WO2020134908A1 - 一种被用于无线通信的用户设备、基站中的方法和装置 - Google Patents

一种被用于无线通信的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2020134908A1
WO2020134908A1 PCT/CN2019/122700 CN2019122700W WO2020134908A1 WO 2020134908 A1 WO2020134908 A1 WO 2020134908A1 CN 2019122700 W CN2019122700 W CN 2019122700W WO 2020134908 A1 WO2020134908 A1 WO 2020134908A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
sub
wireless signal
subcarrier
information
Prior art date
Application number
PCT/CN2019/122700
Other languages
English (en)
French (fr)
Inventor
武露
张晓博
杨林
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2020134908A1 publication Critical patent/WO2020134908A1/zh
Priority to US17/016,359 priority Critical patent/US11582759B2/en
Priority to US18/083,524 priority patent/US20230129797A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface

Definitions

  • This application relates to a transmission method and device in a wireless communication system, and in particular to a communication method and device that supports data transmission on an unlicensed spectrum (Unlicensed Spectrum).
  • Unlicensed Spectrum an unlicensed spectrum
  • LTE Long-term Evolution
  • data transmission can only occur on the licensed spectrum.
  • the communication on the unlicensed spectrum in Release 13 and Release 14 was introduced by the cellular system and used for the transmission of downstream and upstream data.
  • LBT Listen Before Talk
  • LAA Licensed Assisted Access
  • the uplink transmission in the traditional LTE system is often based on the grant of the base station.
  • AUL Autonomous UpLink, autonomous uplink
  • UE User Equipment
  • AUL Automatic UpLink
  • 3GPP 3rd Generation Partnership Project
  • RAN Radio Access Network #72 plenary meeting
  • NR New Radio
  • 5G Fifth Generation
  • 5G NR Compared with the existing LTE system, 5G NR has a remarkable feature that it can support a more flexible mathematical structure (Numerology), including subcarrier spacing (SCS, Subcarrier Spacing), cyclic prefix (CP, Cyclic Prefix) length, and support. More flexible frame structure, including mini-slot, sub-slot, and multiple slot aggregation (Slot Aggregation).
  • SCS subcarrier spacing
  • CP Cyclic Prefix
  • Slot Aggregation More flexible frame structure, including mini-slot, sub-slot, and multiple slot aggregation
  • This flexible mathematical structure and flexible frame structure can better meet a variety of new business needs, especially the very diverse business needs of vertical industries.
  • 5G (NR) New Radio Access Technology, new wireless access technology
  • 5G New Radio Access Technology, new wireless access technology
  • a more flexible mathematical structure In the uplink transmission on the unlicensed spectrum of the NR system, it meets the NR's demand for a more flexible mathematical structure and is more effective Achieving the sharing of unlicensed spectrum resources by multiple sending nodes is a key issue that needs to be resolved.
  • the present application discloses a method for user equipment for wireless communication, which is characterized by comprising:
  • the first information is used to determine the first time window; the time offset of the initial transmission time of the first wireless signal relative to the reference time belongs to a target offset set, and the target offset set includes W offset values, where W is a positive integer; the time offsets of the W start times relative to the reference time are respectively equal to the W offset values; any one of the W start times
  • the time belongs to one time unit among N time units, any one of the N time units includes at least one start time among the W start times, and any two of the N time units
  • the time units are all orthogonal, the N time units all belong to the first time window, the duration of each time unit in the N time units and the subcarriers occupied by the first wireless signal
  • the subcarrier spacing of is related; at least one of the N and the target offset set is related to the subcarrier spacing of the subcarriers occupied by the first wireless signal.
  • the problem to be solved in this application is that in order to improve resource utilization, multiple UEs can share the same unlicensed spectrum resource.
  • the base station In order to reduce multiple UEs simultaneously seizing channels and introduce large inter-user interference, the base station is supporting In the case of a flexible mathematical structure, how to allocate the initial transmission time to the UE is a key problem to be solved.
  • the essence of the above method is that the first time window on the first sub-band includes time-frequency resources allocated to grant-free uplink transmission, the first wireless signal is grant-free uplink transmission, and W starting moments are all Alternative start times for granting uplink transmission are exempted. W start times belong to N time units, and N time units are N multi-carrier symbols.
  • the size of N is related to SCS and/or the target offset set is related to SCS.
  • the above method is characterized in that the S subcarrier intervals correspond to the S offset sets in one-to-one correspondence, and any two subcarrier intervals in the S subcarrier intervals are different.
  • the subcarrier interval of the subcarriers occupied by a wireless signal is a subcarrier interval of the S subcarrier intervals
  • the target offset set is the S offset set and the first wireless signal
  • the above method is characterized in that the W starting moments include starting moments corresponding to N1 time units of the N time units, respectively, the N1 and the first The subcarrier spacing of the subcarriers occupied by the wireless signal is related, and N1 is a positive integer not greater than N.
  • the essence of the above method is that N1 is the number of time units corresponding to the target offset set at the starting time in N time units, the size of N and the target offset set are both related to SCS, and N1’s The size is also related to SCS.
  • the advantage of using the above method is that the design of the initial sending time of grant-free uplink transmission meets the NR system's demand for a more flexible mathematical structure.
  • the above method is characterized in that the W starting moments are divided into M subsets, and any one of the W starting moments belongs to a child in the M subsets Set, any one of the M subsets includes at least one of the W starting moments, the M is a positive integer; the starting moments corresponding to the N1 time units respectively belong to the N1 subsets of the M subsets, where N1 is not greater than M; the M is equal to the N and the starting moments included in the M subsets belong to the N time units, respectively, or there are two The starting moment belongs to two subsets of the M subsets and belongs to the same time unit among the N time units, respectively.
  • the above method is characterized in that the first subset is any subset of the M subsets whose number of starting moments is greater than 1, and any two of the first subset The time deviation between the starting moments is equal to a positive integer multiple of the first time deviation.
  • the essence of the above method is that the first time deviation is the duration of a slot duration of the LBT, that is, 9 us.
  • the above method is characterized by comprising:
  • the second information is used to indicate one time unit of the N time units to which the first sending time of the first wireless signal belongs.
  • the above method is characterized in that the number of bits included in the second information is related to the subcarrier spacing of the subcarriers occupied by the first wireless signal.
  • the essence of the above method is that the size of N is related to the SCS, and the second information indicates the beginning of the first wireless signal from the N multi-carrier symbols to send the multi-carrier symbol, so the number of bits included in the second information is SCS related.
  • the above method is characterized by comprising:
  • the first access detection is used to determine that the first wireless signal is sent in the first time window on the first sub-band.
  • This application discloses a method in a base station device for wireless communication, which is characterized by including:
  • the first information is used to determine the first time window; the time offset of the initial transmission time of the first wireless signal relative to the reference time belongs to a target offset set, and the target offset set includes W offset values, where W is a positive integer; the time offsets of the W start times relative to the reference time are respectively equal to the W offset values; any one of the W start times
  • the time belongs to one time unit among N time units, any one of the N time units includes at least one start time among the W start times, and any two of the N time units
  • the time units are all orthogonal, the N time units all belong to the first time window, the duration of each time unit in the N time units and the subcarriers occupied by the first wireless signal
  • the subcarrier spacing of is related; at least one of the N and the target offset set is related to the subcarrier spacing of the subcarriers occupied by the first wireless signal.
  • the above method is characterized in that the S subcarrier intervals correspond to the S offset sets in one-to-one correspondence, and any two subcarrier intervals in the S subcarrier intervals are different.
  • the subcarrier interval of the subcarriers occupied by a wireless signal is a subcarrier interval of the S subcarrier intervals
  • the target offset set is the S offset set and the first wireless signal
  • the above method is characterized in that the W starting moments include starting moments corresponding to N1 time units of the N time units, respectively, the N1 and the first The subcarrier spacing of the subcarriers occupied by the wireless signal is related, and N1 is a positive integer not greater than N.
  • the above method is characterized in that the W starting moments are divided into M subsets, and any one of the W starting moments belongs to a child in the M subsets Set, any one of the M subsets includes at least one of the W starting moments, the M is a positive integer; the starting moments corresponding to the N1 time units respectively belong to the N1 subsets of the M subsets, where N1 is not greater than M; the M is equal to the N and the starting moments included in the M subsets belong to the N time units, respectively, or there are two The starting moment belongs to two subsets of the M subsets and belongs to the same time unit among the N time units, respectively.
  • the above method is characterized in that the first subset is any subset of the M subsets whose number of starting moments is greater than 1, and any two of the first subset The time deviation between the starting moments is equal to a positive integer multiple of the first time deviation.
  • the above method is characterized by comprising:
  • the second information is used to indicate one time unit of the N time units to which the first sending time of the first wireless signal belongs.
  • the above method is characterized in that the number of bits included in the second information is related to the subcarrier spacing of the subcarriers occupied by the first wireless signal.
  • the above method is characterized by comprising:
  • the receiver of the first information performs a first access detection on the first sub-band to determine to send the first wireless signal in the first time window on the first sub-band.
  • This application discloses a user equipment for wireless communication, which is characterized by comprising:
  • the first information is used to determine the first time window; the time offset of the initial transmission time of the first wireless signal relative to the reference time belongs to a target offset set, and the target offset set includes W offset values, where W is a positive integer; the time offsets of the W start times relative to the reference time are respectively equal to the W offset values; any one of the W start times
  • the time belongs to one time unit among N time units, any one of the N time units includes at least one start time among the W start times, and any two of the N time units
  • the time units are all orthogonal, the N time units all belong to the first time window, the duration of each time unit in the N time units and the subcarriers occupied by the first wireless signal
  • the subcarrier spacing of is related; at least one of the N and the target offset set is related to the subcarrier spacing of the subcarriers occupied by the first wireless signal.
  • This application discloses a base station device for wireless communication, which is characterized by including:
  • the first information is used to determine the first time window; the time offset of the initial transmission time of the first wireless signal relative to the reference time belongs to a target offset set, and the target offset set includes W offset values, where W is a positive integer; the time offsets of the W start times relative to the reference time are respectively equal to the W offset values; any one of the W start times
  • the time belongs to one time unit among N time units, any one of the N time units includes at least one start time among the W start times, and any two of the N time units
  • the time units are all orthogonal, the N time units all belong to the first time window, the duration of each time unit in the N time units and the subcarriers occupied by the first wireless signal
  • the subcarrier spacing of is related; at least one of the N and the target offset set is related to the subcarrier spacing of the subcarriers occupied by the first wireless signal.
  • this application has the following advantages:
  • This application proposes a method for allocating the initial transmission time to UEs, which reduces the interference between users introduced by multiple UEs seizing unlicensed spectrum at the same time, and more effectively realizes the sharing of unlicensed spectrum resources by multiple sending nodes.
  • the method in this application considers the design under different SCS to meet the needs of the NR system for a flexible mathematical structure.
  • FIG. 1 shows a flowchart of first information and a first wireless signal according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of an NR (New Radio) node and a UE according to an embodiment of the present application
  • 6A-6B respectively show schematic diagrams in which first information is used to determine a first time window according to an embodiment of the present application
  • FIG. 7 is a schematic diagram showing the relationship between S subcarrier intervals and S offset sets according to an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of a target offset set according to an embodiment of the present application.
  • FIG. 9 shows a schematic diagram of a target offset set according to another embodiment of the present application.
  • FIG. 10 shows a schematic diagram of a target offset set according to another embodiment of the present application.
  • FIG. 11 shows a schematic diagram of a target offset set according to another embodiment of the present application.
  • FIG. 12 is a schematic diagram showing the relationship between M subsets and N time units according to an embodiment of the present application.
  • 13 is a schematic diagram showing the relationship between M subsets and N time units according to another embodiment of the present application.
  • 15 is a schematic diagram showing the relationship between the second information and the subcarrier spacing of the subcarriers occupied by the first wireless signal according to an embodiment of the present application;
  • 16 is a schematic diagram showing that a given access detection performed on a given stator frequency band is used to determine whether to start sending a given wireless signal at a given time of the given stator frequency band according to an embodiment of the present application;
  • 17 is a schematic diagram showing that a given access detection performed on a given stator frequency band is used to determine whether to start sending a given wireless signal at a given time of the given stator frequency band according to another embodiment of the present application ;
  • FIG. 18 shows a structural block diagram of a processing device in a UE according to an embodiment of the present application
  • FIG. 19 shows a structural block diagram of a processing device in a base station device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of the first information and the first wireless signal, as shown in FIG. 1.
  • the user equipment in this application receives the first information and sends the first wireless signal in a first time window on the first sub-band; wherein the first information is used to determine the A first time window; the time offset of the first sending time of the first wireless signal relative to the reference time belongs to a target offset set, the target offset set includes W offset values, and W is a positive integer; W The time offsets of the start times relative to the reference time are respectively equal to the W offset values; any of the W start times belongs to a time unit of N time units, so Any one of the N time units includes at least one of the W starting moments, any two of the N time units are orthogonal, and the N time units The units belong to the first time window, and the duration of each time unit in the N time units is related to the subcarrier interval of the subcarriers occupied by the first wireless signal; the N and the target At least one of the offset sets is related to the subcarrier spacing of the subcarriers occupied by the first wireless signal.
  • the first information is transmitted on a frequency band deployed in an unlicensed spectrum.
  • the first information is transmitted on a frequency band deployed in the licensed spectrum.
  • the first information is transmitted on the first sub-band.
  • the first information is transmitted on a frequency band other than the first sub-band.
  • the first information is transmitted on a downlink physical layer control channel (that is, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel that is, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is a PDCCH (Physical Downlink Control Channel, physical downlink control channel).
  • the downlink physical layer control channel is sPDCCH (short PDCCH, short PDCCH).
  • the downlink physical layer control channel is NR-PDCCH (New Radio PDCCH, New Radio PDCCH).
  • the downlink physical layer control channel is NB-PDCCH (Narrow Band PDCCH, narrowband PDCCH).
  • the first information is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to carry physical layer data.
  • the downlink physical layer data channel is a PDSCH (Physical Downlink Shared CHannel, physical downlink shared channel).
  • PDSCH Physical Downlink Shared CHannel, physical downlink shared channel
  • the downlink physical layer data channel is sPDSCH (short PDSCH, short PDSCH).
  • the downlink physical layer data channel is NR-PDSCH (New Radio PDSCH, New Radio PDSCH).
  • the downlink physical layer data channel is NB-PDSCH (Narrow Band PDSCH, narrowband PDSCH).
  • the first time window includes a continuous time period.
  • the first time window includes a positive integer number of consecutive slots.
  • the first time window includes a positive integer number of consecutive subframes.
  • the first time window includes a positive integer number of consecutive mini-slots.
  • the first time window includes one time slot.
  • the first time window includes one subframe.
  • the first time window includes a mini-slot.
  • the first time window is composed of positive integer consecutive multi-carrier symbols.
  • the first time window is composed of one multi-carrier symbol.
  • the first time window is one of T time windows, and T is a positive integer.
  • the foregoing method further includes:
  • T is greater than 1.
  • any two of the T time windows are orthogonal.
  • the durations of any two time windows in the T time windows are the same.
  • any one of the T time windows includes a continuous time period.
  • any one of the T time windows includes a positive integer number of consecutive slots.
  • any one of the T time windows includes a positive integer number of consecutive subframes.
  • any one of the T time windows includes a positive integer number of consecutive mini-slots.
  • any one of the T time windows includes a time slot.
  • any one of the T time windows includes one sub-frame.
  • any one of the T time windows includes a mini-slot.
  • any one of the T time windows is composed of positive integer consecutive multi-carrier symbols.
  • any one of the T time windows is composed of one multi-carrier symbol.
  • the first sub-band includes positive integer PRBs (Physical Resource Block).
  • the first sub-band includes positive integer consecutive PRBs.
  • the first sub-band includes positive integer RBs (Resource Blocks).
  • the first sub-band includes positive integer consecutive RBs.
  • the first subband includes positive integer consecutive subcarriers.
  • the number of subcarriers included in the first subband is equal to a positive integer multiple of 12.
  • the first sub-band is deployed in an unlicensed spectrum.
  • the first sub-band is deployed in the licensed spectrum.
  • the first sub-band includes a carrier.
  • the first sub-band includes at least one carrier.
  • the first sub-band belongs to a carrier.
  • the first sub-band includes a BWP (Bandwidth Part, bandwidth component).
  • BWP Bandwidth Part, bandwidth component
  • the first sub-band includes multiple BWPs.
  • the first sub-band includes one or more BWP.
  • the first subband includes a subband.
  • the first sub-band includes multiple sub-bands.
  • the first sub-band includes one or more sub-bands.
  • the frequency domain resources occupied by the first wireless signal belong to the first sub-band, and the time domain resources occupied by the first wireless signal belong to the first time window.
  • the first wireless signal includes at least one of data and a reference signal.
  • the first wireless signal includes data.
  • the first wireless signal includes a reference signal.
  • the first wireless signal includes data and a reference signal.
  • the data included in the first wireless signal is uplink data.
  • the reference signals included in the first wireless signal include ⁇ DMRS (DeModulation, Reference, Demodulation Reference Signal), SRS (Sounding, Reference, Signaling Reference Signal), PTRS (Phase Error Tracking, Reference, Signals, One or more of the phase error tracking reference signal) ⁇ .
  • DMRS DeModulation, Reference, Demodulation Reference Signal
  • SRS Sounding, Reference, Signaling Reference Signal
  • PTRS Phase Error Tracking, Reference, Signals, One or more of the phase error tracking reference signal
  • the reference signal included in the first wireless signal includes an SRS.
  • the reference signal included in the first wireless signal includes DMRS.
  • the reference signal included in the first wireless signal includes PTRS.
  • the first wireless signal is transmitted on an uplink random access channel.
  • the uplink random access channel is a PRACH (Physical Random Access Channel, physical random access channel).
  • PRACH Physical Random Access Channel, physical random access channel
  • the transmission channel of the first wireless signal is UL-SCH (Uplink Shared Channel, uplink shared channel).
  • UL-SCH Uplink Shared Channel, uplink shared channel
  • the first wireless signal is transmitted on an uplink physical layer data channel (that is, an uplink channel that can be used to carry physical layer data).
  • an uplink physical layer data channel that is, an uplink channel that can be used to carry physical layer data.
  • the uplink physical layer data channel is PUSCH (Physical Uplink Shared CHannel, physical uplink shared channel).
  • the uplink physical layer data channel is sPUSCH (short PUSCH, short PUSCH).
  • the uplink physical layer data channel is NR-PUSCH (New Radio PUSCH, New Radio PUSCH).
  • the uplink physical layer data channel is NB-PUSCH (Narrow Band PUSCH, narrowband PUSCH).
  • the reference time is predefined or configurable.
  • the reference time is predefined.
  • the reference time is configurable.
  • the reference time is a time in the first time window.
  • the reference time is the start time of the first time window.
  • the reference time is earlier than the start time of the first time window.
  • the reference time is the start time of a multi-carrier symbol in the first time window.
  • the reference time is the start time of the earliest multi-carrier symbol in the first time window.
  • the first time window includes N0 time units, the N time units are the earliest N time units in the N0 time units, and the reference time is in the N0 time units At the beginning of the earliest time unit, N0 is a positive integer not less than N.
  • the target offset set is predefined or configurable.
  • the target offset set is predefined.
  • the target offset set is configurable.
  • the target offset set is semi-statically configured.
  • the target offset set is configured by higher layer signaling.
  • the target offset set is configured by RRC signaling.
  • the target offset set is configured by MAC CE signaling.
  • the target offset set is dynamically indicated.
  • the target offset set is indicated by DCI signaling.
  • the W offset values are all positive real numbers.
  • the W offset values are all non-negative real numbers.
  • the W is greater than 1.
  • the W is equal to 1.
  • any one of the N time units includes a subframe (Subframe).
  • any one of the N time units includes a time slot (Slot).
  • any one of the N time units includes a mini-slot.
  • any one of the N time units includes a positive integer number of consecutive subframes.
  • any one of the N time units includes a positive integer number of consecutive time slots.
  • any one of the N time units includes a positive integer number of consecutive mini-slots.
  • any one of the N time units includes a multi-carrier symbol.
  • any one of the N time units includes a positive integer number of consecutive multi-carrier symbols.
  • the duration of any two time units in the N time units are the same.
  • the N time units occupy a continuous time domain resource.
  • any two of the N time units that are adjacent in the time domain are continuous.
  • any two of the N time units have no gaps between adjacent time units in the time domain.
  • two of the N time units that are adjacent in the time domain are non-contiguous.
  • the N is equal to 1.
  • the N is greater than 1.
  • the first time window includes N0 time units, any one of the N time units is one of the N0 time units, and the N0 is not less than the Positive integer of N.
  • the first time window includes N0 time units, the N time units are the earliest N time units of the N0 time units, and the N0 is a positive integer not less than N .
  • only N in the set of N and the target offset is related to the subcarrier interval of the subcarrier occupied by the first wireless signal.
  • the W is independent of the sub-carrier interval of the sub-carriers occupied by the first wireless signal.
  • the target offset set is independent of the sub-carrier interval of the sub-carriers occupied by the first wireless signal.
  • only the target offset set is related to the subcarrier interval of the subcarrier occupied by the first wireless signal.
  • the W is related to the sub-carrier interval of the sub-carriers occupied by the first wireless signal.
  • the N is independent of the sub-carrier interval of the sub-carriers occupied by the first wireless signal.
  • both the N and the target offset set are related to the subcarrier spacing of the subcarriers occupied by the first wireless signal.
  • the W is independent of the sub-carrier interval of the sub-carriers occupied by the first wireless signal.
  • the W is related to the sub-carrier interval of the sub-carriers occupied by the first wireless signal.
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG. 2.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2.
  • FIG. 2 is a diagram illustrating the network architecture 200 of NR 5G, LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution) systems.
  • the NR 5G or LTE network architecture 200 may be called EPS (Evolved Packet System) 200 or some other suitable term.
  • EPS Evolved Packet System
  • the EPS 200 may include one or more UEs (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core)/5G-CN (5G-Core Network 5G core network) 210, HSS (Home Subscriber Server, home subscriber server) 220 and Internet service 230.
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in the figure, EPS provides packet switching services, but those skilled in the art will readily understand that the various concepts presented throughout this application can be extended to networks that provide circuit-switched services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides UE201 user and control plane protocol termination.
  • the gNB203 can be connected to other gNB204 via an Xn interface (eg, backhaul).
  • gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive point) or some other suitable terminology.
  • gNB203 provides UE201 with an access point to EPC/5G-CN210.
  • Examples of UE201 include cellular phones, smart phones, session initiation protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , Video devices, digital audio players (eg MP3 players), cameras, game consoles, drones, aircraft, narrow-band physical network equipment, machine type communication equipment, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP session initiation protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices Video devices
  • digital audio players eg MP3 players
  • cameras game consoles
  • drones aircraft, narrow-band physical network equipment, machine type communication equipment, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE201 may also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to EPC/5G-CN210 through the S1/NG interface.
  • EPC/5G-CN210 includes MME/AMF/UPF211, other MME(MobilityManagementEntity)/AMF(AuthenticationManagementField)/UPF(User PlaneFunction, user plane function) 214, S -GW (Service Gateway) 212 and P-GW (Packet Date Network Gateway, packet data network gateway) 213.
  • MME/AMF/UPF211 is a control node that handles signaling between UE201 and EPC/5G-CN210.
  • MME/AMF/UPF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted via S-GW212, which is itself connected to P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • the P-GW213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator's corresponding Internet protocol service, which may specifically include the Internet, Intranet, IMS (IP Multimedia Subsystem) and PS Streaming Service (PSS).
  • IMS IP Multimedia Subsystem
  • PSS PS Streaming Service
  • the UE 201 corresponds to the user equipment in this application.
  • the gNB203 corresponds to the base station in this application.
  • the UE 201 supports wireless communication for data transmission on an unlicensed spectrum.
  • the UE 201 supports wireless communication for data transmission on an authorized spectrum.
  • the gNB203 supports wireless communication for data transmission on unlicensed spectrum.
  • the gNB203 supports wireless communication for data transmission on the licensed spectrum.
  • the UE 201 supports MIMO wireless communication.
  • the gNB203 supports MIMO wireless communication.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • FIG 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane and control plane.
  • Figure 3 shows the radio protocol architecture for user equipment (UE) and base station equipment (gNB or eNB) with three layers: layers 1.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the UE and gNB through PHY 301.
  • L2 layer 305 includes MAC (Medium Access Control) sub-layer 302, RLC (Radio Link Control, radio link layer control protocol) sub-layer 303, and PDCP (Packet Data Convergence Protocol), packet data Convergence protocol) sublayers 304, which terminate at gNB on the network side.
  • MAC Medium Access Control
  • RLC Radio Link Control, radio link layer control protocol
  • PDCP Packet Data Convergence Protocol
  • packet data Convergence protocol Packet Data Convergence Protocol
  • the UE may have several upper layers above the L2 layer 305, including the network layer (eg, IP layer) terminating at the P-GW on the network side and the other end (eg, Application layer at the remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provide security by encrypting data packets, and provide handover support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logic and transport channels. The MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in one cell between UEs. The MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and using RRC signaling between the gNB and the UE to configure the lower layer.
  • the wireless protocol architecture in FIG. 3 is applicable to the user equipment in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the base station in this application.
  • the first information in this application is generated in the PHY301.
  • the first information in this application is generated in the RRC sublayer 306.
  • the first information in this application is generated in the MAC sublayer 302.
  • the first access detection in the present application performed on the first sub-band in the present application is generated in the PHY301.
  • the first wireless signal in the present application sent in the first time window on the first sub-band in the present application is generated in the PHY301.
  • the second information in this application is generated in the PHY301.
  • the second information in this application is generated in the RRC sublayer 306.
  • the second information in this application is generated in the MAC sublayer 302.
  • the third information in this application is generated in the RRC sublayer 306.
  • the third information in the present application is generated in the MAC sublayer 302.
  • the fourth information in the present application is generated in the PHY301.
  • the fourth information in the present application is generated in the RRC sublayer 306.
  • the fourth information in the present application is generated in the MAC sublayer 302.
  • Embodiment 4 shows a schematic diagram of a base station device and user equipment according to the present application, as shown in FIG. 4.
  • 4 is a block diagram of gNB410 communicating with UE 450 in an access network.
  • the base station device (410) includes a controller/processor 440, a memory 430, a reception processor 412, a beam processor 471, a transmission processor 415, a transmitter/receiver 416, and an antenna 420.
  • the user equipment (450) includes a controller/processor 490, a memory 480, a data source 467, a beam processor 441, a transmit processor 455, a receive processor 452, a transmitter/receiver 456, and an antenna 460.
  • the processing related to the base station equipment (410) includes:
  • controller/processor 440 provides packet header compression, encryption, packet segment connection and reordering, and multiplexing and demultiplexing between logical and transmission channels for implementation L2 layer protocol for user plane and control plane; upper layer packets can include data or control information, such as DL-SCH (Downlink Shared Channel, downlink shared channel);
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the memory 430 may be a computer-readable medium
  • the controller/processor 440 including a scheduling unit to transmit demand, the scheduling unit is used to schedule air interface resources corresponding to the transmission demand;
  • -Transmit processor 415 receiving the output bit stream of the controller/processor 440, implementing various signal transmission processing functions for the L1 layer (ie, physical layer) including coding, interleaving, scrambling, modulation, power control/distribution and Physical layer control signaling (including PBCH, PDCCH, PHICH, PCFICH, reference signal) generation, etc.;
  • -Transmit processor 415 receiving the output bit stream of the controller/processor 440, implementing various signal transmission processing functions for the L1 layer (ie, physical layer) including multi-antenna transmission, spread spectrum, code division multiplexing, and precoding Wait;
  • each transmitter 416 samples the respective input symbol stream to obtain a respective sampled signal stream.
  • Each transmitter 416 further processes the respective sampled stream (such as digital-to-analog conversion, amplification, filtering, up-conversion, etc.) to obtain a downstream signal.
  • the processing related to the user equipment (450) may include:
  • -Receiver 456 which is used to convert the radio frequency signal received through the antenna 460 into a baseband signal and provide it to the receiving processor 452;
  • the receiving processor 452 implements various signal receiving processing functions for the L1 layer (ie, physical layer) including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction;
  • -Receive processor 452 implementing various signal reception processing functions for the L1 layer (ie, physical layer) including multi-antenna reception, despreading, code division multiplexing, precoding, etc.;
  • the controller/processor 490 receives the bit stream output by the receiving processor 452, provides packet header decompression, decryption, packet segment connection and reordering, and multiplexing and demultiplexing between logical and transmission channels to implement L2 layer protocol for user plane and control plane;
  • the controller/processor 490 is associated with a memory 480 that stores program codes and data.
  • the memory 480 may be a computer-readable medium.
  • the processing related to the base station equipment (410) includes:
  • the receiver 416 receives the radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the receiving processor 412;
  • -Receive processor 412 implementing various signal reception processing functions for the L1 layer (ie, physical layer) including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction;
  • -Receive processor 412 implementing various signal reception processing functions for the L1 layer (ie, physical layer) including multi-antenna reception, despreading, code division multiplexing, precoding, etc.;
  • -A controller/processor 440 that implements L2 layer functions and is associated with a memory 430 that stores program codes and data;
  • Controller/processor 440 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer data packets from UE 450; from controller/processor 440
  • the upper layer data packet can be provided to the core network;
  • the beam processor 471 determines to receive the first wireless signal in the first time window on the first sub-band;
  • the processing related to the user equipment (450) includes:
  • Data source 467 provides upper layer data packets to the controller/processor 490.
  • Data source 467 represents all protocol layers above the L2 layer;
  • the transmitter 456 transmits a radio frequency signal through its corresponding antenna 460, converts the baseband signal into a radio frequency signal, and provides the radio frequency signal to the corresponding antenna 460;
  • -Transmit processor 455, implementing various signal reception processing functions for the L1 layer (ie, physical layer) including coding, interleaving, scrambling, modulation, and physical layer signaling generation;
  • -Transmit processor 455, implementing various signal receiving and processing functions for the L1 layer (ie, physical layer) including multi-antenna transmission, spreading, code division multiplexing, precoding, etc.;
  • the controller/processor 490 implements header compression, encryption, packet segmentation and reordering and multiplexing between logical and transport channels based on the wireless resource allocation of gNB410, and implements L2 for the user plane and control plane Layer function
  • the controller/processor 490 is also responsible for HARQ operations, retransmission of lost packets, and signaling to gNB410;
  • the beam processor 441 determines to send the first wireless signal in the first time window on the first sub-band;
  • the UE450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to process with the at least one Used together, the UE450 device at least: receives first information; sends a first wireless signal in a first time window on a first sub-band; wherein the first information is used to determine the first time window
  • the time offset of the first sending time of the first wireless signal relative to the reference time belongs to the target offset set, and the target offset set includes W offset values, where W is a positive integer; W start times Time offsets relative to the reference time are respectively equal to the W offset values; any one of the W start times belongs to a time unit among N time units, and the N times Any time unit in the unit includes at least one start time among the W start times, any two time units in the N time units are orthogonal, and the N time units belong to all In the first time window, the duration of each time unit in the N time units is related to the subcarrier interval of the subcarrier
  • the UE 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, the action includes: receiving first information; The first wireless signal is transmitted in a first time window on the first subband; wherein, the first information is used to determine the first time window; the start transmission time of the first wireless signal is relative to the reference time
  • the time offset of belongs to the target offset set, and the target offset set includes W offset values, where W is a positive integer; the time offsets of the W starting times relative to the reference time are respectively equal to the W Offset values; any of the W starting moments belongs to a time unit of N time units, and any of the N time units includes the W starting moments At least one starting time, any two time units in the N time units are orthogonal, the N time units belong to the first time window, and each of the N time units
  • the duration of the time unit is related to the subcarrier interval of the subcarriers occupied by the first wireless signal; at least one of the N and the
  • the gNB410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to process with the at least one Use together.
  • the gNB410 device at least: sends first information; receives a first wireless signal in a first time window on a first sub-band; wherein, the first information is used to determine the first time window; the first The time offset of the start transmission time of a wireless signal relative to the reference time belongs to the target offset set, and the target offset set includes W offset values, where W is a positive integer; W start times are respectively relative to the The time offset of the reference time is respectively equal to the W offset values; any one of the W start times belongs to a time unit of N time units, and any of the N time units A time unit includes at least one start time of the W start times, any two time units of the N time units are orthogonal, and the N time units belong to the first time Window, the duration of each time unit in the N time units is related to the sub
  • the gNB410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, the action includes: sending the first information; Receiving a first wireless signal in a first time window on the first sub-band; wherein, the first information is used to determine the first time window; the starting transmission time of the first wireless signal is relative to the reference time
  • the time offset of belongs to the target offset set, and the target offset set includes W offset values, where W is a positive integer; the time offsets of the W starting times relative to the reference time are respectively equal to the W Offset values; any of the W starting moments belongs to a time unit of N time units, and any of the N time units includes the W starting moments At least one starting time, any two time units in the N time units are orthogonal, the N time units belong to the first time window, and each of the N time units The duration of the time unit is related to the subcarrier interval of the subcarriers occupied by the first wireless signal; at least one of the N
  • the UE 450 corresponds to the user equipment in this application.
  • gNB410 corresponds to the base station in this application.
  • At least the first two of the receiver 456, the reception processor 452, and the controller/processor 490 are used to receive the first information in the present application.
  • At least the first two of the transmitter 416, the transmission processor 415, and the controller/processor 440 are used to send the first information in this application.
  • At least the first two of the receiver 456, the reception processor 452, and the controller/processor 490 are used to receive the third information in the present application.
  • At least the first two of the transmitter 416, the transmission processor 415, and the controller/processor 440 are used to send the third information in this application.
  • At least the first two of the receiver 456, the reception processor 452, and the controller/processor 490 are used to perform the first in the present application on the first sub-band in the present application Access detection.
  • At least the first two of the transmitter 456, the transmission processor 455, and the controller/processor 490 are used to transmit in the first time window on the first sub-band in this application The first wireless signal in this application.
  • At least the first two of the receiver 416, the reception processor 412, and the controller/processor 440 are used to receive in the first time window on the first sub-band in this application The first wireless signal in this application.
  • At least the first two of the transmitter 456, the transmission processor 455, and the controller/processor 490 are used to send the second information in this application.
  • At least the first two of the receiver 416, the reception processor 412, and the controller/processor 440 are used to receive the second information in the present application.
  • At least the first two of the transmitter 456, the transmission processor 455, and the controller/processor 490 are used to transmit the fourth information in this application.
  • At least the first two of the receiver 416, the reception processor 412, and the controller/processor 440 are used to receive the fourth information in the present application.
  • Embodiment 5 illustrates a flow chart of wireless transmission, as shown in FIG. 5.
  • base station N01 is a serving cell maintenance base station of user equipment U02.
  • block F1 is optional.
  • For N01 send the first information in step S10; monitor whether the first wireless signal is sent in the first time window on the first sub-band in step S11; the first on the first sub-band in step S12 The first wireless signal is received in the time window; the second information is received in step S13.
  • the first information is received in step S20; the first access detection is performed on the first sub-band in step S21; the first wireless signal is transmitted in the first time window on the first sub-band in step S22 ; Send the second information in step S23.
  • the first information is used by the U02 to determine the first time window; the time offset of the start transmission time of the first wireless signal relative to the reference time belongs to the target offset set,
  • the target offset set includes W offset values, where W is a positive integer; the time offsets of the W start times relative to the reference time are respectively equal to the W offset values;
  • the W start Any start time in the start time belongs to a time unit in N time units, and any time unit in the N time units includes at least one start time in the W start times, the N Any two time units in a time unit are orthogonal, the N time units belong to the first time window, the duration of each time unit in the N time units and the first
  • the subcarrier spacing of the subcarriers occupied by the wireless signal is related; at least one of the N and the target offset set is related to the subcarrier spacing of the subcarriers occupied by the first wireless signal.
  • the second information is used to indicate one of the N time units to which the first transmission time of the first wireless signal belongs.
  • the second information belongs to UCI (Uplink Control Information).
  • UCI Uplink Control Information
  • the second information is transmitted on the uplink random access channel.
  • the uplink random access channel is PRACH.
  • the transmission channel of the second information is UL-SCH.
  • the second information is transmitted on the uplink physical layer data channel.
  • the uplink physical layer data channel is PUSCH.
  • the uplink physical layer data channel is sPUSCH.
  • the uplink physical layer data channel is NR-PUSCH.
  • the uplink physical layer data channel is NB-PUSCH.
  • the second information is transmitted on an uplink physical layer control channel (that is, an uplink channel that can only be used to carry physical layer signaling).
  • an uplink physical layer control channel that is, an uplink channel that can only be used to carry physical layer signaling.
  • the uplink physical layer control channel is PUCCH (Physical Uplink Control CHannel, physical uplink control channel).
  • the uplink physical layer control channel is sPUCCH (short PUCCH, short PUCCH).
  • the uplink physical layer control channel is NR-PUCCH (New Radio PUCCH, New Radio PUCCH).
  • the uplink physical layer control channel is NB-PUCCH (Narrow Band PUCCH, narrowband PUCCH).
  • the second information is sent in the first time window on the first sub-band.
  • the sending time of the second information is not earlier than the starting sending time of the first wireless signal.
  • the above method further includes:
  • the fourth information includes scheduling information of the first wireless signal.
  • the second information and the fourth information belong to the same UCI.
  • the second information and the fourth information are transmitted on the same physical layer channel.
  • the fourth information is sent in the first time window on the first sub-band.
  • the sending time of the fourth information is not earlier than the starting sending time of the first wireless signal.
  • the scheduling information of the first wireless signal includes HARQ process number, NDI (New Data Indicator), RV (Redundant Version), UE number (ID), and termination of sending At least one of time, termination time unit, COT (Channel Occupancy Time) sharing indication and CRC (Cyclic Redundancy Check).
  • the termination sending time unit is a time unit in the first time window.
  • the HARQ process number is a HARQ process number corresponding to the data included in the first wireless signal.
  • the NDI indicates whether the data included in the first wireless signal is new data or retransmission of old data.
  • the first access detection includes performing energy detection Q times in Q time sub-pools on the first sub-band to obtain Q detection values, where Q is a positive integer; the Q Q1 of the detected values are all lower than the first reference threshold, and Q1 is a positive integer not greater than Q.
  • the end time of the Q time sub-pools is not later than the start sending time of the first wireless signal.
  • the end time of the Q time sub-pools is earlier than the start sending time of the first wireless signal.
  • the first access detection is LBT (Listen Before Talk, listen first, then send).
  • LBT Listen Before Talk, listen first, then send.
  • the first access detection is CCA (Clear Channel Assessment), and the specific definition and implementation of the CCA refer to 3GPP TR36.889.
  • the first access detection is used by the U02 to determine whether the first sub-band is idle (Idle).
  • the first access detection is uplink access detection.
  • the first access detection is used by the U02 to determine whether the first sub-band can be used for uplink transmission by the U02.
  • the first access detection is implemented in the manner defined in Section 15.2 of 3GPP TS36.213.
  • the Q1 is equal to the Q.
  • the Q1 is smaller than the Q.
  • the monitoring refers to blind detection, that is, receiving a signal and performing a decoding operation. If the decoding is correct according to the CRC (Cyclic Redundancy Check) bit, it is determined that the given wireless signal is in the given stator It is sent in a given time window on the frequency band; otherwise it is judged that the given wireless signal is not sent in the given time window on the given stator frequency band.
  • CRC Cyclic Redundancy Check
  • the given sub-band is the first sub-band
  • the given time window is the first time window
  • the given wireless signal is the first wireless signal
  • the monitoring refers to coherent detection, that is, to perform coherent reception using the DMRS RS sequence of the physical layer channel where a given wireless signal is located, and measure the energy of the signal obtained after the coherent reception. If the energy of the signal obtained after the coherent reception is greater than the first given threshold, it is determined that the given wireless signal is transmitted in a given time window on the given stator frequency band; otherwise, it is determined that the given wireless signal is not It is sent in a given time window on a given stator band.
  • the given sub-band is the first sub-band
  • the given time window is the first time window
  • the given wireless signal is the first wireless signal
  • the monitoring refers to energy detection, that is, to sense the energy of a wireless signal and average it over time to obtain received energy. If the received energy is greater than the second given threshold, it is judged that the given wireless signal is sent in a given time window on the given stator frequency band; otherwise, it is judged that the given wireless signal is not in the given time window on the given stator frequency band Was sent.
  • the given sub-band is the first sub-band
  • the given time window is the first time window
  • the given wireless signal is the first wireless signal
  • the monitoring refers to coherent detection, that is, to use a given sequence of wireless signals for coherent reception, and measure the energy of the signal obtained after the coherent reception. If the energy of the signal obtained after the coherent reception is greater than the third given threshold, it is judged that the given wireless signal is transmitted in a given time window on the given stator frequency band; otherwise, it is judged that the given wireless signal is not It is sent in a given time window on a given stator band.
  • the given sub-band is the first sub-band
  • the given time window is the first time window
  • the given wireless signal is the first wireless signal
  • a given node determines whether a given wireless signal is transmitted in a given time window on a given stator frequency band according to the energy of the received signal.
  • the given node is the base station device.
  • the given sub-band is the first sub-band
  • the given time window is the first time window
  • the given wireless signal is the first wireless signal
  • the given node if the energy of the received signal is low, the given node considers that the given wireless signal has not been sent in the given time window on the given stator frequency band, otherwise, the given The fixed node considers that the given wireless signal is transmitted in a given time window on a given stator frequency band.
  • the given node if the energy of the received signal is lower than the reference energy threshold, the given node considers that the given wireless signal has not been sent in the given time window on the given stator band, otherwise, The given node considers that the given wireless signal is sent in a given time window on a given stator frequency band; the reference energy threshold is configured by the given node itself.
  • a given node determines whether a given wireless signal is transmitted in a given time window on a given stator frequency band according to the power of the received signal.
  • the given node is the base station device.
  • the given sub-band is the first sub-band
  • the given time window is the first time window
  • the given wireless signal is the first wireless signal
  • the given node if the power of the received signal is low, the given node considers that the given wireless signal has not been transmitted in a given time window on the given stator frequency band, otherwise, the given The fixed node considers that the given wireless signal is transmitted in a given time window on a given stator frequency band.
  • the given node if the power of the received signal is lower than the reference power threshold, the given node considers that the given wireless signal has not been sent in the given time window on the given stator band, otherwise, The given node considers that the given wireless signal is sent in a given time window on a given stator frequency band; the reference power threshold is configured by the given node itself.
  • a given node determines whether the given wireless signal is transmitted in a given time window on a given stator frequency band according to the correlation between the received signal and the given wireless signal.
  • the given node is the base station device.
  • the given sub-band is the first sub-band
  • the given time window is the first time window
  • the given wireless signal is the first wireless signal
  • the given node if the correlation between the received signal and the given wireless signal is low, the given node considers that the given wireless signal is not in the given time window on the given stator frequency band Is sent, otherwise, the given node considers the given wireless signal to be sent in a given time window on a given stator frequency band.
  • the given node if the correlation between the received signal and the given wireless signal is lower than a reference correlation threshold, the given node considers the given wireless signal to be given on a given stator frequency band It is not sent in the time window, otherwise, the given node considers that the given wireless signal is sent in the given time window on the given stator frequency band; the reference correlation threshold is configured by the given node itself.
  • a given node measures the received signal according to the configuration parameters of a given wireless signal to estimate a channel, and the given node determines that the given wireless signal is on a given sub-band according to the estimated channel Is sent in the given time window of.
  • the given node is the base station device.
  • the given sub-band is the first sub-band
  • the given time window is the first time window
  • the given wireless signal is the first wireless signal
  • the given node if the estimated energy of the channel is low, the given node considers that the given wireless signal has not been sent in the given time window on the given sub-band, otherwise , The given node considers that the given wireless signal is sent in a given time window on a given stator frequency band.
  • the given node if the estimated energy of the channel is lower than the reference channel energy threshold, the given node considers that the given wireless signal is not in a given time window on the given sub-band Is sent, otherwise, the given node considers that the given wireless signal is sent in a given time window on a given stator frequency band; the reference channel energy threshold is configured by the given node itself.
  • the given node if the estimated power of the channel is low, the given node considers that the given wireless signal has not been sent in a given time window on a given sub-band, otherwise , The given node considers that the given wireless signal is sent in a given time window on a given stator frequency band.
  • the given node if the estimated power of the channel is lower than a reference channel power threshold, the given node considers that the given wireless signal is not in a given time window on a given sub-band Is sent, otherwise, the given node considers that the given wireless signal is sent in a given time window on a given stator frequency band; the reference channel power threshold is configured by the given node itself.
  • the given node considers that the given wireless signal is on the given sub-band There is no transmission in the given time window, otherwise, the given node considers that the given wireless signal is transmitted in the given time window on the given stator frequency band.
  • the S subcarrier intervals correspond to the S offset sets in one-to-one correspondence, any two subcarrier intervals in the S subcarrier intervals are different, and the subcarriers occupied by the first wireless signal
  • the subcarrier interval of is a subcarrier interval among the S subcarrier intervals
  • the target offset set is a subcarrier among the S offset sets and the subcarrier occupied by the first wireless signal
  • the W starting moments include starting moments corresponding to N1 time units of the N time units, respectively, the N1 and the subcarriers occupied by the first wireless signal
  • the subcarrier spacing is related, and N1 is a positive integer not greater than N.
  • the W starting moments are divided into M subsets, any one of the W starting moments belongs to a subset of the M subsets, and the Any subset includes at least one of the W starting moments, and M is a positive integer; the starting moments corresponding to the N1 time units respectively belong to the N1 subsets of the M subsets, The N1 is not greater than the M; the M is equal to the N and the starting moments included in the M subsets respectively belong to the N time units.
  • the W starting moments are divided into M subsets, any one of the W starting moments belongs to a subset of the M subsets, and the Any subset includes at least one of the W starting moments, and M is a positive integer; the starting moments corresponding to the N1 time units respectively belong to the N1 subsets of the M subsets, The N1 is not greater than the M; there are two starting moments respectively belonging to two subsets of the M subsets and belonging to the same time unit among the N time units.
  • the first subset is any subset in which the number of starting moments included in the M subsets is greater than 1, and the time deviation between any two starting moments in the first subset is Equal to a positive integer multiple of the first time deviation.
  • the number of bits included in the second information is independent of the subcarrier spacing of the subcarriers occupied by the first wireless signal.
  • the number of bits included in the second information is related to the subcarrier interval of the subcarriers occupied by the first wireless signal.
  • Embodiments 6A to 6B respectively illustrate a schematic diagram in which the first information is used to determine the first time window, as shown in FIG. 6.
  • the first information is used to indicate the first time window.
  • the first information and the third information are used together to determine the first time window.
  • the first information is used to indicate the first time window.
  • the first information explicitly indicates the first time window.
  • the first information implicitly indicates the first time window.
  • the first information explicitly indicates T time windows, the first time window is one of the T time windows, and T is a positive integer.
  • the first information implicitly indicates T time windows, the first time window is one of the T time windows, and T is a positive integer.
  • the first information indicates a period and a time domain offset
  • the period and the time domain offset indicated by the first information are used to determine T time windows, so
  • the T time windows are a group of periodically occurring time windows, the first time window is one of the T time windows, and the T is a positive integer.
  • the first information includes a first bit string, the first bit string includes T1 bits, and the T1 bits included in the first bit string are respectively T1 time One-to-one correspondence of windows;
  • the first time window is a time window of T time windows, the T time windows are a subset of the T1 time windows, the T is a positive integer, and the T1 is not A positive integer less than T; for any given bit in the first bit string, if any given bit is equal to 1, the T1 time window corresponds to any given bit Is a time window of the T time windows; if any given bit is equal to 0, the time window corresponding to any given bit in the T1 time windows is not the T One of the time windows.
  • the first information includes a second bit string
  • the second bit string includes T2 bits, at least any one of the T2 bits and at least one of the T3 time windows
  • any one of the T3 time windows corresponds to one bit of the T2 bits
  • T3 is a positive integer not less than T2
  • T2 is a positive integer
  • the first time window is a time window of T time windows, each time window of the T time windows is a time window of the T3 time windows, the T is not greater than the T3 A positive integer of
  • for any given bit in the second bit string if the given bit is equal to 1, each time in the T3 time windows corresponding to the given bit
  • the windows are all one of the T time windows; if any of the given bits is equal to 0, each of the T3 time windows corresponding to the any given bit is not Describe one of the T time windows.
  • the first information is semi-statically configured.
  • the first information is carried by higher layer signaling.
  • the first information is carried by RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the first information is carried by MAC CE signaling.
  • the first information includes one or more IEs (Information Elements) in an RRC signaling.
  • the first information includes all or part of an IE in an RRC signaling.
  • the first information includes a partial field of an IE in an RRC signaling.
  • the first information includes multiple IEs in one RRC signaling.
  • the first information includes part or all of the field of the ConfiguredGrantConfigIE in the RRC signaling.
  • the ConfiguredGrantConfigIE see section 6.3.2 in 3GPP TS38.331.
  • the first information includes a periodicity field and a timeDomainOffset field in ConfiguredGrantConfigIE in an RRC signaling.
  • ConfiguredGrantConfigIE the periodicity field and the timeDomainOffset field, see Section 6.3.2 in 3GPP TS38.331.
  • the first information and the third information are used together to determine the first time window.
  • the first information and the third information are used together to indicate T time windows, the first time window is one of the T time windows, the T is a positive integer.
  • the first time window is one of T time windows, and T is a positive integer; the T time windows are a group of periodically occurring time windows, so
  • the third information indicates the period of the T time windows, and the first information indicates the earliest one of the N time windows.
  • the first time window is one of T time windows, and T is a positive integer; the T time windows are a group of periodically occurring time windows, so
  • the third information indicates the period of the T time windows, and the first information includes the time between the earliest one of the N time windows relative to the time-domain resource unit sending the first information Domain offset.
  • the third information indicates T1 time windows
  • the first information is used to determine T time windows among the T1 time windows
  • the first time window is One of the T time windows
  • T is a positive integer
  • T1 is a positive integer not less than T.
  • the third information indicates T1 time windows
  • the first information is used to determine the first time window
  • the first time window is the T1 time windows
  • T1 is a positive integer
  • the third information indicates T1 time windows
  • the first information is used to determine T time windows among the T1 time windows
  • the first time window is One of the T time windows
  • T is a positive integer
  • T1 is a positive integer not less than T.
  • the third information includes a third bit string, the third bit string includes T4 bits, and the T4 bits included in the third bit string are respectively T4 time
  • T1 time windows are a subset of the T4 time windows, and T1 is a positive integer not greater than T4
  • the time window corresponding to any given bit in the T4 time windows is a time window in the T1 time windows
  • the time window corresponding to any given bit in the T4 time windows is not a time window in the T1 time windows
  • the first information is used to determine the T1 time windows T time windows, the first time window is one of the T time windows, and T is a positive integer not greater than T1.
  • the third information includes a third bit string, the third bit string includes T4 bits, and the T4 bits included in the third bit string are respectively T4 time
  • T1 time windows are a subset of the T4 time windows, and T1 is a positive integer not greater than T4
  • the time window corresponding to any given bit in the T4 time windows is a time window in the T1 time windows
  • the time window corresponding to any given bit in the T4 time windows is not a time window in the T1 time windows
  • the start time of each time window in the T time windows is late
  • each of the T time windows is one of the T1 time windows
  • the first time window is the T time windows In a time window
  • T is a positive integer not greater than T1.
  • the third information includes a fourth bit string
  • the fourth bit string includes T4 bits, at least any one of the T4 bits and at least one of the T5 time windows Corresponding to one time window, any one of the T5 time windows corresponds to one bit of the T4 bits, the T5 is a positive integer not less than the T4, the T4 is a positive integer; T1 The time window is a subset of the T5 time windows, and T1 is a positive integer not greater than T5; for any given bit in the fourth bit string, if any given bit is equal to 1.
  • each time window corresponding to any given bit is a time window in the T1 time windows; if any given bit is equal to 0, the Each time window corresponding to the given bit in the T5 time windows is not a time window in the T1 time windows; the first information is used to determine the time window in the T1 time windows T time windows, the first time window is one of the T time windows, and T is a positive integer not greater than T1.
  • the third information includes a fourth bit string
  • the fourth bit string includes T4 bits, at least any one of the T4 bits and at least one of the T5 time windows Corresponding to one time window, any one of the T5 time windows corresponds to one bit of the T4 bits, the T5 is a positive integer not less than the T4, the T4 is a positive integer; T1 The time window is a subset of the T5 time windows, and T1 is a positive integer not greater than T5; for any given bit in the fourth bit string, if any given bit is equal to 1.
  • each time window corresponding to any given bit is a time window in the T1 time windows; if any given bit is equal to 0, the Each time window corresponding to the given bit in the T5 time windows is not a time window in the T1 time windows; the start time of each time window in the T time windows is later than
  • each of the T time windows is a time window of the T1 time windows, and the first time window is the T time windows In a time window, T is a positive integer not greater than T1.
  • the first information is dynamically configured.
  • the first information is carried by physical layer signaling.
  • the first information is carried by DCI signaling.
  • the first information includes one or more fields in the DCI signaling.
  • the first information includes a field in DCI signaling.
  • the first information includes multiple fields in DCI signaling.
  • the first information is carried by DCI signaling of UpLink Grant.
  • the CRC (Cyclic Redundancy Check) bit sequence of the DCI signaling carrying the first information is CS (Configured Scheduling)-RNTI (Radio Network) Temporary Identifier, wireless network tentative identification) scrambling.
  • the DCI signaling carrying the first information is DCI format 0_0 or DCI format 0_1.
  • DCI format 0_0 and DCI format 0_1 see 3GPP TS 38.212. Section 7.3.1.1.
  • the DCI signaling carrying the first information is DCI format 0_0.
  • DCI format 0_0 For the specific definition of the DCI format 0_0, see section 7.3.1.1 in 3GPP TS 38.212.
  • the DCI signaling carrying the first information is DCI format 0_1.
  • DCI format 0_1 For the specific definition of the DCI format 0_1, refer to Chapter 7.3.1.1 in 3GPP TS 38.212.
  • the first information includes the Time domain resource domain in the DCI signaling.
  • the Time domain resource domain in the DCI signaling.
  • the third information is transmitted on a frequency band deployed in an unlicensed spectrum.
  • the third information is transmitted on the frequency band deployed in the licensed spectrum.
  • the third information is transmitted on the first sub-band.
  • the third information is transmitted on a frequency band other than the first sub-band.
  • the third information is semi-statically configured.
  • the third information is carried by higher layer signaling.
  • the third information is carried by RRC signaling.
  • the third information is carried by MAC CE signaling.
  • the third information includes one or more IEs in one RRC signaling.
  • the third information includes all or part of an IE in an RRC signaling.
  • the third information includes a partial field of an IE in an RRC signaling.
  • the third information includes multiple IEs in one RRC signaling.
  • the third information includes some or all fields of the ConfiguredGrantConfigIE in an RRC signaling.
  • the ConfiguredGrantConfigIE see section 6.3.2 in 3GPP TS38.331.
  • the third information includes a periodicity field in ConfiguredGrantConfigIE in an RRC signaling.
  • ConfiguredGrantConfigIE in an RRC signaling.
  • the third information is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • the third information is transmitted on a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the third information is transmitted on sPDSCH (short PDSCH, short PDSCH).
  • the third information is transmitted on NR-PDSCH (New Radio PDSCH, New Radio PDSCH).
  • the third information is transmitted on NB-PDSCH (Narrow Band PDSCH, narrowband PDSCH).
  • Embodiment 7 illustrates a schematic diagram of the relationship between S subcarrier intervals and S offset sets, as shown in FIG. 7.
  • the S subcarrier intervals correspond to the S offset sets in one-to-one correspondence, any two subcarrier intervals in the S subcarrier intervals are different, and the subcarriers occupied by the first wireless signal
  • the sub-carrier interval of the carrier is one sub-carrier interval among the S sub-carrier intervals
  • the target offset set is a sub-carrier interval among the S offset sets and the sub-carrier occupied by the first wireless signal
  • the N and the target offset set only the N is related to the subcarrier interval of the subcarrier occupied by the first wireless signal; any two offsets in the S offset sets The shift set is the same.
  • both the N and the target offset set are related to the subcarrier interval of the subcarrier occupied by the first wireless signal; there are two offset moment sets among the S offset sets that are not the same.
  • both the N and the target offset set are related to the subcarrier interval of the subcarrier occupied by the first wireless signal; any two offset time sets among the S offset sets Not the same.
  • the target offset set is related to the subcarrier interval of the subcarrier occupied by the first wireless signal; the S offset sets exist The two offset time sets are different.
  • only the target offset set is related to the subcarrier interval of the subcarrier occupied by the first wireless signal; among the S offset sets Any two offset time sets are different.
  • the S subcarrier intervals include at least two of 15 kHz, 30 kHz, and 60 kHz.
  • the S subcarrier intervals include 15 kHz, 30 kHz, and 60 kHz.
  • the S subcarrier intervals include 15 kHz and 30 kHz.
  • the S subcarrier intervals include 15 kHz and 60 kHz.
  • the S subcarrier intervals include 30 kHz and 60 kHz.
  • any offset set in the S offset sets includes positive integer offset values, and any offset value in any offset set in the S offset sets is positive Real number.
  • any offset set in the S offset sets includes positive integer offset values, and any offset value in any offset set in the S offset sets is non-positive Negative real number.
  • Embodiment 8 illustrates a schematic diagram of a target offset set, as shown in FIG. 8.
  • the W is independent of the subcarrier spacing of the subcarriers occupied by the first wireless signal.
  • the target offset set is independent of the subcarrier spacing of the subcarriers occupied by the first wireless signal.
  • the N is equal to the first reference value; if the first wireless signal is occupied The subcarrier spacing of the subcarriers is equal to the second subcarrier spacing, and N is equal to the second reference value; the second subcarrier spacing is greater than the first subcarrier spacing, and the second reference value is greater than the first Reference value.
  • the first sub-carrier interval is 15 kHz
  • the first reference value is equal to 2
  • the second sub-carrier interval is 30 kHz
  • the second reference value is equal to 3.
  • the first subcarrier interval is 15 kHz
  • the first reference value is equal to 2
  • the second subcarrier interval is 60 kHz
  • the second reference value is equal to 5.
  • the first sub-carrier interval is 30 kHz
  • the first reference value is equal to 3
  • the second sub-carrier interval is 60 kHz
  • the second reference value is equal to 5.
  • 15 kHz is a subcarrier interval among the S subcarrier intervals
  • an offset set corresponding to 15 kHz among the S offset sets includes 16us, 25us, 34us, 43us, 52us, 61us, and OS #1(15kHz).
  • 30 kHz is a subcarrier interval among the S subcarrier intervals, and an offset set corresponding to 30 kHz among the S offset sets includes 16us, 25us, 34us, 43us, 52us, 61us, and OS #2(30kHz).
  • 60kHz is one subcarrier interval among the S subcarrier intervals
  • one offset set corresponding to 60kHz among the S offset sets includes 16us, 25us, 34us, 43us, 52us, 61us, and OS #4(60kHz).
  • Embodiment 9 illustrates a schematic diagram of another target offset set, as shown in FIG. 8.
  • Embodiment 9 among the N and the target offset set, only the target offset set is related to the subcarrier interval of the subcarrier occupied by the first wireless signal.
  • the target offset set is related to the subcarrier interval of the subcarrier occupied by the first wireless signal; the S offset sets exist The two offset time sets are different.
  • only the target offset set is related to the subcarrier interval of the subcarrier occupied by the first wireless signal; among the S offset sets Any two offset time sets are different.
  • the W is related to the subcarrier spacing of the subcarriers occupied by the first wireless signal.
  • the N is independent of the subcarrier spacing of the subcarriers occupied by the first wireless signal.
  • the W is equal to the first target value; if the first wireless signal is occupied The subcarrier interval of the subcarriers is equal to the second subcarrier interval, and W is equal to the second target value; the second subcarrier interval is greater than the first subcarrier interval, and the second target value is less than the first The target value.
  • the first sub-carrier interval is 15 kHz
  • the first target value is equal to 7
  • the second sub-carrier interval is 30 kHz
  • the second target value is equal to 3.
  • the first sub-carrier interval is 15 kHz
  • the first target value is equal to 7
  • the second sub-carrier interval is 60 kHz
  • the second target value is equal to 2.
  • the first sub-carrier interval is 30 kHz
  • the first target value is equal to 3
  • the second sub-carrier interval is 60 kHz
  • the second target value is equal to 2.
  • the first subcarrier interval is 15 kHz
  • the first target value is equal to 7
  • the second subcarrier interval is 60 kHz
  • the second target value is equal to 1.
  • the first sub-carrier interval is 30 kHz
  • the first target value is equal to 3
  • the second sub-carrier interval is 60 kHz
  • the second target value is equal to 1.
  • 15 kHz is a subcarrier interval among the S subcarrier intervals
  • an offset set corresponding to 15 kHz among the S offset sets includes 16us, 25us, 34us, 43us, 52us, 61us, and OS #1(15kHz), wherein the OS#1(15kHz) is the duration of one multi-carrier symbol when the subcarrier spacing is 15kHz.
  • 30 kHz is a subcarrier interval among the S subcarrier intervals, and an offset set corresponding to 30 kHz among the S offset sets includes 16 us, 25 us, and OS#1 (30 kHz).
  • 60 kHz is one subcarrier interval among the S subcarrier intervals, and an offset set corresponding to 60 kHz among the S offset sets includes 16 us and OS#1 (60 kHz).
  • 60 kHz is one subcarrier interval among the S subcarrier intervals, and an offset set corresponding to 60 kHz among the S offset sets includes OS#1 (60 kHz).
  • Embodiment 10 illustrates a schematic diagram of another target offset set, as shown in FIG. 10.
  • the W starting moments include starting moments corresponding to N1 time units of the N time units, respectively, the N1 and the subcarrier occupied by the first wireless signal
  • the subcarrier spacing is independent, and N1 is a positive integer not greater than N.
  • both the N and the target offset set are related to the subcarrier spacing of the subcarriers occupied by the first wireless signal.
  • the N1 is equal to 1.
  • the N1 is greater than 1.
  • the start time of any time unit in the N1 time units is a start time of the W start times.
  • 15kHz is one subcarrier interval among the S subcarrier intervals
  • one offset set corresponding to 15kHz among the S offset sets includes OS#1 (15kHz), OS#1 (15kHz) -9us, OS#1(15kHz)-18us, OS#1(15kHz)-27us, OS#1(15kHz)-36us, OS#1(15kHz)-45us, OS#1(15kHz)-54us and OS# 1(15kHz)-63us.
  • 15kHz is one subcarrier interval among the S subcarrier intervals
  • one offset set corresponding to 15kHz among the S offset sets includes OS#1 (15kHz), OS#1 (15kHz) -9us, OS#1(15kHz)-18us, OS#1(15kHz)-27us, OS#1(15kHz)-36us, OS#1(15kHz)-45us and OS#1(15kHz)-54us.
  • 15 kHz is a subcarrier interval among the S subcarrier intervals
  • an offset set corresponding to 15 kHz among the S offset sets includes OS#1(15kHz), OS#1(15kHz) -9us, OS#1(15kHz)-18us, OS#1(15kHz)-27us, OS#1(15kHz)-36us and OS#1(15kHz)-45us.
  • 30kHz is one subcarrier interval among the S subcarrier intervals
  • one offset set corresponding to 30kHz among the S offset sets includes OS#2 (30kHz) and OS#2 (30kHz) -9us, OS#2(30kHz)-18us, OS#2(30kHz)-27us, OS#2(30kHz)-36us, OS#2(30kHz)-45us, OS#2(30kHz)-54us and OS# 2(30kHz)-63us.
  • 30kHz is one subcarrier interval among the S subcarrier intervals
  • one offset set corresponding to 30kHz among the S offset sets includes OS#2 (30kHz) and OS#2 (30kHz) -9us, OS#2(30kHz)-18us, OS#2(30kHz)-27us, OS#2(30kHz)-36us, OS#2(30kHz)-45us and OS#2(30kHz)-54us.
  • 30kHz is one subcarrier interval among the S subcarrier intervals
  • one offset set corresponding to 30kHz among the S offset sets includes OS#2 (30kHz) and OS#2 (30kHz) -9us, OS#2(30kHz)-18us, OS#2(30kHz)-27us, OS#2(30kHz)-36us and OS#2(30kHz)-45us.
  • 60kHz is one subcarrier interval among the S subcarrier intervals
  • one offset set corresponding to 60kHz among the S offset sets includes OS#4 (60kHz), OS#4 (60kHz) -9us, OS#4(60kHz)-18us, OS#4(60kHz)-27us, OS#4(60kHz)-36us, OS#4(60kHz)-45us, OS#4(60kHz)-54us, OS# 4(60kHz)-63us.
  • 60kHz is one subcarrier interval among the S subcarrier intervals
  • one offset set corresponding to 60kHz among the S offset sets includes OS#4 (60kHz), OS#4 (60kHz) -9us, OS#4(60kHz)-18us, OS#4(60kHz)-27us, OS#4(60kHz)-36us, OS#4(60kHz)-45us and OS#4(60kHz)-54us.
  • 60kHz is one subcarrier interval among the S subcarrier intervals
  • one offset set corresponding to 60kHz among the S offset sets includes OS#4 (60kHz), OS#4 (60kHz) -9us, OS#4(60kHz)-18us, OS#4(60kHz)-27us, OS#4(60kHz)-36us and OS#4(60kHz)-45us.
  • Embodiment 11 illustrates a schematic diagram of another target offset set, as shown in FIG. 11.
  • the W starting moments include starting moments corresponding to N1 time units of the N time units respectively, the N1 and the subcarrier occupied by the first wireless signal Is related to the subcarrier spacing, and N1 is a positive integer not greater than N.
  • both the N and the target offset set are related to the subcarrier spacing of the subcarriers occupied by the first wireless signal.
  • the W is independent of the subcarrier spacing of the subcarriers occupied by the first wireless signal.
  • the W is related to the subcarrier spacing of the subcarriers occupied by the first wireless signal.
  • the N1 is equal to the N.
  • the N1 is smaller than the N.
  • N1 is equal to N-1.
  • the N1 is smaller than the N, and any one of the N1 time units is a time unit other than the oldest one among the N time units.
  • the N1 is equal to N-1, and the N1 time units are all time units except the earliest time unit among the N time units.
  • the N1 is equal to the first value
  • the first wireless signal occupies The subcarrier interval of the subcarrier is equal to the second subcarrier interval, and N1 is equal to the second value
  • the second subcarrier interval is greater than the first subcarrier interval, and the second value is greater than the first value.
  • the first sub-carrier interval is 15 kHz, the first value is equal to 1, the second sub-carrier interval is 30 kHz, and the second value is equal to 2.
  • the first subcarrier interval is 15 kHz, the first value is equal to 1, the second subcarrier interval is 60 kHz, and the second value is equal to 4.
  • the first subcarrier interval is 30 kHz, the first value is equal to 2, the second subcarrier interval is 60 kHz, and the second value is equal to 4.
  • the N1 is equal to the first value
  • the first wireless signal occupies The subcarrier spacing of the subcarriers is equal to the second subcarrier spacing, and N1 is equal to the second value
  • the second subcarrier spacing is G times the first subcarrier spacing, and the second value is divided by the first
  • a numerical value is equal to the G, which is a positive integer greater than 1.
  • the first sub-carrier interval is 15 kHz, the first value is equal to 1, the second sub-carrier interval is 30 kHz, and the second value is equal to 2.
  • the first subcarrier interval is 15 kHz, the first value is equal to 1, the second subcarrier interval is 60 kHz, and the second value is equal to 4.
  • the first subcarrier interval is 30 kHz, the first value is equal to 2, the second subcarrier interval is 60 kHz, and the second value is equal to 4.
  • Embodiment 12 illustrates a schematic diagram of the relationship between M subsets and N time units, as shown in FIG. 12.
  • the W starting moments include starting moments corresponding to N1 time units of the N time units, respectively, the N1 and the subcarrier occupied by the first wireless signal Is related to the subcarrier interval, and N1 is a positive integer not greater than N;
  • the W starting moments are divided into M subsets, and any of the W starting moments belongs to the A subset of the M subsets, any subset of the M subsets includes at least one of the W starting moments, the M is a positive integer;
  • the N1 time units correspond to The starting moments belong to N1 subsets of the M subsets, respectively, where N1 is not greater than the M;
  • the M is equal to the N and the starting moments included in the M subsets belong to the N time units, respectively .
  • any one of the W starting moments belongs to only one of the M subsets.
  • the M subsets correspond to the N time units in one-to-one correspondence, and all start moments included in any of the M subsets belong to the corresponding N time units.
  • 15 kHz is one subcarrier interval among the S subcarrier intervals
  • the N1 is equal to 1
  • OS#1 (15 kHz) belongs to the N1 subset.
  • the M is greater than the N1.
  • the M is equal to 2.
  • 30 kHz is one subcarrier interval among the S subcarrier intervals
  • the N1 is equal to 2
  • OS#1 (30 kHz) and OS#2 (30 kHz) belong to the N1 subsets, respectively.
  • the M is greater than the N1.
  • the M is equal to 3.
  • 60 kHz is one subcarrier interval among the S subcarrier intervals, and the N1 is equal to 4; OS#1 (60kHz), OS#2 (60kHz), OS#3 (60kHz), and OS#4 (60kHz) belongs to the N1 subsets, respectively.
  • the M is greater than the N1.
  • the M is equal to the N1.
  • the M is equal to 5.
  • 15 kHz is a subcarrier interval among the S subcarrier intervals
  • an offset set corresponding to 15 kHz among the S offset sets includes 16us, 25us, 34us, 43us, 52us, 61us, and OS #1(15kHz).
  • the M is equal to 2, and the M subsets include ⁇ 16us, 25us, 34us, 43us, 52us, 61us ⁇ and ⁇ OS#1(15kHz) ⁇ , respectively.
  • 30kHz is one subcarrier interval among the S subcarrier intervals
  • one offset set corresponding to 30kHz among the S offset sets includes 16us, 25us, OS#1 (30kHz), OS# 1(30kHz)+9us, OS#1(30kHz)+18us, OS#1(30kHz)+27us and OS#2(30kHz).
  • the M is equal to 3, and the M subsets include ⁇ 16us, 25us ⁇ , ⁇ OS#1(30kHz), OS#1(30kHz)+9us, OS#1( 30kHz)+18us, OS#1(30kHz)+27us ⁇ and ⁇ OS#2(30kHz) ⁇
  • 60 kHz is a subcarrier interval among the S subcarrier intervals
  • an offset set corresponding to 60 kHz among the S offset sets includes 16 us, OS#1 (60 kHz), OS#1( 60kHz)+9us, OS#2(60kHz), OS#2(60kHz)+9us, OS#3(60kHz), OS#3(60kHz)+9us and OS#4(60kHz).
  • the M is equal to 5, and the M subsets include ⁇ 16us ⁇ , ⁇ OS#1(60kHz), OS#1(60kHz)+9us ⁇ , ⁇ OS#2( 60kHz), OS#2(60kHz)+9us ⁇ , ⁇ OS#3(60kHz), OS#3(60kHz)+9us ⁇ and ⁇ OS#4(60kHz) ⁇ .
  • 60 kHz is a sub-carrier interval among the S sub-carrier intervals
  • an offset set corresponding to 60 kHz among the S offset sets includes OS#1 (60 kHz) and OS#1 (60 kHz) +9us, OS#2(60kHz), OS#2(60kHz)+9us, OS#3(60kHz), OS#3(60kHz)+9us and OS#4(60kHz).
  • the M is equal to 4, and the M subsets include ⁇ OS#1(60kHz), OS#1(60kHz)+9us ⁇ , ⁇ OS#2(60kHz), OS #2(60kHz)+9us ⁇ , ⁇ OS#3(60kHz), OS#3(60kHz)+9us ⁇ and ⁇ OS#4(60kHz) ⁇ .
  • 60kHz is one subcarrier interval among the S subcarrier intervals
  • one offset set corresponding to 60kHz among the S offset sets includes OS#1 (60kHz) and OS#2 (60kHz) , OS#3 (60kHz) and OS#4 (60kHz).
  • the M is equal to 4, and the M subsets include ⁇ OS#1(60kHz) ⁇ , ⁇ OS#2(60kHz) ⁇ , ⁇ OS#3(60kHz) ⁇ and ⁇ OS#4(60kHz) ⁇ .
  • the OS#1 (15 kHz) is the duration of one multi-carrier symbol when the subcarrier spacing is 15 kHz.
  • the OS#1 (30 kHz) is the duration of one multi-carrier symbol when the subcarrier spacing is 30 kHz.
  • the OS#2 (30 kHz) is the duration of two consecutive multi-carrier symbols when the subcarrier spacing is 30 kHz.
  • the OS#1 (60 kHz) is the duration of one multi-carrier symbol when the subcarrier spacing is 60 kHz.
  • the OS#2 (60 kHz) is the duration of two consecutive multi-carrier symbols when the subcarrier spacing is 60 kHz.
  • the OS#3 (60 kHz) is the duration of three consecutive multi-carrier symbols when the subcarrier spacing is 60 kHz.
  • the OS#4 (60 kHz) is the duration of four consecutive multi-carrier symbols when the subcarrier spacing is 60 kHz.
  • the OS#1 (15kHz) is equal to 1/(15kHz).
  • the OS#1 (15 kHz) is approximately equal to 66.7 us.
  • the OS#1 (30kHz) is equal to 1/(30kHz).
  • the OS#1 (30kHz) is approximately equal to 33.3us.
  • the OS#2 (30kHz) is equal to 2/(30kHz).
  • the OS#2 (30 kHz) is approximately equal to 66.7 us.
  • the OS#1 (60kHz) is equal to 1/(60kHz).
  • the OS#1 (60 kHz) is approximately equal to 16.7 us.
  • the OS#2 (60kHz) is equal to 2/(60kHz).
  • the OS#2 (60kHz) is approximately equal to 33.3us.
  • the OS#3 (60kHz) is equal to 3/(60kHz).
  • the OS#3 (60kHz) is approximately equal to 50us.
  • the OS#4 (60kHz) is equal to 4/(60kHz).
  • the OS#4 (60 kHz) is approximately equal to 66.7 us.
  • Embodiment 13 illustrates another schematic diagram of the relationship between M subsets and N time units, as shown in FIG. 13.
  • the W starting moments include starting moments corresponding to N1 time units of the N time units respectively, the N1 and the subcarrier occupied by the first wireless signal Is related to the subcarrier interval, and N1 is a positive integer not greater than N;
  • the W starting moments are divided into M subsets, and any of the W starting moments belongs to the A subset of the M subsets, any subset of the M subsets includes at least one of the W starting moments, the M is a positive integer;
  • the N1 time units correspond to The starting moments belong to N1 subsets of the M subsets, respectively, and the N1 is not greater than the M; there are two starting moments that belong to two subsets of the M subsets and belong to the N time units The same time unit.
  • any one of the W starting moments belongs to only one of the M subsets.
  • 15 kHz is one subcarrier interval among the S subcarrier intervals
  • the N1 is equal to 1
  • OS#1 (15 kHz) belongs to the N1 subset.
  • 30 kHz is one subcarrier interval among the S subcarrier intervals
  • the N1 is equal to 2
  • OS#1 (30 kHz) and OS#2 (30 kHz) belong to the N1 subsets, respectively.
  • 60 kHz is one subcarrier interval among the S subcarrier intervals, and the N1 is equal to 4; OS#1 (60kHz), OS#2 (60kHz), OS#3 (60kHz), and OS#4 (60kHz) belongs to the N1 subsets, respectively.
  • the M is equal to the N1.
  • 15kHz is one subcarrier interval among the S subcarrier intervals
  • one offset set corresponding to 15kHz among the S offset sets includes OS#1 (15kHz), OS#1 (15kHz) -9us, OS#1(15kHz)-18us, OS#1(15kHz)-27us, OS#1(15kHz)-36us, OS#1(15kHz)-45us, OS#1(15kHz)-54us and OS# 1(15kHz)-63us.
  • the M is equal to 1, and the M subsets include OS#1(15kHz), OS#1(15kHz)-9us, OS#1(15kHz)-18us, OS#1 (15kHz)-27us, OS#1(15kHz)-36us, OS#1(15kHz)-45us, OS#1(15kHz)-54us and OS#1(15kHz)-63us.
  • 15kHz is one subcarrier interval among the S subcarrier intervals
  • one offset set corresponding to 15kHz among the S offset sets includes OS#1 (15kHz), OS#1 (15kHz) -9us, OS#1(15kHz)-18us, OS#1(15kHz)-27us, OS#1(15kHz)-36us, OS#1(15kHz)-45us and OS#1(15kHz)-54us.
  • the M is equal to 1, and the M subsets include OS#1(15kHz), OS#1(15kHz)-9us, OS#1(15kHz)-18us, OS#1 (15kHz)-27us, OS#1(15kHz)-36us, OS#1(15kHz)-45us and OS#1(15kHz)-54us.
  • 15 kHz is a subcarrier interval among the S subcarrier intervals
  • an offset set corresponding to 15 kHz among the S offset sets includes OS#1(15kHz), OS#1(15kHz) -9us, OS#1(15kHz)-18us, OS#1(15kHz)-27us, OS#1(15kHz)-36us and OS#1(15kHz)-45us.
  • the M is equal to 1, and the M subsets include OS#1(15kHz), OS#1(15kHz)-9us, OS#1(15kHz)-18us, OS#1 (15kHz)-27us, OS#1(15kHz)-36us and OS#1(15kHz)-45us.
  • 30kHz is one subcarrier interval among the S subcarrier intervals
  • one offset set corresponding to 30kHz among the S offset sets includes OS#1 (30kHz), OS#1 (30kHz) -9us, OS#1(30kHz)-18us, OS#1(30kHz)-27us, OS#2(30kHz), OS#2(30kHz)-9us, OS#2(30kHz)-18us, OS#2( 30kHz)-27us, OS#2(30kHz)-36us, OS#2(30kHz)-45us, OS#2(30kHz)-54us and OS#2(30kHz)-63us.
  • the M is equal to 2, and the M subsets include ⁇ OS#1(30kHz), OS#1(30kHz)-9us, OS#1(30kHz)-18us, OS #1(30kHz)-27us ⁇ and ⁇ OS#2(30kHz), OS#2(30kHz)-9us, OS#2(30kHz)-18us, OS#2(30kHz)-27us, OS#2(30kHz) -36us, OS#2(30kHz)-45us, OS#2(30kHz)-54us, OS#2(30kHz)-63us ⁇ .
  • 30kHz is one subcarrier interval among the S subcarrier intervals
  • one offset set corresponding to 30kHz among the S offset sets includes OS#1 (30kHz), OS#1 (30kHz) -9us, OS#1(30kHz)-18us, OS#2(30kHz), OS#2(30kHz)-9us, OS#2(30kHz)-18us, OS#2(30kHz)-27us, OS#2( 30kHz)-36us, OS#2(30kHz)-45us and OS#2(30kHz)-54us.
  • the M is equal to 2, and the M subsets include ⁇ OS#1(30kHz), OS#1(30kHz)-9us, OS#1(30kHz)-18us ⁇ and (OS#2(30kHz), OS#2(30kHz)-9us, OS#2(30kHz)-18us, OS#2(30kHz)-27us, OS#2(30kHz)-36us, OS#2(30kHz) -45us, OS#2(30kHz)-54us ⁇ .
  • 30kHz is one subcarrier interval among the S subcarrier intervals
  • one offset set corresponding to 30kHz among the S offset sets includes OS#1 (30kHz), OS#1 (30kHz) -9us, OS#2(30kHz), OS#2(30kHz)-9us, OS#2(30kHz)-18us, OS#2(30kHz)-27us, OS#2(30kHz)-36us and OS#2( 30kHz)-45us.
  • the M is equal to 2, and the M subsets include ⁇ OS#1(30kHz), OS#1(30kHz)-9us ⁇ and ⁇ OS#2(30kHz), OS #2(30kHz)-9us, OS#2(30kHz)-18us, OS#2(30kHz)-27us, OS#2(30kHz)-36us, OS#2(30kHz)-45us ⁇ .
  • 60 kHz is a sub-carrier interval among the S sub-carrier intervals
  • an offset set corresponding to 60 kHz among the S offset sets includes OS#1 (60 kHz) and OS#1 (60 kHz) -9us, OS#2(60kHz), OS#2(60kHz)-9us, OS#2(60kHz)-18us, OS#2(60kHz)-27us, OS#3(60kHz), OS#3(60kHz) -9us, OS#3(60kHz)-18us, OS#3(60kHz)-27us, OS#3(60kHz)-36us, OS#3(60kHz)-45us, OS#4(60kHz), OS#4( 60kHz)-9us, OS#4(60kHz)-18us, OS#4(60kHz)-27us, OS#4(60kHz)-36us, OS#4(60kHz)-45us, OS#4(60kHz), OS#4( 60kHz)-9
  • the M is equal to 4, and the M subsets include ⁇ OS#1(60kHz) and OS#1(60kHz)-9us ⁇ , ⁇ OS#2(60kHz), OS #2(60kHz)-9us, OS#2(60kHz)-18us, OS#2(60kHz)-27us ⁇ , ⁇ OS#3(60kHz), OS#3(60kHz)-9us, OS#3(60kHz) -18us, OS#3(60kHz)-27us, OS#3(60kHz)-36us, OS#3(60kHz)-45us) and (OS#4(60kHz), OS#4(60kHz)-9us, OS# 4(60kHz)-18us, OS#4(60kHz)-27us, OS#4(60kHz)-36us, OS#4(60kHz)-45us, OS#4(60kHz)-54us, OS#4(60kHz)-
  • 60 kHz is a subcarrier interval among the S subcarrier intervals
  • one offset set corresponding to 60 kHz among the S offset sets includes OS#1 (60 kHz) and OS#2 (60 kHz) , OS#2(60kHz)-9us, OS#2(60kHz)-18us, OS#3(60kHz), OS#3(60kHz)-9us, OS#3(60kHz)-18us, OS#3(60kHz) -27us, OS#3(60kHz)-36us, OS#4(60kHz), OS#4(60kHz)-9us, OS#4(60kHz)-18us, OS#4(60kHz)-27us, OS#4( 60kHz)-36us, OS#4(60kHz)-45us and OS#4(60kHz)-54us.
  • the M is equal to 4, and the M subsets include ⁇ OS#1(60kHz) ⁇ , ⁇ OS#2(60kHz), OS#2(60kHz)-9us, OS #2(60kHz)-18us ⁇ , ⁇ OS#3(60kHz), OS#3(60kHz)-9us, OS#3(60kHz)-18us, OS#3(60kHz)-27us, OS#3(60kHz) -36us ⁇ and ⁇ OS#4(60kHz), OS#4(60kHz)-9us, OS#4(60kHz)-18us, OS#4(60kHz)-27us, OS#4(60kHz)-36us, OS# 4(60kHz)-45us, OS#4(60kHz)-54us ⁇ .
  • 60 kHz is a subcarrier interval among the S subcarrier intervals
  • one offset set corresponding to 60 kHz among the S offset sets includes OS#1 (60 kHz) and OS#2 (60 kHz) , OS#2(60kHz)-9us, OS#3(60kHz), OS#3(60kHz)-9us, OS#3(60kHz)-18us, OS#3(60kHz)-27us, OS#4(60kHz) , OS#4(60kHz)-9us, OS#4(60kHz)-18us, OS#4(60kHz)-27us, OS#4(60kHz)-36us and OS#4(60kHz)-45us.
  • the M is equal to 4, and the M subsets include ⁇ OS#1(60kHz) ⁇ , ⁇ OS#2(60kHz), OS#2(60kHz)-9us ⁇ , ⁇ OS#3(60kHz), OS#3(60kHz)-9us, OS#3(60kHz)-18us, OS#3(60kHz)-27us ⁇ and ⁇ OS#4(60kHz), OS#4(60kHz) -9us, OS#4(60kHz)-18us, OS#4(60kHz)-27us, OS#4(60kHz)-36us, OS#4(60kHz)-45us ⁇ .
  • Embodiment 14 illustrates a schematic diagram of M subsets, as shown in FIG. 14.
  • the first subset is any subset in which the number of starting moments included in the M subsets is greater than 1, and the time deviation between any two starting moments in the first subset Are equal to the positive integer multiple of the first time deviation.
  • the first time deviation is predefined or configurable.
  • the first time deviation is predefined.
  • the first time deviation is configurable.
  • the first time deviation is the duration of a slot duration.
  • the first time deviation is the duration of the time unit corresponding to one energy detection.
  • the first time deviation is the duration of a time sub-pool in the first access detection.
  • the first time deviation is the duration of a time sub-pool in a given access detection.
  • the first time deviation is equal to 9us.
  • the time deviation between any two starting moments adjacent in the time domain in the first subset is equal to the first time deviation.
  • Embodiment 15 illustrates a schematic diagram of the relationship between the second information and the subcarrier spacing of the subcarriers occupied by the first wireless signal, as shown in FIG. 15.
  • the number of bits included in the second information is related to the subcarrier interval of the subcarriers occupied by the first wireless signal.
  • the N is related to the subcarrier interval of the subcarrier occupied by the first wireless signal, and the second information is used to indicate the first wireless from the N time units A time unit to which the signal's initial sending moment belongs.
  • the N is related to the subcarrier interval of the subcarrier occupied by the first wireless signal, and the number of bits included in the second information is related to the N.
  • the number of bits included in the second information is equal to the N.
  • the number of bits included in the second information is equal to
  • the N is equal to the first reference value, and the number of bits included in the second information is equal to the first A number of bits; if the subcarrier interval of the subcarriers occupied by the first wireless signal is equal to the second subcarrier interval, the N is equal to the second reference value, and the number of bits included in the second information is equal to the second Number of bits; the second subcarrier interval is greater than the first subcarrier interval, the second reference value is greater than the first reference value, and the second bit quantity is greater than the first bit quantity.
  • the first subcarrier interval is 15 kHz, the first reference value is equal to 2, and the number of first bits is equal to 2; the second subcarrier interval is 30 kHz, the The second reference value is equal to 3, and the number of second bits is equal to 3.
  • the first subcarrier interval is 15 kHz, the first reference value is equal to 2, and the number of first bits is equal to 1; the second subcarrier interval is 30 kHz, the The second reference value is equal to 3, and the number of the second bits is equal to 2.
  • the first subcarrier interval is 15 kHz, the first reference value is equal to 2, and the number of first bits is equal to 2; the second subcarrier interval is 60 kHz, the The second reference value is equal to 5, and the number of the second bits is equal to 5.
  • the first sub-carrier interval is 15 kHz, the first reference value is equal to 2, and the number of first bits is equal to 1;
  • the second sub-carrier interval is 60 kHz, the The second reference value is equal to 5, and the number of the second bits is equal to 3.
  • the first subcarrier interval is 30 kHz, the first reference value is equal to 3, and the number of first bits is equal to 3; the second subcarrier interval is 60 kHz, the The second reference value is equal to 5, and the number of second bits is equal to 5.
  • the first sub-carrier interval is 30 kHz, the first reference value is equal to 3, and the number of first bits is equal to 2; the second sub-carrier interval is 60 kHz, the The second reference value is equal to 5, and the number of the second bits is equal to 3.
  • Embodiment 16 illustrates a schematic diagram in which a given access detection performed on a given stator frequency band is used to determine whether to start transmitting a given wireless signal at a given time in the given stator frequency band, as shown in FIG. 16.
  • the given access detection includes performing X energy detections in X time sub-pools on the given stator frequency band respectively to obtain X detection values, where X is a positive integer; the X The end time of the time sub-pool is not later than the given time.
  • the given access detection corresponds to the first access detection in this application, the given time corresponds to the initial transmission time of the first wireless signal in this application, and the given stator frequency band corresponds to this application In the first sub-band in, the X corresponds to the Q in this application.
  • the process of the given access detection can be described by the flowchart in FIG. 16.
  • the base station device in the present application is in an idle state in step S1001, and it is determined in step S1002 whether to send; in step 1003, energy detection is performed within a delay period (defer duration); in step In S1004, it is determined whether all the time slots in this delay period are idle. If yes, proceed to step S1005 to set the first counter equal to X1, where X1 is an integer not greater than X; otherwise, return to step S1004; in step In S1006, it is determined whether the first counter is 0.
  • step S1007 If yes, proceed to step S1007 to start sending the given wireless signal at the given time of the given stator frequency band; otherwise proceed to step S1008 in an additional Energy detection is performed in an additional slot period; in step S1009, it is determined whether the additional slot period is idle. If yes, proceed to step S1010 to decrement the first counter by one, and then return to step 1006; otherwise, proceed Go to step S1011 to perform energy detection in an additional delay period (additional delay); in step S1012, determine whether all the time slot periods in the additional delay period are idle, if yes, proceed to step S1010; otherwise return to step S1011 .
  • the first counter in FIG. 16 is cleared before the given time, the result of the given access detection is that the channel is idle, and a wireless signal can be sent at the given time; Otherwise, the wireless signal cannot be sent at the given time.
  • the condition that the first counter is cleared is that X1 detection values of the X detection values corresponding to X1 time subpools in the X time subpools are all lower than a first reference threshold, and the X1 The start time of the time subpool is after step S1005 in FIG. 16.
  • the X1 corresponds to the Q1 in this application.
  • the end time of the given access detection is not later than the given time.
  • the end time of the given access detection is earlier than the given time.
  • the X time sub-pools include all delay periods in FIG. 16.
  • the X time sub-pools include a partial delay period in FIG. 16.
  • the X time sub-pools include all delay periods and all additional time slot periods in FIG. 16.
  • the X time sub-pools include all delay periods and some additional time slot periods in FIG. 16.
  • the X time sub-pools include all delay periods, all additional time slot periods, and all additional delay periods in FIG. 16.
  • the X time sub-pools include all delay periods, some additional time slot periods, and all additional delay periods in FIG. 16.
  • the X time sub-pools include all delay periods, part of additional time slot periods, and part of additional delay periods in FIG.
  • the duration of any of the X time subpools is one of ⁇ 16 microseconds, 9 microseconds ⁇ .
  • any slot duration within a given time period is a time sub-pool among the X time sub-pools; the given time period is ⁇ all Delay period, any additional time slot period, any additional delay period ⁇ .
  • performing energy detection within a given time period refers to: performing energy detection within all slot periods within the given time period; the given time period is shown in FIG. 16 Any one of the included ⁇ all delay periods, all additional time slot periods, all additional delay periods ⁇ .
  • being judged to be idle by energy detection in a given time period means that all the time slot periods included in the given period are judged to be idle by energy detection; the given time period is a drawing Any one of ⁇ All delay periods, all additional time slot periods, all additional delay periods ⁇ included in 16.
  • the energy detection in a given time slot period is determined to be idle means that: the base station device senses the power of all wireless signals on the given stator frequency band in a given time unit, and at the time On average, the obtained received power is lower than the first reference threshold; the given time unit is a duration period in the given time slot period.
  • the duration of the given time unit is not shorter than 4 microseconds.
  • all energy detections in a given time slot period are judged to be idle means that: the base station device senses the energy of all wireless signals on the given stator frequency band in a given time unit, and On average, the obtained received energy is lower than the first reference threshold; the given time unit is a duration period in the given time slot period.
  • the duration of the given time unit is not shorter than 4 microseconds.
  • performing energy detection within a given time period refers to: performing energy detection within all time sub-pools within the given time period; the given time period is the ⁇ all delays included in FIG. 16 Time period, any additional time slot period, all additional delay periods ⁇ , any of the time sub-pools belong to the X time sub-pools.
  • being judged to be idle by energy detection in a given time period means that: the detection values obtained by energy detection for all time sub-pools included in the given time period are lower than the first reference threshold;
  • the given time period is any one of ⁇ all delay periods, all additional time slot periods, all additional delay periods ⁇ included in FIG. 16, and all the time subpools belong to the X time subpools ,
  • the detection value belongs to the X detection values.
  • the duration of a delay period (defer duration) is 16 microseconds plus Y1 and 9 microseconds, where Y1 is a positive integer.
  • a delay period includes Y1+1 time sub-pools in the X time sub-pools.
  • the duration of the first time sub-pool in the Y1+1 time sub-pools is 16 microseconds, and the duration of the other Y1 time sub-pools is 9 microseconds .
  • the given priority level is used to determine the Y1.
  • the given priority level is a channel access priority level (Channel Access Priority Class).
  • Channel Access Priority Class For the definition of the channel access priority level, see Chapter 15 in 3GPP TS 36.213.
  • Y1 belongs to ⁇ 1, 2, 3, 7 ⁇ .
  • a delay period includes a plurality of slot periods.
  • the first slot period and the second slot period of the plurality of slot periods are discontinuous.
  • the time interval between the first slot period and the second slot period of the plurality of slot periods is 7 milliseconds.
  • the duration of an additional delay period is 16 microseconds plus Y2 and 9 microseconds, where Y2 is a positive integer.
  • an additional delay period includes Y2+1 time sub-pools in the X time sub-pools.
  • the duration of the first time sub-pool in the Y2+1 time sub-pools is 16 microseconds, and the duration of the other Y2 time sub-pools is 9 microseconds .
  • the given priority level is used to determine the Y2.
  • the Y2 belongs to ⁇ 1, 2, 3, 7 ⁇ .
  • the duration of a delay period is equal to the duration of an additional delay period.
  • Y1 is equal to Y2.
  • an additional delay period includes multiple slot periods.
  • the first slot period and the second slot period of the plurality of slot periods are discontinuous.
  • the time interval between the first slot period and the second slot period of the plurality of slot periods is 7 milliseconds.
  • the duration of a slot duration is 9 microseconds.
  • a time slot period is 1 time sub-pool among the X time sub-pools.
  • the duration of an additional slot period is 9 microseconds.
  • an additional time slot period includes 1 time sub-pool in the X time sub-pools.
  • the X times of energy detection is used to determine whether the given stator frequency band is idle.
  • the X-time energy detection is used to determine whether the given stator frequency band can be used by the base station device to transmit wireless signals.
  • the X detection value units are all dBm (milli-decibel).
  • the units of the X detection values are all milliwatts (mW).
  • the units of the X detection values are all Joules.
  • the X1 is smaller than the X.
  • the X is greater than 1.
  • the unit of the first reference threshold is dBm (milli-decibel).
  • the unit of the first reference threshold is milliwatts (mW).
  • the unit of the first reference threshold is Joule.
  • the first reference threshold is equal to or less than -72 dBm.
  • the first reference threshold is any value equal to or less than the first given value.
  • the first given value is predefined.
  • the first given value is configured by higher layer signaling.
  • the first reference threshold is freely selected by the base station device under conditions equal to or less than a first given value.
  • the first given value is predefined.
  • the first given value is configured by higher layer signaling.
  • the X times of energy detection are energy detection in the process of Cat 4 LBT (Listen BeforeBefore Talk, listen before sending), and X1 is CWp in the process of Cat 4 LBT, the CWp It is the size of the contention window.
  • CWp For the specific definition of the CWp, see Chapter 15 in 3GPP TS36.213.
  • At least one of the X detected values that does not belong to the X1 detected values is lower than the first reference threshold.
  • At least one detection value among the X detection values that does not belong to the X1 detection values is not lower than the first reference threshold.
  • the durations of any two of the X1 time sub-pools are equal.
  • At least two of the X1 time subpools have unequal durations.
  • the X1 time subpools include the latest time subpool in the X time subpools.
  • the X1 time sub-pools include only time slot periods in eCCA.
  • the X time subpools include the X1 time subpools and X2 time subpools. Any time subpool in the X2 time subpools does not belong to the X1 time subpools. ;
  • the X2 is a positive integer not greater than the X minus the X1.
  • the X2 time sub-pools include time slot periods in the initial CCA.
  • the positions of the X2 time subpools in the X time subpools are continuous.
  • At least one of the X2 time subpools corresponds to a detection value lower than the first reference threshold.
  • the detection value corresponding to at least one time sub-pool among the X2 time sub-pools is not lower than the first reference threshold.
  • the X2 time sub-pools include all time slot periods in all delay periods.
  • the X2 time sub-pools include all time slot periods within at least one additional delay period.
  • the X2 time sub-pools include at least one additional time slot period.
  • the X2 time sub-pools include all additional time slot periods that are determined to be non-idle by energy detection in FIG. 16 and all time slot periods within all additional delay periods.
  • the X1 time sub-pools belong to X1 sub-pool sets, and any sub-pool set in the X1 sub-pool set includes positive integer time sub-pools in the X time sub-pools;
  • the detection value corresponding to the sub-pool at any time in the X1 sub-pool set is lower than the first reference threshold.
  • At least one sub-pool set in the X1 sub-pool set includes a number of time sub-pools equal to 1.
  • At least one sub-pool set in the X1 sub-pool set includes a number of time sub-pools greater than 1.
  • all time sub-pools in any one of the X1 sub-pool sets belong to the same additional delay period or additional slot period that is determined to be idle by energy detection.
  • At least one time sub-pool of the X time sub-pools that does not belong to the X1 sub-pool set has a detection value lower than the first reference threshold.
  • At least one time sub-pool in the X time sub-pools that does not belong to the X1 sub-pool set has a detection value corresponding to not less than the first reference threshold .
  • Embodiment 17 illustrates another schematic diagram of a given access detection performed on a given stator frequency band used to determine whether to start transmitting a given wireless signal at a given time in the given stator frequency band, as shown in FIG. 17 .
  • the given access detection includes performing Y energy detections in Y time sub-pools on the given stator frequency band respectively to obtain Y detection values, where Y is a positive integer; the Y The end time of the time sub-pool is not later than the given time.
  • the given access detection corresponds to the first access detection in this application, the given time corresponds to the initial transmission time of the first wireless signal in this application, and the given stator frequency band corresponds to this application In the first sub-band in, the Y corresponds to the Q in this application.
  • the process of the given access detection can be described by the flowchart in FIG. 17.
  • the user equipment in the present application is in an idle state in step S2201, and it is determined in step S2202 whether to send; in step 2203, energy detection is performed within a sensing time (Sensing interval); in step In S2204, it is judged whether all time slot periods in the sensing time are idle (Idle). If yes, proceed to step S2205 to send a wireless signal on the first sub-band; otherwise, return to step S2203.
  • the first given time period includes positive integer number of time sub-pools in the Y time sub-pools, and the first given time period is any of ⁇ all perceived times ⁇ included in FIG. 17 A period of time.
  • the second given time period includes one time sub-pool among the Y1 time sub-pools.
  • the second given time period is the perception time determined as idle in energy detection in FIG. 17.
  • the Y1 corresponds to the Q1 in this application.
  • Y1 is equal to 2.
  • Y1 is equal to Y.
  • the duration of a sensing time is 25 microseconds.
  • one perception time includes 2 time slots, and the 2 time slots are discontinuous in the time domain.
  • the time interval in the two time slot periods is 7 microseconds.
  • the Y time sub-pools include the monitoring time in Category 2 LBT.
  • the Y time sub-pools include time slots in a sensing interval in the Type 2 UL access channel procedure (Second Type Uplink Channel Access Procedure).
  • the specific time interval of the sensing interval For definitions, see chapter 15.2 in 3GPP TS36.213.
  • the duration of the sensing interval is 25 microseconds.
  • the Y time sub-pools include Tf and Tsl in a sensing interval (sensing interval) in Type 2 UL access channel procedure (type 2 uplink channel access procedure), the Tf and the For the specific definition of Tsl, please refer to chapter 15.2 in 3GPP TS36.213.
  • the duration of the Tf is 16 microseconds.
  • the duration of the Tsl is 9 microseconds.
  • the duration of the first time sub-pool in the Y1 time sub-pools is 16 microseconds, and the duration of the second time sub-pool in the Y1 time sub-pools is 9 microseconds , Y1 is equal to 2.
  • the duration of the Y1 time subpools are all 9 microseconds; the time interval between the first time subpool and the second time subpool in the Y1 time subpools is 7 microseconds Seconds, Y1 is equal to 2.
  • Embodiment 18 illustrates a structural block diagram of a processing device in a UE, as shown in FIG. 18.
  • the UE processing device 1200 includes a first receiver 1201 and a first transmitter 1202.
  • the first receiver 1201 includes the receiver 456, the reception processor 452, and the controller/processor 490 in Embodiment 4.
  • the first receiver 1201 includes at least the former two of the receiver 456, the reception processor 452, and the controller/processor 490 in Embodiment 4.
  • the first transmitter 1202 includes the transmitter 456, the transmission processor 455, and the controller/processor 490 in Embodiment 4.
  • the first transmitter 1202 includes at least the first two of the transmitter 456, the transmission processor 455, and the controller/processor 490 in Embodiment 4.
  • the first receiver 1201 receive the first information
  • the first transmitter 1202 send the first wireless signal in the first time window on the first sub-band;
  • the first information is used to determine the first time window; the time offset of the start transmission time of the first wireless signal relative to the reference time belongs to a target offset set, and the target The offset set includes W offset values, where W is a positive integer; the time offsets of the W start times relative to the reference time are respectively equal to the W offset values; of the W start times Any starting time belongs to one time unit among N time units, any one of the N time units includes at least one starting time among the W starting times, and the N time units Any two time units in are orthogonal, the N time units all belong to the first time window, the duration of each time unit in the N time units and the first wireless signal
  • the subcarrier spacing of the occupied subcarriers is related; at least one of the N and the target offset set is related to the subcarrier spacing of the subcarriers occupied by the first wireless signal.
  • the S subcarrier intervals correspond to the S offset sets in one-to-one correspondence, any two subcarrier intervals in the S subcarrier intervals are different, and the subcarriers occupied by the first wireless signal
  • the subcarrier interval of is a subcarrier interval among the S subcarrier intervals
  • the target offset set is a subcarrier among the S offset sets and the subcarrier occupied by the first wireless signal
  • the W starting moments include starting moments corresponding to N1 time units of the N time units, respectively, the N1 and the subcarriers occupied by the first wireless signal
  • the subcarrier spacing is related, and N1 is a positive integer not greater than N.
  • the W starting moments are divided into M subsets, any one of the W starting moments belongs to a subset of the M subsets, and the Any subset includes at least one of the W starting moments, and M is a positive integer; the starting moments corresponding to the N1 time units respectively belong to the N1 subsets of the M subsets, The N1 is not greater than the M; the M is equal to the N and the starting moments included in the M subsets respectively belong to the N time units, or there are two starting moments respectively belonging to the M Two of the subsets belong to the same time unit among the N time units.
  • the first subset is any subset in which the number of starting moments included in the M subsets is greater than 1, and the time deviation between any two starting moments in the first subset is Equal to a positive integer multiple of the first time deviation.
  • the first transmitter 1202 also sends second information; wherein, the second information is used to indicate the N time units to which the first transmission time of the first wireless signal belongs A time unit in.
  • the number of bits included in the second information is related to the subcarrier interval of the subcarriers occupied by the first wireless signal.
  • the first receiver 1201 also performs a first access detection on the first sub-band; wherein the first access detection is used to determine the Sending the first wireless signal in the first time window.
  • Embodiment 19 illustrates a structural block diagram of a processing device in a base station device, as shown in FIG. 19.
  • the processing device 1300 in the base station device includes a second transmitter 1301 and a second receiver 1302.
  • the second transmitter 1301 includes the transmitter 416, the transmission processor 415, and the controller/processor 440 in Embodiment 4.
  • the second transmitter 1301 includes at least the first two of the transmitter 416, the transmission processor 415, and the controller/processor 440 in Embodiment 4.
  • the second receiver 1302 includes the receiver 416, the reception processor 412, and the controller/processor 440 in Embodiment 4.
  • the second receiver 1302 includes at least the first two of the receiver 416, the reception processor 412, and the controller/processor 440 in Embodiment 4.
  • the first information is used to determine the first time window; the time offset of the start transmission time of the first wireless signal relative to the reference time belongs to a target offset set, and the target The offset set includes W offset values, where W is a positive integer; the time offsets of the W start times relative to the reference time are respectively equal to the W offset values; of the W start times Any starting time belongs to one time unit among N time units, any one of the N time units includes at least one starting time among the W starting times, and the N time units Any two time units in are orthogonal, the N time units all belong to the first time window, the duration of each time unit in the N time units and the first wireless signal
  • the subcarrier spacing of the occupied subcarriers is related; at least one of the N and the target offset set is related to the subcarrier spacing of the subcarriers occupied by the first wireless signal.
  • the S subcarrier intervals correspond to the S offset sets in one-to-one correspondence, any two subcarrier intervals in the S subcarrier intervals are different, and the subcarriers occupied by the first wireless signal
  • the subcarrier interval of is a subcarrier interval among the S subcarrier intervals
  • the target offset set is a subcarrier among the S offset sets and the subcarrier occupied by the first wireless signal
  • the W starting moments include starting moments corresponding to N1 time units of the N time units, respectively, the N1 and the subcarriers occupied by the first wireless signal
  • the subcarrier spacing is related, and N1 is a positive integer not greater than N.
  • the W starting moments are divided into M subsets, any one of the W starting moments belongs to a subset of the M subsets, and the Any subset includes at least one starting moment of the W starting moments, and M is a positive integer; the starting moments corresponding to the N1 time units respectively belong to the N1 subsets of the M subsets, The N1 is not greater than the M; the M is equal to the N and the starting moments included in the M subsets respectively belong to the N time units, or there are two starting moments respectively belonging to the M Two of the subsets belong to the same time unit among the N time units.
  • the first subset is any subset in which the number of starting moments included in the M subsets is greater than 1, and the time deviation between any two starting moments in the first subset is Equal to a positive integer multiple of the first time deviation.
  • the second receiver 1302 also receives second information; wherein, the second information is used to indicate the N time units to which the first transmission time of the first wireless signal belongs A time unit in.
  • the number of bits included in the second information is related to the subcarrier interval of the subcarriers occupied by the first wireless signal.
  • the second receiver 1302 also monitors whether the first wireless signal is transmitted in the first time window on the first sub-band; wherein, the recipient of the first information A first access detection is performed on the first sub-band to determine that the first wireless signal is transmitted in the first time window on the first sub-band.
  • User equipment, terminals and UEs in this application include but are not limited to drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, in-vehicle communication equipment, wireless sensors, network cards Internet of Things terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC, enhanced MTC) terminal, data card, Internet card, car communication device, low-cost mobile phone, low Cost wireless communication devices such as tablets.
  • drones communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, in-vehicle communication equipment, wireless sensors, network cards Internet of Things terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC, enhanced MTC) terminal, data card, Internet card, car communication device, low-cost mobile phone, low Cost wireless communication devices such as tablets.
  • MTC Machine Type Communication
  • eMTC enhanced M
  • the base station or system equipment in this application includes but is not limited to wireless communication such as macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, sending and receiving node), etc. equipment.
  • wireless communication such as macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, sending and receiving node), etc. equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的用户设备、基站中的方法和装置。用户设备接收第一信息,在第一子频带上的第一时间窗中发送第一无线信号。所述第一信息被用于确定所述第一时间窗;所述第一无线信号的起始发送时刻相对于参考时刻的时间偏移属于目标偏移集合,所述目标偏移集合包括W个偏移值;W个起始时刻分别相对于所述参考时刻的时间偏移分别等于所述W个偏移值;所述W个起始时刻中的任一起始时刻属于N个时间单元中的一个时间单元,所述N个时间单元中的任一时间单元包括所述W个起始时刻中的至少一个起始时刻;所述N和所述目标偏移集合中的至少之一和所述所述第一无线信号所占用的子载波的子载波间隔有关。

Description

一种被用于无线通信的用户设备、基站中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是涉及支持在非授权频谱(Unlicensed Spectrum)上进行数据传输的通信方法和装置。
背景技术
传统的3GPP(3rd Generation Partner Project,第三代合作伙伴项目)LTE(Long-term Evolution,长期演进)系统中,数据传输只能发生在授权频谱上,然而随着业务量的急剧增大,尤其在一些城市地区,授权频谱可能难以满足业务量的需求。Release 13及Release 14中非授权频谱上的通信被蜂窝系统引入,并用于下行和上行数据的传输。为保证和其它非授权频谱上的接入技术兼容,LBT(Listen Before Talk,会话前侦听)技术被LTE的LAA(Licensed Assisted Access,授权频谱辅助接入)采纳以避免因多个发射机同时占用相同的频率资源而带来的干扰。传统LTE系统中的上行发送往往基于基站的授予(Grant),为了避免频繁LBT导致的资源利用率降低和时延,Release 15中在非授权频谱上引入了AUL(Autonomous UpLink,自主上行)传输。在AUL中,UE(User Equipment,用户设备)可以在基站预先配置的空口资源中自主的进行上行传输。
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或Fifth Generation,5G)进行研究,在3GPP RAN#75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。5G NR和现有的LTE系统相比,一个显著的特征在于可以支持更加灵活的数理结构(Numerology),包括子载波间隔(SCS,Subcarrier Spacing),循环前缀(CP,Cyclic Prefix)长度,以及支持更加灵活的帧结构,包括对微时隙(Mini-slot),小时隙(Sub-slot)和多个时隙聚合(Slot Aggregation)。这种灵活的数理结构和灵活的帧结构可以更好地满足多种新的业务需求,尤其是垂直行业的非常多样性的业务需求。目前,5G NR(New Radio Access Technology,新无线接入技术)关于非授权频谱的接入技术正在讨论中,在设计非授权频谱的上行传输时需要考虑对更加灵活的数理结构的支持。
发明内容
发明人通过研究发现,更加灵活的数理结构是NR系统相比于LTE系统的一个重要特点,在NR系统的非授权频谱上的上行传输中,满足NR对更加灵活的数理结构的需求,更有效实现多个发送节点对非授权频谱资源的共享是需要解决的一个关键问题。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种用于无线通信的用户设备中的方法,其特征在于,包括:
-接收第一信息;
-在第一子频带上的第一时间窗中发送第一无线信号;
其中,所述第一信息被用于确定所述第一时间窗;所述第一无线信号的起始发送时刻相对于参考时刻的时间偏移属于目标偏移集合,所述目标偏移集合包括W个偏移值,所述W是正整数;W个起始时刻分别相对于所述参考时刻的时间偏移分别等于所述W个偏移值;所述W个起始时刻中的任一起始时刻属于N个时间单元中的一个时间单元,所述N个时间单元中的任一时间单元包括所述W个起始时刻中的至少一个起始时刻,所述 N个时间单元中任意两个时间单元都是正交的,所述N个时间单元都属于所述第一时间窗,所述N个时间单元中的每个时间单元的持续时间和所述第一无线信号所占用的子载波的子载波间隔有关;所述N和所述目标偏移集合中的至少之一和所述所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,本申请要解决的问题是:为了提高资源利用率,多个UE可以共享相同的非授权频谱资源,为了减少多个UE同时抢占信道引入较大的用户间干扰,基站在支持灵活的数理结构的情况下如何给UE分配起始发送时刻是需要解决的一个关键问题。
作为一个实施例,上述方法的实质在于,第一子频带上的第一时间窗包括分配给免授予上行传输的时频资源,第一无线信号是免授予上行传输,W个起始时刻都是免授予上行传输的备选起始时刻,W个起始时刻属于N个时间单元,N个时间单元是N个多载波符号,N的大小与SCS有关和/或目标偏移集合与SCS有关。采用上述方法的好处在于,免授予上行传输的起始发送时刻的设计可以满足NR系统对更加灵活的数理结构的需求,更有效实现多个发送节点对非授权频谱资源的共享。
根据本申请的一个方面,上述方法的特征在于,S个子载波间隔分别和S个偏移集合一一对应,所述S个子载波间隔中的任意两个子载波间隔都不相同,所述所述第一无线信号所占用的子载波的子载波间隔是所述S个子载波间隔中的一个子载波间隔,所述目标偏移集合是所述S个偏移集合中与所述所述第一无线信号所占用的子载波的子载波间隔相对应的一个偏移集合,所述S是大于1的正整数。
根据本申请的一个方面,上述方法的特征在于,所述W个起始时刻包括所述N个时间单元中的N1个时间单元分别对应的起始时刻,所述N1与所述所述第一无线信号所占用的子载波的子载波间隔有关,所述N1是不大于所述N的正整数。
作为一个实施例,上述方法的实质在于,N1是N个时间单元中所对应的起始时刻属于目标偏移集合的时间单元的数量,N的大小和目标偏移集合都与SCS有关,N1的大小也与SCS有关。采用上述方法的好处在于,对免授予上行传输的起始发送时刻的设计满足了NR系统对更加灵活的数理结构的需求。
根据本申请的一个方面,上述方法的特征在于,所述W个起始时刻被划分为M个子集,所述W个起始时刻中的任一起始时刻都属于所述M个子集中的一个子集,所述M个子集中的任一子集包括所述W个起始时刻中的至少一个起始时刻,所述M是正整数;所述N1个时间单元分别对应的起始时刻分别属于所述M个子集中的N1个子集,所述N1不大于所述M;所述M等于所述N并且所述M个子集分别包括的起始时刻分别属于所述N个时间单元,或者,存在两个起始时刻分别属于所述M个子集中的两个子集且属于所述N个时间单元中的同一个时间单元。
作为一个实施例,上述方法的实质在于,提出两种起始时刻集合的设计方法;一种方法是M=N,M个子集分别和N个多载波符号对应,M个子集分别包括的起始时刻分别属于N个多载波符号;另一种方法是,M个子集中的两个子集可能都包括属于同一个多载波符号的起始时刻。
根据本申请的一个方面,上述方法的特征在于,第一子集是所述M个子集中所包括的起始时刻的数量大于1的任意一个子集,所述第一子集中的任意两个起始时刻之间的时间偏差都等于第一时间偏差的正整数倍。
作为一个实施例,上述方法的实质在于,第一时间偏差是LBT的一个时隙时段(slot duration)的持续时间,即9us。
根据本申请的一个方面,上述方法的特征在于,包括:
-发送第二信息;
其中,所述第二信息被用于指示所述所述第一无线信号的起始发送时刻所属的所述N个时间单元中的一个时间单元。
根据本申请的一个方面,上述方法的特征在于,所述第二信息包括的比特数量与所 述所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,上述方法的实质在于,N的大小与SCS有关,第二信息从N个多载波符号中指示第一无线信号的起始发送多载波符号,因此第二信息包括的比特数量与SCS有关。
根据本申请的一个方面,上述方法的特征在于,包括:
-在所述第一子频带上执行第一接入检测;
其中,所述第一接入检测被用于确定在所述第一子频带上的所述第一时间窗中发送所述第一无线信号。
本申请公开了一种用于无线通信的基站设备中的方法,其特征在于,包括:
-发送第一信息;
-在第一子频带上的第一时间窗中接收第一无线信号;
其中,所述第一信息被用于确定所述第一时间窗;所述第一无线信号的起始发送时刻相对于参考时刻的时间偏移属于目标偏移集合,所述目标偏移集合包括W个偏移值,所述W是正整数;W个起始时刻分别相对于所述参考时刻的时间偏移分别等于所述W个偏移值;所述W个起始时刻中的任一起始时刻属于N个时间单元中的一个时间单元,所述N个时间单元中的任一时间单元包括所述W个起始时刻中的至少一个起始时刻,所述N个时间单元中任意两个时间单元都是正交的,所述N个时间单元都属于所述第一时间窗,所述N个时间单元中的每个时间单元的持续时间和所述第一无线信号所占用的子载波的子载波间隔有关;所述N和所述目标偏移集合中的至少之一和所述所述第一无线信号所占用的子载波的子载波间隔有关。
根据本申请的一个方面,上述方法的特征在于,S个子载波间隔分别和S个偏移集合一一对应,所述S个子载波间隔中的任意两个子载波间隔都不相同,所述所述第一无线信号所占用的子载波的子载波间隔是所述S个子载波间隔中的一个子载波间隔,所述目标偏移集合是所述S个偏移集合中与所述所述第一无线信号所占用的子载波的子载波间隔相对应的一个偏移集合,所述S是大于1的正整数。
根据本申请的一个方面,上述方法的特征在于,所述W个起始时刻包括所述N个时间单元中的N1个时间单元分别对应的起始时刻,所述N1与所述所述第一无线信号所占用的子载波的子载波间隔有关,所述N1是不大于所述N的正整数。
根据本申请的一个方面,上述方法的特征在于,所述W个起始时刻被划分为M个子集,所述W个起始时刻中的任一起始时刻都属于所述M个子集中的一个子集,所述M个子集中的任一子集包括所述W个起始时刻中的至少一个起始时刻,所述M是正整数;所述N1个时间单元分别对应的起始时刻分别属于所述M个子集中的N1个子集,所述N1不大于所述M;所述M等于所述N并且所述M个子集分别包括的起始时刻分别属于所述N个时间单元,或者,存在两个起始时刻分别属于所述M个子集中的两个子集且属于所述N个时间单元中的同一个时间单元。
根据本申请的一个方面,上述方法的特征在于,第一子集是所述M个子集中所包括的起始时刻的数量大于1的任意一个子集,所述第一子集中的任意两个起始时刻之间的时间偏差都等于第一时间偏差的正整数倍。
根据本申请的一个方面,上述方法的特征在于,包括:
-接收第二信息;
其中,所述第二信息被用于指示所述所述第一无线信号的起始发送时刻所属的所述N个时间单元中的一个时间单元。
根据本申请的一个方面,上述方法的特征在于,所述第二信息包括的比特数量与所述所述第一无线信号所占用的子载波的子载波间隔有关。
根据本申请的一个方面,上述方法的特征在于,包括:
-在所述第一子频带上的所述第一时间窗中监测所述第一无线信号是否被发送;
其中,所述第一信息的接收者在所述第一子频带上执行第一接入检测以确定在所述第一子频带上的所述第一时间窗中发送所述第一无线信号。
本申请公开了一种用于无线通信的用户设备,其特征在于,包括:
-第一接收机,接收第一信息;
-第一发射机,在第一子频带上的第一时间窗中发送第一无线信号;
其中,所述第一信息被用于确定所述第一时间窗;所述第一无线信号的起始发送时刻相对于参考时刻的时间偏移属于目标偏移集合,所述目标偏移集合包括W个偏移值,所述W是正整数;W个起始时刻分别相对于所述参考时刻的时间偏移分别等于所述W个偏移值;所述W个起始时刻中的任一起始时刻属于N个时间单元中的一个时间单元,所述N个时间单元中的任一时间单元包括所述W个起始时刻中的至少一个起始时刻,所述N个时间单元中任意两个时间单元都是正交的,所述N个时间单元都属于所述第一时间窗,所述N个时间单元中的每个时间单元的持续时间和所述第一无线信号所占用的子载波的子载波间隔有关;所述N和所述目标偏移集合中的至少之一和所述所述第一无线信号所占用的子载波的子载波间隔有关。
本申请公开了一种用于无线通信的基站设备,其特征在于,包括:
-第二发射机,发送第一信息;
-第二接收机,在第一子频带上的第一时间窗中接收第一无线信号;
其中,所述第一信息被用于确定所述第一时间窗;所述第一无线信号的起始发送时刻相对于参考时刻的时间偏移属于目标偏移集合,所述目标偏移集合包括W个偏移值,所述W是正整数;W个起始时刻分别相对于所述参考时刻的时间偏移分别等于所述W个偏移值;所述W个起始时刻中的任一起始时刻属于N个时间单元中的一个时间单元,所述N个时间单元中的任一时间单元包括所述W个起始时刻中的至少一个起始时刻,所述N个时间单元中任意两个时间单元都是正交的,所述N个时间单元都属于所述第一时间窗,所述N个时间单元中的每个时间单元的持续时间和所述第一无线信号所占用的子载波的子载波间隔有关;所述N和所述目标偏移集合中的至少之一和所述所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.本申请提出一种给UE分配起始发送时刻的方法,减少了多个UE同时抢占非授权频谱而引入的用户间干扰,更有效实现多个发送节点对非授权频谱资源的共享。
-.本申请中的方法考虑了不同SCS下的设计,满足了NR系统对灵活的数理结构的需求。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信息和第一无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的NR(New Radio,新无线)节点和UE的示意图;
图5示出了根据本申请的一个实施例的无线传输的流程图;
图6A-6B分别示出了根据本申请的一个实施例的第一信息被用于确定第一时间窗的示意 图;
图7示出了根据本申请的一个实施例的S个子载波间隔和S个偏移集合的关系的示意图;
图8示出了根据本申请的一个实施例的目标偏移集合的示意图;
图9示出了根据本申请的另一个实施例的目标偏移集合的示意图;
图10示出了根据本申请的另一个实施例的目标偏移集合的示意图;
图11示出了根据本申请的另一个实施例的目标偏移集合的示意图;
图12示出了根据本申请的一个实施例的M个子集和N个时间单元的关系的示意图;
图13示出了根据本申请的另一个实施例的M个子集和N个时间单元的关系的示意图;
图14示出了根据本申请的一个实施例的M个子集的示意图;
图15示出了根据本申请的一个实施例的第二信息与所述第一无线信号所占用的子载波的子载波间隔的关系的示意图;
图16示出了根据本申请的一个实施例的在给定子频带上被执行的给定接入检测被用于确定是否在所述给定子频带的给定时刻开始发送给定无线信号的示意图;
图17示出了根据本申请的另一个实施例的在给定子频带上被执行的给定接入检测被用于确定是否在所述给定子频带的给定时刻开始发送给定无线信号的示意图;
图18示出了根据本申请的一个实施例的UE中的处理装置的结构框图;
图19示出了根据本申请的一个实施例的基站设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个第一信息和第一无线信号的流程图,如附图1所示。
在实施例1中,本申请中的所述用户设备接收第一信息,在第一子频带上的第一时间窗中发送第一无线信号;其中,所述第一信息被用于确定所述第一时间窗;所述第一无线信号的起始发送时刻相对于参考时刻的时间偏移属于目标偏移集合,所述目标偏移集合包括W个偏移值,所述W是正整数;W个起始时刻分别相对于所述参考时刻的时间偏移分别等于所述W个偏移值;所述W个起始时刻中的任一起始时刻属于N个时间单元中的一个时间单元,所述N个时间单元中的任一时间单元包括所述W个起始时刻中的至少一个起始时刻,所述N个时间单元中任意两个时间单元都是正交的,所述N个时间单元都属于所述第一时间窗,所述N个时间单元中的每个时间单元的持续时间和所述第一无线信号所占用的子载波的子载波间隔有关;所述N和所述目标偏移集合中的至少之一和所述所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,所述第一信息在部署于非授权频谱的频带上传输。
作为一个实施例,所述第一信息在部署于授权频谱的频带上传输。
作为一个实施例,所述第一信息在所述第一子频带上传输。
作为一个实施例,所述第一信息在所述第一子频带以外的频带上传输。
作为一个实施例,所述第一信息在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH(Physical Downlink Control Channel,物理下行控制信道)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH(short PDCCH,短PDCCH)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH(New Radio PDCCH,新无线PDCCH)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH(Narrow Band  PDCCH,窄带PDCCH)。
作为一个实施例,所述第一信息在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH(short PDSCH,短PDSCH)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH(New Radio PDSCH,新无线PDSCH)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH(Narrow Band PDSCH,窄带PDSCH)。
作为一个实施例,所述第一时间窗包括一个连续的时间段。
作为一个实施例,所述第一时间窗包括正整数个连续的时隙(slot)。
作为一个实施例,所述第一时间窗包括正整数个连续的子帧(subframe)。
作为一个实施例,所述第一时间窗包括正整数个连续的微时隙(mini-slot)。
作为一个实施例,所述第一时间窗包括一个时隙。
作为一个实施例,所述第一时间窗包括一个子帧。
作为一个实施例,所述第一时间窗包括一个微时隙。
作为一个实施例,所述第一时间窗由正整数个连续的多载波符号组成。
作为一个实施例,所述第一时间窗由一个多载波符号组成。
作为一个实施例,所述第一时间窗是T个时间窗中的一个时间窗,所述T是正整数。
作为上述实施例的一个子实施例,上述方法还包括:
-从所述T个时间窗中自行选择第一时间窗;
其中,所述T大于1。
作为上述实施例的一个子实施例,所述T个时间窗中任意两个时间窗都是正交的。
作为上述实施例的一个子实施例,所述T个时间窗中存在两个时间窗是重叠的(不正交的)。
作为上述实施例的一个子实施例,所述T个时间窗中的任意两个时间窗的持续时间都相同。
作为上述实施例的一个子实施例,所述T个时间窗中的任一时间窗包括一个连续的时间段。
作为上述实施例的一个子实施例,所述T个时间窗中的任一时间窗包括正整数个连续的时隙(slot)。
作为上述实施例的一个子实施例,所述T个时间窗中的任一时间窗包括正整数个连续的子帧(subframe)。
作为上述实施例的一个子实施例,所述T个时间窗中的任一时间窗包括正整数个连续的微时隙(mini-slot)。
作为上述实施例的一个子实施例,所述T个时间窗中的任一时间窗包括一个时隙。
作为上述实施例的一个子实施例,所述T个时间窗中的任一时间窗包括一个子帧。
作为上述实施例的一个子实施例,所述T个时间窗中的任一时间窗包括一个微时隙。
作为上述实施例的一个子实施例,所述T个时间窗中的任一时间窗由正整数个连续的多载波符号组成。
作为上述实施例的一个子实施例,所述T个时间窗中的任一时间窗由一个多载波符号组成。
作为一个实施例,所述第一子频带包括正整数个PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述第一子频带包括正整数个连续的PRB。
作为一个实施例,所述第一子频带包括正整数个RB(Resource Block,资源块)。
作为一个实施例,所述第一子频带包括正整数个连续的RB。
作为一个实施例,所述第一子频带包括正整数个连续的子载波。
作为一个实施例,所述第一子频带包括的子载波数目等于12的正整数倍。
作为一个实施例,所述第一子频带部署于非授权频谱。
作为一个实施例,所述第一子频带部署于授权频谱。
作为一个实施例,所述第一子频带包括一个载波(Carrier)。
作为一个实施例,所述第一子频带包括至少一个载波(Carrier)。
作为一个实施例,所述第一子频带属于一个载波(Carrier)。
作为一个实施例,所述第一子频带包括一个BWP(Bandwidth Part,带宽分量)。
作为一个实施例,所述第一子频带包括多个BWP。
作为一个实施例,所述第一子频带包括一个或多个BWP。
作为一个实施例,所述第一子频带包括一个子带(Subband)。
作为一个实施例,所述第一子频带包括多个子带。
作为一个实施例,所述第一子频带包括一个或多个子带。
作为一个实施例,所述第一无线信号所占用的频域资源属于所述第一子频带,所述第一无线信号所占用的时域资源属于所述第一时间窗。
作为一个实施例,所述第一无线信号包括数据和参考信号中的至少之一。
作为一个实施例,所述第一无线信号包括数据。
作为一个实施例,所述第一无线信号包括参考信号。
作为一个实施例,所述第一无线信号包括数据和参考信号。
作为一个实施例,所述第一无线信号包括的所述数据是上行数据。
作为一个实施例,所述第一无线信号包括的所述参考信号包括{DMRS(DeModulation Reference Signal,解调参考信号),SRS(Sounding Reference Signal,探测参考信号),PTRS(Phase error Tracking Reference Signals,相位误差跟踪参考信号)}中的一种或多种。
作为一个实施例,所述第一无线信号包括的所述参考信号包括SRS。
作为一个实施例,所述第一无线信号包括的所述参考信号包括DMRS。
作为一个实施例,所述第一无线信号包括的所述参考信号包括PTRS。
作为一个实施例,所述第一无线信号在上行随机接入信道上传输。
作为上述实施例的一个子实施例,所述上行随机接入信道是PRACH(Physical Random Access Channel,物理随机接入信道)。
作为一个实施例,所述第一无线信号的传输信道是UL-SCH(Uplink Shared Channel,上行共享信道)。
作为一个实施例,所述第一无线信号在上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。
作为上述实施例的一个子实施例,所述上行物理层数据信道是PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)。
作为上述实施例的一个子实施例,所述上行物理层数据信道是sPUSCH(short PUSCH,短PUSCH)。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NR-PUSCH(New Radio PUSCH,新无线PUSCH)。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NB-PUSCH(Narrow Band PUSCH,窄带PUSCH)。
作为一个实施例,所述参考时刻是预定义的或者可配置的。
作为一个实施例,所述参考时刻是预定义的。
作为一个实施例,所述参考时刻是可配置的。
作为一个实施例,所述参考时刻是所述第一时间窗中的一个时刻。
作为一个实施例,所述参考时刻是所述第一时间窗的起始时刻。
作为一个实施例,所述参考时刻早于所述第一时间窗的起始时刻。
作为一个实施例,所述参考时刻是所述第一时间窗中的一个多载波符号的起始时刻。
作为一个实施例,所述参考时刻是所述第一时间窗中最早的一个多载波符号的起始时刻。
作为一个实施例,所述第一时间窗包括N0个时间单元,所述N个时间单元是所述N0个时间单元中最早的N个时间单元,所述参考时刻是所述N0个时间单元中最早的一个时间单元的起始时刻,所述N0是不小于所述N的正整数。
作为一个实施例,所述目标偏移集合是预定义的或者可配置的。
作为一个实施例,所述目标偏移集合是预定义的。
作为一个实施例,所述目标偏移集合是可配置的。
作为一个实施例,所述目标偏移集合是半静态配置的。
作为一个实施例,所述目标偏移集合是由更高层信令配置的。
作为一个实施例,所述目标偏移集合是由RRC信令配置的。
作为一个实施例,所述目标偏移集合是由MAC CE信令配置的。
作为一个实施例,所述目标偏移集合是动态指示的。
作为一个实施例,所述目标偏移集合是由DCI信令指示的。
作为一个实施例,所述W个偏移值都是正实数。
作为一个实施例,所述W个偏移值都是非负实数。
作为一个实施例,所述W大于1。
作为一个实施例,所述W等于1。
作为一个实施例,所述N个时间单元中的任一时间单元包括一个子帧(Subframe)。
作为一个实施例,所述N个时间单元中的任一时间单元包括一个时隙(Slot)。
作为一个实施例,所述N个时间单元中的任一时间单元包括一个微时隙(mini-Slot)。
作为一个实施例,所述N个时间单元中的任一时间单元包括正整数个连续的子帧。
作为一个实施例,所述N个时间单元中的任一时间单元包括正整数个连续的时隙。
作为一个实施例,所述N个时间单元中的任一时间单元包括正整数个连续的微时隙。
作为一个实施例,所述N个时间单元中的任一时间单元包括一个多载波符号。
作为一个实施例,所述N个时间单元中的任一时间单元包括正整数个连续的多载波符号。
作为一个实施例,所述N个时间单元中的任意两个时间单元的持续时间都相同。
作为一个实施例,所述N个时间单元占用一段连续的时域资源。
作为一个实施例,所述N个时间单元中的任意两个在时域上相邻的时间单元是连续的。
作为一个实施例,所述N个时间单元中的任意两个在时域上相邻的时间单元之间是没有间隙(gap)的。
作为一个实施例,所述N个时间单元中存在两个在时域上相邻的时间单元是非连续的。
作为一个实施例,所述N个时间单元中存在两个在时域上相邻的时间单元之间是有间隙(gap)的。
作为一个实施例,所述N等于1。
作为一个实施例,所述N大于1。
作为一个实施例,所述第一时间窗包括N0个时间单元,所述N个时间单元中的任一时间单元是所述N0个时间单元中的一个时间单元,所述N0是不小于所述N的正整数。
作为一个实施例,所述第一时间窗包括N0个时间单元,所述N个时间单元是所述N0个时间单元中最早的N个时间单元,所述N0是不小于所述N的正整数。
作为一个实施例,所述N和所述目标偏移集合中仅所述N与所述第一无线信号所占用的子载波的子载波间隔有关。
作为上述实施例的一个子实施例,所述W与所述第一无线信号所占用的子载波的子载波间隔无关。
作为上述实施例的一个子实施例,所述目标偏移集合与所述第一无线信号所占用的子载波的子载波间隔无关。
作为一个实施例,所述N和所述目标偏移集合中仅所述目标偏移集合与所述第一无线信号所占用的子载波的子载波间隔有关。
作为上述实施例的一个子实施例,所述W与所述第一无线信号所占用的子载波的子载波间隔有关。
作为上述实施例的一个子实施例,所述N与所述第一无线信号所占用的子载波的子载波间隔无关。
作为一个实施例,所述N和所述目标偏移集合都与所述第一无线信号所占用的子载波的子载波间隔有关。
作为上述实施例的一个子实施例,所述W与所述第一无线信号所占用的子载波的子载波间隔无关。
作为上述实施例的一个子实施例,所述W与所述第一无线信号所占用的子载波的子载波间隔有关。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统网络架构200的图。NR 5G或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供面向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME/AMF/UPF211、其它MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP 地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个实施例,所述UE201对应本申请中的所述用户设备。
作为一个实施例,所述gNB203对应本申请中的所述基站。
作为一个子实施例,所述UE201支持在非授权频谱上进行数据传输的无线通信。
作为一个子实施例,所述UE201支持在授权频谱上进行数据传输的无线通信。
作为一个子实施例,所述gNB203支持在非授权频谱上进行数据传输的无线通信。
作为一个子实施例,所述gNB203支持在授权频谱上进行数据传输的无线通信。
作为一个子实施例,所述UE201支持MIMO的无线通信。
作为一个子实施例,所述gNB203支持MIMO的无线通信。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于用户设备(UE)和基站设备(gNB或eNB)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述用户设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述基站。
作为一个实施例,本申请中的所述第一信息生成于所述PHY301。
作为一个实施例,本申请中的所述第一信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信息生成于所述MAC子层302。
作为一个实施例,在本申请中的所述第一子频带上执行的本申请中的所述第一接入检测生成于所述PHY301。
作为一个实施例,在本申请中的所述第一子频带上的所述第一时间窗中发送的本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二信息生成于所述PHY301。
作为一个实施例,本申请中的所述第二信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第三信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第三信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第四信息生成于所述PHY301。
作为一个实施例,本申请中的所述第四信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第四信息生成于所述MAC子层302。
实施例4
实施例4示出了根据本申请的一个基站设备和用户设备的示意图,如附图4所示。图4是在接入网络中与UE450通信的gNB410的框图。
基站设备(410)包括控制器/处理器440,存储器430,接收处理器412,波束处理器471,发射处理器415,发射器/接收器416和天线420。
用户设备(450)包括控制器/处理器490,存储器480,数据源467,波束处理器441,发射处理器455,接收处理器452,发射器/接收器456和天线460。
在下行传输中,与基站设备(410)有关的处理包括:
-控制器/处理器440,上层包到达,控制器/处理器440提供包头压缩、加密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;上层包中可以包括数据或者控制信息,例如DL-SCH(Downlink Shared Channel,下行共享信道);
-控制器/处理器440,与存储程序代码和数据的存储器430相关联,存储器430可以为计算机可读媒体;
-控制器/处理器440,包括调度单元以传输需求,调度单元用于调度与传输需求对应的空口资源;
-波束处理器471,确定第一信息;
-发射处理器415,接收控制器/处理器440的输出比特流,实施用于L1层(即物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配和物理层控制信令(包括PBCH,PDCCH,PHICH,PCFICH,参考信号)生成等;
-发射处理器415,接收控制器/处理器440的输出比特流,实施用于L1层(即物理层)的各种信号发射处理功能包括多天线发送、扩频、码分复用、预编码等;
-发射器416,用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去;每个发射器416对各自的输入符号流进行采样处理得到各自的采样信号流。每个发射器416对各自的采样流进行进一步处理(比如数模转换,放大,过滤,上变频等)得到下行信号。
在下行传输中,与用户设备(450)有关的处理可以包括:
-接收器456,用于将通过天线460接收的射频信号转换成基带信号提供给接收处理器452;
-接收处理器452,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
-接收处理器452,实施用于L1层(即,物理层)的各种信号接收处理功能包括多天线接收、解扩、码分复用、预编码等;
-波束处理器441,确定第一信息;
-控制器/处理器490,接收接收处理器452输出的比特流,提供包头解压缩、解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;
-控制器/处理器490与存储程序代码和数据的存储器480相关联。存储器480可以为计算机可读媒体。
在UL(Uplink,上行)中,与基站设备(410)有关的处理包括:
-接收器416,通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到接收处理器412;
-接收处理器412,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
-接收处理器412,实施用于L1层(即,物理层)的各种信号接收处理功能包括多天线接收,解扩频(Despreading),码分复用,预编码等;
-控制器/处理器440,实施L2层功能,以及与存储程序代码和数据的存储器430相关联;
-控制器/处理器440提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包;来自控制器/处理器440的上层数据包可提供到核心网络;
-波束处理器471,确定在第一子频带上的第一时间窗中接收第一无线信号;
在UL(Uplink,上行)中,与用户设备(450)有关的处理包括:
-数据源467,将上层数据包提供到控制器/处理器490。数据源467表示L2层之上的所有协议层;
-发射器456,通过其相应天线460发射射频信号,把基带信号转化成射频信号,并把射频信号提供到相应天线460;
-发射处理器455,实施用于L1层(即,物理层)的各种信号接收处理功能包括编码、交织、加扰、调制和物理层信令生成等;
-发射处理器455,实施用于L1层(即,物理层)的各种信号接收处理功能包括多天线发送,扩频(Spreading),码分复用,预编码等;
-控制器/处理器490基于gNB410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能;
-控制器/处理器490还负责HARQ操作、丢失包的重新发射,和到gNB410的信令;
-波束处理器441,确定在第一子频带上的第一时间窗中发送第一无线信号;
作为一个实施例,所述UE450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述UE450装置至少:接收第一信息;在第一子频带上的第一时间窗中发送第一无线信号;其中,所述第一信息被用于确定所述第一时间窗;所述第一无线信号的起始发送时刻相对于参考时刻的时间偏移属于目标偏移集合,所述目标偏移集合包括W个偏移值,所述W是正整数;W个起始时刻分别相对于所述参考时刻的时间偏移分别等于所述W个偏移值;所述W个起始时刻中的任一起始时刻属于N个时间单元中的一个时间单元,所述N个时间单元中的任一时间单元包括所述W个起始时刻中的至少一个起始时刻,所述N个时间单元中任意两个时间单元都是正交的,所述N个时间单元都属于所述第一时间窗,所述N个时间单元中的每个时间单元的持续时间和所述第一无线信号所占用的子载波的子载波间隔有关;所述N和所述目标偏移集合中的至少之一和所述所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信息;在第一子频带上的第一时间窗中发送第一无线信号;其中,所述第一信息被用于确定所述第一时间窗;所述第一无线信号的起始发送时刻相对于参考时刻的时间偏移属于目标偏移集合,所述目标偏移集合包括W个偏移值,所述W是正整数;W个起始时刻分别相对于所述参考时刻的时间偏移分别等于所述W个偏移值;所述W个起始时刻中的任一起始时刻属于N个时间单元中的一个时间单元,所述N个时间单元中的任一时间单元包括所述W个起始时刻中的至少一个起始时刻,所述N个时间单元中任意两个时间单元都是正交的,所述N个时间单元都属于所述第一时间窗,所述N个时间单元中的每个时间单元的持续时间和所述第一无线信号所占用的子载波的子载波间隔有关;所述N和所述目标偏移集合中的至少之一和所述所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,所述gNB410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:发送第一信息;在第一子频带上的第一时间窗中接收第一无线信号;其中,所述第一信息被用于确定所述第一时间窗;所述第一无线信号的起始发送时刻相对于参考时刻的时间偏移属于目标偏移集合,所述目标偏移集合包括W个偏移值,所述W是正整数;W个起始时刻分别相对于所述参考时刻的时间偏移分别等于所述W个偏移值;所述W个起始时刻中的任一起始时刻属于N个时间单元中的一个时间单元,所述N个时间单元中的任一时间单元包括所述W个起始时刻中的至少一个起始时刻,所述N个时间单元中任意两个时间单元都是正交的,所述N个时间单元都属于所述第一时间窗,所述N个时间单元中的每个时间单元的持续时间和所述第一无线信号所占用的子载波的子载波间隔有关;所述N和所述目标偏移集合中的至少之一和所述所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信息;在第一子频带上的第一时间窗中接收第一无线信号;其中,所述第一信息被用于确定所述第一时间窗;所述第一无线信号的起始发送时刻相对于参考时刻的时间偏移属于目标偏移集合,所述目标偏移集合包括W个偏移值,所述W是正整数;W个起始时刻分别相对于所述参考时刻的时间偏移分别等于所述W个偏移值;所述W个起始时刻中的任一起始时刻属于N个时间单元中的一个时间单元,所述N个时间单元中的任一时间单元包括所述W个起始时刻中的至少一个起始时刻,所述N个时间单元中任意两个时间单元都是正交的,所述N个时间单元都属于所述第一时间窗,所述N个时间单元中的每个时间单元的持续时间和所述第一无线信号所占用的子载波的子载波间隔有关;所述N和所述目标偏移集合中的至少之一和所述所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,UE450对应本申请中的用户设备。
作为一个实施例,gNB410对应本申请中的基站。
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第一信息。
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第一信息。
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第三信息。
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第三信息。
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于在本申请中的所述第一子频带上执行本申请中的所述第一接入检测。
作为一个实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于在本申请中的所述第一子频带上的所述第一时间窗中发送本申请中的所述第一无线信号。
作为一个实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于在本申请中的所述第一子频带上的所述第一时间窗中接收本申请中的所述第一无线信号。
作为一个实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于发送本申请中的所述第二信息。
作为一个实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于接收本申请中的所述第二信息。
作为一个实施例,发射器456、发射处理器455和控制器/处理器490中的至少前 两者被用于发送本申请中的所述第四信息。
作为一个实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于接收本申请中的所述第四信息。
实施例5
实施例5示例了一个无线传输的流程图,如附图5所示。在附图5中,基站N01是用户设备U02的服务小区维持基站。附图5中,方框F1是可选的。
对于N01,在步骤S10中发送第一信息;在步骤S11中在第一子频带上的第一时间窗中监测第一无线信号是否被发送;在步骤S12中在第一子频带上的第一时间窗中接收第一无线信号;在步骤S13中接收第二信息。
对于U02,在步骤S20中接收第一信息;在步骤S21中在第一子频带上执行第一接入检测;在步骤S22中在第一子频带上的第一时间窗中发送第一无线信号;在步骤S23中发送第二信息。
在实施例5中,所述第一信息被所述U02用于确定所述第一时间窗;所述第一无线信号的起始发送时刻相对于参考时刻的时间偏移属于目标偏移集合,所述目标偏移集合包括W个偏移值,所述W是正整数;W个起始时刻分别相对于所述参考时刻的时间偏移分别等于所述W个偏移值;所述W个起始时刻中的任一起始时刻属于N个时间单元中的一个时间单元,所述N个时间单元中的任一时间单元包括所述W个起始时刻中的至少一个起始时刻,所述N个时间单元中任意两个时间单元都是正交的,所述N个时间单元都属于所述第一时间窗,所述N个时间单元中的每个时间单元的持续时间和所述第一无线信号所占用的子载波的子载波间隔有关;所述N和所述目标偏移集合中的至少之一和所述所述第一无线信号所占用的子载波的子载波间隔有关。所述第二信息被用于指示所述所述第一无线信号的起始发送时刻所属的所述N个时间单元中的一个时间单元。所述第一接入检测被所述U02用于确定在所述第一子频带上的所述第一时间窗中发送所述第一无线信号。
作为一个实施例,所述第二信息属于UCI(Uplink control information,上行控制信息)。
作为一个实施例,所述第二信息在上行随机接入信道上传输。
作为上述实施例的一个子实施例,所述上行随机接入信道是PRACH。
作为一个实施例,所述第二信息的传输信道是UL-SCH。
作为一个实施例,所述第二信息在上行物理层数据信道上传输。
作为上述实施例的一个子实施例,所述上行物理层数据信道是PUSCH。
作为上述实施例的一个子实施例,所述上行物理层数据信道是sPUSCH。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NR-PUSCH。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NB-PUSCH。
作为一个实施例,所述第二信息在上行物理层控制信道(即仅能用于承载物理层信令的上行信道)上传输。
作为上述实施例的一个子实施例,所述上行物理层控制信道是PUCCH(Physical Uplink Control CHannel,物理上行控制信道)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是sPUCCH(short PUCCH,短PUCCH)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是NR-PUCCH(New Radio PUCCH,新无线PUCCH)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是NB-PUCCH(Narrow Band PUCCH,窄带PUCCH)。
作为一个实施例,所述第二信息在所述第一子频带上的所述第一时间窗中被发送。
作为一个实施例,所述第二信息的发送时刻不早于所述所述第一无线信号的起始发送时刻。
作为一个实施例,上述方法还包括:
-接收第四信息;
其中,所述第四信息包括所述第一无线信号的调度信息。
作为一个实施例,所述第二信息和所述第四信息属于同一个UCI。
作为一个实施例,所述第二信息和所述第四信息在同一个物理层信道上传输。
作为一个实施例,所述第四信息在所述第一子频带上的所述第一时间窗中被发送。
作为一个实施例,所述第四信息的发送时刻不早于所述所述第一无线信号的起始发送时刻。
作为一个实施例,所述所述第一无线信号的调度信息包括HARQ进程号、NDI(New Data Indicator,新数据指示)、RV(Redundant Version,冗余版本)、UE编号(ID)、终止发送时刻、终止发送时间单元、COT(Channel Occupancy Time,信道占用时间)共享指示和CRC(Cyclic Redundancy Check,循环冗余校验)中的至少之一。
作为上述实施例的一个子实施例,所述终止发送时间单元是所述第一时间窗中的一个时间单元。
作为上述实施例的一个子实施例,所述HARQ进程号是所述第一无线信号包括的所述数据对应的HARQ进程的编号。
作为上述实施例的一个子实施例,所述NDI指示所述第一无线信号包括的所述数据是新数据还是旧数据的重传。
作为一个实施例,所述第一接入检测包括在所述第一子频带上的Q个时间子池中分别执行Q次能量检测,得到Q个检测值,所述Q是正整数;所述Q个检测值中的Q1个检测值都低于第一参考阈值,所述Q1是不大于所述Q的正整数。
作为上述实施例的一个子实施例,所述Q个时间子池的结束时刻不晚于所述所述第一无线信号的起始发送时刻。
作为上述实施例的一个子实施例,所述Q个时间子池的结束时刻早于所述所述第一无线信号的起始发送时刻。
作为一个实施例,所述第一接入检测是LBT(Listen Before Talk,先听后发),所述LBT的具体定义和实现方式参见3GPP TR36.889。
作为一个实施例,所述第一接入检测是CCA(Clear Channel Assessment,空闲信道评估),所述CCA的具体定义和实现方式参见3GPP TR36.889。
作为一个实施例,所述第一接入检测被所述U02用于确定所述第一子频带是否闲置(Idle)。
作为一个实施例,所述第一接入检测是上行接入检测。
作为一个实施例,所述第一接入检测被所述U02用于确定所述第一子频带是否能被所述U02用于上行传输。
作为一个实施例,所述第一接入检测是通过3GPP TS36.213中的15.2章节所定义的方式实现的。
作为一个实施例,所述Q1等于所述Q。
作为一个实施例,所述Q1小于所述Q。
作为一个实施例,在所述第一子频带上的所述N个时间窗中的每个时间窗中都监测所述第一无线信号是否被发送。
作为一个实施例,所述监测是指盲检测,即接收信号并执行译码操作,如果根据CRC(Cyclic Redundancy Check,循环冗余校验)比特确定译码正确则判断给定无线信号在给定子频带上的给定时间窗中被发送;否则判断所述给定无线信号未在给定子频带上的给定时间窗中被发送。
作为上述实施例的一个子实施例,所述给定子频带是所述第一子频带,所述给定时间窗是所述第一时间窗,所述给定无线信号是所述第一无线信号。
作为一个实施例,所述监测是指相干检测,即用给定无线信号所在的物理层信道的DMRS的RS序列进行相干接收,并测量所述相干接收后得到的信号的能量。如果所述所述相干接收后得到的信号的能量大于第一给定阈值,判断所述给定无线信号在给定子频带上的给定时间窗中被发送;否则判断所述给定无线信号未在给定子频带上的给定时间窗中被发送。
作为上述实施例的一个子实施例,所述给定子频带是所述第一子频带,所述给定时间窗是所述第一时间窗,所述给定无线信号是所述第一无线信号。
作为一个实施例,所述监测是指能量检测,即感知(Sense)无线信号的能量并在时间上平均,以获得接收能量。如果所述接收能量大于第二给定阈值,判断给定无线信号在给定子频带上的给定时间窗中被发送;否则判断所述给定无线信号未在给定子频带上的给定时间窗中被发送。
作为上述实施例的一个子实施例,所述给定子频带是所述第一子频带,所述给定时间窗是所述第一时间窗,所述给定无线信号是所述第一无线信号。
作为一个实施例,所述监测是指相干检测,即用给定无线信号的序列进行相干接收,并测量所述相干接收后得到的信号的能量。如果所述所述相干接收后得到的信号的能量大于第三给定阈值,判断所述给定无线信号在给定子频带上的给定时间窗中被发送;否则判断所述给定无线信号未在给定子频带上的给定时间窗中被发送。
作为上述实施例的一个子实施例,所述给定子频带是所述第一子频带,所述给定时间窗是所述第一时间窗,所述给定无线信号是所述第一无线信号。
作为一个实施例,给定节点根据接收信号的能量以判断给定无线信号在给定子频带上的给定时间窗中是否被发送。
作为上述实施例的一个子实施例,所述给定节点是所述基站设备。
作为上述实施例的一个子实施例,所述给定子频带是所述第一子频带,所述给定时间窗是所述第一时间窗,所述给定无线信号是所述第一无线信号。
作为上述实施例的一个子实施例,如果接收信号的能量较低,所述给定节点认为所述给定无线信号在给定子频带上的给定时间窗中未被发送,否则,所述给定节点认为所述给定无线信号在给定子频带上的给定时间窗中被发送。
作为上述实施例的一个子实施例,如果接收信号的能量低于参考能量阈值,所述给定节点认为所述给定无线信号在给定子频带上的给定时间窗中未被发送,否则,所述给定节点认为所述给定无线信号在给定子频带上的给定时间窗中被发送;所述参考能量阈值由所述给定节点自行配置。
作为一个实施例,给定节点根据接收信号的功率以判断给定无线信号在给定子频带上的给定时间窗中是否被发送。
作为上述实施例的一个子实施例,所述给定节点是所述基站设备。
作为上述实施例的一个子实施例,所述给定子频带是所述第一子频带,所述给定时间窗是所述第一时间窗,所述给定无线信号是所述第一无线信号。
作为上述实施例的一个子实施例,如果接收信号的功率较低,所述给定节点认为所述给定无线信号在给定子频带上的给定时间窗中未被发送,否则,所述给定节点认为所述给定无线信号在给定子频带上的给定时间窗中被发送。
作为上述实施例的一个子实施例,如果接收信号的功率低于参考功率阈值,所述给定节点认为所述给定无线信号在给定子频带上的给定时间窗中未被发送,否则,所述给定节点认为所述给定无线信号在给定子频带上的给定时间窗中被发送;所述参考功率阈值由所述给定节点自行配置。
作为一个实施例,给定节点根据接收信号和给定无线信号的相关性以判断所述给定无线信号在给定子频带上的给定时间窗中是否被发送。
作为上述实施例的一个子实施例,所述给定节点是所述基站设备。
作为上述实施例的一个子实施例,所述给定子频带是所述第一子频带,所述给定时间窗 是所述第一时间窗,所述给定无线信号是所述第一无线信号。
作为上述实施例的一个子实施例,如果接收信号和所述给定无线信号的相关性较低,所述给定节点认为所述给定无线信号在给定子频带上的给定时间窗中未被发送,否则,所述给定节点认为所述给定无线信号在给定子频带上的给定时间窗中被发送。
作为上述实施例的一个子实施例,如果接收信号和所述给定无线信号的相关性低于参考相关性阈值,所述给定节点认为所述给定无线信号在给定子频带上的给定时间窗中未被发送,否则,所述给定节点认为所述给定无线信号在给定子频带上的给定时间窗中被发送;所述参考相关性阈值由所述给定节点自行配置。
作为一个实施例,给定节点根据给定无线信号的配置参数对接收信号进行测量从而估计出信道,所述给定节点根据估计出的所述信道判断所述给定无线信号在给定子频带上的给定时间窗中是否被发送。
作为上述实施例的一个子实施例,所述给定节点是所述基站设备。
作为上述实施例的一个子实施例,所述给定子频带是所述第一子频带,所述给定时间窗是所述第一时间窗,所述给定无线信号是所述第一无线信号。
作为上述实施例的一个子实施例,如果估计出的所述信道的能量较低,所述给定节点认为所述给定无线信号在给定子频带上的给定时间窗中未被发送,否则,所述给定节点认为所述给定无线信号在给定子频带上的给定时间窗中被发送。
作为上述实施例的一个子实施例,如果估计出的所述信道的能量低于参考信道能量阈值,所述给定节点认为所述给定无线信号在给定子频带上的给定时间窗中未被发送,否则,所述给定节点认为所述给定无线信号在给定子频带上的给定时间窗中被发送;所述参考信道能量阈值由所述给定节点自行配置。
作为上述实施例的一个子实施例,如果估计出的所述信道的功率较低,所述给定节点认为所述给定无线信号在给定子频带上的给定时间窗中未被发送,否则,所述给定节点认为所述给定无线信号在给定子频带上的给定时间窗中被发送。
作为上述实施例的一个子实施例,如果估计出的所述信道的功率低于参考信道功率阈值,所述给定节点认为所述给定无线信号在给定子频带上的给定时间窗中未被发送,否则,所述给定节点认为所述给定无线信号在给定子频带上的给定时间窗中被发送;所述参考信道功率阈值由所述给定节点自行配置。
作为上述实施例的一个子实施例,如果估计出的所述信道的特性不符合所述给定节点认为应有的特性,所述给定节点认为所述给定无线信号在给定子频带上的给定时间窗中未被发送,否则,所述给定节点认为所述给定无线信号在给定子频带上的给定时间窗中被发送。
作为一个实施例,S个子载波间隔分别和S个偏移集合一一对应,所述S个子载波间隔中的任意两个子载波间隔都不相同,所述所述第一无线信号所占用的子载波的子载波间隔是所述S个子载波间隔中的一个子载波间隔,所述目标偏移集合是所述S个偏移集合中与所述所述第一无线信号所占用的子载波的子载波间隔相对应的一个偏移集合,所述S是大于1的正整数。
作为一个实施例,所述W个起始时刻包括所述N个时间单元中的N1个时间单元分别对应的起始时刻,所述N1与所述所述第一无线信号所占用的子载波的子载波间隔有关,所述N1是不大于所述N的正整数。
作为一个实施例,所述W个起始时刻被划分为M个子集,所述W个起始时刻中的任一起始时刻都属于所述M个子集中的一个子集,所述M个子集中的任一子集包括所述W个起始时刻中的至少一个起始时刻,所述M是正整数;所述N1个时间单元分别对应的起始时刻分别属于所述M个子集中的N1个子集,所述N1不大于所述M;所述M等于所述N并且所述M个子集分别包括的起始时刻分别属于所述N个时间单元。
作为一个实施例,所述W个起始时刻被划分为M个子集,所述W个起始时刻中的任一起始时刻都属于所述M个子集中的一个子集,所述M个子集中的任一子集包括所述W个起 始时刻中的至少一个起始时刻,所述M是正整数;所述N1个时间单元分别对应的起始时刻分别属于所述M个子集中的N1个子集,所述N1不大于所述M;存在两个起始时刻分别属于所述M个子集中的两个子集且属于所述N个时间单元中的同一个时间单元。
作为一个实施例,第一子集是所述M个子集中所包括的起始时刻的数量大于1的任意一个子集,所述第一子集中的任意两个起始时刻之间的时间偏差都等于第一时间偏差的正整数倍。
作为一个实施例,所述第二信息包括的比特数量与所述所述第一无线信号所占用的子载波的子载波间隔无关。
作为一个实施例,所述第二信息包括的比特数量与所述所述第一无线信号所占用的子载波的子载波间隔有关。
实施例6
实施例6A至实施例6B分别示例了一个第一信息被用于确定第一时间窗的示意图,如附图6所示。
在实施例6A中,所述第一信息被用于指示所述第一时间窗。
在实施例6B中,所述第一信息和第三信息共同被用于确定所述第一时间窗。
作为一个实施例,所述第一信息被用于指示所述第一时间窗。
作为上述实施例的一个子实施例,所述第一信息显式的指示所述第一时间窗。
作为上述实施例的一个子实施例,所述第一信息隐式的指示所述第一时间窗。
作为上述实施例的一个子实施例,所述第一信息显式的指示T个时间窗,所述第一时间窗是所述T个时间窗中的一个时间窗,所述T是正整数。
作为上述实施例的一个子实施例,所述第一信息隐式的指示T个时间窗,所述第一时间窗是所述T个时间窗中的一个时间窗,所述T是正整数。
作为上述实施例的一个子实施例,所述第一信息指示周期和时域偏移,所述第一信息指示的所述周期和所述时域偏移被用于确定T个时间窗,所述T个时间窗是一组周期性出现的时间窗,所述第一时间窗是所述T个时间窗中的一个时间窗,所述T是正整数。
作为上述实施例的一个子实施例,所述第一信息包括第一比特串,所述第一比特串包括T1个比特,所述第一比特串包括的所述T1个比特分别和T1个时间窗一一对应;所述第一时间窗是T个时间窗中的一个时间窗,所述T个时间窗是所述T1个时间窗的子集,所述T是正整数,所述T1是不小于所述T的正整数;对于所述第一比特串中的任一给定比特,如果所述任一给定比特等于1,所述T1个时间窗中与所述任一给定比特对应的时间窗是所述T个时间窗中的一个时间窗;如果所述任一给定比特等于0,所述T1个时间窗中与所述任一给定比特对应的时间窗不是所述T个时间窗中的一个时间窗。
作为上述实施例的一个子实施例,所述第一信息包括第二比特串,所述第二比特串包括T2个比特,所述T2个比特中的任一比特和T3个时间窗中的至少一个时间窗对应,所述T3个时间窗中的任一时间窗和所述T2个比特中的一个比特对应,所述T3是不小于所述T2的正整数,所述T2是正整数;所述第一时间窗是T个时间窗中的一个时间窗,所述T个时间窗中的每个时间窗都是所述T3个时间窗中的一个时间窗,所述T是不大于所述T3的正整数;对于所述第二比特串中的任一给定比特,如果所述任一给定比特等于1,所述T3个时间窗中与所述任一给定比特对应的每个时间窗都是所述T个时间窗中的一个时间窗;如果所述任一给定比特等于0,所述T3个时间窗中与所述任一给定比特对应的每个时间窗都不是所述T个时间窗中的一个时间窗。
作为上述实施例的一个子实施例,所述第一信息是半静态配置的。
作为上述实施例的一个子实施例,所述第一信息由更高层信令承载。
作为上述实施例的一个子实施例,所述第一信息由RRC(Radio Resource Control,无线电资源控制)信令承载。
作为上述实施例的一个子实施例,所述第一信息由MAC CE信令承载。
作为上述实施例的一个子实施例,所述第一信息包括一个RRC信令中的一个或多个IE(Information Element,信息单元)。
作为上述实施例的一个子实施例,所述第一信息包括一个RRC信令中的一个IE的全部或一部分。
作为上述实施例的一个子实施例,所述第一信息包括一个RRC信令中的一个IE的部分域。
作为上述实施例的一个子实施例,所述第一信息包括一个RRC信令中的多个IE。
作为上述实施例的一个子实施例,所述第一信息包括一个RRC信令中的ConfiguredGrantConfig IE的部分或全部域,所述ConfiguredGrantConfig IE的具体定义参见3GPP TS38.331中的第6.3.2章节。
作为上述实施例的一个子实施例,所述第一信息包括一个RRC信令中的ConfiguredGrantConfig IE中的periodicity域和timeDomainOffset域,所述ConfiguredGrantConfig IE,所述periodicity域和所述timeDomainOffset域的具体定义参见3GPP TS38.331中的第6.3.2章节。
作为一个实施例,所述第一信息和第三信息共同被用于确定所述第一时间窗。
作为上述实施例的一个子实施例,所述第一信息和第三信息共同被用于指示T个时间窗,所述第一时间窗是所述T个时间窗中的一个时间窗,所述T是正整数。
作为上述实施例的一个子实施例,所述第一时间窗是T个时间窗中的一个时间窗,所述T是正整数;所述T个时间窗是一组周期性出现的时间窗,所述第三信息指示所述T个时间窗的周期,所述第一信息指示所述N个时间窗中的最早的一个时间窗。
作为上述实施例的一个子实施例,所述第一时间窗是T个时间窗中的一个时间窗,所述T是正整数;所述T个时间窗是一组周期性出现的时间窗,所述第三信息指示所述T个时间窗的周期,所述第一信息包括所述N个时间窗中的最早的一个时间窗相对于发送所述第一信息的时域资源单元之间的时域偏移。
作为上述实施例的一个子实施例,所述第三信息指示T1个时间窗,所述第一信息被用于确定所述T1个时间窗中的T个时间窗,所述第一时间窗是所述T个时间窗中的一个时间窗,所述T是正整数,所述T1是不小于所述T的正整数。
作为上述实施例的一个子实施例,所述第三信息指示T1个时间窗,所述第一信息被用于确定所述第一时间窗,所述第一时间窗是所述T1个时间窗中的一个时间窗,所述T1是正整数。
作为上述实施例的一个子实施例,所述第三信息指示T1个时间窗,所述第一信息被用于确定所述T1个时间窗中的T个时间窗,所述第一时间窗是所述T个时间窗中的一个时间窗,所述T是正整数,所述T1是不小于所述T的正整数。
作为上述实施例的一个子实施例,所述第三信息包括第三比特串,所述第三比特串包括T4个比特,所述第三比特串包括的所述T4个比特分别和T4个时间窗一一对应;T1个时间窗是所述T4个时间窗的子集,所述T1是不大于所述T4的正整数;对于所述第三比特串中的任一给定比特,如果所述任一给定比特等于1,所述T4个时间窗中与所述任一给定比特对应的时间窗是所述T1个时间窗中的一个时间窗;如果所述任一给定比特等于0,所述T4个时间窗中与所述任一给定比特对应的时间窗不是所述T1个时间窗中的一个时间窗;所述第一信息被用于确定所述T1个时间窗中的T个时间窗,所述第一时间窗是所述T个时间窗中的一个时间窗,所述T是不大于所述T1的正整数。
作为上述实施例的一个子实施例,所述第三信息包括第三比特串,所述第三比特串包括T4个比特,所述第三比特串包括的所述T4个比特分别和T4个时间窗一一对应;T1个时间窗是所述T4个时间窗的子集,所述T1是不大于所述T4的正整数;对于所述第三比特串中的任一给定比特,如果所述任一给定比特等于1,所述T4个时间窗中与所述任一给定比特对应的时间窗是所述T1个时间窗中的一个时间窗;如果所述任一给定比特等于0,所述T4个时间窗中与所述任一给定比特对应的时间窗不是所述T1个时间窗中的一个时间窗;T个时间窗中 的每个时间窗的起始时刻都晚于所述第一信息的结束发送时刻,所述T个时间窗中的每个时间窗都是所述T1个时间窗中的一个时间窗,所述第一时间窗是所述T个时间窗中的一个时间窗,所述T是不大于所述T1的正整数。
作为上述实施例的一个子实施例,所述第三信息包括第四比特串,所述第四比特串包括T4个比特,所述T4个比特中的任一比特和T5个时间窗中的至少一个时间窗对应,所述T5个时间窗中的任一时间窗和所述T4个比特中的一个比特对应,所述T5是不小于所述T4的正整数,所述T4是正整数;T1个时间窗是所述T5个时间窗的子集,所述T1是不大于所述T5的正整数;对于所述第四比特串中的任一给定比特,如果所述任一给定比特等于1,所述T5个时间窗中与所述任一给定比特对应的每个时间窗都是所述T1个时间窗中的一个时间窗;如果所述任一给定比特等于0,所述T5个时间窗中与所述任一给定比特对应的每个时间窗都不是所述T1个时间窗中的一个时间窗;所述第一信息被用于确定所述T1个时间窗中的T个时间窗,所述第一时间窗是所述T个时间窗中的一个时间窗,所述T是不大于所述T1的正整数。
作为上述实施例的一个子实施例,所述第三信息包括第四比特串,所述第四比特串包括T4个比特,所述T4个比特中的任一比特和T5个时间窗中的至少一个时间窗对应,所述T5个时间窗中的任一时间窗和所述T4个比特中的一个比特对应,所述T5是不小于所述T4的正整数,所述T4是正整数;T1个时间窗是所述T5个时间窗的子集,所述T1是不大于所述T5的正整数;对于所述第四比特串中的任一给定比特,如果所述任一给定比特等于1,所述T5个时间窗中与所述任一给定比特对应的每个时间窗都是所述T1个时间窗中的一个时间窗;如果所述任一给定比特等于0,所述T5个时间窗中与所述任一给定比特对应的每个时间窗都不是所述T1个时间窗中的一个时间窗;T个时间窗中的每个时间窗的起始时刻都晚于所述第一信息的结束发送时刻,所述T个时间窗中的每个时间窗都是所述T1个时间窗中的一个时间窗,所述第一时间窗是所述T个时间窗中的一个时间窗,所述T是不大于所述T1的正整数。
作为上述实施例的一个子实施例,所述第一信息是动态配置的。
作为上述实施例的一个子实施例,所述第一信息由物理层信令承载。
作为上述实施例的一个子实施例,所述第一信息由DCI信令承载。
作为上述实施例的一个子实施例,所述第一信息包括DCI信令中的一个或多个域(Field)。
作为上述实施例的一个子实施例,所述第一信息包括DCI信令中的一个域。
作为上述实施例的一个子实施例,所述第一信息包括DCI信令中的多个域。
作为上述实施例的一个子实施例,所述第一信息由上行授予(UpLink Grant)的DCI信令承载。
作为上述实施例的一个子实施例,承载所述第一信息的DCI信令的CRC(Cyclic Redundancy Check,循环冗余校验)比特序列被CS(Configured Scheduling,配置的调度)-RNTI(Radio Network Temporary Identifier,无线网络暂定标识)加扰。
作为上述实施例的一个子实施例,承载所述第一信息的DCI信令是DCI format 0_0或者DCI format 0_1,所述DCI format 0_0和所述DCI format 0_1的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为上述实施例的一个子实施例,承载所述第一信息的DCI信令是DCI format 0_0,所述DCI format 0_0的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为上述实施例的一个子实施例,承载所述第一信息的DCI信令是DCI format 0_1,所述DCI format 0_1的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为上述实施例的一个子实施例,所述第一信息包括DCI信令中的Time domain resource assignment域,所述Time domain resource assignment域的具体定义参见3GPP TS38.214中的第6.1.2章节。
作为一个实施例,所述第三信息在部署于非授权频谱的频带上传输。
作为一个实施例,所述第三信息在部署于授权频谱的频带上传输。
作为一个实施例,所述第三信息在所述第一子频带上传输。
作为一个实施例,所述第三信息在所述第一子频带以外的频带上传输。
作为上述实施例的一个子实施例,所述第三信息是半静态配置的。
作为上述实施例的一个子实施例,所述第三信息由更高层信令承载。
作为上述实施例的一个子实施例,所述第三信息由RRC信令承载。
作为上述实施例的一个子实施例,所述第三信息由MAC CE信令承载。
作为上述实施例的一个子实施例,所述第三信息包括一个RRC信令中的一个或多个IE。
作为上述实施例的一个子实施例,所述第三信息包括一个RRC信令中的一个IE的全部或一部分。
作为上述实施例的一个子实施例,所述第三信息包括一个RRC信令中的一个IE的部分域。
作为上述实施例的一个子实施例,所述第三信息包括一个RRC信令中的多个IE。
作为上述实施例的一个子实施例,所述第三信息包括一个RRC信令中的ConfiguredGrantConfig IE的部分或全部域,所述ConfiguredGrantConfig IE的具体定义参见3GPP TS38.331中的第6.3.2章节。
作为上述实施例的一个子实施例,所述第三信息包括一个RRC信令中的ConfiguredGrantConfig IE中的periodicity域,所述ConfiguredGrantConfig IE和所述periodicity域的具体定义参见3GPP TS38.331中的第6.3.2章节。
作为上述实施例的一个子实施例,所述第三信息在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为上述实施例的一个子实施例,所述第三信息在PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)上传输。
作为上述实施例的一个子实施例,所述第三信息在sPDSCH(short PDSCH,短PDSCH)上传输。
作为上述实施例的一个子实施例,所述第三信息在NR-PDSCH(New Radio PDSCH,新无线PDSCH)上传输。
作为上述实施例的一个子实施例,所述第三信息在NB-PDSCH(Narrow Band PDSCH,窄带PDSCH)上传输。
实施例7
实施例7示例了一个S个子载波间隔和S个偏移集合的关系的示意图,如附图7所示。
在实施例7中,S个子载波间隔分别和S个偏移集合一一对应,所述S个子载波间隔中的任意两个子载波间隔都不相同,所述所述第一无线信号所占用的子载波的子载波间隔是所述S个子载波间隔中的一个子载波间隔,所述目标偏移集合是所述S个偏移集合中与所述所述第一无线信号所占用的子载波的子载波间隔相对应的一个偏移集合,所述S是大于1的正整数。
作为一个实施例,所述N和所述目标偏移集合中仅所述N与所述第一无线信号所占用的子载波的子载波间隔有关;所述S个偏移集合中任意两个偏移集合都相同。
作为一个实施例,所述N和所述目标偏移集合都与所述第一无线信号所占用的子载波的子载波间隔有关;所述S个偏移集合中存在两个偏移时刻集合不相同。
作为一个实施例,所述N和所述目标偏移集合都与所述第一无线信号所占用的子载波的子载波间隔有关;所述S个偏移集合中的任意两个偏移时刻集合不相同。
作为一个实施例,所述N和所述目标偏移集合中仅所述目标偏移集合与所述第一无线信号所占用的子载波的子载波间隔有关;所述S个偏移集合中存在两个偏移时刻集合不相同。
作为一个实施例,所述N和所述目标偏移集合中仅所述目标偏移集合与所述第一无线信号所占用的子载波的子载波间隔有关;所述S个偏移集合中的任意两个偏移时刻集合不相同。
作为一个实施例,所述S个子载波间隔包括15kHz,30kHz和60kHz中的至少两个。
作为一个实施例,所述S个子载波间隔包括15kHz,30kHz和60kHz。
作为一个实施例,所述S个子载波间隔包括15kHz和30kHz。
作为一个实施例,所述S个子载波间隔包括15kHz和60kHz。
作为一个实施例,所述S个子载波间隔包括30kHz和60kHz。
作为一个实施例,所述S个偏移集合中的任一偏移集合包括正整数个偏移值,所述S个偏移集合中的任一偏移集合中的任一偏移值都是正实数。
作为一个实施例,所述S个偏移集合中的任一偏移集合包括正整数个偏移值,所述S个偏移集合中的任一偏移集合中的任一偏移值都是非负实数。
实施例8
实施例8示例了一个目标偏移集合的示意图,如附图8所示。
在实施例8中,本申请中的所述N和所述目标偏移集合中仅所述N与本申请中的所述第一无线信号所占用的子载波的子载波间隔有关;本申请中的所述S个偏移集合中任意两个偏移集合都相同。
作为一个实施例,所述W与所述第一无线信号所占用的子载波的子载波间隔无关。
作为一个实施例,所述目标偏移集合与所述第一无线信号所占用的子载波的子载波间隔无关。
作为一个实施例,如果所述所述第一无线信号所占用的子载波的子载波间隔等于第一子载波间隔,所述N等于第一参考数值;如果所述所述第一无线信号所占用的子载波的子载波间隔等于第二子载波间隔,所述N等于第二参考数值;所述第二子载波间隔大于所述第一子载波间隔,所述第二参考数值大于所述第一参考数值。
作为上述实施例的一个子实施例,所述第一子载波间隔是15kHz,所述第一参考数值等于2,所述第二子载波间隔是30kHz,所述第二参考数值等于3。
作为上述实施例的一个子实施例,所述第一子载波间隔是15kHz,所述第一参考数值等于2,所述第二子载波间隔是60kHz,所述第二参考数值等于5。
作为上述实施例的一个子实施例,所述第一子载波间隔是30kHz,所述第一参考数值等于3,所述第二子载波间隔是60kHz,所述第二参考数值等于5。
作为一个实施例,15kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与15kHz对应的一个偏移集合包括16us,25us,34us,43us,52us,61us和OS#1(15kHz)。
作为一个实施例,30kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与30kHz对应的一个偏移集合包括16us,25us,34us,43us,52us,61us和OS#2(30kHz)。
作为一个实施例,60kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与60kHz对应的一个偏移集合包括16us,25us,34us,43us,52us,61us和OS#4(60kHz)。
实施例9
实施例9示例了另一个目标偏移集合的示意图,如附图8所示。
在实施例9中,所述N和所述目标偏移集合中仅所述目标偏移集合与所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,所述N和所述目标偏移集合中仅所述目标偏移集合与所述第一无线信号所占用的子载波的子载波间隔有关;所述S个偏移集合中存在两个偏移时刻集合不相同。
作为一个实施例,所述N和所述目标偏移集合中仅所述目标偏移集合与所述第一无线信号所占用的子载波的子载波间隔有关;所述S个偏移集合中的任意两个偏移时刻集合不相同。
作为一个实施例,所述W与所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,所述N与所述第一无线信号所占用的子载波的子载波间隔无关。
作为一个实施例,如果所述所述第一无线信号所占用的子载波的子载波间隔等于第一子载波间隔,所述W等于第一目标数值;如果所述所述第一无线信号所占用的子载波的子载波间隔等于第二子载波间隔,所述W等于第二目标数值;所述第二子载波间隔大于所述第一子 载波间隔,所述第二目标数值小于所述第一目标数值。
作为上述实施例的一个子实施例,所述第一子载波间隔是15kHz,所述第一目标数值等于7,所述第二子载波间隔是30kHz,所述第二目标数值等于3。
作为上述实施例的一个子实施例,所述第一子载波间隔是15kHz,所述第一目标数值等于7,所述第二子载波间隔是60kHz,所述第二目标数值等于2。
作为上述实施例的一个子实施例,所述第一子载波间隔是30kHz,所述第一目标数值等于3,所述第二子载波间隔是60kHz,所述第二目标数值等于2。
作为上述实施例的一个子实施例,所述第一子载波间隔是15kHz,所述第一目标数值等于7,所述第二子载波间隔是60kHz,所述第二目标数值等于1。
作为上述实施例的一个子实施例,所述第一子载波间隔是30kHz,所述第一目标数值等于3,所述第二子载波间隔是60kHz,所述第二目标数值等于1。
作为一个实施例,15kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与15kHz对应的一个偏移集合包括16us,25us,34us,43us,52us,61us和OS#1(15kHz),其中所述OS#1(15kHz)是子载波间隔为15kHz时一个多载波符号的持续时间。
作为一个实施例,30kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与30kHz对应的一个偏移集合包括16us,25us和OS#1(30kHz)。
作为一个实施例,60kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与60kHz对应的一个偏移集合包括16us和OS#1(60kHz)。
作为一个实施例,60kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与60kHz对应的一个偏移集合包括OS#1(60kHz)。
实施例10
实施例10示例了另一个目标偏移集合的示意图,如附图10所示。
在实施例10中,所述W个起始时刻包括所述N个时间单元中的N1个时间单元分别对应的起始时刻,所述N1与所述所述第一无线信号所占用的子载波的子载波间隔无关,所述N1是不大于所述N的正整数。
作为一个实施例,所述N和所述目标偏移集合都与所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,所述N1等于1。
作为一个实施例,所述N1大于1。
作为一个实施例,所述N1个时间单元中的任一时间单元的起始时刻都是所述W个起始时刻中的一个起始时刻。
作为一个实施例,15kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与15kHz对应的一个偏移集合包括OS#1(15kHz),OS#1(15kHz)-9us,OS#1(15kHz)-18us,OS#1(15kHz)-27us,OS#1(15kHz)-36us,OS#1(15kHz)-45us,OS#1(15kHz)-54us和OS#1(15kHz)-63us。
作为一个实施例,15kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与15kHz对应的一个偏移集合包括OS#1(15kHz),OS#1(15kHz)-9us,OS#1(15kHz)-18us,OS#1(15kHz)-27us,OS#1(15kHz)-36us,OS#1(15kHz)-45us和OS#1(15kHz)-54us。
作为一个实施例,15kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与15kHz对应的一个偏移集合包括OS#1(15kHz),OS#1(15kHz)-9us,OS#1(15kHz)-18us,OS#1(15kHz)-27us,OS#1(15kHz)-36us和OS#1(15kHz)-45us。
作为一个实施例,30kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与30kHz对应的一个偏移集合包括OS#2(30kHz),OS#2(30kHz)-9us,OS#2(30kHz)-18us,OS#2(30kHz)-27us,OS#2(30kHz)-36us,OS#2(30kHz)-45us,OS#2(30kHz)-54us和OS#2(30kHz)-63us。
作为一个实施例,30kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与30kHz对应的一个偏移集合包括OS#2(30kHz),OS#2(30kHz)-9us,OS#2(30kHz)-18us,OS#2(30kHz)-27us,OS#2(30kHz)-36us,OS#2(30kHz)-45us和OS#2(30kHz)-54us。
作为一个实施例,30kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与30kHz对应的一个偏移集合包括OS#2(30kHz),OS#2(30kHz)-9us,OS#2(30kHz)-18us,OS#2(30kHz)-27us,OS#2(30kHz)-36us和OS#2(30kHz)-45us。
作为一个实施例,60kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与60kHz对应的一个偏移集合包括OS#4(60kHz),OS#4(60kHz)-9us,OS#4(60kHz)-18us,OS#4(60kHz)-27us,OS#4(60kHz)-36us,OS#4(60kHz)-45us,OS#4(60kHz)-54us,OS#4(60kHz)-63us。
作为一个实施例,60kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与60kHz对应的一个偏移集合包括OS#4(60kHz),OS#4(60kHz)-9us,OS#4(60kHz)-18us,OS#4(60kHz)-27us,OS#4(60kHz)-36us,OS#4(60kHz)-45us和OS#4(60kHz)-54us。
作为一个实施例,60kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与60kHz对应的一个偏移集合包括OS#4(60kHz),OS#4(60kHz)-9us,OS#4(60kHz)-18us,OS#4(60kHz)-27us,OS#4(60kHz)-36us和OS#4(60kHz)-45us。
实施例11
实施例11示例了另一个目标偏移集合的示意图,如附图11所示。
在实施例11中,所述W个起始时刻包括所述N个时间单元中的N1个时间单元分别对应的起始时刻,所述N1与所述所述第一无线信号所占用的子载波的子载波间隔有关,所述N1是不大于所述N的正整数。
作为一个实施例,所述N和所述目标偏移集合都与所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,所述W与所述第一无线信号所占用的子载波的子载波间隔无关。
作为一个实施例,所述W与所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,所述N1等于所述N。
作为一个实施例,所述N1小于所述N。
作为一个实施例,所述N1等于N-1。
作为一个实施例,所述N1小于所述N,所述N1个时间单元中的任一时间单元是所述N个时间单元中除了最早的一个时间单元之外的一个时间单元。
作为一个实施例,所述N1等于N-1,所述N1个时间单元是所述N个时间单元中除了最早的一个时间单元之外的所有时间单元。
作为一个实施例,如果所述所述第一无线信号所占用的子载波的子载波间隔等于第一子载波间隔,所述N1等于第一数值;如果所述所述第一无线信号所占用的子载波的子载波间隔等于第二子载波间隔,所述N1等于第二数值;所述第二子载波间隔大于所述第一子载波间隔,所述第二数值大于所述第一数值。
作为上述实施例的一个子实施例,所述第一子载波间隔是15kHz,所述第一数值等于1,所述第二子载波间隔是30kHz,所述第二数值等于2。
作为上述实施例的一个子实施例,所述第一子载波间隔是15kHz,所述第一数值等于1,所述第二子载波间隔是60kHz,所述第二数值等于4。
作为上述实施例的一个子实施例,所述第一子载波间隔是30kHz,所述第一数值等于2,所述第二子载波间隔是60kHz,所述第二数值等于4。
作为一个实施例,如果所述所述第一无线信号所占用的子载波的子载波间隔等于第一子载波间隔,所述N1等于第一数值;如果所述所述第一无线信号所占用的子载波的子载波间隔 等于第二子载波间隔,所述N1等于第二数值;所述第二子载波间隔是所述第一子载波间隔的G倍,所述第二数值除以所述第一数值等于所述G,所述G是大于1的正整数。
作为上述实施例的一个子实施例,所述第一子载波间隔是15kHz,所述第一数值等于1,所述第二子载波间隔是30kHz,所述第二数值等于2。
作为上述实施例的一个子实施例,所述第一子载波间隔是15kHz,所述第一数值等于1,所述第二子载波间隔是60kHz,所述第二数值等于4。
作为上述实施例的一个子实施例,所述第一子载波间隔是30kHz,所述第一数值等于2,所述第二子载波间隔是60kHz,所述第二数值等于4。
实施例12
实施例12示例了一个M个子集和N个时间单元的关系的示意图,如附图12所示。
在实施例12中,所述W个起始时刻包括所述N个时间单元中的N1个时间单元分别对应的起始时刻,所述N1与所述所述第一无线信号所占用的子载波的子载波间隔有关,所述N1是不大于所述N的正整数;所述W个起始时刻被划分为M个子集,所述W个起始时刻中的任一起始时刻都属于所述M个子集中的一个子集,所述M个子集中的任一子集包括所述W个起始时刻中的至少一个起始时刻,所述M是正整数;所述N1个时间单元分别对应的起始时刻分别属于所述M个子集中的N1个子集,所述N1不大于所述M;所述M等于所述N并且所述M个子集分别包括的起始时刻分别属于所述N个时间单元。
作为一个实施例,所述W个起始时刻中的任一起始时刻属于所述M个子集中的仅一个子集。
作为一个实施例,所述M个子集分别和所述N个时间单元一一对应,所述M个子集中任一子集中包括的所有起始时刻都属于所对应的所述N个时间单元中的一个时间单元。
作为一个实施例,15kHz是所述S个子载波间隔中的一个子载波间隔,所述N1等于1,OS#1(15kHz)属于所述N1个子集。
作为上述实施例的一个子实施例,所述M大于所述N1。
作为上述实施例的一个子实施例,所述M等于2。
作为一个实施例,30kHz是所述S个子载波间隔中的一个子载波间隔,所述N1等于2,OS#1(30kHz)和OS#2(30kHz)分别属于所述N1个子集。
作为上述实施例的一个子实施例,所述M大于所述N1。
作为上述实施例的一个子实施例,所述M等于3。
作为一个实施例,60kHz是所述S个子载波间隔中的一个子载波间隔,所述N1等于4;OS#1(60kHz),OS#2(60kHz),OS#3(60kHz)和OS#4(60kHz)分别属于所述N1个子集。
作为上述实施例的一个子实施例,所述M大于所述N1。
作为上述实施例的一个子实施例,所述M等于所述N1。
作为上述实施例的一个子实施例,所述M等于5。
作为一个实施例,15kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与15kHz对应的一个偏移集合包括16us,25us,34us,43us,52us,61us和OS#1(15kHz)。
作为上述实施例的一个子实施例,所述M等于2,所述M个子集分别包括{16us,25us,34us,43us,52us,61us}和{OS#1(15kHz)}。
作为一个实施例,30kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与30kHz对应的一个偏移集合包括16us,25us,OS#1(30kHz),OS#1(30kHz)+9us,OS#1(30kHz)+18us,OS#1(30kHz)+27us和OS#2(30kHz)。
作为上述实施例的一个子实施例,所述M等于3,所述M个子集分别包括{16us,25us},{OS#1(30kHz),OS#1(30kHz)+9us,OS#1(30kHz)+18us,OS#1(30kHz)+27us}和{OS#2(30kHz)}
作为一个实施例,60kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与60kHz对应的一个偏移集合包括16us,OS#1(60kHz),OS#1(60kHz)+9us,OS#2(60kHz),OS#2(60kHz)+9us,OS#3(60kHz),OS#3(60kHz)+9us和OS#4(60kHz)。
作为上述实施例的一个子实施例,所述M等于5,所述M个子集分别包括{16us},{OS#1(60kHz),OS#1(60kHz)+9us},{OS#2(60kHz),OS#2(60kHz)+9us},{OS#3(60kHz),OS#3(60kHz)+9us}和{OS#4(60kHz)}。
作为一个实施例,60kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与60kHz对应的一个偏移集合包括OS#1(60kHz),OS#1(60kHz)+9us,OS#2(60kHz),OS#2(60kHz)+9us,OS#3(60kHz),OS#3(60kHz)+9us和OS#4(60kHz)。
作为上述实施例的一个子实施例,所述M等于4,所述M个子集分别包括{OS#1(60kHz),OS#1(60kHz)+9us},{OS#2(60kHz),OS#2(60kHz)+9us},{OS#3(60kHz),OS#3(60kHz)+9us}和{OS#4(60kHz)}。
作为一个实施例,60kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与60kHz对应的一个偏移集合包括OS#1(60kHz),OS#2(60kHz),OS#3(60kHz)和OS#4(60kHz)。
作为上述实施例的一个子实施例,所述M等于4,所述M个子集分别包括{OS#1(60kHz)},{OS#2(60kHz)},{OS#3(60kHz)}和{OS#4(60kHz)}。
作为一个实施例,所述OS#1(15kHz)是子载波间隔为15kHz时一个多载波符号的持续时间。
作为一个实施例,所述OS#1(30kHz)是子载波间隔为30kHz时一个多载波符号的持续时间。
作为一个实施例,所述OS#2(30kHz)是子载波间隔为30kHz时两个连续的多载波符号的持续时间。
作为一个实施例,所述OS#1(60kHz)是子载波间隔为60kHz时一个多载波符号的持续时间。
作为一个实施例,所述OS#2(60kHz)是子载波间隔为60kHz时两个连续的多载波符号的持续时间。
作为一个实施例,所述OS#3(60kHz)是子载波间隔为60kHz时三个连续的多载波符号的持续时间。
作为一个实施例,所述OS#4(60kHz)是子载波间隔为60kHz时四个连续的多载波符号的持续时间。
作为一个实施例,所述OS#1(15kHz)等于1/(15kHz)。
作为一个实施例,所述OS#1(15kHz)约等于66.7us。
作为一个实施例,所述OS#1(30kHz)等于1/(30kHz)。
作为一个实施例,所述OS#1(30kHz)约等于33.3us。
作为一个实施例,所述OS#2(30kHz)等于2/(30kHz)。
作为一个实施例,所述OS#2(30kHz)约等于66.7us。
作为一个实施例,所述OS#1(60kHz)等于1/(60kHz)。
作为一个实施例,所述OS#1(60kHz)约等于16.7us。
作为一个实施例,所述OS#2(60kHz)等于2/(60kHz)。
作为一个实施例,所述OS#2(60kHz)约等于33.3us。
作为一个实施例,所述OS#3(60kHz)等于3/(60kHz)。
作为一个实施例,所述OS#3(60kHz)约等于50us。
作为一个实施例,所述OS#4(60kHz)等于4/(60kHz)。
作为一个实施例,所述OS#4(60kHz)约等于66.7us。
实施例13
实施例13示例了另一个M个子集和N个时间单元的关系的示意图,如附图13所示。
在实施例13中,所述W个起始时刻包括所述N个时间单元中的N1个时间单元分别对应的起始时刻,所述N1与所述所述第一无线信号所占用的子载波的子载波间隔有关,所述N1是不大于所述N的正整数;所述W个起始时刻被划分为M个子集,所述W个起始时刻中的任一起始时刻都属于所述M个子集中的一个子集,所述M个子集中的任一子集包括所述W个起始时刻中的至少一个起始时刻,所述M是正整数;所述N1个时间单元分别对应的起始时刻分别属于所述M个子集中的N1个子集,所述N1不大于所述M;存在两个起始时刻分别属于所述M个子集中的两个子集且属于所述N个时间单元中的同一个时间单元。
作为一个实施例,所述W个起始时刻中的任一起始时刻属于所述M个子集中的仅一个子集。
作为一个实施例,15kHz是所述S个子载波间隔中的一个子载波间隔,所述N1等于1,OS#1(15kHz)属于所述N1个子集。
作为一个实施例,30kHz是所述S个子载波间隔中的一个子载波间隔,所述N1等于2,OS#1(30kHz)和OS#2(30kHz)分别属于所述N1个子集。
作为一个实施例,60kHz是所述S个子载波间隔中的一个子载波间隔,所述N1等于4;OS#1(60kHz),OS#2(60kHz),OS#3(60kHz)和OS#4(60kHz)分别属于所述N1个子集。
作为一个实施例,所述M等于所述N1。
作为一个实施例,15kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与15kHz对应的一个偏移集合包括OS#1(15kHz),OS#1(15kHz)-9us,OS#1(15kHz)-18us,OS#1(15kHz)-27us,OS#1(15kHz)-36us,OS#1(15kHz)-45us,OS#1(15kHz)-54us和OS#1(15kHz)-63us。
作为上述实施例的一个子实施例,所述M等于1,所述M个子集包括OS#1(15kHz),OS#1(15kHz)-9us,OS#1(15kHz)-18us,OS#1(15kHz)-27us,OS#1(15kHz)-36us,OS#1(15kHz)-45us,OS#1(15kHz)-54us和OS#1(15kHz)-63us。
作为一个实施例,15kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与15kHz对应的一个偏移集合包括OS#1(15kHz),OS#1(15kHz)-9us,OS#1(15kHz)-18us,OS#1(15kHz)-27us,OS#1(15kHz)-36us,OS#1(15kHz)-45us和OS#1(15kHz)-54us。
作为上述实施例的一个子实施例,所述M等于1,所述M个子集包括OS#1(15kHz),OS#1(15kHz)-9us,OS#1(15kHz)-18us,OS#1(15kHz)-27us,OS#1(15kHz)-36us,OS#1(15kHz)-45us和OS#1(15kHz)-54us。
作为一个实施例,15kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与15kHz对应的一个偏移集合包括OS#1(15kHz),OS#1(15kHz)-9us,OS#1(15kHz)-18us,OS#1(15kHz)-27us,OS#1(15kHz)-36us和OS#1(15kHz)-45us。
作为上述实施例的一个子实施例,所述M等于1,所述M个子集包括OS#1(15kHz),OS#1(15kHz)-9us,OS#1(15kHz)-18us,OS#1(15kHz)-27us,OS#1(15kHz)-36us和OS#1(15kHz)-45us。
作为一个实施例,30kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与30kHz对应的一个偏移集合包括OS#1(30kHz),OS#1(30kHz)-9us,OS#1(30kHz)-18us,OS#1(30kHz)-27us,OS#2(30kHz),OS#2(30kHz)-9us,OS#2(30kHz)-18us,OS#2(30kHz)-27us,OS#2(30kHz)-36us,OS#2(30kHz)-45us,OS#2(30kHz)-54us和OS#2(30kHz)-63us。
作为上述实施例的一个子实施例,所述M等于2,所述M个子集分别包括{OS#1(30kHz),OS#1(30kHz)-9us,OS#1(30kHz)-18us,OS#1(30kHz)-27us}和{OS#2(30kHz), OS#2(30kHz)-9us,OS#2(30kHz)-18us,OS#2(30kHz)-27us,OS#2(30kHz)-36us,OS#2(30kHz)-45us,OS#2(30kHz)-54us,OS#2(30kHz)-63us}。
作为一个实施例,30kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与30kHz对应的一个偏移集合包括OS#1(30kHz),OS#1(30kHz)-9us,OS#1(30kHz)-18us,OS#2(30kHz),OS#2(30kHz)-9us,OS#2(30kHz)-18us,OS#2(30kHz)-27us,OS#2(30kHz)-36us,OS#2(30kHz)-45us和OS#2(30kHz)-54us。
作为上述实施例的一个子实施例,所述M等于2,所述M个子集分别包括{OS#1(30kHz),OS#1(30kHz)-9us,OS#1(30kHz)-18us}和{OS#2(30kHz),OS#2(30kHz)-9us,OS#2(30kHz)-18us,OS#2(30kHz)-27us,OS#2(30kHz)-36us,OS#2(30kHz)-45us,OS#2(30kHz)-54us}。
作为一个实施例,30kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与30kHz对应的一个偏移集合包括OS#1(30kHz),OS#1(30kHz)-9us,OS#2(30kHz),OS#2(30kHz)-9us,OS#2(30kHz)-18us,OS#2(30kHz)-27us,OS#2(30kHz)-36us和OS#2(30kHz)-45us。
作为上述实施例的一个子实施例,所述M等于2,所述M个子集分别包括{OS#1(30kHz),OS#1(30kHz)-9us}和{OS#2(30kHz),OS#2(30kHz)-9us,OS#2(30kHz)-18us,OS#2(30kHz)-27us,OS#2(30kHz)-36us,OS#2(30kHz)-45us}。
作为一个实施例,60kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与60kHz对应的一个偏移集合包括OS#1(60kHz),OS#1(60kHz)-9us,OS#2(60kHz),OS#2(60kHz)-9us,OS#2(60kHz)-18us,OS#2(60kHz)-27us,OS#3(60kHz),OS#3(60kHz)-9us,OS#3(60kHz)-18us,OS#3(60kHz)-27us,OS#3(60kHz)-36us,OS#3(60kHz)-45us,OS#4(60kHz),OS#4(60kHz)-9us,OS#4(60kHz)-18us,OS#4(60kHz)-27us,OS#4(60kHz)-36us,OS#4(60kHz)-45us,OS#4(60kHz)-54us,OS#4(60kHz)-63us。
作为上述实施例的一个子实施例,所述M等于4,所述M个子集分别包括{OS#1(60kHz)和OS#1(60kHz)-9us},{OS#2(60kHz),OS#2(60kHz)-9us,OS#2(60kHz)-18us,OS#2(60kHz)-27us},{OS#3(60kHz),OS#3(60kHz)-9us,OS#3(60kHz)-18us,OS#3(60kHz)-27us,OS#3(60kHz)-36us,OS#3(60kHz)-45us}和{OS#4(60kHz),OS#4(60kHz)-9us,OS#4(60kHz)-18us,OS#4(60kHz)-27us,OS#4(60kHz)-36us,OS#4(60kHz)-45us,OS#4(60kHz)-54us,OS#4(60kHz)-63us}。
作为一个实施例,60kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与60kHz对应的一个偏移集合包括OS#1(60kHz),OS#2(60kHz),OS#2(60kHz)-9us,OS#2(60kHz)-18us,OS#3(60kHz),OS#3(60kHz)-9us,OS#3(60kHz)-18us,OS#3(60kHz)-27us,OS#3(60kHz)-36us,OS#4(60kHz),OS#4(60kHz)-9us,OS#4(60kHz)-18us,OS#4(60kHz)-27us,OS#4(60kHz)-36us,OS#4(60kHz)-45us和OS#4(60kHz)-54us。
作为上述实施例的一个子实施例,所述M等于4,所述M个子集分别包括{OS#1(60kHz)},{OS#2(60kHz),OS#2(60kHz)-9us,OS#2(60kHz)-18us},{OS#3(60kHz),OS#3(60kHz)-9us,OS#3(60kHz)-18us,OS#3(60kHz)-27us,OS#3(60kHz)-36us}和{OS#4(60kHz),OS#4(60kHz)-9us,OS#4(60kHz)-18us,OS#4(60kHz)-27us,OS#4(60kHz)-36us,OS#4(60kHz)-45us,OS#4(60kHz)-54us}。
作为一个实施例,60kHz是所述S个子载波间隔中的一个子载波间隔,所述S个偏移集合中与60kHz对应的一个偏移集合包括OS#1(60kHz),OS#2(60kHz),OS#2(60kHz)-9us,OS#3(60kHz),OS#3(60kHz)-9us,OS#3(60kHz)-18us,OS#3(60kHz)-27us,OS#4(60kHz),OS#4(60kHz)-9us,OS#4(60kHz)-18us,OS#4(60kHz)-27us,OS#4(60kHz)-36us和OS#4(60kHz)-45us。
作为上述实施例的一个子实施例,所述M等于4,所述M个子集分别包括{OS#1(60kHz)},{OS#2(60kHz),OS#2(60kHz)-9us},{OS#3(60kHz),OS#3(60kHz)-9us,OS#3(60kHz)-18us,OS#3(60kHz)-27us}和{OS#4(60kHz),OS#4(60kHz)-9us,OS#4(60kHz)-18us,OS#4(60kHz)-27us,OS#4(60kHz)-36us,OS#4(60kHz)-45us}。
实施例14
实施例14示例了一个M个子集的示意图,如附图14所示。
在实施例14中,第一子集是所述M个子集中所包括的起始时刻的数量大于1的任意一个子集,所述第一子集中的任意两个起始时刻之间的时间偏差都等于第一时间偏差的正整数倍。
作为一个实施例,所述第一时间偏差是预定义的或者可配置的。
作为一个实施例,所述第一时间偏差是预定义的。
作为一个实施例,所述第一时间偏差是可配置的。
作为一个实施例,所述第一时间偏差是一个时隙时段(slot duration)的持续时间。
作为一个实施例,所述第一时间偏差是一次能量检测所对应的时间单元的持续时间。
作为一个实施例,所述第一时间偏差是所述第一接入检测中的一个时间子池的持续时间。
作为一个实施例,所述第一时间偏差是一个给定接入检测中的一个时间子池的持续时间。
作为一个实施例,所述第一时间偏差等于9us。
作为一个实施例,所述第一子集中的任意两个在时域上相邻的起始时刻之间的时间偏差都等于所述第一时间偏差。
实施例15
实施例15示例了一个第二信息与所述第一无线信号所占用的子载波的子载波间隔的关系的示意图,如附图15所示。
在实施例15中,所述第二信息包括的比特数量与所述所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,所述N与所述所述第一无线信号所占用的子载波的子载波间隔有关,所述第二信息被用于从所述N个时间单元中指示所述第一无线信号的起始发送时刻所属的一个时间单元。
作为一个实施例,所述N与所述所述第一无线信号所占用的子载波的子载波间隔有关,所述第二信息包括的比特数量与所述N有关。
作为上述实施例的一个子实施例,所述第二信息包括的比特数量等于所述N。
作为上述实施例的一个子实施例,所述第二信息包括的比特数量等于
Figure PCTCN2019122700-appb-000001
作为一个实施例,如果所述所述第一无线信号所占用的子载波的子载波间隔等于第一子载波间隔,所述N等于第一参考数值,所述第二信息包括的比特数量等于第一比特数量;如果所述所述第一无线信号所占用的子载波的子载波间隔等于第二子载波间隔,所述N等于第二参考数值,所述第二信息包括的比特数量等于第二比特数量;所述第二子载波间隔大于所述第一子载波间隔,所述第二参考数值大于所述第一参考数值,所述第二比特数量大于所述第一比特数量。
作为上述实施例的一个子实施例,所述第一子载波间隔是15kHz,所述第一参考数值等于2,所述第一比特数量等于2;所述第二子载波间隔是30kHz,所述第二参考数值等于3,所述第二比特数量等于3。
作为上述实施例的一个子实施例,所述第一子载波间隔是15kHz,所述第一参考数值等于2,所述第一比特数量等于1;所述第二子载波间隔是30kHz,所述第二参考数值等于3,所述第二比特数量等于2。
作为上述实施例的一个子实施例,所述第一子载波间隔是15kHz,所述第一参考数值等于2,所述第一比特数量等于2;所述第二子载波间隔是60kHz,所述第二参考数值等于5, 所述第二比特数量等于5。
作为上述实施例的一个子实施例,所述第一子载波间隔是15kHz,所述第一参考数值等于2,所述第一比特数量等于1;所述第二子载波间隔是60kHz,所述第二参考数值等于5,所述第二比特数量等于3。
作为上述实施例的一个子实施例,所述第一子载波间隔是30kHz,所述第一参考数值等于3,所述第一比特数量等于3;所述第二子载波间隔是60kHz,所述第二参考数值等于5,所述第二比特数量等于5。
作为上述实施例的一个子实施例,所述第一子载波间隔是30kHz,所述第一参考数值等于3,所述第一比特数量等于2;所述第二子载波间隔是60kHz,所述第二参考数值等于5,所述第二比特数量等于3。
实施例16
实施例16示例了一个在给定子频带上被执行的给定接入检测被用于确定是否在所述给定子频带的给定时刻开始发送给定无线信号的示意图,如附图16所示。
在实施例16中,所述给定接入检测包括在所述给定子频带上的X个时间子池中分别执行X次能量检测,得到X个检测值,所述X是正整数;所述X个时间子池的结束时刻不晚于所述给定时刻。所述给定接入检测对应本申请中的所述第一接入检测,所述给定时刻对应本申请中的所述第一无线信号的起始发送时刻,所述给定子频带对应本申请中的所述第一子频带,所述X对应本申请中的所述Q。所述给定接入检测的过程可以由附图16中的流程图来描述。
在附图16中,本申请中的所述基站设备在步骤S1001中处于闲置状态,在步骤S1002中判断是否需要发送;在步骤1003中在一个延迟时段(defer duration)内执行能量检测;在步骤S1004中判断这个延迟时段内的所有时隙时段是否都空闲,如果是,进行到步骤S1005中设置第一计数器等于X1,所述X1是不大于所述X的整数;否则返回步骤S1004;在步骤S1006中判断所述第一计数器是否为0,如果是,进行到步骤S1007中在所述给定子频带的所述给定时刻开始发送所述给定无线信号;否则进行到步骤S1008中在一个附加时隙时段(additional slot duration)内执行能量检测;在步骤S1009中判断这个附加时隙时段是否空闲,如果是,进行到步骤S1010中把所述第一计数器减1,然后返回步骤1006;否则进行到步骤S1011中在一个附加延迟时段(additional defer duration)内执行能量检测;在步骤S1012中判断这个附加延迟时段内的所有时隙时段是否都空闲,如果是,进行到步骤S1010;否则返回步骤S1011。
在实施例16中,在所述给定时刻之前附图16中的所述第一计数器清零,所述给定接入检测的结果为信道空闲,可以在所述给定时刻发送无线信号;否则不能在所述给定时刻发送无线信号。所述第一计数器清零的条件是所述X个时间子池中的X1个时间子池对应的所述X个检测值中的X1个检测值均低于第一参考阈值,所述X1个时间子池的起始时间在附图16中的步骤S1005之后。所述X1对应本申请中的所述Q1。
作为一个实施例,所述给定接入检测的结束时刻不晚于所述给定时刻。
作为一个实施例,所述给定接入检测的结束时刻早于所述给定时刻。
作为一个实施例,所述X个时间子池包括附图16中的所有延时时段。
作为一个实施例,所述X个时间子池包括附图16中的部分延时时段。
作为一个实施例,所述X个时间子池包括附图16中的所有延时时段和所有附加时隙时段。
作为一个实施例,所述X个时间子池包括附图16中的所有延时时段和部分附加时隙时段。
作为一个实施例,所述X个时间子池包括附图16中的所有延时时段、所有附加时隙时段和所有附加延时时段。
作为一个实施例,所述X个时间子池包括附图16中的所有延时时段、部分附加时隙时段和所有附加延时时段。
作为一个实施例,所述X个时间子池包括附图16中的所有延时时段、部分附加时隙时段 和部分附加延时时段。
作为一个实施例,所述X个时间子池中的任一时间子池的持续时间是{16微秒、9微秒}中之一。
作为一个实施例,给定时间时段内的任意一个时隙时段(slot duration)是所述X个时间子池中的一个时间子池;所述给定时间时段是附图16中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,在给定时间时段内执行能量检测是指:在所述给定时间时段内的所有时隙时段(slot duration)内执行能量检测;所述给定时间时段是附图16中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,在给定时间时段通过能量检测被判断为空闲是指:所述给定时段中包括的所有时隙时段通过能量检测都被判断为空闲;所述给定时间时段是附图16中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,给定时隙时段通过能量检测都被判断为空闲是指:所述基站设备在给定时间单元中在所述给定子频带上感知(Sense)所有无线信号的功率,并在时间上平均,所获得的接收功率低于所述第一参考阈值;所述给定时间单元是所述给定时隙时段中的一个持续时间段。
作为上述实施例的一个子实施例,所述给定时间单元的持续时间不短于4微秒。
作为一个实施例,给定时隙时段通过能量检测都被判断为空闲是指:所述基站设备在给定时间单元中在所述给定子频带上感知(Sense)所有无线信号的能量,并在时间上平均,所获得的接收能量低于所述第一参考阈值;所述给定时间单元是所述给定时隙时段中的一个持续时间段。
作为上述实施例的一个子实施例,所述给定时间单元的持续时间不短于4微秒。
作为一个实施例,在给定时间时段内执行能量检测是指:在所述给定时间时段内的所有时间子池内执行能量检测;所述给定时间时段是附图16中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段,所述所有时间子池属于所述X个时间子池。
作为一个实施例,在给定时间时段通过能量检测被判断为空闲是指:所述给定时段中包括的所有时间子池通过能量检测得到的检测值都低于所述第一参考阈值;所述给定时间时段是附图16中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段,所述所有时间子池属于所述X个时间子池,所述检测值属于所述X个检测值。
作为一个实施例,一个延时时段(defer duration)的持续时间是16微秒再加上Y1个9微秒,所述Y1是正整数。
作为上述实施例的一个子实施例,一个延时时段包括所述X个时间子池中的Y1+1个时间子池。
作为上述子实施例的一个参考实施例,所述Y1+1个时间子池中的第一个时间子池的持续时间是16微秒,其他Y1个时间子池的持续时间均是9微秒。
作为上述实施例的一个子实施例,所述给定优先等级被用于确定所述Y1。
作为上述子实施例的一个参考实施例,所述给定优先等级是信道接入优先等级(Channel Access Priority Class),所述信道接入优先等级的定义参见3GPP TS36.213中的15章节。
作为上述实施例的一个子实施例,所述Y1属于{1,2,3,7}。
作为一个实施例,一个延时时段(defer duration)包括多个时隙时段(slot duration)。
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间是不连续的。
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间的时间间隔是7毫秒。
作为一个实施例,一个附加延时时段(additional defer duration)的持续时间是16微秒再加上Y2个9微秒,所述Y2是正整数。
作为上述实施例的一个子实施例,一个附加延时时段包括所述X个时间子池中的Y2+1个时间子池。
作为上述子实施例的一个参考实施例,所述Y2+1个时间子池中的第一个时间子池的持续时间是16微秒,其他Y2个时间子池的持续时间均是9微秒。
作为上述实施例的一个子实施例,所述给定优先等级被用于确定所述Y2。
作为上述实施例的一个子实施例,所述Y2属于{1,2,3,7}。
作为一个实施例,一个延时时段的持续时间等于一个附加延时时段的持续时间。
作为一个实施例,所述Y1等于所述Y2。
作为一个实施例,一个附加延时时段(additional defer duration)包括多个时隙时段(slot duration)。
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间是不连续的。
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间的时间间隔是7毫秒。
作为一个实施例,一个时隙时段(slot duration)的持续时间是9微秒。
作为一个实施例,一个时隙时段是所述X个时间子池中的1个时间子池。
作为一个实施例,一个附加时隙时段(additional slot duration)的持续时间是9微秒。
作为一个实施例,一个附加时隙时段包括所述X个时间子池中的1个时间子池。
作为一个实施例,所述X次能量检测被用于确定所述给定子频带是否闲置(Idle)。
作为一个实施例,所述X次能量检测被用于确定所述给定子频带是否能被所述基站设备用于传输无线信号。
作为一个实施例,所述X个检测值单位都是dBm(毫分贝)。
作为一个实施例,所述X个检测值的单位都是毫瓦(mW)。
作为一个实施例,所述X个检测值的单位都是焦耳。
作为一个实施例,所述X1小于所述X。
作为一个实施例,所述X大于1。
作为一个实施例,所述第一参考阈值的单位是dBm(毫分贝)。
作为一个实施例,所述第一参考阈值的单位是毫瓦(mW)。
作为一个实施例,所述第一参考阈值的单位是焦耳。
作为一个实施例,所述第一参考阈值等于或小于-72dBm。
作为一个实施例,所述第一参考阈值是等于或小于第一给定值的任意值。
作为上述实施例的一个子实施例,所述第一给定值是预定义的。
作为上述实施例的一个子实施例,所述第一给定值是由高层信令配置的。
作为一个实施例,所述第一参考阈值是由所述基站设备在等于或小于第一给定值的条件下自由选择的。
作为上述实施例的一个子实施例,所述第一给定值是预定义的。
作为上述实施例的一个子实施例,所述第一给定值是由高层信令配置的。
作为一个实施例,所述X次能量检测是Cat 4的LBT(Listen Before Talk,先听后发)过程中的能量检测,所述X1是所述Cat 4的LBT过程中的CWp,所述CWp是竞争窗口(contention window)的大小,所述CWp的具体定义参见3GPP TS36.213中的15章节。
作为一个实施例,所述X个检测值中不属于所述X1个检测值的检测值中至少有一个检测值低于所述第一参考阈值。
作为一个实施例,所述X个检测值中不属于所述X1个检测值的检测值中至少有一个检测值不低于所述第一参考阈值。
作为一个实施例,所述X1个时间子池中的任意两个时间子池的持续时间都相等。
作为一个实施例,所述X1个时间子池中至少存在两个时间子池的持续时间不相等。
作为一个实施例,所述X1个时间子池中包括所述X个时间子池中的最晚的时间子池。
作为一个实施例,所述X1个时间子池只包括了eCCA中的时隙时段。
作为一个实施例,所述X个时间子池包括所述X1个时间子池和X2个时间子池,所述X2个时间子池中的任一时间子池不属于所述X1个时间子池;所述X2是不大于所述X减所述X1的正整数。
作为上述实施例的一个子实施例,所述X2个时间子池包括了初始CCA中的时隙时段。
作为上述实施例的一个子实施例,所述X2个时间子池在所述X个时间子池中的位置是连续的。
作为上述实施例的一个子实施例,所述X2个时间子池中至少有一个时间子池对应的检测值低于所述第一参考阈值。
作为上述实施例的一个子实施例,所述X2个时间子池中至少有一个时间子池对应的检测值不低于所述第一参考阈值。
作为上述实施例的一个子实施例,所述X2个时间子池包括所有延时时段内的所有时隙时段。
作为上述实施例的一个子实施例,所述X2个时间子池包括至少一个附加延时时段内的所有时隙时段。
作为上述实施例的一个子实施例,所述X2个时间子池包括至少一个附加时隙时段。
作为上述实施例的一个子实施例,所述X2个时间子池包括附图16中通过能量检测被判断为非空闲的所有附加时隙时段和所有附加延时时段内的所有时隙时段。
作为一个实施例,所述X1个时间子池分别属于X1个子池集合,所述X1个子池集合中的任一子池集合包括所述X个时间子池中的正整数个时间子池;所述X1个子池集合中的任一时间子池对应的检测值低于所述第一参考阈值。
作为上述实施例的一个子实施例,所述X1个子池集合中至少存在一个子池集合包括的时间子池的数量等于1。
作为上述实施例的一个子实施例,所述X1个子池集合中至少存在一个子池集合包括的时间子池的数量大于1。
作为上述实施例的一个子实施例,所述X1个子池集合中至少存在两个子池集合包括的时间子池的数量是不相等的。
作为上述实施例的一个子实施例,所述X个时间子池中不存在一个时间子池同时属于所述X1个子池集合中的两个子池集合。
作为上述实施例的一个子实施例,所述X1个子池集合中任意一个子池集合中的所有时间子池属于同一个通过能量检测被判断为空闲的附加延时时段或附加时隙时段。
作为上述实施例的一个子实施例,所述X个时间子池中不属于所述X1个子池集合的时间子池中至少存在一个时间子池对应的检测值低于所述第一参考阈值。
作为上述实施例的一个子实施例,所述X个时间子池中不属于所述X1个子池集合的时间子池中至少存在一个时间子池对应的检测值不低于所述第一参考阈值。
实施例17
实施例17示例了另一个在给定子频带上被执行的给定接入检测被用于确定是否在所述给定子频带的给定时刻开始发送给定无线信号的示意图,如附图17所示。
在实施例17中,所述给定接入检测包括在所述给定子频带上的Y个时间子池中分别执行Y次能量检测,得到Y个检测值,所述Y是正整数;所述Y个时间子池的结束时刻不晚于所述给定时刻。所述给定接入检测对应本申请中的所述第一接入检测,所述给定时刻对应本申请中的所述第一无线信号的起始发送时刻,所述给定子频带对应本申请中的所述第一子频带,所述Y对应本申请中的所述Q。所述给定接入检测的过程可以由附图17中的流程图来描述。
在实施例17中,本申请中的所述用户设备在步骤S2201中处于闲置状态,在步骤S2202中判断是否需要发送;在步骤2203中在一个感知时间(Sensing interval)内执行能量检测; 在步骤S2204中判断这个感知时间内的所有时隙时段是否都空闲(Idle),如果是,进行到步骤S2205中在所述第一子频带上发送无线信号;否则返回步骤S2203。
在实施例17中,第一给定时段包括所述Y个时间子池中的正整数个时间子池,所述第一给定时段是附图17中包括的{所有感知时间}中的任意一个时段。第二给定时段包括所述Y1个时间子池中的1个时间子池,所述第二给定时段是附图17中通过能量检测被判断为空闲(Idle)的感知时间。所述Y1对应本申请中的所述Q1。
作为一个实施例,所述感知时间的具体定义参见3GPP TS36.213中的15.2章节。
作为一个实施例,所述Y1等于2。
作为一个实施例,所述Y1等于所述Y。
作为一个实施例,一个感知时间(Sensing interval)的持续时间是25微秒。
作为一个实施例,一个感知时间包括2个时隙时段,所述2个时隙时段在时域是不连续的。
作为上述实施例的一个子实施例,所述2个时隙时段中的时间间隔是7微秒。
作为一个实施例,所述Y个时间子池包括Category 2 LBT中的监听时间。
作为一个实施例,所述Y个时间子池包括Type 2 UL channel access procedure(第二类上行信道接入过程)中的感知时间间隔(sensing interval)中的时隙,所述感知时间间隔的具体定义参见3GPP TS36.213中的15.2章节。
作为上述实施例的一个子实施例,所述感知时间间隔的持续时间是25微秒。
作为一个实施例,所述Y个时间子池包括Type 2 UL channel access procedure(第二类上行信道接入过程)中的感知时间间隔(sensing interval)中的Tf和Tsl,所述Tf和所述Tsl的具体定义参见3GPP TS36.213中的15.2章节。
作为上述实施例的一个子实施例,所述Tf的持续时间是16微秒。
作为上述实施例的一个子实施例,所述Tsl的持续时间是9微秒。
作为一个实施例,所述Y1个时间子池中的第一个时间子池的持续时间是16微秒,所述Y1个时间子池中的第二个时间子池的持续时间是9微秒,所述Y1等于2。
作为一个实施例,所述Y1个时间子池的持续时间都是9微秒;所述Y1个时间子池中的第一个时间子池和第二个时间子池之间的时间间隔是7微秒,所述Y1等于2。
实施例18
实施例18示例了一个UE中的处理装置的结构框图,如附图18所示。附图18中,UE处理装置1200包括第一接收机1201和第一发射机1202。
作为一个实施例,所述第一接收机1201包括实施例4中的接收器456、接收处理器452和控制器/处理器490。
作为一个实施例,所述第一接收机1201包括实施例4中的接收器456、接收处理器452和控制器/处理器490中的至少前二者。
作为一个实施例,所述第一发射机1202包括实施例4中的发射器456、发射处理器455和控制器/处理器490。
作为一个实施例,所述第一发射机1202包括实施例4中的发射器456、发射处理器455和控制器/处理器490中的至少前二者。
-第一接收机1201:接收第一信息;
-第一发射机1202:在第一子频带上的第一时间窗中发送第一无线信号;
在实施例18中,所述第一信息被用于确定所述第一时间窗;所述第一无线信号的起始发送时刻相对于参考时刻的时间偏移属于目标偏移集合,所述目标偏移集合包括W个偏移值,所述W是正整数;W个起始时刻分别相对于所述参考时刻的时间偏移分别等于所述W个偏移值;所述W个起始时刻中的任一起始时刻属于N个时间单元中的一个时间单元,所述N个时间单元中的任一时间单元包括所述W个起始时刻中的至少一个起始时刻,所述N个时间单元中任意两个时间单元都是正交的,所述N个时间单元都属于所述第一时间窗,所述N个时间 单元中的每个时间单元的持续时间和所述第一无线信号所占用的子载波的子载波间隔有关;所述N和所述目标偏移集合中的至少之一和所述所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,S个子载波间隔分别和S个偏移集合一一对应,所述S个子载波间隔中的任意两个子载波间隔都不相同,所述所述第一无线信号所占用的子载波的子载波间隔是所述S个子载波间隔中的一个子载波间隔,所述目标偏移集合是所述S个偏移集合中与所述所述第一无线信号所占用的子载波的子载波间隔相对应的一个偏移集合,所述S是大于1的正整数。
作为一个实施例,所述W个起始时刻包括所述N个时间单元中的N1个时间单元分别对应的起始时刻,所述N1与所述所述第一无线信号所占用的子载波的子载波间隔有关,所述N1是不大于所述N的正整数。
作为一个实施例,所述W个起始时刻被划分为M个子集,所述W个起始时刻中的任一起始时刻都属于所述M个子集中的一个子集,所述M个子集中的任一子集包括所述W个起始时刻中的至少一个起始时刻,所述M是正整数;所述N1个时间单元分别对应的起始时刻分别属于所述M个子集中的N1个子集,所述N1不大于所述M;所述M等于所述N并且所述M个子集分别包括的起始时刻分别属于所述N个时间单元,或者,存在两个起始时刻分别属于所述M个子集中的两个子集且属于所述N个时间单元中的同一个时间单元。
作为一个实施例,第一子集是所述M个子集中所包括的起始时刻的数量大于1的任意一个子集,所述第一子集中的任意两个起始时刻之间的时间偏差都等于第一时间偏差的正整数倍。
作为一个实施例,所述第一发射机1202还发送第二信息;其中,所述第二信息被用于指示所述所述第一无线信号的起始发送时刻所属的所述N个时间单元中的一个时间单元。
作为一个实施例,所述第二信息包括的比特数量与所述所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,所述第一接收机1201还在所述第一子频带上执行第一接入检测;其中,所述第一接入检测被用于确定在所述第一子频带上的所述第一时间窗中发送所述第一无线信号。
实施例19
实施例19示例了一个基站设备中的处理装置的结构框图,如附图19所示。附图19中,基站设备中的处理装置1300包括第二发射机1301和第二接收机1302组成。
作为一个实施例,所述第二发射机1301包括实施例4中的发射器416、发射处理器415和控制器/处理器440。
作为一个实施例,所述第二发射机1301包括实施例4中的发射器416、发射处理器415和控制器/处理器440中的至少前二者。
作为一个实施例,所述第二接收机1302包括实施例4中的接收器416、接收处理器412和控制器/处理器440。
作为一个实施例,所述第二接收机1302包括实施例4中的接收器416、接收处理器412和控制器/处理器440中的至少前二者。
-第二发射机1301,发送第一信息;
-第二接收机1302,在第一子频带上的第一时间窗中接收第一无线信号;
在实施例19中,所述第一信息被用于确定所述第一时间窗;所述第一无线信号的起始发送时刻相对于参考时刻的时间偏移属于目标偏移集合,所述目标偏移集合包括W个偏移值,所述W是正整数;W个起始时刻分别相对于所述参考时刻的时间偏移分别等于所述W个偏移值;所述W个起始时刻中的任一起始时刻属于N个时间单元中的一个时间单元,所述N个时间单元中的任一时间单元包括所述W个起始时刻中的至少一个起始时 刻,所述N个时间单元中任意两个时间单元都是正交的,所述N个时间单元都属于所述第一时间窗,所述N个时间单元中的每个时间单元的持续时间和所述第一无线信号所占用的子载波的子载波间隔有关;所述N和所述目标偏移集合中的至少之一和所述所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,S个子载波间隔分别和S个偏移集合一一对应,所述S个子载波间隔中的任意两个子载波间隔都不相同,所述所述第一无线信号所占用的子载波的子载波间隔是所述S个子载波间隔中的一个子载波间隔,所述目标偏移集合是所述S个偏移集合中与所述所述第一无线信号所占用的子载波的子载波间隔相对应的一个偏移集合,所述S是大于1的正整数。
作为一个实施例,所述W个起始时刻包括所述N个时间单元中的N1个时间单元分别对应的起始时刻,所述N1与所述所述第一无线信号所占用的子载波的子载波间隔有关,所述N1是不大于所述N的正整数。
作为一个实施例,所述W个起始时刻被划分为M个子集,所述W个起始时刻中的任一起始时刻都属于所述M个子集中的一个子集,所述M个子集中的任一子集包括所述W个起始时刻中的至少一个起始时刻,所述M是正整数;所述N1个时间单元分别对应的起始时刻分别属于所述M个子集中的N1个子集,所述N1不大于所述M;所述M等于所述N并且所述M个子集分别包括的起始时刻分别属于所述N个时间单元,或者,存在两个起始时刻分别属于所述M个子集中的两个子集且属于所述N个时间单元中的同一个时间单元。
作为一个实施例,第一子集是所述M个子集中所包括的起始时刻的数量大于1的任意一个子集,所述第一子集中的任意两个起始时刻之间的时间偏差都等于第一时间偏差的正整数倍。
作为一个实施例,所述第二接收机1302还接收第二信息;其中,所述第二信息被用于指示所述所述第一无线信号的起始发送时刻所属的所述N个时间单元中的一个时间单元。
作为一个实施例,所述第二信息包括的比特数量与所述所述第一无线信号所占用的子载波的子载波间隔有关。
作为一个实施例,所述第二接收机1302还在所述第一子频带上的所述第一时间窗中监测所述第一无线信号是否被发送;其中,所述第一信息的接收者在所述第一子频带上执行第一接入检测以确定在所述第一子频带上的所述第一时间窗中发送所述第一无线信号。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种用于无线通信的用户设备,其特征在于,包括:
    第一接收机,接收第一信息;
    第一发射机,在第一子频带上的第一时间窗中发送第一无线信号;
    其中,所述第一信息被用于确定所述第一时间窗;所述第一无线信号的起始发送时刻相对于参考时刻的时间偏移属于目标偏移集合,所述目标偏移集合包括W个偏移值,所述W是正整数;W个起始时刻分别相对于所述参考时刻的时间偏移分别等于所述W个偏移值;所述W个起始时刻中的任一起始时刻属于N个时间单元中的一个时间单元,所述N个时间单元中的任一时间单元包括所述W个起始时刻中的至少一个起始时刻,所述N个时间单元中任意两个时间单元都是正交的,所述N个时间单元都属于所述第一时间窗,所述N个时间单元中的每个时间单元的持续时间和所述第一无线信号所占用的子载波的子载波间隔有关;所述N和所述目标偏移集合中的至少之一和所述所述第一无线信号所占用的子载波的子载波间隔有关。
  2. 根据权利要求1所述的用户设备,其特征在于,S个子载波间隔分别和S个偏移集合一一对应,所述S个子载波间隔中的任意两个子载波间隔都不相同,所述所述第一无线信号所占用的子载波的子载波间隔是所述S个子载波间隔中的一个子载波间隔,所述目标偏移集合是所述S个偏移集合中与所述所述第一无线信号所占用的子载波的子载波间隔相对应的一个偏移集合,所述S是大于1的正整数。
  3. 根据权利要求1所述的用户设备,其特征在于,所述W个起始时刻包括所述N个时间单元中的N1个时间单元分别对应的起始时刻,所述N1与所述所述第一无线信号所占用的子载波的子载波间隔有关,所述N1是不大于所述N的正整数。
  4. 根据权利要求1所述的用户设备,其特征在于,所述第一发射机还发送第二信息;其中,所述第二信息被用于指示所述所述第一无线信号的起始发送时刻所属的所述N个时间单元中的一个时间单元。
  5. 根据权利要求1所述的用户设备,其特征在于,所述第一接收机还在所述第一子频带上执行第一接入检测;其中,所述第一接入检测被用于确定在所述第一子频带上的所述第一时间窗中发送所述第一无线信号。
  6. 一种用于无线通信的基站设备,其特征在于,包括:
    第二发射机,发送第一信息;
    第二接收机,在第一子频带上的第一时间窗中接收第一无线信号;
    其中,所述第一信息被用于确定所述第一时间窗;所述第一无线信号的起始发送时刻相对于参考时刻的时间偏移属于目标偏移集合,所述目标偏移集合包括W个偏移值,所述W是正整数;W个起始时刻分别相对于所述参考时刻的时间偏移分别等于所述W个偏移值;所述W个起始时刻中的任一起始时刻属于N个时间单元中的一个时间单元,所述N个时间单元中的任一时间单元包括所述W个起始时刻中的至少一个起始时刻,所述N个时间单元中任意两个时间单元都是正交的,所述N个时间单元都属于所述第一时间窗,所述N个时间单元中的每个时间单元的持续时间和所述第一无线信号所占用的子载波的子载波间隔有关;所述N和所述目标偏移集合中的至少之一和所述所述第一无线信号所占用的子载波的子载波间隔有关。
  7. 根据权利要求6所述的基站设备,其特征在于,S个子载波间隔分别和S个偏移集合一一对应,所述S个子载波间隔中的任意两个子载波间隔都不相同,所述所述第一无线信号所占用的子载波的子载波间隔是所述S个子载波间隔中的一个子载波间隔,所述目标偏移集合是所述S个偏移集合中与所述所述第一无线信号所占用的子载波的子载波间隔相对应的一个偏移集合,所述S是大于1的正整数;
  8. 根据权利要求6所述的基站设备,其特征在于,所述W个起始时刻包括所述N个时间单元中的N1个时间单元分别对应的起始时刻,所述N1与所述所述第一无线信号所占用的子载波的子载波间隔有关,所述N1是不大于所述N的正整数。
  9. 根据权利要求6所述的基站设备,其特征在于,所述第二接收机还接收第二信息; 其中,所述第二信息被用于指示所述所述第一无线信号的起始发送时刻所属的所述N个时间单元中的一个时间单元。
  10. 根据权利要求6所述的基站设备,其特征在于,所述第二接收机还在所述第一子频带上的所述第一时间窗中监测所述第一无线信号是否被发送;其中,所述第一信息的接收者在所述第一子频带上执行第一接入检测以确定在所述第一子频带上的所述第一时间窗中发送所述第一无线信号。
  11. 一种用于无线通信的用户设备中的方法,其特征在于,包括:
    接收第一信息;
    在第一子频带上的第一时间窗中发送第一无线信号;
    其中,所述第一信息被用于确定所述第一时间窗;所述第一无线信号的起始发送时刻相对于参考时刻的时间偏移属于目标偏移集合,所述目标偏移集合包括W个偏移值,所述W是正整数;W个起始时刻分别相对于所述参考时刻的时间偏移分别等于所述W个偏移值;所述W个起始时刻中的任一起始时刻属于N个时间单元中的一个时间单元,所述N个时间单元中的任一时间单元包括所述W个起始时刻中的至少一个起始时刻,所述N个时间单元中任意两个时间单元都是正交的,所述N个时间单元都属于所述第一时间窗,所述N个时间单元中的每个时间单元的持续时间和所述第一无线信号所占用的子载波的子载波间隔有关;所述N和所述目标偏移集合中的至少之一和所述所述第一无线信号所占用的子载波的子载波间隔有关。
  12. 根据权利要求11所述的方法,其特征在于,S个子载波间隔分别和S个偏移集合一一对应,所述S个子载波间隔中的任意两个子载波间隔都不相同,所述所述第一无线信号所占用的子载波的子载波间隔是所述S个子载波间隔中的一个子载波间隔,所述目标偏移集合是所述S个偏移集合中与所述所述第一无线信号所占用的子载波的子载波间隔相对应的一个偏移集合,所述S是大于1的正整数;
  13. 根据权利要求11所述的方法,其特征在于,所述W个起始时刻包括所述N个时间单元中的N1个时间单元分别对应的起始时刻,所述N1与所述所述第一无线信号所占用的子载波的子载波间隔有关,所述N1是不大于所述N的正整数。
  14. 根据权利要求11所述的方法,其特征在于,包括:
    发送第二信息;
    其中,所述第二信息被用于指示所述所述第一无线信号的起始发送时刻所属的所述N个时间单元中的一个时间单元;
  15. 根据权利要求11所述的方法,其特征在于,包括:
    在所述第一子频带上执行第一接入检测;
    其中,所述第一接入检测被用于确定在所述第一子频带上的所述第一时间窗中发送所述第一无线信号。
  16. 一种用于无线通信的基站设备中的方法,其特征在于,包括:
    发送第一信息;
    在第一子频带上的第一时间窗中接收第一无线信号;
    其中,所述第一信息被用于确定所述第一时间窗;所述第一无线信号的起始发送时刻相对于参考时刻的时间偏移属于目标偏移集合,所述目标偏移集合包括W个偏移值,所述W是正整数;W个起始时刻分别相对于所述参考时刻的时间偏移分别等于所述W个偏移值;所述W个起始时刻中的任一起始时刻属于N个时间单元中的一个时间单元,所述N个时间单元中的任一时间单元包括所述W个起始时刻中的至少一个起始时刻,所述N个时间单元中任意两个时间单元都是正交的,所述N个时间单元都属于所述第一时间窗,所述N个时间单元中的每个时间单元的持续时间和所述第一无线信号所占用的子载波的子载波间隔有关;所述N和所述目标偏移集合中的至少之一和所述所述第一无线信号所占用的子载波的子载波间隔有关。
  17. 根据权利要求16所述的方法,其特征在于,S个子载波间隔分别和S个偏移集合一一对应,所述S个子载波间隔中的任意两个子载波间隔都不相同,所述所述第一无线信号所占用的子载波的子载波间隔是所述S个子载波间隔中的一个子载波间隔,所述目标偏移集合是所述S个偏移集合中与所述所述第一无线信号所占用的子载波的子载波间隔相对应的一个偏移集合,所述S是大于1的正整数;
  18. 根据权利要求16所述的方法,其特征在于,所述W个起始时刻包括所述N个时间单元中的N1个时间单元分别对应的起始时刻,所述N1与所述所述第一无线信号所占用的子载波的子载波间隔有关,所述N1是不大于所述N的正整数。
  19. 根据权利要求16所述的方法,其特征在于,包括:
    接收第二信息;
    其中,所述第二信息被用于指示所述所述第一无线信号的起始发送时刻所属的所述N个时间单元中的一个时间单元。
  20. 根据权利要求16所述的方法,其特征在于,包括:
    在所述第一子频带上的所述第一时间窗中监测所述第一无线信号是否被发送;
    其中,所述第一信息的接收者在所述第一子频带上执行第一接入检测以确定在所述第一子频带上的所述第一时间窗中发送所述第一无线信号。
PCT/CN2019/122700 2018-12-24 2019-12-03 一种被用于无线通信的用户设备、基站中的方法和装置 WO2020134908A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/016,359 US11582759B2 (en) 2018-12-24 2020-09-09 Method and device in UE and base station for identifying start time of transmission using subcarrier spacing information used for wireless communication
US18/083,524 US20230129797A1 (en) 2018-12-24 2022-12-18 Method and device in ue and base station used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811578513.5A CN111355565B (zh) 2018-12-24 2018-12-24 一种被用于无线通信的用户设备、基站中的方法和装置
CN201811578513.5 2018-12-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/016,359 Continuation US11582759B2 (en) 2018-12-24 2020-09-09 Method and device in UE and base station for identifying start time of transmission using subcarrier spacing information used for wireless communication

Publications (1)

Publication Number Publication Date
WO2020134908A1 true WO2020134908A1 (zh) 2020-07-02

Family

ID=71127550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122700 WO2020134908A1 (zh) 2018-12-24 2019-12-03 一种被用于无线通信的用户设备、基站中的方法和装置

Country Status (3)

Country Link
US (2) US11582759B2 (zh)
CN (3) CN113517968A (zh)
WO (1) WO2020134908A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113938170B (zh) * 2020-07-13 2024-04-19 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US11962529B2 (en) * 2020-07-06 2024-04-16 Shanghai Langbo Communication Technology Company Limited Method and device for wireless communication in UE and base station
CN116073963A (zh) * 2021-08-27 2023-05-05 上海推络通信科技合伙企业(有限合伙) 一种被用于无线通信的节点中的方法和装置
WO2023133902A1 (zh) * 2022-01-17 2023-07-20 Oppo广东移动通信有限公司 一种无线通信方法及装置、终端设备、网络设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105763308A (zh) * 2014-12-19 2016-07-13 上海朗帛通信技术有限公司 一种laa通信的方法和装置
CN106961742A (zh) * 2016-01-08 2017-07-18 上海朗帛通信技术有限公司 一种上行laa的通信方法和装置
WO2017199205A1 (en) * 2016-05-20 2017-11-23 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling multiple subframes in unlicensed spectrum

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2617439C2 (ru) * 2013-03-11 2017-04-25 Хуавей Текнолоджиз Ко., Лтд. Структура пилот-сигнала восходящей линии связи в системе связи с ортогональным мультиплексированием с частотным разделением точка-многоточка
CN105323854B (zh) * 2014-08-03 2019-09-06 上海朗帛通信技术有限公司 一种laa干扰避免的方法和装置
WO2016112543A1 (zh) * 2015-01-16 2016-07-21 华为技术有限公司 一种传输消息的方法和装置
US10153871B2 (en) * 2015-09-14 2018-12-11 Ofinno Technologies, Llc Selective uplink transmission timing adjustment of a multicarrier wireless device
KR20220010069A (ko) * 2016-01-20 2022-01-25 주식회사 윌러스표준기술연구소 비면허 대역 채널 액세스 방법, 장치, 및 시스템
CN109257147B (zh) * 2017-01-24 2020-01-17 华为技术有限公司 传输方法及装置
US11212685B2 (en) * 2017-02-02 2021-12-28 Lg Electronics Inc. Method and apparatus for measuring and transmitting CR by user equipment in wireless communication system
CN111885695B (zh) * 2017-02-06 2024-04-12 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN111278138B (zh) * 2017-10-14 2023-05-23 Oppo广东移动通信有限公司 无线通信方法、终端和网络设备
US10419257B2 (en) * 2018-02-15 2019-09-17 Huawei Technologies Co., Ltd. OFDM communication system with method for determination of subcarrier offset for OFDM symbol generation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105763308A (zh) * 2014-12-19 2016-07-13 上海朗帛通信技术有限公司 一种laa通信的方法和装置
CN106961742A (zh) * 2016-01-08 2017-07-18 上海朗帛通信技术有限公司 一种上行laa的通信方法和装置
WO2017199205A1 (en) * 2016-05-20 2017-11-23 Telefonaktiebolaget Lm Ericsson (Publ) Scheduling multiple subframes in unlicensed spectrum

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NEC: "Discussion on configured grants in NR-U", 3GPP TSG RAN WG1 #94BIS R1-1810810 CHENGDU, CHINA, OCTOBER 8TH-12TH, 2018, 28 September 2018 (2018-09-28), XP051518215, DOI: 20200226162752A *
SAMSUNG: "Enhancements on configured grant for NR-U", 3GPP TSG RAN WG1 MEETING #94BIS R1-1810863 CHENGDU, CHINA, OCTOBER 8TH-12TH, 2018, 29 September 2018 (2018-09-29), XP051518268, DOI: 20200226162659Y *

Also Published As

Publication number Publication date
CN113517969B (zh) 2022-08-26
CN111355565B (zh) 2021-06-25
US20200413414A1 (en) 2020-12-31
US20230129797A1 (en) 2023-04-27
CN111355565A (zh) 2020-06-30
CN113517968A (zh) 2021-10-19
US11582759B2 (en) 2023-02-14
CN113517969A (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
WO2020134908A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN112865848B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020207245A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN111447622B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019144822A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020134910A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020199976A1 (zh) 一种被用于无线通信的节点中的方法和装置
US11343850B2 (en) Method and device in UE and base station
WO2020048379A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN111294972B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
EP4039019A1 (en) Method and device used for wireless communication with discontinuous reception
CN110582118B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN110944387B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019184711A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019227280A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019218134A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021143539A1 (en) Method and device used for wireless communication with discontinuous reception
CN114095132B (zh) 一种被用于无线通信的节点中的方法和装置
CN117915479A (zh) 一种被用于无线通信的节点中的方法和装置
WO2019222952A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019137328A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019213852A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN111642013B (zh) 一种被用于无线通信的节点中的方法和装置
CN114916072A (zh) 一种被用于无线通信的节点中的方法和装置
CN115189856A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903384

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 17.08.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19903384

Country of ref document: EP

Kind code of ref document: A1