WO2023216763A1 - 通信方法、设备和存储介质 - Google Patents

通信方法、设备和存储介质 Download PDF

Info

Publication number
WO2023216763A1
WO2023216763A1 PCT/CN2023/085659 CN2023085659W WO2023216763A1 WO 2023216763 A1 WO2023216763 A1 WO 2023216763A1 CN 2023085659 W CN2023085659 W CN 2023085659W WO 2023216763 A1 WO2023216763 A1 WO 2023216763A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
subcarrier
communication
communication node
subcarriers
Prior art date
Application number
PCT/CN2023/085659
Other languages
English (en)
French (fr)
Inventor
夏树强
张帝
马一华
袁志锋
郁光辉
胡留军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023216763A1 publication Critical patent/WO2023216763A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0008Wavelet-division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • This application relates to the field of communications, and specifically to a communication method, device and storage medium.
  • OFDM orthogonal frequency division multiplexing
  • the signal used for sensing is usually composed of multiple resource blocks. These resource blocks carry data of different users. Due to the different channel environments of users, the power of different resource blocks and the used Modulation methods, etc. may vary greatly, and as user business requirements and channel environments change, the above resource allocation power, modulation methods, etc. will also change dynamically. Differences in power and modulation methods of different user resource blocks will reduce the effective correlation bandwidth of the sensing signal, thereby reducing the distance resolution of the system; dynamic changes in resource allocation power and modulation methods will cause dynamic changes in the effective correlation bandwidth of the sensing signal, thereby affecting The stability of perceived performance.
  • the embodiment of the present application provides a communication method, applied to the first communication node, including:
  • each first type subcarrier in the first type subcarrier set and one or more first type subcarriers in the second type subcarrier set are Two types of subcarriers are in the same resource block; the first type of subcarrier is used for the transmission of communication information and sensing information, and the second type of subcarrier is only used for the transmission of communication information;
  • the first type subcarrier set and the second type subcarrier set are sent to a second communication node.
  • the embodiment of the present application provides a communication method, applied to the second communication node, including:
  • each first type subcarrier in the first type subcarrier set and the second type subcarrier set are One or more second type subcarriers are in the same resource block; the first type subcarrier is used for the transmission of communication information and sensing information, and the second type subcarrier is only used for the transmission of communication information;
  • Information transmission is performed according to the first type subcarrier in the first type subcarrier set and the second type subcarrier in the second type subcarrier set.
  • the embodiment of the present application provides a communication method, applied to the first communication node, including:
  • the first type signal is sent to the second communication node using the target symbol.
  • the embodiment of the present application provides a communication method, applied to the second communication node, including:
  • An embodiment of the present application provides an interference detection device, including: a memory, and one or more processors;
  • the memory is configured to store one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors are caused to implement the method described in any of the above embodiments.
  • Embodiments of the present application provide a storage medium that stores a computer program.
  • the computer program is executed by a processor, the method described in any of the above embodiments is implemented.
  • Figure 1 is a flow chart of a communication method provided by an embodiment of the present application.
  • Figure 2 is a flow chart of another communication method provided by an embodiment of the present application.
  • Figure 3 is a flow chart of yet another communication method provided by an embodiment of the present application.
  • Figure 4 is a flow chart of yet another communication method provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of the allocation of first type subcarriers and second type subcarriers provided by an embodiment of the present application
  • Figure 6 is another schematic diagram of allocation of first type subcarriers and second type subcarriers provided by an embodiment of the present application.
  • Figure 7 is another schematic diagram of allocation of first type subcarriers and second type subcarriers provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of downlink resource allocation provided by an embodiment of the present application.
  • Figure 9 is a modulation schematic diagram of a 16QAM modulation method provided by an embodiment of the present application.
  • Figure 10a is a schematic diagram of target symbol allocation provided by an embodiment of the present application.
  • Figure 10b is a schematic diagram of allocation of another target symbol provided by an embodiment of the present application.
  • Figure 11 is a structural block diagram of a communication device provided by an embodiment of the present application.
  • Figure 12 is a structural block diagram of another communication device provided by an embodiment of the present application.
  • Figure 13 is a structural block diagram of yet another communication device provided by an embodiment of the present application.
  • Figure 14 is a structural block diagram of yet another communication device provided by an embodiment of the present application.
  • Figure 15 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 1 is a flow chart of a communication method provided by an embodiment of the present application. This embodiment may be executed by the first communication node.
  • the first communication node may be a network side (for example, a base station stand).
  • the communication method in this embodiment includes: S110-S120.
  • each first type subcarrier in the first type subcarrier set and one or more second type subcarriers in the second type subcarrier set are in the same resource block; the first type subcarrier is used for communication information and For the transmission of sensing information, the second type of subcarrier is only used for the transmission of communication information.
  • the first type subcarrier set includes multiple subcarriers used for the transmission of communication information and sensing information at the same time. That is, all the first type subcarriers in the first type subcarrier set can be used for the transmission of communication information. It can also be used for the transmission of sensory information.
  • the first communication node allocates the first type subcarrier and the second type subcarrier based on the subcarrier allocation method, that is, determines the subcarrier index corresponding to each first type subcarrier and each second type subcarrier. subcarrier index corresponding to the subcarrier, then combine the first type subcarriers to obtain the corresponding first type subcarrier set, and combine the second type subcarriers to obtain the corresponding second type subcarrier set.
  • the first type subcarrier set and the second type subcarrier set are sent to the second communication node, so that the first type subcarrier set and the second type subcarrier set are sent to the second communication node.
  • the two communication nodes use the first type subcarriers in the first type subcarrier set to transmit communication information and sensing information, and use the second type subcarriers in the second type subcarrier set to transmit communication information.
  • the allocation method of the first type subcarriers and the second type subcarriers includes one of the following: equal intervals allocation method; non-equal interval allocation method; time-varying allocation method.
  • the first communication node may allocate the first type of subcarriers and the second type of subcarriers using equal intervals, non-equal intervals or time-varying allocation. Among them, the second type of subcarrier is only used for communication.
  • the equal-spaced allocation means that the number of second-type subcarriers between two adjacent first-type subcarriers is the same, and the number of first-type subcarriers between two adjacent second-type subcarriers is the same.
  • the number of type subcarriers is the same; the unequal spacing allocation method refers to the second type subcarriers between two adjacent first type subcarriers.
  • the number of subcarriers is different, and the number of first type subcarriers between two adjacent second type subcarriers is different; the time-varying allocation method refers to allocating different subcarriers as the first type in different time slots. subcarrier.
  • dedicated signaling or public signaling is used to send the first type subcarrier set and the second type subcarrier set to the second communication node.
  • the first communication node may notify the second communication node of the first type subcarrier set and the second type subcarrier set through dedicated signaling or public signaling.
  • the first communication node may use dedicated signaling to send the first type of subcarrier set to the second communication node; or the first communication node may use public signaling to send the first type of subcarrier set to the second communication node.
  • the dedicated signaling is sent by the first communication node to a certain second communication node, and the public signaling is sent by the first communication node to multiple second communication nodes.
  • the first type of subcarrier set includes: subcarrier 0, subcarrier 3, subcarrier 6, subcarrier 9... subcarrier 99, where subcarriers 0-11 are resource blocks 1, subcarriers 12- 23 represents resource block 2, and the first communication node allocates resource block 1 to the second communication node, then the first communication node only needs to notify the second communication node of subcarrier 0, subcarrier 3, and subcarrier 6 through dedicated signaling.
  • subcarrier 9 are first type subcarriers; if different second communication nodes allocate different resource blocks, the first communication node can send the indexes of all first type subcarriers to the second communication node through public signaling, so that the first communication node The communication node does not need to send a dedicated signaling to each second communication node to notify the corresponding first type subcarrier set.
  • the communication method applied to the first communication node further includes: using dedicated signaling or public signaling to change the power of the first type of subcarrier.
  • the parameters are sent to the second communication node, where the power parameter is less than the preset power parameter threshold.
  • the power parameter is used to characterize the difference between the powers corresponding to each two first-type subcarriers.
  • the power parameter may include a power variance or a power deviation value, which is not limited.
  • the power parameter between two adjacent first-type subcarriers is less than the preset power parameter threshold in order to avoid a large change in the power of two adjacent first-type subcarriers. , thereby avoiding a significant reduction in the effective correlation bandwidth of the sensing signal and ensuring the stability of sensing performance.
  • the preset power parameter threshold value can be any value between 0dB and 3dB.
  • the power parameters between two adjacent first type subcarriers may be the same or different.
  • the first type of subcarrier set includes: subcarrier 2, subcarrier 4, subcarrier 6 and subcarrier 8, then the power parameter between subcarrier 2 and subcarrier 4 is the same as the power parameter between subcarrier 4 and subcarrier 6.
  • the power parameters of can be the same or different.
  • the communication method applied to the first communication node also It includes: using dedicated signaling or public signaling to send the power ratio between the first type subcarrier and the second type subcarrier to the second communication node.
  • QAM Quadrature Amplitude Modulation
  • the first communication node when the first communication node schedules resources each time, if the resources allocated by the first communication node to the second communication node include the first type of subcarrier, and the second communication node adopts the QAM modulation method , the first communication node sends the first type subcarrier set to the second communication node, and the power ratio between the first type subcarrier and the second type subcarrier in the first type subcarrier set.
  • the power of all first-type subcarriers in the first-type subcarrier set may be the same, or the power parameters of two adjacent first-type subcarriers in the first-type subcarriers are less than a preset power parameter.
  • the threshold value can maximize the effective correlation bandwidth of the sensing signal at the sensing angle.
  • the first communication node sends the first type subcarrier set to the second communication node, and the power ratio between the first type subcarrier and the second type subcarrier in the first type subcarrier set, the first type
  • the subcarriers can be the same as the second type of subcarriers, and can use QAM to carry communication information, thereby minimizing the impact of perception on communication.
  • the dedicated signaling includes one of the following: Physical Downlink Control Channel (PDCCH); Downlink Control Information (DCI); Physical Downlink Shared Channel (PDSCH) ); Media Access Control (MAC) control element (Control Element, CE) signaling.
  • PDCCH Physical Downlink Control Channel
  • DCI Downlink Control Information
  • PDSCH Physical Downlink Shared Channel
  • MAC Media Access Control
  • the power ratio between each first type subcarrier and the second type subcarrier is constant. and the communication information carried by the first type of subcarrier occupies the first two bits, and the other bits are preset values.
  • the power ratio between the first type subcarriers is constant, which can be understood as the power ratio (or the absolute value of the difference) between every two first type subcarriers in the first type subcarrier set is A fixed value or the ratio (or the absolute value of the difference) is less than a preset threshold value.
  • the first type of subcarrier set includes: subcarrier 1, subcarrier 3 and subcarrier 5, and the power of subcarrier 1 is 1, the power of subcarrier 3 is 2, and the power of subcarrier 5 is 4. Then the power ratio between subcarrier 1 and subcarrier 3, and the power ratio between subcarrier 5 and subcarrier 3 are both 2.
  • the QAM modulation method when the first type of subcarrier carries communication information, only the first two bits can be occupied, and the other bits can be preset values, so that The QAM modulation method is equivalent to the Quadrature Phase Shift Keying (QPSK) modulation method.
  • the preset value of other bits may be 1.
  • FIG. 2 is a flow chart of another communication method provided by an embodiment of the present application. This embodiment may be executed by the second communication node.
  • the second communication node may be a terminal, such as user equipment (User Equipment, UE).
  • the communication method in this embodiment includes: S210-S220.
  • S210 Receive the first type subcarrier set and the second type subcarrier set sent by the first communication node.
  • each first type subcarrier in the first type subcarrier set and one or more second type subcarriers in the second type subcarrier set are in the same resource block; the first type subcarrier The carrier is used for integrated synaesthesia information transmission, and the second type subcarrier is only used for the transmission of communication information.
  • S220 Perform information transmission according to the first type subcarrier in the first type subcarrier set and the second type subcarrier in the second type subcarrier set.
  • the first communication node determines the first type subcarrier set and the second type subcarrier set, it sends the first type subcarrier set and the second type subcarrier set to the second communication node; in the second communication node After the node receives the first type subcarrier set and the second type subcarrier set, the second The communication node transmits communication information and sensing information according to the first type of subcarrier, or uses the second type of subcarrier to transmit communication information.
  • the allocation method of the first type subcarriers and the second type subcarriers includes one of the following: equal intervals allocation method; non-equal interval allocation method; time-varying allocation method.
  • receiving the first type subcarrier set and the second type subcarrier set sent by the first communication node includes: receiving the first type subcarrier set sent by the first communication node using dedicated signaling or public signaling. and a second type subcarrier set.
  • the communication method applied to the second communication node further includes: receiving a third message sent by the first communication node using dedicated signaling or public signaling.
  • the power parameter includes one of the following: power variance; power deviation.
  • the communication method applied to the second communication node also includes:
  • the dedicated signaling includes one of the following: PDCCH; DCI; PDSCH; MAC CE signaling.
  • the power ratio between each first type subcarrier and the second type subcarrier is constant
  • the communication information carried by the first type of subcarrier occupies the first two bits, and the other bits are preset values.
  • the communication method applied to the second communication node corresponds to the first type subcarrier set, the power parameters between the first type subcarriers, the preset power parameter threshold value, the power ratio, the first type
  • parameters such as the allocation method of subcarriers, please refer to the above-mentioned communication method applied to the first communication node. The description of the corresponding parameters in the letter method will not be repeated here.
  • FIG. 3 is a flow chart of yet another communication method provided by an embodiment of the present application. This embodiment may be executed by the first communication node. Wherein, the first communication node may be a base station. As shown in Figure 3, the communication method in this embodiment includes: S310-S320.
  • the first type of signal is a signal of synaesthesia integration.
  • the first type of signal refers to a signal that can be used for both perception and communication, that is, a synaesthetically integrated signal.
  • the first communication node may select at least one symbol from the time slot between uplink and downlink switching (ie, the time slot between the downlink time slot and the uplink time slot) as the target symbol for transmission.
  • Type 1 signal the time slot between uplink and downlink switching (ie, the time slot between the downlink time slot and the uplink time slot) as the target symbol for transmission.
  • the sensing signal receiver can use the guard period of the special subframe to receive the target echo signal, which expands the role of the guard period, reduces the overhead of the sensing signal, and does not affect the role of the guard period in the communication signal. Influence.
  • the target symbols include: downlink pilot time slots The last K symbols of (Downlink Pilot Time Slot, DwPTS);
  • the target symbols include: the last K symbols of the downlink symbols in a time slot; where K is a positive number greater than or equal to 1 integer.
  • the first communication node may send the first type signal in the last K symbols of DwPTS in a special subframe; for an integrated synaesthesia system based on NR TDD, The first communication node may transmit the first type signal in the last K symbols of the downlink symbols of a time slot.
  • FIG. 4 is a flow chart of yet another communication method provided by an embodiment of the present application. This embodiment may be executed by the second communication node. Wherein, the second communication node may be a terminal. As shown in Figure 4, this embodiment includes: S410.
  • S410 Receive the first type signal sent by the first communication node using the target symbol.
  • the first type of signal is a synaesthesia-integrated signal
  • the target symbol is a symbol used to send the first type of signal.
  • the target symbols include: the last K symbols of DwPTS;
  • the target symbols include: the last K symbols of the downlink symbols in a time slot; where K is a positive integer greater than or equal to 1.
  • the first communication node is the base station
  • the second communication node is the UE
  • the power parameter is the power variance.
  • the base station allocates the first type of subcarriers (i.e., for sensing and Communication integrated subcarriers), that is, the first type of subcarriers are equally spaced in the frequency domain.
  • the base station allocates a part of the subcarriers for communication (ie, second type subcarriers), and another part of the subcarriers for sensing and communication integration (ie, first type of subcarriers).
  • the base station notifies the UE of the subcarrier set for sensing and communication integration (ie, the first type of subcarrier set) through dedicated or public signaling.
  • the base station may use dedicated signaling to notify a set of subcarriers used for sensing. This set may be in the same subcarrier as the subcarriers allocated to the UE for communication (i.e., the second type of subcarriers in the second type of subcarrier set). Resource blocks.
  • the base station can use public signaling to notify the entire set of subcarriers used for sensing.
  • the power variance between the first type subcarriers should be less than the preset power variance threshold.
  • the preset power variance threshold can be set to a value between 0dB and 3dB (the above threshold value No need to notify UE).
  • Figure 5 is a schematic diagram of allocation of first type subcarriers and second type subcarriers provided by an embodiment of the present application. As shown in Figure 5, select subcarriers with even subcarrier numbers as the first type of subcarriers (for example, sub-carrier2, sub-carrier4, sub-carrier6...sub-carrier N-1), and adjacent Two first type subcarriers are equally spaced. Among them, N is an even number.
  • the first communication node is a base station
  • the second communication node is a UE
  • the power parameter is a power variance.
  • the base station allocates the first type of subcarriers (i.e., for sensing) using a non-equally spaced allocation method. and communication integrated subcarriers).
  • the base station allocates a part of the subcarriers for communication (ie, second type subcarriers), and another part of the subcarriers for sensing and communication integration (ie, first type of subcarriers).
  • the base station notifies the UE of the subcarrier set for sensing and communication integration (ie, the first type of subcarrier set) through dedicated or public signaling.
  • the power variance between the first type subcarriers should be less than a preset power variance threshold.
  • the preset power variance threshold is set to a value between 0dB and 3dB (the above threshold The limit value does not need to be notified to the UE).
  • Figure 6 is another schematic diagram of allocation of first type subcarriers and second type subcarriers provided by an embodiment of the present application.
  • two adjacent first type subcarriers are unequally spaced.
  • the first type of subcarriers are sub-carrier1, sub-carrier4, sub-carrier N-2, sub-carrier N, and the difference between sub-carrier1 and sub-carrier4 is two sub-carriers, sub-carrier N-2
  • N is a positive integer greater than 1.
  • the first communication node is a base station
  • the second communication node is a UE
  • the power parameter is a power variance
  • the base station uses a time-varying allocation method to allocate the first type of subcarriers (that is, for sensing and subcarriers for communication integration).
  • the base station uses a time-varying allocation method to allocate different subcarriers as first-type subcarriers in different time slots, whose power variance is less than the preset power variance threshold, and notifies the UE in a broadcast manner.
  • the base station allocates a part of the subcarriers for communication (ie, second type subcarriers), and another part of the subcarriers for sensing and communication integration (ie, first type of subcarriers).
  • Base station via dedicated or Public signaling notifies the UE of a set of subcarriers used for sensing and communication integration (ie, a first type of subcarrier set).
  • the power variance between the first type subcarriers should be less than the preset power variance threshold.
  • the preset power variance threshold is set to a value between 0dB and 3dB (the above threshold does not need to be notified to the UE).
  • Figure 7 is another schematic diagram of allocation of first type subcarriers and second type subcarriers provided by an embodiment of the present application.
  • the base station allocates different subcarriers as first type subcarriers and notifies the UE through dedicated or public signaling.
  • time slot t1 sub-carrier2, sub-carrier4...sub-carrier N-1 is used as the first type of subcarrier
  • time slot t2 sub-carrier1, sub-carrier4...sub- carrier N-1 serves as the first type subcarrier.
  • the first communication node is a base station
  • the second communication node is a UE
  • the power parameter is a power variance
  • the base station sends the UE a signal between the first type subcarrier and the second type subcarrier.
  • Power ratio and the UE adopts QAM modulation method.
  • Figure 8 is a schematic diagram of downlink resource allocation provided by an embodiment of the present application.
  • the base station allocates frequency domain resources to the UE.
  • the downlink resource allocation process of the base station refers to the process of the base station allocating subcarriers to the UE, which can include the following steps: user service (user service); resource scheduler (resource scheduler), resource allocation (resource allocation), feedback ( feedback).
  • the power ratio power ratio
  • the power ratio can be sent to the UE.
  • the base station uses dedicated or public signaling to notify the UE of the power ratio of the first type of subcarrier (ie, synaesthesia integrated subcarrier) and the second type of subcarrier (ie, pure communication subcarrier).
  • the first type of subcarrier ie, synaesthesia integrated subcarrier
  • the second type of subcarrier ie, pure communication subcarrier
  • the frequency domain resources allocated by the base station include synaesthesia integrated subcarriers and pure communication subcarriers.
  • the power of each synaesthesia integrated subcarrier is the same, or the power variance of these synaesthesia integrated subcarriers is less than the preset power variance threshold, that is, synaesthesia integrated subcarriers and pure communication subcarriers The power of the carriers is different.
  • the base station will use dedicated or public
  • the signaling notifies the UE of the synaesthesia integrated subcarrier set (i.e., the first type of subcarrier set) and the functions of the first type of subcarrier in the set. ratio to the power of pure communication subcarriers.
  • the synaesthesia integrated subcarriers can carry information in the QAM manner like traditional communication subcarriers, thus integrating sensing to communication. minimize the negative impact.
  • Figure 9 is a modulation schematic diagram of a 16QAM modulation method provided by an embodiment of the present application.
  • the frequency domain resources allocated by the base station include synaesthesia integrated subcarriers (i.e., first type subcarriers) and pure communication subcarriers (i.e., second type subcarriers), and the synaesthesia integration subcarriers are The power ratio is constant, or the power variance of these subcarriers is less than the preset power variance threshold. It can be understood that the power of the synaesthesia integrated subcarrier is different from the power of the pure communication subcarrier.
  • the synaesthesia integrated subcarrier In order to reduce the impact on communication performance, in QAM modulation, the synaesthesia integrated subcarrier only occupies the first two bits when carrying communication information, and the other bits are specified as preset values (for example, the preset value is 1), thereby making it
  • the modulation method is equivalent to QPSK. Take Figure 9 as an example to illustrate.
  • the modulation mode is 16QAM.
  • the base station uses the first type of subcarrier to carry communication information, it occupies the first two bits, and the last two bits are specified as 11, that is: when the synaesthesia integrated subcarrier carries information,
  • the constellation point corresponding to the modulation is one of the four constellation points with indexes 3, 7, 11, and 15 in the figure, which is equivalent to the QPSK modulation method.
  • the principles for other QAM methods are the same and will not be described again here.
  • this method does not require special signaling to notify the UE of the power ratio of the synaesthesia integrated subcarrier and the pure communication subcarrier.
  • the base station taking the first communication node as the base station and the second communication node as the UE as an example, the base station
  • the process of assigning target symbols to signals of the first type is explained.
  • the first type of signal refers to the signal used for perception, that is, the perception signal.
  • the base station may use the last K symbols of the DwPTS in the special subframe S for sensing, and K is less than or equal to the number of symbols included in the DwPTS.
  • the sensing signal receiver can use the guard period (GP) of the special subframe to receive the target echo signal.
  • This method expands the role of the guard period and reduces the overhead of the sensing signal. At the same time, it will not affect the guard period. Influence on the role of communication signals.
  • FIG. 11 is a structural block diagram of a communication device provided by an embodiment of the present application. This embodiment is applied to the first communication node. As shown in Figure 11, the communication device in this embodiment includes: a determining module 1110 and a first sending module 1120.
  • the determination module 1110 is configured to determine a first type subcarrier set and a second type subcarrier set; wherein each first type subcarrier in the first type subcarrier set is consistent with the second type subcarrier set.
  • One or more second-type subcarriers in the set are in the same resource block; the first-type subcarrier is used for the transmission of communication information and sensing information, and the second-type subcarrier is only used for the transmission of communication information;
  • the first sending module 1120 is configured to send the first type subcarrier set and the second type subcarrier set to the second communication node.
  • the allocation method of the first type subcarriers and the second type subcarriers includes one of the following: equal intervals allocation method; non-equal interval allocation method; time-varying allocation method.
  • dedicated signaling or public signaling is used to send the first type subcarrier set and the second type subcarrier set to the second communication node.
  • the communication device applied to the first communication node further includes:
  • the second sending module is configured to use dedicated signaling or public signaling to send the power parameter of the first type of subcarrier to the second communication node, where the power parameter is less than the preset power parameter threshold.
  • the power parameter includes one of the following: power variance; power deviation.
  • the communication device applied to the first communication node further includes:
  • the third sending module is configured to use dedicated signaling or public signaling to send the power ratio between the first type subcarrier and the second type subcarrier to the second communication node.
  • the dedicated signaling includes one of the following: PDCCH; DCI; PDSCH; MAC CE signaling.
  • the power ratio between each first type subcarrier and the second type subcarrier is constant
  • the communication information carried by the first type of subcarrier occupies the first two bits, and the other bits are preset values.
  • the communication device provided by this embodiment is configured to implement the communication method applied to the first communication node in the embodiment shown in Figure 1.
  • the implementation principles and technical effects of the communication device provided by this embodiment are similar and will not be described again here.
  • FIG. 12 is a structural block diagram of another communication device provided by an embodiment of the present application. This embodiment is applied to the second communication node. As shown in Figure 12, the communication device in this embodiment includes: a first receiving module 1210 and a transmission module 1220.
  • the first receiving module 1210 is configured to receive a first type subcarrier set and a second type subcarrier set sent by the first communication node; wherein each first type subcarrier in the first type subcarrier set is identical to the first type subcarrier set.
  • One or more second-type subcarriers in the second-type subcarrier set are in the same resource block; the first-type subcarrier is used for integrated synaesthesia information transmission, and the second-type subcarrier is only used for communication transmission of information;
  • the transmission module 1220 is configured to transmit information according to the first type subcarrier in the first type subcarrier set and the second type subcarrier in the second type subcarrier set.
  • the allocation method of the first type subcarriers and the second type subcarriers includes one of the following: equal intervals allocation method; non-equal interval allocation method; time-varying allocation method.
  • the first receiving module 1210 is further configured to receive the first type subcarrier set and the second type subcarrier set sent by the first communication node using dedicated signaling or public signaling.
  • the communication device applied to the second communication node further includes:
  • the second receiving module is configured to receive the power parameter of the first type of subcarrier sent by the first communication node using dedicated signaling or public signaling, where the power parameter is less than a preset power parameter threshold.
  • the power parameter includes one of the following: power variance; power deviation.
  • the communication device applied to the second communication node when the first type of subcarrier carries communication information and the second communication node adopts the QAM modulation method, the communication device applied to the second communication node also includes:
  • the third receiving module is configured to receive the power ratio between the first type subcarrier and the second type subcarrier sent by the first communication node using dedicated signaling or public signaling.
  • the dedicated signaling includes one of the following: PDCCH; DCI; PDSCH; MAC CE signaling.
  • the power ratio between each first type subcarrier and the second type subcarrier is constant.
  • the communication information carried by the first type of subcarrier occupies the first two bits, and the other bits are preset values.
  • the communication device provided by this embodiment is configured to implement the communication method applied to the second communication node in the embodiment shown in Figure 2.
  • the implementation principles and technical effects of the communication device provided by this embodiment are similar and will not be described again here.
  • FIG. 13 is a structural block diagram of yet another communication device provided by an embodiment of the present application. This embodiment is applied to the first communication node. As shown in Figure 13, the communication device in this embodiment includes: a determining module 1310 and a sending module 1320.
  • the determination module 1310 is configured to determine a target symbol for transmitting a first type of signal; wherein the first type of signal is a synaesthesia-integrated signal.
  • the sending module 1320 is configured to send the first type signal to the second communication node using the target symbol.
  • the target symbols include: the last K symbols of DwPTS;
  • the target symbols include: the last K symbols of the downlink symbols in a time slot; where K is a positive integer greater than or equal to 1.
  • the communication device provided by this embodiment is configured to implement the communication method applied to the first communication node in the embodiment shown in Figure 3.
  • the implementation principles and technical effects of the communication device provided by this embodiment are similar and will not be described again here.
  • FIG. 14 is a structural block diagram of yet another communication device provided by an embodiment of the present application. This embodiment is applied to the second communication node. As shown in Figure 14, the communication device in this embodiment includes: a receiving module 1410.
  • the receiving module 1410 is configured to receive the first type of signal sent by the first communication node using the target symbol; wherein the first type of signal is a synaesthesia integrated signal; the target symbol is used to send the third A symbol for a type of signal.
  • the target symbols include: the last K symbols of DwPTS;
  • the target symbols include: the last K symbols of the downlink symbols in a time slot; where K is a positive integer greater than or equal to 1.
  • the communication device provided in this embodiment is configured to implement the communication method applied to the second communication node in the embodiment shown in Figure 4.
  • the implementation principles and technical effects of the communication device provided in this embodiment are similar and will not be described again here.
  • Figure 15 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the device provided by this application includes: a processor 1510 and a memory 1520.
  • the number of processors 1510 in the device may be one or more.
  • one processor 1510 is taken as an example.
  • the number of memories 1520 in the device may be one or more.
  • one memory 1520 is taken as an example.
  • the processor 1510 and the memory 1520 of the device can be connected through a bus or other means. In Figure 15, the connection through the bus is taken as an example.
  • the device may be a first communication node.
  • the memory 1520 can be configured to store software programs, computer-executable programs and modules, such as program instructions/modules corresponding to the equipment of any embodiment of the present application (for example, the determination module 1110 and the first sending module 1120).
  • the memory 1520 may include a program storage area and a storage data area, where the program storage area may store an operating system and an application program required for at least one function; the storage data area may store data created according to use of the device, and the like.
  • memory 1520 may include high-speed random access memory and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • memory 1520 may further include memory located remotely from processor 1510, and these remote memories may be connected to the device through a network.
  • Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the communication device is the first communication node
  • the device provided above may be configured to perform the above
  • the communication method applied to the first communication node provided by any embodiment has corresponding functions and effects.
  • the device provided above can be configured to execute the communication method applied to the second communication node provided in any of the above embodiments, and has corresponding functions and effects.
  • Embodiments of the present application also provide a storage medium containing computer-executable instructions. When executed by a computer processor, the computer-executable instructions are used to perform a communication method applied to the first communication node.
  • the method includes: determining the first communication node. type subcarrier set and a second type subcarrier set; wherein each first type subcarrier in the first type subcarrier set and one or more second type subcarriers in the second type subcarrier set In the same resource block; the first type subcarrier is used for the transmission of communication information and sensing information, and the second type subcarrier is only used for the transmission of communication information; the first type subcarrier set and the The second type subcarrier set is sent to the second communication node.
  • Embodiments of the present application also provide a storage medium containing computer-executable instructions.
  • the computer-executable instructions When executed by a computer processor, the computer-executable instructions are used to perform a communication method applied to a second communication node.
  • the method includes: receiving the first A first type subcarrier set and a second type subcarrier set sent by the communication node; wherein each first type subcarrier in the first type subcarrier set and one or more of the second type subcarrier set Two second type subcarriers are in the same resource block; the first type subcarrier is used for integrated synaesthesia information transmission, and the second type subcarrier is only used for the transmission of communication information; according to the first type The first type subcarrier in the subcarrier set and the second type subcarrier in the second type subcarrier set perform information transmission.
  • Embodiments of the present application also provide a storage medium containing computer-executable instructions.
  • the computer-executable instructions When executed by a computer processor, the computer-executable instructions are used to perform a communication method applied to the first communication node.
  • the method includes: determining for Send the target symbol of the first type signal; wherein the first type signal is a synaesthesia-integrated signal; use the target symbol to send the first type signal to the second communication node.
  • Embodiments of the present application also provide a storage medium containing computer-executable instructions.
  • the computer-executable instructions When executed by a computer processor, the computer-executable instructions are used to perform a communication method applied to a second communication node.
  • the method includes: receiving the first The communication node uses the target symbol to send the first type of signal; wherein the first type of signal is a synaesthesia-integrated signal; and the target symbol is a symbol used to send the first type of signal.
  • user equipment encompasses any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser or a vehicle-mounted mobile station.
  • the various embodiments of the present application may be implemented in hardware or special purpose circuitry, software, logic, or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the application is not limited thereto.
  • Embodiments of the present application may be implemented by a data processor of the mobile device executing computer program instructions, for example in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source code or object code.
  • ISA Instruction Set Architecture
  • Any block diagram of a logic flow in the figures of this application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology, such as but not limited to Read-Only Memory (ROM), Random Access Memory (RAM), optical Storage devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC ), programmable logic devices (Field-Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出一种通信方法、设备和存储介质。应用于第一通信节点的通信方法,包括:确定第一类型子载波集合和和第二类型子载波集合;其中,第一类型子载波集合中每个第一类型子载波与第二类型子载波集合中的至少一个第二类型子载波在同一个资源块;第一类型子载波用于通信信息和感知信息的传输,第二类型子载波只用于通信信息的传输;将第一类型子载波集合和第二类型子载波集合发送至第二通信节点。

Description

通信方法、设备和存储介质 技术领域
本申请涉及通信领域,具体涉及一种通信方法、设备和存储介质。
背景技术
在通信感知一体化系统中,由于使用相同的时间、频率和功率等资源就可实现数据传输和目标感知两大业务功能,从而受到业界越来越多的重视。在信号特性方面,由于正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM)波形在频谱效率、干扰抑制、与多输入多输出(Multiple-Input Multiple-Output,MIMO)技术良好适配结合等方面的显著优势,OFDM波形已在4G/5G移动系统得到广泛应用。此外,由于OFDM信号的模糊函数呈现单一尖峰形状,具有良好的距离分辨率特性,因此也能很好地去承担无线感知任务。基于上述两个原因,通感一体化融合波形设计中,还是以OFDM作为主要调制方式。
在基于OFDM波形的通感一体化系统中,用于感知的信号通常是由多个资源块组成,这些资源块携带不同用户的数据,由于用户的信道环境不同,不同资源块的功率、采用的调制方式等都可能有很大差异,并且,随着用户业务需求、信道环境的变化,上述资源分配功率、调制方式等还会动态变化。不同用户资源块的功率、调制方式差异会降低感知信号的有效相关带宽,进而降低了系统的距离分辨率;资源分配功率、调制方式的动态变化会导致感知信号的有效相关带宽动态变化,进而影响了感知性能的稳定性。
发明内容
本申请实施例提供一种通信方法,应用于第一通信节点,包括:
确定第一类型子载波集合和第二类型子载波集合;其中,所述第一类型子载波集合中每个第一类型子载波与所述第二类型子载波集合中的一个或多个第 二类型子载波在同一个资源块;所述第一类型子载波用于通信信息和感知信息的传输,所述第二类型子载波只用于通信信息的传输;
将所述第一类型子载波集合和所述第二类型子载波集合发送至第二通信节点。
本申请实施例提供一种通信方法,应用于第二通信节点,包括:
接收第一通信节点发送的第一类型子载波集合和第二类型子载波集合;其中,所述第一类型子载波集合中每个第一类型子载波与所述第二类型子载波集合中的一个或多个第二类型子载波在同一个资源块;所述第一类型子载波用于通信信息和感知信息的传输,所述第二类型子载波只用于通信信息的传输;
根据所述第一类型子载波集合中的第一类型子载波和所述第二类型子载波集合中的第二类型子载波进行信息传输。
本申请实施例提供一种通信方法,应用于第一通信节点,包括:
确定用于发送第一类型信号的目标符号;其中,所述第一类型信号为通感一体化的信号;
采用所述目标符号向第二通信节点发送第一类型信号。
本申请实施例提供一种通信方法,应用于第二通信节点,包括:
接收第一通信节点采用目标符号发送的第一类型信号;其中,所述第一类型信号为通感一体化的信号;所述目标符号为用于发送第一类型信号的符号。
本申请实施例提供一种干扰检测设备,包括:存储器,以及一个或多个处理器;
所述存储器,配置为存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述任一实施例所述的方法。
本申请实施例提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述任一实施例所述的方法。
附图说明
图1是本申请实施例提供的一种通信方法的流程图;
图2是本申请实施例提供的另一种通信方法的流程图;
图3是本申请实施例提供的又一种通信方法的流程图;
图4是本申请实施例提供的再一种通信方法的流程图;
图5是本申请实施例提供的一种第一类型子载波和第二类型子载波的分配示意图;
图6是本申请实施例提供的另一种第一类型子载波和第二类型子载波的分配示意图;
图7是本申请实施例提供的又一种第一类型子载波和第二类型子载波的分配示意图;
图8是本申请实施例提供的一种下行资源的分配示意图;
图9是本申请实施例提供的一种16QAM调制方式的调制示意图;
图10a是本申请实施例提供的一种目标符号的分配示意图;
图10b是本申请实施例提供的另一种目标符号的分配示意图;
图11是本申请实施例提供的一种通信装置的结构框图;
图12是本申请实施例提供的另一种通信装置的结构框图;
图13是本申请实施例提供的又一种通信装置的结构框图;
图14是本申请实施例提供的再一种通信装置的结构框图;
图15是本申请实施例提供的一种通信设备的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。以下结合实施例附图对本申请进行描述,所举实例仅用于解释本申请,并非用于限定本申请的范围。
在一实施例中,图1是本申请实施例提供的一种通信方法的流程图。本实施例可以由第一通信节点执行。其中,第一通信节点可以为网络侧(比如,基 站)。如图1所示,本实施例中的通信方法包括:S110-S120。
S110、确定第一类型子载波集合和第二类型子载波集合。
其中,第一类型子载波集合中每个第一类型子载波与第二类型子载波集合中的一个或多个第二类型子载波在同一个资源块;第一类型子载波用于通信信息和感知信息的传输,第二类型子载波只用于通信信息的传输。
在实施例中,第一类型子载波集合包含同时用于通信信息和感知信息传输的多个子载波,即第一类型子载波集合中所有的第一类型子载波既可以用于通信信息的传输,也可以用于感知信息的传输。
在实施例中,第一通信节点基于子载波的分配方式对第一类型子载波和第二类型子载波进行分配,即确定每个第一类型子载波对应的子载波索引和每个第二类型子载波对应的子载波索引,然后将第一类型子载波组合得到对应的第一类型子载波集合,以及将第二类型子载波组合得到对应的第二类型子载波集合。
S120、将第一类型子载波集合和第二类型子载波集合发送至第二通信节点。
在实施例中,在第一通信节点完成第一类型子载波和第二类型子载波的分配之后,将第一类型子载波集合和第二类型子载波集合发送至第二通信节点,以使第二通信节点采用第一类型子载波集合中的第一类型子载波对通信信息和感知信息进行传输,以及采用第二类型子载波集合中的第二类型子载波进行通信信息的传输。
在一实施例中,第一类型子载波和第二类型子载波的分配方式均包括下述之一:等间隔分配方式;非等间隔分配方式;时变分配方式。在实施例中,第一通信节点可以采用等间隔分配方式、非等间隔方式或时变分配方式分配第一类型子载波和第二类型子载波。其中,第二类型子载波只用于通信。在一实施例中,等间隔分配方式指的是相邻两个第一类型子载波之间的第二类型子载波个数是相同的,且相连两个第二类型子载波之间的第一类型子载波个数是相同的;非等间隔分配方式指的是相邻两个第一类型子载波之间的第二类型子载波 个数是不同的,且相邻两个第二类型子载波之间的第一类型子载波个数是不同的;时变分配方式指的是在不同时隙分配不同的子载波作为第一类型子载波。
在一实施例中,采用专用信令或公共信令将第一类型子载波集合和第二类型子载波集合发送至第二通信节点。在实施例中,第一通信节点可以通过专用信令或公共信令向第二通信节点通知第一类型子载波集合和第二类型子载波集合。示例性地,第一通信节点可以采用专用信令向第二通信节点发送第一类型子载波集合;或者,第一通信节点可以采用公共信令向第二通信节点发送第一类型子载波集合。其中,专用信令是第一通信节点发送至某一个第二通信节点的,而公共信令是第一通信节点发送至多个第二通信节点的。示例性地,假设第一类型子载波集合包括:子载波0、子载波3、子载波6、子载波9……子载波99,其中,子载波0-11为资源块1,子载波12-23为资源块2,并且,第一通信节点向第二通信节点分配资源块1,则第一通信节点只需要通过专用信令向第二通信节点通知子载波0、子载波3、子载波6和子载波9为第一类型子载波;若不同第二通信节点分配的资源块不同,则第一通信节点可以通过公共信令向第二通信节点发送所有第一类型子载波的索引,从而第一通信节点无需向每个第二通信节点发送一个专用信令,以通知对应的第一类型子载波集合。
在一实施例中,在所述第一类型子载波携带通信信息的情况下,应用于第一通信节点的通信方法,还包括:采用专用信令或公共信令将第一类型子载波的功率参数发送至第二通信节点,其中,功率参数小于预设功率参数门限值。在实施例中,功率参数用于表征每两个第一类型子载波所对应功率之间的差值。在一实施例中,功率参数可以包括功率方差,也可以包括功率偏差值,对此并不进行限定。
在实施例中,相邻两个第一类型子载波之间的功率参数小于预设功率参数门限值,是为了避免相邻两个第一类型子载波的功率之间出现较大幅度的变化,进而避免大幅度地降低感知信号的有效相关带宽,保证了感知性能的稳定性。示例性地,预设功率参数门限值可以为0dB-3dB之间的任意一个值。
在实施例中,相邻两个第一类型子载波之间的功率参数可以是相同的,也可以是不相同的。示例性地,假设第一类型子载波集合包括:子载波2、子载波4、子载波6和子载波8,则子载波2和子载波4之间的功率参数,与子载波4和子载波6之间的功率参数可以是相同的,也可以是不相同的。
在一实施例中,在第一类型子载波携带通信信息,且第二通信节点采用正交幅度调制(Quadrature Amplitude Modulation,QAM)调制方式的情况下,应用于第一通信节点的通信方法,还包括:采用专用信令或公共信令向第二通信节点发送第一类型子载波与第二类型子载波之间的功率比例。在实施例中,在第一通信节点每次调度资源的情况下,若第一通信节点为第二通信节点分配的资源包括第一类型子载波,且第二通信节点采用QAM调制方式的情况下,第一通信节点向第二通信节点发送第一类型子载波集合,以及第一类型子载波集合中第一类型子载波与第二类型子载波之间的功率比例。在一实施例中,第一类型子载波集合中所有的第一类型子载波的功率可以相同,或者,第一类型子载波中相邻两个第一类型子载波的功率参数小于预设功率参数门限值,从而在感知角度可以最大化感知信号的有效相关带宽。在实施例中,第一通信节点向第二通信节点发送第一类型子载波集合,以及第一类型子载波集合中第一类型子载波与第二类型子载波之间的功率比例,第一类型子载波可以与第二类型子载波一样,可以采用QAM方式携带通信信息,从而可以将感知对通信的影响最小化。
在一实施例中,专用信令包括下述之一:物理下行控制信道(Physical Downlink Control Channel,PDCCH);下行控制信息(Downlink Control Information,DCI);物理下行共享信道(Physical Downlink Shared Channel,PDSCH);媒体接入控制(Media Access Control,MAC)控制单元(Control Element,CE)信令。
在一实施例中,在第一类型子载波携带通信信息,且第二通信节点采用QAM方式的情况下,每个第一类型子载波与第二类型子载波之间的功率比例恒 定;并且,第一类型子载波所携带的通信信息占用前两个比特,以及其它比特为预设值。在实施例中,第一类型子载波之间的功率比例恒定,可以理解为,第一类型子载波集合中每两个第一类型子载波之间的功率比值(或差值的绝对值)是一个定值或者该比值(或差值的绝对值)小于一个预设的门限值。示例性地,第一类型子载波集合中包括:子载波1、子载波3和子载波5,并且,子载波1的功率为1,子载波3的功率为2,子载波5的功率为4,则子载波1与子载波3之间的功率比例,以及子载波5与子载波3之间的功率比例均为2。在实施例中,为了降低对通信性能的影响,在QAM调制方式中,第一类型子载波携带通信信息的情况下,可以只占用前两个比特,并且其它比特为预设值,从而可以使QAM调制方式等效于正交相移键控(Quadrature Phase Shift Keying,QPSK)调制方式。其中,其它比特的预设值可以为1。
在一实施例中,图2是本申请实施例提供的另一种通信方法的流程图。本实施例可以由第二通信节点执行。其中,第二通信节点可以为终端,比如,用户设备(User Equipment,UE)。如图2所示,本实施例中的通信方法包括:S210-S220。
S210、接收第一通信节点发送的第一类型子载波集合和第二类型子载波集合。
其中,所述第一类型子载波集合中每个第一类型子载波与所述第二类型子载波集合中的一个或多个第二类型子载波在同一个资源块;所述第一类型子载波用于通感一体化的信息传输,所述第二类型子载波只用于通信信息的传输。
S220、根据第一类型子载波集合中的第一类型子载波和第二类型子载波集合中的第二类型子载波进行信息传输。
在实施例中,第一通信节点确定第一类型子载波集合和第二类型子载波集合之后,将第一类型子载波集合和第二类型子载波集合发送至第二通信节点;在第二通信节点接收到第一类型子载波集合和第二类型子载波集合之后,第二 通信节点根据第一类型子载波进行通信信息和感知信息的传输,或者,采用第二类型子载波进行通信信息的传输。
在一实施例中,第一类型子载波和第二类型子载波的分配方式均包括下述之一:等间隔分配方式;非等间隔分配方式;时变分配方式。
在一实施例中,接收第一通信节点发送的第一类型子载波集合和第二类型子载波集合,包括:接收第一通信节点采用专用信令或公共信令发送的第一类型子载波集合和第二类型子载波集合。
在一实施例中,在所述第一类型子载波携带通信信息的情况下,应用于第二通信节点的通信方法,还包括:接收第一通信节点采用专用信令或公共信令发送的第一类型子载波的功率参数,其中,所述功率参数小于预设功率参数门限值。
在一实施例中,功率参数包括下述之一:功率方差;功率偏差。
在一实施例中,在第一类型子载波携带通信信息,且第二通信节点采用QAM调制方式的情况下,应用于第二通信节点的通信方法,还包括:
接收第一通信节点采用专用信令或公共信令发送的第一类型子载波和第二类型子载波之间的功率比例。
在一实施例中,专用信令包括下述之一:PDCCH;DCI;PDSCH;MAC CE信令。
在一实施例中,在第一类型子载波携带通信信息,且第二通信节点采用QAM方式的情况下,每个第一类型子载波与第二类型子载波之间的功率比例恒定;
并且,第一类型子载波所携带的通信信息占用前两个比特,以及其它比特为预设值。
在此需要说明的是,对应用于第二通信节点的通信方法中第一类型子载波集合、第一类型子载波之间的功率参数、预设功率参数门限值、功率比例、第一类型子载波的分配方式等参数的解释,可参见上述应用于第一通信节点的通 信方法中对应参数的描述,在此不再赘述。
在一实施例中,图3是本申请实施例提供的又一种通信方法的流程图。本实施例可以由第一通信节点执行。其中,第一通信节点可以为基站。如图3所示,本实施例中的通信方法包括:S310-S320。
S310、确定用于发送第一类型信号的目标符号。
其中,第一类型信号为通感一体化的信号。
在实施例中,第一类型信号指的是可以同时用于感知和通信的信号,即通感一体化的信号。在实施例中,第一通信节点可以从上行与下行进行切换之间的时隙(即下行时隙和上行时隙之间的时隙)中选择至少一个符号,作为目标符号,以用来传输第一类型信号。
S320、采用目标符号向第二通信节点发送第一类型信号。
在实时中,第一通信节点确定目标符号之后,可以采用该目标符号向第二通信节点发送第一类型信号。在实施例中,感知信号接收机可以利用特殊子帧的保护周期接收目标回波信号,拓展了保护周期的作用,降低了感知信号的开销,并且,并未对保护周期在通信信号的作用造成影响。
在一实施例中,在第一通信节点处于长期演进(Long Term Evolution,LTE)时分双工(Time Division Duplex,TDD)的通感一体化系统的情况下,目标符号包括:下行导频时隙(Downlink Pilot Time Slot,DwPTS)的最后K个符号;
在第一通信节点处于新空口(New Radio,NR)TDD的通感一体化系统的情况下,目标符号包括:一个时隙中下行符号的最后K个符号;其中,K为大于等于1的正整数。
在一实施例中,针对基于LTE TDD的通感一体化系统,第一通信节点可以在特殊子帧中DwPTS的最后K个符号发送第一类型信号;针对基于NR TDD的通感一体化系统,第一通信节点可以在一个时隙的下行符号中最后K个符号发送第一类型信号。
在一实施例中,图4是本申请实施例提供的再一种通信方法的流程图。本实施例可以由第二通信节点执行。其中,第二通信节点可以为终端。如图4所示,本实施例包括:S410。
S410、接收第一通信节点采用目标符号发送的第一类型信号。
其中,第一类型信号为通感一体化的信号;目标符号为用于发送第一类型信号的符号。
在一实施例中,在第一通信节点处于LTE TDD的通感一体化系统的情况下,目标符号包括:DwPTS的最后K个符号;
在第一通信节点处于NR TDD的通感一体化系统的情况下,目标符号包括:一个时隙中下行符号的最后K个符号;其中,K为大于等于1的正整数。
在此需要说明的是,对应用于第二通信节点的通信方法中目标符号、第一类型信号等参数的解释,可参见上述应用于第一通信节点的通信方法中对应参数的描述,在此不再赘述。
在一实施例中,以第一通信节点为基站,第二通信节点为UE,以及功率参数为功率方差为例,并且,基站采用等间隔分配方式分配第一类型子载波(即用于感知和通信一体化的子载波),即第一类型子载波在频域上是等间隔的。
在实施例中,基站分配一部分子载波用于通信(即第二类型子载波),另一部分子载波用于感知和通信一体化(即第一类型子载波)。基站通过专用或公共信令通知UE用于感知和通信一体化的子载波集合(即第一类型子载波集合)。比如,基站可以采用专用信令通知部分用于感知的子载波集合,该集合可以与分配给UE用于通信的子载波(即第二类型子载波集合中的第二类型子载波)在同一个资源块。再比如,基站可以采用公共信令通知用于感知的子载波集合整体。其中,第一类型子载波之间的功率方差应小于预设功率方差门限值,可选的,该预设功率方差门限值可以设定为0dB~3dB间的一个值(上述门限值 不需要通知UE)。图5是本申请实施例提供的一种第一类型子载波和第二类型子载波的分配示意图。如图5所示,选取子载波序号为双数的子载波作为第一类型子载波(比如,sub-carrier2、sub-carrier4、sub-carrier6……sub-carrier N-1),并且,相邻两个第一类型子载波之间是等间隔的。其中,N为偶数。
在一实施例中,以第一通信节点为基站,第二通信节点为UE,以及功率参数为功率方差为例,并且,基站采用非等间隔分配方式分配第一类型子载波(即用于感知和通信一体化的子载波)。
在实施例中,基站分配一部分子载波用于通信(即第二类型子载波),另一部分子载波用于感知和通信一体化(即第一类型子载波)。基站通过专用或公共信令通知UE用于感知和通信一体化的子载波集合(即第一类型子载波集合)。在实施例中,第一类型子载波之间的功率方差应小于预设功率方差门限值,可选的,该预设功率方差门限值设定为0dB~3dB间的一个值(上述门限值不需要通知UE)。图6是本申请实施例提供的另一种第一类型子载波和第二类型子载波的分配示意图。如图6所示,相邻两个第一类型子载波之间是非等间隔的。比如,第一类型子载波为sub-carrier1、sub-carrier4、sub-carrier N-2、sub-carrier N,并且,sub-carrier1和sub-carrier4之间相差两个子载波,sub-carrier N-2和sub-carrier N之间相差一个子载波。其中,N为大于1的正整数。
在一实施例中,以第一通信节点为基站,第二通信节点为UE,以及功率参数为功率方差为例,并且,基站采用时变分配方式分配第一类型子载波(即用于感知和通信一体化的子载波)。
在实施例中,基站采用时变分配方式在不同时隙分配不同子载波作为第一类型子载波,其功率方差小于预设功率方差门限值,并用广播方式告知UE。
在实施例中,基站分配一部分子载波用于通信(即第二类型子载波),另一部分子载波用于感知和通信一体化(即第一类型子载波)。基站通过专用或 公共信令通知UE用于感知和通信一体化的子载波集合(即第一类型子载波集合)。其中,第一类型子载波之间的功率方差应小于预设功率方差门限值。在一实施例中,该预设功率方差门限值设定为0dB~3dB间的一个值(上述门限值不需要通知UE)。图7是本申请实施例提供的又一种第一类型子载波和第二类型子载波的分配示意图。如图7所示,在不同的时隙,基站分配不同的子载波作为第一类型子载波,并通过专用或公共信令通知UE。示例性地,在时隙t1,采用sub-carrier2、sub-carrier4……sub-carrier N-1作为第一类型子载波,而在时隙t2,采用sub-carrier1、sub-carrier4……sub-carrier N-1作为第一类型子载波。
在一实施例中,以第一通信节点为基站,第二通信节点为UE,以及功率参数为功率方差为例,并且,基站向UE发送第一类型子载波和第二类型子载波之间的功率比例,以及UE采用QAM调制方式。图8是本申请实施例提供的一种下行资源的分配示意图。如图8所示,基站向UE进行频域资源的分配。其中,基站进行下行资源的分配过程,指的是基站为UE分配子载波的过程,可以包括如下步骤:用户服务(user service);资源调度(resource scheduler)、资源分配(resource allocation)、反馈(feedback)。其中,在资源调度的过程中,可以将功率比例(power ratio)发送至UE。
在实施例中,基站使用专用或公共信令向UE通知第一类型子载波(即通感一体化子载波)和第二类型子载波(即纯通信子载波)的功率比例。
在实施例中,基站分配的频域资源包括通感一体化子载波和纯通信子载波。在一个OFDM符号时间内,每个通感一体化子载波的功率相同,或者这些通感一体化子载波的功率方差小于预设功率方差门限值,即通感一体化子载波和纯通信子载波的功率不同。基站在每次资源调度的情况下,如果基站为UE分配的资源包括通感一体化子载波且UE所采样的调制方式QAM调制(如16QAM,64QAM,256QAM等)时,基站则采用专用或公共信令的信令向UE通知通感一体化子载波集合(即第一类型子载波集合)及该集合中第一类型子载波的功 率与纯通信子载波的功率之间的比例。采用这种方式,由于每个通感一体化子载波的功率相同或者这些子载波的功率方差小于预设功率方差门限值,从而从感知角度可以最大化感知信号的有效相关带宽。另外一方面,通过向UE通知通感一体化子载波集合及相对通信子载波的功率比例,通感一体化子载波可以像传统的通信子载波一样采用QAM方式携带信息,因而可以将感知对通信的负面影响最小化。
在一实施例中,以第一通信节点为基站,第二通信节点为UE,以及功率参数为功率方差为例,并且,第一类型子载波和第二类型子载波之间的功率比例恒定,以及UE采用16QAM调制方式。图9是本申请实施例提供的一种16QAM调制方式的调制示意图。
在实施例中,基站分配的频域资源包括通感一体化子载波(即第一类型子载波)和纯通信子载波(即第二类型子载波),并且通感一体化子载波之间的功率比例恒定,或者这些子载波的功率方差小于预设功率方差门限值。可以理解为,通感一体化子载波的功率与纯通信子载波的功率不同。为降低对通信性能的影响,在QAM调制中,通感一体化子载波携带通信信息时只占用前两个比特,规定其它比特为预设值(比如,预设值为1),从而使其调制方式等效于QPSK。以图9为例进行说明,调制方式为16QAM,基站采用第一类型子载波携带通信信息时占用前两个比特,规定后两位为11,即:通感一体化子载波在携带信息时,其调制对应的星座点为图中索引为3,7,11,15这四个星座点中的1个,等效于QPSK调制方式。对于其它QAM方式原理相同,这里不再赘述。
采用这种方式,在最大化感知信号有效相关带宽的同时,还可以将感知对通信的负面影响最小化。与上述将第一类型子载波和第二类型子载波之间的功率比例的实施例相比,该方式不需要专门信令向UE通知通感一体化子载波和纯通信子载波的功率比例。
在一实施例中,以第一通信节点为基站,第二通信节点为UE为例,对基站 为第一类型信号分配目标符号的过程进行说明。其中,第一类型信号指的是用于感知的信号,即感知信号。
在实施例中,基站可以将特殊子帧S中DwPTS的后K个符号用于感知,K小于或等于DwPTS所包含的符号数。
图10a是本申请实施例提供的一种目标符号的分配示意图。如图10a所示,示出了感知信号通过DwPTS最后两个符号进行发送。其中,D表示下行子帧,S表示上行子帧,U表示上行子帧。对于基于LTE TDD的通感一体化系统,感知信号在特殊子帧S中DwPTS的最后K个符号发送,K>=1。图10b是本申请实施例提供的另一种目标符号的分配示意图。如图10b所示,示出了感知信号通过一个时隙下行符号中最后两个符号进行发送。其中,GP表示保护周期。对于基于NR TDD的通感一体化系统,感知信号在有下行/上行切换的时隙发送,并且,感知信号在该时隙下行符号部分的最后K个符号发送,K>=1。
采用上述方式,感知信号接收机可以利用特殊子帧的保护周期(GP)来接收目标回波信号,该方法拓展了保护周期的作用,降低了感知信号的开销,同时,也不会对保护周期在通信信号的作用造成影响。
在一实施例中,图11是本申请实施例提供的一种通信装置的结构框图。本实施例应用于第一通信节点。如图11所示,本实施例中的通信装置包括:确定模块1110和第一发送模块1120。
其中,确定模块1110,配置为确定第一类型子载波集合和和第二类型子载波集合;其中,所述第一类型子载波集合中每个第一类型子载波与所述第二类型子载波集合中的一个或多个第二类型子载波在同一个资源块;所述第一类型子载波用于通信信息和感知信息的传输,所述第二类型子载波只用于通信信息的传输;
第一发送模块1120,配置为将第一类型子载波集合和第二类型子载波集合发送至第二通信节点。
在一实施例中,第一类型子载波和第二类型子载波的分配方式均包括下述之一:等间隔分配方式;非等间隔分配方式;时变分配方式。
在一实施例中,采用专用信令或公共信令将第一类型子载波集合和第二类型子载波集合发送至第二通信节点。
在一实施例中,在所述第一类型子载波携带通信信息的情况下,应用于第一通信节点的通信装置,还包括:
第二发送模块,配置为采用专用信令或公共信令将第一类型子载波的功率参数发送至第二通信节点,其中,所述功率参数小于预设功率参数门限值。
在一实施例中,功率参数包括下述之一:功率方差;功率偏差。
在一实施例中,在所述第一类型子载波携带通信信息,且所述第二通信节点采用正交幅度调制QAM方式的情况下,应用于第一通信节点的通信装置,还包括:
第三发送模块,配置为采用专用信令或公共信令向第二通信节点发送第一类型子载波与第二类型子载波之间的功率比例。
在一实施例中,专用信令包括下述之一:PDCCH;DCI;PDSCH;MAC CE信令。
在一实施例中,在第一类型子载波携带通信信息,且第二通信节点采用QAM方式的情况下,每个第一类型子载波与第二类型子载波之间的功率比例恒定;
并且,第一类型子载波所携带的通信信息占用前两个比特,以及其它比特为预设值。
本实施例提供的通信装置设置为实现图1所示实施例中应用于第一通信节点的通信方法,本实施例提供的通信装置实现原理和技术效果类似,此处不再赘述。
在一实施例中,图12是本申请实施例提供的另一种通信装置的结构框图。 本实施例应用于第二通信节点。如图12所示,本实施例中的通信装置包括:第一接收模块1210和传输模块1220。
第一接收模块1210,配置为第一通信节点发送的第一类型子载波集合和第二类型子载波集合;其中,所述第一类型子载波集合中每个第一类型子载波与所述第二类型子载波集合中的一个或多个第二类型子载波在同一个资源块;所述第一类型子载波用于通感一体化的信息传输,所述第二类型子载波只用于通信信息的传输;
传输模块1220,配置为根据第一类型子载波集合中的第一类型子载波和第二类型子载波集合中的第二类型子载波进行信息传输。
在一实施例中,第一类型子载波和第二类型子载波的分配方式均包括下述之一:等间隔分配方式;非等间隔分配方式;时变分配方式。
在一实施例中,第一接收模块1210,还配置为接收第一通信节点采用专用信令或公共信令发送的第一类型子载波集合和第二类型子载波集合。
在一实施例中,在所述第一类型子载波携带通信信息的情况下,应用于第二通信节点的通信装置,还包括:
第二接收模块,配置为接收第一通信节点采用专用信令或公共信令发送的第一类型子载波的功率参数,其中,所述功率参数小于预设功率参数门限值。
在一实施例中,功率参数包括下述之一:功率方差;功率偏差。
在一实施例中,在第一类型子载波携带通信信息,且第二通信节点采用QAM调制方式的情况下,应用于第二通信节点的通信装置,还包括:
第三接收模块,配置为接收第一通信节点采用专用信令或公共信令发送的第一类型子载波和第二类型子载波之间的功率比例。
在一实施例中,专用信令包括下述之一:PDCCH;DCI;PDSCH;MAC CE信令。
在一实施例中,在第一类型子载波携带通信信息,且第二通信节点采用QAM方式的情况下,每个第一类型子载波与第二类型子载波之间的功率比例恒 定;
并且,第一类型子载波所携带的通信信息占用前两个比特,以及其它比特为预设值。
本实施例提供的通信装置设置为实现图2所示实施例中应用于第二通信节点的通信方法,本实施例提供的通信装置实现原理和技术效果类似,此处不再赘述。
在一实施例中,图13是本申请实施例提供的又一种通信装置的结构框图。本实施例应用于第一通信节点。如图13所示,本实施例中的通信装置包括:确定模块1310和发送模块1320。
其中,确定模块1310,配置为确定用于发送第一类型信号的目标符号;其中,第一类型信号为通感一体化的信号。
发送模块1320,配置为采用目标符号向第二通信节点发送第一类型信号。
在一实施例中,在第一通信节点处于LTE TDD的通感一体化系统的情况下,目标符号包括:DwPTS的最后K个符号;
在第一通信节点处于NR TDD的通感一体化系统的情况下,目标符号包括:一个时隙中下行符号的最后K个符号;其中,K为大于等于1的正整数。
本实施例提供的通信装置设置为实现图3所示实施例中应用于第一通信节点的通信方法,本实施例提供的通信装置实现原理和技术效果类似,此处不再赘述。
在一实施例中,图14是本申请实施例提供的再一种通信装置的结构框图。本实施例应用于第二通信节点。如图14所示,本实施例中的通信装置包括:接收模块1410。
其中,接收模块1410,配置为接收第一通信节点采用目标符号发送的第一类型信号;其中,第一类型信号为通感一体化的信号;目标符号为用于发送第 一类型信号的符号。
在一实施例中,在第一通信节点处于LTE TDD的通感一体化系统的情况下,目标符号包括:DwPTS的最后K个符号;
在第一通信节点处于NR TDD的通感一体化系统的情况下,目标符号包括:一个时隙中下行符号的最后K个符号;其中,K为大于等于1的正整数。
本实施例提供的通信装置设置为实现图4所示实施例中应用于第二通信节点的通信方法,本实施例提供的通信装置实现原理和技术效果类似,此处不再赘述。
图15是本申请实施例提供的一种通信设备的结构示意图。如图15所示,本申请提供的设备,包括:处理器1510和存储器1520。该设备中处理器1510的数量可以是一个或者多个,图15中以一个处理器1510为例。该设备中存储器1520的数量可以是一个或者多个,图15中以一个存储器1520为例。该设备的处理器1510和存储器1520可以通过总线或者其他方式连接,图15中以通过总线连接为例。在该实施例中,该设备为可以为第一通信节点。
存储器1520作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请任意实施例的设备对应的程序指令/模块(例如,通信装置中的确定模块1110和第一发送模块1120)。存储器1520可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器1520可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器1520可进一步包括相对于处理器1510远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
在通信设备为第一通信节点的情况下,上述提供的设备可设置为执行上述 任意实施例提供的应用于第一通信节点的通信方法,具备相应的功能和效果。
在通信设备为第二通信节点的情况下,上述提供的设备可设置为执行上述任意实施例提供的应用于第二通信节点的通信方法,具备相应的功能和效果。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种应用于第一通信节点的通信方法,该方法包括:确定第一类型子载波集合和第二类型子载波集合;其中,所述第一类型子载波集合中每个第一类型子载波与所述第二类型子载波集合中的一个或多个第二类型子载波在同一个资源块;所述第一类型子载波用于通信信息和感知信息的传输,所述第二类型子载波只用于通信信息的传输;将所述第一类型子载波集合和所述第二类型子载波集合发送至第二通信节点。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种应用于第二通信节点的通信方法,该方法包括:接收第一通信节点发送的第一类型子载波集合和第二类型子载波集合;其中,所述第一类型子载波集合中每个第一类型子载波与所述第二类型子载波集合中的一个或多个第二类型子载波在同一个资源块;所述第一类型子载波用于通感一体化的信息传输,所述第二类型子载波只用于通信信息的传输;根据所述第一类型子载波集合中的第一类型子载波和所述第二类型子载波集合中的第二类型子载波进行信息传输。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种应用于第一通信节点的通信方法,该方法包括:确定用于发送第一类型信号的目标符号;其中,第一类型信号为通感一体化的信号;采用目标符号向第二通信节点发送第一类型信号。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种应用于第二通信节点的通信方法,该方法包括:接收第一通信节点采用目标符号发送的第一类型信号;其中,第一类型信号为通感一体化的信号;目标符号为用于发送第一类型信号的符号。
本领域内的技术人员应明白,术语用户设备涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (14)

  1. 一种通信方法,应用于第一通信节点,包括:
    确定第一类型子载波集合和第二类型子载波集合;其中,所述第一类型子载波集合中每个第一类型子载波与所述第二类型子载波集合中的至少一个第二类型子载波在同一个资源块;所述第一类型子载波用于通信信息和感知信息的传输,所述第二类型子载波只用于通信信息的传输;
    将所述第一类型子载波集合和所述第二类型子载波集合发送至第二通信节点。
  2. 根据权利要求1所述的方法,其中,所述第一类型子载波和所述第二类型子载波的分配方式均包括下述之一:等间隔分配方式;非等间隔分配方式;时变分配方式。
  3. 根据权利要求1所述的方法,其中,将所述第一类型子载波集合和所述第二类型子载波集合发送至第二通信节点,包括:采用专用信令或公共信令将所述第一类型子载波集合和所述第二类型子载波集合发送至第二通信节点。
  4. 根据权利要求1所述的方法,在所述第一类型子载波携带通信信息的情况下,还包括:
    采用专用信令或公共信令将第一类型子载波的功率参数发送至第二通信节点,其中,所述功率参数小于预设功率参数门限值。
  5. 根据权利要求4所述的方法,其中,所述功率参数包括下述之一:功率方差;功率偏差。
  6. 根据权利要求1所述的方法,在所述第一类型子载波携带通信信息,且所述第二通信节点采用正交幅度调制QAM方式的情况下,还包括:
    采用专用信令或公共信令向第二通信节点发送第一类型子载波与第二类型子载波之间的功率比例。
  7. 根据权利要求3、4或6所述的方法,其中,所述专用信令包括下述之一:物理下行控制信道PDCCH;下行控制信息DCI;物理下行共享信道PDSCH;媒体接入控制-控制单元MAC CE信令。
  8. 根据权利要求1所述的方法,其中,在第一类型子载波携带通信信息,且第二通信节点采用QAM方式的情况下,每个所述第一类型子载波与第二类型子载波之间的功率比例恒定;
    并且,所述第一类型子载波所携带的通信信息占用前两个比特,以及其它比特为预设值。
  9. 一种通信方法,应用于第二通信节点,包括:
    接收第一通信节点发送的第一类型子载波集合和第二类型子载波集合;其中,所述第一类型子载波集合中每个第一类型子载波与所述第二类型子载波集合中的至少一个第二类型子载波在同一个资源块;所述第一类型子载波用于通感一体化的信息传输,所述第二类型子载波只用于通信信息的传输;
    根据所述第一类型子载波集合中的第一类型子载波和所述第二类型子载波集合中的第二类型子载波进行信息传输。
  10. 一种通信方法,应用于第一通信节点,包括:
    确定用于发送第一类型信号的目标符号;其中,所述第一类型信号为通感一体化的信号;
    采用所述目标符号向第二通信节点发送第一类型信号。
  11. 根据权利要求10所述的方法,其中,在所述第一通信节点处于长期演进LTE时分双工TDD的通感一体化系统的情况下,所述目标符号包括:下行导频时隙DwPTS的最后K个符号;
    在所述第一通信节点处于新空口NR时分双工TDD的通感一体化系统的情况下,所述目标符号包括:一个时隙中下行符号的最后K个符号;其中,K为大于等于1的正整数。
  12. 一种通信方法,应用于第二通信节点,包括:
    接收第一通信节点采用目标符号发送的第一类型信号;其中,所述第一类型信号为通感一体化的信号;其中,所述目标符号为用于发送第一类型信号的符号。
  13. 一种通信设备,包括:存储器,以及至少一个处理器;
    所述存储器,配置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如上述权利要求1-8、9、10-11或12中任一项所述的方法。
  14. 一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上述权利要求1-8、9、10-11或12中任一项所述的方法。
PCT/CN2023/085659 2022-05-09 2023-03-31 通信方法、设备和存储介质 WO2023216763A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210501583.0 2022-05-09
CN202210501583.0A CN117081896A (zh) 2022-05-09 2022-05-09 通信方法、设备和存储介质

Publications (1)

Publication Number Publication Date
WO2023216763A1 true WO2023216763A1 (zh) 2023-11-16

Family

ID=88715862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085659 WO2023216763A1 (zh) 2022-05-09 2023-03-31 通信方法、设备和存储介质

Country Status (2)

Country Link
CN (1) CN117081896A (zh)
WO (1) WO2023216763A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107370701A (zh) * 2016-05-11 2017-11-21 华为技术有限公司 传输信号的方法、发送端和接收端
WO2019127012A1 (zh) * 2017-12-26 2019-07-04 南通朗恒通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN113364718A (zh) * 2021-05-24 2021-09-07 北京邮电大学 一种基于5g nr的感知通信一体化系统
CN113746534A (zh) * 2021-09-22 2021-12-03 东南大学 一种卫星大规模mimo通信感知一体化的发送方法
CN114114150A (zh) * 2021-11-26 2022-03-01 东南大学 一种面向通信感知一体化的无线定位方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107370701A (zh) * 2016-05-11 2017-11-21 华为技术有限公司 传输信号的方法、发送端和接收端
WO2019127012A1 (zh) * 2017-12-26 2019-07-04 南通朗恒通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN113364718A (zh) * 2021-05-24 2021-09-07 北京邮电大学 一种基于5g nr的感知通信一体化系统
CN113746534A (zh) * 2021-09-22 2021-12-03 东南大学 一种卫星大规模mimo通信感知一体化的发送方法
CN114114150A (zh) * 2021-11-26 2022-03-01 东南大学 一种面向通信感知一体化的无线定位方法

Also Published As

Publication number Publication date
CN117081896A (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
US20230388050A1 (en) Method and device for determining time frequency resources
US20220312401A1 (en) Methods and apparatus for sending and receiving second stage sci, storage medium, sending ue, and receiving ue
CA2840067C (en) Method and apparatus for transmitting and receiving time division duplex frame configuration information in wireless communication system
WO2020143718A1 (zh) 控制信道的监测方法及装置、发送方法及装置、存储介质
CN111726877B (zh) 数据传输方法、终端和基站
WO2014176967A1 (zh) 一种解调参考信号图样信息的选取方法、系统及装置
CA3056689C (en) Transmission direction configuration method, device, and system
US10368344B2 (en) User equipment, network side device and method for controlling user equipment
CN110324898B (zh) 物理下行共享信道接收及其时域资源指示方法、装置、存储介质、基站、终端
CN111436085B (zh) 通信方法及装置
CN109302718B (zh) 一种数据传输方法及装置
CN111901885A (zh) 一种信息调度方法、装置、设备和存储介质
EP2283684B1 (en) Resource allocation in two domains
US10750530B2 (en) Data transmission method and apparatus
JP2018537907A (ja) スケジューリング情報送信方法および装置
US20180310291A1 (en) Control signal sending method and apparatus
WO2018228496A1 (zh) 一种指示方法、处理方法及装置
WO2021003746A1 (zh) 非授权频谱上的信道状态指示方法、装置及存储介质
EP2966788A1 (en) Communication method, base station, user equipment, and system
WO2023216763A1 (zh) 通信方法、设备和存储介质
WO2017041301A1 (zh) 信息传输方法及装置
WO2022017207A1 (zh) 一种工作模式的指示方法、装置以及系统
WO2022133871A1 (en) Apparatus and methods for downlink control signaling in wireless networks
WO2024093878A1 (zh) 一种通信方法及装置
CN108737304B (zh) 一种上行通信方法、装置、基站及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802539

Country of ref document: EP

Kind code of ref document: A1