WO2019222952A1 - 一种被用于无线通信的用户设备、基站中的方法和装置 - Google Patents

一种被用于无线通信的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2019222952A1
WO2019222952A1 PCT/CN2018/088126 CN2018088126W WO2019222952A1 WO 2019222952 A1 WO2019222952 A1 WO 2019222952A1 CN 2018088126 W CN2018088126 W CN 2018088126W WO 2019222952 A1 WO2019222952 A1 WO 2019222952A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
resource particle
sub
occupied
signaling
Prior art date
Application number
PCT/CN2018/088126
Other languages
English (en)
French (fr)
Inventor
吴克颖
张晓博
杨林
Original Assignee
南通朗恒通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通朗恒通信技术有限公司 filed Critical 南通朗恒通信技术有限公司
Priority to PCT/CN2018/088126 priority Critical patent/WO2019222952A1/zh
Priority to CN201880090946.8A priority patent/CN111972018B/zh
Priority to CN202211471278.8A priority patent/CN115865294A/zh
Publication of WO2019222952A1 publication Critical patent/WO2019222952A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to a method and a device in a wireless communication system, and more particularly to a method and a device in a wireless communication system supporting data transmission on an unlicensed spectrum.
  • LTE Long Term Evolution, Long Term Evolution
  • LAA Liense Assisted Access
  • the transmitter base station or user equipment
  • LBT Listen Before Talk, before sending data on unlicensed spectrum
  • Pre-session monitoring to ensure that it does not interfere with other wireless transmissions that are ongoing on the unlicensed spectrum.
  • LBT is based on 20MHz.
  • the fields related to resource allocation in the scheduling signaling should be designed according to the maximum possible bandwidth. When the actual available bandwidth is less than the maximum possible bandwidth, this results in a waste of control signaling overhead.
  • this application discloses a solution. It should be noted that, in the case of no conflict, the embodiments in the user equipment and the features in the embodiments can be applied to a base station, and vice versa. In the case of no conflict, the embodiments of the present application and the features in the embodiments can be arbitrarily combined with each other.
  • the present application discloses a method used in user equipment for wireless communication, which is characterized in that it includes:
  • the first signaling includes scheduling information of the first wireless signal; a position of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell and the first resource Particle collection related.
  • the problem to be solved by this application is: how to effectively design the scheduling signaling neutralization and resource allocation when the available frequency band and bandwidth of the system are dynamically changed due to sub-band (subband) LBT and other reasons Related fields to avoid wasting control signaling overhead when the actual available bandwidth is less than the maximum possible bandwidth.
  • the above method solves this problem by establishing a connection between the frequency resources occupied by the scheduled data and the time-frequency resources occupied by the scheduling signaling.
  • the above method is characterized in that the first resource particle set reflects a frequency band and a bandwidth available in the current system.
  • the frequency resource occupied by the first wireless signal is allocated within a frequency band and a bandwidth available in the current system.
  • the above method has the advantage that the unlicensed spectrum based on sub-band (subband) LBT avoids the waste of control signaling overhead due to the dynamic change of the available frequency band and bandwidth of the system.
  • the first resource particle set is a resource particle set of the Q1 resource particle sets, and the user equipment successfully receives the first signaling in the first resource particle set; the first The position of the frequency resource occupied by a wireless signal within the frequency resource occupied by the first cell is related to the index of the first resource particle set in the Q resource particle sets, where Q is greater than 1.
  • Q is greater than 1.
  • a positive integer, and Q1 is a positive integer not greater than Q.
  • the above method has the advantage that the frequency resources occupied by different resource particle sets in the Q resource particle sets can correspond to different sub-band LBTs, which greatly reduces all downlink control channels due to a UE The UE cannot be scheduled because the candidates are all on non-idle frequency bands.
  • any resource particle set in the Q resource particle sets belongs to one resource particle pool out of M resource particle pools, and the first resource particle set belongs to the M number A target resource particle pool in the resource particle pool;
  • any resource particle pool in the M resource particle pools includes a positive integer resource particle set in the Q resource particle sets;
  • the position of the frequency resource within the frequency resource occupied by the first cell is related to the target resource particle pool;
  • the M is a positive integer greater than 1.
  • the frequency resource occupied by the first resource particle set belongs to K1 subbands out of K subbands; the first channel access detection is used to determine the The K1 sub-bands may be used to transmit a wireless signal; the K1 is a positive integer, and the K is a positive integer not less than the K1.
  • the first channel access detection includes K sub-detections, and the K sub-detections are performed on the K sub-bands, respectively.
  • the K1 sub-detection is used to determine that the K1 sub-bands can be used to transmit wireless signals.
  • the K1 sub-bands include frequency resources occupied by the first wireless signal in a frequency domain.
  • the first signaling includes a first domain, and the first domain in the first signaling is used to determine a frequency resource occupied by the first wireless signal. A position within a frequency resource occupied by the first cell; the interpretation of the first domain in the first signaling is related to the first resource particle set.
  • the first information is used to determine whether the first resource particle pool and the first resource particle set occupy the same sub-band among N sub-bands; the time resource occupied by the first resource particle pool is later than that The time resource occupied by the first wireless signal; and N is a positive integer greater than 1.
  • a characteristic of the foregoing method is that a sender of the first signaling may flexibly indicate whether an active BWP of the user equipment is switched to a BWP occupied by the first wireless signal. Due to the influence of LBT, the sender of the first signaling cannot guarantee that the BWP occupied by the first wireless signal can still be used for transmitting wireless signals in the next COT (Channel Occupy Time, channel occupation time).
  • COT Channel Occupy Time, channel occupation time.
  • This application discloses a method used in a base station for wireless communication, which is characterized in that it includes:
  • the first signaling includes scheduling information of the first wireless signal; a position of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell and the first resource Particle collection related.
  • the first resource particle set is a resource particle set among the Q resource particle sets, and the frequency resource occupied by the first wireless signal is occupied by the first cell.
  • the position within the frequency resource is related to the index of the first resource particle set in the Q resource particle sets, where Q is a positive integer greater than 1.
  • any resource particle set in the Q resource particle sets belongs to one resource particle pool out of M resource particle pools, and the first resource particle set belongs to the M number A target resource particle pool in the resource particle pool;
  • any resource particle pool in the M resource particle pools includes a positive integer resource particle set in the Q resource particle sets;
  • the position of the frequency resource within the frequency resource occupied by the first cell is related to the target resource particle pool;
  • the M is a positive integer greater than 1.
  • the frequency resources occupied by the first resource particle set belong to K1 subbands among the K subbands; the first channel access detection is used to determine the K1 subbands among the K subbands It can be used to transmit wireless signals; the K1 is a positive integer, and the K is a positive integer not less than the K1.
  • the first channel access detection includes K sub-detections, and the K sub-detections are performed on the K sub-bands, respectively.
  • the K1 sub-detection is used to determine that the K1 sub-bands can be used to transmit wireless signals.
  • the K1 sub-bands include frequency resources occupied by the first wireless signal in a frequency domain.
  • the first signaling includes a first domain, and the first domain in the first signaling is used to determine a frequency resource occupied by the first wireless signal. A position within a frequency resource occupied by the first cell; the interpretation of the first domain in the first signaling is related to the first resource particle set.
  • the first information is used to determine whether the first resource particle pool and the first resource particle set occupy the same sub-band among N sub-bands; the time resource occupied by the first resource particle pool is later than that The time resource occupied by the first wireless signal; and N is a positive integer greater than 1.
  • This application discloses a user equipment used for wireless communication, which is characterized by including:
  • a first receiver module receiving first signaling in a first set of resource particles
  • a second receiver module receiving a first wireless signal on a first cell
  • the first signaling includes scheduling information of the first wireless signal; a position of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell and the first resource Particle collection related.
  • the above-mentioned user equipment used for wireless communication is characterized in that the first receiver module performs Q1 times on the first signaling in the Q1 resource particle sets of the Q resource particle sets, respectively. Detection; wherein the first resource particle set is a resource particle set of the Q1 resource particle sets, and the user equipment successfully receives the first signaling in the first resource particle set; The position of the frequency resource occupied by the first wireless signal within the frequency resource occupied by the first cell is related to an index of the first resource particle set in the Q resource particle sets, where Q is A positive integer greater than 1, and Q1 is a positive integer not greater than Q.
  • the above-mentioned user equipment used for wireless communication is characterized in that any resource particle set in the Q resource particle sets belongs to one resource particle pool among M resource particle pools, and the first resource The particle set belongs to the target resource particle pool in the M resource particle pools; any resource particle pool in the M resource particle pools includes a positive integer resource particle set in the Q resource particle sets; the The position of the frequency resource occupied by the first wireless signal within the frequency resource occupied by the first cell is related to the target resource particle pool; the M is a positive integer greater than 1.
  • the foregoing user equipment used for wireless communication is characterized in that the frequency resource occupied by the first resource particle set belongs to K1 subbands out of K subbands; the first channel access detection is used to determine The K1 subbands of the K subbands may be used to transmit a wireless signal; the K1 is a positive integer, and the K is a positive integer not less than the K1.
  • the above-mentioned user equipment used for wireless communication is characterized in that the first channel access detection includes K sub-detections, and the K sub-detections are performed on the K sub-bands, respectively.
  • the K1 sub-detection of the K sub-detections is used to determine that the K1 sub-bands can be used to transmit wireless signals.
  • the foregoing user equipment used for wireless communication is characterized in that the K1 subbands include frequency resources occupied by the first wireless signal in a frequency domain.
  • the above-mentioned user equipment used for wireless communication is characterized in that the first signaling includes a first domain, and the first domain in the first signaling is used to determine the first The position of the frequency resource occupied by the wireless signal within the frequency resource occupied by the first cell; the interpretation of the first domain in the first signaling is related to the first resource particle set.
  • the above-mentioned user equipment used for wireless communication is characterized in that the first receiver module performs detection for the second signaling in a first resource particle pool; wherein the first information is used for determining Whether the first resource particle pool and the first resource particle set occupy the same sub-band among N sub-bands; the time resource occupied by the first resource particle pool is later than the time occupied by the first wireless signal Resources; N is a positive integer greater than 1.
  • This application discloses a base station device used for wireless communication, which is characterized by including:
  • a first processing module sending first signaling in a first set of resource particles
  • a first transmitter module sending a first wireless signal on a first cell
  • the first signaling includes scheduling information of the first wireless signal; a position of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell and the first resource Particle collection related.
  • the above-mentioned base station device used for wireless communication is characterized in that the first resource particle set is a resource particle set among the Q resource particle sets; the frequency resources occupied by the first wireless signal are The position within the frequency resource occupied by the first cell is related to an index of the first resource particle set in the Q resource particle sets, where Q is a positive integer greater than 1.
  • the above-mentioned base station device used for wireless communication is characterized in that any resource particle set in the Q resource particle sets belongs to one resource particle pool among M resource particle pools, and the first resource The particle set belongs to the target resource particle pool in the M resource particle pools; any resource particle pool in the M resource particle pools includes a positive integer resource particle set in the Q resource particle sets; the The position of the frequency resource occupied by the first wireless signal within the frequency resource occupied by the first cell is related to the target resource particle pool; the M is a positive integer greater than 1.
  • the above-mentioned base station device used for wireless communication is characterized in that the first processing module performs first channel access detection on K sub-bands; wherein the frequency occupied by the first resource particle set The resource belongs to K1 subbands of the K subbands; the first channel access detection is used to determine that the K1 subbands of the K subbands can be used to transmit a wireless signal; the K1 is a positive integer , K is a positive integer not less than K1.
  • the above-mentioned base station device used for wireless communication is characterized in that the first channel access detection includes K sub-detections, and the K sub-detections are performed on the K sub-bands, respectively.
  • the K1 sub-detection of the K sub-detections is used to determine that the K1 sub-bands can be used to transmit wireless signals.
  • the foregoing base station device used for wireless communication is characterized in that the K1 subbands include frequency resources occupied by the first wireless signal in a frequency domain.
  • the foregoing base station device used for wireless communication is characterized in that the first signaling includes a first domain, and the first domain in the first signaling is used to determine the first domain.
  • the position of the frequency resource occupied by the wireless signal within the frequency resource occupied by the first cell; the interpretation of the first domain in the first signaling is related to the first resource particle set.
  • the above-mentioned base station device used for wireless communication is characterized in that the first processing module sends second signaling in a first resource particle pool; wherein the first information is used to determine the first Whether the resource particle pool and the first resource particle set occupy the same sub-band among N sub-bands; the time resource occupied by the first resource particle pool is later than the time resource occupied by the first wireless signal; N is a positive integer greater than 1.
  • this application has the following advantages:
  • the UE monitors the downlink control channels on frequency bands corresponding to different sub-bands and LBTs, which greatly reduces that the UE cannot be scheduled because all downlink control channels of the UE are in non-idle frequency bands.
  • FIG. 1 shows a flowchart of a first signaling and a first wireless signal according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of an NR (New Radio) node and a UE according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of resource mapping of Q resource particle sets in a time-frequency domain according to an embodiment of the present application.
  • FIG. 7 shows a schematic diagram of resource mapping of Q resource particle sets in the time-frequency domain according to an embodiment of the present application
  • FIG. 8 is a schematic diagram of resource mapping of M resource particle pools in the time-frequency domain according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of resource mapping of M resource particle pools in the time-frequency domain according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram showing a relationship between K subbands and K1 subbands according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram showing a relationship between K subbands and N subbands according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram showing a relationship between K subbands and N subbands according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram illustrating a relationship between a position of a frequency resource occupied by a first wireless signal within a frequency resource occupied by a first cell and a first resource particle set according to an embodiment of the present application;
  • FIG. 14 is a schematic diagram showing a relationship between a position of a frequency resource occupied by a first wireless signal within a frequency resource occupied by a first cell and a first resource particle set according to an embodiment of the present application;
  • 15 is a schematic diagram showing a relationship between a position of a frequency resource occupied by a first wireless signal within a frequency resource occupied by a first cell and a first resource particle set according to an embodiment of the present application;
  • 16 is a schematic diagram showing a relationship between a position of a frequency resource occupied by a first wireless signal within a frequency resource occupied by a first cell and a first resource particle set according to an embodiment of the present application;
  • FIG. 17 shows a schematic diagram of a first signaling according to an embodiment of the present application.
  • FIG. 18 shows a schematic diagram of first channel access detection according to an embodiment of the present application.
  • FIG. 19 is a schematic diagram of first channel access detection according to an embodiment of the present application.
  • FIG. 20 shows a schematic diagram of first channel access detection according to an embodiment of the present application
  • FIG. 21 shows a flowchart of one-shot detection in K-shot detection according to an embodiment of the present application
  • FIG. 23 shows a flowchart of one-shot detection in K-shot detection according to an embodiment of the present application
  • FIG. 24 is a schematic diagram of resource mapping in a time-frequency domain by a first resource particle pool according to an embodiment of the present application.
  • FIG. 25 shows a structural block diagram of a processing apparatus for user equipment according to an embodiment of the present application.
  • FIG. 26 shows a structural block diagram of a processing device used in a base station according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of the first information and the first wireless signal; as shown in FIG. 1.
  • the user equipment in the present application receives first signaling in a first set of resource particles; and then receives a first wireless signal on a first cell.
  • the first signaling includes scheduling information of the first wireless signal; a position of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell and the first resource Particle collection related.
  • the first set of resource particles includes a positive integer RE (Resource Element).
  • one RE occupies one multi-carrier symbol in the time domain and one sub-carrier in the frequency domain.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol is a SC-FDMA (Single Carrier-Frequency Division Multiple Access) symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the multi-carrier symbol is a DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • the first set of resource particles is a downlink physical layer control channel candidate (candidate).
  • the first signaling is physical layer signaling.
  • the first signaling is dynamic signaling.
  • the frequency resource occupied by the first cell is a carrier.
  • the frequency resource occupied by the first cell is a carrier (Carrier) deployed on an unlicensed spectrum.
  • Carrier Carrier
  • the frequency resource occupied by the first cell is a carrier (Carrier) deployed in the LAA spectrum.
  • Carrier Carrier
  • the frequency resources occupied by the first cell are deployed on an unlicensed spectrum.
  • the frequency resources occupied by the first cell are deployed in the LAA spectrum.
  • a position of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell is related to a frequency resource occupied by the first resource particle set.
  • a position of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell is related to the first signaling.
  • the first set of resource particles and the first signaling are used together to determine a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell. position.
  • the frequency resources occupied by the first resource particle set and the first signaling are used together to determine that the frequency resources occupied by the first wireless signal are occupied by the first cell. Within the frequency resource.
  • the first wireless signal does not occupy frequency resources other than the frequency resources occupied by the first cell.
  • the scheduling information of the first wireless signal includes ⁇ occupied time domain resources, occupied frequency domain resources, MCS (Modulation and Coding Scheme), and DMRS (DeModulation Reference Signals, demodulation (Reference signal) configuration information, HARQ (Hybrid Automatic Repeat request, Hybrid Automatic Repeat Request) process number, RV (Redundancy Version), NDI (New Data Indicator), sending antenna port, corresponding At least one of the corresponding spatial receiving parameters (Spatial Rx parameters), the corresponding spatial transmission filtering (Spatial Domain Transmission Filter), and the corresponding spatial receiving filtering (Spatial Domain Filter).
  • the configuration information of the DMRS includes ⁇ RS sequence, mapping mode, DMRS type, occupied time domain resources, occupied frequency domain resources, occupied code domain resources, cyclic shift (OCC), OCC (Orthogonal Cover Code, orthogonal mask) ⁇ .
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG. 2.
  • FIG. 2 illustrates a network architecture 200 for LTE (Long-Term Evolution, Long Term Evolution), LTE-A (Long-Term Evolution, Advanced Long Term Evolution), and future 5G systems.
  • the LTE network architecture 200 may be referred to as an EPS (Evolved Packet System, 200).
  • EPS 200 may include one or more UE (User Equipment) 201, E-UTRAN-NR (Evolved UMTS Terrestrial Radio Access Network-New Radio) 202, 5G-CN (5G-CoreNetwork, 5G core network) / EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Subscriber Server) 220, and Internet service 230.
  • UE User Equipment
  • E-UTRAN-NR Evolved UMTS Terrestrial Radio Access Network-New Radio
  • 5G-CN 5G-CoreNetwork, 5G core network
  • EPC Evolved Packet Core, E
  • UMTS corresponds to Universal Mobile Telecommunications System (Universal Mobile Telecommunications System).
  • EPS200 can be interconnected with other access networks, but these entities / interfaces are not shown for simplicity. As shown in FIG. 2, the EPS 200 provides packet switching services. However, those skilled in the art will readily understand that the various concepts presented throughout this application can be extended to networks providing circuit switching services.
  • E-UTRAN-NR202 includes NR (New Radio) Node B (gNB) 203 and other gNB204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an X2 interface (eg, backhaul).
  • gNB203 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), a TRP (transmit and receive point), or some other suitable term.
  • gNB203 provides UE201 with an access point to 5G-CN / EPC210.
  • UE201 examples include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircraft, narrowband physical network devices, machine type communication devices, land vehicles, cars, wearable devices, or any other similarly functional device.
  • UE201 may also refer to UE201 as mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5G-CN / EPC210 through the S1 interface.
  • 5G-CN / EPC210 includes MME211, other MME214, S-GW (Service Gateway, Service Gateway) 212, and P-GW (Packet Packet Date Network Gateway) 213.
  • MME211 is a control node that processes signaling between UE201 and 5G-CN / EPC210.
  • the MME 211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • P-GW213 is connected to Internet service 230.
  • the Internet service 230 includes an operator's corresponding Internet protocol service, and specifically may include the Internet, an intranet, an IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and a packet switching (Packet switching) service.
  • the gNB203 corresponds to the base station in this application.
  • the UE 201 corresponds to the user equipment in this application.
  • the UE 201 supports wireless communication for data transmission on an unlicensed spectrum.
  • the gNB203 supports wireless communication for data transmission on an unlicensed spectrum.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane, as shown in FIG. 3.
  • FIG 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane and control plane.
  • Figure 3 shows the radio protocol architecture for the UE and gNB in three layers: layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY301.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between UE and gNB through PHY301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) radio layer control sublayer 303, and a PDCP (Packet Data Convergence Protocol) packet data Aggregation Protocol) sublayers 304, which terminate at the gNB on the network side.
  • the UE may have several protocol layers above the L2 layer 305, including a network layer (e.g., IP layer) terminating at P-GW213 on the network side and terminating at the other end of the connection (e.g., Remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handover support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper-layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception caused by HARQ (Hybrid Automatic Repeat Repeat).
  • HARQ Hybrid Automatic Repeat Repeat
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell between UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and using RRC signaling between the gNB and the UE to configure the lower layers.
  • the wireless protocol architecture in FIG. 3 is applicable to the user equipment in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the base station in this application.
  • the first signaling in this application is generated from the PHY301.
  • the first signaling in this application is generated in the MAC sublayer 302.
  • the first wireless signal in the present application is formed in the PHY301.
  • the second signaling in this application is generated from the PHY301.
  • the second signaling in this application is generated in the MAC sublayer 302.
  • the first information in this application is generated in the PHY301.
  • the first information in this application is generated in the MAC sublayer 302.
  • the first information in this application is generated in the RRC sublayer 306.
  • Embodiment 4 illustrates a schematic diagram of an NR node and a UE, as shown in FIG. 4.
  • FIG. 4 is a block diagram of a UE 450 and a gNB 410 communicating with each other in an access network.
  • the gNB410 includes a controller / processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter / receiver 418, and an antenna 420.
  • the UE 450 includes a controller / processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter / receiver 454, and an antenna 452.
  • DL Downlink, downlink
  • the controller / processor 475 implements the functionality of the L2 layer.
  • the controller / processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocation to the UE 450 based on various priority metrics.
  • the controller / processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 450.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, the physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the UE 450 and is based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), Mapping of signal clusters of M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM).
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmission processor 471 performs digital spatial precoding on the encoded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes with a reference signal (e.g., a pilot) in the time and / or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a multi-carrier symbol stream in the time domain.
  • the multi-antenna transmission processor 471 then performs a transmission analog precoding / beamforming operation on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated onto the RF carrier, and converts the RF stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs a receive analog precoding / beamforming operation on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a fast Fourier transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding / beamforming operation from the time domain to the frequency domain.
  • FFT fast Fourier transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456.
  • the reference signal will be used for channel estimation.
  • the data signal is recovered in the multi-antenna receiving processor 458 after multi-antenna detection. Any spatial stream at the destination. The symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the gNB410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller / processor 459.
  • the controller / processor 459 implements the functions of the L2 layer.
  • the controller / processor 459 may be associated with a memory 460 that stores program code and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller / processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, and control signal processing to recover upper layer data packets from the core network. The upper layer data packets are then provided to all protocol layers above the L2 layer. Various control signals can also be provided to L3 for L3 processing.
  • the controller / processor 459 is also responsible for error detection using acknowledgement (ACK) and / or negative acknowledgement (NACK) protocols to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • a data source 467 is used to provide upper layer data packets to the controller / processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller / processor 459 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels based on the radio resource allocation of gNB410.
  • the controller / processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to gNB410.
  • the transmit processor 468 performs modulation mapping and channel encoding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier / single-carrier symbol stream, and after the analog precoding / beam forming operation is performed in the multi-antenna transmitting processor 457, it is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the function at gNB410 is similar to the reception function at UE450 described in DL.
  • Each receiver 418 receives a radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the multi-antenna receiving processor 472 and the receiving processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 collectively implement the functions of the L1 layer.
  • the controller / processor 475 implements L2 layer functions.
  • the controller / processor 475 may be associated with a memory 476 that stores program code and data.
  • the memory 476 may be referred to as a computer-readable medium.
  • the controller / processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, and control signal processing to recover upper-layer data packets from the UE 450.
  • Upper-layer data packets from the controller / processor 475 may be provided to the core network.
  • the controller / processor 475 is also responsible for error detection using ACK and / or NACK protocols to support HARQ operations.
  • the UE 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the at least one processor use together.
  • the UE450 device receives at least: the first signaling in the present application in the first set of resource particles in the present application; and receives the first signaling in the first cell in the present application in the first cell in the present application.
  • the first signaling includes scheduling information of the first wireless signal; a position of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell and the first resource Particle collection related.
  • the UE 450 includes: a memory storing a computer-readable instruction program, where the computer-readable instruction program generates an action when executed by at least one processor, and the action includes:
  • the first resource particle set receives the first signaling in the present application; and receives the first wireless signal in the present application on the first cell in the present application.
  • the first signaling includes scheduling information of the first wireless signal; a position of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell and the first resource Particle collection related.
  • the gNB410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the at least one processor use together.
  • the gNB410 device at least: sends the first signaling in the present application in the first resource particle set in the present application; and sends the first signaling in the present application on the first cell in the present application.
  • the first signaling includes scheduling information of the first wireless signal; a position of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell and the first resource Particle collection related.
  • the gNB410 includes: a memory storing a computer-readable instruction program, where the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: The first resource particle set sends the first signaling in the present application; and the first cell in the present application sends the first wireless signal in the present application.
  • the first signaling includes scheduling information of the first wireless signal; a position of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell and the first resource Particle collection related.
  • the gNB410 corresponds to the base station in this application.
  • the UE 450 corresponds to the user equipment in this application.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, and the controller / processor 459 ⁇ is used for Receive the first signaling in this application; ⁇ the antenna 420, the transmitter 418, the transmission processor 416, the multi-antenna transmission processor 471, the controller / processor 475 ⁇ At least one of is used to send the first signaling in this application.
  • the antenna 452 the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller / processor 459, the memory 460, the data At least one of source 467 ⁇ is used to receive the first wireless signal in this application;
  • the antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471 At least one of the controller / processor 475 and the memory 476 ⁇ is used to send the first wireless signal in the present application.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, and the controller / processor 459 ⁇ is used for The Q1 detection of the first signaling in the present application is performed in the Q1 resource particle set in the Q resource particle set respectively.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, and the controller / processor 459 ⁇ is used for Performing detection for the second signaling in the present application in the first resource particle pool in the present application; ⁇ the antenna 420, the transmitter 418, the transmission processor 416, the multiple An antenna transmission processor 471, at least one of the controller / processor 475 ⁇ is used to send the second signaling in the present application in the first resource particle pool in the present application.
  • At least one of ⁇ the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, and the controller / processor 475 ⁇ is used for The first channel access detection in the present application is performed on the K subbands in the present application.
  • Embodiment 5 illustrates a flowchart of wireless transmission, as shown in FIG. 5.
  • the base station N1 is a serving cell maintenance base station of the user equipment U2.
  • the steps in blocks F1 and F2 are optional, respectively.
  • the first channel access detection is performed on the K sub-bands in step S11; the first signaling is sent in the first resource particle set in step S12; the first radio is sent on the first cell in step S13 A signal; sending the second signaling in the first resource particle pool in step S101.
  • step S21 Q1 detection of the first signaling is performed on the Q1 resource particle sets of the Q resource particle sets, and the first signaling is successfully received in the first resource particle set.
  • step S22 the first wireless signal is received on the first cell; in step S201, detection for the second signaling is performed in the first resource particle pool.
  • the first signaling includes scheduling information of the first wireless signal; the position and frequency of the frequency resource occupied by the first wireless signal within the frequency resource occupied by the first cell
  • the first resource particle set is related.
  • the first resource particle set is a resource particle set of the Q1 resource particle sets; the Q is a positive integer greater than 1, and the Q1 is a positive integer not greater than the Q.
  • the frequency resource occupied by the first resource particle set belongs to K1 subbands among the K subbands; the first channel access detection is used by the N1 to determine that the K1 subbands in the K subbands may be Is used to transmit wireless signals; the K1 is a positive integer, and the K is a positive integer not less than the K1.
  • the first information is used by the U2 to determine whether the first resource particle pool and the first resource particle set occupy the same sub-band among N sub-bands; the time resource occupied by the first resource particle pool is later than A time resource occupied by the first wireless signal; and N is a positive integer greater than 1.
  • a position of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell is related to a frequency resource occupied by the first resource particle set.
  • the position of the frequency resource occupied by the first wireless signal within the frequency resource occupied by the first cell and the location of the first resource particle set in the Q resource particle set Index related.
  • any resource particle set in the Q resource particle sets includes a positive integer RE.
  • the detection of the Q1 times for the first signaling is a blind decoding of Q1 times for the payload size of the first signaling.
  • any one of the Q resource particle sets belongs to one resource particle pool of the M resource particle pools, and the first resource particle set belongs to a target in the M resource particle pools A resource particle pool; any resource particle pool in the M resource particle pools includes a positive integer resource particle set in the Q resource particle sets; a frequency resource occupied by the first wireless signal is in the first The position within the frequency resource occupied by a cell is related to the target resource particle pool; the M is a positive integer greater than 1.
  • any one of the M resource particle pools includes a positive integer number of REs.
  • a position of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell and an index of the target resource particle pool in the M resource particle pools related.
  • the position of the frequency resource occupied by the first wireless signal within the frequency resource occupied by the first cell is related to the frequency resource occupied by the target resource particle pool.
  • the first channel access detection is used to determine whether each of the K sub-bands can be used to transmit a wireless signal.
  • the first channel access detection includes K sub-detections, the K sub-detections are performed on the K sub-bands, and the K1 sub-detections in the K sub-detections are respectively performed
  • the K1 sub-bands may be used to transmit wireless signals.
  • the K sub-detections are respectively used to determine whether the K sub-bands can be used to transmit a wireless signal.
  • the K1 subbands include frequency resources occupied by the first wireless signal in a frequency domain.
  • the first signaling includes a first domain, and the first domain in the first signaling is used to determine that a frequency resource occupied by the first wireless signal is in the first A location within a frequency resource occupied by a cell; the interpretation of the first domain in the first signaling is related to the first resource particle set.
  • the interpretation of the first domain in the first signaling is related to the first resource particle set means that the first resource particle set is used to determine the first information The physical meaning of the first domain in the order.
  • the interpretation of the first domain in the first signaling and the first resource particle set refers to: the first resource particle set and the first resource particle set
  • the first domain collectively indicates a position of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell.
  • the position of the frequency resource occupied by the first wireless signal within the frequency resource occupied by the first cell is related to the first resource particle set and includes:
  • the interpretation of the first domain is related to the first set of resource particles.
  • the first information is carried by physical layer signaling.
  • the first information is carried by the first signaling.
  • the first information is carried by higher layer signaling.
  • the first information is carried by RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the first information is carried by MAC (Medium Access Control, Control, Element) control signaling.
  • MAC Medium Access Control, Control, Element
  • the first resource particle pool includes a positive integer number of REs.
  • the second signaling is physical layer signaling.
  • the second signaling is dynamic signaling.
  • the second signaling is dynamic signaling for Downlink Grant.
  • the second signaling is dynamic signaling for uplink grant (UpLink Grant).
  • the second signaling includes DCI (Downlink Control Information).
  • the second signaling includes a Downlink Grant DCI (DownLink Grant DCI).
  • Downlink Grant DCI DownLink Grant DCI
  • the second signaling includes an uplink grant DCI (UpLink Grant DCI).
  • UpLink Grant DCI UpLink Grant DCI
  • the second signaling is UE-specific.
  • the first resource particle pool includes a positive integer number of resource particle sets; the N1 sends the second signaling in a resource particle set in the first resource particle pool.
  • the first signaling is transmitted on a downlink physical layer control channel (that is, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel that is, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is a PDCCH (Physical Downlink Control Channel).
  • the downlink physical layer control channel is an EPDCCH (Enhanced PDCCH, enhanced PDCCH).
  • EPDCCH Enhanced PDCCH, enhanced PDCCH
  • the downlink physical layer control channel is an sPDCCH (short PDCCH, short PDCCH).
  • the downlink physical layer control channel is an NR-PDCCH (New Radio PDCCH).
  • NR-PDCCH New Radio PDCCH
  • the downlink physical layer control channel is a NB-PDCCH (Narrow Band PDCCH, narrowband PDCCH).
  • the first wireless signal is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to carry physical layer data
  • the downlink physical layer data channel is a PDSCH (Physical Downlink Shared CHannel, physical downlink shared channel).
  • PDSCH Physical Downlink Shared CHannel, physical downlink shared channel
  • the downlink physical layer data channel is an sPDSCH (short PDSCH, short PDSCH).
  • the downlink physical layer data channel is NR-PDSCH (New Radio PDSCH).
  • the downlink physical layer data channel is NB-PDSCH (Narrow Band PDSCH, Narrow Band PDSCH).
  • the second signaling is transmitted on a downlink physical layer control channel (that is, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel that is, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is a PDCCH.
  • the downlink physical layer control channel is an EPDCCH.
  • the downlink physical layer control channel is an sPDCCH.
  • the downlink physical layer control channel is an NR-PDCCH.
  • the downlink physical layer control channel is an NB-PDCCH.
  • Embodiment 6 illustrates a schematic diagram of resource mapping of the Q resource particle sets in the time-frequency domain; as shown in FIG. 6.
  • the user equipment in the present application performs Q1 detections on the first signaling in the present application in Q1 resource particle sets in the Q resource particle sets, and The first signaling is successfully received in the first resource particle set in the present application.
  • the first resource particle set is a resource particle set among the Q1 resource particle sets.
  • the Q is a positive integer greater than 1, and the Q1 is a positive integer not greater than the Q.
  • the frequency resource occupied by the first resource particle set belongs to the K1 subbands among the K subbands in the present application.
  • the indexes of the Q resource particle sets are ⁇ # 0, ..., #x, ..., # Q-1 ⁇ , where x is smaller than Q minus 1.
  • Positive integers; the indices of the K1 subbands are ⁇ # 0, ..., #y, ..., # K1-1 ⁇ , where y is a positive integer less than the K1 minus 1;
  • the box with a line border represents the resource particle set # 0 in the Q resource particle sets, and the box with a thick solid line represents the resource particle set #x in the Q resource particle sets.
  • the box with a thick dashed border A resource particle set # Q-1 in the Q resource particle sets is represented, and a box with a thin dotted border indicates the first resource particle set.
  • the first resource particle set includes a positive integer RE.
  • the positive integer REs are continuous in the time domain.
  • the positive integer REs are discontinuous in the time domain.
  • the positive integer REs are discontinuous in the frequency domain.
  • an intersection of a frequency resource occupied by the first resource particle set and any one of the K1 subbands is not empty.
  • the frequency resources occupied by the first resource particle set are distributed on all sub-bands in the K1 sub-bands.
  • the frequency resource occupied by one resource particle set in the two resource particle sets belongs to K4 subbands in the K subbands.
  • the frequency resource occupied by another resource particle set in the two resource particle sets belongs to K5 subbands in the K subbands; the K4 subbands and the K5 subbands do not completely overlap in the frequency domain .
  • the K4 and the K5 are each a positive integer not greater than the K.
  • any resource particle set in the Q resource particle sets includes a positive integer RE.
  • the first set of resource particles is a downlink physical layer control channel candidate (candidate).
  • the first resource particle set is a PDCCH candidate.
  • the PDCCH candidate For a specific definition of the PDCCH candidate, see section 9.1 in 3GPP TS36.213.
  • the first resource particle set is an EPDCCH candidate.
  • EPDCCH candidate For a specific definition of the EPDCCH candidate, see section 9.1 in 3GPP TS36.213.
  • the first resource particle set is an sPDCCH candidate.
  • the first resource particle set is an NR-PDCCH candidate.
  • the first resource particle set is an NB-PDCCH candidate.
  • the Q resource particle sets are Q downlink physical channel control channel candidates (candidates).
  • the Q resource particle sets are Q PDCCH candidates, respectively.
  • the Q resource particle sets are Q EPDCCH candidates, respectively.
  • the Q resource particle sets are Q sPDSCH candidates, respectively.
  • the Q resource particle sets are Q NR-PDSCH candidates, respectively.
  • the Q resource particle sets are Q NB-PDSCH candidates, respectively.
  • the intersection of at least two resource particle sets in the Q resource particle sets is not empty.
  • At least two resource particle sets in the Q resource particle sets share a same RE.
  • the frequency resources occupied by the first resource particle set are within the frequency resources occupied by the first cell in the present application.
  • the frequency resources occupied by the first resource particle set belong to the frequency resources occupied by the first cell in this application.
  • the frequency resource occupied by any one of the Q resource particle sets is within the frequency resource occupied by the first cell in the present application.
  • the detection of the Q1 times for the first signaling is a blind decoding of Q1 times for the payload size of the first signaling.
  • the user equipment is not sure whether the first signaling is sent before performing the Q1 detection on the first signaling.
  • the user equipment determines that the first signaling is sent according to the Q1 detections of the first signaling.
  • the user equipment first performs channel estimation and channel equalization on a wireless signal received in a corresponding resource particle set, and then Performing channel decoding according to the load size of the first signaling, and if the output of the channel decoding passes the CRC (Cyclic Redundancy Check, cyclic redundancy check) verification, the first signaling is successfully received, otherwise it is considered that The current detection fails to successfully receive the first signaling.
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • any of the Q1 detections for the first signaling other than the detection corresponding to the first resource particle set fails to successfully receive the first signaling.
  • the Q is equal to 44.
  • the Q1 is equal to the Q.
  • the Q1 is smaller than the Q.
  • the Q resource particle sets are configured by high-level signaling.
  • the Q resource particle sets are configured by RRC signaling.
  • the Q resource particle sets are configured by MAC CE signaling.
  • the set of Q resource particles is UE-specific.
  • Embodiment 7 illustrates the resource mapping of Q resource particle sets in the time-frequency domain; as shown in FIG. 7.
  • the user equipment in the present application performs Q1 detections on the first signaling in the present application in the Q1 resource particle sets in the Q resource particle sets, and The first signaling is successfully received in the first resource particle set in the present application.
  • the first resource particle set is a resource particle set among the Q1 resource particle sets.
  • the Q is a positive integer greater than 1, and the Q1 is a positive integer not greater than the Q.
  • the indexes of the Q resource particle sets are ⁇ # 0, ..., # Q-1 ⁇ , respectively; a box with a thin solid line border indicates the resource particles in the Q resource particle set.
  • a box with a thick dotted border represents resource particle set # Q-1 in the Q resource particle sets, and a box with a thick solid line border represents the first resource particle set.
  • the first resource particle set includes a positive integer RE.
  • the positive integer REs are continuous in the frequency domain.
  • Embodiment 8 illustrates a schematic diagram of resource mapping of M resource particle pools in the time-frequency domain; as shown in FIG. 8.
  • the user equipment in the present application executes Q1 times in the Q1 resource particle set in the Q resource particle sets in the present application respectively for the first information in the application. And the first signaling is successfully received in the first resource particle set in the present application.
  • the first resource particle set is a resource particle set among the Q1 resource particle sets. Any one of the Q resource particle sets belongs to one resource particle pool of the M resource particle pools in the present application, and the first resource particle set belongs to the M resource particle pools.
  • a target resource particle pool; any resource particle pool in the M resource particle pools includes a positive integer resource particle set in the Q resource particle sets; and M is a positive integer greater than 1.
  • the frequency resources occupied by the first resource particle set belong to K1 subbands among the K subbands in the present application.
  • the indexes of the M resource particle pools are ⁇ # 0, ..., # M-1 ⁇
  • the indexes of the K1 subbands are ⁇ # 0, ..., # K1, respectively.
  • -1 ⁇ a blank filled box with a thin solid line border indicates resource particle pool # 0 in the M resource particle pools
  • a blank filled box with a thick solid line border indicates resource particles in the Q resource particle set
  • a blank filled box with a thin dotted frame represents the target resource particle pool
  • a square filled with a thin oblique line and a left diagonal line represents the first resource particle set.
  • any one of the M resource particle pools includes a positive integer number of REs.
  • any resource particle pool in the M resource particle pools is composed of a positive integer resource particle set in the Q resource particle sets.
  • the number of resource particle sets in the Q resource particle sets included in at least two resource particle pools in the M resource particle pools is not equal.
  • the M resource particle pools belong to the same CORESET (COntrol, REsource, SET).
  • the M resource particle pools belong to the same search space.
  • any one of the M resource particle pools is a CORESET.
  • any one of the M resource particle pools is a search space.
  • one resource particle set in the Q resource particle sets does not belong to two resource particle pools in the M resource particle pools at the same time.
  • At least two resource particle pools in the M resource particle pools share the same RE.
  • the frequency resources occupied by the target resource particle pool belong to the K1 subbands.
  • an intersection of a frequency resource occupied by the target resource particle pool and any one of the K1 sub-bands is not empty.
  • the frequency resources occupied by the target resource particle pool are distributed on all sub-bands in the K1 sub-bands.
  • the frequency resources occupied by the fourth resource particle pool belong to K2 subbands among the K subbands, and the frequency resources occupied by the fifth resource particle pool belong to K3 subbands among the K subbands, so The K2 subbands and the K3 subbands do not completely overlap in the frequency domain; the fourth resource particle pool and the fifth resource particle pool are any two resource particle pools among the M resource particle pools, The K2 and the K3 are each a positive integer not greater than the K.
  • the M resource particle pools are configured by high-level signaling.
  • the M resource particle pools are configured by RRC signaling.
  • the M resource particle pools are configured by MAC CE signaling.
  • the M resource particle pools are UE-specific.
  • Embodiment 9 illustrates a schematic diagram of resource mapping of M resource particle pools in the time-frequency domain; as shown in FIG. 9.
  • the user equipment in the present application executes Q1 times in the Q1 resource particle set in the Q resource particle sets in the present application respectively for the first information in the application. And the first signaling is successfully received in the first resource particle set in the present application.
  • the first resource particle set is a resource particle set among the Q1 resource particle sets. Any one of the Q resource particle sets belongs to one resource particle pool of the M resource particle pools in the present application, and the first resource particle set belongs to the M resource particle pools.
  • a target resource particle pool; any resource particle pool in the M resource particle pools includes a positive integer resource particle set in the Q resource particle sets.
  • the indexes of the M resource particle pools are ⁇ # 0, ..., # M-1 ⁇ , respectively; blank-filled boxes indicate one of the M resource particle pools , A square filled by a left oblique line indicates the first resource particle set.
  • Embodiment 10 illustrates a schematic diagram of the relationship between K subbands and K1 subbands; as shown in FIG. 10.
  • the frequency resources occupied by the first resource particle set in the present application belong to the K1 subbands among the K subbands.
  • the K1 is a positive integer
  • the K is a positive integer not less than the K1.
  • the indexes of the K sub-bands are ⁇ # 0, ..., #x, ..., #y, ..., # K-1 ⁇ , the x and the y, respectively. They are positive integers less than the K minus 1, and the x is not equal to the y; the boxes filled with left slashes indicate the sub-bands in the K1 sub-bands.
  • any one of the K sub-bands includes a BWP (Bandwidth Part) in a carrier.
  • BWP Bandwidth Part
  • any one of the K sub-bands includes multiple BWPs in a carrier.
  • any one of the K subbands includes a positive integer number of consecutive subcarriers.
  • any one of the K sub-bands includes one BWP in a carrier occupied by the first cell in the present application.
  • any one of the K sub-bands includes multiple BWPs in a carrier occupied by the first cell in the present application.
  • any one of the K sub-bands includes a positive integer consecutive sub-carriers among carriers occupied by the first cell in the present application.
  • a bandwidth of any one of the K sub-bands is 20 MHz.
  • the K subbands are mutually orthogonal (non-overlapping) in the frequency domain.
  • the K sub-bands are continuous in the frequency domain.
  • At least two adjacent subbands in the K subbands are discontinuous in the frequency domain.
  • a guard interval exists in the frequency domain between any two adjacent sub-bands in the K sub-bands.
  • the K1 subbands are continuous in the K subbands.
  • At least two adjacent subbands in the K1 subbands are discontinuous in the K subbands.
  • the frequency resources occupied by the first cell in the present application include the K subbands.
  • the frequency resources occupied by the first cell in this application are composed of the K subbands.
  • the frequency resource occupied by the first cell in this application is a carrier
  • the K subbands constitute a carrier occupied by the first cell.
  • K is greater than 1.
  • K1 is greater than 1.
  • K1 is equal to 1.
  • K1 is smaller than K.
  • K1 is equal to K.
  • Embodiment 11 illustrates a schematic diagram of the relationship between K subbands and N subbands; as shown in FIG. 11.
  • the user equipment in this application receives the first signaling in this application in the first resource particle set in this application, and the first resource particle in this application
  • the pool performs detection for the second signaling in this application.
  • the frequency resources occupied by the first resource particle set belong to the K1 subbands among the K subbands.
  • the first information in this application is used to determine whether the first resource particle pool and the first resource particle set occupy the same sub-band among the N sub-bands.
  • the indexes of the K sub-bands are ⁇ # 0, ..., #x, ..., # K-1 ⁇ , and x is a positive integer less than the K minus 1;
  • the indexes of the N sub-bands are ⁇ # 0, ..., #y, ..., # N-1 ⁇ , and the y is a positive integer less than the N minus 1.
  • any one of the N sub-bands includes one BWP in one carrier.
  • any one of the N sub-bands is a BWP in a carrier.
  • any one of the N sub-bands includes multiple BWPs in a carrier.
  • any one of the N sub-bands includes a positive integer number of consecutive sub-carriers in a carrier.
  • any one of the N sub-bands includes one BWP in a carrier occupied by the first cell in the present application.
  • any one of the N sub-bands is one BWP in a carrier occupied by the first cell in the present application.
  • any one of the N sub-bands includes multiple BWPs in a carrier occupied by the first cell in the present application.
  • any one of the N sub-bands includes a positive integer consecutive sub-carriers among carriers occupied by the first cell in the present application.
  • At least two of the N sub-bands are partially overlapped in the frequency domain.
  • any two sub-bands of the N sub-bands do not completely overlap in the frequency domain.
  • the N sub-bands are configured by high-level signaling.
  • the N sub-bands are configured by RRC signaling.
  • the N sub-bands are UE-specific.
  • At least one sub-band in the N sub-bands and any one of the K sub-bands do not completely overlap in the frequency domain.
  • At least one subband of the N subbands belongs to one of the K subbands.
  • At least one subband of the N subbands belongs to multiple subbands of the K subbands.
  • the intersection of at least one subband in the N subbands and multiple subbands in the K subbands are not empty.
  • Embodiment 12 illustrates a schematic diagram of the relationship between K subbands and N subbands; as shown in FIG. 12.
  • the user equipment in this application receives the first signaling in this application in the first resource particle set in this application, and the first resource particle in this application
  • the pool performs detection for the second signaling in this application.
  • the frequency resources occupied by the first resource particle set belong to the K1 subbands among the K subbands.
  • the first information in this application is used to determine whether the first resource particle pool and the first resource particle set occupy the same sub-band among the N sub-bands.
  • the N is equal to the K.
  • the indexes of the K sub-bands are ⁇ # 0, # 1, ..., # K-1 ⁇
  • the indexes of the N sub-bands are ⁇ # 0, # 1, .. ., # N-1 ⁇ .
  • the N sub-bands are mutually orthogonal (non-overlapping) in the frequency domain.
  • the N is equal to the K
  • the N sub-bands correspond to the K sub-bands one by one
  • any one of the N sub-bands corresponds to the corresponding sub-band in the K sub-bands. Full coincidence in the frequency domain.
  • the N is equal to the K
  • the N subbands correspond to the K subbands one by one
  • any one of the N subbands belongs to the K subbands in the frequency domain. Corresponding sub-band.
  • Embodiment 13 illustrates a relationship between a position of a frequency resource occupied by a first wireless signal within a frequency resource occupied by a first cell and a first resource particle set; as shown in FIG. 13.
  • the user equipment in the present application receives the first signaling in the present application in the first set of resource particles, and receives the first signaling in the first cell in the present application.
  • the first signaling includes scheduling information of the first wireless signal; a position of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell and the first resource particle set related.
  • the frequency resources occupied by the first resource particle set belong to the K1 subbands among the K subbands in the present application, and the frequency resources occupied by the first wireless signal are within the K1 subbands.
  • the indexes of the K1 subbands are ⁇ # 0, ..., # K1-1 ⁇ , and the boxes filled with the left slashes indicate the frequency resources occupied by the first wireless signal.
  • a position of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell is related to a frequency resource occupied by the first resource particle set.
  • the frequency resources occupied by the first resource particle set and the first signaling in this application are used together to determine that the frequency resources occupied by the first wireless signal are in the first A location within a frequency resource occupied by a cell.
  • the K1 subbands include frequency resources occupied by the first wireless signal in a frequency domain.
  • a frequency resource occupied by the first wireless signal belongs to one of the K1 subbands.
  • the first resource particle set belongs to the target resource particle pool among the M resource particle pools in the present application.
  • the position of the frequency resource occupied by the first wireless signal within the frequency resource occupied by the first cell is related to the frequency resource occupied by the target resource particle pool.
  • the frequency resources occupied by the target resource particle pool belong to the K1 subbands.
  • an intersection of a frequency resource occupied by the target resource particle pool and any one of the K1 sub-bands is not empty.
  • the frequency resources occupied by the target resource particle pool are distributed on all sub-bands in the K1 sub-bands.
  • the position of the frequency resource occupied by the first wireless signal within the frequency resource occupied by the first cell and the position of the first resource particle set in the target resource particle pool nothing.
  • Embodiment 14 illustrates a relationship between a position of a frequency resource occupied by a first wireless signal within a frequency resource occupied by a first cell and a first resource particle set; as shown in FIG. 14.
  • the user equipment in the present application receives the first signaling in the present application in the first resource particle set, and receives the first signaling in the first cell in the present application.
  • the first signaling includes scheduling information of the first wireless signal; a position of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell and the first resource particle set related.
  • the frequency resources occupied by the first resource particle set belong to the K1 subbands among the K subbands in the present application, and the frequency resources occupied by the first wireless signal are within the K1 subbands.
  • the indexes of the K1 subbands are ⁇ # 0, ..., # K1-1 ⁇ , and the squares filled with left slashes indicate frequency resources occupied by the first wireless signal.
  • the frequency resources occupied by the first wireless signal belong to multiple sub-bands in the K1 sub-bands.
  • the frequency resources occupied by the first wireless signal belong to multiple subbands in the frequency domain that are continuous in the K1 subbands.
  • an intersection of a frequency resource occupied by the first wireless signal and a plurality of subbands in the K1 subbands is not empty.
  • an intersection of a frequency resource occupied by the first wireless signal and a plurality of K1 subbands that are continuous in a frequency domain is not empty.
  • an intersection of a frequency resource occupied by the first wireless signal and any one of the K1 subbands is not empty.
  • the K1 sub-bands are continuous in the frequency domain.
  • Embodiment 15 illustrates a relationship between a position of a frequency resource occupied by a first wireless signal within a frequency resource occupied by a first cell and a first resource particle set; as shown in FIG. 15.
  • the user equipment in the present application executes Q1 times in the Q1 resource particle set in the Q resource particle sets in the present application respectively for the first information in the application. Detection, and successfully receiving the first signaling in the first resource particle set; the user equipment receives the first wireless signal in the present application on the first cell in the present application .
  • the first signaling includes scheduling information of the first wireless signal; a position of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell and the first resource particle set related.
  • the first resource particle set is a resource particle set among the Q1 resource particle sets, and a position of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell is the same as the frequency resource occupied by the first cell.
  • the index of the first resource particle set in the Q resource particle sets is related.
  • the frequency band to which the frequency resource occupied by the first wireless signal belongs is indicated by a left slash
  • the filled boxes indicate that when the index of the first resource particle set in the Q resource particle sets belongs to the second index set, the frequency band to which the frequency resource occupied by the first wireless signal belongs is filled by the cross line.
  • the box indicated by is; when the index of the first resource particle set in the Q resource particle sets belongs to the third index set, the frequency band to which the frequency resource occupied by the first wireless signal belongs is filled with small dots. Boxed.
  • the first index set, the second index set, and the third index set each include a positive integer number of indexes.
  • the first index set, the second index set, and the third index set are orthogonal to each other.
  • the detection of the Q1 times for the first signaling is a blind decoding of Q1 times for the payload size of the first signaling.
  • the Q resource particle sets are sequentially indexed as 0, 1, ..., Q-1.
  • the index of the Q resource particle sets is maintained by the user equipment itself, that is, no base station configuration is required.
  • the indexes of the Q resource particle sets are sequentially increased according to the order in which the user equipment performs blind decoding.
  • the indexes of the Q resource particle sets are sequentially increased according to the order in which the user equipment performs detection.
  • an index of the first resource particle set in the Q resource particle sets is related to an order in which the first resource particle set is detected in the Q resource particle sets.
  • an index of the first resource particle set in the Q resource particle sets is related to an order in which the first resource particle set is blindly decoded in the Q resource particle sets.
  • the first resource particle set is the last one among the Q1 resource particle sets to be detected.
  • the first set of resource particles is the last of the Q1 set of resource particles to be blindly decoded.
  • the Q1 detections for the first signaling and the detection corresponding to the first resource particle set is the last one of the Q1 detections for the first signaling, Detection.
  • the Q1 detections for the first signaling and the detection corresponding to the first resource particle set are the first of the Q1 detections for the first signaling to succeed The detection of the first signaling is received.
  • the indexes of the Q resource particle sets are continuous.
  • the indexes of the Q resource particle sets are discontinuous.
  • the indexes of the Q1 resource particle sets in the Q resource particle sets are continuous.
  • the indexes of the Q1 resource particle sets in the Q resource particle sets are discontinuous.
  • Embodiment 16 illustrates a relationship between a position of a frequency resource occupied by a first wireless signal within a frequency resource occupied by a first cell and a first resource particle set; as shown in FIG. 16.
  • the user equipment in the present application receives the first signaling in the present application in the first resource particle set, and receives the first signaling in the first cell in the present application.
  • the first signaling includes scheduling information of the first wireless signal; a position of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell and the first resource particle set related.
  • the first resource particle set belongs to the target resource particle pool among the M resource particle pools in the present application; the frequency resource occupied by the first wireless signal is the frequency resource occupied by the first cell
  • the internal position is related to the index of the target resource particle pool in the M resource particle pools.
  • the frequency band to which the frequency resource occupied by the first wireless signal belongs is filled by a left slash.
  • the box indicated by is; when the index of the target resource particle pool in the M resource particle pools belongs to a fifth index set, the frequency band occupied by the frequency resource occupied by the first wireless signal is filled by a cross line.
  • the box indicates; when the index of the target resource particle pool in the M resource particle pools belongs to the sixth index set, the frequency band to which the frequency resource occupied by the first wireless signal belongs is indicated by a small-filled box .
  • the fourth index set, the fifth index set, and the sixth index set each include a positive integer number of indexes.
  • a position of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell and an index of the target resource particle pool in the M resource particle pools related.
  • a position of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell and an index of the first resource particle set in the target resource particle pool None.
  • the indexes of the M resource particle pools are maintained by the user equipment in this application, that is, no base station configuration is required.
  • the indexes of the M resource particle pools are sequentially increased according to the order in which the user equipment performs blind decoding in the resource particle set in the M resource particle pools.
  • the indexes of the M resource particle pools are sequentially increased according to the order in which the user equipment performs detection in the resource particle set in the M resource particle pools.
  • the index of all resource particle sets in the same resource particle pool in the M resource particle pools in the Q resource particle sets in the present application is in the Q resource particle sets. continuously.
  • the indexes of the M resource particle pools are sequentially increased according to the indexes of the resource particle sets in the Q resource particle sets included in the Q resource particle sets.
  • the second resource particle set is any resource particle set belonging to the second resource particle pool among the Q resource particle sets
  • the third resource particle set is a third resource among the Q resource particle sets.
  • Any resource particle set of the particle pool, the second resource particle pool and the third resource particle pool are any two resource particle pools among the M resource particle pools.
  • An index of the second resource particle pool in the M resource particle pools is smaller than an index of the third resource particle pool in the M resource particle pools.
  • an index of the second resource particle set in the Q resource particle sets is smaller than an index of the third resource particle set in the Q resource particle sets.
  • the time when the second resource particle set is detected is earlier than the time when the third resource particle set is detected.
  • the time at which the second resource particle set is blindly executed is earlier than the time at which the third resource particle set is blindly decoded.
  • an index of the target resource particle pool in the M resource particle pools is related to an order in which a resource particle set in the target resource particle pool is detected in the Q resource particle sets.
  • an index of the target resource particle pool in the M resource particle pools is related to an index of a resource particle set in the target resource particle pool in the Q resource particle sets.
  • Embodiment 17 illustrates a schematic diagram of the first signaling; as shown in FIG. 17.
  • the first signaling includes a first domain, and the first domain in the first signaling is used to determine a frequency resource occupied by the first wireless signal in the present application.
  • the position within the frequency resource occupied by the first cell in the present application; the interpretation of the first domain in the first signaling is related to the first resource particle set in the present application.
  • the first signaling is physical layer signaling.
  • the first signaling is dynamic signaling.
  • the first signaling is dynamic signaling for Downlink Grant.
  • the first signaling includes DCI.
  • the first signaling includes a Downlink Grant DCI (DownLink Grant DCI).
  • Downlink Grant DCI DownLink Grant DCI
  • the first signaling is UE-specific.
  • the signaling identifier of the first signaling is C (Cell, Cell) -RNTI (Radio Network Temporary Identifier, wireless network tentative identifier).
  • the first signaling is DCI identified by a C-RNTI.
  • the first signaling is used to determine a position of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell.
  • the interpretation of the first domain in the first signaling is related to the frequency resources occupied by the first resource particle set.
  • the interpretation of the first domain in the first signaling is related to an index of the first resource particle set in the Q resource particle sets.
  • the interpretation of the first domain in the first signaling is related to the target resource particle pool.
  • the interpretation of the first domain in the first signaling is related to an index of the target resource particle pool in the M resource particle pools.
  • the interpretation of the first domain in the first signaling is related to the frequency resources occupied by the target resource particle pool.
  • a position of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell is determined by the first domain and the first domain in the first signaling.
  • a set of resource particles is collectively indicated.
  • a position of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell is determined by the first domain and the first domain in the first signaling.
  • the frequency resources occupied by a resource particle set are collectively indicated.
  • a position of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell is determined by the first domain and the first domain in the first signaling.
  • the indexes of a resource particle set in the Q resource particle sets are collectively indicated.
  • the position of the frequency resource occupied by the first wireless signal within the frequency resource occupied by the first cell is determined by the first domain and the target in the first signaling. Common indication of resource particle pool.
  • the position of the frequency resource occupied by the first wireless signal within the frequency resource occupied by the first cell is determined by the first domain and the target in the first signaling.
  • the indexes of the resource particle pool in the M resource particle pools are collectively indicated.
  • the position of the frequency resource occupied by the first wireless signal within the frequency resource occupied by the first cell is determined by the first domain and the target in the first signaling.
  • the frequency resources occupied by the resource particle pool are collectively indicated.
  • the first domain in the first signaling includes part or all of information in a Frequency domain resource assignment domain.
  • a Frequency domain resource assignment domain For a specific definition of the Frequency domain resource domain, see 3GPP TS38. Section 7.3.1 in .212.
  • the first field in the first signaling includes part or all of the information in the Bandwidth part indicator area.
  • the Bandwidth part indicator field see 3GPP TS38.212. Section 7.3.1.
  • the first domain in the first signaling includes some or all information in a Frequency domain domain, a resource domain, and a Bandwidth department domain.
  • the first signaling includes a second domain, and the second domain in the first signaling indicates the first information in the present application.
  • the second field in the first signaling includes 1 bit.
  • Embodiment 18 illustrates a schematic diagram of the first channel access detection; as shown in FIG. 18.
  • the first channel access detection is used to determine whether each of the K sub-bands in the present application can be used to transmit a wireless signal.
  • the first channel access detection includes K sub-detections, the K sub-detections are performed on the K sub-bands, and the K1 sub-detections in the K sub-detections are used to determine the The K1 subbands of the K subbands may be used to transmit a wireless signal.
  • the K-time sub-detection is performed independently of each other.
  • the indexes of the K sub-bands are ⁇ # 0, # 1, ..., # K-1 ⁇
  • the indexes of the K sub-sub-detections are ⁇ # 0, # 1 ,. .., # K-1 ⁇ .
  • the first channel access detection is used to determine whether each of the K sub-bands can be used to transmit a wireless signal.
  • the first channel access detection is used to determine whether each of the K sub-bands is idle (Idle).
  • the first channel access detection is used to determine that the K1 subbands of the K subbands can be used to transmit a wireless signal.
  • the first channel access detection is used to determine that the K1 subbands of the K subbands are idle.
  • the first channel access detection is used by a sender of the first signaling to determine that the K1 subbands of the K subbands can be used to send a wireless signal.
  • the first channel access detection is LBT (Listen Before Talk, monitoring); for the specific definition and implementation of LBT, see 3GPP TR36.889.
  • the first channel access detection is CCA (Clear Channel Assessment); for a specific definition and implementation of CCA, refer to 3GPP TR 36.889.
  • CCA Cerar Channel Assessment
  • the first channel access detection is implemented in a manner defined in Section 15 of 3GPP TS 36.213.
  • the first channel access detection is a wideband (wideband) channel access detection.
  • the end time of the first channel access detection is no later than the start time of the time resource occupied by the Q resource particle set in the present application.
  • the K sub-detections are respectively used to determine whether the K sub-bands can be used to transmit a wireless signal.
  • each of the K sub-detections is used to determine whether the K sub-bands are idle.
  • the K1 sub-detection is a sub-detection used in the K sub-detection to determine whether the K1 sub-bands can be used for transmitting wireless signals.
  • the K1 sub-detection is respectively used to determine the K1 sub-bands are idle (Idle).
  • each of the K sub-detections is used by a sender of the first signaling to determine whether the K sub-bands can be used to send a wireless signal.
  • the K1 sub-detection is used by a sender of the first signaling to determine that the K1 sub-bands can be used to send a wireless signal.
  • At least one sub-detection in the K sub-detections that does not belong to the K1 sub-detection is used to determine that a corresponding sub-band is not idle (Idle).
  • At least one of the K sub-detections that does not belong to the K1 sub-detection is used to determine that a corresponding sub-band cannot be used to transmit a wireless signal.
  • any one of the K sub-detections that does not belong to the K1 sub-detection is used to determine that a corresponding sub-band is not idle (Idle).
  • any one of the K sub-detections that does not belong to the K1 sub-detection is used to determine that a corresponding sub-band cannot be used to transmit a wireless signal.
  • any of the K sub-detections is LBT; for a specific definition and implementation of LBT, see 3GPP TR36.889.
  • any one of the K sub-detections is CCA; for a specific definition and implementation of CCA, see 3GPP TR36.889.
  • any of the K sub-detections is a downlink channel access procedure (Downlink Channel Access procedure); for a specific definition and implementation of the downlink channel access procedure, see section 15.1 in 3GPP TS36.213 .
  • any of the K sub-detections is Category 4 LBT (the fourth type of LBT); for the specific definition and implementation of Category 4 LBT, see 3GPP TR 36.889.
  • At least one of the K sub-detections is Category 4 LBT (type 4 LBT); for the specific definition and implementation of Category 4 LBT, see 3GPP TR 36.889.
  • any one of the K sub-detections is implemented in a manner defined in Section 15 of 3GPP TS 36.213.
  • any one of the K sub-detections is a sub-band (subband) channel access detection.
  • the end time of any of the K sub-detections is no later than the start time of the time resource occupied by the Q resource particle set in this application.
  • the end time of any two sub-detections in the K sub-detections is the same.
  • the counter N corresponding to any two sub-detections in the K sub-detections is independent of each other.
  • 3GPP TS36.213 V14.1.0. Section 15.1.1.
  • the K sub-detection is performed except for those corresponding to any given sub-band. Any given sub-detection other than sub-detection, the base station continues to detect any given sub-status after waiting for 4Tsl or reinitializing counter N corresponding to any given sub-detection The corresponding counter N is decremented when an idle slot is detected.
  • Embodiment 19 illustrates a schematic diagram of the first channel access detection; as shown in FIG. 19.
  • the first channel access detection is used to determine whether each of the K sub-bands in the present application can be used to transmit a wireless signal.
  • the first channel access detection includes K sub-detections, the K sub-detections are performed on the K sub-bands, and the K1 sub-detections in the K sub-detections are used to determine the The K1 subbands of the K subbands may be used to transmit a wireless signal.
  • the K-time sub-detection is performed independently of each other.
  • the indices of the K sub-bands are ⁇ # 0, # 1, ..., # K-1 ⁇ , and the indices of the K sub-band detection are ⁇ # 0, # 1 ,. .., # K-1 ⁇ .
  • the counters N corresponding to all the sub-detections in the K sub-detections are equal.
  • the counter N see 3GPP TS36.213 (V14.1.0). Section 15.1.1.
  • the counter N corresponding to all the sub-detections in the K sub-detections is equal to the reference counter, and the reference counter is the maximum CW in the K sub-detections and the K sub-bands.
  • the base station in this application stops transmitting on any given sub-band of the K sub-bands
  • the base station resets all sub-detection stations in the K sub-detections.
  • Corresponding counter (N) corresponds to the base station in this application.
  • Embodiment 20 illustrates a schematic diagram of the first channel access detection; as shown in FIG. 20.
  • the first channel access detection is used to determine whether each of the K sub-bands in the present application can be used to transmit a wireless signal.
  • the first channel access detection includes K sub-detections, the K sub-detections are performed on the K sub-bands, and the K1 sub-detections in the K sub-detections are used to determine the The K1 subbands of the K subbands may be used to transmit a wireless signal.
  • the reference sub-detection is a sub-detection corresponding to a reference sub-band in the K sub-detections
  • the reference The sub-band is one of the K sub-bands.
  • the indices of the K subbands and the K sub-detections are ⁇ # 0, ..., # K-1 ⁇ , respectively.
  • Category 4 LBT the fourth type of LBT
  • At least one of the K sub-detections is Category 2 LBT (LBT of the second type); for a specific definition and implementation of Category 2 LBT, see 3GPP TR 36.889.
  • the K-1 sub-detection in the K sub-detection is Category 2 LBT (second type of LBT); for the specific definition and implementation of Category 2 LBT, see 3GPP TR 36.889.
  • the reference sub-detection is Category 4 LBT (the fourth type of LBT).
  • At least one of the K sub-bands has a given sub-band, and whether the given sub-band can be used for transmitting wireless signals and the K-time sub-detection except for sub-detection corresponding to the given sub-band.
  • the other sub-test is related.
  • any sub-detection other than the reference sub-detection in the K sub-detections is Category 2 LBT.
  • whether the reference sub-band can be used to transmit a wireless signal is only related to the reference sub-detection among the K sub-detections.
  • the reference sub-band is determined to be used for transmitting a wireless signal; if the reference sub-detection determines that the reference sub-band is not idle, all The reference sub-band is determined not to be used for transmitting wireless signals.
  • the reference sub-detection and the sub-detection corresponding to any given sub-band are used together to determine the Whether any given sub-band can be used to transmit wireless signals.
  • any given sub-band other than the reference sub-band among the K sub-bands if the reference sub-detection determines that the reference sub-band is idle, and the corresponding sub-band corresponds to The sub-detection determines that any one of the given sub-bands is idle, and the any given sub-band is determined to be used for transmitting wireless signals.
  • any given sub-band other than the reference sub-band among the K sub-bands if the reference sub-detection determines that the reference sub-band can be used to transmit a wireless signal, and the arbitrary The sub-detection corresponding to a given sub-frequency band determines that any given sub-frequency band is idle, and the any given sub-frequency band is determined to be used for transmitting wireless signals.
  • any given sub-band other than the reference sub-band among the K sub-bands if the reference sub-detection determines that the reference sub-band is not idle, the any given sub-band is determined It cannot be used to transmit wireless signals.
  • the reference sub-detection determines that the reference sub-band cannot be used to transmit a wireless signal, the arbitrary A given sub-band is determined not to be used for transmitting wireless signals.
  • any given sub-band other than the reference sub-band among the K sub-bands if the reference sub-detection determines that the reference sub-band can be used to transmit a wireless signal, and the arbitrary The sub-detection corresponding to a given sub-band determines that any of the given sub-bands is idle within 25 microseconds before the reference sub-band sends a wireless signal, and the any given sub-band is determined to be used for transmitting wireless signals.
  • any given sub-band other than the reference sub-band among the K sub-bands if the sub-detection corresponding to any given sub-band determines that the any given sub-band is not free, It is determined that any given frequency band cannot be used to transmit wireless signals.
  • any given sub-band other than the reference sub-band among the K sub-bands if the sub-detection corresponding to any given sub-band is 25 before the reference sub-band sends a wireless signal, It is determined within microseconds that the any given sub-frequency band is not idle, and the any given sub-frequency band is determined not to be used for transmitting wireless signals.
  • the sub-detection corresponding to the any given sub-band and the reference sub-detection end at the same time.
  • the reference sub-band is randomly selected by the base station device in the K sub-bands in the present application.
  • the probability that the base station device selects any sub-band among the K sub-bands as the reference sub-band is equal.
  • any one of the K sub-bands will not be selected as the reference sub-band multiple times within one second.
  • the K sub-bands have the same CW p , and the CW p is the size of a contention window.
  • the CW p is the size of a contention window.
  • the CW ps corresponding to the K subbands are independent of each other.
  • the CW p is the size of a contention window. For a specific definition of the CW p , see 15 in 3GPP TS36.213. chapter.
  • Embodiment 21 illustrates a flowchart of one-shot detection in K-shot detection; as shown in FIG. 21.
  • the K sub-detections are performed on the K sub-bands in the present application, respectively.
  • the first sub-detection is one of the K sub-detections, and the first sub-detection is performed on a first sub-band among the K sub-bands.
  • the process of the first sub-detection can be described by the flowchart in FIG. 21.
  • the base station in this application is in an idle state in step S2101, and it is determined in step S2102 whether or not transmission is required.
  • step S2103 If yes, proceed to step S2103, otherwise return to step S2101; in step S2103, in the first sub-band The energy detection is performed within a delay period (defer duration); in step S2104, it is determined whether all time slot periods in this delay period are idle. If so, proceed to step S2105, otherwise proceed to step S2108.
  • step S2105 it is judged whether to decide to send, if so, proceed to step S2106, otherwise return to step S2101; in step S2106, send a wireless signal on the first sub-band; in step S2107, determine whether it is necessary to continue transmitting If yes, proceed to step S2108, otherwise return to step S2101; perform energy detection in a delay period (defer duration) on the first sub-band in step 2108; determine in this step period in step S2109 Whether all the time slots of Idle are idle (Idle), if yes, proceed to step S2110, otherwise return to step S2108; in A first counter is set in step S2110; it is determined whether the first counter is 0 in step S2111, and if yes, return to step S2105, otherwise proceed to step S2112; decrement the first counter in step S2112; In step S2113, energy detection is performed in an additional slot period on the first sub-band; in step S2114, it is determined whether the additional slot period is idle, and if yes, return to
  • step S2111 otherwise proceed to step S2115; perform energy detection in an additional delay period on the first sub-band in step S2115 until a non-idle is detected in this additional delay period Time slot period, or all time slot periods in this additional delay period are idle; in step S2116, it is determined whether all time slot periods in this additional delay period are idle (Idle), if yes, return to step S2111; otherwise Return to step S2115.
  • performing energy detection in a given time period means: performing energy detection in all slot periods in the given time period; the given time period is the ⁇ step in FIG. 21 All delay periods in S2103 and step S2108, all additional time slot periods in step S2113, and any additional time period in step S2115 ⁇ .
  • performing energy detection in a time slot period refers to: sensing the power of a wireless signal within a given time unit and averaging over time to obtain the received power; the given time unit is the A duration within a time slot period.
  • performing energy detection in a time slot period refers to: sensing the energy of a wireless signal within a given time unit and averaging over time to obtain the received energy; the given time unit is the A duration within a time slot period.
  • a slot Idle refers to: sensing the power of a wireless signal in a given time unit and averaging in time, the received power obtained is lower than a reference threshold; the given A time unit is a duration time period in the one time slot period.
  • a slot Idle refers to: sensing the energy of a wireless signal in a given time unit and averaging in time, the received energy obtained is lower than a reference threshold; the given A time unit is a duration time period in the one time slot period.
  • the duration of the given time unit is not shorter than 4 microseconds.
  • the duration of a defer duration is 16 microseconds plus T1 9 microseconds, where T1 is a positive integer.
  • the T1 belongs to ⁇ 1, 2, 3, 7 ⁇ .
  • a delay period includes a plurality of slot periods.
  • a time interval between a first time slot period and a second time slot period in the plurality of time slot periods is 7 milliseconds.
  • the duration of a delay period is equal to the duration of an additional delay period.
  • the duration of a slot duration is 9 microseconds.
  • the duration of an additional slot duration is equal to the duration of a slot duration.
  • the value set in the first counter in step S2108 is one of the P candidate integers.
  • the P belongs to ⁇ 3,7,15,31,63,127,255,511,1023 ⁇ .
  • the P is the CWp in the Category 4 LBT process
  • the CWp is the size of the contention window
  • the specific definition of the CWp refers to section 15 in 3GPP TS 36.213.
  • the P candidate integers are 0, 1, 2, ..., P-1.
  • the base station randomly selects one candidate integer among the P candidate integers as a value set by the first counter.
  • the probability that any candidate integer among the P candidate integers is selected as the value set by the first counter is equal.
  • the first sub-detection is any one of the K sub-detections.
  • the first sub-detection is the reference sub-detection in Embodiment 20.
  • Embodiment 22 illustrates a flowchart of one-shot detection in K-shot detection; as shown in FIG. 22.
  • the K sub-detections are performed on the K sub-bands in the present application, respectively.
  • the first sub-detection is one of the K sub-detections, and the first sub-detection is performed on a first sub-band among the K sub-bands.
  • the process of the first sub-detection can be described by the flowchart in FIG. 22.
  • the base station in the present application is in an idle state in step S2201, and it is determined in step S2202 whether transmission is required. If yes, proceed to step 2203, otherwise return to step S2201; Perform energy detection within one sensing time (Sensing interval); in step S2204, determine whether all time slots in this sensing time are idle. If so, proceed to step S2205, otherwise return to step S2203; in In step S2205, a wireless signal is transmitted on the first sub-band.
  • sensing time and the time slot period in FIG. 22 refer to section 15.2 in 3GPP TS 36.213.
  • performing energy detection within one sensing time refers to: performing energy detection during all slot durations in the one sensing time.
  • the duration of a sensing interval is 25 microseconds.
  • one sensing time includes two time slot periods, and the two time slot periods are discontinuous in the time domain.
  • a time interval in the two time slot periods is 7 microseconds.
  • the first sub-detection is any one of the K sub-detections.
  • Embodiment 23 illustrates a flowchart of one-shot detection in K-shot detection; as shown in FIG. 23.
  • the K sub-detections are performed on the K sub-bands in the present application, respectively.
  • the first sub-detection is one of the K sub-detections, and the first sub-detection is performed on a first sub-band among the K sub-bands.
  • the process of the first sub-detection can be described by the flowchart in FIG. 23.
  • the base station in this application is in an idle state in step S2301, and it is determined in step S2302 whether transmission is required.
  • step S2301 determines whether all time slots in this sensing time are idle (If it is Idle), if yes, proceed to step S2305, otherwise return to step S2303; in step S2305, it is determined whether the reference sub-band in Embodiment 20 can be used to send a wireless signal, and if so, proceed to step 2306; in step 2306, send a wireless signal on the first sub-band.
  • the first sub-detection is any one of the K sub-detections except the reference sub-detection in Embodiment 20.
  • Embodiment 24 illustrates a schematic diagram of resource mapping in the time-frequency domain by the first resource particle pool; as shown in FIG. 24.
  • the user equipment in the present application performs detection for the second signaling in the present application in the first resource particle pool.
  • the first information in the present application is used to determine whether the first resource particle pool and the first resource particle set in the present application occupy the same sub-band among the N sub-bands in the present application.
  • the first resource particle pool includes a positive integer number of REs.
  • the first resource particle pool includes a CORESET.
  • the first resource particle pool includes a search space.
  • the first resource particle pool includes multiple CORESETs.
  • the first resource particle pool includes multiple search spaces.
  • the first resource particle pool includes a positive integer number of resource particle sets, and one resource particle set is a downlink physical layer control channel candidate.
  • the detection for the second signaling is Blind Decoding for a payload size of the second signaling.
  • the user equipment in this application first performs channel estimation and channel equalization on a wireless signal received in a resource particle set in the first resource particle pool. And then perform channel decoding according to the load size of the second signaling, and if the output of the channel decoding passes the CRC verification, it is considered that the second signaling is successfully received, otherwise it is considered that the current detection fails to successfully receive the second signaling The second signaling.
  • the first resource particle pool includes a positive integer number of resource particle sets, and one resource particle set is a downlink physical layer control channel candidate (candidate); the base station in the present application is in the first resource
  • the second signaling is sent in a resource particle set in a particle pool.
  • the first information includes one bit, and if one bit in the first information is equal to 1, the first resource particle pool and the first resource particle set occupy the same in the N sub-bands If one bit in the first information is equal to 0, the first resource particle pool and the first resource particle set occupy different sub-bands in the N sub-bands.
  • the first information includes one bit. If one bit in the first information is equal to 0, the first resource particle pool and the first resource particle set occupy the same in the N sub-bands. If one bit in the first information is equal to 1, the first resource particle pool and the first resource particle set occupy different sub-bands in the N sub-bands.
  • Embodiment 25 illustrates a structural block diagram of a processing apparatus used in user equipment; as shown in FIG. 25.
  • the processing device 2500 in the user equipment is mainly composed of a first receiver module 2501 and a second receiver module 2502.
  • the first receiver module 2501 receives the first signaling in the first resource particle set; the second receiver module 2502 receives the first wireless signal on the first cell.
  • the first signaling includes scheduling information of the first wireless signal; and a position and frequency of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell.
  • the first resource particle set is related.
  • the first receiver module 2501 performs Q1 detections on the first signaling in the Q1 resource particle sets of the Q resource particle sets, respectively, wherein the first resource particle set Is a resource particle set in the Q1 resource particle set, and the user equipment successfully receives the first signaling in the first resource particle set; frequency resources occupied by the first wireless signal are The position within the frequency resource occupied by the first cell is related to the index of the first resource particle set in the Q resource particle sets, where Q is a positive integer greater than 1, and Q1 is not greater than The positive integer of Q.
  • any one of the Q resource particle sets belongs to one resource particle pool of the M resource particle pools, and the first resource particle set belongs to a target in the M resource particle pools A resource particle pool; any resource particle pool in the M resource particle pools includes a positive integer resource particle set in the Q resource particle sets; a frequency resource occupied by the first wireless signal is in the first The position within the frequency resource occupied by a cell is related to the target resource particle pool; the M is a positive integer greater than 1.
  • the frequency resources occupied by the first resource particle set belong to K1 subbands out of K subbands; the first channel access detection is used to determine that the K1 subbands in the K subbands may be Is used to transmit wireless signals; the K1 is a positive integer, and the K is a positive integer not less than the K1.
  • the first channel access detection includes K sub-detections, the K sub-detections are performed on the K sub-bands, and the K1 sub-detections in the K sub-detections are respectively performed
  • the K1 sub-bands may be used to transmit wireless signals.
  • the K1 subbands include frequency resources occupied by the first wireless signal in a frequency domain.
  • the first signaling includes a first domain, and the first domain in the first signaling is used to determine a frequency resource occupied by the first wireless signal in the first cell. The location within the occupied frequency resource; the interpretation of the first domain in the first signaling is related to the first resource particle set.
  • the first receiver module 2501 performs detection for the second signaling in the first resource particle pool; wherein the first information is used to determine the first resource particle pool and the first resource particle pool. Whether the resource particle set occupies the same sub-band among the N sub-bands; the time resource occupied by the first resource particle pool is later than the time resource occupied by the first wireless signal; and N is a positive integer greater than 1.
  • the first receiver module 2501 includes ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller / processor 459, memory 460, data Source 467 ⁇ .
  • the second receiver module 2502 includes the ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller / processor 459, memory 460, data in Embodiment 4 Source 467 ⁇ .
  • Embodiment 26 illustrates a structural block diagram of a processing device used in a base station; as shown in FIG. 26.
  • the processing device 2600 in the base station is mainly composed of a first processing module 2601 and a first transmitter module 2602.
  • the first processing module 2601 sends the first signaling in the first resource particle set; the first transmitter module 2602 sends the first wireless signal on the first cell.
  • the first signaling includes scheduling information of the first wireless signal; and a position and frequency of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell.
  • the first resource particle set is related.
  • the first resource particle set is a resource particle set among the Q resource particle sets; a position of a frequency resource occupied by the first wireless signal within a frequency resource occupied by the first cell Related to the index of the first resource particle set in the Q resource particle sets, where Q is a positive integer greater than 1.
  • any one of the Q resource particle sets belongs to one resource particle pool of the M resource particle pools, and the first resource particle set belongs to a target in the M resource particle pools A resource particle pool; any resource particle pool in the M resource particle pools includes a positive integer resource particle set in the Q resource particle sets; a frequency resource occupied by the first wireless signal is in the first The position within the frequency resource occupied by a cell is related to the target resource particle pool; the M is a positive integer greater than 1.
  • the first processing module 2601 performs first channel access detection on K sub-bands; wherein the frequency resources occupied by the first resource particle set belong to K1 sub-bands in the K sub-bands
  • the first channel access detection is used to determine that the K1 subbands of the K subbands can be used to transmit a wireless signal; the K1 is a positive integer, and the K is a positive number not less than the K1 Integer.
  • the first channel access detection includes K sub-detections, the K sub-detections are performed on the K sub-bands, and the K1 sub-detections in the K sub-detections are respectively performed
  • the K1 sub-bands may be used to transmit wireless signals.
  • the K1 subbands include frequency resources occupied by the first wireless signal in a frequency domain.
  • the first signaling includes a first domain, and the first domain in the first signaling is used to determine a frequency resource occupied by the first wireless signal in the first cell. The location within the occupied frequency resource; the interpretation of the first domain in the first signaling is related to the first resource particle set.
  • the first processing module 2601 sends second signaling in a first resource particle pool; wherein the first information is used to determine whether the first resource particle pool and the first resource particle set are Occupies the same sub-band among N sub-bands; the time resource occupied by the first resource particle pool is later than the time resource occupied by the first wireless signal; and N is a positive integer greater than 1.
  • the first processing module 2601 includes the ⁇ antenna 420, the transmitter / receiver 418, the transmission processor 416, the reception processor 470, the multi-antenna transmission processor 471, and the multi-antenna reception processing in Embodiment 4 At least one of a controller 472, a controller / processor 475, and a memory 476 ⁇ .
  • the first transmitter module 2602 includes ⁇ antenna 420, transmitter 418, transmission processor 416, multi-antenna transmission processor 471, controller / processor 475, memory 476 ⁇ in Embodiment 4. At least one of them.
  • the user equipment, terminals, and UEs in this application include, but are not limited to, drones, communication modules on drones, remotely controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, in-vehicle communication equipment, wireless sensors, network cards, IoT terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC, enhanced MTC) terminal, data card, internet card, vehicle communication device, low cost mobile phone, low Costs wireless communications equipment such as tablets.
  • drones communication modules on drones, remotely controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, in-vehicle communication equipment, wireless sensors, network cards, IoT terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC, enhanced MTC) terminal, data card, internet card, vehicle communication device, low cost mobile phone, low Costs wireless communications equipment such as tablets.
  • the base station or system equipment in this application includes, but is not limited to, macro communication base stations, micro cell base stations, home base stations, relay base stations, gNB (NR Node B), TRP (Transmitter Receiver Point, sending and receiving nodes) and other wireless communication devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的用户设备、基站中的方法和装置。用户设备在在第一资源粒子集合中接收第一信令;在第一小区上接收第一无线信号。其中,所述第一信令包括所述第一无线信号的调度信息;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合有关。当非授权频谱上系统可用频带和带宽动态变化时,上述方法可以避免调度信令中和资源分配相关的域的开销的浪费。

Description

一种被用于无线通信的用户设备、基站中的方法和装置 技术领域
本申请涉及无线通信系统中的方法和装置,尤其是涉及支持在非授权频谱(Unlicensed Spectrum)上进行数据传输的无线通信系统中的方法和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#75次全会上还通过NR(New Radio,新无线电)下的非授权频谱(Unlicensed Spectrum)的接入的研究项目。3GPP RAN #78次全会决定了在NR Release 15中支持非授权频谱的接入。
在LTE(Long Term Evolution,长期演进)的LAA(License Assisted Access,授权辅助接入)项目中,发射机(基站或者用户设备)在非授权频谱上发送数据之前需要先进行LBT(Listen Before Talk,会话前监听)以保证不对其他在非授权频谱上正在进行的无线传输造成干扰。根据3GPP RAN1 #92bis会议的讨论,在NR-U(NR-Unlicensed spectrum,NR非授权频谱)系统中,LBT以20MHz为单位。
发明内容
发明人通过研究发现,在带宽超过20MHz的频段上,以20MHz为单位进行LBT将导致系统可用频带和带宽的动态变化。为了不增加对下行控制信道的盲检测次数,调度信令中和资源分配相关的域要根据最大可能的带宽来设计。当实际可用带宽小于最大可能带宽时,这导致了控制信令开销的浪费。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的用户设备中的方法,其特征在于,包括:
在第一资源粒子集合中接收第一信令;
在第一小区上接收第一无线信号;
其中,所述第一信令包括所述第一无线信号的调度信息;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合有关。
作为一个实施例,本申请要解决的问题是:在非授权频谱上当由于sub-band(子带)LBT等原因导致系统可用频带和带宽的动态变化时,如何有效设计调度信令中和资源分配相关的域,避免当实际可用带宽小于最大可能带宽时控制信令开销的浪费。上述方法通过在被调度的数据所占用的频率资源和调度信令所占用的时频资源之间建立联系解决了这一问题。
作为一个实施例,上述方法的特质在于,所述第一资源粒子集合反映了当前系统可用的频带和带宽。所述第一无线信号所占用的频率资源在当前系统可用的频带和带宽之内分配。通过把所述第一无线信号所占用的频率资源和所述第一资源粒子集合相关联,可以降低资源分配所需要的信令开销,或者把所述第一信令中和资源分配相关的域中多余的比特设置成固定值用来帮助译码,从而提高所述第一信令的传输可靠性。
作为一个实施例,上述方法的好处在于:在基于sub-band(子带)LBT的非授权频谱上避免了由于系统可用频带和带宽的动态变化导致的控制信令开销的浪费。
根据本申请的一个方面,其特征在于,包括:
在Q个资源粒子集合中的Q1个资源粒子集合中分别执行Q1次针对所述第一信令的检测;
其中,所述第一资源粒子集合是所述Q1个资源粒子集合中的一个资源粒子集合,所述用 户设备在所述第一资源粒子集合中成功接收到所述第一信令;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合在所述Q个资源粒子集合中的索引有关,所述Q是大于1的正整数,所述Q1是不大于所述Q的正整数。
作为一个实施例,上述方法的好处在于,所述Q个资源粒子集合中不同的资源粒子集合所占用的频率资源可以对应不同的sub-band LBT,这样大大降低了由于一个UE的所有下行控制信道candidate都处于非空闲的频带上而导致的该UE无法被调度。
根据本申请的一个方面,其特征在于,所述Q个资源粒子集合中的任一资源粒子集合属于M个资源粒子池中的一个资源粒子池,所述第一资源粒子集合属于所述M个资源粒子池中的目标资源粒子池;所述M个资源粒子池中的任一资源粒子池包括所述Q个资源粒子集合中的正整数个资源粒子集合;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述目标资源粒子池有关;所述M是大于1的正整数。
根据本申请的一个方面,其特征在于,所述第一资源粒子集合所占用的频率资源属于K个子频带中的K1个子频带;第一信道接入检测被用于确定所述K个子频带中的所述K1个子频带可以被用于传输无线信号;所述K1是正整数,所述K是不小于所述K1的正整数。
根据本申请的一个方面,其特征在于,所述第一信道接入检测包括K次子检测,所述K次子检测分别在所述K个子频带上被执行,所述K次子检测中的K1次子检测分别被用于确定所述K1个子频带可以被用于传输无线信号。
根据本申请的一个方面,其特征在于,所述K1个子频带在频域上包括所述第一无线信号所占用的频率资源。
根据本申请的一个方面,其特征在于,所述第一信令包括第一域,所述第一信令中的所述第一域被用于确定所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置;所述第一信令中的所述第一域的解读和所述第一资源粒子集合有关。
根据本申请的一个方面,其特征在于,包括:
在第一资源粒子池中执行针对第二信令的检测;
其中,第一信息被用于确定所述第一资源粒子池和所述第一资源粒子集合是否占用N个子频带中相同的子频带;所述第一资源粒子池所占用的时间资源晚于所述第一无线信号所占用的时间资源;所述N是大于1的正整数。
作为一个实施例,上述方法的特质在于,所述第一信令的发送者可以灵活指示所述用户设备的active(活跃)BWP是否切换到所述第一无线信号所占用的BWP上。由于LBT的影响,所述第一信令的发送者无法保证所述第一无线信号所占用的BWP在下一个COT(Channel Occupy Time,信道占用时间)内任然能够被用于传输无线信号。上述方法的好处在于,可以允许UE始终在一个宽带的BWP上监测下行控制信道,降低了由于部分sub-band LBT失败而导致无法给UE发送下行控制信令的可能性。
本申请公开了一种被用于无线通信的基站中的方法,其特征在于,包括:
在第一资源粒子集合中发送第一信令;
在第一小区上发送第一无线信号;
其中,所述第一信令包括所述第一无线信号的调度信息;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合有关。
根据本申请的一个方面,其特征在于,所述第一资源粒子集合是Q个资源粒子集合中的一个资源粒子集合;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合在所述Q个资源粒子集合中的索引有关,所述Q是大于1的正整数。
根据本申请的一个方面,其特征在于,所述Q个资源粒子集合中的任一资源粒子集合属于M个资源粒子池中的一个资源粒子池,所述第一资源粒子集合属于所述M个资源粒子池中的目标资源粒子池;所述M个资源粒子池中的任一资源粒子池包括所述Q个资源粒子集合中的正整数个资源粒子集合;所述第一无线信号所占用的频率资源在所述第一小区所占用的频 率资源内的位置与所述目标资源粒子池有关;所述M是大于1的正整数。
根据本申请的一个方面,其特征在于,包括:
在K个子频带上执行第一信道接入检测;
其中,所述第一资源粒子集合所占用的频率资源属于所述K个子频带中的K1个子频带;所述第一信道接入检测被用于确定所述K个子频带中的所述K1个子频带可以被用于传输无线信号;所述K1是正整数,所述K是不小于所述K1的正整数。
根据本申请的一个方面,其特征在于,所述第一信道接入检测包括K次子检测,所述K次子检测分别在所述K个子频带上被执行,所述K次子检测中的K1次子检测分别被用于确定所述K1个子频带可以被用于传输无线信号。
根据本申请的一个方面,其特征在于,所述K1个子频带在频域上包括所述第一无线信号所占用的频率资源。
根据本申请的一个方面,其特征在于,所述第一信令包括第一域,所述第一信令中的所述第一域被用于确定所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置;所述第一信令中的所述第一域的解读和所述第一资源粒子集合有关。
根据本申请的一个方面,其特征在于,包括:
在第一资源粒子池中发送第二信令;
其中,第一信息被用于确定所述第一资源粒子池和所述第一资源粒子集合是否占用N个子频带中相同的子频带;所述第一资源粒子池所占用的时间资源晚于所述第一无线信号所占用的时间资源;所述N是大于1的正整数。
本申请公开了一种被用于无线通信的用户设备,其特征在于,包括:
第一接收机模块,在第一资源粒子集合中接收第一信令;
第二接收机模块,在第一小区上接收第一无线信号;
其中,所述第一信令包括所述第一无线信号的调度信息;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合有关。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一接收机模块在Q个资源粒子集合中的Q1个资源粒子集合中分别执行Q1次针对所述第一信令的检测;其中,所述第一资源粒子集合是所述Q1个资源粒子集合中的一个资源粒子集合,所述用户设备在所述第一资源粒子集合中成功接收到所述第一信令;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合在所述Q个资源粒子集合中的索引有关,所述Q是大于1的正整数,所述Q1是不大于所述Q的正整数。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述Q个资源粒子集合中的任一资源粒子集合属于M个资源粒子池中的一个资源粒子池,所述第一资源粒子集合属于所述M个资源粒子池中的目标资源粒子池;所述M个资源粒子池中的任一资源粒子池包括所述Q个资源粒子集合中的正整数个资源粒子集合;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述目标资源粒子池有关;所述M是大于1的正整数。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一资源粒子集合所占用的频率资源属于K个子频带中的K1个子频带;第一信道接入检测被用于确定所述K个子频带中的所述K1个子频带可以被用于传输无线信号;所述K1是正整数,所述K是不小于所述K1的正整数。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一信道接入检测包括K次子检测,所述K次子检测分别在所述K个子频带上被执行,所述K次子检测中的K1次子检测分别被用于确定所述K1个子频带可以被用于传输无线信号。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述K1个子频带在频域上包括所述第一无线信号所占用的频率资源。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一信令包括 第一域,所述第一信令中的所述第一域被用于确定所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置;所述第一信令中的所述第一域的解读和所述第一资源粒子集合有关。
作为一个实施例,上述被用于无线通信的用户设备的特征在于,所述第一接收机模块在第一资源粒子池中执行针对第二信令的检测;其中,第一信息被用于确定所述第一资源粒子池和所述第一资源粒子集合是否占用N个子频带中相同的子频带;所述第一资源粒子池所占用的时间资源晚于所述第一无线信号所占用的时间资源;所述N是大于1的正整数。
本申请公开了一种被用于无线通信的基站设备,其特征在于,包括:
第一处理模块,在第一资源粒子集合中发送第一信令;
第一发送机模块,在第一小区上发送第一无线信号;
其中,所述第一信令包括所述第一无线信号的调度信息;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合有关。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第一资源粒子集合是Q个资源粒子集合中的一个资源粒子集合;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合在所述Q个资源粒子集合中的索引有关,所述Q是大于1的正整数。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述Q个资源粒子集合中的任一资源粒子集合属于M个资源粒子池中的一个资源粒子池,所述第一资源粒子集合属于所述M个资源粒子池中的目标资源粒子池;所述M个资源粒子池中的任一资源粒子池包括所述Q个资源粒子集合中的正整数个资源粒子集合;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述目标资源粒子池有关;所述M是大于1的正整数。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第一处理模块在K个子频带上执行第一信道接入检测;其中,所述第一资源粒子集合所占用的频率资源属于所述K个子频带中的K1个子频带;所述第一信道接入检测被用于确定所述K个子频带中的所述K1个子频带可以被用于传输无线信号;所述K1是正整数,所述K是不小于所述K1的正整数。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第一信道接入检测包括K次子检测,所述K次子检测分别在所述K个子频带上被执行,所述K次子检测中的K1次子检测分别被用于确定所述K1个子频带可以被用于传输无线信号。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述K1个子频带在频域上包括所述第一无线信号所占用的频率资源。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第一信令包括第一域,所述第一信令中的所述第一域被用于确定所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置;所述第一信令中的所述第一域的解读和所述第一资源粒子集合有关。
作为一个实施例,上述被用于无线通信的基站设备的特征在于,所述第一处理模块在第一资源粒子池中发送第二信令;其中,第一信息被用于确定所述第一资源粒子池和所述第一资源粒子集合是否占用N个子频带中相同的子频带;所述第一资源粒子池所占用的时间资源晚于所述第一无线信号所占用的时间资源;所述N是大于1的正整数。
作为一个实施例,和传统方案相比,本申请具备如下优势:
在非授权频谱上当由于sub-band(子带)LBT等原因导致系统可用频带和带宽的动态变化时,根据调度信令所占用的频率资源来隐式指示数据信道所占用的频率资源的范围,避免了调度信令中和资源分配相关的域的开销的浪费。
UE在对应不同的sub-band LBT的频带上监测下行控制信道,大大降低了由于UE的所有 下行控制信道candidate都处于非空闲的频带上而导致的该UE无法被调度。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令和第一无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的NR(New Radio,新无线)节点和UE的示意图;
图5示出了根据本申请的一个实施例的无线传输的流程图;
图6示出了根据本申请的一个实施例的Q个资源粒子集合在时频域上资源映射的示意图;
图7示出了根据本申请的一个实施例的Q个资源粒子集合在时频域上资源映射的示意图;
图8示出了根据本申请的一个实施例的M个资源粒子池在时频域上的资源映射的示意图;
图9示出了根据本申请的一个实施例的M个资源粒子池在时频域上的资源映射的示意图;
图10示出了根据本申请的一个实施例的K个子频带和K1个子频带之间的关系的示意图;
图11示出了根据本申请的一个实施例的K个子频带和N个子频带之间的关系的示意图;
图12示出了根据本申请的一个实施例的K个子频带和N个子频带之间的关系的示意图;
图13示出了根据本申请的一个实施例的第一无线信号所占用的频率资源在第一小区所占用的频率资源内的位置与第一资源粒子集合之间的关系的示意图;
图14示出了根据本申请的一个实施例的第一无线信号所占用的频率资源在第一小区所占用的频率资源内的位置与第一资源粒子集合之间的关系的示意图;
图15示出了根据本申请的一个实施例的第一无线信号所占用的频率资源在第一小区所占用的频率资源内的位置与第一资源粒子集合之间的关系的示意图;
图16示出了根据本申请的一个实施例的第一无线信号所占用的频率资源在第一小区所占用的频率资源内的位置与第一资源粒子集合之间的关系的示意图;
图17示出了根据本申请的一个实施例的第一信令的示意图;
图18示出了根据本申请的一个实施例的第一信道接入检测的示意图;
图19示出了根据本申请的一个实施例的第一信道接入检测的示意图;
图20示出了根据本申请的一个实施例的第一信道接入检测的示意图;
图21示出了根据本申请的一个实施例的K次子检测中的一次子检测的流程图;
图22示出了根据本申请的一个实施例的K次子检测中的一次子检测的流程图;
图23示出了根据本申请的一个实施例的K次子检测中的一次子检测的流程图;
图24示出了根据本申请的一个实施例的第一资源粒子池在时频域上资源映射的示意图;
图25示出了根据本申请的一个实施例的用于用户设备中的处理装置的结构框图;
图26示出了根据本申请的一个实施例的用于基站中的处理装置的结构框图。
实施例1
实施例1示例了第一信息和第一无线信号的流程图;如附图1所示。
在实施例1中,本申请中的所述用户设备在第一资源粒子集合中接收第一信令;然后在第一小区上接收第一无线信号。其中,所述第一信令包括所述第一无线信号的调度信息;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合有关。
作为一个实施例,所述第一资源粒子集合包括正整数个RE(Resource Element,资源粒子)。
作为一个实施例,一个RE在时域占用一个多载波符号,在频域占用一个子载波。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述第一资源粒子集合是一个下行物理层控制信道candidate(候选项)。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是动态信令。
作为一个实施例,所述第一小区所占用的频率资源是一个载波(Carrier)。
作为一个实施例,所述第一小区所占用的频率资源是一个部署于非授权频谱的载波(Carrier)。
作为一个实施例,所述第一小区所占用的频率资源是一个部署于LAA频谱的载波(Carrier)。
作为一个实施例,所述第一小区所占用的频率资源被部署于非授权频谱。
作为一个实施例,所述第一小区所占用的频率资源被部署于LAA频谱。
作为一个实施例,所述所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合所占用的频率资源有关。
作为一个实施例,所述所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一信令有关。
作为一个实施例,所述第一资源粒子集合和所述第一信令共同被用于确定所述所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置。
作为一个实施例,所述第一资源粒子集合所占用的频率资源和所述第一信令共同被用于确定所述所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置。
作为一个实施例,所述第一无线信号不占用所述第一小区所占用的频率资源之外的频率资源。
作为一个实施例,所述第一无线信号的调度信息包括{所占用的时域资源,所占用的频域资源,MCS(Modulation and Coding Scheme,调制编码方式),DMRS(DeModulation Reference Signals,解调参考信号)的配置信息,HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号,RV(Redundancy Version,冗余版本),NDI(New Data Indicator,新数据指示),发送天线端口,所对应的空间接收参数(Spatial Rx parameters),所对应的空域发送滤波(Spatial Domain Transmission Filter),所对应的空域接收滤波(Spatial Domain Receive Filter)}中的至少之一。
作为一个实施例,DMRS的配置信息包括{RS序列,映射方式,DMRS类型,所占用的时域资源,所占用的频域资源,所占用的码域资源,循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码)}中的一种或多种。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,E-UTRAN-NR(演进UMTS陆地无线电接入网络-新无线)202,5G-CN(5G-CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。其中,UMTS对应通用移动通信业务(Universal Mobile Telecommunications System)。EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,EPS200提供包交换服务,然而所属 领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。E-UTRAN-NR202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由X2接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5G-CN/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1接口连接到5G-CN/EPC210。5G-CN/EPC210包括MME 211、其它MME214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME211是处理UE201与5G-CN/EPC210之间的信令的控制节点。大体上,MME211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换(Packet switching)服务。
作为一个实施例,所述gNB203对应本申请中的所述基站。
作为一个实施例,所述UE201对应本申请中的所述用户设备。
作为一个实施例,所述UE201支持在非授权频谱上进行数据传输的无线通信。
作为一个实施例,所述gNB203支持在非授权频谱上进行数据传输的无线通信。
实施例3
实施例3示例了用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,附图3用三个层展示用于UE和gNB的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干协议层,包括终止于网络侧上的P-GW213处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述用户设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述基站。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一无线信号成于所述PHY301。
作为一个实施例,本申请中的所述第二信令生成于所述PHY301。
作为一个实施例,本申请中的所述第二信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信息生成于所述PHY301。
作为一个实施例,本申请中的所述第一信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信息生成于所述RRC子层306。
实施例4
实施例4示例了NR节点和UE的示意图,如附图4所示。附图4是在接入网络中相互通信的UE450以及gNB410的框图。
gNB410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
UE450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在DL(Downlink,下行)中,在gNB410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对UE450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到UE450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进UE450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在DL(Downlink,下行)中,在UE450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以UE450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由gNB410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在UL(Uplink,上行)中,在UE450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述gNB410处的发送功能,控制器/处理器459基于gNB410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到gNB410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在UL(Uplink,上行)中,gNB410处的功能类似于在DL中所描述的UE450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在UL中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述UE450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述UE450装置至少:在本申请中的所述第一资源粒子集合中接收本申请中的所述第一信令;在本申请中的所述第一小区上接收本申请中的所述第一无线信号。其中,所述第一信令包括所述第一无线信号的调度信息;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合有关。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在本申请中的所述第一资源粒子集合中接收本申请中的所述第一信令;在本申请中的所述第一小区上接收本申请中的所述第一无线信号。其中,所述第一信令包括所述第一无线信号的调度信息;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合有关。
作为一个实施例,所述gNB410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:在本申请中的所述第一资源粒子集合中发送本申请中的所述第一信令;在本申请中的所述第一小区上发送本申请中的所述第一无线信号。其中,所述第一信令包括所述第一无线信号的调度信息;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合有关。
作为一个实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在本申请中的所述第一资源粒子集合中发送本申请中的所述第一信令;在本申请中的所述第一小区上发送本申请中的所述第一无线信号。其中,所述第一信令包括所述第一无线信号的调度信息;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合有关。
作为一个实施例,所述gNB410对应本申请中的所述基站。
作为一个实施例,所述UE450对应本申请中的所述用户设备。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线 接收处理器458,所述控制器/处理器459}中的至少之一被用于接收本申请中的所述第一信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一无线信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一无线信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459}中的至少之一被用于在本申请中的所述Q个资源粒子集合中的所述Q1个资源粒子集合中分别执行本申请中的所述Q1次针对所述第一信令的检测。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459}中的至少之一被用于在本申请中的所述第一资源粒子池中执行针对本申请中的所述第二信令的检测;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475}中的至少之一被用于在本申请中的所述第一资源粒子池中发送本申请中的所述第二信令。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475}中的至少之一被用于在本申请中的所述K个子频带上执行本申请中的所述第一信道接入检测。
实施例5
实施例5示例了无线传输的流程图,如附图5所示。在附图5中,基站N1是用户设备U2的服务小区维持基站。附图5中,方框F1和方框F2中的步骤分别是可选的。
对于N1,在步骤S11中在K个子频带上执行第一信道接入检测;在步骤S12中在第一资源粒子集合中发送第一信令;在步骤S13中在第一小区上发送第一无线信号;在步骤S101中在第一资源粒子池中发送第二信令。
对于U2,在步骤S21中在Q个资源粒子集合中的Q1个资源粒子集合中分别执行Q1次针对第一信令的检测,并在第一资源粒子集合中成功接收到所述第一信令;在步骤S22中在第一小区上接收第一无线信号;在步骤S201中在第一资源粒子池中执行针对第二信令的检测。
在实施例5中,所述第一信令包括所述第一无线信号的调度信息;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合有关。所述第一资源粒子集合是所述Q1个资源粒子集合中的一个资源粒子集合;所述Q是大于1的正整数,所述Q1是不大于所述Q的正整数。所述第一资源粒子集合所占用的频率资源属于所述K个子频带中的K1个子频带;第一信道接入检测被所述N1用于确定所述K个子频带中的所述K1个子频带可以被用于传输无线信号;所述K1是正整数,所述K是不小于所述K1的正整数。第一信息被所述U2用于确定所述第一资源粒子池和所述第一资源粒子集合是否占用N个子频带中相同的子频带;所述第一资源粒子池所占用的时间资源晚于所述第一无线信号所占用的时间资源;所述N是大于1的正整数。
作为一个实施例,所述所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合所占用的频率资源有关。
作为一个实施例,所述所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合在所述Q个资源粒子集合中的索引有关。
作为一个实施例,所述Q个资源粒子集合中的任一资源粒子集合包括正整数个RE。
作为一个实施例,所述Q1次针对所述第一信令的检测分别是Q1次针对所述第一信令的负载尺寸(Payload Size)的盲译码(Blind Decoding)。
作为一个实施例,所述Q个资源粒子集合中的任一资源粒子集合属于M个资源粒子池中的一个资源粒子池,所述第一资源粒子集合属于所述M个资源粒子池中的目标资源粒子池;所述M个资源粒子池中的任一资源粒子池包括所述Q个资源粒子集合中的正整数个资源粒子集合;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述目标资源粒子池有关;所述M是大于1的正整数。
作为一个实施例,所述M个资源粒子池中的任一资源粒子池包括正整数个RE。
作为一个实施例,所述所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述目标资源粒子池在所述M个资源粒子池中的索引有关。
作为一个实施例,所述所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述目标资源粒子池所占用的频率资源有关。
作为一个实施例,所述第一信道接入检测被用于判断所述K个子频带中的每一个子频带是否可以被用于传输无线信号。
作为一个实施例,所述第一信道接入检测包括K次子检测,所述K次子检测分别在所述K个子频带上被执行,所述K次子检测中的K1次子检测分别被用于确定所述K1个子频带可以被用于传输无线信号。
作为一个实施例,所述K次子检测分别被用于判断所述K个子频带是否可以被用于传输无线信号。
作为一个实施例,所述K1个子频带在频域上包括所述第一无线信号所占用的频率资源。
作为一个实施例,所述第一信令包括第一域,所述第一信令中的所述第一域被用于确定所述所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置;所述第一信令中的所述第一域的解读和所述第一资源粒子集合有关。
作为一个实施例,所述所述第一信令中的所述第一域的解读和所述第一资源粒子集合有关是指:所述第一资源粒子集合被用于确定所述第一信令中的所述第一域的物理含义。
作为一个实施例,所述所述第一信令中的所述第一域的解读和所述第一资源粒子集合有关是指:所述第一资源粒子集合和所述第一信令中的所述第一域共同指示所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置。
作为一个实施例,所述所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合有关包括:所述第一信令中的所述第一域的解读与所述第一资源粒子集合有关。
作为一个实施例,所述第一信息由物理层信令承载。
作为一个实施例,所述第一信息由所述第一信令承载。
作为一个实施例,所述第一信息由高层信令承载。
作为一个实施例,所述第一信息由RRC(Radio Resource Control,无线电资源控制)信令承载。
作为一个实施例,所述第一信息由MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)信令承载。
作为一个实施例,所述第一资源粒子池包括正整数个RE。
作为一个实施例,所述第二信令是物理层信令。
作为一个实施例,所述第二信令是动态信令。
作为一个实施例,所述第二信令是用于下行授予(DownLink Grant)的动态信令。
作为一个实施例,所述第二信令是用于上行授予(UpLink Grant)的动态信令。
作为一个实施例,所述第二信令包括DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第二信令包括下行授予DCI(DownLink Grant DCI)。
作为一个实施例,所述第二信令包括上行授予DCI(UpLink Grant DCI)。
作为一个实施例,所述第二信令是UE特定(UE specific)的。
作为一个实施例,所述第一资源粒子池包括正整数个资源粒子集合;所述N1在所述第一资源粒子池中的一个资源粒子集合中发送所述第二信令。
作为一个实施例,所述第一信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH(Physical Downlink Control CHannel,物理下行控制信道)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是EPDCCH(Enhanced PDCCH,增强PDCCH)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH(short PDCCH,短PDCCH)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH(New Radio PDCCH,新无线PDCCH)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH(Narrow Band PDCCH,窄带PDCCH)。
作为一个实施例,所述第一无线信号令在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH(short PDSCH,短PDSCH)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH(New Radio PDSCH,新无线PDSCH)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH(Narrow Band PDSCH,窄带PDSCH)。
作为一个实施例,所述第二信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是EPDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH。
实施例6
实施例6示例了Q个资源粒子集合在时频域上资源映射的示意图;如附图6所示。
在实施例6中,本申请中的所述用户设备在所述Q个资源粒子集合中的Q1个资源粒子集合中分别执行Q1次针对本申请中的所述第一信令的检测,并在本申请中的所述第一资源粒子集合中成功接收到所述第一信令。所述第一资源粒子集合是所述Q1个资源粒子集合中的一个资源粒子集合。所述Q是大于1的正整数,所述Q1是不大于所述Q的正整数。所述第一资源粒子集合所占用的频率资源属于本申请中的所述K个子频带中的所述K1个子频带。
在附图6中,所述Q个资源粒子集合的索引分别是{#0,...,#x,...,#Q-1},其中所述x是小于所述Q减1的正整数;所述K1个子频带的索引分别是{#0,...,#y,...,#K1-1},其中所述y是小于所述K1减1的正整数;细实线边框的方框表示所述Q个资源粒子集合中的资源粒子集合#0,粗实线边框的方框表示所述Q个资源粒子集合中的资源粒子集合#x,粗虚线边框的方框表示所述Q个资源粒子集合中的资源粒子集合#Q-1,细虚线边框的方框表示所述第一资源粒子集合。
作为一个实施例,所述第一资源粒子集合包括正整数个RE。
作为上述实施例的一个子实施例,所述正整数个RE在时域上是连续的。
作为上述实施例的一个子实施例,所述正整数个RE在时域上是不连续的。
作为上述实施例的一个子实施例,所述正整数个RE在频域上是不连续的。
作为一个实施例,所述第一资源粒子集合所占用的频率资源和所述K1个子频带中的任一子频带的交集非空。
作为一个实施例,所述第一资源粒子集合所占用的频率资源分布在所述K1个子频带中的所有子频带上。
作为一个实施例,所述Q个资源粒子集合中至少存在2个资源粒子集合,所述2个资源粒子集合中的一个资源粒子集合所占用的频率资源属于所述K个子频带中的K4个子频带,所述2个资源粒子集合中的另一个资源粒子集合所占用的频率资源属于所述K个子频带中的K5个子频带;所述K4个子频带和所述K5个子频带在频域上不完全重叠。所述K4和所述K5分别是不大于所述K的正整数。
作为一个实施例,所述Q个资源粒子集合中的任一资源粒子集合包括正整数个RE。
作为一个实施例,所述第一资源粒子集合是一个下行物理层控制信道candidate(候选项)。
作为一个实施例,所述第一资源粒子集合是一个PDCCH candidate,PDCCH candidate的具体定义参见3GPP TS36.213中的9.1章节。
作为一个实施例,所述第一资源粒子集合是一个EPDCCH candidate,EPDCCH candidate的具体定义参见3GPP TS36.213中的9.1章节。
作为一个实施例,所述第一资源粒子集合是一个sPDCCH candidate。
作为一个实施例,所述第一资源粒子集合是一个NR-PDCCH candidate。
作为一个实施例,所述第一资源粒子集合是一个NB-PDCCH candidate。
作为一个实施例,所述Q个资源粒子集合分别是Q个下行物理层控制信道candidate(候选项)。
作为一个实施例,所述Q个资源粒子集合分别是Q个PDCCH candidate。
作为一个实施例,所述Q个资源粒子集合分别是Q个EPDCCH candidate。
作为一个实施例,所述Q个资源粒子集合分别是Q个sPDSCH candidate。
作为一个实施例,所述Q个资源粒子集合分别是Q个NR-PDSCH candidate。
作为一个实施例,所述Q个资源粒子集合分别是Q个NB-PDSCH candidate。
作为一个实施例,所述Q个资源粒子集合中至少存在两个资源粒子集合的交集非空。
作为一个实施例,存在至少一个RE同时属于所述Q个资源粒子集合中的两个资源粒子集合。
作为一个实施例,所述Q个资源粒子集合中至少有两个资源粒子集合共享部分相同的RE。
作为一个实施例,所述第一资源粒子集合所占用的频率资源在本申请中的所述第一小区所占用的频率资源之内。
作为一个实施例,所述第一资源粒子集合所占用的频率资源属于本申请中的所述第一小区所占用的频率资源。
作为一个实施例,所述Q个资源粒子集合中的任一资源粒子集合所占用的频率资源在本申请中的所述第一小区所占用的频率资源之内。
作为一个实施例,所述Q1次针对所述第一信令的检测分别是Q1次针对所述第一信令的负载尺寸(Payload Size)的盲译码(Blind Decoding)。
作为一个实施例,所述用户设备在执行完所述Q1次针对所述第一信令的检测之前不确定所述第一信令是否被发送。
作为一个实施例,所述用户设备根据所述Q1次针对所述第一信令的检测确定所述第一信令被发送。
作为一个实施例,对于所述Q1次针对所述第一信令的检测中的每一次检测,所述用户设备首先对在对应的资源粒子集合中接收的无线信号进行信道估计和信道均衡,然后根据所述第一信令的负载尺寸执行信道译码,如果信道译码的输出通过CRC(Cyclic Redundancy Check, 循环冗余校验)的验证则认为成功接收到所述第一信令,否则认为当前检测未能成功接收到所述第一信令。
作为一个实施例,所述Q1次针对所述第一信令的检测中除了和所述第一资源粒子集合对应的检测以外的任一检测均未能成功接收到所述第一信令。
作为一个实施例,所述Q等于44。
作为一个实施例,所述Q1等于所述Q。
作为一个实施例,所述Q1小于所述Q。
作为一个实施例,所述Q个资源粒子集合是由高层信令配置的。
作为一个实施例,所述Q个资源粒子集合是由RRC信令配置的。
作为一个实施例,所述Q个资源粒子集合是由MAC CE信令配置的。
作为一个实施例,所述Q个资源粒子集合是UE特定(UE-specific)的。
实施例7
实施例7示例了Q个资源粒子集合在时频域上资源映射的示意图;如附图7所示。
在实施例7中,本申请中的所述用户设备在所述Q个资源粒子集合中的Q1个资源粒子集合中分别执行Q1次针对本申请中的所述第一信令的检测,并在本申请中的所述第一资源粒子集合中成功接收到所述第一信令。所述第一资源粒子集合是所述Q1个资源粒子集合中的一个资源粒子集合。所述Q是大于1的正整数,所述Q1是不大于所述Q的正整数。
在附图7中,所述Q个资源粒子集合的索引分别是{#0,...,#Q-1};细实线边框的方框表示所述Q个资源粒子集合中的资源粒子集合#0,粗虚线边框的方框表示所述Q个资源粒子集合中的资源粒子集合#Q-1,粗实线边框的方框表示所述第一资源粒子集合。
作为一个实施例,所述第一资源粒子集合包括正整数个RE。
作为上述实施例的一个子实施例,所述正整数个RE在频域上是连续的。
实施例8
实施例8示例了M个资源粒子池在时频域上的资源映射的示意图;如附图8所示。
在实施例8中,本申请中的所述用户设备在本申请中的所述Q个资源粒子集合中的所述Q1个资源粒子集合中分别执行Q1次针对本申请中的所述第一信令的检测,并在本申请中的所述第一资源粒子集合中成功接收到所述第一信令。所述第一资源粒子集合是所述Q1个资源粒子集合中的一个资源粒子集合。所述Q个资源粒子集合中的任一资源粒子集合属于本申请中的所述M个资源粒子池中的一个资源粒子池,所述第一资源粒子集合属于所述M个资源粒子池中的目标资源粒子池;所述M个资源粒子池中的任一资源粒子池包括所述Q个资源粒子集合中的正整数个资源粒子集合;所述M是大于1的正整数。所述第一资源粒子集合所占用的频率资源属于本申请中的所述K个子频带中的K1个子频带。
在附图8中,所述M个资源粒子池的索引分别是{#0,...,#M-1};所述K1个子频带的索引分别是{#0,...,#K1-1};细实线边框空白填充的方框表示所述M个资源粒子池中的资源粒子池#0,粗实线边框空白填充的方框表示所述Q个资源粒子集合中的资源粒子集合#Q-1,细虚线边框空白填充的方框表示所述目标资源粒子池,细实线边框左斜线填充的方格表示所述第一资源粒子集合。
作为一个实施例,所述M个资源粒子池中的任一资源粒子池包括正整数个RE。
作为一个实施例,所述M个资源粒子池中的任一资源粒子池由所述Q个资源粒子集合中的正整数个资源粒子集合组成。
作为一个实施例,所述M个资源粒子池中至少有两个资源粒子池包括的所述Q个资源粒子集合中的资源粒子集合的数目是不相等的。
作为一个实施例,所述M个资源粒子池属于同一个CORESET(COntrol REsource SET,控制资源集合)。
作为一个实施例,所述M个资源粒子池属于同一个搜索空间(search space)。
作为一个实施例,所述M个资源粒子池中的任一资源粒子池是一个CORESET。
作为一个实施例,所述M个资源粒子池中的任一资源粒子池是一个搜索空间(search space)。
作为一个实施例,所述Q个资源粒子集合中不存在一个资源粒子集合同时属于所述M个资源粒子池中的两个资源粒子池。
作为一个实施例,所述M个资源粒子池中至少有两个资源粒子池共享部分相同的RE。
作为一个实施例,存在至少一个RE同时属于所述M个资源粒子池中的两个资源粒子池。
作为一个实施例,所述目标资源粒子池所占用的频率资源属于所述K1个子频带。
作为一个实施例,所述目标资源粒子池所占用的频率资源和所述K1个子频带中的任一子频带的交集非空。
作为一个实施例,所述目标资源粒子池所占用的频率资源分布在所述K1个子频带中的所有子频带上。
作为一个实施例,第四资源粒子池所占用的频率资源属于所述K个子频带中的K2个子频带,第五资源粒子池所占用的频率资源属于所述K个子频带中的K3个子频带,所述K2个子频带和所述K3个子频带在频域上不完全重叠;所述第四资源粒子池和所述第五资源粒子池是所述M个资源粒子池中的任意两个资源粒子池,所述K2和所述K3分别是不大于所述K的正整数。
作为一个实施例,所述M个资源粒子池是由高层信令配置的。
作为一个实施例,所述M个资源粒子池是由RRC信令配置的。
作为一个实施例,所述M个资源粒子池是由MAC CE信令配置的。
作为一个实施例,所述M个资源粒子池是UE特定(UE-specific)的。
实施例9
实施例9示例了M个资源粒子池在时频域上的资源映射的示意图;如附图9所示。
在实施例9中,本申请中的所述用户设备在本申请中的所述Q个资源粒子集合中的所述Q1个资源粒子集合中分别执行Q1次针对本申请中的所述第一信令的检测,并在本申请中的所述第一资源粒子集合中成功接收到所述第一信令。所述第一资源粒子集合是所述Q1个资源粒子集合中的一个资源粒子集合。所述Q个资源粒子集合中的任一资源粒子集合属于本申请中的所述M个资源粒子池中的一个资源粒子池,所述第一资源粒子集合属于所述M个资源粒子池中的目标资源粒子池;所述M个资源粒子池中的任一资源粒子池包括所述Q个资源粒子集合中的正整数个资源粒子集合。
在附图9中,所述M个资源粒子池的索引分别是{#0,...,#M-1};空白填充的方框表示所述M个资源粒子池中的一个资源粒子池,左斜线填充的方格表示所述第一资源粒子集合。
实施例10
实施例10示例了K个子频带和K1个子频带之间的关系的示意图;如附图10所示。
在实施例10中,本申请中的所述第一资源粒子集合所占用的频率资源属于所述K个子频带中的所述K1个子频带。所述K1是正整数,所述K是不小于所述K1的正整数。在附图10中,所述K个子频带的索引分别是{#0,...,#x,...,#y,...,#K-1},所述x和所述y分别是小于所述K减1的正整数,所述x不等于所述y;左斜线填充的方框表示所述K1个子频带中的子频带。
作为一个实施例,所述K个子频带中的任一子频带包括一个载波中的一个BWP(Bandwidth Part,带宽区间)。
作为一个实施例,所述K个子频带中的任一子频带包括一个载波中的多个BWP。
作为一个实施例,所述K个子频带中的任一子频带包括正整数个连续的子载波。
作为一个实施例,所述K个子频带中的任一子频带包括本申请中的所述第一小区所占用的载波中的一个BWP。
作为一个实施例,所述K个子频带中的任一子频带包括本申请中的所述第一小区所占用的载波中的多个BWP。
作为一个实施例,所述K个子频带中的任一子频带包括本申请中的所述第一小区所占用的载波中的正整数个连续的子载波。
作为一个实施例,所述K个子频带中的任一子频带的带宽是20MHz。
作为一个实施例,所述K个子频带在频域上是两两相互正交(不重叠)的。
作为一个实施例,所述K个子频带在频域上是连续的。
作为一个实施例,所述K个子频带中至少有两个相邻的子频带在频域上是不连续的。
作为一个实施例,所述K个子频带中任意两个相邻的子频带之间在频域上存在保护间隔。
作为一个实施例,所述K1个子频带在所述K个子频带中是连续的。
作为一个实施例,所述K1个子频带中至少有两个相邻的子频带在所述K个子频带中是不连续的。
作为一个实施例,本申请中的所述第一小区所占用的频率资源包括所述K个子频带。
作为一个实施例,本申请中的所述第一小区所占用的频率资源由所述K个子频带组成。
作为一个实施例,本申请中的所述第一小区所占用的频率资源是一个载波(Carrier),所述K个子频带组成所述第一小区所占用的载波。
作为一个实施例,所述K大于1。
作为一个实施例,所述K1大于1。
作为一个实施例,所述K1等于1。
作为一个实施例,所述K1小于所述K。
作为一个实施例,所述K1等于所述K。
实施例11
实施例11示例了K个子频带和N个子频带之间的关系的示意图;如附图11所示。
在实施例11中,本申请中的所述用户设备在本申请中的所述第一资源粒子集合中接收本申请中的所述第一信令,在本申请中的所述第一资源粒子池中执行针对本申请中的所述第二信令的检测。所述第一资源粒子集合所占用的频率资源属于所述K个子频带中的所述K1个子频带。本申请中的所述第一信息被用于确定所述第一资源粒子池和所述第一资源粒子集合是否占用所述N个子频带中相同的子频带。
在附图11中,所述K个子频带的索引分别是{#0,...,#x,...,#K-1},所述x是小于所述K减1的正整数;所述N个子频带的索引分别是{#0,...,#y,...,#N-1},所述y是小于所述N减1的正整数。
作为一个实施例,所述N个子频带中的任一子频带包括一个载波中的一个BWP。
作为一个实施例,所述N个子频带中的任一子频带是一个载波中的一个BWP。
作为一个实施例,所述N个子频带中的任一子频带包括一个载波中的多个BWP。
作为一个实施例,所述N个子频带中的任一子频带包括一个载波中的正整数个连续的子载波。
作为一个实施例,所述N个子频带中的任一子频带包括本申请中的所述第一小区所占用的载波中的一个BWP。
作为一个实施例,所述N个子频带中的任一子频带是本申请中的所述第一小区所占用的载波中的一个BWP。
作为一个实施例,所述N个子频带中的任一子频带包括本申请中的所述第一小区所占用的载波中的多个BWP。
作为一个实施例,所述N个子频带中的任一子频带包括本申请中的所述第一小区所占用的载波中的正整数个连续的子载波。
作为一个实施例,所述N个子频带中至少有两个子频带在频域上是部分重叠的。
作为一个实施例,所述N个子频带中的任意两个子频带在频域不完全重叠。
作为一个实施例,所述N个子频带是由高层信令配置的。
作为一个实施例,所述N个子频带是由RRC信令配置的。
作为一个实施例,所述N个子频带是UE特定(UE specific)的。
作为一个实施例,所述N个子频带中至少存在一个子频带和所述K个子频带中的任一子频带在频域上不完全重合。
作为一个实施例,所述N个子频带中至少有一个子频带属于所述K个子频带中的一个子频带。
作为一个实施例,所述N个子频带中至少有一个子频带属于所述K个子频带中的多个子频带。
作为一个实施例,所述N个子频带中至少有一个子频带和所述K个子频带中的多个子频带的交集均非空。
实施例12
实施例12示例了K个子频带和N个子频带之间的关系的示意图;如附图12所示。
在实施例12中,本申请中的所述用户设备在本申请中的所述第一资源粒子集合中接收本申请中的所述第一信令,在本申请中的所述第一资源粒子池中执行针对本申请中的所述第二信令的检测。所述第一资源粒子集合所占用的频率资源属于所述K个子频带中的所述K1个子频带。本申请中的所述第一信息被用于确定所述第一资源粒子池和所述第一资源粒子集合是否占用所述N个子频带中相同的子频带。所述N等于所述K。
在附图12中,所述K个子频带的索引分别是{#0,#1,...,#K-1};所述N个子频带的索引分别是{#0,#1,...,#N-1}。
作为一个实施例,所述N个子频带在频域上是两两相互正交(不重叠)的。
作为一个实施例,所述N等于所述K,所述N个子频带和所述K个子频带一一对应,所述N个子频带中的任一子频带和所述K个子频带中对应的子频带在频域上完全重合。
作为一个实施例,所述N等于所述K,所述N个子频带和所述K个子频带一一对应,所述N个子频带中的任一子频带在频域上属于所述K个子频带中对应的子频带。
实施例13
实施例13示例了第一无线信号所占用的频率资源在第一小区所占用的频率资源内的位置与第一资源粒子集合之间的关系的示意图;如附图13所示。
在实施例13中,本申请中的所述用户设备在所述第一资源粒子集合中接收本申请中的所述第一信令,在本申请中的所述第一小区上接收本申请中的所述第一无线信号。所述第一信令包括所述第一无线信号的调度信息;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合有关。所述第一资源粒子集合所占用的频率资源属于本申请中的所述K个子频带中的所述K1个子频带,所述第一无线信号所占用的频率资源在所述K1个子频带之内。
在附图13中,所述K1个子频带的索引分别是{#0,...,#K1-1},左斜线填充的方框表示所述第一无线信号所占用的频率资源。
作为一个实施例,所述所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合所占用的频率资源有关。
作为一个实施例,所述第一资源粒子集合所占用的频率资源和本申请中的所述第一信令共同被用于确定所述所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置。
作为一个实施例,所述K1个子频带在频域上包括所述第一无线信号所占用的频率资源。
作为一个实施例,所述第一无线信号所占用的频率资源属于所述K1个子频带中的一个子频带。
作为一个实施例,所述第一资源粒子集合属于本申请中的所述M个资源粒子池中的所述目标资源粒子池。
作为一个实施例,所述所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述目标资源粒子池所占用的频率资源有关。
作为一个实施例,所述目标资源粒子池所占用的频率资源属于所述K1个子频带。
作为一个实施例,所述目标资源粒子池所占用的频率资源和所述K1个子频带中的任一子频带的交集非空。
作为一个实施例,所述目标资源粒子池所占用的频率资源分布在所述K1个子频带中的所有子频带上。
作为一个实施例,所述所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合在所述目标资源粒子池中的位置无关。
实施例14
实施例14示例了第一无线信号所占用的频率资源在第一小区所占用的频率资源内的位置与第一资源粒子集合之间的关系的示意图;如附图14所示。
在实施例14中,本申请中的所述用户设备在所述第一资源粒子集合中接收本申请中的所述第一信令,在本申请中的所述第一小区上接收本申请中的所述第一无线信号。所述第一信令包括所述第一无线信号的调度信息;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合有关。所述第一资源粒子集合所占用的频率资源属于本申请中的所述K个子频带中的所述K1个子频带,所述第一无线信号所占用的频率资源在所述K1个子频带之内。
在附图14中,所述K1个子频带的索引分别是{#0,...,#K1-1},左斜线填充的方框表示所述第一无线信号所占用的频率资源。
作为一个实施例,所述第一无线信号所占用的频率资源属于所述K1个子频带中的多个子频带。
作为一个实施例,所述第一无线信号所占用的频率资源属于所述K1个子频带中的多个在频域上连续的子频带。
作为一个实施例,所述第一无线信号所占用的频率资源和所述K1个子频带中的多个子频带的交集非空。
作为一个实施例,所述第一无线信号所占用的频率资源和所述K1个子频带中的多个在频域上连续的子频带的交集非空。
作为一个实施例,所述第一无线信号所占用的频率资源和所述K1个子频带中任一子频带的交集非空。
作为上述实施例的一个子实施例,所述K1个子频带在频域上是连续的。
实施例15
实施例15示例了第一无线信号所占用的频率资源在第一小区所占用的频率资源内的位置与第一资源粒子集合之间的关系的示意图;如附图15所示。
在实施例15中,本申请中的所述用户设备在本申请中的所述Q个资源粒子集合中的所述Q1个资源粒子集合中分别执行Q1次针对本申请中的所述第一信令的检测,并在所述第一资源粒子集合中成功接收到所述第一信令;所述用户设备在本申请中的所述第一小区上接收本申请中的所述第一无线信号。所述第一信令包括所述第一无线信号的调度信息;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合有关。所述第一资源粒子集合是所述Q1个资源粒子集合中的一个资源粒子集合,所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合在所述Q个资源粒子集合中的索引有关。
在附图15中,当所述第一资源粒子集合在所述Q个资源粒子集合中的索引属于第一索引集合时,所述第一无线信号所占用的频率资源所属的频段由左斜线填充的方框表示;当所述第一资源粒子集合在所述Q个资源粒子集合中的索引属于第二索引集合时,所述第一无线信号所占用的频率资源所属的频段由交叉线填充的方框表示;当所述第一资源粒子集合在所述Q个资源粒子集合中的索引属于第三索引集合时,所述第一无线信号所占用的频率资源所属的频段由小点填充的方框表示。所述第一索引集合,所述第二索引集合和所述第三索引集合 分别包括正整数个索引。
作为一个实施例,所述第一索引集合,所述第二索引集合和所述第三索引集合两两相互正交。
作为一个实施例,所述Q1次针对所述第一信令的检测分别是Q1次针对所述第一信令的负载尺寸(Payload Size)的盲译码(Blind Decoding)。
作为一个实施例,所述Q个资源粒子集合被依次索引为0,1,…,Q-1。
作为一个实施例,所述Q个资源粒子集合的索引是由所述用户设备自行维护的,即不需要基站配置。
作为一个实施例,所述Q个资源粒子集合的索引根据所述用户设备执行盲译码的顺序依次增加。
作为一个实施例,所述Q个资源粒子集合的索引根据所述用户设备执行检测的顺序依次增加。
作为一个实施例,所述所述第一资源粒子集合在所述Q个资源粒子集合中的索引与所述第一资源粒子集合在所述Q个资源粒子集合中被执行检测的顺序有关。
作为一个实施例,所述所述第一资源粒子集合在所述Q个资源粒子集合中的索引与所述第一资源粒子集合在所述Q个资源粒子集合中被执行盲译码的顺序有关。
作为一个实施例,所述第一资源粒子集合在所述Q1个资源粒子集合中是最后一个被执行检测的。
作为一个实施例,所述第一资源粒子集合在所述Q1个资源粒子集合中是最后一个被执行盲译码的。
作为一个实施例,所述Q1次针对所述第一信令的检测中和所述第一资源粒子集合所对应的检测是所述Q1次针对所述第一信令的检测中最后一个被执行的检测。
作为一个实施例,所述Q1次针对所述第一信令的检测中和所述第一资源粒子集合所对应的检测是所述Q1次针对所述第一信令的检测中第一个成功接收到所述第一信令的检测。
作为一个实施例,所述Q个资源粒子集合的索引是连续的。
作为一个实施例,所述Q个资源粒子集合的索引是不连续的。
作为一个实施例,所述Q1个资源粒子集合在所述Q个资源粒子集合中的索引是连续的。
作为一个实施例,所述Q1个资源粒子集合在所述Q个资源粒子集合中的索引是不连续的。
实施例16
实施例16示例了第一无线信号所占用的频率资源在第一小区所占用的频率资源内的位置与第一资源粒子集合之间的关系的示意图;如附图16所示。
在实施例16中,本申请中的所述用户设备在所述第一资源粒子集合中接收本申请中的所述第一信令,在本申请中的所述第一小区上接收本申请中的所述第一无线信号。所述第一信令包括所述第一无线信号的调度信息;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合有关。所述第一资源粒子集合属于本申请中的所述M个资源粒子池中的所述目标资源粒子池;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述目标资源粒子池在所述M个资源粒子池中的索引有关。
在附图16中,当所述目标资源粒子池在所述M个资源粒子池中的索引属于第四索引集合时,所述第一无线信号所占用的频率资源所属的频段由左斜线填充的方框表示;当所述目标资源粒子池在所述M个资源粒子池中的索引属于第五索引集合时,所述第一无线信号所占用的频率资源所属的频段由交叉线填充的方框表示;当所述目标资源粒子池在所述M个资源粒子池中的索引属于第六索引集合时,所述第一无线信号所占用的频率资源所属的频段由小点填充的方框表示。所述第四索引集合,所述第五索引集合和所述第六索引集合分别包括正整数个索引。
作为一个实施例,所述所述第一无线信号所占用的频率资源在所述第一小区所占用的频 率资源内的位置与所述目标资源粒子池在所述M个资源粒子池中的索引有关。
作为一个实施例,所述所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合在所述目标资源粒子池中的索引无关。
作为一个实施例,所述M个资源粒子池的索引是由本申请中的所述用户设备自行维护的,即不需要基站配置。
作为一个实施例,所述M个资源粒子池的索引根据本申请中的所述用户设备在所述M个资源粒子池中的资源粒子集合中执行盲译码的顺序依次增加。
作为一个实施例,所述M个资源粒子池的索引根据本申请中的所述用户设备在所述M个资源粒子池中的资源粒子集合中执行检测的顺序依次增加。
作为一个实施例,本申请中的所述Q个资源粒子集合中所有在所述M个资源粒子池中的同一个资源粒子池中的资源粒子集合在所述Q个资源粒子集合中的索引是连续的。
作为一个实施例,所述M个资源粒子池的索引根据所包括的所述Q个资源粒子集合中的资源粒子集合在所述Q个资源粒子集合中的索引依次增加。
作为一个实施例,第二资源粒子集合是所述Q个资源粒子集合中属于第二资源粒子池的任一资源粒子集合,第三资源粒子集合是所述Q个资源粒子集合中属于第三资源粒子池的任一资源粒子集合,所述第二资源粒子池和所述第三资源粒子池是所述M个资源粒子池中的任意两个资源粒子池。所述第二资源粒子池在所述M个资源粒子池中的索引小于所述第三资源粒子池在所述M个资源粒子池中的索引。
作为上述实施例的一个子实施例,所述第二资源粒子集合在所述Q个资源粒子集合中的索引小于所述第三资源粒子集合在所述Q个资源粒子集合中的索引。
作为上述实施例的一个子实施例,所述第二资源粒子集合被执行检测的时刻早于所述第三资源粒子集合被执行检测的时刻。
作为上述实施例的一个子实施例,所述第二资源粒子集合被执行盲译码的时刻早于所述第三资源粒子集合被执行盲译码的时刻。
作为一个实施例,所述目标资源粒子池在所述M个资源粒子池中的索引与所述目标资源粒子池中的资源粒子集合在所述Q个资源粒子集合中被执行检测的顺序有关。
作为一个实施例,所述目标资源粒子池在所述M个资源粒子池中的索引与所述目标资源粒子池中的资源粒子集合在所述Q个资源粒子集合中被执行盲译码的顺序有关。
作为一个实施例,所述目标资源粒子池在所述M个资源粒子池中的索引与所述目标资源粒子池中的资源粒子集合在所述Q个资源粒子集合中的索引有关。
实施例17
实施例17示例了第一信令的示意图;如附图17所示。
在实施例17中,所述第一信令包括第一域,所述第一信令中的所述第一域被用于确定本申请中的所述第一无线信号所占用的频率资源在本申请中的所述第一小区所占用的频率资源内的位置;所述第一信令中的所述第一域的解读和本申请中的所述第一资源粒子集合有关。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是动态信令。
作为一个实施例,所述第一信令是用于下行授予(DownLink Grant)的动态信令。
作为一个实施例,所述第一信令包括DCI。
作为一个实施例,所述第一信令包括下行授予DCI(DownLink Grant DCI)。
作为一个实施例,所述第一信令是UE特定(UE specific)的。
作为一个实施例,所述第一信令的信令标识是C(Cell,小区)-RNTI(Radio Network Temporary Identifier,无线网络暂定标识)。
作为一个实施例,所述第一信令是被C-RNTI所标识的DCI。
作为一个实施例,所述第一信令被用于确定所述所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置。
作为一个实施例,所述第一信令中的所述第一域的解读和所述第一资源粒子集合所占用的频率资源有关。
作为一个实施例,所述第一信令中的所述第一域的解读和所述第一资源粒子集合在所述Q个资源粒子集合中的索引有关。
作为一个实施例,所述第一信令中的所述第一域的解读和所述目标资源粒子池有关。
作为一个实施例,所述第一信令中的所述第一域的解读和所述目标资源粒子池在所述M个资源粒子池中的索引有关。
作为一个实施例,所述第一信令中的所述第一域的解读和所述目标资源粒子池所占用的频率资源有关。
作为一个实施例,所述所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置被所述第一信令中的所述第一域和所述第一资源粒子集合共同指示。
作为一个实施例,所述所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置被所述第一信令中的所述第一域和所述第一资源粒子集合所占用的频率资源共同指示。
作为一个实施例,所述所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置被所述第一信令中的所述第一域和所述第一资源粒子集合在所述Q个资源粒子集合中的索引共同指示。
作为一个实施例,所述所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置被所述第一信令中的所述第一域和所述目标资源粒子池共同指示。
作为一个实施例,所述所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置被所述第一信令中的所述第一域和所述目标资源粒子池在所述M个资源粒子池中的索引共同指示。
作为一个实施例,所述所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置被所述第一信令中的所述第一域和所述目标资源粒子池所占用的频率资源共同指示。
作为一个实施例,所述第一信令中的所述第一域包括Frequency domain resource assignment(频域资源分配)域中的部分或全部信息,所述Frequency domain resource assignment域的具体定义参见3GPP TS38.212中的7.3.1章节。
作为一个实施例,所述第一信令中的所述第一域包括Bandwidth part indicator(带宽区间指示)域中的部分或全部信息,所述Bandwidth part indicator域的具体定义参见3GPP TS38.212中的7.3.1章节。
作为一个实施例,所述第一信令中的所述第一域包括Frequency domain resource assignment域和Bandwidth part indicator域中的部分或全部信息。
作为一个实施例,所述第一信令包括第二域,所述第一信令中的所述第二域指示本申请中的所述第一信息。
作为上述实施例的一个子实施例,所述第一信令中的所述第二域包括1个比特。
实施例18
实施例18示例了第一信道接入检测的示意图;如附图18所示。
在实施例18中,所述第一信道接入检测被用于判断本申请中的所述K个子频带中的每一个子频带是否可以被用于传输无线信号。所述第一信道接入检测包括K次子检测,所述K次子检测分别在所述K个子频带上被执行,所述K次子检测中的K1次子检测分别被用于确定所述K个子频带中的所述K1个子频带可以被用于传输无线信号。所述K次子检测的执行是相互独立的。
在附图18中,所述K个子频带的索引分别是{#0,#1,...,#K-1},所述K次子检测的索引分别是{#0,#1,...,#K-1}。
作为一个实施例,所述第一信道接入检测被用于判断所述K个子频带中的每一个子频带 是否可以被用于传输无线信号。
作为一个实施例,所述第一信道接入检测被用于判断所述K个子频带中的每一个子频带是否空闲(Idle)。
作为一个实施例,所述第一信道接入检测被用于确定所述K个子频带中的所述K1个子频带可以被用于传输无线信号。
作为一个实施例,所述第一信道接入检测被用于确定所述K个子频带中的所述K1个子频带空闲(Idle)。
作为一个实施例,所述第一信道接入检测被所述第一信令的发送者用于确定所述K个子频带中的所述K1个子频带可以被用于发送无线信号。
作为一个实施例,所述第一信道接入检测是LBT(Listen Before Talk,会话前监听);LBT的具体定义和实现方式参见3GPP TR36.889。
作为一个实施例,所述第一信道接入检测是CCA(Clear Channel Assessment,空闲信道评估);CCA的具体定义和实现方式参见3GPP TR36.889。
作为一个实施例,所述第一信道接入检测是通过3GPP TS36.213中的15章节所定义的方式实现的。
作为一个实施例,所述第一信道接入检测是wideband(宽带)信道接入检测。
作为一个实施例,所述第一信道接入检测的结束时刻不晚于本申请中的所述Q个资源粒子集合所占用的时间资源的起始时刻。
作为一个实施例,所述K次子检测分别被用于判断所述K个子频带是否可以被用于传输无线信号。
作为一个实施例,所述K次子检测分别被用于判断所述K个子频带是否空闲(Idle)。
作为一个实施例,所述K1次子检测是所述K次子检测中分别被用于判断所述K1个子频带是否可以被用于传输无线信号的子检测。
作为一个实施例,所述K1次子检测分别被用于确定所述K1个子频带空闲(Idle)。
作为一个实施例,所述K次子检测分别被所述第一信令的发送者用于判断所述K个子频带是否可以被用于发送无线信号。
作为一个实施例,所述K1次子检测分别被所述第一信令的发送者用于确定所述K1个子频带可以被用于发送无线信号。
作为一个实施例,所述K次子检测中至少存在一个不属于所述K1次子检测的子检测被用于确定对应的子频带不空闲(Idle)。
作为一个实施例,所述K次子检测中至少存在一个不属于所述K1次子检测的子检测被用于确定对应的子频带不能被用于传输无线信号。
作为一个实施例,所述K次子检测中不属于所述K1次子检测的任一子检测被用于确定对应的子频带不空闲(Idle)。
作为一个实施例,所述K次子检测中不属于所述K1次子检测的任一子检测被用于确定对应的子频带不能被用于传输无线信号。
作为一个实施例,所述K次子检测中的任一子检测是LBT;LBT的具体定义和实现方式参见3GPP TR36.889。
作为一个实施例,所述K次子检测中的任一子检测是CCA;CCA的具体定义和实现方式参见3GPP TR36.889。
作为一个实施例,所述K次子检测中的任一子检测是下行信道接入过程(Downlink Channel access procedure);下行信道接入过程的具体定义和实现方式参见3GPP TS36.213中的15.1章节。
作为一个实施例,所述K次子检测中的任一子检测是Category 4 LBT(第四类型的LBT);Category 4 LBT的具体定义和实现方式参见3GPP TR36.889。
作为一个实施例,所述K次子检测中的至少一次子检测是Category 4 LBT(第四类型的 LBT);Category 4 LBT的具体定义和实现方式参见3GPP TR36.889。
作为一个实施例,所述K次子检测中的任一子检测是通过3GPP TS36.213中的15章节所定义的方式实现的。
作为一个实施例,所述K次子检测中的任一子检测是sub-band(子带)信道接入检测。
作为一个实施例,所述K次子检测中任一子检测的结束时刻不晚于本申请中的所述Q个资源粒子集合所占用的时间资源的起始时刻。
作为一个实施例,所述K次子检测中任意两次子检测的结束时刻是相同的。
作为一个实施例,所述K次子检测中任意两次子检测所对应的计数器(counter)N是相互独立的,所述计数器(counter)N的具体定义参见3GPP TS36.213(V14.1.0)中的15.1.1章节。
作为一个实施例,当本申请中的所述基站在所述K个子频带中的任一给定子频带上停止传输时,对于所述K次子检测中除了和所述任一给定子频带对应的子检测之外的任一给定子检测,所述基站在等待4Tsl或重置(reinitialise)所述任一给定子检测所对应的计数器(counter)N后,继续对所述任一给定子检测所对应的计数器(counter)N在检测到空闲(Idle)时隙时进行减数。
实施例19
实施例19示例了第一信道接入检测的示意图;如附图19所示。
在实施例19中,所述第一信道接入检测被用于判断本申请中的所述K个子频带中的每一个子频带是否可以被用于传输无线信号。所述第一信道接入检测包括K次子检测,所述K次子检测分别在所述K个子频带上被执行,所述K次子检测中的K1次子检测分别被用于确定所述K个子频带中的所述K1个子频带可以被用于传输无线信号。所述K次子检测的执行是相互独立的。
在附图19中,所述K个子频带的索引分别是{#0,#1,...,#K-1},所述K次子检测的索引分别是{#0,#1,...,#K-1}。
作为一个实施例,所述K次子检测中的所有子检测所对应的计数器(counter)N是相等的,所述计数器(counter)N的具体定义参见3GPP TS36.213(V14.1.0)中的15.1.1章节。
作为一个实施例,所述K次子检测中的所有子检测所对应的计数器(counter)N等于参考计数器,所述参考计数器是所述K次子检测中和所述K个子频带中具有最大CW p的子频带对应的子检测所对应的计数器(counter)N;所述CW p是竞争窗口(contention window)的大小,所述CW p的具体定义参见3GPP TS36.213中的15章节。
作为一个实施例,当本申请中的所述基站在所述K个子频带中的任一给定子频带上停止传输时,所述基站重置(reinitialise)所述K次子检测中所有子检测所对应的计数器(counter)N。
实施例20
实施例20示例了第一信道接入检测的示意图;如附图20所示。
在实施例20中,所述第一信道接入检测被用于判断本申请中的所述K个子频带中的每一个子频带是否可以被用于传输无线信号。所述第一信道接入检测包括K次子检测,所述K次子检测分别在所述K个子频带上被执行,所述K次子检测中的K1次子检测分别被用于确定所述K个子频带中的所述K1个子频带可以被用于传输无线信号。所述K个子频带中的任一子频带是否能被用于传输无线信号和参考子检测有关,所述参考子检测是所述K次子检测中和参考子频带对应的子检测,所述参考子频带是所述K个子频带中的一个子频带。
在附图20中,所述K个子频带和所述K次子检测的索引分别是{#0,...,#K-1}。
作为一个实施例,所述K次子检测中只有一次子检测是Category 4 LBT(第四类型的LBT);Category 4 LBT的具体定义和实现方式参见3GPP TR36.889。
作为一个实施例,所述K次子检测中的至少一次子检测是Category 2 LBT(第二类型的LBT);Category 2 LBT的具体定义和实现方式参见3GPP TR36.889。
作为一个实施例,所述K次子检测中的K-1次子检测均是Category 2 LBT(第二类型的LBT);Category 2 LBT的具体定义和实现方式参见3GPP TR36.889。
作为一个实施例,所述参考子检测是Category 4 LBT(第四类型的LBT)。
作为一个实施例,所述K个子频带中至少有一个给定子频带,所述给定子频带是否可以被用于传输无线信号和所述K次子检测中除了和所述给定子频带对应的子检测以外的一个子检测有关。
作为一个实施例,所述K次子检测中除了所述参考子检测以外的任一子检测是Category 2 LBT。
作为一个实施例,所述参考子频带是否能被用于传输无线信号只和所述K个子检测中的所述参考子检测有关。
作为一个实施例,如果所述参考子检测判断所述参考子频带空闲,所述参考子频带被确定可以被用于传输无线信号;如果所述参考子检测判断所述参考子频带非空闲,所述参考子频带被确定不可以被用于传输无线信号。
作为一个实施例,对于所述K个子频带中除了所述参考子频带以外的任一给定子频带,所述参考子检测和所述任一给定子频带对应的子检测共同被用于判断所述任一给定子频带是否可以被用于传输无线信号。
作为一个实施例,对于所述K个子频带中除了所述参考子频带以外的任一给定子频带,如果所述参考子检测判断所述参考子频带空闲,并且所述任一给定子频带对应的子检测判断所述任一给定子频带空闲,所述任一给定子频带被确定可以被用于传输无线信号。
作为一个实施例,对于所述K个子频带中除了所述参考子频带以外的任一给定子频带,如果所述参考子检测判断所述参考子频带可以被用于传输无线信号,并且所述任一给定子频带对应的子检测判断所述任一给定子频带空闲,所述任一给定子频带被确定可以被用于传输无线信号。
作为一个实施例,对于所述K个子频带中除了所述参考子频带以外的任一给定子频带,如果所述参考子检测判断所述参考子频带非空闲,所述任一给定子频带被确定不可以被用于传输无线信号。
作为一个实施例,对于所述K个子频带中除了所述参考子频带以外的任一给定子频带,如果所述参考子检测判断所述参考子频带不可以被用于传输无线信号,所述任一给定子频带被确定不可以被用于传输无线信号。
作为一个实施例,对于所述K个子频带中除了所述参考子频带以外的任一给定子频带,如果所述参考子检测判断所述参考子频带可以被用于传输无线信号,并且所述任一给定子频带对应的子检测在所述参考子频带发送无线信号之前的25微秒内判断所述任一给定子频带空闲,所述任一给定子频带被确定可以被用于传输无线信号。
作为一个实施例,对于所述K个子频带中除了所述参考子频带以外的任一给定子频带,如果所述任一给定子频带对应的子检测判断所述任一给定子频带非空闲,所述任一给定子频带被确定不可以被用于传输无线信号。
作为一个实施例,对于所述K个子频带中除了所述参考子频带以外的任一给定子频带,如果所述任一给定子频带对应的子检测在所述参考子频带发送无线信号之前的25微秒内判断所述任一给定子频带非空闲,所述任一给定子频带被确定不可以被用于传输无线信号。
作为一个实施例,对于所述K个子频带中除了所述参考子频带以外的任一给定子频带,所述任一给定子频带对应的子检测和所述参考子检测在相同时刻结束。
作为一个实施例,所述参考子频带是本申请中的所述基站设备在所述K个子频带中随机选择的。
作为上述实施例的一个子实施例,所述基站设备在所述K个子频带中选择任一子频带作为所述参考子频带的概率是相等的。
作为上述实施例的一个子实施例,所述K个子频带中的任一子频带不会在1秒内多次被 选择为所述参考子频带。
作为一个实施例,所述K个子频带具有相同的CW p,所述CW p是竞争窗口(contention window)的大小,所述CW p的具体定义参见3GPP TS36.213中的15章节。
作为一个实施例,所述K个子频带对应的CW p是两两相互独立的,所述CW p是竞争窗口(contention window)的大小,所述CW p的具体定义参见3GPP TS36.213中的15章节。
实施例21
实施例21示例了K次子检测中的一次子检测的流程图;如附图21所示。
在实施例21中,所述K次子检测分别在本申请中的所述K个子频带上被执行。第一子检测是所述K次子检测中的一次子检测,所述第一子检测在所述K个子频带中的第一子频带上被执行。所述第一子检测的过程可以由附图21中的流程图来描述。本申请中的所述基站在步骤S2101中处于闲置状态,在步骤S2102中判断是否需要发送,如果是,进行到步骤S2103中,否则返回到步骤S2101;在步骤S2103中在所述第一子频带上的一个延迟时段(defer duration)内执行能量检测;在步骤S2104中判断这个延迟时段内的所有时隙时段是否都空闲(Idle),如果是,进行到步骤S2105中,否则进行到步骤S2108中;在步骤S2105中判断是否决定发送,如果是,进行到步骤S2106中,否则返回到步骤S2101;在步骤S2106中在所述第一子频带上发送无线信号;在步骤S2107中判断是否需要继续发送,如果是,进行到步骤S2108中,否则返回到步骤S2101;在步骤2108中在所述第一子频带上的一个延迟时段(defer duration)内执行能量检测;在步骤S2109中判断这个延迟时段内的所有时隙时段是否都空闲(Idle),如果是,进行到步骤S2110中,否则返回到步骤S2108;在步骤S2110中设置第一计数器;在步骤S2111中判断所述第一计数器是否为0,如果是,返回到步骤S2105,否则进行到步骤S2112中;在步骤S2112中把所述第一计数器减1;在步骤S2113中在所述第一子频带上的一个附加时隙时段(additional slot duration)内执行能量检测;在步骤S2114中判断这个附加时隙时段是否空闲(Idle),如果是,返回到步骤S2111,否则进行到步骤S2115中;在步骤S2115中在所述第一子频带上的一个附加延迟时段(additional defer duration)内执行能量检测,直到在这个附加延时时段内检测到一个非空闲的时隙时段,或者这个附加延时时段内的所有时隙时段都空闲;在步骤S2116中判断这个附加延迟时段内的所有时隙时段是否都空闲(Idle),如果是,返回到步骤S2111;否则返回到步骤S2115。
作为一个实施例,附图21中的延时时段,时隙时段,附加时隙时段和附加延时时段的具体定义参见3GPP TS36.213中的15章节。
作为一个实施例,在给定时段内执行能量检测是指:在所述给定时段内的所有时隙时段(slot duration)内执行能量检测;所述给定时段是附图21中的{步骤S2103和步骤S2108中的所有延时时段,步骤S2113中的所有附加时隙时段,步骤S2115中的所有附加延时时段}中的任意一个时段。
作为一个实施例,在一个时隙时段内执行能量检测是指:在给定时间单元内感知(Sense)无线信号的功率并在时间上平均以获得接收功率;所述给定时间单元是所述一个时隙时段内的一个持续时间段。
作为一个实施例,在一个时隙时段内执行能量检测是指:在给定时间单元内感知(Sense)无线信号的能量并在时间上平均以获得接收能量;所述给定时间单元是所述一个时隙时段内的一个持续时间段。
作为一个实施例,一个时隙时段空闲(Idle)是指:在给定时间单元中感知(Sense)无线信号的功率并在时间上平均,所获得的接收功率低于参考阈值;所述给定时间单元是所述一个时隙时段中的一个持续时间段。
作为一个实施例,一个时隙时段空闲(Idle)是指:在给定时间单元中感知(Sense)无线信号的能量并在时间上平均,所获得的接收能量低于参考阈值;所述给定时间单元是所述一个时隙时段中的一个持续时间段。
作为一个实施例,所述给定时间单元的持续时间不短于4微秒。
作为一个实施例,一个延时时段(defer duration)的持续时间是16微秒再加上T1个9微秒,所述T1是正整数。
作为上述实施例的一个子实施例,所述T1属于{1,2,3,7}。
作为一个实施例,一个延时时段(defer duration)包括多个时隙时段(slot duration)。
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间是不连续的。
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间的时间间隔是7毫秒。
作为一个实施例,一个延时时段的持续时间等于一个附加延时时段的持续时间。
作为一个实施例,一个时隙时段(slot duration)的持续时间是9微秒。
作为一个实施例,一个附加时隙时段(additional slot duration)的持续时间等于一个时隙时段(slot duration)的持续时间。
作为一个实施例,在步骤S2108中所述第一计数器被设置的值是P个备选整数中的一个备选整数。
作为一个实施例,所述P属于{3,7,15,31,63,127,255,511,1023}。
作为一个实施例,所述P是Category 4 LBT过程中的CWp,所述CWp是竞争窗口(contention window)的大小,所述CWp的具体定义参见3GPP TS36.213中的15章节。
作为一个实施例,所述P个备选整数为0,1,2,…,P-1。
作为一个实施例,所述基站在所述P个备选整数中随机选取一个备选整数作为所述第一计数器被设置的值。
作为一个实施例,所述P个备选整数中任一备选整数被选取作为所述第一计数器被设置的值的概率都相等。
作为一个实施例,所述第一子检测是所述K个子检测中的任一子检测。
作为一个实施例,所述第一子检测是实施例20中的所述参考子检测。
实施例22
实施例22示例了K次子检测中的一次子检测的流程图;如附图22所示。
在实施例22中,所述K次子检测分别在本申请中的所述K个子频带上被执行。第一子检测是所述K次子检测中的一次子检测,所述第一子检测在所述K个子频带中的第一子频带上被执行。所述第一子检测的过程可以由附图22中的流程图来描述。本申请中的所述基站在步骤S2201中处于闲置状态,在步骤S2202中判断是否需要发送,如果是,进行到步骤2203中,否则返回步骤S2201;在步骤2203中在所述第一子频带上的一个感知时间(Sensing interval)内执行能量检测;在步骤S2204中判断这个感知时间内的所有时隙时段是否都空闲(Idle),如果是,进行到步骤S2205中,否则返回到步骤S2203;在步骤S2205中在所述第一子频带上发送无线信号。
作为一个实施例,附图22中的所述感知时间和时隙时段的具体定义参见3GPP TS36.213中的15.2章节。
作为一个实施例,在一个感知时间内执行能量检测是指:在所述一个感知时间内的所有时隙时段(slot duration)内执行能量检测。
作为一个实施例,一个感知时间(Sensing interval)的持续时间是25微秒。
作为一个实施例,一个感知时间包括2个时隙时段,所述2个时隙时段在时域是不连续的。
作为上述实施例的一个子实施例,所述2个时隙时段中的时间间隔是7微秒。
作为一个实施例,所述第一子检测是所述K个子检测中的任一子检测。
实施例23
实施例23示例了K次子检测中的一次子检测的流程图;如附图23所示。
在实施例23中,所述K次子检测分别在本申请中的所述K个子频带上被执行。第一子检 测是所述K次子检测中的一次子检测,所述第一子检测在所述K个子频带中的第一子频带上被执行。所述第一子检测的过程可以由附图23中的流程图来描述。本申请中的所述基站在步骤S2301中处于闲置状态,在步骤S2302中判断是否需要发送,如果是,进行到步骤2303中,否则返回步骤S2301;在步骤2303中在所述第一子频带上的一个感知时间(Sensing interval)内执行能量检测;在步骤S2304中判断这个感知时间内的所有时隙时段是否都空闲(Idle),如果是,进行到步骤S2305中,否则返回到步骤S2303;在步骤S2305中判断实施例20中的所述参考子频带是否能被用于发送无线信号,如果是,进行到步骤2306中;在步骤2306中在所述第一子频带上发送无线信号。
作为一个实施例,所述第一子检测是所述K个子检测中除了实施例20中的所述参考子检测以外的任一子检测。
实施例24
实施例24示例了第一资源粒子池在时频域上资源映射的示意图;如附图24所示。
在实施例24中,本申请中的所述用户设备在所述第一资源粒子池中执行针对本申请中的所述第二信令的检测。本申请中的所述第一信息被用于确定所述第一资源粒子池和本申请中的所述第一资源粒子集合是否占用本申请中的所述N个子频带中相同的子频带。
作为一个实施例,所述第一资源粒子池包括正整数个RE。
作为一个实施例,所述第一资源粒子池包括一个CORESET。
作为一个实施例,所述第一资源粒子池包括一个搜索空间(search space)。
作为一个实施例,所述第一资源粒子池包括多个CORESET。
作为一个实施例,所述第一资源粒子池包括多个搜索空间(search space)。
作为一个实施例,所述第一资源粒子池包括正整数个资源粒子集合,一个资源粒子集合是一个下行物理层控制信道candidate(候选项)。
作为一个实施例,所述针对第二信令的检测是针对所述第二信令的负载尺寸(Payload Size)的盲译码(Blind Decoding)。
作为一个实施例,对于所述针对第二信令的检测,本申请中的所述用户设备首先对在所述第一资源粒子池中的资源粒子集合中接收的无线信号进行信道估计和信道均衡,然后根据所述第二信令的负载尺寸执行信道译码,如果信道译码的输出通过CRC的验证则认为成功接收到所述第二信令,否则认为当前检测未能成功接收到所述第二信令。
作为一个实施例,所述第一资源粒子池包括正整数个资源粒子集合,一个资源粒子集合是一个下行物理层控制信道candidate(候选项);本申请中的所述基站在所述第一资源粒子池中的一个资源粒子集合中发送所述第二信令。
作为一个实施例,所述第一信息包括一个比特,如果所述第一信息中的一个比特等于1,所述第一资源粒子池和所述第一资源粒子集合占用所述N个子频带中相同的子频带;如果所述第一信息中的一个比特等于0,所述第一资源粒子池和所述第一资源粒子集合占用所述N个子频带中不同的子频带。
作为一个实施例,所述第一信息包括一个比特,如果所述第一信息中的一个比特等于0,所述第一资源粒子池和所述第一资源粒子集合占用所述N个子频带中相同的子频带;如果所述第一信息中的一个比特等于1,所述第一资源粒子池和所述第一资源粒子集合占用所述N个子频带中不同的子频带。
实施例25
实施例25示例了用于用户设备中的处理装置的结构框图;如附图25所示。在附图25中,用户设备中的处理装置2500主要由第一接收机模块2501和第二接收机模块2502组成。
在实施例25中,第一接收机模块2501在第一资源粒子集合中接收第一信令;第二接收机模块2502在第一小区上接收第一无线信号。
在实施例25中,所述第一信令包括所述第一无线信号的调度信息;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合有关。
作为一个实施例,所述第一接收机模块2501在Q个资源粒子集合中的Q1个资源粒子集合中分别执行Q1次针对所述第一信令的检测;其中,所述第一资源粒子集合是所述Q1个资源粒子集合中的一个资源粒子集合,所述用户设备在所述第一资源粒子集合中成功接收到所述第一信令;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合在所述Q个资源粒子集合中的索引有关,所述Q是大于1的正整数,所述Q1是不大于所述Q的正整数。
作为一个实施例,所述Q个资源粒子集合中的任一资源粒子集合属于M个资源粒子池中的一个资源粒子池,所述第一资源粒子集合属于所述M个资源粒子池中的目标资源粒子池;所述M个资源粒子池中的任一资源粒子池包括所述Q个资源粒子集合中的正整数个资源粒子集合;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述目标资源粒子池有关;所述M是大于1的正整数。
作为一个实施例,所述第一资源粒子集合所占用的频率资源属于K个子频带中的K1个子频带;第一信道接入检测被用于确定所述K个子频带中的所述K1个子频带可以被用于传输无线信号;所述K1是正整数,所述K是不小于所述K1的正整数。
作为一个实施例,所述第一信道接入检测包括K次子检测,所述K次子检测分别在所述K个子频带上被执行,所述K次子检测中的K1次子检测分别被用于确定所述K1个子频带可以被用于传输无线信号。
作为一个实施例,所述K1个子频带在频域上包括所述第一无线信号所占用的频率资源。
作为一个实施例,所述第一信令包括第一域,所述第一信令中的所述第一域被用于确定所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置;所述第一信令中的所述第一域的解读和所述第一资源粒子集合有关。
作为一个实施例,所述第一接收机模块2501在第一资源粒子池中执行针对第二信令的检测;其中,第一信息被用于确定所述第一资源粒子池和所述第一资源粒子集合是否占用N个子频带中相同的子频带;所述第一资源粒子池所占用的时间资源晚于所述第一无线信号所占用的时间资源;所述N是大于1的正整数。
作为一个实施例,所述第一接收机模块2501包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第二接收机模块2502包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
实施例26
实施例26示例了用于基站中的处理装置的结构框图;如附图26所示。在附图26中,基站中的处理装置2600主要由第一处理模块2601和第一发送机模块2602组成。
在实施例26中,第一处理模块2601在第一资源粒子集合中发送第一信令;第一发送机模块2602在第一小区上发送第一无线信号。
在实施例26中,所述第一信令包括所述第一无线信号的调度信息;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合有关。
作为一个实施例,所述第一资源粒子集合是Q个资源粒子集合中的一个资源粒子集合;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合在所述Q个资源粒子集合中的索引有关,所述Q是大于1的正整数。
作为一个实施例,所述Q个资源粒子集合中的任一资源粒子集合属于M个资源粒子池中的一个资源粒子池,所述第一资源粒子集合属于所述M个资源粒子池中的目标资源粒子池;所述M个资源粒子池中的任一资源粒子池包括所述Q个资源粒子集合中的正整数个资源粒子集合;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述目标资源粒子池有关;所述M是大于1的正整数。
作为一个实施例,所述第一处理模块2601在K个子频带上执行第一信道接入检测;其中,所述第一资源粒子集合所占用的频率资源属于所述K个子频带中的K1个子频带;所述第一信道接入检测被用于确定所述K个子频带中的所述K1个子频带可以被用于传输无线信号;所述K1是正整数,所述K是不小于所述K1的正整数。
作为一个实施例,所述第一信道接入检测包括K次子检测,所述K次子检测分别在所述K个子频带上被执行,所述K次子检测中的K1次子检测分别被用于确定所述K1个子频带可以被用于传输无线信号。
作为一个实施例,所述K1个子频带在频域上包括所述第一无线信号所占用的频率资源。
作为一个实施例,所述第一信令包括第一域,所述第一信令中的所述第一域被用于确定所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置;所述第一信令中的所述第一域的解读和所述第一资源粒子集合有关。
作为一个实施例,所述第一处理模块2601在第一资源粒子池中发送第二信令;其中,第一信息被用于确定所述第一资源粒子池和所述第一资源粒子集合是否占用N个子频带中相同的子频带;所述第一资源粒子池所占用的时间资源晚于所述第一无线信号所占用的时间资源;所述N是大于1的正整数。
作为一个实施例,所述第一处理模块2601包括实施例4中的{天线420,发射器/接收器418,发射处理器416,接收处理器470,多天线发射处理器471,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第一发送机模块2602包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B),TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种被用于无线通信的用户设备中的方法,其特征在于,包括:
    在第一资源粒子集合中接收第一信令;
    在第一小区上接收第一无线信号;
    其中,所述第一信令包括所述第一无线信号的调度信息;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合有关。
  2. 根据权利要求1所述的方法,其特征在于,包括:
    在Q个资源粒子集合中的Q1个资源粒子集合中分别执行Q1次针对所述第一信令的检测;
    其中,所述第一资源粒子集合是所述Q1个资源粒子集合中的一个资源粒子集合,所述用户设备在所述第一资源粒子集合中成功接收到所述第一信令;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合在所述Q个资源粒子集合中的索引有关,所述Q是大于1的正整数,所述Q1是不大于所述Q的正整数。
  3. 根据权利要求2所述的方法,其特征在于,所述Q个资源粒子集合中的任一资源粒子集合属于M个资源粒子池中的一个资源粒子池,所述第一资源粒子集合属于所述M个资源粒子池中的目标资源粒子池;所述M个资源粒子池中的任一资源粒子池包括所述Q个资源粒子集合中的正整数个资源粒子集合;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述目标资源粒子池有关;所述M是大于1的正整数。
  4. 根据权利要求1至3中任一权利要求所述的方法,其特征在于,所述第一资源粒子集合所占用的频率资源属于K个子频带中的K1个子频带;第一信道接入检测被用于确定所述K个子频带中的所述K1个子频带可以被用于传输无线信号;所述K1是正整数,所述K是不小于所述K1的正整数。
  5. 根据权利要求4所述的方法,其特征在于,所述第一信道接入检测包括K次子检测,所述K次子检测分别在所述K个子频带上被执行,所述K次子检测中的K1次子检测分别被用于确定所述K1个子频带可以被用于传输无线信号。
  6. 根据权利要求4或5所述的方法,其特征在于,所述K1个子频带在频域上包括所述第一无线信号所占用的频率资源。
  7. 根据权利要求1至6中任一权利要求所述的方法,其特征在于,所述第一信令包括第一域,所述第一信令中的所述第一域被用于确定所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置;所述第一信令中的所述第一域的解读和所述第一资源粒子集合有关。
  8. 根据权利要求1至7中任一权利要求所述的方法,其特征在于,包括:
    在第一资源粒子池中执行针对第二信令的检测;
    其中,第一信息被用于确定所述第一资源粒子池和所述第一资源粒子集合是否占用N个子频带中相同的子频带;所述第一资源粒子池所占用的时间资源晚于所述第一无线信号所占用的时间资源;所述N是大于1的正整数。
  9. 一种被用于无线通信的基站中的方法,其特征在于,包括:
    在第一资源粒子集合中发送第一信令;
    在第一小区上发送第一无线信号;
    其中,所述第一信令包括所述第一无线信号的调度信息;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合有关。
  10. 根据权利要求9所述的方法,其特征在于,所述第一资源粒子集合是Q个资源粒子集合中的一个资源粒子集合;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合在所述Q个资源粒子集合中的索引有关,所述Q是大于1的正整数。
  11. 根据权利要求10所述的方法,其特征在于,所述Q个资源粒子集合中的任一资源粒子集合属于M个资源粒子池中的一个资源粒子池,所述第一资源粒子集合属于所述M个资源粒子池中的目标资源粒子池;所述M个资源粒子池中的任一资源粒子池包括所述Q个资源粒 子集合中的正整数个资源粒子集合;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述目标资源粒子池有关;所述M是大于1的正整数。
  12. 根据权利要求9至11中任一权利要求所述的方法,其特征在于,包括:
    在K个子频带上执行第一信道接入检测;
    其中,所述第一资源粒子集合所占用的频率资源属于所述K个子频带中的K1个子频带;所述第一信道接入检测被用于确定所述K个子频带中的所述K1个子频带可以被用于传输无线信号;所述K1是正整数,所述K是不小于所述K1的正整数。
  13. 根据权利要求12所述的方法,其特征在于,所述第一信道接入检测包括K次子检测,所述K次子检测分别在所述K个子频带上被执行,所述K次子检测中的K1次子检测分别被用于确定所述K1个子频带可以被用于传输无线信号。
  14. 根据权利要求12或13所述的方法,其特征在于,所述K1个子频带在频域上包括所述第一无线信号所占用的频率资源。
  15. 根据权利要求9至14中任一权利要求所述的方法,其特征在于,所述第一信令包括第一域,所述第一信令中的所述第一域被用于确定所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置;所述第一信令中的所述第一域的解读和所述第一资源粒子集合有关。
  16. 根据权利要求9至15中任一权利要求所述的方法,其特征在于,包括:
    在第一资源粒子池中发送第二信令;
    其中,第一信息被用于确定所述第一资源粒子池和所述第一资源粒子集合是否占用N个子频带中相同的子频带;所述第一资源粒子池所占用的时间资源晚于所述第一无线信号所占用的时间资源;所述N是大于1的正整数。
  17. 一种被用于无线通信的用户设备,其特征在于,包括:
    第一接收机模块,在第一资源粒子集合中接收第一信令;
    第二接收机模块,在第一小区上接收第一无线信号;
    其中,所述第一信令包括所述第一无线信号的调度信息;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合有关。
  18. 一种被用于无线通信的基站设备,其特征在于,包括:
    第一处理模块,在第一资源粒子集合中发送第一信令;
    第一发送机模块,在第一小区上发送第一无线信号;
    其中,所述第一信令包括所述第一无线信号的调度信息;所述第一无线信号所占用的频率资源在所述第一小区所占用的频率资源内的位置与所述第一资源粒子集合有关。
PCT/CN2018/088126 2018-05-24 2018-05-24 一种被用于无线通信的用户设备、基站中的方法和装置 WO2019222952A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/088126 WO2019222952A1 (zh) 2018-05-24 2018-05-24 一种被用于无线通信的用户设备、基站中的方法和装置
CN201880090946.8A CN111972018B (zh) 2018-05-24 2018-05-24 一种被用于无线通信的用户设备、基站中的方法和装置
CN202211471278.8A CN115865294A (zh) 2018-05-24 2018-05-24 一种被用于无线通信的用户设备、基站中的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/088126 WO2019222952A1 (zh) 2018-05-24 2018-05-24 一种被用于无线通信的用户设备、基站中的方法和装置

Publications (1)

Publication Number Publication Date
WO2019222952A1 true WO2019222952A1 (zh) 2019-11-28

Family

ID=68616247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088126 WO2019222952A1 (zh) 2018-05-24 2018-05-24 一种被用于无线通信的用户设备、基站中的方法和装置

Country Status (2)

Country Link
CN (2) CN111972018B (zh)
WO (1) WO2019222952A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113810999A (zh) * 2020-06-15 2021-12-17 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106899395A (zh) * 2015-12-19 2017-06-27 上海朗帛通信技术有限公司 一种laa传输中的上行控制信令的传输方法和装置
WO2017120742A1 (en) * 2016-01-11 2017-07-20 Nokia Solutions And Networks Oy Control channel design and use for narrow band communication
CN107690188A (zh) * 2016-08-05 2018-02-13 上海朗帛通信技术有限公司 一种无线传输中的方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014025150A1 (ko) * 2012-08-06 2014-02-13 주식회사 케이티 송수신포인트의 제어정보 전송방법 및 그 송수신포인트, 단말의 상향링크 제어 채널 자원 매핑방법, 그 단말
CN106612166B (zh) * 2015-10-26 2019-08-09 上海朗帛通信技术有限公司 一种窄带传输的方法和装置
CN106982468B (zh) * 2016-01-17 2018-04-27 上海朗帛通信技术有限公司 一种调度方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106899395A (zh) * 2015-12-19 2017-06-27 上海朗帛通信技术有限公司 一种laa传输中的上行控制信令的传输方法和装置
WO2017120742A1 (en) * 2016-01-11 2017-07-20 Nokia Solutions And Networks Oy Control channel design and use for narrow band communication
CN107690188A (zh) * 2016-08-05 2018-02-13 上海朗帛通信技术有限公司 一种无线传输中的方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113810999A (zh) * 2020-06-15 2021-12-17 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN115865294A (zh) 2023-03-28
CN111972018B (zh) 2022-12-27
CN111972018A (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
WO2019134656A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11963193B2 (en) Method and device in UE and base station used for wireless communication
US11109388B2 (en) Method and device in user equipment and base station for wireless communication
WO2020207245A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US20220046703A1 (en) Method and device for use in wireless communication nodes
WO2020134908A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019006592A1 (zh) 一种被用于多天线通信的用户设备、基站中的方法和装置
WO2019006578A1 (zh) 一种被用于多天线通信的用户设备、基站中的方法和装置
WO2020020004A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020048379A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020134910A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021160008A1 (zh) 被用于无线通信的用户设备、基站中的方法和装置
WO2018103611A1 (zh) 一种用户设备和基站中的方法和设备
CN111148129B (zh) 被用于无线通信的用户设备、基站中的方法和装置
WO2019227280A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019144821A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019222952A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019184711A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019137328A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2024032520A1 (zh) 一种用于无线通信的方法和装置
WO2023202414A1 (zh) 用于无线通信的方法和装置
WO2021160007A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024093877A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024017068A1 (zh) 一种用于无线通信的方法和装置
WO2023179470A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18920061

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18920061

Country of ref document: EP

Kind code of ref document: A1