WO2019144315A1 - 一种被用于无线通信的用户设备、基站中的方法和装置 - Google Patents

一种被用于无线通信的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2019144315A1
WO2019144315A1 PCT/CN2018/073966 CN2018073966W WO2019144315A1 WO 2019144315 A1 WO2019144315 A1 WO 2019144315A1 CN 2018073966 W CN2018073966 W CN 2018073966W WO 2019144315 A1 WO2019144315 A1 WO 2019144315A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving
sub
group
receiving parameter
wireless signal
Prior art date
Application number
PCT/CN2018/073966
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
南通朗恒通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通朗恒通信技术有限公司 filed Critical 南通朗恒通信技术有限公司
Priority to CN201880083622.1A priority Critical patent/CN111512690B/zh
Priority to CN202310070154.7A priority patent/CN116156656A/zh
Priority to PCT/CN2018/073966 priority patent/WO2019144315A1/zh
Priority to CN202310070124.6A priority patent/CN116156655A/zh
Publication of WO2019144315A1 publication Critical patent/WO2019144315A1/zh
Priority to US16/932,835 priority patent/US11483863B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0891Space-time diversity
    • H04B7/0897Space-time diversity using beamforming per multi-path, e.g. to cope with different directions of arrival [DOA] at different multi-paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to a transmission method and apparatus in a wireless communication system, and more particularly to a communication method and apparatus for supporting data transmission on an Unlicensed Spectrum.
  • LTE Long-term Evolution
  • LAA Licensed Assisted Access
  • Massive MIMO Multi-Input Multi-Output
  • massive MIMO multiple antennas are beamforming to form a beam directed to a specific spatial direction to improve communication quality.
  • traditional LAA techniques need to be reconsidered. For example, LBT-based wireless signal transmission.
  • the present application discloses a method in a user equipment for wireless communication, which includes:
  • the first antenna port group includes a positive integer number of antenna ports, and the second antenna port group includes a positive integer number of antenna ports; the first receiving parameter group is used for receiving the first wireless signal, and the second receiving a parameter group is used to generate the second antenna port group; the first receiving parameter group and the second receiving parameter group both belong to a first receiving parameter space, and the first information and the first receiving parameter group Together are used to determine the first receive parameter space.
  • the problem to be solved by the present application is that in the NR system, since a large-scale MIMO technology is used to transmit a wireless signal, interference conditions in different beam directions may be greatly different, and the beam-based LBT may be more Really react to interference situations in a particular beam direction.
  • the uplink traffic of the user equipment is usually small, and the downlink reception is limited.
  • the user equipment usually uses the pre-allocated beam for unlicensed uplink transmission at the time-frequency resources reserved by the base station.
  • the pre-allocated beam is updated slowly, so the beam cannot be quickly adjusted as the channel changes or the interference environment changes, which may affect the channel access opportunity or uplink transmission. Therefore, how to improve channel access opportunities and increase system capacity is a key issue to be solved.
  • the essence of the above method is that the first receiving parameter space corresponds to a limited beam range, and the beam range includes multiple beams.
  • the user equipment can listen to the channel within this beam range. If the LBT detection result based on one of the beams is the channel idle, the user equipment can use the beam for uplink wireless signal transmission.
  • the advantage of using the above method is that the uplink channel access opportunity is increased compared to the use of a pre-configured beam, thereby increasing system capacity.
  • the above method is characterized by comprising:
  • K1 is a positive integer greater than one
  • the K1 receiving parameter groups all belong to the first receiving parameter space.
  • the above method is characterized by comprising:
  • the K wireless signals are respectively sent by the K antenna port groups, and the K receiving parameter groups are respectively used for receiving the K wireless signals, and the K1 receiving parameter groups do not include the first A receiving parameter group of a receiving parameter group is one of the K receiving parameter groups.
  • the above method is characterized in that, in the first receiving parameter space, the user equipment determines the K1 receiving parameter groups by themselves.
  • the above method is characterized in that the first information is used to determine a first threshold, the first set of receiving parameters being used together with the first threshold to determine the first receiving parameter space.
  • the above method is characterized in that a correlation coefficient of any one of the first receiving parameter space and the first receiving parameter group is not lower than the first threshold.
  • the method is characterized in that a deviation between a first reference reception quality and a reception quality obtained by receiving a downlink radio signal by using any one of the first reception parameter spaces is not greater than the first a threshold, the first reference reception quality is a reception quality obtained by receiving the downlink wireless signal by using a first reception parameter group.
  • the method is characterized in that the deviation between the second reference reception quality and the given reception quality is not greater than the first threshold, and the second reference reception quality is to transmit the uplink wireless signal by using the reference transmission parameter group.
  • the received reception quality, the given reception quality is the reception quality obtained by transmitting the uplink radio signal by using a given transmission parameter group, and the first reception parameter group is used to generate the reference transmission parameter group, the first reception Any set of receive parameters in the parameter space is used to generate the given set of transmit parameters.
  • the present invention discloses a method in a base station device for wireless communication, which includes:
  • the first access detection is used to determine whether to perform uplink transmission at a first moment on the first sub-band; if yes, to send at a first moment on the first sub-band through a second antenna port group The second wireless signal; if not, abandoning transmitting the second wireless signal at a first moment on the first sub-band;
  • the first antenna port group includes a positive integer number of antenna ports, the second antenna
  • the port group includes a positive integer number of antenna ports; a first receiving parameter set is used for receiving the first wireless signal, and a second receiving parameter set is used to generate the second antenna port group;
  • the first receiving parameter group And the second receiving parameter group belongs to the first receiving parameter space, and the first information and the first receiving parameter group are used together to determine the first receiving parameter space.
  • the method is characterized in that the receiver of the first information determines the second set of receiving parameters from K1 receiving parameter groups, and the K1 is a positive integer greater than one;
  • the K1 receiving parameter groups all belong to the first receiving parameter space.
  • the above method is characterized by comprising:
  • the K wireless signals are respectively sent by K antenna port groups, and K receiving parameter groups are respectively used for receiving the K wireless signals, and any one of the K1 receiving parameter groups is different from the first A receiving parameter group of a receiving parameter group is one of the K receiving parameter groups.
  • the above method is characterized in that, in the first receiving parameter space, the receiver of the first information determines the K1 receiving parameter groups by themselves.
  • the above method is characterized in that the first information is used to determine a first threshold, the first set of receiving parameters being used together with the first threshold to determine the first receiving parameter space.
  • the above method is characterized in that a correlation coefficient of any one of the first receiving parameter space and the first receiving parameter group is not lower than the first threshold.
  • the method is characterized in that a deviation between a first reference reception quality and a reception quality obtained by receiving a downlink radio signal by using any one of the first reception parameter spaces is not greater than the first a threshold, the first reference reception quality is a reception quality obtained by receiving the downlink wireless signal by using a first reception parameter group.
  • the method is characterized in that the deviation between the second reference reception quality and the given reception quality is not greater than the first threshold, and the second reference reception quality is to transmit the uplink wireless signal by using the reference transmission parameter group.
  • the received reception quality, the given reception quality is a reception quality obtained by transmitting the uplink radio signal by using a given transmission parameter group, and the first reception parameter group is used to generate the reference transmission parameter group, where Any set of receive parameters in a receive parameter space is used to generate the given set of transmit parameters.
  • the present application discloses a user equipment for wireless communication, which includes:
  • the first receiver module receives the first wireless signal, and the first wireless signal is sent by the first antenna port group; receiving the first information;
  • the first transceiver module performs a first access check to determine whether to perform uplink transmission at a first moment on the first sub-band; if yes, passes the second antenna port group at a first moment on the first sub-band Transmitting a second wireless signal; if not, abandoning transmitting the second wireless signal at a first time on the first sub-band;
  • the first antenna port group includes a positive integer number of antenna ports, and the second antenna port group includes a positive integer number of antenna ports; the first receiving parameter group is used for receiving the first wireless signal, and the second receiving a parameter group is used to generate the second antenna port group; the first receiving parameter group and the second receiving parameter group both belong to a first receiving parameter space, and the first information and the first receiving parameter group Together are used to determine the first receive parameter space.
  • the foregoing user equipment is characterized in that the first transceiver module further determines the second receiving parameter group from K1 receiving parameter groups, where K1 is a positive integer greater than 1; The K1 receiving parameter groups all belong to the first receiving parameter space.
  • the user equipment is characterized in that the first receiver module further receives K wireless signals, and the K is a positive integer greater than 1; wherein the K wireless signals are respectively K antenna ports Group sending, K receiving parameter groups are respectively used for receiving the K wireless signals, and any one of the K1 receiving parameter groups not including the first receiving parameter group is the K receiving One of the parameter groups in the parameter group.
  • the foregoing user equipment is characterized in that, in the first receiving parameter space, the user equipment determines the K1 receiving parameter groups by themselves.
  • the foregoing user equipment is characterized in that the first information is used to determine a first threshold, and the first receiving parameter group is used together with the first threshold to determine the first receiving parameter space. .
  • the foregoing user equipment is characterized in that a correlation coefficient between any one of the first receiving parameter space and the first receiving parameter group is not lower than the first threshold.
  • the foregoing user equipment is characterized in that a deviation between a first reference reception quality and a reception quality obtained by receiving any downlink parameter in the first reception parameter space is not greater than the first threshold.
  • the first reference reception quality is a reception quality obtained by receiving the downlink wireless signal by using the first reception parameter group.
  • the user equipment is characterized in that the deviation between the second reference reception quality and the given reception quality is not greater than the first threshold, and the second reference reception quality is obtained by using the reference transmission parameter group to send the uplink wireless signal.
  • Receive quality the given reception quality is a reception quality obtained by transmitting an uplink radio signal by using a given transmission parameter group, the first reception parameter group being used to generate the reference transmission parameter group, the first reception parameter Any set of receive parameters in space is used to generate the given set of transmit parameters.
  • the present invention discloses a method in a base station device for wireless communication, which includes:
  • the second transmitter module sends a first wireless signal, where the first wireless signal is sent by the first antenna port group; and the first information is sent;
  • a second receiver module monitoring the second wireless signal at a first time on the first sub-band
  • the first access detection is used to determine whether to perform uplink transmission at a first moment on the first sub-band; if yes, to send at a first moment on the first sub-band through a second antenna port group The second wireless signal; if not, abandoning transmitting the second wireless signal at a first moment on the first sub-band;
  • the first antenna port group includes a positive integer number of antenna ports, the second antenna
  • the port group includes a positive integer number of antenna ports; a first receiving parameter set is used for receiving the first wireless signal, and a second receiving parameter set is used to generate the second antenna port group;
  • the first receiving parameter group And the second receiving parameter group belongs to the first receiving parameter space, and the first information and the first receiving parameter group are used together to determine the first receiving parameter space.
  • the foregoing base station device is characterized in that the receiver of the first information determines the second receiving parameter group from K1 receiving parameter groups, and the K1 is a positive integer greater than 1; The K1 receiving parameter groups all belong to the first receiving parameter space.
  • the foregoing base station device is characterized in that the second transmitter module further sends K wireless signals, where K is a positive integer greater than 1; wherein the K wireless signals are respectively K antenna ports Group sending, K receiving parameter groups are respectively used for receiving the K wireless signals, and any one of the K1 receiving parameter groups different from the first receiving parameter group is the K receiving One of the parameter groups in the parameter group.
  • the foregoing base station device is characterized in that, in the first receiving parameter space, the receiver of the first information determines the K1 receiving parameter groups by themselves.
  • the foregoing base station device is characterized in that the first information is used to determine a first threshold, and the first receiving parameter group is used together with the first threshold to determine the first receiving parameter space .
  • the foregoing base station device is characterized in that a correlation coefficient between any one of the first receiving parameter space and the first receiving parameter group is not lower than the first threshold.
  • the foregoing base station device is characterized in that a deviation between a first reference reception quality and a reception quality obtained by receiving a downlink radio signal by using any one of the first reception parameter spaces is not greater than the first threshold.
  • the first reference reception quality is a reception quality obtained by receiving the downlink wireless signal by using the first reception parameter group.
  • the foregoing base station device is characterized in that the deviation between the second reference reception quality and the given reception quality is not greater than the first threshold, and the second reference reception quality is obtained by using the reference transmission parameter group to send the uplink wireless signal.
  • Receive quality the given reception quality is a reception quality obtained by transmitting the uplink radio signal by using a given transmission parameter group, and the first reception parameter group is used to generate the reference transmission parameter group, the first Any set of receive parameters in the receive parameter space is used to generate the given set of transmit parameters.
  • the present application has the following advantages compared with the conventional solution:
  • the user equipment listens to the channel within a limited beam range, the beam range comprising a plurality of beams. If the LBT detection result based on one of the beams is that the channel is idle, the user equipment can use the beam for uplink wireless signal transmission. Compared with the use of a pre-configured beam, the uplink channel access opportunity is increased, thereby increasing the system capacity.
  • the plurality of beams included in the beam range may be specified by the base station, or may be determined by the user equipment according to a given rule according to a capability, and the given rule is to determine the beam range according to a beam and a threshold specified by the base station. .
  • FIG. 1 shows a flow chart of a first wireless signal, first information, first access detection, and second wireless signal, in accordance with one embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 4 shows a schematic diagram of an NR (New Radio) node and a UE in accordance with one embodiment of the present application
  • FIG. 5 shows a flow chart of wireless transmission in accordance with one embodiment of the present application
  • FIG. 6 shows a flow chart of wireless transmission in accordance with another embodiment of the present application.
  • FIG. 7 is a schematic diagram showing a relationship between a first access detection and a K1 reception parameter group according to an embodiment of the present application.
  • FIG. 8 illustrates a schematic diagram of a given access detection being used to determine whether to transmit a given wireless signal at a given time on a given sub-band, in accordance with an embodiment of the present application
  • FIG. 9 illustrates a schematic diagram of a given access detection being used to determine whether to transmit a given wireless signal at a given time on a given sub-band in accordance with another embodiment of the present application
  • 10A-10B respectively show schematic diagrams of a given antenna port associated with a given energy detection space, in accordance with one embodiment of the present application
  • FIG. 11 is a schematic diagram showing a relationship between a second reception parameter group, K1 reception parameter groups, and a first reception parameter space according to an embodiment of the present application;
  • Figure 12 shows a schematic diagram of first information in accordance with one embodiment of the present application.
  • FIGS. 13A-13C respectively show schematic views of first information according to another embodiment of the present application.
  • FIG. 14 shows a schematic diagram of determining the first receiving parameter space according to an embodiment of the present application
  • FIG. 15 shows a schematic diagram of determining the first receiving parameter space according to another embodiment of the present application.
  • FIG. 16 shows a schematic diagram of determining the first receiving parameter space according to another embodiment of the present application.
  • FIG. 17 shows a schematic diagram of determining the first receiving parameter space according to another embodiment of the present application.
  • Figure 18 shows a schematic diagram of an antenna port and an antenna port group in accordance with one embodiment of the present application
  • FIG. 19 is a block diagram showing the structure of a processing device in a UE according to an embodiment of the present application.
  • FIG. 20 is a block diagram showing the structure of a processing device in a base station device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of a first wireless signal, first information, first access detection, and second wireless signal, as shown in FIG.
  • the user equipment in the present application receives a first wireless signal, the first wireless signal is sent by a first antenna port group; receiving first information; performing first access detection to determine whether The first time on a sub-band performs uplink transmission; if yes, the second wireless signal is transmitted through the second antenna port group at the first moment on the first sub-band; if not, the first sub-band is discarded Transmitting, by the first moment, a second wireless signal; wherein the first antenna port group comprises a positive integer number of antenna ports, the second antenna port group comprises a positive integer number of antenna ports; and the first receiving parameter group is used for Receiving the reception of the first wireless signal, the second receiving parameter set is used to generate the second antenna port group; the first receiving parameter group and the second receiving parameter group all belong to a first receiving parameter space, The first information and the first set of receive parameters are used together to determine the first receive parameter space.
  • the first wireless signal includes a ⁇ sync signal, DMRS (DeModulation Reference Signals), a CSI-RS (Channel State Information-Reference Signal), and a TRTS (finetime/ One or more of frequencyTrackingReferenceSignals, fine time domain/frequency domain tracking reference signals) and PRTS (Phase error Tracking Reference Signals), data ⁇ .
  • DMRS DeModulation Reference Signals
  • CSI-RS Channel State Information-Reference Signal
  • TRTS finetime/ One or more of frequencyTrackingReferenceSignals, fine time domain/frequency domain tracking reference signals
  • PRTS Phase error Tracking Reference Signals
  • the first wireless signal comprises a synchronization signal.
  • the first wireless signal comprises a CSI-RS.
  • the first wireless signal includes a synchronization signal and a CSI-RS.
  • the synchronization signal belongs to an SSB (Synchronization Signal Block).
  • SSB Synchronization Signal Block
  • the synchronization signal includes at least one of a PSS (Primary Synchronization Signal) and an SSS (Secondary Synchronization Signal).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the synchronization signal includes a PSS and an SSS.
  • the first wireless signal includes DMRS and data.
  • the first wireless signal comprises a DMRS.
  • the first wireless signal is transmitted on the first sub-band.
  • the transmission band of the first wireless signal includes the first sub-band.
  • the first sub-band includes a positive integer number of PRBs (Physical Resource Blocks).
  • PRBs Physical Resource Blocks
  • the first sub-band includes a positive integer number of consecutive PRBs.
  • the first sub-band includes a positive integer number of RBs (Resource Blocks).
  • the first sub-band includes a positive integer number of consecutive RBs.
  • the first sub-band includes a positive integer number of consecutive sub-carriers.
  • the first sub-band includes a number of consecutive sub-carriers equal to a positive integer multiple of 12.
  • the first sub-band is deployed in an unlicensed spectrum.
  • the first sub-band includes one carrier.
  • the first sub-band includes at least one carrier.
  • the first sub-band belongs to one carrier.
  • the first sub-band includes a BWP (Bandwidth Part).
  • the first wireless signal is transmitted on a downlink physical layer data channel (ie, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel ie, a downlink channel that can be used to carry physical layer data.
  • the downlink physical layer data channel is a PDSCH (Physical Downlink Shared CHannel).
  • PDSCH Physical Downlink Shared CHannel
  • the downlink physical layer data channel is sPDSCH (short PDSCH).
  • the downlink physical layer data channel is an NR-PDSCH (New Radio PDSCH).
  • NR-PDSCH New Radio PDSCH
  • the downlink physical layer data channel is a NB-PDSCH (Narrow Band PDSCH).
  • the first radio signal corresponding transport channel is a DL-SCH (DownLink Shared Channel).
  • the second wireless signal includes at least one of data, control information, and a reference signal.
  • the second wireless signal comprises data.
  • the second wireless signal includes control information.
  • the second wireless signal comprises a reference signal.
  • the second wireless signal includes data, control information, and a reference signal.
  • the second wireless signal includes data and control information.
  • the second wireless signal includes control information and a reference signal.
  • the second wireless signal comprises data and a reference signal.
  • the data is uplink data.
  • control information is UCI (Uplink Control Information).
  • control information includes at least one of HARQ (Hybrid Automatic Repeat reQuest) feedback and CSI.
  • HARQ Hybrid Automatic Repeat reQuest
  • the CSI includes ⁇ RI (Rank indication), PMI (Precoding matrix indicator), CQI (Channel quality indicator), CRI (Csi) At least one of -reference signal Resource Indicator) ⁇ .
  • the reference signal includes one or more of ⁇ DMRS, SRS (Sounding Reference Signal), and PTRS (Phase Error Tracking Reference Signal).
  • the second wireless signal is transmitted on an uplink random access channel.
  • the uplink random access channel is a PRACH (Physical Random Access Channel).
  • the second radio signal corresponding transport channel is a UL-SCH (Uplink Shared Channel).
  • UL-SCH Uplink Shared Channel
  • the second wireless signal is transmitted on an uplink physical layer data channel (ie, an uplink channel that can be used to carry physical layer data).
  • an uplink physical layer data channel ie, an uplink channel that can be used to carry physical layer data.
  • the uplink physical layer data channel is a PUSCH (Physical Uplink Shared CHannel).
  • the uplink physical layer data channel is sPUSCH (short PUSCH).
  • the uplink physical layer data channel is an NR-PUSCH (New Radio PUSCH).
  • the uplink physical layer data channel is a NB-PUSCH (NarrowBand PUSCH).
  • the first wireless signal is transmitted on an uplink physical layer control channel (ie, an uplink channel that can only be used to carry physical layer signaling).
  • an uplink physical layer control channel ie, an uplink channel that can only be used to carry physical layer signaling.
  • the uplink physical layer control channel is a PUCCH (Physical Uplink Control CHannel).
  • the uplink physical layer control channel is an sPDCCH (short PUCCH).
  • the uplink physical layer control channel is an NR-PDCCH (New Radio PUCCH).
  • the uplink physical layer control channel is an NB-PDCCH (NarrowBand PUCCH, narrowband PUCCH).
  • the first information is semi-statically configured.
  • the first information is carried by higher layer signaling.
  • the first information is carried by an RRC (Radio Resource Control) signal.
  • RRC Radio Resource Control
  • the first information is all or a part of an IE (Information Element) in one RRC signaling.
  • the first information is carried by a MAC (Medium Access Control) CE (Control Element) signaling.
  • MAC Medium Access Control
  • CE Control Element
  • the first information is carried by broadcast signaling.
  • the first information is system information.
  • the first information is transmitted in an SIB (System Information Block).
  • SIB System Information Block
  • the first information is dynamically configured.
  • the first information is carried by physical layer signaling.
  • the first information belongs to DCI (Downlink Control Information).
  • the first information belongs to the DCI of the UpLink Grant.
  • the first information is a field in a DCI, and the field includes a positive integer number of bits.
  • the first information consists of a plurality of fields in a DCI, the domains comprising a positive integer number of bits.
  • the first information is carried by a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the first information is carried by a PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the first information is carried by an sPDCCH (short PDCCH).
  • the first information is carried by an NR-PDCCH (New Radio PDCCH).
  • NR-PDCCH New Radio PDCCH
  • the first information is carried by an NB-PDCCH (Narrow Band PDCCH).
  • NB-PDCCH Narrow Band PDCCH
  • the first information is transmitted on the first sub-band.
  • the first information is transmitted on a frequency band other than the first sub-band.
  • the first information is transmitted on a frequency band deployed outside the first sub-band and deployed on the licensed spectrum.
  • the first information is transmitted on a frequency band deployed outside the first sub-band and deployed in an unlicensed spectrum.
  • the first information is transmitted on a frequency band deployed in the licensed spectrum.
  • the first information is transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is a PDCCH (Physical Downlink Control CHannel).
  • the downlink physical layer control channel is an sPDCCH (short PDCCH).
  • the downlink physical layer control channel is an NR-PDCCH (New Radio PDCCH).
  • NR-PDCCH New Radio PDCCH
  • the downlink physical layer control channel is an NB-PDCCH (Narrow Band PDCCH).
  • NB-PDCCH Narrow Band PDCCH
  • the first information is transmitted on a downlink physical layer data channel (ie, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel ie, a downlink channel that can be used to carry physical layer data.
  • the downlink physical layer data channel is a PDSCH.
  • the downlink physical layer data channel is sPDSCH.
  • the downlink physical layer data channel is an NR-PDSCH.
  • the downlink physical layer data channel is an NB-PDSCH.
  • the first set of receiving parameters includes spatial Rx parameters of the first wireless signal.
  • the first set of receive parameters includes a receive beam of the first wireless signal.
  • the first set of receive parameters includes a receive beam shaping matrix of the first wireless signal.
  • the first set of receive parameters includes a received analog beamforming matrix of the first wireless signal.
  • the first set of receive parameters includes a receive beamform vector of the first wireless signal.
  • the first set of receive parameters includes receive spatial filtering of the first wireless signal.
  • the first access detection is used to determine if the first sub-band is idle (Idle).
  • the first access detection is used to determine whether the first sub-band is idle at the first time.
  • the end time of the first access detection is not later than the first time.
  • the first moment is after an end time of the first access detection.
  • the second set of receiving parameters includes spatial Rx parameters.
  • the second set of receiving parameters includes a receive beam.
  • the second set of receiving parameters includes a receive beamforming matrix.
  • the second set of receiving parameters includes receiving an analog beamforming matrix.
  • the second set of receive parameters includes a receive beamform vector.
  • the second set of receive parameters includes receive spatial filtering.
  • the second receiving parameter group is used to generate the second antenna port group, which means that the target transmission of the wireless signal sent on the second antenna port group can be inferred from the second receiving parameter group.
  • Parameter group is used to generate the second antenna port group, which means that the target transmission of the wireless signal sent on the second antenna port group can be inferred from the second receiving parameter group.
  • the second receiving parameter group includes a spatial receiving parameter
  • the target sending parameter group includes a spatial sending parameter (Spatial Tx parameters).
  • the second receiving parameter group includes a receiving beam
  • the target sending parameter group includes a transmitting beam
  • the second receiving parameter group includes a receiving beam shaping matrix
  • the target transmitting parameter group includes a transmitting beam shaping matrix
  • the second receiving parameter set includes receiving an analog beam shaping matrix
  • the target sending parameter group includes transmitting an analog beam shaping matrix
  • the second set of receiving parameters includes a receive beamforming vector
  • the target transmit parameter set includes a transmit beamforming vector
  • the second receiving parameter set includes receiving spatial filtering
  • the target transmitting parameter set includes transmitting spatial filtering
  • the second receiving parameter group is used to generate the second antenna port group, that is, the second receiving parameter group and the second antenna port group send the wireless signal with the same target sending parameter group.
  • the second receiving parameter group includes a spatial receiving parameter
  • the target sending parameter group includes a spatial sending parameter (Spatial Tx parameters).
  • the second receiving parameter group includes a receiving beam
  • the target sending parameter group includes a transmitting beam
  • the second receiving parameter group includes a receiving beam shaping matrix
  • the target transmitting parameter group includes a transmitting beam shaping matrix
  • the second receiving parameter set includes receiving an analog beam shaping matrix
  • the target sending parameter group includes transmitting an analog beam shaping matrix
  • the second set of receiving parameters includes a receive beamforming vector
  • the target transmit parameter set includes a transmit beamforming vector
  • the second receiving parameter set includes receiving spatial filtering
  • the target transmitting parameter set includes transmitting spatial filtering
  • the second receiving parameter group is used to generate the second antenna port group, wherein the second receiving parameter group includes a target sending parameter group of the wireless signal sent on the second antenna port group.
  • the second receiving parameter group includes a spatial receiving parameter
  • the target transmitting parameter group includes a spatial sending parameter
  • the second receiving parameter group includes a receiving beam
  • the target sending parameter group includes a transmitting beam
  • the second receiving parameter group includes a receiving beam shaping matrix
  • the target transmitting parameter group includes a transmitting beam shaping matrix
  • the second receiving parameter set includes receiving an analog beam shaping matrix
  • the target sending parameter group includes transmitting an analog beam shaping matrix
  • the second set of receiving parameters includes a receive beamforming vector
  • the target transmit parameter set includes a transmit beamforming vector
  • the second receiving parameter set includes receiving spatial filtering
  • the target transmitting parameter set includes transmitting spatial filtering
  • the second receiving parameter group is used to generate the second antenna port group, where the second receiving parameter group includes a receiving beamforming matrix, and the beamforming matrix corresponding to the receiving beam shaping matrix is not The beam width corresponding to the transmit beam shaping matrix of the second antenna port group is smaller.
  • the second receiving parameter group is used to generate the second antenna port group
  • the second receiving parameter group includes a receiving beam shaping matrix
  • the beam direction corresponding to the receiving beam shaping matrix includes a beam direction corresponding to a transmit beam shaping matrix of the second antenna port group.
  • the second receiving parameter group is used to generate the second antenna port group, where the second receiving parameter group includes a receiving beam, and the receiving beam corresponds to a beamwidth greater than the second antenna port.
  • the second receiving parameter group is used to generate the second antenna port group, wherein the second receiving parameter group includes a receiving beam, and the receiving beam includes a transmitting beam of the second antenna port group.
  • the second receiving parameter group is used for the first access detection, that is, the receiving parameter group of the first access detection includes the second receiving parameter group.
  • the use of the second group of receiving parameters for the first access detection means that the receiving parameter group of the first access detection is the same as the second receiving parameter group.
  • the second receiving parameter group is used for the first access detection, that is, the first access detection receiving parameter group includes the second receiving parameter group, and the first The set of receive parameters for access detection includes receive parameters that do not belong to the second set of receive parameters.
  • the using the second set of receiving parameters for the first access detection means that the second set of receiving parameters can be used to infer a set of receiving parameters of the first access detection.
  • the second receiving parameter group is used for the first access detection, where the second receiving parameter group includes a receiving beamforming matrix, and a beamwidth corresponding to the receiving beamforming matrix Not larger than the beam width corresponding to the received beamforming matrix of the first access detection.
  • the second receiving parameter group is used for the first access detection, where the second receiving parameter group includes a receiving beamforming matrix, and a beam direction corresponding to the receiving beamforming matrix The beam direction corresponding to the transmit beam shaping matrix detected by the first access is included.
  • the second receiving parameter group is used for the first access detection, where the second receiving parameter group includes a receiving beam, and the received beam corresponds to a beam width not greater than the first Access to the detected beamwidth corresponding to the transmitted beam.
  • the second receiving parameter group is used for the first access detection, where the second receiving parameter group includes a receiving beam, and the receiving beam is sent by the first access detection.
  • the beam is included.
  • the receiving parameter set of the first access detection includes a spatial receiving parameter.
  • the receiving parameter set of the first access detection includes a receiving beam.
  • the receiving parameter set of the first access detection includes a receiving beam shaping matrix.
  • the receiving parameter set of the first access detection comprises receiving an analog beam shaping matrix.
  • the receiving parameter set of the first access detection includes a receiving beamforming vector.
  • the receiving parameter set of the first access detection includes receiving spatial filtering.
  • the abandoning sending the second wireless signal at the first moment on the first sub-band means: delaying transmission of the second wireless signal to a second moment, where the second moment is After the first moment.
  • the sending the second wireless signal at the first moment on the first sub-band means: abandoning the sending of the second wireless signal, waiting for new scheduling signaling to send the target bit block,
  • the second wireless signal carries the bit block.
  • the abandoning transmitting the second wireless signal at the first moment on the first sub-band means: abandoning transmitting the second wireless signal.
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG.
  • Embodiment 2 illustrates a schematic diagram of a network architecture in accordance with the present application, as shown in FIG. 2 is a diagram illustrating an NR 5G, LTE (Long-Term Evolution, Long Term Evolution) and LTE-A (Long-Term Evolution Advanced) system network architecture 200.
  • the NR 5G or LTE network architecture 200 may be referred to as an EPS (Evolved Packet System) 200 in some other suitable terminology.
  • EPS Evolved Packet System
  • the EPS 200 may include one or more UEs (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UEs User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core
  • 5G-Core Network 5G-Core Network
  • 5G core network 5G core network
  • HSS Home Subscriber Server
  • Internet service 230 Internet service 230.
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity.
  • the EPS provides packet switching services, although those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks or other cellular networks that provide circuit switched services.
  • the NG-RAN includes an NR Node B (gNB) 203 and other gNBs 204
  • the gNB 203 provides user and control plane protocol termination for the UE 201.
  • the gNB 203 can be connected to other gNBs 204 via an Xn interface (eg, a backhaul).
  • the gNB 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmission and reception point), or some other suitable terminology.
  • the gNB 203 provides the UE 201 with an access point to the EPC/5G-CN 210.
  • Examples of UEs 201 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video device, digital audio player (eg, MP3 player), camera, game console, drone, aircraft, narrowband physical network device, machine type communication device, land vehicle, car, wearable device, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video device, digital audio player (eg, MP3 player), camera, game console, drone, aircraft, narrowband physical network device, machine type communication device, land vehicle, car, wearable device, or any Other similar functional devices.
  • multimedia devices video device, digital audio player (eg, MP3 player), camera, game console, drone, aircraft, narrowband physical network device, machine type communication device, land vehicle
  • UE 201 may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to the EPC/5G-CN210 through the S1/NG interface.
  • EPC/5G-CN210 includes MME/AMF/UPF211, other MME (Mobility Management Entity)/AMF (Authentication Management Field)/UPF (User Plane Function) 214, S - GW (Service Gateway) 212 and P-GW (Packet Date Network Gateway) 213.
  • the MME/AMF/UPF 211 is a control node that handles signaling between the UE 201 and the EPC/5G-CN 210.
  • MME/AMF/UPF 211 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 212, and the S-GW 212 itself is connected to the P-GW 213.
  • the P-GW 213 provides UE IP address allocation as well as other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a PS Streaming
  • the UE 201 corresponds to the user equipment in this application.
  • the gNB 203 corresponds to the base station in the present application.
  • the UE 201 supports wireless communication for data transmission over an unlicensed spectrum.
  • the gNB 203 supports wireless communication for data transmission over an unlicensed spectrum.
  • the UE 201 supports wireless communication of massive MIMO.
  • the gNB 203 supports wireless communication for massive MIMO.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with the present application, as shown in FIG.
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 3 shows a radio protocol architecture for user equipment (UE) and base station equipment (gNB or eNB) in three layers: layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the UE and the gNB through PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol). Convergence Protocol) Sublayer 304, which terminates at the gNB on the network side.
  • the UE may have several upper layers above the L2 layer 305, including a network layer (eg, an IP layer) terminated at the P-GW on the network side and terminated at the other end of the connection (eg, Application layer at the remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handoff support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between the logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in one cell between UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the wireless protocol architecture of Figure 3 is applicable to the user equipment in this application.
  • the radio protocol architecture of Figure 3 is applicable to the base station in this application.
  • the first wireless signal in the present application is generated by the PHY 301.
  • the second wireless signal in the present application is generated by the PHY 301.
  • the determining, by the K1 receiving parameter groups in the present application, the second receiving parameter group is generated by the PHY 301.
  • the first access detection in the present application is generated by the PHY 301.
  • the K wireless signals in the present application are generated by the PHY 301.
  • the first information in the present application is generated by the PHY 301.
  • the first information in this application is generated in the RRC sublayer 306.
  • the first information in the present application is generated in the MAC sublayer 302.
  • Embodiment 4 shows a schematic diagram of an NR node and user equipment according to the present application, as shown in FIG. 4 is a block diagram of a gNB 410 in communication with a UE 450 in an access network.
  • the base station device (410) includes a controller/processor 440, a memory 430, a receive processor 412, a transmit processor 415, a transmitter/receiver 416, and an antenna 420.
  • the user equipment (450) includes a controller/processor 490, a memory 480, a data source 467, a transmit processor 455, a receive processor 452, a transmitter/receiver 456, and an antenna 460.
  • the processing related to the base station device (410) includes:
  • a controller/processor 440 the upper layer packet arrives, the controller/processor 440 provides header compression, encryption, packet segmentation and reordering, and multiplexing and demultiplexing between the logical and transport channels for implementation
  • the L2 layer protocol of the user plane and the control plane; the upper layer packet may include data or control information, such as a DL-SCH (Downlink Shared Channel);
  • controller/processor 440 associated with a memory 430 storing program code and data, which may be a computer readable medium;
  • controller/processor 440 including a scheduling unit to transmit a demand, and a scheduling unit, configured to schedule an air interface resource corresponding to the transmission requirement;
  • a beam processor 471, configured to determine a first wireless signal and first information
  • the transmit processor 415 receives the output bit stream of the controller/processor 440 and implements various signal transmission processing functions for the L1 layer (ie, the physical layer) including encoding, interleaving, scrambling, modulation, power control/allocation, and physics. Layer control signaling (including PBCH, PDCCH, PHICH, PCFICH, reference signal) generation, etc.;
  • a transmitter 416 is configured to convert the baseband signals provided by the transmit processor 415 into radio frequency signals and transmit them via the antenna 420; each of the transmitters 416 samples the respective input symbol streams to obtain respective sampled signal streams. Each transmitter 416 performs further processing (eg, digital to analog conversion, amplification, filtering, upconversion, etc.) on the respective sample streams to obtain a downlink signal.
  • further processing eg, digital to analog conversion, amplification, filtering, upconversion, etc.
  • the processing related to the user equipment (450) may include:
  • Receiver 456, for converting the radio frequency signal received through the antenna 460 into a baseband signal is provided to the receiving processor 452;
  • the receiving processor 452 implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, and the like;
  • a beam processor 441, configured to determine a first wireless signal and first information
  • the controller/processor 490 receives the bit stream output by the receiving processor 452, provides header decompression, decryption, packet segmentation and reordering, and multiplexing and demultiplexing between the logical and transport channels for implementation.
  • Controller/processor 490 is associated with memory 480 that stores program codes and data.
  • Memory 480 can be a computer readable medium.
  • the processing related to the base station device (410) includes:
  • the receiver 416 receives the radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and supplies the baseband signal to the receiving processor 412;
  • the receiving processor 412 implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, and the like;
  • Controller/processor 440 implementing L2 layer functions, and associated with memory 430 storing program code and data;
  • Controller/processor 440 provides demultiplexing, packet reassembly, decryption, header decompression, control signal processing between the transport and logical channels to recover upper layer data packets from UE 450; from controller/processor 440 Upper layer packets can be provided to the core network;
  • the beam processor 471 determines whether uplink transmission is performed at a first moment on the first sub-band
  • the processing related to the user equipment (450) includes:
  • Data source 467 provides the upper layer data packet to controller/processor 490.
  • Data source 467 represents all protocol layers above the L2 layer;
  • the transmitter 456, transmits a radio frequency signal through its corresponding antenna 460, converts the baseband signal into a radio frequency signal, and provides the radio frequency signal to the corresponding antenna 460;
  • the transmitting processor 455 implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, and the like;
  • the controller/processor 490 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels based on the radio resource allocation of the gNB 410, implementing the L2 layer for the user plane and the control plane Features;
  • the controller/processor 490 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the gNB 410;
  • the beam processor 441 determines whether to perform uplink transmission at a first moment on the first sub-band
  • the UE 450 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be Used together by the processor, the UE 450 device at least: receiving a first wireless signal, the first wireless signal being transmitted by the first antenna port group; receiving the first information; performing the first access detection to determine whether it is in the first sub-band Performing uplink transmission at a first time; if yes, transmitting a second wireless signal through the second antenna port group at a first moment on the first sub-band; if not, abandoning the first sub-band Transmitting a second wireless signal at a time; wherein the first antenna port group includes a positive integer number of antenna ports, the second antenna port group includes a positive integer number of antenna ports; and the first receiving parameter group is used for the first Receiving a wireless signal, a second set of receiving parameters is used to generate the second set of antenna ports; the first set of receiving parameters and the second The receiving parameter groups all
  • the UE 450 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: receiving a first wireless signal The first wireless signal is transmitted by the first antenna port group; receiving the first information; performing a first access detection to determine whether to perform uplink transmission at a first moment on the first sub-band; if yes, at the Transmitting a second wireless signal through a second antenna port group at a first time on a sub-band; if not, abandoning transmitting a second wireless signal at a first time on the first sub-band; wherein the first antenna port The group includes a positive integer number of antenna ports, the second antenna port group includes a positive integer number of antenna ports; a first set of receive parameters is used for receiving the first wireless signal, and a second set of receive parameters is used to generate the a second antenna port group; the first receiving parameter group and the second receiving parameter group all belong to a first receiving parameter space, the first information and the first receiving
  • the gNB 410 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be The processor is used together.
  • the gNB410 device at least: transmitting a first wireless signal, the first wireless signal is sent by the first antenna port group; transmitting the first information; monitoring the second wireless signal at a first time on the first sub-band; wherein, An access detection is used to determine whether to perform uplink transmission at a first moment on the first sub-band; if yes, to transmit the first antenna through a second antenna port group at a first moment on the first sub-band a wireless signal; if not, abandoning transmitting the second wireless signal at a first time on the first sub-band; the first antenna port group includes a positive integer number of antenna ports, and the second antenna port group includes a positive integer number of antenna ports; a first set of receive parameters is used for receiving the first wireless signal, a second set of receive parameters is used to generate
  • the gNB 410 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by at least one processor, the action comprising: transmitting a first wireless signal Transmitting, by the first antenna port group, the first information; transmitting the first information; monitoring the second wireless signal at a first time on the first sub-band; wherein the first access detection is used to determine whether Performing uplink transmission at a first time on the first sub-band; if yes, transmitting the second wireless signal through a second antenna port group at a first moment on the first sub-band; if not, abandoning in the Transmitting the second wireless signal at a first time on the first sub-band; the first antenna port group includes a positive integer number of antenna ports, and the second antenna port group includes a positive integer number of antenna ports; Used for receiving the first wireless signal, the second receiving parameter set is used to generate the second antenna port group; the first receiving parameter group and the second receiving parameter Belonging to the first parameter
  • the UE 450 corresponds to the user equipment in this application.
  • gNB 410 corresponds to the base station in this application.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to receive the first wireless signal in the present application.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the first wireless signal in the present application.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to receive the first information in the present application.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the first information in the present application.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to perform the first access detection in this application.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to determine the ones in the application from the K1 set of receive parameters in the present application.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to receive the K wireless signals in the present application.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the K wireless signals in the present application.
  • At least two of the transmitter 456, the transmit processor 455, and the controller/processor 490 are used to transmit the second wireless signal in the present application.
  • At least two of the receiver 416, the receive processor 412, and the controller/processor 440 are used to receive the second wireless signal in the present application.
  • Embodiment 5 illustrates a flow chart of a wireless transmission, as shown in FIG.
  • base station N01 is a serving cell maintenance base station of user equipment U02.
  • block F1 is optional.
  • the first wireless signal is transmitted in step S11; K wireless signals are transmitted in step S12; the first information is transmitted in step S13; and the second wireless is monitored in the first time on the first sub-band in step S14 signal.
  • the first wireless signal is received in step S21; K wireless signals are received in step S22; the first information is received in step S23; the first access detection is performed in step S24 to determine whether it is in the first sub-band Performing uplink transmission at the first time; determining the second receiving parameter group from K1 receiving parameter groups in step S25; passing the second antenna port at the first time on the first sub-band in step S26 The group transmits the second wireless signal or discards transmitting the second wireless signal at a first time on the first sub-band.
  • the first wireless signal is transmitted by a first antenna port group; the first antenna port group includes a positive integer number of antenna ports, and the second antenna port group includes a positive integer number of antenna ports;
  • the receiving parameter group is used by the user equipment U02 for receiving the first wireless signal, and the second receiving parameter group is used by the user equipment U02 to generate the second antenna port group; the first receiving parameter group and The second receiving parameter group belongs to the first receiving parameter space, and the first information and the first receiving parameter group are jointly used by the user equipment U02 to determine the first receiving parameter space.
  • the K1 is a positive integer greater than one; the K1 receiving parameter groups all belong to the first receiving parameter space.
  • the K is a positive integer greater than 1; the K wireless signals are respectively sent by K antenna port groups, and the K receiving parameter groups are respectively used by the user equipment U02 for receiving the K wireless signals, Any one of the K1 receiving parameter groups different from the first receiving parameter group is one of the K receiving parameter groups.
  • the second wireless signal is transmitted through the second antenna port group at the first time on the first sub-band in step S26, leaving block F1.
  • the second wireless signal is discarded at the first time on the first sub-band in step S26, and block F1 does not exist.
  • the K1 receiving parameter groups are different from each other.
  • the K1 is 2.
  • the first receiving parameter group is one of the K1 receiving parameter groups.
  • the second receiving parameter group is one of the K1 receiving parameter groups.
  • the first receiving parameter space is composed of the K1 receiving parameter groups.
  • the K1 receiving parameter groups all include spatial Rx parameters.
  • the K1 sets of receiving parameters all include a receive beam.
  • the K1 receiving parameter groups all include a receiving beam shaping matrix.
  • the K1 receiving parameter sets all include a receiving analog beam shaping matrix.
  • the K1 sets of receive parameters all include a receive beamforming vector.
  • the K1 sets of receiving parameters all include receiving spatial filtering.
  • the K1-1 receiving parameter groups of the K1 receiving parameter groups except the first receiving parameter group are respectively one of the K receiving parameter groups.
  • the K sets of receiving parameters respectively include spatial receiving parameters of the K wireless signals.
  • the K sets of receiving parameters respectively include receiving beams of the K wireless signals.
  • the K sets of receiving parameters respectively comprise receiving beamforming matrices of the K wireless signals.
  • the K sets of receiving parameters respectively comprise receiving analog beam shaping matrices of the K wireless signals.
  • the K sets of receive parameters respectively comprise receive beamforming vectors of the K wireless signals.
  • the K sets of receive parameters respectively comprise receive spatial filtering of the K wireless signals.
  • Embodiment 6 illustrates a flow chart of another wireless transmission, as shown in FIG.
  • base station N03 is a serving cell maintenance base station of user equipment U04.
  • block F2 is optional.
  • the first wireless signal is transmitted in step S31; the first information is transmitted in step S32; and the second wireless signal is monitored in the first time on the first sub-band in step S33.
  • the first wireless signal is received in step S41; the first information is received in step S42; the first access detection is performed in step S43 to determine whether to perform uplink transmission at the first time on the first sub-band; Determining, in step S44, the second receiving parameter group from the K1 receiving parameter groups; transmitting the second wireless signal through the second antenna port group at the first moment on the first sub-band in step S45, or discarding Transmitting a second wireless signal at a first time on the first sub-band.
  • the first wireless signal is transmitted by a first antenna port group; the first antenna port group includes a positive integer number of antenna ports, and the second antenna port group includes a positive integer number of antenna ports;
  • the receiving parameter group is used by the user equipment U02 for receiving the first wireless signal, and the second receiving parameter group is used by the user equipment U02 to generate the second antenna port group; the first receiving parameter group and The second receiving parameter group belongs to the first receiving parameter space, and the first information and the first receiving parameter group are jointly used by the user equipment U02 to determine the first receiving parameter space.
  • the K1 is a positive integer greater than one; the K1 receiving parameter groups all belong to the first receiving parameter space. In the first receiving parameter space, the user equipment determines the K1 receiving parameter groups by themselves.
  • how the user equipment determines that the K1 receiving parameter group is a UE implementation issue As an embodiment, how the user equipment determines that the K1 receiving parameter group is a UE implementation issue.
  • the second wireless signal is transmitted through the second antenna port group at the first time on the first sub-band in step S45, leaving block F2.
  • the second wireless signal is discarded at the first time on the first sub-band in step S45, and block F2 does not exist.
  • Embodiment 7 exemplifies a relationship of a first access detection and a K1 reception parameter group; as shown in FIG.
  • the first access detection is performed to determine whether uplink transmission is performed at a first moment on a first sub-band in the present application; if yes, at a first moment on the first sub-band Transmitting the second wireless signal in the application by using the second antenna port group in the application; if not, abandoning transmitting the second wireless signal at a first moment on the first sub-band;
  • the second set of receive parameters is used to generate the second set of antenna ports; the second set of receive parameters is determined from the set of K1 receive parameters, the K1 being a positive integer greater than one.
  • the first access detection includes one access detection.
  • the K1 sets of receive parameters are used for the first access detection.
  • the receiving parameter set of the first access detection includes the K1 receiving parameter groups.
  • the first access detection receiving parameter group and the K1 receiving parameter group are the same.
  • the receiving parameter group of the first access detection includes the K1 receiving parameter group, and the receiving parameter group of the first access detection includes not belonging to the K1 receiving The receiving parameters of the parameter group.
  • the K1 receiving parameter group can be used to infer the receiving parameter set of the first access detection.
  • the K1 receiving parameter groups all include a receiving beam shaping matrix, and the beam width corresponding to the receiving beam shaping matrix is not greater than the receiving beam assignment of the first access detection.
  • the beam width corresponding to the type matrix is not greater than the receiving beam assignment of the first access detection.
  • the K1 receiving parameter groups all include a receiving beamforming matrix, and the beam direction corresponding to the receiving beamforming matrix is shaped by the first access detection.
  • the beam direction corresponding to the matrix is included.
  • the K1 receiving parameter groups all include a receiving beam, and the beam width corresponding to the receiving beam is not greater than a beam width corresponding to the first access detected transmitting beam.
  • the K1 receiving parameter groups all include a receiving beam, and the receiving beams are all included by the first access detecting transmission beam.
  • the first access detection includes K1 access detection, and the K1 reception parameter groups are used for the K1 access detection, respectively.
  • an end time of any access detection in the K1 access detection is no later than the first moment.
  • the first moment is after an end time of any access detection in the K1 access detection.
  • the given receiving parameter group is one of the K1 receiving parameter groups
  • the given access detection is one of the K1 access detections corresponding to the given receiving parameter group.
  • Access detection the given set of received parameters is used for the given access detection.
  • the given receiving parameter group is used for the given access detection means that the receiving parameter group of the given access detection includes the given receiving parameter group.
  • the given receiving parameter group is used for the given access detection means that the receiving parameter group of the given access detection is the same as the given receiving parameter group .
  • the given receiving parameter group is used for the given access detection, that is, the receiving parameter group of the given access detection includes the given receiving parameter group, And the receiving parameter set of the given access detection includes a receiving parameter that does not belong to the given receiving parameter group.
  • the given set of receiving parameters is used for the given access detection means that the given set of receiving parameters can be used to infer the given access detection Receive parameter group.
  • the given receiving parameter set is used for the given access detection means that the given receiving parameter set comprises a receiving beamforming matrix, the receiving beamforming The beam width corresponding to the matrix is not greater than the beam width corresponding to the received beamforming matrix of the given access detection.
  • the given receiving parameter set is used for the given access detection means that the given receiving parameter set comprises a receiving beamforming matrix, the receiving beamforming The beam direction corresponding to the matrix is included by the beam direction corresponding to the transmit beam shaping matrix of the given access detection.
  • the given receiving parameter group is used for the given access detection, where the given receiving parameter group includes a receiving beam, and the corresponding beam width of the receiving beam is not Greater than the beamwidth corresponding to the transmit beam for the given access detection.
  • the given receiving parameter set is used for the given access detection
  • the reference receiving group includes a receiving beam
  • the receiving beam is given by the given Access detection is included in the transmit beam.
  • the receiving parameter set of the given access detection includes a spatial receiving parameter.
  • the receiving parameter set of the given access detection includes a receiving beam.
  • the set of receiving parameters for a given access detection includes a receive beamforming matrix.
  • the receiving parameter set of the given access detection comprises receiving an analog beamforming matrix.
  • the set of receiving parameters for a given access detection includes a receive beamforming vector.
  • the set of received parameters for a given access detection includes receive spatial filtering.
  • Embodiment 8 illustrates a schematic diagram of a given access detection being used to determine whether to transmit a given wireless signal at a given time on a given sub-band; as shown in FIG.
  • the given access detection includes performing the Q energy detections in Q time sub-pools on the given sub-band, respectively, to obtain Q detection values, and the Q is a positive integer.
  • the given access detection corresponds to any one of the first access detection or the first access detection in the application, and the given moment corresponds to the first moment in the application.
  • the given wireless signal corresponds to the second wireless signal in the present application. The process of the given access detection can be described by the flowchart in FIG.
  • the user equipment in the present application is in an idle state in step S1001, and it is determined in step S1002 whether or not transmission is required; in step 1003, energy detection is performed in a delay period (deerduration); in step S1004 Determining whether all the time slot periods in the delay period are idle, if yes, proceeding to step S1005, setting the first counter equal to Q1, the Q1 being an integer not greater than the Q; otherwise returning to step S1004; in step S1006 Determining whether the first counter is 0, if yes, proceeding to send a wireless signal on the first sub-band in the application in step S1007; otherwise proceeding to an additional slot period in step S1008 (additional slot) Performing energy detection within the duration; determining whether the additional time slot period is idle in step S1009, if yes, proceeding to step S1010 to decrement the first counter by one, and then returning to step 1006; otherwise proceeding to step S1011 Performing energy detection within an additional delay period (internal deferduration); determining in the
  • the first counter in FIG. 8 is cleared before the given time, and the result of the given access detection is that the channel is idle, and the given time may be sent at the given moment.
  • the wireless signal is determined; otherwise the given wireless signal cannot be transmitted at the given moment.
  • the condition that the first counter is cleared is that the Q1 detection values of the Q detection values corresponding to the Q1 time sub-pools in the Q time sub-pools are lower than the first reference threshold, and the Q1 The start time of the time subpool is after step S1005 in FIG.
  • the Q time subpools include all of the delay periods in FIG.
  • the Q time subpools include a partial delay period in FIG.
  • the Q time subpools include all delay periods and all additional time slot periods in FIG.
  • the Q time subpools include all of the delay periods and a portion of the additional time slot periods in FIG.
  • the Q time subpools include all of the delay periods in Figure 8, all additional time slot periods, and all additional delay periods.
  • the Q time subpools include all delay periods, partial additional time slot periods, and all additional delay periods in FIG.
  • the Q time subpools include all delay periods, partial additional time slot periods, and partial additional delay periods in FIG.
  • the duration of any of the Q time subpools is one of ⁇ 16 microseconds, 9 microseconds ⁇ .
  • any one slot time period in a given time period is one time sub-pool of the Q time sub-pools; the given time period is ⁇ all delays included in FIG. 8 Time period, any additional time slot period, any one of all additional delay periods ⁇ .
  • performing energy detection within a given time period means performing energy detection within all slot time periods within the given time period; the given time period is included in FIG. Any of the ⁇ all delay periods, all additional slot periods, all additional delay periods ⁇ .
  • determining that the energy is detected as idle during a given time period means that all time slot periods included in the given time period are judged to be idle by energy detection; the given time period is a drawing Any of the ⁇ all delay periods, all additional slot periods, all additional delay periods ⁇ included in 8.
  • the determination of idle time by energy detection for a given time slot period means that the user equipment senses the power of all wireless signals on the given sub-band in a given time unit, and at time Upper averaging, the received received power is lower than the first reference threshold; the given time unit is one of the given time slot periods.
  • the duration of the given time unit is not shorter than 4 microseconds.
  • the determination of idle time by energy detection for a given time slot period means that the user equipment senses the energy of all wireless signals on the given sub-band in a given time unit, and at time Upper averaging, the received received energy is lower than the first reference threshold; the given time unit is one of the given time slot periods.
  • the duration of the given time unit is not shorter than 4 microseconds.
  • performing energy detection within a given time period means performing energy detection in all time sub-pools within the given time period; the given time period is ⁇ all delays included in FIG. 8 Time period, any additional time slot period, any one of all additional delay periods ⁇ , all of the time subpools belonging to the Q time subpools.
  • determining that the energy is detected as idle during a given time period means that: the detected values obtained by the energy detection for all the time sub-pools included in the given time period are lower than the first reference threshold;
  • the given time period is any one of ⁇ all delay periods, all additional slot periods, all additional delay periods ⁇ included in FIG. 8, and all time sub-pools belong to the Q time sub-pools
  • the detected value belongs to the Q detected values.
  • the duration of a defer duration is 16 microseconds plus M1 9 microseconds, which is a positive integer.
  • one delay period includes M1+1 time sub-pools in the Q time sub-pools.
  • the duration of the first time sub-pool in the M1+1 time sub-pool is 16 microseconds, and the durations of other M1 time sub-pools are 9 microseconds. .
  • the given priority level is used to determine the M1.
  • the given priority level is a Channel Access Priority Class
  • the channel access priority level is defined in section 15 of 3GPP TS 36.213.
  • the M1 belongs to ⁇ 1, 2, 3, 7 ⁇ .
  • a defer duration includes a plurality of slot durations.
  • the first one of the plurality of slot periods and the second slot period are discontinuous.
  • the time interval between the first slot period and the second slot period of the plurality of slot periods is 7 milliseconds.
  • the duration of an additional defer duration is 16 microseconds plus M2 9 microseconds, which is a positive integer.
  • an additional delay period includes M2+1 time sub-pools in the Q time sub-pools.
  • the duration of the first time sub-pool in the M2+1 time sub-pool is 16 microseconds, and the duration of the other M2 time sub-pools is 9 microseconds. .
  • the given priority level is used to determine the M2.
  • the M2 belongs to ⁇ 1, 2, 3, 7 ⁇ .
  • the duration of one delay period is equal to the duration of an additional delay period.
  • the M1 is equal to the M2.
  • an additional defer duration includes a plurality of slot durations.
  • the first one of the plurality of slot periods and the second slot period are discontinuous.
  • the time interval between the first slot period and the second slot period of the plurality of slot periods is 7 milliseconds.
  • the duration of one slot duration is 9 microseconds.
  • one slot period is one time sub-pool of the Q time sub-pools.
  • the duration of an additional slot duration is 9 microseconds.
  • an additional slot period includes one of the Q time subpools.
  • the Qth energy detection is used to determine if the given subband is idle (Idle).
  • the Qth energy detection is used to determine if the given subband is capable of being used by the user equipment to transmit the given wireless signal.
  • the Q detection value units are both dBm (millimeters).
  • the units of the Q detection values are all milliwatts (mW).
  • the units of the Q detection values are all Joules.
  • the Q1 is smaller than the Q.
  • the Q is greater than one.
  • the unit of the first reference threshold is dBm (millimeters).
  • the unit of the first reference threshold is milliwatts (mW).
  • the unit of the first reference threshold is joule.
  • the first reference threshold is equal to or less than -72 dBm.
  • the first reference threshold is any value equal to or less than the first given value.
  • the first given value is predefined.
  • the first given value is configured by higher layer signaling.
  • the first reference threshold is freely selected by the user equipment under conditions equal to or less than a first given value.
  • the first given value is predefined.
  • the first given value is configured by high layer signaling
  • the user equipment is a user equipment.
  • the Q energy detection is energy detection in a LBT (Listen Before Talk) process of Cat4, the Q1 is CWp in the LBT process of the Cat4, and the CWp is a competition.
  • the size of the contention window For the specific definition of the CWp, see section 15 of 3GPP TS36.213.
  • At least one of the detected values that do not belong to the Q1 detection values among the Q detection values is lower than the first reference threshold.
  • At least one of the detected values that do not belong to the Q1 detection values of the Q detection values is not lower than the first reference threshold.
  • the duration of any two of the Q1 time subpools is equal.
  • At least two time sub-pools in the Q1 time sub-pools have unequal durations.
  • the Q1 time subpool includes the latest time subpool of the Q time subpools.
  • the Q1 time sub-pools only include slot time periods in the eCCA.
  • the Q time subpools include the Q1 time subpools and Q2 time subpools, and any one of the Q2 time subpools does not belong to the Q1 time subpools.
  • the Q2 is a positive integer not greater than the Q minus the Q1.
  • the Q2 time sub-pools include slot time periods in the initial CCA.
  • the locations of the Q2 time subpools in the Q time subpools are continuous.
  • the detection value corresponding to at least one time sub-pool of the Q2 time sub-pools is lower than the first reference threshold.
  • the detection value corresponding to at least one time sub-pool of the Q2 time sub-pools is not lower than the first reference threshold.
  • the Q2 time sub-pools include all slot periods in all delay periods.
  • the Q2 time sub-pools include all slot periods within at least one additional delay period.
  • the Q2 time subpools include at least one additional slot period.
  • the Q2 time sub-pools include all of the additional slot periods that are determined to be non-idle by energy detection in FIG. 8 and all slot periods in all of the additional delay periods.
  • the Q1 time sub-pools belong to the Q1 sub-pool set, and any one of the Q1 sub-pool sets includes a positive integer time sub-pool in the Q time sub-pools;
  • the detection value corresponding to any one of the Q1 sub-pool sets is lower than the first reference threshold.
  • the number of time sub-pools included in the at least one sub-pool set in the Q1 sub-pool set is equal to 1.
  • At least one of the Q1 sub-pool sets has a number of time sub-pools greater than one.
  • the number of time sub-pools included in the at least two sub-pool sets in the Q1 sub-pool set is unequal.
  • one time sub-pool does not exist in the Q time sub-pools and belongs to two sub-pool sets in the Q1 sub-pool set.
  • all time sub-pools in any one of the Q1 sub-pool sets belong to the same additional delay period or additional slot period determined to be idle by energy detection.
  • the detection value corresponding to at least one time sub-pool in the time sub-pool that does not belong to the Q1 sub-pool set in the Q time sub-pools is lower than the first reference threshold.
  • the detection value corresponding to at least one time sub-pool in the time sub-pool that does not belong to the Q1 sub-pool set in the Q time sub-pools is not lower than the first reference threshold.
  • Embodiment 9 illustrates a schematic diagram of another given access detection being used to determine whether to transmit a given wireless signal at a given time on a given sub-band; as shown in FIG.
  • the given access detection includes performing the Q energy detections in Q time sub-pools on the given sub-band, respectively, to obtain Q detection values, and the Q is a positive integer.
  • the given access detection corresponds to any one of the first access detection or the first access detection in the application, and the given moment corresponds to the first moment in the application.
  • the given wireless signal corresponds to the second wireless signal in the present application. The process of the given access detection can be described by the flowchart in FIG.
  • the user equipment in the present application is in an idle state in step S1101, and it is determined in step S1102 whether or not transmission is required; in step 1103, energy detection is performed in a delay period (deerduration); in step S1104 Determining whether all the slot periods in this delay period are idle, if yes, proceeding to send the wireless signal on the first sub-band in the present application in step S1105; otherwise proceeding to step S1106 in a delay period Performing energy detection; determining in step S1107 whether all of the slot periods in the delay period are idle, and if so, proceeding to step S1108 to set the first counter equal to Q1; otherwise returning to step S1106; determining in step S1109 Whether a counter is 0, if yes, proceeding to send a wireless signal on the first sub-band in step S1105; otherwise proceeding to step S1110 to perform energy detection in an additional time slot period; determining this addition in step S1111 Whether the slot period is idle, if yes, proceeding to step S1112 to decre
  • the Q1 is equal to 0, and the user equipment determines in the step S1104 or the step S1108 that all time slot periods in the delay period are idle, and the result of the given access detection is a channel. Idle, the given wireless signal can be transmitted at the given moment; otherwise the given wireless signal cannot be transmitted at the given moment.
  • the Q1 is not less than 0, and the user equipment determines in step S1104 that not all time slot periods in the delay period are idle.
  • the first counter in FIG. 9 is cleared before the given moment, and the result of the given access detection is that the channel is idle, and the given wireless signal can be transmitted at the given moment; otherwise, The given wireless signal is transmitted at the given moment.
  • the condition that the first counter is cleared is that the Q1 detection values of the Q detection values corresponding to the Q1 time sub-pools in the Q time sub-pools are lower than the first one in the eighth embodiment. Referring to the threshold, the start time of the Q1 time subpools is after step S1108 in FIG.
  • Embodiments 10A through 10B respectively illustrate schematic diagrams of a given antenna port associated with a given energy detection space.
  • the given energy detection corresponds to any one of the first access detection in the first access detection in the present application or any one of the first access detections. It is detected that the given antenna port corresponds to any one of the second antenna port groups in the present application.
  • a given antenna port is spatially related to a given energy detection means that the multi-antenna related reception used for the given energy detection can be used to infer multi-antenna correlation of the given antenna port. Transmit, or multiple antenna related transmissions of the given antenna port can be used to infer the multi-antenna related reception used by the given energy detection.
  • a given antenna port is spatially related to a given energy detection means that the multi-antenna related reception used for the given energy detection is the same as the multi-antenna related transmission of the given antenna port.
  • a given antenna port is spatially related to a given energy detection means that the multi-antenna related reception used by the given energy detection includes multiple antenna related transmissions of the given antenna port.
  • a given antenna port is spatially correlated with a given energy detection means that the beamwidth corresponding to the received beamforming matrix used for the given energy detection is not less than the transmit beamforming of the given antenna port.
  • the beam width corresponding to the matrix is not less than the transmit beamforming of the given antenna port.
  • the given antenna port is spatially correlated with a given energy detection means that the beam direction corresponding to the received beamforming matrix used for the given energy detection includes the transmit beam shaping matrix of the given antenna port. Corresponding beam direction.
  • the reference of a given antenna port to a given energy detection space means that the beam width corresponding to the received beam used by the given energy detection is greater than the beam width corresponding to the transmit beam of the given antenna port.
  • a given antenna port is spatially related to a given energy detection means that the receive beam used for the given energy detection includes a transmit beam for the given antenna port.
  • a given antenna port is uncorrelated with a given energy detection space means that the multi-antenna related reception used for the given energy detection cannot be used to infer multi-antenna correlation of the given antenna port The transmission, or multi-antenna related transmission of the given antenna port, cannot be used to infer the multi-antenna related reception used by the given energy detection.
  • a given antenna port is uncorrelated with a given energy detection space means that the multiple antenna related reception used for the given energy detection is different from the multiple antenna related transmission of the given antenna port.
  • a given antenna port is uncorrelated with a given energy detection space means that the multiple antenna related reception used by the given energy detection does not include multiple antenna related transmissions for a given antenna port.
  • the fact that a given antenna port is not related to a given energy detection space means that the beamwidth corresponding to the received beamforming matrix used for the given energy detection is smaller than the transmit beamforming of the given antenna port.
  • the beam width corresponding to the matrix is smaller than the transmit beamforming of the given antenna port.
  • the fact that a given antenna port is not related to a given energy detection space means that the beam direction corresponding to the received beamforming matrix used for the given energy detection does not include the transmit beam assignment of the given antenna port.
  • the beam direction corresponding to the type matrix means that the beam direction corresponding to the type matrix.
  • the given antenna port is not related to a given energy detection space, that is, the beam width corresponding to the received beam used by the given energy detection is smaller than the beam width corresponding to the transmit beam of the given antenna port.
  • a given antenna port is uncorrelated with a given energy detection space means that the receive beam used by the given energy detection does not include the transmit beam of the given antenna port.
  • the multi-antenna related reception is a spatial Rx parameter.
  • the multi-antenna related reception is a receive beam.
  • the multi-antenna related reception is a receive beamforming matrix.
  • the multi-antenna related reception is a receive analog beam shaping matrix.
  • the multi-antenna related reception is to receive an analog beamforming vector.
  • the multi-antenna related reception is a receive beamforming vector.
  • the multi-antenna related reception is receive spatial filtering.
  • the multi-antenna related transmission is a spatial transmission parameter (Spatial Tx parameters).
  • the multi-antenna related transmission is a transmit beam.
  • the multi-antenna related transmission is a transmit beam shaping matrix.
  • the multi-antenna related transmission is to transmit an analog beamforming matrix.
  • the multi-antenna related transmission is to transmit an analog beamforming vector.
  • the multi-antenna related transmission is a transmit beamforming vector.
  • the multi-antenna related transmission is transmission spatial filtering.
  • the Spatial Tx parameters include a transmit antenna port, a transmit antenna port group, a transmit beam, an transmit analog beam shaping matrix, a transmit analog beamforming vector, a transmit beamforming matrix, and a transmit beam.
  • One or more of the shaping vector and the transmission spatial filtering include a transmit antenna port, a transmit antenna port group, a transmit beam, an transmit analog beam shaping matrix, a transmit analog beamforming vector, a transmit beamforming matrix, and a transmit beam.
  • the spatial transmission parameter comprises a transmit antenna port.
  • the spatial transmission parameter comprises a transmit antenna port group.
  • the spatial transmission parameter comprises a transmit beam.
  • the spatial transmission parameter comprises transmitting an analog beam shaping matrix.
  • the spatial transmission parameter includes transmitting an analog beamforming vector.
  • the spatial transmission parameter comprises a transmit beam shaping matrix.
  • the spatial transmission parameter comprises a transmit beamforming vector.
  • the spatial transmission parameters include a transmit antenna port and a transmit beam.
  • the spatial transmission parameters include a transmit antenna port and a transmit analog beam shaping matrix.
  • the spatial transmission parameters include a transmit antenna port and a transmit analog beamform vector.
  • the spatial transmission parameters include a transmit antenna port and a transmit beam shaping matrix.
  • the spatial transmission parameters include a transmit antenna port and a transmit beamforming vector.
  • the spatial transmission parameters include a transmit antenna port group and a transmit beam.
  • the spatial transmission parameters include a transmit antenna port group and a transmit analog beam shaping matrix.
  • the spatial transmission parameters include a transmit antenna port group and a transmit analog beamform vector.
  • the spatial transmission parameters include a transmit antenna port group and a transmit beam shaping matrix.
  • the spatial transmission parameters include a transmit antenna port group and a transmit beam assignment vector.
  • the spatial Rx parameters include a receive beam, a receive analog beamforming matrix, a receive analog beamforming vector, a receive beamforming matrix, a receive beamforming vector, and a receive spatial filter (spatial). One or more of filtering).
  • the spatial reception parameter comprises a receive beam.
  • the spatial reception parameter comprises receiving an analog beamforming matrix.
  • the spatial reception parameter comprises receiving an analog beamforming vector.
  • the spatial reception parameter comprises a receive beamforming matrix.
  • the spatial receive parameter comprises a receive beamform vector.
  • the spatial reception parameter comprises receive spatial filtering.
  • the number of antennas used for the given energy detection is less than the number of transmit antennas for the given antenna port.
  • the number of antennas used for the given energy detection is greater than one.
  • the number of transmit antennas of the given antenna port is greater than one.
  • the embodiment 10A is related to the given energy detection space, where the given beam used by the given energy detection and the same antenna port of the given antenna port are the same. schematic diagram.
  • the embodiment 10B corresponds to a schematic diagram of the received beam used by the given energy detection including the given antenna port of the transmit beam of the given antenna port and the given energy detection space. .
  • Embodiment 11 exemplifies a relationship of a second reception parameter group, K1 reception parameter groups, and a first reception parameter space, as shown in FIG.
  • the second receiving parameter group is determined from the K1 receiving parameter groups, where K1 is a positive integer greater than 1; the K1 receiving parameter groups all belong to the first receiving parameter space .
  • the second receiving parameter group is a receiving parameter group in which the corresponding access detection result in the K1 receiving parameter group is a channel idle.
  • the first access detection includes K1 access detection, and the K1 reception parameter groups are used for the K1 access detection, respectively.
  • the second receiving parameter group is the only one receiving parameter group in which the corresponding access detection result in the K1 receiving parameter group is the channel idle.
  • the first access detection includes K1 access detection, and the K1 reception parameter groups are used for the K1 access detection, respectively.
  • the user equipment arbitrarily selects one of the K1 receiving parameter groups as the second receiving parameter group.
  • the first access detection includes K1 access detection, and the K1 reception parameter groups are used for the K1 access detection, respectively.
  • the first access detection includes one access detection, and the K1 receiving parameter groups are used for the first access detection.
  • how the user equipment determines from the K1 receiving parameter groups that the second receiving parameter group is a UE implementation issue As an embodiment, how the user equipment determines from the K1 receiving parameter groups that the second receiving parameter group is a UE implementation issue.
  • the first access detection includes K1 access detection, and the K1 reception parameter groups are used for the K1 access detection, respectively.
  • the first access detection includes one access detection, and the K1 receiving parameter groups are used for the first access detection.
  • the second receiving parameter group is a receiving parameter group of a corresponding minimum energy detection result in the K1 receiving parameter groups.
  • the first access detection includes K1 access detection, and the K1 reception parameter groups are used for the K1 access detection, respectively.
  • the first access detection includes one access detection, and the K1 receiving parameter groups are used for the first access detection.
  • the energy detection result corresponds to one access detection.
  • the energy detection result is an average value of the detection values of the X-th energy detection in one access detection, and the X is a positive integer.
  • the energy detection result is a sum of detection values of X times energy detection in one access detection, and the X is a positive integer.
  • the energy detection result is an average value of the largest X detection values among the detection values in all energy detections in one access detection, and the X is a positive integer.
  • the energy detection result is the sum of the largest X detection values among the detection values in all the energy detections in one access detection, and the X is a positive integer.
  • the energy detection result is an average value of detection values in all energy detections in one access detection.
  • the energy detection result is the sum of the detected values in all energy detections in one access detection.
  • Embodiment 12 illustrates a schematic diagram of a first message, as shown in FIG.
  • the first information is used to determine K1-1 antenna port groups in the first antenna port group and the K antenna port groups in the present application, as described in the present application.
  • K1-1 reception parameter groups other than the first reception parameter group in the K1 reception parameter groups are used for reception of wireless signals transmitted on the K1-1 antenna port groups, respectively.
  • the first information explicitly indicates K1-1 antenna port groups in the first antenna port group and the K antenna port groups.
  • the first information implicitly indicates K1-1 antenna port groups in the first antenna port group and the K antenna port groups.
  • the first information includes the first antenna port group and the K1-1 antenna port groups of the K antenna port groups in a given antenna port group set.
  • Index, the given set of antenna port groups is configured for higher layer signaling.
  • the first information includes an index of the first antenna port group in a given antenna port group set, and K1-1 antennas in the K antenna port group.
  • An index of the port group in the K antenna port groups, the given antenna port group set being configured for higher layer signaling.
  • Embodiments 13A to 13C respectively illustrate schematic diagrams of another first information.
  • the first information is used to determine a first threshold, and the first received parameter set is used together with the first threshold to determine the first received parameter space.
  • the first information explicitly indicates the first threshold.
  • the first information implicitly indicates the first threshold.
  • the first information is used to determine the first antenna port group and the first threshold.
  • the first information explicitly indicates the first antenna port group.
  • the first information implicitly indicates the first antenna port group.
  • the first information indicates an index of the first antenna port group in a given antenna port group set
  • the given antenna port group set is a higher layer signaling configuration.
  • the first information explicitly indicates the first threshold.
  • the first information implicitly indicates the first threshold.
  • the first information includes an index of the first threshold in a given threshold set, and the given threshold set is configured by a higher layer signaling.
  • the first information includes an index of the first threshold in a given threshold set, the given threshold set being predefined.
  • the first information is used to determine the first antenna port group, the K antenna port groups, and the first threshold.
  • the first information explicitly indicates the first antenna port group.
  • the first information implicitly indicates the first antenna port group.
  • the first information explicitly indicates the K antenna port groups.
  • the first information implicitly indicates the K antenna port groups.
  • the first information explicitly indicates the first threshold.
  • the first information implicitly indicates the first threshold.
  • the first information includes an index of the first antenna port group and the K antenna port groups in a given antenna port group set, the given antenna port group The set is configured for higher layer signaling.
  • the first information further includes the first threshold.
  • the first information further includes an index of the first threshold in a given threshold set, where the given threshold set is configured by a higher layer signaling.
  • the first information further includes an index of the first threshold in a given threshold set, the given threshold set being predefined.
  • the embodiment 13A corresponds to the first information indicating a first threshold.
  • the embodiment 13B corresponds to the first information indicating a first antenna port group and the first threshold.
  • the embodiment 13C corresponds to the first information indicating a first antenna port group, the K antenna port groups, and the first threshold.
  • Embodiment 14 illustrates a schematic diagram for determining a first receive parameter space, as shown in FIG.
  • the first receiving parameter group in the present application is used together with the first threshold in the present application to determine the first receiving parameter space; any one of the first receiving parameter spaces
  • the correlation coefficient of a receiving parameter group and the first receiving parameter group is not lower than the first threshold.
  • a correlation coefficient of any one of the first receiving parameter space and the first receiving parameter group is higher than the first threshold.
  • the given set of receive parameters is one of the receive parameter sets in the first receive parameter space, the given set of receive parameters constitutes a first column vector, and the first set of receive parameters constitutes a second column vector And a correlation coefficient of the given receiving parameter group and the first receiving parameter group is an inner product of the first column vector and the second column vector, the first column vector and the second column vector
  • the norm is equal to 1.
  • the given receiving parameter group is a receiving parameter group in the first receiving parameter space, the given receiving parameter group is composed of a column vector w, and the first receiving parameter group is composed of a column vector v, The correlation coefficient ⁇ of the given receiving parameter group and the first receiving parameter group is satisfied
  • the given receiving parameter group is a receiving parameter group in the first receiving parameter space
  • the given receiving parameter group is composed of a column vector w
  • the first receiving parameter group is composed of a column vector v
  • the correlation coefficient ⁇ of the given receiving parameter group and the first receiving parameter group satisfies ⁇ ?
  • the first threshold is a real number not less than 0 and not more than 1.
  • the first threshold is a real number not less than 0 and less than 1.
  • Embodiment 15 illustrates another schematic diagram for determining the first receiving parameter space, as shown in FIG.
  • the correlation coefficient between the given reception parameter group and the transmission parameter group of the first wireless signal in the present application is not lower than the first threshold in the present application, and the given reception parameter group is For receiving an uplink wireless signal transmitted using a given transmission parameter group, any one of the first reception parameter spaces is used to generate the given transmission parameter group.
  • a correlation coefficient between the given set of receiving parameters and a set of transmission parameters of the first wireless signal is higher than the first threshold.
  • the transmission parameter set of the first wireless signal includes a spatial transmission parameter.
  • the transmission parameter set of the first wireless signal includes a transmit beam.
  • the transmission parameter set of the first wireless signal includes a transmit beam shaping matrix.
  • the sending parameter set of the first wireless signal comprises transmitting an analog beam shaping matrix.
  • the transmission parameter set of the first wireless signal includes a transmit beamforming vector.
  • the transmission parameter set of the first wireless signal includes transmission spatial filtering.
  • the given set of receive parameters includes spatial receive parameters.
  • the given set of receive parameters includes a receive beam.
  • the given set of receive parameters includes a receive beamforming matrix.
  • the given set of receive parameters includes receiving an analog beamforming matrix.
  • the given set of receive parameters includes a receive beamform vector.
  • the given set of receive parameters includes receive spatial filtering.
  • the given set of receiving parameters constitutes a first column vector
  • the sending parameter group of the first wireless signal constitutes a second column vector
  • the given receiving parameter group and the first wireless signal The correlation coefficient of the transmission parameter set is an inner product of the first column vector and the second column vector, and the norms of the first column vector and the second column vector are both equal to one.
  • the given set of receiving parameters constitutes a column vector w
  • the sending parameter group of the first wireless signal constitutes a column vector v
  • the given receiving parameter group and the sending of the first wireless signal The correlation coefficient ⁇ of the parameter group satisfies
  • the given set of receiving parameters constitutes a column vector w
  • the sending parameter group of the first wireless signal constitutes a column vector v
  • the given receiving parameter group and the sending of the first wireless signal The correlation coefficient ⁇ of the parameter group satisfies ⁇ ?
  • any one of the first receiving parameter spaces used to generate the given sending parameter group means that any one of the first receiving parameter spaces can be used.
  • the given set of transmission parameters is inferred.
  • any one of the first receiving parameter spaces used to generate the given sending parameter group refers to: the given sending parameter group and the first receiving parameter space Any receive parameter group is the same.
  • any one of the first receiving parameter spaces used to generate the given sending parameter group is: any one of the first receiving parameter spaces includes the Given the send parameter group.
  • the first threshold is a real number not less than 0 and not more than 1.
  • the first threshold is a real number not less than 0 and less than 1.
  • Embodiment 16 illustrates another schematic diagram for determining the first receiving parameter space, as shown in FIG.
  • the deviation between the first reference reception quality and the reception quality obtained by receiving the downlink radio signal by using any one of the first reception parameter spaces is not greater than the first threshold in the present application.
  • the first reference reception quality is a reception quality obtained by receiving the downlink wireless signal by using the first reception parameter group in the present application.
  • the deviation between the first reference reception quality and the reception quality obtained by receiving the downlink wireless signal by using any one of the first reception parameter spaces is smaller than the first threshold.
  • the deviation of the first reference reception quality and the given first reception quality is a difference between the first reference reception quality minus the given first reception quality
  • the given first reception quality is Receiving quality obtained by receiving a downlink wireless signal for a given one of the first receiving parameter spaces.
  • the first reference reception quality is not less than the given first reception quality.
  • the deviation of the first reference reception quality and the given first reception quality is a value not less than zero.
  • the deviation of the first reference reception quality and the given first reception quality is an absolute value of the first reference reception quality minus the difference of the given first reception quality
  • the given first The reception quality is a reception quality obtained by receiving a downlink wireless signal by using a given reception parameter group in the first reception parameter space.
  • the first reference reception quality is not less than the given first reception quality.
  • the first reference reception quality is smaller than the given first reception quality.
  • the deviation of the first reference reception quality and the given first reception quality is a value not less than zero.
  • the deviation of the first reference reception quality and the reception quality obtained by receiving the downlink radio signal by using any one of the first reception parameter spaces is a value not less than zero.
  • the first reference reception quality and the reception quality obtained by using any one of the first receiving parameter spaces to receive the downlink wireless signal include RSRP (Reference Signals Received Power). power).
  • the first reference reception quality and the reception quality obtained by receiving any downlink parameter in the first reception parameter space include RSRQ (Reference Signals Received Quality). quality).
  • the first reference reception quality and the reception quality obtained by using any one of the first receiving parameter spaces to receive the downlink wireless signal include SINR (Signal-to-Interference-plus- Noise Ratio, signal to noise ratio.
  • the first reference reception quality and the reception quality obtained by receiving the downlink wireless signal by using any one of the first receiving parameter spaces include a CQI (Channel Quality Indicator).
  • the first reference reception quality and the reception quality obtained by using any one of the first receiving parameter spaces to receive the downlink wireless signal include a BLER (Block Error Rate). .
  • the first reference reception quality and the unit of receiving quality obtained by receiving any downlink parameter in the first receiving parameter space are all in dB.
  • the first reference reception quality and the unit of receiving quality obtained by receiving any downlink data signal in any one of the first receiving parameter spaces are both dBm.
  • the first reference reception quality and the receiving quality obtained by receiving any downlink parameter in the first receiving parameter space are all milliwatts.
  • the unit of the first threshold is dB.
  • the unit of the first threshold is dBm.
  • the unit of the first threshold is milliwatts.
  • the first threshold is a real number greater than zero.
  • the first threshold is a real number not less than zero.
  • Embodiment 17 illustrates another schematic diagram for determining the first receiving parameter space, as shown in FIG.
  • the deviation between the second reference reception quality and the given reception quality is not greater than the first threshold
  • the second reference reception quality is a reception quality obtained by transmitting an uplink radio signal by using a reference transmission parameter group
  • the given reception quality is the reception quality obtained by sending the uplink radio signal by using a given transmission parameter group
  • the first reception parameter group in the present application is used to generate the reference transmission parameter group
  • the first reception parameter Any set of receive parameters in space is used to generate the given set of transmit parameters.
  • the deviation between the second reference reception quality and the given reception quality is less than the first threshold.
  • the deviation of the second reference reception quality and the given reception quality is a difference of the second reference reception quality minus the given reception quality.
  • the second reference reception quality is not less than the given reception quality.
  • the deviation of the second reference reception quality and the given reception quality is a value not less than zero.
  • the deviation of the second reference reception quality and the given reception quality is an absolute value of the second reference reception quality minus the difference of the given reception quality.
  • the second reference reception quality is not less than the given reception quality.
  • the second reference reception quality is smaller than the given reception quality.
  • the deviation of the second reference reception quality and the given reception quality is a value not less than zero.
  • the deviation of the second reference reception quality and the given reception quality is a value not less than zero.
  • the using the first receiving parameter group to generate the reference sending parameter group means that the first receiving parameter group can be used to infer the reference sending parameter group.
  • the first receiving parameter group is used to generate the reference sending parameter group, that is, the reference sending parameter group and the first receiving parameter group are the same.
  • the first receiving parameter group is used to generate the reference sending parameter group, that is, the first receiving parameter group includes the reference sending parameter group.
  • the reference transmission parameter set includes a spatial transmission parameter.
  • the reference transmission parameter set includes a transmit beam.
  • the reference transmission parameter set includes a transmit beam shaping matrix.
  • the reference transmission parameter set includes transmitting an analog beam shaping matrix.
  • the reference transmission parameter set includes a transmit beamforming vector.
  • the reference transmission parameter set includes transmission spatial filtering.
  • the given set of transmission parameters includes spatial transmission parameters.
  • the given set of transmission parameters includes a transmit beam.
  • the given set of transmission parameters includes a transmit beam shaping matrix.
  • the given set of transmission parameters includes transmitting an analog beamforming matrix.
  • the given set of transmit parameters includes a transmit beamforming vector.
  • the given set of transmit parameters includes transmit spatial filtering.
  • the second reference reception quality and the given reception quality both comprise an RSRP.
  • the second reference reception quality and the given reception quality both comprise RSRQ.
  • the second reference reception quality and the given reception quality both include an SINR.
  • the second reference reception quality and the given reception quality both comprise a CQI.
  • the second reference reception quality and the given reception quality both include a BLER.
  • the unit of the first threshold is dB.
  • the unit of the first threshold is dBm.
  • the unit of the first threshold is milliwatts.
  • the first threshold is a real number greater than zero.
  • the first threshold is a real number not less than zero.
  • Embodiment 18 illustrates a schematic diagram of an antenna port and an antenna port group, as shown in FIG.
  • one antenna port group includes a positive integer number of antenna ports; one antenna port is formed by antenna virtualization in a positive integer number of antenna groups; and one antenna group includes a positive integer antenna.
  • An antenna group is connected to the baseband processor through an RF (Radio Frequency) chain, and different antenna groups correspond to different RF chains.
  • a mapping coefficient of all antennas within a positive integer number of antenna groups included in a given antenna port to the given antenna port constitutes a beamforming vector corresponding to the given antenna port.
  • the mapping coefficients of the plurality of antennas included in any given antenna group included in a given integer number of antenna groups included in the given antenna port to the given antenna port constitute an analog beamforming vector of the given antenna group.
  • the diagonal arrangement of the analog beamforming vectors corresponding to the positive integer antenna groups constitutes an analog beam shaping matrix corresponding to the given antenna port.
  • the mapping coefficients of the positive integer number of antenna groups to the given antenna port constitute a digital beamforming vector corresponding to the given antenna port.
  • the beamforming vector corresponding to the given antenna port is obtained by multiplying the analog beam shaping matrix and the digital beam shaping vector corresponding to the given antenna port.
  • Different antenna ports in one antenna port group are composed of the same antenna group, and different antenna ports in the same antenna port group correspond to different beamforming vectors.
  • antenna port group #0 and antenna port group #1 Two antenna port groups are shown in Figure 18: antenna port group #0 and antenna port group #1.
  • the antenna port group #0 is composed of an antenna group #0
  • the antenna port group #1 is composed of an antenna group #1 and an antenna group #2.
  • the mapping coefficients of the plurality of antennas in the antenna group #0 to the antenna port group #0 constitute an analog beamforming vector #0
  • the mapping coefficients of the antenna group #0 to the antenna port group #0 constitute a number Beamforming vector #0
  • the mapping coefficients of the plurality of antennas in the antenna group #1 and the plurality of antennas in the antenna group #2 to the antenna port group #1 constitute an analog beamforming vector #1 and an analog beamforming vector #, respectively. 2.
  • the mapping coefficients of the antenna group #1 and the antenna group #2 to the antenna port group #1 constitute a digital beamforming vector #1.
  • a beamforming vector corresponding to any one of the antenna port groups #0 is obtained by multiplying the analog beamforming vector #0 and the digital beamforming vector #0.
  • the beamforming vector corresponding to any antenna port in the antenna port group #1 is an analog beam shaping matrix formed by diagonally arranging the analog beamforming vector #1 and the analog beamforming vector #2 Obtained from the product of the digital beamforming vector #1.
  • one antenna port group includes one antenna port.
  • the antenna port group #0 in Fig. 18 includes one antenna port.
  • the analog beamforming matrix corresponding to the one antenna port is reduced into an analog beamforming vector, and the digital beamforming vector corresponding to the one antenna port is reduced to a scalar.
  • the beamforming vector corresponding to one antenna port is equal to the analog beamforming vector corresponding to the one antenna port.
  • the digital beamforming vector #0 in FIG. 18 is reduced to a scalar, and the beamforming vector corresponding to the antenna port in the antenna port group #0 is the analog beamforming vector #0.
  • one antenna port group includes a plurality of antenna ports.
  • the antenna port group #1 in FIG. 18 includes a plurality of antenna ports.
  • the plurality of antenna ports correspond to the same analog beam shaping matrix.
  • At least two of the plurality of antenna ports correspond to the same analog beam shaping matrix.
  • At least two of the plurality of antenna ports correspond to different analog beam shaping matrices.
  • the plurality of antenna ports correspond to different digital beamforming vectors.
  • At least two of the plurality of antenna ports correspond to the same digital beamforming vector.
  • At least two of the plurality of antenna ports correspond to different digital beamforming vectors.
  • any two antenna ports of different antenna port groups correspond to different analog beam shaping matrices.
  • At least two of the different antenna port groups correspond to different analog beam shaping matrices.
  • At least two of the different antenna port groups correspond to the same analog beam shaping matrix.
  • two different antenna port groups are QCL (Quasi Co-Located).
  • two different antenna port groups are not QCLs.
  • any two of the antenna port groups are QCLs.
  • any two of the antenna port groups are not QCL.
  • At least two of the antenna port groups are QCLs.
  • At least two of the antenna port groups are not QCL.
  • any two of the antenna port groups are spatial QCLs.
  • any two antenna ports in an antenna port group are not spatial QCLs.
  • At least two of the antenna port groups are spatial QCLs.
  • At least two of the antenna port groups are not spatial QCLs.
  • Embodiment 19 exemplifies a structural block diagram of a processing device in a UE, as shown in FIG.
  • the UE processing apparatus 1200 is mainly composed of a first receiver module 1201 and a first transceiver module 1202.
  • the first receiver module 1201 includes the receiver 456, the receiving processor 452, and the controller/processor 490 in Embodiment 4.
  • the first receiver module 1201 includes at least two of the receiver 456, the receiving processor 452, and the controller/processor 490 in Embodiment 4.
  • the first transceiver module 1202 includes a receiver/transmitter 456, a receive processor 452, a transmit processor 455, and a controller/processor 490 in Embodiment 4.
  • the first transceiver module 1202 includes at least the first three of the receiver/transmitter 456, the receive processor 452, the transmit processor 455, and the controller/processor 490 in Embodiment 4.
  • a first receiver module 1201 receiving a first wireless signal, the first wireless signal being transmitted by a first antenna port group; receiving first information;
  • a first transceiver module 1202 performing a first access detection to determine whether to transmit uplink at a first time on the first sub-band; if so, passing the second antenna at a first time on the first sub-band The port group transmits a second wireless signal; if not, abandoning transmitting the second wireless signal at a first time on the first sub-band.
  • the first antenna port group includes a positive integer number of antenna ports
  • the second antenna port group includes a positive integer number of antenna ports
  • a first receiving parameter group is used for receiving the first wireless signal
  • the second receiving parameter group is used to generate the second antenna port group
  • the first receiving parameter group and the second receiving parameter group both belong to a first receiving parameter space, and the first information and the first A set of receive parameters is used in common to determine the first receive parameter space.
  • the first transceiver module 1202 further determines the second receiving parameter group from K1 receiving parameter groups, where K1 is a positive integer greater than 1; wherein the K1 receiving parameter groups are It belongs to the first receiving parameter space.
  • the first receiver module 1201 further receives K wireless signals, where K is a positive integer greater than 1; wherein the K wireless signals are respectively sent by K antenna port groups, K receiving a parameter group is respectively used for receiving the K wireless signals, and any one of the K1 receiving parameter groups not including the first receiving parameter group is one of the K receiving parameter groups. Parameter group.
  • the user equipment determines the K1 receiving parameter groups by themselves.
  • the first information is used to determine a first threshold, and the first set of received parameters is used together with the first threshold to determine the first received parameter space.
  • a correlation coefficient of any one of the first receiving parameter space and the first receiving parameter group is not lower than the first threshold.
  • the first reference reception quality and the reception quality obtained by receiving the downlink wireless signal by using any one of the first reception parameter spaces are not greater than the first threshold, and the first reference reception The quality is the reception quality obtained by receiving the downlink wireless signal by using the first receiving parameter group.
  • the deviation between the second reference reception quality and the given reception quality is not greater than the first threshold
  • the second reference reception quality is a reception quality obtained by transmitting an uplink wireless signal by using a reference transmission parameter group
  • the predetermined reception quality is a reception quality obtained by transmitting an uplink radio signal by using a given transmission parameter group
  • the first reception parameter group is used to generate the reference transmission parameter group
  • any one of the first reception parameter spaces A group is used to generate the given set of transmission parameters.
  • Embodiment 20 exemplifies a structural block diagram of a processing device in a base station device, as shown in FIG.
  • the processing device 1300 in the base station device is mainly composed of a second transmitter module 1301 and a second receiver module 1302.
  • the second transmitter module 1301 includes the transmitter 416, the transmit processor 415, and the controller/processor 440 in Embodiment 4.
  • the second transmitter module 1301 includes at least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 in Embodiment 4.
  • the second receiver module 1302 includes the receiver 416, the receiving processor 412, and the controller/processor 440 in Embodiment 4.
  • the second receiver module 1302 includes at least the first two of the receiver 416, the receiving processor 412, and the controller/processor 440 in Embodiment 4.
  • a second transmitter module 1301 transmitting a first wireless signal, the first wireless signal being transmitted by the first antenna port group; transmitting the first information;
  • a second receiver module 1302 monitoring the second wireless signal at a first time on the first sub-band;
  • the first access detection is used to determine whether to perform uplink transmission at a first moment on the first sub-band; if so, to pass a second at a first moment on the first sub-band Transmitting, by the antenna port group, the second wireless signal; if not, abandoning transmitting the second wireless signal at a first time on the first sub-band;
  • the first antenna port group includes a positive integer number of antenna ports,
  • the second antenna port group includes a positive integer number of antenna ports;
  • a first receiving parameter set is used for receiving the first wireless signal, and a second receiving parameter set is used to generate the second antenna port group;
  • a receiving parameter group and the second receiving parameter group all belong to a first receiving parameter space, and the first information and the first receiving parameter group are used together to determine the first receiving parameter space.
  • the receiver of the first information determines the second set of receiving parameters from K1 receiving parameter groups, where K1 is a positive integer greater than 1, wherein the K1 receiving parameter groups belong to The first receiving parameter space.
  • the second transmitter module 1301 further sends K wireless signals, where K is a positive integer greater than 1; wherein the K wireless signals are respectively sent by K antenna port groups, K receiving a parameter group is respectively used for receiving the K wireless signals, and any one of the K1 receiving parameter groups different from the first receiving parameter group is one of the K receiving parameter groups. Parameter group.
  • the receiver of the first information determines the K1 receiving parameter groups by themselves.
  • the first information is used to determine a first threshold, and the first set of received parameters is used together with the first threshold to determine the first received parameter space.
  • a correlation coefficient of any one of the first receiving parameter space and the first receiving parameter group is not lower than the first threshold.
  • the first reference reception quality and the reception quality obtained by receiving the downlink wireless signal by using any one of the first reception parameter spaces are not greater than the first threshold, and the first reference reception The quality is the reception quality obtained by receiving the downlink wireless signal by using the first receiving parameter group.
  • the deviation between the second reference reception quality and the given reception quality is not greater than the first threshold
  • the second reference reception quality is a reception quality obtained by transmitting an uplink wireless signal by using a reference transmission parameter group
  • the predetermined reception quality is a reception quality obtained by transmitting the uplink radio signal by using a given transmission parameter group
  • the first reception parameter group is used to generate the reference transmission parameter group, and any one of the first reception parameter spaces.
  • a set of receive parameters is used to generate the given set of transmit parameters.
  • the user equipment, terminal and UE in the present application include but are not limited to a drone, a communication module on the drone, a remote control aircraft, an aircraft, a small aircraft, a mobile phone, a tablet computer, a notebook, a vehicle communication device, a wireless sensor, an internet card, Internet of Things terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC), data card, network card, vehicle communication device, low-cost mobile phone, low Cost wireless communication devices such as tablets.
  • the base station or system equipment in the present application includes, but is not limited to, a macro cell base station, a micro cell base station, a home base station, a relay base station, a gNB (NR node B) NR node B, a TRP (Transmitter Receiver Point), and the like. device.
  • a macro cell base station a micro cell base station
  • a home base station a relay base station
  • a gNB NR node B
  • TRP Transmitter Receiver Point

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的用户设备、基站中的方法和装置。用户设备接收第一无线信号,以及接收第一信息,然后执行第一接入检测以确定是否在第一子频带上的第一时刻进行上行发送;如果是,在所述第一子频带上的第一时刻通过第二天线端口组发送第二无线信号;如果否,放弃在所述第一子频带上的第一时刻发送第二无线信号。其中,第一接收参数组被用于所述第一无线信号的接收,第二接收参数组被用于生成所述第二天线端口组;所述第一接收参数组和所述第二接收参数组都属于第一接收参数空间,所述第一信息和所述第一接收参数组共同被用于确定所述第一接收参数空间。上述方法提高了上行信道接入机会,从而提升了系统容量。

Description

一种被用于无线通信的用户设备、基站中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是涉及支持在非授权频谱(Unlicensed Spectrum)上进行数据传输的通信方法和装置。
背景技术
传统的3GPP(3rd GenerationPartner Project,第三代合作伙伴项目)LTE(Long-term Evolution,长期演进)系统中,数据传输只能发生在授权频谱上,然而随着业务量的急剧增大,尤其在一些城市地区,授权频谱可能难以满足业务量的需求。Release 13及Release 14中非授权频谱上的通信被蜂窝系统引入,并用于下行和上行数据的传输。为保证和其它非授权频谱上的接入技术兼容,LBT(Listen Before Talk,会话前侦听)技术被LAA(Licensed Assisted Access,授权频谱辅助接入)采纳以避免因多个发射机同时占用相同的频率资源而带来的干扰。LTE系统的发射机采纳准全向天线来执行LBT。
目前,5G NR(New Radio Access Technology,新无线接入技术)的技术讨论正在进行中,其中大规模(Massive)MIMO(Multi-Input Multi-Output)成为下一代移动通信的一个研究热点。大规模MIMO中,多个天线通过波束赋形(Beamforming),形成指向一个特定空间方向的波束来提高通信质量,当考虑到波束赋形带来的覆盖特性时,传统的LAA技术需要被重新考虑,比如基于LBT的无线信号传输。
发明内容
发明人通过研究发现,在NR系统中,波束赋形将会被大规模使用,在保证避免多个发射机之间的同频干扰的情况下,如何提高信道接入机会,提升系统容量是需要解决的一个关键问题。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种用于无线通信的用户设备中的方法,其特征在于,包括:
接收第一无线信号,所述第一无线信号被第一天线端口组发送;
接收第一信息;
执行第一接入检测以确定是否在第一子频带上的第一时刻进行上行发送;如果是,在所述第一子频带上的第一时刻通过第二天线端口组发送第二无线信号;如果否,放弃在所述第一子频带上的第一时刻发送第二无线信号;
其中,所述第一天线端口组包括正整数个天线端口,所述第二天线端口组包括正整数个天线端口;第一接收参数组被用于所述第一无线信号的接收,第二接收参数组被用于生成所述第二天线端口组;所述第一接收参数组和所述第二接收参数组都属于第一接收参数空间,所述第一信息和所述第一接收参数组共同被用于确定所述第一接收参数空间。
作为一个实施例,本申请要解决的问题是:在NR系统中,由于采用了大规模MIMO技术来发送无线信号,在不同波束方向上的干扰状况会存在很大差异,基于波束的LBT可以更真实的反应一个特定波束方向上的干扰情况。在非授权(Grant free)上行传输中,用户设备的上行业务量通常比较小,且下行接收受限,用户设备通常在基站预留的时频资源采用预分配的波束进行非授权上行传输。通常预分配的波束的更新比较慢,那么就不能随着信道变化或干扰环境的变化对该波束进行快速调整,这样可能会对信道接入机会或上行传输产生影响。因此,如何提高信道接入机会,提升系统容量是一个需要解决的关键问题。
作为一个实施例,上述方法的实质在于,第一接收参数空间对应一个有限的波束范围,该波束范围包括多个波束。用户设备可以在这个波束范围内监听信道,如果基于其中一个波束的LBT检测结果为信道空闲,那么用户设备可以采用这个波束进行上行无线信号传输。采用上述方法的好处在于,与采用一个预配置的波束相比,提高了上行信道接入机会,从而提升了系统容量。
根据本申请的一个方面,上述方法的特征在于,包括:
从K1个接收参数组中确定所述第二接收参数组,所述K1是大于1的正整数;
其中,所述K1个接收参数组都属于所述第一接收参数空间。
根据本申请的一个方面,上述方法的特征在于,包括:
接收K个无线信号,所述K是大于1的正整数;
其中,所述K个无线信号分别被K个天线端口组发送,K个接收参数组分别被用于所述K个无线信号的接收,所述K1个接收参数组中任一不包括所述第一接收参数组的接收参数组是所述K个接收参数组中的一个接收参数组。
根据本申请的一个方面,上述方法的特征在于,在所述第一接收参数空间内,所述用户设备自行确定所述K1个接收参数组。
根据本申请的一个方面,上述方法的特征在于,所述第一信息被用于确定第一阈值,所述第一接收参数组与所述第一阈值共同被用于确定所述第一接收参数空间。
根据本申请的一个方面,上述方法的特征在于,所述第一接收参数空间中的任一接收参数组与所述第一接收参数组的相关系数不低于所述第一阈值。
根据本申请的一个方面,上述方法的特征在于,第一参考接收质量和采用所述第一接收参数空间中的任一接收参数组接收下行无线信号得到的接收质量的偏差不大于所述第一阈值,所述第一参考接收质量是采用第一接收参数组接收所述下行无线信号得到的接收质量。
根据本申请的一个方面,上述方法的特征在于,第二参考接收质量和给定接收质量的偏差不大于所述第一阈值,所述第二参考接收质量是采用参考发送参数组发送上行无线信号得到的接收质量,所述给定接收质量是采用给定发送参数组发送上行无线信号得到的接收质量,所述第一接收参数组被用于生成所述参考发送参数组,所述第一接收参数空间中的任一接收参数组被用于生成所述给定发送参数组。
本申请公开了一种用于无线通信的基站设备中的方法,其特征在于,包括:
发送第一无线信号,所述第一无线信号被第一天线端口组发送;
发送第一信息;
在第一子频带上的第一时刻监测第二无线信号;
其中,第一接入检测被用于确定是否在所述第一子频带上的第一时刻进行上行发送;如果是,在所述第一子频带上的第一时刻通过第二天线端口组发送所述第二无线信号;如果否,放弃在所述第一子频带上的第一时刻发送所述第二无线信号;所述第一天线端口组包括正整数个天线端口,所述第二天线端口组包括正整数个天线端口;第一接收参数组被用于所述第一无线信号的接收,第二接收参数组被用于生成所述第二天线端口组;所述第一接收参数组和所述第二接收参数组都属于第一接收参数空间,所述第一信息和所述第一接收参数组共同被用于确定所述第一接收参数空间。
根据本申请的一个方面,上述方法的特征在于,所述第一信息的接收者从K1个接收参数组中确定所述第二接收参数组,所述K1是大于1的正整数;其中,所述K1个接收参数组都属于所述第一接收参数空间。
根据本申请的一个方面,上述方法的特征在于,包括:
发送K个无线信号,所述K是大于1的正整数;
其中,所述K个无线信号分别被K个天线端口组发送,K个接收参数组分别被用于 所述K个无线信号的接收,所述K1个接收参数组中任一不同于所述第一接收参数组的接收参数组是所述K个接收参数组中的一个接收参数组。
根据本申请的一个方面,上述方法的特征在于,在所述第一接收参数空间内,所述第一信息的接收者自行确定所述K1个接收参数组。
根据本申请的一个方面,上述方法的特征在于,所述第一信息被用于确定第一阈值,所述第一接收参数组与所述第一阈值共同被用于确定所述第一接收参数空间。
根据本申请的一个方面,上述方法的特征在于,所述第一接收参数空间中的任一接收参数组与所述第一接收参数组的相关系数不低于所述第一阈值。
根据本申请的一个方面,上述方法的特征在于,第一参考接收质量和采用所述第一接收参数空间中的任一接收参数组接收下行无线信号得到的接收质量的偏差不大于所述第一阈值,所述第一参考接收质量是采用第一接收参数组接收所述下行无线信号得到的接收质量。
根据本申请的一个方面,上述方法的特征在于,第二参考接收质量和给定接收质量的偏差不大于所述第一阈值,所述第二参考接收质量是采用参考发送参数组发送上行无线信号得到的接收质量,所述给定接收质量是采用给定发送参数组发送所述上行无线信号得到的接收质量,所述第一接收参数组被用于生成所述参考发送参数组,所述第一接收参数空间中的任一接收参数组被用于生成所述给定发送参数组。
本申请公开了一种用于无线通信的用户设备,其特征在于,包括:
第一接收机模块,接收第一无线信号,所述第一无线信号被第一天线端口组发送;接收第一信息;
第一收发机模块,执行第一接入检测以确定是否在第一子频带上的第一时刻进行上行发送;如果是,在所述第一子频带上的第一时刻通过第二天线端口组发送第二无线信号;如果否,放弃在所述第一子频带上的第一时刻发送第二无线信号;
其中,所述第一天线端口组包括正整数个天线端口,所述第二天线端口组包括正整数个天线端口;第一接收参数组被用于所述第一无线信号的接收,第二接收参数组被用于生成所述第二天线端口组;所述第一接收参数组和所述第二接收参数组都属于第一接收参数空间,所述第一信息和所述第一接收参数组共同被用于确定所述第一接收参数空间。
作为一个实施例,上述用户设备的特征在于,所述第一收发机模块还从K1个接收参数组中确定所述第二接收参数组,所述K1是大于1的正整数;其中,所述K1个接收参数组都属于所述第一接收参数空间。
作为一个实施例,上述用户设备的特征在于,所述第一接收机模块还接收K个无线信号,所述K是大于1的正整数;其中,所述K个无线信号分别被K个天线端口组发送,K个接收参数组分别被用于所述K个无线信号的接收,所述K1个接收参数组中任一不包括所述第一接收参数组的接收参数组是所述K个接收参数组中的一个接收参数组。
作为一个实施例,上述用户设备的特征在于,在所述第一接收参数空间内,所述用户设备自行确定所述K1个接收参数组。
作为一个实施例,上述用户设备的特征在于,所述第一信息被用于确定第一阈值,所述第一接收参数组与所述第一阈值共同被用于确定所述第一接收参数空间。
作为一个实施例,上述用户设备的特征在于,所述第一接收参数空间中的任一接收参数组与所述第一接收参数组的相关系数不低于所述第一阈值。
作为一个实施例,上述用户设备的特征在于,第一参考接收质量和采用所述第一接收参数空间中的任一接收参数组接收下行无线信号得到的接收质量的偏差不大于所述第一阈值,所述第一参考接收质量是采用第一接收参数组接收所述下行无线信号得到的接收质量。
作为一个实施例,上述用户设备的特征在于,第二参考接收质量和给定接收质量的偏差不大于所述第一阈值,所述第二参考接收质量是采用参考发送参数组发送上行无线信号得到的接收质量,所述给定接收质量是采用给定发送参数组发送上行无线信号得到的接收质量,所述第一接收参数组被用于生成所述参考发送参数组,所述第一接收参数空间中的任一接收参数组被用于生成所述给定发送参数组。
本申请公开了一种用于无线通信的基站设备中的方法,其特征在于,包括:
第二发射机模块,发送第一无线信号,所述第一无线信号被第一天线端口组发送;发送第一信息;
第二接收机模块,在第一子频带上的第一时刻监测第二无线信号;
其中,第一接入检测被用于确定是否在所述第一子频带上的第一时刻进行上行发送;如果是,在所述第一子频带上的第一时刻通过第二天线端口组发送所述第二无线信号;如果否,放弃在所述第一子频带上的第一时刻发送所述第二无线信号;所述第一天线端口组包括正整数个天线端口,所述第二天线端口组包括正整数个天线端口;第一接收参数组被用于所述第一无线信号的接收,第二接收参数组被用于生成所述第二天线端口组;所述第一接收参数组和所述第二接收参数组都属于第一接收参数空间,所述第一信息和所述第一接收参数组共同被用于确定所述第一接收参数空间。
作为一个实施例,上述基站设备的特征在于,所述第一信息的接收者从K1个接收参数组中确定所述第二接收参数组,所述K1是大于1的正整数;其中,所述K1个接收参数组都属于所述第一接收参数空间。
作为一个实施例,上述基站设备的特征在于,所述第二发射机模块还发送K个无线信号,所述K是大于1的正整数;其中,所述K个无线信号分别被K个天线端口组发送,K个接收参数组分别被用于所述K个无线信号的接收,所述K1个接收参数组中任一不同于所述第一接收参数组的接收参数组是所述K个接收参数组中的一个接收参数组。
作为一个实施例,上述基站设备的特征在于,在所述第一接收参数空间内,所述第一信息的接收者自行确定所述K1个接收参数组。
作为一个实施例,上述基站设备的特征在于,所述第一信息被用于确定第一阈值,所述第一接收参数组与所述第一阈值共同被用于确定所述第一接收参数空间。
作为一个实施例,上述基站设备的特征在于,所述第一接收参数空间中的任一接收参数组与所述第一接收参数组的相关系数不低于所述第一阈值。
作为一个实施例,上述基站设备的特征在于,第一参考接收质量和采用所述第一接收参数空间中的任一接收参数组接收下行无线信号得到的接收质量的偏差不大于所述第一阈值,所述第一参考接收质量是采用第一接收参数组接收所述下行无线信号得到的接收质量。
作为一个实施例,上述基站设备的特征在于,第二参考接收质量和给定接收质量的偏差不大于所述第一阈值,所述第二参考接收质量是采用参考发送参数组发送上行无线信号得到的接收质量,所述给定接收质量是采用给定发送参数组发送所述上行无线信号得到的接收质量,所述第一接收参数组被用于生成所述参考发送参数组,所述第一接收参数空间中的任一接收参数组被用于生成所述给定发送参数组。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.用户设备在一个有限的波束范围内监听信道,该波束范围包括多个波束。如果基于其中一个波束的LBT检测结果为信道空闲,那么用户设备可以采用这个波束进行上行无线信号传输。与采用一个预配置的波束相比,提高了上行信道接入机会,从而提升了系统容量。
-.该波束范围包括的多个波束可以是基站指定的,也可以是用户设备按给定规则根 据能力自行确定的,该给定规则是根据基站指定的一个波束和一个阈值来确定该波束范围。
-.解决了在非授权(Grant free)上行传输中通常预分配的波束的更新比较慢,不能随着信道变化或干扰环境的变化进行波束的快速调整所带来的信道接入机会低或上行传输质量差等问题。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一无线信号、第一信息、第一接入检测和第二无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的NR(NewRadio,新无线)节点和UE的示意图;
图5示出了根据本申请的一个实施例的无线传输的流程图;
图6示出了根据本申请的另一个实施例的无线传输的流程图;
图7示出了根据本申请的一个实施例的第一接入检测和K1个接收参数组的关系的示意图;
图8示出了根据本申请的一个实施例的给定接入检测被用于确定是否在给定子频带上的给定时刻发送给定无线信号的示意图;
图9示出了根据本申请的另一个实施例的给定接入检测被用于确定是否在给定子频带上的给定时刻发送给定无线信号的示意图;
图10A-10B分别示出了根据本申请的一个实施例的给定天线端口与给定能量检测空间相关的示意图;
图11示出了根据本申请的一个实施例的第二接收参数组、K1个接收参数组和第一接收参数空间的关系的示意图;
图12示出了根据本申请的一个实施例的第一信息的示意图;
图13A-13C分别示出了根据本申请的另一个实施例的第一信息的示意图;
图14示出了根据本申请的一个实施例的确定所述第一接收参数空间的示意图;
图15示出了根据本申请的另一个实施例的确定所述第一接收参数空间的示意图;
图16示出了根据本申请的另一个实施例的确定所述第一接收参数空间的示意图;
图17示出了根据本申请的另一个实施例的确定所述第一接收参数空间的示意图;
图18示出了根据本申请的一个实施例的天线端口和天线端口组的示意图;
图19示出了根据本申请的一个实施例的UE中的处理装置的结构框图;
图20示出了根据本申请的一个实施例的基站设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个第一无线信号、第一信息、第一接入检测和第二无线信号的流程图,如附图1所示。
在实施例1中,本申请中的所述用户设备接收第一无线信号,所述第一无线信号被第一天线端口组发送;接收第一信息;执行第一接入检测以确定是否在第一子频带上的第一时刻进行上行发送;如果是,在所述第一子频带上的第一时刻通过第二天线端口组发送第二无 线信号;如果否,放弃在所述第一子频带上的第一时刻发送第二无线信号;其中,所述第一天线端口组包括正整数个天线端口,所述第二天线端口组包括正整数个天线端口;第一接收参数组被用于所述第一无线信号的接收,第二接收参数组被用于生成所述第二天线端口组;所述第一接收参数组和所述第二接收参数组都属于第一接收参数空间,所述第一信息和所述第一接收参数组共同被用于确定所述第一接收参数空间。
作为一个实施例,所述第一无线信号包括{同步信号,DMRS(DeModulation Reference Signals,解调参考信号)、CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)、TRS(finetime/frequencyTrackingReferenceSignals,精细时域/频域跟踪参考信号)和PRTS(Phase error TrackingReferenceSignals,相位误差跟踪参考信号),数据}中的一种或多种。
作为一个实施例,所述第一无线信号包括同步信号。
作为一个实施例,所述第一无线信号包括CSI-RS。
作为一个实施例,所述第一无线信号包括同步信号和CSI-RS。
作为一个实施例,所述同步信号属于一个SSB(Synchronization Signal Block,同步信号块)。
作为一个实施例,所述同步信号包括PSS(Primary Synchronization Signal,主同步信号)和SSS(Secondary Synchronization Signal,辅同步信号)中的至少之一。
作为一个实施例,所述同步信号包括PSS和SSS。
作为一个实施例,所述第一无线信号包括DMRS和数据。
作为一个实施例,所述第一无线信号包括DMRS。
作为一个实施例,所述第一无线信号在所述第一子频带上传输。
作为一个实施例,所述第一无线信号的传输频带包括所述第一子频带。
作为一个实施例,所述第一子频带包括正整数个PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述第一子频带包括正整数个连续的PRB。
作为一个实施例,所述第一子频带包括正整数个RB(Resource Block,资源块)。
作为一个实施例,所述第一子频带包括正整数个连续的RB。
作为一个实施例,所述第一子频带包括正整数个连续的子载波。
作为一个实施例,所述第一子频带包括的连续子载波数目等于12的正整数倍。
作为一个实施例,所述第一子频带部署于非授权频谱。
作为一个实施例,所述第一子频带包括一个载波(Carrier)。
作为一个实施例,所述第一子频带包括至少一个载波(Carrier)。
作为一个实施例,所述第一子频带属于一个载波(Carrier)。
作为一个实施例,所述第一子频带包括一个BWP(Bandwidth Part,带宽分量)。
作为一个实施例,所述第一无线信号在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH(short PDSCH,短PDSCH)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH(NewRadio PDSCH,新无线PDSCH)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH(NarrowBand PDSCH,窄带PDSCH)。
作为一个实施例,所述第一无线信号对应传输信道是DL-SCH(DownLinkShared Channel,下行共享信道)。
作为一个实施例,所述第二无线信号包括数据、控制信息和参考信号中的至少之一。
作为一个实施例,所述第二无线信号包括数据。
作为一个实施例,所述第二无线信号包括控制信息。
作为一个实施例,所述第二无线信号包括参考信号。
作为一个实施例,所述第二无线信号包括数据,控制信息和参考信号。
作为一个实施例,所述第二无线信号包括数据和控制信息。
作为一个实施例,所述第二无线信号包括控制信息和参考信号。
作为一个实施例,所述第二无线信号包括数据和参考信号。
作为一个实施例,所述数据是上行数据。
作为一个实施例,所述控制信息是UCI(Uplink control information,上行控制信息)。
作为一个实施例,所述控制信息包括HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)反馈和CSI中的至少之一。
作为上述实施例的一个子实施例,所述CSI包括{RI(Rank indication,秩指示),PMI(Precoding matrix indicator,预编码矩阵指示),CQI(Channel quality indicator,信道质量指示),CRI(Csi-reference signal Resource Indicator)}中的至少之一。
作为一个实施例,所述参考信号包括{DMRS,SRS(Sounding Reference Signal,探测参考信号),PTRS(Phase error TrackingReferenceSignals,相位误差跟踪参考信号)}中的一种或多种。
作为一个实施例,所述第二无线信号在上行随机接入信道上传输。
作为上述实施例的一个子实施例,所述上行随机接入信道是PRACH(Physical Random Access Channel,物理随机接入信道)。
作为一个实施例,所述第二无线信号对应传输信道是UL-SCH(UplinkShared Channel,上行共享信道)。
作为一个实施例,所述第二无线信号在上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。
作为上述实施例的一个子实施例,所述上行物理层数据信道是PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)。
作为上述实施例的一个子实施例,所述上行物理层数据信道是sPUSCH(short PUSCH,短PUSCH)。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NR-PUSCH(NewRadio PUSCH,新无线PUSCH)。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NB-PUSCH(NarrowBand PUSCH,窄带PUSCH)。
作为一个实施例,所述第一无线信号在上行物理层控制信道(即仅能用于承载物理层信令的上行信道)上传输。
作为上述实施例的一个子实施例,所述上行物理层控制信道是PUCCH(Physical UplinkControl CHannel,物理上行控制信道)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是sPDCCH(short PUCCH,短PUCCH)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是NR-PDCCH(New Radio PUCCH,新无线PUCCH)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是NB-PDCCH(NarrowBand PUCCH,窄带PUCCH)。
作为一个实施例,所述第一信息是半静态配置的。
作为一个实施例,所述第一信息由更高层信令承载。
作为一个实施例,所述第一信息由RRC(Radio Resource Control,无线电资源控制)信 令承载。
作为一个实施例,所述第一信息是一个RRC信令中的一个IE(InformationElement,信息单元)的全部或一部分。
作为一个实施例,所述第一信息由MAC(Medium Acess Control,媒体接入控制)CE(Control Element,控制单元)信令承载。
作为一个实施例,所述第一信息由广播信令承载。
作为一个实施例,所述第一信息是系统信息。
作为一个实施例,所述第一信息在SIB(System Information Block,系统信息块)中传输。
作为一个实施例,所述第一信息是动态配置的。
作为一个实施例,所述第一信息由物理层信令承载。
作为一个实施例,所述第一信息属于DCI(下行控制信息,Downlink Control Information)。
作为一个实施例,所述第一信息属于上行授予(UpLink Grant)的DCI。
作为一个实施例,所述第一信息是一个DCI中的一个域(Field),所述域包括正整数个比特。
作为一个实施例,所述第一信息由一个DCI中的多个域(Field)组成,所述域包括正整数个比特。
作为一个实施例,所述第一信息由下行物理层控制信道(即仅能用于承载物理层信令的下行信道)承载。
作为一个实施例,所述第一信息由PDCCH(Physical Downlink Control Channel,物理下行控制信道)承载。
作为一个实施例,所述第一信息由sPDCCH(short PDCCH,短PDCCH)承载。
作为一个实施例,所述第一信息由NR-PDCCH(New Radio PDCCH,新无线PDCCH)承载。
作为一个实施例,所述第一信息由NB-PDCCH(NarrowBand PDCCH,窄带PDCCH)承载。
作为一个实施例,所述第一信息在所述第一子频带上传输。
作为一个实施例,所述第一信息在所述第一子频带以外的频带上传输。
作为一个实施例,所述第一信息在所述第一子频带以外的部署于授权频谱的频带上传输。
作为一个实施例,所述第一信息在所述第一子频带以外的部署于非授权频谱的频带上传输。
作为一个实施例,所述第一信息在部署于授权频谱的频带上传输。
作为一个实施例,所述第一信息在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH(Physical DownlinkControl CHannel,物理下行控制信道)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH(short PDCCH,短PDCCH)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH(New Radio PDCCH,新无线PDCCH)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH(NarrowBand PDCCH,窄带PDCCH)。
作为一个实施例,所述第一信息在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH。
作为一个实施例,所述第一接收参数组包括所述第一无线信号的空间接收参数(Spatial Rx parameters)。
作为一个实施例,所述第一接收参数组包括所述第一无线信号的接收波束。
作为一个实施例,所述第一接收参数组包括所述第一无线信号的接收波束赋型矩阵。
作为一个实施例,所述第一接收参数组包括所述第一无线信号的接收模拟波束赋型矩阵。
作为一个实施例,所述第一接收参数组包括所述第一无线信号的接收波束赋型向量。
作为一个实施例,所述第一接收参数组包括所述第一无线信号的接收空间滤波(spatial filtering)。
作为一个实施例,所述第一接入检测被用于确定所述第一子频带是否闲置(Idle)。
作为一个实施例,所述第一接入检测被用于确定所述第一子频带在所述第一时刻是否闲置。
作为一个实施例,所述第一接入检测的结束时间不晚于所述第一时刻。
作为一个实施例,所述第一时刻在所述第一接入检测的结束时间之后。
作为一个实施例,所述第二接收参数组包括空间接收参数(Spatial Rx parameters)。
作为一个实施例,所述第二接收参数组包括接收波束。
作为一个实施例,所述第二接收参数组包括接收波束赋型矩阵。
作为一个实施例,所述第二接收参数组包括接收模拟波束赋型矩阵。
作为一个实施例,所述第二接收参数组包括接收波束赋型向量。
作为一个实施例,所述第二接收参数组包括接收空间滤波(spatial filtering)。
作为一个实施例,第二接收参数组被用于生成所述第二天线端口组是指:能够从所述第二接收参数组推断出所述第二天线端口组上发送的无线信号的目标发送参数组。
作为上述实施例的一个子实施例,所述第二接收参数组包括空间接收参数,所述目标发送参数组包括空间发送参数(Spatial Tx parameters)。
作为上述实施例的一个子实施例,所述第二接收参数组包括接收波束,所述目标发送参数组包括发送波束。
作为上述实施例的一个子实施例,所述第二接收参数组包括接收波束赋型矩阵,所述目标发送参数组包括发送波束赋型矩阵。
作为上述实施例的一个子实施例,所述第二接收参数组包括接收模拟波束赋型矩阵,所述目标发送参数组包括发送模拟波束赋型矩阵。
作为上述实施例的一个子实施例,所述第二接收参数组包括接收波束赋型向量,所述目标发送参数组包括发送波束赋型向量。
作为上述实施例的一个子实施例,所述第二接收参数组包括接收空间滤波,所述目标发送参数组包括发送空间滤波。
作为一个实施例,第二接收参数组被用于生成所述第二天线端口组是指:所述第二接收参数组和所述第二天线端口组上发送的无线信号的目标发送参数组相同。
作为上述实施例的一个子实施例,所述第二接收参数组包括空间接收参数,所述目标发送参数组包括空间发送参数(Spatial Tx parameters)。
作为上述实施例的一个子实施例,所述第二接收参数组包括接收波束,所述目标发送参数组包括发送波束。
作为上述实施例的一个子实施例,所述第二接收参数组包括接收波束赋型矩阵,所述目标发送参数组包括发送波束赋型矩阵。
作为上述实施例的一个子实施例,所述第二接收参数组包括接收模拟波束赋型矩阵,所述目标发送参数组包括发送模拟波束赋型矩阵。
作为上述实施例的一个子实施例,所述第二接收参数组包括接收波束赋型向量,所述目标发送参数组包括发送波束赋型向量。
作为上述实施例的一个子实施例,所述第二接收参数组包括接收空间滤波,所述目标发送参数组包括发送空间滤波。
作为一个实施例,第二接收参数组被用于生成所述第二天线端口组是指:所述第二接收参数组包括所述第二天线端口组上发送的无线信号的目标发送参数组。
作为上述实施例的一个子实施例,所述第二接收参数组包括空间接收参数,所述目标发送参数组包括空间发送参数。
作为上述实施例的一个子实施例,所述第二接收参数组包括接收波束,所述目标发送参数组包括发送波束。
作为上述实施例的一个子实施例,所述第二接收参数组包括接收波束赋型矩阵,所述目标发送参数组包括发送波束赋型矩阵。
作为上述实施例的一个子实施例,所述第二接收参数组包括接收模拟波束赋型矩阵,所述目标发送参数组包括发送模拟波束赋型矩阵。
作为上述实施例的一个子实施例,所述第二接收参数组包括接收波束赋型向量,所述目标发送参数组包括发送波束赋型向量。
作为上述实施例的一个子实施例,所述第二接收参数组包括接收空间滤波,所述目标发送参数组包括发送空间滤波。
作为一个实施例,第二接收参数组被用于生成所述第二天线端口组是指:所述第二接收参数组包括接收波束赋型矩阵,所述接收波束赋型矩阵对应的波束宽度不小于所述第二天线端口组的发送波束赋型矩阵对应的波束宽度。
作为一个实施例,第二接收参数组被用于生成所述第二天线端口组是指:所述第二接收参数组包括接收波束赋型矩阵,所述接收波束赋型矩阵对应的波束方向包括所述第二天线端口组的发送波束赋型矩阵对应的波束方向。
作为一个实施例,第二接收参数组被用于生成所述第二天线端口组是指:所述第二接收参数组包括接收波束,所述接收波束对应的波束宽度大于所述第二天线端口组的发送波束对应的波束宽度。
作为一个实施例,第二接收参数组被用于生成所述第二天线端口组是指:所述第二接收参数组包括接收波束,所述接收波束包括所述第二天线端口组的发送波束。
作为一个实施例,所述第二接收参数组被用于所述第一接入检测是指:所述第一接入检测的接收参数组包括所述第二接收参数组。
作为一个实施例,所述第二接收参数组被用于所述第一接入检测是指:所述第一接入检测的接收参数组和所述第二接收参数组相同。
作为一个实施例,所述第二接收参数组被用于所述第一接入检测是指:所述第一接入检测的接收参数组包括所述第二接收参数组,且所述第一接入检测的接收参数组包括不属于所述第二接收参数组的接收参数。
作为一个实施例,所述第二接收参数组被用于所述第一接入检测是指:所述第二接收参数组能被用于推断出所述第一接入检测的接收参数组。
作为一个实施例,所述第二接收参数组被用于所述第一接入检测是指:所述第二接收参数组包括接收波束赋型矩阵,所述接收波束赋型矩阵对应的波束宽度不大于所述第一接入检测的接收波束赋型矩阵对应的波束宽度。
作为一个实施例,所述第二接收参数组被用于所述第一接入检测是指:所述第二接收参数组包括接收波束赋型矩阵,所述接收波束赋型矩阵对应的波束方向被所述第一接入检测的发送波束赋型矩阵对应的波束方向所包括。
作为一个实施例,所述第二接收参数组被用于所述第一接入检测是指:所述第二接收参数组包括接收波束,所述接收波束对应的波束宽度不大于所述第一接入检测的发送波束对应的波束宽度。
作为一个实施例,所述第二接收参数组被用于所述第一接入检测是指:所述第二接收参 数组包括接收波束,所述接收波束被所述第一接入检测的发送波束所包括。
作为一个实施例,所述第一接入检测的接收参数组包括空间接收参数。
作为一个实施例,所述第一接入检测的接收参数组包括接收波束。
作为一个实施例,所述第一接入检测的接收参数组包括接收波束赋型矩阵。
作为一个实施例,所述第一接入检测的接收参数组包括接收模拟波束赋型矩阵。
作为一个实施例,所述第一接入检测的接收参数组包括接收波束赋型向量。
作为一个实施例,所述第一接入检测的接收参数组包括接收空间滤波。
作为一个实施例,所述放弃在所述第一子频带上的第一时刻发送第二无线信号是指:推迟所述第二无线信号的发送到第二时刻,所述第二时刻在所述第一时刻之后。
作为一个实施例,所述放弃在所述第一子频带上的第一时刻发送第二无线信号是指:放弃发送所述第二无线信号,等待新的调度信令以发送目标比特块,所述第二无线信号携带所述比特块。
作为一个实施例,所述放弃在所述第一子频带上的第一时刻发送第二无线信号是指:放弃发送所述第二无线信号。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统网络架构200的图。NR 5G或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供面向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME/AMF/UPF211、其它MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP 多媒体子系统)和PS串流服务(PSS)。
作为一个实施例,所述UE201对应本申请中的所述用户设备。
作为一个实施例,所述gNB203对应本申请中的所述基站。
作为一个子实施例,所述UE201支持在非授权频谱上进行数据传输的无线通信。
作为一个子实施例,所述gNB203支持在非授权频谱上进行数据传输的无线通信。
作为一个子实施例,所述UE201支持大规模MIMO的无线通信。
作为一个子实施例,所述gNB203支持大规模MIMO的无线通信。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于用户设备(UE)和基站设备(gNB或eNB)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述用户设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述基站。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述从K1个接收参数组中确定所述第二接收参数组生成于所述PHY301。
作为一个实施例,本申请中的所述第一接入检测生成于所述PHY301。
作为一个实施例,本申请中的所述K个无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一信息生成于所述PHY301。
作为一个实施例,本申请中的所述第一信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信息生成于所述MAC子层302。
实施例4
实施例4示出了根据本申请的一个NR节点和用户设备的示意图,如附图4所示。图4是在接入网络中与UE450通信的gNB410的框图。
基站设备(410)包括控制器/处理器440,存储器430,接收处理器412,发射处理器415,发射器/接收器416和天线420。
用户设备(450)包括控制器/处理器490,存储器480,数据源467,发射处理器455, 接收处理器452,发射器/接收器456和天线460。
在下行传输中,与基站设备(410)有关的处理包括:
-控制器/处理器440,上层包到达,控制器/处理器440提供包头压缩、加密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;上层包中可以包括数据或者控制信息,例如DL-SCH(Downlink Shared Channel,下行共享信道);
控制器/处理器440,与存储程序代码和数据的存储器430相关联,存储器430可以为计算机可读媒体;
控制器/处理器440,包括调度单元以传输需求,调度单元用于调度与传输需求对应的空口资源;
波束处理器471,确定第一无线信号和第一信息;
发射处理器415,接收控制器/处理器440的输出比特流,实施用于L1层(即物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配和物理层控制信令(包括PBCH,PDCCH,PHICH,PCFICH,参考信号)生成等;
发射器416,用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去;每个发射器416对各自的输入符号流进行采样处理得到各自的采样信号流。每个发射器416对各自的采样流进行进一步处理(比如数模转换,放大,过滤,上变频等)得到下行信号。
在下行传输中,与用户设备(450)有关的处理可以包括:
接收器456,用于将通过天线460接收的射频信号转换成基带信号提供给接收处理器452;
接收处理器452,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
波束处理器441,确定第一无线信号和第一信息;
控制器/处理器490,接收接收处理器452输出的比特流,提供包头解压缩、解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;
控制器/处理器490与存储程序代码和数据的存储器480相关联。存储器480可以为计算机可读媒体。
在UL(Uplink,上行)中,与基站设备(410)有关的处理包括:
接收器416,通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到接收处理器412;
接收处理器412,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
控制器/处理器440,实施L2层功能,以及与存储程序代码和数据的存储器430相关联;
控制器/处理器440提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包;来自控制器/处理器440的上层数据包可提供到核心网络;
波束处理器471,确定是否在第一子频带上的第一时刻进行上行发送;
在UL(Uplink,上行)中,与用户设备(450)有关的处理包括:
数据源467,将上层数据包提供到控制器/处理器490。数据源467表示L2层之上的所有协议层;
发射器456,通过其相应天线460发射射频信号,把基带信号转化成射频信号,并把射频信号提供到相应天线460;
发射处理器455,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、 解交织、解扰、解调和物理层控制信令提取等;
控制器/处理器490基于gNB410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能;
控制器/处理器490还负责HARQ操作、丢失包的重新发射,和到gNB410的信令;
波束处理器441,确定是否在第一子频带上的第一时刻进行上行发送;
作为一个子实施例,所述UE450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述UE450装置至少:接收第一无线信号,所述第一无线信号被第一天线端口组发送;接收第一信息;执行第一接入检测以确定是否在第一子频带上的第一时刻进行上行发送;如果是,在所述第一子频带上的第一时刻通过第二天线端口组发送第二无线信号;如果否,放弃在所述第一子频带上的第一时刻发送第二无线信号;其中,所述第一天线端口组包括正整数个天线端口,所述第二天线端口组包括正整数个天线端口;第一接收参数组被用于所述第一无线信号的接收,第二接收参数组被用于生成所述第二天线端口组;所述第一接收参数组和所述第二接收参数组都属于第一接收参数空间,所述第一信息和所述第一接收参数组共同被用于确定所述第一接收参数空间。
作为一个子实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一无线信号,所述第一无线信号被第一天线端口组发送;接收第一信息;执行第一接入检测以确定是否在第一子频带上的第一时刻进行上行发送;如果是,在所述第一子频带上的第一时刻通过第二天线端口组发送第二无线信号;如果否,放弃在所述第一子频带上的第一时刻发送第二无线信号;其中,所述第一天线端口组包括正整数个天线端口,所述第二天线端口组包括正整数个天线端口;第一接收参数组被用于所述第一无线信号的接收,第二接收参数组被用于生成所述第二天线端口组;所述第一接收参数组和所述第二接收参数组都属于第一接收参数空间,所述第一信息和所述第一接收参数组共同被用于确定所述第一接收参数空间。
作为一个子实施例,所述gNB410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:发送第一无线信号,所述第一无线信号被第一天线端口组发送;发送第一信息;在第一子频带上的第一时刻监测第二无线信号;其中,第一接入检测被用于确定是否在所述第一子频带上的第一时刻进行上行发送;如果是,在所述第一子频带上的第一时刻通过第二天线端口组发送所述第二无线信号;如果否,放弃在所述第一子频带上的第一时刻发送所述第二无线信号;所述第一天线端口组包括正整数个天线端口,所述第二天线端口组包括正整数个天线端口;第一接收参数组被用于所述第一无线信号的接收,第二接收参数组被用于生成所述第二天线端口组;所述第一接收参数组和所述第二接收参数组都属于第一接收参数空间,所述第一信息和所述第一接收参数组共同被用于确定所述第一接收参数空间。
作为一个子实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一无线信号,所述第一无线信号被第一天线端口组发送;发送第一信息;在第一子频带上的第一时刻监测第二无线信号;其中,第一接入检测被用于确定是否在所述第一子频带上的第一时刻进行上行发送;如果是,在所述第一子频带上的第一时刻通过第二天线端口组发送所述第二无线信号;如果否,放弃在所述第一子频带上的第一时刻发送所述第二无线信号;所述第一天线端口组包括正整数个天线端口,所述第二天线端口组包括正整数个天线端口;第一接收参数组被用于所述第一无线信号的接收,第二接收参数组被用于生成所述第二天线端口组;所述第一接收参数组和所述第二接收参数组都属于第一接收参数空间,所述第一信息和 所述第一接收参数组共同被用于确定所述第一接收参数空间。
作为一个子实施例,UE450对应本申请中的用户设备。
作为一个子实施例,gNB410对应本申请中的基站。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第一无线信号。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第一无线信号。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第一信息。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第一信息。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于执行本申请中的所述第一接入检测。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于从本申请中的所述K1个接收参数组中确定本申请中的所述第二接收参数组。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述K个无线信号。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述K个无线信号。
作为一个子实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于发送本申请中的所述第二无线信号。
作为一个子实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于接收本申请中的所述第二无线信号。
实施例5
实施例5示例了一个无线传输的流程图,如附图5所示。在附图5中,基站N01是用户设备U02的服务小区维持基站。附图5中,方框F1是可选的。
对于N01,在步骤S11中发送第一无线信号;在步骤S12中发送K个无线信号;在步骤S13中发送第一信息;在步骤S14中在第一子频带上的第一时刻监测第二无线信号。
对于U02,在步骤S21中接收第一无线信号;在步骤S22中接收K个无线信号;在步骤S23中接收第一信息;在步骤S24中执行第一接入检测以确定是否在第一子频带上的第一时刻进行上行发送;在步骤S25中从K1个接收参数组中确定所述第二接收参数组;在步骤S26中在所述第一子频带上的第一时刻通过第二天线端口组发送第二无线信号,或者,放弃在所述第一子频带上的第一时刻发送第二无线信号。
在实施例5中,所述第一无线信号被第一天线端口组发送;所述第一天线端口组包括正整数个天线端口,所述第二天线端口组包括正整数个天线端口;第一接收参数组被所述用户设备U02用于所述第一无线信号的接收,第二接收参数组被所述用户设备U02用于生成所述第二天线端口组;所述第一接收参数组和所述第二接收参数组都属于第一接收参数空间,所述第一信息和所述第一接收参数组共同被所述用户设备U02用于确定所述第一接收参数空间。所述K1是大于1的正整数;所述K1个接收参数组都属于所述第一接收参数空间。所述K是大于1的正整数;所述K个无线信号分别被K个天线端口组发送,K个接收参数组分别被所述用户设备U02用于所述K个无线信号的接收,所述K1个接收参数组中任一不同于所述第一接收参数组的接收参数组是所述K个接收参数组中的一个接收参数组。
作为一个实施例,在步骤S26中在所述第一子频带上的第一时刻通过第二天线端口组发送第二无线信号,保留方框F1。
作为一个实施例,在步骤S26中放弃在所述第一子频带上的第一时刻发送第二无线信号, 方框F1不存在。
作为一个实施例,所述K1个接收参数组互不相同。
作为一个实施例,所述K1为2。
作为一个实施例,所述第一接收参数组是所述K1个接收参数组中的一个接收参数组。
作为一个实施例,所述第二接收参数组是所述K1个接收参数组中的一个接收参数组。
作为一个实施例,所述第一接收参数空间由所述K1个接收参数组组成。
作为一个实施例,所述K1个接收参数组都包括空间接收参数(Spatial Rx parameters)。
作为一个实施例,所述K1个接收参数组都包括接收波束。
作为一个实施例,所述K1个接收参数组都包括接收波束赋型矩阵。
作为一个实施例,所述K1个接收参数组都包括接收模拟波束赋型矩阵。
作为一个实施例,所述K1个接收参数组都包括接收波束赋型向量。
作为一个实施例,所述K1个接收参数组都包括接收空间滤波(spatial filtering)。
作为一个实施例,所述K1个接收参数组中除了所述第一接收参数组之外的K1-1个接收参数组分别是所述K个接收参数组中的一个接收参数组。
作为一个实施例,所述K个接收参数组分别包括所述K个无线信号的空间接收参数。
作为一个实施例,所述K个接收参数组分别包括所述K个无线信号的接收波束。
作为一个实施例,所述K个接收参数组分别包括所述K个无线信号的接收波束赋型矩阵。
作为一个实施例,所述K个接收参数组分别包括所述K个无线信号的接收模拟波束赋型矩阵。
作为一个实施例,所述K个接收参数组分别包括所述K个无线信号的接收波束赋型向量。
作为一个实施例,所述K个接收参数组分别包括所述K个无线信号的接收空间滤波。
实施例6
实施例6示例了另一个无线传输的流程图,如附图6所示。在附图5中,基站N03是用户设备U04的服务小区维持基站。附图6中,方框F2是可选的。
对于N03,在步骤S31中发送第一无线信号;在步骤S32中发送第一信息;在步骤S33中在第一子频带上的第一时刻监测第二无线信号。
对于U04,在步骤S41中接收第一无线信号;在步骤S42中接收第一信息;在步骤S43中执行第一接入检测以确定是否在第一子频带上的第一时刻进行上行发送;在步骤S44中从K1个接收参数组中确定所述第二接收参数组;在步骤S45中在所述第一子频带上的第一时刻通过第二天线端口组发送第二无线信号,或者,放弃在所述第一子频带上的第一时刻发送第二无线信号。
在实施例6中,所述第一无线信号被第一天线端口组发送;所述第一天线端口组包括正整数个天线端口,所述第二天线端口组包括正整数个天线端口;第一接收参数组被所述用户设备U02用于所述第一无线信号的接收,第二接收参数组被所述用户设备U02用于生成所述第二天线端口组;所述第一接收参数组和所述第二接收参数组都属于第一接收参数空间,所述第一信息和所述第一接收参数组共同被所述用户设备U02用于确定所述第一接收参数空间。所述K1是大于1的正整数;所述K1个接收参数组都属于所述第一接收参数空间。在所述第一接收参数空间内,所述用户设备自行确定所述K1个接收参数组。
作为一个实施例,所述用户设备如何确定所述K1个接收参数组是一个用户设备实现相关的问题(UE implementation issue)。
作为一个实施例,在步骤S45中在所述第一子频带上的第一时刻通过第二天线端口组发送第二无线信号,保留方框F2。
作为一个实施例,在步骤S45中放弃在所述第一子频带上的第一时刻发送第二无线信号,方框F2不存在。
实施例7
实施例7示例了一个第一接入检测和K1个接收参数组的关系的示意图;如附图7所示。
在实施例7中,执行所述第一接入检测以确定是否在本申请中的第一子频带上的第一时刻进行上行发送;如果是,在所述第一子频带上的第一时刻通过本申请中的所述第二天线端口组发送本申请中的所述第二无线信号;如果否,放弃在所述第一子频带上的第一时刻发送所述第二无线信号;本申请中的所述第二接收参数组被用于生成所述第二天线端口组;从所述K1个接收参数组中确定所述第二接收参数组,所述K1是大于1的正整数。
作为一个实施例,所述第一接入检测包括一次接入检测。
作为一个实施例,所述K1个接收参数组都被用于所述第一接入检测。
作为上述实施例的一个子实施例,所述第一接入检测的接收参数组包括所述K1个接收参数组。
作为上述实施例的一个子实施例,所述第一接入检测的接收参数组和所述K1个接收参数组的集合相同。
作为上述实施例的一个子实施例,所述第一接入检测的接收参数组包括所述K1个接收参数组,且所述第一接入检测的接收参数组包括不属于所述K1个接收参数组的接收参数。
作为上述实施例的一个子实施例,所述K1个接收参数组能被用于推断出所述第一接入检测的接收参数组。
作为上述实施例的一个子实施例,所述K1个接收参数组都包括接收波束赋型矩阵,所述接收波束赋型矩阵对应的波束宽度都不大于所述第一接入检测的接收波束赋型矩阵对应的波束宽度。
作为上述实施例的一个子实施例,所述K1个接收参数组都包括接收波束赋型矩阵,所述接收波束赋型矩阵对应的波束方向都被所述第一接入检测的发送波束赋型矩阵对应的波束方向所包括。
作为上述实施例的一个子实施例,所述K1个接收参数组都包括接收波束,所述接收波束对应的波束宽度都不大于所述第一接入检测的发送波束对应的波束宽度。
作为上述实施例的一个子实施例,所述K1个接收参数组都包括接收波束,所述接收波束都被所述第一接入检测的发送波束所包括。
作为一个实施例,所述第一接入检测包括K1次接入检测,所述K1个接收参数组分别被用于所述K1次接入检测。
作为一个实施例,所述K1次接入检测中任一接入检测的结束时间不晚于所述第一时刻。
作为一个实施例,所述第一时刻在所述K1次接入检测中任一接入检测的结束时间之后。
作为一个实施例,给定接收参数组是所述K1个接收参数组中的一个接收参数组,给定接入检测是所述K1次接入检测中与所述给定接收参数组对应的一次接入检测,所述给定接收参数组被用于所述给定接入检测。
作为上述实施例的一个子实施例,所述给定接收参数组被用于所述给定接入检测是指:所述给定接入检测的接收参数组包括所述给定接收参数组。
作为上述实施例的一个子实施例,所述给定接收参数组被用于所述给定接入检测是指:所述给定接入检测的接收参数组和所述给定接收参数组相同。
作为上述实施例的一个子实施例,所述给定接收参数组被用于所述给定接入检测是指:所述给定接入检测的接收参数组包括所述给定接收参数组,且所述给定接入检测的接收参数组包括不属于所述给定接收参数组的接收参数。
作为上述实施例的一个子实施例,所述给定接收参数组被用于所述给定接入检测是指:所述给定接收参数组能被用于推断出所述给定接入检测的接收参数组。
作为上述实施例的一个子实施例,所述给定接收参数组被用于所述给定接入检测是指:所述给定接收参数组包括接收波束赋型矩阵,所述接收波束赋型矩阵对应的波束宽度不大于所述给定接入检测的接收波束赋型矩阵对应的波束宽度。
作为上述实施例的一个子实施例,所述给定接收参数组被用于所述给定接入检测是指:所述给定接收参数组包括接收波束赋型矩阵,所述接收波束赋型矩阵对应的波束方向被所述给定接入检测的发送波束赋型矩阵对应的波束方向所包括。
作为上述实施例的一个子实施例,所述给定接收参数组被用于所述给定接入检测是指:所述给定接收参数组包括接收波束,所述接收波束对应的波束宽度不大于所述给定接入检测的发送波束对应的波束宽度。
作为上述实施例的一个子实施例,所述给定接收参数组被用于所述给定接入检测是指:所述给定接收参数组包括接收波束,所述接收波束被所述给定接入检测的发送波束所包括。
作为上述实施例的一个子实施例,所述给定接入检测的接收参数组包括空间接收参数。
作为上述实施例的一个子实施例,所述给定接入检测的接收参数组包括接收波束。
作为上述实施例的一个子实施例,所述给定接入检测的接收参数组包括接收波束赋型矩阵。
作为上述实施例的一个子实施例,所述给定接入检测的接收参数组包括接收模拟波束赋型矩阵。
作为上述实施例的一个子实施例,所述给定接入检测的接收参数组包括接收波束赋型向量。
作为上述实施例的一个子实施例,所述给定接入检测的接收参数组包括接收空间滤波。
实施例8
实施例8示例了一个给定接入检测被用于确定是否在给定子频带上的给定时刻发送给定无线信号的示意图;如附图8所示。
在实施例8中,所述给定接入检测包括在所述给定子频带上的Q个时间子池中分别执行所述Q次能量检测,得到Q个检测值,所述Q是正整数。所述给定接入检测对应本申请中的所述第一接入检测或所述第一接入检测中的任一次接入检测,所述给定时刻对应本申请中的所述第一时刻,所述给定无线信号对应本申请中的所述第二无线信号。所述给定接入检测的过程可以由附图8中的流程图来描述。
在附图8中,本申请中的所述用户设备在步骤S1001中处于闲置状态,在步骤S1002中判断是否需要发送;在步骤1003中在一个延迟时段(deferduration)内执行能量检测;在步骤S1004中判断这个延迟时段内的所有时隙时段是否都空闲,如果是,进行到步骤S1005中设置第一计数器等于Q1,所述Q1是不大于所述Q的整数;否则返回步骤S1004;在步骤S1006中判断所述第一计数器是否为0,如果是,进行到步骤S1007中在本申请中的所述第一子频带上发送无线信号;否则进行到步骤S1008中在一个附加时隙时段(additional slot duration)内执行能量检测;在步骤S1009中判断这个附加时隙时段是否空闲,如果是,进行到步骤S1010中把所述第一计数器减1,然后返回步骤1006;否则进行到步骤S1011中在一个附加延迟时段(additional deferduration)内执行能量检测;在步骤S1012中判断这个附加延迟时段内的所有时隙时段是否都空闲,如果是,进行到步骤S1010;否则返回步骤S1011。
在实施例8中,在所述给定时刻之前附图8中的所述第一计数器清零,所述给定接入检测的结果为信道空闲,可以在所述给定时刻发送所述给定无线信号;否则不能在所述给定时刻发送所述给定无线信号。所述第一计数器清零的条件是所述Q个时间子池中的Q1个时间子池对应的所述Q个检测值中的Q1个检测值均低于第一参考阈值,所述Q1个时间子池的起始时间在附图8中的步骤S1005之后。
作为一个实施例,所述Q个时间子池包括附图8中的所有延时时段。
作为一个实施例,所述Q个时间子池包括附图8中的部分延时时段。
作为一个实施例,所述Q个时间子池包括附图8中的所有延时时段和所有附加时隙时段。
作为一个实施例,所述Q个时间子池包括附图8中的所有延时时段和部分附加时隙时段。
作为一个实施例,所述Q个时间子池包括附图8中的所有延时时段、所有附加时隙时段 和所有附加延时时段。
作为一个实施例,所述Q个时间子池包括附图8中的所有延时时段、部分附加时隙时段和所有附加延时时段。
作为一个实施例,所述Q个时间子池包括附图8中的所有延时时段、部分附加时隙时段和部分附加延时时段。
作为一个实施例,所述Q个时间子池中的任一时间子池的持续时间是{16微秒、9微秒}中之一。
作为一个实施例,给定时间时段内的任意一个时隙时段(slotduration)是所述Q个时间子池中的一个时间子池;所述给定时间时段是附图8中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,在给定时间时段内执行能量检测是指:在所述给定时间时段内的所有时隙时段(slotduration)内执行能量检测;所述给定时间时段是附图8中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,在给定时间时段通过能量检测被判断为空闲是指:所述给定时段中包括的所有时隙时段通过能量检测都被判断为空闲;所述给定时间时段是附图8中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段。
作为一个实施例,给定时隙时段通过能量检测都被判断为空闲是指:所述用户设备在给定时间单元中在所述给定子频带上感知(Sense)所有无线信号的功率,并在时间上平均,所获得的接收功率低于所述第一参考阈值;所述给定时间单元是所述给定时隙时段中的一个持续时间段。
作为上述实施例的一个子实施例,所述给定时间单元的持续时间不短于4微秒。
作为一个实施例,给定时隙时段通过能量检测都被判断为空闲是指:所述用户设备在给定时间单元中在所述给定子频带上感知(Sense)所有无线信号的能量,并在时间上平均,所获得的接收能量低于所述第一参考阈值;所述给定时间单元是所述给定时隙时段中的一个持续时间段。
作为上述实施例的一个子实施例,所述给定时间单元的持续时间不短于4微秒。
作为一个实施例,在给定时间时段内执行能量检测是指:在所述给定时间时段内的所有时间子池内执行能量检测;所述给定时间时段是附图8中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段,所述所有时间子池属于所述Q个时间子池。
作为一个实施例,在给定时间时段通过能量检测被判断为空闲是指:所述给定时段中包括的所有时间子池通过能量检测得到的检测值都低于所述第一参考阈值;所述给定时间时段是附图8中包括的{所有延时时段,所有附加时隙时段,所有附加延时时段}中的任意一个时段,所述所有时间子池属于所述Q个时间子池,所述检测值属于所述Q个检测值。
作为一个实施例,一个延时时段(defer duration)的持续时间是16微秒再加上M1个9微秒,所述M1是正整数。
作为上述实施例的一个子实施例,一个延时时段包括所述Q个时间子池中的M1+1个时间子池。
作为上述子实施例的一个参考实施例,所述M1+1个时间子池中的第一个时间子池的持续时间是16微秒,其他M1个时间子池的持续时间均是9微秒。
作为上述实施例的一个子实施例,所述给定优先等级被用于确定所述M1。
作为上述子实施例的一个参考实施例,所述给定优先等级是信道接入优先等级(Channel Access Priority Class),所述信道接入优先等级的定义参见3GPP TS36.213中的15章节。
作为上述实施例的一个子实施例,所述M1属于{1,2,3,7}。
作为一个实施例,一个延时时段(defer duration)包括多个时隙时段(slotduration)。
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间是不连续的。
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间的时间间隔是7毫秒。
作为一个实施例,一个附加延时时段(additional defer duration)的持续时间是16微秒再加上M2个9微秒,所述M2是正整数。
作为上述实施例的一个子实施例,一个附加延时时段包括所述Q个时间子池中的M2+1个时间子池。
作为上述子实施例的一个参考实施例,所述M2+1个时间子池中的第一个时间子池的持续时间是16微秒,其他M2个时间子池的持续时间均是9微秒。
作为上述实施例的一个子实施例,所述给定优先等级被用于确定所述M2。
作为上述实施例的一个子实施例,所述M2属于{1,2,3,7}。
作为一个实施例,一个延时时段的持续时间等于一个附加延时时段的持续时间。
作为一个实施例,所述M1等于所述M2。
作为一个实施例,一个附加延时时段(additional defer duration)包括多个时隙时段(slotduration)。
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间是不连续的。
作为上述实施例的一个子实施例,所述多个时隙时段中的第一个时隙时段和第二个时隙时段之间的时间间隔是7毫秒。
作为一个实施例,一个时隙时段(slot duration)的持续时间是9微秒。
作为一个实施例,一个时隙时段是所述Q个时间子池中的1个时间子池。
作为一个实施例,一个附加时隙时段(additional slotduration)的持续时间是9微秒。
作为一个实施例,一个附加时隙时段包括所述Q个时间子池中的1个时间子池。
作为一个实施例,所述Q次能量检测被用于确定所述给定子频带是否闲置(Idle)。
作为一个实施例,所述Q次能量检测被用于确定所述给定子频带是否能被所述用户设备用于传输所述给定无线信号。
作为一个实施例,所述Q个检测值单位都是dBm(毫分贝)。
作为一个实施例,所述Q个检测值的单位都是毫瓦(mW)。
作为一个实施例,所述Q个检测值的单位都是焦耳。
作为一个实施例,所述Q1小于所述Q。
作为一个实施例,所述Q大于1。
作为一个实施例,所述第一参考阈值的单位是dBm(毫分贝)。
作为一个实施例,所述第一参考阈值的单位是毫瓦(mW)。
作为一个实施例,所述第一参考阈值的单位是焦耳。
作为一个实施例,所述第一参考阈值等于或小于-72dBm。
作为一个实施例,所述第一参考阈值是等于或小于第一给定值的任意值。
作为上述实施例的一个子实施例,所述第一给定值是预定义的。
作为上述实施例的一个子实施例,所述第一给定值是由高层信令配置的。
作为一个实施例,所述第一参考阈值是由所述用户设备在等于或小于第一给定值的条件下自由选择的。
作为上述实施例的一个子实施例,所述第一给定值是预定义的。
作为上述实施例的一个子实施例,所述第一给定值是由高层信令配置的,所述用户设备是用户设备。
作为一个实施例,所述Q次能量检测是Cat4的LBT(Listen Before Talk,先听后发)过程中的能量检测,所述Q1是所述Cat4的LBT过程中的CWp,所述CWp是竞争窗口(contention window)的大小,所述CWp的具体定义参见3GPP TS36.213中的15章节。
作为一个实施例,所述Q个检测值中不属于所述Q1个检测值的检测值中至少有一个检测 值低于所述第一参考阈值。
作为一个实施例,所述Q个检测值中不属于所述Q1个检测值的检测值中至少有一个检测值不低于所述第一参考阈值。
作为一个实施例,所述Q1个时间子池中的任意两个时间子池的持续时间都相等。
作为一个实施例,所述Q1个时间子池中至少存在两个时间子池的持续时间不相等。
作为一个实施例,所述Q1个时间子池中包括所述Q个时间子池中的最晚的时间子池。
作为一个实施例,所述Q1个时间子池只包括了eCCA中的时隙时段。
作为一个实施例,所述Q个时间子池包括所述Q1个时间子池和Q2个时间子池,所述Q2个时间子池中的任一时间子池不属于所述Q1个时间子池;所述Q2是不大于所述Q减所述Q1的正整数。
作为上述实施例的一个子实施例,所述Q2个时间子池包括了初始CCA中的时隙时段。
作为上述实施例的一个子实施例,所述Q2个时间子池在所述Q个时间子池中的位置是连续的。
作为上述实施例的一个子实施例,所述Q2个时间子池中至少有一个时间子池对应的检测值低于所述第一参考阈值。
作为上述实施例的一个子实施例,所述Q2个时间子池中至少有一个时间子池对应的检测值不低于所述第一参考阈值。
作为上述实施例的一个子实施例,所述Q2个时间子池包括所有延时时段内的所有时隙时段。
作为上述实施例的一个子实施例,所述Q2个时间子池包括至少一个附加延时时段内的所有时隙时段。
作为上述实施例的一个子实施例,所述Q2个时间子池包括至少一个附加时隙时段。
作为上述实施例的一个子实施例,所述Q2个时间子池包括附图8中通过能量检测被判断为非空闲的所有附加时隙时段和所有附加延时时段内的所有时隙时段。
作为一个实施例,所述Q1个时间子池分别属于Q1个子池集合,所述Q1个子池集合中的任一子池集合包括所述Q个时间子池中的正整数个时间子池;所述Q1个子池集合中的任一时间子池对应的检测值低于所述第一参考阈值。
作为上述实施例的一个子实施例,所述Q1个子池集合中至少存在一个子池集合包括的时间子池的数量等于1。
作为上述实施例的一个子实施例,所述Q1个子池集合中至少存在一个子池集合包括的时间子池的数量大于1。
作为上述实施例的一个子实施例,所述Q1个子池集合中至少存在两个子池集合包括的时间子池的数量是不相等的。
作为上述实施例的一个子实施例,所述Q个时间子池中不存在一个时间子池同时属于所述Q1个子池集合中的两个子池集合。
作为上述实施例的一个子实施例,所述Q1个子池集合中任意一个子池集合中的所有时间子池属于同一个通过能量检测被判断为空闲的附加延时时段或附加时隙时段。
作为上述实施例的一个子实施例,所述Q个时间子池中不属于所述Q1个子池集合的时间子池中至少存在一个时间子池对应的检测值低于所述第一参考阈值。
作为上述实施例的一个子实施例,所述Q个时间子池中不属于所述Q1个子池集合的时间子池中至少存在一个时间子池对应的检测值不低于所述第一参考阈值。
实施例9
实施例9示例了另一个给定接入检测被用于确定是否在给定子频带上的给定时刻发送给定无线信号的示意图;如附图9所示。
在实施例9中,所述给定接入检测包括在所述给定子频带上的Q个时间子池中分别执行所述Q次能量检测,得到Q个检测值,所述Q是正整数。所述给定接入检测对应本申请中的 所述第一接入检测或所述第一接入检测中的任一次接入检测,所述给定时刻对应本申请中的所述第一时刻,所述给定无线信号对应本申请中的所述第二无线信号。所述给定接入检测的过程可以由附图9中的流程图来描述。
在实施例9中,本申请中的所述用户设备在步骤S1101中处于闲置状态,在步骤S1102中判断是否需要发送;在步骤1103中在一个延迟时段(deferduration)内执行能量检测;在步骤S1104中判断这个延迟时段内的所有时隙时段是否都空闲,如果是,进行到步骤S1105中在本申请中的所述第一子频带上发送无线信号;否则进行到步骤S1106中在一个延迟时段内执行能量检测;在步骤S1107中判断这个延迟时段内的所有时隙时段是否都空闲,如果是,进行到步骤S1108中设置第一计数器等于Q1;否则返回步骤S1106;在步骤S1109中判断所述第一计数器是否为0,如果是,进行到步骤S1105中在所述第一子频带上发送无线信号;否则进行到步骤S1110中在一个附加时隙时段内执行能量检测;在步骤S1111中判断这个附加时隙时段是否空闲,如果是,进行到步骤S1112中把所述第一计数器减1,然后返回步骤1109;否则进行到步骤S1113中在一个附加延迟时段内执行能量检测;在步骤S1114中判断这个附加延迟时段内的所有时隙时段是否都空闲,如果是,进行到步骤S1112;否则返回步骤S1113。
作为一个实施例,所述Q1等于0,所述用户设备在所述步骤S1104或所述步骤S1108中判断这个延迟时段内的所有时隙时段都空闲,所述给定接入检测的结果为信道空闲,可以在所述给定时刻发送所述给定无线信号;否则不能在所述给定时刻发送所述给定无线信号。
作为一个实施例,所述Q1不小于0,所述用户设备在步骤S1104中判断这个延迟时段内的并非所有时隙时段都空闲。在所述给定时刻之前附图9中的所述第一计数器清零,所述给定接入检测的结果为信道空闲,可以在所述给定时刻发送所述给定无线信号;否则不能在所述给定时刻发送所述给定无线信号。所述第一计数器清零的条件是所述Q个时间子池中的Q1个时间子池对应的所述Q个检测值中的Q1个检测值均低于实施例8中的所述第一参考阈值,所述Q1个时间子池的起始时间在附图9中的步骤S1108之后。
实施例10
实施例10A至实施例10B分别示例了一个给定天线端口与给定能量检测空间相关的示意图。
在实施例10中,所述给定能量检测对应本申请中的所述第一接入检测中的任一次能量检测或所述第一接入检测中的任一次接入检测中的任一次能量检测,所述给定天线端口对应本申请中的所述第二天线端口组中的任一个天线端口。
作为一个实施例,给定天线端口与给定能量检测空间相关是指:所述给定能量检测所使用的多天线相关的接收能被用于推断出所述给定天线端口的多天线相关的发送,或者所述给定天线端口的多天线相关的发送能被用于推断出所述给定能量检测所使用的多天线相关的接收。
作为一个实施例,给定天线端口与给定能量检测空间相关是指:所述给定能量检测所使用的多天线相关的接收和所述给定天线端口的多天线相关的发送相同。
作为一个实施例,给定天线端口与给定能量检测空间相关是指:所述给定能量检测所使用的多天线相关的接收包括所述给定天线端口的多天线相关的发送。
作为一个实施例,给定天线端口与给定能量检测空间相关是指:所述给定能量检测所使用的接收波束赋型矩阵对应的波束宽度不小于所述给定天线端口的发送波束赋型矩阵对应的波束宽度。
作为一个实施例,给定天线端口与给定能量检测空间相关是指:所述给定能量检测所使用的接收波束赋型矩阵对应的波束方向包括所述给定天线端口的发送波束赋型矩阵对应的波束方向。
作为一个实施例,给定天线端口与给定能量检测空间相关是指:所述给定能量检测所使用的接收波束对应的波束宽度大于所述给定天线端口的发送波束对应的波束宽度。
作为一个实施例,给定天线端口与给定能量检测空间相关是指:所述给定能量检测所使用的接收波束包括所述给定天线端口的发送波束。
作为一个实施例,给定天线端口与给定能量检测空间不相关是指:所述给定能量检测所使用的多天线相关的接收不能被用于推断出所述给定天线端口的多天线相关的发送,或者所述给定天线端口的多天线相关的发送不能被用于推断出所述给定能量检测所使用的多天线相关的接收。
作为一个实施例,给定天线端口与给定能量检测空间不相关是指:所述给定能量检测所使用的多天线相关的接收和所述给定天线端口的多天线相关的发送不相同。
作为一个实施例,给定天线端口与给定能量检测空间不相关是指:所述给定能量检测所使用的多天线相关的接收不包括给定天线端口的多天线相关的发送。
作为一个实施例,给定天线端口与给定能量检测空间不相关是指:所述给定能量检测所使用的接收波束赋型矩阵对应的波束宽度小于所述给定天线端口的发送波束赋型矩阵对应的波束宽度。
作为一个实施例,给定天线端口与给定能量检测空间不相关是指:所述给定能量检测所使用的接收波束赋型矩阵对应的波束方向不包括所述给定天线端口的发送波束赋型矩阵对应的波束方向。
作为一个实施例,给定天线端口与给定能量检测空间不相关是指:所述给定能量检测所使用的接收波束对应的波束宽度小于所述给定天线端口的发送波束对应的波束宽度。
作为一个实施例,给定天线端口与给定能量检测空间不相关是指:所述给定能量检测所使用的接收波束不包括所述给定天线端口的发送波束。
作为一个实施例,所述多天线相关的接收是空间接收参数(Spatial Rx parameters)。
作为一个实施例,所述多天线相关的接收是接收波束。
作为一个实施例,所述多天线相关的接收是接收波束赋型矩阵。
作为一个实施例,所述多天线相关的接收是接收模拟波束赋型矩阵。
作为一个实施例,所述多天线相关的接收是接收模拟波束赋型向量。
作为一个实施例,所述多天线相关的接收是接收波束赋型向量。
作为一个实施例,所述多天线相关的接收是接收空间滤波(spatial filtering)。
作为一个实施例,所述多天线相关的发送是空间发送参数(Spatial Tx parameters)。
作为一个实施例,所述多天线相关的发送是发送波束。
作为一个实施例,所述多天线相关的发送是发送波束赋型矩阵。
作为一个实施例,所述多天线相关的发送是发送模拟波束赋型矩阵。
作为一个实施例,所述多天线相关的发送是发送模拟波束赋型向量。
作为一个实施例,所述多天线相关的发送是发送波束赋型向量。
作为一个实施例,所述多天线相关的发送是发送空间滤波。
作为一个实施例,所述空间发送参数(Spatial Tx parameters)包括发送天线端口、发送天线端口组、发送波束、发送模拟波束赋型矩阵、发送模拟波束赋型向量、发送波束赋型矩阵、发送波束赋型向量和发送空间滤波(spatial filtering)中的一种或多种。
作为一个实施例,所述空间发送参数包括发送天线端口。
作为一个实施例,所述空间发送参数包括发送天线端口组。
作为一个实施例,所述空间发送参数包括发送波束。
作为一个实施例,所述空间发送参数包括发送模拟波束赋型矩阵。
作为一个实施例,所述空间发送参数包括发送模拟波束赋型向量。
作为一个实施例,所述空间发送参数包括发送波束赋型矩阵。
作为一个实施例,所述空间发送参数包括发送波束赋型向量。
作为一个实施例,所述空间发送参数包括发送天线端口和发送波束。
作为一个实施例,所述空间发送参数包括发送天线端口和发送模拟波束赋型矩阵。
作为一个实施例,所述空间发送参数包括发送天线端口和发送模拟波束赋型向量。
作为一个实施例,所述空间发送参数包括发送天线端口和发送波束赋型矩阵。
作为一个实施例,所述空间发送参数包括发送天线端口和发送波束赋型向量。
作为一个实施例,所述空间发送参数包括发送天线端口组和发送波束。
作为一个实施例,所述空间发送参数包括发送天线端口组和发送模拟波束赋型矩阵。
作为一个实施例,所述空间发送参数包括发送天线端口组和发送模拟波束赋型向量。
作为一个实施例,所述空间发送参数包括发送天线端口组和发送波束赋型矩阵。
作为一个实施例,所述空间发送参数包括发送天线端口组和发送波束赋型向量。
作为一个实施例,所述空间接收参数(Spatial Rx parameters)包括接收波束、接收模拟波束赋型矩阵、接收模拟波束赋型向量、接收波束赋型矩阵、接收波束赋型向量和接收空间滤波(spatial filtering)中的一种或多种。
作为一个实施例,所述空间接收参数包括接收波束。
作为一个实施例,所述空间接收参数包括接收模拟波束赋型矩阵。
作为一个实施例,所述空间接收参数包括接收模拟波束赋型向量。
作为一个实施例,所述空间接收参数包括接收波束赋型矩阵。
作为一个实施例,所述空间接收参数包括接收波束赋型向量。
作为一个实施例,所述空间接收参数包括接收空间滤波。
作为一个实施例,所述给定能量检测所使用的天线数目小于所述给定天线端口的发送天线数目。
作为一个实施例,所述给定能量检测所使用的天线数目大于1。
作为一个实施例,所述给定天线端口的发送天线数目大于1。
作为一个实施例,所述实施例10A对应所述给定能量检测所使用的接收波束和所述给定天线端口的发送波束相同的所述给定天线端口与所述给定能量检测空间相关的示意图。
作为一个实施例,所述实施例10B对应所述给定能量检测所使用的接收波束包括所述给定天线端口的发送波束的所述给定天线端口与所述给定能量检测空间相关的示意图。
实施例11
实施例11示例了一个第二接收参数组、K1个接收参数组和第一接收参数空间的关系的示意图,如附图11所示。
在实施例11中,从所述K1个接收参数组中确定所述第二接收参数组,所述K1是大于1的正整数;所述K1个接收参数组都属于所述第一接收参数空间。
作为一个实施例,所述第二接收参数组是所述K1个接收参数组中对应的接入检测结果是信道空闲的一个接收参数组。
作为上述实施例的一个子实施例,所述第一接入检测包括K1次接入检测,所述K1个接收参数组分别被用于所述K1次接入检测。
作为一个实施例,所述第二接收参数组是所述K1个接收参数组中对应的接入检测结果是信道空闲的唯一一个接收参数组。
作为上述实施例的一个子实施例,所述第一接入检测包括K1次接入检测,所述K1个接收参数组分别被用于所述K1次接入检测。
作为一个实施例,所述用户设备从K1个接收参数组中任意选择一个接收参数组作为所述第二接收参数组。
作为上述实施例的一个子实施例,所述第一接入检测包括K1次接入检测,所述K1个接收参数组分别被用于所述K1次接入检测。
作为上述实施例的一个子实施例,所述第一接入检测包括一次接入检测,所述K1个接收参数组都被用于所述第一接入检测。
作为一个实施例,所述用户设备如何从K1个接收参数组中确定所述第二接收参数组是一个用户设备实现相关的问题(UE implementation issue)。
作为上述实施例的一个子实施例,所述第一接入检测包括K1次接入检测,所述K1个接收参数组分别被用于所述K1次接入检测。
作为上述实施例的一个子实施例,所述第一接入检测包括一次接入检测,所述K1个接收参数组都被用于所述第一接入检测。
作为一个实施例,所述第二接收参数组是所述K1个接收参数组中对应最小的能量检测结果的一个接收参数组。
作为上述实施例的一个子实施例,所述第一接入检测包括K1次接入检测,所述K1个接收参数组分别被用于所述K1次接入检测。
作为上述实施例的一个子实施例,所述第一接入检测包括一次接入检测,所述K1个接收参数组都被用于所述第一接入检测。
作为上述实施例的一个子实施例,所述能量检测结果对应一次接入检测。
作为上述实施例的一个子实施例,所述能量检测结果是一次接入检测中的X次能量检测的检测值的平均值,所述X是正整数。
作为上述实施例的一个子实施例,所述能量检测结果是一次接入检测中的X次能量检测的检测值之和,所述X是正整数。
作为上述实施例的一个子实施例,所述能量检测结果是一次接入检测中的所有能量检测中的检测值中最大的X个检测值的平均值,所述X是正整数。
作为上述实施例的一个子实施例,所述能量检测结果是一次接入检测中的所有能量检测中的检测值中最大的X个检测值之和,所述X是正整数。
作为上述实施例的一个子实施例,所述能量检测结果是一次接入检测中的所有能量检测中的检测值的平均值。
作为上述实施例的一个子实施例,所述能量检测结果是一次接入检测中的所有能量检测中的检测值之和。
实施例12
实施例12示例了一个第一信息的示意图,如附图12所示。
在实施例12中,所述第一信息被用于确定本申请中的所述第一天线端口组和所述K个天线端口组中的K1-1个天线端口组,本申请中的所述K1个接收参数组中除了所述第一接收参数组之外的K1-1个接收参数组分别被用于所述K1-1个天线端口组上发送的无线信号的接收。
作为一个实施例,所述第一信息显式的指示所述第一天线端口组和所述K个天线端口组中的K1-1个天线端口组。
作为一个实施例,所述第一信息隐式的指示所述第一天线端口组和所述K个天线端口组中的K1-1个天线端口组。
作为上述实施例的一个子实施例,所述第一信息包括所述第一天线端口组和所述K个天线端口组中的K1-1个天线端口组在一个给定天线端口组集合中的索引,所述给定天线端口组集合是更高层信令配置的。
作为上述实施例的一个子实施例,所述第一信息包括所述第一天线端口组在一个给定天线端口组集合中的索引,和所述K个天线端口组中的K1-1个天线端口组在所述K个天线端口组中的索引,所述给定天线端口组集合是更高层信令配置的。
实施例13
实施例13A至实施例13C分别示例了另一个第一信息的示意图。
在实施例13中,所述第一信息被用于确定第一阈值,所述第一接收参数组与所述第一阈值共同被用于确定所述第一接收参数空间。
作为一个实施例,所述第一信息显式的指示所述第一阈值。
作为一个实施例,所述第一信息隐式的指示所述第一阈值。
作为一个实施例,所述第一信息被用于确定所述第一天线端口组和所述第一阈值。
作为上述实施例的一个子实施例,所述第一信息显式的指示所述第一天线端口组。
作为上述实施例的一个子实施例,所述第一信息隐式的指示所述第一天线端口组。
作为上述实施例的一个子实施例,所述第一信息指示所述第一天线端口组在一个给定天线端口组集合中的索引,所述给定天线端口组集合是更高层信令配置的。
作为上述实施例的一个子实施例,所述第一信息显式的指示所述第一阈值。
作为上述实施例的一个子实施例,所述第一信息隐式的指示所述第一阈值。
作为上述实施例的一个子实施例,所述第一信息包括所述第一阈值在一个给定阈值集合中的索引,所述给定阈值集合是更高层信令配置的。
作为上述实施例的一个子实施例,所述第一信息包括所述第一阈值在一个给定阈值集合中的索引,所述给定阈值集合是预定义的。
作为一个实施例,所述第一信息被用于确定所述第一天线端口组、所述K个天线端口组和所述第一阈值。
作为上述实施例的一个子实施例,所述第一信息显式的指示所述第一天线端口组。
作为上述实施例的一个子实施例,所述第一信息隐式的指示所述第一天线端口组。
作为上述实施例的一个子实施例,所述第一信息显式的指示所述K个天线端口组。
作为上述实施例的一个子实施例,所述第一信息隐式的指示所述K个天线端口组。
作为上述实施例的一个子实施例,所述第一信息显式的指示所述第一阈值。
作为上述实施例的一个子实施例,所述第一信息隐式的指示所述第一阈值。
作为上述实施例的一个子实施例,所述第一信息包括所述第一天线端口组和所述K个天线端口组在一个给定天线端口组集合中的索引,所述给定天线端口组集合是更高层信令配置的。
作为上述实施例的一个子实施例,所述第一信息还包括所述第一阈值。
作为上述实施例的一个子实施例,所述第一信息还包括所述第一阈值在一个给定阈值集合中的索引,所述给定阈值集合是更高层信令配置的。
作为上述实施例的一个子实施例,所述第一信息还包括所述第一阈值在一个给定阈值集合中的索引,所述给定阈值集合是预定义的。
作为一个实施例,所述实施例13A对应所述第一信息指示所述第一阈值的示意图。
作为一个实施例,所述实施例13B对应所述第一信息指示所述第一天线端口组和所述第一阈值的示意图。
作为一个实施例,所述实施例13C对应所述第一信息指示所述第一天线端口组、所述K个天线端口组和所述第一阈值的示意图。
实施例14
实施例14示例了一个确定第一接收参数空间的示意图,如附图14所示。
在实施例14中,本申请中的所述第一接收参数组与本申请中的所述第一阈值共同被用于确定所述第一接收参数空间;所述第一接收参数空间中的任一接收参数组与所述第一接收参数组的相关系数不低于所述第一阈值。
作为一个实施例,所述第一接收参数空间中的任一接收参数组与所述第一接收参数组的相关系数高于所述第一阈值。
作为一个实施例,给定接收参数组是所述第一接收参数空间中的一个接收参数组,所述给定接收参数组组成第一列向量,所述第一接收参数组组成第二列向量,所述给定接收参数组与所述第一接收参数组的相关系数是所述第一列向量和所述第二列向量的内积,所述第一列向量和所述第二列向量的范数都等于1。
作为一个实施例,给定接收参数组是所述第一接收参数空间中的一个接收参数组,所述给定接收参数组组成列向量w,所述第一接收参数组组成列向量v,所述给定接收参数组与所述第一接收参数组的相关系数ρ满足
Figure PCTCN2018073966-appb-000001
作为一个实施例,给定接收参数组是所述第一接收参数空间中的一个接收参数组,所述给定接收参数组组成列向量w,所述第一接收参数组组成列向量v,所述给定接收参数组与所述第一接收参数组的相关系数ρ满足ρ?|w Hv|,其中w和v的范数都等于1。
作为一个实施例,所述第一阈值是不小于0且不大于1的实数。
作为一个实施例,所述第一阈值是不小于0且小于1的实数。
实施例15
实施例15示例了另一个确定所述第一接收参数空间的示意图,如附图15所示。
在实施例15中,给定接收参数组与本申请中的所述第一无线信号的发送参数组的相关系数不低于本申请中的所述第一阈值,所述给定接收参数组被用于接收采用给定发送参数组发送的上行无线信号,所述第一接收参数空间中的任一接收参数组被用于生成所述给定发送参数组。
作为一个实施例,所述给定接收参数组与所述第一无线信号的发送参数组的相关系数高于所述第一阈值。
作为一个实施例,所述所述第一无线信号的发送参数组包括空间发送参数。
作为一个实施例,所述所述第一无线信号的发送参数组包括发送波束。
作为一个实施例,所述所述第一无线信号的发送参数组包括发送波束赋型矩阵。
作为一个实施例,所述所述第一无线信号的发送参数组包括发送模拟波束赋型矩阵。
作为一个实施例,所述所述第一无线信号的发送参数组包括发送波束赋型向量。
作为一个实施例,所述所述第一无线信号的发送参数组包括发送空间滤波。
作为一个实施例,所述给定接收参数组包括空间接收参数。
作为一个实施例,所述给定接收参数组包括接收波束。
作为一个实施例,所述给定接收参数组包括接收波束赋型矩阵。
作为一个实施例,所述给定接收参数组包括接收模拟波束赋型矩阵。
作为一个实施例,所述给定接收参数组包括接收波束赋型向量。
作为一个实施例,所述给定接收参数组包括接收空间滤波。
作为一个实施例,所述给定接收参数组组成第一列向量,所述所述第一无线信号的发送参数组组成第二列向量,所述给定接收参数组与所述第一无线信号的发送参数组的相关系数是所述第一列向量和所述第二列向量的内积,所述第一列向量和所述第二列向量的范数都等于1。
作为一个实施例,所述给定接收参数组组成列向量w,所述所述第一无线信号的发送参数组组成列向量v,所述给定接收参数组与所述第一无线信号的发送参数组的相关系数ρ满足
Figure PCTCN2018073966-appb-000002
作为一个实施例,所述给定接收参数组组成列向量w,所述所述第一无线信号的发送参数组组成列向量v,所述给定接收参数组与所述第一无线信号的发送参数组的相关系数ρ满足ρ?|w Hv|,其中w和v的范数都等于1。
作为一个实施例,所述第一接收参数空间中的任一接收参数组被用于生成所述给定发送参数组是指:所述第一接收参数空间中的任一接收参数组能被用于推断出所述给定发送参数组。
作为一个实施例,所述第一接收参数空间中的任一接收参数组被用于生成所述给定发送参数组是指:所述给定发送参数组和所述第一接收参数空间中的任一接收参数组相同。
作为一个实施例,所述第一接收参数空间中的任一接收参数组被用于生成所述给定发送参数组是指:所述第一接收参数空间中的任一接收参数组包括所述给定发送参数组。
作为一个实施例,所述第一阈值是不小于0且不大于1的实数。
作为一个实施例,所述第一阈值是不小于0且小于1的实数。
实施例16
实施例16示例了另一个确定所述第一接收参数空间的示意图,如附图16所示。
在实施例16中,第一参考接收质量和采用所述第一接收参数空间中的任一接收参数组接收下行无线信号得到的接收质量的偏差不大于本申请中的所述第一阈值,所述第一参考接收质量是采用本申请中的所述第一接收参数组接收所述下行无线信号得到的接收质量。
作为一个实施例,所述第一参考接收质量和采用所述第一接收参数空间中的任一接收参数组接收下行无线信号得到的接收质量的偏差小于所述第一阈值。
作为一个实施例,第一参考接收质量和给定第一接收质量的偏差是所述第一参考接收质量减去所述给定第一接收质量的差值,所述给定第一接收质量是采用所述第一接收参数空间中的一个给定接收参数组接收下行无线信号得到的接收质量。
作为上述实施例的一个子实施例,所述第一参考接收质量不小于所述给定第一接收质量。
作为上述实施例的一个子实施例,所述第一参考接收质量和给定第一接收质量的偏差是不小于零的数值。
作为一个实施例,第一参考接收质量和给定第一接收质量的偏差是所述第一参考接收质量减去所述给定第一接收质量的差值的绝对值,所述给定第一接收质量是采用所述第一接收参数空间中的一个给定接收参数组接收下行无线信号得到的接收质量。
作为上述实施例的一个子实施例,所述第一参考接收质量不小于所述给定第一接收质量。
作为上述实施例的一个子实施例,所述第一参考接收质量小于所述给定第一接收质量。
作为上述实施例的一个子实施例,所述第一参考接收质量和给定第一接收质量的偏差是不小于零的数值。
作为一个实施例,所述第一参考接收质量和采用所述第一接收参数空间中的任一接收参数组接收下行无线信号得到的接收质量的偏差是不小于零的数值。
作为一个实施例,所述第一参考接收质量和所述采用所述第一接收参数空间中的任一接收参数组接收下行无线信号得到的接收质量都包括RSRP(Reference Signals Received Power,参考信号接收功率)。
作为一个实施例,所述第一参考接收质量和所述采用所述第一接收参数空间中的任一接收参数组接收下行无线信号得到的接收质量都包括RSRQ(Reference Signals Received Quality,参考信号接收质量)。
作为一个实施例,所述第一参考接收质量和所述采用所述第一接收参数空间中的任一接收参数组接收下行无线信号得到的接收质量都包括SINR(Signal-to-Interference-plus-Noise Ratio,信干噪比)。
作为一个实施例,所述第一参考接收质量和所述采用所述第一接收参数空间中的任一接收参数组接收下行无线信号得到的接收质量都包括CQI(Channel quality indicator,信道质量指示)。
作为一个实施例,所述第一参考接收质量和所述采用所述第一接收参数空间中的任一接收参数组接收下行无线信号得到的接收质量都包括BLER(Block Error Rate,误块率)。
作为一个实施例,所述第一参考接收质量和所述采用所述第一接收参数空间中的任一接收参数组接收下行无线信号得到的接收质量的单位都是dB。
作为一个实施例,所述第一参考接收质量和所述采用所述第一接收参数空间中的任一接收参数组接收下行无线信号得到的接收质量的单位都是dBm。
作为一个实施例,所述第一参考接收质量和所述采用所述第一接收参数空间中的任一接收参数组接收下行无线信号得到的接收质量的单位都是毫瓦。
作为一个实施例,所述第一阈值的单位是dB。
作为一个实施例,所述第一阈值的单位是dBm。
作为一个实施例,所述第一阈值的单位是毫瓦。
作为一个实施例,所述第一阈值是一个大于零的实数。
作为一个实施例,所述第一阈值是一个不小于零的实数。
实施例17
实施例17示例了另一个确定所述第一接收参数空间的示意图,如附图17所示。
在实施例17中,第二参考接收质量和给定接收质量的偏差不大于所述第一阈值,所述第二参考接收质量是采用参考发送参数组发送上行无线信号得到的接收质量,所述给定接收质量是采用给定发送参数组发送所述上行无线信号得到的接收质量,本申请中的所述第一接收参数组被用于生成所述参考发送参数组,所述第一接收参数空间中的任一接收参数组被用于生成所述给定发送参数组。
作为一个实施例,所述第二参考接收质量和给定接收质量的偏差小于所述第一阈值。
作为一个实施例,第二参考接收质量和给定接收质量的偏差是所述第二参考接收质量减去所述给定接收质量的差值。
作为上述实施例的一个子实施例,所述第二参考接收质量不小于所述给接收质量。
作为上述实施例的一个子实施例,所述第二参考接收质量和给定接收质量的偏差是不小于零的数值。
作为一个实施例,第二参考接收质量和给定接收质量的偏差是所述第二参考接收质量减去所述给定接收质量的差值的绝对值。
作为上述实施例的一个子实施例,所述第二参考接收质量不小于所述给定接收质量。
作为上述实施例的一个子实施例,所述第二参考接收质量小于所述给定接收质量。
作为上述实施例的一个子实施例,所述第二参考接收质量和给定接收质量的偏差是不小于零的数值。
作为一个实施例,所述第二参考接收质量和给定接收质量的偏差是不小于零的数值。
作为一个实施例,所述第一接收参数组被用于生成所述参考发送参数组是指:所述第一接收参数组能被用于推断出所述参考发送参数组。
作为一个实施例,所述第一接收参数组被用于生成所述参考发送参数组是指:所述参考发送参数组和所述第一接收参数组相同。
作为一个实施例,所述第一接收参数组被用于生成所述参考发送参数组是指:所述第一接收参数组包括所述参考发送参数组。
作为一个实施例,所述参考发送参数组包括空间发送参数。
作为一个实施例,所述参考发送参数组包括发送波束。
作为一个实施例,所述参考发送参数组包括发送波束赋型矩阵。
作为一个实施例,所述参考发送参数组包括发送模拟波束赋型矩阵。
作为一个实施例,所述参考发送参数组包括发送波束赋型向量。
作为一个实施例,所述参考发送参数组包括发送空间滤波。
作为一个实施例,所述给定发送参数组包括空间发送参数。
作为一个实施例,所述给定发送参数组包括发送波束。
作为一个实施例,所述给定发送参数组包括发送波束赋型矩阵。
作为一个实施例,所述给定发送参数组包括发送模拟波束赋型矩阵。
作为一个实施例,所述给定发送参数组包括发送波束赋型向量。
作为一个实施例,所述给定发送参数组包括发送空间滤波。
作为一个实施例,所述第二参考接收质量以及所述给定接收质量都包括RSRP。
作为一个实施例,所述第二参考接收质量以及所述给定接收质量都包括RSRQ。
作为一个实施例,所述第二参考接收质量以及所述给定接收质量都包括SINR。
作为一个实施例,所述第二参考接收质量以及所述给定接收质量都包括CQI。
作为一个实施例,所述第二参考接收质量以及所述给定接收质量都包括BLER。
作为一个实施例,所述第一阈值的单位是dB。
作为一个实施例,所述第一阈值的单位是dBm。
作为一个实施例,所述第一阈值的单位是毫瓦。
作为一个实施例,所述第一阈值是一个大于零的实数。
作为一个实施例,所述第一阈值是一个不小于零的实数。
实施例18
实施例18示例了一个天线端口和天线端口组的示意图,如附图18所示。
在实施例18中,一个天线端口组包括正整数个天线端口;一个天线端口由正整数个天线组中的天线通过天线虚拟化(Virtualization)叠加而成;一个天线组包括正整数根天线。一个天线组通过一个RF(Radio Frequency,射频)chain(链)连接到基带处理器,不同天线组对应不同的RFchain。给定天线端口包括的正整数个天线组内的所有天线到所述给定天线端口的映射系数组成所述给定天线端口对应的波束赋型向量。所述给定天线端口包括的正整数个天线组内的任一给定天线组包括的多根天线到所述给定天线端口的映射系数组成所述给定天线组的模拟波束赋型向量。所述正整数个天线组对应的模拟波束赋型向量对角排列构成所述给定天线端口对应的模拟波束赋型矩阵。所述正整数个天线组到所述给定天线端口的映射系数组成所述给定天线端口对应的数字波束赋型向量。所述给定天线端口对应的波束赋型向量是由所述给定天线端口对应的模拟波束赋型矩阵和数字波束赋型向量的乘积得到的。一个天线端口组中的不同天线端口由相同的天线组构成,同一个天线端口组中的不同天线端口对应不同的波束赋型向量。
附图18中示出了两个天线端口组:天线端口组#0和天线端口组#1。其中,所述天线端口组#0由天线组#0构成,所述天线端口组#1由天线组#1和天线组#2构成。所述天线组#0中的多个天线到所述天线端口组#0的映射系数组成模拟波束赋型向量#0,所述天线组#0到所述天线端口组#0的映射系数组成数字波束赋型向量#0。所述天线组#1中的多个天线和所述天线组#2中的多个天线到所述天线端口组#1的映射系数分别组成模拟波束赋型向量#1和模拟波束赋型向量#2,所述天线组#1和所述天线组#2到所述天线端口组#1的映射系数组成数字波束赋型向量#1。所述天线端口组#0中的任一天线端口对应的波束赋型向量是由所述模拟波束赋型向量#0和所述数字波束赋型向量#0的乘积得到的。所述天线端口组#1中的任一天线端口对应的波束赋型向量是由所述模拟波束赋型向量#1和所述模拟波束赋型向量#2对角排列构成的模拟波束赋型矩阵和所述数字波束赋型向量#1的乘积得到的。
作为一个实施例,一个天线端口组包括一个天线端口。例如,附图18中的所述天线端口组#0包括一个天线端口。
作为上述实施例的一个子实施例,所述一个天线端口对应的模拟波束赋型矩阵降维成模拟波束赋型向量,所述一个天线端口对应的数字波束赋型向量降维成一个标量,所述一个天线端口对应的波束赋型向量等于所述一个天线端口对应的模拟波束赋型向量。例如,附图18中的所述数字波束赋型向量#0降维成一个标量,所述天线端口组#0中的天线端口对应的波束赋型向量是所述模拟波束赋型向量#0。
作为一个实施例,一个天线端口组包括多个天线端口。例如,附图18中的所述天线端口组#1包括多个天线端口。
作为上述实施例的一个子实施例,所述多个天线端口对应相同的模拟波束赋型矩阵。
作为上述实施例的一个子实施例,所述多个天线端口中至少两个天线端口对应相同的模拟波束赋型矩阵。
作为上述实施例的一个子实施例,所述多个天线端口中至少两个天线端口对应不同的模拟波束赋型矩阵。
作为上述实施例的一个子实施例,所述多个天线端口对应不同的数字波束赋型向量。
作为上述实施例的一个子实施例,所述多个天线端口中至少两个天线端口对应相同的数字波束赋型向量。
作为上述实施例的一个子实施例,所述多个天线端口中至少两个天线端口对应不同 的数字波束赋型向量。
作为一个实施例,不同的天线端口组中的任意两个天线端口对应不同的模拟波束赋型矩阵。
作为一个实施例,不同的天线端口组中的至少两个天线端口对应不同的模拟波束赋型矩阵。
作为一个实施例,不同的天线端口组中的至少两个天线端口对应相同的模拟波束赋型矩阵。
作为一个实施例,两个不同的天线端口组是QCL(Quasi Co-Located,准共址)。
作为一个实施例,两个不同的天线端口组不是QCL。
作为一个实施例,一个天线端口组中的任意两个天线端口是QCL。
作为一个实施例,一个天线端口组中的任意两个天线端口不是QCL。
作为一个实施例,一个天线端口组中的至少两个天线端口是QCL。
作为一个实施例,一个天线端口组中的至少两个天线端口不是QCL。
作为一个实施例,一个天线端口组中的任意两个天线端口是spatial QCL。
作为一个实施例,一个天线端口组中的任意两个天线端口不是spatial QCL。
作为一个实施例,一个天线端口组中的至少两个天线端口是spatial QCL。
作为一个实施例,一个天线端口组中的至少两个天线端口不是spatial QCL。
实施例19
实施例19示例了一个UE中的处理装置的结构框图,如附图19所示。附图19中,UE处理装置1200主要由第一接收机模块1201和第一收发机模块1202组成。
作为一个实施例,所述第一接收机模块1201包括实施例4中的接收器456、接收处理器452和控制器/处理器490。
作为一个实施例,所述第一接收机模块1201包括实施例4中的接收器456、接收处理器452和控制器/处理器490中的至少前二者。
作为一个实施例,所述第一收发机模块1202包括实施例4中的接收器/发射器456、接收处理器452、发射处理器455和控制器/处理器490。
作为一个实施例,所述第一收发机模块1202包括实施例4中的接收器/发射器456、接收处理器452、发射处理器455和控制器/处理器490中的至少前三者。
-第一接收机模块1201:接收第一无线信号,所述第一无线信号被第一天线端口组发送;接收第一信息;
-第一收发机模块1202:执行第一接入检测以确定是否在第一子频带上的第一时刻进行上行发送;如果是,在所述第一子频带上的第一时刻通过第二天线端口组发送第二无线信号;如果否,放弃在所述第一子频带上的第一时刻发送第二无线信号。
在实施例19中,所述第一天线端口组包括正整数个天线端口,所述第二天线端口组包括正整数个天线端口;第一接收参数组被用于所述第一无线信号的接收,第二接收参数组被用于生成所述第二天线端口组;所述第一接收参数组和所述第二接收参数组都属于第一接收参数空间,所述第一信息和所述第一接收参数组共同被用于确定所述第一接收参数空间。
作为一个实施例,所述第一收发机模块1202还从K1个接收参数组中确定所述第二接收参数组,所述K1是大于1的正整数;其中,所述K1个接收参数组都属于所述第一接收参数空间。
作为一个实施例,所述第一接收机模块1201还接收K个无线信号,所述K是大于1的正整数;其中,所述K个无线信号分别被K个天线端口组发送,K个接收参数组分别被用于所述K个无线信号的接收,所述K1个接收参数组中任一不包括所述第一接收参数组的接收参数组是所述K个接收参数组中的一个接收参数组。
作为一个实施例,在所述第一接收参数空间内,所述用户设备自行确定所述K1个接 收参数组。
作为一个实施例,所述第一信息被用于确定第一阈值,所述第一接收参数组与所述第一阈值共同被用于确定所述第一接收参数空间。
作为一个实施例,所述第一接收参数空间中的任一接收参数组与所述第一接收参数组的相关系数不低于所述第一阈值。
作为一个实施例,第一参考接收质量和采用所述第一接收参数空间中的任一接收参数组接收下行无线信号得到的接收质量的偏差不大于所述第一阈值,所述第一参考接收质量是采用第一接收参数组接收所述下行无线信号得到的接收质量。
作为一个实施例,第二参考接收质量和给定接收质量的偏差不大于所述第一阈值,所述第二参考接收质量是采用参考发送参数组发送上行无线信号得到的接收质量,所述给定接收质量是采用给定发送参数组发送上行无线信号得到的接收质量,所述第一接收参数组被用于生成所述参考发送参数组,所述第一接收参数空间中的任一接收参数组被用于生成所述给定发送参数组。
实施例20
实施例20示例了一个基站设备中的处理装置的结构框图,如附图20所示。附图20中,基站设备中的处理装置1300主要由第二发射机模块1301和第二接收机模块1302组成。
作为一个子实施例,所述第二发射机模块1301包括实施例4中的发射器416、发射处理器415和控制器/处理器440。
作为一个子实施例,所述第二发射机模块1301包括实施例4中的发射器416、发射处理器415和控制器/处理器440中的至少前二者。
作为一个子实施例,所述第二接收机模块1302包括实施例4中的接收器416、接收处理器412和控制器/处理器440。
作为一个子实施例,所述第二接收机模块1302包括实施例4中的接收器416、接收处理器412和控制器/处理器440中的至少前二者。
-第二发射机模块1301:发送第一无线信号,所述第一无线信号被第一天线端口组发送;发送第一信息;
-第二接收机模块1302:在第一子频带上的第一时刻监测第二无线信号;
在实施例18中,第一接入检测被用于确定是否在所述第一子频带上的第一时刻进行上行发送;如果是,在所述第一子频带上的第一时刻通过第二天线端口组发送所述第二无线信号;如果否,放弃在所述第一子频带上的第一时刻发送所述第二无线信号;所述第一天线端口组包括正整数个天线端口,所述第二天线端口组包括正整数个天线端口;第一接收参数组被用于所述第一无线信号的接收,第二接收参数组被用于生成所述第二天线端口组;所述第一接收参数组和所述第二接收参数组都属于第一接收参数空间,所述第一信息和所述第一接收参数组共同被用于确定所述第一接收参数空间。
作为一个实施例,所述第一信息的接收者从K1个接收参数组中确定所述第二接收参数组,所述K1是大于1的正整数;其中,所述K1个接收参数组都属于所述第一接收参数空间。
作为一个实施例,所述第二发射机模块1301还发送K个无线信号,所述K是大于1的正整数;其中,所述K个无线信号分别被K个天线端口组发送,K个接收参数组分别被用于所述K个无线信号的接收,所述K1个接收参数组中任一不同于所述第一接收参数组的接收参数组是所述K个接收参数组中的一个接收参数组。
作为一个实施例,在所述第一接收参数空间内,所述第一信息的接收者自行确定所述K1个接收参数组。
作为一个实施例,所述第一信息被用于确定第一阈值,所述第一接收参数组与所述第一阈值共同被用于确定所述第一接收参数空间。
作为一个实施例,所述第一接收参数空间中的任一接收参数组与所述第一接收参数组的相关系数不低于所述第一阈值。
作为一个实施例,第一参考接收质量和采用所述第一接收参数空间中的任一接收参数组接收下行无线信号得到的接收质量的偏差不大于所述第一阈值,所述第一参考接收质量是采用第一接收参数组接收所述下行无线信号得到的接收质量。
作为一个实施例,第二参考接收质量和给定接收质量的偏差不大于所述第一阈值,所述第二参考接收质量是采用参考发送参数组发送上行无线信号得到的接收质量,所述给定接收质量是采用给定发送参数组发送所述上行无线信号得到的接收质量,所述第一接收参数组被用于生成所述参考发送参数组,所述第一接收参数空间中的任一接收参数组被用于生成所述给定发送参数组。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种用于无线通信的用户设备中的方法,其特征在于,包括:
    接收第一无线信号,所述第一无线信号被第一天线端口组发送;
    接收第一信息;
    执行第一接入检测以确定是否在第一子频带上的第一时刻进行上行发送;如果是,在所述第一子频带上的第一时刻通过第二天线端口组发送第二无线信号;如果否,放弃在所述第一子频带上的第一时刻发送第二无线信号;
    其中,所述第一天线端口组包括正整数个天线端口,所述第二天线端口组包括正整数个天线端口;第一接收参数组被用于所述第一无线信号的接收,第二接收参数组被用于生成所述第二天线端口组;所述第一接收参数组和所述第二接收参数组都属于第一接收参数空间,所述第一信息和所述第一接收参数组共同被用于确定所述第一接收参数空间。
  2. 根据权利要求1所述的方法,其特征在于,包括:
    从K1个接收参数组中确定所述第二接收参数组,所述K1是大于1的正整数;
    其中,所述K1个接收参数组都属于所述第一接收参数空间。
  3. 根据权利要求2所述的方法,其特征在于,包括:
    接收K个无线信号,所述K是大于1的正整数;
    其中,所述K个无线信号分别被K个天线端口组发送,K个接收参数组分别被用于所述K个无线信号的接收,所述K1个接收参数组中任一不同于所述第一接收参数组的接收参数组是所述K个接收参数组中的一个接收参数组。
  4. 根据权利要求2所述的方法,其特征在于,在所述第一接收参数空间内,所述用户设备自行确定所述K1个接收参数组。
  5. 根据权利要求1至4中任一权利要求所述的方法,其特征在于,所述第一信息被用于确定第一阈值,所述第一接收参数组与所述第一阈值共同被用于确定所述第一接收参数空间。
  6. 根据权利要求5所述的方法,其特征在于,所述第一接收参数空间中的任一接收参数组与所述第一接收参数组的相关系数不低于所述第一阈值。
  7. 根据权利要求5所述的方法,其特征在于,第一参考接收质量和采用所述第一接收参数空间中的任一接收参数组接收下行无线信号得到的接收质量的偏差不大于所述第一阈值,所述第一参考接收质量是采用第一接收参数组接收所述下行无线信号得到的接收质量。
  8. 根据权利要求5所述的方法,其特征在于,第二参考接收质量和给定接收质量的偏差不大于所述第一阈值,所述第二参考接收质量是采用参考发送参数组发送上行无线信号得到的接收质量,所述给定接收质量是采用给定发送参数组发送所述上行无线信号得到的接收质量,所述第一接收参数组被用于生成所述参考发送参数组,所述第一接收参数空间中的任一接收参数组被用于生成所述给定发送参数组。
  9. 一种用于无线通信的基站设备中的方法,其特征在于,包括:
    发送第一无线信号,所述第一无线信号被第一天线端口组发送;
    发送第一信息;
    在第一子频带上的第一时刻监测第二无线信号;
    其中,第一接入检测被用于确定是否在所述第一子频带上的第一时刻进行上行发送;如果是,在所述第一子频带上的第一时刻通过第二天线端口组发送所述第二无线信号;如果否,放弃在所述第一子频带上的第一时刻发送所述第二无线信号;所述第一天线端口组包括正整数个天线端口,所述第二天线端口组包括正整数个天线端口;第一接收参数组被用于所述第一无线信号的接收,第二接收参数组被用于生成所述第二天线端口组;所述第一接收参数组和所述第二接收参数组都属于第一接收参数空间,所述第一信息和所述第一接收参数组共同被用于确定所述第一接收参数空间。
  10. 根据权利要求9所述的方法,其特征在于,所述第一信息的接收者从K1个接收参数组中确定所述第二接收参数组,所述K1是大于1的正整数;其中,所述K1个接收参数组都属于所述第一接收参数空间。
  11. 根据权利要求10所述的方法,其特征在于,包括:
    发送K个无线信号,所述K是大于1的正整数;
    其中,所述K个无线信号分别被K个天线端口组发送,K个接收参数组分别被用于所述K个无线信号的接收,所述K1个接收参数组中任一不同于所述第一接收参数组的接收参数组是所述K个接收参数组中的一个接收参数组。
  12. 根据权利要求10所述的方法,其特征在于,在所述第一接收参数空间内,所述第一信息的接收者自行确定所述K1个接收参数组。
  13. 根据权利要求9至12中任一权利要求所述的方法,其特征在于,所述第一信息被用于确定第一阈值,所述第一接收参数组与所述第一阈值共同被用于确定所述第一接收参数空间。
  14. 根据权利要求13所述的方法,其特征在于,所述第一接收参数空间中的任一接收参数组与所述第一接收参数组的相关系数不低于所述第一阈值。
  15. 根据权利要求13所述的方法,其特征在于,第一参考接收质量和采用所述第一接收参数空间中的任一接收参数组接收下行无线信号得到的接收质量的偏差不大于所述第一阈值,所述第一参考接收质量是采用第一接收参数组接收所述下行无线信号得到的接收质量。
  16. 根据权利要求13所述的方法,其特征在于,第二参考接收质量和给定接收质量的偏差不大于所述第一阈值,所述第二参考接收质量是采用参考发送参数组发送上行无线信号得到的接收质量,所述给定接收质量是采用给定发送参数组发送所述上行无线信号得到的接收质量,所述第一接收参数组被用于生成所述参考发送参数组,所述第一接收参数空间中的任一接收参数组被用于生成所述给定发送参数组。
  17. 一种用于无线通信的用户设备,其特征在于,包括:
    第一接收机模块,接收第一无线信号,所述第一无线信号被第一天线端口组发送;接收第一信息;
    第一收发机模块,执行第一接入检测以确定是否在第一子频带上的第一时刻进行上行发送;如果是,在所述第一子频带上的第一时刻通过第二天线端口组发送第二无线信号;如果否,放弃在所述第一子频带上的第一时刻发送第二无线信号;
    其中,所述第一天线端口组包括正整数个天线端口,所述第二天线端口组包括正整数个天线端口;第一接收参数组被用于所述第一无线信号的接收,第二接收参数组被用于生成所述第二天线端口组;所述第一接收参数组和所述第二接收参数组都属于第一接收参数空间,所述第一信息和所述第一接收参数组共同被用于确定所述第一接收参数空间。
  18. 一种用于无线通信的基站设备中的方法,其特征在于,包括:
    第二发射机模块,发送第一无线信号,所述第一无线信号被第一天线端口组发送;发送第一信息;
    第二接收机模块,在第一子频带上的第一时刻监测第二无线信号;
    其中,第一接入检测被用于确定是否在所述第一子频带上的第一时刻进行上行发送;如果是,在所述第一子频带上的第一时刻通过第二天线端口组发送所述第二无线信号;如果否,放弃在所述第一子频带上的第一时刻发送所述第二无线信号;所述第一天线端口组包括正整数个天线端口,所述第二天线端口组包括正整数个天线端口;第一接收参数组被用于所述第一无线信号的接收,第二接收参数组被用于生成所述第二天线端口组;所述第一接收参数组和所述第二接收参数组都属于第一接收参数空间,所述第一信息和所述第一接收参数组共同被用于确定所述第一接收参数空间。
PCT/CN2018/073966 2018-01-24 2018-01-24 一种被用于无线通信的用户设备、基站中的方法和装置 WO2019144315A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880083622.1A CN111512690B (zh) 2018-01-24 2018-01-24 一种被用于无线通信的用户设备、基站中的方法和装置
CN202310070154.7A CN116156656A (zh) 2018-01-24 2018-01-24 一种被用于无线通信的用户设备、基站中的方法和装置
PCT/CN2018/073966 WO2019144315A1 (zh) 2018-01-24 2018-01-24 一种被用于无线通信的用户设备、基站中的方法和装置
CN202310070124.6A CN116156655A (zh) 2018-01-24 2018-01-24 一种被用于无线通信的用户设备、基站中的方法和装置
US16/932,835 US11483863B2 (en) 2018-01-24 2020-07-20 Method and device for wireless communication in UE and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/073966 WO2019144315A1 (zh) 2018-01-24 2018-01-24 一种被用于无线通信的用户设备、基站中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/932,835 Continuation US11483863B2 (en) 2018-01-24 2020-07-20 Method and device for wireless communication in UE and base station

Publications (1)

Publication Number Publication Date
WO2019144315A1 true WO2019144315A1 (zh) 2019-08-01

Family

ID=67395796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073966 WO2019144315A1 (zh) 2018-01-24 2018-01-24 一种被用于无线通信的用户设备、基站中的方法和装置

Country Status (3)

Country Link
US (1) US11483863B2 (zh)
CN (3) CN116156655A (zh)
WO (1) WO2019144315A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114245396A (zh) * 2020-09-09 2022-03-25 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110099454B (zh) * 2018-01-29 2021-04-27 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107113046A (zh) * 2014-12-31 2017-08-29 高通股份有限公司 共享无线频谱频带中的天线子集和定向信道接入
CN107439048A (zh) * 2015-01-30 2017-12-05 瑞典爱立信有限公司 提供先听后说的方法以及相关的ue和网络节点
CN107534991A (zh) * 2015-04-20 2018-01-02 高通股份有限公司 上行链路会话前监听操作

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2592829A4 (en) * 2010-07-05 2014-09-17 Mitsubishi Electric Corp IMAGE QUALITY MANAGEMENT SYSTEM
TWI419070B (zh) * 2011-01-11 2013-12-11 Nat Univ Tsing Hua 相關性變數篩選系統及其篩選方法
JP2016057165A (ja) * 2014-09-09 2016-04-21 富士通株式会社 無線通信装置及び推定方法
US20170006593A1 (en) * 2015-07-02 2017-01-05 Futurewei Technologies, Inc. Beam Detection, Beam Tracking and Random Access in MM-Wave Small Cells in Heterogeneous Network
US10367677B2 (en) * 2016-05-13 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
JP6666197B2 (ja) 2016-05-20 2020-03-13 理想科学工業株式会社 用紙積載装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107113046A (zh) * 2014-12-31 2017-08-29 高通股份有限公司 共享无线频谱频带中的天线子集和定向信道接入
CN107439048A (zh) * 2015-01-30 2017-12-05 瑞典爱立信有限公司 提供先听后说的方法以及相关的ue和网络节点
CN107534991A (zh) * 2015-04-20 2018-01-02 高通股份有限公司 上行链路会话前监听操作

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Operation on high frequency band of unlicensed spectrum in NR,", 3GPP TSG RAN WG1 MEETING #86BIS R1-1609802, vol. ran wg1, 9 October 2016 (2016-10-09) - 14 October 2016 (2016-10-14), XP051149829 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114245396A (zh) * 2020-09-09 2022-03-25 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
US11483863B2 (en) 2022-10-25
CN116156655A (zh) 2023-05-23
CN111512690A (zh) 2020-08-07
CN116156656A (zh) 2023-05-23
US20200367285A1 (en) 2020-11-19
CN111512690B (zh) 2023-02-24

Similar Documents

Publication Publication Date Title
WO2019113766A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019154254A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019134656A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019109345A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11626945B2 (en) Method and device for wireless communication in UE and base station
WO2019109362A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019154259A1 (zh) 一种基站、用户设备中的用于无线通信的方法和装置
WO2019184710A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019028687A1 (zh) 一种用于无线通信的用户设备、基站中的方法和装置
CN111512689B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN110248368B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11483863B2 (en) Method and device for wireless communication in UE and base station
WO2019119249A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019134121A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN110098902B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019149242A1 (zh) 一种基站、用户设备中的用于无线通信的方法和装置
WO2019126939A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019119197A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019218134A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019104703A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2019090752A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019127012A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019213852A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019119174A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/11/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18901859

Country of ref document: EP

Kind code of ref document: A1