WO2021184217A1 - 信道状态信息测量方法、装置及计算机存储介质 - Google Patents
信道状态信息测量方法、装置及计算机存储介质 Download PDFInfo
- Publication number
- WO2021184217A1 WO2021184217A1 PCT/CN2020/079778 CN2020079778W WO2021184217A1 WO 2021184217 A1 WO2021184217 A1 WO 2021184217A1 CN 2020079778 W CN2020079778 W CN 2020079778W WO 2021184217 A1 WO2021184217 A1 WO 2021184217A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- channel state
- information
- state information
- measurement
- neighboring cell
- Prior art date
Links
- 238000000691 measurement method Methods 0.000 title claims abstract description 68
- 238000005259 measurement Methods 0.000 claims abstract description 367
- 230000005540 biological transmission Effects 0.000 claims abstract description 81
- 238000000034 method Methods 0.000 claims description 82
- 238000004891 communication Methods 0.000 claims description 79
- 238000012545 processing Methods 0.000 description 38
- 230000006870 function Effects 0.000 description 19
- 238000007726 management method Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 12
- 238000004364 calculation method Methods 0.000 description 9
- 230000003993 interaction Effects 0.000 description 7
- 230000000737 periodic effect Effects 0.000 description 7
- 238000010295 mobile communication Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000005236 sound signal Effects 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000001774 stimulated Raman spectroscopy Methods 0.000 description 2
- KLDZYURQCUYZBL-UHFFFAOYSA-N 2-[3-[(2-hydroxyphenyl)methylideneamino]propyliminomethyl]phenol Chemical compound OC1=CC=CC=C1C=NCCCN=CC1=CC=CC=C1O KLDZYURQCUYZBL-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 201000001098 delayed sleep phase syndrome Diseases 0.000 description 1
- 208000033921 delayed sleep phase type circadian rhythm sleep disease Diseases 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/08—Testing, supervising or monitoring using real traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0626—Channel coefficients, e.g. channel state information [CSI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0632—Channel quality parameters, e.g. channel quality indicator [CQI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
- H04L5/001—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/005—Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/046—Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0026—Transmission of channel quality indication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0023—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
- H04L1/0028—Formatting
- H04L1/0029—Reduction of the amount of signalling, e.g. retention of useful signalling or differential signalling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
Definitions
- the present disclosure relates to communication technology, and in particular to a method, device and computer storage medium for measuring channel state information.
- 5G 5th generation mobile networks or 5th generation wireless systems, referred to as 5G) New Radio (NR) system
- 5G 5th generation mobile networks or 5th generation wireless systems
- NR New Radio
- each TRP has one or more transmit antenna panels (panel), or the base station has only one TRP and the TRP has multiple transmit panels
- the base station can use Multiple panels send data to the same user equipment (User Equipment, UE) at the same time, and the multiple panels may come from the same TRP or different TRPs.
- the UE can use multiple panels to send data to the base station.
- the receiving power of the serving cell reference signal measured on panel#1 is the strongest, and the receiving power of the neighboring cell reference signal measured on panel#2 is the strongest.
- the throughput is not optimal. This is because the UE may overlap the coverage of two cells, and the channel conditions provided by the serving cell may be the best, and the channel conditions provided by the neighboring cell may be the best.
- the optimal method is that different cells simultaneously transmit data for the UE based on beams, and can realize dynamic beam switching.
- the channel state information between the UE and the neighboring cell needs to be obtained, and there is no method for measuring the channel state information between the UE and the neighboring cell in the related technology.
- the present disclosure provides a method, a device and a computer storage medium for measuring channel state information.
- a method for measuring channel state information which is applied to a network device where a serving cell of a user equipment (UE) is located, wherein the method includes:
- the measurement configuration information of the neighboring cell is sent to the UE, where the measurement configuration information is used to instruct the UE to perform beam transmission-based channel state information measurement with the neighboring cell.
- the measurement configuration information includes one or more of the following information:
- the measurement configuration sub-information of the neighboring cell is the measurement configuration sub-information of the neighboring cell.
- the measurement configuration sub-information of the neighboring cell includes one or more of the following:
- Second resource indication information of a second reference signal used for channel-state information interference measurement (CSI-IM)
- the measurement result of the channel state information reports the configuration information.
- the first reference signal is a synchronization signal block (Synchronization Signal Block, SSB) or a channel state information reference signal (Channel State Information Reference Signal, CSI-RS) sent by a network device where the neighboring cell is located;
- SSB Synchronization Signal Block
- CSI-RS Channel State Information Reference Signal
- the first resource indication information further includes one or more of the following:
- the second reference signal is the SSB or CSI-RS sent by the network device where the neighboring cell is located;
- the second resource indication information further includes one or more of the following:
- the beam direction information is indicated by transmission configuration indication (Transmission Configuration Indication, TCI) status or spatial relationship information.
- transmission configuration indication Transmission Configuration Indication, TCI
- the TCI status or spatial relationship information indicates that the corresponding reference signal is the SSB or CSI-RS sent by the neighboring cell by the network device where the neighboring cell is located, or the sounding reference signal (Sounding Reference Signal) sent by the UE. , SRS).
- the measurement result report configuration information includes one or more of the following:
- CQI Channel Quality Index
- the method further includes:
- the method further includes: forwarding the channel state information measurement result to the network device where the neighboring cell is located.
- a channel state information measurement method is provided, which is applied to user equipment (UE), wherein the method includes:
- the measurement configuration information includes one or more of the following information:
- the measurement configuration sub-information of the neighboring cell is the measurement configuration sub-information of the neighboring cell.
- the measurement configuration sub-information of the neighboring cell includes one or more of the following:
- the measurement result of the channel state information reports the configuration information.
- the first reference signal is a synchronization signal block (SSB) or a channel state information reference signal (CSI-RS) sent by a network device where the neighboring cell is located;
- SSB synchronization signal block
- CSI-RS channel state information reference signal
- the first resource indication information further includes one or more of the following:
- the second reference signal is the SSB or CSI-RS sent by the network device where the neighboring cell is located;
- the second resource indication information further includes one or more of the following:
- the beam direction information is indicated by transmission configuration indication (TCI) status or spatial relationship information.
- TCI transmission configuration indication
- the TCI status or spatial relationship information indicates that the corresponding reference signal is the SSB or CSI-RS sent by the neighboring cell by the network device where the neighboring cell is located, or the sounding reference signal (SRS) sent by the UE.
- the corresponding reference signal is the SSB or CSI-RS sent by the neighboring cell by the network device where the neighboring cell is located, or the sounding reference signal (SRS) sent by the UE.
- SRS sounding reference signal
- the measurement result report configuration information includes one or more of the following:
- CQI Channel Quality Indicator
- the method further includes:
- the measurement result of the channel state information of the neighboring cell to the network equipment where the serving cell and/or the network equipment where the neighboring cell is located, and the measurement result is used for handover between the network equipment where the neighboring cell is located and the UE Transmission beam.
- the reporting the channel state information measurement result of the neighboring cell to the network device where the serving cell is located and/or the network device where the neighboring cell is located includes:
- the channel state information measurement result of the serving cell is: channel state information measurement based on beam transmission between the UE and the serving cell.
- the joint reporting of the channel state information measurement result of the neighboring cell and the channel state information measurement result of the serving cell includes:
- CQI channel quality indicator
- the joint reporting of the channel state information measurement result of the neighboring cell and the channel state information measurement result of the serving cell includes:
- a channel state information measurement method is provided, which is applied to a network device where a serving cell of a user equipment (UE) is located, wherein the method includes:
- the measurement request information includes first sounding reference signal (Sounding Reference Signal, SRS) configuration information used by the neighboring cell for channel state information measurement, and the first SRS configuration information is used to indicate the SRS to be measured .
- SRS Sounding Reference Signal
- the first SRS configuration information includes one or more of the following:
- the resource location information of the SRS is the resource location information of the SRS
- the type information of the SRS is the SRS.
- the beam direction information of the SRS is indicated by transmission configuration indication (TCI) status or spatial relationship information.
- TCI transmission configuration indication
- the SRS is an SRS sent by the UE.
- the method further includes:
- the second SRS configuration information carries indication information of the use of the SRS.
- the usage indication information includes:
- Beam management information or codebook information, or non-codebook information, or antenna switching information.
- the usage indication information also carries an identifier of a neighboring cell to which the SRS applies.
- a channel state information measurement method is provided, which is applied to a network device where a neighbor cell of a user equipment (UE) is located, wherein the method includes:
- the measurement request information includes first sounding reference signal (SRS) configuration information, and the first SRS configuration information is used to indicate the SRS sent by the UE to the network equipment where the neighboring cell is located.
- SRS sounding reference signal
- the first SRS configuration information includes one or more of the following:
- the resource location information of the SRS is the resource location information of the SRS
- the type information of the SRS is the SRS.
- the beam direction information of the SRS is indicated by transmission configuration indication (TCI) status or spatial relationship information.
- TCI transmission configuration indication
- the TCI status or spatial relationship information indicates that the corresponding reference signal is the SSB or CSI-RS sent by the neighboring cell by the network device where the neighboring cell is located, or the SRS sent by the UE.
- the method further includes: measuring the SRS sent by the UE;
- the performing channel state information measurement based on the measurement request information includes:
- a channel state information measurement method which is applied to a user equipment (UE), wherein the method includes:
- SRS sounding reference signal
- the SRS is sent based on the second SRS configuration information, and the SRS is used for a network device where a neighboring cell of the UE is located to perform beam transmission-based channel state information measurement between the neighboring cell and the UE.
- the usage indication information includes:
- Beam management information or codebook information, or non-codebook information, or antenna switching information.
- the usage indication information also carries an identifier of a neighboring cell to which the SRS applies.
- a channel state information measurement device which is applied to a network device where a serving cell of a user equipment (UE) is located, which includes:
- the first configuration unit is configured to: configure measurement configuration information of a neighboring cell, where the measurement configuration information is used to instruct the UE to perform beam transmission-based channel state information measurement with the neighboring cell;
- the first communication unit is configured to send the measurement configuration information to the UE.
- a channel state information measurement device applied to user equipment which includes:
- the second communication unit is configured to receive measurement configuration information sent by a network device where the UE's serving cell is located, where the measurement configuration information is used to instruct the UE to perform beam-based transmission with neighboring cells of the UE.
- Channel state information measurement ;
- the first measurement unit is configured to perform channel state information measurement of the neighboring cell based on the measurement configuration information.
- a channel state information measurement device which is applied to a network device where a serving cell of a user equipment (UE) is located, which includes:
- the second configuration unit is configured to: configure measurement request information, where the measurement request information is used to instruct the network equipment where the neighboring cell of the UE is located to perform beam transmission-based channel state information measurement between the neighboring cell and the UE ;
- the third communication unit is configured to send the measurement request information to the network device where the neighboring cell of the UE is located.
- a channel state information measurement device which is applied to a network device where a neighboring cell of a user equipment (UE) is located, which includes:
- the fourth communication unit is configured to receive measurement request information sent by a network device where the serving cell of the UE is located, where the measurement request information is used to instruct the network device where the neighboring cell is located to perform communication between the neighboring cell and the UE Channel state information measurement based on beam transmission;
- the second measurement unit is configured to perform channel state information measurement based on the measurement request information.
- a channel state information measurement device applied to user equipment which includes:
- the fifth communication unit is configured to receive second sounding reference signal (SRS) configuration information sent by a network device where the serving cell of the UE is located, where the second SRS configuration information carries SRS usage indication information;
- SRS sounding reference signal
- the signal sending unit is configured to send an SRS based on the second SRS configuration information, where the SRS is used for the network equipment where the neighboring cell of the UE is located to perform the channel state based on beam transmission between the neighboring cell and the UE Information measurement.
- a channel state information measurement device which is applied to a network device where a UE serving cell is located, which includes:
- Memory used to store executable instructions
- the processor is configured to implement the channel state information measurement method described in the first aspect when the executable instruction is executed.
- a channel state information measurement device applied to a UE which includes:
- Memory used to store executable instructions
- the processor is configured to implement the channel state information measurement method described in the second aspect when the executable instruction is executed.
- a channel state information measurement device which is applied to a network device where a UE serving cell is located, which includes:
- Memory used to store executable instructions
- the processor is configured to implement the channel state information measurement method described in the third aspect when the executable instruction is executed.
- a channel state information measurement device which is applied to a network device in a neighboring cell of a UE, which includes:
- Memory used to store executable instructions
- the processor is configured to implement the channel state information measurement method described in the fourth aspect when the executable instruction is executed.
- a channel state information measurement device applied to a UE which includes:
- Memory used to store executable instructions
- the processor is configured to implement the channel state information measurement method described in the fifth aspect when the executable instruction is executed.
- a computer storage medium that is applied to a network device where a UE serving cell is located, wherein the computer storage medium stores executable instructions, and the executable instructions are executed by a processor. When executed, the processor is caused to execute the channel state information measurement method described in the first aspect.
- a computer storage medium for use in a UE, wherein the computer storage medium stores executable instructions, and when the executable instructions are executed by a processor, the The processor executes the channel state information measurement method described in the second aspect.
- a computer storage medium which is applied to a network device where a UE serving cell is located, wherein the computer storage medium stores executable instructions, and the executable instructions are executed by a processor.
- the processor When executed, the processor is caused to execute the channel state information measurement method described in the third aspect.
- a computer storage medium which is applied to a network device where a neighboring cell of a UE is located, wherein executable instructions are stored in the computer storage medium, and the executable instructions are executed by a processor.
- the processor is caused to execute the channel state information measurement method described in the fourth aspect.
- a computer storage medium applied to a UE, wherein the computer storage medium stores executable instructions, and when the executable instructions are executed by a processor, the The processor executes the channel state information measurement method described in the fifth aspect.
- the network equipment where the serving cell of the UE is located sends the measurement configuration information of the neighboring cell to the UE, and the measurement configuration information is used to instruct the UE to perform beam transmission-based channel state information measurement with the neighboring cell; thus, gives The method of obtaining the channel state information based on beam transmission between the UE and the neighboring cells of the UE can obtain the channel state information based on the beam transmission between the UE and the neighboring cells of the UE, so that the multi-antenna panels between multiple cells can be simultaneously connected to the When the UE is transmitting, it can dynamically switch beams to send data to the UE, so that the communication between the neighboring cells and the UE can also achieve better results, thereby improving the throughput of the UE.
- the network equipment where the serving cell of the UE is located sends measurement request information to the network equipment where the neighboring cell of the UE is located.
- the measurement request information is used to instruct the network equipment where the neighboring cell is located to perform beam-based transmission between the neighboring cell and the UE.
- Channel state information measurement in this way, a method for obtaining the channel state information based on beam transmission between the UE and the neighboring cells of the UE is given.
- the multi-antenna panels between multiple cells transmit with the UE at the same time, they can dynamically switch beams to send data to the UE, so that the communication between the neighboring cells and the UE can achieve better results, thereby improving the throughput of the UE.
- Fig. 1 is a schematic structural diagram showing a wireless communication system according to an exemplary embodiment
- Fig. 2 is a flow chart showing a method for measuring channel state information according to an exemplary embodiment
- Fig. 3 is a first flow chart showing interaction between devices according to an exemplary embodiment
- Fig. 4 is a second flowchart of a method for measuring channel state information according to an exemplary embodiment
- Fig. 5 is a second flowchart of interaction between devices according to an exemplary embodiment
- Fig. 6 is a third flowchart of a method for measuring channel state information according to an exemplary embodiment
- Fig. 7 is a third flowchart of interaction between devices according to an exemplary embodiment
- Fig. 8 is a fourth flowchart of a method for measuring channel state information according to an exemplary embodiment
- Fig. 9 is a fifth flowchart of a method for measuring channel state information according to an exemplary embodiment
- Fig. 10 is a fourth flowchart of interaction between devices according to an exemplary embodiment
- Fig. 11 is a first block diagram showing a device for measuring channel state information according to an exemplary embodiment
- Fig. 12 is a second block diagram showing a device for measuring channel state information according to an exemplary embodiment
- Fig. 13 is a third block diagram showing a device for measuring channel state information according to an exemplary embodiment
- Fig. 14 is a fourth block diagram showing a device for measuring channel state information according to an exemplary embodiment
- Fig. 15 is a fifth block diagram showing a device for measuring channel state information according to an exemplary embodiment
- Fig. 16 is a block diagram showing a device 800 for implementing channel state information measurement according to an exemplary embodiment
- Fig. 17 is a block diagram showing a device 900 for implementing channel state information measurement according to an exemplary embodiment.
- first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
- first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
- the words "if” and “if” as used herein can be interpreted as “when” or “when” or “in response to certainty”.
- FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
- the wireless communication system is a communication system based on cellular mobile communication technology.
- the wireless communication system may include several terminals 11 and several base stations 12.
- the terminal 11 may be a device that provides voice and/or data connectivity to the user.
- the terminal 11 can communicate with one or more core networks via a radio access network (Radio Access Network, RAN).
- the terminal 11 can be an Internet of Things terminal, such as a sensor device, a mobile phone (or “cellular” phone), and
- the computer of the Internet of Things terminal for example, may be a fixed, portable, pocket-sized, handheld, built-in computer or vehicle-mounted device.
- station Station, STA
- subscriber unit subscriber unit
- subscriber station subscriber station
- mobile station mobile station
- mobile station mobile
- remote station remote station
- access point remote terminal
- access terminal access terminal
- user device user terminal
- user agent user agent
- user equipment user device
- user terminal User Equipment
- the terminal 11 may also be a device of an unmanned aerial vehicle.
- the terminal 11 may also be an in-vehicle device, for example, it may be a trip computer with a wireless communication function, or a wireless communication device connected to the trip computer.
- the terminal 11 may also be a roadside device, for example, it may be a street lamp, signal lamp, or other roadside device with a wireless communication function.
- the base station 12 may be a network side device in a wireless communication system.
- the wireless communication system may be the 4th generation mobile communication (4G) system, also known as the Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system, Also known as New Radio (NR) system or 5G NR system.
- the wireless communication system may also be the next-generation system of the 5G system.
- the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network).
- MTC machine-type communication
- the base station 12 may be an evolved base station (eNB) used in a 4G system.
- the base station 12 may also be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
- eNB evolved base station
- gNB base station
- the base station 12 adopts a centralized distributed architecture it usually includes a centralized unit (Central Unit, CU) and at least two distributed units (Distributed Unit, DU).
- the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer protocol stack; distribution
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC media access control
- the unit is provided with a physical (Physical, PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation manner of the base station 12.
- a wireless connection can be established between the base station 12 and the terminal 11 through a wireless air interface.
- the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as The wireless air interface is a new air interface; or, the wireless air interface may also be a wireless air interface based on a 5G-based next-generation mobile communication network technology standard.
- an E2E (End to End) connection may also be established between the terminals 11.
- V2V Vehicle to Vehicle
- V2I Vehicle to Infrastructure
- V2P Vehicle to Pedestrian
- the above-mentioned wireless communication system may further include a network management device 13.
- the network management device 13 may be a core network device in a wireless communication system.
- the network management device 13 may be a mobility management entity (Mobility Management Entity) in an Evolved Packet Core (EPC) network. MME).
- the network management device may also be other core network devices, such as Serving Gate Way (SGW), Public Data Network Gate Way (PGW), policy and charging rules function unit (Policy and Charging Rules Function, PCRF) or home subscriber network side equipment (Home Subscriber Server, HSS), etc.
- SGW Serving Gate Way
- PGW Public Data Network Gate Way
- PCRF Policy and Charging Rules Function
- HSS home subscriber network side equipment
- the implementation form of the network management device 13 is not limited in the embodiment of the present disclosure.
- the NR system especially when the communication frequency band is above 6GHz, because the high-frequency channel attenuates quickly, in order to ensure the coverage, it is necessary to use beam-based transmission and reception.
- the base station when the base station has multiple transmit and receive points (TRP), each TRP has one or more transmit antenna panels (panel), or the base station has only one TRP and the TRP has multiple transmit panels, the base station can use Multiple panels send data to the same user equipment (UE) at the same time, and the multiple panels may come from the same TRP or different TRPs. Similarly, when the UE also has multiple panels, the UE can use multiple panels to send data to the base station.
- TRP transmit and receive points
- panel transmit antenna panels
- the base station can use Multiple panels send data to the same user equipment (UE) at the same time, and the multiple panels may come from the same TRP or different TRPs.
- the UE when the UE also has multiple panels, the UE can use multiple panels to send data to the base station.
- the UE when the UE moves to the edge of the cell, it is possible that the receiving power of the reference signal of the serving cell measured on panel #1 is the strongest, and the receiving power of the reference signal of the neighboring cell measured on panel #2 is the strongest.
- the throughput is not optimal. This is because the UE may overlap the coverage of two cells, and the channel condition of the serving cell may be the best at one time, and the channel condition of the neighboring cell may be the best at the other time.
- the optimal method is that different cells simultaneously transmit data for the UE based on beams, and can realize dynamic beam switching.
- it in order to enable the neighboring cell to better serve the UE, it is necessary to obtain the channel state information between the UE and the neighboring cell, and there is currently no method for measuring the channel state information between the UE and the neighboring cell.
- the embodiment of the present disclosure shows a method for measuring channel state information.
- the method for measuring channel state information is used for a network device where a serving cell of a user equipment (UE) is located, such as a base station where the serving cell of the UE is located.
- the channel state measurement method includes the following steps:
- step S11 the measurement configuration information of the neighboring cell is sent to the user equipment (UE), where the measurement configuration information is used to instruct the UE to perform beam transmission-based channel state information measurement with the neighboring cell.
- UE user equipment
- the measurement configuration information of the neighboring cell includes one or more of the following information:
- the measurement configuration sub-information of the neighboring cell is the measurement configuration sub-information of the neighboring cell.
- the physical cell identification information may include: physical cell index (Physical Cell Index, PCI) identification information.
- PCI Physical Cell Index
- the frequency domain information may include: the frequency and bandwidth of the carrier or bandwidth part (Bandwidth Part, BWP).
- the measurement configuration sub-information of the neighboring cell includes one or more of the following:
- the measurement result of the channel state information reports the configuration information.
- the first reference signal is an SSB or CSI-RS sent by a network device where the neighboring cell is located.
- CSI-RS includes non-zero power channel state information reference signal (Non-Zero Power Channel State Information-Reference Signal resource, NZP-CSI-RS) or zero power channel state information reference signal (Zero Power Channel State Information-Reference Signal) resource, ZP-CSI-RS).
- NZP-CSI-RS non-zero power channel state information reference signal
- ZP-CSI-RS Zero power channel state information reference signal
- the first resource indication information further includes one or more of the following:
- the beam direction of the first reference signal may be indicated by TCI state or spatial relationship information.
- the reference signal indicated by the TCI state or spatial relationship information is the SSB or CSI-RS sent by the neighboring cell by the network device where the neighboring cell is located, or the SRS sent by the UE.
- the second reference signal is an SSB or CSI-RS sent by a network device where the neighboring cell is located;
- the second resource indication information further includes one or more of the following:
- the beam direction of the second reference signal may be indicated by TCI status or spatial relationship information.
- the reference signal indicated by the TCI state or spatial relationship information is the SSB or CSI-RS sent by the neighboring cell by the network device where the neighboring cell is located, or the SRS sent by the UE.
- the measurement result report configuration information includes one or more of the following:
- CQI Channel Quality Indicator
- the cell index may be a physical cell identifier (Physical Cell Index, PCI) identifier, or a number assigned to this cell to distinguish it from one or more cells that provide transmission services for the UE, such as There are 3 cells serving the UE, and the numbers of the three cells can be #0, #1, and #2 respectively.
- PCI Physical Cell Index
- reporting types are classified into periodic reporting, non-periodic reporting, or semi-persistent reporting.
- the period and time slot offset need to be given for periodic reporting.
- aperiodic reporting needs to provide a time slot offset value, for example, according to the PDCCH time slot position reported by scheduling aperiodic CSI plus the time slot offset value to obtain the time slot position where the CSI is reported.
- semi-static reporting needs to provide the number of reporting time slots and the location of the time slots.
- the identifier of the measured reference signal may include: the identifier of the first reference signal, and/or the identifier of the second reference signal.
- the reported parameters may include one or more of the following: rank indicator (Rank Index, RI), precoding matrix indicator (Precoding Matrix Index, PMI), channel quality indicator (Channel Quality Index, CQI), channel status Information Reference Signal Resource Indicator (CSI-RS Resource Indicator, CRI)-Reference Signal Receiving Power (Reference Signal Receiving Power, RSRP), SSB-index-RSRP.
- the reported bandwidth configuration includes narrowband (subband) or wideband; when the reported bandwidth is configured as narrowband, the reported bandwidth configuration also carries the frequency domain position of the narrowband and/or the narrowband size.
- the UE reports the codeword corresponding to the CQI value of the serving cell and the offset between the CQI value of the neighboring cell and the CQI value of the serving cell according to the CQI table.
- the CQI table includes the corresponding relationship between the CQI value range and the bit codeword.
- the method further includes:
- Step S12 The network equipment where the serving cell of the UE is located receives the measurement result of the channel state information of the neighboring cell measured and reported by the UE based on the measurement configuration information.
- the network device where the UE's serving cell is located sends measurement configuration information to the UE, and the UE measures the channel state information of the transmission channel between the UE and the neighboring cell based on the measurement configuration information, and sends it to the network where the UE's serving cell is located.
- the device reports the measurement result of the channel state information of the transmission channel between the UE and the neighboring cell.
- the UE directly reports the measured channel state information measurement result of the neighboring cell based on beam transmission to the network device where the serving cell is located.
- the UE compares the measured result with the measured and serving cell.
- the measurement result of the channel state information of the network device where it is located is jointly reported to the network device where the serving cell is located.
- the joint reporting method will be given in the following embodiments, and will not be repeated in this embodiment. Which method the UE specifically uses for reporting can be determined according to specific scenarios, which is not specifically limited in this embodiment.
- the UE only reports the measurement result to the network device where the serving cell is located, that is, it does not report the measurement result to the network device where the neighboring cell is located.
- the network device where the serving cell is located is required to forward the measurement result to the network device where the neighboring cell is located.
- the method may further include:
- Step S13 The network equipment where the serving cell of the UE is located forwards the channel state information measurement result to the network equipment where the neighboring cell of the UE is located.
- the network device where the UE’s serving cell is located can forward the channel state information measurement result of the neighboring cell to the network device where the UE’s neighboring cell is located, so that the network device where the neighboring cell is located can learn the channel state information measurement result, thereby facilitating the location of the neighboring cell.
- the network device schedules resources for the UE according to the channel state information measurement result, so as to improve the throughput of the UE.
- the embodiment of the present disclosure shows a method for measuring channel state information. As shown in FIG. 4, the method for measuring channel state information is used in user equipment (UE).
- the channel state measurement method includes the following steps:
- step S21 receiving measurement configuration information sent by a network device where the UE's serving cell is located, where the measurement configuration information is used to instruct the UE to perform beam transmission-based channel state information measurement with neighboring cells of the UE;
- step S22 the channel state information measurement of the neighboring cell is performed based on the measurement configuration information.
- the UE receives the measurement indication information sent by the network equipment where its serving cell is located and is used to instruct the UE to perform measurement based on the channel state information measurement of the beam transmission channel with the network equipment where the neighboring cell of the UE is located;
- the measurement configuration information performs the measurement of the channel state information of the transmission channel between the UE and the network equipment where the neighboring cell is located; in this way, since the measurement result of the channel state information of the neighboring cell can be determined, multiple TRPs or antenna panels of the serving cell and the neighboring cell
- the multi-antenna panels between multiple cells can dynamically switch beams to send data to the UE, so that the communication between neighboring cells and the UE can achieve better results, and improve throughput and users Experience.
- the measurement configuration information of the neighboring cell includes one or more of the following information:
- the measurement configuration sub-information of the neighboring cell is the measurement configuration sub-information of the neighboring cell.
- the physical cell identification information may include: physical cell index (Physical Cell Index, PCI) identification information.
- PCI Physical Cell Index
- the frequency domain information may include: the frequency and bandwidth of the carrier or bandwidth part (Bandwidth Part, BWP).
- the measurement configuration sub-information of the neighboring cell includes one or more of the following:
- the measurement result of the channel state information reports the configuration information.
- the first reference signal is an SSB or CSI-RS sent by a network device where the neighboring cell is located.
- CSI-RS includes NZP-CSI-RS or ZP-CSI-RS.
- the first resource indication information further includes one or more of the following:
- the beam direction of the first reference signal may be indicated by TCI state or spatial relationship information.
- the reference signal indicated by the TCI status or spatial relationship information is the SSB or CSI-RS sent by the neighboring cell by the network device where the neighboring cell is located, or the SRS sent by the terminal.
- the network device where the neighboring cell is located may also correspond to other neighboring cells.
- the neighboring cells corresponding to the network device include the first neighboring cell, the second neighboring cell, and the third neighboring cell. If the cell is the first neighboring cell, the reference signal indicated by the TCI status or spatial relationship information is the SSB or CSI-RS sent by the network device where the first neighboring cell is located through the first neighboring cell, rather than the first neighboring cell. SSB or CSI-RS sent by the network device where the cell is located through the second or third neighboring cell.
- the second reference signal is the SSB or CSI-RS sent by the network device where the neighboring cell is located through the neighboring cell;
- the second resource indication information further includes one or more of the following:
- the beam direction of the second reference signal may be indicated by TCI status or spatial relationship information.
- the reference signal indicated by the TCI state or spatial relationship information is the SSB or CSI-RS sent by the neighboring cell by the network device where the neighboring cell is located, or the SRS sent by the UE.
- the measurement result report configuration information includes one or more of the following:
- CQI Channel Quality Indicator
- the cell index may be a physical cell identifier (Physical Cell Index, PCI) identifier, or a number assigned to this cell to distinguish it from one or more cells that provide transmission services for the UE, such as There are 3 cells serving the UE, and the numbers of the three cells can be #0, #1, and #2 respectively.
- PCI Physical Cell Index
- reporting types are classified into periodic reporting, non-periodic reporting, or semi-persistent reporting.
- the period and time slot offset need to be given for periodic reporting.
- aperiodic reporting needs to provide a time slot offset value, for example, according to the PDCCH time slot position reported by scheduling aperiodic CSI plus the time slot offset value to obtain the time slot position where the CSI is reported.
- semi-static reporting needs to provide the number of reporting time slots and the location of the time slots.
- the identifier of the measured reference signal may include: the identifier of the first reference signal, and/or the identifier of the second reference signal.
- the reported parameters may include one or more of the following: rank indicator (Rank Index, RI), precoding matrix indicator (Precoding Matrix Index, PMI), channel quality indicator (Channel Quality Index, CQI), channel status Information Reference Signal Resource Indicator (CSI-RS Resource Indicator, CRI)-Reference Signal Receiving Power (Reference Signal Receiving Power, RSRP), SSB-index-RSRP.
- the reported bandwidth configuration includes narrowband (subband) or wideband; when the reported bandwidth is configured as narrowband, the reported bandwidth configuration also carries the frequency domain position of the narrowband and/or the narrowband size.
- the specific method for the UE to perform measurement of channel state information based on beam transmission with neighboring cells based on the measurement configuration information is similar to the method in the related art, and is not specifically limited in this embodiment.
- the method also includes:
- Step S23a The UE reports the channel state information measurement result of the neighboring cell to the network equipment where the serving cell of the UE is located;
- Step S23b The UE reports the channel state information measurement result of the neighboring cell to the network equipment where the neighboring cell of the UE is located.
- step S23a may be performed first, or step S23b may be performed first, or step S23a and step S23b may be performed simultaneously.
- step S23a and step S23b may be performed simultaneously.
- the order of reporting is different. Make specific restrictions and report according to different scenarios.
- the reporting the channel state information measurement result of the neighboring cell includes:
- the channel state information measurement result of the serving cell is: the measurement result of the channel state information measurement based on beam transmission between the UE and the serving cell.
- the measurement method is similar to that in the related art. Go into details again.
- the joint reporting of the channel state information measurement result of the neighboring cell and the channel state information measurement result of the serving cell includes:
- the CQI table report the codeword corresponding to the CQI value of the serving cell, and report the offset between the CQI value of the neighboring cell and the CQI value of the serving cell.
- the CQI value of the serving cell reports the codeword according to the CQI table, and the CQI value of the neighboring cell can only report the offset value from the CQI value of the serving cell, thereby reducing the number of bits.
- the joint reporting of the channel state information measurement result of the neighboring cell and the channel state information measurement result of the serving cell includes:
- the measurement result obtained after the calculation processing includes one or more items in the measurement result report configuration information.
- the measurement result obtained after calculation processing may be a set of measurement results
- the calculation method includes, but is not limited to, taking an average value or a weighted average value.
- the embodiments of the present disclosure do not limit the calculation method for obtaining a set of measurement results.
- only the set of measurement results are reported, which may be reported only to the network equipment where the neighboring cell of the UE is located, may also be reported only to the network equipment where the serving cell is located, or may also be reported to the UE The network equipment where the neighboring cell is located and the network equipment where the serving cell is located report separately.
- the UE receives measurement indication information sent by the network device where its serving cell is used to instruct the UE to perform measurement of channel state information based on the beam transmission channel between the UE and the neighboring cell of the UE; based on the measurement
- the instruction information performs the measurement of the channel state information of the transmission channel; in this way, since the channel state information measurement result of the neighboring cell can be determined, the multiple TRPs or antenna panels of the serving cell and the neighboring cell are simultaneously transmitted with the UE.
- the multi-antenna panel can dynamically switch beams to send data to the UE, so that the communication between neighboring cells and the UE can also achieve better results, improve throughput and user experience.
- the embodiment of the present disclosure shows a channel state information measurement method.
- the channel state information measurement method is used for a network device where a serving cell of a user equipment (UE) is located, such as a base station where the serving cell is located.
- the channel state measurement method includes the following steps:
- step S31 the measurement request information is sent to the network equipment where the neighboring cell of the user equipment (UE) is located, and the measurement request information is used to instruct the network equipment where the neighboring cell is located to perform beam-based communication between the neighboring cell and the UE. Transmission of channel state information measurement.
- UE user equipment
- the measurement request information includes first sounding reference signal (SRS) configuration information used by the neighboring cell for channel state information measurement, and the first SRS configuration information is used to indicate the SRS to be measured.
- SRS sounding reference signal
- the network equipment where the serving cell of the UE is located sends measurement request information to the network equipment where the neighboring cell of the UE is located, and the network equipment where the neighboring cell is located measures the transmission channel between the neighboring cell and the UE based on the measurement request information.
- Channel status information For example, the network equipment where the serving cell of the UE is located sends measurement request information to the network equipment where the neighboring cell of the UE is located, and the network equipment where the neighboring cell is located measures the transmission channel between the neighboring cell and the UE based on the measurement request information.
- the network equipment where the neighboring cell is located can obtain the channel state information measurement results by itself, so that the network equipment where the neighboring cell is located can schedule resources for the UE according to the channel state information measurement results, so as to improve the throughput of the UE.
- the first SRS configuration information includes one or more of the following:
- the beam direction of the SRS is the beam direction of the SRS
- the port index of the SRS is the port index of the SRS.
- the time domain position of the SRS may include one or more of the starting symbol position, the number of symbols, and the repetition factor.
- the frequency domain position of the SRS may include one or more of frequency domain position, frequency domain offset, and frequency hopping parameter.
- the type of the SRS includes periodic, aperiodic, or semi-persistent.
- the beam direction information of the SRS is indicated by TCI status or spatial relationship information.
- the reference signal indicated by the TCI state or spatial relationship information is the SSB or CSI-RS sent by the neighboring cell by the network device where the neighboring cell is located, or the SRS sent by the UE.
- the network device where the neighboring cell is located may also correspond to other neighboring cells.
- the neighboring cells corresponding to the network device include the first neighboring cell, the second neighboring cell, and the third neighboring cell. If the cell is the first neighboring cell, then the reference signal indicated by the TCI status or spatial relationship information is the SSB or CSI-RS sent by the network device where the first neighboring cell is located through the first neighboring cell, rather than the first neighboring cell. SSB or CSI-RS sent by the network device where the cell is located through the second or third neighboring cell.
- the SRS is an SRS sent by the UE.
- the SRS may be an SRS that the UE has already sent.
- the SRS is sent by the UE and used for beam measurement of the serving cell, or used for channel state information measurement of the serving cell, or used for neighboring cell beam measurement.
- the SRS used for channel state information measurement of the neighboring cell can be multiplexed with the SRS used for other purposes, so that the UE does not need to send additional SRS, and the network equipment where the serving cell is located does not need to configure the UE to send dedicated SRSs.
- the SRS measured by the channel state information of the neighboring cell can save signaling overhead.
- the UE sends SRS specifically used for measuring channel state information of neighboring cells, and the network device where the UE's serving cell is located needs to configure configuration information that instructs the UE to send SRS.
- the method further includes:
- Step S30 The network device where the serving cell of the UE is located sends second SRS configuration information to the UE, where the second SRS configuration information carries SRS usage indication information.
- the usage indication information includes:
- Beam management information or codebook information, or non-codebook information, or antenna switching information.
- the usage indication information being codebook information means that the SRS is used for codebook-based CSI measurement
- the usage indication information being non-codebook information means that the SRS is used for non-codebook-based CSI measurement.
- the usage indication information also carries an identifier of a neighboring cell to which the SRS applies.
- the neighboring cell identifier may be the PCI of the neighboring cell, or a cell number of the neighboring cell at the UE side to distinguish it from other cells that provide transmission services for the UE.
- the UE send, based on the second SRS configuration information, an SRS used for the network equipment where the neighboring cell is located to perform channel state information measurement of the transmission channel between the neighboring cell and the UE.
- the network equipment where the serving cell of the UE is located sends to the network equipment where the neighboring cell of the UE is located for instructing the network equipment where the neighboring cell is located to perform channel state information measurement of the transmission channel between the neighboring cell and the UE
- the measurement indication information of the neighboring cell is performed by the network equipment of the neighboring cell to perform the measurement of the channel state information of the transmission channel; since the measurement result of the neighboring cell's channel state information can be obtained, the multiple TRPs or antenna panels of the serving cell and the neighboring cell are simultaneously connected to the UE
- multiple TRPs or antenna panels between multiple cells can dynamically switch beams to send data to the UE, so that the communication between neighboring cells and the UE can achieve better results, improve throughput and user experience .
- the embodiment of the present disclosure shows a method for measuring channel state information, as shown in FIG.
- the channel state measurement method includes the following steps:
- step S41 receiving measurement request information sent by a network device where the serving cell of the UE is located, where the measurement request information is used to instruct the network device where the neighboring cell is located to perform channel state information based on beam transmission between the neighboring cell and the UE Measurement;
- step S42 channel state information measurement is performed based on the measurement request information.
- the network equipment where the neighboring cell of the UE is located receives the measurement request information sent by the network equipment where the serving cell of the UE is located; Channel state information measurement based on beam transmission; in this way, because the channel state information measurement results of neighboring cells can be measured, when multiple TRPs or antenna panels of the serving cell and neighboring cells are simultaneously transmitted with the UE, the multiple channels between multiple cells can be measured.
- the antenna panel can dynamically switch the beam to send data to the UE, so that the communication between the neighboring cell and the UE can also achieve better results, and improve the throughput and user experience.
- the measurement request information includes first sounding reference signal (SRS) configuration information, and the first SRS configuration information is used to indicate the SRS sent by the UE to the network device where the neighboring cell is located.
- SRS sounding reference signal
- the first SRS configuration information includes one or more of the following:
- the resource location information of the SRS is the resource location information of the SRS
- the type information of the SRS is the SRS.
- the beam direction information of the SRS is indicated by transmission configuration indication (TCI) status or spatial relationship information.
- TCI transmission configuration indication
- the reference signal indicated by the TCI state or spatial relationship information is the SSB or CSI-RS sent by the neighboring cell by the network device where the neighboring cell is located, or the SRS sent by the UE.
- the network device where the neighboring cell is located may also correspond to other neighboring cells.
- the neighboring cells corresponding to the network device include the first neighboring cell, the second neighboring cell, and the third neighboring cell. If the cell is the first neighboring cell, then the reference signal indicated by the TCI status or spatial relationship information is the SSB or CSI-RS sent by the network device where the first neighboring cell is located through the first neighboring cell, rather than the first neighboring cell. SSB or CSI-RS sent by the network device where the cell is located through the second or third neighboring cell.
- the method further includes: measuring the SRS sent by the UE;
- the performing channel state information measurement based on the measurement request information includes:
- the SRS may be an SRS that the UE has already sent.
- the SRS is sent by the UE and used for beam measurement of the serving cell, or used for channel state information measurement of the serving cell, or used for Neighbor cell beam measurement and other purposes.
- the SRS used for channel state information measurement of the neighboring cell can be multiplexed with the SRS used for other purposes, so that the UE does not need to send additional SRS, and the network equipment where the serving cell is located does not need to configure the UE to send dedicated SRSs.
- the SRS measured by the channel state information of the neighboring cell can save signaling overhead.
- the SRS may be an SRS sent by the UE specifically for measuring channel state information of neighboring cells.
- the UE needs to send the SRS according to the configuration information sent by the network device where the serving cell of the UE is located.
- This embodiment shows a method for measuring channel state information. As shown in FIG. 9, the method for measuring channel state information is used in user equipment (UE).
- the channel state measurement method includes the following steps:
- a user equipment receives second sounding reference signal (SRS) configuration information sent by a network device where the UE's serving cell is located, where the second SRS configuration information carries SRS usage indication information;
- SRS sounding reference signal
- step S52 the UE sends an SRS based on the second SRS configuration information, and the SRS is used for the network equipment where the neighboring cell of the UE is located to execute the channel based on beam transmission between the neighboring cell and the UE Status information measurement.
- the usage indication information includes:
- Beam management information or codebook information, or non-codebook information, or antenna switching information.
- the usage indication information also carries an identifier of a neighboring cell to which the SRS applies.
- the UE can send the SRS based on the second SRS configuration information, and the network equipment of the neighboring cell of the UE can perform transmission channel analysis between the network equipment of the neighboring cell and the UE according to the SRS sent by the UE.
- Channel state information measurement so as to facilitate the network equipment in the neighboring cell to schedule resources for the UE according to the channel state information measurement result, so as to improve the throughput of the UE.
- Figure 10 shows an interaction diagram between devices. As shown in Figure 10, the process includes:
- Step S41b The network equipment where the neighboring cell of the UE is located receives the measurement request information sent by the network equipment where the serving cell of the UE is located, and the measurement request information is used to instruct the network equipment where the neighboring cell is located to perform communication between the neighboring cell and the UE Channel state information measurement of the transmission channel;
- Step S51b The UE receives the second SRS configuration information sent by the network device where the serving cell of the UE is located, where the second SRS configuration information carries indication information of the use of the SRS;
- the usage indication information is used to instruct the UE to send an SRS for measuring channel state information of neighboring cells.
- Step S52b The UE sends, based on the second SRS configuration information, an SRS used for the network equipment where the neighboring cell of the UE is located to perform channel state information measurement of the transmission channel between the neighboring cell and the UE;
- Step S42b The network equipment where the neighboring cell of the UE is located measures the SRS sent by the UE, and measures the channel state information of the transmission channel according to the SRS.
- step S41b and step S51b can be performed simultaneously, step S41b can also be performed before step S51b, and step S41b can also be performed after step S51b.
- the network equipment where the neighboring cell of the UE is located can measure the channel state information of the transmission channel between the neighboring cell and the UE according to the SRS sent by the UE based on the second SRS configuration information;
- the channel state information between the UE’s neighboring cells is based on the beam transmission, so that when the multi-antenna panels between multiple cells transmit to the UE at the same time, the beams can be dynamically switched to send data to the UE, so that the communication between the neighboring cells and the UE Communication can also achieve better results, thereby improving UE throughput.
- the application scenarios of the technical solutions described in the present disclosure may include but are not limited to the above-exemplified application scenarios.
- the technical solution described in the present disclosure may also be applied to other scenarios.
- the device that performs channel state information measurement is a vehicle-mounted device, or a speaker device, etc.
- the present disclosure does not specifically limit the application scenario.
- the embodiment of the present disclosure also provides a channel state information measurement device used in the network equipment where the UE's serving cell is located, as shown in FIG. 11 As shown, the device includes a first configuration unit 10 and a first communication unit 20; wherein,
- the first configuration unit 10 is configured to: configure measurement configuration information of a neighboring cell, where the measurement configuration information is used to instruct the UE to perform beam transmission-based channel state information measurement with the neighboring cell;
- the first communication unit 20 is configured to send the measurement configuration information to the UE.
- the first communication unit 20 is further configured to:
- the first communication unit 20 is further configured to:
- the specific structures of the first configuration unit 10 and the first communication unit 20 can be determined by the channel state information measurement device or the central processing unit (CPU, Central Processing Unit) and microcomputer in the device to which the channel state information measurement device belongs.
- Processor MCU, Micro Controller Unit
- DSP Digital Signal Processor
- PLC Programmable Logic Device
- each processing module in the channel state information measurement device of the embodiment of the present disclosure can be understood with reference to the related description of the channel state information measurement method described in FIG.
- Each processing module in the device can be implemented by an analog circuit that implements the functions described in the embodiments of the present disclosure, or can be implemented by running software that implements the functions described in the embodiments of the present disclosure on the device.
- the channel state information measurement device described in the embodiment of the present disclosure can instruct the UE to obtain the measurement result of the channel state information of the neighboring cell.
- an embodiment of the present disclosure also provides a channel state information measurement device for UE.
- the device includes a second communication Unit 30 and the first measuring unit 40; wherein,
- the second communication unit 30 is configured to receive measurement configuration information sent by a network device where the serving cell of the UE is located, where the measurement configuration information is used to instruct the UE to perform a communication with neighboring cells of the UE.
- the first measurement unit 40 is configured to perform channel state information measurement of the neighboring cell based on the measurement configuration information.
- the second communication unit 30 is further configured to report the channel state information measurement result of the neighboring cell to the network device where the serving cell is located and/or the second device of the network device where the neighboring cell is located.
- the second communication unit 30 is further configured to:
- the channel state information measurement result of the serving cell is: the measurement result of the channel state information measurement based on beam transmission between the UE and the serving cell.
- the second communication unit 30 is further configured to: according to the CQI table, report the codeword corresponding to the CQI value of the serving cell, and report the CQI value of the neighboring cell and that of the serving cell. The offset of the CQI value.
- the second communication unit 30 is further configured to perform calculation processing on the channel state information measurement result of the serving cell and the channel state information measurement result of the neighboring cell, to obtain the calculated result Measurement result; report the measurement result after calculation and processing.
- the specific structures of the second communication unit 30 and the first measurement unit 40 can be implemented by the central processing unit CPU, MCU, DSP or PLC in the channel state information measuring device or the equipment to which the channel state information measuring device belongs. .
- each processing module in the measurement device can be implemented by an analog circuit that implements the functions described in the embodiments of the present disclosure, or can be implemented by running software that implements the functions described in the embodiments of the present disclosure on the device.
- the channel state information measurement device can obtain the measurement result of the channel state information of the neighboring cell.
- an embodiment of the present disclosure also provides a channel state information measurement device used in the network equipment where the UE's serving cell is located, as shown in FIG. 13 As shown, the device includes a second configuration unit 50 and a second communication unit 60; wherein,
- the second configuration unit 50 is configured to configure measurement request information, where the measurement request information is used to instruct the network equipment where the neighboring cell of the UE is located to perform a channel based on beam transmission between the neighboring cell and the UE Status information measurement;
- the third communication unit 60 is configured to send the measurement request information to the network device where the neighboring cell of the UE is located.
- the measurement request information includes first sounding reference signal SRS configuration information, and the first SRS configuration information is used to indicate the SRS sent by the UE to the network equipment where the neighboring cell is located.
- the third communication unit 60 is further configured to send second SRS configuration information to the UE, so that the UE sends the SRS based on the second SRS configuration information.
- the specific structures of the second configuration unit 50 and the third communication unit 60 can be implemented by the central processing unit CPU, MCU, DSP or PLC in the channel state information measuring device or the equipment to which the channel state information measuring device belongs. .
- each processing module in the channel state information measurement device of the embodiment of the present disclosure can be understood by referring to the related description of the channel state information measurement method shown in FIG.
- Each processing module in the measurement device can be implemented by an analog circuit that implements the functions described in the embodiments of the present disclosure, or can be implemented by running software that implements the functions described in the embodiments of the present disclosure on the device.
- the device for measuring channel state information can instruct the network equipment of the neighboring cell of the UE to obtain the measurement result of the channel state information of the neighboring cell.
- an embodiment of the present disclosure also provides a channel state information measurement apparatus for the network equipment in the neighboring cell of the UE, as shown in FIG.
- the device includes a fourth communication unit 70 and a second measurement unit 80; wherein,
- the fourth communication unit 70 is configured to receive measurement request information sent by a network device where the UE's serving cell is located, where the measurement request information is used to instruct the network device where the neighbor cell is located to perform the neighbor cell and the neighbor cell Channel state information measurement based on beam transmission between UEs;
- the second measurement unit 80 is configured to perform channel state information measurement based on the measurement request information.
- the measurement request information includes first SRS configuration information, and the first SRS configuration information is used to indicate the SRS sent by the UE to the network device where the neighboring cell is located.
- the second measuring unit 80 is configured to measure the SRS sent by the UE.
- the specific structures of the fourth communication unit 70 and the second measurement unit 80 can be implemented by the central processing unit CPU, MCU, DSP or PLC in the channel state information measurement device or the equipment to which the channel state information measurement device belongs. .
- each processing module in the channel state information measurement device of the embodiment of the present disclosure can be understood by referring to the related description of the channel state information measurement method shown in FIG.
- Each processing module in the measurement device can be implemented by an analog circuit that implements the functions described in the embodiments of the present disclosure, or can be implemented by running software that implements the functions described in the embodiments of the present disclosure on the device.
- the channel state information measurement device can obtain the measurement result of the channel state information of the neighboring cell.
- an embodiment of the present disclosure also provides a channel state information measurement device for the UE.
- the device includes a fifth communication unit 61 and a signal Sending unit 62; where,
- the fifth communication unit 61 is configured to receive second sounding reference signal (SRS) configuration information sent by a network device where the serving cell of the UE is located, and the second SRS configuration information carries SRS usage indication information;
- SRS sounding reference signal
- the signal sending unit 62 is configured to send an SRS based on the second SRS configuration information, where the SRS is used for the network equipment where the neighboring cell of the UE is located to perform beam-based transmission between the neighboring cell and the UE Channel state information measurement.
- the specific structures of the fifth communication unit 61 and the signal sending unit 62 can be implemented by the central processing unit CPU, MCU, DSP or PLC in the channel state information measuring device or the equipment to which the channel state information measuring device belongs.
- each processing module in the measurement device can be implemented by an analog circuit that implements the functions described in the embodiments of the present disclosure, or can be implemented by running software that implements the functions described in the embodiments of the present disclosure on the device.
- the UE can send the SRS used for measuring the channel state information of the neighboring cell according to the second SRS configuration information of the network device where the serving cell is located.
- Fig. 16 is a block diagram showing a device 800 for implementing channel state information measurement according to an exemplary embodiment.
- the device 800 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
- the device 800 may include one or more of the following components: a processing component 802, a memory 804, a power component 806, a multimedia component 808, an audio component 810, an input/output (I/O, Input/Output) interface 812, The sensor component 814, and the communication component 816.
- a processing component 802 a memory 804, a power component 806, a multimedia component 808, an audio component 810, an input/output (I/O, Input/Output) interface 812, The sensor component 814, and the communication component 816.
- the processing component 802 generally controls the overall operations of the device 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
- the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the foregoing method.
- the processing component 802 may include one or more modules to facilitate the interaction between the processing component 802 and other components.
- the processing component 802 may include a multimedia module to facilitate the interaction between the multimedia component 808 and the processing component 802.
- the memory 804 is configured to store various types of data to support operations in the device 800. Examples of such data include instructions for any application or method operating on the device 800, contact data, phone book data, messages, pictures, videos, etc.
- the memory 804 can be implemented by any type of volatile or non-volatile storage devices or their combination, such as static random access memory (Static Random-Access Memory, SRAM), electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory). -Erasable Programmable Read Only Memory, EEPROM, Erasable Programmable Read Only Memory (EPROM), Programmable Read-only Memory (PROM), Read Only Memory (Read Only Memory) , ROM), magnetic memory, flash memory, magnetic disk or optical disk.
- SRAM static random access memory
- EPROM Erasable Programmable Read Only Memory
- PROM Programmable Read-only Memory
- Read Only Memory Read Only Memory
- the power component 806 provides power to various components of the device 800.
- the power component 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the device 800.
- the multimedia component 808 includes a screen that provides an output interface between the device 800 and the user.
- the screen may include a liquid crystal display (Liquid Crystal Display, LCD) and a touch panel (Touch Panel, TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
- the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
- the multimedia component 808 includes a front camera and/or a rear camera. When the device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
- the audio component 810 is configured to output and/or input audio signals.
- the audio component 810 includes a microphone (MIC for short).
- the microphone When the device 800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive an external audio signal.
- the received audio signal may be further stored in the memory 804 or transmitted via the communication component 816.
- the audio component 810 further includes a speaker for outputting audio signals.
- the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module.
- the above-mentioned peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
- the sensor component 814 includes one or more sensors for providing the device 800 with various aspects of status assessment.
- the sensor component 814 can detect the open/close state of the device 800 and the relative positioning of the components.
- the component is the display and the keypad of the device 800.
- the sensor component 814 can also detect the position change of the device 800 or a component of the device 800. , The presence or absence of contact between the user and the device 800, the orientation or acceleration/deceleration of the device 800, and the temperature change of the device 800.
- the sensor component 814 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
- the sensor component 814 may also include a light sensor, such as a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) or a charge-coupled device (Charge-coupled Device, CCD) image sensor for use in imaging applications.
- CMOS Complementary Metal Oxide Semiconductor
- CCD Charge-coupled Device
- the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
- the communication component 816 is configured to facilitate wired or wireless communication between the device 800 and other devices.
- the device 800 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
- the communication component 816 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
- the communication component 816 further includes a Near Field Communication (NFC) module to facilitate short-range communication.
- NFC Near Field Communication
- the NFC module can be based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (Blue Tooth, BT) technology and Other technologies to achieve.
- RFID Radio Frequency Identification
- IrDA Infrared Data Association
- UWB Ultra Wide Band
- Bluetooth Bluetooth
- the device 800 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (Digital Signal Processor, DSP), and digital signal processing devices (Digital Signal Processing Device, DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array (Field Programmable Gate Array, FPGA), controller, microcontroller, microprocessor or other electronic components to implement the above Channel state information measurement method.
- ASIC application specific integrated circuits
- DSP digital signal processors
- DSPD Digital Signal Processing Device
- PLD Programmable Logic Device
- FPGA Field Programmable Gate Array
- controller microcontroller, microprocessor or other electronic components to implement the above Channel state information measurement method.
- a non-transitory computer storage medium including executable instructions, such as a memory 804 including executable instructions.
- the executable instructions can be executed by the processor 820 of the device 800 to complete the foregoing method.
- the non-transitory computer storage medium may be ROM, random access memory (Random Access Memory, RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
- Fig. 17 is a block diagram showing a device 900 for measuring channel state information according to an exemplary embodiment.
- the device 900 may be provided as a server. 17, the device 900 includes a processing component 922, which further includes one or more processors, and a memory resource represented by a memory 932, for storing instructions that can be executed by the processing component 922, such as application programs.
- the application program stored in the memory 932 may include one or more modules each corresponding to a set of instructions.
- the processing component 922 is configured to execute instructions to execute the aforementioned channel state information measurement method.
- the device 900 may also include a power supply component 926 configured to perform power management of the device 900, a wired or wireless network interface 950 configured to connect the device 900 to a network, and an input output (I/O) interface 958.
- the device 900 can operate based on an operating system stored in the memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本公开实施例公开了一种信道状态信息测量方法、装置以及计算机存储介质,其中,信道状态信息测量方法包括:向用户设备(UE)发送邻小区的测量配置信息,所述测量配置信息用于指示所述UE执行与所述邻小区之间基于波束传输的信道状态信息测量。
Description
本公开涉及通信技术,尤其涉及一种信道状态信息测量方法、装置及计算机存储介质。
在第5代移动通信技术(5th generation mobile networks或5th generation wireless systems,简称5G)新空口(New Radio,NR)系统中,特别是通信频段在6GHz以上时,由于高频信道衰减较快,为了保证覆盖范围,需要使用基于波束(beam)的发送和接收。
当基站有多个发送接收点(Transmitter Receiver Point,TRP)、每个TRP又有一个或多个发送天线面板(panel),或者基站只有一个TRP、该TRP有多个发送panel时,基站可以使用多个panel同时向同一个用户设备(User Equipment,UE)发送数据,该多个panel可以来自同一个TRP或不同的TRP。同理,当UE也有多个panel时,UE可以使用多个panel向基站发送数据。
相关技术中,当UE移动到小区边缘时,可能panel#1上测得服务小区参考信号接收功率最强,而panel#2上测得邻小区参考信号接收功率最强。这种情况下,如果UE继续留在服务小区或是切换到邻小区,吞吐量都达不到最优。因为UE可能在两个小区覆盖范围重叠位置,而且可能一会服务小区提供的信道条件最好,一会邻小区提供的信道条件最好。那么这种情况下,最优的办法是不同小区同时基于波束为UE进行数据传输,而且能实现波束动态切换。这种情况下,为了使得邻小区也能更好的为UE提供服务,需要获得UE与邻小区之间的信道状态信息,而相关技术中还没有UE与邻 小区的信道状态信息测量方法。
发明内容
本公开提供一种信道状态信息测量方法、装置及计算机存储介质。
根据本公开实施例的第一方面,提供一种信道状态信息测量方法,应用于用户设备(UE)的服务小区所在网络设备,其中,所述方法包括:
向所述UE发送邻小区的测量配置信息,所述测量配置信息用于指示所述UE执行与所述邻小区之间基于波束传输的信道状态信息测量。
上述方案中,所述测量配置信息,包括下述中的一项或多项信息:
所述邻小区的物理小区标识信息;
所述邻小区的频域信息;
所述邻小区的测量配置子信息。
上述方案中,所述邻小区的测量配置子信息,包括下述中的一项或多项:
用于信道状态信息信号质量测量的第一参考信号的第一资源指示信息;
用于信道状态信息干扰测量(Channel-State Information Interference Measurement,CSI-IM)的第二参考信号的第二资源指示信息;
信道状态信息的测量结果上报配置信息。
上述方案中,所述第一参考信号为所述邻小区所在网络设备发送的同步信号块(Synchronization Signal Block,SSB)或信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS);
所述第一资源指示信息还包括下述中的一项或多项:
所述第一参考信号的标识;
所述第一参考信号的时域位置信息;
所述第一参考信号的频域位置信息;
所述第一参考信号的波束方向信息。
上述方案中,所述第二参考信号为所述邻小区所在网络设备发送的SSB或CSI-RS;
所述第二资源指示信息还包括下述中的一项或多项:
所述第二参考信号的标识;
所述第二参考信号的时域位置信息;
所述第二参考信号的频域位置信息;
所述第二参考信号的波束方向信息。
上述方案中,所述波束方向信息通过传输配置指示(Transmission Configuration Indication,TCI)状态或空间关系信息指示。
上述方案中,所述TCI状态或空间关系信息指示对应的参考信号为邻小区所在网络设备通过所述邻小区发送的SSB或CSI-RS,或为所述UE发送的探测参考信号(Sounding Reference Signal,SRS)。
上述方案中,所述测量结果上报配置信息,包括下述中的一项或多项:
小区索引;
上报类型;
被测量参考信号的标识;
上报参数;
上报带宽配置信息;
信道质量指示(Channel Quality Index,CQI)。
上述方案中,所述方法还包括:
接收所述UE基于所述测量配置信息测量并上报的所述邻小区的信道状态信息测量结果。
上述方案中,所述方法还包括:向所述邻小区所在网络设备转发所述信道状态信息测量结果。
根据本公开实施例的第二方面,提供一种信道状态信息测量方法,应 用于用户设备(UE),其中,所述方法包括:
接收所述UE的服务小区所在网络设备发送的测量配置信息,所述测量配置信息,用于指示所述UE执行与所述UE的邻小区之间基于波束传输的信道状态信息测量;
基于所述测量配置信息执行所述邻小区的信道状态信息测量。
上述方案中,所述测量配置信息,包括下述中的一项或多项信息:
所述邻小区的物理小区标识信息;
所述邻小区的频域信息;
所述邻小区的测量配置子信息。
上述方案中,所述邻小区的测量配置子信息,包括下述中的一项或多项:
用于信道状态信息信号质量测量的第一参考信号的第一资源指示信息;
用于信道状态信息干扰测量(CSI-IM)的第二参考信号的第二资源指示信息;
信道状态信息的测量结果上报配置信息。
上述方案中,所述第一参考信号为所述邻小区所在网络设备发送的同步信号块(SSB)或信道状态信息参考信号(CSI-RS);
所述第一资源指示信息还包括下述中的一项或多项:
所述第一参考信号的标识;
所述第一参考信号的时域位置信息;
所述第一参考信号的频域位置信息;
所述第一参考信号的波束方向信息。
上述方案中,所述第二参考信号为所述邻小区所在网络设备发送的SSB或CSI-RS;
所述第二资源指示信息还包括下述中的一项或多项:
所述第二参考信号的标识;
所述第二参考信号的时域位置信息;
所述第二参考信号的频域位置信息;
所述第二参考信号的波束方向信息。
上述方案中,所述波束方向信息通过传输配置指示(TCI)状态或空间关系信息指示。
上述方案中,所述TCI状态或空间关系信息指示对应的参考信号为邻小区所在网络设备通过所述邻小区发送的SSB或CSI-RS,或为所述UE发送的探测参考信号(SRS)。
上述方案中,所述测量结果上报配置信息,包括下述中的一项或多项:
小区索引;
上报类型;
被测量参考信号的标识;
上报参数;
上报带宽配置信息;
信道质量指示(CQI)。
上述方案中,所述方法还包括:
向所述服务小区所在网络设备和/或所述邻小区所在网络设备上报所述邻小区的信道状态信息测量结果,所述测量结果用于所述邻小区所在网络设备切换与所述UE之间的传输波束。
上述方案中,所述向所述服务小区所在网络设备和/或所述邻小区所在网络设备上报所述邻小区的信道状态信息测量结果,包括:
向所述服务小区所在网络设备和/或所述邻小区所在网络设备联合上报所述邻小区的信道状态信息测量结果与服务小区的信道状态信息测量结果;
或者
分别向所述服务小区所在网络设备和/或所述邻小区所在网络设备上报所述邻小区的信道状态信息测量结果与服务小区的信道状态信息测量结果;
其中,所述服务小区的信道状态信息测量结果为:所述UE与所述服务小区之间基于波束传输的信道状态信息测量。
上述方案中,所述联合上报所述邻小区的信道状态信息测量结果与服务小区的信道状态信息测量结果,包括:
按照信道质量指示(CQI)表,上报所述服务小区的CQI值对应的码字,以及上报所述邻小区的CQI值与所述服务小区的CQI值的偏移量。
上述方案中,所述联合上报所述邻小区的信道状态信息测量结果与服务小区的信道状态信息测量结果,包括:
对所述服务小区的信道状态信息测量结果和所述邻小区的信道状态信息测量结果进行计算,得到计算后的测量结果;
上报所述计算后的测量结果。
根据本公开实施例的第三方面,提供一种信道状态信息测量方法,应用于用户设备(UE)的服务小区所在网络设备,其中,所述方法包括:
向所述UE的邻小区所在网络设备发送测量请求信息,所述测量请求信息用于指示所述邻小区所在网络设备执行所述邻小区与所述UE之间基于波束传输的信道状态信息测量。
上述方案中,所述测量请求信息包含所述邻小区用于信道状态信息测量的第一探测参考信号(Sounding Reference Signal,SRS)配置信息,所述第一SRS配置信息用于指示待测量的SRS。
上述方案中,所述第一SRS配置信息,包括下述中的一项或多项:
所述UE的标识;
所述SRS的标识;
所述SRS的资源位置信息;
所述SRS的类型信息;
所述SRS的波束方向信息;
所述SRS的端口索引信息。
上述方案中,所述SRS的波束方向信息通过传输配置指示(TCI)状态或空间关系信息指示。
上述方案中,所述SRS是所述UE发送的SRS。
上述方案中,所述方法还包括:
向所述UE发送第二SRS配置信息,所述第二SRS配置信息携带有所述SRS的用途指示信息。
上述方案中,所述用途指示信息包括:
波束管理信息,或码本信息,或非码本信息,或天线转换信息。
上述方案中,所述用途指示信息还携带有所述SRS适用的邻小区标识。
根据本公开实施例的第四方面,提供一种信道状态信息测量方法,应用于用户设备(UE)的邻小区所在网络设备,其中,所述方法包括:
接收所述UE的服务小区所在网络设备发送的测量请求信息,所述测量请求信息用于指示所述邻小区所在网络设备执行所述邻小区与UE之间基于波束传输的信道状态信息测量;
基于所述测量请求信息执行信道状态信息测量。
上述方案中,所述测量请求信息包括第一探测参考信号(SRS)配置信息,所述第一SRS配置信息用于向所述邻小区所在网络设备指示所述UE发送的SRS。
上述方案中,所述第一SRS配置信息,包括下述中的一项或多项:
所述UE的标识;
所述SRS的标识;
所述SRS的资源位置信息;
所述SRS的类型信息;
所述SRS的波束方向信息;
所述SRS的端口索引信息。
上述方案中,所述SRS的波束方向信息通过传输配置指示(TCI)状态或空间关系信息指示。
上述方案中,所述TCI状态或空间关系信息指示对应的参考信号为邻小区所在网络设备通过所述邻小区发送的SSB或CSI-RS,或为所述UE发送的SRS。
上述方案中,所述方法还包括:测量所述UE发送的SRS;
所述基于所述测量请求信息执行信道状态信息测量,包括:
根据所述SRS进行所述邻小区与所述UE之间的传输信道的信道状态信息测量。
根据本公开实施例的第五方面,提供一种信道状态信息测量方法,应用于用户设备(UE),其中,所述方法包括:
接收所述UE的服务小区所在网络设备发送的第二探测参考信号(SRS)配置信息,所述第二SRS配置信息携带有SRS的用途指示信息;
基于所述第二SRS配置信息发送SRS,所述SRS用于供所述UE的邻小区所在网络设备执行所述邻小区与所述UE之间基于波束传输的信道状态信息测量。
上述方案中,所述用途指示信息包括:
波束管理信息,或码本信息,或非码本信息,或天线转换信息。
上述方案中,所述用途指示信息还携带有所述SRS适用的邻小区标识。
根据本公开实施例的第六方面,提供一种信道状态信息测量装置,应用于用户设备(UE)的服务小区所在网络设备,其中,包括:
第一配置单元,被配置为:配置邻小区的测量配置信息,所述测量配置信息用于指示所述UE执行与所述邻小区之间基于波束传输的信道状态信息测量;
第一通信单元,被配置为向所述UE发送所述测量配置信息。
根据本公开实施例的第七方面,提供一种信道状态信息测量装置,应用于用户设备(UE),其中,包括:
第二通信单元,被配置为接收所述UE的服务小区所在网络设备发送的测量配置信息,所述测量配置信息,用于指示所述UE执行与所述UE的邻小区之间基于波束传输的信道状态信息测量;
第一测量单元,被配置为基于所述测量配置信息执行所述邻小区的信道状态信息测量。
根据本公开实施例的第八方面,提供一种信道状态信息测量装置,应用于用户设备(UE)的服务小区所在网络设备,其中,包括:
第二配置单元,被配置为:配置测量请求信息,所述测量请求信息用于指示所述UE的邻小区所在网络设备执行所述邻小区与所述UE之间基于波束传输的信道状态信息测量;
第三通信单元,被配置为向所述UE的邻小区所在网络设备发送所述测量请求信息。
根据本公开实施例的第九方面,提供一种信道状态信息测量装置,应用于用户设备(UE)的邻小区所在网络设备,其中,包括:
第四通信单元,被配置为接收所述UE的服务小区所在网络设备发送的测量请求信息,所述测量请求信息用于指示所述邻小区所在网络设备执行所述邻小区与所述UE之间基于波束传输的信道状态信息测量;
第二测量单元,被配置为基于所述测量请求信息执行信道状态信息测量。
根据本公开实施例的第十方面,提供一种信道状态信息测量装置,应用于用户设备(UE),其中,包括:
第五通信单元,被配置为接收所述UE的服务小区所在网络设备发送的第二探测参考信号(SRS)配置信息,所述第二SRS配置信息携带有SRS 的用途指示信息;
信号发送单元,被配置为基于所述第二SRS配置信息发送SRS,所述SRS用于供所述UE的邻小区所在网络设备执行所述邻小区与所述UE之间基于波束传输的信道状态信息测量。
根据本公开实施例的第十一方面,提供一种信道状态信息测量装置,应用于UE的服务小区所在网络设备,其中,包括:
处理器;
用于存储可执行指令的存储器;
其中,所述处理器被配置为:执行所述可执行指令时实现第一方面所述的信道状态信息测量方法。
根据本公开实施例的第十二方面,提供一种信道状态信息测量装置,应用于UE,其中,包括:
处理器;
用于存储可执行指令的存储器;
其中,所述处理器被配置为:执行所述可执行指令时实现第二方面所述的信道状态信息测量方法。
根据本公开实施例的第十三方面,提供一种信道状态信息测量装置,应用于UE的服务小区所在网络设备,其中,包括:
处理器;
用于存储可执行指令的存储器;
其中,所述处理器被配置为:执行所述可执行指令时实现第三方面所述的信道状态信息测量方法。
根据本公开实施例的第十四方面,提供一种信道状态信息测量装置,应用于UE的邻小区所在网络设备,其中,包括:
处理器;
用于存储可执行指令的存储器;
其中,所述处理器被配置为:执行所述可执行指令时实现第四方面所述的信道状态信息测量方法。
根据本公开实施例的第十五方面,提供一种信道状态信息测量装置,应用于UE,其中,包括:
处理器;
用于存储可执行指令的存储器;
其中,所述处理器被配置为:执行所述可执行指令时实现第五方面所述的信道状态信息测量方法。
根据本公开实施例的第十六方面,提供一种计算机存储介质,应用于UE的服务小区所在网络设备,其中,所述计算机存储介质中存储有可执行指令,所述可执行指令被处理器执行时,使得所述处理器执行第一方面所述的信道状态信息测量方法。
根据本公开实施例的第十七方面,提供一种计算机存储介质,应用于UE,其中,所述计算机存储介质中存储有可执行指令,所述可执行指令被处理器执行时,使得所述处理器执行第二方面所述的信道状态信息测量方法。
根据本公开实施例的第十八方面,提供一种计算机存储介质,应用于UE的服务小区所在网络设备,其中,所述计算机存储介质中存储有可执行指令,所述可执行指令被处理器执行时,使得所述处理器执行第三方面所述的信道状态信息测量方法。
根据本公开实施例的第十九方面,提供一种计算机存储介质,应用于UE的邻小区所在网络设备,其中,所述计算机存储介质中存储有可执行指令,所述可执行指令被处理器执行时,使得所述处理器执行第四方面所述的信道状态信息测量方法。
根据本公开实施例的第二十方面,提供一种计算机存储介质,应用于UE,其中,所述计算机存储介质中存储有可执行指令,所述可执行指令被 处理器执行时,使得所述处理器执行第五方面所述的信道状态信息测量方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
UE的服务小区所在网络设备向UE发送邻小区的测量配置信息,所述测量配置信息用于指示所述UE执行与所述邻小区之间基于波束传输的信道状态信息测量;如此,给出了获取UE与UE的邻小区之间基于波束传输的信道状态信息的方法,由于能够获取UE与UE的邻小区之间基于波束传输的信道状态信息,从而使多个小区间的多天线面板同时与UE进行传输时,能动态的切换波束以便给UE发送数据,使邻小区与UE之间的通信也能达到更好的效果,从而提高UE的吞吐量。
UE的服务小区所在网络设备向UE的邻小区所在网络设备发送测量请求信息,所述测量请求信息用于指示所述邻小区所在网络设备执行所述邻小区与所述UE之间基于波束传输的信道状态信息测量;如此,给出了获取UE与UE的邻小区之间基于波束传输的信道状态信息的方法,由于能够获取UE与UE的邻小区之间基于波束传输的信道状态信息,从而使多个小区间的多天线面板同时与UE进行传输时,能动态的切换波束以便给UE发送数据,使邻小区与UE之间的通信也能达到更好的效果,从而提高UE的吞吐量。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种信道状态信息测量方法的流程 图一;
图3是根据一示例性实施例示出的设备间交互流程图一;
图4是根据一示例性实施例示出的一种信道状态信息测量方法的流程图二;
图5是根据一示例性实施例示出的设备间交互流程图二;
图6是根据一示例性实施例示出的一种信道状态信息测量方法的流程图三;
图7是根据一示例性实施例示出的设备间交互流程图三;
图8是根据一示例性实施例示出的一种信道状态信息测量方法的流程图四;
图9是根据一示例性实施例示出的一种信道状态信息测量方法的流程图五;
图10是根据一示例性实施例示出的设备间交互流程图四;
图11是根据一示例性实施例示出的一种信道状态信息测量装置的框图一;
图12是根据一示例性实施例示出的一种信道状态信息测量装置的框图二;
图13是根据一示例性实施例示出的一种信道状态信息测量装置的框图三;
图14是根据一示例性实施例示出的一种信道状态信息测量装置的框图四;
图15是根据一示例性实施例示出的一种信道状态信息测量装置的框图五;
图16是根据一示例性实施例示出的一种用于实现信道状态信息测量的装置800的框图;
图17是根据一示例性实施例示出的一种用于实现信道状态信息测量的 装置900的框图。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“一个”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个终端11以及若干个基站12。
其中,终端11可以是指向用户提供语音和/或数据连通性的设备。终端11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端11可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携 式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(User Equipment,UE)。或者,终端11也可以是无人飞行器的设备。或者,终端11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,终端11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(New Radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,机器类型通信(Machine-Type Communication,MTC)系统。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(Central Unit,CU)和至少两个分布单元(Distributed Unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和终端11之间可以通过无线空口建立无线连接。在不同的实 施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(Vehicle to Everything,V2X)中的V2V(Vehicle to Vehicle,车对车)通信、V2I(Vehicle to Infrastructure,车对路边设备)通信和V2P(Vehicle to Pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving Gate Way,SGW)、公用数据网网关(Public Data Network Gate Way,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户网络侧设备(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
在NR系统中,特别是通信频段在6GHz以上时,由于高频信道衰减较快,为了保证覆盖范围,需要使用基于波束(beam)的发送和接收。
相关技术中,当基站有多个发送接收点(TRP)、每个TRP又有一个或多个发送天线面板(panel),或者基站只有一个TRP、该TRP有多个发送panel时,基站可以使用多个panel同时向同一个用户设备(UE)发送数据,该多个panel可以来自同一个TRP或不同的TRP。同理,当UE也有多个panel时,UE可以使用多个panel向基站发送数据。
相关技术中,当UE移动到小区边缘时,可能panel#1上测得服务小区 参考信号接收功率最强,而panel#2上测得邻小区参考信号接收功率最强。这种情况下,如果UE继续留在服务小区或是切换到邻小区,吞吐量都达不到最优。因为UE可能在两个小区覆盖范围重叠位置,而且可能一会服务小区信道条件最好,一会邻小区信道条件最好。那么这种情况下,最优的办法是不同小区同时基于波束为UE进行数据传输,而且能够实现波束动态切换。这种情况下,为了使得邻小区也能更好的为UE提供服务,需要获得UE与邻小区之间的信道状态信息,而目前还没有UE与邻小区的信道状态信息测量方法。
基于上述无线通信系统,如何获得UE与邻小区之间的信道状态信息,提出本公开方法各个实施例。
本公开实施例示出了一种信道状态信息测量方法,如图2所示,该信道状态信息测量方法用于用户设备(UE)的服务小区所在网络设备,比如所述UE的服务小区所在基站。该信道状态测量方法包括以下步骤:
在步骤S11中,向用户设备(UE)发送邻小区的测量配置信息,所述测量配置信息用于指示所述UE执行与所述邻小区之间基于波束传输的信道状态信息测量。
在一些实施例中,所述邻小区的测量配置信息,包括下述中的一项或多项信息:
所述邻小区的物理小区标识信息;
所述邻小区的频域信息;
所述邻小区的测量配置子信息。
这里,所述物理小区标识信息可以包括:物理小区索引(Physical Cell Index,PCI)标识信息。
这里,所述频域信息可以包括:载波或带宽部分(Bandwidth Part,BWP)所在频点及带宽。
在一些实施例中,所述邻小区的测量配置子信息,包括下述中的一项 或多项:
用于信道状态信息信号质量测量的第一参考信号的第一资源指示信息,
用于信道状态信息干扰测量(CSI-IM)的第二参考信号的第二资源指示信息;
信道状态信息的测量结果上报配置信息。
在一些实施例中,所述第一参考信号为所述邻小区所在网络设备发送的SSB或CSI-RS。
其中,CSI-RS包括非零功率信道状态信息参考信号(Non-Zero Power Channel State Information-Reference Signal resource,NZP-CSI-RS)或零功率信道状态信息参考信号(Zero Power Channel State Information-Reference Signal resource,ZP-CSI-RS)。
在一些实施例中,所述第一资源指示信息还包括下述中的一项或多项:
所述第一参考信号的标识;
所述第一参考信号的时域位置信息;
所述第一参考信号的频域位置信息;
所述第一参考信号的波束方向信息。
其中,所述第一参考信号的波束方向可以通过TCI状态或空间关系信息指示。
其中,所述TCI状态或空间关系信息指示的参考信号为所述邻小区所在网络设备通过所述邻小区发送的SSB或CSI-RS,或所述UE发送的SRS。
在一些实施例中,所述第二参考信号为所述邻小区所在网络设备发送的SSB或CSI-RS;
所述第二资源指示信息还包括下述中的一项或多项:
所述第二参考信号的标识;
所述第二参考信号的时域位置信息;
所述第二参考信号的频域位置信息;
所述第二参考信号的波束方向信息。
其中,所述第二参考信号的波束方向可通过TCI状态或空间关系信息指示。
其中,所述TCI状态或空间关系信息指示的参考信号为所述邻小区所在网络设备通过所述邻小区发送的SSB或CSI-RS,或所述UE发送的SRS。
在一些实施例中,所述测量结果上报配置信息,包括下述中的一项或多项:
小区索引;
上报类型;
被测量参考信号的标识;
上报参数;
上报带宽配置;
信道质量指示(CQI)。
这里,所述小区索引可以是物理小区标识(Physical Cell Index,PCI)标识,也可以是给这个小区的一个编号,用于与其它为该UE提供传输服务的一个或多个小区进行区分,比如有3个小区为UE提供服务,则三个小区编号可以分别为#0,#1和#2。
这里,上报类型分为周期性上报、非周期性上报或半静态(semi-Persistent)上报。
一种实施方式中,周期性上报需要给出周期和时隙偏移量。
一种实施方式中,非周期上报需要给出时隙偏移值,如根据调度非周期CSI上报的PDCCH时隙位置加上时隙偏移值得到上报该CSI的时隙位置。
一种实施方式中,半静态上报需要给出上报时隙数以及时隙位置。
这里,所述被测量参考信号的标识,可包括:第一参考信号的标识, 和/或,第二参考信号的标识。
这里,上报参数可包括下述中的一种或几种:秩指示(Rank Index,RI)、预编码矩阵指示(Precoding Matrix Index,PMI)、信道质量指示(Channel Quality Index,CQI)、信道状态信息参考信号资源指示(CSI-RS Resource Indicator,CRI)-参考信号接收功率(Reference Signal Receiving Power,RSRP),SSB-index-RSRP。
这里,所述上报带宽配置包括窄带(subband)或宽带(wideband);在所述上报带宽配置为窄带时,所述上报带宽配置还携带有所述窄带的频域位置和/或所述窄带的大小。
这里,UE按照CQI表上报所述服务小区的CQI值对应的码字,以及上报所述邻小区的CQI值与所述服务小区的CQI值的偏移量。其中,所述CQI表包括CQI取值范围与比特码字的对应关系。
在一些实施例中,如图3所示,所述方法还包括:
步骤S12:UE的服务小区所在网络设备接收所述UE基于所述测量配置信息测量并上报的所述邻小区的信道状态信息测量结果。
示例性地,UE的服务小区所在网络设备向UE发送测量配置信息,UE基于该测量配置信息测量所述UE与所述邻小区之间传输信道的信道状态信息,向该UE的服务小区所在网络设备上报所述UE与所述邻小区之间传输信道的信道状态信息测量结果。一种场景下,UE将测量到的与邻小区基于波束传输的信道状态信息测量结果直接上报给服务小区所在网络设备,另一种场景下UE将测量到的该结果与测量到的与服务小区所在网络设备的信道状态信息测量结果联合上报给服务小区所在网络设备。其中联合上报方法会在下面的实施例中给出,本实施例中不再赘述。UE具体使用哪种方法进行上报,可依据具体场景决定,本实施例中不做具体限定。
在一些实施例中,UE只上报测量结果给服务小区所在网络设备,即不向邻小区所在网络设备上报测量结果,此时需要服务小区所在网络设备将 该测量结果转发给邻小区所在网络设备。如图3所示,所述方法还可包括:
步骤S13:UE的服务小区所在网络设备向UE的邻小区所在网络设备转发所述信道状态信息测量结果。
如此,UE的服务小区所在网络设备通过向UE的邻小区所在网络设备转发所述邻小区的信道状态信息测量结果,能够使得邻小区所在网络设备获知该信道状态信息测量结果,从而便于邻小区所在网络设备根据该信道状态信息测量结果为该UE调度资源,以提高UE的吞吐量。
本公开实施例示出了一种信道状态信息测量方法,如图4所示,该信道状态信息测量方法用于用户设备(UE)中。该信道状态测量方法包括以下步骤:
在步骤S21中,接收UE的服务小区所在网络设备发送的测量配置信息,所述测量配置信息,用于指示所述UE执行与所述UE的邻小区之间基于波束传输的信道状态信息测量;
在步骤S22中,基于所述测量配置信息执行所述邻小区的信道状态信息测量。
本公开所述的技术方案,UE接收其服务小区所在网络设备发送的用于指示UE执行与所述UE的邻小区所在网络设备之间基于波束传输信道的信道状态信息测量的测量指示信息;基于所述测量配置信息执行所述UE与其邻小区所在网络设备之间传输信道的信道状态信息测量;如此,由于能够确定邻小区信道状态信息测量结果,使得服务小区和邻小区的多TRP或天线面板同时与UE进行传输时,使多个小区间的多天线面板能动态的切换波束以便给UE发送数据,从而使邻小区与UE之间的通信也能达到更好的效果,提高吞吐量以及用户体验。
在一些实施例中,所述邻小区的测量配置信息,包括下述中的一项或多项信息:
所述邻小区的物理小区标识信息;
所述邻小区的频域信息;
所述邻小区的测量配置子信息。
这里,所述物理小区标识信息可以包括:物理小区索引(Physical Cell Index,PCI)标识信息。
这里,所述频域信息可以包括:载波或带宽部分(Bandwidth Part,BWP)所在频点及带宽。
在一些实施例中,所述邻小区的测量配置子信息,包括下述中的一项或多项:
用于信道状态信息信号质量测量的第一参考信号的第一资源指示信息,
用于信道状态信息干扰测量(CSI-IM)的第二参考信号的第二资源指示信息;
信道状态信息的测量结果上报配置信息。
在一些实施例中,所述第一参考信号为所述邻小区所在网络设备发送的SSB或CSI-RS。
其中,CSI-RS包括NZP-CSI-RS或ZP-CSI-RS。
在一些实施例中,所述第一资源指示信息还包括下述中的一项或多项:
所述第一参考信号的标识;
所述第一参考信号的时域位置信息;
所述第一参考信号的频域位置信息;
所述第一参考信号的波束方向信息。
其中,所述第一参考信号的波束方向可以通过TCI状态或空间关系信息指示。
其中,所述TCI状态或空间关系信息指示的参考信号为所述邻小区所在网络设备通过所述邻小区发送的SSB或CSI-RS,或所述终端发送的SRS。
其中,邻小区所在网络设备除对应该邻小区外,还可能对应其他邻小 区,如,网络设备对应的邻小区包括第一邻小区、第二邻小区和第三邻小区,那么如果终端的邻小区为第一邻小区,则所述TCI状态或空间关系信息指示的参考信号为所述第一邻小区所在网络设备通过所述第一邻小区发送的SSB或CSI-RS,而不是第一邻小区所在网络设备通过所述第二或第三邻小区发送的SSB或CSI-RS。
在一些实施例中,所述第二参考信号为所述邻小区所在网络设备通过所述邻小区发送的SSB或CSI-RS;
所述第二资源指示信息还包括下述中的一项或多项:
所述第二参考信号的标识;
所述第二参考信号的时域位置信息;
所述第二参考信号的频域位置信息;
所述第二参考信号的波束方向信息。
其中,所述第二参考信号的波束方向可通过TCI状态或空间关系信息指示。
其中,所述TCI状态或空间关系信息指示的参考信号为所述邻小区所在网络设备通过所述邻小区发送的SSB或CSI-RS,或所述UE发送的SRS。
在一些实施例中,所述测量结果上报配置信息,包括下述中的一项或多项:
小区索引;
上报类型;
被测量参考信号的标识;
上报参数;
上报带宽配置;
信道质量指示(CQI)。
这里,所述小区索引可以是物理小区标识(Physical Cell Index,PCI)标识,也可以是给这个小区的一个编号,用于与其它为该UE提供传输服务 的一个或多个小区进行区分,比如有3个小区为UE提供服务,则三个小区编号可以分别为#0,#1和#2。
这里,上报类型分为周期性上报、非周期性上报或半静态(semi-Persistent)上报。
一种实施方式中,周期性上报需要给出周期和时隙偏移量。
一种实施方式中,非周期上报需要给出时隙偏移值,如根据调度非周期CSI上报的PDCCH时隙位置加上时隙偏移值得到上报该CSI的时隙位置。
一种实施方式中,半静态上报需要给出上报时隙数以及时隙位置。
这里,所述被测量参考信号的标识,可包括:第一参考信号的标识,和/或,第二参考信号的标识。
这里,上报参数可包括下述中的一种或几种:秩指示(Rank Index,RI)、预编码矩阵指示(Precoding Matrix Index,PMI)、信道质量指示(Channel Quality Index,CQI)、信道状态信息参考信号资源指示(CSI-RS Resource Indicator,CRI)-参考信号接收功率(Reference Signal Receiving Power,RSRP),SSB-index-RSRP。
这里,所述上报带宽配置包括窄带(subband)或宽带(wideband);在所述上报带宽配置为窄带时,所述上报带宽配置还携带有所述窄带的频域位置和/或所述窄带的大小。
本实施例中,UE基于所述测量配置信息执行与邻小区基于波束传输的信道状态信息测量的具体方法与相关技术中方法类似,在此本实施例中不做具体限定。
在一些实施例中,UE获得测量结果后需要将该结果告知邻小区所在网络设备,这样邻小区所在网络设备和UE之间才根据测量结果能实现波束切换,如图5所示,所述方法还包括:
步骤S23a:UE向所述UE的服务小区所在网络设备上报所述邻小区的 信道状态信息测量结果;
和/或,
步骤S23b:UE向所述UE的邻小区所在网络设备上报所述邻小区的信道状态信息测量结果。
需要说明的是,当所述方法包括步骤S23a和步骤S23b时,可以先执行步骤S23a,也可以先执行步骤S23b,还可以同时执行步骤S23a和步骤S23b,本实施例中对上报的先后顺序不做具体限定,可依据不同的场景实现上报。
在一些实施例中,所述上报所述邻小区的信道状态信息测量结果,包括:
联合上报所述邻小区的信道状态信息测量结果与服务小区的信道状态信息测量结果;
或者,
分别上报所述邻小区的信道状态信息测量结果与服务小区的信道状态信息测量结果;
其中,所述服务小区的信道状态信息测量结果为:所述UE与所述服务小区之间基于波束传输的信道状态信息测量的测量结果,该测量方法与相关技术中类似,本实施例中不再赘述。
如此,便于邻小区所在网络设备根据该信道状态信息测量结果为UE调度资源,以提高UE的吞吐量。
在一些实施例中,所述联合上报所述邻小区的信道状态信息测量结果与服务小区的信道状态信息测量结果,包括:
按照CQI表,上报所述服务小区的CQI值对应的码字,以及上报所述邻小区的CQI值与所述服务小区的CQI值的偏移量。
比如,服务小区的CQI值按照CQI表上报码字,而邻小区的CQI值可仅上报其与服务小区的CQI值的偏移值,从而能减少比特数。
在一些实施例中,所述联合上报所述邻小区的信道状态信息测量结果与服务小区的信道状态信息测量结果,包括:
对所述服务小区的信道状态信息测量结果和所述邻小区的信道状态信息测量结果进行处理如计算处理,得到经计算处理后的测量结果;
上报经计算处理后得到的测量结果。
其中,所述经计算处理后得到的测量结果包括测量结果上报配置信息中的一项或多项。
本公开实施例中,经计算处理后得到的测量结果可以是一套测量结果,计算方法包括但不限于取平均值或加权平均值。本公开实施例并不对得到一套测量结果的计算方法进行限定。
本公开实施例中,只上报所述一套测量结果,可以只向所述UE的邻小区所在网络设备上报,还可以只向所述服务小区所在网络设备上报,或者,还可以向所述UE的邻小区所在网络设备和所述服务小区所在网络设备分别上报。
本公开所述的技术方案,UE接收其服务小区所在网络设备发送的用于指示UE执行与所述UE的邻小区之间基于波束传输信道的信道状态信息测量的测量指示信息;基于所述测量指示信息执行所述传输信道的信道状态信息测量;如此,由于能够确定邻小区信道状态信息测量结果,使得服务小区和邻小区的多TRP或天线面板同时与UE进行传输时,使多个小区间的多天线面板能动态的切换波束以便给UE发送数据,从而使邻小区与UE之间的通信也能达到更好的效果,提高吞吐量以及用户体验。
本公开实施例示出了一种信道状态信息测量方法,如图6所示,该信道状态信息测量方法用于用户设备(UE)的服务小区所在网络设备,比如服务小区所在基站。该信道状态测量方法包括以下步骤:
在步骤S31中,向用户设备(UE)的邻小区所在网络设备发送测量请求信息,所述测量请求信息用于指示所述邻小区所在网络设备执行所述邻 小区与所述UE之间基于波束传输的信道状态信息测量。
在一些实施例中,所述测量请求信息包含所述邻小区用于信道状态信息测量的第一探测参考信号(SRS)配置信息,所述第一SRS配置信息用于指示待测量的SRS。
示例性地,UE的服务小区所在网络设备向所述UE的邻小区所在网络设备发送测量请求信息,该邻小区所在网络设备基于该测量请求信息测量所述邻小区与所述UE之间传输信道的信道状态信息。
如此,邻小区所在网络设备自己测量得到信道状态信息测量结果,从而便于该邻小区所在网络设备根据该信道状态信息测量结果为UE调度资源,以提高UE的吞吐量。
在一些实施例中,所述第一SRS配置信息,包括下述中的一项或多项:
UE的标识;
所述SRS的标识;
所述SRS的时域位置;
所述SRS的频域位置;
所述SRS的类型;
所述SRS的波束方向;
所述SRS的端口索引。
其中,所述SRS的时域位置,可包括起始符号位置、符号数、重复因子中的一项或多项。
其中,所述SRS的频域位置,可包括频域位置、频域偏移量、跳频参数中的一项或多项。
其中,所述SRS的类型包括周期性、或非周期性、或半静态(semi-persistent)。
在一些实施例中,所述SRS的波束方向信息通过TCI状态或空间关系信息指示。
其中,所述TCI状态或空间关系信息指示的参考信号为所述邻小区所在网络设备通过所述邻小区发送的SSB或CSI-RS,或所述UE发送的SRS。
其中,邻小区所在网络设备除对应该邻小区外,还可能对应其他邻小区,如,网络设备对应的邻小区包括第一邻小区、第二邻小区和第三邻小区,那么如果终端的邻小区为第一邻小区,则所述TCI状态或空间关系信息指示的参考信号为所述第一邻小区所在网络设备通过所述第一邻小区发送的SSB或CSI-RS,而不是第一邻小区所在网络设备通过所述第二或第三邻小区发送的SSB或CSI-RS。
在一些实施例中,所述SRS是所述UE发送的SRS。
这里,所述SRS可以是UE已经在发送的SRS,比如,所述SRS是UE发送并用于服务小区的波束测量、或者是用于服务小区的信道状态信息测量、或是用于邻小区波束测量等用途。也就是说,用于邻小区信道状态信息测量的SRS与用于其它目的的SRS可以复用,这样UE就不需要发送额外的SRS,服务小区所在网络设备也不需要再配置UE发送专门用于邻小区信道状态信息测量的SRS,能够节省信令开销。
在一些实施例中,UE发送专门用于邻小区信道状态信息测量的SRS,UE的服务小区所在网络设备需要配置指示UE发送SRS的配置信息,如图7所示,所述方法还包括:
步骤S30:UE的服务小区所在网络设备向所述UE发送第二SRS配置信息,所述第二SRS配置信息携带有SRS的用途指示信息。
其中,所述用途指示信息包括:
波束管理信息,或码本信息,或非码本信息,或天线转换信息。
其中,用途指示信息为码本信息是指该SRS是用于基于码本的CSI测量;
其中,用途指示信息为非码本信息是指该SRS是用于基于非码本的CSI测量。
在一些实施例中,所述用途指示信息还携带有所述SRS适用的邻小区标识。该邻小区标识可以是邻小区的PCI,也可以是该邻小区在该UE端的一个小区编号,以区别于其它为该UE提供传输服务的小区。
如此,便于所述UE基于所述第二SRS配置信息发送用于供所述邻小区所在网络设备执行所述邻小区与所述UE之间传输信道的信道状态信息测量的SRS。
本公开所述的技术方案,UE的服务小区所在网络设备向UE的邻小区所在网络设备发送用于指示所述邻小区所在网络设备执行所述邻小区与UE之间传输信道的信道状态信息测量的测量指示信息,以由所述邻小区所在网络设备执行该传输信道的信道状态信息测量;由于能获知邻小区信道状态信息测量结果,使得服务小区和邻小区的多TRP或天线面板同时与UE进行传输时,使多个小区间的多TRP或天线面板能动态的切换波束以便给UE发送数据,从而使邻小区与UE之间的通信也能达到更好的效果,提高吞吐量以及用户体验。
本公开实施例示出了一种信道状态信息测量方法,如图8所示,该信道状态信息测量方法用于UE的邻小区所在网络设备,如UE的邻小区所在基站。该信道状态测量方法包括以下步骤:
在步骤S41中,接收UE的服务小区所在网络设备发送的测量请求信息,所述测量请求信息用于指示所述邻小区所在网络设备执行所述邻小区与UE之间基于波束传输的信道状态信息测量;
在步骤S42中,基于所述测量请求信息执行信道状态信息测量。
本公开所述的技术方案,UE的邻小区所在网络设备接收UE的服务小区所在网络设备发送的测量请求信息;基于该测量请求信息执行所述邻小区所在网络设备执行所述邻小区与UE之间基于波束传输的信道状态信息测量;如此,由于能够测得邻小区信道状态信息测量结果,使得服务小区和邻小区的多TRP或天线面板同时与UE进行传输时,使多个小区间的多 天线面板能动态的切换波束以便给UE发送数据,从而使邻小区与UE之间的通信也能达到更好的效果,提高吞吐量以及用户体验。
在一些实施例中,所述测量请求信息包括第一探测参考信号(SRS)配置信息,所述第一SRS配置信息用于向所述邻小区所在网络设备指示所述UE发送的SRS。
在一些实施例中,所述第一SRS配置信息,包括下述中的一项或多项:
所述UE的标识;
所述SRS的标识;
所述SRS的资源位置信息;
所述SRS的类型信息;
所述SRS的波束方向信息;
所述SRS的端口索引信息。
在一些实施例中,所述SRS的波束方向信息通过传输配置指示(TCI)状态或空间关系信息指示。
其中,所述TCI状态或空间关系信息指示的参考信号为所述邻小区所在网络设备通过所述邻小区发送的SSB或CSI-RS,或所述UE发送的SRS。
其中,邻小区所在网络设备除对应该邻小区外,还可能对应其他邻小区,如,网络设备对应的邻小区包括第一邻小区、第二邻小区和第三邻小区,那么如果终端的邻小区为第一邻小区,则所述TCI状态或空间关系信息指示的参考信号为所述第一邻小区所在网络设备通过所述第一邻小区发送的SSB或CSI-RS,而不是第一邻小区所在网络设备通过所述第二或第三邻小区发送的SSB或CSI-RS。
在一些实施例中,所述方法还包括:测量所述UE发送的SRS;
所述基于所述测量请求信息执行信道状态信息测量,包括:
根据所述SRS进行所述邻小区与所述UE之间的传输信道的信道状态信息测量。
在一些实施方式中,所述SRS可以是UE已经在发送的SRS,比如,所述SRS是UE发送并用于服务小区的波束测量、或者是用于服务小区的信道状态信息测量、或是用于邻小区波束测量等用途。也就是说,用于邻小区信道状态信息测量的SRS与用于其它目的的SRS可以复用,这样UE就不需要发送额外的SRS,服务小区所在网络设备也不需要再配置UE发送专门用于邻小区信道状态信息测量的SRS,能够节省信令开销。
在一些实施方式中,所述SRS可以是UE发送的专门用于邻小区信道状态信息测量的SRS,此情况下,UE需要根据所述UE的服务小区所在网络设备发送的配置信息发送SRS。本实施例示出了一种信道状态信息测量方法,如图9所示,该信道状态信息测量方法用于用户设备(UE)中。该信道状态测量方法包括以下步骤:
在步骤S51中,用户设备(UE)接收所述UE的服务小区所在网络设备发送的第二探测参考信号(SRS)配置信息,所述第二SRS配置信息携带有SRS的用途指示信息;
在步骤S52中,所述UE基于所述第二SRS配置信息发送SRS,所述SRS用于供所述UE的邻小区所在网络设备执行所述邻小区与所述UE之间基于波束传输的信道状态信息测量。
在一些实施例中,所述用途指示信息包括:
波束管理信息,或码本信息,或非码本信息,或天线转换信息。
在一些实施例中,所述用途指示信息还携带有所述SRS适用的邻小区标识。
如此,UE能基于第二SRS配置信息发送SRS,UE的邻小区所在网络设备,可根据所述UE发送的所述SRS,进行所述邻小区所在网络设备与所述UE之间的传输信道的信道状态信息测量,从而便于邻小区所在网络设备根据信道状态信息测量结果为UE调度资源,以提高UE的吞吐量。
图10示出了设备之间的交互图,如图10所示,该流程包括:
步骤S41b:UE的邻小区所在网络设备接收UE的服务小区所在网络设备发送的测量请求信息,所述测量请求信息用于指示所述邻小区所在网络设备执行所述邻小区与所述UE之间传输信道的信道状态信息测量;
步骤S51b:UE接收UE的服务小区所在网络设备发送的第二SRS配置信息,所述第二SRS配置信息携带有SRS的用途指示信息;
其中,所述用途指示信息用于指示所述UE发送用于邻小区信道状态信息测量的SRS。
步骤S52b:UE基于所述第二SRS配置信息发送用于供所述UE的邻小区所在网络设备执行所述邻小区与所述UE之间传输信道的信道状态信息测量的SRS;
步骤S42b:UE的邻小区所在网络设备测量所述UE发送的SRS,根据所述SRS进行该传输信道的信道状态信息测量。
需要说明的是,本公开并不对步骤S41b与步骤S51b的执行顺序进行限定。实际应用中,步骤S41b与步骤S51b可以同时进行,步骤S41b还可以在步骤S51b之前进行,步骤S41b可也以在步骤S51b之后进行。
如此,UE的邻小区所在网络设备,可根据所述UE基于第二SRS配置信息发送的SRS,进行所述邻小区与所述UE之间的传输信道的信道状态信息测量;由于能够获取UE与UE的邻小区之间基于波束传输的信道状态信息,从而使多个小区间的多天线面板同时与UE进行传输时,能动态的切换波束以便给UE发送数据,使邻小区与UE之间的通信也能达到更好的效果,从而提高UE的吞吐量。
需要说明的是,本公开所述的技术方案适用场景可以包括但不限于上述例举的应用场景。本公开所述的技术方案还可应用于其他场景,例如,执行信道状态信息测量的设备为车载设备,或者为音箱设备等,本公开对应用场景不做具体限定。
对应于图2所示的应用于UE的服务小区所在网络设备的信道状态信息 测量方法,本公开实施例还提供了用于UE的服务小区所在网络设备中的信道状态信息测量装置,如图11所示,该装置包括第一配置单元10和第一通信单元20;其中,
所述第一配置单元10,被配置为:配置邻小区的测量配置信息,所述测量配置信息用于指示所述UE执行与所述邻小区之间基于波束传输的信道状态信息测量;
所述第一通信单元20,被配置为向所述UE发送所述测量配置信息。
在一些实施例中,该第一通信单元20,还被配置为:
接收所述UE基于所述测量配置信息测量并上报的所述UE与所述邻小区之间传输信道的信道状态信息测量结果。
在一些实施例中,所述第一通信单元20,还被配置为:
向所述UE的邻小区所在网络设备转发所述信道状态信息测量结果。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
实际应用中,上述第一配置单元10和第一通信单元20的具体结构均可由该信道状态信息测量装置或该信道状态信息测量装置所属设备中的中央处理器(CPU,Central Processing Unit)、微处理器(MCU,Micro Controller Unit)、数字信号处理器(DSP,Digital Signal Processing)或可编程逻辑器件(PLC,Programmable Logic Controller)等实现。
本领域技术人员应当理解,本公开实施例的信道状态信息测量装置中各处理模块的功能,可参照图2所述信道状态信息测量方法的相关描述而理解,本公开实施例的信道状态信息测量装置中各处理模块,可通过实现本公开实施例所述的功能的模拟电路而实现,也可以通过执行本公开实施例所述的功能的软件在设备上的运行而实现。
本公开实施例所述的信道状态信息测量装置,能够指示UE获取邻小区信道状态信息测量结果。
对应于图4所示的应用于用户设备(UE)的信道状态信息测量方法,本公开实施例还提供了用于UE的信道状态信息测量装置,如图12所示,该装置包括第二通信单元30和第一测量单元40;其中,
所述第二通信单元30,被配置为接收所述UE的服务小区所在网络设备发送的测量配置信息,所述测量配置信息,用于指示所述UE执行与所述UE的邻小区之间基于波束传输的信道状态信息测量;
所述第一测量单元40,被配置为基于所述测量配置信息执行所述邻小区的信道状态信息测量。
在一些实施例中,该第二通信单元30,还被配置为:向服务小区所在网络设备和/或邻小区所在网络设备第二设备上报所述邻小区的信道状态信息测量结果。
在一些实施例中,该第二通信单元30,还被配置为:
向所述服务小区所在网络设备和/或所述邻小区所在网络设备联合上报所述邻小区的信道状态信息测量结果与服务小区的信道状态信息测量结果;
或者
分别向所述服务小区所在网络设备和/或所述邻小区所在网络设备上报所述邻小区的信道状态信息测量结果与服务小区的信道状态信息测量结果;
其中,所述服务小区的信道状态信息测量结果为:所述UE与所述服务小区之间基于波束传输的信道状态信息测量的测量结果。
在一些实施例中,该第二通信单元30,还被配置为:按照CQI表,上报所述服务小区的CQI值对应的码字,以及上报所述邻小区的CQI值与所述服务小区的CQI值的偏移量。
在一些实施例中,该第二通信单元30,还被配置为:对所述服务小区的信道状态信息测量结果和所述邻小区的信道状态信息测量结果进行计算 处理,得到经计算处理后的测量结果;上报所述经计算处理后的测量结果。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
实际应用中,上述第二通信单元30和第一测量单元40的具体结构均可由该信道状态信息测量装置或该信道状态信息测量装置所属设备中的中央处理器CPU、MCU、DSP或PLC等实现。
本领域技术人员应当理解,本公开实施例的信道状态信息测量装置中各处理模块的功能,可参照前述图4所示信道状态信息测量方法的相关描述而理解,本公开实施例的信道状态信息测量装置中各处理模块,可通过实现本公开实施例所述的功能的模拟电路而实现,也可以通过执行本公开实施例所述的功能的软件在设备上的运行而实现。
本公开实施例所述的信道状态信息测量装置,能够获取邻小区信道状态信息测量结果。
对应于图6所示的应用于UE的服务小区所在网络设备的信道状态信息测量方法,本公开实施例还提供了用于UE的服务小区所在网络设备中的信道状态信息测量装置,如图13所示,该装置包括第二配置单元50和第二通信单元60;其中,
所述第二配置单元50,被配置为:配置测量请求信息,所述测量请求信息用于指示所述UE的邻小区所在网络设备执行所述邻小区与所述UE之间基于波束传输的信道状态信息测量;
所述第三通信单元60,被配置为向所述UE的邻小区所在网络设备发送所述测量请求信息。
在一些实施例中,所述测量请求信息包括第一探测参考信号SRS配置信息,所述第一SRS配置信息用于向所述邻小区所在网络设备指示所述UE发送的SRS。
在一些实施例中,该第三通信单元60,还被配置为向UE发送第二SRS 配置信息,以使所述UE基于所述第二SRS配置信息发送SRS。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
实际应用中,上述第二配置单元50和第三通信单元60的具体结构均可由该信道状态信息测量装置或该信道状态信息测量装置所属设备中的中央处理器CPU、MCU、DSP或PLC等实现。
本领域技术人员应当理解,本公开实施例的信道状态信息测量装置中各处理模块的功能,可参照前述图6所示信道状态信息测量方法的相关描述而理解,本公开实施例的信道状态信息测量装置中各处理模块,可通过实现本公开实施例所述的功能的模拟电路而实现,也可以通过执行本公开实施例所述的功能的软件在设备上的运行而实现。
本公开实施例所述的信道状态信息测量装置,能够指示UE邻小区所在网络设备获取邻小区信道状态信息测量结果。
对应于图8所示的应用于UE的邻小区所在网络设备的信道状态信息测量方法,本公开实施例还提供了用于UE的邻小区所在网络设备的信道状态信息测量装置,如图14所示,该装置包括第四通信单元70和第二测量单元80;其中,
所述第四通信单元70,被配置为接收所述UE的服务小区所在网络设备发送的测量请求信息,所述测量请求信息用于指示所述邻小区所在网络设备执行所述邻小区与所述UE之间基于波束传输的信道状态信息测量;
所述第二测量单元80,被配置为基于所述测量请求信息执行信道状态信息测量。
在一些实施例中,所述测量请求信息包括第一SRS配置信息,所述第一SRS配置信息用于向所述邻小区所在网络设备指示所述UE发送的SRS。
在一些实施例中,该第二测量单元80,被配置为测量所述UE发送的SRS。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
实际应用中,上述第四通信单元70和第二测量单元80的具体结构均可由该信道状态信息测量装置或该信道状态信息测量装置所属设备中的中央处理器CPU、MCU、DSP或PLC等实现。
本领域技术人员应当理解,本公开实施例的信道状态信息测量装置中各处理模块的功能,可参照前述图8所示信道状态信息测量方法的相关描述而理解,本公开实施例的信道状态信息测量装置中各处理模块,可通过实现本公开实施例所述的功能的模拟电路而实现,也可以通过执行本公开实施例所述的功能的软件在设备上的运行而实现。
本公开实施例所述的信道状态信息测量装置,能够获取邻小区信道状态信息测量结果。
对应于图9所示的应用于UE的信道状态信息测量方法,本公开实施例还提供了用于UE的信道状态信息测量装置,如图15所示,该装置包括第五通信单元61和信号发送单元62;其中,
所述第五通信单元61,被配置为接收所述UE的服务小区所在网络设备发送的第二探测参考信号(SRS)配置信息,所述第二SRS配置信息携带有SRS的用途指示信息;
所述信号发送单元62,被配置为基于所述第二SRS配置信息发送SRS,所述SRS用于供所述UE的邻小区所在网络设备执行所述邻小区与所述UE之间基于波束传输的信道状态信息测量。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
实际应用中,上述第五通信单元61和信号发送单元62的具体结构均可由该信道状态信息测量装置或该信道状态信息测量装置所属设备中的中央处理器CPU、MCU、DSP或PLC等实现。
本领域技术人员应当理解,本公开实施例的信道状态信息测量装置中各处理模块的功能,可参照前述图9所示信道状态信息测量方法的相关描述而理解,本公开实施例的信道状态信息测量装置中各处理模块,可通过实现本公开实施例所述的功能的模拟电路而实现,也可以通过执行本公开实施例所述的功能的软件在设备上的运行而实现。
本公开实施例所述的信道状态信息测量装置,UE能够根据服务小区所在网络设备的第二SRS配置信息发送用于邻小区信道状态信息测量的SRS。
图16是根据一示例性实施例示出的一种用于实现信道状态信息测量的装置800的框图。例如,装置800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图16,装置800可以包括以下一个或多个组件:处理组件802,存储器804,电力组件806,多媒体组件808,音频组件810,输入/输出(I/O,Input/Output)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制装置800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在装置800的操作。这些数据的示例包括用于在装置800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(Static Random-Access Memory,SRAM),电可擦除可编程只读存 储器(Electrically-Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),可编程只读存储器(Programmable read-only memory,PROM),只读存储器(Read Only Memory,ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件806为装置800的各种组件提供电力。电力组件806可以包括电源管理系统,一个或多个电源,及其他与为装置800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述装置800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(Liquid Crystal Display,LCD)和触摸面板(Touch Panel,TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当装置800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(microphone,简称MIC),当装置800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围 接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为装置800提供各个方面的状态评估。例如,传感器组件814可以检测到装置800的打开/关闭状态,组件的相对定位,例如所述组件为装置800的显示器和小键盘,传感器组件814还可以检测装置800或装置800一个组件的位置改变,用户与装置800接触的存在或不存在,装置800方位或加速/减速和装置800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)或电荷耦合元件(Charge-coupled Device,CCD)图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于装置800和其他设备之间有线或无线方式的通信。装置800可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(Near Field Communication,NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(Radio Frequency Identification,RFID)技术,红外数据协会(Infrared Data Association,IrDA)技术,超宽带(Ultra Wide Band,UWB)技术,蓝牙(Blue Tooth,BT)技术和其他技术来实现。
在示例性实施例中,装置800可以被一个或多个应用专用集成电路(Application Specific Integrated Circuit,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理设备(Digital Signal Processing Device,DSPD)、可编程逻辑器件(Programmable Logic Device,PLD)、现场可编 程门阵列(Field Programmable Gate Array,FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述的信道状态信息测量方法。
在示例性实施例中,还提供了一种包括可执行指令的非临时性的计算机存储介质,例如包括可执行指令的存储器804,上述可执行指令可由装置800的处理器820执行以完成上述方法。例如,所述非临时性的计算机存储介质可以是ROM、随机存取存储器(Random Access Memory,RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图17是根据一示例性实施例示出的一种用于信道状态信息测量的装置900的框图。例如,装置900可以被提供为一服务器。参照图17,装置900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述的信道状态信息测量方法。
装置900还可以包括一个电源组件926被配置为执行装置900的电源管理,一个有线或无线网络接口950被配置为将装置900连接到网络,和一个输入输出(I/O)接口958。装置900可以操作基于存储在存储器932的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本公开实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。
Claims (55)
- 一种信道状态信息测量方法,应用于用户设备UE的服务小区所在网络设备,其中,所述方法包括:向所述UE发送邻小区的测量配置信息,所述测量配置信息用于指示所述UE执行与所述邻小区之间基于波束传输的信道状态信息测量。
- 根据权利要求1所述的信道状态信息测量方法,其中,所述测量配置信息,包括下述中的一项或多项信息:所述邻小区的物理小区标识信息;所述邻小区的频域信息;所述邻小区的测量配置子信息。
- 根据权利要求2所述的信道状态信息测量方法,其中,所述邻小区的测量配置子信息,包括下述中的一项或多项:用于信道状态信息信号质量测量的第一参考信号的第一资源指示信息;用于信道状态信息干扰测量CSI-IM的第二参考信号的第二资源指示信息;信道状态信息的测量结果上报配置信息。
- 根据权利要求3所述的信道状态信息测量方法,其中,所述第一参考信号为所述邻小区所在网络设备发送的同步信号块SSB或信道状态信息参考信号CSI-RS;所述第一资源指示信息还包括下述中的一项或多项:所述第一参考信号的标识;所述第一参考信号的时域位置信息;所述第一参考信号的频域位置信息;所述第一参考信号的波束方向信息。
- 根据权利要求3所述的信道状态信息测量方法,其中,所述第二参考信号为所述邻小区所在网络设备发送的SSB或CSI-RS;所述第二资源指示信息还包括下述中的一项或多项:所述第二参考信号的标识;所述第二参考信号的时域位置信息;所述第二参考信号的频域位置信息;所述第二参考信号的波束方向信息。
- 根据权利要求4或5所述的信道状态信息测量方法,其中,所述波束方向信息通过传输配置指示TCI状态或空间关系信息指示。
- 根据权利要求6所述的信道状态信息测量方法,其中,所述TCI状态或空间关系信息指示对应的参考信号为邻小区所在网络设备通过所述邻小区发送的SSB或CSI-RS,或为所述UE发送的探测参考信号SRS。
- 根据权利要求3所述的信道状态信息测量方法,其中,所述测量结果上报配置信息,包括下述中的一项或多项:小区索引;上报类型;被测量参考信号的标识;上报参数;上报带宽配置信息;信道质量指示CQI。
- 根据权利要求1所述的信道状态信息测量方法,其中,所述方法还包括:接收所述UE基于所述测量配置信息测量并上报的所述邻小区的信道状态信息测量结果。
- 根据权利要求9所述的信道状态信息测量方法,其中,所述方法还包括:向所述邻小区所在网络设备转发所述信道状态信息测量结果。
- 一种信道状态信息测量方法,应用于用户设备UE,其中,所述方法包括:接收所述UE的服务小区所在网络设备发送的测量配置信息,所述测量配置信息,用于指示所述UE执行与所述UE的邻小区之间基于波束传输的信道状态信息测量;基于所述测量配置信息执行所述邻小区的信道状态信息测量。
- 根据权利要求11所述的信道状态信息测量方法,其中,所述测量配置信息,包括下述中的一项或多项信息:所述邻小区的物理小区标识信息;所述邻小区的频域信息;所述邻小区的测量配置子信息。
- 根据权利要求12所述的信道状态信息测量方法,其中,所述邻小区的测量配置子信息,包括下述中的一项或多项:用于信道状态信息信号质量测量的第一参考信号的第一资源指示信息;用于信道状态信息干扰测量CSI-IM的第二参考信号的第二资源指示信息;信道状态信息的测量结果上报配置信息。
- 根据权利要求13所述的信道状态信息测量方法,其中,所述第一参考信号为所述邻小区所在网络设备发送的同步信号块SSB或信道状态信息参考信号CSI-RS;所述第一资源指示信息还包括下述中的一项或多项:所述第一参考信号的标识;所述第一参考信号的时域位置信息;所述第一参考信号的频域位置信息;所述第一参考信号的波束方向信息。
- 根据权利要求13所述的信道状态信息测量方法,其中,所述第二参考信号为所述邻小区所在网络设备发送的SSB或CSI-RS;所述第二资源指示信息还包括下述中的一项或多项:所述第二参考信号的标识;所述第二参考信号的时域位置信息;所述第二参考信号的频域位置信息;所述第二参考信号的波束方向信息。
- 根据权利要求14或15所述的信道状态信息测量方法,其中,所述波束方向信息通过传输配置指示TCI状态或空间关系信息指示。
- 根据权利要求16所述的信道状态信息测量方法,其中,所述TCI状态或空间关系信息指示对应的参考信号为邻小区所在网络设备通过所述邻小区发送的SSB或CSI-RS,或为所述UE发送的探测参考信号SRS。
- 根据权利要求13所述的信道状态信息测量方法,其中,所述测量结果上报配置信息,包括下述中的一项或多项:小区索引;上报类型;被测量参考信号的标识;上报参数;上报带宽配置信息;信道质量指示CQI。
- 根据权利要求11所述的信道状态信息测量方法,其中,所述方法还包括:向所述服务小区所在网络设备和/或所述邻小区所在网络设备上报所述邻小区的信道状态信息测量结果。
- 根据权利要求19所述的信道状态信息测量方法,其中,所述向所述服务小区所在网络设备和/或所述邻小区所在网络设备上报所述邻小区的 信道状态信息测量结果,包括:向所述服务小区所在网络设备和/或所述邻小区所在网络设备联合上报所述邻小区的信道状态信息测量结果与服务小区的信道状态信息测量结果;或者分别向所述服务小区所在网络设备和/或所述邻小区所在网络设备上报所述邻小区的信道状态信息测量结果与服务小区的信道状态信息测量结果;其中,所述服务小区的信道状态信息测量结果为:所述UE与所述服务小区之间基于波束传输的信道状态信息测量的测量结果。
- 根据权利要求20所述的信道状态信息测量方法,其中,所述联合上报所述邻小区的信道状态信息测量结果与服务小区的信道状态信息测量结果,包括:按照信道质量指示CQI表,上报所述服务小区的CQI值对应的码字,以及上报所述邻小区的CQI值与所述服务小区的CQI值的偏移量。
- 根据权利要求20所述的信道状态信息测量方法,其中,所述联合上报所述邻小区的信道状态信息测量结果与服务小区的信道状态信息测量结果,包括:对所述服务小区的信道状态信息测量结果和所述邻小区的信道状态信息测量结果进行计算,得到计算后的测量结果;上报所述计算后的测量结果。
- 一种信道状态信息测量方法,应用于用户设备UE的服务小区所在网络设备,其中,所述方法包括:向所述UE的邻小区所在网络设备发送测量请求信息,所述测量请求信息用于指示所述邻小区所在网络设备执行所述邻小区与所述UE之间基于波束传输的信道状态信息测量。
- 根据权利要求23所述的信道状态信息测量方法,其中,所述测量请求信息包含所述邻小区所在网络设备用于信道状态信息测量的第一探测参考信号SRS配置信息,所述第一SRS配置信息用于指示待测量的SRS。
- 根据权利要求24所述的信道状态信息测量方法,其中,所述第一SRS配置信息,包括下述中的一项或多项:所述UE的标识;所述SRS的标识;所述SRS的资源位置信息;所述SRS的类型信息;所述SRS的波束方向信息;所述SRS的端口索引信息。
- 根据权利要求25所述的信道状态信息测量方法,其中,所述SRS的波束方向信息通过传输配置指示TCI状态或空间关系信息指示。
- 根据权利要求26所述的信道状态信息测量方法,其中,所述TCI状态或空间关系信息指示对应的参考信号为邻小区所在网络设备通过所述邻小区发送的SSB或CSI-RS,或为所述UE发送的SRS。
- 根据权利要求24所述的信道状态信息测量方法,其中,所述SRS是所述UE发送的SRS。
- 根据权利要求24所述的信道状态信息测量方法,其中,所述方法还包括:向所述UE发送第二SRS配置信息,所述第二SRS配置信息携带有所述SRS的用途指示信息。
- 根据权利要求29所述的信道状态信息测量方法,其中,所述用途指示信息包括:波束管理信息,或码本信息,或非码本信息,或天线转换信息。
- 根据权利要求29所述的信道状态信息测量方法,其中,所述用途 指示信息还携带有所述SRS适用的邻小区标识。
- 一种信道状态信息测量方法,应用于用户设备UE的邻小区所在网络设备,其中,所述方法包括:接收所述UE的服务小区所在网络设备发送的测量请求信息,所述测量请求信息用于指示所述邻小区所在网络设备执行所述邻小区与UE之间基于波束传输的信道状态信息测量;基于所述测量请求信息执行信道状态信息测量。
- 根据权利要求32所述的信道状态信息测量方法,其中,所述测量请求信息包括第一探测参考信号SRS配置信息。
- 根据权利要求33所述的信道状态信息测量方法,其中,所述第一SRS配置信息,包括下述中的一项或多项:所述UE的标识;所述SRS的标识;所述SRS的资源位置信息;所述SRS的类型信息;所述SRS的波束方向信息;所述SRS的端口索引信息。
- 根据权利要求34所述的信道状态信息测量方法,其中,所述SRS的波束方向信息通过传输配置指示TCI状态或空间关系信息指示。
- 根据权利要求35所述的信道状态信息测量方法,其中,所述TCI状态或空间关系信息指示对应的参考信号为邻小区所在网络设备通过所述邻小区发送的SSB或CSI-RS,或为所述UE发送的SRS。
- 根据权利要求32所述的信道状态信息测量方法,其中,所述方法还包括:测量所述UE发送的SRS;所述基于所述测量请求信息执行信道状态信息测量,包括:根据所述SRS进行所述邻小区所在网络设备与所述UE之间的传输信 道的信道状态信息测量。
- 一种信道状态信息测量方法,应用于用户设备UE,其中,所述方法包括:接收所述UE的服务小区所在网络设备发送的第二探测参考信号SRS配置信息,所述第二SRS配置信息携带有SRS的用途指示信息;基于所述第二SRS配置信息发送SRS,所述SRS用于供所述UE的邻小区所在网络设备执行所述邻小区与所述UE之间基于波束传输的信道状态信息测量。
- 根据权利要求38所述的信道状态信息测量方法,其中,所述用途指示信息包括:波束管理信息,或码本信息,或非码本信息,或天线转换信息。
- 根据权利要求38所述的信道状态信息测量方法,其中,所述用途指示信息还携带有所述SRS适用的邻小区标识。
- 一种信道状态信息测量装置,应用于用户设备UE的服务小区所在网络设备,其中,包括:第一配置单元,被配置为:配置邻小区的测量配置信息,所述测量配置信息用于指示所述UE执行与所述邻小区之间基于波束传输的信道状态信息测量;第一通信单元,被配置为向所述UE发送所述测量配置信息。
- 一种信道状态信息测量装置,应用于用户设备UE,其中,包括:第二通信单元,被配置为接收所述UE的服务小区所在网络设备发送的测量配置信息,所述测量配置信息,用于指示所述UE执行与所述UE的邻小区之间基于波束传输的信道状态信息测量;第一测量单元,被配置为基于所述测量配置信息执行所述邻小区的信道状态信息测量。
- 一种信道状态信息测量装置,应用于用户设备UE的服务小区所在 网络设备,其中,包括:第二配置单元,被配置为:配置测量请求信息,所述测量请求信息用于指示所述UE的邻小区所在网络设备执行所述邻小区与所述UE之间基于波束传输的信道状态信息测量;第三通信单元,被配置为向所述邻小区所在网络设备发送所述测量请求信息。
- 一种信道状态信息测量装置,应用于用户设备UE的邻小区所在网络设备,其中,包括:第四通信单元,被配置为接收所述UE的服务小区所在网络设备发送的测量请求信息,所述测量请求信息用于指示所述邻小区所在网络设备执行所述邻小区与所述UE之间基于波束传输的信道状态信息测量;第二测量单元,被配置为基于所述测量请求信息执行信道状态信息测量。
- 一种信道状态信息测量装置,应用于用户设备UE,其中,包括:第五通信单元,被配置为接收所述UE的服务小区所在网络设备发送的第二探测参考信号SRS配置信息,所述第二SRS配置信息携带有SRS的用途指示信息;信号发送单元,被配置为基于所述第二SRS配置信息发送SRS,所述SRS用于供所述UE的邻小区所在网络设备执行所述邻小区与所述UE之间基于波束传输的信道状态信息测量。
- 一种信道状态信息测量装置,应用于用户设备UE的服务小区所在网络设备,其中,包括:处理器;用于存储可执行指令的存储器;其中,所述处理器被配置为:执行所述可执行指令时实现权利要求1至10任一项所述的信道状态信息测量方法。
- 一种信道状态信息测量装置,应用于用户设备UE,其中,包括:处理器;用于存储可执行指令的存储器;其中,所述处理器被配置为:执行所述可执行指令时实现权利要求11至22任一项所述的信道状态信息测量方法。
- 一种信道状态信息测量装置,应用于用户设备UE的服务小区所在网络设备,其中,包括:处理器;用于存储可执行指令的存储器;其中,所述处理器被配置为:执行所述可执行指令时实现权利要求23至31任一项所述的信道状态信息测量方法。
- 一种信道状态信息测量装置,应用于用户设备UE的邻小区所在网络设备,其中,包括:处理器;用于存储可执行指令的存储器;其中,所述处理器被配置为:执行所述可执行指令时实现权利要求32至37任一项所述的信道状态信息测量方法。
- 一种信道状态信息测量装置,应用于用户设备UE,其中,包括:处理器;用于存储可执行指令的存储器;其中,所述处理器被配置为:执行所述可执行指令时实现权利要求38至40任一项所述的信道状态信息测量方法。
- 一种计算机存储介质,应用于用户设备UE的服务小区所在网络设备,其中,所述计算机存储介质中存储有可执行指令,所述可执行指令被处理器执行时,使得所述处理器执行权利要求1至10任一项所述的信道状态信息测量方法。
- 一种计算机存储介质,应用于用户设备UE,其中,所述计算机存储介质中存储有可执行指令,所述可执行指令被处理器执行时,使得所述处理器执行权利要求11至22任一项所述的信道状态信息测量方法。
- 一种计算机存储介质,应用于用户设备UE的服务小区所在网络设备,其中,所述计算机存储介质中存储有可执行指令,所述可执行指令被处理器执行时,使得所述处理器执行权利要求23至31任一项所述的信道状态信息测量方法。
- 一种计算机存储介质,应用于用户设备UE的邻小区所在网络设备,其中,所述计算机存储介质中存储有可执行指令,所述可执行指令被处理器执行时,使得所述处理器执行权利要求32至37任一项所述的信道状态信息测量方法。
- 一种计算机存储介质,应用于用户设备UE,其中,所述计算机存储介质中存储有可执行指令,所述可执行指令被处理器执行时,使得所述处理器执行权利要求38至40任一项所述的信道状态信息测量方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20925490.3A EP4124106A4 (en) | 2020-03-17 | 2020-03-17 | METHOD AND APPARATUS FOR MEASURING CHANNEL STATE INFORMATION AND COMPUTER STORAGE MEDIUM |
PCT/CN2020/079778 WO2021184217A1 (zh) | 2020-03-17 | 2020-03-17 | 信道状态信息测量方法、装置及计算机存储介质 |
CN202080000561.5A CN111512685B (zh) | 2020-03-17 | 2020-03-17 | 信道状态信息测量方法、装置及计算机存储介质 |
US17/911,964 US20230189026A1 (en) | 2020-03-17 | 2020-03-17 | Method and device for measuring channel state information |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/079778 WO2021184217A1 (zh) | 2020-03-17 | 2020-03-17 | 信道状态信息测量方法、装置及计算机存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021184217A1 true WO2021184217A1 (zh) | 2021-09-23 |
Family
ID=71873881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/079778 WO2021184217A1 (zh) | 2020-03-17 | 2020-03-17 | 信道状态信息测量方法、装置及计算机存储介质 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230189026A1 (zh) |
EP (1) | EP4124106A4 (zh) |
CN (1) | CN111512685B (zh) |
WO (1) | WO2021184217A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115334601A (zh) * | 2021-05-11 | 2022-11-11 | 大唐移动通信设备有限公司 | 一种小区间测量上报方法、设备、装置及存储介质 |
WO2023283841A1 (zh) * | 2021-07-14 | 2023-01-19 | 北京小米移动软件有限公司 | 波束测量上报激活方法及装置 |
CN116961855A (zh) * | 2022-04-20 | 2023-10-27 | 大唐移动通信设备有限公司 | 信息传输方法、装置及通信设备 |
WO2024020757A1 (zh) * | 2022-07-25 | 2024-02-01 | 北京小米移动软件有限公司 | 一种信息传输方法、装置、通信设备及存储介质 |
WO2024036571A1 (zh) * | 2022-08-18 | 2024-02-22 | 北京小米移动软件有限公司 | 一种传输指示信息的方法、装置以及可读存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013166709A1 (zh) * | 2012-05-11 | 2013-11-14 | 华为技术有限公司 | 测量上报的方法、网络设备和用户设备 |
CN106488472A (zh) * | 2015-08-27 | 2017-03-08 | 中国移动通信集团公司 | 一种信道信息上报方法及终端 |
US20180323927A1 (en) * | 2017-05-05 | 2018-11-08 | Qualcomm Incorporated | Reference signal acquisition |
US20180368034A1 (en) * | 2017-06-16 | 2018-12-20 | Mediatek Inc. | Radio Resource Management (RRM) Measurement for New Radio (NR) Network |
CN110431797A (zh) * | 2017-03-23 | 2019-11-08 | 三星电子株式会社 | 用于终端的不同参考信号的测量配置和小区测量报告机制的方法、装置和系统 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102883386B (zh) * | 2012-09-04 | 2016-06-01 | 大唐移动通信设备有限公司 | 一种lte网络中的小区切换方法和装置 |
WO2015100533A1 (zh) * | 2013-12-30 | 2015-07-09 | 华为技术有限公司 | 一种信道测量方法、小区切换方法、相关装置及系统 |
EP3451549B1 (en) * | 2016-05-12 | 2024-07-10 | Huawei Technologies Co., Ltd. | Communication method and user equipment |
JP7101328B2 (ja) * | 2016-07-20 | 2022-07-15 | アイピーエルエー ホールディングス インコーポレイテッド | 無線デバイスのための分散型モビリティ |
CN107734574B (zh) * | 2016-08-12 | 2020-12-01 | 华为技术有限公司 | 小区间切换的方法和控制器 |
AU2016424446B2 (en) * | 2016-09-30 | 2021-11-18 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Method for managing wave beam, terminal device and network device |
CN108377558A (zh) * | 2016-10-21 | 2018-08-07 | 华为技术有限公司 | 基于波束的多连接通信方法、终端设备及网络设备 |
EP3583735B1 (en) * | 2017-03-23 | 2022-04-27 | Samsung Electronics Co., Ltd. | Methods and apparatuses for measurement configuration of different reference signals and cell measurement report mechanism |
JP6793420B2 (ja) * | 2017-03-31 | 2020-12-02 | 深▲せん▼前海達闥云端智能科技有限公司Cloudminds (Shenzhen) Robotics Systems Co.,Ltd. | セル切り替え方法および装置 |
CN108964856B (zh) * | 2017-05-27 | 2022-10-04 | 中兴通讯股份有限公司 | 一种参考信号配置信息的应用方法及装置 |
CN107342801B (zh) * | 2017-06-15 | 2021-04-02 | 宇龙计算机通信科技(深圳)有限公司 | 一种波束处理方法、用户设备及基站 |
US12068826B2 (en) * | 2018-04-27 | 2024-08-20 | Qualcomm Incorporated | CQI reporting for multi-TCI based PDSCH reception |
US11502761B2 (en) * | 2018-05-25 | 2022-11-15 | Qualcomm Incorporated | Enhanced RRM/CSI measurement for interference management |
WO2020030020A1 (zh) * | 2018-08-10 | 2020-02-13 | 华为技术有限公司 | 带宽资源切换方法、指示带宽资源切换方法、终端和网络设备 |
-
2020
- 2020-03-17 US US17/911,964 patent/US20230189026A1/en active Pending
- 2020-03-17 EP EP20925490.3A patent/EP4124106A4/en active Pending
- 2020-03-17 WO PCT/CN2020/079778 patent/WO2021184217A1/zh unknown
- 2020-03-17 CN CN202080000561.5A patent/CN111512685B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013166709A1 (zh) * | 2012-05-11 | 2013-11-14 | 华为技术有限公司 | 测量上报的方法、网络设备和用户设备 |
CN106488472A (zh) * | 2015-08-27 | 2017-03-08 | 中国移动通信集团公司 | 一种信道信息上报方法及终端 |
CN110431797A (zh) * | 2017-03-23 | 2019-11-08 | 三星电子株式会社 | 用于终端的不同参考信号的测量配置和小区测量报告机制的方法、装置和系统 |
US20180323927A1 (en) * | 2017-05-05 | 2018-11-08 | Qualcomm Incorporated | Reference signal acquisition |
US20180368034A1 (en) * | 2017-06-16 | 2018-12-20 | Mediatek Inc. | Radio Resource Management (RRM) Measurement for New Radio (NR) Network |
Non-Patent Citations (1)
Title |
---|
See also references of EP4124106A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP4124106A1 (en) | 2023-01-25 |
CN111512685B (zh) | 2023-10-10 |
CN111512685A (zh) | 2020-08-07 |
EP4124106A4 (en) | 2024-03-20 |
US20230189026A1 (en) | 2023-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021184217A1 (zh) | 信道状态信息测量方法、装置及计算机存储介质 | |
WO2021163936A1 (zh) | 通信处理方法、装置及计算机存储介质 | |
WO2021196214A1 (zh) | 传输方法、装置及计算机存储介质 | |
WO2020248107A1 (zh) | 小区切换方法、装置及存储介质 | |
JP7520163B2 (ja) | 情報伝送方法、装置、通信機器及び記憶媒体 | |
CN111095857B (zh) | 无线通信方法、装置及存储介质 | |
WO2022052024A1 (zh) | 参数配置方法、装置、通信设备和存储介质 | |
WO2021223163A1 (zh) | 信息传输方法、装置及通信设备 | |
JP2024516887A (ja) | リソース設定方法、装置、通信デバイス及び記憶媒体 | |
US20240163135A1 (en) | Configuration method and apparatus for joint channel estimation, and device and storage medium | |
WO2021142662A1 (zh) | 资源配置方法、装置、通信设备及存储介质 | |
WO2021142796A1 (zh) | 通信处理方法、装置及计算机存储介质 | |
WO2021016771A1 (zh) | 信道检测方式切换方法、装置及存储介质 | |
US20220287014A1 (en) | Resource allocation methods and apparatuses, message frame processing methods, apparatuses and storage mediums | |
WO2022151387A1 (zh) | 信息动态指示方法及装置、网络设备、用户设备及存储介质 | |
WO2022126576A1 (zh) | 无线通信方法及装置、通信设备及存储介质 | |
US20240098667A1 (en) | Timing adjustment method and apparatus, communication device, and storage medium | |
WO2021223235A1 (zh) | 数据传输处理方法、装置、通信设备及存储介质 | |
WO2022011577A1 (zh) | 信息传输方法、装置、通信设备和存储介质 | |
WO2021146872A1 (zh) | 数据传输方法、装置、通信设备及存储介质 | |
US20220408469A1 (en) | Downlink control information configuration method and apparatus, and communication device and storage medium | |
WO2023197188A1 (zh) | 信息传输方法、装置、通信设备和存储介质 | |
CN116830671B (zh) | Trp选择方法及装置、通信设备、通信系统及存储介质 | |
WO2024026696A1 (zh) | 波束上报增强方法、装置、通信设备及存储介质 | |
WO2022047713A1 (zh) | 通信方法、装置、通信设备和存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20925490 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020925490 Country of ref document: EP Effective date: 20221017 |