WO2015100533A1 - 一种信道测量方法、小区切换方法、相关装置及系统 - Google Patents

一种信道测量方法、小区切换方法、相关装置及系统 Download PDF

Info

Publication number
WO2015100533A1
WO2015100533A1 PCT/CN2013/090877 CN2013090877W WO2015100533A1 WO 2015100533 A1 WO2015100533 A1 WO 2015100533A1 CN 2013090877 W CN2013090877 W CN 2013090877W WO 2015100533 A1 WO2015100533 A1 WO 2015100533A1
Authority
WO
WIPO (PCT)
Prior art keywords
target cell
channel quality
reference signal
configuration information
resource configuration
Prior art date
Application number
PCT/CN2013/090877
Other languages
English (en)
French (fr)
Inventor
刘建琴
刘江华
刘鹍鹏
周永行
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380033574.2A priority Critical patent/CN105009640B/zh
Priority to PCT/CN2013/090877 priority patent/WO2015100533A1/zh
Priority to CN202010069170.0A priority patent/CN111163494A/zh
Priority to KR1020187005654A priority patent/KR101973719B1/ko
Priority to JP2016543642A priority patent/JP6386057B2/ja
Priority to PCT/CN2014/083091 priority patent/WO2015101029A1/zh
Priority to CA2935467A priority patent/CA2935467A1/en
Priority to KR1020167020815A priority patent/KR101834856B1/ko
Priority to EP14877155.3A priority patent/EP3082362A4/en
Priority to CN201480071668.3A priority patent/CN105874849B/zh
Publication of WO2015100533A1 publication Critical patent/WO2015100533A1/zh
Priority to US15/197,222 priority patent/US20160309376A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point

Definitions

  • the present invention relates to the field of communications, and in particular, to a channel measurement method, a cell handover method, a related device, and a system. Background technique
  • Multi-input Multi-output (MIMO) technology has been widely used in wireless communication systems to improve system capacity and ensure cell coverage.
  • LTE Long Term Evolution
  • LTE-A Demodulation Reference Signal
  • DM-RS Demodulation Reference Signal
  • FIG. 1 the antenna configuration and horizontal transmit beam corresponding to the multi-stream transmission based on DM-RS are as shown in FIG. 1.
  • two-dimensional array antenna configurations are being studied, that is, antennas are simultaneously distributed in the horizontal and vertical directions, so that beamforming in the horizontal and vertical directions can be simultaneously performed, which is called three-dimensional beam assignment. shape.
  • the degree of freedom in the vertical direction is increased relative to the beam shaping of the horizontally-only transmitting beam, so that more users can be multiplexed on the same time-frequency resource, and different users can pass the vertical or horizontal direction.
  • the beam is distinguished to improve resource utilization or spectral efficiency, as shown in Figure 2.
  • the two-dimensional antenna configuration is implemented by Active Antenna Systems (AAS). Different from the passive antenna system of the traditional base station, the AAS can flexibly provide beams with different downtilt angles in the vertical direction.
  • the base station can adjust different coverage of the user equipment (User Equipment, UE) by adjusting different downtilt angles of the beam. . As shown in Fig. 2, UE1 and UE3 in the cell can be covered and served by the beam of the downtilt angle A, while UE2 and UE4 are covered and served by another beam with a different downtilt angle B.
  • AAS Active Antenna Systems
  • the heterogeneous network in which the macro cell and the micro-d and the area coexist is an important network deployment in the current system, wherein the base station (macro node) in the macro cell and the base station in the micro cell (micro station) : Pico
  • the node has different transmission power, and the transmission power of the macro station is usually larger than the transmission power of the micro station;
  • a macro cell may include multiple micro cells, wherein the macro cell and the micro cell below it may use the same frequency or different frequency Communication.
  • the macro station in the heterogeneous network mainly guarantees the coverage of the cell, and the micro station mainly performs the offloading of the service of the macro station, that is, when the service load of the macro station is heavy, the UE can be switched by a part of the UE. Service to the micro-station can reduce the load on the macro station, as shown in Figure 3.
  • the macro station will interfere with the UE served by the micro station, especially for the UE that is at the boundary between the macro station and the micro station and served by the micro station.
  • the 3D beamforming technology implemented by the AAS antenna provides the possibility of coordinating traffic load balancing between the macro cell and the micro cell and inter-cell interference in the airspace dimension, that is, by flexibly adjusting the macro station and the micro station. Beams with different downtilt angles (ie, free breathing of the cell) are used to achieve dynamic changes in coverage of each cell, thereby achieving inter-cell interference coordination and load balancing, as shown in FIG.
  • the macro cell may trigger a part of the UE (for example: the UE at the macro station and the micro station boundary) to switch to the micro area to be served by the micro station; when performing the cell handover of the service offload,
  • the size of the cell coverage can be changed by simultaneously adjusting the beam downtilt of the macro station and the micro station.
  • the micro station increases the coverage of the cell by adjusting the downtilt angle of the beam (refer to the outer ring of the micro cell in FIG. 4), so that the UE served by the previous macro station is within the cell coverage of the extended micro station;
  • the downtilt angle of the macro station beam can be adjusted.
  • the serving cell and the target cell are defined in the prior art, where the serving cell is a cell in which the UE maintains a connection and performs normal communication, and the target cell is a cell that the UE may handover from the serving cell, and may include a serving cell.
  • a UE can have multiple target cells. For example, when the UE of the macro station needs to handover to the micro cell, the macro cell is the serving cell, and the micro cell is the target cell.
  • the UE needs to determine the channel quality of the target cell, that is, the channel quality of the target cell needs to be measured, and then reported to the serving cell for handover processing.
  • the UE measures the target cell, how does the UE obtain the channel quality of the different downtilt beams in each target cell, thereby obtaining the channel quality of the optimal downtilt beam for the UE in the target cell, which is a technology in the field.
  • the UE when the UE is ready to perform cell handover, the UE measures channel quality of the target cell, such as Reference Signal Received Power (RSRP), where the channel quality of the target cell is a cell-specific reference signal through the target cell. (cell-specific reference signal, CRS) Antenna port 0 for measurement.
  • RSRP Reference Signal Received Power
  • CRS cell-specific reference signal
  • the UE When the UE performs the channel quality measurement of the target cell, the UE first synchronizes with the target cell, and then obtains the identifier of the target cell, that is, the cell ID, from the synchronization signal, and then obtains the target cell CRS antenna port 0 according to the obtained target cell ID.
  • the frequency resource location and the sequence of reference signals finally measured according to the target cell CRS antenna port 0.
  • the CRS is a cell-specific reference signal and is broadcast to all UEs in the cell.
  • the broadcast information or broadcast channel of the cell is transmitted on the antenna port corresponding to the CRS, so the beam of the CRS is usually an omnidirectional, in order to ensure coverage of the cell. Therefore, the channel quality of different downtilt beams of the target cell cannot be obtained by using the target cell CRS in the prior art. Summary of the invention
  • the embodiments of the present invention provide a channel measurement method, a cell handover method, a related device, and a system, which solve the problem that the channel quality of different downtilt beams of a target cell cannot be obtained in the prior art, and the cell handover is optimized.
  • an embodiment of the present invention provides a channel measurement method, including:
  • the channel measurement result of the target cell is reported to the serving cell.
  • the receiving reference resource resource configuration information of each target cell includes:
  • the user equipment specific signaling includes high layer signaling of radio resource control, or dynamic signaling of layer 1.
  • each set of reference signals of the target cell corresponds to a precoding matrix.
  • the target cell includes the serving cell.
  • the channel measurement result that reports the target cell to the serving cell includes any one of the following:
  • channel quality measurement information corresponding to an average value of channel quality measurement information of the target cell
  • the channel quality measurement information average is a channel quality measurement corresponding to all reference signal resource configuration information configured in the target cell The average value of the information
  • channel quality measurement information corresponding to a maximum value of the channel quality measurement information of the target cell is channel quality measurement information corresponding to all reference signal resource configuration information configured in the target cell The maximum value in;
  • the channel quality measurement information corresponding to the at least one set of reference signal resource configuration information configured by the target cell is reported to the serving cell in the form of a bitmap.
  • an embodiment of the present invention provides a channel measurement method, including:
  • the signals on each set of antennas are weighted by different weighting factors to obtain different reference signal resource configuration information respectively;
  • the reference signal resource configuration information respectively corresponds to a beam with different downtilt angles;
  • the set of reference signal resource configurations The information corresponds to a precoding matrix.
  • an embodiment of the present invention provides a cell handover method, including:
  • the channel measurement result is a channel measurement result of the channel measurement performed by the user equipment according to the reference signal resource configuration information of the received target cell, where the user
  • the reference signal resource configuration information of the target cell received by the device is greater than 1; the reference signal resource configuration information respectively corresponds to a beam with different downtilt angles;
  • the channel measurement result it is determined whether a cell handover needs to be performed on the user equipment.
  • the target cell includes a serving cell of the user equipment.
  • the channel measurement result of the target cell reported by the receiving user equipment includes any one of the following items:
  • the channel quality measurement information average is channel quality measurement corresponding to all reference signal resource configuration information configured in the target cell The average value of the information
  • the channel quality measurement information maximum value is channel quality measurement information corresponding to all reference signal resource configuration information configured in the target cell The maximum value in;
  • the set of reference signal resource configuration information Corresponds to a precoding matrix.
  • the target cell when receiving the channel measurement result reported by the user equipment, the target cell corresponds to at least two
  • determining, according to the channel measurement result, whether the cell handover needs to be performed on the user equipment includes:
  • the target cell with the highest channel quality is selected to perform cell handover on the user equipment.
  • Determining whether to perform cell handover on the user equipment according to the channel measurement result includes:
  • the target cell is selected to perform cell handover on the user equipment.
  • Determining whether to perform cell handover on the user equipment according to the channel measurement result includes:
  • the target cell is selected to perform cell handover on the user equipment.
  • an embodiment of the present invention provides a channel measurement apparatus, including:
  • a first receiving module configured to receive reference signal resource configuration information of the target cell, where the number of reference signal resource configuration information of the target cell is greater than 1, and the reference signal resource configuration information respectively corresponds to a beam with different downtilt angles;
  • a first channel measurement module configured to perform channel measurement on the target cell according to the reference signal resource configuration information received by the first receiving module
  • the reporting module is configured to report a channel measurement result of the target cell to the serving cell.
  • the first receiving module includes: a first receiving unit, configured to receive, by means of a broadcast, a notification of reference signal resource configuration information of each target cell; or/and,
  • a second receiving unit configured to receive, by the serving cell, a notification of reference signal resource configuration information of each target cell by using user equipment specific signaling.
  • the specific signaling includes high layer signaling of radio resource control, or dynamic signaling of layer 1.
  • each set of reference signals of the target cell corresponds to a precoding matrix.
  • the target cell includes the serving cell.
  • the reporting module includes any one or more of the following:
  • a first reporting unit configured to report, to the serving cell, channel quality measurement information corresponding to each set of reference signal resource configuration information configured by the target cell;
  • a second reporting unit configured to report, to the serving cell, channel quality measurement information corresponding to an average value of channel quality measurement information of the target cell; where the average value of the channel quality measurement information is all reference signal resources configured in the target cell The average value of the channel quality measurement information corresponding to the configuration information;
  • a third reporting unit configured to report, to the serving cell, channel quality measurement information corresponding to a maximum value of channel quality measurement information of the target cell; the maximum value of the channel quality measurement information is all sets of reference signal resources configured in the target cell The maximum value of the channel quality measurement information corresponding to the configuration information.
  • the fourth reporting unit is configured to report the channel quality measurement information corresponding to the at least one set of reference signal resource configuration information configured by the target cell to the serving cell in the form of a bitmap.
  • an embodiment of the present invention provides a channel measurement device, including:
  • a configuration information generating module configured to use different weighting factor pairs according to different downtilt beams
  • the signals on each set of antennas are weighted to obtain different reference signal resource configuration information; the reference signal resource configuration information respectively corresponds to a beam with different downtilt angles;
  • a configuration information sending module configured to send at least two sets of reference signal resource configuration information to the user equipment, where the user equipment performs channel measurement.
  • the set of reference signal resource configuration information corresponds to a precoding matrix.
  • an embodiment of the present invention provides a cell switching apparatus, including:
  • a channel measurement result receiving module configured to receive a channel measurement result of the target cell reported by the user equipment; the channel measurement result is a channel for the user equipment to perform channel measurement on the target cell according to the reference signal resource configuration information of the received target cell a measurement result, where the number of reference signal resource configuration information of the target cell received by the user equipment is greater than 1; the reference signal resource configuration information respectively corresponds to a beam with a different downtilt angle;
  • a handover determining module configured to determine, according to the channel measurement result received by the channel measurement result receiving module, whether to perform cell handover on the user equipment.
  • the cell switching apparatus further includes: a sending module, configured to send, by using a user equipment-specific signaling, a user equipment, including the serving cell, by using a user equipment-specific signaling At least one set of reference signal resource configuration information for each target cell.
  • the channel measurement result receiving module receives the channel measurement result of the target cell reported by the user equipment, including any one of the following Item:
  • the channel quality measurement information average is channel quality measurement corresponding to all reference signal resource configuration information configured in the target cell The average value of the information
  • the channel quality measurement information maximum value is channel quality measurement information corresponding to all reference signal resource configuration information configured in the target cell The maximum value in;
  • the handover determining module when the channel measurement result receiving module receives When the channel measurement result reported by the user equipment to the target cell corresponds to at least two sets of reference signal resource configuration information, the handover determining module is specifically configured to:
  • the target cell with the highest channel quality is selected to perform cell handover on the user equipment.
  • the handover determining module includes: a first selecting unit, configured to select a largest target cell among the average values of the channel quality measurement information of the at least two target cells;
  • a first selection switching unit configured to select the target cell to the user according to the channel quality measurement information corresponding to the selected target cell, when determining that the channel quality of the target cell is greater than the channel quality of the serving cell
  • the device performs cell handover.
  • the handover determining module includes: a second selecting unit, configured to select a largest target cell among the maximum values of the channel quality measurement information of the at least two target cells;
  • a second selection switching unit configured to: according to the selected channel quality measurement information of the target cell, when the channel quality of the target cell is greater than the channel quality of the serving cell, the target cell is selected to the user
  • the device performs cell handover.
  • an embodiment of the present invention provides a network device, including a receiver and a processor, where
  • the receiver receives the reference signal resource configuration information of the target cell, where the reference signal resource configuration information of the target cell is greater than 1, and the reference signal resource configuration information respectively corresponds to a beam with different downtilt angles;
  • the processor performs channel measurement on the target cell based on the reference signal resource configuration information, and reports a channel measurement result of the target cell to the serving cell.
  • the receiving, by the receiver, the reference signal resource configuration information of each target cell includes:
  • the receiver receives a notification of the reference signal resource configuration information of each target cell by the serving cell through user equipment specific signaling.
  • the user equipment specific signaling includes high layer signaling of radio resource control, or dynamic signaling of layer 1.
  • each set of reference signals of the target cell corresponds to a precoding matrix.
  • the target cell includes the serving cell.
  • the reporting, by the processor, the channel measurement result of the target cell to the serving cell includes any one of the following steps:
  • channel quality measurement information corresponding to an average value of channel quality measurement information of the target cell
  • the channel quality measurement information average is a channel quality measurement corresponding to all reference signal resource configuration information configured in the target cell The average value of the information
  • channel quality measurement information corresponding to a maximum value of the channel quality measurement information of the target cell is channel quality measurement information corresponding to all reference signal resource configuration information configured in the target cell The maximum value in;
  • an embodiment of the present invention provides a network device, including: an input device, an output device, a memory, and a processor;
  • the processor performs the following steps:
  • the signals on each set of antennas are weighted by different weighting factors to obtain different reference signal resource configuration information respectively; the reference signal resource configuration information respectively corresponds to a beam with different downtilt angles;
  • the output device sends at least two sets of reference signal resource configuration information to the user equipment for channel measurement by the user equipment.
  • the set of reference signal resource configuration information corresponds to a precoding matrix.
  • an embodiment of the present invention provides a base station device, including a receiver and a processor, where
  • the channel measurement result is a channel measurement result of the channel measurement performed by the user equipment according to the reference signal resource configuration information of the received target cell, where
  • the reference signal resource configuration information of the target cell that is received by the user equipment is greater than one; the reference signal resource configuration information respectively corresponds to a beam with different downtilt angles;
  • the processor performs the following steps:
  • the processor is further configured to: send each of the serving cell to the user equipment in a broadcast manner or by user equipment specific signaling. At least one set of reference signal resource configuration information of the target cell.
  • the receiving, by the receiver, the channel measurement result of the target cell reported by the user equipment includes any one of the following:
  • the processor determines, according to the channel measurement result, whether to perform cell handover on the user equipment, including:
  • the target cell with the highest channel quality is selected to perform cell handover on the user equipment.
  • the processor determines, according to the channel measurement result, whether to perform cell handover on the user equipment, including:
  • the target cell is selected to perform cell handover on the user equipment.
  • the processor determines, according to the channel measurement result, whether to perform cell handover on the user equipment, including:
  • an embodiment of the present invention provides a cell handover system, including a base station device and a first network device, where
  • the first network device is the seventh aspect, or the first possible implementation manner of the seventh aspect, or the second possible implementation manner of the seventh aspect, or the third possible implementation manner of the seventh aspect, Or the fourth possible implementation manner of the seventh aspect, or the network device in the fifth possible implementation manner of the seventh aspect;
  • the base station device is the ninth aspect, or the first possible implementation manner of the ninth aspect, or the second possible implementation manner of the ninth aspect, or the third possible implementation manner of the ninth aspect, or the The fourth possible implementation manner of the nine aspects, or the fifth possible implementation manner of the ninth aspect, or the base station device in the sixth possible implementation manner of the ninth aspect.
  • the cell switching system further includes a second network device, where
  • the second network device is the network device in the eighth aspect, or the first possible implementation manner of the eighth aspect.
  • the reference signal resource configuration information of the target cell is obtained, and channel measurement is performed on the target cell according to each set of reference signal resource configuration information, where the reference signal resource configuration information respectively corresponds to a beam with different downtilt angles, and the solution is solved.
  • the problem of the channel quality of the different downtilt beams of the target cell is not obtained, and the channel measurement result of the target cell having the downtilt beam is reported to the serving cell for cell handover processing, which greatly optimizes cell handover and improves resources.
  • the utilization rate or spectrum efficiency improves the system capacity and better realizes the dynamic change of coverage of each cell.
  • FIG. 1 is a schematic diagram of a principle of beamforming in a horizontal direction of a horizontal antenna configuration in the prior art
  • FIG. 2 is a schematic diagram of a principle of three-dimensional beamforming in a two-dimensional antenna configuration in the prior art
  • 3 is a schematic diagram of a heterogeneous network structure of a macro cell and a micro cell in the prior art
  • FIG. 4 is a schematic diagram of a principle of applying three-dimensional beamforming in a heterogeneous network in the prior art
  • FIG. 5 is a schematic flowchart of a first embodiment of a channel measurement method provided by the present invention
  • FIG. 6 is a schematic flowchart of a second embodiment of a channel measurement method provided by the present invention
  • FIG. 8 is a schematic flowchart of a cell handover method according to an embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of a first embodiment of a channel measuring apparatus according to the present invention.
  • FIG. 10 is a schematic structural diagram of a first acquiring module according to an embodiment of the present invention.
  • Figure 11 is a schematic structural view of a second embodiment of the channel measuring device of the present invention.
  • FIG. 12 is a schematic structural diagram of a reporting module according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a channel measurement apparatus according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a cell switching apparatus according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a first embodiment of a handover judging module of the present invention.
  • 16 is a schematic structural diagram of a second embodiment of a handover judging module of the present invention.
  • FIG. 17 is a schematic structural diagram of a first embodiment of a network device according to the present invention.
  • FIG. 18 is a schematic structural diagram of a second embodiment of a network device provided by the present invention.
  • FIG. 19 is a schematic structural diagram of a base station device according to an embodiment of the present invention.
  • FIG. 20 is a schematic structural diagram of a cell switching system according to an embodiment of the present invention. detailed description
  • FIG. 5 is a schematic flowchart diagram of a first embodiment of a channel measurement method provided by the present invention, where the method includes:
  • Step S500 Receive reference signal resource configuration information of the target cell, where the number of reference signal resource configuration information of the target cell is greater than 1, and the reference signal resource configuration information respectively corresponds to a beam with different downtilt angles; Specifically, multiple sets of reference signal resource configuration information may be configured in the cell, and each set of reference signal resource configuration information of the cell corresponds to a certain downtilt beam of the cell, that is, information of different downtilt beams in the cell may pass the transmitted reference signal.
  • the resource configuration information is embodied; in particular, each set of reference signal resource configuration information of the cell may be generated by using different weighting factors on each antenna signal of the cell; for example, for a two-dimensional antenna configuration, different downtilt beams may be used.
  • each set of antennas By weighting the signals on each set of antennas, different weighting factors can produce beams with different downtilt angles. Therefore, multiple sets of reference signal resource configuration information may be configured in the cell, and each set of reference signal resource configuration information of the target cell may correspond to a precoding matrix of the target cell, and specifically, when sending different reference signals, each set may be used. Different weighting factors are used on different antennas.
  • the channel state information reference signal (CSI-RS) is taken as an example for description.
  • the embodiment of the present invention is not limited to the CSI-RS, and may also be a demodulation reference signal. , DM RS ), Channel Sounding Reference Signal (SRS) and other types of pilot resources.
  • CSI-RS channel state information reference signal
  • DM RS Downlink Reference Signal
  • SRS Channel Sounding Reference Signal
  • the base station eNB configures CSI-RS resource 1 (ie, one set of reference signal resource configuration information) and CSI-RS resource 2 (ie, another set of reference signal resource configuration information) in the cell, where each CSI-RS resource
  • the number of CSI-RS ports may be included, and each CSI-RS port corresponds to a time-frequency position of the reference signal and sequence information of the CSI-RS; and CSI-RS resources are configured by using different weighting factors on each antenna signal of the cell.
  • the downtilt angle corresponding to each CSI-RS beam in 1 is A
  • the downtilt angle corresponding to each CSI-RS beam in CSI-RS resource 2 is B.
  • the UE may receive the reference signal resource configuration information of each target cell in step S500, where the reference signal resource configuration information of the at least one target cell is greater than one set, that is, some target cells may be configured with multiple sets of reference signal resources. Configuration information, some cells can only configure a set of reference signal resource configuration information.
  • Step S502 Perform channel measurement on the target cell based on the reference signal resource configuration information.
  • the result that may be measured for each set of reference signals may be a channel quality indicator (CQI), and a reference signal received power (Reference) Signal Receiving Power (RSRP), Reference Signal Received Quality (RSRQ) or Received Signal Strength Indication (RSI).
  • CQI channel quality indicator
  • RSRP Reference Signal received Power
  • RSRQ Reference Signal Received Quality
  • RSI Received Signal Strength Indication
  • Step S504 Report the channel measurement result of the target cell to the serving cell.
  • the UE may report the channel measurement result of each target cell to the serving cell, and may also report the channel measurement result of a part of the target cell according to the specific situation; the current serving cell of the UE receives the channel measurement of the at least one target cell reported by the UE. After the result, it can be determined whether the UE needs to perform cell handover, and which target cell and the target cell have the service region with the optimal downtilt beam.
  • step S500 can be specifically:
  • the UE receives the notification of the reference signal resource configuration information of each target cell by the serving cell in a broadcast manner; or, the UE receives the notification of the reference signal resource configuration information of each target cell by the serving cell specific signaling by the serving cell.
  • the specific signaling may include high layer signaling of Radio Resource Control (RRC) or dynamic signaling of layer 1.
  • RRC Radio Resource Control
  • FIG. 6 is a schematic flowchart diagram of a second embodiment of a channel measurement method provided by the present invention, where the method includes:
  • Step S600 Receive at least one set of reference signal resource configuration information of the current cell from the serving cell in a broadcast manner, or through user equipment specific signaling; receive reference signal resource configuration information of each target cell from the serving cell; at least one of The number of reference signal resource configuration information of the target cell is greater than one;
  • the target cell in the embodiment of the present invention includes the monthly service cell, that is, the UE may obtain multiple sets of reference signal resource configuration information of the serving cell or the local cell, and the serving cell is broadcasted or UE-specific. Signaling to perform configuration of reference signal resource configuration information;
  • the CSI-RS is used as an example for the following description:
  • the configuration of the CSI-RS resource 1 and the CSI-RS resource 2 may be that the serving cell is notified by the cell (that is, the configuration information is notified to the UE in the cell by means of broadcast), or
  • the UE is specific (that is, the configuration information is sent to different UEs through UE-specific signaling, and may be high layer signaling of RRC (radio resource control) or dynamic signaling of layer 1).
  • the eNB may configure a CSI-RS resource for the UE according to the location of the UE. For example, if the location of the UE1 is located under the coverage of the down-tilt A beam, the eNB configures the CSI-RS resource for the UE1. 1. UE1 will measure and feed back according to the configured CSI-RS resource 1.
  • Step S602 Perform channel measurement on the serving cell and each target cell based on each set of reference signal resource configuration information received;
  • Step S604 Report channel measurement results of at least one target cell to the serving cell.
  • the UE may report the channel measurement result of the serving cell and the channel measurement result of the at least one target cell to the serving cell, where the serving cell determines whether the UE needs to perform cell handover, and which target cell and the target cell are switched to have The service area of the optimal downtilt beam.
  • each set of reference signal resource configuration information in the embodiment of the present invention may correspond to a precoding matrix; specifically, may include a cell ID, precoding matrix information, time-frequency resource location information, number of ports, and a guide. Frequency sequence, etc.
  • the precoding matrix information includes the weighting factor information used by the set of reference signal resource configuration information, that is, the downtilt beam information corresponding to the set of reference signal resource configuration information.
  • step S504, or the step S604 of the foregoing embodiment may include any one of the following A, B, C, and D, that is, the method for the UE to report the channel measurement result to the serving cell may adopt one of the following four types:
  • A reporting, to the serving cell, channel quality measurement information corresponding to each set of reference signal resource configuration information configured by the target cell;
  • the UE may report the channel measurement result of each target cell to the serving cell, and may also report the channel measurement result of a part of the target cell according to the specific situation; when the UE reports all the channel measurement results to the serving cell, for example, the channel measurement result.
  • the UE reports the measured RSRP corresponding to each set of reference signal resource configuration information of each target cell to the serving cell; the subsequent serving cell determines whether the UE needs to perform cell handover according to each received RSRP. And a service area with which of the target cell and the target cell has the best downtilt beam.
  • the channel quality measurement information corresponding to the average value of the channel quality measurement information of the target cell is reported to the serving cell;
  • the channel quality measurement information average is a channel quality measurement corresponding to all reference signal resource configuration information configured in the target cell. The average value of the information;
  • the UE does not report all the channel measurement results to the serving cell, but may report only the channel quality measurement information corresponding to the average value of the channel quality measurement information corresponding to the at least one target cell, that is, the reported one of the target cell measurement results.
  • the channel quality measurement information corresponding to the average value For example, if the channel measurement result is RSRP, the UE averages the RSRP corresponding to each set of reference signal resource configuration information, and then reports the RSRP closest to the average value as the channel quality measurement information corresponding to the average value; When the channel measurement result is CQI, the CQI closest to the average value may be reported as the channel quality measurement information corresponding to the average value; compared with the foregoing A scheme, the reporting amount is greatly reduced; and the subsequent serving cell is received according to at least The average of a target cell is used to determine whether the UE needs to perform cell handover.
  • each target cell in the embodiment of the present invention corresponds to a channel measurement result
  • an average value of one channel quality measurement information corresponds to only one target cell, that is, an average value of a channel quality measurement information is a target cell measurement result corresponding to the report.
  • the UE reports the channel quality measurement information corresponding to the average of the channel quality measurement information of the two target cells (the target cell A and the target cell B) to the serving cell
  • the UE will report the corresponding target cell A correspondingly.
  • the corresponding channel quality measurement information may include precoding matrix information for cell switching by the network side.
  • the channel quality measurement information corresponding to the maximum value of the channel quality measurement information of the target cell is reported to the serving cell; the maximum value of the channel quality measurement information is a channel quality measurement corresponding to each set of reference signal resource configuration information configured in the target cell. The maximum value in the information;
  • the UE does not report all the channel measurement results to the serving cell, but only reports the channel quality measurement information corresponding to the maximum value of the channel quality measurement information corresponding to the at least one target cell; that is, the reported result is in the target cell measurement result.
  • the channel quality measurement information corresponding to the maximum value for example, the channel measurement result is RSRP
  • the UE selects the channel quality measurement information corresponding to the maximum value of the RSRP corresponding to each set of reference signal resource configuration information, and reports the amount of the channel quality measurement information corresponding to the A scheme.
  • the subsequent serving cell determines, according to the received maximum channel quality measurement information of the at least one target cell, whether the UE needs to perform cell handover, and which target cell and the target cell have the optimal downtilt beam service area, If the handover is required, then the maximum value of the channel quality measurement information of each target cell is compared, and the maximum target cell is switched.
  • each target cell in the embodiment of the present invention corresponds to a channel measurement result
  • a channel quality measurement information maximum value corresponds to only one target cell, that is, a channel quality measurement information maximum value is a target cell measurement result corresponding to the report.
  • Maximum value for example, when the UE is to the serving cell
  • the UE will report the channel quality corresponding to the maximum measured channel quality measurement information corresponding to the target cell C.
  • the channel quality measurement information corresponding to the at least one set of reference signal resource configuration information configured by the target cell is reported to the serving cell in the form of a bitmap Bitmap;
  • the UE may selectively report the reference signal resource configuration information in the at least one target cell, instead of reporting each set of reference signal resource configuration information in each target cell, and use a Bitmap to indicate which target cells are reported.
  • Which set of channel quality measurement information corresponding to the reference signal resource configuration information for example, using a Bitmap as shown below:
  • Each Bit in the above Bitmap represents a set of reference signal resource configuration information, 1 represents channel quality measurement information corresponding to the set of reference signal resource configuration information, and 0 represents no report, and each underline represents multiple sets of reference signals of one target cell.
  • Resource configuration information that is, the first underline 1010 indicates that the target cell is configured with four sets of reference signal resource configuration information, and only the first set and the third set of reference signal resource configuration information are reported; the second underline 1011 represents the target cell.
  • the third underline 001 represents the target cell.
  • the serving cell obtains and parses out the channel quality measurement information corresponding to each set of reference signal resource configuration information, determines whether the UE needs to perform cell handover, and switches to which target cell and the target cell have the optimal downtilt beam service area. .
  • the reference signal resource configuration information of the target cell is obtained, and channel measurement is performed on the target cell according to each set of reference signal resource configuration information, and the reference signal resource configuration information respectively corresponds to a beam with different downtilt angles, and the solution is solved.
  • the problem of the channel quality of the different downtilt beams of the target cell is not obtained, and the channel measurement result of the target cell having the downtilt beam is reported to the serving cell for cell handover processing, which greatly optimizes cell handover and improves resources.
  • the utilization rate or spectrum efficiency improves the system capacity and better realizes the dynamic change of coverage of each cell.
  • the present invention further provides a channel measurement method, and the flowchart of the third embodiment of the channel measurement method provided by the present invention, as shown in FIG. 7, includes:
  • Step S700 weighting signals on each set of antennas by using different weighting factors according to beams with different downtilt angles to obtain different reference signal resource configuration information respectively; the reference signal resource configuration information respectively corresponding to a beam with different downtilt angles ;
  • Step S702 Send at least two sets of reference signal resource configuration information to the user equipment, where the user equipment performs channel measurement.
  • each set of reference signal resource configuration information corresponds to one precoding matrix.
  • Multiple sets of reference signal resource configuration information may be configured in the cell, and each set of reference signal resource configuration information of the cell corresponds to a certain downtilt beam of the cell, that is, information of different downtilt beams in the cell may be transmitted through reference signal resource configuration information.
  • each set of reference signal resource configuration information of the cell may be generated by using different weighting factors on each antenna signal of the cell; for example, for a two-dimensional antenna configuration, different downtilt beams may pass each The signals on the set of antennas are weighted, and different weighting factors can produce beams with different downtilt angles.
  • each set of reference signal resource configuration information of the target cell may correspond to a precoding matrix of the target cell, and specifically, when sending different reference signals, each set may be used. Different weighting factors are used on different antennas.
  • the CSI-RS is used as an example for description.
  • the embodiment of the present invention is not limited to the CSI-RS, and may be other types of pilot resources such as DM RS, SRS, and the like.
  • the base station eNB configures CSI-RS resource 1 (ie, one set of reference signal resource configuration information) and CSI-RS resource 2 (ie, another set of reference signal resource configuration information) in the cell, where each CSI-RS resource
  • the number of CSI-RS ports may be included, and each CSI-RS port corresponds to a time-frequency location of the reference signal and sequence information of the CSI-RS; the CSI-RS resource is configured by using different weighting factors on each antenna signal of the cell.
  • the downtilt angle corresponding to each CSI-RS beam in 1 is A
  • the downtilt angle corresponding to each CSI-RS beam in CSI-RS resource 2 is B.
  • the network device such as the base station eNB, may send at least two sets of reference signal resource configuration information to the UE for channel measurement in the step S702.
  • the present invention further provides a cell handover method, and a schematic flowchart of a cell handover method according to an embodiment of the present invention, as shown in FIG.
  • Step S800 Receive a channel measurement result of the target cell reported by the user equipment, where the channel measurement result is a channel measurement result of the channel measurement performed by the user equipment according to the reference signal resource configuration information of the received target cell, where The reference signal resource configuration information of the target cell received by the user equipment is greater than 1; the reference signal resource configuration information respectively corresponds to a beam with different downtilt angles;
  • the target cell may include a serving cell of the user equipment, and the serving cell may also send at least one set of reference signal resources of the serving cell or other target cell to the user equipment by using a broadcast mode or by using user equipment specific signaling.
  • Configuration information; the specific signaling may include high layer signaling of RRC or dynamic signaling of layer 1.
  • Step S802 Determine, according to the channel measurement result, whether a cell handover needs to be performed on the user equipment.
  • the serving cell compares with the channel measurement result of the serving cell reported by the UE according to the channel measurement result reported by the UE, to determine whether the handover needs to be performed; for example, if the channel quality of the target cell is found to be larger than the serving cell.
  • the channel quality the serving cell determines that the handover can be performed; or the difference between the channel quality of the target cell and the channel quality of the serving cell satisfies a certain threshold, and the handover can be determined.
  • the serving cell may send information about the reference signal with the best channel quality of the UE in the target cell to the target cell, and finally complete the service from the serving cell to the target cell.
  • the target cell for example, the identifier information in the reference signal resource configuration information may be sent to the target cell, and the serving cell may be sent through the X2 interface between the base stations.
  • the reference signal resource configuration information of the target cell is obtained, and channel measurement is performed on the target cell according to each set of reference signal resource configuration information, and the reference signal resource configuration information respectively corresponds to a beam with different downtilt angles, and the solution is solved.
  • the problem of the channel quality of different downtilt beams of the target cell cannot be obtained, and the obtained target cell has a channel measurement of the downtilt beam.
  • the quantity result is reported to the serving cell for cell handover processing, which greatly optimizes cell handover, improves resource utilization or spectrum efficiency, improves system capacity, and better realizes dynamic change of coverage of each cell.
  • the channel measuring apparatus 90 includes: a first receiving module 900, a first channel measuring module 902, and a reporting module 904, wherein
  • the first receiving module 900 is configured to receive reference signal resource configuration information of the target cell, where the number of reference signal resource configuration information of the target cell is greater than 1, and the reference signal resource configuration information respectively corresponds to a beam with different downtilt angles;
  • the first channel measurement module 902 is configured to perform channel measurement on the target cell according to the reference signal resource configuration information received by the first receiving module 900.
  • the reporting module 904 is configured to report the channel measurement result of the target cell to the serving cell.
  • the first receiving module 900 includes: a first receiving unit 9000 or / And the second receiving unit 9002, in FIG. 10, taking the first receiving unit 9000 and the second receiving unit 9002 as examples, for example;
  • the first receiving unit 9000 is configured to receive a notification of the reference signal resource configuration information of each target cell in a broadcast manner; or / and,
  • the second receiving unit 9002 is configured to receive, by the serving cell, a notification of the reference signal resource configuration information of each target cell by using user equipment specific signaling.
  • the specific signaling may include high layer signaling of Radio Resource Control (RRC) or dynamic signaling of layer 1.
  • RRC Radio Resource Control
  • the target cell in the embodiment of the present invention includes a monthly service cell, that is, the channel measurement device 90 can obtain multiple sets of reference signal resource configuration information of the serving cell or the local cell, and the serving cell broadcasts or passes the UE.
  • the specific signaling is used to perform the configuration of the reference signal resource configuration information.
  • the first receiving module 900 in the embodiment may receive multiple sets of reference signal resource configuration information of the local cell or other target cells, or the channel measuring device 90 includes another
  • the channel measurement device 90 includes a first receiving module 900, a first channel measurement module 902, and a reporting module 904, and may further include a second obtaining module 906 and a second channel measuring module 908, where
  • the second obtaining module 906 is configured to acquire at least one set of reference signal resource configuration information of the local cell from the serving cell in a broadcast manner or by using user equipment specific signaling;
  • the second channel measurement module 908 is configured to perform channel measurement on the local cell according to the reference signal resource configuration information acquired by the second obtaining module 906.
  • the second obtaining module 906 may obtain multiple sets of reference signal resource configuration information of the serving cell or the local cell, and the serving cell performs configuration of the reference signal resource configuration information by means of broadcast or by UE-specific signaling;
  • the CSI-RS is used as an example for the following description:
  • the configuration of the CSI-RS resource 1 and the CSI-RS resource 2 may be that the serving cell is notified by the cell (that is, the configuration information is notified to the UE in the cell by means of broadcast), or
  • the UE is specific (that is, the configuration information is sent to different UEs through UE-specific signaling, and may be high layer signaling of RRC (radio resource control) or dynamic signaling of layer 1).
  • the eNB may configure a CSI-RS resource for the UE according to the location of the UE. For example, if the location of the UE1 is located under the coverage of the down-tilt A beam, the eNB configures the CSI-RS resource for the UE1. 1. UE1 will measure and feed back according to the configured CSI-RS resource 1.
  • the channel measurement device 90 may report the channel measurement result of the serving cell and the channel measurement result of the at least one target cell to the serving cell, where the serving cell determines whether the UE needs to perform cell handover, and which target cell and target to switch to.
  • the reference signal resource configuration information in the embodiment of the present invention may include a cell ID, precoding matrix information, time-frequency resource location information, a port number, and a pilot sequence.
  • the precoding matrix information includes the weighting factor information used by the set of reference signal resource configuration information, that is, the downtilt beam information corresponding to the set of reference signal resource configuration information.
  • first receiving module 900 and the second obtaining module 906 can be the same hardware physical module, and can be two separate hardware physical modules; the first channel measuring module 902 and the second channel measuring module 908 can also be the same hardware physics.
  • the module can be a separate two hardware physical modules.
  • the structure of the channel measurement device 90 in the embodiment of the present invention is further described in detail with reference to the structural diagram of the reporting module of the embodiment of the present invention shown in FIG. 12;
  • the reporting module 904 includes: One or more of the reporting unit 9040, the second reporting unit 9042, the third reporting unit 9044, and the fourth reporting unit 9046, and the four units are illustrated in FIG. 12 as an example;
  • the first reporting unit 9040 Channel quality measurement information corresponding to each set of reference signal resource configuration information configured to report the target cell configuration to the serving cell;
  • the second reporting unit 9042 is configured to report, to the serving cell, channel quality measurement information corresponding to an average value of channel quality measurement information of the target cell, where the average value of the channel quality measurement information is all reference signal resources configured in the target cell.
  • the third reporting unit 9044 is configured to report channel quality measurement information corresponding to the maximum value of the channel quality measurement information of the target cell to the serving cell, where the maximum value of the channel quality measurement information is all sets of reference signal resources configured in the target cell.
  • the fourth reporting unit 9046 is configured to report the channel quality measurement information corresponding to the at least one set of reference signal resource configuration information configured by the target cell to the serving cell in the form of a bitmap.
  • the present invention further provides a cell switching device, which is a schematic structural diagram of a channel measurement device according to an embodiment of the present invention, and the channel measurement device 130 includes: a configuration information generating module 1300 and a configuration information transmitting module 1302, wherein
  • the configuration information generating module 1300 is configured to use different weighting factors to weight the signals on each set of antennas according to different downtilt beams to obtain different reference signal resource configuration information; the reference signal resource configuration information respectively corresponds to a different one. a beam with a downtilt angle;
  • the configuration information sending module 1302 is configured to send at least two sets of reference signal resource configuration information to the user equipment, where the user equipment performs channel measurement.
  • the present invention further provides a cell switching device, which is a schematic structural diagram of a cell switching device according to an embodiment of the present invention, and the cell switching device 140 includes: a channel measurement result receiving module 1400 and a switching judging module 1402, wherein
  • the channel measurement result receiving module 1400 is configured to receive a channel measurement result of the target cell reported by the user equipment, where the channel measurement result is a channel for performing channel measurement on the target cell according to the reference signal resource configuration information of the received target cell by the user equipment. a measurement result, where the number of reference signal resource configuration information of the target cell received by the user equipment is greater than 1; the reference signal resource configuration information respectively corresponds to a beam with a different downtilt angle;
  • the cell switching device 140 may further include a sending module, where the sending module sends at least one set of reference signal resource configuration information of the serving cell to the user equipment by means of a broadcast, or by user equipment specific signaling;
  • the signaling may include high layer signaling of RRC or dynamic signaling of layer 1.
  • the handover determining module 1402 is configured to determine, according to the channel measurement result received by the channel measurement result receiving module, whether to perform cell handover on the user equipment.
  • the handover determining module 1402 compares the channel measurement result of the target cell reported by the UE with the channel measurement result of the serving cell reported by the UE, to determine whether the handover needs to be performed; for example, if the channel quality of the target cell is found to be greater than The channel quality of the serving cell, the serving cell determines that the handover can be performed; or the difference between the channel quality of the target cell and the channel quality of the serving cell satisfies a certain threshold, and the handover can be determined.
  • the UE may send information about the reference signal with the best channel quality of the UE in the target cell to the target cell, and finally complete the service from the serving cell.
  • the handover of the target cell for example, the identifier information in the reference signal resource configuration information may be sent to the target cell, and the serving cell may be sent through the X2 interface between the base stations.
  • the channel measurement result receiving module 1400 receives the channel measurement result of the target cell reported by the user equipment, and includes any one of the following:
  • the channel quality measurement information average is channel quality measurement corresponding to all reference signal resource configuration information configured in the target cell The average value of the information
  • the channel quality measurement information maximum value is channel quality measurement information corresponding to all reference signal resource configuration information configured in the target cell The maximum value in;
  • the handover determining module 1402 is specifically configured to: according to at least two corresponding to the channel measurement result The reference signal resource configuration information, when it is determined that the channel quality of the target cell is greater than the channel quality of the serving cell, the target cell with the highest channel quality is selected to perform cell handover on the user equipment.
  • the channel measurement result receiving module 1400 receives the average value of the channel quality measurement information reported by the user equipment for at least two target cells.
  • the handover determining module 1402 includes: a first selecting unit 14020 and a first selecting switching unit 14022, where
  • the first selecting unit 14020 is configured to select a largest target cell among the average values of the channel quality measurement information of the at least two target cells;
  • the first selection switching unit 14022 is configured to: according to the channel quality measurement information corresponding to the selected target cell, when determining that the channel quality of the target cell is greater than the channel quality of the service cell of the current month, selecting the target cell The user equipment performs cell handover.
  • the structure of the second embodiment of the handover determination module of the present invention when the channel measurement result receiving module 1400 receives the maximum value of the channel quality measurement information reported by the user equipment for at least two target cells.
  • the handover determining module 1402 includes: a second selecting unit 14024 and a second selecting switching unit 14026, where
  • the second selecting unit 14024 is configured to select a largest target cell among the maximum values of the channel quality measurement information of the at least two target cells;
  • the second selection switching unit 14026 is configured to: according to the channel quality measurement information corresponding to the selected target cell, when determining that the channel quality of the target cell is greater than the channel quality of the service cell of the current month, selecting the target cell
  • the user equipment performs cell handover.
  • the embodiment of the present invention further provides a network device, as shown in FIG. 17, a schematic structural diagram of a first embodiment of a network device provided by the present invention.
  • the network device 170 includes a receiver 1700, a memory 1702, and a processor 1704.
  • the receiver 1700, the memory 1702, and the processor 1704 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG. among them
  • the receiver 1700 receives the reference signal resource configuration information of the target cell, where the number of reference signal resource configuration information of the target cell is greater than 1, and the reference signal resource configuration information respectively corresponds to a beam with different downtilt angles;
  • the receiver 1700 in the embodiment of the present invention may be a receiving and transmitting device such as an antenna; each set of reference signal resource configuration information of the cell corresponds to a certain downtilt beam of the cell, that is, information of different downtilt beams in the cell may be Specifically, each set of reference signal resource configuration information of the cell may be generated by using different weighting factors on each receiver signal of the cell; for example, for a two-dimensional receiver configuration Beams with different downtilt angles can be obtained by weighting the signals on each receiver. Different weighting factors can produce beams with different downtilt angles.
  • each set of reference signal resource configuration information of the target cell may correspond to a precoding matrix of the target cell, specifically when each set of different reference signals is sent. Different weighting factors are used on different receivers.
  • the channel state information reference signal (CSI-RS) is taken as an example for description.
  • the embodiment of the present invention is not limited to the CSI-RS, and may also be a demodulation reference signal. , DM RS ), Channel Sounding Reference Signal (SRS) and other types of pilot resources.
  • the base station eNB configures CSI-RS resource 1 (ie, one set of reference signal resource configuration information) and CSI-RS resource 2 (ie, another set of reference signal resource configuration information) in the cell, where each CSI-RS resource
  • the number of CSI-RS ports may be included, and each CSI-RS port corresponds to a time-frequency position of the reference signal.
  • the receiver 1700 can receive reference signal resource configuration information of each target cell, where the number of reference signal resource configuration information of at least one target cell is greater than 1, that is, some target cells can be configured with multiple sets of reference signal resources. Configuration information, some cells can only configure a set of reference signal resource configuration information.
  • the processor 1704 performs channel measurement on the target cell based on the reference signal resource configuration information, and controls the receiver 1700 to report the channel measurement result of the target cell to the serving cell.
  • the result of measurement for each set of reference signals may be a channel quality indicator (CQI), a reference signal receiving power (RSRP), a reference signal received quality (RSRQ), or Received Signal Strength Indication (RSI), etc.
  • CQI channel quality indicator
  • RSRP reference signal receiving power
  • RSRQ reference signal received quality
  • RSI Received Signal Strength Indication
  • the current serving cell of the network device may determine whether the network device needs to perform cell handover, and which target cell and the target cell have the optimal downtilt beam. Service Area.
  • the receiver 1700 may further receive, by the serving cell, a notification of the reference signal resource configuration information of each target cell in a broadcast manner; or, receive a reference signal of the serving cell to each target cell by using user equipment specific signaling. Notification of resource configuration information.
  • the specific signaling may include high layer signaling of RRC or dynamic signaling of layer 1.
  • the target cell in the embodiment of the present invention includes a serving cell of the network device, that is, the receiver 1700 can also receive multiple sets of reference signal resource configuration information of the serving cell or the local cell, and the serving cell broadcasts, or Configuring the reference signal resource configuration information by using UE-specific signaling;
  • the configuration of the CSI-RS resource 1 and the CSI-RS resource 2 may be that the serving cell is notified by the cell (that is, the configuration information is notified to the network device in the cell by means of broadcast), or It is UE-specific (that is, the configuration information is sent to different network devices through UE-specific signaling, and may be high-level signaling of RRC (radio resource control) or dynamic signaling of layer 1. Order).
  • the eNB may configure a CSI-RS resource for the UE according to the location of the UE. For example, if the location of the UE1 is located under the coverage of the down-tilt A beam, the eNB configures the CSI-RS resource for the UE1. 1. UE1 will measure and feed back according to the configured CSI-RS resource 1.
  • the processor 1704 may report the channel measurement result of the serving cell and the channel measurement result of the at least one target cell to the serving cell, where the serving cell determines whether the UE needs to perform cell handover, and which target cell and target cell have the most handover to.
  • the service area of the superior downtilt beam may be used to report the channel measurement result of the serving cell and the channel measurement result of the at least one target cell to the serving cell, where the serving cell determines whether the UE needs to perform cell handover, and which target cell and target cell have the most handover to.
  • the reference signal resource configuration information in the embodiment of the present invention may include a cell ID, precoding matrix information, time-frequency resource location information, a port number, and a pilot sequence.
  • the precoding matrix information includes the weighting factor information used by the set of reference signal resource configuration information, that is, the downtilt beam information corresponding to the set of reference signal resource configuration information.
  • processor 1704 also performs any of the following steps:
  • the control receiver 1700 reports, to the serving cell, channel quality measurement information corresponding to each set of reference signal resource configuration information configured by the target cell; or
  • the control receiver 1700 receives the channel quality measurement information corresponding to the average value of the channel quality measurement information of the target cell reported by the user equipment; the channel quality measurement information average value is corresponding to all the reference signal resource configuration information configured in the target cell. Average of the channel quality measurement information; or
  • the control receiver 1700 receives channel quality measurement information corresponding to the maximum value of the channel quality measurement information of the target cell reported by the user equipment; the channel quality measurement information maximum value is corresponding to all reference signal resource configuration information configured in the target cell. The maximum value in the channel quality measurement information; or the control receiver 1700 receives the channel quality measurement information corresponding to the at least one set of reference signal resource configuration information of the target cell configuration reported by the user equipment in the form of a bitmap.
  • the network device 170 in the foregoing solution in this embodiment may be a mobile communication device (such as a mobile phone or other portable communication device, etc.) or other network device.
  • the receiver 1700 in this embodiment may be a device that receives signals, such as an antenna.
  • the functions of the function modules in the network device 170 can be specifically implemented according to the method in the foregoing method embodiment, and details are not described herein again.
  • the embodiment of the present invention further provides a network device, which is described in detail below with reference to the structural diagram of the second embodiment of the network device provided by the present invention shown in FIG. 180 includes: an input device 1800, an output device 1802, a memory 1804, and a processor 1806 (the number of processors 1806 in the network device may be one or more, and one processor is exemplified in FIG. 18).
  • the input device 1800, the output device 1802, the memory 1804, and the processor 1806 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • the processor 1806 performs the following steps:
  • the signals on each set of antennas are weighted by different weighting factors to obtain different reference signal resource configuration information respectively; the reference signal resource configuration information respectively corresponds to a beam with different downtilt angles;
  • the output device sends at least two sets of reference signal resource configuration information to the user equipment for channel measurement by the user equipment.
  • each set of reference signal resource configuration information corresponds to one precoding matrix.
  • the network device 180 in the foregoing solution in this embodiment may be a base station device or other network device.
  • the functions of the functional modules in the network device 180 may be implemented according to the method in the foregoing method embodiment, and details are not described herein.
  • the embodiment of the present invention further provides a network device.
  • the base station device 190 includes a receiver 1900, a memory 1902, and a processor 1904.
  • the receiver 1900, the memory The 1902 and the processor 1904 can be connected by a bus or other means, wherein the bus connection is taken as an example in FIG. among them
  • the receiver 1900 receives a channel measurement result of the target cell reported by the user equipment, where the channel measurement result is a channel measurement result of the channel measurement performed by the user equipment according to the reference signal resource configuration information of the received target cell, where The reference signal resource configuration information of the target cell received by the user equipment is greater than 1; the reference signal resource configuration information respectively corresponds to a beam with different downtilt angles;
  • the processor 1904 performs the following steps:
  • the channel measurement result it is determined whether a cell handover needs to be performed on the user equipment.
  • the processor 1904 further performs the following steps:
  • At least one set of reference signal resource configuration information of the serving cell is transmitted to the user equipment by the receiver 1900 in a broadcast manner or by user equipment specific signaling.
  • the receiver 1900 receives the channel measurement result of the target cell reported by the user equipment, and includes any one of the following: Receiving channel quality measurement information corresponding to each set of reference signal resource configuration information configured by the target cell reported by the user equipment; or
  • the channel quality measurement information average is channel quality measurement corresponding to all reference signal resource configuration information configured in the target cell The average value of the information
  • the channel quality measurement information maximum value is channel quality measurement information corresponding to all reference signal resource configuration information configured in the target cell The maximum value in;
  • the processor 1904 determines, according to the channel measurement result, whether to perform cell handover on the user equipment, including:
  • the target cell with the highest channel quality is selected to perform cell handover on the user equipment.
  • the processor 1904 determines, according to the channel measurement result, whether the user equipment is needed. Performing cell handover includes:
  • the target cell is selected to perform cell handover on the user equipment.
  • the processor 1904 determines, according to the channel measurement result, whether the user equipment is needed. Performing cell handover includes:
  • the receiver 1900 in this embodiment can be a device that receives signals, such as an antenna.
  • the functions of the functional modules in the base station device 190 can be specifically implemented according to the method in the foregoing method embodiment, and are not described herein again.
  • the embodiment of the present invention further provides a cell handover system. As shown in FIG. 20, the cell handover system 20 includes a base station device 200 and a first network device 202, where
  • the first network device 202 can refer to the network device 170 in the embodiment of FIG. 17, and details are not described herein again.
  • the base station device 200 can refer to the base station device 190 in the embodiment of FIG. 19, and details are not described herein again.
  • the cell switching system 20 in the embodiment of the present invention may further include a second network device, and the second network device may refer to the network device 180 in the embodiment of FIG. 18, and details are not described herein again.
  • the embodiment of the present invention performs channel measurement on the target cell according to each set of reference signal resource configuration information by acquiring reference signal resource configuration information of the target cell, where the reference signal resource configuration information respectively corresponds to a different downtilt angle.
  • the beam solves the problem that the channel quality of different downtilt beams of the target cell cannot be obtained in the prior art, and the obtained target cell has the channel measurement result of the downtilt beam to perform cell handover processing on the monthly service cell, which is greatly optimized.
  • the cell handover improves the resource utilization or spectrum efficiency, improves the system capacity, and better realizes the dynamic change of coverage of each cell.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Abstract

本发明实施例公开了一种信道测量方法,包括:接收目标小区的参考信号资源配置信息;其中所述目标小区的参考信号资源配置信息个数大于1,所述参考信号资源配置信息分别对应一个不同下倾角的波束;基于参考信号资源配置信息,对所述目标小区进行信道测量;向服务小区上报所述目标小区的信道测量结果。相应地,本发明还公开了一种小区切换方法、相关装置及系统,采用本发明,解决了现有技术中不能获得目标小区的不同下倾角波束的信道质量的问题,将测量的目标小区在不同下倾角波束下的信道测量结果上报给服务小区进行小区切换,大大优化了小区切换的灵活性,提高了资源的利用率或谱效率,提高了系统容量,更好地实现各小区覆盖的动态变化。

Description

一种信道测量方法、 小区切换方法、 相关装置及系统 技术领域
本发明涉及通信领域, 尤其涉及一种信道测量方法、 小区切换方法、 相关 装置及系统。 背景技术
多天线( Multi-input Multi-output, MIMO )技术已经被广泛地应用在无线 通信系统中来提高系统容量和保证小区的覆盖, 如长期演进 (Long Term Evolution, LTE )系统的下行采用了基于多天线的发送分集, 开环 /闭环的空分 复用和基于用户级参考信号 ( Demodulation Reference Signal , DM-RS ) 的多 流传输,其中基于 DM-RS的多流传输是 LTE-A系统以及后续系统的主要传输 模式。 目前, 基于 DM-RS的多流传输所对应的天线配置和水平向发送波束如 图 1所示。
为了进一步提高多天线系统的性能, 人们正在研究二维的面阵天线配置, 即天线同时分布在水平和垂直方向上,从而可以同时进行水平和垂直方向上的 波束赋形, 称为三维波束赋形。 这样, 相对于目前只有水平向发送波束的波束 赋形,增加了在垂直方向上的自由度,从而在同样的时频资源上可以复用更多 的用户, 不同的用户通过垂直或水平方向上的波束来区分,提高资源的利用率 或谱效率, 如图 2所示。
二维的天线配置通过有源天线系统(Active Antenna Systems, AAS )来实 现。 有别于传统基站的无源天线系统, AAS 可以灵活地在垂直方向上提供具 有不同下倾角的波束,基站可以通过调整波束的不同下倾角来实现对用户设备 ( User Equipment, UE ) 的不同覆盖。 如图 2所示, 小区中的 UE1和 UE3可 以被下倾角 A的波束来覆盖并服务,而 UE2和 UE4被另外一个不同的下倾角 为 B的波束进行覆盖和服务。
另夕卜,宏小区和微 d、区共存的异构网络是目前系统中很重要的一种网络部 署, 其中宏小区中的基站(宏站: Macro node )和微小区中的基站(微站: Pico node )具有不同的发送功率, 且宏站的发送功率通常大于微站的发送功率; 一 个宏小区中可以包含多个微小区,其中宏小区和其下面的微小区可以使用同频 或异频进行通信。异构网中的宏站主要是保证小区覆盖, 而微站主要是对宏站 的业务进行卸载(offload ), 即当宏站的业务负载 4艮重时, 可以 I巴宏站的一部 分 UE切换到微站上进行服务, 从而可以减轻宏站的负载, 如图 3所示。
因为宏站和微站发射功率的差异,所以宏站将会对微站所服务的 UE产生 干扰, 尤其是对处在宏站和微站边界处且被微站服务的 UE干扰很大。 在这种 场景下, AAS 天线实现的三维波束赋形技术对宏小区和微小区之间的业务负 载均衡和空域维度的小区间干扰协调提供了可能性,即通过灵活调整宏站和微 站下不同下倾角的波束(即小区自由呼吸)来实现各小区覆盖的动态变化, 从 而达到小区间干扰协调和负载均衡的效果, 如图 4所示。 例如: 当宏站的业务 负载重时,宏小区可以触发一部分 UE (例如: 处于宏站和微站边界处的 UE ) 切换到微小区由微站进行服务; 在进行业务卸载的小区切换时, 可以通过同时 调整宏站和微站的波束下倾角来改变小区覆盖的大小。例如: 微站通过调整波 束的下倾角增加小区覆盖的范围 (可以参见图 4中微小区的外环), 从而使之 前宏站服务的 UE处在微站扩展后的小区覆盖范围之内; 同时为了减少宏站对 处于微站覆盖范围的 UE减少干扰, 可以调整宏站波束的下倾角。
一般地, 现有技术中定义了服务小区和目标小区, 其中服务小区是 UE保 持连接且进行正常通信的一个小区, 目标小区是 UE从服务小区可能切换到的 小区, 可以包括服务小区在内。 一个 UE可以有多个目标小区。 例如: 宏站服 务的 UE需要切换到微小区时, 宏小区就是服务小区, 而所述的微小区就是目 标小区。 在上述的异构场景下, UE进行小区切换时, UE需要确定目标小区 的信道质量, 即需要测量目标小区的信道质量, 然后上报给自己的服务小区进 行切换处理。
那么, UE在对目标小区进行测量时, UE如何获得每个目标小区中具有 不同下倾角波束的信道质量,从而获得目标小区中针对 UE自己的最优下倾角 波束的信道质量, 是本领域技术人员关注的热点问题; 同样的, 该问题也存在 于同构网络中, 即当不同宏小区都采用 AAS技术时, 每个宏小区内都可以产 生不同下倾角的波束, 那么 UE在不同的宏小区之间切换时, UE如何获得目 标小区的具有不同下倾角波束的信道质量。
现有技术中, UE在准备进行小区切换时, UE测量目标小区的信道质量, 如参考信号接收功率 (Reference Signal Received Power, RSRP),其中目标小区的 信道质量是通过目标小区的小区特定参考信号 (cell-specific reference signal, CRS) 天线端口 0来进行测量。 UE在进行目标小区的信道质量测量时, UE首 先与目标小区进行同步, 其次从同步信号中获得目标小区的标识, 即小区 ID, 然后根据获得的目标小区 ID得到目标小区 CRS天线端口 0的时频资源位置以 及参考信号的序列; 最后根据目标小区 CRS天线端口 0进行测量。
然而, CRS是小区特定的参考信号, 且广播给小区中的所有 UE。 小区 的广播信息或者广播信道都是在 CRS对应的天线端口上传输的, 所以 CRS的 波束通常是一个全向的, 目的是为了保证小区的覆盖。 因此, 利用现有技术中 的目标小区 CRS并不能获得目标小区的不同下倾角波束的信道质量。 发明内容
本发明实施例提供一种信道测量方法、 小区切换方法、 相关装置及系统, 解决了现有技术中不能获得目标小区不同下倾角波束的信道质量的问题,优化 了小区切换。
第一方面, 本发明实施例提供了一种信道测量方法, 包括:
接收目标小区的参考信号资源配置信息;其中所述目标小区的参考信号资 源配置信息个数大于 1 , 所述参考信号资源配置信息分别对应一个不同下倾角 的波束;
基于参考信号资源配置信息, 对所述目标小区进行信道测量;
向服务小区上报所述目标小区的信道测量结果。
结合第一方面,在第一种可能的实现方式中, 所述接收每个目标小区的参 考信号资源配置信息包括:
接收以广播的方式对每个目标小区的参考信号资源配置信息的通知; 或 者,
接收服务小区通过用户设备特定的信令对每个目标小区的参考信号资源 配置信息的通知。 结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中, 所 述用户设备特定的信令包括无线资源控制的高层信令, 或者层 1的动态信令。
结合第一方面, 或者第一方面的第一种可能的实现方式, 或者第一方面的 第二种可能的实现方式,在第三种可能的实现方式中,所述目标小区的每套参 考信号资源配置信息对应于一个预编码矩阵。
结合第一方面, 或者第一方面的第一种可能的实现方式, 或者第一方面的 第二种可能的实现方式, 或者第一方面的第三种可能的实现方式,在第四种可 能的实现方式中, 所述目标小区包括所述服务小区。
结合第一方面, 或者第一方面的第一种可能的实现方式, 或者第一方面的 第二种可能的实现方式, 或者第一方面的第三种可能的实现方式, 或者第一方 面的第四种可能的实现方式,在第五种可能的实现方式中, 所述向服务小区上 报所述目标小区的信道测量结果包括以下任一项:
向所述服务小区上报目标小区配置的每套参考信号资源配置信息对应的 信道质量测量信息; 或
向所述服务小区上报目标小区的信道质量测量信息平均值对应的信道质 量测量信息;所述信道质量测量信息平均值是对所述目标小区中配置的所有参 考信号资源配置信息对应的信道质量测量信息进行的平均值; 或
向所述服务小区上报目标小区的信道质量测量信息最大值对应的信道质 量测量信息;所述信道质量测量信息最大值是所述目标小区中配置的所有参考 信号资源配置信息对应的信道质量测量信息中的最大值; 或
采用位图的形式向所述服务小区上报目标小区配置的至少一套参考信号 资源配置信息对应的信道质量测量信息。
第二方面, 本发明实施例提供了一种信道测量方法, 包括:
根据不同下倾角的波束,采用不同的加权因子对每套天线上的信号进行加 权, 分别得到不同的参考信号资源配置信息; 所述参考信号资源配置信息分别 对应一个不同下倾角的波束;
向用户设备发送至少两套参考信号资源配置信息,以供所述用户设备进行 信道测量。
结合第二方面,在第一种可能的实现方式中, 所述每套参考信号资源配置 信息对应于一个预编码矩阵。
第三方面, 本发明实施例提供了一种小区切换方法, 包括:
接收用户设备上报的目标小区的信道测量结果;所述信道测量结果为所述 用户设备根据接收的目标小区的参考信号资源配置信息,对目标小区进行信道 测量的信道测量结果, 其中, 所述用户设备接收的目标小区的参考信号资源配 置信息个数大于 1; 所述参考信号资源配置信息分别对应一个不同下倾角的波 束;
根据所述信道测量结果, 判断是否需要对用户设备进行小区切换。
结合第三方面,在第一种可能的实现方式中, 所述目标小区包括所述用户 设备的服务小区。
结合第三方面, 或者第三方面的第一种可能的实现方式,在第二种可能的 实现方式中,所述接收用户设备上报的目标小区的信道测量结果包括以下任一 项:
接收用户设备上报的目标小区配置的每套参考信号资源配置信息对应的 信道质量测量信息; 或
接收用户设备上报的目标小区的信道质量测量信息的平均值对应的信道 质量测量信息;所述信道质量测量信息平均值是对所述目标小区中配置的所有 参考信号资源配置信息对应的信道质量测量信息进行的平均值; 或
接收用户设备上报的目标小区的信道质量测量信息的最大值对应的信道 质量测量信息;所述信道质量测量信息最大值是所述目标小区中配置的所有参 考信号资源配置信息对应的信道质量测量信息中的最大值; 或
接收用户设备采用位图的形式上报的目标小区配置的至少一套参考信号 资源配置信息对应的信道质量测量信息。
结合第三方面, 或者第三方面的第一种可能的实现方式, 或者第三方面的 第二种可能的实现方式,在第三种可能的实现方式中, 所述每套参考信号资源 配置信息对应于一个预编码矩阵。
结合第三方面, 或者第三方面的第一种可能的实现方式, 或者第三方面的 第二种可能的实现方式, 或者第三方面的第三种可能的实现方式,在第四种可 能的实现方式中,当接收到用户设备上报目标小区的信道测量结果对应至少两 套参考信号资源配置信息时,所述根据所述信道测量结果, 判断是否需要对用 户设备进行小区切换包括:
根据所述信道测量结果对应的至少两套参考信号资源配置信息,当判断出 目标小区的信道质量大于本服务小区的信道质量时,选取信道质量最高的目标 小区对所述用户设备进行小区切换。
结合第三方面的第二种可能的实现方式,在第五种可能的实现方式中, 当 接收到用户设备上报至少两个目标小区的信道质量测量信息的平均值对应的 信道质量测量信息时, 所述根据所述信道测量结果, 判断是否需要对用户设备 进行小区切换包括:
选取至少两个目标小区的信道质量测量信息的平均值中最大的目标小区; 根据选取的所述目标小区对应的信道质量测量信息,当判断出所述目标小 区的信道质量大于本服务小区的信道质量时,选取所述目标小区对所述用户设 备进行小区切换。
结合第三方面的第二种可能的实现方式,在第六种可能的实现方式中, 当 接收到用户设备上报至少两个目标小区的信道质量测量信息的最大值对应的 信道质量测量信息时, 所述根据所述信道测量结果,判断是否需要对用户设备 进行小区切换包括:
选取至少两个目标小区的信道质量测量信息的最大值中最大的目标小区; 根据选取的所述目标小区对应的信道质量测量信息,当判断出所述目标小 区的信道质量大于本服务小区的信道质量时,选取所述目标小区对所述用户设 备进行小区切换。
第四方面, 本发明实施例提供了一种信道测量装置, 包括:
第一接收模块, 用于接收目标小区的参考信号资源配置信息; 其中所述目 标小区的参考信号资源配置信息个数大于 1 , 所述参考信号资源配置信息分别 对应一个不同下倾角的波束;
第一信道测量模块,用于根据所述第一接收模块接收的参考信号资源配置 信息, 对所述目标小区进行信道测量;
上报模块, 用于向服务小区上报所述目标小区的信道测量结果。
结合第四方面, 在第一种可能的实现方式中, 所述第一接收模块包括: 第一接收单元,用于接收以广播的方式对每个目标小区的参考信号资源配 置信息的通知; 或 /和,
第二接收单元,用于接收服务小区通过用户设备特定的信令对每个目标小 区的参考信号资源配置信息的通知。
结合第四方面的第一种可能的实现方式,在第二种可能的实现方式中, 所 述特定的信令包括无线资源控制的高层信令, 或者层 1的动态信令。
结合第四方面, 或者第四方面的第一种可能的实现方式, 或者第四方面的 第二种可能的实现方式,在第三种可能的实现方式中, 所述目标小区的每套参 考信号资源配置信息对应于一个预编码矩阵。
结合第四方面, 或者第四方面的第一种可能的实现方式, 或者第四方面的 第二种可能的实现方式, 或者第四方面的第三种可能的实现方式,在第四种可 能的实现方式中, 所述目标小区包括所述服务小区。
结合第四方面, 或者第四方面的第一种可能的实现方式, 或者第四方面的 第二种可能的实现方式, 或者第四方面的第三种可能的实现方式, 或者第四方 面的第四种可能的实现方式,在第五种可能的实现方式中, 所述上报模块包括 以下任一个或多个单元:
第一上报单元,用于向所述服务小区上报目标小区配置的每套参考信号资 源配置信息对应的信道质量测量信息;
第二上报单元,用于向所述服务小区上报目标小区的信道质量测量信息平 均值对应的信道质量测量信息;所述信道质量测量信息平均值是对所述目标小 区中配置的所有参考信号资源配置信息对应的信道质量测量信息进行的平均 值;
第三上报单元,用于向所述服务小区上报目标小区的信道质量测量信息最 大值对应的信道质量测量信息;所述信道质量测量信息最大值是所述目标小区 中配置的所有套参考信号资源配置信息对应的信道质量测量信息中的最大值; 第四上报单元,用于采用位图的形式向所述服务小区上报目标小区配置的 至少一套参考信号资源配置信息对应的信道质量测量信息。
第五方面, 本发明实施例提供了信道测量设备, 包括:
配置信息生成模块, 用于根据不同下倾角的波束,采用不同的加权因子对 每套天线上的信号进行加权,分别得到不同的参考信号资源配置信息; 所述参 考信号资源配置信息分别对应一个不同下倾角的波束;
配置信息发送模块, 用于向用户设备发送至少两套参考信号资源配置信 息, 以供所述用户设备进行信道测量。
结合第五方面,在第一种可能的实现方式中, 所述每套参考信号资源配置 信息对应于一个预编码矩阵。
第六方面, 本发明实施例提供了一种小区切换装置, 包括:
信道测量结果接收模块,用于接收用户设备上报的目标小区的信道测量结 果;所述信道测量结果为所述用户设备根据接收的目标小区的参考信号资源配 置信息,对目标小区进行信道测量的信道测量结果,其中所述用户设备接收的 目标小区的参考信号资源配置信息个数大于 1; 所述参考信号资源配置信息分 别对应一个不同下倾角的波束;
切换判断模块, 用于根据所述信道测量结果接收模块接收的信道测量结 果, 判断是否需要对用户设备进行小区切换。
结合第六方面, 在第一种可能的实现方式中, 小区切换装置还包括: 发送模块, 用于以广播的方式, 或者通过用户设备特定的信令向用户设备 发送包括本服务小区在内的每个目标小区的至少一套参考信号资源配置信息。
结合第六方面, 或者第六方面的第一种可能的实现方式,在第二种可能的 实现方式中,所述信道测量结果接收模块接收用户设备上报的目标小区的信道 测量结果包括以下任一项:
接收用户设备上报的目标小区配置的每套参考信号资源配置信息对应的 信道质量测量信息; 或
接收用户设备上报的目标小区的信道质量测量信息的平均值对应的信道 质量测量信息;所述信道质量测量信息平均值是对所述目标小区中配置的所有 参考信号资源配置信息对应的信道质量测量信息进行的平均值; 或
接收用户设备上报的目标小区的信道质量测量信息的最大值对应的信道 质量测量信息;所述信道质量测量信息最大值是所述目标小区中配置的所有参 考信号资源配置信息对应的信道质量测量信息中的最大值; 或
接收用户设备采用位图的形式上报的目标小区配置的至少一套参考信号 资源配置信息对应的信道质量测量信息。
结合第六方面, 或者第六方面的第一种可能的实现方式, 或者第六方面的 第二种可能的实现方式,在第三种可能的实现方式中, 当所述信道测量结果接 收模块接收到用户设备上报目标小区的信道测量结果对应至少两套参考信号 资源配置信息时, 所述切换判断模块具体用于:
根据所述信道测量结果对应的至少两套参考信号资源配置信息,当判断出 目标小区的信道质量大于本服务小区的信道质量时,选取信道质量最高的目标 小区对所述用户设备进行小区切换。
结合第六方面的第二种可能的实现方式,在第四种可能的实现方式中, 当 所述信道测量结果接收模块接收到用户设备上报至少两个目标小区的信道质 量测量信息的平均值对应的信道质量测量信息时, 所述切换判断模块包括: 第一选取单元,用于选取至少两个目标小区的信道质量测量信息的平均值 中最大的目标小区;
第一选取切换单元,用于根据选取的所述目标小区对应的信道质量测量信 息, 当判断出所述目标小区的信道质量大于本服务小区的信道质量时,选取所 述目标小区对所述用户设备进行小区切换。
结合第六方面的第二种可能的实现方式,在第五种可能的实现方式中, 当 所述信道测量结果接收模块接收到用户设备上报至少两个目标小区的信道质 量测量信息的最大值对应的信道质量测量信息时, 所述切换判断模块包括: 第二选取单元,用于选取至少两个目标小区的信道质量测量信息的最大值 中最大的目标小区;
第二选取切换单元,用于根据选取的所述目标小区对应的信道质量测量信 息, 当判断出所述目标小区的信道质量大于本服务小区的信道质量时,选取所 述目标小区对所述用户设备进行小区切换。
第七方面, 本发明实施例提供了一种网络设备, 包括接收器和处理器; 其 中
接收器接收目标小区的参考信号资源配置信息;其中所述目标小区的参考 信号资源配置信息个数大于 1 , 所述参考信号资源配置信息分别对应一个不同 下倾角的波束; 处理器基于参考信号资源配置信息,对所述目标小区进行信道测量; 向服 务小区上报所述目标小区的信道测量结果。
结合第七方面, 在第一种可能的实现方式中, 所述接收器获取每个目标小 区的参考信号资源配置信息包括:
所述接收器接收以广播的方式对每个目标小区的参考信号资源配置信息 的通知 或者,
所述接收器接收服务小区通过用户设备特定的信令对每个目标小区的参 考信号资源配置信息的通知。
结合第七方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所 述用户设备特定的信令包括无线资源控制的高层信令, 或者层 1的动态信令。
结合第七方面, 或者第七方面的第一种可能的实现方式, 或者第七方面的 第二种可能的实现方式,在第三种可能的实现方式中, 所述目标小区的每套参 考信号资源配置信息对应于一个预编码矩阵。
结合第七方面, 或者第七方面的第一种可能的实现方式, 或者第七方面的 第二种可能的实现方式, 或者第七方面的第三种可能的实现方式,在第四种可 能的实现方式中, 所述目标小区包括所述服务小区。
结合第七方面, 或者第七方面的第一种可能的实现方式, 或者第七方面的 第二种可能的实现方式, 或者第七方面的第三种可能的实现方式, 或者第七方 面的第四种可能的实现方式,在第五种可能的实现方式中, 所述处理器向所述 服务小区上报所述目标小区的信道测量结果包括以下任一项步骤:
向所述服务小区上报目标小区配置的每套参考信号资源配置信息对应的 信道质量测量信息; 或
向所述服务小区上报目标小区的信道质量测量信息平均值对应的信道质 量测量信息;所述信道质量测量信息平均值是对所述目标小区中配置的所有参 考信号资源配置信息对应的信道质量测量信息进行的平均值; 或
向所述服务小区上报目标小区的信道质量测量信息最大值对应的信道质 量测量信息;所述信道质量测量信息最大值是所述目标小区中配置的所有参考 信号资源配置信息对应的信道质量测量信息中的最大值; 或
采用位图的形式向所述服务小区上报目标小区配置的至少一套参考信号 资源配置信息对应的信道质量测量信息。
第八方面, 本发明实施例提供了一种网络设备, 包括: 输入装置、 输出装 置、 存储器和处理器;
其中, 所述处理器执行如下步骤:
根据不同下倾角的波束,采用不同的加权因子对每套天线上的信号进行加 权, 分别得到不同的参考信号资源配置信息; 所述参考信号资源配置信息分别 对应一个不同下倾角的波束;通过所述输出装置向用户设备发送至少两套参考 信号资源配置信息, 以供所述用户设备进行信道测量。
结合第八方面, 在第一种可能的实现方式中, 所述每套参考信号资源配置 信息对应于一个预编码矩阵。
第九方面, 本发明实施例提供了一种基站设备, 包括接收器和处理器; 其 中
所述接收器接收用户设备上报的目标小区的信道测量结果;所述信道测量 结果为所述用户设备根据接收的目标小区的参考信号资源配置信息,对目标小 区进行信道测量的信道测量结果, 其中, 所述用户设备接收的目标小区的参考 信号资源配置信息个数大于 1; 所述参考信号资源配置信息分别对应一个不同 下倾角的波束;
所述处理器执行如下步骤:
根据所述信道测量结果, 判断是否需要对所述用户设备进行小区切换。 结合第九方面,在第一种可能的实现方式中,所述处理器还执行如下步骤: 以广播的方式,或者通过用户设备特定的信令向用户设备发送包括本服务 小区在内的每个目标小区的至少一套参考信号资源配置信息。
结合第九方面, 或者第九方面的第一种可能的实现方式,在第二种可能的 实现方式中,所述接收器接收用户设备上报的目标小区的信道测量结果包括以 下任一项:
接收用户设备上报的目标小区配置的每套参考信号资源配置信息对应的 信道质量测量信息; 或
接收用户设备上报的目标小区的信道质量测量信息的平均值对应的信道 质量测量信息;所述信道质量测量信息平均值是对所述目标小区中配置的所有 参考信号资源配置信息对应的信道质量测量信息进行的平均值; 或 接收用户设备上报的目标小区的信道质量测量信息的最大值对应的信道 质量测量信息;所述信道质量测量信息最大值是所述目标小区中配置的所有参 考信号资源配置信息对应的信道质量测量信息中的最大值; 或
接收用户设备采用位图的形式上报的目标小区配置的至少一套参考信号 资源配置信息对应的信道质量测量信息。
结合第九方面, 或者第九方面的第一种可能的实现方式, 或者第九方面的 第二种可能的实现方式,在第三种可能的实现方式中, 当所述接收器接收到用 户设备上报目标小区的信道测量结果对应至少两套参考信号资源配置信息时, 所述处理器根据所述信道测量结果,判断是否需要对用户设备进行小区切换包 括:
根据所述信道测量结果对应的至少两套参考信号资源配置信息,当判断出 目标小区的信道质量大于本服务小区的信道质量时,选取信道质量最高的目标 小区对所述用户设备进行小区切换。
结合第九方面的第二种可能的实现方式,在第四种可能的实现方式中, 当 所述接收器接收到用户设备上报至少两个目标小区的信道质量测量信息的平 均值对应的信道质量测量信息时, 所述处理器根据所述信道测量结果, 判断是 否需要对用户设备进行小区切换包括:
选取至少两个目标小区的信道质量测量信息的平均值中最大的目标小区; 根据选取的所述目标小区对应的信道质量测量信息,当判断出所述目标小区的 信道质量大于本服务小区的信道质量时,选取所述目标小区对所述用户设备进 行小区切换。
结合第九方面的第二种可能的实现方式,在第五种可能的实现方式中, 当 所述接收器接收到用户设备上报至少两个目标小区的信道质量测量信息的最 大值对应的信道质量测量信息时, 所述处理器根据所述信道测量结果, 判断是 否需要对用户设备进行小区切换包括:
选取至少两个目标小区的信道质量测量信息的最大值中最大的目标小区; 根据选取的所述目标小区对应的信道质量测量信息,当判断出所述目标小区的 信道质量大于本服务小区的信道质量时,选取所述目标小区对所述用户设备进 行小区切换。
第十方面, 本发明实施例提供了一种小区切换系统, 包括基站设备和第一 网络设备, 其中
所述第一网络设备为第七方面, 或者第七方面的第一种可能的实现方式, 或者第七方面的第二种可能的实现方式,或者第七方面的第三种可能的实现方 式, 或者第七方面的第四种可能的实现方式, 或者第七方面的第五种可能的实 现方式中的网络设备;
所述基站设备为第九方面, 或者第九方面的第一种可能的实现方式, 或者 第九方面的第二种可能的实现方式, 或者第九方面的第三种可能的实现方式, 或者第九方面的第四种可能的实现方式,或者第九方面的第五种可能的实现方 式, 或者第九方面的第六种可能的实现方式中的基站设备。
结合第十方面, 在第一种可能的实现方式中, 所述小区切换系统还包括第 二网络设备, 其中
所述第二网络设备为第八方面,或者第八方面的第一种可能的实现方式中 的网络设备。
通过实施本发明实施例, 获取目标小区的参考信号资源配置信息,根据每 套参考信号资源配置信息对目标小区进行信道测量,所述参考信号资源配置信 息分别对应一个不同下倾角的波束,解决了现有技术中不能获得目标小区的不 同下倾角波束的信道质量的问题,将获得的目标小区具有下倾角波束的信道测 量结果上报给服务小区进行小区切换处理, 大大优化了小区切换,提高了资源 的利用率或谱效率, 提高了系统容量, 更好地实现各小区覆盖的动态变化。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是现有技术中水平天线配置的水平方向上波束赋形的原理示意图; 图 2是现有技术中二维天线配置的三维波束赋形的原理示意图; 图 3是现有技术中宏小区和微小区的异构网结构示意图;
图 4是现有技术中异构网中应用三维波束赋形的原理示意图;
图 5是本发明提供的信道测量方法的第一实施例的流程示意图; 图 6是本发明提供的信道测量方法的第二实施例的流程示意图; 图 7是本发明提供的信道测量方法的第三实施例的流程示意图; 图 8是本发明实施例的小区切换方法的流程示意图;
图 9是本发明信道测量装置的第一实施例的结构示意图;
图 10是本发明实施例的第一获取模块的结构示意图,;
图 11是本发明信道测量装置的第二实施例的结构示意图;
图 12是本发明实施例的上报模块的结构示意图;
图 13是本发明实施例的信道测量设备的结构示意图;
图 14是本发明实施例的小区切换装置的结构示意图;
图 15是本发明的切换判断模块的第一实施例的结构示意图;
图 16是本发明的切换判断模块的第二实施例的结构示意图;
图 17是本发明提供的网络设备的第一实施例的结构示意图;
图 18是本发明提供的网络设备的第二实施例的结构示意图;
图 19是本发明实施例的基站设备的结构示意图;
图 20是本发明实施例的小区切换系统的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
参见图 5 , 是本发明提供的信道测量方法的第一实施例的流程示意图, 该 方法包括:
步骤 S500: 接收目标小区的参考信号资源配置信息; 其中所述目标小区 的参考信号资源配置信息个数大于 1 , 所述参考信号资源配置信息分别对应一 个不同下倾角的波束; 具体地, 小区中可以配置多套参考信号资源配置信息, 小区的每套参考信 号资源配置信息对应该小区的某个下倾角波束, 即, 小区中不同下倾角波束的 信息可以通过发送的参考信号资源配置信息来体现; 再具体地, 小区的每套参 考信号资源配置信息可以通过该小区每套天线信号上采用不同的加权因子来 产生; 例如对于二维的天线配置, 不同下倾角的波束可以通过对每套天线上的 信号进行加权得到, 不同的加权因子可以产生不同下倾角的波束。 因此, 小区 中可以配置多套参考信号资源配置信息,目标小区的每套参考信号资源配置信 息可以对应于该目标小区的一个预编码矩阵, 具体地在发送不同的参考信号 时, 可以在每套不同的天线上采用不同的加权因子。
再详细地, 下面以信道状态信息参考信号 (Channel State Information Reference Signal, CSI-RS )为例来进行说明,但是本发明实施例不限于 CSI-RS, 还可以是解调参考信号 ( Demodulation Reference Signal, DM RS )、 信道探测 参考信号 (Sounding Reference Signal, SRS )等等其他类型导频资源。 例如, 基站 eNB在给小区中配置 CSI-RS资源 1 (即一套参考信号资源配置信息 )和 CSI-RS资源 2 (即另一套参考信号资源配置信息 ), 其中每个 CSI-RS资源中 可以包括 CSI-RS端口的个数, 每个 CSI-RS端口对应参考信号的时频位置以 及 CSI-RS的序列信息; 通过该小区每套天线信号上采用不同的加权因子, 配 置 CSI-RS资源 1中每个 CSI-RS波束对应的下倾角是 A, CSI-RS资源 2中每 个 CSI-RS波束对应的下倾角是 B。
完成上述配置后, 步骤 S500中 UE可接收每个目标小区的参考信号资源 配置信息, 其中至少一个目标小区的参考信号资源配置信息大于 1套, 即, 有 些目标小区可配置有多套参考信号资源配置信息,有些小区可只配置一套参考 信号资源配置信息。
步骤 S502: 基于参考信号资源配置信息, 对所述目标小区进行信道测量; 具体地,可以针对每套参考信号测量的结果可以是信道质量指示( channel quality indicator, CQI ),参考信号接收功率 ( Reference Signal Receiving Power, RSRP ), 参考信号接收质量( Reference Signal Received Quality, RSRQ )或接 收信号强度指示(Received Signal Strength Indication, RSSI )等。
步骤 S504: 向服务小区上报目标小区的信道测量结果。 具体地, UE可以向服务小区上报每个目标小区的信道测量结果, 也可以 根据具体情况优选上报一部分目标小区的信道测量结果; UE当前的服务小区 接收到 UE上报的至少一个目标小区的信道测量结果后, 可判断该 UE是否需 要进行小区切换,以及切换到哪个目标小区和目标小区中具有最优下倾角波束 的服务区域。
进一步地, 步骤 S500可以具体为:
UE接收服务小区以广播的方式对每个目标小区的参考信号资源配置信息 的通知; 或者, UE接收服务小区通过用户设备特定的信令对每个目标小区的 参考信号资源配置信息的通知。
具体地,所述特定的信令可以包括无线资源控制 (Radio Resource Control, RRC)的高层信令, 或者层 1的动态信令。
参见图 6, 是本发明提供的信道测量方法的第二实施例的流程示意图, 该 方法包括:
步骤 S600: 以广播的方式, 或者通过用户设备特定的信令从服务小区接 收本小区的至少一套参考信号资源配置信息;从服务小区接收每个目标小区的 参考信号资源配置信息;其中至少一个目标小区的参考信号资源配置信息个数 大于 1;
具体地, 本发明实施例中的目标小区包括所述月良务小区, 即 UE可以得到 自己服务小区或本小区的多套参考信号资源配置信息,服务小区通过广播的方 式, 或者通过 UE特定的信令来进行参考信号资源配置信息的配置;
下面又以 CSI-RS为例来进行说明: CSI-RS资源 1和 CSI-RS资源 2的配 置可以是服务小区通过小区特定(即配置信息通过广播的方式通知给小区中的 UE ) , 或者是 UE特定的(即配置信息通过 UE特定的信令发给不同的 UE, 可 以是 RRC(radio resource control)的高层信令或者层 1的动态信令)。对于 UE特 定的 CSI-RS资源配置方式, eNB可以根据 UE的位置给 UE配置一个 CSI-RS 资源, 例如: UE1的位置位于下倾角 A波束的覆盖下, 那么 eNB就给 UE1配 置 CSI-RS资源 1 , UE1将根据配置的 CSI-RS资源 1进行测量并反馈。
从服务小区接收每个目标小区的参考信号资源配置信息的步骤请参考上 一实施例的描述, 这里不再赘述。 步骤 S602: 基于接收的每套参考信号资源配置信息, 对所述服务小区以 及所述每个目标小区进行信道测量;
步骤 S604: 向所述服务小区上报至少一个目标小区的信道测量结果。 具体地, UE可以将本服务小区的信道测量结果以及至少一个目标小区的 信道测量结果上报给服务小区,供服务小区判断该 UE是否需要进行小区切换, 以及切换到哪个目标小区和目标小区中具有最优下倾角波束的服务区域。
需要说明的是,本发明实施例中的每套参考信号资源配置信息可以对应于 一个预编码矩阵; 具体地可以包括小区的 ID、 预编码矩阵信息、 时频资源位 置信息、 端口数、 以及导频序列等。 其中预编码矩阵信息含有本套参考信号资 源配置信息采用的加权因子信息,即本套参考信号资源配置信息对应的下倾角 波束信息。
再进一步地, 上述实施例的步骤 S504, 或步骤 S604可以包括以下 A、 B、 C、 D任一项, 即 UE向服务小区上报信道测量结果的方法可以采取以下四种 中的其中一种:
A、 向所述服务小区上报目标小区配置的每套参考信号资源配置信息对应 的信道质量测量信息;
具体地, UE可以向服务小区上报每个目标小区的信道测量结果, 也可以 根据具体情况优选上报一部分目标小区的信道测量结果; 当 UE将所有信道测 量结果都上报给服务小区, 例如信道测量结果为 RSRP, 那么 UE将测量出来 的每个目标小区配置的每套参考信号资源配置信息对应的 RSRP都上报给服 务小区; 后续服务小区根据接收的每个 RSRP来判断该 UE是否需要进行小区 切换, 以及切换到哪个目标小区和目标小区中具有最优下倾角波束的服务区 域。
B、 向所述服务小区上报目标小区的信道质量测量信息平均值对应的信道 质量测量信息;所述信道质量测量信息平均值是对目标小区中配置的所有参考 信号资源配置信息对应的信道质量测量信息进行的平均值;
具体地, UE并非将所有信道测量结果都上报给服务小区, 而是可以对应 至少一个目标小区只上报一个信道质量测量信息平均值对应的信道质量测量 信息, 即上报的是目标小区测量结果的一个平均值对应的信道质量测量信息, 例如信道测量结果为 RSRP, 那么 UE将每套参考信号资源配置信息对应的 RSRP进行求平均值, 然后可以将最接近该平均值的 RSRP作为该平均值对应 的信道质量测量信息进行上报; 可理解的, 当信道测量结果为 CQI时, 可以 将最接近该平均值的 CQI作为该平均值对应的信道质量测量信息进行上报; 相对于上述 A方案, 上报量大大减少; 后续服务小区根据接收的至少一个目 标小区的平均值来判断该 UE是否需要进行小区切换。
可理解的, 本发明实施例中的各个目标小区对应各自的信道测量结果,一 个信道质量测量信息平均值只对应一个目标小区,即一个信道质量测量信息平 均值是对应上报的一个目标小区测量结果的平均值; 例如, 当 UE向服务小区 上报两个目标小区 (目标小区 A和目标小区 B ) 的信道质量测量信息平均值 对应的信道质量测量信息时,那么 UE将上报目标小区 A对应测量出来的信道 质量测量信息平均值对应的信道质量测量信息, 以及上报目标小区 B对应测 量出来的信道质量测量信息平均值对应的信道质量测量信息。该对应的信道质 量测量信息可以包括预编码矩阵信息, 以供网络侧进行小区切换。
C、 向所述服务小区上报目标小区的信道质量测量信息最大值对应的信道 质量测量信息;所述信道质量测量信息最大值是目标小区中配置的每套参考信 号资源配置信息对应的信道质量测量信息中的最大值;
具体地, UE也并非将所有信道测量结果都上报给服务小区, 而是对应至 少一个目标小区只上报一个信道质量测量信息最大值对应的信道质量测量信 息; 即上报的是目标小区测量结果中的最大值对应的信道质量测量信息, 例如 信道测量结果为 RSRP, 那么 UE将选择每套参考信号资源配置信息对应的 RSRP中最大值对应的信道质量测量信息进行上报; 相对于上述 A方案, 上报 量大大减少;后续服务小区根据接收的至少一个目标小区的信道质量测量信息 最大值来判断该 UE是否需要进行小区切换, 以及切换到哪个目标小区和目标 小区中具有最优下倾角波束的服务区域, 若需切换, 那么对比各个目标小区的 信道质量测量信息最大值哪个最大, 切换到最大的目标小区。
可理解的, 本发明实施例中的各个目标小区对应各自的信道测量结果,一 个信道质量测量信息最大值只对应一个目标小区,即一个信道质量测量信息最 大值是对应上报的一个目标小区测量结果的最大值; 例如, 当 UE向服务小区 上报两个目标小区 (目标小区 C和目标小区 D ) 的信道质量测量信息最大值 对应的信道质量测量信息时,那么 UE将上报目标小区 C对应测量出来的信道 质量测量信息最大值对应的信道质量测量信息, 以及上 ^艮目标小区 D对应测 量出来的信道质量测量信息最大值对应的信道质量测量信息。
D、 采用位图 Bitmap 的形式向所述服务小区上报目标小区配置的至少一 套参考信号资源配置信息对应的信道质量测量信息;
具体地, UE可以选择性地上报至少一个目标小区中的参考信号资源配置 信息,而不是上报每个目标小区中的每套参考信号资源配置信息,采用 Bitmap 的形式来指示上报了哪些目标小区中哪些套参考信号资源配置信息对应的信 道质量测量信息; 例如采用如下所示的 Bitmap来指示:
1010 1011 001 011
上述 Bitmap中每个 Bit代表一套参考信号资源配置信息, 1代表上报该套 参考信号资源配置信息对应的信道质量测量信息, 而 0代表不上报,每个下划 线代表一个目标小区的多套参考信号资源配置信息; 即, 第一个下划线 1010 代表该目标小区配置有 4套参考信号资源配置信息,只上报第一套和第三套的 参考信号资源配置信息; 第二个下划线 1011代表该目标小区配置有 4套参考 信号资源配置信息, 上报第一套、 第三套和第四套的参考信号资源配置信息, 不上报第二套的参考信号资源配置信息;第三个下划线 001代表该目标小区配 置有 3套参考信号资源配置信息, 只上报第三套的参考信号资源配置信息。
服务小区获取并解析出上报的各套参考信号资源配置信息对应的信道质 量测量信息, 判断该 UE是否需要进行小区切换, 以及切换到哪个目标小区和 目标小区中具有最优下倾角波束的服务区域。
实施本发明实施例,通过获取目标小区的参考信号资源配置信息,根据每 套参考信号资源配置信息对目标小区进行信道测量,所述参考信号资源配置信 息分别对应一个不同下倾角的波束,解决了现有技术中不能获得目标小区的不 同下倾角波束的信道质量的问题,将获得的目标小区具有下倾角波束的信道测 量结果上报给服务小区进行小区切换处理, 大大优化了小区切换,提高了资源 的利用率或谱效率, 提高了系统容量, 更好地实现各小区覆盖的动态变化。 为了便于更好地实施本发明实施例的上述方案,本发明还对应提供了一种 信道测量方法,如图 7示出的本发明提供的信道测量方法的第三实施例的流程 示意图, 包括:
步骤 S700: 根据不同下倾角的波束, 采用不同的加权因子对每套天线上 的信号进行加权,分别得到不同的参考信号资源配置信息; 所述参考信号资源 配置信息分别对应一个不同下倾角的波束;
步骤 S702: 向用户设备发送至少两套参考信号资源配置信息, 以供所述 用户设备进行信道测量。
具体地, 所述每套参考信号资源配置信息对应于一个预编码矩阵。 小区中 可以配置多套参考信号资源配置信息,小区的每套参考信号资源配置信息对应 该小区的某个下倾角波束, 即, 小区中不同下倾角波束的信息可以通过发送的 参考信号资源配置信息来体现; 再具体地, 小区的每套参考信号资源配置信息 可以通过该小区每套天线信号上采用不同的加权因子来产生;例如对于二维的 天线配置, 不同下倾角的波束可以通过对每套天线上的信号进行加权得到, 不 同的加权因子可以产生不同下倾角的波束。 因此, 小区中可以配置多套参考信 号资源配置信息,目标小区的每套参考信号资源配置信息可以对应于该目标小 区的一个预编码矩阵, 具体地在发送不同的参考信号时, 可以在每套不同的天 线上采用不同的加权因子。
再详细地, 下面以 CSI-RS 为例来进行说明, 但是本发明实施例不限于 CSI-RS, 还可以是 DM RS、 SRS等等其他类型导频资源。 例如, 基站 eNB在 给小区中配置 CSI-RS资源 1 (即一套参考信号资源配置信息)和 CSI-RS资 源 2 (即另一套参考信号资源配置信息), 其中每个 CSI-RS 资源中可以包括 CSI-RS端口的个数, 每个 CSI-RS端口对应参考信号的时频位置以及 CSI-RS 的序列信息; 通过该小区每套天线信号上采用不同的加权因子, 配置 CSI-RS 资源 1中每个 CSI-RS波束对应的下倾角是 A, CSI-RS资源 2中每个 CSI-RS 波束对应的下倾角是 B。
完成上述配置后, 步骤 S702中基站 eNB等网络设备可以向 UE发送至少 两套参考信号资源配置信息, 以供所述用户设备进行信道测量。 为了便于更好地实施本发明实施例的上述方案,本发明还对应提供了一种 小区切换方法,如图 8示出的本发明实施例的小区切换方法的流程示意图, 包 括:
步骤 S800: 接收用户设备上报的目标小区的信道测量结果; 所述信道测 量结果为所述用户设备根据接收的目标小区的参考信号资源配置信息,对目标 小区进行信道测量的信道测量结果,其中, 所述用户设备接收的目标小区的参 考信号资源配置信息个数大于 1; 所述参考信号资源配置信息分别对应一个不 同下倾角的波束;
具体地, 该目标小区可以包括用户设备的服务小区, 本服务小区还可以通 过广播的方式,或者通过用户设备特定的信令向用户设备发送本服务小区或其 它目标小区的至少一套参考信号资源配置信息; 所述特定的信令可以包括 RRC的高层信令, 或者层 1的动态信令。 UE如何测量并上报信道测量结果, 请参考上述图 5和图 6的实施例, 这里不再赘述。
步骤 S802: 根据所述信道测量结果, 判断是否需要对用户设备进行小区 切换;
具体地, 服务小区根据 UE上报的目标小区的信道测量结果, 与 UE上报 的本服务小区的信道测量结果进行比较, 来确定对否需要进行切换; 例如: 如 果发现目标小区的信道质量大于服务小区的信道质量,服务小区确定可以进行 切换; 或者目标小区的信道质量与服务小区的信道质量的差满足一定的门限, 就可以确定进行切换。
再具体地, 当服务小区确定 UE 需要进行小区切换时, 服务小区可以把 UE在所述目标小区中对应信道质量最好的参考信号的信息发送给目标小区, 并最终完成从本服务小区到该目标小区的切换;例如可以把所述参考信号资源 配置信息中的标识信息发送给目标小区, 服务小区可以通过基站之间的 X2接 口来发送。
实施本发明实施例,通过获取目标小区的参考信号资源配置信息,根据每 套参考信号资源配置信息对目标小区进行信道测量,所述参考信号资源配置信 息分别对应一个不同下倾角的波束,解决了现有技术中不能获得目标小区的不 同下倾角波束的信道质量的问题,将获得的目标小区具有下倾角波束的信道测 量结果上报给服务小区进行小区切换处理, 大大优化了小区切换,提高了资源 的利用率或谱效率, 提高了系统容量, 更好地实现各小区覆盖的动态变化。
为了便于更好地实施本发明实施例的上述方案,下面还提供了用于配合实 施上述方案的相关装置。
参见图 9示出的本发明信道测量装置的第一实施例的结构示意图,信道测 量装置 90包括: 第一接收模块 900、 第一信道测量模块 902和上报模块 904, 其中
第一接收模块 900用于接收目标小区的参考信号资源配置信息;其中所述 目标小区的参考信号资源配置信息个数大于 1 , 所述参考信号资源配置信息分 别对应一个不同下倾角的波束;
第一信道测量模块 902用于根据第一接收模块 900接收的参考信号资源配 置信息, 对所述目标小区进行信道测量;
上报模块 904用于向服务小区上报所述目标小区的信道测量结果。
进一步地,结合图 10示出的本发明实施例的第一获取模块的结构示意图, 详细说明本发明实施例中信道测量装置 90的结构; 第一接收模块 900包括: 第一接收单元 9000或 /和第二接收单元 9002, 图 10中以同时包括第一接收单 元 9000和第二接收单元 9002为例进行举例;
第一接收单元 9000用于接收以广播的方式对每个目标小区的参考信号资 源配置信息的通知; 或 /和,
第二接收单元 9002用于接收服务小区通过用户设备特定的信令对每个目 标小区的参考信号资源配置信息的通知。
具体地,所述特定的信令可以包括无线资源控制 (Radio Resource Control, RRC)的高层信令, 或者层 1的动态信令。
再进一步地, 本发明实施例中的目标小区包括月良务小区, 即信道测量装置 90 可以得到自己服务小区或本小区的多套参考信号资源配置信息, 服务小区 通过广播的方式,或者通过 UE特定的信令来进行参考信号资源配置信息的配 置, 具体地, 实施例中的第一接收模块 900可以接收本小区或者其它目标小区 的多套参考信号资源配置信息, 或者信道测量装置 90包括另外的获取模块, 例如可以参见图 11示出的本发明信道测量装置的第二实施例的结构示意图, 信道测量装置 90包括第一接收模块 900、 第一信道测量模块 902和上报模块 904外, 还可以包括第二获取模块 906和第二信道测量模块 908, 其中
第二获取模块 906用于以广播的方式,或者通过用户设备特定的信令从所 述服务小区获取本小区的至少一套参考信号资源配置信息;
第二信道测量模块 908用于根据第二获取模块 906获取的参考信号资源配 置信息对本小区进行信道测量。
具体地,第二获取模块 906可以得到自己服务小区或本小区的多套参考信 号资源配置信息, 服务小区通过广播的方式, 或者通过 UE特定的信令来进行 参考信号资源配置信息的配置;
下面又以 CSI-RS为例来进行说明: CSI-RS资源 1和 CSI-RS资源 2的配 置可以是服务小区通过小区特定(即配置信息通过广播的方式通知给小区中的 UE ) , 或者是 UE特定的(即配置信息通过 UE特定的信令发给不同的 UE, 可 以是 RRC(radio resource control)的高层信令或者层 1的动态信令)。对于 UE特 定的 CSI-RS资源配置方式, eNB可以根据 UE的位置给 UE配置一个 CSI-RS 资源, 例如: UE1的位置位于下倾角 A波束的覆盖下, 那么 eNB就给 UE1配 置 CSI-RS资源 1 , UE1将根据配置的 CSI-RS资源 1进行测量并反馈。
具体地, 信道测量装置 90可以将本服务小区的信道测量结果以及至少一 个目标小区的信道测量结果上报给服务小区,供服务小区判断该 UE是否需要 进行小区切换,以及切换到哪个目标小区和目标小区中具有最优下倾角波束的 服务区域。
需要说明的是,本发明实施例中的参考信号资源配置信息可以包括小区的 ID、 预编码矩阵信息、 时频资源位置信息、 端口数、 以及导频序列等。 其中预 编码矩阵信息含有本套参考信号资源配置信息采用的加权因子信息,即本套参 考信号资源配置信息对应的下倾角波束信息。
可以理解,第一接收模块 900与第二获取模块 906可以为同一硬件物理模 块, 可以为单独的两个硬件物理模块; 第一信道测量模块 902和第二信道测量 模块 908也可以为同一硬件物理模块, 可以为单独的两个硬件物理模块。
再进一步地, 结合图 12示出的本发明实施例的上报模块的结构示意图, 再详细说明本发明实施例中信道测量装置 90的结构; 上报模块 904包括: 第 一上报单元 9040、 第二上报单元 9042、 第三上报单元 9044和第四上报单元 9046中的任一个或多个单元, 图 12中以包括这 4个单元为例进行说明; 第一上报单元 9040用于向所述服务小区上报目标小区配置的每套参考信 号资源配置信息对应的信道质量测量信息;
第二上报单元 9042用于向所述服务小区上报目标小区的信道质量测量信 息平均值对应的信道质量测量信息;所述信道质量测量信息平均值是对所述目 标小区中配置的所有参考信号资源配置信息对应的信道质量测量信息进行的 平均值;
第三上报单元 9044用于向所述服务小区上报目标小区的信道质量测量信 息最大值对应的信道质量测量信息;所述信道质量测量信息最大值是所述目标 小区中配置的所有套参考信号资源配置信息对应的信道质量测量信息中的最 大值;
第四上报单元 9046用于采用位图的形式向所述服务小区上报目标小区配 置的至少一套参考信号资源配置信息对应的信道质量测量信息。
可理解的是, 信道测量装置 90中各功能模块的功能可根据上述方法实施 例中的方法具体实现, 这里不再赘述。 为了便于更好地实施本发明实施例的上述方案,本发明还对应提供了一种 小区切换装置, 如图 13示出的本发明实施例的信道测量设备的结构示意图, 信道测量设备 130包括: 配置信息生成模块 1300和配置信息发送模块 1302, 其中
配置信息生成模块 1300用于根据不同下倾角的波束, 采用不同的加权因 子对每套天线上的信号进行加权, 分别得到不同的参考信号资源配置信息; 所 述参考信号资源配置信息分别对应一个不同下倾角的波束;
配置信息发送模块 1302用于向用户设备发送至少两套参考信号资源配置 信息, 以供所述用户设备进行信道测量。
可理解的是,信道测量设备 130中各功能模块的功能可根据上述方法实施 例中的方法具体实现, 这里不再赘述。 为了便于更好地实施本发明实施例的上述方案,本发明还对应提供了一种 小区切换装置, 如图 14示出的本发明实施例的小区切换装置的结构示意图, 小区切换装置 140包括: 信道测量结果接收模块 1400和切换判断模块 1402, 其中
信道测量结果接收模块 1400用于接收用户设备上报的目标小区的信道测 量结果;所述信道测量结果为所述用户设备根据接收的目标小区的参考信号资 源配置信息,对目标小区进行信道测量的信道测量结果, 其中所述用户设备接 收的目标小区的参考信号资源配置信息个数大于 1; 所述参考信号资源配置信 息分别对应一个不同下倾角的波束;
具体地, 小区切换装置 140还可以包括发送模块, 该发送模块通过广播的 方式,或者通过用户设备特定的信令向用户设备发送本服务小区的至少一套参 考信号资源配置信息; 所述特定的信令可以包括 RRC的高层信令, 或者层 1 的动态信令。 UE如何测量并上报信道测量结果, 请参考上述实施例, 这里不 再赘述。
切换判断模块 1402用于根据所述信道测量结果接收模块接收的信道测量 结果, 判断是否需要对用户设备进行小区切换;
具体地, 切换判断模块 1402根据 UE上报的目标小区的信道测量结果, 与 UE上报的本服务小区的信道测量结果进行比较,来确定对否需要进行切换; 例如: 如果发现目标小区的信道质量大于服务小区的信道质量,服务小区确定 可以进行切换;或者目标小区的信道质量与服务小区的信道质量的差满足一定 的门限, 就可以确定进行切换。
再具体地, 当切换判断模块 1402确定 UE需要进行小区切换时, UE可以 把 UE在所述目标小区中对应信道质量最好的参考信号的信息发送给目标小 区, 并最终完成从本服务小区到该目标小区的切换; 例如可以把所述参考信号 资源配置信息中的标识信息发送给目标小区, 服务小区可以通过基站之间的 X2接口来发送。
进一步地, 信道测量结果接收模块 1400接收用户设备上报的目标小区的 信道测量结果包括以下任一项:
接收用户设备上报的目标小区配置的每套参考信号资源配置信息对应的 信道质量测量信息; 或
接收用户设备上报的目标小区的信道质量测量信息的平均值对应的信道 质量测量信息;所述信道质量测量信息平均值是对所述目标小区中配置的所有 参考信号资源配置信息对应的信道质量测量信息进行的平均值; 或
接收用户设备上报的目标小区的信道质量测量信息的最大值对应的信道 质量测量信息;所述信道质量测量信息最大值是所述目标小区中配置的所有参 考信号资源配置信息对应的信道质量测量信息中的最大值; 或
接收用户设备采用位图的形式上报的目标小区配置的至少一套参考信号 资源配置信息对应的信道质量测量信息。
具体地, 当信道测量结果接收模块 1400接收到用户设备上报目标小区的 信道测量结果对应至少两套参考信号资源配置信息时, 切换判断模块 1402具 体用于: 根据所述信道测量结果对应的至少两套参考信号资源配置信息, 当判 断出目标小区的信道质量大于本服务小区的信道质量时,选取信道质量最高的 目标小区对所述用户设备进行小区切换。
再进一步地, 如图 15示出的本发明的切换判断模块的第一实施例的结构 示意图, 当信道测量结果接收模块 1400接收到用户设备上报至少两个目标小 区的信道质量测量信息的平均值对应的信道质量测量信息时, 切换判断模块 1402包括: 第一选取单元 14020和第一选取切换单元 14022, 其中
第一选取单元 14020 用于选取至少两个目标小区的信道质量测量信息的 平均值中最大的目标小区;
第一选取切换单元 14022 用于根据选取的所述目标小区对应的信道质量 测量信息, 当判断出所述目标小区的信道质量大于本月良务小区的信道质量时, 选取所述目标小区对所述用户设备进行小区切换。
再进一步地, 如图 16示出的本发明的切换判断模块的第二实施例的结构 示意图, 当信道测量结果接收模块 1400接收到用户设备上报至少两个目标小 区的信道质量测量信息的最大值对应的信道质量测量信息时, 切换判断模块 1402包括: 第二选取单元 14024和第二选取切换单元 14026, 其中
第二选取单元 14024 用于选取至少两个目标小区的信道质量测量信息的 最大值中最大的目标小区; 第二选取切换单元 14026 用于根据选取的所述目标小区对应的信道质量 测量信息, 当判断出所述目标小区的信道质量大于本月良务小区的信道质量时, 选取所述目标小区对所述用户设备进行小区切换。
可理解的是,小区切换装置 140中各功能模块的功能可根据上述方法实施 例中的方法具体实现, 这里不再赘述。
相应地, 本发明实施例还提供了一种网络设备, 如图 17示出的本发明提 供的网络设备的第一实施例的结构示意图, 网络设备 170包括接收器 1700、 存储器 1702以及处理器 1704, 在本发明的一些实施例中, 接收器 1700、 存储 器 1702和处理器 1704可通过总线或者其它方式连接, 其中, 图 17中以通过 总线连接为例。 其中
接收器 1700接收目标小区的参考信号资源配置信息; 其中所述目标小区 的参考信号资源配置信息个数大于 1 , 所述参考信号资源配置信息分别对应一 个不同下倾角的波束;
具体地, 本发明实施例中的接收器 1700可以为天线等接收发送设备; 小 区的每套参考信号资源配置信息对应该小区的某个下倾角波束, 即, 小区中不 同下倾角波束的信息可以通过发送的参考信号资源配置信息来体现; 再具体 地,小区的每套参考信号资源配置信息可以通过该小区每套接收器信号上采用 不同的加权因子来产生; 例如对于二维的接收器配置, 不同下倾角的波束可以 通过对每套接收器上的信号进行加权得到,不同的加权因子可以产生不同下倾 角的波束。 因此, 小区中可以配置多套参考信号资源配置信息, 目标小区的每 套参考信号资源配置信息可以对应于该目标小区的一个预编码矩阵,具体地在 发送不同的参考信号时, 可以在每套不同的接收器上采用不同的加权因子。
再详细地, 下面以信道状态信息参考信号 (Channel State Information Reference Signal, CSI-RS )为例来进行说明,但是本发明实施例不限于 CSI-RS, 还可以是解调参考信号 ( Demodulation Reference Signal, DM RS )、 信道探测 参考信号 (Sounding Reference Signal, SRS )等等其他类型导频资源。 例如, 基站 eNB在给小区中配置 CSI-RS资源 1 (即一套参考信号资源配置信息 )和 CSI-RS资源 2 (即另一套参考信号资源配置信息 ), 其中每个 CSI-RS资源中 可以包括 CSI-RS端口的个数, 每个 CSI-RS端口对应参考信号的时频位置以 及 CSI-RS的序列信息; 通过该小区每套接收器信号上采用不同的加权因子, 配置 CSI-RS资源 1中每个 CSI-RS波束对应的下倾角是 A, CSI-RS资源 2中 每个 CSI-RS波束对应的下倾角是 B。
完成上述配置后, 接收器 1700可接收每个目标小区的参考信号资源配置 信息, 其中至少一个目标小区的参考信号资源配置信息个数大于 1 , 即, 有些 目标小区可配置有多套参考信号资源配置信息,有些小区可只配置一套参考信 号资源配置信息。
处理器 1704基于参考信号资源配置信息,对所述目标小区进行信道测量; 并控制接收器 1700向服务小区上报所述目标小区的信道测量结果。
具体地, 针对每套参考信号测量的结果可以是信道质量指示 (channel quality indicator, CQI ),参考信号接收功率 ( Reference Signal Receiving Power, RSRP ), 参考信号接收质量( Reference Signal Received Quality, RSRQ )或接 收信号强度指示(Received Signal Strength Indication, RSSI )等。 网络设备当 前的服务小区接收到网络设备上报的每个目标小区的信道测量结果后,可判断 该网络设备是否需要进行小区切换,以及切换到哪个目标小区和目标小区中具 有最优下倾角波束的服务区域。
再进一步地, 接收器 1700还可以接收服务小区以广播的方式对每个目标 小区的参考信号资源配置信息的通知; 或者,接收服务小区通过用户设备特定 的信令对每个目标小区的参考信号资源配置信息的通知。
具体地, 所述特定的信令可以包括 RRC的高层信令, 或者层 1的动态信 令。
再进一步地, 本发明实施例中的目标小区包括该网络设备的服务小区, 即 接收器 1700 还可以接收自己服务小区或本小区的多套参考信号资源配置信 息, 服务小区通过广播的方式, 或者通过 UE特定的信令来进行参考信号资源 配置信息的配置;
下面又以 CSI-RS为例来进行说明: CSI-RS资源 1和 CSI-RS资源 2的配 置可以是服务小区通过小区特定(即配置信息通过广播的方式通知给小区中的 网络设备), 或者是 UE特定的 (即配置信息通过 UE特定的信令发给不同的 网络设备, 可以是 RRC(radio resource control)的高层信令或者层 1 的动态信 令)。 对于 UE特定的 CSI-RS资源配置方式, eNB可以根据 UE的位置给 UE 配置一个 CSI-RS资源, 例如: UE1的位置位于下倾角 A波束的覆盖下, 那么 eNB就给 UE1配置 CSI-RS资源 1 , UE1将根据配置的 CSI-RS资源 1进行测 量并反馈。
处理器 1704可以将本服务小区的信道测量结果以及至少一个目标小区的 信道测量结果上报给服务小区,供服务小区判断该 UE是否需要进行小区切换, 以及切换到哪个目标小区和目标小区中具有最优下倾角波束的服务区域。
需要说明的是,本发明实施例中的参考信号资源配置信息可以包括小区的 ID、 预编码矩阵信息、 时频资源位置信息、 端口数、 以及导频序列等。 其中预 编码矩阵信息含有本套参考信号资源配置信息采用的加权因子信息,即本套参 考信号资源配置信息对应的下倾角波束信息。
再进一步地, 处理器 1704还执行以下任一项步骤:
控制接收器 1700向所述服务小区上报目标小区配置的每套参考信号资源 配置信息对应的信道质量测量信息; 或
控制接收器 1700接收用户设备上报的目标小区的信道质量测量信息的平 均值对应的信道质量测量信息;所述信道质量测量信息平均值是对所述目标小 区中配置的所有参考信号资源配置信息对应的信道质量测量信息进行的平均 值; 或
控制接收器 1700接收用户设备上报的目标小区的信道质量测量信息的最 大值对应的信道质量测量信息;所述信道质量测量信息最大值是所述目标小区 中配置的所有参考信号资源配置信息对应的信道质量测量信息中的最大值;或 控制接收器 1700接收用户设备采用位图的形式上报的目标小区配置的至 少一套参考信号资源配置信息对应的信道质量测量信息。
可以理解, 本实施例上述方案中的网络设备 170可以为移动通讯设备 (如 手机或其它便携式通讯设备等)或其它网络设备; 本实施例中的接收器 1700 可以为天线等接收信号的装置。网络设备 170中各功能模块的功能可根据上述 方法实施例中的方法具体实现, 这里不再赘述。
相应地, 本发明实施例还提供了一种网络设备, 下面结合图 18示出的本 发明提供的网络设备的第二实施例的结构示意图, 进行详细说明: 网络设备 180包括: 输入装置 1800、 输出装置 1802、 存储器 1804和处理器 1806 (网络 设备中的处理器 1806的数量可以一个或多个, 图 18中以一个处理器为例)。 在本发明的一些实施例中, 输入装置 1800、 输出装置 1802、存储器 1804和处 理器 1806可通过总线或者其它方式连接,其中,图 18中以通过总线连接为例。
其中, 处理器 1806执行如下步骤:
根据不同下倾角的波束,采用不同的加权因子对每套天线上的信号进行加 权, 分别得到不同的参考信号资源配置信息; 所述参考信号资源配置信息分别 对应一个不同下倾角的波束;通过所述输出装置向用户设备发送至少两套参考 信号资源配置信息, 以供所述用户设备进行信道测量。
具体地, 所述每套参考信号资源配置信息对应于一个预编码矩阵。
可以理解,本实施例上述方案中的网络设备 180可以为基站设备或其它网 络设备;网络设备 180中各功能模块的功能可根据上述方法实施例中的方法具 体实现, 这里不再赘述。
相应地, 本发明实施例还提供了一种网络设备, 如图 19所示, 基站设备 190包括接收器 1900、 存储器 1902以及处理器 1904, 在本发明的一些实施例 中, 接收器 1900、 存储器 1902和处理器 1904可通过总线或者其它方式连接, 其中, 图 19中以通过总线连接为例。 其中
接收器 1900接收用户设备上报的目标小区的信道测量结果; 所述信道测 量结果为所述用户设备根据接收的目标小区的参考信号资源配置信息,对目标 小区进行信道测量的信道测量结果, 其中, 所述用户设备接收的目标小区的参 考信号资源配置信息个数大于 1; 所述参考信号资源配置信息分别对应一个不 同下倾角的波束;
处理器 1904执行如下步骤:
根据所述信道测量结果, 判断是否需要对用户设备进行小区切换。
具体地, 处理器 1904还执行如下步骤:
通过接收器 1900, 以广播的方式, 或者通过用户设备特定的信令向用户 设备发送本服务小区的至少一套参考信号资源配置信息。
具体地, 接收器 1900接收用户设备上报的目标小区的信道测量结果包括 以下任一项: 接收用户设备上报的目标小区配置的每套参考信号资源配置信息对应的 信道质量测量信息; 或
接收用户设备上报的目标小区的信道质量测量信息的平均值对应的信道 质量测量信息;所述信道质量测量信息平均值是对所述目标小区中配置的所有 参考信号资源配置信息对应的信道质量测量信息进行的平均值; 或
接收用户设备上报的目标小区的信道质量测量信息的最大值对应的信道 质量测量信息;所述信道质量测量信息最大值是所述目标小区中配置的所有参 考信号资源配置信息对应的信道质量测量信息中的最大值; 或
接收用户设备采用位图的形式上报的目标小区配置的至少一套参考信号 资源配置信息对应的信道质量测量信息。
进一步地, 当接收器 1900接收到用户设备上报目标小区的信道测量结果 对应至少两套参考信号资源配置信息时,处理器 1904根据所述信道测量结果, 判断是否需要对用户设备进行小区切换包括:
根据所述信道测量结果对应的至少两套参考信号资源配置信息,当判断出 目标小区的信道质量大于本服务小区的信道质量时,选取信道质量最高的目标 小区对所述用户设备进行小区切换。
再进一步地, 当接收器 1900接收到用户设备上报至少两个目标小区的信 道质量测量信息的平均值对应的信道质量测量信息时, 处理器 1904根据所述 信道测量结果, 判断是否需要对用户设备进行小区切换包括:
选取至少两个目标小区的信道质量测量信息的平均值中最大的目标小区; 根据选取的所述目标小区对应的信道质量测量信息,当判断出所述目标小区的 信道质量大于本服务小区的信道质量时,选取所述目标小区对所述用户设备进 行小区切换。
再进一步地, 当接收器 1900接收到用户设备上报至少两个目标小区的信 道质量测量信息的最大值对应的信道质量测量信息时, 处理器 1904根据所述 信道测量结果, 判断是否需要对用户设备进行小区切换包括:
选取至少两个目标小区的信道质量测量信息的最大值中最大的目标小区; 根据选取的所述目标小区对应的信道质量测量信息,当判断出所述目标小区的 信道质量大于本服务小区的信道质量时,选取所述目标小区对所述用户设备进 行小区切换。
可以理解, 本实施例中的接收器 1900可以为天线等接收信号的装置。 基 站设备 190中各功能模块的功能可根据上述方法实施例中的方法具体实现,这 里不再赘述。 相应地, 本发明实施例还提供了一种小区切换系统, 如图 20所示, 小区 切换系统 20包括基站设备 200以及第一网络设备 202, 其中
第一网络设备 202可参考图 17实施例中的网络设备 170, 这里不再赘述。 基站设备 200可参考图 19实施例中的基站设备 190, 这里不再赘述。 进一步地,本发明实施例中的小区切换系统 20还可以包括第二网络设备, 该第二网络设备可以参考图 18实施例中的网络设备 180, 这里不再赘述。
综上所述, 实施本发明实施例,通过获取目标小区的参考信号资源配置信 息,根据每套参考信号资源配置信息对目标小区进行信道测量, 所述参考信号 资源配置信息分别对应一个不同下倾角的波束,解决了现有技术中不能获得目 标小区的不同下倾角波束的信道质量的问题,将获得的目标小区具有下倾角波 束的信道测量结果上 给月良务小区进行小区切换处理, 大大优化了小区切换, 提高了资源的利用率或谱效率,提高了系统容量, 更好地实现各小区覆盖的动 态变化。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算 机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。 其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory, ROM )或随机存储记忆体(Random Access Memory, RAM )等。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发 明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流 程, 并依本发明权利要求所作的等同变化, 仍属于发明所涵盖的范围。

Claims

权 利 要 求
1、 一种信道测量方法, 其特征在于, 包括:
接收目标小区的参考信号资源配置信息;其中所述目标小区的参考信号资 源配置信息个数大于 1 , 所述参考信号资源配置信息分别对应一个不同下倾角 的波束;
基于参考信号资源配置信息, 对所述目标小区进行信道测量;
向服务小区上报所述目标小区的信道测量结果。
2、 根据权利要求 1所述的信道测量方法, 其特征在于, 所述接收每个目 标小区的参考信号资源配置信息包括:
接收以广播的方式对每个目标小区的参考信号资源配置信息的通知; 或 者,
接收服务小区通过用户设备特定的信令对每个目标小区的参考信号资源 配置信息的通知。
3、 根据权利要求 2所述的信道测量方法, 其特征在于, 所述用户设备特 定的信令包括无线资源控制的高层信令, 或者层 1的动态信令。
4、 根据权利要求 1-3任一项所述的信道测量方法, 其特征在于, 所述目 标小区的每套参考信号资源配置信息对应于一个预编码矩阵。
5、 根据权利要求 1-4任一项所述的信道测量方法, 其特征在于, 所述目 标小区包括所述服务小区。
6、 根据权利要求 1-5任一项所述的信道测量方法, 其特征在于, 所述向 服务小区上报所述目标小区的信道测量结果包括以下任一项:
向所述服务小区上报目标小区配置的每套参考信号资源配置信息对应的 信道质量测量信息; 或 向所述服务小区上报目标小区的信道质量测量信息平均值对应的信道质 量测量信息;所述信道质量测量信息平均值是对所述目标小区中配置的所有参 考信号资源配置信息对应的信道质量测量信息进行的平均值; 或
向所述服务小区上报目标小区的信道质量测量信息最大值对应的信道质 量测量信息;所述信道质量测量信息最大值是所述目标小区中配置的所有参考 信号资源配置信息对应的信道质量测量信息中的最大值; 或
采用位图的形式向所述服务小区上报目标小区配置的至少一套参考信号 资源配置信息对应的信道质量测量信息。
7、 一种信道测量方法, 其特征在于, 包括:
根据不同下倾角的波束,采用不同的加权因子对每套天线上的信号进行加 权, 分别得到不同的参考信号资源配置信息; 所述参考信号资源配置信息分别 对应一个不同下倾角的波束;
向用户设备发送至少两套参考信号资源配置信息,以供所述用户设备进行 信道测量。
8、 根据权利要求 7所述的方法, 其特征在于, 所述每套参考信号资源配 置信息对应于一个预编码矩阵。
9、 一种小区切换方法, 其特征在于, 包括:
接收用户设备上报的目标小区的信道测量结果;所述信道测量结果为所述 用户设备根据接收的目标小区的参考信号资源配置信息,对目标小区进行信道 测量的信道测量结果, 其中, 所述用户设备接收的目标小区的参考信号资源配 置信息个数大于 1 ; 所述参考信号资源配置信息分别对应一个不同下倾角的波 束;
根据所述信道测量结果, 判断是否需要对用户设备进行小区切换。
10、 根据权利要求 9所述的方法, 其特征在于, 所述目标小区包括所述用 户设备的服务小区。
11、 根据权利要求 9或 10所述的方法, 其特征在于, 所述接收用户设备 上报的目标小区的信道测量结果包括以下任一项:
接收用户设备上报的目标小区配置的每套参考信号资源配置信息对应的 信道质量测量信息; 或
接收用户设备上报的目标小区的信道质量测量信息的平均值对应的信道 质量测量信息;所述信道质量测量信息平均值是对所述目标小区中配置的所有 参考信号资源配置信息对应的信道质量测量信息进行的平均值; 或
接收用户设备上报的目标小区的信道质量测量信息的最大值对应的信道 质量测量信息;所述信道质量测量信息最大值是所述目标小区中配置的所有参 考信号资源配置信息对应的信道质量测量信息中的最大值; 或
接收用户设备采用位图的形式上报的目标小区配置的至少一套参考信号 资源配置信息对应的信道质量测量信息。
12、 根据权利要求 9-11任一项所述的方法, 其特征在于, 所述每套参考 信号资源配置信息对应于一个预编码矩阵。
13、 根据权利要求 9-12任一项所述的方法, 其特征在于, 当接收到用户 设备上报目标小区的信道测量结果对应至少两套参考信号资源配置信息时,所 述根据所述信道测量结果, 判断是否需要对用户设备进行小区切换包括: 根据所述信道测量结果对应的至少两套参考信号资源配置信息,当判断出 目标小区的信道质量大于本服务小区的信道质量时,选取信道质量最高的目标 小区对所述用户设备进行小区切换。
14、 根据权利要求 11所述的方法, 其特征在于, 当接收到用户设备上报 至少两个目标小区的信道质量测量信息的平均值对应的信道质量测量信息时, 所述根据所述信道测量结果, 判断是否需要对用户设备进行小区切换包括: 选取至少两个目标小区的信道质量测量信息的平均值中最大的目标小区; 根据选取的所述目标小区对应的信道质量测量信息,当判断出所述目标小 区的信道质量大于本服务小区的信道质量时,选取所述目标小区对所述用户设 备进行小区切换。
15、 根据权利要求 11所述的方法, 其特征在于, 当接收到用户设备上报 至少两个目标小区的信道质量测量信息的最大值对应的信道质量测量信息时, 所述根据所述信道测量结果, 判断是否需要对用户设备进行小区切换包括: 选取至少两个目标小区的信道质量测量信息的最大值中最大的目标小区; 根据选取的所述目标小区对应的信道质量测量信息,当判断出所述目标小 区的信道质量大于本服务小区的信道质量时,选取所述目标小区对所述用户设 备进行小区切换。
16、 一种信道测量装置, 其特征在于, 包括:
第一接收模块, 用于接收目标小区的参考信号资源配置信息; 其中所述目 标小区的参考信号资源配置信息个数大于 1 , 所述参考信号资源配置信息分别 对应一个不同下倾角的波束;
第一信道测量模块,用于根据所述第一接收模块接收的参考信号资源配置 信息, 对所述目标小区进行信道测量;
上报模块, 用于向服务小区上报所述目标小区的信道测量结果。
17、 根据权利要求 16所述的装置, 其特征在于, 所述第一接收模块包括: 第一接收单元,用于接收以广播的方式对每个目标小区的参考信号资源配 置信息的通知; 或 /和,
第二接收单元,用于接收服务小区通过用户设备特定的信令对每个目标小 区的参考信号资源配置信息的通知。
18、 根据权利要求 17所述的装置, 其特征在于, 所述特定的信令包括无 线资源控制的高层信令, 或者层 1的动态信令。
19、 根据权利要求 16-18任一项所述的装置, 其特征在于, 所述目标小区 的每套参考信号资源配置信息对应于一个预编码矩阵。
20、 根据权利要求 16-19任一项所述的装置, 其特征在于, 所述目标小区 包括所述月良务小区。
21、 根据权利要求 16-20任一项所述的装置, 其特征在于, 所述上报模块 包括以下任一个或多个单元:
第一上报单元,用于向所述服务小区上报目标小区配置的每套参考信号资 源配置信息对应的信道质量测量信息;
第二上报单元,用于向所述服务小区上报目标小区的信道质量测量信息平 均值对应的信道质量测量信息;所述信道质量测量信息平均值是对所述目标小 区中配置的所有参考信号资源配置信息对应的信道质量测量信息进行的平均 值;
第三上报单元,用于向所述服务小区上报目标小区的信道质量测量信息最 大值对应的信道质量测量信息;所述信道质量测量信息最大值是所述目标小区 中配置的所有套参考信号资源配置信息对应的信道质量测量信息中的最大值; 第四上报单元,用于采用位图的形式向所述服务小区上报目标小区配置的 至少一套参考信号资源配置信息对应的信道质量测量信息。
22、 一种信道测量设备, 其特征在于, 包括:
配置信息生成模块, 用于根据不同下倾角的波束, 采用不同的加权因子对 每套天线上的信号进行加权, 分别得到不同的参考信号资源配置信息; 所述参 考信号资源配置信息分别对应一个不同下倾角的波束;
配置信息发送模块, 用于向用户设备发送至少两套参考信号资源配置信 息, 以供所述用户设备进行信道测量。
23、 根据权利要求 22所述的设备, 其特征在于, 所述每套参考信号资源 配置信息对应于一个预编码矩阵。
24、 一种小区切换装置, 其特征在于, 包括:
信道测量结果接收模块,用于接收用户设备上报的目标小区的信道测量结 果;所述信道测量结果为所述用户设备根据接收的目标小区的参考信号资源配 置信息,对目标小区进行信道测量的信道测量结果,其中所述用户设备接收的 目标小区的参考信号资源配置信息个数大于 1 ; 所述参考信号资源配置信息分 别对应一个不同下倾角的波束;
切换判断模块, 用于根据所述信道测量结果接收模块接收的信道测量结 果, 判断是否需要对用户设备进行小区切换。
25、 根据权利要求 24所述的装置, 其特征在于, 装置还包括:
发送模块, 用于以广播的方式, 或者通过用户设备特定的信令向用户设备 发送包括本服务小区在内的每个目标小区的至少一套参考信号资源配置信息。
26、 根据权利要求 24或 25所述的装置, 其特征在于, 所述信道测量结果 接收模块接收用户设备上报的目标小区的信道测量结果包括以下任一项: 接收用户设备上报的目标小区配置的每套参考信号资源配置信息对应的 信道质量测量信息; 或
接收用户设备上报的目标小区的信道质量测量信息的平均值对应的信道 质量测量信息;所述信道质量测量信息平均值是对所述目标小区中配置的所有 参考信号资源配置信息对应的信道质量测量信息进行的平均值; 或
接收用户设备上报的目标小区的信道质量测量信息的最大值对应的信道 质量测量信息;所述信道质量测量信息最大值是所述目标小区中配置的所有参 考信号资源配置信息对应的信道质量测量信息中的最大值; 或
接收用户设备采用位图的形式上报的目标小区配置的至少一套参考信号 资源配置信息对应的信道质量测量信息。
27、 根据权利要求 24-26任一项所述的装置, 其特征在于, 当所述信道测 量结果接收模块接收到用户设备上报目标小区的信道测量结果对应至少两套 参考信号资源配置信息时, 所述切换判断模块具体用于: 根据所述信道测量结果对应的至少两套参考信号资源配置信息,当判断出 目标小区的信道质量大于本服务小区的信道质量时,选取信道质量最高的目标 小区对所述用户设备进行小区切换。
28、 根据权利要求 26所述的装置, 其特征在于, 当所述信道测量结果接 收模块接收到用户设备上报至少两个目标小区的信道质量测量信息的平均值 对应的信道质量测量信息时, 所述切换判断模块包括:
第一选取单元,用于选取至少两个目标小区的信道质量测量信息的平均值 中最大的目标小区;
第一选取切换单元,用于根据选取的所述目标小区对应的信道质量测量信 息, 当判断出所述目标小区的信道质量大于本服务小区的信道质量时,选取所 述目标小区对所述用户设备进行小区切换。
29、 根据权利要求 26所述的装置, 其特征在于, 当所述信道测量结果接 收模块接收到用户设备上报至少两个目标小区的信道质量测量信息的最大值 对应的信道质量测量信息时, 所述切换判断模块包括:
第二选取单元,用于选取至少两个目标小区的信道质量测量信息的最大值 中最大的目标小区;
第二选取切换单元,用于根据选取的所述目标小区对应的信道质量测量信 息, 当判断出所述目标小区的信道质量大于本服务小区的信道质量时,选取所 述目标小区对所述用户设备进行小区切换。
30、 一种网络设备, 其特征在于, 包括接收器和处理器; 其中
接收器接收目标小区的参考信号资源配置信息;其中所述目标小区的参考 信号资源配置信息个数大于 1 , 所述参考信号资源配置信息分别对应一个不同 下倾角的波束;
处理器基于参考信号资源配置信息,对所述目标小区进行信道测量; 向服 务小区上报所述目标小区的信道测量结果。
31、 根据权利要求 30所述的网络设备, 其特征在于, 所述接收器获取每 个目标小区的参考信号资源配置信息包括:
所述接收器接收以广播的方式对每个目标小区的参考信号资源配置信息 的通知 ^ 或者,
所述接收器接收服务小区通过用户设备特定的信令对每个目标小区的参 考信号资源配置信息的通知。
32、 根据权利要求 31所述的网络设备, 其特征在于, 所述用户设备特定 的信令包括无线资源控制的高层信令, 或者层 1的动态信令。
33、 根据权利要求 30-32任一项所述的网络设备, 其特征在于, 所述目标 小区的每套参考信号资源配置信息对应于一个预编码矩阵。
34、 根据权利要求 30-33任一项所述的网络设备, 其特征在于, 所述目标 小区包括所述月良务小区。
35、 根据权利要求 30-34任一项所述的网络设备, 其特征在于, 所述处理 器向所述服务小区上报所述目标小区的信道测量结果包括以下任一项步骤: 向所述服务小区上报目标小区配置的每套参考信号资源配置信息对应的 信道质量测量信息; 或
向所述服务小区上报目标小区的信道质量测量信息平均值对应的信道质 量测量信息;所述信道质量测量信息平均值是对所述目标小区中配置的所有参 考信号资源配置信息对应的信道质量测量信息进行的平均值; 或
向所述服务小区上报目标小区的信道质量测量信息最大值对应的信道质 量测量信息;所述信道质量测量信息最大值是所述目标小区中配置的所有参考 信号资源配置信息对应的信道质量测量信息中的最大值; 或
采用位图的形式向所述服务小区上报目标小区配置的至少一套参考信号 资源配置信息对应的信道质量测量信息。
36、 一种网络设备, 其特征在于, 包括: 输入装置、 输出装置、 存储器和 处理器;
其中, 所述处理器执行如下步骤:
根据不同下倾角的波束,采用不同的加权因子对每套天线上的信号进行加 权, 分别得到不同的参考信号资源配置信息; 所述参考信号资源配置信息分别 对应一个不同下倾角的波束;通过所述输出装置向用户设备发送至少两套参考 信号资源配置信息, 以供所述用户设备进行信道测量。
37、 根据权利要求 36所述的网络设备, 其特征在于, 所述每套参考信号 资源配置信息对应于一个预编码矩阵。
38、 一种基站设备, 其特征在于, 包括接收器和处理器; 其中
所述接收器接收用户设备上报的目标小区的信道测量结果;所述信道测量 结果为所述用户设备根据接收的目标小区的参考信号资源配置信息,对目标小 区进行信道测量的信道测量结果, 其中, 所述用户设备接收的目标小区的参考 信号资源配置信息个数大于 1 ; 所述参考信号资源配置信息分别对应一个不同 下倾角的波束;
所述处理器执行如下步骤:
根据所述信道测量结果, 判断是否需要对所述用户设备进行小区切换。
39、 根据权利要求 38所述的基站设备, 其特征在于, 所述处理器还执行 如下步骤:
以广播的方式,或者通过用户设备特定的信令向用户设备发送包括本服务 小区在内的每个目标小区的至少一套参考信号资源配置信息。
40、 根据权利要求 38或 39所述的基站设备, 其特征在于, 所述接收器接 收用户设备上报的目标小区的信道测量结果包括以下任一项:
接收用户设备上报的目标小区配置的每套参考信号资源配置信息对应的 信道质量测量信息; 或 接收用户设备上报的目标小区的信道质量测量信息的平均值对应的信道 质量测量信息;所述信道质量测量信息平均值是对所述目标小区中配置的所有 参考信号资源配置信息对应的信道质量测量信息进行的平均值; 或
接收用户设备上报的目标小区的信道质量测量信息的最大值对应的信道 质量测量信息;所述信道质量测量信息最大值是所述目标小区中配置的所有参 考信号资源配置信息对应的信道质量测量信息中的最大值; 或
接收用户设备采用位图的形式上报的目标小区配置的至少一套参考信号 资源配置信息对应的信道质量测量信息。
41、 根据权利要求 38-40任一项所述的基站设备, 其特征在于, 当所述接 收器接收到用户设备上报目标小区的信道测量结果对应至少两套参考信号资 源配置信息时,所述处理器根据所述信道测量结果,判断是否需要对用户设备 进行小区切换包括:
根据所述信道测量结果对应的至少两套参考信号资源配置信息,当判断出 目标小区的信道质量大于本服务小区的信道质量时,选取信道质量最高的目标 小区对所述用户设备进行小区切换。
42、 根据权利要求 40所述的基站设备, 其特征在于, 当所述接收器接收 到用户设备上报至少两个目标小区的信道质量测量信息的平均值对应的信道 质量测量信息时,所述处理器根据所述信道测量结果,判断是否需要对用户设 备进行小区切换包括:
选取至少两个目标小区的信道质量测量信息的平均值中最大的目标小区; 根据选取的所述目标小区对应的信道质量测量信息,当判断出所述目标小区的 信道质量大于本服务小区的信道质量时,选取所述目标小区对所述用户设备进 行小区切换。
43、 根据权利要求 40所述的基站设备, 其特征在于, 当所述接收器接收 到用户设备上报至少两个目标小区的信道质量测量信息的最大值对应的信道 质量测量信息时,所述处理器根据所述信道测量结果, 判断是否需要对用户设 备进行小区切换包括:
选取至少两个目标小区的信道质量测量信息的最大值中最大的目标小区; 根据选取的所述目标小区对应的信道质量测量信息,当判断出所述目标小区的 信道质量大于本服务小区的信道质量时,选取所述目标小区对所述用户设备进 行小区切换。
44、 一种小区切换系统, 其特征在于, 包括基站设备和第一网络设备, 其 中
所述第一网络设备如权利要求 30-35任一项所述的网络设备;
所述基站设备如权利要求 38-44任一项所述的基站设备。
45、 根据权利要求 44所述的系统, 其特征在于, 还包括第二网络设备, 其中
所述第二网络设备如权利要求 36或 37所述的网络设备。
PCT/CN2013/090877 2013-12-30 2013-12-30 一种信道测量方法、小区切换方法、相关装置及系统 WO2015100533A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CN201380033574.2A CN105009640B (zh) 2013-12-30 2013-12-30 一种信道测量方法、小区切换方法、相关装置及系统
PCT/CN2013/090877 WO2015100533A1 (zh) 2013-12-30 2013-12-30 一种信道测量方法、小区切换方法、相关装置及系统
CN202010069170.0A CN111163494A (zh) 2013-12-30 2013-12-30 一种信道测量方法、小区切换方法、相关装置及系统
PCT/CN2014/083091 WO2015101029A1 (zh) 2013-12-30 2014-07-26 一种信道测量方法、小区切换方法、相关装置及系统
JP2016543642A JP6386057B2 (ja) 2013-12-30 2014-07-26 チャネル測定方法、セルハンドオーバ方法、関係する装置、およびシステム
KR1020187005654A KR101973719B1 (ko) 2013-12-30 2014-07-26 채널 측정 방법, 셀 핸드오버 방법, 관련 장치 및 시스템
CA2935467A CA2935467A1 (en) 2013-12-30 2014-07-26 Channel measurement method, cell handover method, related apparatus, and system
KR1020167020815A KR101834856B1 (ko) 2013-12-30 2014-07-26 채널 측정 방법, 셀 핸드오버 방법, 관련 장치 및 시스템
EP14877155.3A EP3082362A4 (en) 2013-12-30 2014-07-26 CHANNEL MEASURING METHOD, CELL EXTENSION METHOD, ASSOCIATED DEVICE AND SYSTEM
CN201480071668.3A CN105874849B (zh) 2013-12-30 2014-07-26 一种信道测量方法、小区切换方法、相关装置及系统
US15/197,222 US20160309376A1 (en) 2013-12-30 2016-06-29 Channel measurement method, cell handover method, related apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/090877 WO2015100533A1 (zh) 2013-12-30 2013-12-30 一种信道测量方法、小区切换方法、相关装置及系统

Publications (1)

Publication Number Publication Date
WO2015100533A1 true WO2015100533A1 (zh) 2015-07-09

Family

ID=53492893

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2013/090877 WO2015100533A1 (zh) 2013-12-30 2013-12-30 一种信道测量方法、小区切换方法、相关装置及系统
PCT/CN2014/083091 WO2015101029A1 (zh) 2013-12-30 2014-07-26 一种信道测量方法、小区切换方法、相关装置及系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083091 WO2015101029A1 (zh) 2013-12-30 2014-07-26 一种信道测量方法、小区切换方法、相关装置及系统

Country Status (7)

Country Link
US (1) US20160309376A1 (zh)
EP (1) EP3082362A4 (zh)
JP (1) JP6386057B2 (zh)
KR (2) KR101973719B1 (zh)
CN (3) CN105009640B (zh)
CA (1) CA2935467A1 (zh)
WO (2) WO2015100533A1 (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107027129A (zh) * 2016-01-29 2017-08-08 中兴通讯股份有限公司 一种终端迁移方法、基站、终端及系统
WO2017177421A1 (en) * 2016-04-14 2017-10-19 Intel Corporation Device and method for performing handover in massive multiple-input-multiple-output (mimo) systems
WO2017184865A1 (en) * 2016-04-20 2017-10-26 Convida Wireless, Llc Configurable reference signals
CN107820717A (zh) * 2017-03-31 2018-03-20 深圳前海达闼云端智能科技有限公司 小区切换的方法和装置
WO2018053770A1 (zh) * 2016-09-22 2018-03-29 广东欧珀移动通信有限公司 用于管理链路的方法和装置
CN108271228A (zh) * 2017-01-04 2018-07-10 电信科学技术研究院 一种进行切换的方法和设备
WO2018228333A1 (zh) * 2017-06-15 2018-12-20 华为技术有限公司 通信方法及装置
CN109076408A (zh) * 2017-01-20 2018-12-21 惠州Tcl移动通信有限公司 小区切换前测量方法、基站及用户设备
CN109155929A (zh) * 2016-05-12 2019-01-04 株式会社Ntt都科摩 用户装置、基站以及测量方法
CN109479202A (zh) * 2016-07-29 2019-03-15 索尼公司 终端装置、基站、方法和记录介质
US10271295B2 (en) 2016-04-20 2019-04-23 Convida Wireless, Llc Downlink synchronization
US10306671B2 (en) 2016-06-15 2019-05-28 Convida Wireless, Llc Grant-less operations
US10367620B2 (en) 2016-06-15 2019-07-30 Convida Wireless, Llc Upload control signaling for new radio
US10390331B2 (en) 2016-04-20 2019-08-20 Convida Wireless, Llc System information provisioning and light weight connection signaling
US10432362B2 (en) 2016-04-20 2019-10-01 Convida Wireless, Llc Physical channels in new radio
CN110383890A (zh) * 2017-03-24 2019-10-25 瑞典爱立信有限公司 用于处理无线通信网络中的通信的无线电网络节点和其中执行的方法
US10524244B2 (en) 2016-05-11 2019-12-31 Convida Wireless, Llc Radio PDCCH to facilitate numerology operations
US10631319B2 (en) 2016-06-15 2020-04-21 Convida Wireless, Llc Grant-less uplink transmission for new radio
US10716020B2 (en) * 2016-02-23 2020-07-14 Samsung Electronics Co., Ltd. Method and apparatus for measurement reference signal
US10840982B2 (en) 2016-08-11 2020-11-17 Convidia Wireless, LLC Beamforming sweeping and training in a flexible frame structure for new radio
US10932276B2 (en) 2016-11-03 2021-02-23 Convida Wireless, Llc Frame structure in NR
CN112543483A (zh) * 2019-09-20 2021-03-23 中国移动通信有限公司研究院 信息配置方法、装置、相关设备及存储介质
US11871451B2 (en) 2018-09-27 2024-01-09 Interdigital Patent Holdings, Inc. Sub-band operations in unlicensed spectrums of new radio

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015058342A1 (zh) * 2013-10-22 2015-04-30 华为技术有限公司 有源天线系统天线劈裂方法及控制器
EP2928234B1 (en) * 2014-03-31 2016-05-25 Alcatel Lucent Methods For Operating A Mobile Station And A Base Station In A Radio Communication System, Mobile Station And Base Station Thereof
WO2017007240A1 (ko) * 2015-07-06 2017-01-12 삼성전자 주식회사 이동 통신 시스템에서 채널을 측정하는 방법 및 장치
US10917798B2 (en) * 2016-04-27 2021-02-09 Telefonaktiebolaget Lm Ericsson (Publ) Shaping of transmission beams
US10367677B2 (en) 2016-05-13 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
US10630410B2 (en) 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
WO2018001452A1 (en) * 2016-06-27 2018-01-04 Nokia Solutions And Networks Oy Method, system and apparatus
US10492093B2 (en) * 2016-08-12 2019-11-26 Mediatek Inc. Method and device of sending measurement report
US10517023B2 (en) * 2016-09-29 2019-12-24 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangements for supporting mobility of a communication device in a wireless communication network
WO2018063436A1 (en) * 2016-09-29 2018-04-05 Intel IP Corporation Measurement reporting with number of available beams
WO2018068260A1 (zh) * 2016-10-13 2018-04-19 华为技术有限公司 一种测量报告方法及相关设备
CN109804592B (zh) * 2016-11-14 2021-10-15 苹果公司 用于无线电资源管理测量的配置的装置及计算机可读介质
AR110078A1 (es) * 2016-11-14 2019-02-20 Ericsson Telefon Ab L M Configuración de señales de medición de movilidad en modo activo
KR20180080966A (ko) * 2017-01-05 2018-07-13 삼성전자주식회사 전력 절감 모드에서 단말을 구분하는 방법 및 전력 절감 모드로 동작하는 단말을 깨우는 페이징 신호 전송을 특징으로 하는 방법, 장치 및 시스템
WO2018128442A1 (en) 2017-01-05 2018-07-12 Samsung Electronics Co., Ltd. Method, apparatus, and system for terminal identification and paging signal transmission for terminal in power saving state
KR102648505B1 (ko) * 2017-02-24 2024-03-18 삼성전자주식회사 무선 통신 시스템에서 부하 분산을 위한 장치 및 방법
CN108632836B (zh) * 2017-03-17 2019-12-03 维沃移动通信有限公司 波束信息获取方法和上报方法、网络侧设备及终端
CN110463260B (zh) * 2017-03-23 2022-03-08 康维达无线有限责任公司 新无线电中的下行链路测量设计
CN108668312B (zh) * 2017-03-29 2021-10-26 华为技术有限公司 一种测量参数发送方法及其装置
US10484929B2 (en) * 2017-06-30 2019-11-19 Intel Corporation Access node controller, an apparatus for an access node, an access node for a mobile communication system, a mobile communication system, a method and a computer program for an access node
CN107276651B (zh) * 2017-07-07 2020-04-28 西北大学 一种垂直扇区劈裂的下倾角优化和功率分配方法
CN109327846B (zh) * 2017-07-31 2022-02-25 中兴通讯股份有限公司 波束测量上报的方法、装置、终端及存储介质
US11343124B2 (en) * 2017-08-15 2022-05-24 At&T Intellectual Property I, L.P. Base station wireless channel sounding
GB2567622B (en) * 2017-10-12 2022-02-09 Airspan Ip Holdco Llc Metrics using parameters for multiple radio configurations
CN114885410A (zh) * 2017-11-17 2022-08-09 中兴通讯股份有限公司 功率控制方法、ue、基站、参数配置方法和控制方法
CN109842472B (zh) 2017-11-25 2024-01-09 华为技术有限公司 一种参考信号的配置方法和装置
CN111434138B (zh) * 2018-01-18 2021-09-14 Oppo广东移动通信有限公司 小区信号质量确定方法、装置及系统
EP3515115A1 (en) * 2018-01-19 2019-07-24 Panasonic Intellectual Property Corporation of America Cell (re-)selection mechanisms with improved cell quality determinations
CN112237024B (zh) * 2018-11-30 2023-04-14 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
KR20200073626A (ko) * 2018-12-14 2020-06-24 삼성전자주식회사 차세대 무선 통신 시스템에서 조건부 핸드오버의 실패 타이머 운용방법
CN111263394B (zh) * 2018-12-17 2022-07-08 维沃移动通信有限公司 信号资源测量方法及终端
CN113261354B (zh) * 2019-01-04 2023-11-10 华为技术有限公司 具有发射限制的波束管理系统和方法
CN111757336B (zh) * 2019-03-28 2022-08-09 华为技术有限公司 覆盖调整方法、装置及系统
CN111615195B (zh) * 2019-04-08 2023-08-25 维沃移动通信有限公司 确定波束信息的方法及装置、通信设备
CN114826448B (zh) * 2019-12-13 2024-03-26 北京小米移动软件有限公司 波束测量方法及波束测量装置
CN111050373A (zh) * 2019-12-24 2020-04-21 RealMe重庆移动通信有限公司 小区重选方法、装置、电子设备和计算机可读存储介质
KR20210088089A (ko) * 2020-01-06 2021-07-14 삼성전자주식회사 Ofdm 기반 단일 반송파 시스템을 위한 고속 데이터 전송 방법 및 장치
JP7094315B2 (ja) 2020-03-10 2022-07-01 ソフトバンク株式会社 基地局、通信システム、基地局の制御方法及びプログラム
EP4124106A4 (en) * 2020-03-17 2024-03-20 Beijing Xiaomi Mobile Software Co Ltd METHOD AND APPARATUS FOR MEASURING CHANNEL STATE INFORMATION AND COMPUTER STORAGE MEDIUM
CN116134771A (zh) * 2020-09-14 2023-05-16 深圳传音控股股份有限公司 数据处理方法、设备及计算机可读存储介质
CN115696390A (zh) * 2021-07-31 2023-02-03 华为技术有限公司 一种通信方法、装置及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102624495A (zh) * 2011-01-30 2012-08-01 华为技术有限公司 无线通信系统中参考信号配置信息的处理方法及基站、终端
CN102869105A (zh) * 2011-07-07 2013-01-09 华为技术有限公司 一种配置参考信号的方法、UE及eNB
CN103107873A (zh) * 2011-11-11 2013-05-15 华为技术有限公司 无线资源管理信息的测量和反馈方法、基站及用户设备

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0220399D0 (en) * 2002-09-03 2002-10-09 Qinetiq Ltd Signal processing method and apparatus
US9521597B2 (en) * 2006-03-13 2016-12-13 Telefonaktiebolaget Lm Ericsson (Publ) System and method of supporting softer handover in a cell using adaptive antenna in enabling narrow beam operation
WO2008085838A1 (en) * 2007-01-04 2008-07-17 Interdigital Technology Corporation Method and apparatus for handover using a candidate set
US8891489B2 (en) * 2007-03-19 2014-11-18 Qualcomm Incorporated Handover mechanism that exploits uplink channel quality of a target cell
CN102036393B (zh) * 2009-09-28 2014-07-23 电信科学技术研究院 多小区信道信息的确定方法和设备
US9197284B2 (en) * 2010-01-15 2015-11-24 Google Technology Holdings LLC Method and apparatus for pilot signal processing in a wireless communication system
JP2011217058A (ja) * 2010-03-31 2011-10-27 Sony Corp 通信制御装置、通信制御方法、プログラム、端末装置および無線通信システム
CN101867457B (zh) * 2010-06-21 2016-01-20 中兴通讯股份有限公司 信道状态信息的处理方法及用户设备
JP4941590B2 (ja) * 2010-11-29 2012-05-30 富士通株式会社 無線通信システム、送信機および受信機
WO2013005105A2 (en) 2011-07-07 2013-01-10 Alcatel Lucent Method and apparatus for discovering a small cell in a heterogonous communication network
CN102882612B (zh) * 2011-07-12 2015-10-21 华为技术有限公司 一种小区测量方法、小区资源共享方法和相关设备
CN102891710B (zh) * 2011-07-20 2015-12-02 华为技术有限公司 一种获取信道状态信息的方法及装置
KR20180116461A (ko) * 2011-08-12 2018-10-24 인터디지탈 패튼 홀딩스, 인크 무선 네트워크들에서의 간섭 측정
CN102938688B (zh) * 2011-08-15 2015-05-27 上海贝尔股份有限公司 用于多维天线阵列的信道测量和反馈的方法和设备
CN102984746A (zh) * 2011-09-05 2013-03-20 爱立信(中国)通信有限公司 提高网络中性能的参考信号功率测量和报告
CN104025657B (zh) * 2011-11-04 2018-06-19 英特尔公司 协调式多点系统中的信道状态信息反馈
CN103220066B (zh) * 2012-01-18 2017-04-26 华为技术有限公司 测量方法,csi‑rs资源共享方法和装置
CN104081817B (zh) * 2012-01-27 2018-03-20 三菱电机株式会社 移动通信系统
CN104106223A (zh) * 2012-02-11 2014-10-15 Lg电子株式会社 报告信道状态信息的方法、其支持方法及所述方法的设备
US9526049B2 (en) * 2012-02-23 2016-12-20 Lg Electronics Inc. Method for performing handover in a C-RAN system, and apparatus therefor
US20140073314A1 (en) * 2012-03-16 2014-03-13 Telefonaktiebolaget L M Ericsson (Publ) Network triggered measurements and measurement reports by user equipment
US9225449B2 (en) * 2012-05-11 2015-12-29 Intel Corporation Performing a handover in a heterogeneous wireless network
US8913682B2 (en) * 2012-05-18 2014-12-16 Samsung Electronics Co., Ltd. Apparatus and method for channel state information codeword construction for a cellular wireless communication system
WO2014003508A1 (ko) * 2012-06-29 2014-01-03 엘지전자 주식회사 무선 통신 시스템에서 csi-rs 측정 및 보고 방법 및 이를 지원하는 장치
KR20150028772A (ko) * 2012-06-29 2015-03-16 엘지전자 주식회사 무선 통신 시스템에서 핸드오버 제어 방법 및 이를 위한 장치
WO2014062195A1 (en) * 2012-10-19 2014-04-24 Nokia Siemens Networks Oy Csi feedback with elevation beamforming
EP3588834B1 (en) * 2013-05-20 2021-06-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and arrangement for csi measurement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102624495A (zh) * 2011-01-30 2012-08-01 华为技术有限公司 无线通信系统中参考信号配置信息的处理方法及基站、终端
CN102869105A (zh) * 2011-07-07 2013-01-09 华为技术有限公司 一种配置参考信号的方法、UE及eNB
CN103107873A (zh) * 2011-11-11 2013-05-15 华为技术有限公司 无线资源管理信息的测量和反馈方法、基站及用户设备

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107027129A (zh) * 2016-01-29 2017-08-08 中兴通讯股份有限公司 一种终端迁移方法、基站、终端及系统
US10716020B2 (en) * 2016-02-23 2020-07-14 Samsung Electronics Co., Ltd. Method and apparatus for measurement reference signal
WO2017177421A1 (en) * 2016-04-14 2017-10-19 Intel Corporation Device and method for performing handover in massive multiple-input-multiple-output (mimo) systems
US11159995B2 (en) 2016-04-14 2021-10-26 Intel Corporation Device and method for performing handover in massive multiple-input-multiple-output (MIMO) systems
US10271295B2 (en) 2016-04-20 2019-04-23 Convida Wireless, Llc Downlink synchronization
US10432362B2 (en) 2016-04-20 2019-10-01 Convida Wireless, Llc Physical channels in new radio
WO2017184865A1 (en) * 2016-04-20 2017-10-26 Convida Wireless, Llc Configurable reference signals
US11184121B2 (en) 2016-04-20 2021-11-23 Convida Wireless, Llc Physical channels in new radio
US11218267B2 (en) 2016-04-20 2022-01-04 Convida Wireless, Llc Configurable reference signals
US10880868B2 (en) 2016-04-20 2020-12-29 Convida Wireless, Llc System information provisioning and light weight connection signaling
US10812238B2 (en) 2016-04-20 2020-10-20 Convida Wireless, Llc Configurable reference signals
US10390331B2 (en) 2016-04-20 2019-08-20 Convida Wireless, Llc System information provisioning and light weight connection signaling
US10791531B2 (en) 2016-04-20 2020-09-29 Convida Wireless, Llc Downlink synchronization
US11051293B2 (en) 2016-05-11 2021-06-29 Convida Wireless, Llc Radio PDCCH to facilitate numerology operations
US10524244B2 (en) 2016-05-11 2019-12-31 Convida Wireless, Llc Radio PDCCH to facilitate numerology operations
CN109155929A (zh) * 2016-05-12 2019-01-04 株式会社Ntt都科摩 用户装置、基站以及测量方法
US10306671B2 (en) 2016-06-15 2019-05-28 Convida Wireless, Llc Grant-less operations
US11770821B2 (en) 2016-06-15 2023-09-26 Interdigital Patent Holdings, Inc. Grant-less uplink transmission for new radio
US10367620B2 (en) 2016-06-15 2019-07-30 Convida Wireless, Llc Upload control signaling for new radio
US10631319B2 (en) 2016-06-15 2020-04-21 Convida Wireless, Llc Grant-less uplink transmission for new radio
US10868653B2 (en) 2016-06-15 2020-12-15 Convida Wireless, Llc Upload control signaling for new radio
US10687354B2 (en) 2016-06-15 2020-06-16 Convida Wireless, Llc Grant-less operations
CN109479202B (zh) * 2016-07-29 2022-09-13 索尼公司 终端装置、基站、方法和记录介质
CN109479202A (zh) * 2016-07-29 2019-03-15 索尼公司 终端装置、基站、方法和记录介质
US10840982B2 (en) 2016-08-11 2020-11-17 Convidia Wireless, LLC Beamforming sweeping and training in a flexible frame structure for new radio
WO2018053770A1 (zh) * 2016-09-22 2018-03-29 广东欧珀移动通信有限公司 用于管理链路的方法和装置
US10917822B2 (en) 2016-09-22 2021-02-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus used to manage links
US11438905B2 (en) 2016-11-03 2022-09-06 Interdigital Patent Holdings, Inc. Frame structure in NR
US10932276B2 (en) 2016-11-03 2021-02-23 Convida Wireless, Llc Frame structure in NR
US11877308B2 (en) 2016-11-03 2024-01-16 Interdigital Patent Holdings, Inc. Frame structure in NR
CN108271228A (zh) * 2017-01-04 2018-07-10 电信科学技术研究院 一种进行切换的方法和设备
CN108271228B (zh) * 2017-01-04 2019-09-17 电信科学技术研究院 一种进行切换的方法和设备
CN109076408A (zh) * 2017-01-20 2018-12-21 惠州Tcl移动通信有限公司 小区切换前测量方法、基站及用户设备
US11412425B2 (en) 2017-03-24 2022-08-09 Telefonaktiebolaget Lm Ericsson (Publ) Radio network nodes, and methods performed therein for handling communication in a wireless communication network
CN110383890B (zh) * 2017-03-24 2021-12-21 瑞典爱立信有限公司 用于处理无线通信网络中的通信的无线电网络节点和其中执行的方法
CN110383890A (zh) * 2017-03-24 2019-10-25 瑞典爱立信有限公司 用于处理无线通信网络中的通信的无线电网络节点和其中执行的方法
US11019549B2 (en) 2017-03-31 2021-05-25 Cloudminds (Shanghai) Robotics Co., Ltd. Cell handover method and apparatus
CN107820717B (zh) * 2017-03-31 2019-10-08 深圳前海达闼云端智能科技有限公司 小区切换的方法和装置
CN107820717A (zh) * 2017-03-31 2018-03-20 深圳前海达闼云端智能科技有限公司 小区切换的方法和装置
WO2018176418A1 (zh) * 2017-03-31 2018-10-04 深圳前海达闼云端智能科技有限公司 小区切换的方法和装置
WO2018228333A1 (zh) * 2017-06-15 2018-12-20 华为技术有限公司 通信方法及装置
US11871451B2 (en) 2018-09-27 2024-01-09 Interdigital Patent Holdings, Inc. Sub-band operations in unlicensed spectrums of new radio
WO2021052480A1 (zh) * 2019-09-20 2021-03-25 中国移动通信有限公司研究院 信息配置方法、装置、相关设备及存储介质
CN112543483A (zh) * 2019-09-20 2021-03-23 中国移动通信有限公司研究院 信息配置方法、装置、相关设备及存储介质

Also Published As

Publication number Publication date
JP2017509184A (ja) 2017-03-30
JP6386057B2 (ja) 2018-09-05
CN105009640A (zh) 2015-10-28
US20160309376A1 (en) 2016-10-20
KR101834856B1 (ko) 2018-03-06
WO2015101029A1 (zh) 2015-07-09
KR20180023067A (ko) 2018-03-06
CN105874849A (zh) 2016-08-17
KR20160104683A (ko) 2016-09-05
EP3082362A1 (en) 2016-10-19
EP3082362A4 (en) 2016-12-21
CN111163494A (zh) 2020-05-15
CN105874849B (zh) 2019-10-25
CN105009640B (zh) 2020-02-14
CA2935467A1 (en) 2015-07-09
KR101973719B1 (ko) 2019-04-29

Similar Documents

Publication Publication Date Title
CN105009640B (zh) 一种信道测量方法、小区切换方法、相关装置及系统
AU2017246414B2 (en) System and method for millimeter wave communications
EP3025435B1 (en) Downtilt selection in a full dimensional multiple-input multiple-output system
USRE49823E1 (en) Apparatus and method for transmitting and receiving signal in a mobile communication system
CN110447280B (zh) 管理无线通信网络中的通信
US10327168B2 (en) Radio network nodes, wireless device, and methods performed therein for communicating in a wireless communication network
JP6408706B2 (ja) リソース設定方法、ユーザ機器、及び基地局
US10805121B2 (en) Wireless device, and method performed therein for managing communication in a wireless communication network
CN110100471A (zh) 无线电网络节点以及在其中执行的用于处理无线通信网络中的通信的方法
KR20160075995A (ko) 물리 채널 전송 방법 및 장치
US11742904B2 (en) Method and apparatus for multi-user multi-antenna transmission
WO2016110196A1 (zh) 一种基于多输入多输出mimo方式通信的方法及装置
JP2019033496A (ja) リソース設定方法、ユーザ機器、及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13900770

Country of ref document: EP

Kind code of ref document: A1