WO2018219074A1 - 一种参考信号配置信息的应用方法、装置及存储介质 - Google Patents

一种参考信号配置信息的应用方法、装置及存储介质 Download PDF

Info

Publication number
WO2018219074A1
WO2018219074A1 PCT/CN2018/084286 CN2018084286W WO2018219074A1 WO 2018219074 A1 WO2018219074 A1 WO 2018219074A1 CN 2018084286 W CN2018084286 W CN 2018084286W WO 2018219074 A1 WO2018219074 A1 WO 2018219074A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
configuration information
base station
signal configuration
terminal
Prior art date
Application number
PCT/CN2018/084286
Other languages
English (en)
French (fr)
Inventor
杨玲
赵亚军
李新彩
徐汉青
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP18809784.4A priority Critical patent/EP3633901B1/en
Publication of WO2018219074A1 publication Critical patent/WO2018219074A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, an apparatus, and a storage medium for applying reference signal configuration information.
  • NR New Radio
  • 3GPP 3rd Generation Partnership Project
  • RAN1 Radio Access Network 1
  • LTE Long Term Evolution
  • the NR physical layer pursues a more flexible and efficient design goal or purpose. Based on this, the flexible resource allocation method seems to be an important trend. This is because the resource allocation mode supported by the existing LTE cannot flexibly adapt to the dynamic change of the service load.
  • LTE FS1 10 subframes are all used for uplink transmission or all for downlink transmission.
  • This frame structure can only be used in the Frequency Division Dual (FDD) mode.
  • FDD Frequency Division Dual
  • each subframe can be used in one of uplink, downlink, and special subframes, and is configured with a fixed downlink (DL) and uplink (UL) ratio.
  • DL downlink
  • UL uplink
  • the structure is only available for TDD.
  • the existing two frame structures cannot flexibly adapt to the flexible changes of the traffic load. Based on this, the flexible duplexing problem is introduced in the NR. That is, different devices can flexibly use the configured resources for uplink or downlink transmission. This feature significantly improves system performance.
  • the cross-link interference includes: interference between the terminal and the terminal, and interference between the base station and the base station.
  • the interference between the terminal and the terminal means that one terminal performs uplink transmission, and the other terminal of the adjacent cell performs downlink reception.
  • the downlink information sent by the neighboring cell may interfere with the transmission of the terminal, and/or the uplink receiving of the terminal serving cell.
  • the uplink information of the terminal performing the uplink transmission may interfere with the reception of the terminal that the neighboring cell is receiving the downlink information.
  • the interference between the base station and the base station is the same.
  • the embodiments of the present invention provide a method, an apparatus, and a storage medium for applying reference signal configuration information, so as to at least solve the problem that the cross-link interference cannot be estimated and identified in the flexible duplex technology in the related art.
  • a method for applying reference signal configuration information including: acquiring, by a base station, reference signal configuration information, where the reference signal configuration information includes at least one of: reference signal configuration information of the local cell, Reference signal configuration information of the neighboring cell, reference signal configuration information of the terminal in the neighboring cell; the base station transmits or measures according to the acquired reference signal configuration information.
  • a method for applying reference signal configuration information including: acquiring, by a terminal, reference signal configuration information, where the reference signal configuration information includes at least one of: a reference signal configuration of the local cell. Information; reference signal configuration information of the neighboring cell; reference signal configuration information of the terminal in the neighboring cell; the terminal receiving, transmitting, or measuring according to the obtained reference signal configuration information.
  • an application apparatus for reference signal configuration information which is disposed in a base station, and includes: a first acquiring module configured to acquire reference signal configuration information, where the reference signal configuration information includes at least One of the following: reference signal configuration information of the current cell, reference signal configuration information of the neighboring cell, and reference signal configuration information of the terminal in the neighboring cell; the first application module is configured to transmit or measure according to the acquired reference signal configuration information. .
  • an application apparatus for reference signal configuration information which is provided in the terminal, and includes: a second acquiring module configured to acquire reference signal configuration information, wherein the reference signal configuration information includes at least One of the following: reference signal configuration information of the current cell, reference signal configuration information of the neighboring cell, and reference signal configuration information of the terminal in the neighboring cell; the second application module is configured to receive according to the obtained reference signal configuration information. Or transmission or measurement.
  • a storage medium comprising a stored program, wherein the program is executed to perform the method of any of the above.
  • the present invention also provides an application device for reference signal configuration information, comprising: a processor and a memory storing the processor executable instructions, when the instructions are executed by the processor, performing the application of the reference signal configuration information method.
  • the base station and the terminal can respectively obtain the reference signal configuration information of the local cell and/or the reference signal configuration information of the neighboring cell, and transmit or measure according to the acquired reference signal configuration information.
  • the problem that the cross-link interference cannot be estimated and identified in the flexible duplex technology is solved by the related art.
  • the base station and the terminal can measure the link of the local cell, and can have neighboring cells at the same time. The link that may cause interference is measured, and the estimation and identification of cross-link interference is realized, which effectively avoids cross-link interference between adjacent cells.
  • FIG. 1 is a flow chart of an application method of an optional reference signal configuration information according to an embodiment of the present invention
  • FIG. 2 is a flow chart of an application method of an optional reference signal configuration information according to an embodiment of the present invention
  • FIG. 3 is a structural block diagram of an application apparatus for an optional reference signal configuration information according to an embodiment of the present invention.
  • FIG. 4 is a structural block diagram of an application apparatus for an optional reference signal configuration information according to an embodiment of the present invention.
  • FIG. 5 is a first schematic diagram of a time-frequency pattern of a reference signal in an RB according to Embodiment 3 of the present invention.
  • FIG. 6 is a second schematic diagram of a time-frequency pattern of a reference signal in an RB according to Embodiment 3 of the present invention.
  • FIG. 7 is a third schematic diagram of a time-frequency pattern of a reference signal in an RB according to Embodiment 3 of the present invention.
  • FIG. 8 is a fourth schematic diagram of a time-frequency pattern of a reference signal in an RB according to Embodiment 3 of the present invention.
  • FIG. 9 is a schematic diagram 5 of a time-frequency pattern of a reference signal in an RB according to Embodiment 3 of the present invention.
  • FIG. 10 is a schematic diagram 6 of a time-frequency pattern of a reference signal in an RB according to Embodiment 3 of the present invention.
  • FIG. 11 is a schematic diagram of a time-frequency pattern of a reference signal in an RB according to Embodiment 3 of the present invention.
  • FIG. 12 is a schematic diagram of a time-frequency pattern of a reference signal in an RB according to Embodiment 3 of the present invention.
  • FIG. 13 is a schematic diagram 9 of a time-frequency pattern of a reference signal in an RB according to Embodiment 3 of the present invention.
  • FIG. 14 is a schematic diagram of a time-frequency pattern of a reference signal in an RB according to Embodiment 3 of the present invention.
  • FIG. 15 is a schematic diagram of a time-frequency pattern of a reference signal in an RB according to Embodiment 3 of the present invention.
  • FIG. 16 is a schematic diagram of a time-frequency pattern of a reference signal in an RB according to Embodiment 3 of the present invention.
  • FIG. 17 is a schematic diagram of a time-frequency pattern of a reference signal in an RB according to Embodiment 3 of the present invention.
  • FIG. 18 is a schematic diagram showing a time-frequency pattern of a reference signal in an RB according to Embodiment 3 of the present invention.
  • FIG. 19 is a schematic diagram showing a time-frequency pattern of a reference signal in an RB according to Embodiment 3 of the present invention.
  • FIG. 20 is a schematic structural diagram of hardware of an application device that refers to signal configuration information according to an embodiment of the present invention.
  • FIG. 1 is a flow chart of an application method of an optional reference signal configuration information according to an embodiment of the present invention. As shown in FIG. 1, according to an aspect of the present invention, a method for applying reference signal configuration information is provided, including:
  • Step S101 The base station acquires reference signal configuration information, where the reference signal configuration information includes at least one of: reference signal configuration information of the current cell, reference signal configuration information of the neighboring cell, and reference signal configuration information of the terminal in the neighboring cell;
  • Step S103 The base station performs transmission or measurement according to the acquired reference signal configuration information.
  • the base station acquires reference signal configuration information, where the reference signal configuration information includes at least one of: reference signal configuration information of the local cell, reference signal configuration information of the neighboring cell, and reference signal configuration information of the terminal in the neighboring cell.
  • the base station transmits or measures according to the acquired reference signal configuration information.
  • the problem that the cross-link interference cannot be estimated and identified in the flexible duplex technology is solved.
  • the base station may measure the link of the local cell, and may generate a neighboring cell. The interference link is measured, and the estimation and identification of cross-link interference is realized, which effectively avoids cross-link interference between adjacent cells.
  • the transmission herein may include transmission of a reference signal, where the measurement may include channel estimation and channel interference measurement.
  • the acquiring, by the base station, the reference signal configuration information includes: the base station acquiring reference signal configuration information sent by the neighboring base station, where the reference signal configuration information sent by the neighboring base station includes at least one of the following: Reference signal configuration information of the neighboring cell, reference signal configuration information of the terminal in the neighboring cell.
  • the method further includes: the base station transmitting reference signal configuration information of the local cell and/or reference signal configuration information of the terminal in the local cell to the terminal in the neighboring base station or the neighboring base station.
  • the reference signal configuration information includes at least one of: a type or type set of reference signals, resource information of a reference signal, a sequence, a subcarrier spacing, a power, and a measurement request indication.
  • the reference signal type or type set includes at least one of: a zero power type reference signal, a non-zero power type reference signal.
  • the resource information of the reference signal includes at least one of: a start time position of a time domain resource, an interval or a period between time domain resources, a symbol position, a symbol position set, a time domain pattern, and a time domain.
  • Time window information frequency domain resource start position, frequency domain resource size, interval or period between frequency domain resources, frequency domain pattern, correspondence index between symbol and frequency domain pattern, port index, beam index, Basic time-frequency pattern or pattern index.
  • the basic time-frequency pattern here may be “component RS RE Pattern”, which is a unit consisting of a number of time domain symbols A and/or a frequency domain RE number B in one RB for a specific number of ports. Or pattern.
  • the number of symbols A may be a continuous symbol or a discontinuous symbol.
  • the number of frequency domain REs B may be such that consecutive REs in the frequency domain, or discontinuous REs.
  • the base pattern can be determined by a symbol in the time domain, by the starting RE position in the frequency domain, and/or by the number of (continuous or discontinuous) REs.
  • the basic pattern can make the time domain one symbol, and the frequency domain one RE pattern.
  • the basic pattern may be extended in the time domain or in the frequency domain according to parameters such as interval or period to obtain different time domains, and/or frequency domain patterns.
  • the time domain, and/or the starting position of the frequency domain, and/or the occupied symbol or RE can be determined.
  • the number determines the basic reference signal pattern.
  • reference may be made to at least one specific embodiment included in Embodiment 3.
  • the basic reference signal patterns may be the same or different on different symbols, and/or on different frequency bands.
  • the time domain time window information includes at least one of: a time window start position, a time window length, a start resource position of a reference signal in a time window, and a reference signal resource within the time window. interval.
  • the base station on at least one of the reference signal resources in the time window, performs transmission or measurement of the reference signal on the resources of the reference signal within the time window.
  • the base station acquires the reference signal configuration information by using at least one of the following: a radio resource control (RRC) signaling, and a downlink control information (DCI). Signaling; prior agreement between devices; predefined.
  • RRC radio resource control
  • DCI downlink control information
  • the transmitting by the base station, according to the acquired reference signal configuration information, the base station periodically sends a reference signal according to the acquired reference signal configuration information; or the base station configures the information to be non-period according to the acquired reference signal.
  • the reference signal is sent sexually.
  • the base station sends the reference signal aperiodically, the base station acquiring the first measurement request information sent by the neighboring base station, and transmitting the reference signal according to the first measurement request information; or
  • the base station receives the first DCI signaling, and the base station sends the reference signal according to the trigger or indication of the first DCI signaling.
  • the manner of determining, by the base station, the location of the reference signal includes: at least one of the following: after the base station acquires the first measurement request information, determining that the location of the reference signal is: the base station periodically a location of the reference signal that is sent; the base station triggers the reference signal transmission according to the first DCI signaling, and/or determines the information according to the information of the reference signal sending location of the first DCI signaling a location of the reference signal; the base station triggers the reference signal transmission according to the first DCI signaling, the base station receives the second DCI signaling, and according to the indication of the second DCI signaling, the location of the reference signal Determining a location of the reference signal according to the location index n of the first DCI signaling, and determining a reference signal location according to a timing relationship of n+k, where k is a value of a timing relationship.
  • the first DCI signaling carries the timing relationship k, where k is an integer or a set of integers greater than or equal to zero.
  • the first DCI signaling or the second DCI signaling further carries at least one of: a time domain symbol position or a symbol position set of the reference signal; a frequency domain of the reference signal Pattern index; index of the correspondence between the symbols of the reference signal and the frequency domain pattern.
  • the method further includes at least one of: the base station vacating a resource location of a reference signal of a terminal in a neighboring base station and/or a neighboring base station; the base station adjusting a transmitted or received beam; The base station adjusts the transmitted power.
  • the signal configuration information performs channel measurement and/or interference measurement aperiodically.
  • the reference signals between adjacent devices adopt the same or different configuration information
  • the neighboring devices include: neighboring base stations or terminals in adjacent base stations
  • the configuration information includes at least the following One: sequence; subcarrier spacing; pattern; resource location; cyclic shift;
  • the neighboring devices are multiplexed or orthogonal according to at least one of the following: based on the same cyclic shift set, and different The device uses cyclic shifts in different cyclic shifts or cyclic shift subsets in the same cyclic shift set; based on the same sequence, and different devices adopt different scrambling modes.
  • FIG. 2 is a flowchart of an application method of an optional reference signal configuration information according to an embodiment of the present invention. As shown in FIG. 2, the method includes:
  • Step S102 The terminal acquires reference signal configuration information, where the reference signal configuration information includes at least one of: reference signal configuration information of the local cell, reference signal configuration information of the neighboring cell, and reference signal configuration information of the terminal in the neighboring cell;
  • Step S104 The terminal performs reception, transmission, or measurement according to the acquired reference signal configuration information.
  • the terminal acquires reference signal configuration information, where the reference signal configuration information includes at least one of: reference signal configuration information of the current cell, reference signal configuration information of the neighboring cell, and reference signal configuration information of the terminal in the neighboring cell.
  • the terminal receives or transmits or measures according to the acquired reference signal configuration information.
  • the problem that the cross-link interference cannot be estimated and identified in the flexible duplex technology is solved.
  • the base station or the terminal may measure the link of the local cell, and may have a neighboring cell. The link that may cause interference is measured, and the estimation and identification of cross-link interference is realized, which effectively avoids cross-link interference between adjacent cells.
  • reception or transmission herein may include reception or transmission of a reference signal, where the measurement may include channel estimation and interference measurement of the channel.
  • the terminal acquires the reference signal configuration information by using at least one of the following: high layer RRC signaling; physical layer DCI signaling; prior agreement between devices; predefined.
  • the terminal acquiring reference signal configuration information includes at least one of: the terminal acquiring reference signal configuration information of the neighboring cell from a neighboring base station; the terminal acquiring from a terminal in a neighboring base station The reference signal configuration information of the terminal in the neighboring cell; the terminal acquires at least one of the following: a reference signal configuration information of the local cell, reference signal configuration information of the neighboring cell, and a reference signal of the terminal in the neighboring cell Configuration information.
  • the reference signal configuration information includes at least one of: a type or type set of reference signals, resource information of a reference signal, a sequence, a subcarrier spacing, a power, and a measurement request indication.
  • the reference signal type or type set includes at least one of: a zero power type reference signal, a non-zero power type reference signal.
  • the resource information of the reference signal includes at least one of: a start time position of a time domain resource, an interval or a period between time domain resources, a symbol position, a symbol position set, a time domain pattern, and a time domain.
  • Time window information frequency domain resource start position, frequency domain resource size, frequency domain resource interval or period, frequency domain pattern, correspondence index between symbol and frequency domain pattern, port index, beam index, basic time-frequency pattern Or a pattern index.
  • the time domain time window information includes at least one of: a time window start position, a time window length, a start resource position of a reference signal in a time window, and a reference signal resource within the time window. interval.
  • the terminal performs transmission or measurement of the reference signal on at least one of the reference signal resources within the time window.
  • the transmitting by the terminal, according to the acquired reference signal configuration information, that the terminal periodically sends a reference signal according to the acquired reference signal configuration information; or the terminal according to the acquired The reference signal configuration information transmits the reference signal aperiodically.
  • the terminal sending the reference signal aperiodically according to the obtained reference signal configuration information, the terminal acquiring the second measurement request information sent by the terminal in the neighboring cell, and according to the second Measuring the request information to transmit the reference signal; or the terminal acquiring the third DCI signaling, and transmitting the reference signal according to the trigger and/or indication of the third DCI signaling.
  • the manner of determining, by the terminal, the location of the reference signal includes: at least one of the following: after the terminal acquires the second measurement request information, determining that the location of the reference signal is: the terminal periodically Position of the transmitted reference signal; the terminal determines to send the reference signal according to the third DCI signaling, and/or according to the information of the reference signal sending location indicated by the third DCI signaling a location of the reference signal; the terminal triggers the reference signal transmission according to the third DCI signaling, the terminal receives the fourth DCI signaling, and according to the indication of the fourth DCI signaling, the reference signal Position information, determining a location of the reference signal; the terminal determining, according to a position index n of the third DCI signaling, the reference signal position according to a timing relationship of n+k, where k is a timing relationship value.
  • the third DCI carries the timing relationship k, where k is an integer or a set of integers greater than or equal to zero.
  • the third DCI signaling or the fourth DCI signaling further carries at least one of: a time domain symbol position or a symbol position set of the reference signal; a frequency domain pattern index of the reference signal An index of the correspondence between the symbols of the reference signal and the frequency domain pattern.
  • the terminal receives an indication of the serving base station, and/or performs an operation of at least one of: a reference of the terminal vacant neighboring base station and/or a terminal in the neighboring base station according to the indication of the serving base station a signal resource location; the terminal adjusts a transmitted or received beam; the terminal adjusts the transmitted power.
  • the terminal vacates the reference signal resource location of the terminal in the neighboring base station and/or the neighboring base station, adjusts the transmitted or received beam, and adjusts at least one of the transmission powers to be indicated by the serving base station DCI.
  • the reference signals between adjacent devices adopt the same or different configuration information, where the configuration information includes at least one of: sequence; subcarrier spacing; pattern; resource location; cyclic shift;
  • an application device for reference signal configuration information is provided, which is disposed in a base station, and the device is used to implement the foregoing embodiment of the base station side, and a preferred embodiment, which has not been described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • an application apparatus for reference signal configuration information is further provided, which is disposed at a base station.
  • FIG. 3 is a structural block diagram of an apparatus for applying optional reference signal configuration information according to an embodiment of the present invention.
  • the first acquiring module 30 is configured to acquire reference signal configuration information, where the reference signal configuration information includes at least one of: reference signal configuration information of the local cell, and reference signal configuration information of the neighboring cell.
  • the reference signal configuration information of the terminal in the neighboring cell; the first application module 32 is configured to perform transmission or measurement according to the acquired reference signal configuration information.
  • the first acquiring module 30 obtains reference signal configuration information, where the reference signal configuration information includes at least one of: reference signal configuration information of the current cell, reference signal configuration information of the neighboring cell, and terminal information in the neighboring cell. Reference signal configuration information; the first application module 32 performs transmission or measurement according to the acquired reference signal configuration information.
  • the base station may measure the link of the local cell, and may generate a neighboring cell. The interference link is measured, and the estimation and identification of cross-link interference is realized, which effectively avoids cross-link interference between adjacent cells.
  • the acquiring module further includes: a first acquiring unit, configured to acquire reference signal configuration information sent by the neighboring base station, where the reference signal configuration information sent by the neighboring base station includes at least one of the following: Reference signal configuration information of the neighboring cell, reference signal configuration information of the terminal in the neighboring cell.
  • the apparatus further includes: a sending module, configured to send reference signal configuration information of the local cell and/or reference signal configuration information of the terminal in the local cell to the terminal in the neighboring base station or the neighboring base station.
  • a sending module configured to send reference signal configuration information of the local cell and/or reference signal configuration information of the terminal in the local cell to the terminal in the neighboring base station or the neighboring base station.
  • the transmission herein may include transmission of a reference signal, where the measurement may include channel estimation and channel interference measurement.
  • the reference signal configuration information includes at least one of: a type or type set of reference signals, resource information of a reference signal, a sequence, a subcarrier spacing, a power, and a measurement request indication.
  • the reference signal type or type set includes at least one of: a zero power type reference signal, a non-zero power type reference signal.
  • the resource information of the reference signal includes at least one of: a start time position of a time domain resource, an interval or a period between time domain resources, a symbol position, a symbol position set, a time domain pattern, and a time domain.
  • Time window information frequency domain resource start position, frequency domain resource size, interval or period between frequency domain resources, frequency domain pattern, correspondence index between symbol and frequency domain pattern, port index, beam index, basic time Frequency pattern or pattern index.
  • the basic time-frequency pattern here may be “component RS RE Pattern”, for example, the possible frequency domain positions of the six basic time-frequency patterns in the first column. How to repeat this pattern in the frequency domain, or repeat it several times, or repeat the interval, according to the configuration, different RS patterns can be obtained, but the basic pattern is unchanged, and the specific pattern configuration is described in the following embodiments.
  • the time domain time window information includes at least one of: a time window start position, a time window length, a start resource position of a reference signal in a time window, and a reference signal resource within the time window. interval.
  • the first application module is further configured to: perform transmission or measurement of the reference signal on a resource of the reference signal within the time window.
  • the base station acquires the reference signal configuration information by using at least one of the following: high layer RRC signaling; physical layer DCI signaling; prior agreement between devices; predefined.
  • the first application module further includes a first application unit configured to periodically transmit the reference signal according to the acquired reference signal configuration information, and the second application unit is configured to configure the information to be non-period according to the acquired reference signal. Send the reference signal.
  • the first application unit is further configured to: acquire first measurement request information sent by the neighboring base station, and send the reference signal according to the first measurement request information; and receive the first DCI signaling, And transmitting the reference signal according to the trigger or indication of the first DCI signaling.
  • the manner of determining, by the base station, the location of the reference signal includes: at least one of the following: after the base station acquires the first measurement request information, determining that the location of the reference signal is: the base station periodically a location of the reference signal that is sent; the base station triggers the reference signal transmission according to the first DCI signaling, and determines a location of the reference signal according to the indication of the first DCI signaling; Transmitting, by the first DCI signaling, the reference signal, the base station receiving the second DCI signaling, and determining a location of the reference signal according to the indication of the second DCI signaling; the base station according to the first DCI
  • the location index n of the signaling is determined according to the timing relationship of n+k, where k is the value of the timing relationship.
  • the first DCI signaling carries the timing relationship k, where k is an integer or a set of integers greater than or equal to 0.
  • the first DCI signaling or the second DCI signaling further carries at least one of: a time domain symbol position or a symbol position set of the reference signal; a frequency domain of the reference signal Pattern index; index of the correspondence between the symbols of the reference signal and the frequency domain pattern.
  • the base station vacates the resource location of the reference signal of the terminal in the neighboring base station and/or the neighboring base station; the base station adjusts the transmitted or received beam; and the base station adjusts the transmitted power.
  • the first application unit is further configured to periodically perform channel measurement and/or interference measurement according to the acquired reference signal configuration information; the second application unit is further configured to configure information aperiodic according to the acquired reference signal. Channel measurements and/or interference measurements are performed.
  • the reference signals between adjacent devices adopt the same or different configuration information
  • the neighboring devices include: neighboring base stations or terminals in adjacent base stations
  • the configuration information includes at least the following One: sequence; subcarrier spacing; pattern; resource location; cyclic shift;
  • the neighboring devices are multiplexed or orthogonal according to at least one of the following: based on the same cyclic shift set, and different The device uses cyclic shifts in different cyclic shifts or cyclic shift subsets in the same cyclic shift set; based on the same sequence, and different devices adopt different scrambling modes.
  • an application device for reference signal configuration information is provided, which is disposed in a terminal, and is used to implement an embodiment and a preferred embodiment of the terminal side method.
  • an application device for reference signal configuration information is further provided, which is disposed at a terminal.
  • 4 is a structural block diagram of an application apparatus for an optional reference signal configuration information according to an embodiment of the present invention.
  • the second acquiring module 40 is configured to acquire reference signal configuration information, where the reference signal configuration information includes at least one of: reference signal configuration information of the local cell, and reference signal configuration information of the neighboring cell.
  • the reference signal configuration information of the terminal in the neighboring cell; the second application module 42 is configured to receive or transmit or measure according to the obtained reference signal configuration information.
  • the second obtaining module 40 acquires reference signal configuration information, where the reference signal configuration information includes at least one of: reference signal configuration information of the local cell, reference signal configuration information of the neighboring cell, and terminal information in the neighboring cell.
  • Reference signal configuration information includes at least one of: reference signal configuration information of the local cell, reference signal configuration information of the neighboring cell, and terminal information in the neighboring cell.
  • Reference signal configuration information; the second application module 42 performs reception or transmission or measurement according to the obtained reference signal configuration information, and solves the problem that the cross-link interference cannot be estimated and identified in the flexible duplex technology in the related art, According to the technical solution provided by the invention, the base station or the terminal can measure the link of the neighboring cell while causing interference, and realize the estimation and identification of the cross-link interference, thereby effectively avoiding the adjacent Cross-link interference between cells.
  • the second obtaining module 40 includes: a second acquiring unit, configured to acquire reference signal configuration information of the neighboring cell from a neighboring base station; and a third acquiring unit configured to be configured from the neighboring base station
  • the terminal acquires the reference signal configuration information of the terminal in the neighboring cell;
  • the fourth acquiring unit is configured to acquire at least one of the following: the reference signal configuration information of the local cell, and the reference signal configuration information of the neighboring cell, Reference signal configuration information of the terminal in the neighboring cell.
  • the second obtaining module 40 acquires the reference signal configuration information by using at least one of the following: high layer RRC signaling; physical layer DCI signaling; prior agreement between devices;
  • the reference signal configuration information includes at least one of: a type or type set of reference signals, resource information of a reference signal, a sequence, a subcarrier spacing, a power, and a measurement request indication.
  • the reference signal type or type set includes at least one of: a zero power type reference signal, a non-zero power type reference signal.
  • the resource information of the reference signal includes at least one of: a start time position of a time domain resource, an interval or a period between time domain resources, a symbol position, a symbol position set, a time domain pattern, and a time domain.
  • Time window information frequency domain resource start position, frequency domain resource size, frequency domain resource interval or period, frequency domain pattern, correspondence index between symbol and frequency domain pattern, port index, beam index, basic time-frequency pattern Or a pattern index.
  • the time domain time window information includes at least one of: a time window start position, a time window length, a start resource position of a reference signal in a time window, and a reference signal resource within the time window. interval.
  • the second application module 42 is further configured to: perform transmission or measurement of the reference signal on a resource of the reference signal within the time window.
  • the second application module further includes: a third application unit configured to periodically send the reference signal according to the acquired reference signal configuration information; and the fourth application unit is configured to be configured according to the acquired The reference signal configuration information transmits the reference signal aperiodically.
  • the third application unit is further configured to: the terminal acquires second measurement request information sent by the terminal in the neighboring cell, and sends a reference signal according to the second measurement request information; Third DCI signaling, and transmitting a reference signal according to the trigger and/or indication of the third DCI signaling.
  • determining a manner in which the second application module 42 sends the location of the reference signal includes at least one of: after acquiring the second measurement request information, determining that the location of the reference signal is: periodically sent. a location of the reference signal, triggering the reference signal transmission according to the third DCI signaling, and determining a location of the reference signal according to the indication of the third DCI signaling; triggering according to the third DCI signaling Transmitting the reference signal, receiving the fourth DCI signaling, and determining a location of the reference signal according to the indication of the fourth DCI signaling; according to the location index n of the third DCI signaling, according to n+k
  • the timing relationship determines the position of the reference signal, where k is a value of the timing relationship.
  • the third DCI carries the timing relationship k, where k is an integer or a set of integers greater than or equal to 0.
  • the third DCI signaling or the fourth DCI signaling further carries at least one of: a time domain symbol position or a symbol position set of the reference signal; a frequency domain pattern index of the reference signal An index of the correspondence between the symbols of the reference signal and the frequency domain pattern.
  • the terminal vacates the reference signal resource location of the terminal in the neighboring base station and/or the neighboring base station; the terminal adjusts the transmitted or received beam; and the terminal adjusts the transmitted power. It should be noted that these operations may be an indication that the terminal receives the serving base station and are executed according to the indication of the serving base station.
  • the third application unit is further configured to: periodically perform channel measurement and/or interference measurement according to the acquired reference signal configuration information; and the fourth application unit is further configured to configure information aperiod according to the acquired reference signal. Channel measurements and/or interference measurements are performed.
  • the reference signals between adjacent devices adopt the same or different configuration information, where the configuration information includes at least one of the following: sequence; subcarrier spacing; pattern; resource location; cyclic shift; .
  • the reference signal design method provided in the present invention is not limited to a certain reference signal. It may be a De Modulation Reference Signal (DMRS) or a Channel State Information Reference Signal (CSI-RS), where the CSI-RS is further divided into: a zero-power channel state information reference signal. (Zero Power CSI-RS, ZP CSI-RS), and non-zero power channel state information reference signals (Non-Zero Power CSI-RS, NZP CSI-RS), or Sounding Reference Signal (SRS), Or one of the Phase Trace Reference Signal (PTRS) method or a newly designed reference signal.
  • DMRS De Modulation Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • ZP CSI-RS Zero-power channel state information reference signal
  • Non-Zero Power CSI-RS, NZP CSI-RS Non-Zero Power CSI-RS, NZP CSI-RS
  • SRS Sounding Reference Signal
  • PTRS Phase Trace Reference Signal
  • the reference signal designed in the present invention may be used to implement at least one of the following functions: for demodulating a control channel; for demodulating a data channel; for channel state information acquisition; for cross-link interference measurement; for interference Link identification; for interference source identification; for beam tracking; for beam management; for any at least one of all functions in the prior art reference signals.
  • the CSI-RS sent by the data area can also obtain channel state information, but acquire channel state information based on CSI-RS quickly, and/or interference conditions (eg, interference link direction, interference source, interference strength/level, etc.) ), the CSI-RS in the prior art is unsatisfactory.
  • additional reference signals can be designed to supplement or enhance the performance of the reference signals, or to solve the problems caused by other scenarios.
  • the additional reference signal may be the same as or different from at least one of a frequency domain pattern of the pre-referenced signal, a frequency domain density, and a number of multiplexed ports.
  • the reference signals designed by the present invention are applicable to the uplink, and/or downlink.
  • the symbol index is 0, 1, ... in chronological order.
  • the subcarrier indices in one physical resource block (PRB) are 0, 1, ..., 11 in the order of frequency domain from low to high.
  • the time-frequency position of the reference signal is represented by (X, Y). Where X represents the number of frequency domain symbols of the reference signal and Y represents the number of resources in the time domain.
  • the frequency domain resource may be an RE, or an RB.
  • the positions of X and Y in the position of the time-frequency resource indicating the reference signal in the parentheses are not limited to the time domain first, and the frequency domain is backward. In fact, you can also make the frequency domain first and the time domain later.
  • the frequency domain is in the front and the time domain is taken as an example to describe the design method of the reference signal in this embodiment.
  • the existing reference signals such as DMRS, CSI-RS, SRS, etc.
  • the existing reference signal positions are relatively backward, which is not conducive to the reduction of the processing delay of the device, or is not applicable to self-contained Feedback mode, or is not conducive to inter-cell coordination or interference estimation based on reference signals, or multi-carrier scenarios.
  • the reference signal is primarily used for interference estimation, the frequency domain density of the reference signal can be relatively sparse.
  • the reference signal can be used to acquire channel state information, and/or for beam management, and/or for beam tracking.
  • the reference signal is also required for interference measurement, and/or interference link direction identification, and/or interference source identification.
  • the domain pattern may also vary. From this perspective, the mode of the reference signal needs to be changed accordingly, and/or notified to the corresponding device in different application scenarios. Further, when different scenarios are required, the manner in which the reference signals are transmitted, the time and/or the frequency domain resource location, and the notification mode are required. And, in a specific scenario, how the reference signal is sent, as well as the time and/or frequency domain resource location and the notification method.
  • the method in the present invention is applicable to the base station side, and/or the user equipment (User Equipment, UE) side.
  • the subframe related description or method described in the following embodiments is also applicable to a slot slot, a specific time unit, a time unit composed of one or more symbols, and the like.
  • the design method of the reference signal pattern (for example, resource element (RE) pattern) in one RB described in the following embodiments is also extended to apply to RB, resource block group (RB Group, RBG). ), subband, resource group (RE Group, REG), or other pattern design.
  • an RB pattern, or an RBG pattern, or a sub-band pattern, or a REG pattern can also be designed.
  • the reference signal pattern given in the embodiment of the present invention is limited to the time domain position given in the preferred embodiment, and may also be used for at least one of a sub-frame or a time slot or a unit composed of a specific symbol.
  • the reference signal in order to obtain interference information as much as possible, and/or channel state, is located as far as possible on the preceding symbol.
  • the reference signal may be located in at least one of the symbols 0, 1, 2, 3, 4, 6.
  • the reference signal can be located in at least one of the symbols 0, 1, 2, 3, 4, 6, 7, 8, 12, 13.
  • the frequency domain patterns may be the same or different on different symbols.
  • the frequency domain pattern and/or density of the reference signal used to learn the interference measurement information or for the measurement function is different or the same as the reference signal in the prior art.
  • the frequency domain pattern and/or density or time domain and/or frequency domain resource location of the reference signal used to learn interference measurement information or for measurement function may be the same as the reference signal configuration or notification manner in the prior art, and/ Or employing the same signaling (eg, at least one of the set of reference signal patterns can be configured by the signaling, the mode being used to implement a prior art reference signal function, and/or for measuring or interfering with state acquisition functions, or Other functions, etc.)
  • the configuration for the measurement or interference state acquisition function reference signal is configured by independent signaling (high layer RRC or physical layer DCI signaling).
  • the present embodiment specifically describes the design method of the reference signals in the foregoing embodiments by using several preferred embodiments.
  • a design method of a reference signal is given in this embodiment. [Only give a pattern in a PRB]
  • the reference signal mode may be configured by at least one of: a starting position, a resource size, an interval between resources, an antenna port number, a cyclic prefix type, a subframe type, a subframe configuration, a subcarrier spacing, and a number of time domain symbols. , the number of frequency domain resources, density. Different reference signal patterns can be obtained by the differences of the constituent references.
  • the configuration method of the reference signal pattern or pattern is exemplified, and the mode or pattern is not limited to the case shown by way of example, and any reference signal pattern or mode formed by the parameters is within the coverage of the present invention. .
  • the reference signal pattern (or called pattern) thus constructed is a sub- Carrier #0, and subcarrier #6.
  • the number of antenna ports is 1, the starting position is 0, the resource size is 1, the interval between resources is 4, and the number of time domain symbols is 1.
  • the reference signal pattern (or called pattern) thus constructed is Subcarrier #0, and subcarrier #4, and subcarrier #8.
  • the number of antenna ports is 1, the starting position is 0, the resource size is 2, the interval between resources is 4, and the number of time domain symbols is 1.
  • the reference signal pattern (or called pattern) thus constructed is Subcarrier #0, subcarrier #1, subcarrier #4, subcarrier #5, subcarrier #8, subcarrier #9.
  • the number of line ports is 2
  • different basic units can be obtained according to whether the resources of the 2 antenna ports are continuous in the frequency domain. For example, if the two antenna port corresponding resources are consecutive subcarriers in the frequency domain, the location of the basic resource unit in the frequency domain is subcarrier #a and subcarrier #a+1. If the resources corresponding to the two antenna ports are non-contiguous subcarriers in the frequency domain, the locations of the basic resource units in the frequency domain are subcarrier #a and subcarrier #b.
  • the resource interval may be an interval between resources corresponding to different ports that are not consecutive, or may be an interval between different locations of the same port in the frequency domain.
  • the starting position may be a starting position of consecutive resources of different ports, or may be a starting position of a frequency domain resource corresponding to different ports.
  • the occupation symbol in the time domain is 2
  • the same number of antenna ports is 2, and the number of time domain symbols is 1.
  • different basic units can be obtained according to whether two ports are continuous resources in the time domain. For example, for two antenna port corresponding resources being consecutive symbols in the time domain, the positions of the basic resource units in the time domain are symbol #a and symbol #a+1. If the resources corresponding to the two antenna ports are non-contiguous symbols in the time domain, the positions of the basic resource units in the time domain are symbol #a and symbol #b. Further, according to the starting position of the two antenna port basic resource units in the frequency domain and/or the starting position of the time domain, and the time domain and/or the frequency domain resource spacing are different, different reference signal patterns or mode.
  • the reference signal patterns corresponding to the two antenna ports may also be combined by using one antenna port.
  • the resource spacing can obtain different reference signal patterns through an antenna port that is in the time domain, and/or a starting position in the frequency domain.
  • the reference signal pattern corresponding to the antenna port of 4/8/12 can also occupy the number of symbols according to the time domain, the number of subcarriers occupied in the frequency domain, and whether the time domain resources are continuous, and between the frequency domain resources. Whether it is continuous, and whether it can be combined with a port with a smaller number of ports to obtain different reference signal patterns or patterns.
  • the reference signal pattern or pattern is specific to a particular resource.
  • the resource may make the entire bandwidth, or a portion of the bandwidth (e.g., one or more subbands in the bandwidth, or one or more PRBs, or one or more RBGs, etc.).
  • the reference signal pattern or pattern may be different for different specific resources. Optional, or the same.
  • the reference signal pattern or mode may be a sub-frame, or a symbol, or a region-specific.
  • the reference signal pattern can be configured differently for different subframes, or symbols, or regions.
  • the subframe may be a regular subframe, a Multicast Broadcast Single Frequency Network (MBSFN) subframe, and at least one of the self-contained subframes.
  • a regular subframe includes at least one of an uplink subframe, a downlink subframe, and a special subframe.
  • the self-contained subframe may be one of the uplink-preferred self-contained subframes and the downlink-dominant self-contained subframes.
  • the area may be at least one of a control area, a data area, and a gap area.
  • the configuration of the subframe can be understood as an uplink-downlink subframe configuration in a period of time. Further, at least one of the following may be included in the subframe configuration: a fixed subframe, a dynamic subframe.
  • a fixed subframe is fixed to an uplink or a downlink at a certain subframe position, and a dynamic subframe indicates that the downlink transmission attribute is not determined at the subframe position, and may be dynamically indicated or changed according to the situation.
  • This embodiment provides a design method of a reference signal.
  • the device assuming that the device has acquired the reference signal information, or transmits according to a predetermined reference signal transmission manner, the device adjusts or changes its reference signal resource position and/or pattern or mode or partial resource position in the reference signal according to different requirements. Or pattern or pattern.
  • Step 1 The device obtains information related to the reference signal. Based on the obtained reference signal information, the device can transmit or receive the reference signal.
  • the reference signal related information includes at least one of the following parameters: a reference signal mode index, a time domain mode (index), a time domain symbol index or an index set, a time domain mode period, a frequency domain mode (index), a frequency domain sub- Carrier index or index set, frequency domain mode period, frequency domain start position (subcarrier/PRB/subband start position, etc.), resource interval within a PRB, frequency domain resource size, time domain start position (sub Frame start position or symbol start position in the subframe), time domain resource size, time domain symbol interval, RE position in the RPB associated with the mode, in a subframe/slot associated with the mode Symbol location, scheduling time domain location information, scheduled frequency domain resource information.
  • the reference signal mode index may be an identifier corresponding to one of the time-frequency pattern sets of the reference signal in one subframe or slot; or may be an identifier corresponding to one of the basic resource unit sets of the reference signal in one slot. ; may also be an identifier corresponding to one of the set of basic resource elements of the reference signal on one or a pair of symbols.
  • the time domain mode may be one of a set of time domain patterns of reference signals within a subframe or slot; the time domain symbol index or set of indices may be the symbol location of the reference signal in the time domain, or a set of symbol locations. The period of the time domain mode may be repeated in the time domain mode by a certain subframe or slot.
  • the frequency domain mode (index) may be one of a set of frequency domain patterns within a PRB/subband/RBG/bandwidth/specific frequency domain resource or a corresponding index.
  • the frequency domain subcarrier index or set of subcarrier indices may be a subcarrier position or set of locations of the reference signal within one RPB/subband/RBG/bandwidth/specific frequency domain resource.
  • the frequency domain mode may be repeated for the frequency domain mode by a certain PRB/subband/RBG/bandwidth/specific frequency domain resource.
  • the reference signal information may be configured by using the high layer radio resource control RRC signaling, or may be indicated by the physical layer downlink control, or may be obtained in a predefined manner.
  • the information about the parameters included in the reference signal information must be included in the corresponding RRC or DCI signaling.
  • static configuration means that this mode is used for reference signal transmission as soon as it is configured.
  • the semi-static configuration refers to configuring the reference signal mode once in a certain period of time, and the reference signal pattern of each configuration may be different.
  • the semi-statically configured mode may occur periodically, or may be configured to trigger a reference signal pattern according to a particular demand or event.
  • the configuration reference signal mode is triggered at a periodic point or a specific event, and the newly configured reference signal mode may be valid until the next configuration, or may be valid only on one or more subframes, on other subframes.
  • the original or mode reference signal mode is still used.
  • the event may have an interference measurement requirement or a measurement request, or the current subframe or slot is a dynamic/flexible subframe, or the transmission link direction between adjacent devices is reversed, or there is a cross-link interference scenario.
  • the reference signal may be dynamically configured according to the scheduling situation, and/or the subframe type, and/or the information interaction between the devices, and/or the interference level measured for a long period of time.
  • the RRC and/or DCI signaling may be shared by the base station and the terminal, or base station-specific, or UE-specific, or specific subframe-specific, or resource-specific.
  • Step 2 The device performs transmission of the reference signal based on the received reference signal information.
  • the reference signal information may further include a reference signal time domain symbol position for measurement, and/or a reference signal region for measurement, and/or a frequency domain pattern index or frequency domain resource location information. For devices that have measurement needs, based on this information, interference measurements are taken at the corresponding symbol locations to obtain interference levels or intensities, and/or interference sources, and/or interference link directions.
  • the method of the present invention will be described by taking the reference signal DMRS as an example.
  • the reference signal DMRS information acquired by the device is: reference signal mode index 2, and the measurement symbol position is 3.
  • the frequency domain pattern corresponding to the reference signal mode index 2 is subcarrier #0, subcarrier #1, subcarrier #3, subcarrier #4, subcarrier #6, subcarrier #7, subcarrier #9, subcarrier #10, time domain symbol position #0, #1, #3, #6, #9.
  • the base station performing the downlink transmission receives the information
  • the DMRS signal is transmitted on the time-frequency resource.
  • the downlink receiving terminal UE also receives the information.
  • the UE If there is no additional notification to the UE for the reference signal and/or the frequency domain information, the UE is located after the control channel by default, and the reference signal before the data transmission is Measure the reference signal. Based on this, the UE performs DMRS reception and parses whether there is cross-link interference.
  • the downlink and uplink DMRSs for measurement are in the same symbol, and are multiplexed with each other in a frequency division multiplexing manner.
  • the downlink frequency domain pattern on symbol #3 is subcarrier #0, subcarrier #1, subcarrier #3, subcarrier #4, subcarrier #6, subcarrier #7, subcarrier #9, subcarrier# 10.
  • the frequency domain pattern is subcarriers #2, #5, #8.
  • the downlink is transmitted in subcarriers #2, #5, #8, or zero power, or vacant.
  • Uplink in subcarrier #0, subcarrier #1, subcarrier #3, subcarrier #4, subcarrier #6, subcarrier #7, subcarrier #9, subcarrier #10 not transmitted, or zero power transmission, or Vacant.
  • the UE performing downlink reception or the base station performing uplink reception may determine whether there is cross-link interference by detecting that the interference level exceeds a preset threshold on subcarriers #2, #5, #8.
  • the downlink receiving UE or the uplink receiving base station may be in subcarrier #0, subcarrier #1, subcarrier #3, subcarrier #4, subcarrier #6, subcarrier #7, subcarrier #9,
  • the subcarrier #10 detects whether the interference level exceeds a preset threshold to determine whether there is cross link interference.
  • the reference measurement signal is the same as the frequency domain pattern of the reference signal on other symbols.
  • the method is also applicable to the case where the measurement reference signal is different from the frequency domain pattern of the reference signal on other symbols.
  • the patterns of the upstream and downstream reference signals are different.
  • the reference signal patterns used for measurement of the uplink and downlink cannot be uniformly designed.
  • the design is different from the frequency domain pattern density and the basic resource pattern. For example, on the symbol transmitting the measurement reference signal, its frequency domain pattern may be subcarriers #0, #1, #6, #7.
  • the measurement reference signal of the other link direction is in subcarriers #3, #4, #9, #10.
  • the uplink and downlink reference signal patterns may be the same pattern, but different cyclic shifts (CS) may be adopted.
  • CS cyclic shifts
  • an odd CS index is used for uplink
  • an even CS index is used for downlink
  • the first N CS indices are used for uplink
  • the next M CSs are used for downlink.
  • the slave index is A
  • the CS index corresponding to interval B is used for uplink
  • the remaining CS is used for downlink.
  • the device receives the reference signal information, and receives the symbol position of the reference signal for measurement, and/or the frequency domain pattern information, and/or the vacant frequency domain pattern information, the CS information, the interference is performed according to the information. Measurement, as well as, interference link identification.
  • the base station uses the CSI-RS as the measurement reference signal
  • the UE uses the SRS as the measurement reference signal.
  • information interaction may be performed to know the position information for measuring the reference signal, which is convenient for the interference measurement and/or the interference level estimation.
  • information interaction between devices may also be omitted. That is, the base station and/or the UE can perform interference measurement at the corresponding measurement reference position.
  • the reference signal position except the measurement reference signal. Assuming that the downlink measurement reference signal CSI-RS is located after the control channel, if there is a gap between the downlink control and the downlink data transmission, the CSI-RS is in the gap.
  • the uplink measurement reference signal SRS is transmitted on the gap between the downlink control and the uplink data.
  • the CSI-RS position in the gap can be different or the same as the SRS position.
  • the pattern of the CSI-RS is transmitted in the frequency domain in a comb-tooth manner in one embodiment. Coexist with SRS using frequency division multiplexing.
  • the front and rear positions between the CSI-RS and the SRS in the gap may be predefined, or determined according to the acquisition reference signal information, or the DCI indication.
  • the reference signal for measurement may also be at the beginning of the data region, or in the control channel region. For the latter, the terminal determines the link direction of its subsequent transmission, and/or the interference strength, based on the downlink reference signal information or pattern received within the control region.
  • the location of the transmission reference signal or the reception and/or measurement reference signal is obtained by the device based on different reference information parameters.
  • the difference from the second embodiment is that the reference signal transmission mode can be adjusted, or the time domain and/or frequency domain position or pattern or mode of the reference signal can be measured.
  • the device performs transmission or reception of the reference signal according to the received information without receiving additional indication information.
  • the reference signal transmission mode can be adjusted periodically.
  • the transmission mode may be a reference signal pattern or mode corresponding to different demand scenarios, or may be a pattern or mode of reference signals in the same requirement, or a reference signal pattern or mode in multiple demand mixed scenarios. That is to say, the transmission mode of the reference signal changes at the periodic position. Switching to that mode can be determined based on the application scenario, or the measurement request, or the interference cancellation mechanism employed.
  • the device transmits and receives (measures) according to a predefined, or a time domain location and/or a frequency domain pattern previously agreed between the base station and the UE/base station and the base station/UE and the UE.
  • the periodic position can be determined by the starting position, and the periodic reference.
  • the parameter may be determined by at least one of the following: predefined, RRC signaling, physical layer DCI signaling.
  • the predefined, or the reference signal time domain location agreed by the base station and the UE/base station and the base station/UE and the UE, and/or the frequency domain pattern is: the symbol position on the time domain, when Number of symbols occupied by the domain, pattern index in the frequency domain, frequency domain start position, frequency domain resource size, frequency domain resource interval, frequency domain bandwidth/subband/PRB/RBG.
  • Manner 2 triggering and/or indicating the time domain and/or frequency domain position of the reference signal in a non-periodic manner.
  • Case 1 The frequency domain pattern or mode, and/or symbol position of the predefined reference signal.
  • the device uses the predetermined time domain location on the first periodic point after receiving the signaling according to the signaling received to indicate the frequency domain pattern or mode of the predefined reference signal and/or the time domain location is valid.
  • a frequency domain pattern or pattern of the predefined reference signal is valid.
  • the frequency domain pattern of the predefined reference signal is subcarriers #0, #1, #6, #7, time domain sign bit 3 (the symbol starts from 0), and the trigger signaling is sent on the subframe n.
  • the device After the first periodic point after the frame n is n+1 subframes, it can be known that the device performs the reference signal according to the frequency domain pattern subcarriers #0, #1, #6, #7 in the symbol 3 of the subframe n+1. send.
  • Corresponding receiving devices also perform interference measurements, and/or channel estimation, and/or channel state information acquisition in accordance with the pattern on the symbol.
  • Case 2 Frequency domain pattern or mode of the predefined reference signal, and/or symbol position.
  • the subframe position in which the reference signal time domain and/or the frequency domain pattern or mode is valid is triggered or indicated by DCI signaling.
  • a trigger and/or indication reference signal pattern field is introduced in the DCI, occupying n bits, which may indicate that the reference signal pattern is used at those time domain locations.
  • Case 3 The frequency domain pattern of the predefined reference signal.
  • the device determines location information that the frequency domain pattern is valid or transmitted or received according to the trigger information received on the subframe n.
  • the trigger information carries the k and offset values, and according to the value, the subframe position in which the frequency domain pattern is valid, and the time domain symbol position are determined.
  • k and offset are positive integers greater than or equal to 0. In one embodiment, k is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, etc., offset is 0, 1, 2 At least one of 3, 4, 5, 6, 7, 8, 9, 10, 11, and the like.
  • the maximum value of Offset is the number of symbols contained in one symbol or slot.
  • Case 4 Frequency domain pattern of the predetermined reference signal. Which frequency domain pattern of the reference signal is on the time domain subframe, and which symbol in the subframe is used, may be triggered by triggering and/or indicating the reference signal frequency domain pattern enabled DCI signaling.
  • DCI signaling triggers the execution of measurements, and/or indicates the reference signal time domain and/or frequency domain location. That is, the DCI signaling carries a measurement trigger indication message, and/or explicitly indicates a time domain location for measuring the reference signal, and/or a time domain symbol, and/or a frequency domain pattern mode index, and/or a frequency domain Start location, and/or frequency domain resource spacing, and/or frequency domain resource size.
  • Case 6 The device has obtained a reference signal time domain and/or frequency domain pattern set, triggering and/or indicating a time domain and/or frequency domain pattern by DCI. If the time domain location of the time domain and/or the frequency domain pattern is not indicated, it may be the first uplink or downlink subframe or dynamic subframe after receiving the indication signaling.
  • the method may be processed in one of the following ways: avoiding the reference signal in the LTE technology, or adopting the reference in the LTE technology.
  • the signal does not use time domain and/or frequency domain resource locations.
  • the reference signal time domain and/or frequency domain pattern may be configured or designed to circumvent the reference signal time domain and/or frequency domain in LTE. position. For scenarios where NR does not coexist with LTE, only scenarios and design requirements need to be considered.
  • the following embodiments give examples of design of some typical pre-referenced signals that can be used for interference measurement, link direction identification, interference source identification, channel demodulation (control channel, and/or data channel). At least one of channel state acquisition, channel estimation, beam tracking, beam management, and other reference signal achievable functions.
  • the reference signal of the present invention is designed with the CRS pattern as a reference, then the time domain resource of the reference signal (also referred to as the time domain pattern), and the frequency domain resource (also referred to as the frequency domain pattern) can be the time domain of the CRS.
  • the CRS is on one symbol, and the resource locations on one PRB are: 0, 6.
  • FIG. 5 is a schematic diagram of a time-frequency resource location of a conventional single-port CRS. As shown in FIG. 5, the RE of the gray part is a time-frequency resource corresponding to one antenna port (port p is 0 for CRS).
  • the reference signal designed by the present invention can be used for interference estimation in addition to demodulating the PDCCH channel and/or acquiring channel state information.
  • the interference estimate may be estimating the interference strength, and/or identifying the interference source link direction, and/or identifying the strong/weak interference source.
  • the position of the reference signal can be as far forward as possible, that is, the reference signal position is advanced.
  • the frequency domain pattern of the reference signal corresponding to one subcarrier/RE in the frequency domain will be exemplified in detail below.
  • a PRB For a PRB, a PRB includes 12 subcarriers/REs (Resource Element), and based on this, the frequency domain location K of the reference signal may be 0, 1, 2, 3, 4, 5, 6, One of 7, 8, 9, 10, 11.
  • FIG. 6 is a schematic diagram of the reference signal occupying one symbol in the time domain and occupying only one subcarrier/RE in one PRB in the frequency domain in this embodiment. As shown in FIG. 6, the RE from the gray portion to the bold black vertical portion corresponds to a reference signal frequency domain resource position.
  • the devices can reuse 12 devices in one PRB by frequency division multiplexing.
  • the purpose of multiplexing between different devices through a CS on one subcarrier/RE resource can be achieved by introducing a cyclic shift CS.
  • the number of CSs is denoted by N, and N is a positive integer greater than or equal to one. In one embodiment, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, etc. Further, it is also possible to use a combination of frequency division multiplexing and CS to achieve multiplexing between more devices.
  • the two subcarriers/RE may be adjacent in the frequency domain or may be disconnected.
  • the first case the case where the reference signals are not adjacent in the frequency domain
  • the frequency domain position K of the reference signal may be 0, 1, 2, 3, 4, 5, 6, 7, 8 Two arbitrary discontinuous resources in 9, 10, and 11.
  • the determination of the frequency domain resource location of the reference signal may be determined by a parameter: a starting location, and/or an offset, and/or an interval parameter.
  • FIG. 7 is a schematic diagram of resource locations in a PRB in a frequency domain of a reference signal on one symbol according to an embodiment of the present invention.
  • the RE of the gray portion is the frequency domain position of the reference signal.
  • the start position of the reference signal given in FIG. 7 is 0, the frequency domain interval is 1, 2, 3, ... 10 from left to right, and the frequency domain offset is 2, 3 from left to right. , 4, 5, ..., 11.
  • the start position/offset of the reference signal in one PRB may be 1, 2, 3, 4, 5, 6, ..., 11 in addition to 0. One of them.
  • FIG. 8 is a schematic diagram of the offset between the fixed frequency domain resources being 2 and the starting position of the frequency domain resources sequentially shifting from the low end of the frequency domain to the high end in the embodiment of the present invention. According to the same method, for the case where the frequency domain resources are offset by 3, 4, 5, 6, 7, 8, 9, 10, 11, respectively, different reference can be obtained according to different frequency domain starting position offsets. Signal frequency domain pattern. The schematics are not given here.
  • FIG. 9 is a schematic diagram of an offset between fixed frequency domain resources of 6 in an optional embodiment of the present invention, and a frequency domain resource starting position is sequentially translated from a low frequency end to a high end of the frequency domain.
  • the RE of the gray part in 3(a) to 3(f) is a time-frequency resource in which the frequency domain offset of the reference signal in the present invention is 0 to 5, respectively.
  • the devices are multiplexed in one PRB by frequency division multiplexing.
  • the frequency domain resource location or the frequency domain resource pattern may be determined by the interval or offset parameter between the antenna ports or corresponding resource locations.
  • the starting position of the frequency domain resource is assumed (for example, it is assumed that the starting position of the frequency domain always starts with the direction of the low frequency domain resource in the frequency domain resource) If the interval or offset between the corresponding resources is 3, it can be determined that the frequency domain position of the second antenna port is 3, 9.
  • the two REs corresponding to the third or fourth antenna port may be one of 1, 7, or 2, 8, or 4, 10, or 5, 11.
  • frequency domain resources corresponding to different antenna ports should be in a frequency division multiplexing manner. If the frequency domain Orthogonal Covering Code (OCC) is used between discrete REs in the frequency domain, the two REs can be used for 2, or 4, or 8, or 12 ports. use.
  • OCC Orthogonal Covering Code
  • multiple antenna ports can be multiplexed on two REs, which can be implemented by CS and frequency domain OCC, for example, how CS and OCC are implemented.
  • the second case the case where the reference signal is adjacent in the frequency domain
  • FIG. 10 is a schematic diagram of a frequency domain pattern of reference signals corresponding to two consecutive REs corresponding to different frequency domain offset/start positions according to an embodiment of the present invention.
  • the resource corresponding to the dark gray RE portion is a frequency domain pattern of the reference signal, and from the left side of FIG. 10 to the right is a schematic diagram of the frequency domain offset/starting position from low to high.
  • the devices are multiplexed in one PRB by frequency division multiplexing.
  • the frequency domain resource location or the frequency domain resource pattern may be determined by spacing or offset parameters between different antenna ports or corresponding resource locations.
  • the first antenna port frequency domain to occupy the subcarrier/RE 0,1 resource there may be 6 antenna ports or devices in 12 subcarriers/REs multiplexed in one PRB by frequency division multiplexing.
  • the actual antenna port number is 1, 2, 4, 8, 12, etc., that is, frequency division multiplexing can be used to achieve multiplexing between 4 antenna ports or devices, for example, second, third, fourth antenna ports or devices It can occupy one of the subcarriers /RE 2,3, or 4,5, or 6,7, or 8,9, or 10,11 in the frequency domain.
  • an antenna port or device uses or occupies a frequency domain resource location or pattern, the other antenna port is not available. Further, in order to expand the number of antenna ports supported on one symbol, it can be implemented by frequency division, code division (in the present embodiment, frequency domain OCC), and any combination in CS.
  • the time domain occupies one symbol
  • the three subcarriers/RE may be adjacent in the frequency domain or may be disconnected.
  • the pattern of the reference signal is determined by the frequency domain start position/offset, and the interval parameter between the REs, in the same manner as in the second embodiment.
  • the intervals between the REs may be equally spaced, and/or unequal intervals.
  • only the patterns of equal intervals between REs in the frequency domain are introduced.
  • the patterns of the unequal intervals are not listed and illustrated here because the methods are the same.
  • FIG. 11 is a schematic diagram of a frequency domain start position or offset of 3, and an interval of 3 corresponding reference signal resource locations on the resource according to an embodiment of the present invention.
  • the portion of the gray RE is the frequency domain position of the reference signal, for example, 3, 6, and 9.
  • the case of multiple antenna ports may be implemented by frequency division multiplexing, and/or code division multiplexing, and/or cyclic shift multiplexing.
  • the first antenna port corresponds to 3, 6, and 9 and the antenna ports use frequency division multiplexing
  • the second antenna port corresponds to the frequency domain resource position of 1, 4, 7, or 2, 5. 8, or, 4, 7, 10, or, 5, 8, 11.
  • consecutive REs in the frequency domain there may be an offset start position reference, and a continuous RE length to determine the frequency domain pattern.
  • the optional 3 REs cannot correspond to antenna ports greater than 2, so the three consecutive RE patterns can only represent one antenna port.
  • multiple antenna ports can be implemented by frequency division multiplexing.
  • the start position of the frequency domain position of the second antenna port may be based on the lowest frequency domain resource position of the first antenna port or the highest frequency domain resource location.
  • the offset is determined, wherein the offset must be greater than the continuous length of the first antenna port or the number of frequency domain resources occupied, for example, may be 3, 4, 5, or 5, 6, 7, or 6, 7, 8, or 7, 8, 9, or 8, 910, or 9, 10, 11.
  • the time domain occupies one symbol
  • the four subcarriers/RE may be adjacent in the frequency domain or may be disconnected.
  • the resource location of the reference signal in the frequency domain may be determined by at least one of the following parameters: a starting location/offset, an interval, a period, and a number of consecutive resources.
  • a1 is equal to the resource in the frequency domain, and if the frequency domain resource interval is 3, the corresponding frequency domain resource location is 0, 3, 6, and 9. Or, 1, 4, 7, 10, or, 2, 5, 8, 11. As shown in Figure 12.
  • the corresponding frequency domain resource location is 0, 2, 4, 6, or 1, 3, 5, 7, or 2, 4, 6, 8, or 3, 5, 7, 9 , or 4, 6, 8, 10, or 5, 7, 9, 11. A2.
  • the frequency domain resource locations are 0, 2, 9, 11, or 1, 3, 8, 10, or 2, 4, 7, 9, etc., and are not listed here.
  • the frequency domain resource position of the reference signal may be 0, 1, 2, 3, or 1, 2, 3, 4, or 2, 3, 4, 5, or 3. , 4, 5, 6, or 4, 5, 6, 7, or 5, 6, 7, 8, or 6, 7, 8, 9, or 7, 8, 9, 10, or 8, 9, 10, 11.
  • one antenna port or one device may be corresponding.
  • multiplexing between different devices may be multiplexed by frequency division. Or, if different devices use the same antenna port or resource, you can use the CS mode.
  • the pattern implements a number of devices or ports corresponding to the frequency domain occupied in the pattern. Further, the multiplexing of the resources corresponding to one subcarrier/RE can be implemented by the CS method, and the number of multiplexed antenna ports is further expanded.
  • the frequency domain pattern can be composed of 2 (2, 1) patterns, or 1 (1, 1) and (3, 1).
  • the RE in the two (2, 1) patterns here can be combined continuously and discontinuously, or two consecutive combinations.
  • the frequency domain pattern of the reference signal composed of two (2, 1) patterns is one of the following: 0, 1, 3, 4, or 0, 1, 4, 5, or 0, 1, 5, 6, or 0 , 1, 6, 7, or 0, 1, 7, 8, or 0, 1, 8, 9, or 0, 1, 9, 10, or 0, 1, 10, 11.
  • Multiplexing between different devices can be done by frequency division multiplexing.
  • the length of the OCC may be 4 by the frequency domain OCC method. It can also be combined by frequency division and CS, or by combining frequency division and OCC. It is also possible to form a pattern by means of frequency division and CS combination.
  • the time domain occupies one symbol
  • the four subcarriers/RE may be adjacent in the frequency domain or may be disconnected.
  • the resource location of the reference signal in the frequency domain may be determined by at least one of the following parameters: a starting location/offset, an interval, a period, and a number of consecutive resources.
  • the frequency domain resource location is one of the following: 0, 1, 23, 4, 5, 6, 7, or 1, 2, 3, 4, 5, 6, 7 , 8, or 2, 3, 4, 5, 6, 7, 8, 9, or 3, 4, 5, 6, 7, 8, 9, 10, or 4, 5, 6, 7, 8, 9 , 10, 11.
  • the frequency domain resource pattern can be obtained by the pattern corresponding to (1, 1), (2, 1), (3, 1), (4, 1).
  • the reference signal for the reference signal occupying 12 subcarriers/RE in the corresponding frequency domain is designed as above. I will not introduce them here one by one.
  • the above embodiments are all designed to design a reference signal on a symbol, and the purpose is to perform interference measurement, fast channel state acquisition, reduced control or demodulation delay of the data channel, and the like.
  • the following describes the reference signal design methods in different areas. The methods can be arbitrarily combined with each other.
  • a design method of a reference signal in a control region is provided.
  • the number of symbols occupied by the control area is different, which also affects the design of the reference signal to some extent.
  • the time domain position of the reference signal, the time domain pattern of the reference signal, the frequency domain pattern of the reference signal, and the frequency domain position of the reference signal can be used in the present embodiment. However, it is not limited to the pattern design of the above embodiment.
  • the design is designed with a preset number of symbols, for example, the reference signal is designed according to the maximum downlink control channel PDCCH symbol, for example, the maximum number of symbols is 3.
  • Case 1 The design of the reference signal occupying a symbol in the control channel region.
  • FIG. 13 is a first schematic diagram of a frequency domain pattern in which a reference signal occupies one symbol in a control channel in the present embodiment.
  • k is used to denote a subcarrier index or identifier within a PRB.
  • the RE resources corresponding to k and 0, 6 constitute a reference signal frequency domain pattern.
  • different reference frequency domain patterns can be constructed by setting different frequency domain offsets.
  • a reference signal pattern corresponding to k is 0, 6 is used as a reference, that is, the frequency domain offset is 0.
  • the offset increases sequentially, such as: 1, 2, 3, 4, 5, the corresponding reference signal frequency domain pattern is k, 1, k, 2, 8, k is 3, 9, k is 4,10, k is 5,11.
  • the ports may be multiplexed by at least one of the following methods:
  • Method 1 Frequency division multiplexing.
  • the frequency domain resource corresponding to port A is k
  • the port is in frequency division multiplexing mode.
  • the frequency domain resource corresponding to port B is k
  • the frequency domain resource corresponding to port C is k.
  • the frequency domain resource corresponding to the port D is 3, 9
  • the frequency domain resource corresponding to the port E is 4, 10
  • the frequency domain resource corresponding to the port F is k, 5, 11.
  • Method 2 Frequency division multiplexing and CS mode combination.
  • mode 1 multiplexing mode in order to multiplex more ports, more ports can be multiplexed by CS in a resource corresponding to a frequency domain pattern.
  • the multiplexing of further multiplexable ports depends on the available number of CSs.
  • Method 3 Combination of frequency division multiplexing and OCC.
  • the multiplexing mode of the mode 1 in order to multiplex more ports, more ports can be multiplexed by frequency domain OCC on the resources corresponding to one frequency domain pattern.
  • the OCC in the prior art can only support OCC between consecutive resources in the frequency domain or the time domain, and the OCC described in this patent has the meaning of the prior art. It also includes support for OCC between discontinuous resources in the frequency domain or time domain.
  • FIG. 14 is a schematic diagram 2 of a frequency domain pattern in which a reference signal occupies one symbol in a control channel in the present embodiment.
  • k is 0, 4, and 8 corresponds to a frequency domain pattern.
  • different frequency domains are obtained by setting different frequency domain offsets. pattern.
  • the offset is 1 (the offset starts from 0) and the corresponding frequency domain pattern is 1, 5, 9.
  • the offset is 2 (the offset starts from 0) and the corresponding frequency domain pattern is 2, 6, and 10.
  • the offset is 3 (the offset starts from 0) and the corresponding frequency domain pattern is 3, 7, 11.
  • multiplexing between different ports may be in at least one of the following ways:
  • Method 1 Frequency division multiplexing.
  • the frequency domain resource corresponding to port A is 0, 4, and 8, and the ports are in frequency division multiplexing mode.
  • the frequency domain resources corresponding to port B are k, 1, 5, 9, and the frequency corresponding to port C.
  • the domain resource is k, which is 2, 6, and 10.
  • the frequency domain resource corresponding to port D is k, 3, 7, and 11. In this way, 4 ports can be multiplexed on one symbol.
  • Method 2 Frequency division multiplexing and CS mode combination.
  • mode 1 multiplexing mode in order to multiplex more ports, more ports can be multiplexed by CS in a resource corresponding to a frequency domain pattern.
  • the multiplexing of further multiplexable ports depends on the available number of CSs.
  • Method 3 Combination of frequency division multiplexing and OCC.
  • the multiplexing mode of the mode 1 in order to multiplex more ports, more ports can be multiplexed by frequency domain OCC on the resources corresponding to one frequency domain pattern.
  • the OCC in the prior art can only support OCC between consecutive resources in the frequency domain or the time domain, and the OCC described in this patent has the meaning of the prior art. It also includes support for OCC between discontinuous resources in the frequency domain or time domain.
  • FIG. 15 is a third schematic diagram of a frequency domain pattern in which a reference signal occupies one symbol in a control channel in the present embodiment.
  • k is 0, and 1 corresponds to a frequency domain pattern.
  • different frequency domain patterns are obtained by setting different frequency domain offsets (note that The offset here is a multiple of 2. That is, the offset is a multiple of the number of consecutive subcarriers). For example, the offset is 2 (the offset starts from 0) and the corresponding frequency domain pattern is 2, 3.
  • the offset frequency is 4 (the offset starts from 0) and the corresponding frequency domain pattern is 4, 5.
  • the offset is 6 (the offset starts from 0) and the corresponding frequency domain pattern is 6,7.
  • the offset is 8 (the offset starts from 0) and the corresponding frequency domain pattern is 8,9.
  • the offset is 10 (the offset starts from 0) and the corresponding frequency domain pattern is 10,11.
  • the ports may be multiplexed by at least one of frequency division multiplexing, OCC, and CS.
  • at least one of the frequency domain patterns may also correspond to one port, and the multiplexing manner is the same as above.
  • the pattern may be continuous or discrete in the frequency domain.
  • the frequency domain pattern of the reference signal at the first symbol position in the control channel region is illustrated here.
  • the frequency domain pattern at other locations in the control region e.g., symbol 2, symbol 3
  • the spacing between the resources in the pattern may be determined by a period, or an interval, or a frequency domain offset, and the first resource in the frequency domain pattern may be indicated by a starting position.
  • OK the spacing between the resources in the pattern may be determined by a period, or an interval, or a frequency domain offset, and the first resource in the frequency domain pattern may be indicated by a starting position.
  • Case 2 The design of the reference signal occupying two symbols in the control channel region.
  • the pattern on the latter symbol may be the same as the frequency domain on the previous symbol or have an offset in the frequency domain.
  • resources on different symbols may correspond to one port, or corresponding to different ports.
  • the reference signal pattern design on the two symbols is explained by a typical example in the case 1.
  • the frequency domain pattern on the two symbols is the same.
  • FIG. 16 is a first schematic diagram of the location of resource regions of two symbol upper frequency domain patterns according to an embodiment of the present invention.
  • FIG. 17 is a second schematic diagram of the frequency location of two symbol upper frequency domain patterns according to an embodiment of the present invention.
  • FIG. 18 is a third schematic diagram of the frequency location of two symbol upper frequency domain patterns according to an embodiment of the present invention.
  • the difference between the three figures in Figures 16 to 18 is that the time domain positions occupied by the reference signals are different.
  • the first picture in FIGS. 16 to 18 is a schematic diagram of the first and second symbols of the time domain occupied by the reference signal
  • the second picture is a schematic diagram of the first and third symbols of the time domain occupied by the reference signal
  • the third figure is the time when the reference signal is occupied.
  • the frequency domain pattern indicated by the two symbols can be understood from two angles: First, the same identified resource on one symbol corresponds to one port. The same identified resources on different symbols correspond to different ports. Second, the resources corresponding to the same identifier on the two symbols correspond to one port or port group. Ports in the same port group are multiplexed by time domain OCC, and/or CS, and/or frequency division multiplexed.
  • the different frequency domain patterns described herein can be understood as different frequency domain resource densities, and/or the frequency domain patterns are the same but the frequency domain positions are different.
  • the advantage of introducing different frequency domain patterns on different symbols is that different reference signal patterns can be configured for different links according to different time domain locations for identifying interference link directions and/or interference sources. Here are some examples. Only a simple schematic is given to illustrate the different frequency domain patterns on different symbols.
  • FIG. 19 is a schematic diagram of different frequency domain pattern resource locations on two symbols in an embodiment of the present invention.
  • Case 3 The design of the reference signal occupying three symbols in the control channel region.
  • Case 3 The design idea of Case 3 is the same as Case 2. The difference may be that the frequency domain patterns of the three symbols can be different from each other, and/or the frequency domain patterns of the two symbols are the same (the two symbols may be adjacent symbols or discrete symbols), and A symbol is different. Further, the frequency domain pattern density on some symbols can be different from the others.
  • the reference signal related configuration information is acquired.
  • the reference signal configuration information includes at least one of: a subframe position of the reference signal, a symbol position of the reference signal, a symbol number of the reference signal, a frequency domain start position of the reference signal, a frequency domain resource number of the reference signal, and a reference.
  • the time window may be configured before, after, or included in the reference signal position.
  • the device may transmit or measure the reference signal, or trigger or indicate one or more reference signals in the time window by the DCI, and/or trigger and/or Indicates the location at which the device sends the reference signal within the time window.
  • the frequency domain resource may be one of a PRB, an RE, a subband, an RBG, and a REG.
  • the pattern of the reference signal may refer to a time domain pattern, and/or a frequency domain pattern.
  • the period/interval is applicable to the time domain, and/or the frequency domain.
  • At least one of the reference signal configuration information may be obtained by the device in at least one of the following: a high-level radio resource control RRC signaling, a physical layer downlink control information DCI signaling, and a pre-defined between the devices.
  • the device may be pre-agreed between the devices, and the device may refer to a base station, and/or a terminal.
  • reference signal information that can be alternately configured between adjacent devices.
  • the method described here is applicable to the same link, and is also applicable to different links. It is also applicable to devices of the same type, and also to different types of devices, and also to any device that can interact.
  • the first base station or the base station group is a base station that performs downlink transmission
  • the adjacent second base station or base station group is a base station that performs uplink reception. Based on this, the first base station or the first base station group may notify the neighboring second base station or base station group of the reference signal configuration information of the local cell.
  • the first base station or the base station group may also notify the neighboring second base station or the terminal group or the terminal group in the base station group by using the reference signal configuration information of the current cell.
  • the operations described by the first base station or group of base stations are also applicable to the second base station or group of base stations.
  • devices base stations and/or terminals may also transmit respective configuration information to each other.
  • the terminal that performs the downlink receiving receives the reference signal information sent by the base station side (the reference signal information includes, in addition to the reference signal information sent by the local cell, optionally, the reference signal information of the neighboring cell) .
  • the terminal performs reference signal transmission according to the configured reference signal.
  • the terminal may also send its own reference signal information to the adjacent terminal and/or the base station.
  • the neighboring terminal and/or the base station can perform at least one of the following operations: performing a measurement operation, vacating the reference signal of the neighboring device corresponding to part or all of the resources, adjusting the transmission or receiving beam, adjusting the transmission or scheduling policy, and adjusting the transmission power. , informs the adjusted power factor/value.
  • the device performs measurements based on the received reference signal configuration information.
  • the measurement result and/or the corresponding measurement resource information may be reported to the serving base station and/or the adjacent base station.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be used to save the program code executed by the power supply method provided in the first embodiment.
  • the storage medium may be located in any one of the computer terminal groups in the computer network, or in any one of the mobile terminal groups.
  • the storage medium is arranged to store program code for performing the following steps:
  • the disclosed technical contents may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, unit or module, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like. .
  • the embodiment of the present invention further provides an application device for reference signal configuration information, and a hardware composition structure diagram of the application device for the reference signal configuration information, as shown in FIG.
  • the application device 110 that references the signal configuration information includes at least one processor 111, a memory 112, and at least one network interface 114.
  • the various components in the application device 110 that reference the signal configuration information are coupled together by a bus system 115.
  • the bus system 115 is used to implement connection communication between these components.
  • the bus system 115 includes a power bus, a control bus, and a status signal bus in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 115 in FIG.
  • the base station or the terminal acquires the reference signal configuration information, where the reference signal configuration information includes at least one of the following: the reference signal configuration information of the local cell, the reference signal configuration information of the neighboring cell, and the terminal in the neighboring cell.
  • the reference signal configuration information; the base station or the terminal transmits or measures according to the acquired reference signal configuration information.
  • the base station or the terminal can perform measurement on the link of the neighboring cell while performing measurement on the link of the local cell, and implements estimation and identification of cross-link interference, thereby effectively avoiding the cross between adjacent cells. Link interference.

Abstract

本发明提供了一种参考信号配置信息的应用方法,包括:基站获取参考信号配置信息,其中,参考信号配置信息至少包括以下之一:本小区的参考信号配置信息,相邻小区的参考信号配置信息,相邻小区中终端的参考信号配置信息;基站根据获取的参考信号配置信息进行传输或测量。本发明还提供了另一种参考信号配置信息的应用方法、装置及存储介质。

Description

一种参考信号配置信息的应用方法、装置及存储介质
相关申请的交叉引用
本申请基于申请号为201710393538.7、申请日为2017年5月27日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及通信领域,具体而言,涉及一种参考信号配置信息的应用方法、装置及存储介质。
背景技术
目前,新空口(New Radio,简称为NR)的物理层技术正在第三代合作伙伴计划(3rd Generation Partnership Project,简称为3GPP)无线接入网1(Radio Access Network 1,RAN1)火热讨论中。相比与现有长期演进系统(Long Term Evolution,LTE),NR物理层追求的是更加灵活和高效的设计目标或宗旨。基于此,灵活的资源配置方式似乎成为了一个重要趋势,这是由于现有LTE支持的资源配置方式不能灵活地适应业务负载的动态变化。
对于LTE FS1,10个子帧要么全用于上行传输,要么全用于下行传输。这种帧结构仅可以用于频分双工(Frequency Division Dual,FDD)模式。而对于LTE FS2,每个子帧可以用于上行,下行,特殊子帧中之一,且配置有固定的下行链路(Down Link,DL)和上行链路(Up Line,UL)比例,这种结构仅可用于TDD。现有的两种帧结构,不能灵活适应业务负载的灵活变化。基于此,NR中引入了灵活双工议题,即,不同设备可以灵活的使 用配置的资源进行上行,或下行传输,这一特性,使得系统性能得到显著的提升。
然而,伴随着资源的灵活配置,将会产生较强的交叉链路干扰(Cross Link Interference,简称为CLI),例如,对于相邻的不同小区在相同或重叠的时-频资源上使用不同的传输链路方向情况,就会出现较强的交叉链路干扰,从而造成系统性能的显著下降。其中,交叉链路干扰包括:终端-终端之间的干扰,和基站-基站之间的干扰。具体地说,终端-终端间的干扰是指一个终端进行上行传输,而相邻的小区的另一个终端进行下行接收。此时,从发射侧角度来讲,相邻小区发送下行信息会干扰该终端的发送,和/或该终端服务小区的上行接收。从接收侧角度来讲,进行上行传输的终端的上行信息会干扰到相邻小区正在接收下行信息的终端的接收。同理,基站-基站之间的干扰同理。
针对灵活双工技术中跨链路干扰无法进行估计和识别问题,目前还没有合理的解决方案。
发明内容
本发明实施例提供了一种参考信号配置信息的应用方法、装置及存储介质,以至少解决相关技术中,灵活双工技术中跨链路干扰无法进行估计和识别的问题。
根据本发明的一个方面,提供了一种参考信号配置信息的应用方法,包括:基站获取参考信号配置信息,其中,所述参考信号配置信息至少包括以下之一:本小区的参考信号配置信息,相邻小区的参考信号配置信息,相邻小区中终端的参考信号配置信息;所述基站根据获取的参考信号配置信息进行传输或测量。
根据本发明的另一个方面,还提供了一种参考信号配置信息的应用方法,包括:终端获取参考信号配置信息,其中,所述参考信号配置信息至 少包括以下之一:本小区的参考信号配置信息;相邻小区的参考信号配置信息;相邻小区中终端的参考信号配置信息;所述终端根据获取的所述参考信号配置信息进行接收或传输或测量。
根据本发明的另一个方面,还提供了一种参考信号配置信息的应用装置,设置于基站,包括:第一获取模块,配置为获取参考信号配置信息,其中,所述参考信号配置信息至少包括以下之一:本小区的参考信号配置信息,相邻小区的参考信号配置信息,相邻小区中终端的参考信号配置信息;第一应用模块,配置为根据获取的参考信号配置信息进行传输或测量。
根据本发明的另一个方面,还提供了一种参考信号配置信息的应用装置,设置于终端,包括:第二获取模块,配置为获取参考信号配置信息,其中,所述参考信号配置信息至少包括以下之一:本小区的参考信号配置信息,相邻小区的参考信号配置信息,相邻小区中终端的参考信号配置信息;第二应用模块,配置为根据获取的所述参考信号配置信息进行接收或传输或测量。
根据本发明的另一个方面,还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述任一项所述的方法。
本发明还提供一种参考信号配置信息的应用装置,包括:处理器以及存储有所述处理器可执行指令的存储器,当所述指令被处理器执行时,执行上述的参考信号配置信息的应用方法。
通过本发明,基站和终端可以分别获取本小区的参考信号配置信息和/或相邻小区的参考信号配置信息,并根据获取的参考信号配置信息进行传输或测量。解决了相关技术中,灵活双工技术中跨链路干扰无法进行估计和识别的问题,通过本发明提供的技术方案,基站和终端在对本小区链路进行测量的同时,可以对相邻小区有可能产生干扰的链路进行测量,实现了跨链路干扰的估计与识别,有效避免了相邻小区之间的跨链路干扰。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的一个可选的参考信号配置信息的应用方法流程图;
图2是根据本发明实施例的一个可选参考信号配置信息的应用方法流程图;
图3是根据本发明实施例的一种可选的参考信号配置信息的应用装置的结构框图;
图4是根据本发明实施例的一种可选的参考信号配置信息的应用装置的结构框图;
图5是根据本发明实施例3的一个RB中参考信号时-频图样示意图一;
图6是根据本发明实施例3的一个RB中参考信号时-频图样示意图二;
图7是根据本发明实施例3的一个RB中参考信号时-频图样示意图三;
图8是根据本发明实施例3的一个RB中参考信号时-频图样示意图四;
图9是根据本发明实施例3的一个RB中参考信号时-频图样示意图五;
图10是根据本发明实施例3的一个RB中参考信号时-频图样示意图六;
图11是根据本发明实施例3的一个RB中参考信号时-频图样示意图七;
图12是根据本发明实施例3的一个RB中参考信号时-频图样示意图八;
图13是根据本发明实施例3的一个RB中参考信号时-频图样示意图九;
图14是根据本发明实施例3的一个RB中参考信号时-频图样示意图 十;
图15是根据本发明实施例3的一个RB中参考信号时-频图样示意图十一;
图16是根据本发明实施例3的一个RB中参考信号时-频图样示意图十二;
图17是根据本发明实施例3的一个RB中参考信号时-频图样示意图十三;
图18是根据本发明实施例3的一个RB中参考信号时-频图样示意图十四;
图19是根据本发明实施例3的一个RB中参考信号时-频图样示意图十五;
图20为本发明实施例参考信号配置信息的应用装置的硬件结构示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合,每个实施例中的技术方案可以拆分或相互组合,本发明实施例不限定下述技术方案的应用场景。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出 的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
实施例1
图1是根据本发明实施例的一个可选的参考信号配置信息的应用方法流程图。如图1所示,根据本发明的一个方面,提供了一种参考信号配置信息的应用方法,包括:
步骤S101,基站获取参考信号配置信息,其中,参考信号配置信息至少包括以下之一:本小区的参考信号配置信息,相邻小区的参考信号配置信息,相邻小区中终端的参考信号配置信息;
步骤S103,基站根据获取的参考信号配置信息进行传输或测量。
通过上述方法,基站获取参考信号配置信息,其中,参考信号配置信息至少包括以下之一:本小区的参考信号配置信息,相邻小区的参考信号配置信息,相邻小区中终端的参考信号配置信息;基站根据获取的参考信号配置信息进行传输或测量。解决了相关技术中,灵活双工技术中跨链路干扰无法进行估计和识别的问题,通过本发明提供的技术方案,基站在对本小区链路进行测量的同时,可以对相邻小区有可能产生干扰的链路进行测量,实现了跨链路干扰的估计与识别,有效避免了相邻小区之间的跨链路干扰。
需要说明的是,此处的传输可以包括参考信号的传输,此处的测量可以包括信道估计和信道的干扰测量。
在一实施例中,所述基站获取参考信号配置信息包括:所述基站获取相邻基站发送的参考信号配置信息,其中,所述相邻基站发送的参考信号配置信息至少包括以下之一:相邻小区的参考信号配置信息,相邻小区中终端的参考信号配置信息。
在一实施例中,所述方法还包括:所述基站发送本小区的参考信号配置信息和/或本小区中终端的参考信号配置信息给相邻基站或相邻基站中的 终端。
在一实施例中,所述参考信号配置信息,包括以下至少之一:参考信号的类型或类型集合,参考信号的资源信息,序列,子载波间隔,功率,测量请求指示。
在一实施例中,所述参考信号类型或类型集合,包括以下至少之一:零功率类型参考信号,非零功率类型参考信号。
在一实施例中,所述参考信号的资源信息,包括以下至少之一:时域资源起始位置,时域资源之间的间隔或周期,符号位置,符号位置集合,时域图样,时域时间窗信息,频域资源起始位置,频域资源大小,频域资源之间的间隔或周期,频域图样,符号与频域图样间的对应关系索引,端口索引,波束(beam)索引,基本的时频图样或图样索引。
需要说明的是,此处的基本的时频图样可以是“component RS RE Pattern”,是指针对特定端口数目,在一个RB中由时域符号数目A和/或频域RE数目B组成的单元或图样。其中,所述符号数目A可以是连续的符号,或不连续的符号。所述频域RE数目B可以使频域上连续的RE,或不连续的RE。例如,对于一个端口,基本图样可以是由时域一个符号,频域上由起始RE位置,和/或(连续的或不连续)RE数目确定。在这里,频域起始RE位置为0,占用的RE数目为1,则基本图样可以使时域一个符号,频域一个RE的图样。所述基本图样在时域,或频域上根据间隔或周期等参数可以扩展得到不同的时域,和/或频域图样。同理,对于端口数为2,4,8,12,16,24或更大的天线端口,均可以通过确定时域,和/或频域的起始位置,和/或占用的符号或RE数目确定基本的参考信号图样。具体图样设计可以参见实施例3中包含的至少之一具体实施例。进一步地,不同符号上,和/或不同频带上,基本参考信号图样可以相同或不同。
在一实施例中,所述时域时间窗信息,包括以下至少之一:时间窗起 始位置,时间窗长度,时间窗内参考信号的起始资源位置,时间窗内参考信号资源之间的间隔。
在一实施例中,在所述时间窗内的参考信号资源中至少之一资源上,基站在所述时间窗内参考信号的资源上进行参考信号的传输或测量。
在一实施例中,所述基站通过以下至少之一的方式获取所述参考信号配置信息:高层无线资源控制(Radio Resource Control,RRC)信令;物理层下行控制信息(Downlink Control Information,DCI)信令;设备之间的事先约定;预定义。
在一实施例中,所述基站根据获取的参考信号配置信息进行传输包括:所述基站根据获取的参考信号配置信息周期性地发送参考信号;或所述基站根据获取的参考信号配置信息非周期性地发送参考信号。
在一实施例中,所述基站非周期性地发送参考信号,包括:所述基站获取相邻基站发送的第一测量请求信息,并根据所述第一测量请求信息发送所述参考信号;或所述基站接收第一DCI信令,所述基站根据所述第一DCI信令的触发或指示发送所述参考信号。
在一实施例中,确定基站发送所述参考信号的位置的方式包括以下至少之一:所述基站获取所述第一测量请求信息之后,确定所述参考信号的位置为:所述基站周期性发送的参考信号的位置;所述基站根据所述第一DCI信令触发所述参考信号发送,和/或根据所述第一DCI信令的指示所述参考信号发送位置的信息,确定所述参考信号的位置;所述基站根据所述第一DCI信令触发所述参考信号发送,所述基站接收第二DCI信令,并根据所述第二DCI信令的指示所述参考信号的位置信息,确定所述参考信号的位置;所述基站根据所述第一DCI信令所在位置索引n,按照n+k的定时关系,确定参考信号位置,其中,k为定时关系的取值。
在一实施例中,所述第一DCI信令中携带所述定时关系k,其中,k为 大于或等于0的整数或整数集合。
在一实施例中,所述第一DCI信令或所述第二DCI信令中还携带以下至少之一:所述参考信号的时域符号位置或符号位置集合;所述参考信号的频域图样索引;所述参考信号的符号与频域图样间的对应关系索引。
在一实施例中,所述方法还包括以下至少之一:所述基站空置相邻基站和/或相邻基站中终端的参考信号的资源位置;所述基站调整传输或接收的beam;所述基站调整传输的功率。
在一实施例中,所述基站根据获取的参考信号配置信息进行测量包括:所述基站根据获取的参考信号配置信息周期性地进行信道测量和/或干扰测量;或所述基站根据获取的参考信号配置信息非周期性地进行信道测量和/或干扰测量。
在一实施例中,相邻设备间的参考信号采用相同或不同的配置信息,其中,所述相邻设备包括:相邻的基站或相邻的基站中的终端,所述配置信息包括以下至少之一:序列;子载波间隔;图样;资源位置;循环移位;符号。
在一实施例中,相邻设备间的参考信号采用相同的配置信息时,所述相邻设备之间按照以下至少之一的方式复用或正交:基于相同的循环移位集合,且不同设备采用相同循环移位集合中不同的循环移位或循环移位子集中的循环移位;基于相同的序列,且不同设备采用不同加扰方式。
图2是根据本发明实施例的一个可选参考信号配置信息的应用方法流程图,如图2所示,包括:
步骤S102,终端获取参考信号配置信息,其中,参考信号配置信息至少包括以下之一:本小区的参考信号配置信息,相邻小区的参考信号配置信息,相邻小区中终端的参考信号配置信息;
步骤S104,终端根据获取的所述参考信号配置信息进行接收或传输或 测量。
通过上述方法,终端获取参考信号配置信息,其中,参考信号配置信息至少包括以下之一:本小区的参考信号配置信息,相邻小区的参考信号配置信息,相邻小区中终端的参考信号配置信息;终端根据获取的参考信号配置信息进行接收或传输或测量。解决了相关技术中,灵活双工技术中跨链路干扰无法进行估计和识别的问题,通过本发明提供的技术方案,基站或终端在对本小区链路进行测量的同时,可以对相邻小区有可能产生干扰的链路进行测量,实现了跨链路干扰的估计与识别,有效避免了相邻小区之间的跨链路干扰。
需要说明的是,此处的接收或传输可以包括参考信号的接收或传输,此处的测量可以包括信道估计和信道的干扰测量。
在一实施例中,所述终端通过以下至少之一方式获取所述参考信号配置信息:高层RRC信令;物理层DCI信令;设备之间的事先约定;预定义。
在一实施例中,所述终端获取参考信号配置信息包括以下至少之一:所述终端从相邻基站获取所述相邻小区的参考信号配置信息;所述终端从相邻基站中的终端获取所述相邻小区中终端的参考信号配置信息;所述终端从服务基站获取以下至少之一:本小区的参考信号配置信息,相邻小区的参考信号配置信息,相邻小区中终端的参考信号配置信息。
在一实施例中,所述参考信号配置信息包括以下至少之一:参考信号的类型或类型集合,参考信号的资源信息,序列,子载波间隔,功率,测量请求指示。
在一实施例中,所述参考信号类型或类型集合,包括以下至少之一:零功率类型参考信号,非零功率类型参考信号。
在一实施例中,所述参考信号的资源信息,包括以下至少之一:时域资源起始位置,时域资源之间的间隔或周期,符号位置,符号位置集合, 时域图样,时域时间窗信息,频域资源起始位置,频域资源大小,频域资源间间隔或周期,频域图样,符号与频域图样间的对应关系索引,端口索引,beam索引,基本的时频图样或图样索引。
在一实施例中,所述时域时间窗信息,包括以下至少之一:时间窗起始位置,时间窗长度,时间窗内参考信号的起始资源位置,时间窗内参考信号资源之间的间隔。
在一实施例中,在所述时间窗内的参考信号资源中至少之一资源上,终端进行参考信号的传输或测量。
在一实施例中,所述终端根据获取的所述参考信号配置信息进行传输包括:所述终端根据获取的所述参考信号配置信息周期性地发送参考信号;或所述终端根据获取的所述参考信号配置信息非周期性地发送参考信号。
在一实施例中,所述终端根据获取的所述参考信号配置信息非周期性地发送参考信号包括:所述终端获取相邻小区中终端发送的第二测量请求信息,并根据所述第二测量请求信息发送参考信号;或所述终端获取第三DCI信令,并根据所述第三DCI信令的触发和/指示发送参考信号。
在一实施例中,确定终端发送所述参考信号的位置的方式包括以下至少之一:所述终端获取所述第二测量请求信息之后,确定所述参考信号的位置为:所述终端周期性发送的参考信号的位置;所述终端根据所述第三DCI信令中触发所述参考信号发送,和/或根据所述第三DCI信令的指示的参考信号发送位置的信息,确定所述参考信号的位置;所述终端根据所述第三DCI信令中触发所述参考信号发送,所述终端接收第四DCI信令,并根据所述第四DCI信令的指示所述参考信号的位置信息,确定所述参考信号的位置;所述终端根据所述第三DCI信令所在位置索引n,按照n+k的定时关系,确定所述参考信号位置,其中,k为定时关系的取值。
在一实施例中,所述第三DCI中携带所述定时关系k,其中,k为大于 或等于0的整数或整数集合。
在一实施例中,所述第三DCI信令或第四DCI信令中还携带以下至少之一:所述参考信号的时域符号位置或符号位置集合;所述参考信号的频域图样索引;所述参考信号的符号与频域图样间的对应关系索引。
在一实施例中,所述终端接收服务基站的指示,和/或根据所述服务基站的指示执行以下至少之一的操作:所述终端空置相邻基站和/或相邻基站中终端的参考信号资源位置;所述终端调整传输或接收的beam;所述终端调整传输的功率。
在一实施例中,所述终端空置相邻基站和/或相邻基站中终端的参考信号资源位置,调整传输或接受的beam,调整传输功率中至少之一可以通过所述服务基站DCI指示。
在一实施例中,所述终端根据获取的所述参考信号配置信息进行测量包括:所述终端根据获取的参考信号配置信息周期性地进行信道测量和/或干扰测量;或所述终端根据获取的参考信号配置信息非周期性地进行信道测量和/或干扰测量。
在一实施例中,相邻设备间的参考信号采用相同或不同的配置信息,其中,所述配置信息包括以下至少之一:序列;子载波间隔;图样;资源位置;循环移位;符号。
需要说明的是,本发明实施例的上述方法及其优选实施方式可以任意组合,本实施例对此不做限定。
实施例2
在本实施例中还提供了一种参考信号配置信息的应用装置,设置于基站,该装置用于实现上述基站侧方法的实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现, 但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
根据本发明实施例,还提供了一种参考信号配置信息的应用装置,设置于基站。图3是根据本发明实施例的一种可选的参考信号配置信息的应用装置的结构框图。如图3所示,包括:第一获取模块30,配置为获取参考信号配置信息,其中,参考信号配置信息至少包括以下之一:本小区的参考信号配置信息,相邻小区的参考信号配置信息,相邻小区中终端的参考信号配置信息;第一应用模块32,配置为根据获取的参考信号配置信息进行传输或测量。
通过上述装置,第一获取模块30获取参考信号配置信息,其中,参考信号配置信息至少包括以下之一:本小区的参考信号配置信息,相邻小区的参考信号配置信息,相邻小区中终端的参考信号配置信息;第一应用模块32根据获取的参考信号配置信息进行传输或测量。解决了相关技术中,灵活双工技术中跨链路干扰无法进行估计和识别的问题,通过本发明提供的技术方案,基站在对本小区链路进行测量的同时,可以对相邻小区有可能产生干扰的链路进行测量,实现了跨链路干扰的估计与识别,有效避免了相邻小区之间的跨链路干扰。
在一实施例中,所述获取模块还包括:第一获取单元,配置为获取相邻基站发送的参考信号配置信息,其中,所述相邻基站发送的参考信号配置信息至少包括以下之一:相邻小区的参考信号配置信息,相邻小区中终端的参考信号配置信息。
在一实施例中,所述装置还包括:发送模块,配置为发送本小区的参考信号配置信息和/或本小区中终端的参考信号配置信息给相邻基站或相邻基站中的终端。
需要说明的是,此处的传输可以包括参考信号的传输,此处的测量可以包括信道估计和信道的干扰测量。
在一实施例中,所述参考信号配置信息,包括以下至少之一:参考信号的类型或类型集合,参考信号的资源信息,序列,子载波间隔,功率,测量请求指示。
在一实施例中,所述参考信号类型或类型集合,包括以下至少之一:零功率类型参考信号,非零功率类型参考信号。
在一实施例中,所述参考信号的资源信息,包括以下至少之一:时域资源起始位置,时域资源之间的间隔或周期,符号位置,符号位置集合,时域图样,时域时间窗信息,频域资源起始位置,频域资源大小,频域资源之间的间隔或周期,频域图样,符号与频域图样间的对应关系索引,端口索引,beam索引,基本的时频图样或图样索引。
需要说明的是,此处的基本的时频图样可以是“component RS RE Pattern”,例如第一列中有六种基本时频图样的可能频域位置。这个图样在频域上怎么重复,或重复几次,或重复间隔,根据配置不同,可得到不同的RS图样,但基本的图样是不变的,具体的图样配置在后续实施例中说明。
在一实施例中,所述时域时间窗信息,包括以下至少之一:时间窗起始位置,时间窗长度,时间窗内参考信号的起始资源位置,时间窗内参考信号资源之间的间隔。
在一实施例中,第一应用模块还配置为:在所述时间窗内参考信号的资源上进行参考信号的传输或测量。
在一实施例中,所述基站通过以下至少之一的方式获取所述参考信号配置信息:高层RRC信令;物理层DCI信令;设备之间的事先约定;预定义。
在一实施例中,第一应用模块还包括第一应用单元,配置为根据获取的参考信号配置信息周期性地发送参考信号;第二应用单元,配置为根据获取的参考信号配置信息非周期性地发送参考信号。
在一实施例中,所述第一应用单元还配置为:获取相邻基站发送的第一测量请求信息,并根据所述第一测量请求信息发送所述参考信号;接收第一DCI信令,根据所述第一DCI信令的触发或指示发送所述参考信号。
在一实施例中,确定基站发送所述参考信号的位置的方式包括以下至少之一:所述基站获取所述第一测量请求信息之后,确定所述参考信号的位置为:所述基站周期性发送的参考信号的位置;所述基站根据所述第一DCI信令触发所述参考信号发送,并根据所述第一DCI信令的指示确定所述参考信号的位置;所述基站根据所述第一DCI信令触发所述参考信号发送,所述基站接收第二DCI信令,并根据所述第二DCI信令的指示确定所述参考信号的位置;所述基站根据所述第一DCI信令所在位置索引n,按照n+k的定时关系,确定参考信号位置,其中,k为定时关系的取值。
在一实施例中,所述第一DCI信令中携带所述定时关系k,其中,k为大于或等于0的整数或整数集合。
在一实施例中,所述第一DCI信令或所述第二DCI信令中还携带以下至少之一:所述参考信号的时域符号位置或符号位置集合;所述参考信号的频域图样索引;所述参考信号的符号与频域图样间的对应关系索引。
在一实施例中,所述基站空置相邻基站和/或相邻基站中终端的参考信号的资源位置;所述基站调整传输或接收的beam;所述基站调整传输的功率。
在一实施例中,第一应用单元还配置为:根据获取的参考信号配置信息周期性地进行信道测量和/或干扰测量;第二应用单元还配置为根据获取的参考信号配置信息非周期性地进行信道测量和/或干扰测量。
在一实施例中,相邻设备间的参考信号采用相同或不同的配置信息,其中,所述相邻设备包括:相邻的基站或相邻的基站中的终端,所述配置信息包括以下至少之一:序列;子载波间隔;图样;资源位置;循环移位; 符号。
在一实施例中,相邻设备间的参考信号采用相同的配置信息时,所述相邻设备之间按照以下至少之一的方式复用或正交:基于相同的循环移位集合,且不同设备采用相同循环移位集合中不同的循环移位或循环移位子集中的循环移位;基于相同的序列,且不同设备采用不同加扰方式。
在本实施例中还提供了一种参考信号配置信息的应用装置,设置于终端,该装置用于实现上述终端侧方法的实施例及优选实施方式。根据本发明实施例,还提供了一种参考信号配置信息的应用装置,设置于终端。图4是根据本发明实施例的一种可选的参考信号配置信息的应用装置的结构框图。如图4所示,包括:第二获取模块40,配置为获取参考信号配置信息,其中,参考信号配置信息至少包括以下之一:本小区的参考信号配置信息,相邻小区的参考信号配置信息,相邻小区中终端的参考信号配置信息;第二应用模块42,配置为根据获取的所述参考信号配置信息进行接收或传输或测量。
通过上述装置,第二获取模块40获取参考信号配置信息,其中,参考信号配置信息至少包括以下之一:本小区的参考信号配置信息,相邻小区的参考信号配置信息,相邻小区中终端的参考信号配置信息;第二应用模块42根据获取的所述参考信号配置信息进行接收或传输或测量解决了相关技术中,灵活双工技术中跨链路干扰无法进行估计和识别的问题,通过本发明提供的技术方案,基站或终端在对本小区链路进行测量的同时,可以对相邻小区有可能产生干扰的链路进行测量,实现了跨链路干扰的估计与识别,有效避免了相邻小区之间的跨链路干扰。
在一实施例中,所述第二获取模块40包括:第二获取单元,配置为从相邻基站获取所述相邻小区的参考信号配置信息;第三获取单元,配置为从相邻基站中的终端获取所述相邻小区中终端的参考信号配置信息;第四 获取单元,配置为从服务基站获取以下至少之一:本小区的参考信号配置信息,相邻小区的参考信号配置信息,相邻小区中终端的参考信号配置信息。
在一实施例中,所述第二获取模块40通过以下至少之一方式获取所述参考信号配置信息:高层RRC信令;物理层DCI信令;设备之间的事先约定;预定义。
在一实施例中,所述参考信号配置信息包括以下至少之一:参考信号的类型或类型集合,参考信号的资源信息,序列,子载波间隔,功率,测量请求指示。
在一实施例中,所述参考信号类型或类型集合,包括以下至少之一:零功率类型参考信号,非零功率类型参考信号。
在一实施例中,所述参考信号的资源信息,包括以下至少之一:时域资源起始位置,时域资源之间的间隔或周期,符号位置,符号位置集合,时域图样,时域时间窗信息,频域资源起始位置,频域资源大小,频域资源间间隔或周期,频域图样,符号与频域图样间的对应关系索引,端口索引,beam索引,基本的时频图样或图样索引。
在一实施例中,所述时域时间窗信息,包括以下至少之一:时间窗起始位置,时间窗长度,时间窗内参考信号的起始资源位置,时间窗内参考信号资源之间的间隔。
在一实施例中,所述第二应用模块42还配置为:在所述时间窗内参考信号的资源上进行参考信号的传输或测量。
在一实施例中,所述第二应用模块还包括:第三应用单元,配置为根据获取的所述参考信号配置信息周期性地发送参考信号;第四应用单元,配置为根据获取的所述参考信号配置信息非周期性地发送参考信号。
在一实施例中,所述第三应用单元还配置为:所述终端获取相邻小区 中终端发送的第二测量请求信息,并根据所述第二测量请求信息发送参考信号;所述终端获取第三DCI信令,并根据所述第三DCI信令的触发和/指示发送参考信号。
在一实施例中,确定第二应用模块42发送所述参考信号的位置的方式包括以下至少之一:获取所述第二测量请求信息之后,确定所述参考信号的位置为:周期性发送的参考信号的位置;根据所述第三DCI信令中触发所述参考信号发送,并根据所述第三DCI信令的指示确定所述参考信号的位置;根据所述第三DCI信令中触发所述参考信号发送,接收第四DCI信令,并根据所述第四DCI信令的指示确定所述参考信号的位置;根据所述第三DCI信令所在位置索引n,按照n+k的定时关系,确定所述参考信号位置,其中,k为定时关系的取值。
在一实施例中,所述第三DCI中携带所述定时关系k,其中,k为大于或等于0的整数或整数集合。
在一实施例中,所述第三DCI信令或第四DCI信令中还携带以下至少之一:所述参考信号的时域符号位置或符号位置集合;所述参考信号的频域图样索引;所述参考信号的符号与频域图样间的对应关系索引。
在一实施例中,所述终端空置相邻基站和/或相邻基站中终端的参考信号资源位置;所述终端调整传输或接收的beam;所述终端调整传输的功率。需要说明的是,这些操作可以是终端接收服务基站的指示,并根据所述服务基站的指示来执行。
在一实施例中,第三应用单元还配置为:根据获取的参考信号配置信息周期性地进行信道测量和/或干扰测量;第四应用单元还配置为,根据获取的参考信号配置信息非周期性地进行信道测量和/或干扰测量。
在一实施例中,相邻设备间的参考信号采用相同或不同的的配置信息,其中,所述配置信息包括以下至少之一:序列;子载波间隔;图样;资源 位置;循环移位;符号。
实施例3
本发明中提供的参考号信号设计方法,不局限于某个参考信号。可以是解调参考信号(De Modulation Reference Signal,DMRS),或信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),其中,CSI-RS又分为:零功率的信道状态信息参考信号(Zero Power CSI-RS,ZP CSI-RS),和非零功率的信道状态信息参考信号(Non-Zero Power CSI-RS,NZP CSI-RS),或探测参考信号(Sounding Reference Signal,SRS),或相位追踪参考信号(Phase Trace Reference Signal,PTRS)方式,或新设计的参考信号等中之一。
本发明中设计的参考信号可以用于实现之以下至少之一功能:用于解调控制信道;用于解调数据信道;用于信道状态信息获取;用于跨链路干扰测量;用于干扰链路识别;用于干扰源识别;用于波束追踪;用于波束管理;用于现有技术中参考信号中所有功能中任意至少之一。
由于在NR技术中,没有小区特定参考信号(Cell-specific Reference Signal,CRS),这将使得下行控制信道(Physical Downlink Control Channel,PDCCH)无法快速的被解调,或者,快速获取信道状态信息。即便可以采用数据区域的DMRS来解调控制信道,但由于其DMRS的位置比较靠后,将会导致PDCCH信道解调时延过大等问题。同理,数据区域发送的CSI-RS也可以获取信道状态信息,但对于快速基于CSI-RS获取信道状态信息,和/或干扰状况(例如,干扰链路方向,干扰源,干扰强度/水平等),现有技术中的CSI-RS是不能满足的。基于此,需要设计一种前置的参考信号,用于满足上述需求中至少之一。除此之外,还可以设计一些额外的参考信号用于补充或增强其所述参考信号的性能,或者,用于应用于其他场景带来的问题的解决。所述额外的参考信号可以与前置的参考信号的频域图样, 频域密度,复用端口数目中至少之一相同,或不同。本发明设计的参考信号适用于上行,和/或下行。
在以下的方法中,符号索引按照时间顺序分别为0、1、…。一个物理资源块(Physical Resource Block,PRB)内的子载波索引按照频域从低到高的顺序分别是0、1、…、11。参考信号的时-频位置用(X,Y)表示。其中,X表示参考信号的频域符号数目,Y表示时域的资源数目。所述频域资源可以是RE,或者,RB。这里,表示参考信号的时-频资源位置中的X和Y在括号中的位置不仅局限于时域在前,频域在后。实际上也可以使频域在前,时域在后。下面实施例中以频域在前,时域在后为例说明,本实施例中参考信号的设计方法。
对于NR技术中,如果沿用现有的参考信号,例如,DMRS,CSI-RS,SRS等方法,现有的参考信号位置比较靠后,不利于设备处理时延的减低,或不适用于自包含反馈方式,或不利于小区间协调或基于参考信号的干扰估计,或多载波场景。此外,若所述参考信号主要用于干扰估计,则所述参考信号的频域密度可以相对稀疏。
在现有技术中,参考信号可以用于获取信道状态信息,和/或用于,波束管理(beam management),和/或用于波束追踪。而对于双工技术中,参考信号还需要用于进行干扰测量,和/或干扰链路方向识别,和/或干扰源识别。
基于此,根据应用场景的不同,和/或设计需求的不同,其参考信号的时域位置,和/或频域位置,和/或时域密度,和/或频域密度,和/或频域图样也可能会有所不同。从这个角度看,不同应用场景下,参考信号的模式也需要随之改变,和/或通知给相应的设备。进一步地,需要制定不同场景时,参考信号的发送方式以及时和/或频域资源位置以及通知方式。以及,在特定场景下,参考信号如何发送,以及,时和/或频域资源位置以及通知方式。
本发明中的方法适用于基站侧,和/或用户设备(User Equipment,UE)侧。下面实施例中所述的子帧相关描述或方法,也适用于时隙slot,特定时间单元,一个或多个符号构成的时间单元等情况。同理,下面实施例中所述的一个RB中的参考信号图样(例如,资源粒子(Resource Element,RE)图样)设计方法,也同样也扩充为适用于RB,资源块组(RB Group,RBG),子带,资源粒子组(RE Group,REG),或其他图样设计中。可选地,也可以设计RB图样,或RBG图样,或子带图样,或REG图样。
本发明实施例中给出的参考信号图样并局限于在优选实施例中给出的时域位置,还可以用于一个子帧或时隙或特定符号组成的单元中至少之一符号。在一实施例中,为了尽可能的获得干扰信息,和/或信道状态,所述参考信号尽可能位于靠前的符号上。在一实施例中,对于7个符号情况,参考信号可以位于符号0,1,2,3,4,6中至少之一。而对于14个符号情况,参考信号可以位于符号0,1,2,3,4,6,7,8,12,13中至少之一。进一步地,所述在不同的符号上,频域图样可以相同或不同。此外,用于获知干扰测量信息或用于测量功能的参考信号的频域图样和/或密度与现有技术中的参考信号不同或相同。所述用于获知干扰测量信息或用于测量功能的参考信号的频域图样和/或密度或时域和/或频域资源位置可与现有技术中参考信号配置或通知方式相同,和/或采用相同的信令(例如,可以通过该信令配置参考信号模式集合中至少之一,所述模式用于实现现有技术参考信号功能,和/或用于测量或干扰状态获取功能,或其他功能等。),或者,通过独立的信令(高层RRC或物理层DCI信令)配置所述用于测量或干扰状态获取功能参考信号的配置。
为了更好地理解本发明实施例中的技术方案,本实施例通过几个优选实施例对上述实施例中参考信号的设计方法进行具体说明。
优选实施例一
本实施例中给出一种参考信号的设计方法。【仅给出一个PRB内的图样模式】
所述参考信号模式可以通过以下至少之一构成:起始位置,资源大小,资源之间的间隔,天线端口数,循环前缀类型,子帧类型,子帧配置,子载波间隔,时域符号数目,频域资源数目,密度。通过所属构成参考的不同可以获得不同的参考信号模式。
例如,对于天线端口数为1,时域符号数目为1,根据资源大小可以确定一个基本资源单元。例如,资源大小为1,可以获得一个PRB内的基本资源单元为(X,Y)=(1,1)。其中,X表示频域资源大小,Y表示时域符号数目。进一步地,可根据设置不同的起始位置,和/或资源间隔,和/或频域资源数目可以获得不同的参考信号在一个符号内的图样或模式。这里,仅举例说明参考信号模式或图样的构成方法,并未局限模式或图样仅为举例所示的一种情况,任何通过所述参数构成的参考信号图样或模式均在本发明的覆盖范围内。比如,对于天线端口数为1,起始位置为0,资源大小为1,资源之间间隔为6,时域符号数为1,由此构成的该参考信号模式(或称为图样)为子载波#0,和子载波#6。又如,对于天线端口数为1,起始位置为0,资源大小为1,资源之间间隔为4,时域符号数为1,由此构成的该参考信号模式(或称为图样)为子载波#0,和子载波#4,和子载波#8。又如,对于天线端口数为1,起始位置为0,资源大小为2,资源之间间隔为4,时域符号数为1,由此构成的该参考信号模式(或称为图样)为子载波#0,子载波#1,子载波#4,子载波#5,子载波#8,子载波#9。
例如,对于线端口数为2,时域符号数目为1,其一个PRB内的基本资源单元为(X,Y)=(2,1)。进一步地,根据2天线端口在频域上资源是否连续可以获得不同的基本单元。例如,对于两个天线端口对应资源在频域上为连续的子载波,则基本资源单元在频域的位置为子载波#a和子载波 #a+1。若两个天线端口对应的资源在频域上为非连续的子载波,则基本资源单元在频域的位置为子载波#a和子载波#b。进一步地,根据两天线端口基本资源单元在频域上的起始位置,以及,资源间隔不同,即可获得不同的参考信号图样或模式。所述资源间隔可以使非连续的不同端口对应资源之间的间隔,也可以是同一个端口在频域上不同位置之间的间隔。起始位置,可以是不同端口连续资源的起始位置,也可以是不同端口对应的频域资源起始位置。
例如,对于天线端口数为2,时域上占用符号为2,其一个PRB内基本资源单元为(X,Y)=(2,2)。同天线端口数为2,时域符号数目为1情况类似,不同之处在于根据两个端口在时域上是否为连续资源情况而可以获得不同基本单元。例如,对于两个天线端口对应资源在时域上为连续的符号,则基本资源单元在时域的位置为符号#a和符号#a+1。若两个天线端口对应的资源在时域上为非连续的符号,则基本资源单元在时域的位置为符号#a和符号#b。进一步地,根据两天线端口基本资源单元在频域上的起始位置和/或时域的起始位置,以及,时域和/或频域资源间隔不同,即可获得不同的参考信号图样或模式。
进一步地,两天线端口对应的参考信号图样也可以通过一天线端口组合而成。通过一天线端口是时域,和/或频域上的起始位置,资源间隔可以获得不同参考信号图样。
同理,4/8/12等天线端口对应的参考信号图样也可以根据时域占用符号数目,以及频域占用子载波数目,以及,时域资源之间是否连续,以及,频域资源之间是否连续,以及,是否可以有比自身端口数小的端口组合而成来获得不同的参考信号图样或模式。
进一步地,对于特定资源,所述参考信号图样或模式是特定资源专属的。所述资源可以使整个带宽,或带宽中的一部分(例如,带宽中的一个 或多个子带,或一个或多个PRB,或一个或多个RBG等)。针对不同的特定资源,所述参考信号图样或模式可以是不同的。可选的,也可以相同。
进一步地,所述参考信号图样或模式可以是子帧,或符号,或区域专属的。针对不同子帧,或符号,或区域,所述参考信号图样可以配置不同。可选的,也可以相同。所述,子帧可以是常规子帧,多播/组播单频网络(Multicast Broadcast Single Frequency Network,MBSFN)子帧,自包含子帧中至少之一。常规子帧,包含上行子帧,下行子帧,特殊子帧中至少之一。自包含子帧可以是上行占主导的自包含子帧,下行占主导的自包含子帧中之一。区域可以是控制区域,数据区域,gap区域中至少之一。
所述子帧配置,可以理解为一段时间内的上-下行子帧配置情况。进一步地,所述子帧配置中可以包含以下至少之一:固定子帧,动态子帧。固定子帧是指在某些子帧位置上固定为上行或下行,动态子帧则是指在该子帧位置上和/或下行传输属性并未确定,可以根据情况,动态指示或改变。
优选实施例二
本实施例给出一种参考信号的设计方法。这里,假定设备已获取参考信号信息,或按照预定的参考信号发送方式进行传输,则根据不同需求,设备调整或改变其参考信号资源位置和/或图样或模式或参考信号中部分资源位置和/或图样或模式。
步骤一:设备获取参考信号相关信息。基于获得的参考信号信息,设备可以传输或接收该参考信号。
所述参考信号相关信息,包括以下至少之一参数:参考信号模式索引,时域模式(索引),时域符号索引或索引集合,时域模式的周期,频域模式(索引),频域子载波索引或索引集合,频域模式的周期,频域起始位置(子载波/PRB/子带等起始位置),一个PRB内资源的间隔,频域资源大小,时域起始位置(子帧起始位置或子帧内符号起始位置),时域资源大小,时域 符号间隔,与模式相关联的RPB中的RE位置,与模式相关联的一个子帧/节点(slot)中的符号位置,调度时域位置信息,调度的频域资源信息。
所述参考信号模式索引可以是参考信号在一个子帧或slot内的时-频图样集合中之一对应的标识;也可以是参考信号在一个slot内的基本资源单元集合中之一对应的标识;也可以是参考信号在一个或对个符号上的基本资源单元集合中之一对应的标识。时域模式可以是参考信号在一个子帧或slot内的时域图样集合中之一;时域符号索引或索引集合可以是参考信号在时域上所在的符号位置,或符号位置集合。时域模式的周期可以是间隔一定子帧或slot就重复一次该时域模式。频域模式(索引)可以是一个PRB/子带/RBG/带宽/特定频域资源内的频域图样集合中之一或对应的索引。频域子载波索引或子载波索引集合可以是参考信号在一个RPB/子带/RBG/带宽/特定频域资源内的子载波位置或位置集合。频域模式的周期可以是间隔一定的PRB/子带/RBG/带宽/特定频域资源就重复一次该频域模式。
所述参考信号信息可以通过高层无线资源控制RRC信令配置,或者,通过物理层下行控制指示DCI信令,或者,预定义方式获取。其中,对于通过信令方式获取参考信号信息,其相应的RRC或DCI信令中一定包含用于指示所述参考信号信息所包含的参数内容。
对于RRC信令方式配置参考信号信息,则可以使静态配置,或半静态配置。静态配置是指一经配置就一直使用该模式进行参考信号发送。半静态配置是指在一定时间内配置一次参考信号模式,所述每次配置的参考信号模式可以使不同的。所述半静态配置的模式可以使周期性出现的,或者,是根据特定的需求或事件触发配置一次参考信号模式。例如,在周期性点上或特定事件触发配置参考信号模式,所述新配置的参考信号模式可以再下一次配置之前一直生效,也可以使仅在一个或多个子帧上生效,其他子帧上依然采用原来或模式的参考信号模式。所述事件可以有干扰测量需求 或测量请求,或当前子帧或slot为动态/灵活子帧,或相邻设备之间传输链路方向相反,或存在交叉链路干扰场景。
对于DCI信令方式配置参考信号信息,则可以根据调度情况,和/或子帧类型,和/或设备之间的信息交互,和/或长期测量的干扰水平等,动态的配置参考信号。
所述RRC和/或DCI信令可以是基站和终端共享的,或者,基站专有,或UE专有,或特定子帧专有,或资源专有。
步骤二:设备基于接收到的参考信号信息进行参考信号的传输。
所述参考信号信息中还可以包含用于测量的参考信号时域符号位置,和/或用于测量的参考信号区域,和/或频域图样索引或频域资源位置信息。对于有测量需要的设备,则基于此信息,在相应的符号位置进行干扰测量,以获取干扰水平或强度,和/或干扰源,和/或干扰链路方向。
这里,以参考信号DMRS为例,说明本发明的方法。假定设备获取的参考信号DMRS信息为:参考信号模式索引2,以及,测量符号位置为3。所述参考信号模式索引2对应的频域图样为子载波#0,子载波#1,子载波#3,子载波#4,子载波#6,子载波#7,子载波#9,子载波#10,时域符号位置#0,#1,#3,#6,#9。若进行下行传输的基站接收到该信息,则在所述时-频资源上进行DMRS信号发送。在一实施例中,进行下行接收终端UE也接收到该信息,若没有额外通知UE进行测量的参考信号时和/或频域信息,则UE默认位于控制信道之后,数据传输之前的参考信号为测量参考信号。基于此,UE进行DMRS接收并解析,是否存在交叉链路干扰。在一实施例中,下行链路和上行链路用于测量的DMRS在同一个符号,且,彼此按照频分复用方式复用。例如,下行在符号#3上频域图样为子载波#0,子载波#1,子载波#3,子载波#4,子载波#6,子载波#7,子载波#9,子载波#10,上行在符号#3上频域图样为子载波#2,#5,#8。其中,下行在子载 波#2,#5,#8不发送,或零功率发送,或空置。上行在子载波#0,子载波#1,子载波#3,子载波#4,子载波#6,子载波#7,子载波#9,子载波#10不发送,或零功率发送,或空置。进行下行接收的UE或进行上行接收的基站可以通过在子载波#2,#5,#8上检测干扰水平超出预设门限来判断是否存在交叉链路干扰。同理,下行接收的UE,或进行上行接收基站可以在子载波#0,子载波#1,子载波#3,子载波#4,子载波#6,子载波#7,子载波#9,子载波#10上检测干扰水平是否超出预设门限来判断是否存在交叉链路干扰。这种情况参考测量信号与其他符号上的参考信号频域图样一样情况。
在一实施方式中,该方法也适用于测量参考信号与其他符号上的参考信号的频域图样不一样的情况。由这个例子可以看到,上行和下行参考信号的图样不一样。这样使得上下行用于测量的参考信号图样不能进行统一设计。为了实现上下行测量参考信号的图样进行统一设计,则从频域图样密度,以及,基本资源图样角度设计不同。如,在发送测量参考信号的符号上,其频域图样可以子载波#0,#1,#6,#7。而另一个链路方向的测量参考信号则在子载波#3,#4,#9,#10。可选地,所述上下行参考信号图样可以是相同的图样,但可以采用不同循环移位(Cyclic Shift,CS)。例如,奇数CS索引用于上行,而偶数CS索引用于下行,或者,前N个CS索引用于上行,而后面M个CS用于下行。或者,从索引为A,间隔为B对应的CS索引用于上行,而其余的CS用于下行。
此外,若设备除了接收到参考信号信息,还接收用于测量的参考信号的符号位置,和/或频域图样信息,和/或空置的频域图样信息,CS信息,则根据该信息进行干扰测量,以及,干扰链路识别。
又如,基站以CSI-RS作为测量参考信号,UE以SRS作为测量参考信号。若基站接收到所述参考信号信息之后,可以进行信息交互,从而得知必须之间的用于测量参考信号的位置信息,方便其进行干扰测量和/或干扰 水平估计。可选地,设备之间也可以不进行信息交互。即基站和/或UE可以在相应的测量参考位置上进行干扰测量。这里我们不关注除了测量参考信号之外的参考信号位置,假定下行测量参考信号CSI-RS位于控制信道之后,若下行控制与下行数据传输之间有空闲(gap),则CSI-RS在gap中发送,而上行测量参考信号SRS在下行控制与上行数据之间的gap上发送。注意,在gap中CSI-RS位置可以与SRS位置不同,或相同。相同的情况下,CSI-RS的图样在一实施例中地为频域按照梳齿方式发送。与SRS采用频分复用方式共存。不同的情况下,在gap中CSI-RS与SRS之间的前后位置可以使预定义,或者,根据获取参考信号信息,或者,DCI指示确定。进一步地,用于测量的参考信号也可以在数据区域的开始,或者,在控制信道区域。对于后者,终端根据在控制区域内接收到的下行参考信号信息或图样确定其后续传输的链路方向,和/或干扰强度。
这里就不一一举例说明设备基于不同的参考信息参数而获取发送参考信号或接收和/或测量参考信号的位置。
优选实施例三
与实施例二不同之处在于,可以调整参考信号传输模式,或测量参考信号的时域和/或频域位置或图样或模式。
假定设备已获取相关参考信号位置信息,在没有接收到额外的指示信息的情况下,设备按照接收到的信息,进行参考信号的传输或接收。
方式一:参考信号传输模式可以周期性地调整。所述传输模式可以是针对不同需求场景对应的参考信号图样或模式,也可以是同一需求中参考信号的图样或模式,或者,多个需求混合场景下,参考信号图样或模式。也就是说,在周期性位置上参考信号的发送模式会发生改变。对于切换成那种模式可以根据应用场景,或测量请求,或采用的干扰消除机制确定。
在周期性位置上,设备按照预定义,或基站与UE/基站与基站/UE与 UE事先约定的时域位置,和/或频域图样进行发送和接收(测量)。
所述周期性的位置可以由起始位置,和周期参考确定。此外,所述参数可以由以下至少之一方式确定:预定义,RRC信令,物理层DCI信令。对于进行干扰测量需求而言,所述预定义,或基站与UE/基站与基站/UE与UE事先约定的参考信号时域位置,和/或频域图样是:时域上的符号位置,时域占用的符号数目,频域上的图样索引,频域起始位置,频域资源大小,频域资源间隔,频域带宽/子带/PRB/RBG。
方式二:采用非周期方式触发和/或指示参考信号的时域和/或频域位置。
这里,仅给出用于进行干扰测量的参考信号的时域和/或频域位置确定。其他设计需求或场景中参考信号位置也可以采用本发明中的方法。
情况1:预定义参考信号的频域图样或模式,和/或符号位置。根据收到用于指示所述预定义参考信号频域图样或模式,和/或时域位置生效的信令,设备在收到信令之后的第一个周期点上的预定时域位置上使用所述预定义的参考信号的频域图样或模式。
例如,预定义参考信号频域图样在一个PRB为子载波#0,#1,#6,#7,时域符号位3(符号从0开始),触发信令在子帧n上发送,子帧n之后第一个周期性点为n+1子帧,则可以可知设备在子帧n+1中符号3上按照频域图样子载波#0,#1,#6,#7进行参考信号发送。相应的接收设备,也在该符号上按照所述图样进行干扰测量,和/或信道估计,和/或信道状态信息获取。
情况2:预定义参考信号的频域图样或模式,和/或符号位置。通过DCI信令触发或指示参考信号时域和/或频域图样或模式生效的子帧位置。例如,DCI中引入一个触发和/或指示参考信号图样字段,占用n个比特,其可以指示参考信号图样在那些时域位置上使用。
情况3:预定义参考信号的频域图样。设备根据在子帧n上接收到的触发信息,确定所述频域图样生效或发送或接收的位置信息。在触发信息中携带了k和offset值,根据该值可以确定所述频域图样生效的子帧位置,以及,时域符号位置。k和offset为大于或等于0的正整数,在一实施例中,k为0,1,2,3,4,5,6,7,8,9,10等,offset为0,1,2,3,4,5,6,7,8,9,10,11等中至少之一。Offset最大值为一个符号或slot中包含的符号数目。
情况4:预定参考信号的频域图样。所述参考信号的频域图样是哪个时域子帧上,以及,该子帧中哪个符号上使用,可以通过触发和/或指示参考信号频域图样使能的DCI信令通知。
情况5:DCI信令触发执行测量,和/或指示参考信号时域和/或频域位置。即DCI信令中携带有测量触发指示消息,和/或明确指示了用于测量参考信号的时域位置,和/或时域符号,和/或频域图样模式索引,和/或频域起始位置,和/或频域资源间隔,和/或频域资源大小。
情况6:设备已获得参考信号时域和/或频域图样集合,通过DCI触发和/或指示一个时域和/或频域图样。所述时域和/或频域图样的时域位置若没有指示则可以为收到指示信令之后的第一个上行或下行子帧或动态子帧。
所述用于参考信号的时域和/或频域资源位置与现有LTE中参考信号出现冲突时,可按照以下方式之一处理:避开LTE技术中的参考信号,或采用LTE技术中参考信号不用时域和/或频域资源位置。对于NR与LTE共存场景,所述在设计本专利中的参考信号时,所述参考信号时域和/或频域图样可以尽量配置或设计为规避LTE中的参考信号时域和/或频域位置。而对于NR不与LTE共存场景,仅需要考虑场景和设计需求。
下面实施例给出一些典型的前置参考信号的设计例子,所述前置参考信号可用于进行干扰测量,链路方向识别,干扰源识别,信道解调(控制 信道,和/或数据信道),信道状态获取,信道估计,波束追踪,beam管理,其他参考信号可实现的功能中至少之一。
优选实施例四
本实施例中,提供时域占用一个符号,频域占一个子载波/RE(例如,(X,Y)=(1,1))对应的参考信号设计。
这里假定以CRS的图样作为参考,设计本发明的参考信号,则参考信号的时域资源(也称为时域图样),和频域资源(也称为频域图样)可以为CRS的时域资源,和/或频域的子集,或者,超集。对于单端口情况下,CRS在一个符号上,一个PRB上的资源位置为:0、6。这里标记为K,即K为{0,6}。图5为现有单端口的CRS的时频资源位置的示意图。如图5所示,灰色部分的RE为一个天线端口(对于CRS来说,端口p为0)对应的时频资源。
而对于NR,由于没有引入CRS,因此,这将一定程度上影响PDCCH解调。基于此,本发明设计的参考信号除了可以解调PDCCH信道,和/或获取信道状态信息之外,还可以用于进行干扰估计。其中,所干扰估计可以是估计干扰强弱,和/或识别干扰源链路方向,和/或识别强/弱干扰源。进一步地,参考信号的位置可以尽可能靠前,也就是参考信号位置前置。
下面将详细举例说明频域占用一个子载波/RE对应的参考信号频域图样。
对于一个PRB而言,一个PRB中包含了12个子载波/RE(Resource Element,资源粒子),基于此,参考信号的频域位置K可以为0、1、2、3、4、5、6、7、8、9、10、11中之一。图6为本实施例中参考信号在时域上占用一个符号,频域上仅占用一个PRB中一个子载波/RE的示意图。如图6所示,从灰色部分的RE至粗体黑色竖条部分的RE依次对应一种参考信号频域资源位置。
假定一个子载波/RE资源位置对于一个天线端口,则设备之间通过频分复用方式,可以再一个PRB中复用12个设备。此外,可以通过引入循环移位CS,实现不同设备之间通过CS在一个子载波/RE资源上复用的目的。CS数目记为N,N为大于或等于1的正整数。在一实施例中,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24等。进一步,还可以采用频分复用方式和CS相结合的方式,实现更多设备间的复用。
优选实施例五
本实施例中,提供时域占用一个符号,频域占两个子载波/RE(例如,(X,Y)=(2,1))对应的参考信号设计。
对于一个PRB内占用的两个子载波/RE的情况,两个子载波/RE可以是频域上相邻的,也可以是不相连的。
第一种情况:参考信号在频域上不相邻的情况
对于这种情况,一个PRB中包含12个子载波,或RE(Resource Element,资源粒子),则参考信号的频域位置K可以为0、1、2、3、4、5、6、7、8、9、10、11中的两个任意不连续资源。
其中,参考信号的频域资源位置的确定,可以由参数:起始位置,和/或偏移量,和/或间隔参数确定。
这里以起始位置为0为例,说明参考信号频域资源位置。图7为根据本发明实施例的参考信号在一个符号上,频域一个PRB内的资源位置示意图。如图7所示,灰色部分的RE为参考信号的频域位置。进一步地,图7中给出的参考信号的起始位置为0,频域间隔从左到右依次为1,2,3,…10,频域偏移量从左到右依次为2,3,4,5,…,11。
进一步地,基于图7中任一频域资源图样,在一个PRB内参考信号的起始位置/偏移除了为0以外,还可以为1,2,3,4,5,6,…,11中之一。 实际上,针对图7中每一个偏移量,均可以通过不同的起始位置设置得到不同的频域图样。图8为本发明实施例中固定频域资源之间偏移为2,频域资源起始位置依次从频域低端向高端平移的示意图。按照相同的方法,对于频域资源之间偏移依次分别为3,4,5,6,7,8,9,10,11的情况,可根据不同频域起始位置偏移得到不同的参考信号频域图样。这里就不在一一给出示意图。
又如,图9为本发明中可选实施例的固定频域资源之间偏移为6,频域资源起始位置依次从频域低端向高端平移的示意图。如图9所示,3(a)~3(f)中灰色部分的RE为本发明中参考信号的频域偏移依次为0~5对应的时频资源。
假定两个子载波/RE资源位置对于一个天线端口,则设备之间通过频分复用方式在一个PRB中复用。对于不同设备之间(例如,不同设备之间采用不同的天线端口),可以通过天线端口或对应的资源位置间的间隔或偏移参数确定其频域资源位置或频域资源图样。以第一个天线端口频域占用子载波/RE0,6对应的资源为例,假定频域资源起始位置(例如,假定频域起始位置总以频域资源中低的频域资源方向开始)对应资源之间间隔或偏移为3,则可以确定第二天线端口的频域位置为3,9。对于4天线端口的参考信号,则第三个或第四个天线端口对应的频域两个RE可以为1,7,或2,8,或4,10,或5,11中之一。可选地,不同天线端口对应的频域资源之间应该为频分复用的方式。如果支持频域上离散的RE之间使用频域正交覆盖码(Orthogonal Covering Code,OCC),则两个RE上可以用于2个,或4个,或8个,或12个等端口复用。例如,两个RE上可以复用多个天线端口,其可以通过CS和频域OCC的方式来实现,例如,CS和OCC如何实现。
第二种情况:参考信号在频域上相邻的情况
对于这种情况,一个PRB中包含12个子载波,或RE(Resource Element,资源粒子),则参考信号的频域资源位置K可以为0、1、2、3、4、5、6、7、8、9、10、11中连续资源中的任意两个。图10为本发明实施例的不同频域偏移/起始位置对应的连续两个RE对应的参考信号频域图样的示意图。如图10所示,深灰色RE部分对应的资源为参考信号的频域图样,从图10的左边依次向右为频域偏移/起始位置由低到高的示意图。假定两个连续的子载波/RE资源位置对于一个天线端口,则设备之间通过频分复用方式在一个PRB中复用。对于不同设备之间(例如,不同设备之间采用不同的天线端口),可以通过不同天线端口或对应的资源位置间的间隔或偏移参数确定其频域资源位置或频域资源图样。以第一个天线端口频域占用子载波/RE 0,1资源为例,则在12个子载波/RE内可以有6个天线端口或设备通过频分复用方式在一个PRB内复用。实际天线的端口数位1,2,4,8,12,等,即通过频分复用方式可实现4天线端口或设备间的复用,例如,第二,第三,第四天线端口或设备可以占用频域上子载波/RE 2,3,或4,5,或6,7,或8,9,或10,11中之一。若一个天线端口或设备使用或占用了一个频域资源位置或图样,则另一个天线端口则不可使用。进一步,为了扩大一个符号上支持的天线端口数,则可通过频分,码分(本实施例中指频域OCC),CS中任意组合方式实现。
优选实施例六
本实施例中,提供时域占用一个符号,频域占三个子载波/RE(例如,(X,Y)=(3,1))对应的参考信号设计。
对于一个PRB内占用的三个子载波/RE的情况,三个子载波/RE可以是频域上相邻的,也可以是不相连的。
对于频域上不连续的RE的情况,则与实施例二中的方式相同,通过频域起始位置/偏移量,和RE之间间隔参数来确定参考信号的图样。其中, RE之间的间隔可以等间隔,和/或不等间隔的。这里就仅介绍频域上RE之间等间隔的图样,不等间隔的图样这里讲不在一一罗列和说明,因为方法是相同的。图11为本发明中实施例的频域起始位置或偏移为3,间隔为3资源上对应的参考信号资源位置的示意图。若图11所示,灰色RE的部分为参考信号的频域位置,例如,3,6,9。若该参考信号图样对应的一个天线端口,则对于多个天线端口的情况,可以通过频分复用方式,和/或码分复用方式,和/或循环移位方式复用来实现。例如,假定第一个天线端口对应3,6,9,天线端口之间采用频分复用方式,则,第二个天线端口对应频域资源位置为1,4,7,或2,5,8,或者,4,7,10,或者,5,8,11。对于频域上连续的RE的情况,则可以有偏移起始位置参考,和连续的RE长度确定频域图样。可选3个RE不能对应大于2的天线端口,因此,该三个连续的RE图样仅可表示一个天线端口。但对于多个天线端口可以通过频分复用方式实现。例如,第一个天线端口为0,1,2,则第二个天线端口的频域位置的开始位置可以通过第一个天线端口的最低频域资源位置,或最高频域资源位置为基准的偏移量确定,其中,偏移量一定为大于第一天线端口的连续长度或频域资源占用数目,例如,可以是3,4,5,或5,6,7,或6,7,8,或7,8,9,或8,910,或9,10,11。
优选实施例七
本实施例中,提供时域占用一个符号,频域占四个子载波/RE(例如,(X,Y)=(4,1))对应的参考信号设计。
对于一个PRB内占用的四个子载波/RE的情况,四个子载波/RE可以是频域上相邻的,也可以是不相连的。其中,参考信号在频域上的资源位置可以由以下至少之一参数确定:起始位置/偏移量,间隔,周期,连续资源数目。
对于子载波/RE在频域上不连续的情况,a1、对于频域上资源为等间隔 情况,若频域资源间隔为3,则对应的频域资源位置为0,3,6,9,或者,1,4,7,10,或者,2,5,8,11。如图12所示。
若频域资源间隔为2,则对应的频域资源位置为0,2,4,6,或1,3,5,7,或2,4,6,8,或3,5,7,9,或4,6,8,10,或5,7,9,11。a2、对于频域上不等间隔情况,频域资源位置为0,2,9,11,或1,3,8,10,或2,4,7,9等,这里不再一一罗列。
对于子载波/RE在频域上连续的情况,参考信号的频域资源位置可以为0,1,2,3,或1,2,3,4,或2,3,4,5,或3,4,5,6,或4,5,6,7,或5,6,7,8,或6,7,8,9,或7,8,9,10,或8,9,10,11。这里,对于连续的资源图样可以对应一个天线端口,或一个设备,对于这种情况,则不同设备之间复用可以通过频分方式复用。或者,若不同设备使用同一个天线端口或资源时,可以通过CS方式。若每个子载波/RE对应一个天线端口,或设备,则该图样实现图样中占用的频域对应的数目个设备或端口。进一步地,结合一个子载波/RE对应的资源上可以通过CS方式实现复用,则进一步扩大复用的天线端口数。
对于子载波/RE在频域上存在连续和不连续的情况,其中,该频域图样可以由2个(2,1)图样,或1个(1,1)和(3,1)组成。其中,这里2个(2,1)图样中RE可以使连续和不连续组合,或两个连续的组合。对于由2个(2,1)图样组成的参考信号频域图样为以下之一:0,1,3,4,或0,1,4,5,或0,1,5,6,或0,1,6,7,或0,1,7,8,或0,1,8,9,或0,1,9,10,或0,1,10,11。
不同设备之间复用可以通过频分复用。或者,也可以通过频域OCC方式,OCC的长度为4。也可以通过频分和CS结合,或者,频分和OCC结合构成的图样。也可以通过频分和CS结合的方式组成的图样。
优选实施例八
本实施例中,提供时域占用一个符号,频域占八个子载波/RE(例如,(X,Y)=(8,1))对应的参考信号设计。
对于一个PRB内占用的四个子载波/RE的情况,四个子载波/RE可以是频域上相邻的,也可以是不相连的。其中,参考信号在频域上的资源位置可以由以下至少之一参数确定:起始位置/偏移量,间隔,周期,连续资源数目。
对于子载波/RE在频域上连续的情况,频域资源位置为以下之一:0,1,23,4,5,6,7,或1,2,3,4,5,6,7,8,或2,3,4,5,6,7,8,9,或3,4,5,6,7,8,9,10,或4,,5,6,7,8,9,10,11。
对于子载波/RE在频域上不连续的情况,频域资源图样可由(1,1),(2,1),(3,1),(4,1)对应的图样获得。
对于对应频域占用12个子载波/RE的参考信号其设计方法同上。这里讲不再一一介绍。
上述实施例均为设计一个符号上的参考信号的设计方法,目的是为了进行干扰测量、快速信道状态获取、降低控制或数据信道的解调时延等。下面将分别介绍不同区域上参考信号设计方法。所述方法可以相互间任意组合。
优选实施例九
本实施例中,提供一种控制区域中参考信号的设计方法。控制区域占用的符号数不同,一定程度上也影响着参考信号的设计。例如,参考信号的时域位置,参考信号的时域图样,参考信号的频域图样,参考信号的频域位置。上述实施例一至五中所述的参考信号图样中任意之一均可以用于本实施例。但也不局限于上述实施例的图样设计。
在这里,用一个预设的符号数来设计,例如,按照最大的下行控制信道PDCCH符号来设计参考信号,如,最大的符号数目为3。
情况一:参考信号在控制信道区域内占用一个符号的设计。
为了方便起见,这里仅罗列几个典型的控制信道区域内占用一个时域符号的参考信号的设计。
典型例子1:图13为本实施例中参考信号在控制信道内占用一个符号的频域图样的示意图一。这里用k表示一个PRB内的子载波索引或标识。k为0,6对应的RE资源构成一种参考信号频域图样。基于此,通过设置不同的频域偏移量,可以构成不同的参考信号频域图样。例如,将k为0,6对应的参考信号图样作为基准,即频域偏移量为0。当偏移量依次增大,如:1,2,3,4,5时,对应的参考信号频域图样依次为k为1,7、k为2,8、k为3,9、k为4,10、k为5,11。进一步地,若上述图样之一为一个端口对应时频资源,则端口之间可以通过以下至少之一方式实现复用:
方式一:频分复用方式。例如,端口A对应的频域资源为k为0,6,端口之间按照频分复用方式,则端口B对应的频域资源为k为1,7,端口C对应的频域资源为k为2,8,端口D对应的频域资源为k为3,9,端口E对应的频域资源为k为4,10,端口F对应的频域资源为k为5,11。
方式二:频分复用和CS方式结合。在方式一的复用方式的基础上,为了复用更多的端口,则在一个频域图样对应的资源上可以通过CS的方式复用更多的端口。这里,基于方式一复用的端口数,进一步能复用端口的复用取决于CS的可用数目。
方式三:频分复用和OCC方式结合。在方式一的复用方式的基础上,为了复用更多的端口,则在一个频域图样对应的资源上可以通过频域OCC的方式复用更多的端口。与现有技术上的OCC不同之处,现有技术的OCC中可以能仅支持频域或时域上连续资源之间的OCC,而本专利中所述的OCC除了现有技术中的含义之外,还包括支持频域或时域上不连续资源之间的OCC。
典型例子2:图14为本实施例中参考信号在控制信道内占用一个符号的频域图样的示意图二。如图14所示,k为0,4,8对应一个频域图样,同理,基于k为0,4,8对应的频域图样,通过设置不同的频域偏移量获得不同的频域图样。例如,偏移量为1(偏移量从0开始)对应的频域图样为1,5,9。偏移量为2(偏移量从0开始)对应的频域图样为2,6,10。偏移量为3(偏移量从0开始)对应的频域图样为3,7,11。
假定上述频域图样对应一个端口,则不同端口之间的复用可以按照以下至少之一方式:
方式一:频分复用方式。例如,端口A对应的频域资源为k为0,4,8,端口之间按照频分复用方式,则端口B对应的频域资源为k为1,5,9,端口C对应的频域资源为k为2,6,10,端口D对应的频域资源为k为3,7,11。通过这样方式一个符号上可以复用4个端口。
方式二:频分复用和CS方式结合。在方式一的复用方式的基础上,为了复用更多的端口,则在一个频域图样对应的资源上可以通过CS的方式复用更多的端口。这里,基于方式一复用的端口数,进一步能复用端口的复用取决于CS的可用数目。
方式三:频分复用和OCC方式结合。在方式一的复用方式的基础上,为了复用更多的端口,则在一个频域图样对应的资源上可以通过频域OCC的方式复用更多的端口。与现有技术上的OCC不同之处,现有技术的OCC中可以能仅支持频域或时域上连续资源之间的OCC,而本专利中所述的OCC除了现有技术中的含义之外,还包括支持频域或时域上不连续资源之间的OCC。
典型例子3:图15为本实施例中参考信号在控制信道内占用一个符号的频域图样的示意图三。如图15所示,k为0,1对应一个频域图样,同理,基于k为0,1对应的频域图样,通过设置不同的频域偏移量获得不同的频 域图样(注意,这里的偏移量是2的倍数。即偏移量是连续子载波数目的倍数)。例如,偏移量为2(偏移量从0开始)对应的频域图样为2,3。偏移量为4(偏移量从0开始)对应的频域图样为4,5。偏移量为6(偏移量从0开始)对应的频域图样为6,7。偏移量为8(偏移量从0开始)对应的频域图样为8,9。偏移量为10(偏移量从0开始)对应的频域图样为10,11。假定所述频域图样对应一个端口,则端口之间可以通过频分复用,OCC,CS之中至少之一方式复用。同理,所述频域图样中至少之一也可以对应一个端口,复用方式同上。所述图样在频域上可以是连续的,或离散的。
这里仅示意参考信号在控制信道区域中第一个符号位置上的频域图样。在控制区域中其他位置上(如,符号2,符号3)的频域图样与这里举例的频域图样相同,不同之处仅在于时域符号位置不同。此外,对于一个频域图样而言,该图样中所述资源之间的间距可以通过周期,或间隔,或频域offset确定,而频域图样中第一个资源可以通过一个起始位置来指示或确定。
情况二:参考信号在控制信道区域内占用两个符号的设计。
对于参考信号占用控制区域的两个符号情况,后一符号上的图样可以与前一符号上的频域相同,或频域上具有一个偏移。可选的,不同符号上资源可以对应一个端口,或者,对应不同的端口。这里,以情况一中典型例子来说明两个符号上的参考信号图样设计。
A1、两个符号上的频域图样相同。
图16为本发明中实施例的两个符号上频域图样资源位置示意图一。
图17为本发明中实施例的两个符号上频域图样资源位置示意图二。
图18为本发明中实施例的两个符号上频域图样资源位置示意图三。
图16至18中三个图之间的不同之处在于,参考信号占用的时域位置不同。图16至18中第一个图为参考信号占用时域第1,和第2符号的示意 图,第二图为参考信号占用时域第1和3符号的示意图,第三图为参考信号占用时域第2和3符号的示意图。进一步地,所述两个符号示意的频域图样可以从两个角度理解:第一,一个符号上相同标识的资源对应一个端口。不同符号上相同标识的资源对应不同的端口。第二,两个符号上相同标识对应的资源对应一个端口或端口组。同一个端口组中的端口通过时域OCC,和/或CS复用,和/或频分复用。
A2、两个符号上的频域图样不同。
这里所述的频域图样不同可以理解为频域资源密度不同,和/或频域图样相同但频域位置不同。不同符号上引入不同频域图样的好处在于可以根据时域位置不同而为不同链路配置不同的参考信号图样,用于识别干扰链路方向和/或干扰源。这里就不一一罗列举例。仅给出一个简单的示意图说明不同符号上频域图样不同的情况。
图19本发明中实施例的两个符号上不同频域图样资源位置的示意图。
情况三:参考信号在控制信道区域内占用三个符号的设计。
情况三的设计思路与情况二一样。不同之处可以为三个符号上可以彼此不同的频域图样,和/或两个符号上频域图样相同(所述两个符号可以是相邻的符号,或是,离散的符号),另一个符号上不同。进一步地,某些符号上的频域图样密度可以与其他不同。
优选实施例十
本实施例中,给出一种参考信号配置方式。
首先,获取参考信号相关配置信息。
所述参考信号配置信息,包括以下至少之一:参考信号的子帧位置,参考信号的符号位置,参考信号的符号数目,参考信号的频域起始位置,参考信号的频域资源数目,参考信号的图样,测量请求,参考信号和/或图样对应的端口/beam,周期/间隔,参考信号发送时间窗(例如,时间窗的起 始位子,持续长度),时间窗内的参考信号发送的子帧位置,时间传输内参考子帧上的符号位置,频域带宽,序列,numerology(例如,子载波间隔,CP),发送功率。
其中,所述时间窗可以配置在所述参考信号位置之前,或之后,或包含。在所述时间窗的所述参考信号位置上,设备可以发送或测量所述参考信号,或通过DCI触发或指示在时间窗的发送或测量一次或多次参考信号,和/或触发和/或指示设备在时间窗内发送参考信号的位置。
所述频域资源可以是PRB,RE,子带,RBG,REG中之一。所述参考信号的图样可以指时域图样,和/或频域图样。所述周期/间隔适用于时域,和/或频域。
所述参考信号配置信息中至少之一,设备可以通过以下至少之一方式获取:高层无线资源控制RRC信令,物理层下行控制信息DCI信令,设备之间事先约定,预定义。设备之间事先约定,所述设备可以指基站,和/或终端。
在一实施方式中,相邻设备之间可以交互配置的参考信号信息。这里所述的方法适用于同链路,也适用于不同链路,也适用于相同类型的设备间,也适用于不同类型的设备间,也适用于可以进行交互的任何设备等场景。例如,对于基站侧,第一基站或基站组为进行下行传输的基站,相邻的第二基站或基站组为进行上行接收的基站。基于此,第一基站或第一基站组可以将本小区的参考信号配置信息通知给相邻的第二基站或基站组。此外,第一基站或基站组也可以将本小区的参考信号配置信息通知给相邻第二基站或基站组中的终端或终端组。所述第一基站或基站组所述的操作,也适用于第二基站或基站组。除了上述一个基站或基站组给相邻基站或基站组或终端或终端组通知参考信号配置信息之外,设备(基站和/或终端)之间也可以相互发送各自的配置信息。对于终端侧,对于进行下行接收的 终端,接收基站侧发送的参考信号信息(所述参考信号信息除了包含本小区发送的参考信号信息外,可选地,还包括相邻小区的参考信号信息)。对于进行上行发送的终端,终端按照配置的参考信号进行参考信号发送。其中,终端也可以将自身的参考信号信息发送给相邻的终端和/或基站。从而使得相邻终端和/或基站可以执行以下操作中至少之一:执行测量操作,空置相邻设备的参考信号对应部分或全部资源,调整传输或接受beam,调整传输或调度策略,调整传输功率,通知调整的功率因子/值。
在一实施方式中,设备基于接收的参考信号配置信息,进行测量。对于终端测而言,可以将测量的结果,和/或对应的测量资源信息上报给服务基站和/或相邻的基站。
实施例4
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以用于保存上述实施例一所提供的供电方法所执行的程序代码。
在本实施例中,上述存储介质可以位于计算机网络中计算机终端群中的任意一个计算机终端中,或者位于移动终端群中的任意一个移动终端中。
在本实施例中,存储介质被设置为存储用于执行以下步骤的程序代码:
S1,通过控制电路连接主路供电电路和辅路供电电路;
S2,通过控制电路接收主路供电电路和/或辅路供电电路提供的电源电压。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦 合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
所述集成的单元如果以硬件结构的形式实现时,本发明实施例还提供一种参考信号配置信息的应用装置,所述参考信号配置信息的应用装置的硬件组成结构示意图,如图20所示,参考信号配置信息的应用装置110包括:至少一个处理器111、存储器112和至少一个网络接口114。参考信号配置信息的应用装置110中的各个组件通过总线系统115耦合在一起。可理解,总线系统115用于实现这些组件之间的连接通信。总线系统115除 包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图20中将各种总线都标为总线系统115。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例中,基站或终端获取参考信号配置信息,其中,参考信号配置信息至少包括以下之一:本小区的参考信号配置信息,相邻小区的参考信号配置信息,相邻小区中终端的参考信号配置信息;基站或终端根据获取的参考信号配置信息进行传输或测量。使得基站或终端在对本小区链路进行测量的同时,可以对相邻小区有可能产生干扰的链路进行测量,实现了跨链路干扰的估计与识别,有效避免了相邻小区之间的跨链路干扰。

Claims (42)

  1. 一种参考信号配置信息的应用方法,包括:
    基站获取参考信号配置信息,其中,所述参考信号配置信息至少包括以下之一:本小区的参考信号配置信息,相邻小区的参考信号配置信息,相邻小区中终端的参考信号配置信息;
    所述基站根据获取的参考信号配置信息进行传输或测量。
  2. 根据权利要求1所述的方法,其中,所述基站获取参考信号配置信息,包括:
    所述基站获取相邻基站发送的参考信号配置信息,其中,所述相邻基站发送的参考信号配置信息至少包括以下之一:相邻小区的参考信号配置信息,相邻小区中终端的参考信号配置信息。
  3. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述基站发送本小区的参考信号配置信息和/或本小区中终端的参考信号配置信息给相邻基站或相邻基站中的终端。
  4. 根据权利要求1所述的方法,其中,所述参考信号配置信息,包括以下至少之一:
    参考信号的类型或类型集合,参考信号的资源信息,序列,子载波间隔,功率,测量请求指示。
  5. 根据权利要求4所述的方法,其中,所述参考信号类型或类型集合,包括以下至少之一:
    零功率类型参考信号,非零功率类型参考信号。
  6. 根据权利要求4所述的方法,其中,所述参考信号的资源信息,包括以下至少之一:
    时域资源起始位置,时域资源之间的间隔或周期,符号位置,符号位置集合,时域图样,时域时间窗信息,频域资源起始位置,频域资源 大小,频域资源之间的间隔或周期,频域图样,符号与频域图样间的对应关系索引,端口索引,波束索引,基本的时频图样或图样索引。
  7. 根据权利要求6所述的方法,其中,所述时域时间窗信息,包括以下至少之一:
    时间窗起始位置,时间窗长度,时间窗内参考信号的起始资源位置,时间窗内参考信号资源之间的间隔。
  8. 根据权利要求7所述的方法,其中,在所述时间窗内的参考信号资源中至少之一资源上,基站在所述时间窗内参考信号的资源上进行参考信号的传输或测量。
  9. 根据权利要求1至8任一项所述的方法,其中,所述基站通过以下至少之一的方式获取所述参考信号配置信息:
    高层无线资源控制RRC信令;
    物理层下行控制信息DCI信令;
    设备之间的事先约定;
    预定义。
  10. 根据权利要求1所述的方法其中,所述基站根据获取的参考信号配置信息进行传输包括:
    所述基站根据获取的参考信号配置信息周期性地发送参考信号;或
    所述基站根据获取的参考信号配置信息非周期性地发送参考信号。
  11. 根据权利要求10所述的方法,其中,所述基站非周期性地发送参考信号,包括:
    所述基站获取相邻基站发送的第一测量请求信息,并根据所述第一测量请求信息发送所述参考信号;或
    所述基站接收第一DCI信令,所述基站根据所述第一DCI信令的触发或指示发送所述参考信号。
  12. 根据权利要求11所述的方法,其中,确定基站发送所述参考信号的位置的方式包括以下至少之一:
    所述基站获取所述第一测量请求信息之后,确定所述参考信号的位置为:所述基站周期性发送的参考信号的位置;
    所述基站根据所述第一DCI信令触发所述参考信号发送,和/或根据所述第一DCI信令指示所述参考信号发送位置的信息,确定所述参考信号的位置;
    所述基站根据所述第一DCI信令触发所述参考信号发送,根据所述第二DCI信令的指示所述参考信号的位置信息,确定所述参考信号的位置;
    所述基站根据所述第一DCI信令所在位置索引n,按照n+k的定时关系,确定参考信号位置,其中,k为定时关系的取值。
  13. 根据权利要求12所述的方法,其中,所述第一DCI信令中携带所述定时关系k,其中,k为大于或等于0的整数或整数集合。
  14. 根据权利要求12所述的方法,其中,所述第一DCI信令或所述第二DCI信令中还携带以下至少之一:
    所述参考信号的时域符号位置或符号位置集合;
    所述参考信号的频域图样索引;
    所述参考信号的符号与频域图样间的对应关系索引。
  15. 根据权利要求1所述的方法,其中,所述方法还包括以下至少之一:
    所述基站空置相邻基站和/或相邻基站中终端的参考信号的资源位置;
    所述基站调整传输或接收的波束;
    所述基站调整传输的功率。
  16. 根据权利要求1所述的方法,其中,所述基站根据获取的参考信号配置信息进行测量包括:
    所述基站根据获取的参考信号配置信息周期性地进行信道测量和/或干扰测量;或
    所述基站根据获取的参考信号配置信息非周期性地进行信道测量和/或干扰测量。
  17. 根据权利要求1所述的方法,其中,相邻设备间的参考信号采用相同或不同的配置信息,所述配置信息包括以下至少之一:
    序列;子载波间隔;图样;资源位置;循环移位;符号。
  18. 根据权利要求17所述的方法,其中,相邻设备间的参考信号采用相同的配置信息时,所述相邻设备之间按照以下至少之一的方式复用或正交:
    基于相同的循环移位集合,且不同设备采用相同循环移位集合中不同的循环移位或循环移位子集中的循环移位;
    基于相同的序列,且不同设备采用不同加扰方式。
  19. 一种参考信号配置信息的应用方法,包括:
    终端获取参考信号配置信息,其中,所述参考信号配置信息至少包括以下之一:本小区的参考信号配置信息,相邻小区的参考信号配置信息,相邻小区中终端的参考信号配置信息;
    所述终端根据获取的所述参考信号配置信息进行接收或传输或测量。
  20. 根据权利要求19所述的方法,其中,所述终端通过以下至少之一方式获取所述参考信号配置信息:
    高层无线资源控制RRC信令;
    物理层下行控制信息DCI信令;
    设备之间的事先约定;
    预定义。
  21. 根据权利要求19所述的方法,其中,所述终端获取参考信号配置信息包括以下至少之一:
    所述终端从相邻基站获取所述相邻小区的参考信号配置信息;
    所述终端从相邻基站中的终端获取所述相邻小区中终端的参考信号配置信息;
    所述终端从服务基站获取以下至少之一:本小区的参考信号配置信息,相邻小区的参考信号配置信息,相邻小区中终端的参考信号配置信息。
  22. 根据权利要求19所述的方法,其中,所述参考信号配置信息包括以下至少之一:
    参考信号的类型或类型集合,参考信号的资源信息,序列,子载波间隔,功率,测量请求指示。
  23. 根据权利要求22所述的方法,其中,所述参考信号类型或类型集合,包括以下至少之一:
    零功率类型参考信号,非零功率类型参考信号。
  24. 根据权利要求22所述的方法,其中,所述参考信号的资源信息,包括以下至少之一:
    时域资源起始位置,时域资源之间的间隔或周期,符号位置,符号位置集合,时域图样,时域时间窗信息,频域资源起始位置,频域资源大小,频域资源间间隔或周期,频域图样,符号与频域图样间的对应关系索引,端口索引,波束索引,基本的时频图样或图样索引。
  25. 根据权利要求24所述的方法,其中,所述时域时间窗信息,包括以下至少之一:
    时间窗起始位置,时间窗长度,时间窗内参考信号的起始资源位置,时间窗内参考信号资源之间的间隔。
  26. 根据权利要求25所述的方法,其中,在所述时间窗内的参考信号资源中至少之一资源上,终端进行参考信号的传输或测量。
  27. 根据权利要求19所述的方法,其中,所述终端根据获取的所述参考信号配置信息进行传输包括:
    所述终端根据获取的所述参考信号配置信息周期性地发送参考信号;或
    所述终端根据获取的所述参考信号配置信息非周期性地发送参考信号。
  28. 根据权利要求27所述的方法,其中,所述终端根据获取的所述参考信号配置信息非周期性地发送参考信号包括:
    所述终端获取相邻小区中终端发送的第二测量请求信息,并根据所述第二测量请求信息发送参考信号;或
    所述终端获取第三DCI信令,并根据所述第三DCI信令的触发和/指示发送参考信号。
  29. 根据权利要求27所述的方法,其中,确定终端发送所述参考信号的位置的方式包括以下至少之一:
    所述终端获取所述第二测量请求信息之后,确定所述参考信号的位置为:所述终端周期性发送的参考信号的位置;
    所述终端根据所述第三DCI信令中触发所述参考信号发送,和/或根据所述第三DCI信令指示的参考信号发送位置的信息,确定所述参考信号的位置;
    所述终端根据所述第三DCI信令触发所述参考信号发送,根据所述第四DCI信令指示所述参考信号的位置信息,确定所述参考信号的位置;
    所述终端根据所述第三DCI信令所在位置索引n,按照n+k的定时关系,确定所述参考信号位置,其中,k为定时关系的取值。
  30. 根据权利要求29所述的方法,其中,所述第三DCI中携带所述定时关系k,其中,k为大于或等于0的整数或整数集合。
  31. 根据权利要求28或29所述的方法,其中,所述第三DCI信令或第四DCI信令中还携带以下至少之一:
    所述参考信号的时域符号位置或符号位置集合;
    所述参考信号的频域图样索引;
    所述参考信号的符号与频域图样间的对应关系索引。
  32. 根据权利要求19所述的方法,其中,所述方法还包括以下至少之一:
    所述终端接收服务基站的指示,和/或根据所述服务基站的指示执行以下至少之一的操作:
    所述终端空置相邻基站和/或相邻基站中终端的参考信号资源位置;
    所述终端调整传输或接收的波束;
    所述终端调整传输的功率。
  33. 根据权利要求32所述的方法,其中,所述终端空置相邻基站和/或相邻基站中终端的参考信号资源位置,调整传输或接受的波束,调整传输功率中至少之一可以通过所述服务基站DCI指示。
  34. 根据权利要求19所述的方法,其中,所述终端根据获取的所述参考信号配置信息进行测量包括:
    所述终端根据获取的参考信号配置信息周期性地进行信道测量和/或干扰测量;或
    所述终端根据获取的参考信号配置信息非周期性地进行信道测量和/或干扰测量。
  35. 根据权利要求19所述的方法,其中,相邻设备间的参考信号采用相同或不同的配置信息,其中,所述配置信息包括以下至少之一:
    序列;子载波间隔;图样;资源位置;循环移位;符号。
  36. 一种参考信号配置信息的应用装置,设置于基站,包括:
    第一获取模块,配置为获取参考信号配置信息,其中,所述参考信号配置信息至少包括以下之一:本小区的参考信号配置信息,相邻小区的参考信号配置信息,相邻小区中终端的参考信号配置信息;
    第一应用模块,配置为根据获取的参考信号配置信息进行传输或测量。
  37. 根据权利要求36所述的装置,其中,所述获取模块还包括:
    第一获取单元,配置为获取相邻基站发送的参考信号配置信息,其中,所述相邻基站发送的参考信号配置信息至少包括以下之一:相邻小区的参考信号配置信息,相邻小区中终端的参考信号配置信息。
  38. 根据权利要求36所述的装置,其中,所述装置还包括:
    发送模块,配置为发送本小区的参考信号配置信息和/或本小区中终端的参考信号配置信息给相邻基站或相邻基站中的终端。
  39. 一种参考信号配置信息的应用装置,设置于终端,包括:
    第二获取模块,配置为获取参考信号配置信息,其中,所述参考信号配置信息至少包括以下之一:本小区的参考信号配置信息,相邻小区的参考信号配置信息,相邻小区中终端的参考信号配置信息;
    第二应用模块,配置为根据获取的所述参考信号配置信息进行接收或传输或测量。
  40. 根据权利要求39所述的装置,其中,所述第二获取模块包括:
    第二获取单元,配置为从相邻基站获取所述相邻小区的参考信号配置信息;
    第三获取单元,配置为从相邻基站中的终端获取所述相邻小区中终端的参考信号配置信息;
    第四获取单元,配置为从服务基站获取以下至少之一:本小区的参考信号配置信息,相邻小区的参考信号配置信息,相邻小区中终端的参考信号配置信息。
  41. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至18任一项所述的方法;
    或所述程序运行时执行权利要求19至35任一项所述的方法。
  42. 一种参考信号配置信息的应用装置,包括:处理器以及存储有所述处理器可执行指令的存储器,当所述指令被处理器执行时,执行权利要求1至18任一项所述的参考信号配置信息的应用方法;
    或执行权利要求19至35任一项所述的参考信号配置信息的应用方法。
PCT/CN2018/084286 2017-05-27 2018-04-24 一种参考信号配置信息的应用方法、装置及存储介质 WO2018219074A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18809784.4A EP3633901B1 (en) 2017-05-27 2018-04-24 Method and device for applying reference signal configuration information, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710393538.7A CN108964856B (zh) 2017-05-27 2017-05-27 一种参考信号配置信息的应用方法及装置
CN201710393538.7 2017-05-27

Publications (1)

Publication Number Publication Date
WO2018219074A1 true WO2018219074A1 (zh) 2018-12-06

Family

ID=64454482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084286 WO2018219074A1 (zh) 2017-05-27 2018-04-24 一种参考信号配置信息的应用方法、装置及存储介质

Country Status (3)

Country Link
EP (1) EP3633901B1 (zh)
CN (1) CN108964856B (zh)
WO (1) WO2018219074A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113709786A (zh) * 2020-05-20 2021-11-26 大唐移动通信设备有限公司 远端干扰管理参考信号遍历检测方法、装置及存储介质
US20220007354A1 (en) * 2019-03-22 2022-01-06 Vivo Mobile Communication Co.,Ltd. Method for configuring positioning reference signal, network device, and terminal
US20220030522A1 (en) * 2018-12-17 2022-01-27 Nokia Technologies Oy Apparatuses and Methods for Discovery Process for Cross Link Interference Measurements
EP4044651A4 (en) * 2019-11-07 2022-09-14 Huawei Technologies Co., Ltd. CLI MEASUREMENT CONFIGURATION METHOD AND COMMUNICATION DEVICE
WO2023039857A1 (zh) * 2021-09-17 2023-03-23 北京小米移动软件有限公司 临时参考信号簇的处理方法及装置、通信设备及存储介质
CN116195214A (zh) * 2020-08-25 2023-05-30 华为技术有限公司 一种干扰控制方法及装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11337191B2 (en) * 2017-08-11 2022-05-17 Kyocera Corporation Interference mitigation for aerial vehicle communications by sharing scheduling information with neighboring base stations
CN111490860B (zh) * 2019-01-10 2021-09-14 华为技术有限公司 一种参考信号传输方法及装置
CN111435887B (zh) * 2019-01-11 2022-02-08 大唐移动通信设备有限公司 一种定位处理方法、装置及设备
CN111464261B (zh) * 2019-01-22 2021-07-23 大唐移动通信设备有限公司 一种信号传输、检测方法及装置
CN111988852B (zh) * 2019-05-24 2023-04-18 华为技术有限公司 一种信息上报的方法及装置
CN111601348B (zh) * 2019-06-19 2022-01-28 维沃移动通信有限公司 信息上报、获取方法、终端及网络侧设备
CN114424667B (zh) * 2019-09-30 2023-11-17 华为技术有限公司 一种通信方法及装置
WO2021184217A1 (zh) * 2020-03-17 2021-09-23 北京小米移动软件有限公司 信道状态信息测量方法、装置及计算机存储介质
CN115150043A (zh) * 2021-03-31 2022-10-04 华为技术有限公司 一种干扰处理的方法,相关装置以及设备
CN115549874A (zh) * 2021-06-30 2022-12-30 华为技术有限公司 信道状态信息传输方法以及相关通信装置
WO2023115542A1 (zh) * 2021-12-24 2023-06-29 北京小米移动软件有限公司 交叉链路干扰测量方法及装置、存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162687A (zh) * 2015-04-01 2016-11-23 索尼公司 用于无线通信的用户设备侧和基站侧的装置和方法
CN106374981A (zh) * 2015-07-20 2017-02-01 索尼公司 无线通信系统中的电子设备和无线通信方法
CN106488472A (zh) * 2015-08-27 2017-03-08 中国移动通信集团公司 一种信道信息上报方法及终端
CN106664633A (zh) * 2014-06-08 2017-05-10 Lg电子株式会社 用于执行基于协作的小区簇的协作通信和切换的方法和设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE054175T2 (hu) * 2007-04-11 2021-08-30 Optis Wireless Technology Llc Információ referenciajel szerkezetrõl szomszédos cella mérések számára
CN102469466B (zh) * 2010-11-11 2015-05-06 华为技术有限公司 一种干扰处理方法与装置
EP2647147B1 (en) * 2011-01-20 2017-08-16 LG Electronics Inc. Method of reducing intercell interference in wireless communication system and apparatus thereof
CN102427396A (zh) * 2011-08-15 2012-04-25 中兴通讯股份有限公司 一种小区间上行解调参考信号的信息交互方法和基站
WO2015199392A1 (ko) * 2014-06-23 2015-12-30 엘지전자(주) 무선 통신 시스템에서 포지셔닝(Positioning)을 수행하기 위한 방법 및 이를 위한 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106664633A (zh) * 2014-06-08 2017-05-10 Lg电子株式会社 用于执行基于协作的小区簇的协作通信和切换的方法和设备
CN106162687A (zh) * 2015-04-01 2016-11-23 索尼公司 用于无线通信的用户设备侧和基站侧的装置和方法
CN106374981A (zh) * 2015-07-20 2017-02-01 索尼公司 无线通信系统中的电子设备和无线通信方法
CN106488472A (zh) * 2015-08-27 2017-03-08 中国移动通信集团公司 一种信道信息上报方法及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633901A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220030522A1 (en) * 2018-12-17 2022-01-27 Nokia Technologies Oy Apparatuses and Methods for Discovery Process for Cross Link Interference Measurements
US20220007354A1 (en) * 2019-03-22 2022-01-06 Vivo Mobile Communication Co.,Ltd. Method for configuring positioning reference signal, network device, and terminal
EP4044651A4 (en) * 2019-11-07 2022-09-14 Huawei Technologies Co., Ltd. CLI MEASUREMENT CONFIGURATION METHOD AND COMMUNICATION DEVICE
CN113709786A (zh) * 2020-05-20 2021-11-26 大唐移动通信设备有限公司 远端干扰管理参考信号遍历检测方法、装置及存储介质
CN113709786B (zh) * 2020-05-20 2024-03-29 大唐移动通信设备有限公司 远端干扰管理参考信号遍历检测方法、装置及存储介质
CN116195214A (zh) * 2020-08-25 2023-05-30 华为技术有限公司 一种干扰控制方法及装置
WO2023039857A1 (zh) * 2021-09-17 2023-03-23 北京小米移动软件有限公司 临时参考信号簇的处理方法及装置、通信设备及存储介质

Also Published As

Publication number Publication date
EP3633901A4 (en) 2021-03-24
CN108964856A (zh) 2018-12-07
EP3633901A1 (en) 2020-04-08
EP3633901B1 (en) 2023-02-15
CN108964856B (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
WO2018219074A1 (zh) 一种参考信号配置信息的应用方法、装置及存储介质
KR102487392B1 (ko) 비면허 스펙트럼 상의 부분 서브 프레임 전송 및 방송 채널을 위한 방법 및 장치
JP7090698B2 (ja) 時間周波数リソースを決定するための方法およびデバイス
CN102340379B (zh) 一种csi-rs的发送方法、检测方法及其装置
CN106688268B (zh) 用于非许可频谱上的小区检测、同步和测量的方法和设备
CA2930327C (en) Techniques for configuring uplink channels in unlicensed radio frequency spectrum bands
KR101710204B1 (ko) 다중 입출력 통신 시스템에서 채널측정을 위한 기준신호의 전송 방법 및 그 장치
TWI772312B (zh) 基於無線網絡的通信方法、終端設備和網絡設備
WO2017130970A2 (ja) 基地局装置、端末装置および通信方法
US11570760B2 (en) Uplink channel multiplexing and waveform selection
JP6069366B2 (ja) 柔軟な基準信号構成をサポートするためのシグナリングの方法および装置
WO2017130968A2 (ja) 基地局装置、端末装置および通信方法
KR20190038329A (ko) 통신 시스템에서 프리엠션의 지시 방법
EP3021627B1 (en) Carrier configuration with mixed nct and backwards compatible subframes
CN110741591A (zh) 在减少的延迟操作中用于下行链路控制物理结构的方法和设备
CN108702685B (zh) 传输模式的信息的传输方法、网络设备、终端设备和系统
US10177938B2 (en) Device and method for adaptive channel estimation
CN107683624B (zh) 指示资源的方法、基站和终端
CN113557781A (zh) S-ssb传输的方法和装置
WO2018171792A1 (zh) 一种参考信号传输方法、装置及系统
US20220322252A1 (en) Managing potential collision between uplink transmission and synchronization signal block (ssb)
CN114071753A (zh) 发送和接收信号的方法和设备
KR20180120038A (ko) 무선 통신시스템의 시스템 정보 전송 및 수신방법, 장치 및 시스템
WO2023136890A1 (en) Rules for multi-slot physical downlink control channel (pdcch) monitoring in common search space sets
CN115996472A (zh) 资源配置方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018809784

Country of ref document: EP

Effective date: 20200102