WO2020143718A1 - 控制信道的监测方法及装置、发送方法及装置、存储介质 - Google Patents

控制信道的监测方法及装置、发送方法及装置、存储介质 Download PDF

Info

Publication number
WO2020143718A1
WO2020143718A1 PCT/CN2020/071206 CN2020071206W WO2020143718A1 WO 2020143718 A1 WO2020143718 A1 WO 2020143718A1 CN 2020071206 W CN2020071206 W CN 2020071206W WO 2020143718 A1 WO2020143718 A1 WO 2020143718A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
sfn
index
radio frame
time slot
Prior art date
Application number
PCT/CN2020/071206
Other languages
English (en)
French (fr)
Inventor
苗婷
毕峰
刘文豪
卢有雄
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020143718A1 publication Critical patent/WO2020143718A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0008Wavelet-division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • Embodiments of the present invention relate to, but are not limited to, a control channel monitoring method and device, a transmission method and device, and a computer-readable storage medium.
  • each synchronization signal block (Synchronous Signal/Physical Broadcast Channel Channel, referred to as SSB) contains the main synchronization signal, the auxiliary synchronization signal and the physical broadcast channel (Physical Broadcast Channel (PBCH))
  • PBCH Physical Broadcast Channel
  • each SSB corresponds to a beam direction or a port
  • the base station sends multiple SSBs in a beam polling manner in the synchronization period
  • the multiple SSBs in the synchronization period are located in a half radio frame and Form an SSB burst set (SSB burst set).
  • SSB burst set For different frequency bands, the maximum number of SSBs contained in the SSB burst set is different.
  • the synchronization period includes the following values: 5ms (milliseconds), 10ms, 20ms, 40ms, 80ms, and 160ms.
  • the initially accessed UE (User Equipment) assumes that the synchronization period is 20 ms.
  • the UE detects the SSB on the synchronization grid to complete downlink synchronization and measurement to identify the preferred beam or port.
  • the system information is divided into minimum system information and other system information (Other System Information, referred to as OSI), where the minimum system information is further divided into the main system information block (Master Information Block), referred to as abbreviated on the PBCH MIB) and the remaining minimum system information (RMSI) carried on the downlink shared channel.
  • OSI System Information
  • PBCH MIB main system information block
  • RMSI remaining minimum system information
  • SIB1 System Information Block 1, System Information Block 1
  • the main system information block is used to provide basic system parameters of the cell, and the remaining minimum system information is used to provide configuration information related to initial access, such as random access resource configuration.
  • Other system information that needs to be broadcast is called other system information.
  • the PBCH needs to provide the resource configuration of the control channel PDCCH (Physical Downlink Control Channel) corresponding to the common information, including the common control resource set (Control Reset, Set, CORESET) configuration and PDCCH search Spatial configuration information, where CORESET configuration includes CORESET frequency domain position and bandwidth and the number of symbols occupied by the time domain, in addition, SSB and CORESET multiplexing mode is also provided; PDCCH search space configuration information indicates the possible time domain location of COSESET , PDCCH search space is also called PDCCH monitoring timing, including at least one of the following: the offset of the first PDCCH monitoring window starting point from the start boundary of the even-numbered radio frame, the number of search space sets in a time slot, adjacent PDCCH monitoring Offset between windows, the index of the starting symbol of each search space set (or CORESET) within a time slot.
  • the public information includes the remaining minimum system information, other system information, paging messages, and so on.
  • IAB nodes are relay nodes in the NR system.
  • the use of wireless IAB nodes can flexibly and densely deploy NR cells without requiring a large number of installations.
  • the IAB node has two functions: 1) DU (Distributed Unit) function, that is, the IAB node provides the wireless access function for the UE or the sub-IAB node like a base station; 2) Mobile terminal (Mobile-Termination, MT for short) function That is, the IAB node is controlled and scheduled by the host IAB (donor IAB) or the upper-level IAB node (parent IAB node) like the UE.
  • DU Distributed Unit
  • MT Mobile-Termination
  • the initial access of the IAB node MT in non-stand-alone (NSA) deployment the following recommendations were reached:
  • the IAB node MT When the IAB node MT initially accesses on the NR carrier, the initial access process and The initial access process in the independent deployment is the same.
  • the initial access MT assumes that the period of SSB/RMSI is greater than 20 ms, such as 40 ms, 80 ms, and 160 ms. This means that in the NSA deployment, the parent IAB node or the host IAB supports MT initial access on the NR carrier, and the actual transmission cycle of SSB/RMSI is greater than 20ms to save system overhead, which is different from related technologies. solution.
  • At least one embodiment of the present invention provides a control channel monitoring method and apparatus, a transmission method and apparatus, and a computer-readable storage medium, which are adapted to scenarios where the SSB transmission period is longer.
  • An embodiment of the present invention provides a control channel monitoring method, including:
  • the receiving end determines the monitoring timing of the physical downlink control channel PDCCH according to at least one of the first parameter, the index of the radio frame where the synchronization signal block SSB with the index i, and the second parameter, and determines the monitoring of the PDCCH PDCCH is monitored on an occasion, wherein the first parameter is a physical downlink control channel PDCCH monitoring timing period, or a PDCCH transmission timing period, or a default remaining minimum system information SIB1 transmission period, or a default SIB1 repeated transmission period, or The transmission period of SIB1 assumed by the receiving end, or the repeated transmission period of SIB1 assumed by the receiving end, or a predefined positive integer, and the time offset is the starting time slot of the monitoring PDCCH corresponding to the SSB with index 0.
  • the first parameter is a physical downlink control channel PDCCH monitoring timing period, or a PDCCH transmission timing period, or a default remaining minimum system information SIB1 transmission period, or a default SIB1 repeated transmission period, or The transmission period of SIB1
  • the offset of the start boundary of the radio frame where the time slot is located, or the offset of the first monitoring time slot in the PDCCH monitoring period relative to the starting position of the PDCCH monitoring period, and the second parameter is the SSB assumed by the receiving end Sending period, or a predefined positive integer.
  • An embodiment of the present invention provides a control channel transmission method, including:
  • the sending end determines the transmission timing of the PDCCH according to at least one of the first parameter, the index of the radio frame where the synchronization signal block SSB whose index is i, and the second parameter, and sends the PDCCH on the determined transmission timing of the PDCCH
  • the first parameter is the physical downlink control channel PDCCH monitoring timing period, or the PDCCH transmission timing period, or the default remaining minimum system information SIB1 transmission period, or the default SIB1 repeated transmission period, or the assumption assumed by the receiving end
  • the time offset is the starting time slot of the monitoring PDCCH corresponding to the SSB with index 0 relative to the time slot where the time slot is located
  • the second parameter is the SSB transmission period assumed by the receiving end, Or a predefined positive integer.
  • An embodiment of the present invention provides a control channel monitoring device, including a memory and a processor.
  • the memory stores a program.
  • the control described in any embodiment is implemented.
  • Channel monitoring method When the program is read and executed by the processor, the control described in any embodiment is implemented.
  • An embodiment of the present invention provides a computer-readable storage medium, wherein the computer-readable storage medium stores one or more programs, and the one or more programs may be executed by one or more processors to implement The method for monitoring a control channel according to any embodiment.
  • An embodiment of the present invention provides a control channel transmission device, including a memory and a processor.
  • the memory stores a program, and when the program is read and executed by the processor, the control described in any embodiment is implemented.
  • Channel transmission method
  • An embodiment of the present invention provides a computer-readable storage medium that stores one or more programs, and the one or more programs can be executed by one or more processors to implement any The control channel transmission method described in the embodiment.
  • the receiving end determines the PDCCH monitoring according to at least one of the first parameter, the index of the radio frame where the synchronization signal block SSB whose index is i, the time offset, and the second parameter Timing, monitoring the PDCCH on the determined monitoring timing of the PDCCH.
  • the solution provided by this embodiment solves the problem that the PDCCH monitoring timing repetition period in the related art causes a small increase in the power consumption of the receiving end and limits the flexibility of resource configuration or frame configuration configuration, thereby reducing the monitoring power consumption of the receiving end, Increased resource utilization and reduced the complexity of system design.
  • Figure 1 is a schematic diagram of three multiplexing modes
  • FIG. 2 is a flowchart of a control channel monitoring method provided by an embodiment of the present invention.
  • FIG. 3 is a flowchart of a control channel transmission method according to an embodiment of the present invention.
  • FIG. 4 is a block diagram of a control channel monitoring device provided by an embodiment of the present invention.
  • FIG. 5 is a block diagram of a computer-readable storage medium provided by an embodiment of the present invention.
  • FIG. 6 is a block diagram of an apparatus for sending a control channel according to an embodiment of the present invention.
  • FIG. 7 is a block diagram of a computer-readable storage medium provided by an embodiment of the present invention.
  • the PDCCH monitoring timing of the common information is repeated every 20 ms at the longest; while for the IAB node MT, since the SSB transmission period is greater than 20 ms, the PDCCH monitoring timing is repeated without the need for 20 ms. once.
  • the terminal does not expect these symbols to be reconfigured as the uplink symbol U for the provided PDCCH symbols for monitoring common messages, so if a symbol set to flexible is configured as the PDCCH monitoring timing, the symbol cannot be dynamically
  • the reconfiguration is an uplink symbol, that is, unnecessary PDCCH monitoring opportunities limit the flexibility of resource configuration or frame structure configuration. Therefore, how to design the PDCCH monitoring timing to reduce unnecessary monitoring timing to save MT monitoring power consumption, and reduce restrictions on resource configuration or frame structure configuration to improve resource utilization is a problem to be solved.
  • the receiving end determines the monitoring of the PDCCH based on the first parameter T C , the index SFN SSB of the radio frame where the SSB with index i is located , i , the time offset O, and the second parameter T SSB Timing, and monitor the PDCCH on the determined monitoring timing.
  • the solution provided by this embodiment solves the problem that the PDCCH monitoring timing repetition period in the related art causes a small increase in the power consumption of the receiving end and limits the flexibility of resource configuration or frame configuration configuration, thereby reducing the monitoring power consumption of the receiving end, Increased resource utilization and reduced the complexity of system design.
  • the NR system defines two frequency ranges: FR1 (the first frequency range) corresponds to 450MHz-6000MHz (or the frequency band below 6GHz), the SSB subcarrier interval is 15kHz or 30kHz, and the public information or the control channel PDCCH corresponding to SIB1 (for convenience of description) , Referred to as PDCCH) or public information or SIB1 corresponding control resource set CORESET (referred to as CORESET for convenience of description) subcarrier spacing is also 15kHz or 30kHz; FR2 (second frequency range) corresponds to 24250MHz-52600MHz (or above 6GHz Frequency band), SSB subcarrier spacing is 120kHz or 240kHz, PDCCH or CORESET subcarrier spacing is 60kHz or 120kHz.
  • the subcarrier spacing of the PDCCH and its scheduled PDSCH Physical Downlink Shared Channel) is the same.
  • the PDCCH monitoring timing is related to the multiplexing mode of SSB and CORESET.
  • Figure 1 shows a schematic diagram of the three multiplexing modes.
  • the time SSB and CORESET are orthogonal in the domain, and SSB and CORESET can overlap in the frequency domain;
  • SSB and CORESET are located in the same radio frame (also called system frame) in the time domain, with the same time slot Or CORESET is in the previous time slot of SSB, and SSB and CORESET are orthogonal in the frequency domain;
  • SSB and CORESET start symbols are aligned in the time domain, and SSB and CORESET are orthogonal in the frequency domain.
  • the PDCCH monitoring timing is periodic.
  • Each PDCCH monitoring timing period includes one or more monitoring windows, and each monitoring window includes one or more monitoring opportunities.
  • Each SSB has a corresponding PDCCH monitoring window.
  • the duration of the monitoring window is one or more slots. Typically, the duration of the monitoring window is 2 slots.
  • Each PDCCH monitoring window corresponding to the SSB contains one or more CORESET potential configuration resources, where the sending end selects one for transmitting the PDCCH corresponding to the SSB.
  • the receiving end finds the PDCCH monitoring window corresponding to the SSB according to the selected (detected) SSB index and PDCCH configuration information, and blindly detects the PDCCH on the CORESET potential configuration resource in the window.
  • the PDCCH configuration information includes CORESET configuration information, and PDCCH search space configuration information (also called PDCCH monitoring timing configuration information); further, the CORESET configuration information includes at least one of the following: CORESET frequency domain position, CORESET Bandwidth (such as 24 RB, 48 RB, 96 RB, etc.), duration of CORESET (for example, 1 OFDM (Orthogonal Frequency Division Multiplexing) symbol, or 2 OFDM symbols, or 3 OFDM symbols, etc.).
  • CORESET frequency domain position such as 24 RB, 48 RB, 96 RB, etc.
  • duration of CORESET for example, 1 OFDM (Orthogonal Frequency Division Multiplexing) symbol, or 2 OFDM symbols, or 3 OFDM symbols, etc.
  • the PDCCH search space configuration information includes at least one of the following: the offset of the starting point of the first PDCCH monitoring window in the PDCCH monitoring timing period relative to the starting boundary of the radio frame in which it is located; the number of search space sets in a slot (It can be understood as the number of monitoring opportunities); the offset between adjacent PDCCH monitoring windows; the starting symbol index of the search space set within a slot.
  • the sending end includes but is not limited to enhanced LTE (Long Term Evolution) base station, NR base station, host IAB, IAB node, relay node, host IAB DU part, IAB node DU part, etc., receiving end Including but not limited to relay nodes, IAB nodes, MT parts of IAB nodes, future terminals, etc.
  • the sending end may be the DU of the IAB node
  • the receiving end may be the MT part of the IAB node's child IAB node.
  • a method for monitoring a control channel includes:
  • Step 201 The receiving end determines the monitoring timing of the PDCCH according to at least one of the first parameter, the index of the radio frame where the synchronization signal block SSB whose index is i, the time offset, and the second parameter;
  • the first parameter T C represents the PDCCH monitoring timing period, or the PDCCH transmission timing period, or the default SIB1 transmission period, or the default SIB1 repeated transmission period, or the SIB1 transmission period assumed by the receiving end, or the receiving end
  • time offset O indicating that the start slot of the monitored physical downlink control channel PDCCH corresponding to the SSB with index 0 is relative to the start of the radio frame where the slot is located
  • the second parameter T SSB represents the SSB transmission period assumed by the receiving end, or a predefined positive integer.
  • the index (ie, system frame number) of the radio frame where the SSB whose index is i is represented by SFN SSB,i ;
  • Step 202 The receiving end monitors the PDCCH on the determined monitoring timing of the PDCCH.
  • the receiving end determining the PDCCH monitoring timing according to at least one of the first parameter, the index of the radio frame where the SSB whose index is i is located, and the second parameter includes:
  • the monitoring the PDCCH at the determined monitoring timing of the PDCCH includes:
  • K is a positive integer.
  • the K time slots may be continuous or discrete. In the discrete mode, the preset discrete mode may be used, that is, the K time slots are distributed according to the preset mode, and so on.
  • the T SSB is converted into a radio frame in units of radio frames, and as in T C , expressed in other time units.
  • the time offset O is provided by PBCH.
  • the solution provided in this embodiment can associate the radio frame index SFN C where the PDCCH monitoring time slot or starting time slot is located with the SSB transmission period assumed by the receiving end, or with the parameters configured by the sending end , Or associated with predefined parameters, so that the PDCCH monitoring timing cycle or PDCCH monitoring timing is more flexible, so that the PDCCH monitoring timing cycle is no longer limited by the maximum 20 milliseconds.
  • unnecessary PDCCH blind detection of the communication device can be reduced to save power consumption, and resource configuration or frame structure configuration can also be achieved More flexible, achieve better resource utilization, and reduce the complexity of system design.
  • the in case Then the index SFN C of the radio frame where the time slot n 0 is in case Then the index SFN C of the radio frame where time slot n 0 is located satisfies SFN C mod T 1; where O is the time offset, ⁇ is the subcarrier interval configuration of the common control resource set, and M is provided by the physical broadcast channel PBCH, To configure ⁇ the number of time slots per radio frame for the subcarrier interval, T is the first parameter T C or the second parameter T SSB .
  • ⁇ 0,1,2,3 ⁇ is the CORESET subcarrier interval configuration, which is obtained from the PBCH; the time slot is a CORESET subcarrier interval time slot.
  • T is the first parameter T C :
  • T is the second parameter T SSB :
  • T is used as the first parameter T C and the second parameter T SSB respectively.
  • T is the first parameter T C :
  • the in case Then the index of the radio frame where n 0 is located Satisfy in case Then the index SFN C of the radio frame where n 0 is located satisfies SFN C SFN SSB,i +2.
  • the in case Then the index of the radio frame where n 0 is located Satisfy in case Then the index SFN C of the radio frame where n 0 is located satisfies SFN C SFN SSB,i +n 3 .
  • n can be predefined as a fixed value, or obtained from PBCH, the range of values It is a positive integer.
  • m 5 T C less than the non-negative integer may be a predefined fixed value, or acquired from the PBCH.
  • the receiving end monitoring the PDCCH on the determined time slot n C or K time slots starting with time slot n 0 includes: the receiving end is based on the CORESET configuration and the index is at least one of the time slot where the common control resource set corresponding to the SSB of i and the start symbol index of CORESET in the time slot determine the time slot n C or K times when the time slot n 0 is the starting time slot The CORESET time-frequency resource in the slot, and the PDCCH is monitored on the determined CORESET time-frequency resource.
  • the CORESET configuration and the start symbol index of CORESET in the time slot are obtained from the PBCH, and the time slot where the common control resource set corresponding to the SSB of i is located is calculated by the receiving end according to the parameters provided by the PBCH or by the PBCH provide.
  • the receiving end is used as the terminal
  • the first parameter is the PDCCH monitoring timing cycle
  • the second parameter is the SSB transmission cycle. It should be noted that the present application is not limited to this, and the first parameter and the second parameter are similar when they are other values, and will not be repeated here.
  • Example 1 Specify or configure the PDCCH monitoring timing period
  • This example shows the process for the terminal to monitor the PDCCH in the first multiplexing mode.
  • the terminal monitors the PDCCH on two consecutive time slots, and the first time slot (ie, time slot n 0 ) of the two consecutive time slots meets the following conditions:
  • the index of the radio frame where the time slot n 0 is located can be 0, 8, 16, ...
  • the index of the radio frame where the slot n 0 is located can be 1,9,17,...
  • the values of T C and m are agreed in the protocol.
  • T C is the transmission period T SSB of the SSB assumed by the terminal (MTs), then T C can be replaced by T SSB in the above formula, m is 0;
  • the values of T C and m can also be indicated in the PBCH, that is, carried in the PBCH, the terminal obtains the values of T C and m by receiving and decoding the PBCH; ⁇ 0,1,2,3 ⁇ Is the subcarrier interval configuration, the value is determined based on the subcarrier interval used by PDCCH (ie CORESET); Represents the number of slots per radio frame for the subcarrier spacing configuration ⁇ .
  • the T C represents the transmission cycle of SIB1 assumed by the terminal, or the repeated transmission cycle of SIB1 assumed by the terminal, or a predefined positive integer.
  • Table 1 is an example of PDCCH monitoring timing in the FR1 band multiplexing mode pattern1 (that is, the first multiplexing mode).
  • O represents SSB with index 0
  • the values include: 0, 2, 5, 7, which are only examples, and can also be other Value, for example 4.
  • N represents the number of search space sets (or monitoring opportunities) in a slot
  • M is an intermediate parameter and has no physical meaning
  • N*M represents the offset between adjacent PDCCH monitoring windows, that is, the starting point of the nth PDCCH monitoring window and the first The number of slots offset between the start points of n+1 PDCCH monitoring windows or the number of search space sets, where the slots correspond to the subcarrier spacing of CORESET.
  • the first symbol index indicates the starting symbol of each PDCCH monitoring opportunity (or CORESET) in the time slot, Represents the number of symbols contained in CORESET.
  • i is the SSB index.
  • Table 2 is an example of PDCCH monitoring timing in the FR2 band multiplexing mode pattern1 (ie, the first multiplexing mode).
  • the meaning of each parameter is the same as Table 1.
  • the main difference is that the value of parameter O is different.
  • the values in Table 2 include: 0ms, 2.5ms, 5ms, 7.5ms, where ms is milliseconds. This is only an example, and it can also be other values, such as 1.25ms, 2.25ms, 4.75ms, etc.
  • Table 1 and Table 2 contain 16 configurations (some configurations in Table 2 are reserved), corresponding to configuration indexes (index) 0 to 15, and 4 bits in the PBCH to indicate which configuration is used for the current PDCCH monitoring timing.
  • the configurations given in Table 1 and Table 2 are only examples, and other configurations are not excluded.
  • the index SFN C of the radio frame where the time slot n 0 is in case Then, the index SFN C of the radio frame where the time slot n 0 is located satisfies SFN C mod T C n 1 .
  • m 2 and n 2 are non-negative integers less than T SSB
  • Example 2 Determine the timing of PDCCH monitoring based on the index of the radio frame where the SSB is located
  • This example shows the process for the terminal to monitor the PDCCH in the first multiplexing mode.
  • the PDCCH monitoring timing is in the first radio frame or the second radio frame after the radio frame where the SSB is located.
  • the terminal monitors the PDCCH on two consecutive time slots.
  • the first time slot n 0 of the two consecutive time slots meets the following conditions:
  • the meaning of the parameters in the above formula is the same as the previous example.
  • the parameter values are shown in Table 1 and Table 2.
  • the index corresponding to the parameter configuration is indicated in the PBCH, and the terminal obtains the corresponding parameters from the PBCH.
  • Example 3 Determine the timing of PDCCH monitoring based on the index of the radio frame where the SSB is located and the assumed SSB cycle
  • This example shows the process for the terminal to monitor the PDCCH in the first multiplexing mode.
  • T C represents the period of PDCCH monitoring timing
  • the terminal assumes that the transmission period of SSB is T SSB , the unit of the period is the radio frame, T C is greater than or equal to T SSB , T SSB can be predefined as a fixed value, T C can be indicated in PBCH Or predefined as a fixed value, remember N 1 is a positive integer.
  • the terminal monitors the PDCCH on two consecutive time slots.
  • the first time slot n 0 of the two consecutive time slots meets the following conditions:
  • the radio frame where the PDCCH monitoring opportunity is located is determined by the radio frame where the SSB is located in the assumed nth SSB transmission period within the PDCCH monitoring opportunity period.
  • This example can be regarded as some PDCCH monitoring opportunities in the PDCCH monitoring opportunity cycle of the previous example, that is, SSBs in some SSB burst sets do not have corresponding PDCCH monitoring opportunities.
  • the SFN SSB, i satisfy the condition: 4 ⁇ SFN SSB, i mod8 ⁇ 8 , i.e. where a PDCCH monitoring time within the assumed second transmission cycle in the SSB monitoring time period SSB PDCCH
  • the radio frame is determined.
  • Example 4 Determine the timing of PDCCH monitoring based on O and the index of the radio frame where the SSB is located
  • This example shows the process for the terminal to monitor the PDCCH in the first multiplexing mode.
  • the terminal obtains the PDCCH monitoring timing parameter O from the PBCH:
  • the PDCCH monitoring timing is in the radio frame where the SSB is located, or in the first radio frame after the radio frame where the SSB is located.
  • the terminal monitors the PDCCH on two consecutive time slots.
  • the first time slot n 0 of the two consecutive time slots meets the following conditions:
  • the PDCCH monitoring timing is in the first radio frame after the radio frame where the SSB is located, or in the second radio frame after the radio frame where the SSB is located.
  • the terminal monitors the PDCCH on two consecutive time slots.
  • the first time slot n 0 of the two consecutive time slots meets the following conditions:
  • Example 5 Determine the timing of PDCCH monitoring based on the index of the radio frame where O and SSB are located and the assumed SSB period
  • This example shows the process for the terminal to monitor the PDCCH in the first multiplexing mode.
  • T SSB can be a predefined fixed value, which can be indicated in the PBCH Or predefined as a fixed value, remember N 1 is a positive integer.
  • the terminal monitors the PDCCH on two consecutive time slots.
  • the first time slot n 0 of the two consecutive time slots meets the following conditions:
  • the index SFN C of the radio frame where the time slot n 0 is located meets the condition of determining the PDCCH monitoring timing based on the index of the radio frame where O and SSB are located in the previous example, and the SFN SSB,i satisfies the condition: (n-1) ⁇ T SSB ⁇ SFN SSB,i mod T C ⁇ n ⁇ T SSB , where n can be predefined as a fixed value or indicated in the PBCH, the value range is 1,2,...,N 1 . That is, the radio frame where the PDCCH monitoring opportunity is located is determined by the index of the radio frame where the SSB is located and the value of O in the assumed nth SSB transmission period within the PDCCH monitoring opportunity period.
  • This example can be regarded as some PDCCH monitoring opportunities in the PDCCH monitoring opportunity cycle of the previous example, that is, SSBs in some SSB burst sets do not have corresponding PDCCH monitoring opportunities.
  • the duration of the monitoring window is two time slots, and the method for determining the starting time slot when the time duration is multiple time slots is similar to this, and will not be repeated here.
  • the fixed value indicates the SSB transmission period assumed by the terminal, or a predefined positive integer.
  • the timing of PDCCH monitoring may also be multiple radio frames, for example, according to The value of (where X is an integer) determines the index of the radio frame where the time slot n 0 is located.
  • the radio frame where the time slot n 0 is located may not be a continuous radio frame.
  • Example 6 Determine the timing of PDCCH monitoring based on the assumed SSB transmission period
  • This example shows the PDCCH monitoring timing configuration in the second multiplexing mode and the third multiplexing mode.
  • the terminal monitors the PDCCH in a time slot, and the time slot is recorded as n C.
  • the terminal assumes that the transmission period of the SSB is T SSB , the unit of the period is the radio frame, the period T C is greater than or equal to T SSB , T SSB is predefined as a fixed value, T C can be indicated in the PBCH Or predefined as a fixed value, remember N 1 is a positive integer.
  • the above-mentioned time slots are based on the subcarrier interval of CORESET (that is, the control resource set for monitoring the PDCCH).
  • SFN SSB,i satisfies the condition: (n-1) ⁇ T SSB ⁇ SFN SSB,i mod T C ⁇ n ⁇ T SSB , where n can be predefined as a fixed value or indicated in PBCH, the value range is 1,2 ,...,N 1 . That is, the radio frame where the PDCCH monitoring timing is located is determined by the radio frame and time slot where the SSB is located in the assumed nth SSB transmission period within the PDCCH monitoring timing period.
  • each PDCCH monitoring opportunity (or CORESET) has a different starting symbol in the time slot.
  • Table 3 is an example of PDCCH monitoring timing configuration under the multiplexing mode pattern2 (ie, the second multiplexing mode), that is, indicating the position of the PDCCH monitoring occasion (monitoring occasion), the subcarrier spacing applicable to the SSB is 120 kHz, and the PDCCH (or CORESET) The subcarrier spacing is 60kHz.
  • Table 4 is another example of the PDCCH monitoring timing configuration in the multiplexing mode pattern2 (ie, the second multiplexing mode).
  • the subcarrier spacing applicable to the SSB is 240 kHz, and the PDCCH subcarrier spacing is 120 kHz.
  • the initial symbol indexes of the PDCCH monitoring opportunities are: 0, 1,2,3,0,1, and the slot index where the PDCCH is located is the same as the slot index where the SSB is located.
  • the starting symbol indexes of the PDCCH monitoring opportunities are: 12, 13, and the time slot where the PDCCH is located is located before the time slot where the SSB is located.
  • Table 5 is an example of PDCCH monitoring timing configuration in the multiplexing mode pattern3 (that is, the third multiplexing mode).
  • the subcarrier spacing applicable to the SSB is 120 kHz, and the PDCCH subcarrier spacing is 120 kHz.
  • the above time slots are based on CORESET subcarrier intervals.
  • the initial symbol indexes of the PDCCH monitoring timing are: 4, 8, 2, and 6, respectively.
  • SFN SSB i in Tables 3, 4 and 5 above meet the condition: (n-1) ⁇ T SSB ⁇ SFN SSB, i mod T C ⁇ n ⁇ T SSB , where n can be predefined as a fixed value or in PBCH Indicate in the range of values 1,2,...,N 1 . That is, the radio frame where the PDCCH monitoring timing is located is determined by the radio frame and time slot where the SSB is located in the assumed nth SSB transmission period within the PDCCH monitoring timing period.
  • Example 7 Determine the timing of PDCCH monitoring based on the index of the radio frame where the SSB is located
  • This example shows the PDCCH monitoring timing configuration in the second multiplexing mode and the third multiplexing mode.
  • T SSB is a predefined fixed value, which represents the assumed SSB transmission period of the terminal, or a predefined positive integer.
  • Example 8 Directly specify the index and time slot of the radio frame where the PDCCH monitoring timing is located
  • This example shows the PDCCH monitoring timing configuration in the second multiplexing mode and the third multiplexing mode.
  • Example 9 Directly specify the index and time slot of the radio frame where the PDCCH monitoring timing is located
  • This example shows the PDCCH monitoring timing configuration in the second multiplexing mode and the third multiplexing mode.
  • the applicable SSB and PDCCH subcarrier spacing and multiplexing mode in Table 3, Table 4 and Table 5 are the same as the previous example.
  • SFN C and n C are the system frame number and time slot index of the radio frame where CORESET is located; SFN SSB, i and n SSB, i are the radios where the SSB with index i is located The system frame number and slot index of the frame.
  • T C may also represent the default SIB1 repeated transmission period, or the SIB1 transmission period assumed by the terminal, or the SIB1 assumed by the terminal The repetitive sending period, or a predefined positive integer.
  • a control channel transmission method As shown in FIG. 3, the method includes:
  • Step 301 The sending end determines the transmission timing of the PDCCH according to at least one of the first parameter, the index of the radio frame where the synchronization signal block SSB whose index is i, and the second parameter; where the first parameter is physical The downlink control channel PDCCH monitoring timing period, or the PDCCH transmission timing period, or the default remaining minimum system information SIB1 transmission period, or the default SIB1 repeated transmission period, or the SIB1 transmission period assumed by the receiving end, or the assumption of the receiving end SIB1's repeated transmission period, or a predefined positive integer, the time offset is the offset of the start slot of the monitoring PDCCH corresponding to the SSB with index 0 relative to the start boundary of the radio frame where the slot is located, or The offset of the first monitoring time slot in the PDCCH monitoring period relative to the starting position of the PDCCH monitoring period, and the second parameter is the SSB transmission period assumed by the receiving end, or a predefined positive integer.
  • the first parameter is physical The downlink control channel PDCCH monitoring timing
  • Step 302 The sending end sends the PDCCH on the determined transmission timing of the PDCCH.
  • the sending end determining the transmission timing of the PDCCH according to at least one of a first parameter, an index, a time offset, and a second parameter of a radio frame where the synchronization signal block SSB whose index is i includes:
  • the sending end determines the time slot n C or the start time slot n 0 according to at least one of the first parameter, the index of the radio frame where the synchronization signal block SSB whose index is i, and the second parameter.
  • the sending the PDCCH at the determined sending timing of the PDCCH includes:
  • the sending end sends a PDCCH on the time slot n C or consecutive K time slots with time slot n 0 as a starting time slot, where K is a positive integer.
  • the in case Then the index SFN C of the radio frame where the time slot n 0 is located satisfies in case Then the index SFN C of the radio frame where the time slot n 0 is located satisfies SFN C mod T 1; where O is the time offset, ⁇ is the subcarrier interval configuration of the common control resource set, and M is sent by the sending end from Selected from the default configuration, To configure ⁇ the number of slots per radio frame for the subcarrier interval, T is the first parameter or the second parameter.
  • Table 1 is only an example, and other values can be used as needed.
  • O is the time offset
  • is the subcarrier interval configuration of the common control resource set
  • M is determined by the sending end Choose from preset configurations,
  • m 12 and n 12 are non-negative integers less than T, and T is the first parameter or the second parameter.
  • n 12 m 12 +1.
  • n 12 and m 12 are predefined fixed values, or sent by the sending end to the receiving end through PBCH.
  • the in case Then the index SFN C of the radio frame where the time slot n 0 is located satisfies in case Then the index SFN C of the radio frame where time slot n 0 is located satisfies SFN C SFN SSB, i +2, where O is the time offset, ⁇ is the subcarrier interval configuration of the common control resource set, and M is determined by the The sender chooses from the preset configuration, To configure ⁇ the number of time slots per radio frame for the subcarrier interval, SFN SSB, i represents the index of the radio frame where the SSB with index i is located.
  • the in case Then the index SFN C of the radio frame where the time slot n 0 is located satisfies in case Then the index SFN C of the radio frame where the time slot n 0 satisfies SFN C SFN SSB, i + n 3 , where m 3 and n 3 are integers, O is the time offset, and ⁇ is the common control resource set Subcarrier spacing configuration, M is selected by the sending end from a preset configuration, To configure ⁇ the number of time slots per radio frame for the subcarrier interval, SFN SSB, i represents the index of the radio frame where the SSB with index i is located.
  • n 3 m 3 +1.
  • m 3 and n 3 are predefined fixed values, or sent by PBCH to the receiver.
  • is the subcarrier interval configuration of the common control resource set, and M is selected by the sending end from the preset configuration,
  • SFN SSB, i represents the index of the radio frame where the SSB with index i is located.
  • is the subcarrier interval configuration of the common control resource set
  • M is selected from the preset configuration by the sending end
  • n 4 m 4 +1
  • k 4 m 4 +2.
  • the m 4 , n 4 and k 4 are predefined fixed values, or sent to the receiving end through the PBCH.
  • the SFN SSB,i satisfies: (n-1) ⁇ T SSB ⁇ SFN SSB,i mod T C ⁇ n ⁇ T SSB ; wherein, n is less than or equal to A positive integer, said Is a positive integer, the T SSB is the second parameter, and the T C is the first parameter.
  • the n is a predefined fixed value, or sent to the receiving end through the PBCH.
  • the m 5 0.
  • the m 5 is a predefined fixed value, or sent to the receiving end through the PBCH.
  • an embodiment of the present invention provides a control channel monitoring apparatus 40, including a memory 410 and a processor 420, where the memory 410 stores a program, and the program is read and executed by the processor 420 At this time, the control channel monitoring method described in any embodiment is implemented.
  • an embodiment of the present invention provides a computer-readable storage medium 50.
  • the computer-readable storage medium stores one or more programs 510, and the one or more programs 510 may be used by one or more Each processor executes to implement the control channel monitoring method described in any embodiment.
  • an embodiment of the present invention provides a control channel transmission device 60, including a memory 610 and a processor 620, where the memory 610 stores a program, and the program is read and executed by the processor 620 At this time, the control channel transmission method described in any embodiment is implemented.
  • an embodiment of the present invention provides a computer-readable storage medium 70 that stores one or more programs 710, and the one or more programs 710 can be used by one or more Each processor executes to implement the control channel transmission method described in any embodiment.
  • the sending end sending the PDCCH on the time slot n C or K consecutive time slots starting with time slot n 0 includes: the sending end determines the time slot n C Or a potential CORESET time-frequency resource in consecutive K time slots with time slot n 0 as a starting time slot, and a PDCCH is sent on the CORESET time-frequency resource.
  • the time offset O is sent to the receiving end through the PBCH.
  • T C may also represent the default SIB1 repeated transmission period, or the SIB1 transmission period assumed by the terminal, or the SIB1 assumed by the terminal The repetitive sending period, or a predefined positive integer.
  • the PDCCH in this application refers to the common information or the control channel PDCCH corresponding to SIB1.
  • CORESET refers to the public information or the control resource set CORESET corresponding to SIB1.
  • the public information includes the remaining minimum system information RMSI, other system information, paging messages and so on.
  • the certain parameter is sent to the receiving end through the PBCH, which means that the sending end carries the parameter or the configuration index containing the parameter in the PBCH, and then sends it to the receiving end;
  • the certain parameter is obtained from the PBCH or provided by the PBCH or indicated in the PBCH, etc. refers to that the receiving end obtains the parameter carried in the PBCH by receiving and decoding the PBCH, or obtains the parameter carried in the PBCH containing the parameter Configure the index. Obtain this parameter through the configuration index.
  • computer storage media includes both volatile and nonvolatile implemented in any method or technology for storing information such as computer readable instructions, data structures, program modules, or other data Sex, removable and non-removable media.
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other memory technologies, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and accessible by a computer.
  • the communication medium generally contains computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium .
  • the embodiment of the present invention solves the limitation of the increased power consumption of the receiving end and the limitation on the flexibility of resource configuration or frame structure configuration caused by the small repetition period of the PDCCH monitoring timing existing in the related art, reduces the monitoring power consumption of the receiving end, and improves Resource utilization reduces the complexity of system design.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种控制信道的监测方法及装置、发送方法及装置、计算机可读存储介质。该控制信道的监测方法包括:接收端根据第一参数、索引为i的同步信号块SSB所在的无线帧的索引、时间偏移、第二参数至少之一确定PDCCH的监测时机,在确定的所述PDCCH的监测时机上监测PDCCH。本实施例提供的方案,PDCCH的监测时机比较灵活,降低了接收端监测功耗,提高了资源利用率,减少了系统设计的复杂度。

Description

控制信道的监测方法及装置、发送方法及装置、存储介质 技术领域
本发明实施例涉及但不限于的一种控制信道的监测方法及装置、发送方法及装置、计算机可读存储介质。
背景技术
在新无线电(New Radio,简称NR)系统中,每个同步信号块(Synchronous Signal/Physical Broadcast Channel Block,简称为SSB)包含主同步信号、辅同步信号和物理广播信道(Physical Broadcast Channel,PBCH)以及PBCH对应的解调参考信号,每个SSB对应一个波束方向或者一个端口,基站在同步周期内以波束轮询的方式发送多个SSB,同步周期内的多个SSB位于半个无线帧内并组成一个SSB突发集合(SSB burst set)。不同频段范围,SSB突发集合内包含SSB的最大数量不同。同步周期包括如下取值:5ms(毫秒),10ms,20ms,40ms,80ms,160ms。初始接入的UE(User Equipment,用户设备)假定同步周期为20ms。在初始接入过程中,UE在同步栅格上检测SSB,从而完成下行同步和测量识别优选的波束或端口。
在NR系统中,系统信息被分为最小系统信息以及其他系统信息(Other System Information,简称OSI),其中,最小系统信息进一步被分为承载在PBCH上的主系统信息块(Master Information Block,简称MIB)和承载在下行共享信道上的剩余最小系统信息(Remaining Minimum System Information,RMSI),RMSI也称为SIB1(System Information Block 1,系统信息块1)。主系统信息块用于提供小区基本系统参数,剩余最小系统信息用于提供初始接入相关的配置信息,例如随机接入资源配置等。其他需要广播发送的系统信息称为其他系统信息。
对于支持UE初始接入的小区,PBCH需要提供公共信息对应的控制信道PDCCH(Physical Downlink Control Channel,物理下行控制信道)的 资源配置,包括公共控制资源集合(Control Resource Set,CORESET)配置和PDCCH搜索空间配置信息,其中,CORESET配置包括CORESET的频域位置和带宽以及时域占用的符号数,另外,还提供了SSB和CORESET的复用模式;PDCCH搜索空间配置信息指示了COSESET可能的时域位置,PDCCH搜索空间也称为PDCCH监测时机,包括以下至少之一:第一个PDCCH监测窗起点与偶数无线帧起始边界的偏移,一个时隙内搜索空间集的个数,相邻PDCCH监测窗间的偏移,一个时隙内各搜索空间集(或者CORESET)的起始符号索引。其中,公共信息包括剩余最小系统信息、其他系统信息、寻呼消息等。
集成接入和回传(Integrated Access and Backhaul,IAB)是NR系统中的一个重要研究议题,IAB节点即NR系统中的中继节点,使用无线IAB节点可以灵活密集地部署NR小区,无需敷设大量光纤,节省网络部署成本。
IAB节点有两个功能:1)DU(Distributed Unit,分布单元)功能,即IAB节点像基站一样为UE或者子IAB节点提供无线接入功能;2)移动终端(Mobile-Termination,简称MT)功能,即IAB节点像UE一样被宿主IAB(donor IAB)或者上层IAB节点(父IAB节点)控制和调度。
在相关标准会议上关于非独立组网(non-stand-alone,NSA)部署中IAB节点MT的初始接入达成如下建议:当IAB节点MT在NR载波上初始接入时,初始接入过程和独立部署中初始接入过程相同,初始接入MT假定SSB/RMSI的周期大于20ms,例如40ms,80ms,160ms等。这就意味着在NSA部署中父IAB节点或者宿主IAB在NR载波上支持MT初始接入,且为节省系统开销SSB/RMSI实际发送周期大于20ms,不同于相关技术,因此,需要提供针对其的解决方案。
发明内容
本发明至少一实施例提供了一种控制信道的监测方法及装置、发送方法及装置、计算机可读存储介质,适应SSB发送周期更长的场景。
本发明一实施例提供一种控制信道的监测方法,包括:
接收端根据第一参数、索引为i的同步信号块SSB所在的无线帧的索引、时间偏移、第二参数至少之一确定物理下行控制信道PDCCH的监测时机,在确定的所述PDCCH的监测时机上监测PDCCH,其中,所述第一参数为物理下行控制信道PDCCH监测时机周期,或者PDCCH的发送时机周期,或者默认的剩余最小系统信息SIB1的发送周期,或者默认的SIB1重复发送周期,或者接收端假定的SIB1的发送周期,或者接收端假定的SIB1的重复发送周期,或者预定义的正整数,所述时间偏移为索引为0的SSB对应的监测PDCCH的起始时隙相对于该时隙所在的无线帧起始边界的偏移,或者PDCCH监测周期内第一个监测时隙相对所述PDCCH监测周期起始位置的偏移,所述第二参数为所述接收端假定的SSB的发送周期,或预定义的正整数。
本发明一实施例提供一种控制信道的发送方法,包括:
发送端根据第一参数、索引为i的同步信号块SSB所在的无线帧的索引、时间偏移、第二参数至少之一确定PDCCH的发送时机,在确定的所述PDCCH的发送时机上发送PDCCH,其中,所述第一参数为物理下行控制信道PDCCH监测时机周期,或者PDCCH的发送时机周期,或者默认的剩余最小系统信息SIB1的发送周期,或者默认的SIB1重复发送周期,或者接收端假定的SIB1的发送周期,或者接收端假定的SIB1的重复发送周期,或者预定义的正整数,所述时间偏移为索引为0的SSB对应的监测PDCCH的起始时隙相对于该时隙所在的无线帧起始边界的偏移,或者PDCCH监测周期内第一个监测时隙相对所述PDCCH监测周期起始位置的偏移,所述第二参数为所述接收端假定的SSB的发送周期,或预定义的正整数。
本发明一实施例提供一种控制信道的监测装置,包括存储器和处理器,所述存储器存储有程序,所述程序在被所述处理器读取执行时,实现任一实施例所述的控制信道的监测方法。
本发明一实施例提供一种计算机可读存储介质,其中,所述计算机可 读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现任一实施例所述的控制信道的监测方法。
本发明一实施例提供一种控制信道的发送装置,包括存储器和处理器,所述存储器存储有程序,所述程序在被所述处理器读取执行时,实现任一实施例所述的控制信道的发送方法。
本发明一实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现任一实施例所述的控制信道的发送方法。
与相关技术相比,本发明至少一实施例中,接收端根据第一参数、索引为i的同步信号块SSB所在的无线帧的索引、时间偏移、第二参数至少之一确定PDCCH的监测时机,在确定的所述PDCCH的监测时机上监测PDCCH。本实施例提供的方案,解决了相关技术中存在的PDCCH监测时机重复周期较小而导致的接收端功耗增加以及对资源配置或者帧结构配置灵活性的限制,降低了接收端监测功耗,提高了资源利用率,减少了系统设计的复杂度。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。
图1为三种复用模式的示意图;
图2为本发明一实施例提供的控制信道的监测方法流程图;
图3为本发明一实施例提供的控制信道的发送方法流程图;
图4为本发明一实施例提供的控制信道的监测装置框图;
图5为本发明一实施例提供的计算机可读存储介质框图;
图6为本发明一实施例提供的控制信道的发送装置框图;
图7为本发明一实施例提供的计算机可读存储介质框图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
相关技术中,对于终端(例如UE)来说,公共信息的PDCCH监测时机最长是每20ms重复一次;而对于IAB节点MT,由于SSB的发送周期大于20ms,因此PDCCH监测时机没有必要20ms就重复一次。另外,对于被提供的监测公共消息的PDCCH的符号,终端不期望这些符号被重配置为上行符号U,因此设置为灵活(flexible)的符号如果被配置为PDCCH监测时机,则该符号不能被动态重配置为上行符号,也就是说,不必要的PDCCH监测时机会限制资源配置或者帧结构配置的灵活性。因此如何设计PDCCH监测时机,以减小不必要的监测时机以节省MT的监测功耗,以及减少对资源配置或者帧结构配置的限制以提高资源的利用率,是需要解决的问题。
本发明一实施例中,接收端基于第一参数T C,索引为i的SSB所在的无线帧的索引SFN SSB,i,时间偏移O,第二参数T SSB中至少一个参数确定PDCCH的监测时机,并在确定的监测时机上监测PDCCH。本实施例提供的方案,解决了相关技术中存在的PDCCH监测时机重复周期较小而导致的接收端功耗增加以及对资源配置或者帧结构配置灵活性的限制,降低了接收端监测功耗,提高了资源利用率,减少了系统设计的复杂度。
下面对实施例中的一些物理概念进行说明:
NR系统定义了两个频率范围:FR1(第一频率范围)对应450MHz–6000MHz(或者6GHz以下频段),SSB的子载波间隔为15kHz或者30kHz,公共信息或者SIB1对应的控制信道PDCCH(为描述方便,简称为PDCCH)或者公共信息或者SIB1对应的控制资源集CORESET(为描述方便,简称为CORESET)的子载波间隔也为15kHz或者30kHz;FR2(第二频率范围)对应24250MHz–52600MHz(或者6GHz以上频段),SSB的子载波间隔为120kHz或者240kHz,PDCCH或者CORESET的子载波间隔为60kHz或者120kHz。PDCCH和其调度的PDSCH(Physical Downlink Shared Channel,物理下行共享信道)的子载波间隔相同。
PDCCH监测时机(PDCCH monitoring occasions)与SSB和CORESET的复用模式有关,SSB和CORESET的复用模式有三种,图1给出了三种复用模式的示意图,对于第一复用模式,在时域上SSB和CORESET正交,在频域上SSB和CORESET可以有交叠;对于第二复用模式,在时域上SSB和CORESET位于相同的无线帧(也称为系统帧),时隙相同或者CORESET在SSB的前一个时隙,在频域上SSB和CORESET正交;对于第三复用模式3,在时域上SSB和CORESET起始符号对齐,在频域上SSB和CORESET正交。
PDCCH监测时机是周期性的,每个PDCCH监测时机周期包含一个或多个监测窗,每个监测窗包含一个或多个监测时机。每一个SSB都有对应的PDCCH监测窗,监测窗持续时间为一个或多个时隙(slot),典型的,监测窗持续时间为2个slot。在每一个对应于SSB的PDCCH监测窗内,包含一个或多个CORESET的潜在配置资源,发送端在其中选择一个用于传输与该SSB相对应的PDCCH。接收端根据选择的(检测的)SSB索引,以及PDCCH配置信息找到与这个SSB相对应的PDCCH监测窗,并在窗内的CORESET潜在配置资源上盲检PDCCH。其中,PDCCH配置信息包含CORESET配置信息,以及PDCCH搜索空间配置信息(也称为PDCCH监测时机配置信息);进一步的,所述CORESET配置信息中包括以下至少之一:CORESET的频域位置,CORESET的带宽(如24个RB,48个RB,96个RB等),CORESET的持续 时间(例如,1个OFDM(Orthogonal Frequency Division Multiplexing)符号,或2个OFDM符号,或3个OFDM符号等)。所述PDCCH搜索空间配置信息包括以下至少之一:PDCCH监测时机周期内第一个PDCCH监测窗起点相对于其所在的无线帧起始边界的偏移;一个时隙slot内搜索空间集的个数(可以理解为监测时机的个数);相邻PDCCH监测窗间的偏移;一个slot内搜索空间集的起始符号索引。
本申请中,发送端包括但不限于增强LTE(Long Term Evolution,长期演进)基站,NR基站,宿主IAB,IAB节点,中继节点,宿主IAB的DU部分,IAB节点的DU部分等,接收端包括但不限于中继节点,IAB节点,IAB节点的MT部分,未来的终端等。典型地,发送端可以是IAB节点的DU,接收端可以是IAB节点的子IAB节点的MT部分。
实施例一
在本实施例中提供了一种控制信道的监测方法,如图2所示,该方法包括:
步骤201,接收端根据第一参数、索引为i的同步信号块SSB所在的无线帧的索引、时间偏移、第二参数至少之一确定PDCCH的监测时机;
其中,第一参数T C,表示PDCCH监测时机周期,或者PDCCH的发送时机周期,或者默认的SIB1的发送周期,或者默认的SIB1重复发送周期,或者接收端假定的SIB1的发送周期,或者接收端假定的SIB1的重复发送周期,或者预定义的正整数;时间偏移O,表示索引为0的SSB对应的监测物理下行控制信道PDCCH的起始时隙相对于该时隙所在的无线帧起始边界的偏移,或者PDCCH监测周期内第一个监测时隙相对所述PDCCH监测周期起始位置的偏移;
第二参数T SSB,表示接收端假定的SSB的发送周期,或预定义的正整数。
另外,索引为i的SSB所在的无线帧的索引(即系统帧号)用SFN SSB,i 表示;
步骤202,接收端在确定的所述PDCCH的监测时机上监测PDCCH。
在一实施例中,所述接收端根据第一参数、索引为i的SSB所在的无线帧的索引、时间偏移、第二参数至少之一确定PDCCH的监测时机包括:
根据所述第一参数、索引为i的SSB所在的无线帧的索引、时间偏移、所述第二参数至少之一确定时隙n C或者起始时隙n 0
所述在确定的所述PDCCH的监测时机上监测PDCCH包括:
在所述时隙n C或者以所述时隙n 0为起始时隙的K个时隙上监测PDCCH,所述K为正整数。K的值预定义,典型地K=2,或者从PBCH中获取K的取值。其中,所述K个时隙可以是连续的,也可以是离散的,离散方式下,可以是预设的离散模式,即K个时隙按预设模式分布,等等。
其中,所述T C为预定义的固定值,或者从PBCH中获取;在一实施例中,T C以无线帧为单位,以其他时间单位表示时转化为无线帧,10毫秒为一个无线帧,比如T C表示的周期值为X毫秒,则T C=X/10。
其中,所述T SSB以无线帧为单位,与T C一样,以其他时间单位表示时转化为无线帧。
其中,所述时间偏移O由PBCH提供。
本实施例提供的方案,相比相关技术,可以使PDCCH监测时隙或者起始时隙所在的无线帧索引SFN C与接收端假定的SSB发送周期关联起来,或者与发送端配置的参数关联起来,或者与预定义的参数关联起来,从而使得PDCCH监测时机周期或者PDCCH监测时机更灵活,使PDCCH监测时机周期不再受最大20毫秒的限制,与相关技术中PDCCH监测时机周期最大为20毫秒相比,尤其是与相关技术中第一复用模式的PDCCH监测时机周期固定为20毫秒相比,可以减小通信设备不必要的PDCCH盲检以节省功耗,还可以使资源配置或者帧结构配置更灵活,达到较好的资源利用率,减少系统设计的复杂度。
在一实施例中,所述
Figure PCTCN2020071206-appb-000001
如果
Figure PCTCN2020071206-appb-000002
则时隙n 0所在的无线帧的索引SFN C满足
Figure PCTCN2020071206-appb-000003
如果
Figure PCTCN2020071206-appb-000004
则时隙n 0所在的无线帧的索引SFN C满足SFN C mod T=1;其中,O为时间偏移,μ为公共控制资源集合的子载波间隔配置,M由物理广播信道PBCH提供,
Figure PCTCN2020071206-appb-000005
为对于子载波间隔配置μ每个无线帧的时隙数,T为所述第一参数T C或所述第二参数T SSB。其中,所述μ∈{0,1,2,3}为CORESET的子载波间隔配置,从PBCH中获取;所述时隙是基于CORESET的子载波间隔的时隙。
当T为所述第一参数T C时:
所述
Figure PCTCN2020071206-appb-000006
如果
Figure PCTCN2020071206-appb-000007
则n 0所在的无线帧的索引SFN C满足SFN C mod T C=0;如果
Figure PCTCN2020071206-appb-000008
则n 0所在的无线帧的索引SFN C满足SFN C mod T C=1。
当T为所述第二参数T SSB时:
所述
Figure PCTCN2020071206-appb-000009
如果
Figure PCTCN2020071206-appb-000010
则n 0所在的无线帧的索引SFN C满足SFN C mod T SSB=0;如果
Figure PCTCN2020071206-appb-000011
则n 0所在的无线帧的索引SFN C满足SFN C mod T SSB=1。
在一实施例中,所述
Figure PCTCN2020071206-appb-000012
如果
Figure PCTCN2020071206-appb-000013
则时隙n 0所在的无线帧的索引SFN C满足
Figure PCTCN2020071206-appb-000014
如果
Figure PCTCN2020071206-appb-000015
则时隙n 0所在的无线帧的索引SFN C满足SFN C mod T=n 12,T为所述第一参数T C或所述第二参数T SSB,m 12和n 12为小于T的非负整数。m 12和n 12为预定义的固定值,或者由PBCH提供。在一实施例中,所述n 12=m 12+1。
下面以T为所述第一参数T C、第二参数T SSB分别进行说明。
其中,当T为所述第一参数T C时:
所述
Figure PCTCN2020071206-appb-000016
如果
Figure PCTCN2020071206-appb-000017
则n 0所在的无线帧的索引SFN C满足SFN C mod T C=m 1;如果
Figure PCTCN2020071206-appb-000018
则n 0所在的无线帧的索引SFN C满足SFN C mod T C=n 1;其中,m 1和n 1为小于T C 的非负整数,可以为预定义的固定值,或者从PBCH中获取,典型地n 1=m 1+1;
当T为所述第二参数T SSB时:所述
Figure PCTCN2020071206-appb-000019
如果
Figure PCTCN2020071206-appb-000020
则n 0所在的无线帧的索引
Figure PCTCN2020071206-appb-000021
满足
Figure PCTCN2020071206-appb-000022
如果
Figure PCTCN2020071206-appb-000023
则n 0所在的无线帧的索引SFN C满足SFN C mod T SSB=n 2;其中,m 2和n 2为小于T SSB的非负整数,可以为预定义的固定值,或者从PBCH中获取,典型地n 2=m 2+1。
在一实施例中,所述
Figure PCTCN2020071206-appb-000024
如果
Figure PCTCN2020071206-appb-000025
则n 0所在的无线帧的索引
Figure PCTCN2020071206-appb-000026
满足
Figure PCTCN2020071206-appb-000027
如果
Figure PCTCN2020071206-appb-000028
则n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i+2。
在一实施例中,所述
Figure PCTCN2020071206-appb-000029
如果
Figure PCTCN2020071206-appb-000030
则n 0所在的无线帧的索引
Figure PCTCN2020071206-appb-000031
满足
Figure PCTCN2020071206-appb-000032
如果
Figure PCTCN2020071206-appb-000033
则n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i+n 3。其中,m 3和n 3为整数,可以为预定义的固定值,或者从PBCH中获取,典型地n 3=m 3+1;
在一实施例中,所述
Figure PCTCN2020071206-appb-000034
如果O大于0且
Figure PCTCN2020071206-appb-000035
则n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i
如果O大于0且
Figure PCTCN2020071206-appb-000036
或者,如果O等于0且
Figure PCTCN2020071206-appb-000037
则n 0所在的无线帧的索引
Figure PCTCN2020071206-appb-000038
满足
Figure PCTCN2020071206-appb-000039
如果O等于0且
Figure PCTCN2020071206-appb-000040
则n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i+2;
在一实施例中,所述
Figure PCTCN2020071206-appb-000041
如果O大于0且
Figure PCTCN2020071206-appb-000042
则n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i+m 4
如果O大于0且
Figure PCTCN2020071206-appb-000043
或者,如果O等于0且
Figure PCTCN2020071206-appb-000044
则n 0所在的无线帧的索引
Figure PCTCN2020071206-appb-000045
满足
Figure PCTCN2020071206-appb-000046
如果O等于0且
Figure PCTCN2020071206-appb-000047
则n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i+k 4;其中,m 4,n 4和k 4为整数,可以为预定义的固定值,或者从PBCH中获取,典型地n 4=m 4+1,k 4=m 4+2;
在一实施例中,所述n C=n SSB,i或者n C=n SSB,i-1,时隙n C所在的无线帧的索引SFN C=SFN SSB,i
在一实施例中,上述各实施例中
Figure PCTCN2020071206-appb-000048
B,i足:(n-1)·T SSB≤SFN SSB,imod T C<n·T SSB;其中,n可以预定义为固定值,或者从PBCH中获取,取值范围
Figure PCTCN2020071206-appb-000049
为正整数。
在一实施例中,所述
Figure PCTCN2020071206-appb-000050
所述n 0所在的无线帧的索引SFN C满足:SFN C mod T C=SFN SSB,imod T SSB或者SFN C=SFN SSB,i+1。
在一实施例中,所述
Figure PCTCN2020071206-appb-000051
如果
Figure PCTCN2020071206-appb-000052
则时隙n 0所在的无线帧的索引SFN C满足SFN C mod T C=SFN SSB,imod T SSB;如果
Figure PCTCN2020071206-appb-000053
则时隙n 0所在的无线帧的索引SFN C满足SFN C mod T C=SFN SSB,imod T SSB+1。
在一实施例中,所述时隙n C=n SSB,i或者n C=n SSB,i-1,所述时隙n C所在的无线帧的索引SFN C满足:SFN C mod T C=SFN SSB,imod T SSB
在一实施例中,所述时隙n C=n SSB,i或者n C=n SSB,i-1,所述时隙n C所在的无线帧的索引SFN C满足:SFN C mod T C=0。
在一实施例中,所述时隙n C=n SSB,i或者n C=n SSB,i-1,所述时隙n C所在的无线帧的索引SFN C满足:SFN C mod T C=m 5。其中,m 5为小于T C的非负整数,可以为预定义的固定值,或者从PBCH中获取。
在一实施例中,对于索引为i的SSB,可以根据SSB和PDCCH各自的的子载波间隔以及所在的频段范围预定义一个或多个配置,每个配置指示 了SSB发送周期内的每个SSB对应的PDCCH监测时隙n C=n SSB,i还是
Figure PCTCN2020071206-appb-000054
配置对应的索引在PBCH中指示。
在一实施例中,所述接收端在所述确定的时隙n C或者以时隙n 0为起始时隙的K个时隙上监测PDCCH包括:所述接收端基于CORESET配置、索引为i的SSB对应的公共控制资源集合所在的时隙和时隙内CORESET的起始符号索引中至少一项,确定所述时隙n C或者以时隙n 0为起始时隙的K个时隙中CORESET时频资源,在所述确定的CORESET时频资源上监测PDCCH。其中,CORESET配置和时隙内CORESET的起始符号索引从PBCH中获取,所述索引为i的SSB对应的公共控制资源集合所在的时隙由所述接收端根据PBCH提供的参数计算或者由PBCH提供。
下面示例中以接收端为终端,第一参数为PDCCH的监测时机周期,第二参数为SSB的发送周期为例进行说明。需要说明的是,本申请不限于此,第一参数和第二参数为其他值时类似,不再赘述。
示例一:指定或配置PDCCH监测时机周期
本示例给出了第一复用模式下终端监测PDCCH的过程。
终端在连续2个时隙上监测PDCCH,两个连续时隙中第一个时隙(即时隙n 0)满足如下条件:
对于索引为i的SSB,
Figure PCTCN2020071206-appb-000055
如果
Figure PCTCN2020071206-appb-000056
则时隙n 0所在的无线帧的索引SFN C满足
Figure PCTCN2020071206-appb-000057
如果
Figure PCTCN2020071206-appb-000058
则时隙n 0所在的无线帧的索引SFN C满足SFN C mod T C=m+1。
其中,T C表示PDCCH监测时机周期,单位为无线帧(为其他单位时,转化为无线帧即可),例如T C=8表示PDCCH监测时机周期为8个无线帧,即索引为i的SSB对应的PDCCH监测时机每80毫秒重复一次;m表示时隙n 0位于PDCCH监测时机周期内的第几个无线帧中,即时隙n 0所在的无线帧在PDCCH监测时机周期内的偏移。例如m为0表示时隙n 0位于PDCCH监测时机周期内第一个无线帧中。例如T C=8和m=0时,
Figure PCTCN2020071206-appb-000059
表示时隙n 0所在的无线帧的索引可以为0,8,16,......,
Figure PCTCN2020071206-appb-000060
表示隙n 0所在的无线帧的索引可以为1,9,17,.....。T C和m的取值在协议中是约定好的,例如,T C为终端(MTs)假定的SSB的发送周期T SSB,则将上述公式中的T C换成T SSB即可,m为0;另外,T C和m的取值也可以在PBCH中指示,即承载在PBCH中,终端通过接收并解码PBCH,获取T C和m的取值;μ∈{0,1,2,3}为子载波间隔配置,取值基于PDCCH(即CORESET)使用的子载波间隔确定;
Figure PCTCN2020071206-appb-000061
表示对于子载波间隔配置μ每个无线帧的时隙数。在其他实施例中,所述T C表示终端假定的SIB1的发送周期,或终端假定的SIB1的重复发送周期,或预定义的正整数。
上述连续的两个时隙n 0和n 0+1组成一个监测窗,表1为FR1频段复用模式pattern1(即第一复用模式)下的PDCCH监测时机示例,O表示索引为0的SSB对应的监测物理下行控制信道PDCCH的起始时隙相对于该时隙所在的无线帧起始边界的偏移,或者PDCCH监测时机周期内第一个PDCCH监测窗(即索引为0的SSB对应的监测窗)起点相对于该PDCCH监测时机周期起始边界的偏移(单位为毫秒),即所述时间偏移,取值包括:0,2,5,7,这里只是举例,也可以为其他值,例如4。N代表一个slot内的搜索空间集(或者监测时机)个数;M为中间参数,无物理意义;N*M表示相邻PDCCH监测窗间的偏移,即第n个PDCCH监测窗起点与第n+1个PDCCH监测窗起点间偏移的slot数量或者搜索空间集的个数,其中slot对应于CORESET的子载波间隔。起始符号索引(First symbol index)表示每个PDCCH监测时机(或者CORESET)在时隙内的起始符号,
Figure PCTCN2020071206-appb-000062
代表CORESET包含的符号数。i为SSB索引。
表1
Figure PCTCN2020071206-appb-000063
表2
Figure PCTCN2020071206-appb-000064
表2为FR2频段复用模式pattern1(即第一复用模式)下PDCCH监测时机示例。其中各参数的含义与表1相同,主要区别是参数O的取值不同,表2中取值包括:0ms,2.5ms,5ms,7.5ms,其中ms为毫秒。此处仅为示例,也可以为其他值,例如1.25ms,2.25ms,4.75ms等,主要原因是对于FR2频段,一个同步周期内SSB突发集合持续的时间不同,而第一复用模式中SSB和CORESET在时域上正交,这使得FR1与FR2频段对应的第一个PDCCH监测窗起点与其所在的无线帧(即满足SFN C mod T C=m的无线帧)起始边界间的偏移O可能不同。
表1和表2中包含16种配置(表2中有些配置是预留的),对应配置索引(index)0到15,在PBCH内以4比特指示当前PDCCH监测时机采用哪一种配置。表1和表2给出的配置仅仅是示例,其他配置也不排除。
在本示例中,所述SFN C满足的条件也可以是: SFN C mod T C=SFN SSB,imod T SSB;或者,SFN C mod T C=0;其中,SFN SSB,i为索引为i的SSB所在的无线帧的系统帧号(即索引);T SSB为预定义的固定值,表示终端假定的SSB的发送周期,或预定义的正整数。
值得说明的是,本示例更一般的情况是:
对于索引为i的SSB,
Figure PCTCN2020071206-appb-000065
如果
Figure PCTCN2020071206-appb-000066
则时隙n 0所在的无线帧的索引SFN C满足
Figure PCTCN2020071206-appb-000067
如果
Figure PCTCN2020071206-appb-000068
则时隙n 0所在的无线帧的索引SFN C满足SFN C mod T C=n 1。其中,m 1和n 1为小于T C的非负整数,可以为预定义的固定值,或者在PBCH中指示,典型地n 1=m 1+1;
或者,
对于索引为i的SSB,
Figure PCTCN2020071206-appb-000069
如果
Figure PCTCN2020071206-appb-000070
则时隙n 0所在的无线帧的索引SFN C满足
Figure PCTCN2020071206-appb-000071
如果
Figure PCTCN2020071206-appb-000072
则时隙n 0所在的无线帧的索引SFN C满足SFN C mod T SSB=n 2。其中,m 2和n 2为小于T SSB的非负整数,m 2和n 2可以为预定义的固定值,或者在PBCH中指示,典型地n 2=m 2+1。
示例二:基于SSB所在的无线帧的索引确定PDCCH监测时机
本示例给出了第一复用模式下终端监测PDCCH的过程。
在本示例中,PDCCH监测时机位于SSB所在的无线帧之后的第一个无线帧中或者第二个无线帧中。
终端在连续2个时隙上监测PDCCH,两个连续时隙中第一个时隙n 0满足如下条件:
对于索引为i的SSB,
Figure PCTCN2020071206-appb-000073
如果
Figure PCTCN2020071206-appb-000074
则时隙n 0所在的无线帧的索引SFN C满足
Figure PCTCN2020071206-appb-000075
如果
Figure PCTCN2020071206-appb-000076
则时隙n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i+2。
上述公式中的参数的含义与前面示例相同,参数取值如表1和表2所 示,参数配置对应的索引在PBCH中指示,终端从PBCH中获取相应参数。
值得说明的是,本示例更一般的情况是:
对于索引为i的SSB,
Figure PCTCN2020071206-appb-000077
如果
Figure PCTCN2020071206-appb-000078
则n 0所在的无线帧的索引
Figure PCTCN2020071206-appb-000079
满足
Figure PCTCN2020071206-appb-000080
如果
Figure PCTCN2020071206-appb-000081
则n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i+n 3。其中,m 3和n 3为整数,可以为预定义的固定值,或者在PBCH中指示,典型地n 3=m 3+1。
示例三:基于SSB所在的无线帧的索引和假定的SSB周期确定PDCCH监测时机
本示例给出了第一复用模式下终端监测PDCCH的过程。
假设T C表示PDCCH监测时机周期,终端假定的SSB的发送周期为T SSB,周期的单位为无线帧,T C大于等于T SSB,T SSB可以预定义为固定值,T C可以在PBCH中指示或者预定义为固定值,记
Figure PCTCN2020071206-appb-000082
N 1为正整数。
终端在连续2个时隙上监测PDCCH,两个连续时隙中第一个时隙n 0满足如下条件:
对于索引为i的SSB,
Figure PCTCN2020071206-appb-000083
如果
Figure PCTCN2020071206-appb-000084
则时隙n 0所在的无线帧的索引SFN C满足
Figure PCTCN2020071206-appb-000085
如果
Figure PCTCN2020071206-appb-000086
则时隙n 0所在的无线帧的索引
Figure PCTCN2020071206-appb-000087
满足
Figure PCTCN2020071206-appb-000088
且上述SFN SSB,i满足条件:(n-1)·T SSB≤SFN SSB,imod T C<n·T SSB,其中n可以预定义为固定值或者在PBCH中指示,n取值范围为小于等于N 1的正整数,即1,2,....,N 1。即PDCCH监测时机所在的无线帧由PDCCH监测时机周期内的假定的第n个SSB的发送周期内SSB所在的无线帧确定。
该示例可以看成上一示例的PDCCH监测时机周期内打掉中某些PDCCH监测时机,即某些SSB突发集中的SSBs没有对应的PDCCH监测时机。例 如PDCCH监测时机周期为8个无线帧,即T C=8,终端假定的SSB的发送周期为4个无线帧,即T SSB=4,也就是说1个PDCCH监测时机周期包含2个假定的SSB的发送周期,则如果n=1,则
Figure PCTCN2020071206-appb-000089
满足条件:0≤SFN SSB,imod8<4,即PDCCH监测时机所在的无线帧由PDCCH监测时机周期内的假定的第1个SSB的发送周期内SSB所在的无线帧确定。
类似地,如果约定n=2,则SFN SSB,i满足条件:4≤SFN SSB,imod8<8,即PDCCH监测时机由PDCCH监测时机周期内的假定的第2个SSB的发送周期内SSB所在的无线帧确定。
上述公式中的参数的含义与前面示例相同,参数取值如表1和表2所示,参数配置对应的索引在PBCH中指示。
示例四:基于O以及SSB所在的无线帧的索引确定PDCCH监测时机
本示例给出了第一复用模式下终端监测PDCCH的过程。
终端从PBCH中获取PDCCH监测时机参数O:
1)如果O大于0,PDCCH监测时机在SSB所在的无线帧中,或者SSB所在的无线帧之后的第一个无线帧中。
终端在连续2个时隙上监测PDCCH,两个连续时隙中第一个时隙n 0满足如下条件:
对于索引为i的SSB,
Figure PCTCN2020071206-appb-000090
如果
Figure PCTCN2020071206-appb-000091
则时隙n 0所在的无线帧的索引SFN C满足
Figure PCTCN2020071206-appb-000092
如果
Figure PCTCN2020071206-appb-000093
则时隙n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i+1。
2)如果O等于0,PDCCH监测时机在SSB所在的无线帧之后的第一个无线帧中,或者在SSB所在的无线帧之后的第二个无线帧中。
终端在连续2个时隙上监测PDCCH,两个连续时隙中第一个时隙n 0满足如下条件:
对于索引为i的SSB,
Figure PCTCN2020071206-appb-000094
如果
Figure PCTCN2020071206-appb-000095
则时隙n 0所在的无线帧的索引SFN C满足
Figure PCTCN2020071206-appb-000096
如果
Figure PCTCN2020071206-appb-000097
则时隙n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i+2。
值得说明的是,本示例更一般的情况是:
对于索引为i的SSB,
Figure PCTCN2020071206-appb-000098
如果O大于0且
Figure PCTCN2020071206-appb-000099
则时隙n 0所在的无线帧的索引SFN C满足
Figure PCTCN2020071206-appb-000100
如果O大于0且
Figure PCTCN2020071206-appb-000101
或者,如果O等于0且
Figure PCTCN2020071206-appb-000102
则时隙n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i+n 4;如果O等于0且
Figure PCTCN2020071206-appb-000103
则n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i+k 4;其中,m 4,n 4和k 4为整数,可以为预定义的固定值,或者在PBCH中指示,典型地n 4=m 4+1,k 4=m 4+2。
示例五:基于O和SSB所在的无线帧的索引以及假定的SSB周期确定PDCCH监测时机
本示例给出了第一复用模式下终端监测PDCCH的过程。
假设PDCCH监测时机周期为T C,终端假定的SSB的发送周期为T SSB,周期的单位为无线帧,周期T C大于等于T SSB,T SSB可以为预定义的固定值,可以在PBCH中指示或者预定义为固定值,记
Figure PCTCN2020071206-appb-000104
N 1为正整数。
终端在连续2个时隙上监测PDCCH,两个连续时隙中第一个时隙n 0满足如下条件:
对于索引为i的SSB,
Figure PCTCN2020071206-appb-000105
时隙n 0所在的无线帧的索引SFN C满足上一示例中基于O以及SSB所在的无线帧的索引确定PDCCH监测时机的条件,且SFN SSB,i满足条件:(n-1)·T SSB≤SFN SSB,imod T C<n·T SSB,其中n可以预定义为固定值或者在PBCH中指示,取值范围1,2,....,N 1。即PDCCH监测时机所在的无线帧由PDCCH监测时机周期内的假定的第n个SSB的发送周期内SSB所在的无线帧的索引和O的取值确定。
该示例可以看成上一示例的PDCCH监测时机周期内打掉中某些PDCCH监测时机,即某些SSB突发集中的SSBs没有对应的PDCCH监测时机。例如PDCCH监测时机周期为16个无线帧,即T C=16,终端假定的SSB的发送周期为4个无线帧,即T SSB=4,也就是说1个PDCCH监测时机周期包含4个假定的SSB的发送周期,则如果n=3,则SFN SSB,i满足条件:8≤SFN SSB,imod 16<12,即PDCCH监测时机所在的无线帧由PDCCH监测时机周期内的假定的第3个SSB的发送周期内SSB所在的无线帧的索引和O的取值确定。
上述公式中的参数的含义与前面示例相同,参数取值如表1和表2所示,参数配置对应的索引在PBCH中指示。
值得说明的是:在以上示例中,监测窗持续时间为两个时隙仅仅是示例,持续时间为多个时隙时的起始时隙的确定方法与此类似,这里不再赘述。
另外,在PDCCH监测时机周期内,PDCCH监测时机持续的无线帧数量也不限于连续两个无线帧,可以是一个无线帧,例如无论
Figure PCTCN2020071206-appb-000106
的值是多少,时隙n 0所在的无线帧的索引都是SFN C=SFN SSB,i+1,或者SFN C mod T C=SFN SSB,imod T SSB;其中,T SSB为预定义的固定值,表示终端假定的SSB的发送周期,或预定义的正整数。
PDCCH监测时机持续的也是可以是多个无线帧,例如根据
Figure PCTCN2020071206-appb-000107
(其中,X为整数)的值确定时隙n 0所在的无线帧的索引,值为0时时隙n 0所在的无线帧的索引为SFN C=SFN SSB,i,值为1时时隙n 0所在的无线帧的索引为SFN C=SFN SSB,i+1,依次类推,值为X-1时时隙n 0所在的无线帧的索引为SFN C=SFN SSB,i+X-1。当然时隙n 0所在的无线帧也可以不是连续的无线帧。
示例六:基于假定的SSB发送周期确定PDCCH监测时机
本示例给出了第二复用模式、第三复用模式下PDCCH监测时机配置。
优选地,对于第二复用模式和第三复用模式,对于索引为i的SSB,终端在一个时隙中监测PDCCH,所述时隙记为n C
假设PDCCH监测时机周期为T C,终端假定的SSB的发送周期为T SSB,周期的单位为无线帧,周期T C大于等于T SSB,T SSB预定义为固定值,T C可以在PBCH中指示或者预定义为固定值,记
Figure PCTCN2020071206-appb-000108
N 1为正整数。
对于索引为i的SSB,终端在一个时隙上监测PDCCH,PDCCH监测时机与SSB配置在相同无线帧的相同时隙,或者相同无线帧的前一个时隙,即SFN C=SFN SSB,i,n C=n SSB,i或者n C=n SSB,i-1,其中,SFN C和n C分别为CORESET所在无线帧的系统帧号和时隙索引;SFN SSB,i和n SSB,i分别为索引为i的SSB所在的无线帧的系统帧号和时隙索引。其中,上述时隙都是基于CORESET(即监测PDCCH的控制资源集)的子载波间隔。且SFN SSB,i满足条件:(n-1)·T SSB≤SFN SSB,imod T C<n·T SSB,其中n可以预定义为固定值或者在PBCH中指示,取值范围1,2,....,N 1。即PDCCH监测时机所在的无线帧由PDCCH监测时机周期内的假定的第n个SSB的发送周期内SSB所在的无线帧和时隙确定。
对于不同的SSB和PDCCH子载波间隔以及不同的复用模式,每个PDCCH监测时机(或者CORESET)在时隙内的起始符号不同。
表3
Figure PCTCN2020071206-appb-000109
表3为复用方式pattern2(即第二复用模式)下的PDCCH监测时机配置示例,即指示PDCCH监测时机(monitoring occasion)的位置,适用于SSB的子载波间隔为120kHz,PDCCH(或者CORESET)的子载波间隔为60kHz。其中,PDCCH监测时机与对应的SSB配置在相同无线帧,相同时隙,即,SFN C=SFN SSB,i,n C=n SSB,i,其中SFN C和n C分别为CORESET所在无线帧的系统帧号和时隙索引;SFN SSB,i和n SSB,i分别为索引为i的SSB所在的无线 帧的系统帧号和时隙索引。其中,上述时隙都是基于CORESET的子载波间隔。对于SSB索引i=4k,i=4k+1,i=4k+2,i=4k+3,PDCCH监测时机的起始符号索引分别为:0,1,6,7。
表4
Figure PCTCN2020071206-appb-000110
表4为复用方式pattern2(即第二复用模式)下的PDCCH监测时机配置又一示例,适用于SSB的子载波间隔为240kHz,PDCCH的子载波间隔为120kHz。其中,PDCCH监测时机与对应的SSB配置在相同无线帧的相同时隙,或者相同无线帧的前一个时隙,即SFN C=SFN SSB,i,n C=n SSB,i或者
Figure PCTCN2020071206-appb-000111
其中,SFN C和n C分别为CORESET所在无线帧的系统帧号和时隙索引;SFN SSB,i和n SSB,i分别为索引为i的SSB所在的无线帧的系统帧号和时隙索引。其中,上述时隙都是基于CORESET的子载波间隔。对于SSB索引i=8k,i=8k+1,i=8k+2,i=8k+3,i=8k+6,i=8k+7,PDCCH监测时机的起始符号索引分别为:0,1,2,3,0,1,且PDCCH所在的时隙索引与SSB所在的时隙索引相同。对于SSB索引,i=8k+4,i=8k+5,PDCCH监测时机的起始符号索引分别为:12,13,且PDCCH所在的时隙位于SSB所在的时隙的前一个时隙。
表5
Figure PCTCN2020071206-appb-000112
表5为复用方式pattern3(即第三复用模式)下的PDCCH监测时机配 置示例,适用于SSB的子载波间隔为120kHz,PDCCH的子载波间隔为120kHz。其中,PDCCH监测时机与对应的SSB配置在相同无线帧的相同时隙。即SFN C=SFN SSB,i,n C=n SSB,i,其中,SFN C和n C分别为CORESET所在无线帧的系统帧号和时隙索引;SFN SSB,i和n SSB,i分别为索引为i的SSB所在的无线帧的系统帧号和时隙索引。其中,上述时隙都是基于CORESET的子载波间隔。对于SSB索引i=4k,i=4k+1,i=4k+2,i=4k+3,PDCCH监测时机的起始符号索引分别为:4,8,2,6。
上述表3、表4和表5中SFN SSB,i满足条件:(n-1)·T SSB≤SFN SSB,imod T C<n·T SSB,其中n可以预定义为固定值或者在PBCH中指示,取值范围1,2,....,N 1。即PDCCH监测时机所在的无线帧由PDCCH监测时机周期内的假定的第n个SSB的发送周期内SSB所在的无线帧和时隙确定。
示例七:基于SSB所在的无线帧的索引确定PDCCH监测时机
本示例给出了第二复用模式、第三复用模式下PDCCH监测时机配置。
所述时隙n C=n SSB,i或者n C=n SSB,i-1,所述时隙n C所在的无线帧的索引SFN C满足:SFN C mod T C=SFN SSB,imod T SSB。其中,T SSB为预定义的固定值,表示终端假定的SSB的发送周期,或预定义的正整数。
用SFN C mod T C=SFN SSB,imod T SSB直接替换表3、表4和表5的第2列中的SFN C=SFN SSB,i即可,表3、表4和表5中其他PDCCH监测时机配置不变,如下表6,表7,表8。表6、表7和表8适用的SSB和PDCCH子载波间隔以及复用模式分别与上一示例中的表3、表4和表5相同。
表6
Figure PCTCN2020071206-appb-000113
表7
Figure PCTCN2020071206-appb-000114
表8
Figure PCTCN2020071206-appb-000115
示例八:直接指定PDCCH监测时机所在的无线帧的索引和时隙
本示例给出了第二复用模式、第三复用模式下PDCCH监测时机配置。
对于pattern 2(第二复用模式)和pattern 3(第三复用模式)也可以直接给出SFN C,例如SFN C mod T C=0,n C=n SSB,i或n C=n SSB,i-1,其中,T C为PDCCH监测时机周期,单位为无线帧,T C可以在PBCH中指示或者预定义为固定值。用SFN C mod T C=0直接替换表3、表4和表5的第2列中的SFN C=SFN SSB,i即可,表3、表4和表5中其他PDCCH监测时机配置不变,适用的SSB和PDCCH子载波间隔以及复用模式与上一示例相同。
示例九:直接指定PDCCH监测时机所在的无线帧的索引和时隙
本示例给出了第二复用模式、第三复用模式下PDCCH监测时机配置。
对于pattern 2(第二复用模式)和pattern 3(第三复用模式)也可以直接给出SFN C,例如SFN C mod T C=m 5,n C=n SSB,i或n C=n SSB,i-1,其中,T C为PDCCH监测时机周期,单位为无线帧,T C和m 5可以在PBCH中指示或者预定义为固定值,且m 5为非负整数。用SFN Cmod T C=m 5直接替换表3、表4和表5的第2列中的SFN C=SFN SSB,i即可,表3、表4和表5中其他PDCCH监测时机配置不变。表3、表4和表5适用的SSB和PDCCH子载波间隔以及复用模式与上一示例相同。
值得说明的是,在上述所有示例中,SFN C和n C分别为CORESET所在无线帧的系统帧号和时隙索引;SFN SSB,i和n SSB,i分别为索引为i的SSB所在的无线帧的系统帧号和时隙索引。另外,上述示例中各参数的含义仅仅是示例,不应理解为对本发明范围的限制,例如T C也可以表示默认的SIB1重复发送周期,或终端假定的SIB1的发送周期,或终端假定的SIB1的重复发送周期,或预定义的正整数。
实施例二
在本实施例中提供了一种控制信道的发送方法,如图3所示,该方法包括:
步骤301,发送端根据第一参数、索引为i的同步信号块SSB所在的无线帧的索引、时间偏移、第二参数至少之一确定PDCCH的发送时机;其中,所述第一参数为物理下行控制信道PDCCH监测时机周期,或者PDCCH的发送时机周期,或者默认的剩余最小系统信息SIB1的发送周期,或者默认的SIB1重复发送周期,或者接收端假定的SIB1的发送周期,或者接收端假定的SIB1的重复发送周期,或者预定义的正整数,所述时间偏移为索引为0的SSB对应的监测PDCCH的起始时隙相对于该时隙所在的无线帧起始边界的偏移,或者PDCCH监测周期内第一个监测时隙相对所述PDCCH监测周期起始位置的偏移,所述第二参数为所述接收端假定的SSB 的发送周期,或预定义的正整数。
步骤302,所述发送端在确定的所述PDCCH的发送时机上发送PDCCH。
在一实施例中,所述发送端根据第一参数、索引为i的同步信号块SSB所在的无线帧的索引、时间偏移、第二参数至少之一确定PDCCH的发送时机包括:
所述发送端根据第一参数、索引为i的同步信号块SSB所在的无线帧的索引、时间偏移、第二参数至少之一确定时隙n C或者起始时隙n 0
所述在确定的所述PDCCH的发送时机上发送PDCCH包括:
所述发送端在所述时隙n C或者以时隙n 0为起始时隙的连续K个时隙上发送PDCCH,所述K为正整数。
在一实施例中,所述
Figure PCTCN2020071206-appb-000116
如果
Figure PCTCN2020071206-appb-000117
则时隙n 0所在的无线帧的索引SFN C满足
Figure PCTCN2020071206-appb-000118
如果
Figure PCTCN2020071206-appb-000119
则时隙n 0所在的无线帧的索引SFN C满足SFN C mod T=1;其中,O为所述时间偏移,μ为公共控制资源集合的子载波间隔配置,M由所述发送端从预设配置中选取,
Figure PCTCN2020071206-appb-000120
为对于子载波间隔配置μ每个无线帧的时隙数,T为所述第一参数或所述第二参数。预设配置比如参考表1,需要说明的是,表1仅为示例,可以根据需要使用其他值。
在一实施例中,所述
Figure PCTCN2020071206-appb-000121
如果
Figure PCTCN2020071206-appb-000122
则时隙n 0所在的无线帧的索引SFN C满足
Figure PCTCN2020071206-appb-000123
如果
Figure PCTCN2020071206-appb-000124
则时隙n 0所在的无线帧的索引SFN C满足SFN C mod T=n 12;其中,O为所述时间偏移,μ为公共控制资源集合的子载波间隔配置,M由所述发送端从预设配置中选取,
Figure PCTCN2020071206-appb-000125
为对于子载波间隔配置μ每个无线帧的时隙数,m 12和n 12为小于T的非负整数,T为所述第一参数或所述第二参数。
在一实施例中,所述n 12=m 12+1。n 12,m 12为预定义的固定值,或者,由发送端通过PBCH发送给接收端。
在一实施例中,所述
Figure PCTCN2020071206-appb-000126
如果
Figure PCTCN2020071206-appb-000127
则时隙n 0所在的无线帧的索引SFN C满足
Figure PCTCN2020071206-appb-000128
如果
Figure PCTCN2020071206-appb-000129
则时隙n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i+2,其中,O为所述时间偏移,μ为公共控制资源集合的子载波间隔配置,M由所述发送端从预设配置中选取,
Figure PCTCN2020071206-appb-000130
为对于子载波间隔配置μ每个无线帧的时隙数,SFN SSB,i表示索引为i的SSB所在的无线帧的索引。
在一实施例中,所述
Figure PCTCN2020071206-appb-000131
如果
Figure PCTCN2020071206-appb-000132
则时隙n 0所在的无线帧的索引SFN C满足
Figure PCTCN2020071206-appb-000133
如果
Figure PCTCN2020071206-appb-000134
则时隙n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i+n 3,其中,m 3和n 3为整数,O为所述时间偏移,μ为公共控制资源集合的子载波间隔配置,M由所述发送端从预设配置中选取,
Figure PCTCN2020071206-appb-000135
为对于子载波间隔配置μ每个无线帧的时隙数,SFN SSB,i表示索引为i的SSB所在的无线帧的索引。
在一实施例中,所述n 3=m 3+1。m 3和n 3为预定义的固定值,或者,由通过PBCH发送给接收端。
在一实施例中,所述
Figure PCTCN2020071206-appb-000136
如果O大于0且
Figure PCTCN2020071206-appb-000137
则时隙n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i+0;
如果O大于0且
Figure PCTCN2020071206-appb-000138
或者,如果O等于0且
Figure PCTCN2020071206-appb-000139
则时隙n 0所在的无线帧的索引SFN C满足
Figure PCTCN2020071206-appb-000140
如果O等于0且
Figure PCTCN2020071206-appb-000141
则时隙n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i+2;
其中,O为所述时间偏移,μ为公共控制资源集合的子载波间隔配置,M由所述发送端从预设配置中选取,
Figure PCTCN2020071206-appb-000142
为对于子载波间隔配置μ每个无线帧的时隙数,SFN SSB,i表示索引为i的SSB所在的无线帧的索引。
在一实施例中,所述
Figure PCTCN2020071206-appb-000143
如果O大于0且
Figure PCTCN2020071206-appb-000144
则时隙n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i+m 4
如果O大于0且
Figure PCTCN2020071206-appb-000145
或者,如果O等于0且
Figure PCTCN2020071206-appb-000146
则时隙n 0所在的无线帧的索引SFN C满足
Figure PCTCN2020071206-appb-000147
如果O等于0且
Figure PCTCN2020071206-appb-000148
则时隙n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i+k 4
其中,m 4,n 4和k 4为整数,O为所述时间偏移,μ为公共控制资源集合的子载波间隔配置,M由所述发送端从预设配置中选取,
Figure PCTCN2020071206-appb-000149
为对于子载波间隔配置μ每个无线帧的时隙数,SFN SSB,i表示索引为i的SSB所在的无线帧的索引。
在一实施例中,所述n 4=m 4+1,k 4=m 4+2。所述m 4、n 4和k 4为预定义的固定值,或者通过PBCH发送给接收端。
在一实施例中,所述n C=n SSB,i或者n C=n SSB,i-1,所述时隙n C所在的无线帧的索引SFN C=SFN SSB,i,所述n SSB,i为索引为i的SSB所在的时隙的索引,所述SFN SSB,i表示索引为i的SSB所在的无线帧的索引。
在一实施例中,所述SFN SSB,i满足:(n-1)·T SSB≤SFN SSB,imod T C<n·T SSB;其中,所述n为小于等于
Figure PCTCN2020071206-appb-000150
的正整数,所述
Figure PCTCN2020071206-appb-000151
为正整数,所述T SSB为所述第二参数,所述T C为所述第一参数。所述n为预定义的固定值,或者通过PBCH发送给接收端。
在一实施例中,所述
Figure PCTCN2020071206-appb-000152
所述时隙n 0所在的无线帧的索引SFN C满足:SFN C mod T C=SFN SSB,imod T SSB或者SFN C=SFN SSB,i+1;其中,O为所述时间偏移,μ为公共控制资源集合的子载波间隔配置,M由所述发送端从预设配置中选取,
Figure PCTCN2020071206-appb-000153
为对于子载波间隔配置μ每个无线帧的时隙数,T C为所述第一参数,SFN SSB,i表示索引为i的SSB所在的无线 帧的索引,T SSB为所述第二参数。
在一实施例中,所述
Figure PCTCN2020071206-appb-000154
如果
Figure PCTCN2020071206-appb-000155
则时隙n 0所在的无线帧的索引SFN C满足SFN C mod T C=SFN SSB,imod T SSB;如果
Figure PCTCN2020071206-appb-000156
则时隙n 0所在的无线帧的索引SFN C满足SFN C mod T C=SFN SSB,imod T SSB+1,其中,O为所述时间偏移,μ为公共控制资源集合的子载波间隔配置,M由所述发送端从预设配置中选取,
Figure PCTCN2020071206-appb-000157
为对于子载波间隔配置μ每个无线帧的时隙数,T SSB为所述第二参数,T C为所述第一参数,SFN SSB,i表示索引为i的SSB所在的无线帧的索引。
在一实施例中,所述n C=n SSB,i或者n C=n SSB,i-1,所述时隙n C所在的无线帧的索引SFN C满足:SFN C mod T C=SFN SSB,imod T SSB,其中,n SSB,i为索引为i的SSB所在的时隙的索引,T C为所述第一参数,SFN SSB,i表示索引为i的SSB所在的无线帧的索引,T SSB为所述第二参数。
在一实施例中,所述n C=n SSB,i或者n C=n SSB,i-1,所述时隙n C所在的无线帧的索引SFN C满足:SFN C mod T C=m 5,其中,m 5为小于T C的非负整数,n SSB,i为索引为i的SSB所在的时隙的索引,T C为所述第一参数。
在一实施例中,所述m 5=0。
在一实施例中,所述m 5为预定义的固定值,或者通过PBCH发送给接收端。
需要说明的是,上述各参数可参考终端侧的相关说明,此处不再赘述。
如图4所示,本发明一实施例提供一种控制信道的监测装置40,包括存储器410和处理器420,所述存储器410存储有程序,所述程序在被所述处理器420读取执行时,实现任一实施例所述的控制信道的监测方法。
如图5所示,本发明一实施例提供一种计算机可读存储介质50,所述计算机可读存储介质存储有一个或者多个程序510,所述一个或者多个程序510可被一个或者多个处理器执行,以实现任一实施例所述的控制信道的监测方法。
如图6所示,本发明一实施例提供一种控制信道的发送装置60,包括存储器610和处理器620,所述存储器610存储有程序,所述程序在被所述处理器620读取执行时,实现任一实施例所述的控制信道的发送方法。
如图7所示,本发明一实施例提供一种计算机可读存储介质70,所述计算机可读存储介质存储有一个或者多个程序710,所述一个或者多个程序710可被一个或者多个处理器执行,以实现任一实施例所述的控制信道的发送方法。
在一实施例中,所述发送端在所述时隙n C或者以时隙n 0为起始时隙的连续K个时隙上发送PDCCH包括:所述发送端确定所述时隙n C或者以时隙n 0为起始时隙的连续K个时隙中潜在的CORESET时频资源,在所述CORESET时频资源上发送PDCCH。
在一实施例中,所述时间偏移O通过PBCH发送给接收端。
另外,上述示例中各参数的含义仅仅是示例,不应理解为对本发明范围的限制,例如T C也可以表示默认的SIB1重复发送周期,或终端假定的SIB1的发送周期,或终端假定的SIB1的重复发送周期,或预定义的正整数。
值得说明的是,本申请中PDCCH指的是公共信息或者SIB1对应的控制信道PDCCH。本申请中CORESET指的是公共信息或者SIB1对应的控制资源集CORESET。其中,公共信息包括剩余最小系统信息RMSI、其他系统信息、寻呼消息等。
值得说明的是,在申请中,对于发送端,所述某个参数通过PBCH发送给接收端,指发送端将该参数或者包含该参数的配置索引承载在PBCH中,然后发送给接收端;对于接收端,所述某个参数从PBCH获取或者由PBCH提供或者在PBCH中指示等等,指接收端通过接收并解码PBCH,从而得到PBCH中承载的参数,或者得到PBCH中承载的包含该参数的配置索引,通过配置索引获得该参数。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步 骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
工业实用性
本发明实施例,解决了相关技术中存在的PDCCH监测时机重复周期较小而导致的接收端功耗增加以及对资源配置或者帧结构配置灵活性的限制,降低了接收端监测功耗,提高了资源利用率,减少了系统设计的复杂度。

Claims (46)

  1. 一种控制信道的监测方法,包括:
    接收端根据第一参数、索引为i的同步信号块SSB所在的无线帧的索引、时间偏移、第二参数至少之一确定物理下行控制信道PDCCH的监测时机,在确定的所述PDCCH的监测时机上监测PDCCH,其中,所述第一参数为物理下行控制信道PDCCH监测时机周期,或者PDCCH的发送时机周期,或者默认的剩余最小系统信息SIB1的发送周期,或者默认的SIB1重复发送周期,或者接收端假定的SIB1的发送周期,或者接收端假定的SIB1的重复发送周期,或者预定义的正整数,所述时间偏移为索引为0的SSB对应的监测PDCCH的起始时隙相对于该时隙所在的无线帧起始边界的偏移,或者PDCCH监测周期内第一个监测时隙相对所述PDCCH监测周期起始位置的偏移,所述第二参数为所述接收端假定的SSB的发送周期,或预定义的正整数。
  2. 根据权利要求1所述的控制信道的监测方法,其中,所述接收端根据第一参数、索引为i的SSB所在的无线帧的索引、时间偏移、第二参数至少之一确定PDCCH的监测时机包括:
    根据所述第一参数、索引为i的SSB所在的无线帧的索引、时间偏移、所述第二参数至少之一确定时隙n C或者起始时隙n 0
    所述在确定的所述PDCCH的监测时机上监测PDCCH包括:
    在所述时隙n C或者以所述时隙n 0为起始时隙的K个时隙上监测PDCCH,所述K为正整数。
  3. 根据权利要求2所述的控制信道的监测方法,其中,所述
    Figure PCTCN2020071206-appb-100001
    如果
    Figure PCTCN2020071206-appb-100002
    则时隙n 0所在的无线帧的索引SFN C满足
    Figure PCTCN2020071206-appb-100003
    如果
    Figure PCTCN2020071206-appb-100004
    则时隙n 0所在的无线帧的索引SFN C满足 SFN Cmod T=1;其中,O为所述时间偏移,μ为公共控制资源集合的子载波间隔配置,M由物理广播信道PBCH提供,
    Figure PCTCN2020071206-appb-100005
    为对于子载波间隔配置μ每个无线帧的时隙数,T为所述第一参数或所述第二参数。
  4. 根据权利要求2所述的控制信道的监测方法,其中,所述
    Figure PCTCN2020071206-appb-100006
    如果
    Figure PCTCN2020071206-appb-100007
    则时隙n 0所在的无线帧的索引
    Figure PCTCN2020071206-appb-100008
    满足
    Figure PCTCN2020071206-appb-100009
    如果
    Figure PCTCN2020071206-appb-100010
    则时隙n 0所在的无线帧的索引SFN C满足SFN CmodT=n 12;其中,O为所述时间偏移,μ为公共控制资源集合的子载波间隔配置,M由PBCH提供,
    Figure PCTCN2020071206-appb-100011
    为对于子载波间隔配置μ每个无线帧的时隙数,T为所述第一参数或所述第二参数,m 12和n 12为小于T的非负整数。
  5. 根据权利要求4所述的控制信道的监测方法,其中,所述T、m 12和n 12为预定义的固定值,或者由PBCH提供。
  6. 根据权利要求4所述的控制信道的监测方法,其中,所述n 12=m 12+1。
  7. 根据权利要求2所述的控制信道的监测方法,其中,所述
    Figure PCTCN2020071206-appb-100012
    如果
    Figure PCTCN2020071206-appb-100013
    则时隙n 0所在的无线帧的索引SFN C满足
    Figure PCTCN2020071206-appb-100014
    如果
    Figure PCTCN2020071206-appb-100015
    则时隙n 0所在的无线帧的索引SFN C满足
    Figure PCTCN2020071206-appb-100016
    其中,O为所述时间偏移,μ为公共控制资源集合的子载波间隔配置,M由PBCH提供,
    Figure PCTCN2020071206-appb-100017
    为对于子载波间隔配置μ每个无线帧的时隙数,SFN SSB,i表示索引为i的SSB所在的无线帧的索引。
  8. 根据权利要求2所述的控制信道的监测方法,其中,所述
    Figure PCTCN2020071206-appb-100018
    如果
    Figure PCTCN2020071206-appb-100019
    则时隙n 0所在的无线帧的索引SFN C满足
    Figure PCTCN2020071206-appb-100020
    如果
    Figure PCTCN2020071206-appb-100021
    则时隙n 0所在的无线帧的索引SFN C满足 SFN C=SFN SSB,i+n 3,其中,O为所述时间偏移,μ为公共控制资源集合的子载波间隔配置,M由PBCH提供,
    Figure PCTCN2020071206-appb-100022
    为对于子载波间隔配置μ每个无线帧的时隙数,SFN SSB,i表示索引为i的SSB所在的无线帧的索引,m 3和n 3为整数。
  9. 根据权利要求8所述的控制信道的监测方法,其中,所述m 3和n 3为预定义的固定值,或者由PBCH提供。
  10. 根据权利要求8所述的控制信道的监测方法,其中,所述n 3=m 3+1。
  11. 根据权利要求2所述的控制信道的监测方法,其中,所述
    Figure PCTCN2020071206-appb-100023
    如果O大于0且
    Figure PCTCN2020071206-appb-100024
    则时隙n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i
    如果O大于0且
    Figure PCTCN2020071206-appb-100025
    或者,如果O等于0且
    Figure PCTCN2020071206-appb-100026
    则时隙n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i+1;
    如果O等于0且
    Figure PCTCN2020071206-appb-100027
    则时隙n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i+2;
    其中,O为所述时间偏移,μ为公共控制资源集合的子载波间隔配置,M由PBCH提供,
    Figure PCTCN2020071206-appb-100028
    为对于子载波间隔配置μ每个无线帧的时隙数,SFN SSB,i表示索引为i的SSB所在的无线帧的索引。
  12. 根据权利要求2所述的控制信道的监测方法,其中,所述
    Figure PCTCN2020071206-appb-100029
    如果O大于0且
    Figure PCTCN2020071206-appb-100030
    则时隙n 0所在的无线 帧的索引SFN C满足SFN C=SFN SSB,i+m 4
    如果O大于0且
    Figure PCTCN2020071206-appb-100031
    或者,如果O等于0且
    Figure PCTCN2020071206-appb-100032
    则时隙n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i+n 4
    如果O等于0且
    Figure PCTCN2020071206-appb-100033
    则时隙n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i+k 4
    其中,O为所述时间偏移,μ为公共控制资源集合的子载波间隔配置,M由PBCH提供,
    Figure PCTCN2020071206-appb-100034
    为对于子载波间隔配置μ每个无线帧的时隙数,SFN SSB,i表示索引为i的SSB所在的无线帧的索引,m 4,n 4和k 4为整数。
  13. 根据权利要求12所述的控制信道的监测方法,其中,所述m 4、n 4和k 4为预定义的固定值,或者由PBCH提供。
  14. 根据权利要求12所述的控制信道的监测方法,其中,所述n 4=m 4+1,k 4=m 4+2。
  15. 根据权利要求2所述的控制信道的监测方法,其中,所述n C=n SSB,i或者
    Figure PCTCN2020071206-appb-100035
    所述时隙n C所在的无线帧的索引SFN C=SFN SSB,i,所述n SSB,i为索引为i的SSB所在的时隙的索引,所述SFN SSB,i表示索引为i的SSB所在的无线帧的索引。
  16. 根据权利要求7至15任一所述的控制信道的监测方法,其
    Figure PCTCN2020071206-appb-100036
    二参数,所述T C为所述第一参数。
  17. 根据权利要求16所述的控制信道的监测方法,其中,所述n为预定义的固定值,或者由PBCH提供。
  18. 根据权利要求2所述的控制信道的监测方法,其中,所述
    Figure PCTCN2020071206-appb-100037
    所述时隙n 0所在的无线帧的索引SFN C满足:SFN CmodT C=SFN SSB,imodT SSB或者SFN C=SFN SSB,i+1;其中,O为所述时间偏移,μ为公共控制资源集合的子载波间隔配置,M由PBCH提供,
    Figure PCTCN2020071206-appb-100038
    为对于子载波间隔配置μ每个无线帧的时隙数,T C为所述第一参数,SFN SSB,i表示索引为i的SSB所在的无线帧的索引,T SSB为所述第二参数。
  19. 根据权利要求2所述的控制信道的监测方法,其中,所述
    Figure PCTCN2020071206-appb-100039
    如果
    Figure PCTCN2020071206-appb-100040
    则时隙n 0所在的无线帧的索引SFN C满足SFN CmodT C=SFN SSB,imodT SSB;如果
    Figure PCTCN2020071206-appb-100041
    则时隙n 0所在的无线帧的索引SFN C满足SFN CmodT C=SFN SSB,imodT SSB+1,其中,O为所述时间偏移,μ为公共控制资源集合的子载波间隔配置,M由PBCH提供,
    Figure PCTCN2020071206-appb-100042
    为对于子载波间隔配置μ每个无线帧的时隙数,T C为所述第一参数,T SSB为所述第二参数,SFN SSB,i表示索引为i的SSB所在的无线帧的索引。
  20. 根据权利要求2所述的控制信道的监测方法,其中,所述n C=n SSB,i或者n C=n SSB,i-1,所述时隙n C所在的无线帧的索引SFN C满足:SFN CmodT C=SFN SSB,imodT SSB,其中,n SSB,i为索引为i的SSB所在的时隙的索引,T C为所述第一参数,SFN SSB,i表示索引为i的SSB所在的无线帧的索引,T SSB为所述第二参数。
  21. 根据权利要求2所述的控制信道的监测方法,其中,所述n C=n SSB,i或者n C=n SSB,i-1,所述时隙n C所在的无线帧的索引SFN C满足:SFN CmodT C=m 5,其中,n SSB,i为索引为i的SSB所在的时隙的索引,T C为所述第一参数,m 5为小于T C的非负整数。
  22. 根据权利要求21所述的控制信道的监测方法,其中,所述m 5=0。
  23. 根据权利要求21所述的控制信道的监测方法,其中,所述m 5为预定义的固定值,或者由PBCH提供。
  24. 根据权利要求2所述的控制信道的监测方法,其中,所述接收端在所述确定的时隙n C或者以时隙n 0为起始时隙的K个时隙上监测PDCCH包括:所述接收端基于公共控制资源集合配置、索引为i的SSB对应的公共控制资源集合所在的时隙和时隙内公共控制资源集合的起始符号索引中至少一项,确定所述时隙n C或者以时隙n 0为起始时隙的K个时隙中公共控制资源集合时频资源,在所述确定的公共控制资源集合时频资源上监测PDCCH,其中,所述公共控制资源集合配置和时隙内公共控制资源集合的起始符号索引由PBCH提供,所述索引为i的SSB对应的公共控制资源集合所在的时隙由所述接收端根据PBCH提供的参数计算或者由PBCH提供。
  25. 一种控制信道的发送方法,包括:
    发送端根据第一参数、索引为i的同步信号块SSB所在的无线帧的索引、时间偏移、第二参数至少之一确定PDCCH的发送时机,在确定的所述PDCCH的发送时机上发送PDCCH,其中,所述第一参数为物理下行控制信道PDCCH监测时机周期,或者PDCCH的发送时机周期,或者默认的剩余最小系统信息SIB1的发送周期,或者默认的SIB1重复发送周期,或者接收端假定的SIB1的发送周期,或者接收端假定的SIB1的重复发送周期,或者预定义的正整数,所述时间偏移为索引为0的SSB对应的监测PDCCH的起始时隙相对于该时隙所在的无线帧起始边界的偏移,或者PDCCH监测周期内第一个监测时隙相对所述PDCCH监测周期起始位置的偏移,所述第二参数为所述接收端假定的SSB的发送周期,或预定义的正整数。
  26. 根据权利要求25所述的控制信道的发送方法,其中,所述发送端根据第一参数、索引为i的同步信号块SSB所在的无线帧的索 引、时间偏移、第二参数至少之一确定PDCCH的发送时机包括:
    所述发送端根据第一参数、索引为i的同步信号块SSB所在的无线帧的索引、时间偏移、第二参数至少之一确定时隙n C或者起始时隙n 0
    所述在确定的所述PDCCH的发送时机上发送PDCCH包括:
    所述发送端在所述时隙n C或者以时隙n 0为起始时隙的K个时隙上发送PDCCH,所述K为正整数。
  27. 根据权利要求26所述的控制信道的发送方法,其中,所述
    Figure PCTCN2020071206-appb-100043
    如果
    Figure PCTCN2020071206-appb-100044
    则时隙n 0所在的无线帧的索引SFN C满足
    Figure PCTCN2020071206-appb-100045
    如果
    Figure PCTCN2020071206-appb-100046
    则时隙n 0所在的无线帧的索引SFN C满足
    Figure PCTCN2020071206-appb-100047
    其中,O为所述时间偏移,μ为公共控制资源集合的子载波间隔配置,M由所述发送端从预设配置中选取,
    Figure PCTCN2020071206-appb-100048
    为对于子载波间隔配置μ每个无线帧的时隙数,T为所述第一参数或所述第二参数。
  28. 根据权利要求26所述的控制信道的发送方法,其中,所述
    Figure PCTCN2020071206-appb-100049
    如果
    Figure PCTCN2020071206-appb-100050
    则时隙n 0所在的无线帧的索引
    Figure PCTCN2020071206-appb-100051
    满足
    Figure PCTCN2020071206-appb-100052
    如果
    Figure PCTCN2020071206-appb-100053
    则时隙n 0所在的无线帧的索引SFN C满足SFN CmodT=n 12;其中,O为所述时间偏移,μ为公共控制资源集合的子载波间隔配置,M由所述发送端从预设配置中选取,
    Figure PCTCN2020071206-appb-100054
    为对于子载波间隔配置μ每个无线帧的时隙数,m 12和n 12为小于T的非负整数,T为所述第一参数或所述第二参数。
  29. 根据权利要求28所述的控制信道的发送方法,其中,所述n 12=m 12+1。
  30. 根据权利要求26所述的控制信道的发送方法,其中,所述
    Figure PCTCN2020071206-appb-100055
    如果
    Figure PCTCN2020071206-appb-100056
    则时隙n 0所在的无线帧的索引SFN C满足
    Figure PCTCN2020071206-appb-100057
    如果
    Figure PCTCN2020071206-appb-100058
    则时隙n 0所在的无线帧的索引SFN C满足
    Figure PCTCN2020071206-appb-100059
    其中,O为所述时间偏移,μ为公共控制资源集合的子载波间隔配置,M由所述发送端从预设配置中选取,
    Figure PCTCN2020071206-appb-100060
    为对于子载波间隔配置μ每个无线帧的时隙数,SFN SSB,i表示索引为i的SSB所在的无线帧的索引。
  31. 根据权利要求26所述的控制信道的发送方法,其中,所述
    Figure PCTCN2020071206-appb-100061
    如果
    Figure PCTCN2020071206-appb-100062
    则时隙n 0所在的无线帧的索引SFN C满足
    Figure PCTCN2020071206-appb-100063
    如果
    Figure PCTCN2020071206-appb-100064
    则时隙n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i+n 3,其中,m 3和n 3为整数,O为所述时间偏移,μ为公共控制资源集合的子载波间隔配置,M由所述发送端从预设配置中选取,
    Figure PCTCN2020071206-appb-100065
    为对于子载波间隔配置μ每个无线帧的时隙数,SFN SSB,i表示索引为i的SSB所在的无线帧的索引。
  32. 根据权利要求31所述的控制信道的发送方法,其中,所述n 3=m 3+1。
  33. 根据权利要求26所述的控制信道的发送方法,其中,所述
    Figure PCTCN2020071206-appb-100066
    如果O大于0且
    Figure PCTCN2020071206-appb-100067
    则时隙n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i
    如果O大于0且
    Figure PCTCN2020071206-appb-100068
    或者,如果O等于0且
    Figure PCTCN2020071206-appb-100069
    则时隙n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i+1;
    如果O等于0且
    Figure PCTCN2020071206-appb-100070
    则时隙n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i+2;
    其中,O为所述时间偏移,μ为公共控制资源集合的子载波间隔配置,M由所述发送端从预设配置中选取,
    Figure PCTCN2020071206-appb-100071
    为对于子载波间隔配置μ每个无线帧的时隙数,SFN SSB,i表示索引为i的SSB所在的无线帧的索引。
  34. 根据权利要求26所述的控制信道的发送方法,其中,所述
    Figure PCTCN2020071206-appb-100072
    如果O大于0且
    Figure PCTCN2020071206-appb-100073
    则时隙n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i+m 4
    如果O大于0且
    Figure PCTCN2020071206-appb-100074
    或者,如果O等于0且
    Figure PCTCN2020071206-appb-100075
    则时隙n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i+n 4
    如果O等于0且
    Figure PCTCN2020071206-appb-100076
    则时隙n 0所在的无线帧的索引SFN C满足SFN C=SFN SSB,i+k 4
    其中,m 4,n 4和k 4为整数,O为所述时间偏移,μ为公共控制资源集合的子载波间隔配置,M由所述发送端从预设配置中选取,
    Figure PCTCN2020071206-appb-100077
    为对于子载波间隔配置μ每个无线帧的时隙数,SFN SSB,i表示索引为i的SSB所在的无线帧的索引。
  35. 根据权利要求34所述的控制信道的发送方法,其中,所述n 4=m 4+1,k 4=m 4+2。
  36. 根据权利要求26所述的控制信道的发送方法,其中,所述n C=n SSB,i或者
    Figure PCTCN2020071206-appb-100078
    所述时隙n C所在的无线帧的索引SFN C=SFN SSB,i,所述n SSB,i为索引为i的SSB所在的时隙的索引,所述 SFN SSB,i表示索引为i的SSB所在的无线帧的索引。
  37. 根据权利要求30至36任一所述的控制信道的发送方法,其
    Figure PCTCN2020071206-appb-100079
    二参数,所述T C为所述第一参数。
  38. 根据权利要求26所述的控制信道的发送方法,其中,所述
    Figure PCTCN2020071206-appb-100080
    所述时隙n 0所在的无线帧的索引SFN C满足:SFN CmodT C=SFN SSB,imodT SSB或者SFN C=SFN SSB,i+1;其中,O为所述时间偏移,μ为公共控制资源集合的子载波间隔配置,M通过PBCH发送给接收端,
    Figure PCTCN2020071206-appb-100081
    为对于子载波间隔配置μ每个无线帧的时隙数,T C为所述第一参数,SFN SSB,i表示索引为i的SSB所在的无线帧的索引,T SSB为所述第二参数。
  39. 根据权利要求26所述的控制信道的发送方法,其中,所述
    Figure PCTCN2020071206-appb-100082
    如果
    Figure PCTCN2020071206-appb-100083
    则时隙n 0所在的无线帧的索引SFN C满足SFN CmodT C=SFN SSB,imodT SSB;如果
    Figure PCTCN2020071206-appb-100084
    则时隙n 0所在的无线帧的索引SFN C满足SFN CmodT C=SFN SSB,imodT SSB+1,其中,O为所述时间偏移,μ为公共控制资源集合的子载波间隔配置,M由所述发送端从预设配置中选取,
    Figure PCTCN2020071206-appb-100085
    为对于子载波间隔配置μ每个无线帧的时隙数,T SSB为所述第二参数,T C为所述第一参数,SFN SSB,i表示索引为i的SSB所在的无线帧的索引。
  40. 根据权利要求26所述的控制信道的发送方法,其中,所述n C=n SSB,i或者n C=n SSB,i-1,所述时隙n C所在的无线帧的索引SFN C满足:SFN CmodT C=SFN SSB,imodT SSB,其中,n SSB,i为索引为i的SSB所在的时隙的索引,T C为所述第一参数,SFN SSB,i表示索引为i的SSB所在的无线帧的索引,T SSB为所述第二参数。
  41. 根据权利要求26所述的控制信道的发送方法,其中,所述n C=n SSB,i或者n C=n SSB,i-1,所述时隙n C所在的无线帧的索引SFN C满足:SFN CmodT C=m 5,其中,m 5为小于T C的非负整数,n SSB,i为索引为i的SSB所在的时隙的索引,T C为所述第一参数。
  42. 根据权利要求41所述的控制信道的发送方法,其中,所述m 5=0。
  43. 一种控制信道的监测装置,包括存储器和处理器,所述存储器存储有程序,所述程序在被所述处理器读取执行时,实现如权利要求1至24任一所述的控制信道的监测方法。
  44. 一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如权利要求1至24任一所述的控制信道的监测方法。
  45. 一种控制信道的发送装置,包括存储器和处理器,所述存储器存储有程序,所述程序在被所述处理器读取执行时,实现如权利要求25至42任一所述的控制信道的发送方法。
  46. 一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如权利要求25至42任一所述的控制信道的发送方法。
PCT/CN2020/071206 2019-01-11 2020-01-09 控制信道的监测方法及装置、发送方法及装置、存储介质 WO2020143718A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910026460.4 2019-01-11
CN201910026460.4A CN110535542B (zh) 2019-01-11 2019-01-11 控制信道的监测方法及装置、发送方法及装置、存储介质

Publications (1)

Publication Number Publication Date
WO2020143718A1 true WO2020143718A1 (zh) 2020-07-16

Family

ID=68659657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071206 WO2020143718A1 (zh) 2019-01-11 2020-01-09 控制信道的监测方法及装置、发送方法及装置、存储介质

Country Status (2)

Country Link
CN (1) CN110535542B (zh)
WO (1) WO2020143718A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114286328A (zh) * 2021-10-11 2022-04-05 北京物资学院 一种无线通信系统中的信号处理方法和装置
US20220417875A1 (en) * 2021-06-29 2022-12-29 Qualcomm Incorporated Sparse transmission of discovery signals for network energy saving

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535542B (zh) * 2019-01-11 2022-11-29 中兴通讯股份有限公司 控制信道的监测方法及装置、发送方法及装置、存储介质
CN111294943B (zh) * 2019-03-29 2022-08-12 展讯通信(上海)有限公司 确定pdcch监测时机的方法及装置、存储介质、终端、基站
CN111817831B (zh) * 2019-07-15 2022-01-04 维沃移动通信有限公司 一种传输方法和通信设备
WO2021168824A1 (zh) * 2020-02-28 2021-09-02 Oppo广东移动通信有限公司 控制信道资源的确定方法、设备及存储介质
CN113904759A (zh) * 2020-07-06 2022-01-07 维沃移动通信有限公司 控制信息接收方法、控制信息发送方法及相关设备
CN114070531B (zh) * 2020-08-07 2023-08-22 展讯通信(上海)有限公司 Pdcch重复的配置确定方法及相关产品
WO2022141545A1 (zh) * 2020-12-31 2022-07-07 Oppo广东移动通信有限公司 一种mcch调度传输方法及装置、终端设备
EP4154646A4 (en) * 2021-08-05 2023-09-27 Apple Inc. SSB AND PRACH TRANSMISSIONS DURING INITIAL ACCESS IN WIRELESS COMMUNICATIONS

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108702764A (zh) * 2018-05-29 2018-10-23 北京小米移动软件有限公司 物理下行控制信道监测配置、监测方法及装置和基站
CN108713346A (zh) * 2018-05-31 2018-10-26 北京小米移动软件有限公司 信道监测方法、装置、系统及存储介质
WO2018204886A1 (en) * 2017-05-05 2018-11-08 Intel IP Corporation Support of flexible pdcch monitoring in new radio (nr)
CN109076593A (zh) * 2018-07-25 2018-12-21 北京小米移动软件有限公司 传输配置方法及装置
CN110535542A (zh) * 2019-01-11 2019-12-03 中兴通讯股份有限公司 控制信道的监测方法及装置、发送方法及装置、存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101737189B1 (ko) * 2011-10-27 2017-05-17 엘지전자 주식회사 제어채널 모니터링 방법 및 이를 이용한 무선기기
EP2784959B1 (en) * 2011-11-23 2017-10-11 LG Electronics Inc. Determination of epdcch starting symbol for tdd subframe 6
CN114466454A (zh) * 2016-06-21 2022-05-10 三星电子株式会社 在下一代无线通信系统中进行寻呼的系统和方法
WO2018128439A1 (ko) * 2017-01-06 2018-07-12 한국전자통신연구원 통신 시스템에서 제어 채널의 송수신 방법 및 장치
CN108365928B (zh) * 2017-01-26 2023-04-07 北京三星通信技术研究有限公司 配置信息的发送方法、控制信道资源的检测方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018204886A1 (en) * 2017-05-05 2018-11-08 Intel IP Corporation Support of flexible pdcch monitoring in new radio (nr)
CN108702764A (zh) * 2018-05-29 2018-10-23 北京小米移动软件有限公司 物理下行控制信道监测配置、监测方法及装置和基站
CN108713346A (zh) * 2018-05-31 2018-10-26 北京小米移动软件有限公司 信道监测方法、装置、系统及存储介质
CN109076593A (zh) * 2018-07-25 2018-12-21 北京小米移动软件有限公司 传输配置方法及装置
CN110535542A (zh) * 2019-01-11 2019-12-03 中兴通讯股份有限公司 控制信道的监测方法及装置、发送方法及装置、存储介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220417875A1 (en) * 2021-06-29 2022-12-29 Qualcomm Incorporated Sparse transmission of discovery signals for network energy saving
US12010638B2 (en) * 2021-06-29 2024-06-11 Qualcomm Incorporated Sparse transmission of discovery signals for network energy saving
CN114286328A (zh) * 2021-10-11 2022-04-05 北京物资学院 一种无线通信系统中的信号处理方法和装置

Also Published As

Publication number Publication date
CN110535542A (zh) 2019-12-03
CN110535542B (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
WO2020143718A1 (zh) 控制信道的监测方法及装置、发送方法及装置、存储介质
CN111492703B (zh) 用于ss/pbch块频率位置指示的方法和装置
CN111919411B (zh) 支持ss/pbch块的大子载波间隔的方法和装置
AU2018200771B2 (en) Systems and methods for ofdm with flexible sub-carrier spacing and symbol duration
CN111148191B (zh) 唤醒信号的资源确定、配置方法及装置、终端、基站
US10917216B2 (en) Method of transmitting configuration information, method of detecting control channel resources, and devices therefor
CN107580791B (zh) 用于非授权频谱上的部分子帧传输和广播信道的方法和装置
CN109560904B (zh) 一种传输方法、网络设备及移动通信终端
WO2018219074A1 (zh) 一种参考信号配置信息的应用方法、装置及存储介质
JP2018160927A (ja) マシンタイプコミュニケーションのための通信システムおよび通信方法
EP4254851A2 (en) Method and device for determining time frequency resources
JP2017099003A (ja) マシンタイプコミュニケーションのための通信システムおよび通信方法
WO2015042858A1 (zh) 通信的方法、用户设备和基站
JP7194806B2 (ja) 状態確定方法、状態指示方法、通信装置、通信システムおよび記憶媒体
JP2016509792A (ja) モバイル通信端末デバイス及びチャネル状態のメジャメントに基づいてマシンタイプコミュニケーションのための仮想キャリアを選択する方法
CN114667787A (zh) 用于无线通信的灵活帧结构
CN109845368B (zh) 辅助移动设备之间直接通信的方法和装置
US20220060990A1 (en) Method and device for determining parameter of power saving signal, terminal and storage medium
RU2776872C2 (ru) Способ и устройство для указания частотного местоположения блока ss/pbch
WO2023183661A2 (en) System and method for wakeup signal design to facilitate ultra-low power reception
KR20180122892A (ko) 무선 통신시스템의 제어 채널 송신 및 수신방법, 장치 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20738843

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20738843

Country of ref document: EP

Kind code of ref document: A1