WO2016110196A1 - 一种基于多输入多输出mimo方式通信的方法及装置 - Google Patents

一种基于多输入多输出mimo方式通信的方法及装置 Download PDF

Info

Publication number
WO2016110196A1
WO2016110196A1 PCT/CN2015/099117 CN2015099117W WO2016110196A1 WO 2016110196 A1 WO2016110196 A1 WO 2016110196A1 CN 2015099117 W CN2015099117 W CN 2015099117W WO 2016110196 A1 WO2016110196 A1 WO 2016110196A1
Authority
WO
WIPO (PCT)
Prior art keywords
rru
mimo
location area
determining
configuration information
Prior art date
Application number
PCT/CN2015/099117
Other languages
English (en)
French (fr)
Inventor
蔡伟明
戴海兵
司亚雄
万里
曹磊
张程
Original Assignee
中国移动通信集团江苏有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信集团江苏有限公司 filed Critical 中国移动通信集团江苏有限公司
Publication of WO2016110196A1 publication Critical patent/WO2016110196A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a method and apparatus for communication based on MIMO.
  • the radio remote technology can remotely place the radio unit in the base station near the antenna, and a base band unit (BBU) can be connected to one or more radio remote units (RRUs), so the construction thereof Flexibility has been applied to a wide range of applications.
  • BBU base band unit
  • RRUs radio remote units
  • cells covered by different RRUs may be combined. As shown in FIG. 1 , cells that are covered by multiple RRUs are combined to form a merged cell, thereby eliminating reselection and handover between pre-merging cells, and avoiding co-channel interference caused by cell overlap, and strengthening Multiple RRUs collectively cover the signal quality of the area.
  • Multi-Input Multi-Output (MIMO) technology has been widely used as a technique for increasing communication capacity.
  • This technique allows N different data sequences to be transmitted simultaneously between a transmitter having N transmitting units and a receiver having N receiving units, that is, a mode of operation using space division multiplexing, where N is greater than or equal to 2 Positive integer. It can be seen that this technology can increase the communication rate of the system by N times.
  • the MIMO mode of each cell before the combining is still used for communication. For example, if the number of antennas of the UE is 2, before the cell combination of the 8 antenna RRU1 and the 2 antenna RRU2, 8 (transmission port) ⁇ 2 (receive port) MIMO transmission between the RRU1 and the UE is performed in the cell of the RRU1, in the RRU 2 The cell performs 2x2 MIMO transmission between the RRU2 and the UE.
  • the number of antennas of the UE is 2, before the cell combination of the 8 antenna RRU1 and the 2 antenna RRU2, 8 (transmission port) ⁇ 2 (receive port) MIMO transmission between the RRU1 and the UE is performed in the cell of the RRU1, in the RRU 2
  • the cell performs 2x2 MIMO transmission between the RRU2 and the UE.
  • the 8 ⁇ 2 MIMO transmission between the RRU1 and the UE or the 2 ⁇ 2 MIMO transmission between the RRU2 and the UE is still performed, and only the 2 ⁇ 2 MIMO transmission can be adopted in the area covered by the RRU1 and the RRU2.
  • this method does not fully utilize the radio resources of multiple RRUs in the combined cell.
  • the radio resources (including power resources and antennas) of other RRUs in the combined cell are wasted. Resources).
  • the embodiments of the present disclosure provide a method and apparatus for MIMO-based communication based on multiple antennas between RRUs to solve the problem that the prior art does not fully utilize multiple RRU powers and antenna resources in a combined cell.
  • the embodiments of the present disclosure provide a method for MIMO mode communication based on multiple antennas between radio frequency remote units RRU, including:
  • the evolved base station eNodeB generates different RRU sets based on multiple RRUs forming the merged cell, and uses a common coverage area of all RRUs in each RRU set as one location area;
  • MIMO configuration information corresponding to each location area based on the RRU set covering each location area for each location area in the merged cell; wherein the MIMO configuration information corresponding to the different location areas is different, the MIMO configuration information Include RRU information and/or antenna information that participates in MIMO jointly; wherein the antennas participating in MIMO can be either antennas within the same RRU or antennas between different RRUs in the RRU set to support adaptation; MIMO configuration information is measured by the eNodeB to measure channel space isolation between multiple antennas Go to the threshold to choose; and
  • the eNodeB performs communication in the MIMO mode with the user equipment UE based on the determined MIMO configuration information.
  • the eNodeB performs the MIMO communication with the UE based on the determined MIMO configuration information, and further includes:
  • the eNodeB performs communication in the MIMO mode with the UE based on the MIMO configuration information corresponding to the location area where the UE is located.
  • the eNodeB performs MIMO communication with the UE according to the MIMO configuration information corresponding to the location area where the UE is located, including:
  • the eNodeB communicates with the MIMO working mode based on space division multiplexing between the UEs based on MIMO configuration information corresponding to the location area where the UE is located.
  • the eNodeB determines a location area in the merged cell where the UE is located, including:
  • the eNodeB determines an uplink loss value according to the transmit power of the UE and the uplink received signal strength of the signal that the RRU receives the UE, and is based on the uplink loss value. Determining, by the RRU, a downlink loss value of the signal transmitted by the UE to the UE; determining, according to the transmit power of the RRU and the determined downlink loss value, a reference signal received power RSRP value of the signal that the UE receives the RRU;
  • the difference between the RSRP value of the signal that the UE receives any RRU and the maximum value is less than or equal to the set threshold, determining that the RRU belongs to the RRU set that covers the location area where the UE is located;
  • the common coverage area of all RRUs in the determined RRU set is determined as the location area in the merged cell where the UE is located.
  • the eNodeB determines a location area in the merged cell where the UE is located, include:
  • the eNodeB determines a maximum value among the received RSRP values
  • the difference between the RSRP value of the RRU and the maximum value reported by the UE is less than or equal to the set threshold, determining that the RRU belongs to the RRU set that covers the location area where the UE is located;
  • the common coverage area of all RRUs in the determined RRU set is determined as the location area in the merged cell where the UE is located.
  • the embodiment of the present disclosure further provides an apparatus for MIMO mode communication based on multiple antennas between radio frequency remote units RRU, the apparatus comprising:
  • a generating module configured to generate different RRU sets based on multiple RRUs that form the merged cell, and use a common coverage area of all RRUs in each RRU set as one location area;
  • a determining module configured, for each location area in the merged cell, to determine MIMO configuration information corresponding to each location area based on an RRU set that covers each location area; wherein different location areas correspond to different MIMO configuration information
  • the MIMO configuration information includes RRU information and/or antenna information that participate in MIMO in common; wherein antennas that participate in MIMO together can be supported by antennas in the same RRU or antennas between different RRUs in the RRU set. Adapting; wherein the MIMO configuration information is selected by the eNodeB measuring channel spatial isolation between multiple antennas to reach a threshold; and
  • the communication module is configured to perform communication in the MIMO mode with the user equipment UE based on the MIMO configuration information determined by the determining module.
  • an eNodeB divides a cell that is combined by multiple RRUs into a plurality of location areas, each location area being a common coverage area of one or more RRUs of a plurality of RRUs forming a merged cell. For each location area, determining MIMO configuration information corresponding to the location area based on one or more RRUs that cover the location area, the MIMO configuration information including RRU information and antenna information that participate in MIMO, and MIMO corresponding to different location areas Configuration The information is different.
  • the eNodeB selects to use the MIMO mode to communicate with the UE based on the determined MIMO configuration information and measures the channel spatial isolation between the multiple antennas to reach the threshold, and the antennas participating in the MIMO can be either the antenna in the same RRU or the RRU. Antennas between RRUs in the set to support adaptation. Obviously, in the merged cell, some location areas have only a single RRU coverage, but some location areas may be covered by multiple RRUs.
  • MIMO transmission can be performed between the antennas of the multiple RRUs and the UE, so that the power resources and antenna resources of the multiple RRUs can be fully utilized, and the signal transmission efficiency is improved.
  • FIG. 1 is a schematic diagram of merging cells covered by multiple RRUs
  • FIG. 2 is a flowchart of a method for communication based on MIMO mode according to Embodiment 1 of the present disclosure
  • FIG. 3 is a schematic diagram of forming different location areas after cell merging
  • Embodiment 4 is a flowchart of a method for MIMO-based communication provided by Embodiment 2 of the present disclosure
  • FIG. 5 is a schematic structural diagram of an apparatus for performing communication based on MIMO mode according to an embodiment of the present disclosure.
  • an Evolved Node B divides a cell that is combined by multiple RRUs into multiple location areas, each of which is in a plurality of RRUs forming a merged cell.
  • the eNodeB selects to use the MIMO mode to communicate with the UE based on the determined MIMO configuration information and measures the channel spatial isolation between the multiple antennas to reach the threshold, and the antennas participating in the MIMO can be either the antenna in the same RRU or the RRU. Antennas between RRUs in the set to support adaptation.
  • some location areas have only a single RRU coverage, but some location areas can be covered by multiple RRUs.
  • MIMO transmission may be performed between the multiple inter-RRU antennas and the UE, so that the multiple RRUs may be fully utilized. Power resources and antenna resources Source, improve signal transmission efficiency.
  • a flowchart of a method for MIMO-based communication provided in Embodiment 1 of the present disclosure includes the following steps:
  • the evolved base station (eNodeB) generates different RRU sets based on multiple RRUs forming the merged cell, and uses a common coverage area of all RRUs in each RRU set as one location area.
  • the plurality of RRUs may include a plurality of RRUs of the same location (within the same area), and may also include multiple RRUs of different locations (within different area ranges).
  • the multiple RRUs may include multiple RRUs connected by the same BBU before merging, and may also include multiple RRUs connected by different BBUs before merging.
  • an RRU set refers to a combination of one or more RRUs.
  • RRU1 and RRU2 and RRU3 the combination of RRUs in the combined cell (that is, the RRU set) has seven types, specifically ⁇ RRU1 ⁇ , ⁇ RRU2 ⁇ , ⁇ RRU3 ⁇ , ⁇ RRU1, RRU2 ⁇ , ⁇ RRU2, RRU3 ⁇ , ⁇ RRU1, RRU3 ⁇ , ⁇ RRU1, RRU2, RRU3 ⁇ .
  • the cell covered by the RRU1, the cell 2 covered by the RRU2, and the cell 3 covered by the RRU3 form a merged cell
  • the merged cell includes a location area covered by RRU1, RRU2, and RRU3, respectively.
  • the areas A, B, and C) in 1 also include a location area formed by a common coverage area of RRU1 and RRU2 (such as area D in FIG. 1), a location area formed by a common coverage area of RRU3 and RRU1 (as in FIG. 1).
  • S202 Determine, for each location area in the merged cell, MIMO configuration information corresponding to each location area based on an RRU set that covers each location area, where the MIMO configuration information corresponding to the different location areas is different, the MIMO
  • the configuration information includes RRU information and/or antenna information that participate in MIMO jointly; wherein the antennas participating in MIMO can be either antennas in the same RRU or antennas between different RRUs in the RRU set to support adaptation;
  • the MIMO configuration information is used to measure a channel gap between multiple antennas by using the eNodeB The degree of deviation reaches the threshold to choose.
  • the embodiments of the present disclosure are mainly directed to the utilization of the MIMO mode in downlink data transmission.
  • the present disclosure embodiment is equally applicable when it is upstream.
  • each RRU in the RRU set of each location area is an RRU that participates in MIMO in the location area.
  • the MIMO transmission format used is: MIMO transmission in the form of M (send port) ⁇ 2 (receive port), where the transmission port M can be a physical port or a logical port.
  • S203 The eNodeB performs communication in the MIMO mode with the user equipment UE based on the determined MIMO configuration information.
  • the eNodeB communicates with the UE based on the space division multiplexing MIMO mode of operation.
  • the MIMO communication in the embodiment of the present disclosure mainly refers to communication between the eNodeB and the UE based on the space division multiplexing MIMO working mode.
  • MIMO communication may be performed for a single UE, that is, multiple channels are used to separately transmit different data of the same UE; MIMO communication may also be performed for multiple UEs, that is, different channels are used to separately transmit different data of different UEs.
  • the MIMO working mode that automatically switches to the transmit diversity can also transmit the downlink data to the UE (the MIMO working mode adopts the receive diversity in the uplink) .
  • the MIMO configuration information corresponding to each location area in S202 After determining the MIMO configuration information corresponding to each location area in S202, if it is determined that communication needs to be performed with the UE, first determining the location area where the UE is located, based on the location area where the UE is located.
  • the domain selects the corresponding MIMO configuration information and measures the channel spatial isolation between the multiple antennas to reach the threshold to select MIMO communication with the UE, and the antennas participating in the MIMO can be either the antenna in the same RRU or the RRU set.
  • the antenna between the RRUs to support the adaptation.
  • the eNodeB performs the MIMO communication with the user equipment UE based on the determined MIMO configuration information, and further includes:
  • the eNodeB performs communication in the MIMO mode with the UE based on the MIMO configuration information corresponding to the location area where the UE is located.
  • the location of the location where the UE is located may be determined based on the value of the received signal, and the location of the location of the UE.
  • Manner 1 The downlink RSRP value of the UE is measured based on the received uplink signal of the UE.
  • the step of determining, by the eNodeB, the location area in the merged cell where the UE is located includes:
  • the eNodeB determines an uplink loss value according to the transmit power of the UE and the uplink received signal strength of the signal that the RRU receives the UE, and is based on the uplink loss value. And determining a downlink loss value of the signal that the RRU transmits to the UE. Determining, according to the transmit power of the RRU and the determined downlink loss value, a reference signal received power RSRP value of a signal that the UE receives the RRU;
  • the difference between the RSRP value of the signal that the UE receives any RRU and the maximum value is less than or equal to the set threshold, determining that the RRU belongs to the RRU set that covers the location area where the UE is located;
  • the common coverage area of all RRUs in the determined RRU set is determined as the location area in the merged cell where the UE is located.
  • the eNodeB adopts the transmit power of the UE minus the RRU.
  • Receiving an uplink received signal strength of the uplink signal of the UE obtaining an uplink loss value; and calculating, according to the transmission loss model and the uplink loss value, a downlink loss value if the RRU transmits a downlink signal to the UE;
  • the transmit power of the RRU is subtracted from the determined downlink loss value, and the RSRP value of the signal that the UE receives the RRU is obtained.
  • the RSRP value of the signal that the UE receives each RRU Determining, in sequence, the RSRP value of the signal that the UE receives each RRU, and determining the maximum value thereof; and comparing the RSRP value of the signal of the other RRU received by the UE with the maximum value, if the RSRP value is The difference from the maximum value is less than or equal to a set threshold (such as 3 decibels (dB)), and the other RRU is determined to be one RRU in the RRU set covering the location area where the UE is located, where RRU The RRU in the set includes an RRU corresponding to the maximum value (the difference between the RRU and the maximum value is 0).
  • a set threshold such as 3 decibels (dB)
  • the eNodeB receives the RSRP value reported by the UE.
  • the eNodeB determines a location area in the merged cell where the UE is located, including:
  • the eNodeB determines a maximum value among the received RSRP values
  • the difference between the RSRP value of the RRU and the maximum value reported by the UE is less than or equal to the set threshold, determining that the RRU belongs to the RRU set that covers the location area where the UE is located;
  • the common coverage area of all RRUs in the determined RRU set is determined as the location area in the merged cell where the UE is located.
  • the eNodeB may send a measurement list to the UE, instructing the UE to measure the downlink RSRP value of each RRU to the UE, and the UE reports the RSRP measurement value of the RRU.
  • the subsequent processing is the same as that of the first method, and is not described here.
  • a flowchart of a method for MIMO-based communication provided by Embodiment 2 of the present disclosure includes the following steps:
  • the eNodeB generates different RRU sets based on multiple RRUs that form the merged cell. And, the common coverage area of all RRUs in each RRU set is taken as a location area.
  • S402 Determine, for each location area in the merged cell, MIMO configuration information corresponding to the location area based on the RRU set that covers the location area, where the MIMO configuration information corresponding to different location areas is different, the MIMO configuration
  • the information includes RRU information and/or antenna information that participate in MIMO.
  • the process of determining the location area of the UE may be: for each RRU, the eNodeB determines an uplink loss value according to the transmit power of the UE and the uplink received signal strength of the signal that the RRU receives the UE, and based on the uplink a loss value, determining a downlink loss value of the signal transmitted by the RRU to the UE; determining, according to the transmit power of the RRU and the determined downlink loss value, a reference signal received power RSRP value of the signal that the UE receives the RRU; If the difference between the RSRP value of the signal of the RRU and the maximum value of the RSRP value of the signal received by the UE is less than or equal to the set threshold, it is determined that the RRU belongs to the location area where the UE is located.
  • the RRU set; the common coverage area of all RRUs in the determined RRU set is the location area in the merged cell where the UE is located.
  • the eNodeB determines, according to the location area where the UE is located, and the MIMO configuration information corresponding to each location area, the MIMO configuration information corresponding to the location area where the UE is located, and uses the MIMO mode to communicate with the UE according to the MIMO configuration information. .
  • the embodiment of the present disclosure actually proposes a Long Term Evolution (LTE) MIMO adaptive adjustment mode based on a combined cell, and determines different MIMO configuration information according to a combination manner of different RRUs in the combined cell, including multiple MIMO supported between RRUs. Determining a location area where the user is located according to the RSRP value of the different RRUs arriving at the UE in the merged cell; and selecting corresponding MIMO configuration information for MIMO transmission based on the location area where the UE is located.
  • the embodiments of the present disclosure can achieve multiple RRU power gains and multiple antenna rate gains, increase capacity, and improve user experience.
  • the overlapping area between the cells covered by the multiple single RRUs becomes the coverage area of the same cell, so that the signal to interference and noise ratio (SINR) of the area is greatly improved, and the MIMO technology is optimized.
  • SINR signal to interference and noise ratio
  • the embodiment of the present disclosure can adaptively adjust the MIMO mode based on different location areas where the UE is located, and fully utilize the radio resources of each RRU in the merged cell, The UE in the cell provides better quality of service.
  • an embodiment of the present disclosure further provides an apparatus for MIMO-based communication corresponding to a method based on MIMO mode communication, and the principle of solving the problem by the apparatus is compared with the MIMO mode communication according to the embodiment of the present disclosure.
  • the method is similar, so the implementation of the device can be referred to the implementation of the method, and the repeated description will not be repeated.
  • a schematic structural diagram of an apparatus for MIMO-based communication provided by an embodiment of the present disclosure includes:
  • a generating module 51 configured to generate different RRU sets based on multiple RRUs that form the merged cell, and use a common coverage area of all RRUs in each RRU set as one location area;
  • the determining module 52 is configured to determine, according to the RRU set that covers the location area, the MIMO configuration information corresponding to the location area, where the MIMO configuration information corresponding to the different location areas is different,
  • the MIMO configuration information includes RRU information and/or antenna information that jointly participate in MIMO;
  • the communication module 53 is configured to perform communication in the MIMO manner with the UE based on the MIMO configuration information determined by the determining module.
  • the communication module 53 is specifically configured to:
  • determining a location area in the merged cell where the UE is located After determining that communication needs to be performed with the UE, determining a location area in the merged cell where the UE is located; determining, according to MIMO configuration information corresponding to each location area in the merged cell, where the UE is located MIMO configuration information corresponding to the location area; based on the MIMO configuration information corresponding to the location area where the UE is located, using the MIMO method with the UE Communication.
  • the communication module 53 is specifically configured to:
  • the communication module 53 is specifically configured to determine a location area in the merged cell where the UE is located according to the following steps:
  • the RRU set of the location area where the UE is located; the common coverage area of all the RRUs in the determined RRU set is determined as the location area in the merged cell where the UE is located.
  • the communication module 53 is specifically configured to determine a location area in the merged cell where the UE is located according to the following steps:
  • embodiments of the present disclosure may be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the present disclosure refers to methods, apparatuses (systems), and meters according to embodiments of the present disclosure.
  • a flowchart and/or block diagram of a computer program product is described. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

根据本公开文本实施例提供的基于RRU间多天线的MIMO方式通信的方法包括:eNodeB基于形成合并后的小区的多个RRU,生成不同的RRU集合,并将每个RRU集合中所有RRU的共同覆盖区作为一个位置区域;针对合并后的小区中的每个位置区域,基于覆盖该位置区域的RRU集合,确定该位置区域对应的MIMO配置信息,其中,不同位置区域对应的MIMO配置信息不同,所述MIMO配置信息包括共同参与MIMO的RRU信息和/或天线信息。共同参与MIMO的天线既可以是同一台RRU内的天线也可以是RRU集合中的不同RRU之间的天线来支持自适应。所述MIMO配置信息是通过所述eNodeB测量多天线间的信道空间隔离度达到门限来选择得到的。所述eNodeB基于确定的所述MIMO配置信息,与UE之间采用MIMO方式进行通信。

Description

一种基于多输入多输出MIMO方式通信的方法及装置
相关申请的交叉参考
本申请主张在2015年1月9日在中国提交的中国专利申请号No.201510012551.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开文本涉及通信技术领域,尤其涉及一种基于MIMO方式通信的方法及装置。
背景技术
随着城市建设的快速发展,高楼大厦不断增多,对原有基站信号的阻挡严重,导致部分区域会出现信号盲区或信号弱覆盖的情况,基于此,基站建设往小型化发展的趋势明显。然而,基站覆盖范围的缩小使得出现小区重选、小区切换的概率增加,因小区重选、切换引起的终端掉话、掉线的情况也增多,并且,小区间重叠区域的增多使得同频干扰区域面积增大,平均通信速率下降。
射频拉远技术可将基站中的射频单元拉远置于天线附近,一个基带单元(Base band Unit,BBU)可以连接一个或多个射频拉远单元(Radio Remote Unit,RRU),因此其建设的灵活性得到了大范围应用。为了解决基站小型化建设带来的问题,可将不同RRU覆盖的小区进行合并。如图1所示,将多个RRU覆盖的小区进行合并,形成合并后的小区,从而消除了合并前小区间的重选、切换,并且可以避免因小区重叠带来的同频干扰,加强了多个RRU共同覆盖区域的信号质量。
多输入多输出(Multi-Input Multi-Output,MIMO)技术作为一种用于增加通信容量的技术已被广泛地投入实际使用。这种技术允许具有N个发送单元的发送器和具有N个接收单元的接收器之间同时传输N个不同的数据序列,也即采用空分复用的工作模式,其中N是大于或等于2的正整数。可见,这种技术能够使得系统的通信速率增加为原来的N倍。
目前,在不同RRU合并后的小区中,在基站与用户设备(User Equipment,UE)之间通信时,仍采用合并前的小区各自的MIMO方式进行通信。比如,若UE的天线数为2,进行8天线RRU1和2天线RRU2的小区合并前,在RRU1的小区进行RRU1与UE之间的8(发送端口)×2(接收端口)MIMO传输,在RRU2的小区进行RRU2与UE之间的2×2MIMO传输。在合并后的小区中,仍进行RRU1与UE之间的8×2MIMO传输,或RRU2与UE之间的2×2MIMO传输,其中,在RRU1与RRU2共同覆盖的区域只能采用2×2MIMO传输。显然,这种方式没有充分利用合并后的小区中的多个RRU的无线资源,当采用单一RRU支持的MIMO方式进行通信时,会浪费合并后小区中其它RRU的无线资源(包括功率资源和天线资源)。
发明内容
(一)要解决的技术问题
本公开文本实施例提供一种基于RRU间多天线的MIMO方式通信的方法及装置,用以解决现有技术没有充分利用合并后的小区中的多个RRU功率和天线资源的问题。
(二)技术方案
为了实现上述目的,本公开文本提供如下技术方案:
本公开文本实施例提供一种基于射频拉远单元RRU间多天线的MIMO方式通信的方法,包括:
演进基站eNodeB基于形成合并后的小区的多个RRU,生成不同的RRU集合,并将每个RRU集合中所有RRU的共同覆盖区作为一个位置区域;
针对合并后的小区中的每个位置区域,基于覆盖每个位置区域的RRU集合,确定每个位置区域对应的MIMO配置信息;其中,不同位置区域对应的MIMO配置信息不同,所述MIMO配置信息包括共同参与MIMO的RRU信息和/或天线信息;其中,共同参与MIMO的天线既可以是同一台RRU内的天线也可以是RRU集合中的不同RRU之间的天线来支持自适应;其中,所述MIMO配置信息是通过所述eNodeB测量多天线间的信道空间隔离度达 到门限来选择得到的;以及
所述eNodeB基于确定的所述MIMO配置信息,与用户设备UE之间采用MIMO方式进行通信。
可选地,所述eNodeB基于确定的所述MIMO配置信息,与所述UE之间采用MIMO方式进行通信,还包括:
所述eNodeB在确定需要与所述UE之间进行通信后,确定所述UE所在的合并后的小区中的位置区域;
所述eNodeB根据合并后的小区中的每个位置区域对应的MIMO配置信息,确定所述UE所在的位置区域对应的MIMO配置信息;以及
所述eNodeB基于所述UE所在的位置区域对应的MIMO配置信息,与所述UE之间采用MIMO方式进行通信。
可选地,所述eNodeB基于所述UE所在的位置区域对应的MIMO配置信息,与所述UE之间采用MIMO方式进行通信,包括:
所述eNodeB基于所述UE所在的位置区域对应的MIMO配置信息,与所述UE之间基于空分复用的MIMO工作模式进行通信。
可选地,所述eNodeB确定所述UE所在的合并后的小区中的位置区域,包括:
针对合并后的小区中的每个RRU,所述eNodeB根据所述UE的发射功率和该RRU接收该UE的信号的上行接收信号强度,确定上行链路损耗值,并基于该上行链路损耗值,确定该RRU向UE传输信号的下行链路损耗值;根据该RRU的发射功率和确定的所述下行链路损耗值,确定UE接收该RRU的信号的参考信号接收功率RSRP值;
所述eNodeB确定所述UE接收各个RRU的信号的RSRP值中的最大值;
若所述UE接收任一RRU的信号的RSRP值与所述最大值的差值小于或等于设定门限值,则确定该任一RRU属于覆盖所述UE所在的位置区域的RRU集合;以及
将确定的RRU集合中所有RRU的共同覆盖区确定为所述UE所在的合并后的小区中的位置区域。
可选地,所述eNodeB确定所述UE所在的合并后的小区中的位置区域, 包括:
所述eNodeB接收所述UE上报的各RRU参考信号到达该UE的参考信号接收功率RSRP值;
所述eNodeB确定接收的各RSRP值中的最大值;
若所述UE上报的任一RRU的RSRP值与所述最大值的差值小于或等于设定门限值,则确定该任一RRU属于覆盖所述UE所在的位置区域的RRU集合;以及
将确定的RRU集合中所有RRU的共同覆盖区确定为所述UE所在的合并后的小区中的位置区域。
本公开文本实施例还提供一种基于射频拉远单元RRU间多天线的MIMO方式通信的装置,该装置包括:
生成模块,用于基于形成合并后的小区的多个RRU,生成不同的RRU集合,并将每个RRU集合中所有RRU的共同覆盖区作为一个位置区域;
确定模块,用于针对合并后的小区中的每个位置区域,基于覆盖每个位置区域的RRU集合,确定每个位置区域对应的MIMO配置信息;其中,不同的位置区域对应的MIMO配置信息不同,所述MIMO配置信息包括共同参与MIMO的RRU信息和/或天线信息;其中,共同参与MIMO的天线既可以是同一台RRU内的天线也可以是RRU集合中的不同RRU之间的天线来支持自适应;其中,所述MIMO配置信息是通过所述eNodeB测量多天线间的信道空间隔离度达到门限来选择得到的;以及
通信模块,用于基于所述确定模块确定的所述MIMO配置信息,与用户设备UE之间采用MIMO方式进行通信。
(三)有益效果
本公开文本实施例至少具有如下有益效果:
本公开文本实施例中,eNodeB将由多个RRU合并后的小区划分为多个位置区域,每个位置区域为形成合并后的小区的多个RRU中的一个或多个RRU的共同覆盖区。针对每个位置区域,基于覆盖该位置区域的一个或多个RRU,确定该位置区域对应的MIMO配置信息,该MIMO配置信息包括共同参与MIMO的RRU信息和天线信息,不同的位置区域对应的MIMO配置 信息不同。eNodeB基于确定的MIMO配置信息并且测量多天线间的信道空间隔离度达到门限来选择与UE之间采用MIMO方式进行通信,而共同参与MIMO的天线既可以是同一台RRU内的天线也可以是RRU集合中的RRU之间的天线来支持自适应。显然,在合并后的小区中,有的位置区域只有单一RRU覆盖,但有的位置区域可以被多个RRU覆盖,采用本公开文本实施例,当UE位于合并后的小区中的多个RRU的共同覆盖区时,可以基于这多个RRU的天线间与UE之间进行MIMO传输,从而可以充分利用这多个RRU的功率资源和天线资源,提高信号传输效率。
附图说明
为了更清楚地说明本公开文本实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开文本的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图(其不一定是按比例绘制的)中,相似的附图标记可在不同的视图中描述相似的部件。具有不同字母后缀的相似附图标记可表示相似部件的不同示例。附图以示例而非限制的方式大体示出了本文中所讨论的各个实施例。
图1为将多个RRU覆盖的小区进行合并的示意图;
图2为本公开文本实施例一提供的基于MIMO方式通信的方法流程图;
图3为进行小区合并后,形成不同位置区域的示意图;
图4为本公开文本实施例二提供的基于MIMO方式通信的方法流程图;以及
图5为本公开文本实施例提供的基于MIMO方式通信的装置结构示意图。
具体实施方式
下面结合附图和实施例,对本公开文本的具体实施方式做进一步描述。以下实施例仅用于说明本公开文本,但不用来限制本公开文本的范围。
为使本公开文本实施例的目的、技术方案和优点更加清楚,下面将结合本公开文本实施例的附图,对本公开文本实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开文本的一部分实施例,而不是全部的实施例。基于所描述的本公开文本的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开文本保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开文本所属领域内具有一般技能的人士所理解的通常意义。本公开文本专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
以下结合附图对本公开文本实施例的原理和特征进行描述,所举实例只用于解释本公开文本实施例,并非用于限定本公开文本实施例的范围。
本公开文本实施例的基本思想是:演进基站(Evolved Node B,eNodeB)将由多个RRU合并后的小区划分为多个位置区域,每个位置区域为形成合并后的小区的多个RRU中的一个或多个RRU的共同覆盖区。针对每个位置区域,基于覆盖该位置区域的一个或多个RRU,确定该位置区域对应的MIMO配置信息,该MIMO配置信息包括共同参与MIMO的RRU信息和天线信息,不同的位置区域对应的MIMO配置信息不同。eNodeB基于确定的MIMO配置信息并且测量多天线间的信道空间隔离度达到门限来选择与UE之间采用MIMO方式进行通信,而共同参与MIMO的天线既可以是同一台RRU内的天线也可以是RRU集合中的RRU之间的天线来支持自适应。
显然,在合并后的小区中,有的位置区域只有单一RRU覆盖,但有的位置区域可以被多个RRU覆盖。采用本公开文本实施例,当UE位于合并后的小区中的多个RRU的共同覆盖区时,可以基于这多个RRU间天线与UE之间进行MIMO传输,从而可以充分利用这多个RRU的功率资源和天线资 源,提高信号传输效率。
下面结合说明书附图对本公开文本实施例作进一步详细描述。
如图2所示,为本公开文本实施例一提供的基于MIMO方式通信的方法流程图,包括以下步骤:
S201:演进基站(eNodeB)基于形成合并后的小区的多个RRU,生成不同的RRU集合,并将每个RRU集合中所有RRU的共同覆盖区作为一个位置区域。
这里,所述多个RRU可以包括相同位置(同一区域范围内)的多个RRU,也可以包括不同位置(不同区域范围内)的多个RRU。另外,所述多个RRU可以包括合并前同一BBU连接的多个RRU,也可以包括合并前不同BBU连接的多个RRU。
这里,RRU集合是指一个或多个RRU的组合。以一个8天线的RRU(记为RRU1)和两个2天线的RRU(记为RRU2和RRU3)形成合并小区为例,合并小区中RRU的组合方式(也即RRU集合)有7种,具体为{RRU1}、{RRU2}、{RRU3}、{RRU1,RRU2}、{RRU2,RRU3}、{RRU1,RRU3}、{RRU1,RRU2,RRU3}。
如图3所示,RRU1覆盖的小区1、RRU2覆盖的小区2和RRU3覆盖的小区3形成合并后的小区,该合并后的小区中包括RRU1、RRU2和RRU3分别独自覆盖的位置区域(如图1中的区域A、B、C),还包括RRU1和RRU2的共同覆盖区形成的位置区域(如图1中的区域D)、RRU3和RRU1的共同覆盖区形成的位置区域(如图1中的区域E)、RRU2和RRU3的共同覆盖区形成的位置区域(如图1中的区域F)、以及RRU1、RRU2和RRU3的共同覆盖区形成的位置区域(如图1中的区域G)。
S202:针对合并后的小区中的每个位置区域,基于覆盖每个位置区域的RRU集合,确定每个位置区域对应的MIMO配置信息;其中,不同位置区域对应的MIMO配置信息不同,所述MIMO配置信息包括共同参与MIMO的RRU信息和/或天线信息;其中,共同参与MIMO的天线既可以是同一台RRU内的天线也可以是RRU集合中的不同RRU之间的天线来支持自适应;其中,所述MIMO配置信息是通过所述eNodeB测量多天线间的信道空间隔 离度达到门限来选择得到的。
本公开文本实施例主要针对下行数据传输中对MIMO方式的利用。当然,上行时本公开文本实施例同样适用。
这里,针对位置区域A~G,覆盖位置区域A~G的RRU集合分别为{RRU1}、{RRU2}、{RRU3}、{RRU1,RRU2}、{RRU1,RRU3}、{RRU2,RRU3}、{RRU1,RRU2,RRU3},每个位置区域的RRU集合中的各个RRU即为该位置区域中共同参与MIMO的RRU。比如,UE的天线数为2,则所采用的MIMO传输形式为:M(发送端口)×2(接收端口)形式下的MIMO传输,这里的发送端口M可以是物理端口,也可以是逻辑端口。比如8通道天线中,每4个物理端口合成1个逻辑端口。则针对位置区域A,M=8(物理端口)或M=2(逻辑端口)。针对位置区域B和C,M=2。针对位置区域D和E,M=10(RRU1的8个物理端口加上RRU2的2个端口)或M=4(RRU1的2个逻辑端口和RRU2的2个端口)。针对位置区域F,M=4。针对位置区域G,M=12(RRU1的8个物理端口、RRU2的2个端口加上RRU3的2个端口)或M=6(RRU1的2个逻辑端口、RRU2的2个端口加上RRU3的2个端口)。
S203:eNodeB基于确定的所述MIMO配置信息,与用户设备UE之间采用MIMO方式进行通信。
优选地,针对每个位置区域内的UE,eNodeB与UE之间基于空分复用的MIMO工作模式进行通信。
本公开文本实施例中的MIMO通信主要指eNodeB与UE之间基于空分复用的MIMO工作模式进行通信。在具体实施中,可以针对单个UE进行MIMO通信,即采用多个通道分别传输同一UE的不同数据;也可以针对多个UE进行MIMO通信,即采用多个通道分别传输不同UE的不同数据。当UE所在位置区域信号质量较差,不适合采用空分复用的MIMO工作模式时,也可自动切换成发射分集的MIMO工作模式向UE传输下行数据(上行时采用接收分集的MIMO工作模式)。
在S202确定出每个位置区域对应的MIMO配置信息后,若确定需要与UE之间进行通信,首先确定该UE所在的位置区域,基于UE所在的位置区 域,选择相应的MIMO配置信息并且测量多天线间的信道空间隔离度达到门限来选择与UE之间进行MIMO通信,而共同参与MIMO的天线既可以是同一台RRU内的天线也可以是RRU集合中的RRU之间的天线来支持自适应。
具体地,S203中,eNodeB基于确定的所述MIMO配置信息,与用户设备UE之间采用MIMO方式进行通信,还包括:
所述eNodeB在确定需要与所述UE之间进行通信后,确定所述UE所在的合并后的小区中的位置区域;
所述eNodeB根据合并后的小区中的每个位置区域对应的MIMO配置信息,确定所述UE所在的位置区域对应的MIMO配置信息;以及
所述eNodeB基于所述UE所在的位置区域对应的MIMO配置信息,与所述UE之间采用MIMO方式进行通信。
在具体实施过程中,针对下行链路传输,可以基于UE接收各个RRU的信号的(Reference Signal Receiving Power,RSRP)值,确定UE所在的位置区域,具体可以有以下两种方式。
方式一:基于接收的UE的上行信号,测算UE的下行RSRP值。
具体地,eNodeB确定所述UE所在的合并后的小区中的位置区域的步骤包括:
针对合并后的小区中的每个RRU,所述eNodeB根据所述UE的发射功率和该RRU接收该UE的信号的上行接收信号强度,确定上行链路损耗值,并基于该上行链路损耗值,确定该RRU向UE传输信号的下行链路损耗值。根据该RRU的发射功率和确定的所述下行链路损耗值,确定UE接收该RRU的信号的参考信号接收功率RSRP值;
所述eNodeB确定所述UE接收各个RRU的信号的RSRP值中的最大值;
若所述UE接收任一RRU的信号的RSRP值与所述最大值的差值小于或等于设定门限值,则确定该任一RRU属于覆盖所述UE所在的位置区域的RRU集合;以及
将确定的RRU集合中所有RRU的共同覆盖区确定为所述UE所在的合并后的小区中的位置区域。
在该方式下,针对每个RRU,eNodeB采用UE的发射功率减去该RRU 接收到该UE的上行信号的上行接收信号强度,得到上行链路损耗值;并基于传输损耗模型以及该上行链路损耗值,计算若该RRU向UE传输下行信号的下行链路损耗值;采用该RRU的发射功率减去确定的下行链路损耗值,得到UE接收该RRU的信号的RSRP值。依次确定出UE接收每个RRU的信号的RSRP值,并确定出其中的最大值;针对UE接收的其它RRU的信号的RSRP值,将该RSRP值与所述最大值进行比较,若该RSRP值与所述最大值的差值小于或等于设定门限值(比如3分贝(dB)),则将所述其它RRU确定为覆盖UE所在的位置区域的RRU集合中的一个RRU,这里,RRU集合中的RRU包括对应所述最大值的RRU(该RRU与所述最大值的差值为0)。
方式二,eNodeB接收UE上报的RSRP值。
具体地,eNodeB确定所述UE所在的合并后的小区中的位置区域,包括:
所述eNodeB接收所述UE上报的各RRU参考信号到达该UE的参考信号接收功率RSRP值;
所述eNodeB确定接收的各RSRP值中的最大值;
若所述UE上报的任一RRU的RSRP值与所述最大值的差值小于或等于设定门限值,则确定该任一RRU属于覆盖所述UE所在的位置区域的RRU集合;以及
将确定的RRU集合中所有RRU的共同覆盖区确定为所述UE所在的合并后的小区中的位置区域。
在该方式下,eNodeB可以向UE下发测量列表,指示UE对各RRU到达该UE的下行RSRP值进行测量,UE上报对RRU的RSRP测量值。eNodeB接收UE上报的各RRU的RSRP值后,后续的处理过程与方式一相同,这里不再赘述。
下面通过一个具体的实施例来对本公开文本思想作进一步说明。
如图4所示,为本公开文本实施例二提供的基于MIMO方式通信的方法流程图,包括以下步骤:
S401:eNodeB基于形成合并后的小区的多个RRU,生成不同的RRU集 合,并将每个RRU集合中所有RRU的共同覆盖区作为一个位置区域。
S402:针对合并后的小区中的每个位置区域,基于覆盖该位置区域的RRU集合,确定该位置区域对应的MIMO配置信息;其中,不同的位置区域对应的MIMO配置信息不同,所述MIMO配置信息包括共同参与MIMO的RRU信息和/或天线信息。
S403:所述eNodeB在确定需要与UE之间进行通信后,确定该UE所在的合并后的小区中的位置区域。
这里,确定UE所在位置区域的过程可以是:针对每个RRU,eNodeB根据UE的发射功率和该RRU接收该UE的信号的上行接收信号强度,确定上行链路损耗值,并基于该上行链路损耗值,确定该RRU向UE传输信号的下行链路损耗值;根据该RRU的发射功率和确定的所述下行链路损耗值,确定UE接收该RRU的信号的参考信号接收功率RSRP值;若UE接收任一RRU的信号的RSRP值,与UE接收各个RRU的信号的RSRP值中的最大值的差值小于或等于设定门限值,则确定该任一RRU属于覆盖UE所在的位置区域的RRU集合;确定的RRU集合中所有RRU的共同覆盖区即为UE所在的合并后的小区中的位置区域。
S404:eNodeB根据UE所在的位置区域,以及每个位置区域对应的MIMO配置信息,确定UE所在的位置区域对应的MIMO配置信息,基于该MIMO配置信息,与所述UE之间采用MIMO方式进行通信。
本公开文本实施例实际上提出了一种基于合并小区的长期演进(Long Term Evolution,LTE)MIMO自适应调整方式,按照合并小区中不同RRU的组合方式,确定不同的MIMO配置信息,其中包括多个RRU间支持的MIMO。根据合并小区内不同RRU到达UE的RSRP值,确定用户所在的位置区域;基于UE所在的位置区域选择相应的MIMO配置信息进行MIMO传输。本公开文本实施例可以获得多RRU功率增益和多天线速率增益,提升容量,改善用户体验。
另外,对于合并后的小区,原来多个单RRU覆盖的小区之间的重叠区域变成了同一个小区的覆盖区域,使得此区域的信干噪比(SINR)得到大大提升,优化了MIMO技术实现的条件。在进行小区合并前,不管是针对单个 UE还是多个UE,只能进行同一RRU下MIMO,而在进行小区合并后,UE可以同时接收不同RRU天线发来的信号。但是,由于不同RRU天线发出的信号到达UE的信号强度不一定相同,有可能相差很大,所以并不适合在所有位置区域都基于空分复用的工作模式进行单UE的MIMO(SU-MIMO)。若仍然采用进行小区合并前的各小区各自的MIMO方式进行数据传输,则又会浪费RRU的无线资源。通过上述本公开文本实施例的实施过程可知,本公开文本实施例可以基于UE所在的不同的位置区域,自适应调整MIMO的方式,充分利用合并后的小区中各RRU的无线资源,为合并后的小区中的UE提供更好的服务质量。
基于同一发明构思,本公开文本实施例中还提供了一种与基于MIMO方式通信的方法对应的基于MIMO方式通信的装置,由于该装置解决问题的原理与本公开文本实施例基于MIMO方式通信的方法相似,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
如图5所示,为本公开文本实施例提供的基于MIMO方式通信的装置结构示意图,包括:
生成模块51,用于基于形成合并后的小区的多个RRU,生成不同的RRU集合,并将每个RRU集合中所有RRU的共同覆盖区作为一个位置区域;
确定模块52,用于针对合并后的小区中的每个位置区域,基于覆盖该位置区域的RRU集合,确定该位置区域对应的MIMO配置信息;其中,不同的位置区域对应的MIMO配置信息不同,所述MIMO配置信息包括共同参与MIMO的RRU信息和/或天线信息;以及
通信模块53,用于基于所述确定模块确定的所述MIMO配置信息,与UE之间采用MIMO方式进行通信。
可选地,所述通信模块53具体用于:
在确定需要与所述UE之间进行通信后,确定所述UE所在的合并后的小区中的位置区域;根据合并后的小区中的每个位置区域对应的MIMO配置信息,确定所述UE所在的位置区域对应的MIMO配置信息;基于所述UE所在的位置区域对应的MIMO配置信息,与所述UE之间采用MIMO方式进行 通信。
可选地,所述通信模块53具体用于:
基于所述UE所在的位置区域对应的MIMO配置信息,与所述UE之间基于空分复用的MIMO工作模式进行通信。
可选地,所述通信模块53具体用于根据以下步骤确定所述UE所在的合并后的小区中的位置区域:
针对合并后的小区中的每个RRU,根据所述UE的发射功率和该RRU接收该UE的信号的上行接收信号强度,确定上行链路损耗值,并基于该上行链路损耗值,确定该RRU向UE传输信号的下行链路损耗值;根据该RRU的发射功率和确定的所述下行链路损耗值,确定UE接收该RRU的信号的参考信号接收功率RSRP值;确定所述UE接收各个RRU的信号的RSRP值中的最大值;若所述UE接收任一RRU的信号的RSRP值与所述最大值的差值小于或等于设定门限值,则确定该任一RRU属于覆盖所述UE所在的位置区域的RRU集合;将确定的RRU集合中所有RRU的共同覆盖区确定为所述UE所在的合并后的小区中的位置区域。
可选地,所述通信模块53具体用于根据以下步骤确定所述UE所在的合并后的小区中的位置区域:
接收所述UE上报的各RRU参考信号到达该UE的参考信号接收功率RSRP值;确定接收的各RSRP值中的最大值;若所述UE上报的任一RRU的RSRP值与所述最大值的差值小于或等于设定门限值,则确定该任一RRU属于覆盖所述UE所在的位置区域的RRU集合;将确定的RRU集合中所有RRU的共同覆盖区确定为所述UE所在的合并后的小区中的位置区域。
本领域内的技术人员应明白,本公开文本的实施例可提供为方法、系统、或计算机程序产品。因此,本公开文本可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开文本可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开文本是参照根据本公开文本实施例的方法、装置(系统)、和计 算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本公开文本的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开文本范围的所有变更和修改。
显然,本领域的技术人员可以对本公开文本进行各种改动和变型而不脱离本公开文本的精神和范围。这样,倘若本公开文本的这些修改和变型属于本公开文本权利要求及其等同技术的范围之内,则本公开文本也意图包含这些改动和变型在内。

Claims (10)

  1. 一种基于射频拉远单元RRU间多天线的多输入多输出MIMO方式通信的方法,包括:
    演进基站eNodeB基于形成合并后的小区的多个RRU,生成不同的RRU集合,并将每个RRU集合中所有RRU的共同覆盖区作为一个位置区域;
    针对合并后的小区中的每个位置区域,基于覆盖每个位置区域的RRU集合,确定每个位置区域对应的MIMO配置信息;其中,不同位置区域对应的MIMO配置信息不同,所述MIMO配置信息包括共同参与MIMO的RRU信息和/或天线信息;其中,共同参与MIMO的天线既可以是同一台RRU内的天线也可以是RRU集合中的不同RRU之间的天线来支持自适应;其中,所述MIMO配置信息是通过所述eNodeB测量多天线间的信道空间隔离度达到门限来选择得到的;以及
    所述eNodeB基于确定的每个MIMO配置信息,与用户设备UE之间采用MIMO方式进行通信。
  2. 如权利要求1所述的方法,其中,所述eNodeB基于确定的所述MIMO配置信息,与所述UE之间采用MIMO方式进行通信,包括:
    所述eNodeB在确定需要与UE之间进行通信后,确定所述UE所在的合并后的小区中的位置区域;所述eNodeB根据合并后的小区中的每个位置区域对应的MIMO配置信息,确定所述UE所在的位置区域对应的MIMO配置信息;以及
    所述eNodeB基于所述UE所在的位置区域对应的MIMO配置信息,与所述UE之间采用MIMO方式进行通信。
  3. 如权利要求2所述的方法,其中,所述eNodeB基于所述UE所在的位置区域对应的MIMO配置信息,与所述UE之间采用MIMO方式进行通信,包括:
    所述eNodeB基于所述UE所在的位置区域对应的MIMO配置信息,与所述UE之间基于空分复用的MIMO工作模式进行通信。
  4. 如权利要求2或3所述的方法,其中,所述确定所述UE所在的合并 后的小区中的位置区域,包括:
    针对合并后的小区中的每个RRU,所述eNodeB根据所述UE的发射功率和每个RRU接收所述UE的信号的上行接收信号强度,确定每个RRU接收所述UE信号的上行链路损耗值,并基于每个RRU接收所述UE信号的上行链路损耗值,确定每个RRU向所述UE传输信号的下行链路损耗值;根据每个RRU的发射功率和确定的每个RRU向所述UE传输信号的下行链路损耗值,确定UE接收每个RRU信号的参考信号接收功率RSRP值;
    所述eNodeB确定所述UE接收每个RRU信号的RSRP值中的第一最大值;
    若所述UE接收任一第一RRU的信号的RSRP值与所述第一最大值的差值不大于第一设定门限值,则确定所述任一第一RRU属于覆盖所述UE所在的位置区域的第一RRU集合中;以及
    将所述第一RRU集合中所有RRU的共同覆盖区确定为所述UE所在的合并后的小区中的位置区域。
  5. 如权利要求2或3所述的方法,其中,所述确定所述UE所在的合并后的小区中的位置区域,包括:
    所述eNodeB接收所述UE上报的每个RRU参考信号到达所述UE的参考信号接收功率RSRP值;
    所述eNodeB确定接收的每个RRU参考信号到达所述UE的RSRP值中的第二最大值;
    若所述UE上报的任一第二RRU的RSRP值与所述第二最大值的差值不大于第二设定门限值,则确定所述任一第二RRU属于覆盖所述UE所在的位置区域的第二RRU集合中;以及
    将所述第二RRU集合中所有RRU的共同覆盖区确定为所述UE所在的合并后的小区中的位置区域。
  6. 一种基于射频拉远单元RRU间多天线的多输入多输出MIMO方式通信的装置,包括:
    生成模块,用于基于形成合并后的小区的多个RRU,生成不同的RRU集合,并将每个RRU集合中所有RRU的共同覆盖区作为一个位置区域;
    确定模块,用于针对合并后的小区中的每个位置区域,基于覆盖每个位置区域的RRU集合,确定每个位置区域对应的MIMO配置信息;其中,不同的位置区域对应的MIMO配置信息不同,所述MIMO配置信息包括共同参与MIMO的RRU信息和/或天线信息;其中,共同参与MIMO的天线既可以是同一台RRU内的天线也可以是RRU集合中的不同RRU之间的天线来支持自适应;其中,所述MIMO配置信息是通过所述eNodeB测量多天线间的信道空间隔离度达到门限来选择得到的;以及
    通信模块,用于基于所述确定模块确定的所述MIMO配置信息,与用户设备UE之间采用MIMO方式进行通信。
  7. 如权利要求6所述的装置,其中,所述通信模块具体用于:
    在确定需要与所述UE之间进行通信后,确定所述UE所在的合并后的小区中的位置区域;根据合并后的小区中的每个位置区域对应的MIMO配置信息,确定所述UE所在的位置区域对应的MIMO配置信息;基于所述UE所在的位置区域对应的MIMO配置信息,与所述UE之间采用MIMO方式进行通信。
  8. 如权利要求7所述的装置,其中,所述通信模块具体用于:
    基于所述UE所在的位置区域对应的MIMO配置信息,与所述UE之间基于空分复用的MIMO工作模式进行通信。
  9. 如权利要求7或8所述的装置,其中,所述通信模块具体用于根据以下步骤确定所述UE所在的合并后的小区中的位置区域:
    针对合并后的小区中的每个RRU,根据所述UE的发射功率和该RRU接收该UE的信号的上行接收信号强度,确定上行链路损耗值,并基于该上行链路损耗值,确定该RRU向UE传输信号的下行链路损耗值;根据该RRU的发射功率和确定的所述下行链路损耗值,确定UE接收该RRU的信号的参考信号接收功率RSRP值;确定所述UE接收各个RRU的信号的RSRP值中的最大值;若所述UE接收任一RRU的信号的RSRP值与所述最大值的差值小于或等于设定门限值,则确定该任一RRU属于覆盖所述UE所在的位置区域的RRU集合;将确定的RRU集合中所有RRU的共同覆盖区确定为所述UE所在的合并后的小区中的位置区域。
  10. 如权利要求7或8所述的装置,其中,所述通信模块具体用于根据以下步骤确定所述UE所在的合并后的小区中的位置区域:
    接收所述UE上报的各RRU参考信号到达该UE的参考信号接收功率RSRP值;确定接收的各RSRP值中的最大值;若所述UE上报的任一RRU的RSRP值与所述最大值的差值小于或等于设定门限值,则确定该任一RRU属于覆盖所述UE所在的位置区域的RRU集合;将确定的RRU集合中所有RRU的共同覆盖区确定为所述UE所在的合并后的小区中的位置区域。
PCT/CN2015/099117 2015-01-09 2015-12-28 一种基于多输入多输出mimo方式通信的方法及装置 WO2016110196A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510012551.4 2015-01-09
CN201510012551.4A CN105827283B (zh) 2015-01-09 2015-01-09 一种基于多输入多输出mimo方式通信的方法及装置

Publications (1)

Publication Number Publication Date
WO2016110196A1 true WO2016110196A1 (zh) 2016-07-14

Family

ID=56355503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099117 WO2016110196A1 (zh) 2015-01-09 2015-12-28 一种基于多输入多输出mimo方式通信的方法及装置

Country Status (2)

Country Link
CN (1) CN105827283B (zh)
WO (1) WO2016110196A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111447075B (zh) * 2019-01-17 2023-04-07 中国移动通信有限公司研究院 一种室内分布系统、部署方法和装置
CN111148133B (zh) * 2019-12-09 2023-02-28 中国联合网络通信集团有限公司 室分系统扩容方法及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013048526A1 (en) * 2011-10-01 2013-04-04 Intel Corporation Remote radio unit (rru) and base band unit (bbu)
CN103546412A (zh) * 2012-07-11 2014-01-29 华为技术有限公司 一种数据传输方法和系统
CN103684554A (zh) * 2012-09-11 2014-03-26 财团法人工业技术研究院 协作式多输入多输出无线通信方法及使用所述方法的基站

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103782523B (zh) * 2011-07-01 2017-08-01 英特尔公司 用于均匀圆形阵列(uca)的结构化码本
CN102970706B (zh) * 2011-08-29 2018-05-29 株式会社Ntt都科摩 协同反馈集的选择方法及基站
CN102958115A (zh) * 2011-08-30 2013-03-06 中兴通讯股份有限公司 信号处理方法及装置
CN103826229B (zh) * 2012-11-19 2018-08-14 中兴通讯股份有限公司 基于多个Smallcell基站进行小区合并的方法、SN、基站及系统
CN103347274B (zh) * 2013-07-04 2016-06-22 北京邮电大学 射频拉远单元的配置方法及分布式基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013048526A1 (en) * 2011-10-01 2013-04-04 Intel Corporation Remote radio unit (rru) and base band unit (bbu)
CN103546412A (zh) * 2012-07-11 2014-01-29 华为技术有限公司 一种数据传输方法和系统
CN103684554A (zh) * 2012-09-11 2014-03-26 财团法人工业技术研究院 协作式多输入多输出无线通信方法及使用所述方法的基站

Also Published As

Publication number Publication date
CN105827283B (zh) 2019-03-12
CN105827283A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
JP6798006B2 (ja) 上りリンクの送信方法
JP7321707B2 (ja) 方法、システムおよび装置
US10154496B2 (en) System and method for beamformed reference signals in three dimensional multiple input multiple output communications systems
JP6386057B2 (ja) チャネル測定方法、セルハンドオーバ方法、関係する装置、およびシステム
EP3025435B1 (en) Downtilt selection in a full dimensional multiple-input multiple-output system
US8688105B2 (en) Method for setting control multi point in wireless communication system and apparatus thereof
CN112042147B (zh) 具有多个假设的信道状态信息(csi)反馈
JP7157515B2 (ja) ユーザ装置、無線通信方法、基地局及びシステム
US20110134875A1 (en) Method for cooperative communications among base stations
US10952236B2 (en) Beam selection systems and methods
JP6583409B2 (ja) 無線通信制御方法、無線通信システム、受信装置および送信装置
US9844007B2 (en) Radio base station, user terminal and radio communication method
WO2016110196A1 (zh) 一种基于多输入多输出mimo方式通信的方法及装置
US20150092685A1 (en) Signal processing system and signal processing method
CN117044140A (zh) 用于通信的方法、设备和计算机可读存储介质
US20230328767A1 (en) Interference robust adaptive tdd configuration with multi-trp
CN117501738A (zh) 信道状态信息报告

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15876696

Country of ref document: EP

Kind code of ref document: A1