource Control,无线电资源控制)信令承载。
作为一个实施例,所述第一信息包括一个RRC信令中的一个或多个IE(Information Element,信息单元)。
作为一个实施例,所述第一信息包括一个RRC信令中的一个IE的全部或一部分。
作为一个实施例,所述第一信息包括一个RRC信令中的多个IE。
作为一个实施例,所述N个信道状态信息上报设置所分别对应的上报时域行为(Time domain behavior)都是周期性(Periodic)上报。
作为一个实施例,所述N个信道状态信息上报设置所分别对应的上报时域行为(Time domain behavior)都是半持久性(Semi-persistent)上报。
作为一个实施例,所述N个信道状态信息上报设置所分别对应的上报时域行为(Time domain behavior)是周期性上报或半持久性上报。
作为一个实施例,半持久性的信道状态信息上报由MAC(Medium Acess Control,媒体接入控制)CE(Control Element,控制单元)信令激活(Activate)和解激活(Deactivate)。
作为一个实施例,给定信道状态信息上报设置是所述N个信道状态信息上报设置中任一信道状态信息上报设置,所述给定信道状态信息上报设置包括上报设置索引、信道状态信息、小区索引(Cell Identity)、上报时域行为、CSI(Channel State Information,信道状态信息)类型(Type)、码本配置和上报频域颗粒度、上报周期和时域偏差。
作为上述实施例的一个子实施例,如果所述给定信道状态信息上报设置的上报时域行为是周期性(Periodic)上报或者半持久性(Semi-persistent)上报,所述给定信道状态信息上报设置包括所述上报周期和所述时域偏差。
作为上述实施例的一个子实施例,如果所述给定信道状态信息上报设置的上报时域行为是非周期性上报(Aperiodic),所述给定信道状态信息上报设置只包括所述上报周期和所述时域偏差中的所述时域偏差。
作为一个实施例,给定信道状态信息上报设置是所述N个信道状态信息上报设置中任一信道状态信息上报设置,所述给定信道状态信息上报设置包括{上报设置索引、信道状态信息、小区索引(Cell Identity)、上报时域行为、CSI(Channel State Information,信道状态信息)类型(Type)、码本配置、上报频域颗粒度、上报周期、时域偏差}中的至少之一。
作为上述实施例的一个子实施例,如果所述给定信道状态信息上报设置的上报时域行为是周期性(Periodic)上报或者半持久性(Semi-persistent)上报,所述给定信道状态信息上报设置包括所述上报周期和所述时域偏差。
作为上述实施例的一个子实施例,如果所述给定信道状态信息上报设置的上报时域行为是非周期性上报(Aperiodic),所述给定信道状态信息上报设置只包括所述上报周期和所述时域偏差中的所述时域偏差。
作为一个实施例,所述信道状态信息上报设置(CSI Reporting Setting)的具体定义参加3GPP TS38.214的第5章节。
作为一个实施例,所述信道状态信息包括{RI(Rank indication,秩指示),PMI(Precoding matrix indicator,预编码矩阵指示),CQI(Channel quality indicator,信道质量指示),CRI(Csi-reference signal Resource Indicator),SLI(Strongest Layer Indicator,最强层指示),RSRP(Reference Signal Received Power,参考信号接收功率),SSBRI(Synchronization Signal Block Resource Indicator,同步信号块资源指示}中的至少之一。
作为一个实施例,所述上报时域行为包括周期性(Periodic)上报、半持久性(Semi-persistent)上报和非周期性(Aperiodic)上报。
作为一个实施例,所述CSI类型是PMI对应的码本(Codebook)类型。
作为一个实施例,所述CSI类型包括类型I和类型II,所述CSI类型的具体定义参加3GPP TS38.214的第5章节。
作为一个实施例,所述码本配置包括码本子集限制(Codebook Subset Restriction)。
作为一个实施例,所述上报频域颗粒度包括子带(Subband)、部分带宽(Partial band)和宽带(wideband)。
作为一个实施例,所述上报频域颗粒度包括子带和宽带。
作为一个实施例,所述上报频域颗粒度包括部分带宽和宽带。
作为一个实施例,所述上报频域颗粒度适用于PMI。
作为一个实施例,所述上报频域颗粒度适用于CQI。
作为一个实施例,所述上报频域颗粒度适用于PMI和CQI。
作为一个实施例,所述时域偏差的单位是时域资源单元。
作为一个实施例,所述时域偏差的单位是毫秒(ms)。
作为一个实施例,所述周期的单位是时域资源单元。
作为一个实施例,所述周期的单位是毫秒(ms)。
作为一个实施例,所述时域资源单元是时隙(slot)。
作为一个实施例,所述时域资源单元是子帧(subframe)。
作为一个实施例,所述时域资源单元是小时隙(mini-slot)。
作为一个实施例,所述时域资源单元由正整数个连续的多载波符号组成。
作为一个实施例,所述时域资源单元由14个连续的多载波符号组成。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency-Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single-Carrier Frequency-Division  Multiple Access,单载波频分多址)符号。
作为一个实施例,所述多载波符号是FBMC(Filter Bank Multi Carrier,滤波组多载波)符号。
作为一个实施例,给定信道状态信息上报设置与给定空口资源关联是指:所述给定空口资源被预留给所述给定信道状态信息上报设置对应的信道状态信息的上报。
作为上述实施例的一个子实施例,所述给定信道状态信息是所述N个信道状态信息上报设置中的任意一个信道状态信息上报设置。
作为上述实施例的一个子实施例,所述给定空口资源是所述N个空口资源中的任意一个空口资源。
作为一个实施例,给定信道状态信息上报设置与给定空口资源关联是指:所述给定信道状态信息上报设置还包括所述给定空口资源的配置信息。
作为上述实施例的一个子实施例,所述给定信道状态信息是所述N个信道状态信息上报设置中的任意一个信道状态信息上报设置。
作为上述实施例的一个子实施例,所述给定空口资源是所述N个空口资源中的任意一个空口资源。
作为一个实施例,给定信道状态信息上报设置与给定空口资源关联是指:所述给定信道状态信息上报设置还包括所述给定空口资源的部分配置信息。
作为上述实施例的一个子实施例,所述给定信道状态信息是所述N个信道状态信息上报设置中的任意一个信道状态信息上报设置。
作为上述实施例的一个子实施例,所述给定空口资源是所述N个空口资源中的任意一个空口资源。
作为一个实施例,给定信道状态信息上报设置与给定空口资源关联是指:所述给定信道状态信息上报设置还包括所述给定空口资源的索引。
作为上述实施例的一个子实施例,所述给定信道状态信息是所述N个信道状态信息上报设置中的任意一个信道状态信息上报设置。
作为上述实施例的一个子实施例,所述给定空口资源是所述N个空口资源中的任意一个空口资源。
作为上述实施例的一个子实施例,所述所述给定空口资源的索引是所述给定空口资源在一个给定空口资源集合中的索引,所述给定空口资源集合包括正整数个空口资源。
作为一个实施例,所述N个空口资源中任意两个空口资源在时域上包括至少一个相同的多载波符号。
作为一个实施例,所述N个空口资源在时域上都属于同一个时域资源单元。
作为一个实施例,所述N个空口资源中至少两个空口资源在时域上都属于同一个时域资源单元。
作为一个实施例,所述N个空口资源中至少两个空口资源在时域上属于不同的时域资源单元。
作为一个实施例,所述N个空口资源在频域上都属于授权频谱。
作为一个实施例,所述N个空口资源在频域上都属于非授权(unlicensed)频谱。
作为一个实施例,所述N个空口资源在频域上属于同一个载波(Carrier)。
作为一个实施例,所述N个空口资源中至少两个空口资源在频域上属于同一个载波。
作为一个实施例,所述N个空口资源中至少两个空口资源在频域上属于不同的载波。
作为一个实施例,所述N个空口资源在频域上属于同一个BWP(Bandwidth Part,带宽分量)。
作为一个实施例,所述N个空口资源中至少两个空口资源在频域上属于同一个BWP。
作为一个实施例,所述N个空口资源中至少两个空口资源在频域上属于不同的BWP。
作为一个实施例,所述N个空口资源都是被分配给上行物理层控制信道(即仅能用于承 载物理层信令的上行信道)的资源。
作为上述实施例的一个子实施例,所述上行物理层控制信道是PUCCH(Physical Uplink Control CHannel,物理上行控制信道)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是sPUCCH(short PUCCH,短PUCCH)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是NR-PUCCH(New Radio PUCCH,新无线PUCCH)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是NB-PUCCH(Narrow Band PUCCH,窄带PUCCH)。
作为一个实施例,所述N个空口资源中任一空口资源包括时域资源、频域资源和码域资源中的一个或多个。
作为上述实施例的一个子实施例,所述时域资源由正整数个多载波符号组成。
作为上述实施例的一个子实施例,所述频域资源由正整数个子载波组成。
作为上述实施例的一个子实施例,所述频域资源由正整数个RB(Resource Block,资源块)组成。
作为一个实施例,所述J个空口资源在时域上都属于同一个时域资源单元。
作为一个实施例,所述J个空口资源中至少两个空口资源在时域上都属于同一个时域资源单元。
作为一个实施例,所述J个空口资源中至少两个空口资源在时域上属于不同的时域资源单元。
作为一个实施例,所述J个空口资源在频域上都属于授权频谱。
作为一个实施例,所述J个空口资源在频域上都属于非授权(unlicensed)频谱。
作为一个实施例,所述J个空口资源在频域上属于同一个载波。
作为一个实施例,所述J个空口资源中至少两个空口资源在频域上属于同一个载波。
作为一个实施例,所述J个空口资源中至少两个空口资源在频域上属于不同的载波。
作为一个实施例,所述J个空口资源在频域上属于同一个BWP。
作为一个实施例,所述J个空口资源中至少两个空口资源在频域上属于同一个BWP。
作为一个实施例,所述J个空口资源中至少两个空口资源在频域上属于不同的BWP。
作为一个实施例,所述J个空口资源都是被分配给上行物理层控制信道的资源。
作为上述实施例的一个子实施例,所述上行物理层控制信道是PUCCH。
作为上述实施例的一个子实施例,所述上行物理层控制信道是sPUCCH。
作为上述实施例的一个子实施例,所述上行物理层控制信道是NR-PUCCH。
作为上述实施例的一个子实施例,所述上行物理层控制信道是NB-PUCCH。
作为一个实施例,所述J个空口资源中任一空口资源包括时域资源、频域资源和码域资源中的一个或多个。
作为上述实施例的一个子实施例,所述时域资源由正整数个多载波符号组成。
作为上述实施例的一个子实施例,所述频域资源由正整数个子载波组成。
作为上述实施例的一个子实施例,所述频域资源由正整数个RB组成。
作为一个实施例,所述第二信息显式的指示J个空口资源。
作为一个实施例,所述第二信息隐式的指示J个空口资源。
作为一个实施例,所述第二信息是半静态配置的。
作为一个实施例,所述第二信息由更高层信令承载。
作为一个实施例,所述第二信息由RRC信令承载。
作为一个实施例,所述第二信息包括一个RRC信令中的一个或多个IE。
作为一个实施例,所述第二信息包括一个RRC信令中的一个IE的全部或一部分。
作为一个实施例,所述第二信息包括一个RRC信令中的多个IE。
作为一个实施例,所述第一信息和所述第二信息都属于一个RRC信令中的同一个IE。
作为一个实施例,所述第一信息和所述第二信息分别属于一个RRC信令中的不同的IE。
作为一个实施例,所述第二信息包括所述J个空口资源的配置信息。
作为上述实施例的一个子实施例,所述J个空口资源中任一空口资源的配置信息包括所占的时域资源,所占的码域资源,所占的频域资源和所对应的天线端口组中的至少之一。
作为上述实施例的一个子实施例,所述J个空口资源中任一空口资源的配置信息包括所占的时域资源,所占的码域资源,所占的频域资源和所对应的天线端口组。
作为上述实施例的一个子实施例,所述J个空口资源中任一空口资源的配置信息包括所占的起始多载波符号,所占的多载波号数目,跳频前或不跳频情况的起始PRB(Physical Resource Block,物理资源块),跳频后的起始PRB,所占的PRB数目,跳频设置,CS(Cyclic Shift,循环移位),OCC(Orthogonal Cover Code,正交掩码),OCC长度,所对应的天线端口组和最大码率(Code Rate)。
作为上述实施例的一个子实施例,所述J个空口资源中任一空口资源的配置信息包括所占的起始多载波符号,所占的多载波号数目,跳频前或不跳频情况的起始PRB,跳频后的起始PRB,所占的PRB数目,跳频设置,CS,OCC,OCC长度,所对应的天线端口组和最大码率中的至少之一。
作为一个实施例,所述J是大于1的正整数。
作为一个实施例,所述J等于2。
作为一个实施例,所述J等于1。
作为一个实施例,所述M等于所述N。
作为一个实施例,所述M小于所述N。
作为一个实施例,给定空口资源与给定天线端口组对应是指所述给定空口资源上发送的无线信号的发送天线端口组在空间上被关联到所述给定天线端口组。
作为一个实施例,所述M个信道状态信息中任一信道状态信息包括{RI(Rank indication,秩指示),PMI(Precoding matrix indicator,预编码矩阵指示),CQI(Channel quality indicator,信道质量指示),CRI(Csi-reference signal Resource Indicator),SLI(Strongest Layer Indicator,最强层指示),RSRP(Reference Signal Received Power,参考信号接收功率),SSBRI(Synchronization Signal Block Resource Indicator,同步信号块资源指示}中的至少之一。
作为一个实施例,所述M个信道状态信息分别所包括的参数组都相同。
作为上述实施例的一个子实施例,所述参数组包括{RI,CQI,CRI,SLI,RSRP,SSBRI}中的至少之一。
作为一个实施例,所述M个信道状态信息中至少两个信道状态信息分别所包括的参数组都相同。
作为上述实施例的一个子实施例,所述参数组包括{RI,CQI,CRI,SLI,RSRP,SSBRI}中的至少之一。
作为一个实施例,所述M个信道状态信息中至少两个信道状态信息分别所包括的参数组都不相同。
作为上述实施例的一个子实施例,所述参数组包括{RI,CQI,CRI,SLI,RSRP,SSBRI}中的至少之一。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统网络架构200的图。NR 5G或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上 UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供面向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME/AMF/UPF211、其它MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个实施例,所述UE201对应本申请中的所述用户设备。
作为一个实施例,所述gNB203对应本申请中的所述基站。
作为一个子实施例,所述UE201支持在非授权频谱上进行数据传输的无线通信。
作为一个子实施例,所述UE201支持在授权频谱上进行数据传输的无线通信。
作为一个子实施例,所述gNB203支持在非授权频谱上进行数据传输的无线通信。
作为一个子实施例,所述gNB203支持在授权频谱上进行数据传输的无线通信。
作为一个子实施例,所述UE201支持大规模MIMO的无线通信。
作为一个子实施例,所述gNB203支持大规模MIMO的无线通信。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于用户设备(UE)和基站设备(gNB或eNB)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干上部层,包括终止于网络侧上的 P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述用户设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述基站。
作为一个实施例,本申请中的所述第一信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述M个信道状态信息生成于所述PHY301。
作为一个实施例,本申请中的所述K个信道状态信息生成于所述PHY301。
作为一个实施例,本申请中的所述接入检测生成于所述PHY301。
作为一个实施例,本申请中的所述第三信息生成于所述RRC子层306。
实施例4
实施例4示出了根据本申请的一个基站设备和用户设备的示意图,如附图4所示。图4是在接入网络中与UE450通信的gNB410的框图。
基站设备(410)包括控制器/处理器440,存储器430,接收处理器412,波束处理器471,发射处理器415,发射器/接收器416和天线420。
用户设备(450)包括控制器/处理器490,存储器480,数据源467,波束处理器441,发射处理器455,接收处理器452,发射器/接收器456和天线460。
在下行传输中,与基站设备(410)有关的处理包括:
-控制器/处理器440,上层包到达,控制器/处理器440提供包头压缩、加密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;上层包中可以包括数据或者控制信息,例如DL-SCH(Downlink Shared Channel,下行共享信道);
-控制器/处理器440,与存储程序代码和数据的存储器430相关联,存储器430可以为计算机可读媒体;
-控制器/处理器440,包括调度单元以传输需求,调度单元用于调度与传输需求对应的空口资源;
-波束处理器471,确定第一信息和第二信息;
-发射处理器415,接收控制器/处理器440的输出比特流,实施用于L1层(即物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配和物理层控制信令(包括PBCH,PDCCH,PHICH,PCFICH,参考信号)生成等;
-发射处理器415,接收控制器/处理器440的输出比特流,实施用于L1层(即物理层)的各种信号发射处理功能包括多天线发送、扩频、码分复用、预编码等;
-发射器416,用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去;每个发射器416对各自的输入符号流进行采样处理得到各自的采样信号流。每个发射器416对各自的采样流进行进一步处理(比如数模转换,放大,过滤,上变频等)得到下行信号。
在下行传输中,与用户设备(450)有关的处理可以包括:
-接收器456,用于将通过天线460接收的射频信号转换成基带信号提供给接收处理器452;
-接收处理器452,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
-接收处理器452,实施用于L1层(即,物理层)的各种信号接收处理功能包括多天线接收、解扩、码分复用、预编码等;
-波束处理器441,确定第一信息和第二信息;
-控制器/处理器490,接收接收处理器452输出的比特流,提供包头解压缩、解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;
-控制器/处理器490与存储程序代码和数据的存储器480相关联。存储器480可以为计算机可读媒体。
在UL(Uplink,上行)中,与基站设备(410)有关的处理包括:
-接收器416,通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到接收处理器412;
-接收处理器412,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
-接收处理器412,实施用于L1层(即,物理层)的各种信号接收处理功能包括多天线接收,解扩频(Despreading),码分复用,预编码等;
-控制器/处理器440,实施L2层功能,以及与存储程序代码和数据的存储器430相关联;
-控制器/处理器440提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包;来自控制器/处理器440的上层数据包可提供到核心网络;
-波束处理器471,确定在第一空口资源上发送的M个信道状态信息;
在UL(Uplink,上行)中,与用户设备(450)有关的处理包括:
-数据源467,将上层数据包提供到控制器/处理器490。数据源467表示L2层之上的所有协议层;
-发射器456,通过其相应天线460发射射频信号,把基带信号转化成射频信号,并把射频信号提供到相应天线460;
-发射处理器455,实施用于L1层(即,物理层)的各种信号接收处理功能包括编码、交织、加扰、调制和物理层信令生成等;
-发射处理器455,实施用于L1层(即,物理层)的各种信号接收处理功能包括多天线发送,扩频(Spreading),码分复用,预编码等;
-控制器/处理器490基于gNB410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能;
-控制器/处理器490还负责HARQ操作、丢失包的重新发射,和到gNB410的信令;
波束处理器441,确定在第一空口资源上发送的M个信道状态信息;
作为一个实施例,所述UE450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述UE450装置至少:接收第一信息,所述第一信息被用于指示N个信道状态信息上报设置,所述N个信道状态信息上报设置分别与N个空口资源关联,所述N是大于1的正整数;接收第二信息,所述第二信息被用于指示J个空口资源,所述J是正整数;在第一空口资源上发送M个信道状态信息,所述M个信道状态信息分别对应所述N个信道状态信息上报设置中的M个信道状态信息上报设 置,所述第一空口资源是所述J个空口资源中之一,所述M是不大于所述N的正整数;其中,所述第一空口资源与第一天线端口组对应,所述N个空口资源分别与N个天线端口组一一对应,所述N个天线端口组是否在空间上被关联到所述第一天线端口组被用于从所述N个信道状态信息上报设置中确定所述M个信道状态信息上报设置。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信息,所述第一信息被用于指示N个信道状态信息上报设置,所述N个信道状态信息上报设置分别与N个空口资源关联,所述N是大于1的正整数;接收第二信息,所述第二信息被用于指示J个空口资源,所述J是正整数;在第一空口资源上发送M个信道状态信息,所述M个信道状态信息分别对应所述N个信道状态信息上报设置中的M个信道状态信息上报设置,所述第一空口资源是所述J个空口资源中之一,所述M是不大于所述N的正整数;其中,所述第一空口资源与第一天线端口组对应,所述N个空口资源分别与N个天线端口组一一对应,所述N个天线端口组是否在空间上被关联到所述第一天线端口组被用于从所述N个信道状态信息上报设置中确定所述M个信道状态信息上报设置。
作为一个实施例,所述gNB410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:发送第一信息,所述第一信息被用于指示N个信道状态信息上报设置,所述N个信道状态信息上报设置分别与N个空口资源关联,所述N是大于1的正整数;发送第二信息,所述第二信息被用于指示J个空口资源,所述J是正整数;在第一空口资源上接收M个信道状态信息,所述M个信道状态信息分别对应所述N个信道状态信息上报设置中的M个信道状态信息上报设置,所述第一空口资源是所述J个空口资源中之一,所述M是不大于所述N的正整数;其中,所述第一空口资源与第一天线端口组对应,所述N个空口资源分别与N个天线端口组一一对应,所述N个天线端口组是否在空间上被关联到所述第一天线端口组被用于从所述N个信道状态信息上报设置中确定所述M个信道状态信息上报设置。
作为一个实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信息,所述第一信息被用于指示N个信道状态信息上报设置,所述N个信道状态信息上报设置分别与N个空口资源关联,所述N是大于1的正整数;发送第二信息,所述第二信息被用于指示J个空口资源,所述J是正整数;在第一空口资源上接收M个信道状态信息,所述M个信道状态信息分别对应所述N个信道状态信息上报设置中的M个信道状态信息上报设置,所述第一空口资源是所述J个空口资源中之一,所述M是不大于所述N的正整数;其中,所述第一空口资源与第一天线端口组对应,所述N个空口资源分别与N个天线端口组一一对应,所述N个天线端口组是否在空间上被关联到所述第一天线端口组被用于从所述N个信道状态信息上报设置中确定所述M个信道状态信息上报设置。
作为一个实施例,UE450对应本申请中的用户设备。
作为一个实施例,gNB410对应本申请中的基站。
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第一信息。
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第一信息。
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第二信息。
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第二信息。
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前 两者被用于接收本申请中的所述第三信息。
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第三信息。
作为一个实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于在本申请中的所述第一空口资源上发送本申请中的所述M个信道状态信息。
作为一个实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于在本申请中的所述第一空口资源上接收本申请中的所述M个信道状态信息。
作为一个实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于在本申请中的所述第二空口资源上发送本申请中的所述K个信道状态信息。
作为一个实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于在本申请中的所述第二空口资源上接收本申请中的所述K个信道状态信息。
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于执行本申请中的所述接入检测以从本申请中的所述J个空口资源中确定本申请中的所述第一空口资源。
作为一个实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于监测本申请中的所述J个空口资源以确定本申请中的所述第一空口资源。
实施例5
实施例5示例了一个无线传输的流程图,如附图5所示。在附图5中,基站N01是用户设备U02的服务小区维持基站。附图5中,方框F1、F2、F3和F4是可选的。
对于N01,在步骤S11中发送第一信息;在步骤S12中发送第三信息;在步骤S13中发送第二信息;在步骤S14中监测J个空口资源以确定第一空口资源;在步骤S15中在第一空口资源上接收M个信道状态信息;在步骤S16中在第二空口资源上接收K个信道状态信息。
对于U02,在步骤S21中接收第一信息;在步骤S22中接收第三信息;在步骤S23中接收第二信息;在步骤S24中执行接入检测以从J个空口资源中确定第一空口资源;在步骤S25中在第一空口资源上发送M个信道状态信息;在步骤S26中在第二空口资源上发送K个信道状态信息;
在实施例5中,所述第一信息被用于指示N个信道状态信息上报设置,所述N个信道状态信息上报设置分别与N个空口资源关联,所述N是大于1的正整数;所述第二信息被用于指示J个空口资源,所述J是正整数;所述M个信道状态信息分别对应所述N个信道状态信息上报设置中的M个信道状态信息上报设置,所述第一空口资源是所述J个空口资源中之一,所述M是不大于所述N的正整数;其中,所述第一空口资源与第一天线端口组对应,所述N个空口资源分别与N个天线端口组一一对应,所述N个天线端口组是否在空间上被关联到所述第一天线端口组被用于从所述N个信道状态信息上报设置中确定所述M个信道状态信息上报设置。所述K个信道状态信息分别对应所述N个信道状态信息上报设置中除了所述M个信道状态信息上报设置之外的K个信道状态信息上报设置,所述K是不大于N-M的正整数;其中,所述第二空口资源是所述J个空口资源中除了所述第一空口资源之外的一个空口资源,所述第二空口资源与第二天线端口组对应;所述M个天线端口组在空间上都不被关联到所述第二天线端口组;与所述K个信道状态信息上报设置关联的所述N个空口资源中的K个空口资源分别与所述N个天线端口组中的K个天线端口组一一对应,所述K个天线端口组在空间上都被关联到所述第二天线端口组,所述K个天线端口组在空间上都不被关联到所述第一天线端口组。所述第三信息被用于指示所述N个空口资源的配置信息。
作为一个实施例,所述第二天线端口组在空间上不被关联到所述第一天线端口组。
作为一个实施例,所述K等于所述N-M。
作为一个实施例,所述K小于所述N-M。
作为一个实施例,在所述第二空口资源上承载所述K个信道状态信息所对应的码率不大 于所述第二空口资源的最大码率。
作为一个实施例,N2个信道状态信息上报设置由所述N个信道状态信息上报设置中的所有所对应的所述N个天线端口组中的一个天线端口组在空间上被关联到所述第二天线端口组的信道状态信息上报设置组成,所述N2个信道状态信息上报设置分别对应N2个信道状态信息,所述N2是不大于N-M的正整数。
作为上述实施例的一个子实施例,所述N2个信道状态信息上报设置包括所述K个信道状态信息上报设置。
作为上述实施例的一个子实施例,所述N2个信道状态信息包括所述K个信道状态信息。
作为上述实施例的一个子实施例,所述N2等于所述K。
作为上述实施例的一个子实施例,所述N2大于所述K。
作为上述实施例的一个子实施例,所述N2等于所述K,所述K个信道状态信息上报设置包括所述N个信道状态信息上报设置中的所有所对应的所述N个天线端口组中的一个天线端口组在空间上被关联到所述第二天线端口组的信道状态信息上报设置。
作为上述实施例的一个子实施例,所述N2大于所述K,所述K个信道状态信息上报设置是所述N2个信道状态信息上报设置中对应的信道状态信息的发送优先级最高的K个信道状态信息上报设置。
作为上述实施例的一个子实施例,所述N2大于所述K,如果在所述第二空口资源上承载所述K个信道状态信息和第三参考信道状态信息所对应的码率大于所述第二空口资源的最大码率,所述第三参考信道状态信息对应所述N2个信道状态信息上报设置中除了所述K个信道状态信息上报设置之外的任一信道状态信息上报设置。
作为一个实施例,所述N2个信道状态信息之间的发送优先级的高低与所述N2个信道状态信息上报设置分别对应的上报设置索引、信道状态信息包括的参数组、小区索引和上报时域行为有关。
作为上述实施例的一个子实施例,所对应的上报时域行为是半持久性上报的信道状态信息的发送优先级高于所对应的上报时域行为是周期性上报的信道状态信息。
作为上述实施例的一个子实施例,所对应的参数组包括{CRI,RSRP,SSBRI}中至少之一的信道状态信息的发送优先级高于所对应的参数组包括{RI,PMI,CQI,SLI}中的至少之一的信道状态信息。
作为上述实施例的一个子实施例,所对应的小区索引是主小区(PCell,Primary Cell)的索引的信道状态信息的发送优先级高于所对应的小区索引是次小区(SCell,Secondary Cell)的索引的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较小的信道状态信息的发送优先级高于所对应的上报设置索引较大的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较大的信道状态信息的发送优先级高于所对应的上报设置索引较小的信道状态信息。
作为一个实施例,所述N2个信道状态信息之间的发送优先级的高低与所述N2个信道状态信息上报设置分别对应的上报设置索引、信道状态信息包括的参数组、小区索引和上报时域行为中的至少之一有关。
作为上述实施例的一个子实施例,所对应的上报时域行为是半持久性上报的信道状态信息的发送优先级高于所对应的上报时域行为是周期性上报的信道状态信息。
作为上述实施例的一个子实施例,所对应的参数组包括{CRI,RSRP,SSBRI}中至少之一的信道状态信息的发送优先级高于所对应的参数组包括{RI,PMI,CQI,SLI}中的至少之一的信道状态信息。
作为上述实施例的一个子实施例,所对应的小区索引是主小区(PCell,Primary Cell)的索引的信道状态信息的发送优先级高于所对应的小区索引是次小区(SCell,Secondary Cell)的索引的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较小的信道状态信息的发送优先级高于所对应的上报设置索引较大的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较大的信道状态信息的发送优先级高于所对应的上报设置索引较小的信道状态信息。
作为一个实施例,所述K个信道状态信息之间的发送优先级的高低与所述K个信道状态信息上报设置分别对应的上报设置索引、信道状态信息包括的参数组、小区索引和上报时域行为有关。
作为上述实施例的一个子实施例,所对应的上报时域行为是半持久性上报的信道状态信息的发送优先级高于所对应的上报时域行为是周期性上报的信道状态信息。
作为上述实施例的一个子实施例,所对应的参数组包括{CRI,RSRP,SSBRI}中至少之一的信道状态信息的发送优先级高于所对应的参数组包括{RI,PMI,CQI,SLI}中的至少之一的信道状态信息。
作为上述实施例的一个子实施例,所对应的小区索引是主小区(PCell,Primary Cell)的索引的信道状态信息的发送优先级高于所对应的小区索引是次小区(SCell,Secondary Cell)的索引的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较小的信道状态信息的发送优先级高于所对应的上报设置索引较大的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较大的信道状态信息的发送优先级高于所对应的上报设置索引较小的信道状态信息。
作为一个实施例,所述K个信道状态信息之间的发送优先级的高低与所述K个信道状态信息上报设置分别对应的上报设置索引、信道状态信息包括的参数组、小区索引和上报时域行为中的至少之一有关。
作为上述实施例的一个子实施例,所对应的上报时域行为是半持久性上报的信道状态信息的发送优先级高于所对应的上报时域行为是周期性上报的信道状态信息。
作为上述实施例的一个子实施例,所对应的参数组包括{CRI,RSRP,SSBRI}中至少之一的信道状态信息的发送优先级高于所对应的参数组包括{RI,PMI,CQI,SLI}中的至少之一的信道状态信息。
作为上述实施例的一个子实施例,所对应的小区索引是主小区(PCell,Primary Cell)的索引的信道状态信息的发送优先级高于所对应的小区索引是次小区(SCell,Secondary Cell)的索引的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较小的信道状态信息的发送优先级高于所对应的上报设置索引较大的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较大的信道状态信息的发送优先级高于所对应的上报设置索引较小的信道状态信息。
作为一个实施例,所述接入检测包括J1个子接入检测,所述J1个子接入检测中任一子接入检测被用于确定是否在所述J个空口资源中的至少一个空口资源上发送所述N个信道状态信息上报设置所对应的部分或全部信道状态信息,是否在所述J个空口资源中的任一空口资源上发送所述N个信道状态信息上报设置所对应的部分或全部信道状态信息由所述J1个子接入检测中的一个子接入检测确定,所述J1是不大于所述J的正整数。
作为上述实施例的一个子实施例,所述J1等于所述J。
作为上述实施例的一个子实施例,所述J1小于所述J。
作为上述实施例的一个子实施例,所述J1个子接入检测中任一子接入检测包括正整数次能量检测,所述第一天线端口组中任一天线端口都与第一子接入检测中任一次能量检测空间相关,所述第一子接入检测是所述J1个子接入检测中之一;所述第一天线端口组中至少一个天线端口都与所述J1个子接入检测中除了所述第一子接入检测之外的任一子接入检测包括的任一次能量检测空间不相关;所述第一子接入检测的结果为在所述第一空口资源上发送所 述N个信道状态信息上报设置所对应的部分或全部信道状态信息;所述J1个子接入检测中除了所述第一子接入检测之外的任一子接入检测的结果都为放弃在所对应的所述J个空口资源中的至少一个空口资源上发送所述N个信道状态信息上报设置所对应的部分或全部信道状态信息。
作为上述实施例的一个子实施例,所述J1个子接入检测中任一子接入检测包括正整数次能量检测,所述第一天线端口组中任一天线端口都与第一子接入检测中任一次能量检测空间相关,所述第一子接入检测是所述J1个子接入检测中之一;所述第一天线端口组中至少一个天线端口都与所述J1个子接入检测中除了所述第一子接入检测之外的任一子接入检测包括的任一次能量检测空间不相关;所述第一子接入检测的结果为在所述第一空口资源上发送所述N个信道状态信息上报设置所对应的部分或全部信道状态信息。
作为上述实施例的一个子实施例,所述J1个子接入检测中任一子接入检测包括正整数次能量检测,所述第二天线端口组中任一天线端口都与第二子接入检测中任一次能量检测空间相关,所述第二子接入检测是所述J1个子接入检测中之一;所述第二天线端口组中至少一个天线端口都与所述J1个子接入检测中除了所述第二子接入检测之外的任一子接入检测包括的任一次能量检测空间不相关;所述第二子接入检测的结果为在所述第二空口资源上发送所述N个信道状态信息上报设置所对应的部分或全部信道状态信息。
作为一个实施例,所述接入检测包括J个子接入检测,所述J个子接入检测分别被用于确定是否在所述J个空口资源上发送所述N个信道状态信息上报设置所对应的部分或全部信道状态信息;
作为上述实施例的一个子实施例,所述J个子接入检测中任一子接入检测包括正整数次能量检测,所述第一天线端口组中任一天线端口都与第三子接入检测中任一次能量检测空间相关,所述第三子接入检测是所述J个子接入检测中之一;所述第一天线端口组中至少一个天线端口都与所述J个子接入检测中除了所述第三子接入检测之外的任一子接入检测包括的任一次能量检测空间不相关;所述第三子接入检测的结果为在所述第一空口资源上发送所述N个信道状态信息上报设置所对应的部分或全部信道状态信息;所述J个子接入检测中除了所述第三子接入检测之外的任一子接入检测的结果都为放弃在所对应的所述J个空口资源中的一个空口资源上发送所述N个信道状态信息上报设置所对应的部分或全部信道状态信息。
作为上述实施例的一个子实施例,所述J个子接入检测中任一子接入检测包括正整数次能量检测,所述第一天线端口组中任一天线端口都与第三子接入检测中任一次能量检测空间相关,所述第三子接入检测是所述J个子接入检测中之一;所述第一天线端口组中至少一个天线端口都与所述J个子接入检测中除了所述第三子接入检测之外的任一子接入检测包括的任一次能量检测空间不相关;所述第三子接入检测的结果为在所述第一空口资源上发送所述N个信道状态信息上报设置所对应的部分或全部信道状态信息。
作为上述实施例的一个子实施例,所述J个子接入检测中任一子接入检测包括正整数次能量检测,所述第二天线端口组中任一天线端口都与第四子接入检测中任一次能量检测空间相关,所述第四子接入检测是所述J个子接入检测中之一;所述第二天线端口组中至少一个天线端口都与所述J个子接入检测中除了所述第四子接入检测之外的任一子接入检测包括的任一次能量检测空间不相关;所述第四子接入检测的结果为在所述第二空口资源上发送所述N个信道状态信息上报设置所对应的部分或全部信道状态信息。
作为一个实施例,监测所述J个空口资源以确定所述第一空口资源是指:分别在所述J个空口资源上监测被用于发送所述N个信道状态信息上报设置分别对应的N个信道状态信息中的至少一个信道状态信息的无线信号是否被发送,所述第一空口资源是所述J个空口资源中唯一一个发送了所述N个信道状态信息上报设置分别对应的N个信道状态信息中的至少一个信道状态信息的无线信号的空口资源。
作为一个实施例,监测所述J个空口资源以确定所述第一空口资源和所述第二空口资源。
作为一个实施例,监测所述J个空口资源以确定所述第一空口资源和所述第二空口资源 是指:分别在所述J个空口资源上监测被用于发送所述N个信道状态信息上报设置分别对应的N个信道状态信息中的至少一个信道状态信息的无线信号是否被发送,所述第二空口资源和所述第一空口资源都是所述J个空口资源中发送了所述N个信道状态信息上报设置分别对应的N个信道状态信息中的至少一个信道状态信息的无线信号的空口资源。
作为一个实施例,监测所述J个空口资源以确定所述第一空口资源是指:分别在所述J个空口资源上监测被用于发送所述N个信道状态信息上报设置分别对应的N个信道状态信息中的至少一个信道状态信息的无线信号是否被发送,所述第一空口资源是所述J个空口资源中的一个发送了所述N个信道状态信息上报设置分别对应的N个信道状态信息中的至少一个信道状态信息的无线信号的空口资源。
作为一个实施例,在给定空口资源上监测给定无线信号是否被发送是指:根据给定空口资源上的接收信号的能量以判断给定无线信号在所述给定空口资源上是否被发送。
作为上述实施例的一个子实施例,所述给定空口资源是所述J个空口资源中任一空口资源,所述给定无线信号是被用于发送所述N个信道状态信息上报设置分别对应的N个信道状态信息中的至少一个信道状态信息的无线信号。
作为上述实施例的一个子实施例,如果所述给定空口资源上的接收信号的能量较低,认为所述给定无线信号在所述给定空口资源上未被发送,否则,认为所述给定无线信号在所述给定空口资源上被发送。
作为上述实施例的一个子实施例,如果所述给定空口资源上的接收信号的能量低于参考能量阈值,认为所述给定无线信号在所述给定空口资源上未被发送,否则,认为所述给定无线信号在所述给定空口资源上被发送;所述参考能量阈值由所述基站设备自行配置。
作为一个实施例,在给定空口资源上监测给定无线信号是否被发送是指:根据给定空口资源上的接收信号的功率以判断给定无线信号在所述给定空口资源上是否被发送。
作为上述实施例的一个子实施例,所述给定空口资源是所述J个空口资源中任一空口资源,所述给定无线信号是被用于发送所述N个信道状态信息上报设置分别对应的N个信道状态信息中的至少一个信道状态信息的无线信号。
作为上述实施例的一个子实施例,如果所述给定空口资源上的接收信号的功率较低,认为所述给定无线信号在所述给定空口资源上未被发送,否则,认为所述给定无线信号在所述给定空口资源上被发送。
作为上述实施例的一个子实施例,如果所述给定空口资源上的接收信号的功率低于参考功率阈值,认为所述给定无线信号在所述给定空口资源上未被发送,否则,认为所述给定无线信号在所述给定空口资源上被发送;所述参考功率阈值由所述基站设备自行配置。
作为一个实施例,在给定空口资源上监测给定无线信号是否被发送是指:根据给定空口资源上的接收信号和给定无线信号的相关性以判断所述给定无线信号在所述给定空口资源上是否被发送。
作为上述实施例的一个子实施例,所述给定空口资源是所述J个空口资源中任一空口资源,所述给定无线信号是被用于发送所述N个信道状态信息上报设置分别对应的N个信道状态信息中的至少一个信道状态信息的无线信号。
作为上述实施例的一个子实施例,如果所述给定空口资源上的接收信号和所述给定无线信号的相关性较低,认为所述给定无线信号在所述给定空口资源上未被发送,否则,认为所述给定无线信号在所述给定空口资源上被发送。
作为上述实施例的一个子实施例,如果所述给定空口资源上的接收信号和所述给定无线信号的相关性低于参考相关性阈值,认为所述给定无线信号在所述给定空口资源上未被发送,否则,认为所述给定无线信号在所述给定空口资源上被发送;所述参考相关性阈值由所述基站设备自行配置。
作为一个实施例,在给定空口资源上监测给定无线信号是否被发送是指:根据给定无线信号的配置参数对给定空口资源上的接收信号进行测量从而估计出信道,根据估计出的所 述信道判断所述给定无线信号在所述给定空口资源上是否被发送。
作为上述实施例的一个子实施例,所述给定空口资源是所述J个空口资源中任一空口资源,所述给定无线信号是被用于发送所述N个信道状态信息上报设置分别对应的N个信道状态信息中的至少一个信道状态信息的无线信号。
作为上述实施例的一个子实施例,如果估计出的所述信道的能量较低,认为所述给定无线信号在所述给定空口资源上未被发送,否则,认为所述给定无线信号在所述给定空口资源上被发送。
作为上述实施例的一个子实施例,如果估计出的所述信道的能量低于参考信道能量阈值,认为所述给定无线信号在所述给定空口资源上未被发送,否则,认为所述给定无线信号在所述给定空口资源上被发送;所述参考信道能量阈值由所述基站设备自行配置。
作为上述实施例的一个子实施例,如果估计出的所述信道的功率较低,认为所述给定无线信号在所述给定空口资源上未被发送,否则,认为所述给定无线信号在所述给定空口资源上被发送。
作为上述实施例的一个子实施例,如果估计出的所述信道的功率低于参考信道功率阈值,认为所述给定无线信号在所述给定空口资源上未被发送,否则,认为所述给定无线信号在所述给定空口资源上被发送;所述参考信道功率阈值由所述基站自行配置。
作为上述实施例的一个子实施例,如果估计出的所述信道的特性不符合认为应有的特性,认为所述给定无线信号在所述给定空口资源上未被发送,否则,认为所述给定无线信号在所述给定空口资源上被发送。
作为一个实施例,所述第三信息显式的指示所述N个空口资源的配置信息。
作为一个实施例,所述第三信息隐式的指示所述N个空口资源的配置信息。
作为一个实施例,所述第三信息是半静态配置的。
作为一个实施例,所述第三信息由更高层信令承载。
作为一个实施例,所述第三信息由RRC信令承载。
作为一个实施例,所述第三信息包括一个RRC信令中的一个或多个IE。
作为一个实施例,所述第三信息包括一个RRC信令中的一个IE的全部或一部分。
作为一个实施例,所述第三信息包括一个RRC信令中的多个IE。
作为一个实施例,所述第一信息、所述第二信息和所述第三信息都属于一个RRC信令中的同一个IE。
作为一个实施例,所述第一信息和所述第三信息都属于一个RRC信令中的同一个IE。
作为一个实施例,所述第二信息和所述第三信息都属于一个RRC信令中的同一个IE。
作为一个实施例,所述第一信息和所述第三信息分别属于一个RRC信令中的不同的IE。
作为一个实施例,所述第二信息和所述第三信息分别属于一个RRC信令中的不同的IE。
作为一个实施例,所述N个空口资源中任一空口资源的配置信息包括所占的时域资源,所占的码域资源,所占的频域资源和所对应的天线端口组中的至少之一。
作为一个实施例,所述N个空口资源中任一空口资源的配置信息包括所占的时域资源,所占的码域资源,所占的频域资源和所对应的天线端口组。
作为一个实施例,所述N个空口资源中任一空口资源的配置信息包括所占的起始多载波符号,所占的多载波号数目,跳频前或不跳频情况的起始PRB,跳频后的起始PRB,所占的PRB数目,跳频设置,CS,OCC,OCC长度,所对应的天线端口组和最大码率。
作为一个实施例,所述N个空口资源中任一空口资源的配置信息包括所占的起始多载波符号,所占的多载波号数目,跳频前或不跳频情况的起始PRB,跳频后的起始PRB,所占的PRB数目,跳频设置,CS,OCC,OCC长度,所对应的天线端口组和最大码率中的至少之一。
实施例6
实施例6A至实施例6B分别示例了一个N个天线端口组是否在空间上被关联到第一天线端口组被用于从N个信道状态信息上报设置中确定M个信道状态信息上报设置的示意图。
在实施例6中,所述M个信道状态信息上报设置分别对应的所述N个天线端口组中的M个天线端口组在空间上都被关联到所述第一天线端口组。
作为一个实施例,所述M个天线端口组分别是与所述M个信道状态信息上报设置关联的所述N个空口资源中的M个空口资源所分别对应的所述N个天线端口组中的M个天线端口组。
作为一个实施例,给定信道状态信息上报设置是所述N个信道状态信息上报设置中任一信道状态信息上报设置,所述给定信道状态信息上报设置所对应的所述N个天线端口组中的一个天线端口组是与所述给定信道状态信息上报设置关联的所述N个空口资源中的一个空口资源所对应的所述N个天线端口组中的一个天线端口组;给定信道状态信息是所述给定信道状态信息上报设置包括的信道状态信息,所述给定信道状态信息所对应的所述N个天线端口组中的一个天线端口组是所述给定信道状态信息上报设置所对应的所述N个天线端口组中的一个天线端口组。
作为一个实施例,在所述第一空口资源上承载所述M个信道状态信息所对应的码率(Code Rate)不大于所述第一空口资源的最大码率。
作为一个实施例,N1个信道状态信息上报设置由所述N个信道状态信息上报设置中的所有所对应的所述N个天线端口组中的一个天线端口组在空间上被关联到所述第一天线端口组的信道状态信息上报设置组成,所述N1个信道状态信息上报设置分别对应N1个信道状态信息,所述N1是不大于所述N的正整数。
作为上述实施例的一个子实施例,所述N1个信道状态信息上报设置包括所述M个信道状态信息上报设置。
作为上述实施例的一个子实施例,所述N1个信道状态信息包括所述M个信道状态信息。
作为上述实施例的一个子实施例,所述N1等于所述M。
作为上述实施例的一个子实施例,所述N1大于所述M。
作为上述实施例的一个子实施例,所述N1等于所述M,所述M个信道状态信息上报设置包括所述N个信道状态信息上报设置中的所有所对应的所述N个天线端口组中的一个天线端口组在空间上被关联到所述第一天线端口组的信道状态信息上报设置。
作为上述实施例的一个子实施例,所述N1大于所述M,所述M个信道状态信息上报设置是所述N1个信道状态信息上报设置中对应的信道状态信息的发送优先级最高的M个信道状态信息上报设置。
作为上述实施例的一个子实施例,所述N1大于所述M,如果在所述第一空口资源上承载所述M个信道状态信息和第一参考信道状态信息所对应的码率大于所述第一空口资源的最大码率,所述第一参考信道状态信息对应所述N1个信道状态信息上报设置中除了所述M个信道状态信息上报设置之外的任一信道状态信息上报设置。
作为一个实施例,所述N1个信道状态信息之间的发送优先级的高低与所述N1个信道状态信息上报设置分别对应的上报设置索引、信道状态信息包括的参数组、小区索引和上报时域行为有关。
作为上述实施例的一个子实施例,所对应的上报时域行为是半持久性上报的信道状态信息的发送优先级高于所对应的上报时域行为是周期性上报的信道状态信息。
作为上述实施例的一个子实施例,所对应的参数组包括{CRI,RSRP,SSBRI}中至少之一的信道状态信息的发送优先级高于所对应的参数组包括{RI,PMI,CQI,SLI}中的至少之一的信道状态信息。
作为上述实施例的一个子实施例,所对应的小区索引是主小区(PCell,Primary Cell)的索引的信道状态信息的发送优先级高于所对应的小区索引是次小区(SCell,Secondary Cell)的索引的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较小的信道状态信息的发送优先级高于所对应的上报设置索引较大的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较大的信道状态信息的发送优 先级高于所对应的上报设置索引较小的信道状态信息。
作为一个实施例,所述N1个信道状态信息之间的发送优先级的高低与所述N1个信道状态信息上报设置分别对应的上报设置索引、信道状态信息包括的参数组、小区索引和上报时域行为中的至少之一有关。
作为上述实施例的一个子实施例,所对应的上报时域行为是半持久性上报的信道状态信息的发送优先级高于所对应的上报时域行为是周期性上报的信道状态信息。
作为上述实施例的一个子实施例,所对应的参数组包括{CRI,RSRP,SSBRI}中至少之一的信道状态信息的发送优先级高于所对应的参数组包括{RI,PMI,CQI,SLI}中的至少之一的信道状态信息。
作为上述实施例的一个子实施例,所对应的小区索引是主小区(PCell,Primary Cell)的索引的信道状态信息的发送优先级高于所对应的小区索引是次小区(SCell,Secondary Cell)的索引的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较小的信道状态信息的发送优先级高于所对应的上报设置索引较大的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较大的信道状态信息的发送优先级高于所对应的上报设置索引较小的信道状态信息。
作为一个实施例,所述M个信道状态信息之间的发送优先级的高低与所述M个信道状态信息上报设置分别对应的上报设置索引、信道状态信息包括的参数组、小区索引和上报时域行为有关。
作为上述实施例的一个子实施例,所对应的上报时域行为是半持久性上报的信道状态信息的发送优先级高于所对应的上报时域行为是周期性上报的信道状态信息。
作为上述实施例的一个子实施例,所对应的参数组包括{CRI,RSRP,SSBRI}中至少之一的信道状态信息的发送优先级高于所对应的参数组包括{RI,PMI,CQI,SLI}中的至少之一的信道状态信息。
作为上述实施例的一个子实施例,所对应的小区索引是主小区(PCell,Primary Cell)的索引的信道状态信息的发送优先级高于所对应的小区索引是次小区(SCell,Secondary Cell)的索引的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较小的信道状态信息的发送优先级高于所对应的上报设置索引较大的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较大的信道状态信息的发送优先级高于所对应的上报设置索引较小的信道状态信息。
作为一个实施例,所述M个信道状态信息之间的发送优先级的高低与所述M个信道状态信息上报设置分别对应的上报设置索引、信道状态信息包括的参数组、小区索引和上报时域行为中的至少之一有关。
作为上述实施例的一个子实施例,所对应的上报时域行为是半持久性上报的信道状态信息的发送优先级高于所对应的上报时域行为是周期性上报的信道状态信息。
作为上述实施例的一个子实施例,所对应的参数组包括{CRI,RSRP,SSBRI}中至少之一的信道状态信息的发送优先级高于所对应的参数组包括{RI,PMI,CQI,SLI}中的至少之一的信道状态信息。
作为上述实施例的一个子实施例,所对应的小区索引是主小区(PCell,Primary Cell)的索引的信道状态信息的发送优先级高于所对应的小区索引是次小区(SCell,Secondary Cell)的索引的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较小的信道状态信息的发送优先级高于所对应的上报设置索引较大的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较大的信道状态信息的发送优先级高于所对应的上报设置索引较小的信道状态信息。
作为一个实施例,所述实施例6A对应N1个信道状态信息上报设置由所述N个信道状态信息上报设置中的所有所对应的所述N个天线端口组中的一个天线端口组在空间上被关联到所述第一天线端口组的信道状态信息上报设置组成,所述N1等于所述M的所述N个天线端口组是否在空间上被关联到所述第一天线端口组被用于从所述N个信道状态信息上报设置中确定所述M个信道状态信息上报设置示意图。
作为一个实施例,所述实施例6B对应N1个信道状态信息上报设置由所述N个信道状态信息上报设置中的所有所对应的所述N个天线端口组中的一个天线端口组在空间上被关联到所述第一天线端口组的信道状态信息上报设置组成,所述N1大于所述M的所述N个天线端口组是否在空间上被关联到所述第一天线端口组被用于从所述N个信道状态信息上报设置中确定所述M个信道状态信息上报设置示意图。
实施例7
实施例7示例了另一个N个天线端口组是否在空间上被关联到第一天线端口组被用于从N个信道状态信息上报设置中确定M个信道状态信息上报设置的示意图,如附图7所示。
在实施例7中,如果与所述M个信道状态信息上报设置分别对应的所述N个天线端口组中的M个天线端口组中至少一个天线端口组在空间上都不被关联到所述第一天线端口组,所述M个信道状态信息上报设置包括所述N个信道状态信息上报设置中的所有所对应的所述N个天线端口组中的一个天线端口组在空间上被关联到所述第一天线端口组的信道状态信息上报设置。
作为一个实施例,所述M个天线端口组是否在空间上被关联到所述第一天线端口组被用于确定所述M个信道状态信息的发送优先级。
作为一个实施例,所述M个信道状态信息由先到后的排序与所述M个信道状态信息的发送优先级由高到低的排序一致。
作为一个实施例,所述M个信道状态信息由较低比特位到较高比特位置的排序与所述M个信道状态信息的发送优先级由高到低的排序一致。
作为一个实施例,所述M个信道状态信息由较高比特位到较低比特位置的排序与所述M个信道状态信息的发送优先级由高到低的排序一致。
作为一个实施例,所述第一空口资源被用于承载上行控制信息(UCI,Uplink Control Information),所述M个信道状态信息在所述上行控制信息中由先到后的排序与所述M个信道状态信息的发送优先级由高到低的排序一致。
作为一个实施例,所述第一空口资源被用于承载上行控制信息,所述M个信道状态信息在所述上行控制信息中由较低比特位到较高比特位置的排序与所述M个信道状态信息的发送优先级由高到低的排序一致。
作为一个实施例,所述第一空口资源被用于承载上行控制信息,所述M个信道状态信息在所述上行控制信息中由较高比特位到较低比特位置的排序与所述M个信道状态信息的发送优先级由高到低的排序一致。
作为一个实施例,所述第一空口资源被用于承载上行控制信息,所述M个信道状态信息中发送优先级较高的信道状态信息在所述上行控制信息中的位置先于所述M个信道状态信息中发送优先级较低的信道状态信息在所述上行控制信息中的的位置。
作为一个实施例,所述第一空口资源被用于承载上行控制信息,所述M个信道状态信息中发送优先级较高的信道状态信息在所述上行控制信息中较低的比特位置。
作为一个实施例,所述第一空口资源被用于承载上行控制信息,所述M个信道状态信息中发送优先级较高的信道状态信息在所述上行控制信息中较高的比特位置。
作为一个实施例,在所述第一空口资源上承载所述M个信道状态信息所对应的码率(Code Rate)不大于所述第一空口资源的最大码率。
作为一个实施例,N1个信道状态信息上报设置由所述N个信道状态信息上报设置中的所 有所对应的所述N个天线端口组中的一个天线端口组在空间上被关联到所述第一天线端口组的信道状态信息上报设置组成,所述N1个信道状态信息上报设置分别对应N1个信道状态信息,所述N个信道状态信息上报设置分别对应N个信道状态信息,所述N1是小于所述N的正整数。
作为上述实施例的一个子实施例,所述M个信道状态信息上报设置包括所述N1个信道状态信息上报设置。
作为上述实施例的一个子实施例,所述M个信道状态信息包括所述N1个信道状态信息。
作为上述实施例的一个子实施例,所述N个信道状态信息包括所述M个信道状态信息。
作为上述实施例的一个子实施例,所述N个信道状态信息包括所述N1个信道状态信息。
作为上述实施例的一个子实施例,所述N1小于所述M。
作为上述实施例的一个子实施例,所述N1个信道状态信息中任一信道状态信息的发送优先级都高于所述M个信道状态信息中除了所述N1个信道状态信息之外的M-N1个信道状态信息的发送优先级。
作为上述实施例的一个子实施例,所述M等于所述N。
作为上述实施例的一个子实施例,所述M小于所述N,所述M个信道状态信息中除了所述N1个信道状态信息之外的M-N1个信道状态信息是所述N个信道状态信息中除了所述N1个信道状态信息之外的N-N1个信道状态信息中发送优先级最高的M-N1个信道状态信息。
作为上述实施例的一个子实施例,所述M小于所述N,如果在所述第一空口资源上承载所述M个信道状态信息和第二参考信道状态信息所对应的码率大于所述第一空口资源的最大码率,所述第二参考信道状态信息是所述N个信道状态信息中除了所述M个信道状态信息之外的一个信道状态信息。
作为上述实施例的一个子实施例,所述M小于所述N,如果在所述第一空口资源上承载所述M个信道状态信息和第二参考信道状态信息所对应的码率大于所述第一空口资源的最大码率,所述第二参考信道状态信息是所述N个信道状态信息中除了所述N1个信道状态信息之外的N-N1个信道状态信息中第M-N1+1个最高发送优先级的信道状态信息。
作为一个实施例,所述N1个信道状态信息之间的发送优先级的高低与所述N1个信道状态信息上报设置分别对应的上报设置索引、信道状态信息包括的参数组、小区索引和上报时域行为有关。
作为上述实施例的一个子实施例,所对应的上报时域行为是半持久性上报的信道状态信息的发送优先级高于所对应的上报时域行为是周期性上报的信道状态信息。
作为上述实施例的一个子实施例,所对应的参数组包括{CRI,RSRP,SSBRI}中至少之一的信道状态信息的发送优先级高于所对应的参数组包括{RI,PMI,CQI,SLI}中的至少之一的信道状态信息。
作为上述实施例的一个子实施例,所对应的小区索引是主小区(PCell,Primary Cell)的索引的信道状态信息的发送优先级高于所对应的小区索引是次小区(SCell,Secondary Cell)的索引的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较小的信道状态信息的发送优先级高于所对应的上报设置索引较大的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较大的信道状态信息的发送优先级高于所对应的上报设置索引较小的信道状态信息。
作为一个实施例,所述N1个信道状态信息之间的发送优先级的高低与所述N1个信道状态信息上报设置分别对应的上报设置索引、信道状态信息包括的参数组、小区索引和上报时域行为中的至少之一有关。
作为上述实施例的一个子实施例,所对应的上报时域行为是半持久性上报的信道状态信息的发送优先级高于所对应的上报时域行为是周期性上报的信道状态信息。
作为上述实施例的一个子实施例,所对应的参数组包括{CRI,RSRP,SSBRI}中至少之一 的信道状态信息的发送优先级高于所对应的参数组包括{RI,PMI,CQI,SLI}中的至少之一的信道状态信息。
作为上述实施例的一个子实施例,所对应的小区索引是主小区(PCell,Primary Cell)的索引的信道状态信息的发送优先级高于所对应的小区索引是次小区(SCell,Secondary Cell)的索引的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较小的信道状态信息的发送优先级高于所对应的上报设置索引较大的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较大的信道状态信息的发送优先级高于所对应的上报设置索引较小的信道状态信息。
作为一个实施例,所述N个信道状态信息中除了所述N1个信道状态信息之外的N-N1个信道状态信息之间的发送优先级的高低与所述N个信道状态信息上报设置中除了所述N1个信道状态信息上报设置之外的N-N1个信道状态信息上报设置分别对应的上报设置索引、信道状态信息包括的参数组、小区索引和上报时域行为有关。
作为上述实施例的一个子实施例,所对应的上报时域行为是半持久性上报的信道状态信息的发送优先级高于所对应的上报时域行为是周期性上报的信道状态信息。
作为上述实施例的一个子实施例,所对应的参数组包括{CRI,RSRP,SSBRI}中至少之一的信道状态信息的发送优先级高于所对应的参数组包括{RI,PMI,CQI,SLI}中的至少之一的信道状态信息。
作为上述实施例的一个子实施例,所对应的小区索引是主小区(PCell,Primary Cell)的索引的信道状态信息的发送优先级高于所对应的小区索引是次小区(SCell,Secondary Cell)的索引的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较小的信道状态信息的发送优先级高于所对应的上报设置索引较大的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较大的信道状态信息的发送优先级高于所对应的上报设置索引较小的信道状态信息。
作为一个实施例,所述N个信道状态信息中除了所述N1个信道状态信息之外的N-N1个信道状态信息之间的发送优先级的高低与所述N个信道状态信息上报设置中除了所述N1个信道状态信息上报设置之外的N-N1个信道状态信息上报设置分别对应的上报设置索引、信道状态信息包括的参数组、小区索引和上报时域行为中的至少之一有关。
作为上述实施例的一个子实施例,所对应的上报时域行为是半持久性上报的信道状态信息的发送优先级高于所对应的上报时域行为是周期性上报的信道状态信息。
作为上述实施例的一个子实施例,所对应的参数组包括{CRI,RSRP,SSBRI}中至少之一的信道状态信息的发送优先级高于所对应的参数组包括{RI,PMI,CQI,SLI}中的至少之一的信道状态信息。
作为上述实施例的一个子实施例,所对应的小区索引是主小区(PCell,Primary Cell)的索引的信道状态信息的发送优先级高于所对应的小区索引是次小区(SCell,Secondary Cell)的索引的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较小的信道状态信息的发送优先级高于所对应的上报设置索引较大的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较大的信道状态信息的发送优先级高于所对应的上报设置索引较小的信道状态信息。
作为一个实施例,所述M个信道状态信息中除了所述N1个信道状态信息之外的M-N1个信道状态信息之间的发送优先级的高低与所述M个信道状态信息上报设置中除了所述N1个信道状态信息上报设置之外的M-N1个信道状态信息上报设置分别对应的上报设置索引、信道状态信息包括的参数组、小区索引和上报时域行为有关。
作为上述实施例的一个子实施例,所对应的上报时域行为是半持久性上报的信道状态信 息的发送优先级高于所对应的上报时域行为是周期性上报的信道状态信息。
作为上述实施例的一个子实施例,所对应的参数组包括{CRI,RSRP,SSBRI}中至少之一的信道状态信息的发送优先级高于所对应的参数组包括{RI,PMI,CQI,SLI}中的至少之一的信道状态信息。
作为上述实施例的一个子实施例,所对应的小区索引是主小区(PCell,Primary Cell)的索引的信道状态信息的发送优先级高于所对应的小区索引是次小区(SCell,Secondary Cell)的索引的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较小的信道状态信息的发送优先级高于所对应的上报设置索引较大的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较大的信道状态信息的发送优先级高于所对应的上报设置索引较小的信道状态信息。
作为一个实施例,所述M个信道状态信息中除了所述N1个信道状态信息之外的M-N1个信道状态信息之间的发送优先级的高低与所述M个信道状态信息上报设置中除了所述N1个信道状态信息上报设置之外的M-N1个信道状态信息上报设置分别对应的上报设置索引、信道状态信息包括的参数组、小区索引和上报时域行为中的至少之一有关。
作为上述实施例的一个子实施例,所对应的上报时域行为是半持久性上报的信道状态信息的发送优先级高于所对应的上报时域行为是周期性上报的信道状态信息。
作为上述实施例的一个子实施例,所对应的参数组包括{CRI,RSRP,SSBRI}中至少之一的信道状态信息的发送优先级高于所对应的参数组包括{RI,PMI,CQI,SLI}中的至少之一的信道状态信息。
作为上述实施例的一个子实施例,所对应的小区索引是主小区(PCell,Primary Cell)的索引的信道状态信息的发送优先级高于所对应的小区索引是次小区(SCell,Secondary Cell)的索引的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较小的信道状态信息的发送优先级高于所对应的上报设置索引较大的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较大的信道状态信息的发送优先级高于所对应的上报设置索引较小的信道状态信息。
作为一个实施例,所述实施例7对应N1个信道状态信息上报设置由所述N个信道状态信息上报设置中的所有所对应的所述N个天线端口组中的一个天线端口组在空间上被关联到所述第一天线端口组的信道状态信息上报设置组成,所述N1小于所述M的所述N个天线端口组是否在空间上被关联到所述第一天线端口组被用于从所述N个信道状态信息上报设置中确定所述M个信道状态信息上报设置示意图。
实施例8
实施例8示例了一个确定第一天线端口组的示意图,如附图8所示。
在实施例8中,参考信道状态信息上报设置是本申请中的所述N个信道状态信息上报设置中参考优先级最高的一个信道状态信息上报设置,参考天线端口组是本申请中的所述N个空口资源中与所述参考信道状态信息上报设置关联的一个空口资源所对应的本申请中的所述N个天线端口组中的一个天线端口组,所述参考天线端口组被关联到所述第一天线端口组。
作为一个实施例,所述第一天线端口组包括所述参考天线端口组。
作为一个实施例,所述M等于所述N,所述第一空口资源是所述J个空口资源中能够发送所述N个信道状态信息上报设置所对应的全部信道状态信息且包含的资源单元(RE)数目最少的一个空口资源。
作为一个实施例,所述M小于所述N,所述第一空口资源是所述J个空口资源中包含的资源单元数目最多的一个空口资源。
作为一个实施例,所述N个信道状态信息之间的参考优先级的高低与所述N个信道状态 信息上报设置分别对应的上报设置索引、信道状态信息包括的参数组、小区索引和上报时域行为有关。
作为上述实施例的一个子实施例,所对应的上报时域行为是半持久性上报的信道状态信息的参考优先级高于所对应的上报时域行为是周期性上报的信道状态信息。
作为上述实施例的一个子实施例,所对应的参数组包括{CRI,RSRP,SSBRI}中至少之一的信道状态信息的参考优先级高于所对应的参数组包括{RI,PMI,CQI,SLI}中的至少之一的信道状态信息。
作为上述实施例的一个子实施例,所对应的小区索引是主小区(PCell,Primary Cell)的索引的信道状态信息的参考优先级高于所对应的小区索引是次小区(SCell,Secondary Cell)的索引的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较小的信道状态信息的参考优先级高于所对应的上报设置索引较大的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较大的信道状态信息的参考优先级高于所对应的上报设置索引较小的信道状态信息。
作为一个实施例,所述N个信道状态信息之间的参考优先级的高低与所述N个信道状态信息上报设置分别对应的上报设置索引、信道状态信息包括的参数组、小区索引和上报时域行为中的至少之一有关。
作为上述实施例的一个子实施例,所对应的上报时域行为是半持久性上报的信道状态信息的参考优先级高于所对应的上报时域行为是周期性上报的信道状态信息。
作为上述实施例的一个子实施例,所对应的参数组包括{CRI,RSRP,SSBRI}中至少之一的信道状态信息的参考优先级高于所对应的参数组包括{RI,PMI,CQI,SLI}中的至少之一的信道状态信息。
作为上述实施例的一个子实施例,所对应的小区索引是主小区(PCell,Primary Cell)的索引的信道状态信息的参考优先级高于所对应的小区索引是次小区(SCell,Secondary Cell)的索引的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较小的信道状态信息的参考优先级高于所对应的上报设置索引较大的信道状态信息。
作为上述实施例的一个子实施例,所对应的上报设置索引较大的信道状态信息的参考优先级高于所对应的上报设置索引较小的信道状态信息。
实施例9
实施例9示例了另一个确定第一天线端口组的示意图,如附图9所示。
在实施例9中,本申请中的所述第二信息还被用于指示J个天线端口组,本申请中的所述J个空口资源分别与所述J个天线端口组一一对应,所述第一天线端口组是所述J个天线端口组中与所述第一空口资源对应的天线端口组。
作为一个实施例,所述第二天线端口组是所述J个天线端口组中与所述第二空口资源对应的天线端口组。
作为一个实施例,所述第二信息还显式的指示J个天线端口组。
作为一个实施例,所述第二信息还隐式的指示J个天线端口组。
实施例10
实施例10A至实施例10B分别示例了一个第一给定天线端口组在空间上被关联到第二给定天线端口组的示意图。
在实施例10中,所述第一给定天线端口组对应本申请中的所述M个信道状态信息上报设置所分别对应的所述N个天线端口组中的M个天线端口组中之一,或者,所述第一给定天线端口组对应本申请中的所述N1个信道状态信息上报设置中任一信道状态信息上报设置所对应的所述N个天线端口组中的一个天线端口组;所述第二给定天线端口组对应本申请中的所述第一天线端口组;或者,所述第一给定天线端口组对应本申请中的所述K个天线端口组 中之一,或者,所述第一给定天线端口组对应本申请中的所述N2个信道状态信息上报设置中任一信道状态信息上报设置所对应的所述N个天线端口组中的一个天线端口组;所述第二给定天线端口组对应本申请中的所述第二天线端口组;或者,所述第一给定天线端口组对应本申请中的所述参考天线端口组;所述第二给定天线端口组对应本申请中的所述第一天线端口组。
作为一个实施例,所述第一给定天线端口组在空间上被关联到所述第二给定天线端口组是指:所述第二给定天线端口组包括所述第一给定天线端口组中的所有天线端口。
作为一个实施例,所述第一给定天线端口组在空间上被关联到所述第二给定天线端口组,所述第二给定天线端口组上的发送无线信号的发送或接收天线或天线组包括所述第一给定天线端口组上的发送无线信号的所有发送或接收天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上被关联到所述第二给定天线端口组,所述第二给定天线端口组上的发送无线信号的发送天线或天线组包括所述第一给定天线端口组上的发送无线信号的所有发送天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上被关联到所述第二给定天线端口组,所述第二给定天线端口组上的发送无线信号的接收天线或天线组包括所述第一给定天线端口组上的发送无线信号的所有接收天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上被关联到所述第二给定天线端口组,所述第二给定天线端口组上的发送无线信号的发送天线或天线组包括所述第一给定天线端口组上的发送无线信号的所有接收天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上被关联到所述第二给定天线端口组,所述第二给定天线端口组上的发送无线信号的接收天线或天线组包括所述第一给定天线端口组上的发送无线信号的所有发送天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上被关联到所述第二给定天线端口组,第二天线组是生成所述第二给定天线端口组上的发送无线信号的多天线相关的发送或多天线相关的接收的一个或多个天线组,第一天线组是生成所述第一给定天线端口组上的发送无线信号的多天线相关的发送或多天线相关的接收的一个或多个天线组,所述第二天线组包括所述第一天线组中的所有天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上被关联到所述第二给定天线端口组,第二天线组是生成所述第二给定天线端口组上的发送无线信号的多天线相关的发送的一个或多个天线组,第一天线组是生成所述第一给定天线端口组上的发送无线信号的多天线相关的发送的一个或多个天线组,所述第二天线组包括所述第一天线组中的所有天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上被关联到所述第二给定天线端口组,第二天线组是生成所述第二给定天线端口组上的发送无线信号的多天线相关的接收的一个或多个天线组,第一天线组是生成所述第一给定天线端口组上的发送无线信号的多天线相关的接收的一个或多个天线组,所述第二天线组包括所述第一天线组中的所有天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上被关联到所述第二给定天线端口组,第二天线组是生成所述第二给定天线端口组上的发送无线信号的多天线相关的发送的一个或多个天线组,第一天线组是生成所述第一给定天线端口组上的发送无线信号的多天线相关的接收的一个或多个天线组,所述第二天线组包括所述第一天线组中的所有天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上被关联到所述第二给定天线端口组是指:所述第二给定天线端口组包括所述第一给定天线端口组中的部分天线端口,所述第一给定天线端口组中不属于所述第二给定天线端口组的任一天线端口都和所述第二给定天线端口中的至少一个天线端口是QCL(Quasi Co-Located,准共址)。
作为一个实施例,所述第一给定天线端口组在空间上被关联到所述第二给定天线端口组是指:所述第二给定天线端口组包括所述第一给定天线端口组中的部分天线端口,所述第一给定天线端口组中不属于所述第二给定天线端口组的任一天线端口都和所述第二给定天线端 口中的一个天线端口是QCL。
作为一个实施例,所述第一给定天线端口组在空间上被关联到所述第二给定天线端口组是指:所述第二给定天线端口组包括所述第一给定天线端口组中的部分天线端口,所述第一给定天线端口组中不属于所述第二给定天线端口组的任一天线端口都和所述第二给定天线端口中的至少一个天线端口是spatial QCL。
作为一个实施例,所述第一给定天线端口组在空间上被关联到所述第二给定天线端口组是指:所述第二给定天线端口组包括所述第一给定天线端口组中的部分天线端口,所述第一给定天线端口组中不属于所述第二给定天线端口组的任一天线端口都和所述第二给定天线端口中的一个天线端口是spatial QCL。
作为一个实施例,所述第一给定天线端口组在空间上被关联到所述第二给定天线端口组是指:所述第一给定天线端口组中的任一天线端口都和所述第二给定天线端口组中的至少一个天线端口是QCL。
作为一个实施例,所述第一给定天线端口组在空间上被关联到所述第二给定天线端口组是指:所述第一给定天线端口组中的任一天线端口都和所述第二给定天线端口组中的一个天线端口是QCL。
作为一个实施例,所述第一给定天线端口组在空间上被关联到所述第二给定天线端口组是指:所述第一给定天线端口组中的任一天线端口都和所述第二给定天线端口组中的至少一个天线端口是spatial QCL。
作为一个实施例,所述第一给定天线端口组在空间上被关联到所述第二给定天线端口组是指:所述第一给定天线端口组中的任一天线端口都和所述第二给定天线端口组中的一个天线端口是spatial QCL。
作为一个实施例,两个天线端口是QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的全部或者部分大尺度(large-scale)特性(properties)推断出两个天线端口中的另一个天线端口上发送的无线信号的全部或者部分大尺度特性。
作为一个实施例,两个天线端口是QCL是指:所述两个天线端口至少有一个相同的QCL参数(QCL parameter),所述QCL参数包括多天线相关的QCL参数和多天线无关的QCL参数。
作为一个实施例,两个天线端口是QCL是指:能够从所述两个天线端口中的一个天线端口的至少一个QCL参数推断出所述两个天线端口中的另一个天线端口的至少一个QCL参数。
作为一个实施例,两个天线端口是QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的接收。
作为一个实施例,两个天线端口是QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的发送推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送。
作为一个实施例,两个天线端口是QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送,所述所述两个天线端口中的一个天线端口上发送的无线信号的接收者和所述所述两个天线端口中的另一个天线端口上发送的无线信号的发送者相同。
作为一个实施例,多天线相关的QCL参数包括:到达角(angle of arrival)、离开角(angle of departure)、空间相关性、多天线相关的发送、多天线相关的接收中的一种或多种。
作为一个实施例,多天线无关的QCL参数包括:延时扩展(delay spread)、多普勒扩展(Doppler spread)、多普勒移位(Doppler shift)、路径损耗(path loss)、平均 增益(average gain)中的一种或多种。
作为一个实施例,两个天线端口是spatial QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的全部或者部分多天线相关的大尺度(large-scale)特性(properties)推断出两个天线端口中的另一个天线端口上发送的无线信号的全部或者部分多天线相关的大尺度特性。
作为一个实施例,两个天线端口是spatial QCL是指:所述两个天线端口至少有一个相同的多天线相关的QCL参数(spatial QCL parameter)。
作为一个实施例,两个天线端口是spatial QCL的是指:能够从所述两个天线端口中的一个天线端口的至少一个多天线相关的QCL参数推断出所述两个天线端口中的另一个天线端口的至少一个多天线相关的QCL参数。
作为一个实施例,两个天线端口是spatial QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的接收。
作为一个实施例,两个天线端口是spatial QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的发送推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送。
作为一个实施例,两个天线端口是spatial QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送,所述所述两个天线端口中的一个天线端口上发送的无线信号的接收者和所述所述两个天线端口中的另一个天线端口上发送的无线信号的发送者相同。
作为一个实施例,给定无线信号的多天线相关的大尺度特性包括到达角(angle of arrival)、离开角(angle of departure)、空间相关性、多天线相关的发送、多天线相关的接收中的一种或者多种。
作为一个实施例,所述多天线相关的接收是空间接收参数(Spatial Rx parameters)。
作为一个实施例,所述多天线相关的接收是接收波束。
作为一个实施例,所述多天线相关的接收是接收波束赋型矩阵。
作为一个实施例,所述多天线相关的接收是接收模拟波束赋型矩阵。
作为一个实施例,所述多天线相关的接收是接收波束赋型向量。
作为一个实施例,所述多天线相关的接收是接收空间滤波(spatial filtering)。
作为一个实施例,所述多天线相关的发送是空间发送参数(Spatial Tx parameters)。
作为一个实施例,所述多天线相关的发送是发送波束。
作为一个实施例,所述多天线相关的发送是发送波束赋型矩阵。
作为一个实施例,所述多天线相关的发送是发送模拟波束赋型矩阵。
作为一个实施例,所述多天线相关的发送是发送波束赋型向量。
作为一个实施例,所述多天线相关的发送是发送空间滤波。
作为一个实施例,所述实施例10A对应所述第一给定天线端口组的发送波束和所述第二给定天线端口组的发送波束相同的所述第一给定天线端口组在空间上被关联到所述第二给定天线端口组的示意图。
作为一个实施例,所述实施例10B对应所述第二给定天线端口组的发送波束包括所述第一给定天线端口组的发送波束的所述第一给定天线端口组在空间上被关联到所述第二给定天线端口组的示意图。
实施例11
实施例11A至实施例11B分别示例了一个第一给定天线端口组在空间上不被关联到第二给定天线端口组的示意图。
在实施例11中,所述第一给定天线端口组对应本申请中的所述N个天线端口组中之一, 或者,所述第一给定天线端口组对应本申请中的所述N2个信道状态信息上报设置中任一信道状态信息上报设置所对应的所述N个天线端口组中的一个天线端口组;所述第二给定天线端口组对应本申请中的所述第一天线端口组;或者,所述第一给定天线端口组对应本申请中的所述第二天线端口组,所述第二给定天线端口组对应本申请中的所述第一天线端口组;或者,所述第一给定天线端口组对应本申请中的所述M个天线端口组中之一,所述第二给定天线端口组对应本申请中的所述第二天线端口组;或者,所述第一给定天线端口组对应本申请中的所述K个天线端口组中之一,所述第二给定天线端口组对应本申请中的所述第一天线端口组。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:所述第二给定天线端口组不包括所述第一给定天线端口组中的所有天线端口。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:所述第二给定天线端口组不包括所述第一给定天线端口组中的至少一个天线端口。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:所述第二给定天线端口组中的所有天线端口都能和所述第一给定天线端口组中的所有天线端口同时发送无线信号。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:所述第二给定天线端口组中的任一天线端口上发送的无线信号都能和所述第一给定天线端口组中的任一天线端口上发送的无线信号同时接收。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:能够同时在所述第二给定天线端口组中的任一天线端口上发送无线信号和接收所述第一给定天线端口组中的任一天线端口上发送的无线信号。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:能够同时在所述第一给定天线端口组中的任一天线端口上发送无线信号和接收所述第二给定天线端口组中的任一天线端口上发送的无线信号。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:能够同时在所述第一给定天线端口组中的任一天线端口上的无线信号进行发送或接收和同时发送或接收所述第二给定天线端口组中的任一天线端口上发送的无线信号。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:所述第二给定天线端口组中任一天线端口上的发送无线信号的发送或接收天线或天线组和所述第一给定天线端口组中任一天线端口上的发送无线信号的发送或接收天线或天线组不包括相同的天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:发送所述第二给定天线端口组中任一天线端口上的无线信号的天线或天线组和发送所述第一给定天线端口组中任一天线端口上的无线信号的天线或天线组不包括相同的天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:所述第二给定天线端口组中任一天线端口上的发送无线信号的接收天线或天线组和所述第一给定天线端口组中任一天线端口上的发送无线信号的接收天线或天线组不包括相同的天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:发送所述第二给定天线端口组中任一天线端口上的无线信号的天线或天线组和所述第一给定天线端口组中任一天线端口上的发送无线信号的接收天线或天线组不包括相同的天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:发送所述第一给定天线端口组中任一天线端口上的无线信号的天线或天线组和所述第二给定天线端口组中任一天线端口上的发送无线信号的接收天线或天线组不包括相同的天 线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:第二天线组是生成所述第二给定天线端口组中任一天线端口上的发送无线信号的多天线相关的发送或多天线相关的接收的一个或多个天线组,第一天线组是生成所述第一给定天线端口组中任一天线端口的多天线相关的发送或多天线相关的接收的一个或多个天线组,所述第一天线组和所述第二天线组不包括相同的天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:第二天线组是生成所述第二给定天线端口组中任一天线端口上的发送无线信号的多天线相关的发送的一个或多个天线组,第一天线组是生成所述第一给定天线端口组中任一天线端口的多天线相关的发送的一个或多个天线组,所述第一天线组和所述第二天线组不包括相同的天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:第二天线组是生成所述第二给定天线端口组中任一天线端口上的发送无线信号的多天线相关的接收的一个或多个天线组,第一天线组是生成所述第一给定天线端口组中任一天线端口的多天线相关的接收的一个或多个天线组,所述第一天线组和所述第二天线组不包括相同的天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:第二天线组是生成所述第二给定天线端口组中任一天线端口上的发送无线信号的多天线相关的发送的一个或多个天线组,第一天线组是生成所述第一给定天线端口组中任一天线端口的多天线相关的接收的一个或多个天线组,所述第一天线组和所述第二天线组不包括相同的天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:第二天线组是生成所述第二给定天线端口组中任一天线端口上的发送无线信号的多天线相关的接收的一个或多个天线组,第一天线组是生成所述第一给定天线端口组中任一天线端口的多天线相关的发送的一个或多个天线组,所述第一天线组和所述第二天线组不包括相同的天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:所述第一给定天线端口组中的至少一个天线端口不能和所述第二给定天线端口组中的至少一个天线端口同时发送无线信号。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:在所述第一给定天线端口组中的至少一个天线端口上的无线信号的发送或接收和所述第二给定天线端口组中的至少一个天线端口上的无线信号的发送或接收不能同时进行。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:在所述第一给定天线端口组中的至少一个天线端口上的发送无线信号的接收和所述第二给定天线端口组中的至少一个天线端口上的发送无线信号的接收不能同时进行。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:在所述第一给定天线端口组中的至少一个天线端口上的无线信号的发送和所述第二给定天线端口组中的至少一个天线端口上的发送无线信号的接收不能同时进行。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:在所述第二给定天线端口组中的至少一个天线端口上的无线信号的发送和所述第一给定天线端口组中的至少一个天线端口上的发送无线信号的接收不能同时进行。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:所述第一给定天线端口组中的任一天线端口不能和所述第二给定天线端口组中的至少一个天线端口同时发送无线信号。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:在所述第一给定天线端口组中的任一天线端口上的无线信号的发送或接收和所述第 二给定天线端口组中的至少一个天线端口上的无线信号的发送或接收不能同时进行。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:在所述第一给定天线端口组中的任一天线端口上的发送无线信号的接收和所述第二给定天线端口组中的至少一个天线端口上的发送无线信号的接收不能同时进行。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:在所述第一给定天线端口组中的任一天线端口上的无线信号的发送和所述第二给定天线端口组中的至少一个天线端口上的发送无线信号的接收不能同时进行。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:在所述第二给定天线端口组中的至少一个天线端口上的无线信号的发送和所述第一给定天线端口组中的任一天线端口上的发送无线信号的接收不能同时进行。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组,所述第二给定天线端口组上的发送无线信号的发送或接收天线或天线组包括所述第一给定天线端口组上的发送无线信号的至少一个发送或接收天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组,所述第二给定天线端口组上的无线信号的发送天线或天线组包括所述第一给定天线端口组上的无线信号的至少一个发送天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组,所述第二给定天线端口组上的发送无线信号的接收天线或天线组包括所述第一给定天线端口组上的发送无线信号的至少一个接收天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组,所述第二给定天线端口组上的发送无线信号的发送天线或天线组包括所述第一给定天线端口组上的发送无线信号的至少一个接收天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组,所述第二给定天线端口组上的发送无线信号的接收天线或天线组包括所述第一给定天线端口组上的发送无线信号的至少一个发送天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组,第二天线组是生成所述第二给定天线端口组上的发送无线信号的多天线相关的发送或多天线相关的接收的一个或多个天线组,第一天线组是生成所述第一给定天线端口组上的发送无线信号的多天线相关的发送或多天线相关的接收的一个或多个天线组,所述第二天线组包括所述第一天线组中的至少一个天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组,第二天线组是生成所述第二给定天线端口组上的发送无线信号的多天线相关的发送的一个或多个天线组,第一天线组是生成所述第一给定天线端口组上的发送无线信号的多天线相关的发送的一个或多个天线组,所述第二天线组包括所述第一天线组中的至少一个天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组,第二天线组是生成所述第二给定天线端口组上的发送无线信号的多天线相关的接收的一个或多个天线组,第一天线组是生成所述第一给定天线端口组上的发送无线信号的多天线相关的接收的一个或多个天线组,所述第二天线组包括所述第一天线组中的至少一个天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组,第二天线组是生成所述第二给定天线端口组上的发送无线信号的多天线相关的发送的一个或多个天线组,第一天线组是生成所述第一给定天线端口组上的发送无线信号的多天线相关的接收的一个或多个天线组,所述第二天线组包括所述第一天线组中的至少一个天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口 组,第二天线组是生成所述第二给定天线端口组上的发送无线信号的多天线相关的接收的一个或多个天线组,第一天线组是生成所述第一给定天线端口组上的发送无线信号的多天线相关的发送的一个或多个天线组,所述第二天线组包括所述第一天线组中的至少一个天线或天线组。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:所述第一给定天线端口组中的任一天线端口都和所述第二给定天线端口组中的任一天线端口不是QCL。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:所述第一给定天线端口组中的至少一个天线端口都和所述第二给定天线端口组中的任一天线端口不是QCL。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:所述第一给定天线端口组中的任一天线端口都和所述第二给定天线端口组中的任一天线端口不是spatial QCL。
作为一个实施例,所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组是指:所述第一给定天线端口组中的至少一个天线端口都和所述第二给定天线端口组中的任一天线端口不是spatial QCL。
作为一个实施例,两个天线端口不是QCL是指:不能够从所述两个天线端口中的一个天线端口上发送的无线信号的全部或者部分大尺度(large-scale)特性(properties)推断出两个天线端口中的另一个天线端口上发送的无线信号的全部或者部分大尺度特性。
作为一个实施例,两个天线端口不是QCL是指:所述两个天线端口至少有一个不同的QCL参数(QCL parameter),所述QCL参数包括多天线相关的QCL参数和多天线无关的QCL参数。
作为一个实施例,两个天线端口不是QCL是指:不能够从所述两个天线端口中的一个天线端口的至少一个QCL参数推断出所述两个天线端口中的另一个天线端口的至少一个QCL参数。
作为一个实施例,两个天线端口不是QCL是指:不能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的接收。
作为一个实施例,两个天线端口不是QCL是指:不能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的发送推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送。
作为一个实施例,两个天线端口不是QCL是指:不能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送,所述所述两个天线端口中的一个天线端口上发送的无线信号的接收者和所述所述两个天线端口中的另一个天线端口上发送的无线信号的发送者相同。
作为一个实施例,两个天线端口不是spatial QCL是指:不能够从所述两个天线端口中的一个天线端口上发送的无线信号的全部或者部分多天线相关的大尺度(large-scale)特性(properties)推断出两个天线端口中的另一个天线端口上发送的无线信号的全部或者部分多天线相关的大尺度特性。
作为一个实施例,两个天线端口不是spatial QCL是指:所述两个天线端口至少有一个不同的多天线相关的QCL参数(spatial QCL parameter)。
作为一个实施例,两个天线端口不是spatial QCL的是指:不能够从所述两个天线端口中的一个天线端口的至少一个多天线相关的QCL参数推断出所述两个天线端口中的另一个天线端口的至少一个多天线相关的QCL参数。
作为一个实施例,两个天线端口不是spatial QCL是指:不能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中 的另一个天线端口上发送的无线信号的多天线相关的接收。
作为一个实施例,两个天线端口不是spatial QCL是指:不能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的发送推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送。
作为一个实施例,两个天线端口不是spatial QCL是指:不能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送,所述所述两个天线端口中的一个天线端口上发送的无线信号的接收者和所述所述两个天线端口中的另一个天线端口上发送的无线信号的发送者相同。
作为一个实施例,所述实施例11A对应所述第一给定天线端口组的发送波束和所述第二给定天线端口组的发送波束不同的所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组的示意图。
作为一个实施例,所述实施例11B对应所述第二给定天线端口组的发送波束只包括所述第一给定天线端口组的部分发送波束的所述第一给定天线端口组在空间上不被关联到所述第二给定天线端口组的示意图。
实施例12
实施例12示例了一个给定子接入检测被用于确定是否在给定空口资源上发送给定无线信号的示意图;如附图12所示。
在实施例12中,给定时刻是所述给定空口资源的起始时刻,给定子频带包括所述给定空口资源的频域资源,所述给定子接入检测包括在所述给定子频带上的X个时间子池中分别执行X次能量检测,得到X个检测值,所述X是正整数。所述给定子接入检测对应本申请中的所述J1个子接入检测中之一,或者,所述给定子接入检测对应本申请中的所述J个子接入检测中之一;所述给定空口资源对应本申请中的所述J个空口资源中之一,所述给定无线信号对应发送本申请中的所述N个信道状态信息上报设置所对应的部分或全部信道状态信息的无线信号。所述给定接入检测的过程可以由附图12中的流程图来描述。
在实施例12中,本申请中的所述用户设备在步骤S1101中处于闲置状态,在步骤S1102中判断是否需要发送;在步骤1103中在一个延迟时段(defer duration)内执行能量检测;在步骤S1104中判断这个延迟时段内的所有时隙时段是否都空闲,如果是,进行到步骤S1105中在给定空口资源上发送给定无线信号;否则进行到步骤S1106中在一个延迟时段内执行能量检测;在步骤S1107中判断这个延迟时段内的所有时隙时段是否都空闲,如果是,进行到步骤S1108中设置第一计数器等于X1;否则返回步骤S1106;在步骤S1109中判断所述第一计数器是否为0,如果是,进行到步骤S1105中在给定空口资源上发送给定无线信号;否则进行到步骤S1110中在一个附加时隙时段内执行能量检测;在步骤S1111中判断这个附加时隙时段是否空闲,如果是,进行到步骤S1112中把所述第一计数器减1,然后返回步骤1109;否则进行到步骤S1113中在一个附加延迟时段内执行能量检测;在步骤S1114中判断这个附加延迟时段内的所有时隙时段是否都空闲,如果是,进行到步骤S1112;否则返回步骤S1113。
作为一个实施例,所述X1等于0,所述用户设备在所述步骤S1104或所述步骤S1108中判断这个延迟时段内的所有时隙时段都空闲,所述给定子接入检测的结果为信道空闲,可以在所述给定时刻发送所述给定无线信号;否则不能在所述给定时刻发送所述给定无线信号。
作为一个实施例,所述X1不小于0,所述用户设备在步骤S1104中判断这个延迟时段内的并非所有时隙时段都空闲。在所述给定时刻之前附图12中的所述第一计数器清零,所述给定子接入检测的结果为信道空闲,可以在所述给定时刻发送所述给定无线信号;否则不能在所述给定时刻发送所述给定无线信号。所述第一计数器清零的条件是所述X个时间子池中的X1个时间子池对应的所述X个检测值中的X1个检测值均低于第一参考阈值,所述X1个时间子池的起始时间在附图12中的步骤S1108之后。
作为一个实施例,所述X个时间子池包括附图12中的所有延时时段。
作为一个实施例,所述X个时间子池包括附图12中的部分延时时段。
作为一个实施例,所述X个时间子池包括附图12中的所有延时时段和所有附加时隙时段。
作为一个实施例,所述X个时间子池包括附图12中的所有延时时段和部分附加时隙时段。
作为一个实施例,所述X个时间子池包括附图12中的所有延时时段、所有附加时隙时段和所有附加延时时段。
作为一个实施例,所述X个时间子池包括附图12中的所有延时时段、部分附加时隙时段和所有附加延时时段。
作为一个实施例,所述X个时间子池包括附图12中的所有延时时段、部分附加时隙时段和部分附加延时时段。
作为一个实施例,所述X个时间子池中的任一时间子池的持续时间是{16微秒、9微秒}中之一。
作为一个实施例,给定时间时段内的任意一个时隙时段(slot duration)是所述X个时间子池中的一个时间子池;所述给定时间时段是附图12中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,在给定时间时段内执行能量检测是指:在所述给定时间时段内的所有时隙时段(slot duration)内执行能量检测;所述给定时间时段是附图12中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,在给定时间时段通过能量检测被判断为空闲是指:所述给定时段中包括的所有时隙时段通过能量检测都被判断为空闲;所述给定时间时段是附图12中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,给定时隙时段通过能量检测都被判断为空闲是指:所述用户设备在给定时间单元中在所述给定子频带上感知(Sense)所有无线信号的功率,并在时间上平均,所获得的接收功率低于所述第一参考阈值;所述给定时间单元是所述给定时隙时段中的一个持续时间段。
作为上述实施例的一个子实施例,所述给定时间单元的持续时间不短于4微秒。
作为一个实施例,给定时隙时段通过能量检测都被判断为空闲是指:所述用户设备在给定时间单元中在所述给定子频带上感知(Sense)所有无线信号的能量,并在时间上平均,所获得的接收能量低于所述第一参考阈值;所述给定时间单元是所述给定时隙时段中的一个持续时间段。
作为上述实施例的一个子实施例,所述给定时间单元的持续时间不短于4微秒。
作为一个实施例,在给定时间时段内执行能量检测是指:在所述给定时间时段内的所有时间子池内执行能量检测;所述给定时间时段是附图12中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段,所述所有时间子池属于所述X个时间子池。
作为一个实施例,在给定时间时段通过能量检测被判断为空闲是指:所述给定时段中包括的所有时间子池通过能量检测得到的检测值都低于所述第一参考阈值;所述给定时间时段是附图12中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段,所述所有时间子池属于所述X个时间子池,所述检测值属于所述X个检测值。
作为一个实施例,一个延时时段(defer duration)的持续时间是16微秒再加上Z1个9微秒,所述Z1是正整数。
作为上述实施例的一个子实施例,一个延时时段包括所述X个时间子池中的Z1+1个时间子池。
作为上述子实施例的一个参考实施例,所述Z1+1个时间子池中的第一个时间子池的持续时间是16微秒,其他Z1个时间子池的持续时间均是9微秒。
作为上述实施例的一个子实施例,所述给定优先等级被用于确定所述Z1。
作为上述子实施例的一个参考实施例,所述给定优先等级是信道接入优先等级(Channel Access Priority Class),所述信道接入优先等级的定义参见3GPP TS36.213中的15章节。
作为上述实施例的一个子实施例,所述Z1属于{1,2,3,7}。
作为一个实施例,一个延时时段(defer duration)包括多个时隙时段(slot duration)。
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间是不连续的。
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间的时间间隔是7毫秒。
作为一个实施例,一个附加延时时段(additional defer duration)的持续时间是16微秒再加上Z2个9微秒,所述Z2是正整数。
作为上述实施例的一个子实施例,一个附加延时时段包括所述X个时间子池中的Z2+1个时间子池。
作为上述子实施例的一个参考实施例,所述Z2+1个时间子池中的第一个时间子池的持续时间是16微秒,其他Z2个时间子池的持续时间均是9微秒。
作为上述实施例的一个子实施例,所述给定优先等级被用于确定所述Z2。
作为上述实施例的一个子实施例,所述Z2属于{1,2,3,7}。
作为一个实施例,一个延时时段的持续时间等于一个附加延时时段的持续时间。
作为一个实施例,所述Z1等于所述Z2。
作为一个实施例,一个附加延时时段(additional defer duration)包括多个时隙时段(slot duration)。
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间是不连续的。
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间的时间间隔是7毫秒。
作为一个实施例,一个时隙时段(slot duration)的持续时间是9微秒。
作为一个实施例,一个时隙时段是所述X个时间子池中的1个时间子池。
作为一个实施例,一个附加时隙时段(additional slot duration)的持续时间是9微秒。
作为一个实施例,一个附加时隙时段包括所述X个时间子池中的1个时间子池。
作为一个实施例,所述X次能量检测被用于确定所述给定子频带是否闲置(Idle)。
作为一个实施例,所述X次能量检测被用于确定所述给定子频带是否能被所述用户设备用于传输所述给定无线信号。
作为一个实施例,所述X个检测值单位都是dBm(毫分贝)。
作为一个实施例,所述X个检测值的单位都是毫瓦(mW)。
作为一个实施例,所述X个检测值的单位都是焦耳。
作为一个实施例,所述X1小于所述X。
作为一个实施例,所述X大于1。
作为一个实施例,所述第一参考阈值的单位是dBm(毫分贝)。
作为一个实施例,所述第一参考阈值的单位是毫瓦(mW)。
作为一个实施例,所述第一参考阈值的单位是焦耳。
作为一个实施例,所述第一参考阈值等于或小于-72dBm。
作为一个实施例,所述第一参考阈值是等于或小于第一给定值的任意值。
作为上述实施例的一个子实施例,所述第一给定值是预定义的。
作为上述实施例的一个子实施例,所述第一给定值是由高层信令配置的。
作为一个实施例,所述第一参考阈值是由所述用户设备在等于或小于第一给定值的条件下自由选择的。
作为上述实施例的一个子实施例,所述第一给定值是预定义的。
作为上述实施例的一个子实施例,所述第一给定值是由高层信令配置的。
作为一个实施例,所述X次能量检测是Cat 4的LBT(Listen Before Talk,先听后发) 过程中的能量检测,所述X1是所述Cat 4的LBT过程中的CWp,所述CWp是竞争窗口(contention window)的大小,所述CWp的具体定义参见3GPP TS36.213中的15章节。
作为一个实施例,所述X个检测值中不属于所述X1个检测值的检测值中至少有一个检测值低于所述第一参考阈值。
作为一个实施例,所述X个检测值中不属于所述X1个检测值的检测值中至少有一个检测值不低于所述第一参考阈值。
作为一个实施例,所述X1个时间子池中的任意两个时间子池的持续时间都相等。
作为一个实施例,所述X1个时间子池中至少存在两个时间子池的持续时间不相等。
作为一个实施例,所述X1个时间子池中包括所述X个时间子池中的最晚的时间子池。
作为一个实施例,所述X1个时间子池只包括了eCCA中的时隙时段。
作为一个实施例,所述X个时间子池包括所述X1个时间子池和X2个时间子池,所述X2个时间子池中的任一时间子池不属于所述X1个时间子池;所述X2是不大于所述X减所述X1的正整数。
作为上述实施例的一个子实施例,所述X2个时间子池包括了初始CCA中的时隙时段。
作为上述实施例的一个子实施例,所述X2个时间子池在所述X个时间子池中的位置是连续的。
作为上述实施例的一个子实施例,所述X2个时间子池中至少有一个时间子池对应的检测值低于所述第一参考阈值。
作为上述实施例的一个子实施例,所述X2个时间子池中至少有一个时间子池对应的检测值不低于所述第一参考阈值。
作为上述实施例的一个子实施例,所述X2个时间子池包括所有延时时段内的所有时隙时段。
作为上述实施例的一个子实施例,所述X2个时间子池包括至少一个附加延时时段内的所有时隙时段。
作为上述实施例的一个子实施例,所述X2个时间子池包括至少一个附加时隙时段。
作为上述实施例的一个子实施例,所述X2个时间子池包括附图12中通过能量检测被判断为非空闲的所有附加时隙时段和所有附加延时时段内的所有时隙时段。
作为一个实施例,所述X1个时间子池分别属于X1个子池集合,所述X1个子池集合中的任一子池集合包括所述X个时间子池中的正整数个时间子池;所述X1个子池集合中的任一时间子池对应的检测值低于所述第一参考阈值。
作为上述实施例的一个子实施例,所述X1个子池集合中至少存在一个子池集合包括的时间子池的数量等于1。
作为上述实施例的一个子实施例,所述X1个子池集合中至少存在一个子池集合包括的时间子池的数量大于1。
作为上述实施例的一个子实施例,所述X1个子池集合中至少存在两个子池集合包括的时间子池的数量是不相等的。
作为上述实施例的一个子实施例,所述X个时间子池中不存在一个时间子池同时属于所述X1个子池集合中的两个子池集合。
作为上述实施例的一个子实施例,所述X1个子池集合中任意一个子池集合中的所有时间子池属于同一个通过能量检测被判断为空闲的附加延时时段或附加时隙时段。
作为上述实施例的一个子实施例,所述X个时间子池中不属于所述X1个子池集合的时间子池中至少存在一个时间子池对应的检测值低于所述第一参考阈值。
作为上述实施例的一个子实施例,所述X个时间子池中不属于所述X1个子池集合的时间子池中至少存在一个时间子池对应的检测值不低于所述第一参考阈值。
实施例13
实施例13A至实施例13B分别示例了一个给定天线端口与给定能量检测空间相关的示 意图。
在实施例13中,所述给定天线端口对应本申请中的所述第一天线端口组中任一天线端口,所述给定能量检测对应本申请中的所述第一子接入检测中任一次能量检测;或者,所述给定天线端口对应本申请中的所述第一天线端口组中任一天线端口,所述给定能量检测对应本申请中的所述第三子接入检测中任一次能量检测;或者,所述给定天线端口对应本申请中的所述第二天线端口组中任一天线端口,所述给定能量检测对应本申请中的所述第二子接入检测中任一次能量检测;或者,所述给定天线端口对应本申请中的所述第二天线端口组中任一天线端口,所述给定能量检测对应本申请中的所述第四子接入检测中任一次能量检测;或者,所述给定天线端口对应本申请中的所述J个天线端口组中之一,所述给定能量检测对应本申请中的所述J1个子接入检测中之一,或者,所述给定能量检测对应本申请中的所述J个子接入检测中之一。
作为一个实施例,给定天线端口与给定能量检测空间相关是指:所述给定能量检测所使用的多天线相关的接收能被用于推断出所述给定天线端口的多天线相关的发送,或者所述给定天线端口的多天线相关的发送能被用于推断出所述给定能量检测所使用的多天线相关的接收。
作为一个实施例,给定天线端口与给定能量检测空间相关是指:所述给定能量检测所使用的多天线相关的接收和所述给定天线端口的多天线相关的发送相同。
作为一个实施例,给定天线端口与给定能量检测空间相关是指:所述给定能量检测所使用的多天线相关的接收包括所述给定天线端口的多天线相关的发送。
作为一个实施例,给定天线端口与给定能量检测空间相关是指:所述给定能量检测所使用的接收波束赋型矩阵对应的波束宽度不小于所述给定天线端口的发送波束赋型矩阵对应的波束宽度。
作为一个实施例,给定天线端口与给定能量检测空间相关是指:所述给定能量检测所使用的接收波束赋型矩阵对应的波束方向包括所述给定天线端口的发送波束赋型矩阵对应的波束方向。
作为一个实施例,给定天线端口与给定能量检测空间相关是指:所述给定能量检测所使用的接收波束对应的波束宽度大于所述给定天线端口的发送波束对应的波束宽度。
作为一个实施例,给定天线端口与给定能量检测空间相关是指:所述给定能量检测所使用的接收波束包括所述给定天线端口的发送波束。
作为一个实施例,给定天线端口与给定能量检测空间不相关是指:所述给定能量检测所使用的多天线相关的接收不能被用于推断出所述给定天线端口的多天线相关的发送,或者所述给定天线端口的多天线相关的发送不能被用于推断出所述给定能量检测所使用的多天线相关的接收。
作为一个实施例,给定天线端口与给定能量检测空间不相关是指:所述给定能量检测所使用的多天线相关的接收和所述给定天线端口的多天线相关的发送不相同。
作为一个实施例,给定天线端口与给定能量检测空间不相关是指:所述给定能量检测所使用的多天线相关的接收不包括给定天线端口的多天线相关的发送。
作为一个实施例,给定天线端口与给定能量检测空间不相关是指:所述给定能量检测所使用的接收波束赋型矩阵对应的波束宽度小于所述给定天线端口的发送波束赋型矩阵对应的波束宽度。
作为一个实施例,给定天线端口与给定能量检测空间不相关是指:所述给定能量检测所使用的接收波束赋型矩阵对应的波束方向不包括所述给定天线端口的发送波束赋型矩阵对应的波束方向。
作为一个实施例,给定天线端口与给定能量检测空间不相关是指:所述给定能量检测所使用的接收波束对应的波束宽度小于所述给定天线端口的发送波束对应的波束宽度。
作为一个实施例,给定天线端口与给定能量检测空间不相关是指:所述给定能量检测所 使用的接收波束不包括所述给定天线端口的发送波束。
作为一个实施例,所述给定能量检测所使用的天线数目小于所述给定天线端口的发送天线数目。
作为一个实施例,所述给定能量检测所使用的天线数目大于1。
作为一个实施例,所述给定天线端口的发送天线数目大于1。
作为一个实施例,所述实施例13A对应所述给定能量检测所使用的接收波束和所述给定天线端口的发送波束相同的所述给定天线端口与所述给定能量检测空间相关的示意图。
作为一个实施例,所述实施例13B对应所述给定能量检测所使用的接收波束包括所述给定天线端口的发送波束的所述给定天线端口与所述给定能量检测空间相关的示意图。
实施例14
实施例14示例了一个UE中的处理装置的结构框图,如附图14所示。附图14中,UE处理装置1200主要由第一接收机1201和第一发射机1202组成。
作为一个实施例,所述第一接收机1201包括实施例4中的接收器456、接收处理器452和控制器/处理器490。
作为一个实施例,所述第一接收机1201包括实施例4中的接收器456、接收处理器452和控制器/处理器490中的至少前二者。
作为一个实施例,所述第一发射机1202包括实施例4中的发射器456、发射处理器455和控制器/处理器490。
作为一个实施例,所述第一发射机1202包括实施例4中的发射器456、发射处理器455和控制器/处理器490中的至少前两者。
-第一接收机1201:接收第一信息,所述第一信息被用于指示N个信道状态信息上报设置,所述N个信道状态信息上报设置分别与N个空口资源关联,所述N是大于1的正整数;接收第二信息,所述第二信息被用于指示J个空口资源,所述J是正整数;
-第一发射机1202,在第一空口资源上发送M个信道状态信息,所述M个信道状态信息分别对应所述N个信道状态信息上报设置中的M个信道状态信息上报设置,所述第一空口资源是所述J个空口资源中之一,所述M是不大于所述N的正整数。
在实施例14中,所述第一空口资源与第一天线端口组对应,所述N个空口资源分别与N个天线端口组一一对应,所述N个天线端口组是否在空间上被关联到所述第一天线端口组被用于从所述N个信道状态信息上报设置中确定所述M个信道状态信息上报设置。
作为一个实施例,所述M个信道状态信息上报设置分别对应的所述N个天线端口组中的M个天线端口组在空间上都被关联到所述第一天线端口组。
作为一个实施例,如果与所述M个信道状态信息上报设置分别对应的所述N个天线端口组中的M个天线端口组中至少一个天线端口组在空间上都不被关联到所述第一天线端口组,所述M个信道状态信息上报设置包括所述N个信道状态信息上报设置中的所有所对应的所述N个天线端口组中的一个天线端口组在空间上被关联到所述第一天线端口组的信道状态信息上报设置。
作为一个实施例,所述第一发射机1202还包括在第二空口资源上发送K个信道状态信息,所述K个信道状态信息分别对应所述N个信道状态信息上报设置中除了所述M个信道状态信息上报设置之外的K个信道状态信息上报设置,所述K是不大于N-M的正整数;其中,所述第二空口资源是所述J个空口资源中除了所述第一空口资源之外的一个空口资源,所述第二空口资源与第二天线端口组对应;所述M个天线端口组在空间上都不被关联到所述第二天线端口组;与所述K个信道状态信息上报设置关联的所述N个空口资源中的K个空口资源分别与所述N个天线端口组中的K个天线端口组一一对应,所述K个天线端口组在空间上都被关联到所述第二天线端口组,所述K个天线端口组在空间上都不被关联到所述第一天线端口组。
作为一个实施例,所述第一接收机1201还执行接入检测以从所述J个空口资源中确 定所述第一空口资源;其中,所述J大于1。
作为一个实施例,参考信道状态信息上报设置是所述N个信道状态信息上报设置中参考优先级最高的一个信道状态信息上报设置,参考天线端口组是所述N个空口资源中与所述参考信道状态信息上报设置关联的一个空口资源所对应的所述N个天线端口组中的一个天线端口组,所述参考天线端口组被关联到所述第一天线端口组。
作为一个实施例,所述第二信息还被用于指示J个天线端口组,所述J个空口资源分别与所述J个天线端口组一一对应,所述第一天线端口组是所述J个天线端口组中与所述第一空口资源对应的天线端口组。
作为一个实施例,所述第一接收机1201还接收第三信息;其中,所述第三信息被用于指示所述N个空口资源的配置信息。
实施例15
实施例15示例了一个基站设备中的处理装置的结构框图,如附图15所示。附图15中,基站设备中的处理装置1300主要由第二发射机1301和第二接收机1302组成。
作为一个子实施例,所述第二发射机1301包括实施例4中的发射器416、发射处理器415和控制器/处理器440。
作为一个子实施例,所述第二发射机1301包括实施例4中的发射器416、发射处理器415和控制器/处理器440中的至少前二者。
作为一个子实施例,所述第二接收机1303包括实施例4中的接收器416、接收处理器412和控制器/处理器440。
作为一个子实施例,所述第二接收机1303包括实施例4中的接收器416、接收处理器412和控制器/处理器440中的至少前二者。
-第二发射机1301,发送第一信息,所述第一信息被用于指示N个信道状态信息上报设置,所述N个信道状态信息上报设置分别与N个空口资源关联,所述N是大于1的正整数;发送第二信息,所述第二信息被用于指示J个空口资源,所述J是正整数;
-第二接收机1302,在第一空口资源上接收M个信道状态信息,所述M个信道状态信息分别对应所述N个信道状态信息上报设置中的M个信道状态信息上报设置,所述第一空口资源是所述J个空口资源中之一,所述M是不大于所述N的正整数。
在实施例15中,所述第一空口资源与第一天线端口组对应,所述N个空口资源分别与N个天线端口组一一对应,所述N个天线端口组是否在空间上被关联到所述第一天线端口组被用于从所述N个信道状态信息上报设置中确定所述M个信道状态信息上报设置。
作为一个实施例,所述M个信道状态信息上报设置分别对应的所述N个天线端口组中的M个天线端口组在空间上都被关联到所述第一天线端口组。
作为一个实施例,如果与所述M个信道状态信息上报设置分别对应的所述N个天线端口组中的M个天线端口组中至少一个天线端口组在空间上都不被关联到所述第一天线端口组,所述M个信道状态信息上报设置包括所述N个信道状态信息上报设置中的所有所对应的所述N个天线端口组中的一个天线端口组在空间上被关联到所述第一天线端口组的信道状态信息上报设置。
作为一个实施例,所述第二接收机1302还在第二空口资源上接收K个信道状态信息,所述K个信道状态信息分别对应所述N个信道状态信息上报设置中除了所述M个信道状态信息上报设置之外的K个信道状态信息上报设置,所述K是不大于N-M的正整数;其中,所述第二空口资源是所述J个空口资源中除了所述第一空口资源之外的一个空口资源,所述第二空口资源与第二天线端口组对应;所述M个天线端口组在空间上都不被关联到所述第二天线端口组;与所述K个信道状态信息上报设置关联的所述N个空口资源中的K个空口资源分别与所述N个天线端口组中的K个天线端口组一一对应,所述K个天线端口组在空间上都被关联到所述第二天线端口组,所述K个天线端口组在空间上都不被关联到所述第一天线端口组。
作为一个实施例,所述第二接收机1302还监测所述J个空口资源以确定所述第一空口资源;其中,所述第一信息的接收者执行接入检测以从所述J个空口资源中确定所述第一空口资源,所述J大于1。
作为一个实施例,参考信道状态信息上报设置是所述N个信道状态信息上报设置中参考优先级最高的一个信道状态信息上报设置,参考天线端口组是所述N个空口资源中与所述参考信道状态信息上报设置关联的一个空口资源所对应的所述N个天线端口组中的一个天线端口组,所述参考天线端口组被关联到所述第一天线端口组。
作为一个实施例,所述第二信息还被用于指示J个天线端口组,所述J个空口资源分别与所述J个天线端口组一一对应,所述第一天线端口组是所述J个天线端口组中与所述第一空口资源对应的天线端口组。
作为一个实施例,所述第二发射机1301还发送第三信息;其中,所述第三信息被用于指示所述N个空口资源的配置信息。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种用于无线通信的用户设备中的方法,其特征在于,包括:
    接收第一信息,所述第一信息被用于指示N个信道状态信息上报设置,所述N个信道状态信息上报设置分别与N个空口资源关联,所述N是大于1的正整数;
    接收第二信息,所述第二信息被用于指示J个空口资源,所述J是正整数;
    在第一空口资源上发送M个信道状态信息,所述M个信道状态信息分别对应所述N个信道状态信息上报设置中的M个信道状态信息上报设置,所述第一空口资源是所述J个空口资源中之一,所述M是不大于所述N的正整数;
    其中,所述第一空口资源与第一天线端口组对应,所述N个空口资源分别与N个天线端口组一一对应,所述N个天线端口组是否在空间上被关联到所述第一天线端口组被用于从所述N个信道状态信息上报设置中确定所述M个信道状态信息上报设置。
  2. 根据权利要求1所述的方法,其特征在于,所述M个信道状态信息上报设置分别对应的所述N个天线端口组中的M个天线端口组在空间上都被关联到所述第一天线端口组。
  3. 根据权利要求1所述的方法,其特征在于,如果与所述M个信道状态信息上报设置分别对应的所述N个天线端口组中的M个天线端口组中至少一个天线端口组在空间上都不被关联到所述第一天线端口组,所述M个信道状态信息上报设置包括所述N个信道状态信息上报设置中的所有所对应的所述N个天线端口组中的一个天线端口组在空间上被关联到所述第一天线端口组的信道状态信息上报设置。
  4. 根据权利要求2所述的方法,其特征在于,包括:
    在第二空口资源上发送K个信道状态信息,所述K个信道状态信息分别对应所述N个信道状态信息上报设置中除了所述M个信道状态信息上报设置之外的K个信道状态信息上报设置,所述K是不大于N-M的正整数;
    其中,所述第二空口资源是所述J个空口资源中除了所述第一空口资源之外的一个空口资源,所述第二空口资源与第二天线端口组对应;所述M个天线端口组在空间上都不被关联到所述第二天线端口组;与所述K个信道状态信息上报设置关联的所述N个空口资源中的K个空口资源分别与所述N个天线端口组中的K个天线端口组一一对应,所述K个天线端口组在空间上都被关联到所述第二天线端口组,所述K个天线端口组在空间上都不被关联到所述第一天线端口组。
  5. 根据权利要求1至4中任一权利要求所述的方法,其特征在于,包括:
    执行接入检测以从所述J个空口资源中确定所述第一空口资源;
    其中,所述J大于1。
  6. 根据权利要求1至3中任一权利要求所述的方法,其特征在于,参考信道状态信息上报设置是所述N个信道状态信息上报设置中参考优先级最高的一个信道状态信息上报设置,参考天线端口组是所述N个空口资源中与所述参考信道状态信息上报设置关联的一个空口资源所对应的所述N个天线端口组中的一个天线端口组,所述参考天线端口组被关联到所述第一天线端口组。
  7. 根据权利要求1至5中任一权利要求所述的方法,其特征在于,所述第二信息还被用于指示J个天线端口组,所述J个空口资源分别与所述J个天线端口组一一对应,所述第一天线端口组是所述J个天线端口组中与所述第一空口资源对应的天线端口组。
  8. 根据权利要求1至7中任一权利要求所述的方法,其特征在于,包括:
    接收第三信息;
    其中,所述第三信息被用于指示所述N个空口资源的配置信息。
  9. 一种用于无线通信的基站设备中的方法,其特征在于,包括:
    发送第一信息,所述第一信息被用于指示N个信道状态信息上报设置,所述N个信道状态信息上报设置分别与N个空口资源关联,所述N是大于1的正整数;
    发送第二信息,所述第二信息被用于指示J个空口资源,所述J是正整数;
    在第一空口资源上接收M个信道状态信息,所述M个信道状态信息分别对应所述N个信 道状态信息上报设置中的M个信道状态信息上报设置,所述第一空口资源是所述J个空口资源中之一,所述M是不大于所述N的正整数;
    其中,所述第一空口资源与第一天线端口组对应,所述N个空口资源分别与N个天线端口组一一对应,所述N个天线端口组是否在空间上被关联到所述第一天线端口组被用于从所述N个信道状态信息上报设置中确定所述M个信道状态信息上报设置。
  10. 根据权利要求9所述的方法,其特征在于,所述M个信道状态信息上报设置分别对应的所述N个天线端口组中的M个天线端口组在空间上都被关联到所述第一天线端口组。
  11. 根据权利要求9所述的方法,其特征在于,如果与所述M个信道状态信息上报设置分别对应的所述N个天线端口组中的M个天线端口组中至少一个天线端口组在空间上都不被关联到所述第一天线端口组,所述M个信道状态信息上报设置包括所述N个信道状态信息上报设置中的所有所对应的所述N个天线端口组中的一个天线端口组在空间上被关联到所述第一天线端口组的信道状态信息上报设置。
  12. 根据权利要求10所述的方法,其特征在于,包括:
    在第二空口资源上接收K个信道状态信息,所述K个信道状态信息分别对应所述N个信道状态信息上报设置中除了所述M个信道状态信息上报设置之外的K个信道状态信息上报设置,所述K是不大于N-M的正整数;
    其中,所述第二空口资源是所述J个空口资源中除了所述第一空口资源之外的一个空口资源,所述第二空口资源与第二天线端口组对应;所述M个天线端口组在空间上都不被关联到所述第二天线端口组;与所述K个信道状态信息上报设置关联的所述N个空口资源中的K个空口资源分别与所述N个天线端口组中的K个天线端口组一一对应,所述K个天线端口组在空间上都被关联到所述第二天线端口组,所述K个天线端口组在空间上都不被关联到所述第一天线端口组。
  13. 根据权利要求9至12中任一权利要求所述的方法,其特征在于,包括:
    监测所述J个空口资源以确定所述第一空口资源;
    其中,所述第一信息的接收者执行接入检测以从所述J个空口资源中确定所述第一空口资源,所述J大于1。
  14. 根据权利要求9至11中任一权利要求所述的方法,其特征在于,参考信道状态信息上报设置是所述N个信道状态信息上报设置中参考优先级最高的一个信道状态信息上报设置,参考天线端口组是所述N个空口资源中与所述参考信道状态信息上报设置关联的一个空口资源所对应的所述N个天线端口组中的一个天线端口组,所述参考天线端口组被关联到所述第一天线端口组。
  15. 根据权利要求9至13中任一权利要求所述的方法,其特征在于,所述第二信息还被用于指示J个天线端口组,所述J个空口资源分别与所述J个天线端口组一一对应,所述第一天线端口组是所述J个天线端口组中与所述第一空口资源对应的天线端口组。
  16. 根据权利要求9至15中任一权利要求所述的方法,其特征在于,包括:
    发送第三信息;
    其中,所述第三信息被用于指示所述N个空口资源的配置信息。
  17. 一种用于无线通信的用户设备,其特征在于,包括:
    第一接收机,接收第一信息,所述第一信息被用于指示N个信道状态信息上报设置,所述N个信道状态信息上报设置分别与N个空口资源关联,所述N是大于1的正整数;接收第二信息,所述第二信息被用于指示J个空口资源,所述J是正整数;
    第一发射机,在第一空口资源上发送M个信道状态信息,所述M个信道状态信息分别对应所述N个信道状态信息上报设置中的M个信道状态信息上报设置,所述第一空口资源是所述J个空口资源中之一,所述M是不大于所述N的正整数;
    其中,所述第一空口资源与第一天线端口组对应,所述N个空口资源分别与N个天线端口组一一对应,所述N个天线端口组是否在空间上被关联到所述第一天线端口组被用于从所 述N个信道状态信息上报设置中确定所述M个信道状态信息上报设置。
  18. 一种用于无线通信的基站设备,其特征在于,包括:
    第二发射机,发送第一信息,所述第一信息被用于指示N个信道状态信息上报设置,所述N个信道状态信息上报设置分别与N个空口资源关联,所述N是大于1的正整数;发送第二信息,所述第二信息被用于指示J个空口资源,所述J是正整数;
    第二接收机,在第一空口资源上接收M个信道状态信息,所述M个信道状态信息分别对应所述N个信道状态信息上报设置中的M个信道状态信息上报设置,所述第一空口资源是所述J个空口资源中之一,所述M是不大于所述N的正整数;
    其中,所述第一空口资源与第一天线端口组对应,所述N个空口资源分别与N个天线端口组一一对应,所述N个天线端口组是否在空间上被关联到所述第一天线端口组被用于从所述N个信道状态信息上报设置中确定所述M个信道状态信息上报设置。
PCT/CN2019/078020 2018-03-26 2019-03-13 一种被用于无线通信的用户设备、基站中的方法和装置 WO2019184710A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/012,029 US11088733B2 (en) 2018-03-26 2020-09-03 Method and device in UE and base station for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810254690.1 2018-03-26
CN201810254690.1A CN110366247B (zh) 2018-03-26 2018-03-26 一种被用于无线通信的用户设备、基站中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/012,029 Continuation US11088733B2 (en) 2018-03-26 2020-09-03 Method and device in UE and base station for wireless communication

Publications (1)

Publication Number Publication Date
WO2019184710A1 true WO2019184710A1 (zh) 2019-10-03

Family

ID=68058544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078020 WO2019184710A1 (zh) 2018-03-26 2019-03-13 一种被用于无线通信的用户设备、基站中的方法和装置

Country Status (3)

Country Link
US (1) US11088733B2 (zh)
CN (1) CN110366247B (zh)
WO (1) WO2019184710A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220123805A1 (en) * 2019-01-11 2022-04-21 Lg Electronics Inc. Method for reporting channel state information in wireless communication system, and apparatus therefor
EP3780455A1 (en) * 2019-08-15 2021-02-17 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Three-component codebook based csi reporting
US20220286178A1 (en) * 2021-03-03 2022-09-08 Samsung Electronics Co., Ltd. Method and apparatus for csi reporting in distributed mimo

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2624472A2 (en) * 2010-09-29 2013-08-07 LG Electronics Inc. Method and apparatus for efficient feedback in a wireless communication system that supports multiple antennas
CN103580819A (zh) * 2012-07-31 2014-02-12 中兴通讯股份有限公司 信道状态信息反馈的配置方法及装置,测量、反馈方法及装置
CN105991209A (zh) * 2015-01-27 2016-10-05 上海朗帛通信技术有限公司 一种增强的ca中的pucch方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8116262B2 (en) * 2004-06-22 2012-02-14 Rockstar Bidco Lp Methods and systems for enabling feedback in wireless communication networks
KR101593702B1 (ko) * 2009-03-22 2016-02-15 엘지전자 주식회사 무선 통신 시스템에서 참조 신호 전송 방법 및 장치
US9294172B2 (en) * 2013-01-25 2016-03-22 Lg Electronics Inc. Method and apparatus for reporting downlink channel state
KR20160013871A (ko) * 2013-05-30 2016-02-05 엘지전자 주식회사 대규모 mimo 시스템을 위한 참조 신호 확장
CN113037347A (zh) * 2014-11-17 2021-06-25 三星电子株式会社 用于带有极化有源天线阵列的mimo无线通信系统的csi反馈
JP6913629B2 (ja) * 2015-07-08 2021-08-04 シャープ株式会社 端末装置、基地局装置、および通信方法
CN106559181B (zh) * 2015-09-24 2019-05-21 上海诺基亚贝尔股份有限公司 用于配置信道状态信息参考信号的方法
WO2017090987A1 (ko) * 2015-11-23 2017-06-01 엘지전자(주) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
CN106789767B (zh) * 2016-11-30 2019-10-18 北京邮电大学 一种wlan中分布式csi估计及动态更新方法
US11096132B2 (en) * 2018-07-26 2021-08-17 Mediatek Singapore Pte. Ltd. Joint sounding for multi-user communication in multi-AP WLAN

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2624472A2 (en) * 2010-09-29 2013-08-07 LG Electronics Inc. Method and apparatus for efficient feedback in a wireless communication system that supports multiple antennas
CN103580819A (zh) * 2012-07-31 2014-02-12 中兴通讯股份有限公司 信道状态信息反馈的配置方法及装置,测量、反馈方法及装置
CN105991209A (zh) * 2015-01-27 2016-10-05 上海朗帛通信技术有限公司 一种增强的ca中的pucch方法和装置

Also Published As

Publication number Publication date
CN110366247A (zh) 2019-10-22
US20200403660A1 (en) 2020-12-24
CN110366247B (zh) 2021-07-27
US11088733B2 (en) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2019113766A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019134656A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019154254A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019109345A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11012203B2 (en) Method and device for wireless communication in UE and base station
WO2019109362A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11088733B2 (en) Method and device in UE and base station for wireless communication
CN111512689B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN110248368B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019119249A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019109307A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN111512690B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN110098902B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019144821A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN111543074B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019119197A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019218134A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019126939A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN111133813B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019213852A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN111108797B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN114143897A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.01.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19776078

Country of ref document: EP

Kind code of ref document: A1