WO2019127012A1 - 一种被用于无线通信的用户设备、基站中的方法和装置 - Google Patents

一种被用于无线通信的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2019127012A1
WO2019127012A1 PCT/CN2017/118612 CN2017118612W WO2019127012A1 WO 2019127012 A1 WO2019127012 A1 WO 2019127012A1 CN 2017118612 W CN2017118612 W CN 2017118612W WO 2019127012 A1 WO2019127012 A1 WO 2019127012A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
reference signals
sub
symbols
positive integer
Prior art date
Application number
PCT/CN2017/118612
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
南通朗恒通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通朗恒通信技术有限公司 filed Critical 南通朗恒通信技术有限公司
Priority to CN201780094864.6A priority Critical patent/CN111133813B/zh
Priority to PCT/CN2017/118612 priority patent/WO2019127012A1/zh
Publication of WO2019127012A1 publication Critical patent/WO2019127012A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to a method and apparatus for transmitting wireless signals in a wireless communication system, and more particularly to a method and apparatus for transmitting wireless signals in a wireless communication system supporting a cellular network.
  • LTE Long-term Evolution
  • LAA Licensed Assisted Access
  • Massive MIMO Multi-Input Multi-Output
  • LBT Long Term Evolution
  • the present application discloses a solution. It should be noted that, in the case of no conflict, the features in the embodiments and embodiments in the UE (User Equipment) of the present application can be applied to the base station, and vice versa. Further, the features of the embodiments and the embodiments of the present application may be combined with each other arbitrarily without conflict.
  • the present application discloses a method in a user equipment for wireless communication, which includes:
  • first information including first power configuration information, the first information being used to determine M multi-carrier symbols on a first sub-band, the M being a positive integer greater than one;
  • M1 Determining M1 multicarrier symbols from M multicarrier symbols on the first subband; and transmitting M1 only in the M1 multicarrier symbols for the M multicarrier symbols on the first subband Reference signals, the M1 being a positive integer smaller than the M;
  • the second information including second power configuration information, the second information being used to determine P multicarrier symbols on the first subband, the P being a positive integer greater than one;
  • the transmission power of the M2 reference signals is related to the first power configuration information and is independent of the second power configuration information.
  • the problem to be solved by the present application is that the transmission of uplink wireless signals for multiple beams may require multiple beamforming-based LBT processes, and the multiple LBTs may generate only one of multiple beams.
  • the uplink wireless signal on part of the beam can be transmitted. Therefore, how to implement the uplink wireless signal transmission of all beams under multiple LBTs is a key problem to be solved.
  • the above solution solves this problem by designing multiple candidate time-frequency resources, thereby improving the transmission efficiency of the uplink wireless signal.
  • the essence of the foregoing method is that the base station indicates alternate time-frequency resources on two unlicensed spectrums for the user to select M multi-carrier symbols to transmit M reference signals, such as for transmitting or receiving beam scanning.
  • the purpose of the M1 reference signals and the M2 reference signals belong to the two candidate time-frequency resources respectively; in order to obtain a fair channel/beam quality comparison, the transmission powers of the M1 reference signals and the M2 reference signals are the same, and Determined by the same power configuration information.
  • the advantage of the above method is that by configuring multiple candidate time-frequency resources, it is possible to solve the case where only M multi-carrier symbols are configured in the unlicensed spectrum for some reference signals that may be caused by M reference signal transmissions cannot be transmitted.
  • the method is characterized in that the first information is further used to determine P1 multicarrier symbols on the first subband, the M2 multicarrier symbols belonging to the first sub P1 multicarrier symbols on the frequency band, P1 multicarrier symbols on the first subband belong to P multicarrier symbols on the first subband, and P1 is a positive integer not greater than the P.
  • the above method is characterized by comprising:
  • K is a positive integer not greater than 2;
  • the K first access detections are used to determine the M1 multicarrier symbols and the M2 multicarrier symbols.
  • the above method is characterized by comprising:
  • the above method is characterized in that the transmission powers of the M1 reference signals and the M2 reference signals are the same, and the first power configuration information is used to determine the M1 reference signals and The transmission power of the M2 reference signals is described.
  • the above method is characterized in that an air interface resource occupied by at least one of the M1 reference signals is used to determine from among M multicarrier symbols on the first subband M1 multi-carrier symbols are described.
  • the essence of the foregoing method is that the base station detects a signal on the candidate time-frequency resource, and the target reference signal group is at least one reference signal of the M1 reference signals, which can be further detected by detecting the target reference signal group.
  • the remaining reference signals of the M1 reference signals are generated; in the detection of the target reference signal group, the base station respectively uses S candidate air interface resources for detecting, and the best candidate air interface resource of the detection result is the air interface resource of the target reference signal group.
  • the advantage of using the above method is that the remaining reference signals of the M1 reference signals can be further detected by blindly detecting at least one of the M1 reference signals, so that the base station can know which reference signal transmission beams have not passed the uplink LBT.
  • the above method is characterized by comprising:
  • the first information is used to determine an assumed transmission order of the M1 reference signals and the M2 reference signals
  • the third information being used to determine the M1 reference signals and the M2 references Whether the transmission order of the signals is consistent with the assumed transmission order.
  • the above method is characterized by comprising:
  • the second information further includes configuration information of the first wireless signal, where the second power configuration information is used to determine a transmit power of the first wireless signal, where the first wireless signal does not include the Any one of the M2 reference signals, the time-frequency resource occupied by the first wireless signal includes P1 multi-carrier symbols belonging to the first sub-band and not belonging to the first time-frequency resource At least one multi-carrier symbol of M2 multi-carrier symbols.
  • the essence of the foregoing method is that multi-carrier symbols that do not belong to M2 multi-carrier symbols in P1 multi-carrier symbols can be used for transmission of other wireless signals, such as data, DMRS (Demodulation Reference Signal, Demodulation Reference) Signal), SRS (Sounding Reference Signal), PTRS (Phase-Tracking Reference Signal), and so on.
  • DMRS Demodulation Reference Signal, Demodulation Reference
  • SRS Sounding Reference Signal
  • PTRS Phase-Tracking Reference Signal
  • the above method is characterized by comprising:
  • the fourth information is used to determine at least one multicarrier of the first time-frequency resource that belongs to P1 multi-carrier symbols on the first sub-band and does not belong to the M2 multi-carrier symbols.
  • the symbol is occupied by the first wireless signal.
  • the above method is characterized by comprising:
  • the fifth information is used to determine F antenna port sets, the F is a positive integer, and any one of the F antenna port sets includes a positive integer number of antenna port groups, and one antenna port group includes A positive integer number of antenna ports; the transmit antenna port group of any one of the M1 reference signals and the M2 reference signals belongs to the same antenna port set of the F antenna port sets.
  • the present invention discloses a method in a base station device for wireless communication, which includes:
  • first information includes first power configuration information
  • the first information is used to determine M multi-carrier symbols on a first sub-band, and the M is a positive integer greater than one;
  • M1 is a positive integer smaller than the M
  • the second information includes second power configuration information
  • the second information is used to determine P multicarrier symbols on the first subband, and the P is a positive integer greater than one;
  • M2 Obtaining M2 reference signals respectively in M2 multicarrier symbols of the P multicarrier symbols on the first subband, the M2 being a positive integer not greater than the P, the M1 and the M2 And equal to the M;
  • the transmission power of the M2 reference signals is related to the first power configuration information and is independent of the second power configuration information.
  • the method is characterized in that the first information is further used to determine P1 multicarrier symbols on the first subband, the M2 multicarrier symbols belonging to the first sub P1 multicarrier symbols on the frequency band, P1 multicarrier symbols on the first subband belong to P multicarrier symbols on the first subband, and P1 is a positive integer not greater than the P.
  • the above method is characterized in that the transmission powers of the M1 reference signals and the M2 reference signals are the same, and the first power configuration information is used to determine the M1 reference signals and The transmission power of the M2 reference signals is described.
  • the above method is characterized in that an air interface resource occupied by at least one of the M1 reference signals is used to determine from among M multicarrier symbols on the first subband M1 multi-carrier symbols are described.
  • the above method is characterized by comprising:
  • the first information is used to determine an assumed transmission order of the M1 reference signals and the M2 reference signals
  • the third information being used to determine the M1 reference signals and the M2 references Whether the transmission order of the signals is consistent with the assumed transmission order.
  • the above method is characterized by comprising:
  • the second information further includes configuration information of the first wireless signal, where the second power configuration information is used to determine a transmit power of the first wireless signal, where the first wireless signal does not include the Any one of the M2 reference signals, the time-frequency resource occupied by the first wireless signal includes P1 multi-carrier symbols belonging to the first sub-band and not belonging to the first time-frequency resource At least one multi-carrier symbol of M2 multi-carrier symbols.
  • the above method is characterized by comprising:
  • the fourth information is used to determine at least one multicarrier of the first time-frequency resource that belongs to P1 multi-carrier symbols on the first sub-band and does not belong to the M2 multi-carrier symbols.
  • the symbol is occupied by the first wireless signal.
  • the above method is characterized by comprising:
  • the fifth information is used to determine F antenna port sets, the F is a positive integer, and any one of the F antenna port sets includes a positive integer number of antenna port groups, and one antenna port group includes A positive integer number of antenna ports; the transmit antenna port group of any one of the M1 reference signals and the M2 reference signals belongs to the same antenna port set of the F antenna port sets.
  • the present application discloses a user equipment for wireless communication, which includes:
  • the first receiver module receives the first information, the first information includes first power configuration information, and the first information is used to determine M multi-carrier symbols on the first sub-band, where the M is greater than 1 a positive integer; receiving second information, the second information including second power configuration information, the second information being used to determine P multicarrier symbols on the first subband, the P being greater than 1 Positive integer
  • a first transmitter module determining M1 multi-carrier symbols from M multi-carrier symbols on the first sub-band; for M multi-carrier symbols on the first sub-band, only in the M1 Transmitting M1 reference signals respectively in the carrier symbol, the M1 being a positive integer smaller than the M; respectively transmitting M2 reference signals in M2 multicarrier symbols among P multicarrier symbols on the first subband
  • the M2 is a positive integer not greater than the P, and the sum of the M1 and the M2 is equal to the M;
  • the transmission power of the M2 reference signals is related to the first power configuration information and is independent of the second power configuration information.
  • the foregoing user equipment is characterized in that the first information is further used to determine P1 multi-carrier symbols on the first sub-band, and the M2 multi-carrier symbols belong to the first sub-band P1 multicarrier symbols on the P1 multicarrier symbols on the first subband belong to P multicarrier symbols on the first subband, and P1 is a positive integer not greater than the P.
  • the foregoing user equipment is characterized in that: the first receiver module further performs K first access detection, where K is a positive integer not greater than 2;
  • the K first access detections are used to determine the M1 multicarrier symbols and the M2 multicarrier symbols.
  • the above method is characterized by comprising:
  • the foregoing user equipment is characterized in that the transmission powers of the M1 reference signals and the M2 reference signals are the same, and the first power configuration information is used to determine the M1 reference signals and the The transmit power of M2 reference signals.
  • the foregoing user equipment is characterized in that an air interface resource occupied by at least one of the M1 reference signals is used to determine the M multi-carrier symbols from the first sub-band. M1 multi-carrier symbols.
  • the foregoing user equipment is characterized in that the first receiver module further receives third information; wherein the first information is used to determine the M1 reference signals and the M2 reference signals Assuming the transmission order, the third information is used to determine whether the transmission order of the M1 reference signals and the M2 reference signals is consistent with the assumed transmission order.
  • the foregoing user equipment is characterized in that the first transmitter module further sends a first wireless signal in a first time-frequency resource; wherein the second information further includes a configuration of the first wireless signal Information, the second power configuration information is used to determine a transmit power of the first wireless signal, the first wireless signal does not include any one of the M2 reference signals, the first wireless signal
  • the occupied time-frequency resource includes at least one multi-carrier symbol of the first time-frequency resource that belongs to P1 multi-carrier symbols on the first sub-band and does not belong to the M2 multi-carrier symbols.
  • the foregoing user equipment is characterized in that the first receiver module further receives fourth information, wherein the fourth information is used to determine that the first time-frequency resource belongs to the first At least one multicarrier symbol that is P1 multicarrier symbols on a subband and does not belong to the M2 multicarrier symbols is occupied by the first radio signal.
  • the foregoing user equipment is characterized in that the first receiver module further receives fifth information, wherein the fifth information is used to determine F antenna port sets, the F is a positive integer, Any one of the F antenna port sets includes a positive integer number of antenna port groups, one antenna port group includes a positive integer number of antenna ports; and any one of the M1 reference signals and the M2 reference signals
  • the transmit antenna port groups all belong to the same antenna port set in the set of F antenna ports.
  • the present application discloses a base station device for wireless communication, which includes:
  • the second transmitter module And transmitting, by the second transmitter module, the first information, where the first information includes first power configuration information, where the first information is used to determine M multi-carrier symbols on the first sub-band, where the M is greater than a positive integer; transmitting second information, the second information including second power configuration information, the second information being used to determine P multicarrier symbols on the first subband, the P being greater than 1 Positive integer
  • a second receiver module respectively, receiving M1 reference signals in M1 multicarrier symbols of the M multicarrier symbols on the first subband, the M1 being a positive integer smaller than the M; M2 reference signals are respectively received in M2 multicarrier symbols of P multicarrier symbols on the first subband, the M2 is a positive integer not greater than the P, and the sum of the M1 and the M2 is equal to M;
  • the transmission power of the M2 reference signals is related to the first power configuration information and is independent of the second power configuration information.
  • the foregoing base station device is characterized in that the first information is further used to determine P1 multi-carrier symbols on the first sub-band, and the M2 multi-carrier symbols belong to the first sub-band P1 multicarrier symbols on the P1 multicarrier symbols on the first subband belong to P multicarrier symbols on the first subband, and P1 is a positive integer not greater than the P.
  • the foregoing base station device is characterized in that the transmission powers of the M1 reference signals and the M2 reference signals are the same, and the first power configuration information is used to determine the M1 reference signals and the The transmit power of M2 reference signals.
  • the foregoing base station device is characterized in that an air interface resource occupied by at least one of the M1 reference signals is used to determine the M multi-carrier symbols from the first sub-band. M1 multi-carrier symbols.
  • the foregoing base station device is characterized in that the second transmitter module further sends third information; wherein the first information is used to determine the M1 reference signals and the M2 reference signals Assuming the transmission order, the third information is used to determine whether the transmission order of the M1 reference signals and the M2 reference signals is consistent with the assumed transmission order.
  • the foregoing base station device is characterized in that the second receiver module further receives a first wireless signal in a first time-frequency resource; wherein the second information further includes a configuration of the first wireless signal Information, the second power configuration information is used to determine a transmit power of the first wireless signal, the first wireless signal does not include any one of the M2 reference signals, the first wireless signal
  • the occupied time-frequency resource includes at least one multi-carrier symbol of the first time-frequency resource that belongs to P1 multi-carrier symbols on the first sub-band and does not belong to the M2 multi-carrier symbols.
  • the foregoing base station device is characterized in that the second transmitter module further sends fourth information, wherein the fourth information is used to determine that the first time-frequency resource belongs to the first At least one multicarrier symbol that is P1 multicarrier symbols on a subband and does not belong to the M2 multicarrier symbols is occupied by the first radio signal.
  • the foregoing base station device is characterized in that the second transmitter module further sends fifth information; wherein the fifth information is used to determine F antenna port sets, the F is a positive integer, Any one of the F antenna port sets includes a positive integer number of antenna port groups, one antenna port group includes a positive integer number of antenna ports; and any one of the M1 reference signals and the M2 reference signals
  • the transmit antenna port groups all belong to the same antenna port set in the set of F antenna ports.
  • the present application has the following main technical advantages over the prior art:
  • the base station can further detect the remaining reference signals by blindly checking at least one of the plurality of reference signals, so that the base station can know which reference signal transmission beams have not passed the uplink LBT.
  • time-frequency resources in the alternative time-frequency resources that are not used to transmit the uplink reference signal may be used for transmission of other wireless signals, such as data, DMRS, SRS, PTRS, etc., so by making full use of time-frequency resources as much as possible, Improve system throughput.
  • FIG. 1 shows a flow chart of first information, second information, M1 reference signals, and M2 reference signals according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 4 shows a schematic diagram of an evolved node and a UE according to an embodiment of the present application
  • FIG. 5 shows a flow chart of wireless transmission in accordance with one embodiment of the present application
  • FIG. 6 shows a flow chart of wireless transmission in accordance with another embodiment of the present application.
  • FIGS. 7A-7B are diagrams showing the relationship of first information with M1 multicarrier symbols and M2 multicarrier symbols according to an embodiment of the present application;
  • 8A-8C are schematic diagrams showing the relationship of a given first access detection and N multicarrier symbols, respectively, in accordance with an embodiment of the present application;
  • 9A-9B are schematic diagrams showing the spatial relationship of a given access detection and a given wireless signal, respectively, in accordance with one embodiment of the present application.
  • FIGS. 10A-10C respectively show schematic diagrams of one access detection according to an embodiment of the present application.
  • FIG. 11 is a diagram showing a relationship between first power configuration information and M1 reference signals and transmission power of M2 reference signals according to an embodiment of the present application;
  • FIG. 12 illustrates a schematic diagram of air interface resources occupied by at least one of X reference signals used to determine X multi-carrier symbols from Y multi-carrier symbols, in accordance with an embodiment of the present application;
  • 13A-13B are schematic diagrams showing the relationship between the transmission order of M1 reference signals and M2 reference signals and the first information, respectively, according to an embodiment of the present application;
  • FIGS. 14A-14E are schematic diagrams showing the relationship of N multicarrier symbols, N1 antenna port groups, and Z reference signals, respectively, according to an embodiment of the present application;
  • Figure 15 shows a schematic diagram of an antenna port and an antenna port group in accordance with one embodiment of the present application
  • 16A-16B are schematic diagrams showing the relationship between the transmission power of a given wireless signal and G2 components, respectively, according to an embodiment of the present application;
  • FIG. 17 is a block diagram showing the structure of a processing device in a UE according to an embodiment of the present application.
  • FIG. 18 is a block diagram showing the structure of a processing device in a base station device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of the first information, the second information, the M1 reference signals, and the M2 reference signals, as shown in FIG.
  • the user equipment in the present application receives first information, where the first information includes first power configuration information, and the first information is used to determine M multi-carriers on a first sub-band a symbol, the M being a positive integer greater than one; determining M1 multicarrier symbols from M multicarrier symbols on the first subband; for M multicarrier symbols on the first subband, only Transmitting M1 reference signals in the M1 multi-carrier symbols, where M1 is a positive integer smaller than the M; receiving second information, where the second information includes second power configuration information, the second information Used to determine P multicarrier symbols on the first subband, the P being a positive integer greater than one; among the M2 multicarrier symbols in the P multicarrier symbols on the first subband Transmitting M2 reference signals respectively, the M2 is a positive integer not greater than the P, the sum of the M1 and the M2 is equal to the M; wherein, the transmit power of the M2 reference signals is the first The power configuration information is related and independent of the second power
  • the first information is dynamically configured.
  • the first information is carried by physical layer signaling.
  • the first information belongs to DCI (Downlink Control Information).
  • the first information is a field in a DCI, and the field includes a positive integer number of bits.
  • the first information consists of a plurality of fields in a DCI, the domains comprising a positive integer number of bits.
  • the first information is carried by a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the first information is carried by a PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the first information is carried by an sPDCCH (short PDCCH).
  • the first information is carried by an NR-PDCCH (New Radio PDCCH).
  • NR-PDCCH New Radio PDCCH
  • the first information is carried by a NB-PDCCH (Narrow Band PDCCH).
  • NB-PDCCH Narrow Band PDCCH
  • the second information is dynamically configured.
  • the second information is carried by physical layer signaling.
  • the second information belongs to DCI (Downlink Control Information).
  • the second information is a field in a DCI, and the field includes a positive integer number of bits.
  • the second information consists of a plurality of fields in a DCI, the fields comprising a positive integer number of bits.
  • the second information is carried by a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the second information is carried by a PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the second information is carried by an sPDCCH (short PDCCH).
  • the second information is carried by an NR-PDCCH (New Radio PDCCH).
  • NR-PDCCH New Radio PDCCH
  • the second information is carried by an NB-PDCCH (Narrow Band PDCCH).
  • NB-PDCCH Narrow Band PDCCH
  • the second information also explicitly indicates P multicarrier symbols on the first subband.
  • the second information also implicitly indicates P multicarrier symbols on the first subband.
  • the multi-carrier symbol occupied by the uplink radio signal to which the second power configuration information is applied is P multi-carrier symbols on the first sub-band.
  • the multi-carrier symbol occupied by the uplink radio signal to which the second power configuration information is applied includes P multi-carrier symbols on the first sub-band.
  • the multi-carrier symbol occupied by the uplink radio signal to which the second power configuration information applies belongs to P multi-carrier symbols on the first sub-band.
  • the P is equal to the number of multi-carrier symbols included in one slot.
  • the P is equal to 14.
  • the P is equal to the number of all multicarrier symbols in a slot other than the multicarrier symbols occupied by the control channel.
  • the P is equal to 12.
  • the first information and the second information belong to two DCIs, respectively.
  • the first information and the second information are respectively sent in two slots
  • the time slot is composed of A multi-carrier symbols
  • the A is a positive integer greater than 1.
  • the P satisfies P ⁇ M - M1.
  • the P is greater than the M.
  • the P is equal to the M.
  • the M2 is smaller than the P.
  • the P is a positive integer not less than the M.
  • the user equipment determines the M1 multi-carrier symbols from the M multi-carrier symbols on the first sub-band.
  • the receiver of the M1 reference signals determines the M1 multicarrier symbols from the M multicarrier symbols on the first subband by blind detection.
  • the receiver of the M2 reference signals determines the M2 multicarrier symbols from P multicarrier symbols on the first subband by blind detection.
  • the receiver of the M1 reference signals blindly detects air interface resources occupied by at least one of the M1 reference signals by using M multi-carrier symbols on the first sub-band. Determining the M1 multicarrier symbols.
  • the receiver of the M2 reference signals determines the M2 multi-carrier symbols by blindly detecting air interface resources occupied by at least one of the M2 reference signals.
  • the M1 reference signals and the M2 reference signals include one or more of a SRS (Sounding Reference Signal) and an Upstream PTRS (Phase-Tracking Reference Signal). kind.
  • SRS Sounding Reference Signal
  • Upstream PTRS Phase-Tracking Reference Signal
  • the M1 reference signals and the M2 reference signals comprise SRS.
  • the M1 reference signals and the M2 reference signals comprise PTRS.
  • the M1 reference signals and the M2 reference signals include an SRS and an uplink PTRS.
  • the first sub-band includes a positive integer number of PRBs (Physical Resource Blocks).
  • PRBs Physical Resource Blocks
  • the first sub-band includes a positive integer number of consecutive PRBs.
  • the first sub-band includes a positive integer number of RBs (Resource Blocks).
  • the first sub-band includes a positive integer number of consecutive RBs.
  • the first sub-band includes a positive integer number of consecutive sub-carriers.
  • the first sub-band includes a number of consecutive sub-carriers equal to a positive integer multiple of 12.
  • the first sub-band is deployed in an unlicensed spectrum.
  • the first sub-band includes one carrier.
  • the first sub-band includes a BWP (Bandwidth Part).
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency-Division Multiplexing) symbol.
  • the multi-carrier symbol is a SC-FDMA (Single-Carrier Frequency-Division Multiple Access) symbol.
  • SC-FDMA Single-Carrier Frequency-Division Multiple Access
  • the multi-carrier symbol is a FBMC (Filter Bank Multi Carrier) symbol.
  • the multi-carrier symbol includes a CP (Cyclic Prefix).
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG.
  • Embodiment 2 illustrates a schematic diagram of a network architecture in accordance with the present application, as shown in FIG. 2 is a diagram illustrating an NR 5G, LTE (Long-Term Evolution, Long Term Evolution) and LTE-A (Long-Term Evolution Advanced) system network architecture 200.
  • the NR 5G or LTE network architecture 200 may be referred to as an EPS (Evolved Packet System) 200 in some other suitable terminology.
  • EPS Evolved Packet System
  • the EPS 200 may include one or more UEs (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UEs User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core
  • 5G-Core Network 5G-Core Network
  • 5G core network 5G core network
  • HSS Home Subscriber Server
  • Internet service 230 Internet service 230.
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity.
  • the EPS provides packet switching services, although those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks or other cellular networks that provide circuit switched services.
  • the NG-RAN includes an NR Node B (gNB) 203 and other gNBs 204
  • the gNB 203 provides user and control plane protocol termination for the UE 201.
  • the gNB 203 can be connected to other gNBs 204 via an Xn interface (eg, a backhaul).
  • the gNB 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmission and reception point), or some other suitable terminology.
  • the gNB 203 provides the UE 201 with an access point to the EPC/5G-CN 210.
  • Examples of UEs 201 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video device, digital audio player (eg, MP3 player), camera, game console, drone, aircraft, narrowband physical network device, machine type communication device, land vehicle, car, wearable device, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video device, digital audio player (eg, MP3 player), camera, game console, drone, aircraft, narrowband physical network device, machine type communication device, land vehicle, car, wearable device, or any Other similar functional devices.
  • multimedia devices video device, digital audio player (eg, MP3 player), camera, game console, drone, aircraft, narrowband physical network device, machine type communication device, land vehicle
  • UE 201 may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to the EPC/5G-CN210 through the S1/NG interface.
  • EPC/5G-CN210 includes MME/AMF/UPF211, other MME (Mobility Management Entity)/AMF (Authentication Management Field)/UPF (User Plane Function) 214, S - GW (Service Gateway) 212 and P-GW (Packet Date Network Gateway) 213.
  • the MME/AMF/UPF 211 is a control node that handles signaling between the UE 201 and the EPC/5G-CN 210.
  • MME/AMF/UPF 211 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 212, and the S-GW 212 itself is connected to the P-GW 213.
  • the P-GW 213 provides UE IP address allocation as well as other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a PS Streaming
  • the UE 201 corresponds to the user equipment in this application.
  • the gNB 203 corresponds to the base station in the present application.
  • the UE 201 supports wireless communication for data transmission over an unlicensed spectrum.
  • the gNB 203 supports wireless communication for data transmission over an unlicensed spectrum.
  • the UE 201 supports wireless communication of massive MIMO.
  • the gNB 203 supports wireless communication for massive MIMO.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with the present application, as shown in FIG.
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 3 shows a radio protocol architecture for user equipment (UE) and base station equipment (gNB or eNB) in three layers: layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the UE and the gNB through PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol). Convergence Protocol) Sublayer 304, which terminates at the gNB on the network side.
  • the UE may have several upper layers above the L2 layer 305, including a network layer (eg, an IP layer) terminated at the P-GW on the network side and terminated at the other end of the connection (eg, Application layer at the remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handoff support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between the logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in one cell between UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the wireless protocol architecture of Figure 3 is applicable to the user equipment in this application.
  • the radio protocol architecture of Figure 3 is applicable to the base station in this application.
  • the first information in the present application is generated by the PHY 301.
  • the second information in the present application is generated by the PHY 301.
  • the M1 reference signals in the present application are generated by the PHY 301.
  • the M2 reference signals in the present application are generated by the PHY 301.
  • the K first access detections in the present application are generated by the PHY 301.
  • the first wireless signal in the present application is generated by the PHY 301.
  • the third information in the present application is generated by the PHY 301.
  • the third information in this application is generated in the RRC sublayer 306.
  • the third information in the present application is generated in the MAC sublayer 302.
  • the fourth information in the present application is generated by the PHY 301.
  • the fourth information in this application is generated in the RRC sublayer 306.
  • the fourth information in the present application is generated in the MAC sublayer 302.
  • the fifth information in the present application is generated in the RRC sublayer 306.
  • the fifth information in the present application is generated in the MAC sublayer 302.
  • Embodiment 4 shows a schematic diagram of a base station device and a user equipment according to the present application, as shown in FIG. 4 is a block diagram of a gNB 410 in communication with a UE 450 in an access network.
  • the base station device (410) includes a controller/processor 440, a memory 430, a receive processor 412, a transmit processor 415, a transmitter/receiver 416, and an antenna 420.
  • the user equipment (450) includes a controller/processor 490, a memory 480, a data source 467, a transmit processor 455, a receive processor 452, a transmitter/receiver 456, and an antenna 460.
  • the processing related to the base station device (410) includes:
  • a controller/processor 440 the upper layer packet arrives, the controller/processor 440 provides header compression, encryption, packet segmentation and reordering, and multiplexing and demultiplexing between the logical and transport channels for implementation
  • the L2 layer protocol of the user plane and the control plane; the upper layer packet may include data or control information, such as a DL-SCH (Downlink Shared Channel);
  • controller/processor 440 associated with a memory 430 storing program code and data, which may be a computer readable medium;
  • controller/processor 440 including a scheduling unit to transmit a demand, and a scheduling unit, configured to schedule an air interface resource corresponding to the transmission requirement;
  • the transmit processor 415 receives the output bit stream of the controller/processor 440 and implements various signal transmission processing functions for the L1 layer (ie, the physical layer) including encoding, interleaving, scrambling, modulation, power control/allocation, and physics. Layer control signaling (including PBCH, PDCCH, PHICH, PCFICH, reference signal) generation, etc.;
  • a transmitter 416 is configured to convert the baseband signals provided by the transmit processor 415 into radio frequency signals and transmit them via the antenna 420; each of the transmitters 416 samples the respective input symbol streams to obtain respective sampled signal streams. Each transmitter 416 performs further processing (eg, digital to analog conversion, amplification, filtering, upconversion, etc.) on the respective sample streams to obtain a downlink signal.
  • further processing eg, digital to analog conversion, amplification, filtering, upconversion, etc.
  • the processing related to the user equipment (450) may include:
  • Receiver 456, for converting the radio frequency signal received through the antenna 460 into a baseband signal is provided to the receiving processor 452;
  • the receiving processor 452 implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, and the like;
  • the controller/processor 490 receives the bit stream output by the receiving processor 452, provides header decompression, decryption, packet segmentation and reordering, and multiplexing and demultiplexing between the logical and transport channels for implementation.
  • Controller/processor 490 is associated with memory 480 that stores program codes and data.
  • Memory 480 can be a computer readable medium.
  • the processing related to the base station device (410) includes:
  • the receiver 416 receives the radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and supplies the baseband signal to the receiving processor 412;
  • the receiving processor 412 implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, and the like;
  • Controller/processor 440 implementing L2 layer functions, and associated with memory 430 storing program code and data;
  • Controller/processor 440 provides demultiplexing, packet reassembly, decryption, header decompression, control signal processing between the transport and logical channels to recover upper layer data packets from UE 450; from controller/processor 440 Upper layer packets can be provided to the core network;
  • the processing related to the user equipment (450) includes:
  • Data source 467 provides the upper layer data packet to controller/processor 490.
  • Data source 467 represents all protocol layers above the L2 layer;
  • the transmitter 456, transmits a radio frequency signal through its corresponding antenna 460, converts the baseband signal into a radio frequency signal, and provides the radio frequency signal to the corresponding antenna 460;
  • the transmitter processor 455 implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, and the like;
  • the controller/processor 490 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels based on the radio resource allocation of the gNB 410, implementing the L2 layer for the user plane and the control plane Features;
  • the controller/processor 490 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the gNB 410;
  • the UE 450 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be Used together by the processor, the UE 450 device at least: receiving first information, the first information including first power configuration information, the first information being used to determine M multi-carrier symbols on the first sub-band, M is a positive integer greater than 1; M1 multicarrier symbols are determined from M multicarrier symbols on the first subband; for M multicarrier symbols on the first subband, only in the M1 reference signals are respectively transmitted in the M1 multi-carrier symbols, the M1 is a positive integer smaller than the M; the second information is received, the second information includes second power configuration information, and the second information is used Determining P multicarrier symbols on the first subband, the P being a positive integer greater than 1; respectively transmitting M in the M2 multicarrier symbols of the P multicarrier symbols on the first subband 2 reference signals, the M2 is
  • the UE 450 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by the at least one processor, the action comprising: receiving the first information,
  • the first information includes first power configuration information, the first information is used to determine M multi-carrier symbols on a first sub-band, the M is a positive integer greater than 1, from the first sub-band M1 multi-carrier symbols are determined in the M multi-carrier symbols; for the M multi-carrier symbols on the first sub-band, M1 reference signals are respectively sent in the M1 multi-carrier symbols, the M1 Is a positive integer smaller than the M;
  • receiving second information the second information includes second power configuration information, the second information is used to determine P multi-carrier symbols on the first sub-band, P is a positive integer greater than 1; M2 reference signals are respectively transmitted in M2 multicarrier symbols in the P multicarrier symbols on the first subband, and the M2 is a positive integer not greater than the P
  • the gNB 410 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be The processor is used together.
  • the gNB410 device transmits at least: the first information, where the first information includes first power configuration information, where the first information is used to determine M multi-carrier symbols on the first sub-band, where the M is greater than 1.
  • the second information includes second power configuration information, the second information is used to determine P multicarrier symbols on the first subband, the P is a positive integer greater than 1; M2 reference signals are respectively received in M2 multicarrier symbols of the P multicarrier symbols on the subband, the M2 is a positive integer not greater than the P, and the sum of the M1 and the M2 is equal to the M
  • the transmission power of the M2 reference signals is related to the first power configuration information and is independent of the second power configuration information.
  • the gNB 410 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by the at least one processor, the action comprising: transmitting the first information,
  • the first information includes first power configuration information, the first information is used to determine M multi-carrier symbols on a first sub-band, the M is a positive integer greater than 1, in the first sub-band M1 reference signals are respectively received in the M1 multicarrier symbols of the M multicarrier symbols, the M1 is a positive integer smaller than the M; the second information is sent, and the second information includes the second power configuration information.
  • the second information is used to determine P multicarrier symbols on the first subband, the P being a positive integer greater than one; in the P multicarrier symbols on the first subband M2 reference signals are respectively received in the M2 multi-carrier symbols, the M2 is a positive integer not greater than the P, and the sum of the M1 and the M2 is equal to the M; wherein, the sending of the M2 reference signals Power and the first power configuration information are And the second power regardless of the configuration information.
  • the UE 450 corresponds to the user equipment in this application.
  • gNB 410 corresponds to the base station in this application.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to receive the first information in the present application.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the first information in the present application.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to receive the second information in the present application.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the second information in the present application.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to receive the third information in the present application.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the third information in the present application.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to receive the fourth information in the present application.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the fourth information in the present application.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to receive the fifth information in the present application.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the fifth information in the present application.
  • At least two of the transmitter 456, the transmit processor 455, and the controller/processor 490 are used to transmit the M1 reference signals in the present application.
  • At least two of the receiver 416, the receive processor 412, and the controller/processor 440 are used to receive the M1 reference signals in the present application.
  • At least two of the transmitter 456, the transmit processor 455, and the controller/processor 490 are used to transmit the M2 reference signals in the present application.
  • At least two of the receiver 416, the receive processor 412, and the controller/processor 440 are used to receive the M2 reference signals in the present application.
  • At least two of the transmitter 456, the transmit processor 455, and the controller/processor 490 are used to transmit the first wireless signal in the present application.
  • At least two of the receiver 416, the receive processor 412, and the controller/processor 440 are used to receive the first wireless signal in the present application.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to perform the K first access checks in this application.
  • Embodiment 5 illustrates a flow chart of a wireless transmission, as shown in FIG.
  • base station N01 is a serving cell maintenance base station of user equipment U02.
  • blocks F1, F2 and F3 are optional.
  • the fifth information is transmitted in step S10; the fourth information is transmitted in step S11; the third information is transmitted in step S12; the first information is transmitted in step S13; the M1 reference signals are received in step S14; The second information is transmitted in step S15; the M2 reference signals are received in step S16; and the first wireless signal is received in step S17.
  • the fifth information is received in step S20; the fourth information is received in step S21; the third information is received in step S22; the first information is received in step S23; K first accesses are performed in step S24 Detecting; transmitting M1 reference signals in step S25; receiving second information in step S26; transmitting M2 reference signals in step S27; transmitting the first wireless signal in step S28.
  • the first information includes first power configuration information, and the first information is used by the U02 to determine M multi-carrier symbols on the first sub-band, where M is greater than 1 An integer; the U02 determines M1 multicarrier symbols from the M multicarrier symbols on the first subband; and for the M multicarrier symbols on the first subband, the U02 is only in the M1 M1 reference signals are respectively transmitted in the multi-carrier symbols, the M1 is a positive integer smaller than the M; the second information includes second power configuration information, and the second information is used by the U02 to determine the P multicarrier symbols on the first subband, the P being a positive integer greater than 1; the U02 transmitting M2 in M2 multicarrier symbols out of P multicarrier symbols on the first subband a reference signal, the M2 is a positive integer not greater than the P, the sum of the M1 and the M2 is equal to the M; the transmit power of the M2 reference signals is related to the first power configuration information Independent of the second power configuration information.
  • the K is equal to 1; the K first access detections are used by the U02 to determine the M1 multicarrier symbols and the M2 multicarrier symbols.
  • the first information is used by the U02 to determine an assumed transmission order of the M1 reference signals and the M2 reference signals, and the third information is used by the U02 to determine the M1 reference signals and Whether the transmission order of the M2 reference signals is consistent with the assumed transmission order.
  • the second information further includes configuration information of the first wireless signal, where the second power configuration information is used by the U02 to determine a transmit power of the first wireless signal, where the first wireless signal does not include ???said one of the M2 reference signals, the time-frequency resource occupied by the first wireless signal includes P1 multi-carrier symbols belonging to the first sub-band of the first time-frequency resource and does not belong to At least one multi-carrier symbol of the M2 multi-carrier symbols.
  • the fourth information is used by the U02 to determine at least one of the first time-frequency resources that belongs to the P1 multi-carrier symbols on the first sub-band and does not belong to the M2 multi-carrier symbols.
  • the carrier symbol is occupied by the first wireless signal.
  • the fifth information is used by the U02 to determine a set of F antenna ports, where F is a positive integer, and any one of the F antenna port sets includes a positive integer number of antenna port groups, and one antenna port group A positive integer number of antenna ports are included; the transmit antenna port groups of the M1 reference signals and any one of the M2 reference signals belong to the same antenna port set in the F antenna port sets.
  • the K is equal to 1, and all multi-carrier symbols between the M1 multi-carrier symbols and the M2 multi-carrier symbols are occupied by the user equipment.
  • the K is equal to 1
  • the K first access detections are used to determine an uplink burst
  • the M1 multicarrier symbols and the M2 multicarrier symbols belong to the one uplink. Sudden.
  • an uplink burst includes a set of multi-carrier symbols that are consecutive in time and a group of sub-carriers that are consecutive in the frequency domain, and all multi-carrier symbols in the uplink burst are occupied by the user equipment.
  • the first sub-band is deployed in an unlicensed spectrum.
  • the transmit antenna port group of any one of the M1 reference signals is the same as the assigned antenna port group of one of the M multi-carrier symbols on the first sub-band.
  • the transmit antenna port group of any one of the M2 reference signals is the same as the assigned antenna port group of one of the M2 multicarrier symbols.
  • the M1 reference signals are transmitted by the same antenna port group.
  • the M1 reference signals are respectively sent by M1 antenna port groups.
  • the M2 reference signals are transmitted by the same antenna port group.
  • the M2 reference signals are respectively sent by M2 antenna port groups.
  • the M1 reference signals and the M2 reference signals are transmitted by the same antenna port group.
  • the M1 reference signals and the M2 reference signals are respectively sent by M1+M2 antenna port groups.
  • the K is equal to 1, and the K first access detections are used to determine that only the M1 multicarrier symbols of the M multicarrier symbols on the first subband can be used. Uplink transmission, and only the M2 multicarrier symbols of the P1 multicarrier symbols on the first subband can be used for uplink transmission.
  • the third information is semi-statically configured.
  • the third information is carried by higher layer signaling.
  • the third information is carried by RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the third information is all or a part of an IE (Information Element) in one RRC signaling.
  • the third information is carried by a MAC (Medium Access Control) CE (Control Element) signaling.
  • MAC Medium Access Control
  • CE Control Element
  • the third information is transmitted in an SIB (System Information Block).
  • SIB System Information Block
  • the third information is dynamically configured.
  • the third information is carried by physical layer signaling.
  • the third information belongs to a DCI.
  • the third information is a domain in a DCI, the domain comprising a positive integer number of bits.
  • the third information is carried by a downlink physical layer control channel.
  • the third information is carried by a PDCCH.
  • the third information is carried by the sPDCCH.
  • the third information is carried by the NR-PDCCH.
  • the third information is carried by the NB-PDCCH.
  • the first information and the third information belong to the same DCI.
  • the first information and the third information are respectively a first domain and a second domain in one DCI.
  • the frequency domain resource occupied by the first time-frequency resource includes a positive integer number of PRBs.
  • the frequency domain resource occupied by the first time-frequency resource includes a positive integer number of consecutive PRBs.
  • the frequency domain resource occupied by the first time-frequency resource includes a positive integer number of RBs.
  • the frequency domain resource occupied by the first time-frequency resource includes a positive integer number of consecutive RBs.
  • the frequency domain resource occupied by the first time-frequency resource includes a positive integer number of consecutive sub-carriers.
  • the frequency domain resource occupied by the first time-frequency resource includes a number of consecutive sub-carriers equal to a positive integer multiple of 12.
  • the frequency domain resources occupied by the first time-frequency resource are deployed in an unlicensed spectrum.
  • the frequency domain resource occupied by the first time-frequency resource includes one carrier.
  • the frequency domain resource occupied by the first time-frequency resource includes a BWP.
  • the frequency domain resource occupied by the first time-frequency resource includes the first sub-band.
  • the frequency domain resource occupied by the first time-frequency resource is the same as the first sub-band.
  • the time domain resource indicated by the configuration information of the first wireless signal is P multi-carrier symbols on the first sub-band.
  • the time domain resource indicated by the configuration information of the first wireless signal includes P multi-carrier symbols on the first sub-band.
  • the time domain resource indicated by the configuration information of the first wireless signal belongs to P multi-carrier symbols on the first sub-band.
  • the first wireless signal includes at least one of data, DMRS, SRS, and PTRS.
  • the first wireless signal comprises data.
  • the first wireless signal comprises a DMRS.
  • the first wireless signal includes data and a DMRS.
  • the first wireless signal comprises an SRS.
  • the first wireless signal comprises a PTRS.
  • the time-frequency resource occupied by the first radio signal includes P multi-carrier symbols belonging to the first sub-band and not belonging to the M2 multi-carrier symbols in the first time-frequency resource. At least one multi-carrier symbol.
  • the time-frequency resource occupied by the first radio signal includes P1 multi-carrier symbols belonging to the first sub-band and not belonging to the M2 multi-carrier symbols in the first time-frequency resource. All multicarrier symbols.
  • the fourth information is semi-statically configured.
  • the fourth information is carried by higher layer signaling.
  • the fourth information is carried by RRC signaling.
  • the fourth information is all or a part of an IE in one RRC signaling.
  • the fourth information is carried by MAC CE signaling.
  • the fourth information is transmitted in the SIB.
  • the fourth information is dynamically configured.
  • the fourth information is carried by physical layer signaling.
  • the fourth information belongs to a DCI.
  • the fourth information is a domain in a DCI, and the domain includes a positive integer number of bits.
  • the fourth information is carried by a downlink physical layer control channel.
  • the fourth information is carried by a PDCCH.
  • the fourth information is carried by the sPDCCH.
  • the fourth information is carried by the NR-PDCCH.
  • the fourth information is carried by the NB-PDCCH.
  • the second information and the fourth information belong to the same DCI.
  • the second information and the fourth information are respectively a first domain and a second domain in one DCI.
  • the first information and the fourth information belong to the same DCI.
  • the first information and the fourth information are respectively a first domain and a third domain in one DCI.
  • the first information, the third information, and the fourth information belong to the same DCI.
  • the first information, the third information, and the fourth information are respectively a first domain, a second domain, and a third domain in one DCI.
  • the fourth information indicates whether at least one multi-carrier symbol of the first time-frequency resource that belongs to the P1 multi-carrier symbols on the first sub-band and does not belong to the M2 multi-carrier symbols. It may be occupied by an uplink wireless signal that does not include the M2 reference signal.
  • the fourth information indicates whether all multi-carrier symbols belonging to the P1 multi-carrier symbols on the first sub-band and not belonging to the M2 multi-carrier symbols in the first time-frequency resource can be It is occupied by an uplink wireless signal that does not include the M2 reference signal.
  • the fifth information is semi-statically configured.
  • the fifth information is carried by higher layer signaling.
  • the fifth information is carried by RRC signaling.
  • the fifth information is all or a part of an IE in one RRC signaling.
  • the fifth information is carried by MAC CE signaling.
  • the fifth information is transmitted in the SIB.
  • an air interface resource occupied by at least one of the M1 reference signals is used by a receiver of the M1 reference signals to determine from M multicarrier symbols on the first subband The M1 multicarrier symbols.
  • the air interface resource occupied by at least one of the M2 reference signals is used to determine the M2 multicarrier symbols from P1 multicarrier symbols on the first subband.
  • an air interface resource occupied by at least one of the M2 reference signals is used by a receiver of the M2 reference signals to determine from P1 multicarrier symbols on the first subband The M2 multicarrier symbols.
  • Embodiment 6 illustrates a flow chart of another wireless transmission, as shown in FIG.
  • base station N03 is a serving cell maintenance base station of user equipment U04.
  • blocks F4, F5 and F6 are optional.
  • the fifth information is transmitted in step S30; the fourth information is transmitted in step S31; the third information is transmitted in step S32; the first information is transmitted in step S33; the M1 reference signals are received in step S34; The second information is transmitted in step S35; the M2 reference signals are received in step S36; and the first wireless signal is received in step S37.
  • the fifth information is received in step S40; the fourth information is received in step S41; the third information is received in step S42; the first information is received in step S43; K first accesses are performed in step S44 First first access detection in detection; M1 reference signals are transmitted in step S45; second information is received in step S46; second first in K first access detections is performed in step S47 Access detection; transmitting M2 reference signals in step S48; transmitting the first wireless signal in step S49.
  • the first information includes first power configuration information, and the first information is used by the U04 to determine M multi-carrier symbols on the first sub-band, where M is greater than 1 An integer; the U04 determines M1 multicarrier symbols from the M multicarrier symbols on the first subband; and for the M multicarrier symbols on the first subband, the U04 is only in the M1 M1 reference signals are respectively transmitted in the multi-carrier symbols, the M1 is a positive integer smaller than the M; the second information includes second power configuration information, and the second information is used by the U04 to determine the P multicarrier symbols on the first sub-band, the P being a positive integer greater than 1; the U04 transmitting M2 in the M2 multi-carrier symbols of the P multi-carrier symbols on the first sub-band a reference signal, the M2 is a positive integer not greater than the P, the sum of the M1 and the M2 is equal to the M; the transmit power of the M2 reference signals is related to the first power configuration information Independent of the second
  • the K is equal to 2; the K first access detections are used by the U04 to determine the M1 multicarrier symbols and the M2 multicarrier symbols.
  • the first information is used by the U04 to determine an assumed transmission order of the M1 reference signals and the M2 reference signals, and the third information is used by the U04 to determine the M1 reference signals and Whether the transmission order of the M2 reference signals is consistent with the assumed transmission order.
  • the second information further includes configuration information of the first wireless signal, where the second power configuration information is used by the U04 to determine a transmit power of the first wireless signal, where the first wireless signal does not include ???said one of the M2 reference signals, the time-frequency resource occupied by the first wireless signal includes P1 multi-carrier symbols belonging to the first sub-band of the first time-frequency resource and does not belong to At least one multi-carrier symbol of the M2 multi-carrier symbols.
  • the fourth information is used by the U04 to determine at least one of the first time-frequency resources that belongs to the P1 multi-carrier symbols on the first sub-band and does not belong to the M2 multi-carrier symbols.
  • the carrier symbol is occupied by the first wireless signal.
  • the fifth information is used by the U04 to determine a set of F antenna ports, the F is a positive integer, and any one of the F antenna port sets includes a positive integer number of antenna port groups, and one antenna port group A positive integer number of antenna ports are included; the transmit antenna port groups of the M1 reference signals and any one of the M2 reference signals belong to the same antenna port set in the F antenna port sets.
  • the K is equal to 2, and at least one multi-carrier symbol not occupied by the user equipment exists between the M1 multi-carrier symbols and the M2 multi-carrier symbols.
  • the K is equal to 2
  • the K first access detections are respectively used to determine two uplink bursts
  • the M1 multicarrier symbols and the M2 multicarrier symbols respectively belong to the Two uplink bursts, at least one multi-carrier symbol between the two uplink bursts is not occupied by the user equipment.
  • the K is equal to 2
  • the first one of the K first access detections is used to determine that only one of the M multi-carrier symbols on the first sub-band is
  • the M1 multi-carrier symbols can be used for uplink transmission
  • the second first access detection of the K first access detections is used to determine P1 multi-carrier symbols on the first sub-band Only the M2 multicarrier symbols can be used for uplink transmission.
  • Embodiments 7A to 7B respectively illustrate a relationship between a first information and M1 multicarrier symbols and M2 multicarrier symbols.
  • the first information in the present application is used to determine M multicarrier symbols on a first sub-band, the M being a positive integer greater than one; from the first sub-band M1 multi-carrier symbols are determined among M multi-carrier symbols; for M multi-carrier symbols on the first sub-band, M1 reference signals are respectively transmitted in the M1 multi-carrier symbols, and the M1 is smaller than A positive integer of the M.
  • the first information is further used to determine P1 multicarrier symbols on the first subband, the M2 multicarrier symbols belonging to P1 multicarrier symbols on the first subband, the first The P1 multicarrier symbols on the subband belong to P multicarrier symbols on the first subband, and the P1 is a positive integer not greater than the P.
  • the first information explicitly indicates M multi-carrier symbols on the first sub-band.
  • the first information implicitly indicates M multi-carrier symbols on the first sub-band.
  • the first information further includes configuration information of the M1 reference signals and the M2 reference signals, and an optional time domain resource set, where the user equipment is in the candidate time domain resource set.
  • the partial time domain resources are selected to transmit the M1 reference signals and the M2 reference signals.
  • the M multi-carrier symbols on the first sub-band belong to one candidate time-domain resource in the candidate time-domain resource set.
  • the P1 multicarrier symbols on the first subband belong to an alternate time domain resource in the candidate time domain resource set.
  • the candidate time domain resource set includes M multicarrier symbols on the first subband and P1 multicarrier symbols on the first subband.
  • the first information further includes configuration information of the M1 reference signals and the M2 reference signals, the M1 reference signals, and the M2 reference signals on the first subband Time domain locations in the M multicarrier symbols and time offsets of P1 multicarrier symbols on the first subband relative to M multicarrier symbols on the first subband.
  • the time offset of the P1 multicarrier symbols on the first subband relative to the M multicarrier symbols on the first subband is composed of one or more multicarrier symbols.
  • the time offset of the P1 multicarrier symbols on the first subband relative to the M multicarrier symbols on the first subband is composed of one or more slots.
  • the time slot is composed of A multi-carrier symbols, and the A is a positive integer greater than one.
  • the configuration information of the M1 reference signals and the M2 reference signals includes occupied frequency domain resources, code domain resources, antenna port groups, and a transmission sequence.
  • the configuration information of the M1 reference signals and the M2 reference signals includes at least one of a frequency domain resource, a code domain resource, an antenna port group, and a transmission sequence.
  • the antenna port group refers to: the occupied antenna port group is one of a plurality of antenna port groups.
  • the antenna port group refers to an index of the occupied antenna port group in multiple antenna port groups.
  • the frequency domain resource refers to: the occupied subcarrier is one or more subcarriers of the multiple subcarriers.
  • the frequency domain resource refers to an index of the occupied subcarriers in multiple subcarriers.
  • the frequency domain resource refers to: an occupied RB and a subcarrier occupied by each of the RBs, where the occupied RB is one or more RBs of the multiple RBs, The subcarrier occupied in each of the RBs is one or more of all subcarriers included in one RB.
  • the frequency domain resource refers to: an index of the occupied RB and an index of the subcarrier occupied by each RB, and the index of the occupied RB is that the occupied RB is multiple.
  • the frequency domain resource refers to: an index of the occupied RB, and a comb and a subcarrier offset in each RB, where the index of the occupied RB is The index of the occupied RBs in multiple RBs.
  • the comb C and the subcarrier offset c1 occupied in a given RB indicate that a set of equally spaced subcarriers are occupied in the given RB, the set of equally spaced sub-carriers
  • the interval between any two adjacent subcarriers in the carrier is equal to C
  • the first one of the set of equally spaced subcarriers is the c1+1th of the given RB Carrier
  • the C is a positive integer
  • the c1 is an integer not less than 0 and smaller than the C.
  • the comb C and the subcarrier offset c1 occupied in a given RB indicate that a set of equally spaced subcarriers are occupied in the given RB, the set of equally spaced sub-carriers
  • the interval between any two adjacent subcarriers in the carrier is equal to C
  • the last one of the set of equally spaced subcarriers is the c1+1th subcarrier in the given RB.
  • the C is a positive integer
  • the c1 is an integer not less than 0 and smaller than the C.
  • the code domain resource refers to: the occupied feature sequence is one of a plurality of candidate feature sequences.
  • the code domain resource refers to an index of the occupied feature sequence in multiple candidate feature sequences.
  • the sending sequence means that the transmitting sequence is one of a plurality of sending sequences.
  • the sending sequence refers to using an index of a sending sequence in a plurality of sending sequences.
  • the M2 is smaller than the P1.
  • the P1 is smaller than the P.
  • the P1 is equal to the M.
  • the first information also explicitly indicates P1 multi-carrier symbols on the first sub-band.
  • the first information further implicitly indicates P1 multi-carrier symbols on the first sub-band.
  • the receiver of the M2 reference signals determines the M2 multicarrier symbols from P1 multicarrier symbols on the first subband by blind detection.
  • the receiver of the M2 reference signals blindly detects air interface resources occupied by at least one of the M2 reference signals in P1 multicarrier symbols on the first subband. Determining the M2 multicarrier symbols.
  • the embodiment 7A corresponds to the M1 multiple carrier symbols or the first information and the at least two adjacent multi-carrier symbols that are discontinuous in time in the M2 multi-carrier symbols.
  • the embodiment 7B corresponds to the M1 multi-carrier symbols being consecutive in time, and the M2 multi-carrier symbols are also consecutive in time, the first information and the M1 multi-carriers.
  • Embodiments 8A through 8C respectively illustrate a schematic diagram of a relationship between a given first access detection and N multi-carrier symbols.
  • the given first access detection corresponds to any one of the K first access detections in the application
  • the N multi-carrier symbols correspond to the first sub-band in the application.
  • the given first access detection in the present application includes N2 access detection, and any one of the N2 access detections is used to determine the N multi-carrier symbols. Whether at least one of the multi-carrier symbols can be used for uplink transmission, and whether any one of the N multi-carrier symbols can be used for uplink transmission is determined by one of the N2 access detections
  • the N2 is a positive integer not greater than the N
  • the N multicarrier symbols are allocated to N1 antenna port groups
  • the N1 is a positive integer not greater than the N.
  • the N1 is equal to the N.
  • the N1 is equal to one.
  • the N1 is greater than 1 and less than the N.
  • the N2 is equal to the N
  • the N1 is equal to the N
  • the N2 access detection is respectively used to determine whether the N multicarrier symbols can be used for uplink transmission.
  • the N2 is equal to 1, and the N2 access detection is used to determine whether the N multicarrier symbols can be used for uplink transmission.
  • the N2 is greater than 1 and smaller than the N, the N1 is not equal to 1, and one of the N2 access detections is used to determine at least two of the N multicarrier symbols. Whether the carrier symbol can be used for uplink transmission.
  • the N2 is greater than 1, and the multiple antenna related receptions of the N2 access detection are different from each other.
  • the multi-antenna related transmission of the N1 antenna port groups is related to the multi-antenna related reception of the N2 access detection.
  • the N1 is equal to the N2, and the multiple antenna related transmissions of the N1 antenna port groups are respectively used to determine the multi-antenna related reception of the N2 access detection.
  • the N1 is equal to the N2, and the multiple antenna related reception of the N2 access detection includes multiple antenna related transmissions of the N1 antenna port groups, respectively.
  • the N1 is equal to the N2, and the multiple antenna related transmissions of the N1 antenna port groups are respectively the same as the multiple antennas related to the N2 access detection.
  • the N1 is greater than the N2, and the multiple antenna-related reception of the N2 access detection is determined by multi-antenna-related transmission of at least one of the N1 antenna port groups.
  • the N1 is greater than the N2, and the multi-antenna related reception of any one of the N2 access detections includes multiple antennas of at least one of the N1 antenna port groups. Related to send.
  • the N1 is greater than the N2, and the multi-antenna related reception of any one of the N2 access detections and the multi-antenna of at least one of the N1 antenna port groups The related send is the same.
  • the N1 is greater than the N2, and the multi-antenna related reception of the at least one access detection in the N2 access detection is performed by at least two antenna port groups in the N1 antenna port group. Antenna related transmission determination.
  • the N1 is greater than the N2, and the multi-antenna related reception of the at least one access detection in the N2 access detection includes a plurality of at least two antenna port groups in the N1 antenna port group. Antenna related transmission.
  • the N1 is greater than the N2, and the multi-antenna related reception of the at least one access detection and the at least two antenna port groups of the N1 antenna port group are the N2 access detection.
  • the antenna related transmission is the same.
  • the one-time access detection is used to determine if the first sub-band is idle (Idle).
  • the one-time access detection is used to determine whether uplink transmission may be performed on the first sub-band using the same multi-antenna related transmission associated with the multi-antenna of the one-time access detection.
  • the multi-antenna related reception is a spatial Rx parameter.
  • the multi-antenna related reception is a receive beam.
  • the multi-antenna related reception is a receive beamforming matrix.
  • the multi-antenna related reception is a receive analog beam shaping matrix.
  • the multi-antenna related reception is a receive beamforming vector.
  • the multi-antenna related reception is receive spatial filtering.
  • the multi-antenna related transmission is a spatial transmission parameter (Spatial Tx parameters).
  • the multi-antenna related transmission is a transmit beam.
  • the multi-antenna related transmission is a transmit beam shaping matrix.
  • the multi-antenna related transmission is to transmit an analog beamforming matrix.
  • the multi-antenna related transmission is a transmit beamforming vector.
  • the multi-antenna related transmission is transmission spatial filtering.
  • the embodiment 8A corresponds to a schematic diagram in which the N2 is equal to the relationship between the given first access detection and the N multi-carrier symbols of the N1.
  • the embodiment 8B corresponds to a schematic diagram in which the N2 is smaller than the relationship between the given first access detection and the N multi-carrier symbols of the N1.
  • the embodiment 8C corresponds to a schematic diagram of the relationship between the given first access detection and the N multi-carrier symbols with the N2 being equal to 1.
  • Embodiments 9A through 9B respectively illustrate a schematic diagram of the spatial relationship of a given access detection and a given wireless signal.
  • the given access detection corresponds to one access detection in any one of the K first access detections in the application, where the given wireless signal corresponds to the local access detection.
  • At least one reference signal related to the given access detection among the M1 reference signals and the M2 reference signals in the application.
  • the multi-antenna related reception used by the given access detection can be used to infer multi-antenna related transmission of the given wireless signal.
  • the multi-antenna related reception used by the given access detection is the same as the multi-antenna related transmission of the given wireless signal.
  • the multi-antenna related reception used by the given access detection is different from the multi-antenna related transmission of the given wireless signal.
  • a beamwidth corresponding to a receive beamforming matrix used by a given access detection is greater than a beamwidth corresponding to a transmit beamforming matrix of the given wireless signal.
  • the beam direction corresponding to the receive beamforming matrix used by the given access detection includes a beam direction corresponding to a transmit beamforming matrix of the given wireless signal.
  • the beam width corresponding to the received beam used by the given access detection is greater than the beam width corresponding to the transmit beam of the given wireless signal.
  • the receive beam used by the given access detection includes a transmit beam of the given wireless signal.
  • the number of antennas used for a given access detection is less than the number of transmit antennas for the given wireless signal.
  • the number of antennas used for the given access detection is greater than one.
  • the number of antennas used for the given access detection is equal to one.
  • the number of transmit antennas for a given wireless signal is greater than one.
  • the embodiment 9A corresponds to the same schematic diagram of the receive beam used by the given access detection and the transmit beam of the given wireless signal.
  • the embodiment 9B corresponds to a schematic diagram of a transmit beam used by the given access detection including a transmit beam of the given wireless signal.
  • Embodiments 10A to 10C respectively illustrate a schematic diagram of one-time access detection.
  • the one-time access detection in the present application includes: performing T energy detections in T time sub-pools respectively, to obtain T detection values; wherein, T1 of the T detection values The detected values are all lower than the first threshold; the T is a positive integer, and the T1 is a positive integer not greater than the T.
  • the primary access detection is an LBT
  • the specific definition and implementation manner of the LBT are referred to 3GPP TR36.889.
  • the one-time access detection is a CCA (Clear Channel Assessment), and the specific definition and implementation manner of the CCA is referred to 3GPP TR36.889.
  • CCA Carrier Channel Assessment
  • the one-time access detection is uplink access detection.
  • the one-time access detection is implemented in the manner defined by Section 15.2 of 3GPP TS 36.213.
  • the T1 is equal to the T.
  • the T1 is smaller than the T.
  • the units of the T detection values and the first threshold are both dBm (millimeters).
  • the units of the T detection values and the first threshold are both milliwatts (mW).
  • the unit of the T detection values and the first threshold is Joule.
  • the first threshold is equal to or less than -72 dBm.
  • the first threshold is any value equal to or smaller than the first given value.
  • the first threshold is freely selected by the user equipment under conditions equal to or less than a first given value.
  • the first given value is predefined.
  • the first given value is configured by higher layer signaling.
  • At least one of the detected values that do not belong to the T1 detection values among the T detection values is lower than the first threshold.
  • the frequency domain resource block to which the first sub-band belongs is the first sub-band.
  • the frequency domain resource block to which the first sub-band belongs is a BWP.
  • the frequency domain resource block to which the first sub-band belongs is a carrier.
  • the frequency domain resource block to which the first sub-band belongs includes a group of consecutive RBs.
  • the frequency domain resource block to which the first sub-band belongs includes a set of consecutive PRBs.
  • the frequency domain resource block to which the first sub-band belongs includes a set of consecutive sub-carriers.
  • the T detection values are respectively the power of the user equipment to sense (Sense) all wireless signals in the T time units in the frequency domain resource blocks to which the first sub-band belongs, and in time Up-averaging, the received power obtained; the T time units are each one of the T time sub-pools.
  • the duration of any one of the T time units is not shorter than 4 microseconds.
  • the T detection values are energy that the user equipment senses all wireless signals in the T time units in the frequency domain resource blocks to which the first sub-band belongs, and in time Up-averaging, the received energy obtained; the T time units are each one of the T time sub-pools.
  • the multiple access detections used in the T time pools are all the same, and the T detection values are respectively used by the user equipment in the T time units.
  • any given energy detection in the T-th energy detection means that the user equipment monitors received power in a given time unit, and the given time unit is the T time sub-pools. Neutating a duration period in the time subpool corresponding to the given energy detection.
  • any given energy detection in the T-th energy detection means that the user equipment monitors received energy in a given time unit, and the given time unit is the T time sub-pools. Neutating a duration period in the time subpool corresponding to the given energy detection.
  • any given energy detection in the T-th power detection refers to: all the wireless signals on the frequency domain resource block to which the first sub-band belongs in the given time unit. Sense is performed to obtain a given power; the given time unit is one of the T time sub-pools and the time sub-pool corresponding to the given energy detection.
  • the detected value corresponding to the given energy detection in the T detection values is the given power.
  • any given energy detection in the T-th power detection refers to: all the wireless signals on the frequency domain resource block to which the first sub-band belongs in the given time unit. Sense is performed to obtain a given energy; the given time unit is one of the T time subpools and the time subpool corresponding to the given energy detection.
  • the detected value corresponding to the given energy detection in the T detection values is the given energy.
  • the multiple access detections used in the T time pools are all the same, and the T detection values are respectively used by the user equipment in the T time units.
  • any given energy detection in the T-th power detection refers to: the user equipment receives the frequency associated with the first sub-band with a given multi-antenna correlation in a given time unit. All wireless signals on the domain resource block are Senseed to obtain a given power or given energy; the given time unit is a time subpool corresponding to the given energy detection in the T time subpools One of the durations in the middle.
  • the detected value corresponding to the given energy detection in the T detection values is the given power or a given energy.
  • the primary access detection is the same for multiple antenna-related receptions used on T time sub-pools, and the multiple antenna-related reception is the given multiple antenna-related reception.
  • any one of the T-th energy measurements is implemented by means defined in section 15 of 3GPP TS 36.213.
  • any one of the T-th energy detections is implemented by an energy detection method in the LTE LAA.
  • any one of the T-th energy detections is energy detection during the LBT process.
  • any one of the T-th energy measurements is energy detection during the CCA process.
  • any one of the T-th energy detections is implemented by an energy detection method in WiFi.
  • any one of the T-th energy detections is performed by measuring RSSI (Received Signal Strength Indication).
  • the time domain resources occupied by any one of the T time subpools are consecutive.
  • the T time subpools are orthogonal to each other (non-overlapping) in the time domain.
  • the duration of any of the T time subpools is one of 16 microseconds and 9 microseconds.
  • At least two time sub-pools in the T time sub-pools have unequal durations.
  • the durations of any two of the T time subpools are equal.
  • the time domain resources occupied by the T time subpools are continuous.
  • the time domain resources occupied by at least two time sub-pools in the T time sub-pools are discontinuous.
  • the time domain resources occupied by any two time sub-pools in the T time sub-pools are discontinuous.
  • any one of the T time subpools is a slot.
  • any one of the T time subpools is T sl , and the T sl is a slot duration, and the specific definition of the T sl is as described in 3GPP TS 36.213. Section 15.2.
  • any time sub-pool other than the earliest time sub-pool in the T time sub-pools is a slot.
  • any one of the T time subpools except the earliest time subpool is T sl , and the T sl is a slot duration, and the T sl is specific. See Section 15.2 of 3GPP TS 36.213 for definitions.
  • At least one time sub-pool having a duration of 16 microseconds exists in the T time sub-pools.
  • At least one time sub-pool having a duration of 9 microseconds exists in the T time sub-pools.
  • the earliest time sub-pool of the T time sub-pools has a duration of 16 microseconds.
  • the last time subpool of the T time subpools has a duration of 9 microseconds.
  • the T time subpools include a listening time in a Cat 4 (fourth class) LBT.
  • the T time subpools include time slots in a Defer Duration in a Cat 4 (fourth class) LBT and time slots in a back-off time.
  • the T time subpools include a listening time in a Cat 2 (second class) LBT.
  • the T time sub-pools include a time slot and a back-off time (Back-off) in a Defer Duration in a Type 1 UL channel access procedure. Time slot in Time).
  • the T time subpools include time slots in a sensing interval in a Type 2 UL channel access procedure, the specific time interval of the sensing time interval See Section 15.2 of 3GPP TS 36.213 for definitions.
  • the duration of the sensing time interval is 25 microseconds.
  • the T time subpools include T f and T sl in a sensing interval in a Type 2 UL channel access procedure, the T f And the T sl is two time intervals, and the specific definition of the T f and the T sl is referred to the section 15.2 in 3GPP TS 36.213.
  • the duration of the Tf is 16 microseconds.
  • the duration of the T sl is 9 microseconds.
  • the T time subpools include time slots in an initial CCA and an eCCA (Enhanced Clear Channel Assessment).
  • eCCA Enhanced Clear Channel Assessment
  • the durations of any two time sub-pools in the T1 time sub-pools are equal, and the T1 time sub-pools are respectively corresponding to the T1 detection values in the T time sub-pools. Time subpool.
  • the durations of at least two time sub-pools in the T1 time sub-pools are not equal, and the T1 time sub-pools are respectively corresponding to the T1 detection values in the T time sub-pools. Time subpool.
  • the time domain resources occupied by the T1 time sub-pools are consecutive, and the T1 time sub-pools are time sub-pools corresponding to the T1 detection values in the T time sub-pools.
  • the time domain resources occupied by at least two time sub-pools in the T1 time sub-pools are discontinuous, and the T1 time sub-pools are respectively the T1 time sub-pools and the T1 The time subpool corresponding to the detected value.
  • the time domain resources occupied by any two time sub-pools in the T1 time sub-pool are discontinuous, and the T1 time sub-pools are respectively detected in the T time sub-pools and the T1 detections.
  • the time subpool corresponding to the value.
  • the T1 time sub-pools include the latest time sub-pools of the T time sub-pools, and the T1 time sub-pools are respectively the T1 time sub-pools and the T1 The time subpool corresponding to the detected value.
  • the T1 time sub-pools only include time slots in the eCCA, and the T1 time sub-pools are time sub-pools corresponding to the T1 detection values in the T time sub-pools.
  • the T time sub-pools include T1 time sub-pools and T2 time sub-pools, where the T1 time sub-pools are respectively corresponding to the T1 detection values in the T time sub-pools
  • the time sub-pool, any one of the T2 time sub-pools does not belong to the T1 time sub-pool; the T2 is a positive integer not greater than the T minus the T1.
  • the positions of the T2 time subpools in the T time subpools are continuous.
  • the T2 time subpools include time slots in the initial CCA.
  • the T1 time sub-pools are time sub-pools corresponding to the T1 detection values in the T time sub-pools, and the T1 time sub-pools respectively belong to T1 sub-pool sets, and the T1 Any one of the sub-pool pools includes a positive integer number of time sub-pools in the T time pools; and the detected value corresponding to any one of the T1 sub-pool pools is smaller than the first threshold. .
  • the number of time sub-pools included in the at least one sub-pool set in the T1 sub-pool set is equal to 1.
  • At least one sub-pool set in the T1 sub-pool set includes a number of time sub-pools greater than one.
  • the number of time sub-pools included in the at least two sub-pool sets in the T1 sub-pool set is unequal.
  • one time sub-pool does not exist in the T time sub-pools and belongs to two sub-pool sets in the T1 sub-pool set.
  • all time sub-pools in the at least one sub-pool set in the T1 sub-pool set belong to the same delay period (Defer Duration).
  • the duration of a Defer Duration is 16 microseconds plus a positive integer of 9 microseconds.
  • the detected value corresponding to at least one time sub-pool in the time sub-pool that does not belong to the T1 sub-pool set in the T time sub-pools is smaller than the first threshold.
  • the time domain resource occupied by the T time pools in the embodiment 10A is a schematic diagram of consecutive access detection.
  • the embodiment 10B corresponds to a time-domain resource occupied by at least two time sub-pools in the T time sub-pools, which is a schematic diagram of one-time access detection.
  • the time domain resource occupied by any two time sub-pools in the T time pools is a schematic diagram of a discontinuous access detection.
  • Embodiment 11 exemplifies a relationship between a first power configuration information and M1 reference signals and a transmission power of M2 reference signals, as shown in FIG.
  • the transmission powers of the M1 reference signals and the M2 reference signals in the present application are the same, and the first power configuration information is used to determine the M1 reference signals and the M2 The transmit power of the reference signal.
  • the transmission times of the M1 reference signals and the M2 reference signals belong to a first time window.
  • the uplink reference signals belonging to the first time window have the same transmission power, and the uplink reference signal includes the M1 reference signals and the M2 reference signals.
  • the first time window includes the M multicarrier symbols and the P1 multicarrier symbols in a time domain.
  • the first time window includes a plurality of multi-carrier symbols in the time domain.
  • the first time window includes a plurality of slots in the time domain.
  • the first time window includes one or more upstream bursts in the time domain.
  • the first time window is predefined.
  • the first time window is configured by higher layer signaling.
  • the first time window is configured by physical layer signaling.
  • the transmission of the M1 reference signals and the transmission of the M2 reference signals are all for the same measurement process.
  • the same measurement process is Beam Management or channel estimation.
  • the transmission powers of the M1 reference signals and the M2 reference signals are linearly related to G1 components, and the first power configuration information is related to one of the G1 components,
  • the G1 components respectively corresponding to the M1 reference signals and the M2 reference signals are the same, and the G1 is a positive integer.
  • Embodiment 12 exemplifies a schematic diagram in which air interface resources occupied by at least one of the X reference signals are used to determine X multicarrier symbols from Y multicarrier symbols, as shown in FIG.
  • the X reference signals correspond to the M1 reference signals in the present application
  • the X multi-carrier symbols correspond to the M1 multi-carrier symbols in the present application, where the Y multi-carrier symbols correspond to the present application.
  • the X reference signals correspond to the M2 reference signals in the present application, and the X multi-carrier symbols correspond to the M2 multi-carriers in the present application.
  • a symbol the Y multicarrier symbols corresponding to P1 multicarrier symbols on the first subband in the present application.
  • the air interface resources occupied by the target reference signal group in the present application are used by the receivers of the X reference signals to determine the X multi-carrier symbols from the Y multi-carrier symbols.
  • the target reference signal group includes one or more reference signals of the X reference signals; the X reference signals are respectively sent in the X multi-carrier symbols; the air interface resources occupied by the target reference signal group Is one of the S candidate air interface resources, where the S candidate air interface resources are respectively used to determine S multi-carrier symbol groups, and any one of the S multi-carrier symbol groups is represented by the Y One or more multi-carrier symbols of the multi-carrier symbols, the S being a positive integer greater than one.
  • the air interface resources occupied by the target reference signal group are implicitly determined by the receivers of the X reference signals from the Y multicarrier symbols.
  • the target reference signal group includes the X reference signals.
  • the target reference signal group includes a partial reference signal of the X reference signals.
  • the target reference signal group includes a first one of the X reference signals.
  • the target reference signal group includes the last one of the X reference signals.
  • the target reference signal group includes one of the X reference signals and a given reference signal.
  • the given reference signal is predefined.
  • the given reference signal is configured by higher layer signaling.
  • the given reference signal is configured by physical layer signaling.
  • the air interface resource includes at least one of a time domain resource, a frequency domain resource, a code domain resource, an antenna port group, and a sending sequence.
  • the air interface resource includes a time domain resource.
  • the air interface resource includes a frequency domain resource.
  • the air interface resource includes a code domain resource.
  • the air interface resource includes an antenna port group.
  • the air interface resource includes a transmission sequence.
  • the S multi-carrier symbol groups include different numbers of multi-carrier symbols.
  • the multi-carrier symbols included in the S multi-carrier symbol groups are different from each other.
  • two identical multi-carrier symbol groups are not included in the S multi-carrier symbol groups.
  • any two of the S multi-carrier symbol groups include at least one different multi-carrier symbol.
  • any two of the S multi-carrier symbol groups do not include the same multi-carrier symbol.
  • the S multi-carrier symbol groups are respectively allocated to the S sub-antenna port sets, and the S candidate air interface resources are respectively in one-to-one correspondence with the S sub-antenna port sets.
  • the S sub-antenna port sets belong to the same antenna port set in the F antenna port set, and any one of the S sub-antenna port sets includes one or more antenna port groups. .
  • the X multicarrier symbols belong to one of the S multicarrier symbol groups.
  • the X multi-carrier symbols belong to one of the S multi-carrier symbol groups corresponding to the air interface resources occupied by the target reference signal group.
  • the air interface resources occupied by the target reference signal group are used by the receivers of the X reference signals to determine one multi-carrier symbol group from the S multi-carrier symbol groups.
  • the air interface resources occupied by the target reference signal group are used by the receivers of the X reference signals to determine a set of sub-antenna ports from the set of S sub-antenna ports.
  • the one-to-one correspondence between the S candidate air interface resources and the S multi-carrier symbol groups is predefined.
  • the method according to the above characterized in that it comprises:
  • the sixth information is used to determine that the S candidate air interface resources are respectively in one-to-one correspondence with the S multi-carrier symbol groups.
  • the sixth information is semi-statically configured.
  • the sixth information is carried by higher layer signaling.
  • the sixth information is carried by RRC signaling.
  • the sixth information is all or a part of an IE in one RRC signaling.
  • the sixth information is carried by MAC CE signaling.
  • the sixth information is transmitted in the SIB.
  • the sixth information explicitly indicates that the S candidate air interface resources are respectively in one-to-one correspondence with the S multi-carrier symbol groups.
  • the sixth information implicitly indicates that the S candidate air interface resources are respectively in one-to-one correspondence with the S multi-carrier symbol groups.
  • the sixth information is used to determine that the S candidate air interface resources are respectively in one-to-one correspondence with the S sub-antenna port sets.
  • the sixth information explicitly indicates that the S candidate air interface resources are respectively in one-to-one correspondence with the S sub-antenna port sets.
  • the sixth information implicitly indicates that the S candidate air interface resources are respectively in one-to-one correspondence with the S sub-antenna port sets.
  • Embodiments 13A to 13B respectively illustrate schematic diagrams of the relationship between the transmission order of the M1 reference signals and the M2 reference signals and the first information.
  • the first information in the present application is used to determine an assumed transmission order of the M1 reference signals and the M2 reference signals, the M1 reference signals and the M2 reference signals
  • the order of transmission is related to the assumed transmission order.
  • the M is equal to the P1.
  • the first information explicitly indicates an assumed transmission order of the M1 reference signals and the M2 reference signals.
  • the first information implicitly indicates an assumed transmission order of the M1 reference signals and the M2 reference signals.
  • the first information is used to determine a time domain position of the M1 reference signals and the M2 reference signals in M multicarrier symbols on the first subband, the assumption The sending order is a sequence of the M1 reference signals and the M2 reference signals from first to last according to the time domain position.
  • the first information further includes a time domain position of the M1 reference signals and the M2 reference signals in M multicarrier symbols on the first subband, the assumed transmission order The sequence of the M1 reference signals and the M2 reference signals from the first to the last according to the time domain position.
  • the order in which the M1 reference signals and the M2 reference signals are transmitted is consistent with the assumed transmission order.
  • a transmission order of the M1 reference signals and the M2 reference signals is inconsistent with the assumed transmission order, a transmission order of the M1 reference signals and the M2 reference signals, and a hypothetical transmission order and The M1 multicarrier symbols and the M2 multicarrier symbols are related.
  • the sending order of the M1 reference signals and the M2 reference signals is inconsistent with the assumed sending order
  • the target reference signal is any one of the M1 reference signals and the M2 reference signals.
  • a signal, the target reference signal being transmitted only on a multi-carrier symbol corresponding to the target reference signal according to the assumed transmission order.
  • the embodiment 13A corresponds to the M being equal to the P1, the M being equal to 8, and the reference signals 1-8 being the M1 reference signals and the M2 reference signals, the M1 references A schematic diagram in which the signal and the M2 reference signals are transmitted in the same order as the assumed transmission order.
  • the embodiment 13B corresponds to the M being equal to the P1, the M being equal to 8, and the reference signals 1-8 being the M1 reference signals and the M2 reference signals, the M1 references A schematic diagram in which the signal and the transmission order of the M2 reference signals do not coincide with the assumed transmission order.
  • Embodiments 14A to 14E respectively illustrate schematic diagrams of the relationship of one N multicarrier symbols, N1 antenna port groups, and Z reference signals.
  • the N multi-carrier symbols correspond to M multi-carrier symbols in the first sub-band in the application, where the Z reference signals correspond to the M1 reference signals in the present application; the N multi-carriers
  • the symbol corresponds to P1 multi-carrier symbols on the first sub-band of the present application, and the Z reference signals correspond to the M2 reference signals in the present application.
  • the N multicarrier symbols in the present application are allocated to N1 antenna port groups, the N1 is a positive integer not greater than the N, and the Z reference signals are N1 by The U1 antenna port groups in the antenna port group are transmitted, the Z is a positive integer not greater than the N, and the U1 is a positive integer not greater than the Z.
  • any one of the N1 antenna port groups corresponds to at least one of the N multicarrier symbols, and any one of the N multicarrier symbols corresponds to the One of N1 antenna port groups, the N1 is not less than the N2 and is not greater than a positive integer of the N.
  • the N1 is equal to the N, and the N multicarrier symbols are respectively allocated to the N1 antenna port groups.
  • the N1 is equal to 1, and the N multicarrier symbols are allocated to the same antenna port group.
  • the N1 is greater than 1 and smaller than the N, and at least two consecutive multi-carrier symbols of the N multi-carrier symbols are allocated to the same one of the N1 antenna port groups.
  • the U1 is equal to the Z, and the Z reference signals are respectively sent by the U1 antenna port group.
  • the U1 is equal to 1, and the Z reference signals are transmitted by the same antenna port group, and the N multi-carrier symbols are continuous in the time domain.
  • the U1 is greater than 1 and smaller than the Z, and at least two of the Z reference signals occupy a continuous multicarrier symbol in the time domain, and are referenced by the U1 antenna port groups.
  • An antenna port group is sent.
  • the embodiment 14A corresponds to the N1 being equal to the N, and the U1 is equal to the N multicarrier symbols of the Z, the N1 antenna port group, and the Z reference signals. Schematic diagram of the relationship.
  • the embodiment 14B corresponds to a schematic diagram of a relationship between the N multicarrier symbols, the N1 antenna port groups, and the Z reference signals, where the N1 is equal to 1.
  • the embodiment 14C corresponds to the N1 being greater than 1 and smaller than the N, the U1 being equal to the N multicarrier symbols of the Z, the N1 antenna port group, and the Z Schematic diagram of the relationship of reference signals.
  • the embodiment 14D corresponds to the N multi-carrier symbols, the N1 antenna port groups, and the Z reference signals, where N1 is greater than 1 and smaller than the N, and the U1 is equal to 1. Schematic diagram of the relationship.
  • the embodiment 14E corresponds to the N1 is greater than 1 and smaller than the N, and the U1 is greater than 1 and smaller than the N multicarrier symbols of the Z, the N1 antenna port group and the A schematic diagram of the relationship of Z reference signals.
  • Embodiment 15 illustrates a schematic diagram of an antenna port and an antenna port group, as shown in FIG.
  • one antenna port group includes a positive integer number of antenna ports; one antenna port is formed by superposition of antennas in a positive integer number of antenna groups by antenna virtualization; one antenna group includes a positive integer antenna.
  • An antenna group is connected to the baseband processor through an RF (Radio Frequency) chain, and different antenna groups correspond to different RF chains.
  • a mapping coefficient of all antennas within a positive integer number of antenna groups included in a given antenna port to the given antenna port constitutes a beamforming vector corresponding to the given antenna port.
  • the mapping coefficients of the plurality of antennas included in any given antenna group included in a given integer number of antenna groups included in the given antenna port to the given antenna port constitute an analog beamforming vector of the given antenna group.
  • the diagonal arrangement of the analog beamforming vectors corresponding to the positive integer antenna groups constitutes an analog beam shaping matrix corresponding to the given antenna port.
  • the mapping coefficients of the positive integer number of antenna groups to the given antenna port constitute a digital beamforming vector corresponding to the given antenna port.
  • the beamforming vector corresponding to the given antenna port is obtained by multiplying the analog beam shaping matrix and the digital beam shaping vector corresponding to the given antenna port.
  • Different antenna ports in one antenna port group are composed of the same antenna group, and different antenna ports in the same antenna port group correspond to different beamforming vectors.
  • antenna port group #0 and antenna port group #1 Two antenna port groups are shown in Figure 15: antenna port group #0 and antenna port group #1.
  • the antenna port group #0 is composed of an antenna group #0
  • the antenna port group #1 is composed of an antenna group #1 and an antenna group #2.
  • the mapping coefficients of the plurality of antennas in the antenna group #0 to the antenna port group #0 constitute an analog beamforming vector #0
  • the mapping coefficients of the antenna group #0 to the antenna port group #0 constitute a number Beamforming vector #0
  • the mapping coefficients of the plurality of antennas in the antenna group #1 and the plurality of antennas in the antenna group #2 to the antenna port group #1 constitute an analog beamforming vector #1 and an analog beamforming vector #, respectively. 2.
  • the mapping coefficients of the antenna group #1 and the antenna group #2 to the antenna port group #1 constitute a digital beamforming vector #1.
  • a beamforming vector corresponding to any one of the antenna port groups #0 is obtained by multiplying the analog beamforming vector #0 and the digital beamforming vector #0.
  • the beamforming vector corresponding to any antenna port in the antenna port group #1 is an analog beam shaping matrix formed by diagonally arranging the analog beamforming vector #1 and the analog beamforming vector #2 Obtained from the product of the digital beamforming vector #1.
  • one antenna port group includes one antenna port.
  • the antenna port group #0 in Fig. 15 includes one antenna port.
  • the analog beamforming matrix corresponding to the one antenna port is reduced into an analog beamforming vector, and the digital beamforming vector corresponding to the one antenna port is reduced to a scalar.
  • the beamforming vector corresponding to one antenna port is equal to the analog beamforming vector corresponding to the one antenna port.
  • the digital beamforming vector #0 in FIG. 15 is reduced to a scalar, and the beamforming vector corresponding to the antenna port in the antenna port group #0 is the analog beamforming vector #0.
  • one antenna port group includes a plurality of antenna ports.
  • the antenna port group #1 in FIG. 15 includes a plurality of antenna ports.
  • the plurality of antenna ports correspond to the same analog beam shaping matrix.
  • At least two of the plurality of antenna ports correspond to the same analog beam shaping matrix.
  • At least two of the plurality of antenna ports correspond to different analog beam shaping matrices.
  • the plurality of antenna ports correspond to different digital beamforming vectors.
  • At least two of the plurality of antenna ports correspond to the same digital beamforming vector.
  • At least two of the plurality of antenna ports correspond to different digital beamforming vectors.
  • any two antenna ports of different antenna port groups correspond to different analog beam shaping matrices.
  • At least two of the different antenna port groups correspond to different analog beam shaping matrices.
  • At least two of the different antenna port groups correspond to the same analog beam shaping matrix.
  • two different antenna port groups are QCL (Quasi Co-Located).
  • two different antenna port groups are not QCLs.
  • any two of the antenna port groups are QCLs.
  • any two of the antenna port groups are not QCL.
  • At least two of the antenna port groups are QCLs.
  • At least two of the antenna port groups are not QCL.
  • any two of the antenna port groups are spatial QCLs.
  • any two antenna ports in an antenna port group are not spatial QCLs.
  • At least two of the antenna port groups are spatial QCLs.
  • At least two of the antenna port groups are not spatial QCLs.
  • the fact that the two antenna ports are QCL means that all or part of the large-scale properties of the wireless signal that can be transmitted from one of the two antenna ports can be inferred. All or part of the large-scale characteristics of the wireless signal transmitted on the other of the antenna ports.
  • the two antenna ports being QCL means that the two antenna ports have at least one identical QCL parameter, and the QCL parameters include multiple antenna related QCL parameters and multiple antenna independent QCL parameters. .
  • the two antenna ports being QCL means that at least one QCL of the other of the two antenna ports can be inferred from at least one QCL parameter of one of the two antenna ports. parameter.
  • the fact that the two antenna ports are QCL means that the multi-antenna related reception of the wireless signal that can be transmitted from one of the two antenna ports infers the other of the two antenna ports. Multi-antenna related reception of wireless signals transmitted on antenna ports.
  • the two antenna ports being QCL means that the multi-antenna related transmission of the wireless signal that can be transmitted from one of the two antenna ports infers the other of the two antenna ports Multi-antenna related transmission of wireless signals transmitted on antenna ports.
  • the fact that the two antenna ports are QCL means that the multi-antenna related reception of the wireless signal that can be transmitted from one of the two antenna ports infers the other of the two antenna ports.
  • Multi-antenna related transmission of a wireless signal transmitted on an antenna port, a receiver of a wireless signal transmitted on one of the two antenna ports, and another antenna port of the two antenna ports The sender of the wireless signal sent on is the same.
  • the fact that two antenna ports are not QCL means that all or part of the large-scale characteristics of the wireless signal transmitted from one of the two antenna ports cannot be inferred. All or part of the large-scale characteristics of the wireless signal transmitted on the other of the two antenna ports.
  • the fact that the two antenna ports are not QCL means that the two antenna ports have at least one different QCL parameter, and the QCL parameters include multiple antenna related QCL parameters and multiple antenna independent QCL parameters. .
  • the fact that the two antenna ports are not QCL means that at least one of the two antenna ports cannot be inferred from at least one QCL parameter of one of the two antenna ports. QCL parameters.
  • the fact that the two antenna ports are not QCL means that the multi-antenna related reception of the wireless signal that cannot be transmitted from one of the two antenna ports is inferred to be another of the two antenna ports. Multi-antenna related reception of wireless signals transmitted on one antenna port.
  • the fact that the two antenna ports are not QCL means that the multi-antenna related transmission of the wireless signal that cannot be transmitted from one of the two antenna ports is inferred to be another of the two antenna ports. Multi-antenna related transmission of wireless signals transmitted on one antenna port.
  • the fact that the two antenna ports are not QCL means that the multi-antenna related reception of the wireless signal that cannot be transmitted from one of the two antenna ports is inferred to be another of the two antenna ports.
  • Multi-antenna related transmission of a wireless signal transmitted on one antenna port, a receiver of a wireless signal transmitted on one of the two antenna ports, and another antenna of the two antenna ports The sender of the wireless signal sent on the port is the same.
  • the multi-antenna related QCL parameters include one or more of an angle of arrival, an angle of departure, a spatial correlation, a multi-antenna related transmission, and a multi-antenna related reception.
  • an angle of arrival an angle of departure
  • a spatial correlation a multi-antenna related transmission
  • a multi-antenna related reception a multi-antenna related reception.
  • the multi-antenna-independent QCL parameters include: delay spread, Doppler spread, Doppler shift, path loss, average gain ( One or more of average gain).
  • the two antenna ports are spatial QCL refers to all or part of a multi-antenna related large-scale characteristic of a wireless signal that can be transmitted from one of the two antenna ports ( Properties) Inferring all or part of the multi-antenna-related large-scale characteristics of the wireless signal transmitted on the other of the two antenna ports.
  • the two antenna ports are spatial QCL, which means that the two antenna ports have at least one identical multi-antenna related QCL parameter.
  • the two antenna ports are spatial QCL, which means that the other of the two antenna ports can be inferred from at least one multi-antenna related QCL parameter of one of the two antenna ports. At least one multi-antenna related QCL parameter of the antenna port.
  • the two antenna ports are spatial QCL, which means that the multi-antenna related reception of the wireless signal that can be transmitted from one of the two antenna ports infers the other of the two antenna ports. Multi-antenna related reception of wireless signals transmitted on one antenna port.
  • the two antenna ports are spatial QCL means that the multi-antenna related transmission of the wireless signal that can be transmitted from one of the two antenna ports infers the other of the two antenna ports Multi-antenna related transmission of wireless signals transmitted on one antenna port.
  • the two antenna ports are spatial QCL, which means that the multi-antenna related reception of the wireless signal that can be transmitted from one of the two antenna ports infers the other of the two antenna ports.
  • Multi-antenna related transmission of a wireless signal transmitted on one antenna port, a receiver of a wireless signal transmitted on one of the two antenna ports, and another antenna of the two antenna ports The sender of the wireless signal sent on the port is the same.
  • the two antenna ports are not spatial QCL refers to all or part of the multi-antenna related large-scale characteristics of the wireless signal that cannot be transmitted from one of the two antenna ports. (properties) Inferring all or part of the multi-antenna-related large-scale characteristics of the wireless signal transmitted on the other of the two antenna ports.
  • the two antenna ports are not spatial QCL, which means that the two antenna ports have at least one different multi-antenna related QCL parameter.
  • the fact that the two antenna ports are not spatial QCL means that one of the two antenna ports cannot be inferred from at least one multi-antenna related QCL parameter of one of the two antenna ports. At least one multi-antenna related QCL parameter of an antenna port.
  • the two antenna ports are not spatial QCL, meaning that the multi-antenna related reception of the wireless signal that cannot be transmitted from one of the two antenna ports is inferred from the two antenna ports. Multi-antenna related reception of wireless signals transmitted on another antenna port.
  • the two antenna ports are not spatial QCL, meaning that the multi-antenna related transmission of the wireless signal that cannot be transmitted from one of the two antenna ports is inferred from the two antenna ports. Multi-antenna related transmission of wireless signals transmitted on another antenna port.
  • the two antenna ports are not spatial QCL, meaning that the multi-antenna related reception of the wireless signal that cannot be transmitted from one of the two antenna ports is inferred from the two antenna ports.
  • Multi-antenna related transmission of a wireless signal transmitted on another antenna port, a receiver of a wireless signal transmitted on one of the two antenna ports, and another of the two antenna ports The sender of the wireless signal transmitted on the antenna port is the same.
  • the multi-element related large-scale characteristics of a given wireless signal include angle of arrival, angle of departure, spatial correlation, multi-antenna related transmission, multi-antenna related reception. One or more.
  • Embodiment 16 illustrates a schematic diagram of the relationship between the transmission power of a given wireless signal and G2 components, as shown in FIG.
  • the given wireless signal corresponds to the M1 reference signals and the M2 reference signals in the present application; the given wireless signal corresponds to the first wireless signal in the application; the G2 corresponds to Embodiment 11
  • the G1 in the application; the first power configuration information in the present application is related to one of the G2 components; the second power configuration information in the present application is related to one of the G2 components.
  • the transmission power of the given wireless signal in the present application is linearly related to the G2 components, and the G2 is a positive integer.
  • the unit of transmission power of the given wireless signal is dBm.
  • the first power is P PUSCH,c (i)
  • the P PUSCH,c (i) is a PUSCH (Physical Uplink Shared CHannel) in the i-th subframe of the serving cell with index c
  • the transmission power of the UE on the shared channel which is transmitted on the serving cell indexed c.
  • the first power is P PUSCH,f,c (i,j,q d ,l), and the P PUSCH,f,c (i,j,q d ,l) is at index In the serving cell of c, the parameter set configuration of the index j and the PUSCH power control adjustment index of the index l are PUSCH (Physical Uplink Shared CHannel) in the ith PUSCH transmission period (transmission period) on the carrier with index f The transmission power of the UE on the channel, the given radio signal being transmitted on the serving cell indexed c.
  • PUSCH,f,c (i,j,q d ,l) see TS38.213.
  • the transmit power of the given radio signal is P SRS,c (i)
  • the P SRS,c (i) is used by the UE to send the SRS in the i-th subframe of the serving cell with index c Transmission power, the given wireless signal being transmitted on a serving cell indexed c.
  • the P SRS,c (i) see TS 36.213.
  • the transmit power of the given wireless signal is P SRS,f,c (i,q s ,l), and the P SRS,f,c (i,q s ,l) is in the index
  • the SRS power control adjustment state of index l is used in the serving cell of c.
  • the UE transmits the transmission power used by the SRS, and the given radio signal is transmitted on the serving cell with index c.
  • the transmit power of the given wireless signal is linearly related to a first component that is related to the bandwidth occupied by the given wireless signal.
  • the linear coefficient between the transmission power of the given wireless signal and the first component is one.
  • the linear coefficient between the transmission power of the given wireless signal and the first component is 10 log 10 (2 ⁇ ), and the specific definition of ⁇ is referred to TS 38.213.
  • the first component is 10 log 10 (M PUSCH,c (i)), and the M PUSCH,c (i) is the i-th subframe in the serving cell with index c The bandwidth allocated by the PUSCH in units of RBs, the given radio signal being transmitted on the serving cell indexed c.
  • M PUSCH,c (i) see TS 36.213.
  • the first component is 10 log 10 ), said The bandwidth in RB allocated to the PUSCH in the i-th PUSCH transmission period on the carrier indexed as f in the serving cell indexed by c, the given radio signal being transmitted on the serving cell indexed c. Said See TS38.213 for specific definitions.
  • the first component is 10 log 10 (M SRS,c ), and the M SRS,c is an RB allocated by the SRS in the i th subframe in the serving cell with the index c
  • the given wireless signal is transmitted on a serving cell indexed c.
  • M SRS,c For the specific definition of the M SRS,c , see TS36.213.
  • the first component is 10 log 10 (M SRS, f, c (i)), and the M SRS, f, c (i) is in a serving cell with index c
  • M SRS,f,c (i) see TS38.213.
  • the transmit power of the given wireless signal is linearly related to the second component, and the second component is related to a scheduling type corresponding to the PUSCH.
  • the linear coefficient between the transmit power of the given wireless signal and the second component is one.
  • the scheduling type includes a semi-persistent grant, a dynamic scheduled grant, and a random access response grant.
  • the second component is P O_PUSCH,c (j)
  • the P O_PUSCH,c (j) is the scheduling on the serving cell with index c and index j A type-dependent power offset, the given wireless signal being transmitted on a serving cell indexed c.
  • the P O_PUSCH,c (j) see TS36.213.
  • the second component is configured by higher layer signaling.
  • the second component is common to the cell.
  • the transmit power of the given wireless signal is linearly related to a third component, the third component being related to channel quality between the UE and the recipient of the given wireless signal.
  • the linear coefficient between the transmission power of the given wireless signal and the third component is a non-negative number less than or equal to one.
  • the linear coefficient between the transmission power of the given wireless signal and the third component is ⁇ c (j), and the ⁇ c (j) is at the index c.
  • the linear coefficient between the transmission power of the given wireless signal and the third component is ⁇ SRS,c .
  • ⁇ SRS,c For a specific definition of the ⁇ SRS,c , see TS 36.213.
  • the linear coefficient between the transmission power of the given wireless signal and the third component is configured by higher layer signaling.
  • the linear coefficient between the transmission power of the given wireless signal and the third component is common to the cell.
  • the third component is PL c
  • the PL c is a path loss estimation value in dB of the UE in a serving cell with index c, the given The wireless signal is transmitted on the serving cell indexed c.
  • the linear coefficient between the transmission power of the given wireless signal and the third component is ⁇ f,c (j), and the third component is PL f,c ( q d )
  • the PL f,c (q d ) is a path loss estimate calculated in dB by the UE on the reference signal q d on the carrier indexed f in the serving cell with index c Value
  • the given wireless signal is transmitted on a serving cell indexed c.
  • the linear coefficient between the transmission power of the given wireless signal and the third component is ⁇ SRS,f,c (q s ), and the third component is PL f , c (q s ), the PL f,c (q s ) is calculated in dB on the SRS resource set q s on the carrier with index f in the serving cell with index c A path loss estimate, the given wireless signal being transmitted on a serving cell indexed c.
  • ⁇ SRS, f, c (q s ) and the PL f,c (q s ) see TS38.213.
  • the transmit power of the given wireless signal is linearly related to the fourth component.
  • the linear coefficient between the transmission power of the given wireless signal and the fourth component is one.
  • the fourth component is related to an MCS (Modulation and Coding Scheme) of the PUSCH.
  • the fourth component is ⁇ TF,c (i), and the ⁇ TF,c (i) is the i-th subframe in the serving cell with index c and the UE
  • the MCS related power offset, the given wireless signal is transmitted on the serving cell indexed c.
  • ⁇ TF,c (i) see TS 36.213.
  • the fourth component is P SRS — OFFSET, c (i), and the P SRS — OFFSET, c (i) is the transmit power of the SRS in the i th subframe in the serving cell with the index c
  • the given radio signal is transmitted on the serving cell indexed c, relative to the offset of the PUSCH.
  • P SRS_OFFSET,c (i) see TS36.213.
  • the fourth component is related to a target received power of the given wireless signal.
  • the fourth component is P O_SRS, c (m), and the specific definition of the P O_SRS, c (m) is referred to TS 36.213.
  • the fourth component is P O_SRS,f,c (q s ), and the specific definition of the P O_SRS,c (m) is referred to TS38.213.
  • the fourth component is P O_PUSCH, f, c (j), and the specific definition of the P O_PUSCH, f, c (j) is referred to TS 38.213.
  • the fourth component is configured by higher layer signaling.
  • the fourth component is common to the cell.
  • the fourth component is UE-specific.
  • the transmit power of the given wireless signal is linearly related to a fifth component, and the linear coefficient between the transmit power of the given wireless signal and the fifth component is one.
  • the fifth component is f c (i)
  • the f c (i) is a state of power control adjustment on the PUSCH in the i-th subframe in the serving cell with the index c
  • the given wireless signal is transmitted on a serving cell indexed c.
  • the fifth component is f SRS,c (i), and the f SRS,c (i) is power control on the SRS in the i-th subframe in the serving cell with index c
  • the adjusted state, the given wireless signal is transmitted on the serving cell indexed c.
  • f SRS,c (i) see TS 36.213.
  • the fifth component is f f,c (i,l)
  • the f f,c (i,l) is an index index f in the serving cell with index c
  • the fifth component is h f,c (i,l), and the h f,c (i,l) is an index index f in the serving cell with index c
  • the transmit power of the given wireless signal is equal to P CMAX,c (i), and the P CMAX,c (i) is configured by the UE in the i-th subframe of the serving cell with index c
  • the transmit power is the highest threshold, and the given wireless signal is transmitted on the serving cell indexed c.
  • the transmit power of the given wireless signal is less than P CMAX,c (i).
  • the transmit power of the given wireless signal is equal to a minimum of P CMAX,c (i) and a reference transmit power, the reference transmit power being equal to the first component, the second component, A linear superposition of the third component, the fourth component, and the fifth component.
  • the transmit power of the given wireless signal is equal to a minimum of P CMAX,c (i) and a reference transmit power, the reference transmit power being equal to the first component, the third component, A linear superposition of the fourth component and the fifth component is described.
  • the transmit power of the given radio signal is equal to P CMAX,f,c (i), and the P CMAX,f,c (i) is the carrier with index f in the serving cell with index c
  • the transmit power of the given radio signal is equal to P CMAX,f,c (i), and the P CMAX,f,c (i) is the carrier with index f in the serving cell with index c
  • the highest transmit power threshold configured by the UE during the i-th SRS transmission period, and the given wireless signal is transmitted on the serving cell with index c.
  • the transmit power of the given wireless signal is less than P CMAX,f,c (i).
  • the transmit power of the given wireless signal is equal to a minimum of P CMAX,f,c (i) and the reference transmit power, the reference transmit power being equal to the first component and the third component a linear superposition of the fourth component and the fifth component.
  • the G2 components include the first component, the second component, the third component, the fourth component, and the fifth component.
  • the G2 components include the first component, the third component, the fourth component, and the fifth component.
  • the first power configuration information in the application indicates a power offset
  • the fifth component and the power offset are linearly correlated
  • the fifth component and the power offset The linear coefficient between is 1.
  • the second power configuration information in the application indicates a power offset
  • the fifth component and the power offset are linearly correlated
  • the fifth component and the power offset The linear coefficient between is 1.
  • the embodiment 16A corresponds to the G2 being equal to 5, and the G2 components include the first component, the second component, the third component, the fourth component, and the fifth component of the given wireless signal.
  • the embodiment 16B corresponds to the G2 being equal to 4, and the G2 components include the transmit power and the transmit power of the given wireless signal of the first component, the third component, the fourth component, and the fifth component.
  • Embodiment 17 exemplifies a structural block diagram of a processing device in a UE, as shown in FIG.
  • the UE processing apparatus 1200 is mainly composed of a first receiver module 1201 and a first transmitter module 1202.
  • the first receiver module 1201 includes the receiver 456, the receiving processor 452, and the controller/processor 490 in Embodiment 4.
  • the first receiver module 1201 includes at least two of the receiver 456, the receiving processor 452, and the controller/processor 490 in Embodiment 4.
  • the first transmitter module 1202 includes a transmitter 456, a transmit processor 455, and a controller/processor 490 in Embodiment 4.
  • the first transmitter module 1202 includes at least two of the transmitter 456, the transmit processor 455, and the controller/processor 490 in Embodiment 4.
  • a first receiver module 1201 receiving first information, the first information comprising first power configuration information, the first information being used to determine M multi-carrier symbols on a first sub-band; receiving second information The second information includes second power configuration information, where the second information is used to determine P multi-carrier symbols on the first sub-band;
  • a first transmitter module 1202 determining M1 multicarrier symbols from M multicarrier symbols on the first subband; for M multicarrier symbols on the first subband, only in the M1 M1 reference signals are respectively transmitted in the multi-carrier symbols; M2 reference signals are respectively transmitted in M2 multi-carrier symbols among the P multi-carrier symbols on the first sub-band.
  • the M is a positive integer greater than 1
  • the P is a positive integer greater than 1
  • the M1 is a positive integer less than the M
  • the M2 is a positive integer not greater than the P
  • the sum of the M1 and the M2 is equal to the M
  • the transmit power of the M2 reference signals is related to the first power configuration information and is independent of the second power configuration information.
  • the first information is further used to determine P1 multicarrier symbols on the first subband, and the M2 multicarrier symbols belong to P1 multicarrier symbols on the first subband And P1 multicarrier symbols on the first subband belong to P multicarrier symbols on the first subband, and P1 is a positive integer not greater than the P.
  • the first receiver module 1201 further performs K first access detections, the K being a positive integer not greater than 2; wherein the K first access detections are used to determine The M1 multicarrier symbols and the M2 multicarrier symbols are described.
  • the above method is characterized by comprising:
  • the transmission powers of the M1 reference signals and the M2 reference signals are the same, and the first power configuration information is used to determine transmit powers of the M1 reference signals and the M2 reference signals. .
  • the air interface resource occupied by at least one of the M1 reference signals is used to determine the M1 multicarrier symbols from the M multicarrier symbols on the first subband.
  • the first receiver module 1201 further receives third information; wherein the first information is used to determine an assumed transmission order of the M1 reference signals and the M2 reference signals, The third information is used to determine whether the transmission order of the M1 reference signals and the M2 reference signals is consistent with the assumed transmission order.
  • the first transmitter module 1202 further sends a first wireless signal in a first time-frequency resource, where the second information further includes configuration information of the first wireless signal, the second The power configuration information is used to determine a transmit power of the first wireless signal, the first wireless signal does not include any one of the M2 reference signals, and the time-frequency resource occupied by the first wireless signal And including at least one multi-carrier symbol of the first time-frequency resource that belongs to P1 multi-carrier symbols on the first sub-band and does not belong to the M2 multi-carrier symbols.
  • the first receiver module 1201 further receives fourth information, where the fourth information is used to determine P1 belonging to the first sub-band among the first time-frequency resources. At least one multicarrier symbol that is multicarrier symbols and does not belong to the M2 multicarrier symbols is occupied by the first wireless signal.
  • the first receiver module 1201 further receives fifth information; wherein the fifth information is used to determine F antenna port sets, the F is a positive integer, and the F antenna port sets are Any of the antenna port sets includes a positive integer number of antenna port groups, one antenna port group includes a positive integer number of antenna ports; and the transmit antenna port group of the M1 reference signals and any one of the M2 reference signals A set of the same antenna port belonging to the set of F antenna ports.
  • Embodiment 18 exemplifies a structural block diagram of a processing device in a base station device, as shown in FIG.
  • the processing device 1300 in the base station device is mainly composed of a second transmitter module 1301 and a second receiver module 1302.
  • the second transmitter module 1301 includes the transmitter 416, the transmit processor 415, and the controller/processor 440 in Embodiment 4.
  • the second transmitter module 1301 includes at least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 in Embodiment 4.
  • the second receiver module 1302 includes the receiver 416, the receiving processor 412, and the controller/processor 440 in Embodiment 4.
  • the second receiver module 1302 includes at least the first two of the receiver 416, the receiving processor 412, and the controller/processor 440 in Embodiment 4.
  • a second transmitter module 1301 transmitting first information, the first information comprising first power configuration information, the first information being used to determine M multi-carrier symbols on a first sub-band; transmitting second information The second information includes second power configuration information, where the second information is used to determine P multi-carrier symbols on the first sub-band;
  • a second receiver module 1302 respectively receiving M1 reference signals in M1 multicarrier symbols of the M multicarrier symbols on the first subband; P multicarriers on the first subband M2 reference signals are respectively received in M2 multicarrier symbols in the symbol.
  • the M is a positive integer greater than 1
  • the P is a positive integer greater than 1
  • the M1 is a positive integer less than the M
  • the M2 is a positive integer not greater than the P
  • the sum of the M1 and the M2 is equal to the M
  • the transmit power of the M2 reference signals is related to the first power configuration information and is independent of the second power configuration information.
  • the first information is further used to determine P1 multicarrier symbols on the first subband, and the M2 multicarrier symbols belong to P1 multicarrier symbols on the first subband And P1 multicarrier symbols on the first subband belong to P multicarrier symbols on the first subband, and P1 is a positive integer not greater than the P.
  • the transmission powers of the M1 reference signals and the M2 reference signals are the same, and the first power configuration information is used to determine transmit powers of the M1 reference signals and the M2 reference signals. .
  • the foregoing base station device is characterized in that an air interface resource occupied by at least one of the M1 reference signals is used to determine the M multi-carrier symbols from the first sub-band. M1 multi-carrier symbols.
  • the second transmitter module 1301 further transmits third information; wherein the first information is used to determine an assumed transmission order of the M1 reference signals and the M2 reference signals, The third information is used to determine whether the transmission order of the M1 reference signals and the M2 reference signals is consistent with the assumed transmission order.
  • the second receiver module 1302 further receives a first wireless signal in a first time-frequency resource, where the second information further includes configuration information of the first wireless signal, the second The power configuration information is used to determine a transmit power of the first wireless signal, the first wireless signal does not include any one of the M2 reference signals, and the time-frequency resource occupied by the first wireless signal And including at least one multi-carrier symbol of the first time-frequency resource that belongs to P1 multi-carrier symbols on the first sub-band and does not belong to the M2 multi-carrier symbols.
  • the second transmitter module 1301 further sends fourth information, where the fourth information is used to determine P1 belonging to the first sub-band among the first time-frequency resources. At least one multicarrier symbol that is multicarrier symbols and does not belong to the M2 multicarrier symbols is occupied by the first wireless signal.
  • the second transmitter module 1301 further sends fifth information; wherein the fifth information is used to determine F antenna port sets, the F is a positive integer, and the F antenna port sets are Any of the antenna port sets includes a positive integer number of antenna port groups, one antenna port group includes a positive integer number of antenna ports; and the transmit antenna port group of the M1 reference signals and any one of the M2 reference signals A set of the same antenna port belonging to the set of F antenna ports.
  • the UE or the terminal in the present application includes but is not limited to a wireless communication device such as a mobile phone, a tablet computer, a notebook, an internet card, a low power consumption device, an eMTC device, an NB-IoT device, and an in-vehicle communication device.
  • the base station or network side device in this application includes, but is not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, an eNB, a gNB, a transmission receiving node TRP, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的用户设备、基站中的方法和装置。用户设备接收第一信息,所述第一信息包括第一功率配置信息,所述第一信息被用于确定第一子频带上的M个多载波符号;对于所述第一子频带上的M个多载波符号,仅在所述M1个多载波符号中分别发送M1个参考信号;接收第二信息,所述第二信息包括第二功率配置信息,所述第二信息被用于确定所述第一子频带上的P个多载波符号;在所述第一子频带上的P个多载波符号中的M2个多载波符号中分别发送M2个参考信号,所述M1与所述M2的和等于所述M;所述M2个参考信号的发送功率与所述第一功率配置信息有关且与所述第二功率配置信息无关。

Description

一种被用于无线通信的用户设备、基站中的方法和装置 技术领域
本申请涉及无线通信系统中的无线信号的传输方法和装置,尤其是支持蜂窝网的无线通信系统中的无线信号的传输方法和装置。
背景技术
传统的3GPP(3rd Generation Partner Project,第三代合作伙伴项目)LTE(Long-term Evolution,长期演进)系统中,数据传输只能发生在授权频谱上,然而随着业务量的急剧增大,尤其在一些城市地区,授权频谱可能难以满足业务量的需求。Release 13及Release 14中非授权频谱上的通信被蜂窝系统引入,并用于下行和上行数据的传输。为保证和其它非授权频谱上的接入技术兼容,LBT(Listen Before Talk,会话前侦听)技术被LAA(Licensed Assisted Access,授权频谱辅助接入)采纳以避免因多个发射机同时占用相同的频率资源而带来的干扰。LTE系统的发射机采纳准全向天线来执行LBT。
目前,5G NR(New Radio Access Technology,新无线接入技术)的技术讨论正在进行中,其中大规模(Massive)MIMO(Multi-Input Multi-Output)成为下一代移动通信的一个研究热点。大规模MIMO中,多个天线通过波束赋形(Beamforming),形成指向一个特定空间方向的波束来提高通信质量,当考虑到波束赋形带来的覆盖特性时,传统的LAA技术需要被重新考虑,比如LBT方案。
发明内容
发明人通过研究发现,5G系统中,波束赋形将会被大规模使用,如何提升基于波束赋形的上行无线信号的传输效率是需要解决的一个关键问题。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的UE(User Equipment,用户设备)中的实施例和实施例中的特征可以应用到基站中,反之亦然。进一步的,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种用于无线通信的用户设备中的方法,其特征在于,包括:
接收第一信息,所述第一信息包括第一功率配置信息,所述第一信息被用于确定第一子频带上的M个多载波符号,所述M是大于1的正整数;
从所述第一子频带上的M个多载波符号中确定M1个多载波符号;对于所述第一子频带上的M个多载波符号,仅在所述M1个多载波符号中分别发送M1个参考信号,所述M1是小于所述M的正整数;
接收第二信息,所述第二信息包括第二功率配置信息,所述第二信息被用于确定所述第一子频带上的P个多载波符号,所述P是大于1的正整数;
在所述第一子频带上的P个多载波符号中的M2个多载波符号中分别发送M2个参考信号,所述M2是不大于所述P的正整数,所述M1与所述M2的和等于所述M;
其中,所述M2个参考信号的发送功率与所述第一功率配置信息有关且与所述第二功率配置信息无关。
作为一个实施例,本申请要解决的问题是:针对多个波束的上行无线信号的传输可能需要采用多个基于波束赋形的LBT的过程,而这多个LBT可能会产生多个波束中只有部分波束上的上行无线信号可以被发送,因此多个LBT下的如何实现所有波束的上行无线信号的传输是需要解决的一个关键问题。上述方案通过设计多个备选时频资源解决了这个问题,从而提高了上行无线信号的传输效率。
作为一个实施例,上述方法的实质在于,基站指示两个非授权频谱上的备选时频资源供用户选择其中的M个多载波符号来发送M个参考信号,用于比如发送或接收波束扫描的目的;M1个参考信号和M2个参考信号分别属于这两个备选时频资源;为了获得公平的信道/波束质量的比较,M1个参考信号和M2个参考信号的发送功率要相同,且由同一个功率配置信息确定。采用上述方法的好处在于,通过配置多个备选时频资源,可以解决非授权频谱下只配置M个多载波符号用于M个参考信号传输可能带来的部分参考信号不能被发送的情况。
根据本申请的一个方面,上述方法的特征在于,所述第一信息还被用于确定所述第一子频带上的P1个多载波符号,所述M2个多载波符号属于所述第一子频带上的P1个多载波符号,所述第一子频带上的P1个多载波符号属于所述第一子频带上的P个多载波符号,所述P1是不大于所述P的正整数。
根据本申请的一个方面,上述方法的特征在于,包括:
执行K个第一接入检测,所述K是不大于2的正整数;
其中,所述K个第一接入检测被用于确定所述M1个多载波符号和所述M2个多载波符号。根据本申请的一个方面,上述方法的特征在于,包括:
根据本申请的一个方面,上述方法的特征在于,所述M1个参考信号和所述M2个参考信号的发送功率相同,所述第一功率配置信息被用于确定所述M1个参考信号和所述M2个参考信号的发送功率。
根据本申请的一个方面,上述方法的特征在于,所述M1个参考信号中的至少一个参考信号所占用的空口资源被用于从所述第一子频带上的M个多载波符号中确定所述M1个多载波符号。
作为一个实施例,上述方法的实质在于,基站在备选时频资源上检测信号,目标参考信号组是所述M1个参考信号中的至少一个参考信号,通过检测出目标参考信号组可以进一步检测出M1个参考信号中的其余参考信号;在目标参考信号组的检测中,基站分别采用S个备选空口资源进行检测,检测结果最好的一个备选空口资源就是目标参考信号组的空口资源。采用上述方法的好处在于,通过盲检M1个参考信号中的至少一个参考信号可以进一步检测出M1个参考信号中的其余参考信号,从而基站可以获知哪些参考信号的发送波束没有通过上行LBT。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第三信息;
其中,所述第一信息被用于确定所述M1个参考信号和所述M2个参考信号的假定发送顺序,所述第三信息被用于确定所述M1个参考信号和所述M2个参考信号的发送顺序与所述假定发送顺序是否一致。
根据本申请的一个方面,上述方法的特征在于,包括:
在第一时频资源中发送第一无线信号;
其中,所述第二信息还包括所述第一无线信号的配置信息,所述第二功率配置信息被用于确定所述第一无线信号的发送功率,所述第一无线信号不包括所述M2个参考信号中的任一参考信号,所述第一无线信号所占用的时频资源包括所述第一时频资源中属于所述第一子频带上的P1个多载波符号且不属于所述M2个多载波符号的至少一个多载波符号。
作为一个实施例,上述方法的实质在于,P1个多载波符号中不属于M2个多载波符号的多载波符号可以被用于其他无线信号的发送,比如数据、DMRS(解调参考信号,Demodulation Reference Signal)、SRS(Sounding Reference Signal,探测参考信号)、PTRS(Phase-Tracking Reference Signal,相位跟踪参考信号)等。采用上述方法的好处在于,尽可能的充分利用时频资源,以提高系统吞吐量。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第四信息;
其中,所述第四信息被用于确定所述所述第一时频资源中属于所述第一子频带上的P1个多载波符号且不属于所述M2个多载波符号的至少一个多载波符号被所述第一无线信号占用。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第五信息;
其中,所述第五信息被用于确定F个天线端口集合,所述F是正整数,所述F个天线端口集合中的任一天线端口集合包括正整数个天线端口组,一个天线端口组包括正整数个天线端口;所述M1个参考信号和所述M2个参考信号中的任一参考信号的发送天线端口组都属于所述F个天线端口集合中的同一个天线端口集合。
本申请公开了一种用于无线通信的基站设备中的方法,其特征在于,包括:
发送第一信息,所述第一信息包括第一功率配置信息,所述第一信息被用于确定第一子频带上的M个多载波符号,所述M是大于1的正整数;
在所述第一子频带上的M个多载波符号中的M1个多载波符号中分别接收M1个参考信号,所述M1是小于所述M的正整数;
发送第二信息,所述第二信息包括第二功率配置信息,所述第二信息被用于确定所述第一子频带上的P个多载波符号,所述P是大于1的正整数;
在所述第一子频带上的P个多载波符号中的M2个多载波符号中分别接收M2个参考信号,所述M2是不大于所述P的正整数,所述M1与所述M2的和等于所述M;
其中,所述M2个参考信号的发送功率与所述第一功率配置信息有关且与所述第二功率配置信息无关。
根据本申请的一个方面,上述方法的特征在于,所述第一信息还被用于确定所述第一子频带上的P1个多载波符号,所述M2个多载波符号属于所述第一子频带上的P1个多载波符号,所述第一子频带上的P1个多载波符号属于所述第一子频带上的P个多载波符号,所述P1是不大于所述P的正整数。
根据本申请的一个方面,上述方法的特征在于,所述M1个参考信号和所述M2个参考信号的发送功率相同,所述第一功率配置信息被用于确定所述M1个参考信号和所述M2个参考信号的发送功率。
根据本申请的一个方面,上述方法的特征在于,所述M1个参考信号中的至少一个参考信号所占用的空口资源被用于从所述第一子频带上的M个多载波符号中确定所述M1个多载波符号。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第三信息;
其中,所述第一信息被用于确定所述M1个参考信号和所述M2个参考信号的假定发送顺序,所述第三信息被用于确定所述M1个参考信号和所述M2个参考信号的发送顺序与所述假定发送顺序是否一致。
根据本申请的一个方面,上述方法的特征在于,包括:
在第一时频资源中接收第一无线信号;
其中,所述第二信息还包括所述第一无线信号的配置信息,所述第二功率配置信息被用于确定所述第一无线信号的发送功率,所述第一无线信号不包括所述M2个参考信号中的任一参考信号,所述第一无线信号所占用的时频资源包括所述第一时频资源中属于所述第一子频带上的P1个多载波符号且不属于所述M2个多载波符号的至少一个多载波符号。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第四信息;
其中,所述第四信息被用于确定所述所述第一时频资源中属于所述第一子频带上的P1个多载波符号且不属于所述M2个多载波符号的至少一个多载波符号被所述第一无线信号占用。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第五信息;
其中,所述第五信息被用于确定F个天线端口集合,所述F是正整数,所述F个天线端口集合中的任一天线端口集合包括正整数个天线端口组,一个天线端口组包括正整数个天线端口;所述M1个参考信号和所述M2个参考信号中的任一参考信号的发送天线端口组都属于所述F个天线端口集合中的同一个天线端口集合。
本申请公开了一种用于无线通信的用户设备,其特征在于,包括:
第一接收机模块,接收第一信息,所述第一信息包括第一功率配置信息,所述第一信息被用于确定第一子频带上的M个多载波符号,所述M是大于1的正整数;接收第二信息,所述第二信息包括第二功率配置信息,所述第二信息被用于确定所述第一子频带上的P个多载波符号,所述P是大于1的正整数;
第一发射机模块,从所述第一子频带上的M个多载波符号中确定M1个多载波符号;对于所述第一子频带上的M个多载波符号,仅在所述M1个多载波符号中分别发送M1个参考信号,所述M1是小于所述M的正整数;在所述第一子频带上的P个多载波符号中的M2个多载波符号中分别发送M2个参考信号,所述M2是不大于所述P的正整数,所述M1与所述M2的和等于所述M;
其中,所述M2个参考信号的发送功率与所述第一功率配置信息有关且与所述第二功率配置信息无关。
作为一个实施例,上述用户设备的特征在于,所述第一信息还被用于确定所述第一子频带上的P1个多载波符号,所述M2个多载波符号属于所述第一子频带上的P1个多载波符号,所述第一子频带上的P1个多载波符号属于所述第一子频带上的P个多载波符号,所述P1是不大于所述P的正整数。
作为一个实施例,上述用户设备的特征在于,所述第一接收机模块还执行K个第一接入检测,所述K是不大于2的正整数;
其中,所述K个第一接入检测被用于确定所述M1个多载波符号和所述M2个多载波符号。根据本申请的一个方面,上述方法的特征在于,包括:
作为一个实施例,上述用户设备的特征在于,所述M1个参考信号和所述M2个参考信号的发送功率相同,所述第一功率配置信息被用于确定所述M1个参考信号和所述M2个参考信号的发送功率。
作为一个实施例,上述用户设备的特征在于,所述M1个参考信号中的至少一个参考信号所占用的空口资源被用于从所述第一子频带上的M个多载波符号中确定所述M1个多载波符号。
作为一个实施例,上述用户设备的特征在于,所述第一接收机模块还接收第三信息;其中,所述第一信息被用于确定所述M1个参考信号和所述M2个参考信号的假定发送顺序,所述第三信息被用于确定所述M1个参考信号和所述M2个参考信号的发送顺序与所述假定发送顺序是否一致。
作为一个实施例,上述用户设备的特征在于,所述第一发射机模块还在第一时频资源中发送第一无线信号;其中,所述第二信息还包括所述第一无线信号的配置信息,所述第二功率配置信息被用于确定所述第一无线信号的发送功率,所述第一无线信号不包括所述M2个参考信号中的任一参考信号,所述第一无线信号所占用的时频资源包括所述第一时频资源中属于所述第一子频带上的P1个多载波符号且不属于所述M2个多载波符号的至少一个多载波符号。
作为一个实施例,上述用户设备的特征在于,所述第一接收机模块还接收第四信息;其中,所述第四信息被用于确定所述所述第一时频资源中属于所述第一子频带上的P1个多载波符号且不属于所述M2个多载波符号的至少一个多载波符号被所述第一无线信号占用。
作为一个实施例,上述用户设备的特征在于,所述第一接收机模块还接收第五信息;其中,所述第五信息被用于确定F个天线端口集合,所述F是正整数,所述F个天线端口集合中的任一天线端口集合包括正整数个天线端口组,一个天线端口组包括正整数个天线端口;所述M1个参考信号和所述M2个参考信号中的任一参考信号的发送天线端口组都属于所述F个天线端口集合中的同一个天线端口集合。
本申请公开了一种用于无线通信的基站设备,其特征在于,包括:
第二发射机模块,发送第一信息,所述第一信息包括第一功率配置信息,所述第一信息被用于确定第一子频带上的M个多载波符号,所述M是大于1的正整数;发送第二信息,所述第二信息包括第二功率配置信息,所述第二信息被用于确定所述第一子频带上的P个多载波符号,所述P是大于1的正整数;
第二接收机模块,在所述第一子频带上的M个多载波符号中的M1个多载波符号中分别接收M1个参考信号,所述M1是小于所述M的正整数;在所述第一子频带上的P个多载波符号中的M2个多载波符号中分别接收M2个参考信号,所述M2是不大于所述P的正整数,所述M1与所述M2的和等于所述M;
其中,所述M2个参考信号的发送功率与所述第一功率配置信息有关且与所述第二功率配置信息无关。
作为一个实施例,上述基站设备的特征在于,所述第一信息还被用于确定所述第一子频带上的P1个多载波符号,所述M2个多载波符号属于所述第一子频带上的P1个多载波符号,所述第一子频带上的P1个多载波符号属于所述第一子频带上的P个多载波符号,所述P1是不大于所述P的正整数。
作为一个实施例,上述基站设备的特征在于,所述M1个参考信号和所述M2个参考信号的发送功率相同,所述第一功率配置信息被用于确定所述M1个参考信号和所述M2个参考信号的发送功率。
作为一个实施例,上述基站设备的特征在于,所述M1个参考信号中的至少一个参考信号所占用的空口资源被用于从所述第一子频带上的M个多载波符号中确定所述M1个多载波符号。
作为一个实施例,上述基站设备的特征在于,所述第二发射机模块还发送第三信息;其中,所述第一信息被用于确定所述M1个参考信号和所述M2个参考信号的假定发送顺序,所述第三信息被用于确定所述M1个参考信号和所述M2个参考信号的发送顺序与所述假定发送顺序是否一致。
作为一个实施例,上述基站设备的特征在于,所述第二接收机模块还在第一时频资源中接收第一无线信号;其中,所述第二信息还包括所述第一无线信号的配置信息,所述第二功率配置信息被用于确定所述第一无线信号的发送功率,所述第一无线信号不包括所述M2个参考信号中的任一参考信号,所述第一无线信号所占用的时频资源包括所述第一时频资源中属于所述第一子频带上的P1个多载波符号且不属于所述M2个多载波符号的至少一个多载波符号。
作为一个实施例,上述基站设备的特征在于,所述第二发射机模块还发送第四信息;其中,所述第四信息被用于确定所述所述第一时频资源中属于所述第一子频带上的P1个多载波符号且不属于所述M2个多载波符号的至少一个多载波符号被所述第一无线信号占用。
作为一个实施例,上述基站设备的特征在于,所述第二发射机模块还发送第五信息; 其中,所述第五信息被用于确定F个天线端口集合,所述F是正整数,所述F个天线端口集合中的任一天线端口集合包括正整数个天线端口组,一个天线端口组包括正整数个天线端口;所述M1个参考信号和所述M2个参考信号中的任一参考信号的发送天线端口组都属于所述F个天线端口集合中的同一个天线端口集合。
作为一个实施例,相比现有公开技术,本申请具有如下主要技术优势:
-.通过配置更多的备选时频资源供用户选择来发送上行参考信号,可以解决非授权频谱下只配置M个多载波符号用于M个参考信号传输可能带来的部分参考信号不能被发送的情况。
-.对不同备选时频资源中发送的上行参考信号使用相同的发送功率,且由同一个功率配置信息确定,以进行公平的信道/波束质量的比较。
-.基站通过盲检多个参考信号中的至少一个参考信号可以进一步检测出其余参考信号,从而基站可以获知哪些参考信号的发送波束没有通过上行LBT。
-.备选时频资源中未被用于发送上行参考信号的资源可以被用于其他无线信号的发送,比如数据、DMRS、SRS、PTRS等,因此通过尽可能的充分利用时频资源,以提高系统吞吐量。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信息、第二信息、M1个参考信号和M2个参考信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的演进节点和UE的示意图;
图5示出了根据本申请的一个实施例的无线传输的流程图;
图6示出了根据本申请的另一个实施例的无线传输的流程图;
图7A-7B示出了根据本申请的一个实施例的第一信息与M1个多载波符号和M2个多载波符号的关系的示意图;
图8A-8C分别示出了根据本申请的一个实施例的给定第一接入检测和N个多载波符号的关系的示意图;
图9A-9B分别示出了根据本申请的一个实施例的给定接入检测和给定无线信号的空间关系的示意图;
图10A-10C分别示出了根据本申请的一个实施例的一次接入检测的示意图;
图11示出了根据本申请的一个实施例的第一功率配置信息和M1个参考信号以及M2个参考信号的发送功率的关系的示意图;
图12示出了根据本申请的一个实施例的X个参考信号中的至少一个参考信号所占用的空口资源被用于从Y个多载波符号中确定X个多载波符号的示意图;
图13A-13B分别示出了根据本申请的一个实施例的M1个参考信号和M2个参考信号的发送顺序与第一信息的关系的示意图;
图14A-14E分别示出了根据本申请的一个实施例的N个多载波符号、N1个天线端口组和Z个参考信号的关系的示意图;
图15示出了根据本申请的一个实施例的天线端口和天线端口组的示意图;
图16A-16B分别示出了根据本申请的一个实施例的给定无线信号的发送功率与G2个分量的关系的示意图;
图17示出了根据本申请的一个实施例的UE中的处理装置的结构框图;
图18示出了根据本申请的一个实施例的基站设备中的处理装置的结构框图;
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了第一信息、第二信息、M1个参考信号和M2个参考信号的流程图,如附图1所示。
在实施例1中,本申请中的所述用户设备接收第一信息,所述第一信息包括第一功率配置信息,所述第一信息被用于确定第一子频带上的M个多载波符号,所述M是大于1的正整数;从所述第一子频带上的M个多载波符号中确定M1个多载波符号;对于所述第一子频带上的M个多载波符号,仅在所述M1个多载波符号中分别发送M1个参考信号,所述M1是小于所述M的正整数;接收第二信息,所述第二信息包括第二功率配置信息,所述第二信息被用于确定所述第一子频带上的P个多载波符号,所述P是大于1的正整数;在所述第一子频带上的P个多载波符号中的M2个多载波符号中分别发送M2个参考信号,所述M2是不大于所述P的正整数,所述M1与所述M2的和等于所述M;其中,所述M2个参考信号的发送功率与所述第一功率配置信息有关且与所述第二功率配置信息无关。
作为一个实施例,所述第一信息是动态配置的。
作为一个实施例,所述第一信息由物理层信令承载。
作为一个实施例,所述第一信息属于DCI(下行控制信息,Downlink Control Information)。
作为一个实施例,所述第一信息是一个DCI中的一个域(Field),所述域包括正整数个比特。
作为一个实施例,所述第一信息由一个DCI中的多个域(Field)组成,所述域包括正整数个比特。
作为一个实施例,所述第一信息由下行物理层控制信道(即仅能用于承载物理层信令的下行信道)承载。
作为一个实施例,所述第一信息由PDCCH(Physical Downlink Control Channel,物理下行控制信道)承载。
作为一个实施例,所述第一信息由sPDCCH(short PDCCH,短PDCCH)承载。
作为一个实施例,所述第一信息由NR-PDCCH(New Radio PDCCH,新无线PDCCH)承载。
作为一个实施例,所述第一信息由NB-PDCCH(Narrow Band PDCCH,窄带PDCCH)承载。
作为一个实施例,所述第二信息是动态配置的。
作为一个实施例,所述第二信息由物理层信令承载。
作为一个实施例,所述第二信息属于DCI(下行控制信息,Downlink Control Information)。
作为一个实施例,所述第二信息是一个DCI中的一个域(Field),所述域包括正整数个比特。
作为一个实施例,所述第二信息由一个DCI中的多个域(Field)组成,所述域包括正整数个比特。
作为一个实施例,所述第二信息由下行物理层控制信道(即仅能用于承载物理层信令的下行信道)承载。
作为一个实施例,所述第二信息由PDCCH(Physical Downlink Control Channel,物理下行控制信道)承载。
作为一个实施例,所述第二信息由sPDCCH(short PDCCH,短PDCCH)承载。
作为一个实施例,所述第二信息由NR-PDCCH(New Radio PDCCH,新无线PDCCH)承载。
作为一个实施例,所述第二信息由NB-PDCCH(Narrow Band PDCCH,窄带PDCCH)承载。
作为一个实施例,所述第二信息还显式的指示所述第一子频带上的P个多载波符号。
作为一个实施例,所述第二信息还隐式的指示所述第一子频带上的P个多载波符号。
作为一个实施例,所述第二功率配置信息所适用的上行无线信号所占的多载波符号是所述第一子频带上的P个多载波符号。
作为一个实施例,所述第二功率配置信息所适用的上行无线信号所占的多载波符号包括所述第一子频带上的P个多载波符号。
作为一个实施例,所述第二功率配置信息所适用的上行无线信号所占的多载波符号属于所述第一子频带上的P个多载波符号。
作为一个实施例,所述P等于一个时隙(slot)所包括的多载波符号的数目。
作为一个实施例,所述P等于14。
作为一个实施例,所述P等于一个时隙(slot)中除了控制信道所占的多载波符号之外的所有多载波符号的数目。
作为一个实施例,所述P等于12。
作为一个实施例,所述第一信息和所述第二信息分别属于二个DCI。
作为一个实施例,所述第一信息和所述第二信息分别在两个时隙(slot)中发送,所述时隙由A个多载波符号组成,所述A是大于1的正整数。
作为一个实施例,所述P满足P≥M-M1。
作为一个实施例,所述P满足P=M-M1。
作为一个实施例,所述P大于所述M。
作为一个实施例,所述P等于所述M。
作为一个实施例,所述M2小于所述P。
作为一个实施例,所述P是不小于所述M的正整数。
作为一个实施例,所述用户设备自行从所述第一子频带上的M个多载波符号中确定所述M1个多载波符号。
作为一个实施例,所述M1个参考信号的接收者通过盲检从所述第一子频带上的M个多载波符号中确定所述M1个多载波符号。
作为一个实施例,所述M2个参考信号的接收者通过盲检从所述第一子频带上的P个多载波符号中确定所述M2个多载波符号。
作为一个实施例,所述M1个参考信号的接收者通过在所述第一子频带上的M个多载波符号中盲检所述M1个参考信号中的至少一个参考信号所占用的空口资源来确定所述M1个多载波符号。
作为一个实施例,所述M2个参考信号的接收者通过盲检所述M2个参考信号中的至少一个参考信号所占用的空口资源来确定所述M2个多载波符号。
作为一个实施例,所述M1个参考信号和所述M2个参考信号包括SRS(Sounding Reference Signal,探测参考信号)和上行PTRS(Phase-Tracking Reference Signal,相位跟踪参考信号)中的一种或多种。
作为一个实施例,所述M1个参考信号和所述M2个参考信号包括SRS。
作为一个实施例,所述M1个参考信号和所述M2个参考信号包括PTRS。
作为一个实施例,所述M1个参考信号和所述M2个参考信号包括SRS和上行PTRS。
作为一个实施例,所述第一子频带包括正整数个PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述第一子频带包括正整数个连续的PRB。
作为一个实施例,所述第一子频带包括正整数个RB(Resource Block,资源块)。
作为一个实施例,所述第一子频带包括正整数个连续的RB。
作为一个实施例,所述第一子频带包括正整数个连续的子载波。
作为一个实施例,所述第一子频带包括的连续子载波数目等于12的正整数倍。
作为一个实施例,所述第一子频带部署于非授权频谱。
作为一个实施例,所述第一子频带包括一个载波(Carrier)。
作为一个实施例,所述第一子频带包括一个BWP(Bandwidth Part,带宽分量)。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency-Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single-Carrier Frequency-Division Multiple Access,单载波频分多址)符号。
作为一个实施例,所述多载波符号是FBMC(Filter Bank Multi Carrier,滤波组多载波)符号。
作为一个实施例,所述多载波符号包括CP(Cyclic Prefix,循环前缀)。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统网络架构200的图。NR 5G或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供面向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME/AMF/UPF211、其它MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP 多媒体子系统)和PS串流服务(PSS)。
作为一个实施例,所述UE201对应本申请中的所述用户设备。
作为一个实施例,所述gNB203对应本申请中的所述基站。
作为一个实施例,所述UE201支持在非授权频谱上进行数据传输的无线通信。
作为一个实施例,所述gNB203支持在非授权频谱上进行数据传输的无线通信。
作为一个实施例,所述UE201支持大规模MIMO的无线通信。
作为一个实施例,所述gNB203支持大规模MIMO的无线通信。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于用户设备(UE)和基站设备(gNB或eNB)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述用户设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述基站。
作为一个实施例,本申请中的所述第一信息生成于所述PHY301。
作为一个实施例,本申请中的所述第二信息生成于所述PHY301。
作为一个实施例,本申请中的所述M1个参考信号生成于所述PHY301。
作为一个实施例,本申请中的所述M2个参考信号生成于所述PHY301。
作为一个实施例,本申请中的所述K个第一接入检测生成于所述PHY301。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第三信息生成于所述PHY301。
作为一个实施例,本申请中的所述第三信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第三信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第四信息生成于所述PHY301。
作为一个实施例,本申请中的所述第四信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第四信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第五信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第五信息生成于所述MAC子层302。
实施例4
实施例4示出了根据本申请的一个基站设备和用户设备的示意图,如附图4所示。图4是在接入网络中与UE450通信的gNB410的框图。
基站设备(410)包括控制器/处理器440,存储器430,接收处理器412,发射处理器415,发射器/接收器416和天线420。
用户设备(450)包括控制器/处理器490,存储器480,数据源467,发射处理器455,接收处理器452,发射器/接收器456和天线460。
在下行传输中,与基站设备(410)有关的处理包括:
-控制器/处理器440,上层包到达,控制器/处理器440提供包头压缩、加密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;上层包中可以包括数据或者控制信息,例如DL-SCH(Downlink Shared Channel,下行共享信道);
控制器/处理器440,与存储程序代码和数据的存储器430相关联,存储器430可以为计算机可读媒体;
控制器/处理器440,包括调度单元以传输需求,调度单元用于调度与传输需求对应的空口资源;
波束处理器471,确定第一信息、以及确定第二信息;
发射处理器415,接收控制器/处理器440的输出比特流,实施用于L1层(即物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配和物理层控制信令(包括PBCH,PDCCH,PHICH,PCFICH,参考信号)生成等;
发射器416,用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去;每个发射器416对各自的输入符号流进行采样处理得到各自的采样信号流。每个发射器416对各自的采样流进行进一步处理(比如数模转换,放大,过滤,上变频等)得到下行信号。
在下行传输中,与用户设备(450)有关的处理可以包括:
接收器456,用于将通过天线460接收的射频信号转换成基带信号提供给接收处理器452;
接收处理器452,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
波束处理器441,确定第一信息、以及确定第二信息;
控制器/处理器490,接收接收处理器452输出的比特流,提供包头解压缩、解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;
控制器/处理器490与存储程序代码和数据的存储器480相关联。存储器480可以为计算机可读媒体。
在UL(Uplink,上行)中,与基站设备(410)有关的处理包括:
接收器416,通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到接收处理器412;
接收处理器412,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
控制器/处理器440,实施L2层功能,以及与存储程序代码和数据的存储器430相关联;
控制器/处理器440提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包;来自控制器/处理器440的上层数据包可提供到核心网络;
波束处理器471,确定M1个参考信号、以及确定M2个参考信号;
在UL(Uplink,上行)中,与用户设备(450)有关的处理包括:
数据源467,将上层数据包提供到控制器/处理器490。数据源467表示L2层之上的所有协议层;
发射器456,通过其相应天线460发射射频信号,把基带信号转化成射频信号,并把射频信号提供到相应天线460;
发射处理器455,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
控制器/处理器490基于gNB410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能;
控制器/处理器490还负责HARQ操作、丢失包的重新发射,和到gNB410的信令;
波束处理器441,确定M1个参考信号、以及确定M2个参考信号;
作为一个子实施例,所述UE450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述UE450装置至少:接收第一信息,所述第一信息包括第一功率配置信息,所述第一信息被用于确定第一子频带上的M个多载波符号,所述M是大于1的正整数;从所述第一子频带上的M个多载波符号中确定M1个多载波符号;对于所述第一子频带上的M个多载波符号,仅在所述M1个多载波符号中分别发送M1个参考信号,所述M1是小于所述M的正整数;接收第二信息,所述第二信息包括第二功率配置信息,所述第二信息被用于确定所述第一子频带上的P个多载波符号,所述P是大于1的正整数;在所述第一子频带上的P个多载波符号中的M2个多载波符号中分别发送M2个参考信号,所述M2是不大于所述P的正整数,所述M1与所述M2的和等于所述M;其中,所述M2个参考信号的发送功率与所述第一功率配置信息有关且与所述第二功率配置信息无关。
作为一个子实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信息,所述第一信息包括第一功率配置信息,所述第一信息被用于确定第一子频带上的M个多载波符号,所述M是大于1的正整数;从所述第一子频带上的M个多载波符号中确定M1个多载波符号;对于所述第一子频带上的M个多载波符号,仅在所述M1个多载波符号中分别发送M1个参考信号,所述M1是小于所述M的正整数;接收第二信息,所述第二信息包括第二功率配置信息,所述第二信息被用于确定所述第一子频带上的P个多载波符号,所述P是大于1的正整数;在所述第一子频带上的P个多载波符号中的M2个多载波符号中分别发送M2个参考信号,所述M2是不大于所述P的正整数,所述M1与所述M2的和等于所述M;其中,所述M2个参考信号的发送功率与所述第一功率配置信息有关且与所述第二功率配置信息无关。
作为一个子实施例,所述gNB410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:发送第一信息,所述第一信息包括第一功率配置信息,所述第一信息被用于确定第一子频带上的M个多载波符号,所述M是大于1的正整数;在所述第一子频带上的M个多载波符号中的M1个多载波符号中分别接收M1个参考信号,所述M1是小于所述M的正整数;发送第二信息,所述第二信息包括第二功率配置信息,所述第二信息被用于确定所述第一子频带上的P个多载波符号,所述P是大于1的正整数;在所述第一子频带上的P个多载波符号中的M2个多载波符号中分别接收M2个参考信号,所述M2是不大于所述P的正整数,所述M1与所述M2的和等于所述M;其中,所述M2个参考信号的发送功率与所述第一功率配置信息有关且与所述第二功率配置信息无关。
作为一个子实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信息,所述第一信息包括第一功率配置信息,所述第一信息被用于确定第一子频带上的M个多载波符号,所述M是大于1的正整数;在所述第一子频带上的M个多载波符号中的M1个多载波符号中分别接收M1个参考信号,所述M1是小于所述M的正整数;发送第二信息,所述第二信息包括第二功率配置信息,所述第二信息被用于确定所述第一子频带上的P个多载波符号,所述P是大于1的正整数;在所述第一子频带上的P个多载波符号中的M2个多载波符号中分别接收M2个参考信号,所述M2是不大于所述P的正整数,所述M1与所述M2的和等于所述M;其中,所述M2个参考信号的发送功率与所述第一功率配置信息有关且与所述第二功率配置信息无关。
作为一个子实施例,UE450对应本申请中的用户设备。
作为一个子实施例,gNB410对应本申请中的基站。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第一信息。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第一信息。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第二信息。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第二信息。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第三信息。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第三信息。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第四信息。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第四信息。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第五信息。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第五信息。
作为一个子实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于发送本申请中的所述M1个参考信号。
作为一个子实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于接收本申请中的所述M1个参考信号。
作为一个子实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于发送本申请中的所述M2个参考信号。
作为一个子实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于接收本申请中的所述M2个参考信号。
作为一个子实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于发送本申请中的所述第一无线信号。
作为一个子实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于接收本申请中的所述第一无线信号。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于执行本申请中的所述K个第一接入检测。
实施例5
实施例5示例了一个无线传输的流程图,如附图5所示。在附图5中,基站N01是用户设备U02的服务小区维持基站。附图5中,方框F1、F2和F3是可选的。
对于N01,在步骤S10中发送第五信息;在步骤S11中发送第四信息;在步骤S12中发送第三信息;在步骤S13中发送第一信息;在步骤S14中接收M1个参考信号;在步骤S15中发送第二信息;在步骤S16中接收M2个参考信号;在步骤S17中接收第一无线信号。
对于U02,在步骤S20中接收第五信息;在步骤S21中接收第四信息;在步骤S22中接收第三信息;在步骤S23中接收第一信息;在步骤S24中执行K个第一接入检测;在步骤S25中发送M1个参考信号;在步骤S26中接收第二信息;在步骤S27中发送M2个参考信号;在步骤S28中发送第一无线信号。
在实施例5中,所述第一信息包括第一功率配置信息,所述第一信息被所述U02用于确定第一子频带上的M个多载波符号,所述M是大于1的正整数;所述U02从所述第一子频带上的M个多载波符号中确定M1个多载波符号;对于所述第一子频带上的M个多载波符号,所述U02仅在所述M1个多载波符号中分别发送M1个参考信号,所述M1是小于所述M的正整数;所述第二信息包括第二功率配置信息,所述第二信息被所述U02用于确定所述第一子频带上的P个多载波符号,所述P是大于1的正整数;所述U02在所述第一子频带上的P个多载波符号中的M2个多载波符号中分别发送M2个参考信号,所述M2是不大于所述P的正整数,所述M1与所述M2的和等于所述M;所述M2个参考信号的发送功率与所述第一功率配置信息有关且与所述第二功率配置信息无关。所述K等于1;所述K个第一接入检测被所述U02用于确定所述M1个多载波符号和所述M2个多载波符号。所述第一信息被所述U02用于确定所述M1个参考信号和所述M2个参考信号的假定发送顺序,所述第三信息被所述U02用于确定所述M1个参考信号和所述M2个参考信号的发送顺序与所述假定发送顺序是否一致。所述第二信息还包括所述第一无线信号的配置信息,所述第二功率配置信息被所述U02用于确定所述第一无线信号的发送功率,所述第一无线信号不包括所述M2个参考信号中的任一参考信号,所述第一无线信号所占用的时频资源包括所述第一时频资源中属于所述第一子频带上的P1个多载波符号且不属于所述M2个多载波符号的至少一个多载波符号。所述第四信息被所述U02用于确定所述所述第一时频资源中属于所述第一子频带上的P1个多载波符号且不属于所述M2个多载波符号的至少一个多载波符号被所述第一无线信号占用。所述第五信息被所述U02用于确定F个天线端口集合,所述F是正整数,所述F个天线端口集合中的任一天线端口集合包括正整数个天线端口组,一个天线端口组包括正整数个天线端口;所述M1个参考信号和所述M2个参考信号中的任一参考信号的发送天线端口组都属于所述F个天线端口集合中的同一个天线端口集合。
作为一个实施例,所述K等于1,所述M1个多载波符号和所述M2个多载波符号之间的所有多载波符号都被所述用户设备占用。
作为一个实施例,所述K等于1,所述K个第一接入检测被用于确定一个上行突发,所述M1个多载波符号和所述M2个多载波符号都属于所述一个上行突发。
作为一个实施例,一个上行突发包括在时间上连续的一组多载波符号和在频域上连续的一组子载波,所述上行突发中的所有多载波符号都被所述用户设备占用。
作为一个实施例,所述第一子频带被部署于非授权频谱。
作为一个实施例,所述M1个参考信号中任一参考信号的发送天线端口组与所在的所述第一子频带上的M个多载波符号中之一被分配的天线端口组相同。
作为一个实施例,所述M2个参考信号中任一参考信号的发送天线端口组与所在的M2个多载波符号中之一被分配的天线端口组相同。
作为一个实施例,所述M1个参考信号被同一个天线端口组发送。
作为一个实施例,所述M1个参考信号分别被M1个天线端口组发送。
作为一个实施例,所述M2个参考信号被同一个天线端口组发送。
作为一个实施例,所述M2个参考信号分别被M2个天线端口组发送。
作为一个实施例,所述M1个参考信号和所述M2个参考信号被同一个天线端口组发送。
作为一个实施例,所述M1个参考信号和所述M2个参考信号分别被M1+M2个天线端口组发送。
作为一个实施例,所述K等于1,所述K个第一接入检测被用于确定所述第一子频带上的M个多载波符号中只有所述M1个多载波符号能被用于上行传输,且所述第一子频带上的P1个多载波符号中只有所述M2个多载波符号能被用于上行传输。
作为一个实施例,所述第三信息是半静态配置的。
作为一个实施例,所述第三信息由更高层信令承载。
作为一个实施例,所述第三信息由RRC(Radio Resource Control,无线电资源控制)信令承载。
作为一个实施例,所述第三信息是一个RRC信令中的一个IE(Information Element,信息单元)的全部或一部分。
作为一个实施例,所述第三信息由MAC(Medium Acess Control,媒体接入控制)CE(Control Element,控制单元)信令承载。
作为一个实施例,所述第三信息在SIB(System Information Block,系统信息块)中传输。
作为一个实施例,所述第三信息是动态配置的。
作为一个实施例,所述第三信息由物理层信令承载。
作为一个实施例,所述第三信息属于DCI。
作为一个实施例,所述第三信息是一个DCI中的一个域,所述域包括正整数个比特。
作为一个实施例,所述第三信息由下行物理层控制信道承载。
作为一个实施例,所述第三信息由PDCCH承载。
作为一个实施例,所述第三信息由sPDCCH承载。
作为一个实施例,所述第三信息由NR-PDCCH承载。
作为一个实施例,所述第三信息由NB-PDCCH承载。
作为一个实施例,所述第一信息和所述第三信息属于同一个DCI。
作为一个实施例,所述第一信息和所述第三信息分别是一个DCI中的第一域和第二域。
作为一个实施例,所述第一时频资源所占的频域资源包括正整数个PRB。
作为一个实施例,所述第一时频资源所占的频域资源包括正整数个连续的PRB。
作为一个实施例,所述第一时频资源所占的频域资源包括正整数个RB。
作为一个实施例,所述第一时频资源所占的频域资源包括正整数个连续的RB。
作为一个实施例,所述第一时频资源所占的频域资源包括正整数个连续的子载波。
作为一个实施例,所述第一时频资源所占的频域资源包括的连续子载波数目等于12的正整数倍。
作为一个实施例,所述第一时频资源所占的频域资源部署于非授权频谱。
作为一个实施例,所述第一时频资源所占的频域资源包括一个载波。
作为一个实施例,所述第一时频资源所占的频域资源包括一个BWP。
作为一个实施例,所述第一时频资源所占的频域资源包括所述第一子频带。
作为一个实施例,所述第一时频资源所占的频域资源和所述第一子频带相同。
作为一个实施例,所述所述第一无线信号的配置信息所指示的时域资源是所述第一子频带上的P个多载波符号。
作为一个实施例,所述所述第一无线信号的配置信息所指示的时域资源包括所述第一子频带上的P个多载波符号。
作为一个实施例,所述所述第一无线信号的配置信息所指示的时域资源属于所述第一子频带上的P个多载波符号。
作为一个实施例,所述第一无线信号包括数据、DMRS、SRS和PTRS中的至少之一。
作为一个实施例,所述第一无线信号包括数据。
作为一个实施例,所述第一无线信号包括DMRS。
作为一个实施例,所述第一无线信号包括数据和DMRS。
作为一个实施例,所述第一无线信号包括SRS。
作为一个实施例,所述第一无线信号包括PTRS。
作为一个实施例,所述第一无线信号所占用的时频资源包括所述第一时频资源中属于所述第一子频带上的P个多载波符号且不属于所述M2个多载波符号的至少一个多载波符号。
作为一个实施例,所述第一无线信号所占用的时频资源包括所述第一时频资源中属于所述第一子频带上的P1个多载波符号且不属于所述M2个多载波符号的所有多载波符号。
作为一个实施例,所述第四信息是半静态配置的。
作为一个实施例,所述第四信息由更高层信令承载。
作为一个实施例,所述第四信息由RRC信令承载。
作为一个实施例,所述第四信息是一个RRC信令中的一个IE的全部或一部分。
作为一个实施例,所述第四信息由MAC CE信令承载。
作为一个实施例,所述第四信息在SIB中传输。
作为一个实施例,所述第四信息是动态配置的。
作为一个实施例,所述第四信息由物理层信令承载。
作为一个实施例,所述第四信息属于DCI。
作为一个实施例,所述第四信息是一个DCI中的一个域,所述域包括正整数个比特。
作为一个实施例,所述第四信息由下行物理层控制信道承载。
作为一个实施例,所述第四信息由PDCCH承载。
作为一个实施例,所述第四信息由sPDCCH承载。
作为一个实施例,所述第四信息由NR-PDCCH承载。
作为一个实施例,所述第四信息由NB-PDCCH承载。
作为一个实施例,所述第二信息和所述第四信息属于同一个DCI。
作为一个实施例,所述第二信息和所述第四信息分别是一个DCI中的第一域和第二域。
作为一个实施例,所述第一信息和所述第四信息属于同一个DCI。
作为一个实施例,所述第一信息和所述第四信息分别是一个DCI中的第一域和第三域。
作为一个实施例,所述第一信息、所述第三信息和所述第四信息属于同一个DCI。
作为一个实施例,所述第一信息、所述第三信息和所述第四信息分别是一个DCI中的第一域、第二域和第三域。
作为一个实施例,所述第四信息指示所述第一时频资源中属于所述第一子频带上的P1个多载波符号且不属于所述M2个多载波符号的至少一个多载波符号是否可以被不包括所述M2参考信号的上行无线信号所占用。
作为一个实施例,所述第四信息指示所述第一时频资源中属于所述第一子频带上的P1个多载波符号且不属于所述M2个多载波符号的所有多载波符号是否可以被不包括所述M2参考信号的上行无线信号所占用。
作为一个实施例,所述第五信息是半静态配置的。
作为一个实施例,所述第五信息由更高层信令承载。
作为一个实施例,所述第五信息由RRC信令承载。
作为一个实施例,所述第五信息是一个RRC信令中的一个IE的全部或一部分。
作为一个实施例,所述第五信息由MAC CE信令承载。
作为一个实施例,所述第五信息在SIB中传输。
作为一个实施例,所述M1个参考信号中的至少一个参考信号所占用的空口资源被所述M1个参考信号的接收者用于从所述第一子频带上的M个多载波符号中确定所述M1个多载波符号。
作为一个实施例,所述M2个参考信号中的至少一个参考信号所占用的空口资源被用于从所述第一子频带上的P1个多载波符号中确定所述M2个多载波符号。
作为一个实施例,所述M2个参考信号中的至少一个参考信号所占用的空口资源被所述M2个参考信号的接收者用于从所述第一子频带上的P1个多载波符号中确定所述M2个多载波符号。
实施例6
实施例6示例了另一个无线传输的流程图,如附图6所示。在附图6中,基站N03是用户设备U04的服务小区维持基站。附图6中,方框F4、F5和F6是可选的。
对于N03,在步骤S30中发送第五信息;在步骤S31中发送第四信息;在步骤S32中发送第三信息;在步骤S33中发送第一信息;在步骤S34中接收M1个参考信号;在步骤S35中发送第二信息;在步骤S36中接收M2个参考信号;在步骤S37中接收第一无线信号。
对于U04,在步骤S40中接收第五信息;在步骤S41中接收第四信息;在步骤S42中接收第三信息;在步骤S43中接收第一信息;在步骤S44中执行K个第一接入检测中的第一个第一接入检测;在步骤S45中发送M1个参考信号;在步骤S46中接收第二信息;在步骤S47中执行K个第一接入检测中的第二个第一接入检测;在步骤S48中发送M2个参考信号;在步骤S49中发送第一无线信号。
在实施例6中,所述第一信息包括第一功率配置信息,所述第一信息被所述U04用于确定第一子频带上的M个多载波符号,所述M是大于1的正整数;所述U04从所述第一子频带上的M个多载波符号中确定M1个多载波符号;对于所述第一子频带上的M个多载波符号,所述U04仅在所述M1个多载波符号中分别发送M1个参考信号,所述M1是小于所述M的正整数;所述第二信息包括第二功率配置信息,所述第二信息被所述U04用于确定所述第一子频带上的P个多载波符号,所述P是大于1的正整数;所述U04在所述第一子频带上的P个多载波符号中的M2个多载波符号中分别发送M2个参考信号,所述M2是不大于所述P的正整数,所述M1与所述M2的和等于所述M;所述M2个参考信号的发送功率与所述第一功率配置信息有关且与所述第二功率配置信息无关。所述K等于2;所述K个第一接入检测被所述U04用于确定所述M1个多载波符号和所述M2个多载波符号。所述第一信息被所述U04用于确定所述M1个参考信号和所述M2个参考信号的假定发送顺序,所述第三信息被所述U04用于确定所述M1个参考信号和所述M2个参考信号的发送顺序与所述假定发送顺序是否一致。所述第二信息还包括所述第一无线信号的配置信息,所述第二功率配置信息被所述U04用于确定所述第一无线信号的发送功率,所述第一无线信号不包括所述M2个参考信号中的任一参考信号,所述第一无线信号所占用的时频资源包括所述第一时频资源中属于所述第一子频带上的P1个多载波符号且不属于所述M2个多载波符号的至少一个多载波符号。所述第四信息被所述U04用于确定所述所述第一时频资源中属于所述第一子频带上的P1个多载波符号且不属于所述M2个多载波符号的至少一个多载波符号被所述第一无线信号占用。所述第五信息被所述U04用于确定F个天线端口集合,所述F是正整数,所述F个天线端口集合中的任一天线端口集合包括正整数个天线端口组,一个天线端口组包括正整数个天线端口;所述M1个参考信号和所述M2个参考信号中的任一参考信号的发送天线端口组都属于所述F个天线端口集合中的同一个天线端口集合。
作为一个实施例,所述K等于2,所述M1个多载波符号和所述M2个多载波符号之间存在至少一个未被所述用户设备占用的多载波符号。
作为一个实施例,所述K等于2,所述K个第一接入检测分别被用于确定两个上行突发, 所述M1个多载波符号和所述M2个多载波符号分别属于所述两个上行突发,所述两个上行突发之间存在至少一个多载波符号未被所述用户设备占用。
作为一个实施例,所述K等于2,所述K个第一接入检测中的第一个第一接入检测被用于确定所述第一子频带上的M个多载波符号中只有所述M1个多载波符号能被用于上行传输,所述K个第一接入检测中的第二个第一接入检测被用于确定所述第一子频带上的P1个多载波符号中只有所述M2个多载波符号能被用于上行传输。
实施例7
实施例7A至实施例7B分别示例了一个第一信息与M1个多载波符号和M2个多载波符号的关系的示意图。
在实施例7中,本申请中的所述第一信息被用于确定第一子频带上的M个多载波符号,所述M是大于1的正整数;从所述第一子频带上的M个多载波符号中确定M1个多载波符号;对于所述第一子频带上的M个多载波符号,仅在所述M1个多载波符号中分别发送M1个参考信号,所述M1是小于所述M的正整数。所述第一信息还被用于确定所述第一子频带上的P1个多载波符号,所述M2个多载波符号属于所述第一子频带上的P1个多载波符号,所述第一子频带上的P1个多载波符号属于所述第一子频带上的P个多载波符号,所述P1是不大于所述P的正整数。
作为一个实施例,所述第一信息显式的指示第一子频带上的M个多载波符号。
作为一个实施例,所述第一信息隐式的指示第一子频带上的M个多载波符号。
作为一个实施例,所述第一信息还包括所述M1个参考信号和所述M2个参考信号的配置信息,以及备选时域资源集,所述用户设备在所述备选时域资源集中选择部分时域资源来发送所述M1个参考信号和所述M2个参考信号。
作为一个实施例,所述第一子频带上的M个多载波符号属于所述备选时域资源集中的一个备选时域资源。
作为一个实施例,所述第一子频带上的P1个多载波符号属于所述备选时域资源集中的一个备选时域资源。
作为一个实施例,所述备选时域资源集包括所述第一子频带上的M个多载波符号和所述第一子频带上的P1个多载波符号。
作为一个实施例,所述第一信息还包括所述M1个参考信号和所述M2个参考信号的配置信息、所述M1个参考信号和所述M2个参考信号在所述第一子频带上的M个多载波符号中的时域位置以及所述第一子频带上的P1个多载波符号相对于所述第一子频带上的M个多载波符号的时间偏移。
作为一个实施例,所述所述第一子频带上的P1个多载波符号相对于所述第一子频带上的M个多载波符号的时间偏移由一个或多个多载波符号组成。
作为一个实施例,所述所述第一子频带上的P1个多载波符号相对于所述第一子频带上的M个多载波符号的时间偏移由一个或多个时隙(slot)组成,所述时隙由A个多载波符号组成,所述A是大于1的正整数。
作为一个实施例,所述M1个参考信号和所述M2个参考信号的配置信息包括所占的频域资源、码域资源、天线端口组和发送序列(sequence)。
作为一个实施例,所述M1个参考信号和所述M2个参考信号的配置信息包括所占的频域资源、码域资源、天线端口组和发送序列(sequence)中的至少之一。
作为一个实施例,所述天线端口组是指:所占用的天线端口组是多个天线端口组中的一个。
作为一个实施例,所述天线端口组是指:所占用的天线端口组在多个天线端口组中的索引。
作为一个实施例,所述频域资源是指:所占用的子载波是多个子载波中的一个或多个子 载波。
作为一个实施例,所述频域资源是指:所占用的子载波在多个子载波中的索引。
作为一个实施例,所述频域资源是指:所占用的RB和在其中每个RB中所占的子载波,所述所占用的RB是多个RB中的一个或多个RB,所述在其中每个RB中所占的子载波是一个RB包括的所有子载波中的一个或多个子载波。
作为一个实施例,所述频域资源是指:所占用的RB的索引和在其中每个RB中所占的子载波的索引,所述所占用的RB的索引是所占用的RB在多个RB中的索引,所述在其中每个RB中所占的子载波的索引是所述在其中每个RB中所占的子载波在一个RB包括的所有子载波中的索引。
作为一个实施例,所述频域资源是指:所占用的RB的索引,以及在其中每个RB中所占的梳齿(comb)和子载波偏移,所述所占用的RB的索引是所占用的RB在多个RB中的索引。
作为一个实施例,在给定RB中所占的梳齿C和子载波偏移c1表示在所述给定RB中占用一组等间隔均匀分布的子载波,所述一组等间隔均匀分布的子载波中的任意两个相邻的子载波之间的间隔都等于C,所述一组等间隔均匀分布的子载波中的第一个子载波是所述给定RB中的第c1+1个子载波,所述C是正整数,所述c1是不小于0且小于所述C的整数。
作为一个实施例,在给定RB中所占的梳齿C和子载波偏移c1表示在所述给定RB中占用一组等间隔均匀分布的子载波,所述一组等间隔均匀分布的子载波中的任意两个相邻的子载波之间的间隔都等于C,所述一组等间隔均匀分布的子载波中的最后一个子载波是所述给定RB中的第c1+1个子载波,所述C是正整数,所述c1是不小于0且小于所述C的整数。
作为一个实施例,所述码域资源是指:所占用的特征序列是多个候选特征序列中之一。
作为一个实施例,所述码域资源是指:所占用的特征序列在多个候选特征序列中的索引。
作为一个实施例,所述发送序列是指:所使用的是发送序列是多个发送序列中之一。
作为一个实施例,所述发送序列是指:所使用的是发送序列在多个发送序列中的索引。
作为一个实施例,所述M2小于所述P1。
作为一个实施例,所述P1小于所述P。
作为一个实施例,所述P1等于所述M。
作为一个实施例,所述第一信息还显式的指示所述第一子频带上的P1个多载波符号。
作为一个实施例,所述第一信息还隐式的指示所述第一子频带上的P1个多载波符号。
作为一个实施例,所述M2个参考信号的接收者通过盲检从所述第一子频带上的P1个多载波符号中确定所述M2个多载波符号。
作为一个实施例,所述M2个参考信号的接收者通过在所述第一子频带上的P1个多载波符号中盲检所述M2个参考信号中的至少一个参考信号所占用的空口资源来确定所述M2个多载波符号。
作为一个实施例,所述实施例7A对应所述M1个多载波符号或所述M2个多载波符号中存在至少两个相邻的多载波符号在时间上不连续的所述第一信息与所述M1个多载波符号和所述M2个多载波符号的关系的示意图。
作为一个实施例,所述实施例7B对应所述M1个多载波符号在时间上是连续的且所述M2个多载波符号在时间上也是连续的所述第一信息与所述M1个多载波符号和所述M2个多载波符号的关系的示意图。
实施例8
实施例8A至实施例8C分别示例了一个给定第一接入检测和N个多载波符号的关系的示意图。所述给定第一接入检测对应本申请中的所述K个第一接入检测中任意一个第一接入检测,所述N个多载波符号对应本申请中的所述第一子频带上的M个多载波符号或所述所述第一子频带上的P1个多载波符号。
在实施例8中,本申请中的所述给定第一接入检测包括N2次接入检测,所述N2次接 入检测中任意一次接入检测被用于确定所述N个多载波符号中的至少一个多载波符号能否被用于上行发送,并且所述N个多载波符号中的任一多载波符号能否被用于上行发送都被所述N2次接入检测中之一确定,所述N2是不大于所述N的正整数,所述N个多载波符号被分配给N1个天线端口组,所述N1是不大于所述N的正整数。
作为一个实施例,所述N1等于所述N。
作为一个实施例,所述N1等于1。
作为一个实施例,所述N1大于1且小于所述N。
作为一个实施例,所述N2等于所述N,所述N1等于所述N,所述N2次接入检测分别被用于确定所述N个多载波符号能否被用于上行发送。
作为一个实施例,所述N2等于1,所述N2次接入检测被用于确定所述N个多载波符号能否被用于上行发送。
作为一个实施例,所述N2大于1且小于所述N,所述N1不等于1,所述N2次接入检测中之一被用于确定所述N个多载波符号中的至少两个多载波符号能否被用于上行发送。
作为一个实施例,所述N2大于1,所述N2次接入检测的多天线相关的接收互不相同。
作为一个实施例,所述N1个天线端口组的多天线相关的发送与所述N2次接入检测的多天线相关的接收有关。
作为一个实施例,所述N1等于所述N2,所述N1个天线端口组的多天线相关的发送分别被用于确定所述N2次接入检测的多天线相关的接收。
作为一个实施例,所述N1等于所述N2,所述N2次接入检测的多天线相关的接收分别包括所述N1个天线端口组的多天线相关的发送。
作为一个实施例,所述N1等于所述N2,所述N1个天线端口组的多天线相关的发送分别与所述N2次接入检测的多天线相关的接收相同。
作为一个实施例,所述N1大于所述N2,所述N2次接入检测的多天线相关的接收分别由所述N1个天线端口组中的至少一个天线端口组的多天线相关的发送确定。
作为一个实施例,所述N1大于所述N2,所述N2次接入检测中任一次接入检测的多天线相关的接收包括所述N1个天线端口组中的至少一个天线端口组的多天线相关的发送。
作为一个实施例,所述N1大于所述N2,所述N2次接入检测中任一次接入检测的多天线相关的接收与所述N1个天线端口组中的至少一个天线端口组的多天线相关的发送相同。
作为一个实施例,所述N1大于所述N2,所述N2次接入检测中至少一次接入检测的多天线相关的接收由所述N1个天线端口组中的至少两个天线端口组的多天线相关的发送确定。
作为一个实施例,所述N1大于所述N2,所述N2次接入检测中至少一次接入检测的多天线相关的接收包括所述N1个天线端口组中的至少两个天线端口组的多天线相关的发送。
作为一个实施例,所述N1大于所述N2,所述N2次接入检测中至少一次接入检测的多天线相关的接收与所述N1个天线端口组中的至少两个天线端口组的多天线相关的发送相同。
作为一个实施例,所述一次接入检测被用于确定所述第一子频带是否闲置(Idle)。
作为一个实施例,所述一次接入检测被用于确定能否在所述第一子频带上使用与所述一次接入检测的多天线相关的接收相同的多天线相关的发送进行上行传输。
作为一个实施例,所述多天线相关的接收是空间接收参数(Spatial Rx parameters)。
作为一个实施例,所述多天线相关的接收是接收波束。
作为一个实施例,所述多天线相关的接收是接收波束赋型矩阵。
作为一个实施例,所述多天线相关的接收是接收模拟波束赋型矩阵。
作为一个实施例,所述多天线相关的接收是接收波束赋型向量。
作为一个实施例,所述多天线相关的接收是接收空间滤波(spatial filtering)。
作为一个实施例,所述多天线相关的发送是空间发送参数(Spatial Tx parameters)。
作为一个实施例,所述多天线相关的发送是发送波束。
作为一个实施例,所述多天线相关的发送是发送波束赋型矩阵。
作为一个实施例,所述多天线相关的发送是发送模拟波束赋型矩阵。
作为一个实施例,所述多天线相关的发送是发送波束赋型向量。
作为一个实施例,所述多天线相关的发送是发送空间滤波。
作为一个实施例,所述实施例8A对应所述N2等于所述N1的所述给定第一接入检测和所述N个多载波符号的关系的示意图。
作为一个实施例,所述实施例8B对应所述N2小于所述N1的所述给定第一接入检测和所述N个多载波符号的关系的示意图。
作为一个实施例,所述实施例8C对应所述N2等于1的所述给定第一接入检测和所述N个多载波符号的关系的示意图。
实施例9
实施例9A至实施例9B分别示例了一个给定接入检测和给定无线信号的空间关系的示意图。
在实施例9中,所述给定接入检测对应本申请中的所述K个第一接入检测中任意一个第一接入检测中的一次接入检测,所述给定无线信号对应本申请中的所述M1个参考信号和所述M2个参考信号中与所述给定接入检测有关的至少一个参考信号。
作为一个实施例,所述给定接入检测所使用的多天线相关的接收能被用于推断出所述给定无线信号的多天线相关的发送。
作为一个实施例,所述给定接入检测所使用的多天线相关的接收和所述给定无线信号的多天线相关的发送相同。
作为一个实施例,所述给定接入检测所使用的多天线相关的接收和所述给定无线信号的多天线相关的发送不同。
作为一个实施例,所述给定接入检测所使用的接收波束赋型矩阵对应的波束宽度大于所述给定无线信号的发送波束赋型矩阵对应的波束宽度。
作为一个实施例,所述给定接入检测所使用的接收波束赋型矩阵对应的波束方向包括所述给定无线信号的发送波束赋型矩阵对应的波束方向。
作为一个实施例,所述给定接入检测所使用的接收波束对应的波束宽度大于所述给定无线信号的发送波束对应的波束宽度。
作为一个实施例,所述给定接入检测所使用的接收波束包括所述给定无线信号的发送波束。
作为一个实施例,所述给定接入检测所使用的天线数目小于所述给定无线信号的发送天线数目。
作为一个实施例,所述给定接入检测所使用的天线数目大于1。
作为一个实施例,所述给定接入检测所使用的天线数目等于1。
作为一个实施例,所述给定无线信号的发送天线数目大于1。
作为一个实施例,所述实施例9A对应所述给定接入检测所使用的接收波束和所述给定无线信号的发送波束相同的示意图。
作为一个实施例,所述实施例9B对应所述给定接入检测所使用的接收波束包括所述给定无线信号的发送波束的示意图。
实施例10
实施例10A至实施例10C分别示例了一个一次接入检测的示意图。
在实施例10中,本申请中的所述一次接入检测包括:在T个时间子池中分别执行T次能量检测,得到T个检测值;其中,所述T个检测值中的T1个检测值都低于第一阈值;所述T是正整数,所述T1是不大于所述T的正整数。
作为一个实施例,所述一次接入检测是LBT,所述LBT的具体定义和实现方式参见 3GPP TR36.889。
作为一个实施例,所述一次接入检测是CCA(Clear Channel Assessment,空闲信道评估),所述CCA的具体定义和实现方式参见3GPP TR36.889。
作为一个实施例,所述一次接入检测是上行接入检测。
作为一个实施例,所述一次接入检测是通过3GPP TS36.213中的15.2章节所定义的方式实现的。
作为一个实施例,所述T1等于所述T。
作为一个实施例,所述T1小于所述T。
作为一个实施例,所述T个检测值和所述第一阈值的单位都是dBm(毫分贝)。
作为一个实施例,所述T个检测值和所述第一阈值的单位都是毫瓦(mW)。
作为一个实施例,所述T个检测值和所述第一阈值的单位是焦耳。
作为一个实施例,所述第一阈值等于或小于-72dBm。
作为一个实施例,所述第一阈值是等于或小于第一给定值的任意值。
作为一个实施例,所述第一阈值是由所述用户设备在等于或小于第一给定值的条件下自由选择的。
作为一个实施例,所述第一给定值是预定义的。
作为一个实施例,所述第一给定值是由更高层信令配置的。
作为一个实施例,所述T个检测值中不属于所述T1个检测值的检测值中至少有一个检测值低于所述第一阈值。
作为一个实施例,所述第一子频带所属的频域资源块是所述第一子频带。
作为一个实施例,所述第一子频带所属的频域资源块是一个BWP。
作为一个实施例,所述第一子频带所属的频域资源块是一个载波。
作为一个实施例,所述第一子频带所属的频域资源块包括一组连续的RB。
作为一个实施例,所述第一子频带所属的频域资源块包括一组连续的PRB。
作为一个实施例,所述第一子频带所属的频域资源块包括一组连续的子载波。
作为一个实施例,所述T个检测值分别是所述用户设备在T个时间单元中在所述第一子频带所属的频域资源块上感知(Sense)所有无线信号的功率,并在时间上平均,以获得的接收功率;所述T个时间单元分别是所述T个时间子池中的一个持续时间段。
作为上述实施例的一个子实施例,所述T个时间单元中的任一时间单元的持续时间不短于4微秒。
作为一个实施例,所述T个检测值分别是所述用户设备在T个时间单元中在所述第一子频带所属的频域资源块上感知(Sense)所有无线信号的能量,并在时间上平均,以获得的接收能量;所述T个时间单元分别是所述T个时间子池中的一个持续时间段。
作为一个实施例,所述一次接入检测在T个时间子池上使用的多天线相关的接收都相同,所述T个检测值分别是所述用户设备在T个时间单元中用所述多天线相关的接收在所述第一子频带所属的频域资源块上感知(Sense)所有无线信号,并在时间上平均,以获得的接收功率或者接收能量;所述T个时间单元分别是所述T个时间子池中的一个持续时间段。
作为一个实施例,所述T次能量检测中的任意一次给定能量检测是指:所述用户设备在给定时间单元中监测接收功率,所述给定时间单元是所述T个时间子池中和所述给定能量检测对应的时间子池中的一个持续时间段。
作为一个实施例,所述T次能量检测中的任意一次给定能量检测是指:所述用户设备在给定时间单元中监测接收能量,所述给定时间单元是所述T个时间子池中和所述给定能量检测对应的时间子池中的一个持续时间段。
作为一个实施例,所述T次能量检测中的任意一次给定能量检测是指:所述用户设备在给定时间单元中针对所述第一子频带所属的频域资源块上的所有无线信号进行感知 (Sense)以获得给定功率;所述给定时间单元是所述T个时间子池中和所述给定能量检测对应的时间子池中的一个持续时间段。
作为上述实施例的一个子实施例,所述T个检测值中和所述给定能量检测对应的检测值是所述给定功率。
作为一个实施例,所述T次能量检测中的任意一次给定能量检测是指:所述用户设备在给定时间单元中针对所述第一子频带所属的频域资源块上的所有无线信号进行感知(Sense)以获得给定能量;所述给定时间单元是所述T个时间子池中和所述给定能量检测对应的时间子池中的一个持续时间段。
作为上述实施例的一个子实施例,所述T个检测值中和所述给定能量检测对应的检测值是所述给定能量。
作为一个实施例,所述一次接入检测在T个时间子池上使用的多天线相关的接收都相同,所述T个检测值分别是所述用户设备在T个时间单元中用所述多天线相关的接收在所述第一子频带所属的频域资源块上感知(Sense)所有无线信号,并在时间上平均,以获得的接收功率或者接收能量;所述T个时间单元分别是所述T个时间子池中的一个持续时间段。
作为一个实施例,所述T次能量检测中的任意一次给定能量检测是指:所述用户设备在给定时间单元中用给定多天线相关的接收对所述第一子频带所属的频域资源块上的所有无线信号进行感知(Sense)以获得给定功率或给定能量;所述给定时间单元是所述T个时间子池中和所述给定能量检测对应的时间子池中的一个持续时间段。
作为上述实施例的一个子实施例,所述T个检测值中和所述给定能量检测对应的检测值是所述给定功率或给定能量。
作为上述实施例的一个子实施例,所述一次接入检测在T个时间子池上使用的多天线相关的接收都相同,所述多天线相关的接收是所述给定多天线相关的接收。
作为一个实施例,所述T次能量检测中的任意一次能量检测是通过3GPP TS36.213中的15章节所定义的方式实现的。
作为一个实施例,所述T次能量检测中的任意一次能量检测是通过LTE LAA中的能量检测方式实现的。
作为一个实施例,所述T次能量检测中的任意一次能量检测是LBT过程中的能量检测。
作为一个实施例,所述T次能量检测中的任意一次能量检测是CCA过程中的能量检测。
作为一个实施例,所述T次能量检测中的任意一次能量检测是通过WiFi中的能量检测方式实现的。
作为一个实施例,所述T次能量检测中的任意一次能量检测是通过对RSSI(Received Signal Strength Indication,接收信号强度指示)进行测量实现的。
作为一个实施例,所述T个时间子池中的任一时间子池占用的时域资源是连续的。
作为一个实施例,所述T个时间子池在时域上是两两相互正交(不重叠)的。
作为一个实施例,所述T个时间子池中的任一时间子池的持续时间是16微秒和9微秒中之一。
作为一个实施例,所述T个时间子池中至少存在两个时间子池的持续时间不相等。
作为一个实施例,所述T个时间子池中任意两个时间子池的持续时间都相等。
作为一个实施例,所述T个时间子池占用的时域资源是连续的。
作为一个实施例,所述T个时间子池中至少存在两个时间子池占用的时域资源是不连续。
作为一个实施例,所述T个时间子池中任意两个时间子池占用的时域资源是不连续。
作为一个实施例,所述T个时间子池中任一时间子池是一个时隙(slot)。
作为一个实施例,所述T个时间子池中任一时间子池是T sl,所述T sl是一个时隙长度(slot duration),所述T sl的具体定义参见3GPP TS36.213中的15.2章节。
作为一个实施例,所述T个时间子池中除了最早的时间子池以外的任一时间子池是一个时隙(slot)。
作为一个实施例,所述T个时间子池中除了最早的时间子池以外的任一时间子池是T sl,所述T sl是一个时隙长度(slot duration),所述T sl的具体定义参见3GPP TS36.213中的15.2章节。
作为一个实施例,所述T个时间子池中至少存在一个持续时间为16微秒的时间子池。
作为一个实施例,所述T个时间子池中至少存在一个持续时间为9微秒的时间子池。
作为一个实施例,所述T个时间子池中的最早的时间子池的持续时间为16微秒。
作为一个实施例,所述T个时间子池中的最晚的时间子池的持续时间为9微秒。
作为一个实施例,所述T个时间子池包括Cat 4(第四类)LBT中的监听时间。
作为一个实施例,所述T个时间子池包括Cat 4(第四类)LBT中的延时时段(Defer Duration)中的时隙和回退时间(Back-off Time)中的时隙。
作为一个实施例,所述T个时间子池包括Cat 2(第二类)LBT中的监听时间。
作为一个实施例,所述T个时间子池包括Type 1 UL channel access procedure(第一类上行信道接入过程)中的延时时段(Defer Duration)中的时隙和回退时间(Back-off Time)中的时隙。
作为一个实施例,所述T个时间子池包括Type 2 UL channel access procedure(第二类上行信道接入过程)中的感知时间间隔(sensing interval)中的时隙,所述感知时间间隔的具体定义参见3GPP TS36.213中的15.2章节。
作为上述实施例的一个子实施例,所述感知时间间隔的持续时间是25微秒。
作为一个实施例,所述T个时间子池包括Type 2 UL channel access procedure(第二类上行信道接入过程)中的感知时间间隔(sensing interval)中的T f和T sl,所述T f和所述T sl是两个时间间隔,所述T f和所述T sl的具体定义参见3GPP TS36.213中的15.2章节。
作为上述实施例的一个子实施例,所述T f的持续时间是16微秒。
作为上述实施例的一个子实施例,所述T sl的持续时间是9微秒。
作为一个实施例,所述T个时间子池包括了初始CCA和eCCA(Enhanced Clear Channel Assessment,增强的空闲信道评估)中的时隙。
作为一个实施例,T1个时间子池中的任意两个时间子池的持续时间都相等,所述T1个时间子池是所述T个时间子池中分别和所述T1个检测值对应的时间子池。
作为一个实施例,T1个时间子池中至少存在两个时间子池的持续时间不相等,所述T1个时间子池是所述T个时间子池中分别和所述T1个检测值对应的时间子池。
作为一个实施例,T1个时间子池占用的时域资源是连续的,所述T1个时间子池是所述T个时间子池中分别和所述T1个检测值对应的时间子池。
作为一个实施例,T1个时间子池中至少存在两个时间子池占用的时域资源是不连续的,所述T1个时间子池是所述T个时间子池中分别和所述T1个检测值对应的时间子池。
作为一个实施例,T1个时间子池中任意两个时间子池占用的时域资源是不连续的,所述T1个时间子池是所述T个时间子池中分别和所述T1个检测值对应的时间子池。
作为一个实施例,T1个时间子池中包括所述T个时间子池中的最晚的时间子池,所述T1个时间子池是所述T个时间子池中分别和所述T1个检测值对应的时间子池。
作为一个实施例,T1个时间子池只包括了eCCA中的时隙,所述T1个时间子池是所述T个时间子池中分别和所述T1个检测值对应的时间子池。
作为一个实施例,所述T个时间子池包括T1个时间子池和T2个时间子池,所述T1个时间子池是所述T个时间子池中分别和所述T1个检测值对应的时间子池,所述T2个 时间子池中的任一时间子池不属于所述T1个时间子池;所述T2是不大于所述T减所述T1的正整数。
作为上述实施例的一个子实施例,所述T2个时间子池在所述T个时间子池中的位置是连续的。
作为上述实施例的一个子实施例,所述T2个时间子池包括了初始CCA中的时隙。
作为一个实施例,T1个时间子池是所述T个时间子池中分别和所述T1个检测值对应的时间子池,所述T1个时间子池分别属于T1个子池集合,所述T1个子池集合中的任一子池集合包括所述T个时间子池中的正整数个时间子池;所述T1个子池集合中的任一时间子池对应的检测值小于所述第一阈值。
作为上述实施例的一个子实施例,所述T1个子池集合中至少存在一个子池集合包括的时间子池的数量等于1。
作为上述实施例的一个子实施例,所述T1个子池集合中至少存在一个子池集合包括的时间子池的数量大于1。
作为上述实施例的一个子实施例,所述T1个子池集合中至少存在两个子池集合包括的时间子池的数量是不相等的。
作为上述实施例的一个子实施例,所述T个时间子池中不存在一个时间子池同时属于所述T1个子池集合中的两个子池集合。
作为上述实施例的一个子实施例,所述T1个子池集合中至少存在一个子池集合中的所有时间子池属于同一个延时时段(Defer Duration)。
作为上述子实施例的一个参考实施例,一个延时时段(Defer Duration)的持续时间是16微秒再加上正整数个9微秒。
作为上述实施例的一个子实施例,所述T个时间子池中不属于所述T1个子池集合的时间子池中至少存在一个时间子池对应的检测值小于所述第一阈值。
作为一个实施例,所述实施例10A对应所述T个时间子池占用的时域资源是连续的一次接入检测的示意图。
作为一个实施例,所述实施例10B对应所述T个时间子池中至少存在两个时间子池占用的时域资源是不连续的一次接入检测的示意图。
作为一个实施例,所述实施例10C对应所述T个时间子池中任意两个时间子池占用的时域资源是不连续的一次接入检测的示意图。
实施例11
实施例11示例了一个第一功率配置信息和M1个参考信号以及M2个参考信号的发送功率的关系的示意图,如附图11所示。
在实施例11中,本申请中的所述M1个参考信号和所述M2个参考信号的发送功率相同,所述第一功率配置信息被用于确定所述M1个参考信号和所述M2个参考信号的发送功率。
作为一个实施例,所述M1个参考信号和所述M2个参考信号的发送时间都属于第一时间窗。
作为一个实施例,属于第一时间窗的上行参考信号的发送功率相同,所述上行参考信号包括所述M1个参考信号和所述M2个参考信号。
作为一个实施例,所述第一时间窗在时域上包括所述M个多载波符号和所述P1个多载波符号。
作为一个实施例,所述第一时间窗在时域上包括多个多载波符号。
作为一个实施例,所述第一时间窗在时域上包括多个时隙(slot)。
作为一个实施例,所述第一时间窗在时域上包括一个或多个上行突发。
作为一个实施例,所述第一时间窗是预定义的。
作为一个实施例,所述第一时间窗是由更高层信令配置的。
作为一个实施例,所述第一时间窗是由物理层信令配置的。
作为一个实施例,所述M1个参考信号的发送与所述M2个参考信号的发送都为了同一个测量过程。
作为上述实施例的一个子实施例,所述同一个测量过程是波束管理(Beam Management)或信道估计。
作为一个实施例,所述所述M1个参考信号和所述M2个参考信号的发送功率与G1个分量线性相关,所述第一功率配置信息与所述G1个分量中之一有关,所述M1个参考信号和所述M2个参考信号分别对应的所述G1个分量都相同,所述G1是正整数。
实施例12
实施例12示例了一个X个参考信号中的至少一个参考信号所占用的空口资源被用于从Y个多载波符号中确定X个多载波符号的示意图,如附图12所示。所述X个参考信号对应本申请中的所述M1个参考信号,所述X个多载波符号对应本申请中的所述M1个多载波符号,所述Y个多载波符号对应本申请中的所述第一子频带上的M个多载波符号;所述X个参考信号对应本申请中的所述M2个参考信号,所述X个多载波符号对应本申请中的所述M2个多载波符号,所述Y个多载波符号对应本申请中的所述第一子频带上的P1个多载波符号。
在实施例12中,本申请中的目标参考信号组所占用的空口资源被所述X个参考信号的接收者用于从所述Y个多载波符号中确定所述X个多载波符号,所述目标参考信号组包括所述X个参考信号中的一个或者多个参考信号;所述X个参考信号分别在所述X个多载波符号中发送;所述目标参考信号组所占用的空口资源是S个备选空口资源之一,所述S个备选空口资源分别被用于确定S个多载波符号组,所述S个多载波符号组中任一多载波符号组都由所述Y个多载波符号中的一个或多个多载波符号组成,所述S是大于1的正整数。
作为一个实施例,目标参考信号组所占用的空口资源被所述X个参考信号的接收者隐式的从所述Y个多载波符号中确定所述X个多载波符号。
作为一个实施例,所述目标参考信号组包括所述X个参考信号。
作为一个实施例,所述目标参考信号组包括所述X个参考信号中部分参考信号。
作为一个实施例,所述目标参考信号组包括所述X个参考信号中的第一个参考信号。
作为一个实施例,所述目标参考信号组包括所述X个参考信号中的最后一个参考信号。
作为一个实施例,所述目标参考信号组包括所述X个参考信号中的一个给定参考信号。
作为上述实施例的一个子实施例,所述给定参考信号是预定义的。
作为上述实施例的一个子实施例,所述给定参考信号是由更高层信令配置的。
作为上述实施例的一个子实施例,所述给定参考信号是由物理层信令配置的。
作为一个实施例,所述空口资源包括时域资源、频域资源、码域资源、天线端口组和发送序列(sequence)中的至少之一。
作为一个实施例,所述空口资源包括时域资源。
作为一个实施例,所述空口资源包括频域资源。
作为一个实施例,所述空口资源包括码域资源。
作为一个实施例,所述空口资源包括天线端口组。
作为一个实施例,所述空口资源包括发送序列。
作为一个实施例,所述S个多载波符号组包括的多载波符号数目互不相同。
作为一个实施例,所述S个多载波符号组包括的多载波符号互不相同。
作为一个实施例,所述S个多载波符号组中不包括两个完全相同的多载波符号组。
作为一个实施例,所述S个多载波符号组中任意两个多载波符号组包括至少一个不相同的多载波符号。
作为一个实施例,所述S个多载波符号组中任意两个多载波符号组不包括相同的多载波符号。
作为一个实施例,所述S个多载波符号组分别被分配给S个子天线端口集合,所述S个备选空口资源分别和所述S个子天线端口集合一一对应。
作为一个实施例,所述S个子天线端口集合属于所述F个天线端口集合中的同一个天线端口集合,所述S个子天线端口集合中任一子天线端口集合包括一个或多个天线端口组。
作为一个实施例,所述X个多载波符号属于所述S个多载波符号组中之一。
作为一个实施例,所述X个多载波符号属于所述目标参考信号组所占用的空口资源所对应的所述S个多载波符号组中之一。
作为一个实施例,目标参考信号组所占用的空口资源被所述X个参考信号的接收者用于从所述S个多载波符号组中确定一个多载波符号组。
作为一个实施例,目标参考信号组所占用的空口资源被所述X个参考信号的接收者用于从所述S个子天线端口集合中确定一个子天线端口集合。
作为一个实施例,所述S个备选空口资源和S个多载波符号组的一一对应关系是预定义的。
作为一个实施例,根据上述所述的方法,其特征在于,包括:
接收第六信息;
其中,所述第六信息被用于确定所述S个备选空口资源分别和所述S个多载波符号组一一对应。
作为一个实施例,所述第六信息是半静态配置的。
作为一个实施例,所述第六信息由更高层信令承载。
作为一个实施例,所述第六信息由RRC信令承载。
作为一个实施例,所述第六信息是一个RRC信令中的一个IE的全部或一部分。
作为一个实施例,所述第六信息由MAC CE信令承载。
作为一个实施例,所述第六信息在SIB中传输。
作为一个实施例,所述第六信息显式的指示所述S个备选空口资源分别和S个多载波符号组一一对应。
作为一个实施例,所述第六信息隐式的指示所述S个备选空口资源分别和S个多载波符号组一一对应。
作为一个实施例,所述第六信息被用于确定所述S个备选空口资源分别和所述S个子天线端口集合一一对应。
作为一个实施例,所述第六信息显式的指示所述S个备选空口资源分别和所述S个子天线端口集合一一对应。
作为一个实施例,所述第六信息隐式的指示所述S个备选空口资源分别和所述S个子天线端口集合一一对应。
实施例13
实施例13A至实施例13B分别示例了一个所述M1个参考信号和所述M2个参考信号的发送顺序与第一信息的关系的示意图。
在实施例13中,本申请中的所述第一信息被用于确定所述M1个参考信号和所述M2个参考信号的假定发送顺序,所述M1个参考信号和所述M2个参考信号的发送顺序与所述假定发送顺序有关。
作为一个实施例,所述M等于所述P1。
作为一个实施例,所述第一信息显式的指示所述M1个参考信号和所述M2个参考信号的假定发送顺序。
作为一个实施例,所述第一信息隐式的指示所述M1个参考信号和所述M2个参考信号的 假定发送顺序。
作为一个实施例,所述第一信息被用于确定所述M1个参考信号和所述M2个参考信号在所述第一子频带上的M个多载波符号中的时域位置,所述假定发送顺序是根据所述时域位置由先到后的所述M1个参考信号和所述M2个参考信号的先后顺序。
作为一个实施例,所述第一信息还包括所述M1个参考信号和所述M2个参考信号在所述第一子频带上的M个多载波符号中的时域位置,所述假定发送顺序是根据所述时域位置由先到后的所述M1个参考信号和所述M2个参考信号的先后顺序。
作为一个实施例,所述M1个参考信号和所述M2个参考信号的发送顺序与所述假定发送顺序一致。
作为一个实施例,所述M1个参考信号和所述M2个参考信号的发送顺序与所述假定发送顺序不一致,所述M1个参考信号和所述M2个参考信号的发送顺序和假定发送顺序以及所述M1个多载波符号以及所述M2个多载波符号有关。
作为一个实施例,所述M1个参考信号和所述M2个参考信号的发送顺序与所述假定发送顺序不一致,目标参考信号是所述M1个参考信号和所述M2个参考信号中任一参考信号,所述目标参考信号只在根据假定发送顺序所述目标参考信号所对应的多载波符号上发送。
作为一个实施例,所述实施例13A对应所述M等于所述P1,所述M等于8,参考信号1-8是所述M1个参考信号和所述M2个参考信号,所述M1个参考信号和所述M2个参考信号的发送顺序与所述假定发送顺序一致的示意图。
作为一个实施例,所述实施例13B对应所述M等于所述P1,所述M等于8,参考信号1-8是所述M1个参考信号和所述M2个参考信号,所述M1个参考信号和所述M2个参考信号的发送顺序与所述假定发送顺序不一致的示意图。
实施例14
实施例14A至实施例14E分别示例了一个N个多载波符号、N1个天线端口组和Z个参考信号的关系的示意图。所述N个多载波符号对应本申请中的所述第一子频带上的M个多载波符号,所述Z个参考信号对应本申请中的所述M1个参考信号;所述N个多载波符号对应本申请中的所述所述第一子频带上的P1个多载波符号,所述Z个参考信号对应本申请中的所述M2个参考信号。
在实施例7中,本申请中的所述N个多载波符号被分配给N1个天线端口组,所述N1是不大于所述N的正整数,所述Z个参考信号被所述N1个天线端口组中的U1个天线端口组发送,所述Z是不大于所述N的正整数,所述U1是不大于所述Z的正整数。
作为一个实施例,所述N1个天线端口组中任一天线端口组对应所述N个多载波符号中的至少一个多载波符号,所述N个多载波符号中任一多载波符号对应所述N1个天线端口组中之一,所述N1不小于所述N2且不大于所述N的正整数。
作为一个实施例,所述N1等于所述N,所述N个多载波符号分别被分配给所述N1个天线端口组。
作为一个实施例,所述N1等于1,所述N个多载波符号被分配给同一个天线端口组。
作为一个实施例,所述N1大于1且小于所述N,所述N个多载波符号中至少两个连续的多载波符号被分配给所述N1个天线端口组中的同一个天线端口组。
作为一个实施例,所述U1等于所述Z,所述Z个参考信号分别被U1个天线端口组发送。
作为一个实施例,所述U1等于1,所述Z个参考信号被同一个天线端口组发送,所述N个多载波符号在时域上是连续的。
作为一个实施例,所述U1大于1且小于所述Z,所述Z个参考信号中至少两个在时域上占用连续的多载波符号的参考信号被所述U1个天线端口组中的同一个天线端口组发送。
作为一个实施例,所述实施例14A对应所述N1等于所述N,所述U1等于所述Z的所述N个多载波符号、所述N1个天线端口组和所述Z个参考信号的关系的示意图。
作为一个实施例,所述实施例14B对应所述N1等于1,所述U1等于1的所述N个多载波符号、所述N1个天线端口组和所述Z个参考信号的关系的示意图。
作为一个实施例,所述实施例14C对应所述N1大于1且小于所述N,所述U1等于所述Z的所述N个多载波符号、所述N1个天线端口组和所述Z个参考信号的关系的示意图。
作为一个实施例,所述实施例14D对应所述N1大于1且小于所述N,所述U1等于1的所述N个多载波符号、所述N1个天线端口组和所述Z个参考信号的关系的示意图。
作为一个实施例,所述实施例14E对应所述N1大于1且小于所述N,所述U1大于1且小于所述Z的所述N个多载波符号、所述N1个天线端口组和所述Z个参考信号的关系的示意图。
实施例15
实施例15示例了一个天线端口和天线端口组的示意图,如附图15所示。
在实施例15中,一个天线端口组包括正整数个天线端口;一个天线端口由正整数个天线组中的天线通过天线虚拟化(Virtualization)叠加而成;一个天线组包括正整数根天线。一个天线组通过一个RF(Radio Frequency,射频)chain(链)连接到基带处理器,不同天线组对应不同的RF chain。给定天线端口包括的正整数个天线组内的所有天线到所述给定天线端口的映射系数组成所述给定天线端口对应的波束赋型向量。所述给定天线端口包括的正整数个天线组内的任一给定天线组包括的多根天线到所述给定天线端口的映射系数组成所述给定天线组的模拟波束赋型向量。所述正整数个天线组对应的模拟波束赋型向量对角排列构成所述给定天线端口对应的模拟波束赋型矩阵。所述正整数个天线组到所述给定天线端口的映射系数组成所述给定天线端口对应的数字波束赋型向量。所述给定天线端口对应的波束赋型向量是由所述给定天线端口对应的模拟波束赋型矩阵和数字波束赋型向量的乘积得到的。一个天线端口组中的不同天线端口由相同的天线组构成,同一个天线端口组中的不同天线端口对应不同的波束赋型向量。
附图15中示出了两个天线端口组:天线端口组#0和天线端口组#1。其中,所述天线端口组#0由天线组#0构成,所述天线端口组#1由天线组#1和天线组#2构成。所述天线组#0中的多个天线到所述天线端口组#0的映射系数组成模拟波束赋型向量#0,所述天线组#0到所述天线端口组#0的映射系数组成数字波束赋型向量#0。所述天线组#1中的多个天线和所述天线组#2中的多个天线到所述天线端口组#1的映射系数分别组成模拟波束赋型向量#1和模拟波束赋型向量#2,所述天线组#1和所述天线组#2到所述天线端口组#1的映射系数组成数字波束赋型向量#1。所述天线端口组#0中的任一天线端口对应的波束赋型向量是由所述模拟波束赋型向量#0和所述数字波束赋型向量#0的乘积得到的。所述天线端口组#1中的任一天线端口对应的波束赋型向量是由所述模拟波束赋型向量#1和所述模拟波束赋型向量#2对角排列构成的模拟波束赋型矩阵和所述数字波束赋型向量#1的乘积得到的。
作为一个实施例,一个天线端口组包括一个天线端口。例如,附图15中的所述天线端口组#0包括一个天线端口。
作为上述实施例的一个子实施例,所述一个天线端口对应的模拟波束赋型矩阵降维成模拟波束赋型向量,所述一个天线端口对应的数字波束赋型向量降维成一个标量,所述一个天线端口对应的波束赋型向量等于所述一个天线端口对应的模拟波束赋型向量。例如,附图15中的所述数字波束赋型向量#0降维成一个标量,所述天线端口组#0中的天线端口对应的波束赋型向量是所述模拟波束赋型向量#0。
作为一个实施例,一个天线端口组包括多个天线端口。例如,附图15中的所述天线端口组#1包括多个天线端口。
作为上述实施例的一个子实施例,所述多个天线端口对应相同的模拟波束赋型矩阵。
作为上述实施例的一个子实施例,所述多个天线端口中至少两个天线端口对应相同 的模拟波束赋型矩阵。
作为上述实施例的一个子实施例,所述多个天线端口中至少两个天线端口对应不同的模拟波束赋型矩阵。
作为上述实施例的一个子实施例,所述多个天线端口对应不同的数字波束赋型向量。
作为上述实施例的一个子实施例,所述多个天线端口中至少两个天线端口对应相同的数字波束赋型向量。
作为上述实施例的一个子实施例,所述多个天线端口中至少两个天线端口对应不同的数字波束赋型向量。
作为一个实施例,不同的天线端口组中的任意两个天线端口对应不同的模拟波束赋型矩阵。
作为一个实施例,不同的天线端口组中的至少两个天线端口对应不同的模拟波束赋型矩阵。
作为一个实施例,不同的天线端口组中的至少两个天线端口对应相同的模拟波束赋型矩阵。
作为一个实施例,两个不同的天线端口组是QCL(Quasi Co-Located,准共址)。
作为一个实施例,两个不同的天线端口组不是QCL。
作为一个实施例,一个天线端口组中的任意两个天线端口是QCL。
作为一个实施例,一个天线端口组中的任意两个天线端口不是QCL。
作为一个实施例,一个天线端口组中的至少两个天线端口是QCL。
作为一个实施例,一个天线端口组中的至少两个天线端口不是QCL。
作为一个实施例,一个天线端口组中的任意两个天线端口是spatial QCL。
作为一个实施例,一个天线端口组中的任意两个天线端口不是spatial QCL。
作为一个实施例,一个天线端口组中的至少两个天线端口是spatial QCL。
作为一个实施例,一个天线端口组中的至少两个天线端口不是spatial QCL。
作为一个实施例,两个天线端口是QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的全部或者部分大尺度(large-scale)特性(properties)推断出两个天线端口中的另一个天线端口上发送的无线信号的全部或者部分大尺度特性。
作为一个实施例,两个天线端口是QCL是指:所述两个天线端口至少有一个相同的QCL参数(QCL parameter),所述QCL参数包括多天线相关的QCL参数和多天线无关的QCL参数。
作为一个实施例,两个天线端口是QCL是指:能够从所述两个天线端口中的一个天线端口的至少一个QCL参数推断出所述两个天线端口中的另一个天线端口的至少一个QCL参数。
作为一个实施例,两个天线端口是QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的接收。
作为一个实施例,两个天线端口是QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的发送推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送。
作为一个实施例,两个天线端口是QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送,所述所述两个天线端口中的一个天线端口上发送的无线信号的接收者和所述所述两个天线端口中的另一个天线端口上发送的无线信号的发送者相同。
作为一个实施例,两个天线端口不是QCL是指:不能够从所述两个天线端口中的一个天线端口上发送的无线信号的全部或者部分大尺度(large-scale)特性(properties) 推断出两个天线端口中的另一个天线端口上发送的无线信号的全部或者部分大尺度特性。
作为一个实施例,两个天线端口不是QCL是指:所述两个天线端口至少有一个不同的QCL参数(QCL parameter),所述QCL参数包括多天线相关的QCL参数和多天线无关的QCL参数。
作为一个实施例,两个天线端口不是QCL是指:不能够从所述两个天线端口中的一个天线端口的至少一个QCL参数推断出所述两个天线端口中的另一个天线端口的至少一个QCL参数。
作为一个实施例,两个天线端口不是QCL是指:不能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的接收。
作为一个实施例,两个天线端口不是QCL是指:不能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的发送推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送。
作为一个实施例,两个天线端口不是QCL是指:不能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送,所述所述两个天线端口中的一个天线端口上发送的无线信号的接收者和所述所述两个天线端口中的另一个天线端口上发送的无线信号的发送者相同。
作为一个实施例,多天线相关的QCL参数包括:到达角(angle of arrival)、离开角(angle of departure)、空间相关性、多天线相关的发送、多天线相关的接收中的一种或多种。
作为一个实施例,多天线无关的QCL参数包括:延时扩展(delay spread)、多普勒扩展(Doppler spread)、多普勒移位(Doppler shift)、路径损耗(path loss)、平均增益(average gain)中的一种或多种。
作为一个实施例,两个天线端口是spatial QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的全部或者部分多天线相关的大尺度(large-scale)特性(properties)推断出两个天线端口中的另一个天线端口上发送的无线信号的全部或者部分多天线相关的大尺度特性。
作为一个实施例,两个天线端口是spatial QCL是指:所述两个天线端口至少有一个相同的多天线相关的QCL参数(spatial QCL parameter)。
作为一个实施例,两个天线端口是spatial QCL的是指:能够从所述两个天线端口中的一个天线端口的至少一个多天线相关的QCL参数推断出所述两个天线端口中的另一个天线端口的至少一个多天线相关的QCL参数。
作为一个实施例,两个天线端口是spatial QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的接收。
作为一个实施例,两个天线端口是spatial QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的发送推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送。
作为一个实施例,两个天线端口是spatial QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送,所述所述两个天线端口中的一个天线端口上发送的无线信号的接收者和所述所述两个天线端口中的另一个天线端口上发送的无线信号的发送者相同。
作为一个实施例,两个天线端口不是spatial QCL是指:不能够从所述两个天线端口中的一个天线端口上发送的无线信号的全部或者部分多天线相关的大尺度 (large-scale)特性(properties)推断出两个天线端口中的另一个天线端口上发送的无线信号的全部或者部分多天线相关的大尺度特性。
作为一个实施例,两个天线端口不是spatial QCL是指:所述两个天线端口至少有一个不同的多天线相关的QCL参数(spatial QCL parameter)。
作为一个实施例,两个天线端口不是spatial QCL的是指:不能够从所述两个天线端口中的一个天线端口的至少一个多天线相关的QCL参数推断出所述两个天线端口中的另一个天线端口的至少一个多天线相关的QCL参数。
作为一个实施例,两个天线端口不是spatial QCL是指:不能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的接收。
作为一个实施例,两个天线端口不是spatial QCL是指:不能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的发送推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送。
作为一个实施例,两个天线端口不是spatial QCL是指:不能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送,所述所述两个天线端口中的一个天线端口上发送的无线信号的接收者和所述所述两个天线端口中的另一个天线端口上发送的无线信号的发送者相同。
作为一个实施例,给定无线信号的多天线相关的大尺度特性包括到达角(angle of arrival)、离开角(angle of departure)、空间相关性、多天线相关的发送、多天线相关的接收中的一种或者多种。
实施例16
实施例16示例了一个给定无线信号的发送功率与G2个分量的关系的示意图,如附图16所示。所述给定无线信号对应本申请中的所述M1个参考信号和所述M2个参考信号;所述给定无线信号对应本申请中的所述第一无线信号;所述G2对应实施例11中的所述G1;本申请中的所述第一功率配置信息与所述G2个分量中之一有关;本申请中的所述第二功率配置信息与所述G2个分量中之一有关。
在实施例16中,本申请中的所述给定无线信号的发送功率与所述G2个分量线性相关,所述G2是正整数。
作为一个实施例,所述给定无线信号的发送功率的单位是dBm。
作为一个实施例,所述第一功率是P PUSCH,c(i),所述P PUSCH,c(i)是索引为c的服务小区中第i个子帧中PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)上UE的传输功率,所述给定无线信号在索引为c的服务小区上传输。所述P PUSCH,c(i)的具体定义参见TS36.213。
作为一个实施例,所述第一功率是P PUSCH,f,c(i,j,q d,l),所述P PUSCH,f,c(i,j,q d,l)是在索引为c的服务小区中采用索引为j的参数集配置和索引为l的PUSCH功率控制调整状态在索引为f的载波上的第i个PUSCH传输期间(transmissionperiod)中PUSCH(Physical UplinkShared CHannel,物理上行共享信道)上UE的传输功率,所述给定无线信号在索引为c的服务小区上传输。所述P PUSCH,f,c(i,j,q d,l)的具体定义参见TS38.213。
作为一个实施例,所述给定无线信号的发送功率是P SRS,c(i),所述P SRS,c(i)是索引为c的服 务小区中第i个子帧中UE发送SRS使用的传输功率,所述给定无线信号在索引为c的服务小区上传输。所述P SRS,c(i)的具体定义参见TS36.213。
作为一个实施例,所述给定无线信号的发送功率是P SRS,f,c(i,q s,l),所述P SRS,f,c(i,q s,l)是在索引为c的服务小区中采用索引为l的SRS功率控制调整状态在第i个SRS传输期间中UE发送SRS使用的传输功率,所述给定无线信号在索引为c的服务小区上传输。所述P SRS,f,c(i,q s,l)的具体定义参见TS38.213。
作为一个实施例,所述给定无线信号的发送功率和第一分量线性相关,所述第一分量和所述给定无线信号占用的带宽相关。
作为上述实施例的一个子实施例,所述给定无线信号的发送功率与所述第一分量之间的线性系数是1。
作为上述实施例的一个子实施例,所述给定无线信号的发送功率与所述第一分量之间的线性系数是10log 10(2 μ),所述μ的具体定义参见TS38.213。
作为上述实施例的一个子实施例,所述第一分量是10log 10(M PUSCH,c(i)),所述M PUSCH,c(i)是索引为c的服务小区中第i个子帧中PUSCH分配到的以RB为单位的带宽,所述给定无线信号在索引为c的服务小区上传输。所述M PUSCH,c(i)的具体定义参见TS36.213。
作为上述实施例的一个子实施例,所述第一分量是10log 10
Figure PCTCN2017118612-appb-000001
),所述
Figure PCTCN2017118612-appb-000002
是索引为c的服务小区中在索引为f的载波上的第i个PUSCH传输期间中PUSCH分配到的以RB为单位的带宽,所述给定无线信号在索引为c的服务小区上传输。所述
Figure PCTCN2017118612-appb-000003
的具体定义参见TS38.213。
作为上述实施例的一个子实施例,所述第一分量是10log 10(M SRS,c),所述M SRS,c是索引为c的服务小区中第i个子帧中SRS分配到的以RB为单位的带宽,所述给定无线信号在索引为c的服务小区上传输。所述M SRS,c的具体定义参见TS36.213。
作为上述实施例的一个子实施例,所述第一分量是10log 10(M SRS,f,c(i)),所述M SRS,f,c(i)是索引为c的服务小区中在索引为f的载波上的第i个SRS传输期间中SRS分配到的以RB为单位的带宽,所述给定无线信号在索引为c的服务小区上传输。所述M SRS,f,c(i)的具体定义参见TS38.213。
作为一个实施例,所述给定无线信号的发送功率和第二分量线性相关,所述第二分量和PUSCH对应的调度类型相关。所述给定无线信号的发送功率与所述第二分量之间的线性系数是1。
作为上述实施例的一个子实施例,所述调度类型包括半静态授予(semi-persistent grant)、动态调度授予(dynamic scheduled grant)和随机接入响应授予(random access response grant)。
作为上述实施例的一个子实施例,所述第二分量是P O_PUSCH,c(j),所述P O_PUSCH,c(j)是在索 引为c的服务小区上和索引为j的所述调度类型相关的功率偏移量,所述给定无线信号在索引为c的服务小区上传输。所述P O_PUSCH,c(j)的具体定义参见TS36.213。
作为上述实施例的一个子实施例,所述第二分量是由高层信令配置的。
作为上述实施例的一个子实施例,所述第二分量是小区公共的。
作为一个实施例,所述给定无线信号的发送功率和第三分量线性相关,所述第三分量和所述UE到所述给定无线信号的接收者之间的信道质量相关。
作为上述实施例的一个子实施例,所述给定无线信号的发送功率与所述第三分量之间的线性系数是小于或者等于1的非负数。
作为上述实施例的一个子实施例,所述给定无线信号的发送功率与所述第三分量之间的线性系数是α c(j),所述α c(j)是在索引为c的服务小区中和索引为j的所述调度类型相关的部分路损补偿因子,所述给定无线信号在索引为c的服务小区上传输。所述α c(j)的具体定义参见TS36.213。
作为上述实施例的一个子实施例,所述给定无线信号的发送功率与所述第三分量之间的线性系数是α SRS,c。所述α SRS,c的具体定义参见TS36.213。
作为上述实施例的一个子实施例,所述给定无线信号的发送功率与所述第三分量之间的线性系数是由高层信令配置的。
作为上述实施例的一个子实施例,所述给定无线信号的发送功率与所述第三分量之间的线性系数是小区公共的。
作为上述实施例的一个子实施例,所述第三分量是PL c,所述PL c是在索引为c的服务小区中所述UE的以dB为单位的路损估计值,所述给定无线信号在索引为c的服务小区上传输。所述PL c的具体定义参见TS36.213。
作为上述实施例的一个子实施例,所述给定无线信号的发送功率与所述第三分量之间的线性系数是α f,c(j),所述第三分量是PL f,c(q d),所述PL f,c(q d)是在索引为c的服务小区中在索引为f的载波上所述UE在参考信号q d上计算出的以dB为单位的路损估计值,所述给定无线信号在索引为c的服务小区上传输。所述α f,c(j)和所述PL f,c(q d)的具体定义参见TS38.213。
作为上述实施例的一个子实施例,所述给定无线信号的发送功率与所述第三分量之间的线性系数是α SRS,f,c(q s),所述第三分量是PL f,c(q s),所述PL f,c(q s)是在索引为c的服务小区中在索引为f的载波上所述UE在SRS资源集q s上计算出的以dB为单位的路损估计值,所述给定无线信号在索引为c的服务小区上传输。所述α SRS,f,c(q s)和所述PL f,c(q s)的具体定义参见TS38.213。
作为一个实施例,所述给定无线信号的发送功率和第四分量线性相关。所述给定无线信号的发送功率与所述第四分量之间的线性系数是1。
作为上述实施例的一个子实施例,所述第四分量和PUSCH的MCS(Modulation and Coding Scheme)相关。
作为上述实施例的一个子实施例,所述第四分量是Δ TF,c(i),所述Δ TF,c(i)是索引为c的服务小区中第i个子帧中和所述UE的MCS相关的功率偏移量,所述给定无线信号在索引为c的服务小区上传输。所述Δ TF,c(i)的具体定义参见TS36.213。
作为上述实施例的一个子实施例,所述第四分量是P SRS_OFFSET,c(i),所述P SRS_OFFSET,c(i)是索引为c的服务小区中第i个子帧中SRS的发送功率相对PUSCH的偏移量,所述给定无线信号在索引为c的服务小区上传输。所述P SRS_OFFSET,c(i)的具体定义参见TS36.213。
作为上述实施例的一个子实施例,所述第四分量和所述给定无线信号的目标接收功率相关。
作为上述实施例的一个子实施例,所述第四分量是P O_SRS,c(m),所述P O_SRS,c(m)的具体定义参见TS36.213。
作为上述实施例的一个子实施例,所述第四分量是P O_SRS,f,c(q s),所述P O_SRS,c(m)的具体定义参见TS38.213。
作为上述实施例的一个子实施例,所述第四分量是P O_PUSCH,f,c(j),所述P O_PUSCH,f,c(j)的具体定义参见TS38.213。
作为上述实施例的一个子实施例,所述第四分量由高层信令配置。
作为上述实施例的一个子实施例,所述第四分量是小区公共的。
作为上述实施例的一个子实施例,所述第四分量是UE特有的。
作为一个实施例,所述给定无线信号的发送功率和第五分量线性相关,所述给定无线信号的发送功率与所述第五分量之间的线性系数是1。
作为上述实施例的一个子实施例,所述第五分量是f c(i),所述f c(i)是索引为c的服务小区中第i个子帧中PUSCH上功率控制调整的状态,所述给定无线信号在索引为c的服务小区上传输。所述f c(i)的具体定义参见TS36.213。
作为上述实施例的一个子实施例,所述第五分量是f SRS,c(i),所述f SRS,c(i)是索引为c的服务小区中第i个子帧中SRS上功率控制调整的状态,所述给定无线信号在索引为c的服务小区上传输。所述f SRS,c(i)的具体定义参见TS36.213。
作为上述实施例的一个子实施例,所述第五分量是f f,c(i,l),所述f f,c(i,l)是索引为c的服务小区中在索引为f的载波上第i个PUSCH传输期间中PUSCH上功率控制调整的状态,所述给定无线信号在索引为c的服务小区上传输。所述f f,c(i,l)的具体定义参见TS38.213。
作为上述实施例的一个子实施例,所述第五分量是h f,c(i,l),所述h f,c(i,l)是索引为c的服务小区中在索引为f的载波上第i个SRS传输期间中SRS上功率控制调整的状态,所述给定无线信号在索引为c的服务小区上传输。所述h f,c(i,l)的具体定义参见TS38.213。
作为一个实施例,所述给定无线信号的发送功率等于P CMAX,c(i),所述P CMAX,c(i)是索引为c的服务小区中第i个子帧中所述UE配置的发送功率最高门限,所述给定无线信号在索引为c的服务小区上传输。所述P CMAX,c(i)的具体定义参见TS36.213。
作为一个实施例,所述给定无线信号的发送功率小于P CMAX,c(i)。
作为一个实施例,所述给定无线信号的发送功率等于P CMAX,c(i)和参考发送功率中的最小值,所述参考发送功率等于所述第一分量、所述第二分量、所述第三分量、所述第四分量以及所述第五分量的线性叠加。
作为一个实施例,所述给定无线信号的发送功率等于P CMAX,c(i)和参考发送功率中的最小值,所述参考发送功率等于所述第一分量、所述第三分量、所述第四分量以及所述第五分量的线性叠加。
作为一个实施例,所述给定无线信号的发送功率等于P CMAX,f,c(i),所述P CMAX,f,c(i)是索引为c的服务小区中在索引为f的载波上第i个PUSCH传输期间中所述UE配置的发送功率最高门限,所述给定无线信号在索引为c的服务小区上传输。所述P CMAX,f,c(i)的具体定义参见TS38.213。
作为一个实施例,所述给定无线信号的发送功率等于P CMAX,f,c(i),所述P CMAX,f,c(i)是索引为c的服务小区中在索引为f的载波上第i个SRS传输期间中所述UE配置的发送功率最高门限,所述给定无线信号在索引为c的服务小区上传输。所述P CMAX,f,c(i)的具体定义参见TS38.213。
作为一个实施例,所述给定无线信号的发送功率小于P CMAX,f,c(i)。
作为一个实施例,所述给定无线信号的发送功率等于P CMAX,f,c(i)和参考发送功率中的最小值,所述参考发送功率等于所述第一分量、所述第三分量、所述第四分量以及所述第五分量的线性叠加。
作为一个实施例,所述G2个分量包括所述第一分量、所述第二分量、所述第三分量、所述第四分量以及所述第五分量。
作为一个实施例,所述G2个分量包括所述第一分量、所述第三分量、所述第四分量以及所述第五分量。
作为一个实施例,本申请中的所述第一功率配置信息指示一个功率偏移量,所述第五分量和所述功率偏移量线性相关,所述第五分量和所述功率偏移量之间的线性系数是1。
作为一个实施例,本申请中的所述第二功率配置信息指示一个功率偏移量,所述第五分量和所述功率偏移量线性相关,所述第五分量和所述功率偏移量之间的线性系数是1。
作为一个实施例,所述实施例16A对应所述G2等于5,所述G2个分量包括第一分量、第二分量、第三分量、第四分量以及第五分量的所述给定无线信号的发送功率与所述G2个分量的关系的示意图。
作为一个实施例,所述实施例16B对应所述G2等于4,所述G2个分量包括第一分量、第三分量、第四分量以及第五分量的所述给定无线信号的发送功率与所述G2个分量的关系 的示意图。
实施例17
实施例17示例了一个UE中的处理装置的结构框图,如附图17所示。附图17中,UE处理装置1200主要由第一接收机模块1201和第一发射机模块1202组成。
作为一个实施例,所述第一接收机模块1201包括实施例4中的接收器456、接收处理器452和控制器/处理器490。
作为一个实施例,所述第一接收机模块1201包括实施例4中的接收器456、接收处理器452和控制器/处理器490中的至少前二者。
作为一个实施例,所述第一发射机模块1202包括实施例4中的发射器456、发射处理器455和控制器/处理器490。
作为一个实施例,所述第一发射机模块1202包括实施例4中的发射器456、发射处理器455和控制器/处理器490中的至少前二者。
-第一接收机模块1201:接收第一信息,所述第一信息包括第一功率配置信息,所述第一信息被用于确定第一子频带上的M个多载波符号;接收第二信息,所述第二信息包括第二功率配置信息,所述第二信息被用于确定所述第一子频带上的P个多载波符号;
-第一发射机模块1202:从所述第一子频带上的M个多载波符号中确定M1个多载波符号;对于所述第一子频带上的M个多载波符号,仅在所述M1个多载波符号中分别发送M1个参考信号;在所述第一子频带上的P个多载波符号中的M2个多载波符号中分别发送M2个参考信号。
在实施例17中,所述M是大于1的正整数,所述P是大于1的正整数,所述M1是小于所述M的正整数,所述M2是不大于所述P的正整数,所述M1与所述M2的和等于所述M,所述M2个参考信号的发送功率与所述第一功率配置信息有关且与所述第二功率配置信息无关。
作为一个实施例,所述第一信息还被用于确定所述第一子频带上的P1个多载波符号,所述M2个多载波符号属于所述第一子频带上的P1个多载波符号,所述第一子频带上的P1个多载波符号属于所述第一子频带上的P个多载波符号,所述P1是不大于所述P的正整数。
作为一个实施例,所述第一接收机模块1201还执行K个第一接入检测,所述K是不大于2的正整数;其中,所述K个第一接入检测被用于确定所述M1个多载波符号和所述M2个多载波符号。根据本申请的一个方面,上述方法的特征在于,包括:
作为一个实施例,所述M1个参考信号和所述M2个参考信号的发送功率相同,所述第一功率配置信息被用于确定所述M1个参考信号和所述M2个参考信号的发送功率。
作为一个实施例,所述M1个参考信号中的至少一个参考信号所占用的空口资源被用于从所述第一子频带上的M个多载波符号中确定所述M1个多载波符号。
作为一个实施例,所述第一接收机模块1201还接收第三信息;其中,所述第一信息被用于确定所述M1个参考信号和所述M2个参考信号的假定发送顺序,所述第三信息被用于确定所述M1个参考信号和所述M2个参考信号的发送顺序与所述假定发送顺序是否一致。
作为一个实施例,所述第一发射机模块1202还在第一时频资源中发送第一无线信号;其中,所述第二信息还包括所述第一无线信号的配置信息,所述第二功率配置信息被用于确定所述第一无线信号的发送功率,所述第一无线信号不包括所述M2个参考信号中的任一参考信号,所述第一无线信号所占用的时频资源包括所述第一时频资源中属于所述第一子频带上的P1个多载波符号且不属于所述M2个多载波符号的至少一个多载波符号。
作为一个实施例,所述第一接收机模块1201还接收第四信息;其中,所述第四信息被用于确定所述所述第一时频资源中属于所述第一子频带上的P1个多载波符号且不属 于所述M2个多载波符号的至少一个多载波符号被所述第一无线信号占用。
作为一个实施例,所述第一接收机模块1201还接收第五信息;其中,所述第五信息被用于确定F个天线端口集合,所述F是正整数,所述F个天线端口集合中的任一天线端口集合包括正整数个天线端口组,一个天线端口组包括正整数个天线端口;所述M1个参考信号和所述M2个参考信号中的任一参考信号的发送天线端口组都属于所述F个天线端口集合中的同一个天线端口集合。
实施例18
实施例18示例了一个基站设备中的处理装置的结构框图,如附图18所示。附图18中,基站设备中的处理装置1300主要由第二发射机模块1301和第二接收机模块1302组成。
作为一个子实施例,所述第二发射机模块1301包括实施例4中的发射器416、发射处理器415和控制器/处理器440。
作为一个子实施例,所述第二发射机模块1301包括实施例4中的发射器416、发射处理器415和控制器/处理器440中的至少前二者。
作为一个子实施例,所述第二接收机模块1302包括实施例4中的接收器416、接收处理器412和控制器/处理器440。
作为一个子实施例,所述第二接收机模块1302包括实施例4中的接收器416、接收处理器412和控制器/处理器440中的至少前二者。
-第二发射机模块1301:发送第一信息,所述第一信息包括第一功率配置信息,所述第一信息被用于确定第一子频带上的M个多载波符号;发送第二信息,所述第二信息包括第二功率配置信息,所述第二信息被用于确定所述第一子频带上的P个多载波符号;
-第二接收机模块1302:在所述第一子频带上的M个多载波符号中的M1个多载波符号中分别接收M1个参考信号;在所述第一子频带上的P个多载波符号中的M2个多载波符号中分别接收M2个参考信号。
在实施例18中,所述M是大于1的正整数,所述P是大于1的正整数,所述M1是小于所述M的正整数,所述M2是不大于所述P的正整数,所述M1与所述M2的和等于所述M,所述M2个参考信号的发送功率与所述第一功率配置信息有关且与所述第二功率配置信息无关。
作为一个实施例,所述第一信息还被用于确定所述第一子频带上的P1个多载波符号,所述M2个多载波符号属于所述第一子频带上的P1个多载波符号,所述第一子频带上的P1个多载波符号属于所述第一子频带上的P个多载波符号,所述P1是不大于所述P的正整数。
作为一个实施例,所述M1个参考信号和所述M2个参考信号的发送功率相同,所述第一功率配置信息被用于确定所述M1个参考信号和所述M2个参考信号的发送功率。
作为一个实施例,上述基站设备的特征在于,所述M1个参考信号中的至少一个参考信号所占用的空口资源被用于从所述第一子频带上的M个多载波符号中确定所述M1个多载波符号。
作为一个实施例,所述第二发射机模块1301还发送第三信息;其中,所述第一信息被用于确定所述M1个参考信号和所述M2个参考信号的假定发送顺序,所述第三信息被用于确定所述M1个参考信号和所述M2个参考信号的发送顺序与所述假定发送顺序是否一致。
作为一个实施例,所述第二接收机模块1302还在第一时频资源中接收第一无线信号;其中,所述第二信息还包括所述第一无线信号的配置信息,所述第二功率配置信息被用于确定所述第一无线信号的发送功率,所述第一无线信号不包括所述M2个参考信号中的任一参考信号,所述第一无线信号所占用的时频资源包括所述第一时频资源中属于所述 第一子频带上的P1个多载波符号且不属于所述M2个多载波符号的至少一个多载波符号。
作为一个实施例,所述第二发射机模块1301还发送第四信息;其中,所述第四信息被用于确定所述所述第一时频资源中属于所述第一子频带上的P1个多载波符号且不属于所述M2个多载波符号的至少一个多载波符号被所述第一无线信号占用。
作为一个实施例,所述第二发射机模块1301还发送第五信息;其中,所述第五信息被用于确定F个天线端口集合,所述F是正整数,所述F个天线端口集合中的任一天线端口集合包括正整数个天线端口组,一个天线端口组包括正整数个天线端口;所述M1个参考信号和所述M2个参考信号中的任一参考信号的发送天线端口组都属于所述F个天线端口集合中的同一个天线端口集合。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备等无线通信设备。本申请中的基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (19)

  1. 一种用于无线通信的用户设备中的方法,其特征在于,包括:
    接收第一信息,所述第一信息包括第一功率配置信息,所述第一信息被用于确定第一子频带上的M个多载波符号,所述M是大于1的正整数;
    从所述第一子频带上的M个多载波符号中确定M1个多载波符号;对于所述第一子频带上的M个多载波符号,仅在所述M1个多载波符号中分别发送M1个参考信号,所述M1是小于所述M的正整数;
    接收第二信息,所述第二信息包括第二功率配置信息,所述第二信息被用于确定所述第一子频带上的P个多载波符号,所述P是大于1的正整数;
    在所述第一子频带上的P个多载波符号中的M2个多载波符号中分别发送M2个参考信号,所述M2是不大于所述P的正整数,所述M1与所述M2的和等于所述M;
    其中,所述M2个参考信号的发送功率与所述第一功率配置信息有关且与所述第二功率配置信息无关。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息还被用于确定所述第一子频带上的P1个多载波符号,所述M2个多载波符号属于所述第一子频带上的P1个多载波符号,所述所述第一子频带上的P1个多载波符号属于所述第一子频带上的P个多载波符号,所述P1是不大于所述P的正整数。
  3. 根据权利要求1或2所述的方法,其特征在于,包括:
    执行K个第一接入检测,所述K是不大于2的正整数;
    其中,所述K个第一接入检测被用于确定所述M1个多载波符号和所述M2个多载波符号。
  4. 根据权利要求1至3中任一权利要求所述的方法,其特征在于,所述M1个参考信号和所述M2个参考信号的发送功率相同,所述第一功率配置信息被用于确定所述M1个参考信号和所述M2个参考信号的发送功率。
  5. 根据权利要求1至4中任一权利要求所述的方法,其特征在于,所述M1个参考信号中的至少一个参考信号所占用的空口资源被用于从所述第一子频带上的M个多载波符号中确定所述M1个多载波符号。
  6. 根据权利要求1至5中任一权利要求所述的方法,其特征在于,包括:
    接收第三信息;
    其中,所述第一信息被用于确定所述M1个参考信号和所述M2个参考信号的假定发送顺序,所述第三信息被用于确定所述M1个参考信号和所述M2个参考信号的发送顺序与所述假定发送顺序是否一致。
  7. 根据权利要求2至6中任一权利要求所述的方法,其特征在于,包括:
    在第一时频资源中发送第一无线信号;
    其中,所述第二信息还包括所述第一无线信号的配置信息,所述第二功率配置信息被用于确定所述第一无线信号的发送功率,所述第一无线信号不包括所述M2个参考信号中的任一参考信号,所述第一无线信号所占用的时频资源包括所述第一时频资源中属于所述第一子频带上的P1个多载波符号且不属于所述M2个多载波符号的至少一个多载波符号。
  8. 根据权利要求7所述的方法,其特征在于,包括:
    接收第四信息;
    其中,所述第四信息被用于确定所述所述第一时频资源中属于所述第一子频带上的P1个多载波符号且不属于所述M2个多载波符号的至少一个多载波符号被所述第一无线信号占用。
  9. 根据权利要求1至8中任一权利要求所述的方法,其特征在于,包括:
    接收第五信息;
    其中,所述第五信息被用于确定F个天线端口集合,所述F是正整数,所述F个天线端口集合中的任一天线端口集合包括正整数个天线端口组,一个天线端口组包括正整数个天线端口;所述M1个参考信号和所述M2个参考信号中的任一参考信号的发送天线端口组都属于所述F个天线端口集合中的同一个天线端口集合。
  10. 一种用于无线通信的基站设备中的方法,其特征在于,包括:
    发送第一信息,所述第一信息包括第一功率配置信息,所述第一信息被用于确定第一子频带上的M个多载波符号,所述M是大于1的正整数;
    在所述第一子频带上的M个多载波符号中的M1个多载波符号中分别接收M1个参考信号,所述M1是小于所述M的正整数;
    发送第二信息,所述第二信息包括第二功率配置信息,所述第二信息被用于确定所述第一子频带上的P个多载波符号,所述P是大于1的正整数;
    在所述第一子频带上的P个多载波符号中的M2个多载波符号中分别接收M2个参考信号,所述M2是不大于所述P的正整数,所述M1与所述M2的和等于所述M;
    其中,所述M2个参考信号的发送功率与所述第一功率配置信息有关且与所述第二功率配置信息无关。
  11. 根据权利要求10所述的方法,其特征在于,所述第一信息还被用于确定所述第一子频带上的P1个多载波符号,所述M2个多载波符号属于所述第一子频带上的P1个多载波符号,所述第一子频带上的P1个多载波符号属于所述第一子频带上的P个多载波符号,所述P1是不大于所述P的正整数。
  12. 根据权利要求10至11中任一权利要求所述的方法,其特征在于,所述M1个参考信号和所述M2个参考信号的发送功率相同,所述第一功率配置信息被用于确定所述M1个参考信号和所述M2个参考信号的发送功率。
  13. 根据权利要求10至13中任一权利要求所述的方法,其特征在于,所述M1个参考信号中的至少一个参考信号所占用的空口资源被用于从所述第一子频带上的M个多载波符号中确定所述M1个多载波符号。
  14. 根据权利要求10至13中任一权利要求所述的方法,其特征在于,包括:
    发送第三信息;
    其中,所述第一信息被用于确定所述M1个参考信号和所述M2个参考信号的假定发送顺序,所述第三信息被用于确定所述M1个参考信号和所述M2个参考信号的发送顺序与所述假定发送顺序是否一致。
  15. 根据权利要求11至14中任一权利要求所述的方法,其特征在于,包括:
    在第一时频资源中接收第一无线信号;
    其中,所述第二信息还包括所述第一无线信号的配置信息,所述第二功率配置信息被用于确定所述第一无线信号的发送功率,所述第一无线信号不包括所述M2个参考信号中的任一参考信号,所述第一无线信号所占用的时频资源包括所述第一时频资源中属于所述第一子频带上的P1个多载波符号且不属于所述M2个多载波符号的至少一个多载波符号。
  16. 根据权利要求15所述的方法,其特征在于,包括:
    发送第四信息;
    其中,所述第四信息被用于确定所述所述第一时频资源中属于所述第一子频带上的P1个多载波符号且不属于所述M2个多载波符号的至少一个多载波符号被所述第一无线信号占用。
  17. 根据权利要求10至16中任一权利要求所述的方法,其特征在于,包括:
    发送第五信息;
    其中,所述第五信息被用于确定F个天线端口集合,所述F是正整数,所述F个天线端口集合中的任一天线端口集合包括正整数个天线端口组,一个天线端口组包括正整数个天线端口;所述M1个参考信号和所述M2个参考信号中的任一参考信号的发送天线端口组都属于所述F个天线端口集合中的同一个天线端口集合。
  18. 一种用于无线通信的用户设备,其特征在于,包括:
    第一接收机模块,接收第一信息,所述第一信息包括第一功率配置信息,所述第一信息被用于确定第一子频带上的M个多载波符号,所述M是大于1的正整数;接收第二信息,所述第二信息包括第二功率配置信息,所述第二信息被用于确定所述第一子频带上的P个多载 波符号,所述P是大于1的正整数;
    第一发射机模块,从所述第一子频带上的M个多载波符号中确定M1个多载波符号;对于所述第一子频带上的M个多载波符号,仅在所述M1个多载波符号中分别发送M1个参考信号,所述M1是小于所述M的正整数;在所述第一子频带上的P个多载波符号中的M2个多载波符号中分别发送M2个参考信号,所述M2是不大于所述P的正整数,所述M1与所述M2的和等于所述M;
    其中,所述M2个参考信号的发送功率与所述第一功率配置信息有关且与所述第二功率配置信息无关。
  19. 一种用于无线通信的基站设备,其特征在于,包括:
    第二发射机模块,发送第一信息,所述第一信息包括第一功率配置信息,所述第一信息被用于确定第一子频带上的M个多载波符号,所述M是大于1的正整数;发送第二信息,所述第二信息包括第二功率配置信息,所述第二信息被用于确定所述第一子频带上的P个多载波符号,所述P是大于1的正整数;
    第二接收机模块,在所述第一子频带上的M个多载波符号中的M1个多载波符号中分别接收M1个参考信号,所述M1是小于所述M的正整数;在所述第一子频带上的P个多载波符号中的M2个多载波符号中分别接收M2个参考信号,所述M2是不大于所述P的正整数,所述M1与所述M2的和等于所述M;
    其中,所述M2个参考信号的发送功率与所述第一功率配置信息有关且与所述第二功率配置信息无关。
PCT/CN2017/118612 2017-12-26 2017-12-26 一种被用于无线通信的用户设备、基站中的方法和装置 WO2019127012A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780094864.6A CN111133813B (zh) 2017-12-26 2017-12-26 一种被用于无线通信的用户设备、基站中的方法和装置
PCT/CN2017/118612 WO2019127012A1 (zh) 2017-12-26 2017-12-26 一种被用于无线通信的用户设备、基站中的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/118612 WO2019127012A1 (zh) 2017-12-26 2017-12-26 一种被用于无线通信的用户设备、基站中的方法和装置

Publications (1)

Publication Number Publication Date
WO2019127012A1 true WO2019127012A1 (zh) 2019-07-04

Family

ID=67064374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118612 WO2019127012A1 (zh) 2017-12-26 2017-12-26 一种被用于无线通信的用户设备、基站中的方法和装置

Country Status (2)

Country Link
CN (1) CN111133813B (zh)
WO (1) WO2019127012A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023216763A1 (zh) * 2022-05-09 2023-11-16 中兴通讯股份有限公司 通信方法、设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1972266A (zh) * 2005-11-23 2007-05-30 西门子(中国)有限公司 多载波无线通信系统中的子载波分配方法
CN101547518A (zh) * 2008-03-25 2009-09-30 三星电子株式会社 分配分布式信道的设备和方法
WO2017209570A1 (en) * 2016-06-03 2017-12-07 Samsung Electronics Co., Ltd. Uplink data transmission method, random access method, and corresponding ue and base station thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1972266A (zh) * 2005-11-23 2007-05-30 西门子(中国)有限公司 多载波无线通信系统中的子载波分配方法
CN101547518A (zh) * 2008-03-25 2009-09-30 三星电子株式会社 分配分布式信道的设备和方法
WO2017209570A1 (en) * 2016-06-03 2017-12-07 Samsung Electronics Co., Ltd. Uplink data transmission method, random access method, and corresponding ue and base station thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023216763A1 (zh) * 2022-05-09 2023-11-16 中兴通讯股份有限公司 通信方法、设备和存储介质

Also Published As

Publication number Publication date
CN111133813B (zh) 2022-12-27
CN111133813A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2019113766A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019134656A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019109345A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019154254A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019148488A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019109362A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019179343A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020207245A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019154259A1 (zh) 一种基站、用户设备中的用于无线通信的方法和装置
WO2019174490A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US20200295898A1 (en) Method and device in ue and base station used for wireless communication
WO2020199976A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019184710A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019028687A1 (zh) 一种用于无线通信的用户设备、基站中的方法和装置
WO2019136681A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019119249A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019218134A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019149242A1 (zh) 一种基站、用户设备中的用于无线通信的方法和装置
WO2019119197A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019134121A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019144315A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019127012A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019090752A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019126939A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN113133124B (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936534

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/02/2021)