WO2019154259A1 - 一种基站、用户设备中的用于无线通信的方法和装置 - Google Patents

一种基站、用户设备中的用于无线通信的方法和装置 Download PDF

Info

Publication number
WO2019154259A1
WO2019154259A1 PCT/CN2019/074142 CN2019074142W WO2019154259A1 WO 2019154259 A1 WO2019154259 A1 WO 2019154259A1 CN 2019074142 W CN2019074142 W CN 2019074142W WO 2019154259 A1 WO2019154259 A1 WO 2019154259A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
energy detection
spatial parameter
control signal
detection threshold
Prior art date
Application number
PCT/CN2019/074142
Other languages
English (en)
French (fr)
Inventor
陈晋辉
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2019154259A1 publication Critical patent/WO2019154259A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power

Definitions

  • the present application relates to a transmission scheme for wireless signals in a wireless communication system, and more particularly to a method and apparatus for transmitting and unlicensed spectrums for multiple antennas.
  • LTE Long-term Evolution
  • LAA Licensed Assisted Access
  • Massive MIMO Multi-Input Multi-Output
  • LBT Long Term Evolution
  • the present application discloses a solution. It should be noted that, in the case of no conflict, the features in the embodiments and embodiments in the UE (User Equipment) of the present application can be applied to the base station, and vice versa. Further, the features of the embodiments and the embodiments of the present application may be combined with each other arbitrarily without conflict.
  • the present application discloses a method for use in a user equipment for wireless communication, comprising:
  • the first control signal indicating a first energy detection configuration, the first energy detection configuration comprising at least one of a target power value and a target energy detection threshold, the target energy detection threshold being associated to The target power value;
  • the target spatial parameter set being associated to the target energy detection threshold
  • the first wireless signal can be sent on the target time-frequency resource, sending the first wireless on the target time-frequency resource by using a first spatial parameter group, a first transmit power, and a first antenna gain a signal, the sum of the first transmit power plus the first antenna gain is not greater than the target power value;
  • the first wireless signal is discarded on the target time-frequency resource.
  • the above method is used for uplink channel access on an unlicensed spectrum.
  • EIRP Maximum Equivalent Radiated Power
  • the energy detection threshold for uplink channel access is not used to determine the maximum equivalent isotropic radiation power, but the innovation of the present invention is that the energy detection threshold for uplink channel access can be Used to determine the maximum equivalent isotropic radiation power.
  • the maximum equivalent isotropic radiated power is not used to determine the energy detection threshold for uplink channel access, and the innovation of the present invention is that the maximum equivalent isotropic radiated power can be used to determine The energy detection threshold for uplink channel access.
  • the energy detection threshold for uplink channel access is independent of the spatial coverage of the LBT, and the innovation of the present invention lies in the energy detection threshold for uplink channel access and signal reception for LBT. Space coverage is relevant.
  • the maximum equivalent isotropic radiated power for transmitting an uplink signal is independent of the spatial coverage of the LBT, and the innovation of the present invention lies in the maximum equivalent isotropic radiated power for transmitting an uplink signal. It is related to the spatial coverage of the LBT signal reception.
  • one advantage of the above method is that the maximum energy detection threshold, the maximum equivalent isotropic radiation power, and the spatial coverage of the LBT are determined according to the configuration of the base station, thereby improving the transmission efficiency of the directional transmission.
  • another advantage of the foregoing method is that the maximum energy detection threshold for the uplink channel access, the maximum equivalent isotropic radiation power and the spatial coverage of the LBT are associated, thereby saving signaling overhead and improving Transmission efficiency of directional transmission.
  • another advantage of the above method is that the spatial coverage of the LBT for uplink channel access is used to determine the direction in which the uplink wireless signal is transmitted, thereby avoiding interference in other directions.
  • the above method is characterized in that it comprises
  • the first energy detection configuration is used to determine a first modulation coding scheme indicated by the first modulation coding scheme index, the first modulation coding scheme being used to generate the first wireless signal.
  • the above method has the advantage that the maximum equivalent isotropic radiation power is associated with the modulation coding table, and the larger the maximum equivalent isotropic radiation power, the higher the coding rate or modulation in the associated modulation coding table.
  • the method is characterized in that the first control signal indicates the first energy detection configuration from L candidate energy detection configurations, the L being a positive integer greater than 1;
  • the first control signal indicates the target energy detection threshold from the N candidate energy detection thresholds, the N being a positive integer greater than 1; or the first control signal indicating the target power from the M candidate power values Value, the M is a positive integer greater than one.
  • the method is characterized in that the M candidate power values are in one-to-one correspondence with M candidate energy detection thresholds, and any one of the M candidate power values is added to its corresponding
  • the sum of the candidate energy detection thresholds is a first power value
  • the units of the M candidate power values and the M candidate energy detection thresholds are both decibel milliwatts or decibels.
  • one advantage of the above method is that the relationship between the maximum effective isotropic radiated power and the maximum energy detection threshold is utilized to calculate the other by one of them, thereby reducing signaling overhead.
  • the above method is characterized in that the target energy detection threshold is associated with a spatial coverage generated using the target spatial parameter set.
  • one advantage of the above method is that the maximum energy detection threshold configured by the base station utilizes the relationship between the maximum energy detection threshold and the LBT spatial coverage to determine the spatial coverage of the LBT for uplink channel access, thereby reducing signaling overhead.
  • the present application discloses a method in a base station used for wireless communication, comprising:
  • Transmitting a first control signal the first control signal indicating a first energy detection configuration, the first energy detection configuration including at least one of a target power value and a target energy detection threshold, the target energy detection threshold being associated to The target power value;
  • the receiver of the first control signal performs a first type of energy detection using a target spatial parameter group, the target spatial parameter group is associated with the target energy detection threshold; and the receiver of the first control signal adopts And comparing the result of the first type of energy detection with the first energy detection threshold to determine whether the first wireless signal is sent by using the first spatial parameter group on the target time-frequency resource, where the first energy detection threshold is not Greater than the target energy detection threshold, the first spatial parameter group is associated with the target spatial parameter group; if it is determined that the first wireless signal can be transmitted on the target time-frequency resource, then at the target Transmitting the first wireless signal by using the first spatial parameter group, the first transmit power, and the first antenna gain, and the sum of the first transmit power plus the first antenna gain is not greater than the target. a power value; if it is determined that the first wireless signal cannot be transmitted on the target time-frequency resource, the receiver of the first control signal abandons the frequency at the target time Transmitting on the first wireless signal.
  • the above method is characterized in that it comprises
  • the first energy detection configuration is used to determine a first modulation coding scheme indicated by the first modulation coding scheme index, the first modulation coding scheme being used to generate the first wireless signal.
  • the method is characterized in that the first control signal indicates the first energy detection configuration from L candidate energy detection configurations, the L being a positive integer greater than 1;
  • the first control signal indicates the target energy detection threshold from the N candidate energy detection thresholds, the N being a positive integer greater than 1; or the first control signal indicating the target power from the M candidate power values Value, the M is a positive integer greater than one.
  • the method is characterized in that the M candidate power values are in one-to-one correspondence with M candidate energy detection thresholds, and any one of the M candidate power values is added to its corresponding
  • the sum of the candidate energy detection thresholds is a first power value
  • the units of the M candidate power values and the M candidate energy detection thresholds are both decibel milliwatts or decibels.
  • the above method is characterized in that the first energy detection threshold is associated with a spatial coverage generated using the target spatial parameter set.
  • the present application discloses a user equipment used for wireless communication, which includes:
  • the first receiver receives a first control signal, the first control signal indicating a first energy detection configuration, the first energy detection configuration including at least one of a target power value and a target energy detection threshold, the target energy detection A threshold is associated to the target power value;
  • a second receiver performing a first type of energy detection using a target spatial parameter set, the target spatial parameter set being associated to the target energy detection threshold;
  • the first processor determines whether the first wireless signal can be sent by using the first spatial parameter group on the target time-frequency resource by comparing the result of the first type of energy detection with the first energy detection threshold, the first energy The detection threshold is not greater than the target energy detection threshold, and the first spatial parameter group is associated with the target spatial parameter group;
  • the third transmitter adopts the first spatial parameter group, first on the target time-frequency resource Sending the first wireless signal by transmitting power and a first antenna gain, where a sum of the first transmit power plus the first antenna gain is not greater than the target power value;
  • the first wireless signal is discarded on the target time-frequency resource.
  • the user equipment is characterized in that the first receiver receives a second control signal, and the second control signal indicates a first modulation coding scheme index; wherein the first energy detection configuration is used Determining a first modulation coding scheme indicated by the first modulation coding scheme index, the first modulation coding scheme being used to generate the first wireless signal.
  • the user equipment is characterized in that the first control signal indicates the first energy detection configuration from L candidate energy detection configurations, and the L is a positive integer greater than 1; or a control signal indicating the target energy detection threshold from the N candidate energy detection thresholds, the N being a positive integer greater than 1; or the first control signal indicating the target power value from the M candidate power values , M is a positive integer greater than one.
  • the user equipment is characterized in that the M candidate power values are in one-to-one correspondence with the M candidate energy detection thresholds, and any one of the M candidate power values is added to the corresponding candidate.
  • the sum of the energy detection thresholds is a first power value, and the units of the M candidate power values and the M candidate energy detection thresholds are both decibel milliwatts or decibels.
  • the foregoing user equipment is characterized in that the first energy detection threshold is associated with a spatial coverage generated by using the target spatial parameter group.
  • the present application discloses a base station device used for wireless communication, which includes:
  • the first transmitter transmits a first control signal, the first control signal indicating a first energy detection configuration, the first energy detection configuration including at least one of a target power value and a target energy detection threshold, the target energy detection A threshold is associated to the target power value;
  • a third receiver monitoring the first wireless signal on the target time-frequency resource
  • the receiver of the first control signal performs a first type of energy detection using a target spatial parameter group, the target spatial parameter group is associated with the target energy detection threshold; and the receiver of the first control signal adopts The result of comparing the result of the first type of energy detection with the first energy detection threshold determines whether the first wireless signal can be sent by using the first spatial parameter group on the target time-frequency resource, where the first energy detection threshold is not greater than the target An energy detection threshold, the first spatial parameter group is associated with the target spatial parameter group; if it is determined that the first wireless signal can be sent on the target time-frequency resource, the target time-frequency resource is used Transmitting, by the first spatial parameter group, the first transmit power, and the first antenna gain, the first wireless signal, where a sum of the first transmit power plus the first antenna gain is not greater than the target power value; Transmitting the first wireless signal on the target time-frequency resource, the receiver of the first control signal abandoning transmitting the A wireless signal.
  • the foregoing base station device is characterized in that the first transmitter transmits a second control signal, and the second control signal indicates a first modulation coding scheme index; wherein the first energy detection configuration is used Determining a first modulation coding scheme indicated by the first modulation coding scheme index, the first modulation coding scheme being used to generate the first wireless signal.
  • the foregoing base station device is characterized in that the first control signal indicates the first energy detection configuration from L candidate energy detection configurations, and the L is a positive integer greater than 1; or a control signal indicating the target energy detection threshold from the N candidate energy detection thresholds, the N being a positive integer greater than 1; or the first control signal indicating the target power value from the M candidate power values , M is a positive integer greater than one.
  • the foregoing base station device is characterized in that the M candidate power values are in one-to-one correspondence with M candidate energy detection thresholds, and any one of the M candidate power values is added to its corresponding candidate.
  • the sum of the energy detection thresholds is a first power value, and the units of the M candidate power values and the M candidate energy detection thresholds are both decibel milliwatts or decibels.
  • the above base station device is characterized in that the target energy detection threshold is associated with a spatial coverage generated using the target spatial parameter group.
  • the present application has the following main technical advantages over the prior art:
  • FIG. 1 shows a flow chart of a first control signal and a first wireless signal in accordance with an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 4 shows a schematic diagram of an evolved node and a UE according to an embodiment of the present application
  • FIG. 5 shows a flow chart of wireless transmission in accordance with one embodiment of the present application
  • FIG. 6 shows a schematic diagram of a target power value, a target energy detection threshold, a target spatial parameter group and a first spatial parameter group, according to an embodiment of the present application
  • FIG. 7 shows a schematic diagram of a target power value and a first modulation coding scheme, in accordance with an embodiment of the present application
  • FIG. 8 is a schematic diagram showing an antenna structure of a first type of communication node according to an embodiment of the present application.
  • FIG. 9 is a block diagram showing the structure of a processing device for use in a user equipment according to an embodiment of the present application.
  • FIG. 10 shows a block diagram of a structure for a processing device in a base station according to an embodiment of the present application.
  • Embodiment 1 illustrates a first control signal and a first wireless signal according to the present application, as shown in FIG. In Figure 1, each box represents a step.
  • the user equipment in the present application receives a first control signal, the first control signal indicating a first energy detection configuration, where the first energy detection configuration includes at least a target power value and a target energy detection threshold.
  • the target energy detection threshold is associated with the target power value; performing a first type of energy detection using a target spatial parameter set, the target spatial parameter set being associated to the target energy detection threshold; using the first And comparing the result of the energy-like detection with the first energy detection threshold, determining whether the first wireless signal is sent by using the first spatial parameter group on the target time-frequency resource, where the first energy detection threshold is not greater than the target energy detection threshold And the first spatial parameter group is associated with the target spatial parameter group; if it is determined that the first wireless signal can be sent on the target time-frequency resource, the first time is adopted on the target time-frequency resource.
  • the first wireless signal Transmitting the first wireless signal by a spatial parameter group, a first transmit power, and a first antenna gain, the first transmit power plus the first day
  • the sum of the line gains is not greater than the target power value; if it is determined that the first wireless signal cannot be transmitted on the target time-frequency resource, then the first wireless signal is discarded on the target time-frequency resource.
  • the above method is used for channel access on an unlicensed spectrum.
  • the licensed spectrum is used to transmit the first control signal.
  • the first control signal is common to the cell.
  • the first control signal is for the user equipment.
  • the first control signal is physical layer control signaling.
  • the first control signal is higher layer control signaling.
  • the first control signal is RRC (Radio Resource Control) signaling.
  • the first control signal is a downlink control signal.
  • the first control signal is a wireless signal generated by DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • the first control signal is a PDCCH (Physical Downlink Control Channel).
  • the first control signal is a wireless signal generated by an uplink grant DCI.
  • the first energy detection configuration includes the target power value, the target power value being associated to the target energy detection threshold.
  • the first energy detection configuration includes the energy detection threshold, the energy detection threshold being associated to the target power value.
  • the first energy detection configuration includes the target power threshold and the energy detection threshold.
  • the first control signal indicates the first energy detection configuration from L candidate energy detection configurations, the L being a positive integer greater than one.
  • the first control signal indicates the target energy detection threshold from N candidate energy detection thresholds, the N being a positive integer greater than one.
  • the first control signal indicates the target power value from among M candidate power values, and the M is a positive integer greater than one.
  • one of the spatial parameter sets includes parameters of a phase shifter acting on a radio frequency link.
  • one of the spatial parameter sets includes parameters of a phase shifter acting on a radio frequency link.
  • one of the spatial parameter sets is used to generate a transmit beam.
  • one of the spatial parameter sets is used to generate a receive beam.
  • one of the spatial parameter sets includes a beamforming coefficient that is used to generate a transmit beam.
  • one of the spatial parameter sets includes a beamforming coefficient that is used to generate a receive beam.
  • one of the spatial parameter sets includes parameters that are used to transmit spatial filtering.
  • one of the spatial parameter sets includes parameters that are used to receive spatial filtering.
  • one of the spatial parameter sets is used to directionally transmit a wireless signal.
  • one of the spatial parameter sets is used to directionally receive wireless signals.
  • one of the spatial parameter sets corresponds to a multi-antenna transmission scheme.
  • one of the spatial parameter sets corresponds to a multi-antenna receiving scheme.
  • one of the spatial parameter sets includes at least one of an amount of antenna elements, a state of an antenna element switch, a spacing between antenna elements, and a coefficient of a phase shifter.
  • the energy detection once means that the user equipment monitors the received power for a period of time for a given duration.
  • the energy detection once means that the user equipment monitors the received energy for a period of time for a given duration.
  • the energy detection is performed once: the user equipment senses (Sense) all the wireless signals on a given frequency domain resource for a given power for a period of time within a given duration;
  • the given frequency domain resource is a frequency band in which the target time-frequency resource is located.
  • the energy detection is performed once: the user equipment senses (Sense) all the wireless signals on a given frequency domain resource for a given energy for a period of time within a given duration;
  • the given frequency domain resource is a frequency band in which the target time-frequency resource is located.
  • the energy detection is energy detection in an LBT (Listen Before Talk).
  • the energy detection is implemented by an energy detection method in WiFi.
  • the energy detection is implemented by measuring RSSI (Received Signal Strength Indication).
  • the target spatial parameter set is used to generate a receive beam that receives a wireless signal for the first type of energy detection.
  • the target energy detection threshold is associated to a spatial coverage generated using the target spatial parameter set.
  • the target energy detection threshold is used to determine a spatial coverage generated by the target spatial parameter set.
  • the target energy detection threshold is used to calculate a spatial coverage generated by the target spatial parameter set.
  • a beamwidth generated using the target spatial parameter set is associated to the target energy detection threshold.
  • a beamwidth generated using the target spatial parameter set is associated to the target energy detection threshold.
  • a beam direction generated using the target spatial parameter set is associated to the target energy detection threshold.
  • the spatial coverage generated using the target spatial parameter set is associated to the target energy detection threshold.
  • the target energy detection threshold is used to determine the target spatial parameter set.
  • the target energy detection threshold is used to determine a beamwidth of a receive beam generated using the target spatial parameter set.
  • the L candidate energy detection thresholds are in one-to-one correspondence with L candidate beam widths
  • the target energy detection threshold is one of the L candidate energy detection thresholds, which is generated by using the target spatial parameter group.
  • the beam width is a beam width corresponding to the target energy detection threshold among the L candidate beam widths.
  • the higher the target energy detection threshold the wider the beam width generated by using the target spatial parameter set.
  • the first energy detection configuration includes a beamwidth generated using the target spatial parameter set.
  • the unit of the target energy detection threshold and the first energy detection threshold is milliwatts.
  • the unit of the target energy detection threshold and the first energy detection threshold is Joule.
  • the unit of the target energy detection threshold and the first energy detection threshold is mdB.
  • each of the first type of energy detection uses the target spatial parameter set to receive a wireless signal.
  • the first energy detection threshold is equal to the target energy detection threshold.
  • the first energy detection threshold is less than the target energy detection threshold.
  • the user equipment determines the first energy detection threshold that is less than the target energy detection threshold.
  • the detection power obtained by performing the first type of energy detection by using the target spatial parameter group multiple times is used to determine whether the first wireless signal can be sent on the target time-frequency resource.
  • the first type of energy detection is performed by using the target spatial parameter group to obtain L1 detection powers for a total of L1 times, and the L1 is a positive integer not less than 1.
  • the L1 detection powers are lower than the first energy detection threshold, and the user equipment uses the first spatial parameter group to send the first wireless signal on the target time-frequency resource.
  • At least one of the L1 detection powers is higher than the first energy detection threshold, and the user equipment discards transmitting the first wireless signal on the target time-frequency resource.
  • the Q1 detection powers of the L1 detection powers are lower than the first energy detection threshold, and the user equipment uses the first spatial parameter group to send the target time-frequency resources.
  • the first wireless signal is described, and Q1 is a positive integer.
  • the number of the L1 detection powers that is lower than the first energy detection threshold is smaller than the Q1, and the user equipment discards sending the first wireless signal on the target time-frequency resource.
  • both L1 and Q1 are one.
  • the L1 is greater than the Q1.
  • the L1 is equal to the Q1.
  • This time slot is referred to as a first type of idle time slot.
  • the length of the time slot is 16 microseconds.
  • the length of the time slot is 9 microseconds.
  • the time period is a duration of no less than 4 microseconds.
  • the first type of energy detection is performed on successive L2 time slots, the L2 being a positive integer not less than one.
  • the L2 time slots are all the first type of idle time slots, and the user equipment sends the first wireless signal on the target time-frequency resource by using the first spatial parameter group.
  • At least one of the L2 time slots is not the first type of idle time slot, and the user equipment abandons sending the first wireless signal on the target time-frequency resource.
  • the Q2 time slots in the L2 time slots are the first type of idle time slots, and the user equipment sends the the first spatial parameter group on the target time-frequency resource.
  • the first wireless signal, the Q2 is a positive integer.
  • the number of the first type of idle time slots in the L2 time slots is smaller than the Q2, and the user equipment abandons sending the first wireless signal on the target time-frequency resource.
  • both L2 and Q2 are one.
  • the L2 is greater than the Q2.
  • the L2 is equal to the Q2.
  • a delay period consists of consecutive Q1 slots, the Q1 being a positive integer; there are K1 delay periods before the target time-frequency resource, and the K1 is a positive integer.
  • the K1 is a random number.
  • the at least one time slot in the K1 delay time periods is not the first type of idle time slot, and the user equipment discards sending the first wireless signal on the target time-frequency resource.
  • the first set of spatial parameters is used to generate a transmit beam that transmits the first wireless signal.
  • the first set of spatial parameters acts on a phase shifter on a radio frequency link used to transmit the first wireless signal.
  • the first set of spatial parameters includes parameters of a phase shifter acting on a radio frequency link.
  • the equivalent channel generated by using the first spatial parameter group and the equivalent channel generated by using the target spatial parameter group are spatially QCL (Quasi Co-located).
  • a large-scale parameter of an equivalent channel generated using the first set of spatial parameters may be used to infer a large-scale parameter of an equivalent channel generated using the target spatial parameter set.
  • the large-scale parameters include at least one of delay spread, Doppler spread, Doppler shift, average gain, average delay, spatial transmission parameters, and spatial reception parameters.
  • the first set of spatial parameters is used to infer the set of target spatial parameters.
  • the spatial coverage generated by the target spatial parameter set covers the spatial coverage generated by the first spatial parameter group.
  • a beam width generated by using the target spatial parameter group is greater than a beam width generated by the first spatial parameter group.
  • the beam generated by the target spatial parameter group covers a beam generated by the first spatial parameter group.
  • a beam direction generated by using the target spatial parameter group is associated with a beam direction generated by the first spatial parameter group.
  • the first spatial parameter set and the target spatial parameter set respectively comprise a first vector and a target vector, and the correlation between the first vector and the target vector is 1.
  • the first spatial parameter set and the target spatial parameter set respectively comprise a first vector and a target vector, and the correlation between the first vector and the target vector is less than 1.
  • the unit of the first transmit power is decibel milliwatts (mdB).
  • the unit of the first transmit power is decibel (dBw).
  • the first transmit power is an Effective Radiated Power (ERP).
  • ERP Effective Radiated Power
  • the unit of the first antenna gain is decibel (dB).
  • the first antenna gain is a gain of an antenna used to transmit the first wireless signal relative to an isotropic radiator.
  • the sum of the first transmit power and the first antenna gain is an Efficient Isotropic Radiated Power (EIRP) used to transmit the first wireless signal.
  • EIRP Efficient Isotropic Radiated Power
  • the target power value is a maximum equivalent isotropic radiated power used to transmit the first wireless signal.
  • the user equipment receives a second control signal, the second control signal indicating a first modulation coding scheme index; wherein the first energy detection configuration is used to determine the first modulation coding scheme index An indicated first modulation coding scheme, the first modulation coding scheme being used to generate the first wireless signal.
  • the second control signal is common to the cell.
  • the second control signal is for the user equipment.
  • the second control signal is physical layer control signaling.
  • the second control signal is a downlink control signal.
  • the second control signal is a wireless signal generated by DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • the second control signal is a PDCCH (Physical Downlink Control Channel).
  • the second control signal is a wireless signal generated by an uplink grant DCI.
  • the first modulation coding scheme index is used to indicate the first modulation coding scheme from a first modulation coding table.
  • the target power value is used to uniquely determine the first modulation coding table from a plurality of candidate modulation coding tables.
  • the M candidate power values are in one-to-one correspondence with the M modulation and coding tables, where the first modulation and coding table is a modulation and coding table corresponding to the target power value in the M candidate modulation and coding tables. .
  • the target power value is used to modify the first reference modulation coding table as the first modulation coding table.
  • the first modulation coding table is a subset of the second reference modulation coding table.
  • the second power value and the third power value are power values of the M candidate power values
  • the second modulation coding table and the third modulation coding table are respectively the second power value and the a modulation coding table corresponding to the third power value, where the second power value is greater than the third power value
  • the corresponding coding rate of the first modulation coding scheme index in the second modulation coding table is higher than Corresponding coding rate in the third modulation coding table, or
  • the first modulation coding scheme index in the second modulation coding table corresponding to the modulation constellation order is higher than in the third modulation coding table The corresponding modulation constellation order.
  • the M candidate power values are in one-to-one correspondence with the M candidate energy detection thresholds, and the sum of any one of the M candidate power values plus the corresponding candidate energy detection threshold is
  • the first power value, the unit of the M candidate power values and the M candidate energy detection thresholds are both decibel milliwatts or decibels.
  • the target energy detection threshold and the first power value are used to calculate the target power value.
  • the target power value and the first power value are used to calculate the target energy detection threshold.
  • Embodiment 2 illustrates a schematic diagram of a network architecture in accordance with the present application, as shown in FIG. 2 is a diagram illustrating an NR5G, LTE (Long-Term Evolution, Long Term Evolution) and LTE-A (Long-Term Evolution Advanced) system network architecture 200.
  • the NR 5G or LTE network architecture 200 may be referred to as an EPS (Evolved Packet System) 200 in some other suitable terminology.
  • EPS Evolved Packet System
  • the EPS 200 may include one or more UEs (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UEs User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core
  • 5G-Core Network 5G-Core Network
  • 5G core network 5G core network
  • HSS Home Subscriber Server
  • Internet service 230 Internet service 230.
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity.
  • the EPS provides packet switching services, although those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks or other cellular networks that provide circuit switched services.
  • the NG-RAN includes an NR Node B (gNB) 203 and other gNBs 204
  • the gNB 203 provides user and control plane protocol termination for the UE 201.
  • the gNB 203 can be connected to other gNBs 204 via an Xn interface (eg, a backhaul).
  • the gNB 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmission and reception point), or some other suitable terminology.
  • the gNB 203 provides the UE 201 with an access point to the EPC/5G-CN 210.
  • Examples of UEs 201 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, an MP3 player), a camera, a game console, a drone, an aircraft, a narrowband physical network device, a machine type communication device, a land vehicle, a car, a wearable device, or any other similar functional device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • a person skilled in the art may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to the EPC/5G-CN210 through the S1/NG interface.
  • the EPC/5G-CN210 includes an MME/AMF/UPF 211, other MME/AMF/UPF 214, an S-GW (Service Gateway) 212, and a P-GW (Packet Date Network Gateway) 213.
  • the MME/AMF/UPF 211 is a control node that handles signaling between the UE 201 and the EPC/5G-CN 210.
  • MME/AMF/UPF 211 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 212, and the S-GW 212 itself is connected to the P-GW 213.
  • the P-GW 213 provides UE IP address allocation as well as other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a PS Streaming Service (PSS).
  • IMS IP Multimedia Subsystem
  • PSS PS Streaming Service
  • the UE 201 corresponds to a user equipment in this application.
  • the gNB 203 corresponds to a base station in the present application.
  • the UE 201 supports multi-antenna transmission.
  • the gNB 203 supports multi-antenna transmission.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with the present application, as shown in FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 3 shows a radio protocol architecture for user equipment (UE) and base station equipment (gNB or eNB) in three layers: Layer 1 , layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the UE and the gNB through PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol). Protocol) Sublayer 304, which terminates at the gNB on the network side.
  • the UE may have several upper layers above the L2 layer 305, including a network layer (eg, an IP layer) terminated at the P-GW on the network side and terminated at the other end of the connection (eg, Application layer at the remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handoff support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between the logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in one cell between UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the wireless protocol architecture of Figure 3 is applicable to the user equipment in this application.
  • the radio protocol architecture of Figure 3 is applicable to the base station in this application.
  • a first control signal in the present application is generated by the PHY 301.
  • the first control signal in the present application is generated by the RRC sublayer 306.
  • the first wireless signal in the present application is generated by the PHY 301.
  • the first wireless signal in the present application is generated in the RRC sublayer 306.
  • a second control signal in the present application is generated by the PHY 301.
  • a second control signal in the present application is generated at the RRC sublayer 306.
  • Embodiment 4 shows a schematic diagram of a base station device and a given user equipment according to the present application, as shown in FIG. 4 is a block diagram of a gNB 410 in communication with a UE 450 in an access network.
  • a base station device (410) may include a controller/processor 440, a scheduler 443, a memory 430, a receive processor 412, a transmit processor 415, a MIMO transmit processor 441, a MIMO detector 442, and a transmitter/receiver 416. And an antenna 420.
  • a controller/processor 490, a memory 480, a data source 467, a transmit processor 455, a receive processor 452, a MIMO transmit processor 471, a MIMO detector 472, a transmitter/receiver 456 may be included in the user equipment (UE 450). And antenna 460.
  • the processing associated with the base station device (410) may include:
  • the upper layer packet arrives at the controller/processor 440, which provides header compression, encryption, packet segmentation and reordering, and multiplexing demultiplexing between the logical and transport channels for implementation L2 layer protocol of the user plane and the control plane; the upper layer packet may include data or control information, such as DL-SCH (Downlink Shared Channel);
  • DL-SCH Downlink Shared Channel
  • the controller/processor 440 can be associated with a memory 430 that stores program codes and data.
  • the memory 430 can be a computer readable medium;
  • the controller/processor 440 notifies the scheduler 443 of the transmission request, the scheduler 443 is configured to schedule the air interface resource corresponding to the transmission requirement, and notifies the controller/processor 440 of the scheduling result;
  • the controller/processor 440 transmits the control information for the downlink transmission obtained by the receiving processor 412 to the uplink receiving to the transmitting processor 415;
  • - Transmit processor 415 receives the output bit stream of controller/processor 440, implementing various signal transmission processing functions for the L1 layer (ie, the physical layer) including encoding, interleaving, scrambling, modulation, power control/allocation, and physics Layer control signaling (including PBCH, PDCCH, PHICH, PCFICH, reference signal) generation, etc.;
  • - MIMO transmit processor 441 spatially processes data symbols, control symbols or reference signal symbols (such as multi-antenna pre-encoding, digital beamforming), and outputs baseband signals to transmitter 416;
  • - MIMO transmit processor 441 outputs an analog transmit beam-specific vector to transmitter 416;
  • Transmitter 416 is operative to convert the baseband signals provided by MIMO transmit processor 441 into radio frequency signals and transmit them via antenna 420; each transmitter 416 samples the respective input symbol streams to obtain respective sampled signal streams; each Transmitter 416 performs further processing (e.g., digital to analog conversion, amplification, filtering, upconversion, etc.) on the respective sample streams to obtain a downlink signal; analog transmit beamforming is processed in transmitter 416.
  • the processing associated with the user equipment may include:
  • Receiver 456 for converting radio frequency signals received through antenna 460 into baseband signals for MIMO detector 472; analog receive beamforming for processing in receiver 456;
  • a MIMO detector 472 for performing MIMO detection on the signal received from the receiver 456 and a MIMO-detected baseband signal for the receiving processor 452;
  • Receiving processor 452 extracts analog receive beamforming related parameter output to MIMO detector 472, MIMO detector 472 outputs analog receive beamforming vector to receiver 456;
  • the receiving processor 452 implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, and the like;
  • the controller/processor 490 receives the bit stream output by the receive processor 452, provides header decompression, decryption, packet segmentation and reordering, and multiplexing demultiplexing between the logical and transport channels for implementation L2 layer protocol for user plane and control plane;
  • the controller/processor 490 can be associated with a memory 480 that stores program codes and data.
  • the memory 480 can be a computer readable medium;
  • the controller/processor 490 passes the control information for downlink reception obtained by the transmission processor 455 processing the uplink transmission to the reception processor 452.
  • the processing associated with the user equipment may include:
  • Data source 467 provides an upper layer packet to controller/processor 490, which provides header compression, encryption, packet segmentation and reordering, and multiplexing demultiplexing between the logical and transport channels, Implementing an L2 layer protocol for the user plane and the control plane; the upper layer packet may include data or control information, such as an UL-SCH (Uplink Shared Channel);
  • UL-SCH Uplink Shared Channel
  • the controller/processor 490 can be associated with a memory 480 that stores program codes and data.
  • the memory 480 can be a computer readable medium;
  • the controller/processor 490 transmits the control information for the uplink transmission obtained by the receiving processor 452 to the downlink reception to the transmitting processor 455;
  • the transmit processor 455 receives the output bit stream of the controller/processor 490, implementing various signal transmission processing functions for the L1 layer (ie, the physical layer) including coding, interleaving, scrambling, modulation, power control/allocation, and physics Layer control signaling (including PUCCH, SRS (Sounding Reference Signal)) generation, etc.;
  • - MIMO transmit processor 471 spatial processing of data symbols, control symbols or reference signal symbols (such as multi-antenna pre-encoding, digital beam shaping), output baseband signals to the transmitter 456;
  • - MIMO transmit processor 471 outputs an analog transmit beamforming vector to transmitter 457;
  • Transmitter 456 is operative to convert the baseband signals provided by MIMO transmit processor 471 into radio frequency signals and transmit them via antenna 460; each transmitter 456 samples the respective input symbol streams to obtain a respective sampled signal stream. Each transmitter 456 performs further processing (such as digital-to-analog conversion, amplification, filtering, up-conversion, etc.) on the respective sample streams to obtain an uplink signal.
  • the analog transmit beamforming is processed in transmitter 456.
  • the processing associated with the base station device (410) may include:
  • Receiver 416 for converting radio frequency signals received through antenna 420 into baseband signals for MIMO detector 442; analog receive beamforming for processing in receiver 416;
  • a MIMO detector 442 for performing MIMO detection on signals received from the receiver 416, and providing the received processor 442 with MIMO-detected symbols;
  • - MIMO detector 442 outputs an analog receive beamforming vector to the receiver 416;
  • the receiving processor 412 implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, and the like;
  • the controller/processor 440 receives the bit stream output by the receive processor 412, provides header decompression, decryption, packet segmentation and reordering, and multiplexing demultiplexing between the logical and transport channels for implementation.
  • the controller/processor 440 can be associated with a memory 430 that stores program codes and data.
  • the memory 430 can be a computer readable medium;
  • the controller/processor 440 transmits the control information for the uplink transmission obtained by the transmission processor 415 to the downlink transmission to the receiving processor 412;
  • the UE 450 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be in process with the at least one Used together, the UE 450 device at least: receiving a first control signal, the first control signal indicating a first energy detection configuration, the first energy detection configuration comprising at least one of a target power value and a target energy detection threshold, The target energy detection threshold is associated with the target power value; performing a first type of energy detection using a target spatial parameter set, the target spatial parameter set being associated to the target energy detection threshold; using the first type of energy And comparing the result of the detection with the first energy detection threshold to determine whether the first wireless signal is sent by using the first spatial parameter group on the target time-frequency resource, where the first energy detection threshold is not greater than the target energy detection threshold, The first spatial parameter group is associated with the target spatial parameter group; Transmitting the first wireless signal on the target time-frequency resource, and transmitting, by using the first spatial parameter group, the first
  • the UE 450 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by at least one processor, the action comprising: receiving a first control signal,
  • the first control signal indicates a first energy detection configuration, the first energy detection configuration including at least one of a target power value and a target energy detection threshold, the target energy detection threshold being associated to the target power value;
  • the target spatial parameter group performs a first type of energy detection, the target spatial parameter set is associated with the target energy detection threshold; and the comparison result of the first type of energy detection and the first energy detection threshold is used to determine whether Transmitting, by the first spatial parameter group, the first wireless signal on the target time-frequency resource, where the first energy detection threshold is not greater than the target energy detection threshold, and the first spatial parameter group is associated to the target spatial parameter group; If it is determined that the first wireless signal can be sent on the target time-frequency resource, then the target time Transmitting, by using the first spatial parameter group, the first transmit power, and the first antenna gain,
  • the gNB 410 device comprises: at least one processor and at least one memory, the at least one memory comprising computer program code; the at least one memory and the computer program code being configured to be in process with the at least one Used together.
  • the gNB 410 device at least: transmitting a first control signal, the first control signal indicating a first energy detection configuration, the first energy detection configuration including at least one of a target power value and a target energy detection threshold, the target energy A detection threshold is associated with the target power value; monitoring a first wireless signal on a target time-frequency resource; wherein a recipient of the first control signal performs a first type of energy detection using a target spatial parameter set, the target space
  • the parameter group is associated with the target energy detection threshold; the receiver of the first control signal determines whether the target time-frequency resource can be used by comparing the result of the first type of energy detection with the first energy detection threshold Transmitting, by the first spatial parameter group, the first wireless signal, where the first energy detection threshold is not greater than the target energy detection threshold, and the
  • the group Transmitting, by the group, the first transmit power and the first antenna gain, the first wireless signal, wherein a sum of the first transmit power plus the first antenna gain is not greater than the target power value; if it is determined that the target cannot be
  • the first wireless signal is transmitted on the time-frequency resource, and the receiver of the first control signal discards transmitting the first wireless signal on the target time-frequency resource.
  • the gNB 410 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by at least one processor, the action comprising: transmitting a first control signal,
  • the first control signal indicates a first energy detection configuration, the first energy detection configuration including at least one of a target power value and a target energy detection threshold, the target energy detection threshold being associated to the target power value;
  • the receiver of the first control signal determines whether the first spatial parameter group can be used to send the first space parameter on the target time-frequency resource by using a comparison result between the first type of energy detection and the first energy detection threshold.
  • the first energy detection threshold is not greater than the target energy detection threshold
  • the first spatial parameter group is Connecting to the target spatial parameter group; if it is determined that the first wireless signal can be sent on the target time-frequency resource, using the first spatial parameter group and the first transmit power on the target time-frequency resource And transmitting, by the first antenna gain, the first wireless signal, where a sum of the first transmit power plus the first antenna gain is not greater than the target power value; if it is determined that the target time-frequency resource cannot be sent Determining the first wireless signal, the receiver of the first control signal abandons transmitting the first wireless signal on the target time-frequency resource.
  • the UE 450 corresponds to the user equipment in this application.
  • gNB 410 corresponds to the base station in this application.
  • At least the first three of receiver 456, MIMO detector 472, receive processor 452, and controller/processor 490 are used to receive the first control signal in the present application.
  • receiver 456, MIMO detector 472, and receive processor 452 are used to perform the first type of energy detection in this application.
  • the receiving processor 452 is configured to determine whether the first wireless signal in the present application can be transmitted on the target time-frequency resource.
  • At least the first three of the transmit processor 455, the MIMO transmit processor 471, the transmitter 456, and the controller/processor 490 are used to transmit the first wireless signal in the present application.
  • receiver 456, MIMO detector 472, and receive processor 452 are used to receive the second control signal in this application.
  • At least the first three of the transmit processor 415, the MIMO transmit processor 441, the transmitter 416, and the controller/processor 440 are used to transmit the first control signal in the present application.
  • At least the first three of receiver 416, MIMO detector 442, receive processor 412, and controller/processor 440 are used to monitor the first wireless signal in the present application on the target time-frequency resource.
  • At least the first three of the transmit processor 415, the MIMO transmit processor 441, the transmitter 416, and the controller/processor 440 are used to transmit the second control signal in the present application.
  • Embodiment 5 illustrates a flow chart of a wireless transmission, as shown in FIG.
  • the base station communicates with the user equipment.
  • the steps identified in block F1 of the figure are optional and the steps identified in block F2 may not be performed.
  • the base station N1 in step S11 transmits a first control signal, transmitting a second control signal in step S12, in the step of monitoring the first radio signal S13, the time-frequency resource target.
  • step S21 For user equipment U2, received in step S21 the first control signal, a second control signal received in step S22, the first type of energy detection performed in step S23, it is determined in step S24 whether the time-frequency resources for transmitting the target The first wireless signal transmits the first wireless signal on the target time-frequency resource in step S25.
  • the first control signal indicates a first energy detection configuration, the first energy detection configuration including at least one of a target power value and a target energy detection threshold, the target energy detection threshold being associated to the a target power parameter value; the target spatial parameter group is associated with the target energy detection threshold; U2 uses a comparison result between the first energy detection result and the first energy detection threshold to determine whether the target time-frequency resource can be used.
  • the steps in block F1 are performed, the second control signal indicating a first modulation coding scheme index; wherein the first energy detection configuration is used to determine the first modulation coding scheme index An indicated first modulation coding scheme, the first modulation coding scheme being used to generate the first wireless signal.
  • the first control signal indicates the first energy detection configuration from L candidate energy detection configurations, the L is a positive integer greater than 1; or the first control signal is from N candidates
  • the target energy detection threshold is indicated in the energy detection threshold, and the N is a positive integer greater than 1; or the first control signal indicates the target power value from the M candidate power values, where the M is greater than 1 Positive integer.
  • the M candidate power values are in one-to-one correspondence with the M candidate energy detection thresholds, and the sum of any one of the M candidate power values plus the corresponding candidate energy detection threshold is
  • the first power value, the unit of the M candidate power values and the M candidate energy detection thresholds are both decibel milliwatts or decibels.
  • the first energy detection threshold is associated to a spatial coverage generated using the target spatial parameter set.
  • Embodiment 6 exemplifies a target power value, a target energy detection threshold, a target spatial parameter group and a first spatial parameter group, as shown in FIG.
  • the M candidate energy detection configurations are in one-to-one correspondence with the M candidate reception spatial coverages, that is, the candidate reception spatial coverages #1-#M, and the M candidate reception spatial coverages
  • the receive beam width is different.
  • the M is a positive integer greater than one.
  • Each candidate energy detection configuration includes a candidate energy detection threshold and a candidate power value.
  • the first energy detection configuration in the present application is one of the M candidate energy detection configurations, and the target power value and the target energy detection threshold in the present application are candidate energy detection thresholds and candidates included in the first energy detection configuration. Power value.
  • the target spatial parameter set in this application is used to generate one of the M candidate receive spatial coverages.
  • the target spatial parameter set is used to perform the first type of energy detection in this application.
  • the first spatial parameter set in this application is used to generate M candidate transmission spatial coverages, ie, candidate transmission space coverage #1-#M.
  • the M candidate transmission spatial coverages are respectively associated with the M candidate reception spatial coverages.
  • the direction in which the M candidate transmission spaces are covered is associated with the direction in which the M candidate reception spaces are covered.
  • the first set of spatial parameters is used to transmit the first wireless signal in the present application.
  • Embodiment 7 illustrates a schematic diagram of a target power value and a first modulation coding scheme, as shown in FIG.
  • the first modulation coding scheme index in the present application is combined with M candidate power values, that is, candidate power values #1-#M, respectively, for determining M candidate modulation coding schemes, that is, candidate modulation coding schemes #1-# M.
  • the target power value in this application is one of the M candidate power values.
  • the first modulation coding scheme in the present application is one of the M candidate modulation coding schemes determined by the first modulation coding scheme index in combination with the target power value in the M candidate modulation coding schemes.
  • the M candidate power values are respectively used to determine M modulation coding tables
  • the target power value is used to determine a first modulation coding table
  • the first modulation coding scheme is the first
  • the modulation coding scheme indexes a corresponding modulation coding scheme in the first modulation coding table.
  • Embodiment 8 exemplifies the antenna structure of the user equipment, as shown in FIG.
  • the first type of communication node is equipped with M radio frequency chains, which are RF chain #1, RF chain #2, ..., RF chain #M.
  • the M RF chains are connected to a baseband processor.
  • the bandwidth supported by any one of the M radio frequency chains does not exceed the bandwidth of the sub-band to which the first type of communication node is configured.
  • the M1 radio frequency chains of the M radio frequency chains are superimposed by an antenna to generate an antenna port (Antenna Port), and the M1 radio frequency chains are respectively connected to M1 antenna groups, and the M1 Each antenna group in each antenna group includes a positive integer and an antenna.
  • An antenna group is connected to the baseband processor through a radio frequency chain, and different antenna groups correspond to different RF chains.
  • the mapping coefficients of the antennas included in any of the M1 antenna groups to the antenna ports constitute an analog beamforming vector of the antenna group.
  • the coefficients of the phase shifter and the antenna switching state correspond to the analog beamforming vector.
  • the diagonal arrangement of the corresponding analog beamforming vectors of the M1 antenna groups constitutes an analog beam shaping matrix of the antenna port.
  • the mapping coefficients of the M1 antenna groups to the antenna port constitute a digital beamforming vector of the antenna port.
  • the spatial parameter set in the present application includes at least one of a state of an antenna switch, a coefficient of a phase shifter, and an antenna pitch.
  • the spatial parameter set in the present application includes a beamforming coefficient on a radio frequency link.
  • the spatial parameter set in the present application includes beamforming coefficients on the baseband link.
  • the antenna switch can be used to control the beamwidth, the larger the working antenna spacing, the wider the beam.
  • the M1 RF chains belong to the same panel.
  • the M1 RF chains are QCL (Quasi Co-Located).
  • the M2 radio frequency chains of the M radio frequency chains are superimposed by antenna virtualization to generate one transmit beam or receive beam, and the M2 radio frequency chains are respectively connected to M2 antenna groups, and the M2 Each antenna group in the antenna group includes a positive integer number of antennas.
  • An antenna group is connected to the baseband processor through a radio frequency chain, and different antenna groups correspond to different RF chains.
  • the mapping coefficients of the antennas included in any of the M2 antenna groups to the receive beam constitute an analog beamforming vector of the receive beam.
  • the diagonal arrangement of the corresponding analog beamforming vectors of the M2 antenna groups constitutes an analog beam shaping matrix of the receiving beam.
  • the mapping coefficients of the M2 antenna groups to the receive beam constitute a digital beamforming vector of the receive beam.
  • the M1 RF chains belong to the same panel.
  • the M2 RF chains are QCL.
  • the sum of the number of layers configured by the user equipment on each of the sub-bands in the parallel sub-band is less than or equal to the M.
  • the sum of the number of antenna ports configured by the user equipment on each of the sub-bands in the parallel sub-band is less than or equal to the M.
  • the layer to antenna port mapping relationship is related to both the number of layers and the number of antenna ports.
  • the layer-to-antenna port mapping relationship is default (ie, does not need to be explicitly configured) for each of the parallel sub-bands.
  • the layer to antenna ports are one-to-one mapped.
  • a layer is mapped onto multiple antenna ports.
  • Embodiment 9 exemplifies a structural block diagram of a processing device in a user device, as shown in FIG.
  • the user equipment processing apparatus 900 is mainly composed of a first receiver 901, a second receiver 902, a first processor 903, and a third transmitter 904.
  • the first receiver 901 includes a receiver 456, a MIMO detector 472, and at least the first three of the processor 452 and the controller/processor 490.
  • the second receiver 902 includes a receiver 456, a MIMO detector 472, and a receive processor 452.
  • the first processor 903 includes a receive processor 452.
  • the third transmitter 904 includes at least the first three of a transmit processor 455, a MIMO transmit processor 471, a transmitter 456, and a controller/processor 490.
  • a first receiver 901 receiving a first control signal, the first control signal indicating a first energy detection configuration, the first energy detection configuration comprising at least one of a target power value and a target energy detection threshold, the target An energy detection threshold is associated to the target power value;
  • a second receiver 902 performing a first type of energy detection using a target spatial parameter set, the target spatial parameter set being associated to the target energy detection threshold;
  • a first processor 903 determining, by using a comparison result of the first type of energy detection and a first energy detection threshold, whether to send the first wireless signal by using the first spatial parameter group on the target time-frequency resource, where An energy detection threshold is not greater than the target energy detection threshold, and the first spatial parameter group is associated to the target spatial parameter group;
  • a third transmitter 904 if it is determined that the first wireless signal can be transmitted on the target time-frequency resource, the third transmitter 904 adopts the first spatial parameter group on the target time-frequency resource And transmitting, by the first transmit power and the first antenna gain, the first wireless signal, where a sum of the first transmit power plus the first antenna gain is not greater than the target power value.
  • the first receiver 901 receives a second control signal, the second control signal indicating a first modulation coding scheme index; wherein the first energy detection configuration is used to determine the first modulation A first modulation coding scheme indicated by a coding scheme index, the first modulation coding scheme being used to generate the first wireless signal.
  • the first control signal indicates the first energy detection configuration from L candidate energy detection configurations, the L is a positive integer greater than 1; or the first control signal is from N candidates
  • the target energy detection threshold is indicated in the energy detection threshold, and the N is a positive integer greater than 1; or the first control signal indicates the target power value from the M candidate power values, where the M is greater than 1 Positive integer.
  • the M candidate power values are in one-to-one correspondence with the M candidate energy detection thresholds, and the sum of any one of the M candidate power values plus the corresponding candidate energy detection threshold is
  • the first power value, the unit of the M candidate power values and the M candidate energy detection thresholds are both decibel milliwatts or decibels.
  • the first energy detection threshold is associated to a spatial coverage generated using the target spatial parameter set.
  • Embodiment 10 exemplifies a structural block diagram of a processing device in a base station, as shown in FIG.
  • the base station device processing apparatus 1000 is mainly composed of a first transmitter 1001 and a third receiver 1002.
  • the first transmitter 1001 includes at least the first three of a transmit processor 415, a MIMO transmit processor 441, a transmitter 416, and a controller/processor 440.
  • the third receiver 1002 includes a receiver 416, a MIMO detector 442, and at least the first three of the processor 412 and the controller/processor 440.
  • a first transmitter 1001 transmitting a first control signal, the first control signal indicating a first energy detection configuration, the first energy detection configuration comprising at least one of a target power value and a target energy detection threshold, the target An energy detection threshold is associated to the target power value.
  • a third receiver 1002 monitoring the first wireless signal on the target time-frequency resource.
  • the receiver of the first control signal performs a first type of energy detection using a target spatial parameter set, the target spatial parameter set being associated to the target energy detection threshold; the receiving of the first control signal The method of comparing the result of the first type of energy detection with the first energy detection threshold determines whether the first wireless signal can be sent by using the first spatial parameter group on the target time-frequency resource, where the first energy detection threshold is not greater than The target energy detection threshold, the first spatial parameter group is associated with the target spatial parameter group; if it is determined that the first wireless signal can be transmitted on the target time-frequency resource, then the target time-frequency is Transmitting, by the first spatial parameter group, the first transmit power, and the first antenna gain, the first wireless signal, where the sum of the first transmit power plus the first antenna gain is not greater than the target power value; If it is determined that the first wireless signal cannot be transmitted on the target time-frequency resource, the receiver of the first control signal discards the target time-frequency resource Transmitting the first radio signal.
  • the first transmitter 1001 transmits a second control signal, the second control signal indicating a first modulation coding scheme index; wherein the first energy detection configuration is used to determine the first modulation A first modulation coding scheme indicated by a coding scheme index, the first modulation coding scheme being used to generate the first wireless signal.
  • the first control signal indicates the first energy detection configuration from L candidate energy detection configurations, the L is a positive integer greater than 1; or the first control signal is from N candidates
  • the target energy detection threshold is indicated in the energy detection threshold, and the N is a positive integer greater than 1; or the first control signal indicates the target power value from the M candidate power values, where the M is greater than 1 Positive integer.
  • the M candidate power values are in one-to-one correspondence with the M candidate energy detection thresholds, and the sum of any one of the M candidate power values plus the corresponding candidate energy detection threshold is
  • the first power value, the unit of the M candidate power values and the M candidate energy detection thresholds are both decibel milliwatts or decibels.
  • the target energy detection threshold is associated to a spatial coverage generated using the target spatial parameter set.
  • the UE or the terminal in the present application includes but is not limited to a wireless communication device such as a mobile phone, a tablet computer, a notebook, an internet card, a low power consumption device, an eMTC device, an NB-IoT device, and an in-vehicle communication device.
  • the base station or network side device in this application includes, but is not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, an eNB, a gNB, a transmission receiving node TRP, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种基站、用户设备中的用于无线通信的方法和装置。用户设备接收第一控制信号,所述第一控制信号指示第一能量检测配置,所述第一能量检测配置包括目标功率值和目标能量检测阈值中至少之一,所述目标能量检测阈值被关联到所述目标功率值;采用所述第一类能量检测的结果与第一能量检测阈值的比较结果判断能否在目标时频资源上发送第一无线信号,所述第一能量检测阈值不大于所述目标能量检测阈值;如果判断能在所述目标时频资源上发送所述第一无线信号,则在所述目标时频资源上采用第一发送功率和第一天线增益发送所述第一无线信号,所述第一发送功率加上所述第一天线增益之和不大于所述目标功率值。

Description

一种基站、用户设备中的用于无线通信的方法和装置 技术领域
本申请涉及无线通信系统中的无线信号的传输方案,特别是涉及多天线传输与非授权频谱的方法和装置。
背景技术
传统的3GPP(3rd GenerationPartner Project,第三代合作伙伴项目)LTE(Long-term Evolution,长期演进)系统中,数据传输只能发生在授权频谱上,然而随着业务量的急剧增大,尤其在一些城市地区,授权频谱可能难以满足业务量的需求。Release 13及Release 14中非授权频谱上的通信被蜂窝系统引入,并用于下行和上行数据的传输。为保证和其它非授权频谱上的接入技术兼容,LBT(Listen Before Talk,会话前侦听)技术被LAA(Licensed Assisted Access,授权频谱辅助接入)采纳以避免因多个发射机同时占用相同的频率资源而带来的干扰。LTE系统的发射机采纳准全向天线来执行LBT。
目前,5G NR(New Radio Access Technology,新无线接入技术)的技术讨论正在进行中,其中大规模(Massive)MIMO(Multi-Input Multi-Output)成为下一代移动通信的一个研究热点。大规模MIMO中,多个天线通过波束赋型(Beamforming),形成指向一个特定空间方向的波束来提高通信质量,当考虑到波束赋型带来的覆盖特性时,传统的LAA技术需要被重新考虑,比如LBT方案。
发明内容
发明人通过研究发现,5G系统中,波束赋型将会被大规模使用,如何通过波束赋型在非授权频谱上提升无线信号的传输效率是一个需要解决的关键问题。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的UE(User Equipment,用户设备)中的实施例和实施例中的特征可以应用到基站中,反之亦然。进一步的,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的用户设备中的方法,其特征在于包括:
接收第一控制信号,所述第一控制信号指示第一能量检测配置,所述第一能量检测配置包括目标功率值和目标能量检测阈值中至少之一,所述目标能量检测阈值被关联到所述目标功率值;
采用目标空间参数组执行第一类能量检测,所述目标空间参数组被关联到所述目标能量检测阈值;
采用所述第一类能量检测的结果与第一能量检测阈值的比较结果判断能否在目标时频资源上采用第一空间参数组发送第一无线信号,所述第一能量检测阈值不大于所述目标能量检测阈值,所述第一空间参数组被关联到所述目标空间参数组;
如果判断能在所述目标时频资源上发送所述第一无线信号,则在所述目标时频资源上采用第一空间参数组、第一发送功率和第一天线增益发送所述第一无线信号,所述第一发送功率加上所述第一天线增益之和不大于所述目标功率值;
如果判断不能在所述目标时频资源上发送所述第一无线信号,则放弃在所述目标时频资源上发送所述第一无线信号。
作为一个实施例,上述方法用于非授权频谱上的上行信道接入。
作为一个实施例,公知常识是最大等效全向辐射功率(EIRP,Effective Isotropic Radiated Power)是缺省确定的,而本发明的创新点在于最大等效全向辐射功率,即所述第一功率值,是可配置的。
作为一个实施例,公知常识是用于上行信道接入的能量检测阈值不被用于确定最大等效全向辐射功率,而本发明的创新点在于用于上行信道接入的能量检测阈值可以被用于确定最大等效全向辐射功率。
作为一个实施例,公知常识是最大等效全向辐射功率不被用于确定用于上行信道接入的能量检测阈值,而本发明的创新点在于最大等效全向辐射功率可以被用于确定上行信道接入的能量检测阈值。
作为一个实施例,公知常识是用于上行信道接入的能量检测阈值与LBT的空间覆盖无关,而本发明的创新点在于用于上行信道接入的能量检测阈值与用于LBT的信号接收的空间覆盖有关。
作为一个实施例,公知常识是用于发送上行信号的最大等效全向辐射功率与LBT的空间覆盖无关,而本发明的创新点在于用于发送上行信号的最大等效全向辐射功率与用于LBT信号接收的空间覆盖有关。
作为一个实施例,上述方法的一个好处在于,根据基站配置确定最大能量检测阈值、最大等效全向辐射功率和LBT的空间覆盖,从而提高定向传输的传输效率。
作为一个实施例,上述方法的另一个好处在于,将用于上行信道接入的最大能量检测阈值,最大等效全向辐射功率和LBT的空间覆盖这三者关联,从而节省信令开销并提高定向传输的传输效率。
作为一个实施例,上述方法的再一个好处在于:用于上行信道接入的LBT的空间覆盖被用于确定上行无线信号的发送方向,从而避免对其他方向干扰。
根据本申请的一个方面,上述方法的特征在于,包括
接收第二控制信号,所述第二控制信号指示第一调制编码方案索引;
其中,所述第一能量检测配置被用于确定所述第一调制编码方案索引所指示的第一调制编码方案,所述第一调制编码方案被用于生成所述第一无线信号。
作为一个实施例,上述方法的好处在于,将最大等效全向辐射功率与调制编码表关联,最大等效全向辐射功率越大,其所关联的调制编码表中的编码速率越高或者调制星座点越多,从而提高定向传输的传输效率。
根据本申请的一个方面,上述方法的特征在于,所述第一控制信号从L个候选能量检测配置中指示所述第一能量检测配置,所述L是大于1的正整数;或者,所述第一控制信号从N个候选能量检测阈值中指示所述目标能量检测阈值,所述N是大于1的正整数;或者,所述第一控制信号从M个候选功率值中指示所述目标功率值,所述M是大于1的正整数。
根据本申请的一个方面,上述方法的特征在于,所述M个候选功率值与M个候选能量检测阈值一一对应,所述M个候选功率值中的任意一个候选功率值加上其对应的候选能量检测阈值之和都是第一功率值,所述M个候选功率值与M个候选能量检测阈值的单位都是分贝毫瓦或者分贝瓦。
作为一个实施例,上述方法的一个好处在于:利用最大有效全向辐射功率与最大能量检测阈值之间的关系从而通过其中的一个计算得到另一个,从而减少信令开销。
根据本申请的一个方面,上述方法的特征在于,所述目标能量检测阈值被关联到采用所述目标空间参数组生成的空间覆盖。
作为一个实施例,上述方法的一个好处在于:采用基站配置的最大能量检测阈值利用最大能量检测阈值与LBT空间覆盖的关系确定用于上行信道接入的LBT的空间覆盖,从而减少信令开销。
本申请公开了一种被用于无线通信的基站中的方法,其特征在于包括:
发送第一控制信号,所述第一控制信号指示第一能量检测配置,所述第一能量检测配置包括目标功率值和目标能量检测阈值中至少之一,所述目标能量检测阈值被关联到所述目标功率值;
在目标时频资源上监测第一无线信号;
其中,所述第一控制信号的接收者采用目标空间参数组执行第一类能量检测,所述目标空间参数组被关联到所述目标能量检测阈值;所述第一控制信号的接收者采用所述第一类能量检测的结果与第一能量检测阈值的比较结果判断能否在所述目标时频资源上采用第一空间参数组发送所述第一无线信号,所述第一能量检测阈值不大于所述目标能量检测阈值,所述第一空间参数组被关联到所述目标空间参数组;如果判断能在所述目标时频资源上发送所述第一无线信号,则在所述目标时频资源上采用所述第一空间参数组、第一发送功率和第一天线增益发送所述第一无线信号,所述第一发送功率加上所述第一天线增益之和不大于所述目标功率值;如果判断不能在所述目标时频资源上发送所述第一无线信号,则所述第一控制信号的接收者放弃在所述目标时频资源上发送所述第一无线信号。
根据本申请的一个方面,上述方法的特征在于,包括
发送第二控制信号,所述第二控制信号指示第一调制编码方案索引;
其中,所述第一能量检测配置被用于确定所述第一调制编码方案索引所指示的第一调制编码方案,所述第一调制编码方案被用于生成所述第一无线信号。
根据本申请的一个方面,上述方法的特征在于,所述第一控制信号从L个候选能量检测配置中指示所述第一能量检测配置,所述L是大于1的正整数;或者,所述第一控制信号从N个候选能量检测阈值中指示所述目标能量检测阈值,所述N是大于1的正整数;或者,所述第一控制信号从M个候选功率值中指示所述目标功率值,所述M是大于1的正整数。
根据本申请的一个方面,上述方法的特征在于,所述M个候选功率值与M个候选能量检测阈值一一对应,所述M个候选功率值中的任意一个候选功率值加上其对应的候选能量检测阈值之和都是第一功率值,所述M个候选功率值与M个候选能量检测阈值的单位都是分贝毫瓦或者分贝瓦。
根据本申请的一个方面,上述方法的特征在于,所述第一能量检测阈值被关联到采用所述目标空间参数组生成的空间覆盖。
本申请公开了一种被用于无线通信的用户设备,其特征在于包括:
第一接收机,接收第一控制信号,所述第一控制信号指示第一能量检测配置,所述第一能量检测配置包括目标功率值和目标能量检测阈值中至少之一,所述目标能量检测阈值被关联到所述目标功率值;
第二接收机,采用目标空间参数组执行第一类能量检测,所述目标空间参数组被关联到所述目标能量检测阈值;
第一处理机,采用所述第一类能量检测的结果与第一能量检测阈值的比较结果判断能否在目标时频资源上采用第一空间参数组发送第一无线信号,所述第一能量检测阈值不大于所述目标能量检测阈值,所述第一空间参数组被关联到所述目标空间参数组;
第三发射机,如果判断能在所述目标时频资源上发送所述第一无线信号,则所述第三发射机在所述目标时频资源上采用所述第一空间参数组、第一发送功率和第一天线增益发送所述第一无线信号,所述第一发送功率加上所述第一天线增益之和不大于所述目标功率值;
如果判断不能在所述目标时频资源上发送所述第一无线信号,则放弃在所述目标时频资源上发送所述第一无线信号。
作为一个实施例,上述用户设备的特征在于,所述第一接收机接收第二控制信号,所述第二控制信号指示第一调制编码方案索引;其中,所述第一能量检测配置被用于确定所述第一调制编码方案索引所指示的第一调制编码方案,所述第一调制编码方案被用于生成所述第一无线信号。
作为一个实施例,上述用户设备的特征在于,所述第一控制信号从L个候选能量检测配置中指示所述第一能量检测配置,所述L是大于1的正整数;或者,所述第一控制信号从N个候选能量检测阈值中指示所述目标能量检测阈值,所述N是大于1的正整数;或者,所述 第一控制信号从M个候选功率值中指示所述目标功率值,所述M是大于1的正整数。
作为一个实施例,上述用户设备的特征在于,所述M个候选功率值与M个候选能量检测阈值一一对应,所述M个候选功率值中的任意一个候选功率值加上其对应的候选能量检测阈值之和都是第一功率值,所述M个候选功率值与M个候选能量检测阈值的单位都是分贝毫瓦或者分贝瓦。
作为一个实施例,上述用户设备的特征在于,所述第一能量检测阈值被关联到采用所述目标空间参数组生成的空间覆盖。
本申请公开了一种被用于无线通信的基站设备,其特征在于包括:
第一发射机,发送第一控制信号,所述第一控制信号指示第一能量检测配置,所述第一能量检测配置包括目标功率值和目标能量检测阈值中至少之一,所述目标能量检测阈值被关联到所述目标功率值;
第三接收机,在目标时频资源上监测第一无线信号;
其中,所述第一控制信号的接收者采用目标空间参数组执行第一类能量检测,所述目标空间参数组被关联到所述目标能量检测阈值;所述第一控制信号的接收者采用所述第一类能量检测的结果与第一能量检测阈值的比较结果判断能否在目标时频资源上采用第一空间参数组发送第一无线信号,所述第一能量检测阈值不大于所述目标能量检测阈值,所述第一空间参数组被关联到所述目标空间参数组;如果判断能在所述目标时频资源上发送所述第一无线信号,则在所述目标时频资源上采用第一空间参数组、第一发送功率和第一天线增益发送所述第一无线信号,所述第一发送功率加上所述第一天线增益之和不大于所述目标功率值;如果判断不能在所述目标时频资源上发送所述第一无线信号,则所述第一控制信号的接收者放弃在所述目标时频资源上发送所述第一无线信号。
作为一个实施例,上述基站设备的特征在于,所述第一发射机发送第二控制信号,所述第二控制信号指示第一调制编码方案索引;其中,所述第一能量检测配置被用于确定所述第一调制编码方案索引所指示的第一调制编码方案,所述第一调制编码方案被用于生成所述第一无线信号。
作为一个实施例,上述基站设备的特征在于,所述第一控制信号从L个候选能量检测配置中指示所述第一能量检测配置,所述L是大于1的正整数;或者,所述第一控制信号从N个候选能量检测阈值中指示所述目标能量检测阈值,所述N是大于1的正整数;或者,所述第一控制信号从M个候选功率值中指示所述目标功率值,所述M是大于1的正整数。
作为一个实施例,上述基站设备的特征在于,所述M个候选功率值与M个候选能量检测阈值一一对应,所述M个候选功率值中的任意一个候选功率值加上其对应的候选能量检测阈值之和都是第一功率值,所述M个候选功率值与M个候选能量检测阈值的单位都是分贝毫瓦或者分贝瓦。
作为一个实施例,上述基站设备的特征在于,所述目标能量检测阈值被关联到采用所述目标空间参数组生成的空间覆盖。
作为一个实施例,相比现有公开技术,本申请具有如下主要技术优势:
-通过将能量检测阈值和最大有效全向辐射功率和LBT的空间覆盖关联,从而提高非授权频谱上行传输的效率。
-通过将最大有效全向辐射功率与调制编码表关联,从而利用定向LBT与波束赋型增益提高非授权频谱上行传输的效率。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一控制信号和第一无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的演进节点和UE的示意图;
图5示出了根据本申请的一个实施例的无线传输的流程图;
图6示出了根据本申请的一个实施例的目标功率值,目标能量检测阈值,目标空间参数组与第一空间参数组的示意图;
图7示出了根据本申请的一个实施例的目标功率值与第一调制编码方案的示意图;
图8示出了根据本申请的一个实施例的第一类通信节点的天线结构的示意图;
图9示出了根据本申请的一个实施例的用于用户设备中的处理装置的结构框图;
图10示出了根据本申请的一个实施例的用于基站中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的第一控制信号和第一无线信号,如附图1所示。附图1中,每个方框代表一个步骤。在实施例1中,本申请中的用户设备接收第一控制信号,所述第一控制信号指示第一能量检测配置,所述第一能量检测配置包括目标功率值和目标能量检测阈值中至少之一,所述目标能量检测阈值被关联到所述目标功率值;采用目标空间参数组执行第一类能量检测,所述目标空间参数组被关联到所述目标能量检测阈值;采用所述第一类能量检测的结果与第一能量检测阈值的比较结果判断能否在目标时频资源上采用第一空间参数组发送第一无线信号,所述第一能量检测阈值不大于所述目标能量检测阈值,所述第一空间参数组被关联到所述目标空间参数组;如果判断能在所述目标时频资源上发送所述第一无线信号,则在所述目标时频资源上采用所述第一空间参数组、第一发送功率和第一天线增益发送所述第一无线信号,所述第一发送功率加上所述第一天线增益之和不大于所述目标功率值;如果判断不能在所述目标时频资源上发送所述第一无线信号,则放弃在所述目标时频资源上发送所述第一无线信号。
作为一个实施例,上述方法用于非授权频谱上的信道接入。
作为一个实施例,授权频谱被用于发送所述第一控制信号。
作为一个实施例,所述第一控制信号是小区公共的。
作为一个实施例,所述第一控制信号是针对所述用户设备的。
作为一个实施例,所述第一控制信号是物理层控制信令。
作为一个实施例,所述第一控制信号是更高层控制信令。
作为一个实施例,所述第一控制信号是RRC(Radio Resource Control,无线资源控制)信令。
作为一个实施例,所述第一控制信号是下行控制信号。
作为一个实施例,所述第一控制信号是一个DCI(Downlink Control Information,下行控制信息)生成的无线信号。
作为一个实施例,所述第一控制信号是PDCCH(Physical Downlink Control Channel,物理下行控制信道)。
作为一个实施例,所述第一控制信号是一个上行授予(Uplink grant)DCI生成的无线信号。
作为一个实施例,所述第一能量检测配置包括所述目标功率值,所述目标功率值被 关联到所述目标能量检测阈值。
作为一个实施例,所述第一能量检测配置包括所述能量检测阈值,所述能量检测阈值被关联到所述目标功率值。
作为一个实施例,所述第一能量检测配置包括所述目标功率阈值和所述能量检测阈值。
作为一个实施例,所述第一控制信号从L个候选能量检测配置中指示所述第一能量检测配置,所述L是大于1的正整数。
作为一个实施例,所述第一控制信号从N个候选能量检测阈值中指示所述目标能量检测阈值,所述N是大于1的正整数。
作为一个实施例,所述第一控制信号从M个候选功率值中指示所述目标功率值,所述M是大于1的正整数。
作为一个实施例,一个所述空间参数组包括作用于射频链路上的相移器的参数。
作为一个实施例,一个所述空间参数组包括作用于射频链路上的相移器的参数。
作为一个实施例,一个所述空间参数组被用于生成一个发送波束。
作为一个实施例,一个所述空间参数组被用于生成一个接收波束。
作为一个实施例,一个所述空间参数组包括被用于生成发送波束的波束赋型系数。
作为一个实施例,一个所述空间参数组包括被用于生成接收波束的波束赋型系数。
作为一个实施例,一个所述空间参数组包括被用于发送空间滤波的参数。
作为一个实施例,一个所述空间参数组包括被用于接收空间滤波的参数。
作为一个实施例,一个所述空间参数组被用于定向发送无线信号。
作为一个实施例,一个所述空间参数组被用于定向接收无线信号。
作为一个实施例,一个所述空间参数组对应一个多天线发送方案。
作为一个实施例,一个所述空间参数组对应一个多天线接收方案。
作为一个实施例,一个所述空间参数组包括天线元素的数量,天线元素开关的状态,天线元素之间的间距和移相器的系数中的至少之一。
作为一个实施例,一次所述能量检测是指:所述用户设备在给定持续时间内的一个时间段上监测接收功率。
作为一个实施例,一次所述能量检测是指:所述用户设备在给定持续时间内的一个时间段上监测接收能量。
作为一个实施例,一次所述能量检测是指:所述用户设备在给定持续时间内的一个时间段上针对给定频域资源上的所有无线信号进行感知(Sense)以获得给定功率;所述给定频域资源是所述目标时频资源所在的频带。
作为一个实施例,一次所述能量检测是指:所述用户设备在给定持续时间内的一个时间段上针对给定频域资源上的所有无线信号进行感知(Sense)以获得给定能量;所述给定频域资源是所述目标时频资源所在的频带。
作为一个实施例,所述能量检测是LBT(Listen Before Talk,先听后发)中的能量检测。
作为一个实施例,所述能量检测是通过WiFi中的能量检测方式实现的。
作为一个实施例,所述能量检测是通过对RSSI(Received Signal Strength Indication,接收信号强度指示)进行测量实现的。
作为一个实施例,所述目标空间参数组被用于生成接收无线信号以进行所述第一类能量检测的接收波束。
作为一个实施例,所述目标能量检测阈值被关联到采用所述目标空间参数组生成的空间覆盖。
作为一个实施例,所述目标能量检测阈值被用于确定所述目标空间参数组生成的空间覆盖。
作为一个实施例,所述目标能量检测阈值被用于计算得到所述目标空间参数组生成的空间覆盖。
作为一个实施例,采用所述目标空间参数组生成的波束宽度被关联到所述目标能量检测阈值。
作为一个实施例,采用所述目标空间参数组生成的波束宽度被关联到所述目标能量检测阈值。
作为一个实施例,采用所述目标空间参数组生成的波束方向被关联到所述目标能量检测阈值。
作为一个实施例,采用所述目标空间参数组生成的空间覆盖被关联到所述目标能量检测阈值。
作为一个实施例,所述目标能量检测阈值被用于确定所述目标空间参数组。
作为一个实施例,所述目标能量检测阈值被用于确定采用所述目标空间参数组生成的接收波束的波束宽度。
作为一个实施例,所述L个候选能量检测阈值与L个候选波束宽度一一对应,所述目标能量检测阈值是所述L个候选能量检测阈值之一,采用所述目标空间参数组生成的波束宽度是所述L个候选波束宽度中与所述目标能量检测阈值对应的波束宽度。
作为一个实施例,所述目标能量检测阈值越高,采用所述目标空间参数组生成的波束宽度越宽。
作为一个实施例,所述第一能量检测配置包括采用所述目标空间参数组生成的波束宽度。
作为一个实施例,所述目标能量检测阈值和所述第一能量检测阈值的单位是毫瓦。
作为一个实施例,所述目标能量检测阈值和所述第一能量检测阈值的单位是焦耳。
作为一个实施例,所述目标能量检测阈值和所述第一能量检测阈值的单位是mdB。
作为一个实施例,每次所述第一类能量检测都采用所述目标空间参数组进行无线信号的接收。
作为一个实施例,所述第一能量检测阈值等于所述目标能量检测阈值。
作为一个实施例,所述第一能量检测阈值小于所述目标能量检测阈值。
作为一个实施例,所述用户设备自行确定小于所述目标能量检测阈值的所述第一能量检测阈值。
作为一个实施例,采用所述目标空间参数组分别多次执行所述第一类能量检测得到的检测功率被用于判断能否在所述目标时频资源上发送所述第一无线信号。
作为一个实施例,采用所述目标空间参数组执行所述第一类能量检测共计L1次分别得到L1个检测功率,所述L1是不小于1的正整数。
作为一个实施例,所述L1个检测功率都低于所述第一能量检测阈值,所述用户设备采用所述第一空间参数组在所述目标时频资源上发送所述第一无线信号。
作为一个实施例,所述L1个检测功率中的至少一个检测功率高于所述第一能量检测阈值,所述用户设备放弃在所述目标时频资源上发送所述第一无线信号。
作为一个实施例,所述L1个检测功率中的Q1个检测功率都低于所述第一能量检测阈值,所述用户设备采用所述第一空间参数组在所述目标时频资源上发送所述第一无线信号,所述Q1是正整数。
作为一个实施例,所述L1个检测功率中低于所述第一能量检测阈值的数量小于所述Q1,所述用户设备放弃在所述目标时频资源上发送所述第一无线信号。
作为一个实施例,所述L1和所述Q1都是1。
作为一个实施例,所述L1大于所述Q1。
作为一个实施例,所述L1等于所述Q1。
作为一个实施例,在一个时隙中存在一个时间段,在此时间段上采用所述目标空间参数组执行所述第一类能量检测得到的检测功率低于所述第一能量检测阈值,则此时隙称 之为第一类空闲时隙。
作为一个实施例,所述时隙的长度是16微秒。
作为一个实施例,所述时隙的长度是9微秒。
作为一个实施例,所述时间段是一个不短于4微秒的持续时间段。
作为一个实施例,在连续的L2个时隙上执行所述第一类能量检测,所述L2是不小于1的正整数。
作为一个实施例,所述L2个时隙都是所述第一类空闲时隙,所述用户设备采用所述第一空间参数组在所述目标时频资源上发送所述第一无线信号。
作为一个实施例,所述L2个时隙中存在至少一个非所述第一类空闲时隙,所述用户设备放弃在所述目标时频资源上发送所述第一无线信号。
作为一个实施例,所述L2个时隙中的Q2个时隙是所述第一类空闲时隙,所述用户设备采用所述第一空间参数组在所述目标时频资源上发送所述第一无线信号,所述Q2是正整数。
作为一个实施例,所述L2个时隙中所述第一类空闲时隙的数量小于所述Q2,所述用户设备放弃在所述目标时频资源上发送所述第一无线信号。
作为一个实施例,所述L2和所述Q2都是1。
作为一个实施例,所述L2大于所述Q2。
作为一个实施例,所述L2等于所述Q2。
作为一个实施例,一个延迟时间段由连续的Q1个时隙组成,所述Q1是正整数;在所述目标时频资源之前存在K1个延迟时间段,所述K1是正整数。
作为一个实施例,所述K1是一个随机数。
作为一个实施例,所述K1个延迟时间段内的时隙都是所述第一类空闲时隙,所述用户设备采用所述第一空间参数组在所述目标时频资源上发送所述第一无线信号。
作为一个实施例,所述K1个延迟时间段内存在至少一个时隙不是所述第一类空闲时隙,所述用户设备放弃在所述目标时频资源上发送所述第一无线信号。
作为一个实施例,所述第一空间参数组被用于生成发送所述第一无线信号的发送波束。
作为一个实施例,所述第一空间参数组作用于被用于发送所述第一无线信号的射频链路上的相移器。
作为一个实施例,所述第一空间参数组包括作用于射频链路上的相移器的参数。
作为一个实施例,采用所述第一空间参数组生成的等效信道与采用所述目标空间参数组生成的等效信道在空间上QCL(Quasi Co-located,类共址)。
作为一个实施例,采用所述第一空间参数组生成的等效信道的大尺度参数可以被用于推断得到采用所述目标空间参数组生成的等效信道的大尺度参数。
作为一个实施例,所述大尺度参数包括时延扩散,多普勒扩散,多普勒频移,平均增益,平均延迟,空间发送参数,空间接收参数中至少一个。
作为一个实施例,所述第一空间参数组被用于推断得到所述目标空间参数组。
作为一个实施例,采用所述目标空间参数组生成的空间覆盖覆盖所述第一空间参数组生成的空间覆盖。
作为一个实施例,采用所述目标空间参数组生成的波束宽度大于所述第一空间参数组生成的波束宽度。
作为一个实施例,采用所述目标空间参数组生成的波束覆盖所述第一空间参数组生成的波束。
作为一个实施例,采用所述目标空间参数组生成的波束方向与所述第一空间参数组生成的波束方向关联。
作为一个实施例,所述第一空间参数组和所述目标空间参数组分别包括第一向量和目标向量,所述第一向量和所述目标向量的相关性为1。
作为一个实施例,所述第一空间参数组和所述目标空间参数组分别包括第一向量和目标向量,所述第一向量和所述目标向量的相关性小于1。
作为一个实施例,所述第一发送功率的单位是分贝毫瓦(mdB)。
作为一个实施例,所述第一发送功率的单位是分贝瓦(dBw)。
作为一个实施例,所述第一发送功率是有效辐射功率(ERP,Effective Radiated Power)。
作为一个实施例,所述第一天线增益的单位是分贝(dB)。
作为一个实施例,所述第一天线增益是被用于发送所述第一无线信号的天线相对于一个全向辐射体(isotropic radiator)的增益。
作为一个实施例,所述第一发送功率和所述第一天线增益之和是被用于发送所述第一无线信号的等效全向辐射功率(EIRP,Effective Isotropic Radiated Power)。
作为一个实施例,所述目标功率值是被用于发送所述第一无线信号的最大等效全向辐射功率。
作为一个实施例,所述用户设备接收第二控制信号,所述第二控制信号指示第一调制编码方案索引;其中,所述第一能量检测配置被用于确定所述第一调制编码方案索引所指示的第一调制编码方案,所述第一调制编码方案被用于生成所述第一无线信号。
作为一个实施例,所述第二控制信号是小区公共的。
作为一个实施例,所述第二控制信号是针对所述用户设备的。
作为一个实施例,所述第二控制信号是物理层控制信令。
作为一个实施例,所述第二控制信号是下行控制信号。
作为一个实施例,所述第二控制信号是一个DCI(Downlink Control Information,下行控制信息)生成的无线信号。
作为一个实施例,所述第二控制信号是PDCCH(Physical Downlink Control Channel,物理下行控制信道)。
作为一个实施例,所述第二控制信号是一个上行授予(Uplink grant)DCI生成的无线信号。
作为一个实施例,所述第一调制编码方案索引被用于从第一调制编码表中指示所述第一调制编码方案。
作为一个实施例,所述目标功率值被用于从多个候选调制编码表中唯一确定所述第一调制编码表。
作为一个实施例,所述M个候选功率值与M个调制编码表一一对应,所述第一调制编码表是所述M个候选调制编码表中与所述目标功率值对应的调制编码表。
作为一个实施例,所述目标功率值被用于修改第一基准调制编码表为所述第一调制编码表。
作为一个实施例,所述目标功率值被用于从第二基准调制编码表中选取多个候选调制编码方案生成所述第一调制编码表。
作为一个实施例,所述第一调制编码表是所述第二基准调制编码表的一个子集。
作为一个实施例,第二功率值和第三功率值都是所述M个候选功率值中的功率值,第二调制编码表和第三调制编码表是分别与所述第二功率值和所述第三功率值对应的调制编码表,所述第二功率值大于所述第三功率值;所述第一调制编码方案索引在所述第二调制编码表中对应的编码速率高于其在所述第三调制编码表中对应的编码速率,或者;所述第一调制编码方案索引在所述第二调制编码表中对应的调制星座阶数高于其在所述第三调制编码表中对应的调制星座阶数。
作为一个实施例,所述M个候选功率值与M个候选能量检测阈值一一对应,所述M个候选功率值中的任意一个候选功率值加上其对应的候选能量检测阈值之和都是第一功率值,所述M个候选功率值与M个候选能量检测阈值的单位都是分贝毫瓦或者分贝瓦。
作为一个实施例,所述目标能量检测阈值和所述第一功率值被用于计算得到所述目标功 率值。
作为一个实施例,所述目标功率值和所述第一功率值被用于计算得到所述目标能量检测阈值。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明了NR5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统网络架构200的图。NR 5G或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供面向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME/AMF/UPF 211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个实施例,所述UE201对应本申请中的用户设备。
作为一个实施例,所述gNB203对应本申请中的基站。
作为一个实施例,所述UE201支持多天线传输。
作为一个实施例,所述gNB203支持多天线传输。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于用户设备(UE)和基站设备(gNB或eNB)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,介质访问控制)子层302、RLC(Radio  Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的用户设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的基站。
作为一个实施例,本申请中的第一控制信号生成于所述PHY301。
作为一个实施例,本申请中的第一控制信号生成于所述RRC子层306。
作为一个实施例,本申请中的第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的第一无线信号生成于所述RRC子层306。
作为一个实施例,本申请中的第二控制信号生成于所述PHY301。
作为一个实施例,本申请中的第二控制信号生成于所述RRC子层306。
实施例4
实施例4示出了根据本申请的一个基站设备和给定用户设备的示意图,如附图4所示。图4是在接入网络中与UE450通信的gNB410的框图。
在基站设备(410)中可以包括控制器/处理器440,调度器443,存储器430,接收处理器412,发射处理器415,MIMO发射处理器441,MIMO检测器442,发射器/接收器416和天线420。
在用户设备(UE450)中可以包括控制器/处理器490,存储器480,数据源467,发射处理器455,接收处理器452,MIMO发射处理器471,MIMO检测器472,发射器/接收器456和天线460。
在下行传输中,与基站设备(410)关联的处理可以包括:
-上层包到达控制器/处理器440,控制器/处理器440提供包头压缩、加密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;上层包中可以包括数据或者控制信息,例如DL-SCH(Downlink Shared Channel,下行共享信道);
-控制器/处理器440可与存储程序代码和数据的存储器430相关联。存储器430可以为计算机可读媒体;
-控制器/处理器440通知调度器443传输需求,调度器443用于调度与传输需求对应的空口资源,并将调度结果通知控制器/处理器440;
-控制器/处理器440将接收处理器412对上行接收进行处理得到的对下行发送的控制信息传递给发射处理器415;
-发射处理器415接收控制器/处理器440的输出比特流,实施用于L1层(即物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配和物理层控制信令(包括PBCH,PDCCH,PHICH,PCFICH,参考信号)生成等;
-MIMO发射处理器441对数据符号,控制符号或者参考信号符号进行空间处理(比如 多天线预编码,数字波束赋型),输出基带信号至发射器416;
-MIMO发射处理器441输出模拟发送波束赋性向量至发射器416;
-发射器416用于将MIMO发射处理器441提供的基带信号转换成射频信号并经由天线420发射出去;每个发射器416对各自的输入符号流进行采样处理得到各自的采样信号流;每个发射器416对各自的采样流进行进一步处理(比如数模转换,放大,过滤,上变频等)得到下行信号;模拟发送波束赋型在发射器416中进行处理。
在下行传输中,与用户设备(UE450)关联的处理可以包括:
-接收器456用于将通过天线460接收的射频信号转换成基带信号提供给MIMO检测器472;模拟接收波束赋型在接收器456中进行处理;
-MIMO检测器472用于从接收器456接收到的信号进行MIMO检测,为接收处理器452提供经过MIMO检测后的基带信号;
-接收处理器452提取模拟接收波束赋型相关参数输出至MIMO检测器472,MIMO检测器472输出模拟接收波束赋型向量至接收器456;
-接收处理器452实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
-控制器/处理器490接收接收处理器452输出的比特流,提供包头解压缩、解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;
-控制器/处理器490可与存储程序代码和数据的存储器480相关联。存储器480可以为计算机可读媒体;
-控制器/处理器490将发射处理器455对上行发送进行处理得到的对下行接收的控制信息传递给接收处理器452。
在上行传输中,与用户设备(UE450)关联的处理可以包括:
-数据源467提供上层包到控制器/处理器490,控制器/处理器490提供包头压缩、加密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;上层包中可以包括数据或者控制信息,例如UL-SCH(Uplink Shared Channel,上行共享信道);
-控制器/处理器490可与存储程序代码和数据的存储器480相关联。存储器480可以为计算机可读媒体;
-控制器/处理器490将接收处理器452对下行接收进行处理得到的对上行发送的控制信息传递给发射处理器455;
-发射处理器455接收控制器/处理器490的输出比特流,实施用于L1层(即物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配和物理层控制信令(包括PUCCH,SRS(Sounding Reference Signal,探测参考信号))生成等;
-MIMO发射处理器471对数据符号,控制符号或者参考信号符号进行空间处理(比如多天线预编码,数字波束赋型),输出基带信号至发射器456;
-MIMO发射处理器471输出模拟发送波束赋型向量至发射器457;
-发射器456用于将MIMO发射处理器471提供的基带信号转换成射频信号并经由天线460发射出去;每个发射器456对各自的输入符号流进行采样处理得到各自的采样信号流。每个发射器456对各自的采样流进行进一步处理(比如数模转换,放大,过滤,上变频等)得到上行信号。模拟发送波束赋型在发射器456中进行处理。
在上行传输中,与基站设备(410)关联的处理可以包括:
-接收器416用于将通过天线420接收的射频信号转换成基带信号提供给MIMO检测器442;模拟接收波束赋型在接收器416中进行处理;
-MIMO检测器442用于从接收器416接收到的信号进行MIMO检测,为接收处理器442提供经过MIMO检测后的符号;
-MIMO检测器442输出模拟接收波束赋型向量至接收器416;
-接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
-控制器/处理器440接收接收处理器412输出的比特流,提供包头解压缩、解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;
-控制器/处理器440可与存储程序代码和数据的存储器430相关联。存储器430可以为计算机可读媒体;
-控制器/处理器440将发射处理器415对下行发送进行处理得到的对上行发送的控制信息传递给接收处理器412;
作为一个实施例,所述UE450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述UE450装置至少:接收第一控制信号,所述第一控制信号指示第一能量检测配置,所述第一能量检测配置包括目标功率值和目标能量检测阈值中至少之一,所述目标能量检测阈值被关联到所述目标功率值;采用目标空间参数组执行第一类能量检测,所述目标空间参数组被关联到所述目标能量检测阈值;采用所述第一类能量检测的结果与第一能量检测阈值的比较结果判断能否在目标时频资源上采用第一空间参数组发送第一无线信号,所述第一能量检测阈值不大于所述目标能量检测阈值,所述第一空间参数组被关联到所述目标空间参数组;如果判断能在所述目标时频资源上发送所述第一无线信号,则在所述目标时频资源上采用所述第一空间参数组、第一发送功率和第一天线增益发送所述第一无线信号,所述第一发送功率加上所述第一天线增益之和不大于所述目标功率值;如果判断不能在所述目标时频资源上发送所述第一无线信号,则放弃在所述目标时频资源上发送所述第一无线信号。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一控制信号,所述第一控制信号指示第一能量检测配置,所述第一能量检测配置包括目标功率值和目标能量检测阈值中至少之一,所述目标能量检测阈值被关联到所述目标功率值;采用目标空间参数组执行第一类能量检测,所述目标空间参数组被关联到所述目标能量检测阈值;采用所述第一类能量检测的结果与第一能量检测阈值的比较结果判断能否在目标时频资源上采用第一空间参数组发送第一无线信号,所述第一能量检测阈值不大于所述目标能量检测阈值,所述第一空间参数组被关联到所述目标空间参数组;如果判断能在所述目标时频资源上发送所述第一无线信号,则在所述目标时频资源上采用所述第一空间参数组、第一发送功率和第一天线增益发送所述第一无线信号,所述第一发送功率加上所述第一天线增益之和不大于所述目标功率值;如果判断不能在所述目标时频资源上发送所述第一无线信号,则放弃在所述目标时频资源上发送所述第一无线信号。
作为一个实施例,所述gNB410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:发送第一控制信号,所述第一控制信号指示第一能量检测配置,所述第一能量检测配置包括目标功率值和目标能量检测阈值中至少之一,所述目标能量检测阈值被关联到所述目标功率值;在目标时频资源上监测第一无线信号;其中,所述第一控制信号的接收者采用目标空间参数组执行第一类能量检测,所述目标空间参数组被关联到所述目标能量检测阈值;所述第一控制信号的接收者采用所述第一类能量检测的结果与第一能量检测阈值的比较结果判断能否在所述目标时频资源上采用第一空间参数组发送所述第一无线信号,所述第一能量检测阈值不大于所述目标能量检测阈值,所述第一空间参数组被关联到所述目标空间参数组;如果判断能在所述目标时频资源上发送所述第一无线信号,则在所述目标时频资源上采用所述第一空间参数组、第一发送功率和第一 天线增益发送所述第一无线信号,所述第一发送功率加上所述第一天线增益之和不大于所述目标功率值;如果判断不能在所述目标时频资源上发送所述第一无线信号,则所述第一控制信号的接收者放弃在所述目标时频资源上发送所述第一无线信号。
作为一个实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一控制信号,所述第一控制信号指示第一能量检测配置,所述第一能量检测配置包括目标功率值和目标能量检测阈值中至少之一,所述目标能量检测阈值被关联到所述目标功率值;在目标时频资源上监测第一无线信号;其中,所述第一控制信号的接收者采用目标空间参数组执行第一类能量检测,所述目标空间参数组被关联到所述目标能量检测阈值;所述第一控制信号的接收者采用所述第一类能量检测的结果与第一能量检测阈值的比较结果判断能否在所述目标时频资源上采用第一空间参数组发送所述第一无线信号,所述第一能量检测阈值不大于所述目标能量检测阈值,所述第一空间参数组被关联到所述目标空间参数组;如果判断能在所述目标时频资源上发送所述第一无线信号,则在所述目标时频资源上采用所述第一空间参数组、第一发送功率和第一天线增益发送所述第一无线信号,所述第一发送功率加上所述第一天线增益之和不大于所述目标功率值;如果判断不能在所述目标时频资源上发送所述第一无线信号,则所述第一控制信号的接收者放弃在所述目标时频资源上发送所述第一无线信号。
作为一个实施例,UE450对应本申请中的用户设备。
作为一个实施例,gNB410对应本申请中的基站。
作为一个实施例,接收器456,MIMO检测器472,接收处理器452和控制器/处理器490中的至少前三者用于接收本申请中的第一控制信号。
作为一个实施例,接收器456,MIMO检测器472和接收处理器452用于执行本申请中的第一类能量检测。
作为一个实施例,接收处理器452被用于判断能否在目标时频资源上发送本申请中的第一无线信号。
作为一个实施例,发射处理器455,MIMO发射处理器471,发射器456和控制器/处理器490中的至少前三者用于发送本申请中的第一无线信号。
作为一个实施例,接收器456,MIMO检测器472和接收处理器452被用于接收本申请中的第二控制信号。
作为一个实施例,发射处理器415,MIMO发射处理器441,发射器416和控制器/处理器440中的至少前三者用于发送本申请中的第一控制信号。
作为一个实施例,接收器416,MIMO检测器442,接收处理器412和控制器/处理器440中的至少前三者被用于在目标时频资源上监测本申请中的第一无线信号。
作为一个实施例,发射处理器415,MIMO发射处理器441,发射器416和控制器/处理器440中的至少前三者用于发送本申请中的第二控制信号。
实施例5
实施例5示例了一个无线传输的流程图,如附图5所示。在附图5中,基站与用户设备之间通信。图中方框F1中所标识的步骤是可选的,方框F2中所标识的步骤可能不被执行。
对于 基站N1,在步骤S11中发送第一控制信号,在步骤S12中发送第二控制信号,在步骤S13中在目标时频资源上监测第一无线信号。
对于 用户设备U2,在步骤S21中接收第一控制信号,在步骤S22中接收第二控制信号,在步骤S23中执行第一类能量检测,在步骤S24中判断能否在目标时频资源上发送第一无线信号,在步骤S25中在目标时频资源上发送第一无线信号。
实施例5中,所述第一控制信号指示第一能量检测配置,所述第一能量检测配置包括目 标功率值和目标能量检测阈值中至少之一,所述目标能量检测阈值被关联到所述目标功率值;所述目标空间参数组被关联到所述目标能量检测阈值;U2采用所述第一类能量检测的结果与第一能量检测阈值的比较结果判断能否在目标时频资源上采用第一空间参数组发送第一无线信号,所述第一能量检测阈值不大于所述目标能量检测阈值,所述第一空间参数组被关联到所述目标空间参数组;如果判断能在所述目标时频资源上发送所述第一无线信号,则方框F2中的步骤被执行,U2在所述目标时频资源上采用所述第一空间参数组、第一发送功率和第一天线增益发送所述第一无线信号,所述第一发送功率加上所述第一天线增益之和不大于所述目标功率值;如果判断不能在所述目标时频资源上发送所述第一无线信号,则方框F2中的步骤不被执行,U2放弃在所述目标时频资源上发送所述第一无线信号。
作为一个实施例,方框F1中的步骤被执行,所述第二控制信号指示第一调制编码方案索引;其中,所述第一能量检测配置被用于确定所述第一调制编码方案索引所指示的第一调制编码方案,所述第一调制编码方案被用于生成所述第一无线信号。
作为一个实施例,所述第一控制信号从L个候选能量检测配置中指示所述第一能量检测配置,所述L是大于1的正整数;或者,所述第一控制信号从N个候选能量检测阈值中指示所述目标能量检测阈值,所述N是大于1的正整数;或者,所述第一控制信号从M个候选功率值中指示所述目标功率值,所述M是大于1的正整数。
作为一个实施例,所述M个候选功率值与M个候选能量检测阈值一一对应,所述M个候选功率值中的任意一个候选功率值加上其对应的候选能量检测阈值之和都是第一功率值,所述M个候选功率值与M个候选能量检测阈值的单位都是分贝毫瓦或者分贝瓦。
作为一个实施例,所述第一能量检测阈值被关联到采用所述目标空间参数组生成的空间覆盖。
实施例6
实施例6示例了目标功率值,目标能量检测阈值,目标空间参数组与第一空间参数组,如附图6所示。
在实施例6中,M个候选能量检测配置即候选能量配置#1-#M与M个候选接收空间覆盖即候选接收空间覆盖#1-#M一一对应,所述M个候选接收空间覆盖的接收波束宽度不同。所述M是大于1的正整数。每个候选能量检测配置包括一个候选能量检测阈值与一个候选功率值。本申请中的第一能量检测配置是所述M个候选能量检测配置之一,本申请中的目标功率值和目标能量检测阈值是所述第一能量检测配置所包括的候选能量检测阈值和候选功率值。本申请中的目标空间参数组被用于生成所述M个候选接收空间覆盖之一。所述目标空间参数组被用于执行本申请中的第一类能量检测。本申请中的第一空间参数组被用于生成M个候选发送空间覆盖即候选发送空间覆盖#1-#M。所述M个候选发送空间覆盖分别与所述M个候选接收空间覆盖关联。所述M个候选发送空间覆盖的方向与所述M个候选接收空间覆盖的方向关联。所述第一空间参数组被用于发送本申请中的第一无线信号。
实施例7
实施例7示例了目标功率值与第一调制编码方案的示意图,如附图7所示。
在实施例7中,本申请中的第一调制编码方案索引结合M个候选功率值即候选功率值#1-#M分别用于确定M个候选调制编码方案即候选调制编码方案#1-#M,本申请中的目标功率值是所述M个候选功率值之一。本申请中的第一调制编码方案是所述第一调制编码方案索引结合所述目标功率值在所述M个候选调制编码方案中确定的所述M个候选调制编码方案之一。
作为一个实施例,所述M个候选功率值分别被用于确定M个调制编码表,所述目标 功率值被用于确定第一调制编码表,所述第一调制编码方案是所述第一调制编码方案索引在所述第一调制编码表中对应的调制编码方案。
实施例8
实施例8示例了用户设备的天线结构,如附图8所示。如附图8所示,所述第一类通信节点装备了M个射频链,分别是射频链#1、射频链#2,…,射频链#M。所述M个射频链被连接到一个基带处理器中。
作为一个实施例,所述M个射频链中的任意一个射频链所支持的带宽不超过所述第一类通信节点被配置的子频带的带宽。
作为一个实施例,所述M个射频链中的M1个射频链通过天线虚拟化(Virtualization)叠加生成一个天线端口(Antenna Port),所述M1个射频链分别连接M1个天线组,所述M1个天线组中每个天线组包括正整数跟天线。一个天线组通过一个射频链连接到基带处理器,不同天线组对应不同的射频链。所述M1个天线组内的任一天线组包括的天线到所述天线端口的映射系数组成这个天线组的模拟波束赋型向量。移相器的系数和天线开关状态对应所述模拟波束赋型向量。所述M1个天线组的对应的模拟波束赋型向量对角排列构成所述天线端口的模拟波束赋型矩阵。所述M1个天线组到所述天线端口的映射系数组成所述天线端口的数字波束赋型向量。
作为一个实施例,本申请中的空间参数组包括天线开关的状态,移相器的系数,天线间距中的至少之一。
作为一个实施例,本申请中的空间参数组包括射频链路上的波束赋型系数。
作为一个实施例,本申请中的空间参数组包括基带链路上的波束赋型系数。
作为一个实施例,天线开关可以被用于控制波束宽度,工作天线间距越大,波束越宽。
作为一个实施例,所述M1个射频链属于同一个面板。
作为一个实施例,所述M1个射频链是QCL(Quasi Co-Located)的。
作为一个实施例,所述M个射频链中的M2个射频链通过天线虚拟化(Virtualization)叠加生成一个发送波束或者接收波束,所述M2个射频链分别连接M2个天线组,所述M2个天线组中每个天线组包括正整数根天线。一个天线组通过一个射频链连接到基带处理器,不同天线组对应不同的射频链。所述M2个天线组内的任一天线组包括的天线到所述接收波束的映射系数组成这个接收波束的模拟波束赋型向量。所述M2个天线组的对应的模拟波束赋型向量对角排列构成所述接收波束的模拟波束赋型矩阵。所述M2个天线组到所述接收波束的映射系数组成所述接收波束的数字波束赋型向量。
作为一个实施例,所述M1个射频链属于同一个面板。
作为一个实施例,所述M2个射频链是QCL的。
作为一个实施例,所述用户设备在并行的子频带中每一个子频带上被配置的层的数量的总和小于或者等于所述M。
作为一个实施例,所述用户设备在并行的子频带中每一个子频带上被配置的天线端口的数量的总和小于或者等于所述M。
作为一个实施例,对于所述并行的子频带中的每个子频带,层到天线端口的映射关系与层的数量和天线端口的数量都有关。
作为一个实施例,对于所述并行的子频带中的每个子频带,层到天线端口的映射关系是缺省的(即不需要显式配置的)。
作为一个实施例,层到天线端口是一一映射的。
作为一个实施例,一层被映射到多个天线端口上。
实施例9
实施例9示例了用户设备中的处理装置的结构框图,如附图9所示。附图9中,用户设备处理装置900主要由第一接收机901,第二接收机902,第一处理机903和第三发射机904组成。
作为一个实施例,所述第一接收机901包括接收器456,MIMO检测器472,接收处理器452和控制器/处理器490中的至少前三者。
作为一个实施例,第二接收机902包括接收器456,MIMO检测器472和接收处理器452。
作为一个实施例,第一处理机903包括接收处理器452。
作为一个实施例,第三发射机904包括发射处理器455,MIMO发射处理器471,发射器456和控制器/处理器490中的至少前三者。
-第一接收机901:接收第一控制信号,所述第一控制信号指示第一能量检测配置,所述第一能量检测配置包括目标功率值和目标能量检测阈值中至少之一,所述目标能量检测阈值被关联到所述目标功率值;
-第二接收机902:采用目标空间参数组执行第一类能量检测,所述目标空间参数组被关联到所述目标能量检测阈值;
-第一处理机903:采用所述第一类能量检测的结果与第一能量检测阈值的比较结果判断能否在目标时频资源上采用第一空间参数组发送第一无线信号,所述第一能量检测阈值不大于所述目标能量检测阈值,所述第一空间参数组被关联到所述目标空间参数组;
-第三发射机904:如果判断能在所述目标时频资源上发送所述第一无线信号,则所述第三发射机904在所述目标时频资源上采用所述第一空间参数组、第一发送功率和第一天线增益发送所述第一无线信号,所述第一发送功率加上所述第一天线增益之和不大于所述目标功率值。
作为一个实施例,所述第一接收机901接收第二控制信号,所述第二控制信号指示第一调制编码方案索引;其中,所述第一能量检测配置被用于确定所述第一调制编码方案索引所指示的第一调制编码方案,所述第一调制编码方案被用于生成所述第一无线信号。
作为一个实施例,所述第一控制信号从L个候选能量检测配置中指示所述第一能量检测配置,所述L是大于1的正整数;或者,所述第一控制信号从N个候选能量检测阈值中指示所述目标能量检测阈值,所述N是大于1的正整数;或者,所述第一控制信号从M个候选功率值中指示所述目标功率值,所述M是大于1的正整数。
作为一个实施例,所述M个候选功率值与M个候选能量检测阈值一一对应,所述M个候选功率值中的任意一个候选功率值加上其对应的候选能量检测阈值之和都是第一功率值,所述M个候选功率值与M个候选能量检测阈值的单位都是分贝毫瓦或者分贝瓦。
作为一个实施例,所述第一能量检测阈值被关联到采用所述目标空间参数组生成的空间覆盖。
实施例10
实施例10示例了基站中的处理装置的结构框图,如附图10所示。附图10中,基站设备处理装置1000主要由第一发射机1001和第三接收机1002组成。
作为一个实施例,第一发射机1001包括发射处理器415,MIMO发射处理器441,发射器416和控制器/处理器440中的至少前三者。
作为一个实施例,第三接收机1002包括接收器416,MIMO检测器442,接收处理器412和控制器/处理器440中的至少前三者。
-第一发射机1001:发送第一控制信号,所述第一控制信号指示第一能量检测配置,所述第一能量检测配置包括目标功率值和目标能量检测阈值中至少之一,所述目标能量检测阈值被关联到所述目标功率值。
-第三接收机1002:在目标时频资源上监测第一无线信号。
作为一个实施例,所述第一控制信号的接收者采用目标空间参数组执行第一类能量检测,所述目标空间参数组被关联到所述目标能量检测阈值;所述第一控制信号的接收者采用所述第一类能量检测的结果与第一能量检测阈值的比较结果判断能否在目标时频资源上采用第一空间参数组发送第一无线信号,所述第一能量检测阈值不大于所述目标能量检测阈值,所述第一空间参数组被关联到所述目标空间参数组;如果判断能在所述目标时频资源上发送所述第一无线信号,则在所述目标时频资源上采用第一空间参数组、第一发送功率和第一天线增益发送所述第一无线信号,所述第一发送功率加上所述第一天线增益之和不大于所述目标功率值;如果判断不能在所述目标时频资源上发送所述第一无线信号,则所述第一控制信号的接收者放弃在所述目标时频资源上发送所述第一无线信号。
作为一个实施例,所述第一发射机1001发送第二控制信号,所述第二控制信号指示第一调制编码方案索引;其中,所述第一能量检测配置被用于确定所述第一调制编码方案索引所指示的第一调制编码方案,所述第一调制编码方案被用于生成所述第一无线信号。
作为一个实施例,所述第一控制信号从L个候选能量检测配置中指示所述第一能量检测配置,所述L是大于1的正整数;或者,所述第一控制信号从N个候选能量检测阈值中指示所述目标能量检测阈值,所述N是大于1的正整数;或者,所述第一控制信号从M个候选功率值中指示所述目标功率值,所述M是大于1的正整数。
作为一个实施例,所述M个候选功率值与M个候选能量检测阈值一一对应,所述M个候选功率值中的任意一个候选功率值加上其对应的候选能量检测阈值之和都是第一功率值,所述M个候选功率值与M个候选能量检测阈值的单位都是分贝毫瓦或者分贝瓦。
作为一个实施例,所述目标能量检测阈值被关联到采用所述目标空间参数组生成的空间覆盖。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备等无线通信设备。本申请中的基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种被用于无线通信的用户设备中的方法,其特征在于包括:
    接收第一控制信号,所述第一控制信号指示第一能量检测配置,所述第一能量检测配置包括目标功率值和目标能量检测阈值中至少之一,所述目标能量检测阈值被关联到所述目标功率值;
    采用目标空间参数组执行第一类能量检测,所述目标空间参数组被关联到所述目标能量检测阈值;
    采用所述第一类能量检测的结果与第一能量检测阈值的比较结果判断能否在目标时频资源上采用第一空间参数组发送第一无线信号,所述第一能量检测阈值不大于所述目标能量检测阈值,所述第一空间参数组被关联到所述目标空间参数组;
    如果判断能在所述目标时频资源上发送所述第一无线信号,则在所述目标时频资源上采用所述第一空间参数组、第一发送功率和第一天线增益发送所述第一无线信号,所述第一发送功率加上所述第一天线增益之和不大于所述目标功率值;
    如果判断不能在所述目标时频资源上发送所述第一无线信号,则放弃在所述目标时频资源上发送所述第一无线信号。
  2. 根据权利要求1所述的方法,其特征在于,包括
    接收第二控制信号,所述第二控制信号指示第一调制编码方案索引;
    其中,所述第一能量检测配置被用于确定所述第一调制编码方案索引所指示的第一调制编码方案,所述第一调制编码方案被用于生成所述第一无线信号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一控制信号从L个候选能量检测配置中指示所述第一能量检测配置,所述L是大于1的正整数;或者,所述第一控制信号从N个候选能量检测阈值中指示所述目标能量检测阈值,所述N是大于1的正整数;或者,所述第一控制信号从M个候选功率值中指示所述目标功率值,所述M是大于1的正整数。
  4. 根据权利要求3中所述的方法,其特征在于,所述M个候选功率值与M个候选能量检测阈值一一对应,所述M个候选功率值中的任意一个候选功率值加上其对应的候选能量检测阈值之和都是第一功率值,所述M个候选功率值与M个候选能量检测阈值的单位都是分贝毫瓦或者分贝瓦。
  5. 根据权利要求1至4中的任一权利要求所述的方法,其特征在于,所述第一能量检测阈值被关联到采用所述目标空间参数组生成的空间覆盖。
  6. 一种被用于无线通信的基站中的方法,其特征在于包括:
    发送第一控制信号,所述第一控制信号指示第一能量检测配置,所述第一能量检测配置包括目标功率值和目标能量检测阈值中至少之一,所述目标能量检测阈值被关联到所述目标功率值;
    在目标时频资源上监测第一无线信号;
    其中,所述第一控制信号的接收者采用目标空间参数组执行第一类能量检测,所述目标空间参数组被关联到所述目标能量检测阈值;所述第一控制信号的接收者采用所述第一类能量检测的结果与第一能量检测阈值的比较结果判断能否在所述目标时频资源上采用第一空间参数组发送所述第一无线信号,所述第一能量检测阈值不大于所述目标能量检测阈值,所述第一空间参数组被关联到所述目标空间参数组;如果判断能在所述目标时频资源上发送所述第一无线信号,则在所述目标时频资源上采用所述第一空间参数组、第一发送功率和第一天线增益发送所述第一无线信号,所述第一发送功率加上所述第一天线增益之和不大于所述目标功率值;如果判断不能在所述目标时频资源上发送所述第一无线信号,则所述第一控制信号的接收者放弃在所述目标时频资源上发送所述第一无线信号。
  7. 根据权利要求8所述的方法,其特征在于,包括
    发送第二控制信号,所述第二控制信号指示第一调制编码方案索引;
    其中,所述第一能量检测配置被用于确定所述第一调制编码方案索引所指示的第一调制编码方案,所述第一调制编码方案被用于生成所述第一无线信号。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第一控制信号从L个候选能量检测配置中指示所述第一能量检测配置,所述L是大于1的正整数;或者,所述第一控制信号从N个候选能量检测阈值中指示所述目标能量检测阈值,所述N是大于1的正整数;或者,所述第一控制信号从M个候选功率值中指示所述目标功率值,所述M是大于1的正整数。
  9. 根据权利要求8中所述的方法,其特征在于,所述M个候选功率值与M个候选能量检测阈值一一对应,所述M个候选功率值中的任意一个候选功率值加上其对应的候选能量检测阈值之和都是第一功率值,所述M个候选功率值与M个候选能量检测阈值的单位都是分贝毫瓦或者分贝瓦。
  10. 根据权利要求6至9中的任一权利要求所述的方法,其特征在于,所述目标能量检测阈值被关联到采用所述目标空间参数组生成的空间覆盖。
  11. 一种被用于无线通信的用户设备,其特征在于包括:
    第一接收机,接收第一控制信号,所述第一控制信号指示第一能量检测配置,所述第一能量检测配置包括目标功率值和目标能量检测阈值中至少之一,所述目标能量检测阈值被关联到所述目标功率值;
    第二接收机,采用目标空间参数组执行第一类能量检测,所述目标空间参数组被关联到所述目标能量检测阈值;
    第一处理机,采用所述第一类能量检测的结果与第一能量检测阈值的比较结果判断能否在目标时频资源上采用第一空间参数组发送第一无线信号,所述第一能量检测阈值不大于所述目标能量检测阈值,所述第一空间参数组被关联到所述目标空间参数组;
    第三发射机,如果判断能在所述目标时频资源上发送所述第一无线信号,则所述第三发射机在所述目标时频资源上采用所述第一空间参数组、第一发送功率和第一天线增益发送所述第一无线信号,所述第一发送功率加上所述第一天线增益之和不大于所述目标功率值;
    如果判断不能在所述目标时频资源上发送所述第一无线信号,则放弃在所述目标时频资源上发送所述第一无线信号。
  12. 一种被用于无线通信的基站设备,其特征在于包括:
    第一发射机,发送第一控制信号,所述第一控制信号指示第一能量检测配置,所述第一能量检测配置包括目标功率值和目标能量检测阈值中至少之一,所述目标能量检测阈值被关联到所述目标功率值;
    第三接收机,在目标时频资源上监测第一无线信号;
    其中,所述第一控制信号的接收者采用目标空间参数组执行第一类能量检测,所述目标空间参数组被关联到所述目标能量检测阈值;所述第一控制信号的接收者采用所述第一类能量检测的结果与第一能量检测阈值的比较结果判断能否在目标时频资源上采用第一空间参数组发送第一无线信号,所述第一能量检测阈值不大于所述目标能量检测阈值,所述第一空间参数组被关联到所述目标空间参数组;如果判断能在所述目标时频资源上发送所述第一无线信号,则在所述目标时频资源上采用第一空间参数组、第一发送功率和第一天线增益发送所述第一无线信号,所述第一发送功率加上所述第一天线增益之和不大于所述目标功率值;如果判断不能在所述目标时频资源上发送所述第一无线信号,则所述第一控制信号的接收者放弃在所述目标时频资源上发送所述第一无线信号。
PCT/CN2019/074142 2018-02-07 2019-01-31 一种基站、用户设备中的用于无线通信的方法和装置 WO2019154259A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810122089.7 2018-02-07
CN201810122089.7A CN110120830B (zh) 2018-02-07 2018-02-07 一种基站、用户设备中的用于无线通信的方法和装置

Publications (1)

Publication Number Publication Date
WO2019154259A1 true WO2019154259A1 (zh) 2019-08-15

Family

ID=67520084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074142 WO2019154259A1 (zh) 2018-02-07 2019-01-31 一种基站、用户设备中的用于无线通信的方法和装置

Country Status (2)

Country Link
CN (2) CN110120830B (zh)
WO (1) WO2019154259A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113259895B (zh) * 2020-02-07 2022-10-18 上海朗帛通信技术有限公司 用于不连续接收的方法和装置
WO2021226995A1 (en) * 2020-05-15 2021-11-18 Apple Inc. Configurable uplink transmission in wireless communication
WO2021254448A1 (en) * 2020-06-17 2021-12-23 Tcl Communication (Ningbo) Co., Ltd. Directional channel access sensing
CN115150039B (zh) * 2021-03-31 2024-04-23 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021882A1 (ko) * 2014-08-07 2016-02-11 주식회사 케이티 캐리어 병합 구성 방법 및 그 장치
CN106304375A (zh) * 2015-05-28 2017-01-04 上海贝尔股份有限公司 一种无线通信方法
WO2017024659A1 (zh) * 2015-08-13 2017-02-16 索尼公司 无线通信系统中的电子设备和无线通信方法
CN106658571A (zh) * 2017-01-03 2017-05-10 努比亚技术有限公司 一种终端及其网络加速控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8711789B2 (en) * 2010-08-19 2014-04-29 Motorola Mobility Llc Method and apparatus for providing contention-based resource zones in a wireless network
CN103339873B (zh) * 2011-01-27 2016-04-20 Lg电子株式会社 多节点系统中的信道状态信息反馈方法和装置
CN114710189A (zh) * 2016-05-11 2022-07-05 Idac控股公司 用于波束成形的上行链路传输的系统和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021882A1 (ko) * 2014-08-07 2016-02-11 주식회사 케이티 캐리어 병합 구성 방법 및 그 장치
CN106304375A (zh) * 2015-05-28 2017-01-04 上海贝尔股份有限公司 一种无线通信方法
WO2017024659A1 (zh) * 2015-08-13 2017-02-16 索尼公司 无线通信系统中的电子设备和无线通信方法
CN106658571A (zh) * 2017-01-03 2017-05-10 努比亚技术有限公司 一种终端及其网络加速控制方法

Also Published As

Publication number Publication date
CN110120830A (zh) 2019-08-13
CN110120830B (zh) 2020-11-06
CN112073101A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
AU2018215660B2 (en) Multi-site mimo communications system with hybrid beamforming in L1-split architecture
WO2019113766A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019154259A1 (zh) 一种基站、用户设备中的用于无线通信的方法和装置
US11626904B2 (en) Method and device for multi-antenna transmission in user equipment (UE) and base station
WO2019148488A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018082519A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019028687A1 (zh) 一种用于无线通信的用户设备、基站中的方法和装置
WO2019041146A1 (zh) 一种用于无线通信的用户设备、基站中的方法和装置
CN110049558B (zh) 一种用于无线通信的通信节点中的方法和装置
WO2019149242A1 (zh) 一种基站、用户设备中的用于无线通信的方法和装置
WO2019109307A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019136681A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN110167166B (zh) 一种基站、用户设备中的用于无线通信的方法和装置
WO2019126939A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019104703A1 (zh) 一种用于无线通信的通信节点中的方法和装置
CN111183665B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019144315A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019119197A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN109842438B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019095148A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019127012A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019119174A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019014922A1 (zh) 一种被用于波束赋形的用户、基站中的方法和装置
WO2019024067A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
CN116782405A (zh) 一种用于无线通信的通信节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 24.11.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 19750851

Country of ref document: EP

Kind code of ref document: A1