WO2021142796A1 - 通信处理方法、装置及计算机存储介质 - Google Patents

通信处理方法、装置及计算机存储介质 Download PDF

Info

Publication number
WO2021142796A1
WO2021142796A1 PCT/CN2020/072844 CN2020072844W WO2021142796A1 WO 2021142796 A1 WO2021142796 A1 WO 2021142796A1 CN 2020072844 W CN2020072844 W CN 2020072844W WO 2021142796 A1 WO2021142796 A1 WO 2021142796A1
Authority
WO
WIPO (PCT)
Prior art keywords
different
time domain
control resource
search space
same
Prior art date
Application number
PCT/CN2020/072844
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202080000137.0A priority Critical patent/CN111279778A/zh
Priority to BR112022013869A priority patent/BR112022013869A2/pt
Priority to US17/791,872 priority patent/US20230085875A1/en
Priority to JP2022543186A priority patent/JP7335452B2/ja
Priority to PCT/CN2020/072844 priority patent/WO2021142796A1/zh
Priority to KR1020227026851A priority patent/KR20220124743A/ko
Priority to EP20913836.1A priority patent/EP4093110A4/en
Publication of WO2021142796A1 publication Critical patent/WO2021142796A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to communication technology, and in particular, to a communication processing method, device, and computer storage medium.
  • 5G 5th generation mobile networks or 5th generation wireless systems, referred to as 5G) New Radio (NR) system
  • 5G 5th generation mobile networks or 5th generation wireless systems
  • NR New Radio
  • the Media Access Control (MAC) layer corresponding to each CORESET Signaling will activate only one TCI state among the multiple Transmission Configuration Indication (TCI) states of its radio resource control (Radio Resource Control, RRC) layer signaling configuration. Then when the UE receives the PDCCH, The optimal received beam (Rx beam) used when receiving the reference signal (Reference Signal, RS) corresponding to the TCI status identifier is used.
  • TCI Transmission Configuration Indication
  • RRC Radio Resource Control
  • each TRP has one or more transmit antenna panels (panel), or the base station has only one TRP and the TRP has multiple transmit panels
  • the base station can use Multiple panels send data to the same user equipment (User Equipment, UE), and the multiple panels may come from the same TRP or different TRPs of a cell, or may come from different cells.
  • the UE can use multiple panels to receive data sent by the base station. Therefore, the reliability of PDCCH needs to be further improved.
  • the present disclosure provides a communication processing method, device and computer storage medium.
  • a communication processing method applied to a network device including:
  • DCI Downlink Control Information
  • the DCI is sent to the UE through a physical downlink control channel (PDCCH).
  • PDCH physical downlink control channel
  • the method further includes:
  • a search space is configured for the UE, and the at least two time domain parameters correspond to the same search space.
  • the at least two time domain parameters correspond to different symbols in a time slot in the search space.
  • the at least two time domain parameters correspond to symbols in different time slots in the search space.
  • the method further includes:
  • a search space relative offset value is configured for the UE, where the search space relative offset value is an offset value of a second time domain parameter of the at least two time domain parameters relative to the first time domain parameter.
  • the relative offset value of the search space includes:
  • the method further includes: configuring at least two search spaces for the UE, and different time domain parameters of the at least two time domain parameters correspond to different search spaces.
  • the configuration of the search space includes the configuration of the following parameters:
  • PDCCH monitoring period PDCCH monitoring slot offset value and monitoring symbol position in the slot.
  • the method further includes:
  • a control resource set is configured for the UE, and the at least two search spaces correspond to the same control resource set.
  • the method further includes:
  • a control resource set identifier is configured for the control resource set, and the control resource set identifier is used to indicate that the receiving beams corresponding to different search spaces in the control resource set are different.
  • At least one of the PDCCH monitoring period parameter, the PDCCH monitoring slot offset parameter, and the monitoring symbol position parameter in the slot is different.
  • the method further includes:
  • At least two control resource sets are configured for the UE, and different search spaces in the at least two search spaces correspond to different control resource sets in the at least two control resource sets.
  • the frequency domain resources of the at least two control resource sets are the same.
  • the time domain resources of the at least two control resource sets are the same, and the control resource set identities or cell identities of the at least two control resource sets are different.
  • the method further includes:
  • Different receiving beams are configured for the UE for different control resource sets.
  • the different receiving beams are used for the UE to receive DCI from different cells, or DCI from different TRPs in the same cell, or DCI from different antenna panels of the same TRP.
  • the method further includes:
  • Sending configuration signaling where the configuration signaling is used to notify the UE to use different receiving beams to receive the same DCI on at least two time domain parameters.
  • the method further includes:
  • the TCI status includes the TCI status information of at least one cell, or the TCI status information of at least one TRP in a cell, or the information of at least one antenna panel that includes one TRP. TCI status information.
  • different receiving beams are used to receive the same DCI issued by the network device through the physical downlink control channel (PDCCH) under the different time domain parameters.
  • PDCCH physical downlink control channel
  • the method further includes:
  • the at least two time domain parameters correspond to different symbols in a time slot in the search space.
  • the at least two time domain parameters correspond to symbols in different time slots in the search space.
  • the method further includes:
  • the first time domain parameter in the at least two time domain parameters corresponds to the search space
  • the relative offset value of the search space is the The offset value of the second time domain parameter in the at least two time domain parameters relative to the first time domain parameter
  • the second time domain parameter of the at least two time domain parameters is determined according to the relative offset value of the search space and the search space.
  • the relative offset value of the search space includes:
  • the method further includes:
  • the configuration of the search space includes the configuration of the following parameters:
  • PDCCH monitoring period PDCCH monitoring slot offset value and monitoring symbol position in the slot.
  • the method further includes:
  • the determining a control resource set configured by the network device includes:
  • the control resource set identifier is determined, and the receiving beams corresponding to different search spaces in the control resource set are determined to be different according to the control resource set identifier.
  • At least one of the PDCCH monitoring period parameter, the PDCCH monitoring slot offset parameter, and the monitoring symbol position parameter in the slot is different.
  • the method further includes:
  • the frequency domain resources of the at least two control resource sets are the same.
  • the time domain resources of the at least two control resource sets are the same, and the control resource set identities or cell identities of the at least two control resource sets are different.
  • the method further includes:
  • the different receiving beams are used to receive DCI from different cells, or DCI from different TRPs in the same cell, or DCI from different antenna panels of the same TRP.
  • the method further includes:
  • the DCI that the network device will send under at least two time domain parameters through the PDCCH is the same.
  • the method further includes:
  • TCI transmission configuration indication
  • a communication processing apparatus applied to a network device including:
  • a configuration unit configured to configure user equipment (UE) to receive at least two time domain parameters and/or at least two receive beams of the same downlink control information (DCI);
  • UE user equipment
  • the first communication unit is configured to send the same DCI to the UE through a physical downlink control channel (PDCCH) based on the at least two time domain parameters.
  • PDCCH physical downlink control channel
  • a communication processing apparatus applied to user equipment including:
  • the determining unit is configured to determine at least two time domain parameters and/or at least two receiving beams for receiving the same downlink control information (DCI);
  • DCI downlink control information
  • the second communication unit is configured to use different receiving beams based on different time-domain parameters of the at least two time-domain parameters to receive the same transmission of the network equipment on the different time-domain parameters through the physical downlink control channel (PDCCH).
  • the DCI is configured to use different receiving beams based on different time-domain parameters of the at least two time-domain parameters to receive the same transmission of the network equipment on the different time-domain parameters through the physical downlink control channel (PDCCH).
  • the DCI is configured to use different receiving beams based on different time-domain parameters of the at least two time-domain parameters to receive the same transmission of the network equipment on the different time-domain parameters through the physical downlink control channel (PDCCH).
  • the DCI is configured to use different receiving beams based on different time-domain parameters of the at least two time-domain parameters to receive the same transmission of the network equipment on the different time-domain parameters through the physical downlink control channel (PDCCH).
  • the DCI is configured to use different receiving beams based on different time-domain parameters of the
  • a communication processing device including:
  • a memory for storing processor executable instructions
  • the processor is configured to implement any one of the foregoing communication processing methods described in the technical solution applied to the network device side by executing the executable instruction.
  • a communication processing device including:
  • a memory for storing processor executable instructions
  • the processor is configured to execute the executable instruction to implement any one of the foregoing communication processing methods applied to the UE-side technical solution.
  • a computer storage medium that stores executable instructions in the computer storage medium. After the executable instructions are executed by a processor, any one of the foregoing can be applied to the network device side.
  • a computer storage medium stores executable instructions, and after the executable instructions are executed by a processor, any one of the aforementioned technologies can be applied to the UE side.
  • the UE Configure the UE to receive at least two time domain parameters and/or at least two receive beams of the same DCI; send the DCI to the UE through the PDCCH in the at least two time domain parameters; in this way, in the at least two time domain parameters
  • the same DCI is repeatedly sent to the same UE through the PDCCH, so that the UE can use different receive beams to receive the same DCI in at least two time domain parameters, thereby improving the reliability and robustness of PDCCH communication.
  • Fig. 1 is a schematic structural diagram showing a wireless communication system according to an exemplary embodiment
  • Fig. 2 is a first flow chart showing a communication processing method according to an exemplary embodiment
  • Fig. 3 is a second flowchart of a communication processing method according to an exemplary embodiment
  • Fig. 4 is a first block diagram showing a communication processing device according to an exemplary embodiment
  • Fig. 5 is a second block diagram of a communication processing device according to an exemplary embodiment
  • Fig. 6 is a block diagram showing a device 800 for implementing communication processing according to an exemplary embodiment
  • Fig. 7 is a block diagram showing a device 900 for implementing communication processing according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • the words "if” and “if” as used herein can be interpreted as “when” or “when” or “in response to certainty”.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology.
  • the wireless communication system may include several terminals 11 and several base stations 12.
  • the terminal 11 may be a device that provides voice and/or data connectivity to the user.
  • the terminal 11 can communicate with one or more core networks via a radio access network (Radio Access Network, RAN).
  • the terminal 11 can be an Internet of Things terminal, such as a sensor device, a mobile phone (or “cellular” phone), and
  • the computer of the Internet of Things terminal for example, may be a fixed, portable, pocket-sized, handheld, built-in computer or vehicle-mounted device.
  • station Station, STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile
  • remote station remote station
  • access point remote terminal
  • access terminal access terminal
  • user device user terminal
  • user agent user agent
  • user equipment user device
  • user terminal User Equipment
  • the terminal 11 may also be a device of an unmanned aerial vehicle.
  • the terminal 11 may also be an in-vehicle device, for example, it may be a trip computer with a wireless communication function, or a wireless communication device connected to the trip computer.
  • the terminal 11 may also be a roadside device, for example, it may be a street lamp, signal lamp, or other roadside device with a wireless communication function.
  • the base station 12 may be a network side device in a wireless communication system.
  • the wireless communication system may be the 4th generation mobile communication (4G) system, also known as the Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system. Also known as New Radio (NR) system or 5G NR system.
  • the wireless communication system may also be the next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network).
  • MTC machine-type communication
  • the base station 12 may be an evolved base station (eNB) used in a 4G system.
  • the base station 12 may also be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 12 adopts a centralized distributed architecture it usually includes a centralized unit (Central Unit, CU) and at least two distributed units (Distributed Unit, DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer protocol stack; distribution
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • the unit is provided with a physical (Physical, PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation manner of the base station 12.
  • a wireless connection can be established between the base station 12 and the terminal 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as The wireless air interface is a new air interface; or, the wireless air interface may also be a wireless air interface based on a 5G-based next-generation mobile communication network technology standard.
  • an E2E (End to End) connection may also be established between the terminals 11.
  • V2V Vehicle to Vehicle
  • V2I Vehicle to Infrastructure
  • V2P Vehicle to Pedestrian communication in Vehicle to Everything (V2X) communication Waiting for the scene.
  • the terminal 11 and the base station 12 may also be vehicle-mounted devices.
  • the above-mentioned wireless communication system may further include a network management device 13.
  • the network management device 13 may be a core network device in a wireless communication system.
  • the network management device 13 may be a mobility management entity (Mobility Management Entity) in an Evolved Packet Core (EPC) network. MME).
  • the network management device may also be other core network devices, such as Serving Gate Way (SGW), Public Data Network Gate Way (PGW), policy and charging rules function unit (Policy and Charging Rules Function, PCRF) or home subscriber network side equipment (Home Subscriber Server, HSS), etc.
  • SGW Serving Gate Way
  • PGW Public Data Network Gate Way
  • PCRF Policy and Charging Rules Function
  • HSS home subscriber network side equipment
  • the implementation form of the network management device 13 is not limited in the embodiment of the present disclosure.
  • the NR system especially when the communication frequency band is above 6GHz, because the high-frequency channel attenuates quickly, in order to ensure the coverage, it is necessary to use beam-based transmission and reception.
  • the base station indicates the TCI status of type D through signaling to inform the UE of the beam to be used when receiving.
  • Each TCI state corresponds to an RS ID, which can be a non-zero power channel state information reference signal (Non-Zero Power Channel State Information-Reference Signal resource, NZP CSI-RS), or a synchronization signal block (Synchronization Signal Block, SSB), it may also be a sounding reference signal (Sounding Reference Signal, SRS).
  • NZP CSI-RS Non-Zero Power Channel State Information-Reference Signal resource
  • SSB synchronization signal block
  • SRS Sounding Reference Signal
  • the base station uses a panel to send the PDCCH to the UE.
  • the RRC signaling configures a list of TCI status for each CORESET.
  • TCI status There are multiple (for example, 64) TCI status on the list, and then MAC The signaling activates one TCI state among the multiple TCI states configured by the RRC signaling for each CORESET. Then, when the base station sends the PDCCH to the UE, the UE uses the receiving beam of the reference signal corresponding to the TCI state activated by the MAC to receive the PDCCH on the CORESET resource. Currently, the base station configures only one TCI state for the UE for the PDCCH on one CORESET resource.
  • the base station can use multiple panels (the multiple panels can be from the same TRP Or different TRPs) simultaneously send the same PDCCH to the same UE, that is, repeatedly send the PDCCH, and different cells can also use different panels to repeatedly send the PDCCH to the same UE.
  • the sending directions of different panels are different, so the UE also needs to use different panels to receive multiple PDCCHs.
  • the base station needs to indicate different TCI states to the UE. Each TCI state corresponds to each panel of the UE. A receive beam direction.
  • the signaling gives the TCI status identifier of type D, it instructs the user to use the optimal receiving beam (Rx beam) used when receiving the RS corresponding to the TCI status identifier when receiving the PDCCH, as described in Table 1.
  • Rx beam optimal receiving beam
  • the MAC signaling corresponding to each CORESET will only activate one TCI state among the multiple TCI states configured by its RRC signaling. Then the UE is receiving the CORESET.
  • the TCI state activated by the MAC is used to determine the receiving beam.
  • the base station can configure a CORESET pool index (the CORESET pool index from the same panel of the same TRP is the same as the CORESET pool index), and also configure a CORESET ID and the time domain occupied by CORESET (the time domain is only configured with symbols
  • the starting symbol position is determined by the search space (search space) and the frequency domain position, plus the TCI state activated by the MAC, that is, the space domain resource.
  • Fig. 2 is a first flow chart of a communication processing method according to an exemplary embodiment. As shown in Fig. 2, the communication processing method is used in a network device such as a base station, and includes the following steps.
  • step S11 configure the user equipment (UE) to receive at least two time domain parameters and/or at least two receive beams of the same downlink control information (DCI);
  • DCI downlink control information
  • step S12 based on the at least two time domain parameters, the DCI is sent to the UE through a physical downlink control channel (PDCCH).
  • PDCH physical downlink control channel
  • the time domain parameter may refer to the PDCCH monitoring time domain parameter that appears in one period in the search space, or may refer to the PDCCH monitoring time domain parameter that appears in each period.
  • the time domain parameter includes a time domain position.
  • the network device configures the UE to receive at least two time domain parameters and/or at least two receive beams of the same DCI, and sends the at least two time domain parameters to the UE through the PDCCH
  • the DCI in this way, the same DCI is repeatedly sent to the same UE through the PDCCH based on at least two time domain parameters, so that the UE can use different receive beams to receive the same DCI on the at least two time domain parameters, thereby improving the reliability of PDCCH communication And robustness.
  • the method further includes:
  • a search space is configured for the UE, and the at least two time domain parameters correspond to the same search space.
  • the configuration of the search space includes the configuration of the following parameters:
  • PDCCH monitoring period PDCCH monitoring slot offset value and monitoring symbol position in the slot.
  • the PDCCH monitoring period is N slots; the PDCCH monitoring slot offset value is M slots, and M is 0 to N-1; the monitoring symbol position in the slot indicates the start symbol position of CORESET, plus The number of symbols on CORESET determines the symbol position of CORESET.
  • the at least two time domain parameters correspond to different symbols in a slot in the search space.
  • the position of the monitoring symbol in the time slot is a 14-bit long sequence, that is, 14 symbols in a slot. If a symbol needs to be monitored, the bit will display "1", otherwise "0". Because it is a 14-bit sequence, the PDCCH monitoring period and the PDCCH monitoring time slot offset value can be the same, but the position of the monitoring symbol in the time slot is used to distinguish different panels as the time domain parameters for the terminal to send DCI. Take two panels as an example. The first 7bit indicates the starting symbol position of the PDCCH sent by panel#0, which corresponds to the first TCI state; the last 7bit indicates the starting symbol position of the PDCCH sent by panel#1, which corresponds to The second TCI state.
  • the number of symbols for transmitting PDCCH corresponding to each panel is the same as the number of symbols for the time domain resource configuration of CORESET corresponding to the search space.
  • 14 bits are divided into more bit sets, and each bit set corresponds to the PDCCH start symbol position indicating one panel.
  • another indication method the 14-bit sequence of monitoring symbol positions in the time slot is only used to indicate the starting symbol position of a PDCCH, but half of the symbols used in the time domain resource configuration of CORESET corresponding to the search space are used PDCCH is sent on one panel, and the other half of the symbols is used to send PDCCH on another panel. Take panel#0 and panel#1 as examples.
  • the position of the monitoring symbol in the time slot corresponding to the search space is symbol #0, and the number of symbols in the time domain resource configuration of CORESET corresponding to the search space is 4, then symbol #0 and symbol #1 is used for panel#0 to send the PDCCH for the UE, and corresponds to the first TCI state; symbols #2 and #3 are used for panel#1 to send the PDCCH for the UE, and correspond to the second TCI state.
  • the time domain symbols configured by CORESET are divided into more symbol sets, and each symbol set corresponds to one panel to send PDCCH for the terminal, and corresponds to a different TCI state. Therefore, for at least two DCIs with different time domain parameters in the same search space, at least two different receiving beams need to be configured for the terminal.
  • different panels may be different panels of the same TRP, or different panels of different TRPs, or different panels of different cells. I won't repeat it later.
  • the at least two time domain parameters are indicated by configuring a search space for the UE.
  • the at least two time domain parameters correspond to symbols in different time slots in the search space.
  • the PDCCH monitoring symbols in the first slot with PDCCH monitoring symbols are used for the first panel to send DCI for the terminal, and the second one in the slot with PDCCH monitoring symbols is used to send DCI to the terminal.
  • the PDCCH monitoring symbol is used for the second panel to send DCI to the terminal.
  • the at least two time domain parameters are indicated by configuring a search space for the UE.
  • the method further includes:
  • a search space relative offset value is configured for the UE, where the search space relative offset value is an offset value of a second time domain parameter of the at least two time domain parameters relative to the first time domain parameter.
  • the second time domain parameter is another time domain parameter except the first time domain parameter in the at least two time domain parameters.
  • the configuration of the search space includes the configuration of the following parameters:
  • PDCCH monitoring period PDCCH monitoring slot offset value and monitoring symbol position in the slot.
  • the PDCCH monitoring period is N slots;
  • the PDCCH monitoring slot offset value is M slots, and M is 0 to N-1;
  • the monitoring symbol position in the slot indicates the start symbol position of CORESET, plus The number of symbols on the CORESET determines the position of the PDCCH monitoring symbol of CORESET.
  • the relative offset value of the search space includes:
  • the relative offset value of the PDCCH monitoring period, the relative offset value of the PDCCH monitoring slot offset value are all 0, and the relative offset value of the monitoring symbol position in the slot is the number of symbols configured by CORESET, that is, two search spaces
  • the PDCCH monitoring period and the PDCCH monitoring slot offset are the same, but the starting symbol position is different. In this way, the PDCCH monitoring symbols of the two search spaces have different symbol positions in the same time slot.
  • the UE is notified to use different beams to receive the at least two time domain parameters of the same DCI.
  • the method further includes: configuring at least two search spaces for the UE, where the at least two time domain parameters Different time domain parameters correspond to different search spaces.
  • the configuration of the search space includes the configuration of the following parameters:
  • PDCCH monitoring period PDCCH monitoring slot offset value and monitoring symbol position in the slot.
  • the PDCCH monitoring period is N slots; the PDCCH monitoring slot offset value is M slots, and M is 0 to N-1; the monitoring symbol position in the slot indicates the start symbol symbol position of CORESET, Adding the symbol number of CORESET determines the position of the PDCCH monitoring symbol of CORESET.
  • the UE is notified to use different beams to receive the at least two time domain parameters of the same DCI.
  • the method further includes:
  • a control resource set is configured for the UE, and the at least two search spaces correspond to the same control resource set.
  • the method further includes:
  • a control resource set identifier is configured for the control resource set, and the control resource set identifier is used to indicate that the receiving beams corresponding to different search spaces in the control resource set are different.
  • At least one of the PDCCH monitoring period parameter, the PDCCH monitoring slot offset parameter, and the monitoring symbol position parameter in the slot is different.
  • the PDCCH monitoring period is the same, and the PDCCH monitoring slot offset is different.
  • the PDCCH monitoring period is different, and the PDCCH monitoring slot offset is different.
  • the PDCCH monitoring period is the same, the PDCCH monitoring slot offset is the same, but the position of the monitoring symbol in the slot is different.
  • the method further includes:
  • At least two control resource sets are configured for the UE, and different search spaces in the at least two search spaces correspond to different control resource sets in the at least two control resource sets.
  • the frequency domain resources of the at least two control resource sets are the same.
  • the time domain resources of the at least two control resource sets are the same, and the control resource set identities or cell identities of the at least two control resource sets are different.
  • the method further includes:
  • Different receiving beams are configured for the UE for different control resource sets.
  • the different receiving beams are used for the UE to receive DCI from different cells, or DCI from different TRPs in the same cell, or DCI from different antenna panels of the same TRP.
  • the method further includes: sending RRC (Radio Resource Control, radio resource control) signaling to configure multiple transmissions for the terminal
  • RRC Radio Resource Control, radio resource control
  • a TCI status list is configured to indicate the TCI status, and each TCI status list of the transmission configuration indication corresponds to the TCI status information of a panel; or RRC signaling configures a TCI status list for the terminal, and the TCI status list includes the TCI status information of multiple panels.
  • the method also includes: sending multiple MAC CE signaling, each MAC CE signaling activates a TCI state, and each TCI state is used by the terminal to receive DCI sent by a corresponding panel; or sending one MAC CE signaling, so The MAC CE signaling activates multiple TCI states, and each TCI state is used by the terminal to receive DCI sent by a corresponding panel.
  • the method further includes: sending RRC signaling to configure multiple transmission configuration indication TCI status lists for the terminal, Each transmission configuration indication TCI status list corresponds to the TCI status information of a panel; or, the RRC signaling configures a TCI status list for the terminal, and the TCI status list includes the TCI status information of multiple panels.
  • the method also includes: sending multiple MAC CE signaling, each MAC CE signaling activates a TCI state, and each TCI state is used by the terminal to receive DCI sent by a corresponding panel; or sending one MAC CE signaling, so The MAC CE signaling activates multiple TCI states, and each TCI state is used by the terminal to receive DCI sent by a corresponding panel.
  • the method further includes: sending RRC signaling to configure multiple transmission configuration indication TCI status lists for the terminal, each transmission configuration indication The TCI status list respectively corresponds to the TCI status information of one panel; or, the RRC signaling configures a TCI status list for the terminal, and the TCI status list includes the TCI status information of multiple panels.
  • the method also includes: sending multiple MAC CE signaling, each MAC CE signaling activates a TCI state, and each TCI state is used by the terminal to receive DCI sent by a corresponding panel; or sending one MAC CE signaling, so The MAC CE signaling activates multiple TCI states, and each TCI state is used by the terminal to receive DCI sent by a corresponding panel.
  • the method further includes:
  • Sending configuration signaling where the configuration signaling is used to notify the UE to use different receiving beams to receive the same DCI on at least two time domain parameters.
  • the configuration signaling is RRC signaling or MAC signaling; the configuration signaling may also be configured to configure the user equipment UE to receive at least two time domain parameters and/or at least two receive beams of the same downlink control information DCI For example, configure at least two receive beams for the same search space or configure different receive beams for different search spaces under the same control resource set, that is, implicitly inform the terminal that the DCI sent by different time domain parameters is the same Yes, it can be combined and received to improve reliability.
  • the method further includes:
  • the TCI status includes the TCI status information of at least one cell, or the TCI status information of at least one TRP in a cell, or the information of at least one antenna panel that includes one TRP. TCI status information.
  • the signaling including the TCI status may be RRC signaling or MAC signaling.
  • the media access control layer is used for each control resource set.
  • the MAC control element CE activates a TCI state corresponding to the control resource set in the TCI state list.
  • the TCI is activated through a MAC CE
  • the TCI state corresponding to the multiple control resource sets in the state list is configured for the UE.
  • the TCI state list includes the TCI state information of multiple panels, and the MAC layer CE activates the Multiple TCI states corresponding to the control resource set in the TCI state list.
  • a UE is configured to receive at least two time domain parameters and/or at least two receive beams of the same DCI; the at least two time domain parameters are used to send the DCI to the UE through the PDCCH; In at least two time domain parameters, the same DCI is repeatedly sent to the same UE through the PDCCH, so that the UE can use different receiving beams to receive the same DCI at the at least two time domain parameters, thereby improving the reliability and robustness of PDCCH communication.
  • Fig. 3 is a second flowchart of a communication processing method according to an exemplary embodiment. As shown in Fig. 3, the communication processing method is used in a user equipment (UE) and includes the following steps.
  • UE user equipment
  • step S21 it is determined to receive at least two time domain parameters and/or at least two receiving beams of the same downlink control information (DCI);
  • DCI downlink control information
  • step S22 based on the different time domain parameters of the at least two time domain parameters, different receiving beams are used to receive the same DCI issued by the network device through the physical downlink control channel (PDCCH) based on the different time domain parameters.
  • PDCCH physical downlink control channel
  • the communication processing method provided in this embodiment enables the UE to use different receiving beams to receive the same DCI under at least two time domain parameters, thereby improving the reliability and robustness of PDCCH communication.
  • the method further includes:
  • the UE is allowed to determine according to the search space to receive at least two time domain parameters of the same DCI sent by the network device.
  • the at least two time domain parameters correspond to different symbols in a time slot in the search space.
  • the UE is enabled to determine at least two time domain parameters of the same DCI sent by the network device according to different symbols in a time slot in the search space.
  • the at least two time domain parameters correspond to symbols in different time slots in the search space.
  • the UE is enabled to determine at least two time domain parameters of the same DCI sent by the network device according to the symbols in different time slots in the search space.
  • the method further includes:
  • the first time domain parameter in the at least two time domain parameters corresponds to the search space
  • the relative offset value of the search space is the The offset value of the second time domain parameter in the at least two time domain parameters relative to the first time domain parameter
  • the second time domain parameter of the at least two time domain parameters is determined according to the search space and the relative offset value of the search space.
  • the relative offset value of the search space includes:
  • the UE can determine the first time domain parameter of the at least two time domain parameters and the second time domain parameter other than the first time domain parameter according to the search space and the relative offset value of the search space.
  • the method further includes:
  • the configuration of the search space includes the configuration of the following parameters:
  • PDCCH monitoring period PDCCH monitoring slot offset value and monitoring symbol position in the slot.
  • the UE can determine different time domain parameters of the at least two time domain parameters according to different search spaces.
  • the method further includes:
  • the determining a control resource set configured by the network device includes:
  • the control resource set identifier is determined, and the receiving beams corresponding to different search spaces in the control resource set are determined to be different according to the control resource set identifier.
  • At least one of the PDCCH monitoring period parameter, the PDCCH monitoring slot offset parameter, and the monitoring symbol position parameter in the slot is different.
  • the UE uses different search spaces under a control resource set configured by the network device to determine that different time domain parameters in different search spaces use different receiving beams to receive DCI sent by different panels for the terminal.
  • the method further includes:
  • the frequency domain resources of the at least two control resource sets are the same.
  • the time domain resources of the at least two control resource sets are the same, and the control resource set identities or cell identities of the at least two control resource sets are different.
  • the UE uses different search spaces under multiple control resource sets configured by the network device to determine that different time domain parameters in different search spaces use different receiving beams to receive DCI sent by different panels for the terminal.
  • the method further includes:
  • the different receiving beams are used for the UE to receive DCI from different cells, or DCI from different TRPs in the same cell, or DCI from different antenna panels of the same TRP.
  • the method further includes:
  • the DCI that the network device will send through the PDCCH in at least two time domain parameters is the same.
  • the configuration signaling is RRC signaling or MAC signaling.
  • the method further includes:
  • TCI transmission configuration indication
  • the signaling including the TCI status may be RRC signaling or MAC signaling.
  • the communication processing method provided in this application can determine to receive at least two time domain parameters and/or at least two receiving beams of the same DCI; based on different time domain parameters of the at least two time domain parameters, different receiving beams are used Receive the same DCI issued by the network device through the PDCCH under the different time domain parameters; in this way, the UE can use different receiving beams to receive the same DCI under the different time domain parameters, thereby improving the reliability of PDCCH communication And robustness.
  • Fig. 4 is a first block diagram showing a communication processing device according to an exemplary embodiment.
  • the communication processing device is applied to a network device such as a base station side.
  • the device includes a configuration unit 10 and a first communication unit 20.
  • the configuration unit 10 is configured to configure the UE to receive at least two time domain parameters and/or at least two receive beams of the same DCI;
  • the first communication unit 20 is configured to send the DCI to the UE through the PDCCH based on the at least two time domain parameters.
  • the configuration unit 10 is further configured to:
  • a search space is configured for the UE, and the at least two time domain parameters correspond to the same search space.
  • the at least two time domain parameters correspond to different symbols in a slot in the search space.
  • the at least two time domain parameters correspond to symbols in different time slots in the search space.
  • the configuration unit 10 is further configured to:
  • a search space relative offset value is configured for the UE, where the search space relative offset value is an offset value of a second time domain parameter of the at least two time domain parameters relative to the first time domain parameter.
  • the relative offset value of the search space includes:
  • the configuration unit 10 is further configured to:
  • At least two search spaces are configured for the UE, and different time domain parameters in the at least two time domain parameters correspond to different search spaces.
  • the configuration of the search space includes the configuration of the following parameters:
  • PDCCH monitoring period PDCCH monitoring slot offset value and monitoring symbol position in the slot.
  • the configuration unit 10 is further configured to:
  • a control resource set is configured for the UE, and the at least two search spaces correspond to the same control resource set.
  • the configuration unit 10 is further configured to:
  • a control resource set identifier is configured for the control resource set, and the control resource set identifier is used to indicate that the receiving beams corresponding to different search spaces in the control resource set are different.
  • At least one of the PDCCH monitoring period parameter, the PDCCH monitoring slot offset parameter, and the monitoring symbol position parameter in the slot is different.
  • the configuration unit 10 is further configured to:
  • At least two control resource sets are configured for the UE, and different search spaces in the at least two search spaces correspond to different control resource sets in the at least two control resource sets.
  • the frequency domain resources of the at least two control resource sets are the same.
  • the time domain resources of the at least two control resource sets are the same, and the control resource set identities or cell identities of the at least two control resource sets are different.
  • the configuration unit 10 is further configured to:
  • Different receiving beams are configured for the UE for different control resource sets.
  • the different receiving beams are used for the UE to receive DCI from different cells, or DCI from different TRPs in the same cell, or DCI from different antenna panels of the same TRP.
  • the first communication unit 20 is further configured to:
  • Sending configuration signaling where the configuration signaling is used to notify the UE to use different receiving beams to receive the same DCI on at least two time domain parameters.
  • the first communication unit 20 is further configured to:
  • the TCI status includes the TCI status information of at least one cell, or the TCI status information of at least one TRP in a cell, or the information of at least one antenna panel including one TRP TCI status information.
  • TCI transmission configuration indication
  • the specific structures of the configuration unit 10 and the first communication unit 20 can be determined by the communication processing device or the central processing unit (CPU) and microprocessor (MCU) in the network equipment to which the communication processing device belongs. Micro Controller Unit, Digital Signal Processor (DSP, Digital Signal Processing), or Programmable Logic Device (PLC, Programmable Logic Controller), etc. are implemented.
  • DSP Digital Signal Processor
  • PLC Programmable Logic Device
  • the communication processing apparatus described in this embodiment may be set on the side of a network device such as a base station.
  • each processing module in the communication processing device of the embodiment of the present disclosure can be understood by referring to the relevant description of the communication processing method applied to the network device side.
  • the processing module may be implemented by an analog circuit that implements the functions described in the embodiments of the present disclosure, or may be implemented by running software that implements the functions described in the embodiments of the present disclosure on a network device.
  • the communication processing device described in the embodiment of the present disclosure improves the reliability and robustness of PDCCH communication.
  • Fig. 5 is a second block diagram showing a communication processing device according to an exemplary embodiment.
  • the communication processing device is applied to the UE side.
  • the device includes a determining unit 30 and a second communication unit 40.
  • the determining unit 30 is configured to determine to receive at least two time domain parameters and/or at least two receiving beams of the same DCI;
  • the second communication unit 40 is configured to use different receiving beams to receive the same DCI issued by the network device through the PDCCH under the different time domain parameters based on different time domain parameters of the at least two time domain parameters.
  • the determining unit 30 is further configured to:
  • the at least two time domain parameters correspond to different symbols in a time slot in the search space.
  • the at least two time domain parameters correspond to symbols in different time slots in the search space.
  • the determining unit 30 is further configured to:
  • the first time domain parameter in the at least two time domain parameters corresponds to the search space
  • the relative offset value of the search space is the The offset value of the second time domain parameter in the at least two time domain parameters relative to the first time domain parameter
  • the second time domain parameter of the at least two time domain parameters is determined according to the search space and the relative offset value of the search space.
  • the relative offset value of the search space includes:
  • the determining unit 30 is further configured to:
  • the configuration of the search space includes the configuration of the following parameters:
  • PDCCH monitoring period PDCCH monitoring slot offset value and monitoring symbol position in the slot.
  • the determining unit 30 is further configured to:
  • the determining unit 30 is further configured to:
  • the control resource set identifier is determined, and the receiving beams corresponding to different search spaces in the control resource set are determined to be different according to the control resource set identifier.
  • At least one of the PDCCH monitoring period parameter, the PDCCH monitoring slot offset parameter, and the monitoring symbol position parameter in the slot is different.
  • the determining unit 30 is further configured to:
  • the frequency domain resources of the at least two control resource sets are the same.
  • the time domain resources of the at least two control resource sets are the same, and the control resource set identities or cell identities of the at least two control resource sets are different.
  • the determining unit 30 is further configured to:
  • the different receiving beams are used for the UE to receive DCI from different cells, or DCI from different TRPs in the same cell, or DCI from different antenna panels of the same TRP.
  • the determining unit 30 is further configured to:
  • the DCI that the network device will send through the PDCCH in at least two time domain parameters is the same.
  • the second communication unit 40 is further configured to:
  • TCI transmission configuration indication
  • the specific structures of the aforementioned determining unit 30 and the second communication unit 40 can be implemented by the CPU, MCU, DSP, or PLC in the communication processing device or the UE to which the communication processing device belongs.
  • the communication processing apparatus described in this embodiment may be set on the UE side.
  • each processing module in the communication processing device of the embodiment of the present disclosure can be understood by referring to the relevant description of the communication processing method applied to the UE side.
  • the module may be implemented by an analog circuit that implements the functions described in the embodiments of the present disclosure, or may be implemented by running software that implements the functions described in the embodiments of the present disclosure on the terminal.
  • the communication processing device described in the embodiment of the present disclosure can improve the reliability and robustness of PDCCH communication.
  • Fig. 6 is a block diagram showing a device 800 for implementing communication processing according to an exemplary embodiment.
  • the device 800 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the device 800 may include one or more of the following components: a processing component 802, a memory 804, a power component 806, a multimedia component 808, an audio component 810, an input/output (I/O, Input/Output) interface 812, The sensor component 814, and the communication component 816.
  • a processing component 802 a memory 804, a power component 806, a multimedia component 808, an audio component 810, an input/output (I/O, Input/Output) interface 812, The sensor component 814, and the communication component 816.
  • the processing component 802 generally controls the overall operations of the device 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 802 may include one or more modules to facilitate the interaction between the processing component 802 and other components.
  • the processing component 802 may include a multimedia module to facilitate the interaction between the multimedia component 808 and the processing component 802.
  • the memory 804 is configured to store various types of data to support operations in the device 800. Examples of these data include instructions for any application or method operating on the device 800, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (Static Random-Access Memory, SRAM), electrically erasable programmable read-only memory (Electrically erasable programmable read-only memory). -Erasable Programmable Read Only Memory, EEPROM, Erasable Programmable Read Only Memory (EPROM), Programmable Read-only Memory (PROM), Read Only Memory (Read Only Memory) , ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EPROM Erasable Programmable Read Only Memory
  • PROM Programmable Read-only Memory
  • Read Only Memory Read Only Memory
  • the power component 806 provides power to various components of the device 800.
  • the power component 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the device 800.
  • the multimedia component 808 includes a screen that provides an output interface between the device 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (microphone, MIC for short).
  • the microphone is configured to receive external audio signals.
  • the received audio signal may be further stored in the memory 804 or transmitted via the communication component 816.
  • the audio component 810 further includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module.
  • the above-mentioned peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 814 includes one or more sensors for providing the device 800 with various aspects of status assessment.
  • the sensor component 814 can detect the open/close state of the device 800 and the relative positioning of components.
  • the component is the display and the keypad of the device 800.
  • the sensor component 814 can also detect the position change of the device 800 or a component of the device 800. , The presence or absence of contact between the user and the device 800, the orientation or acceleration/deceleration of the device 800, and the temperature change of the device 800.
  • the sensor component 814 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 814 may also include a light sensor, such as a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS) or a charge-coupled device (Charge-coupled Device, CCD) image sensor for use in imaging applications.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge-coupled Device
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the device 800 and other devices.
  • the device 800 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 further includes a Near Field Communication (NFC) module to facilitate short-range communication.
  • NFC Near Field Communication
  • the NFC module can be based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (Blue Tooth, BT) technology and Other technologies to achieve.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • the apparatus 800 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (Digital Signal Processor, DSP), and digital signal processing devices (Digital Signal Processing Device, DSPD), programmable logic device (Programmable Logic Device, PLD), Field Programmable Gate Array (Field Programmable Gate Array, FPGA), controller, microcontroller, microprocessor or other electronic components to implement the above applications Communication processing method on the UE side.
  • ASIC application specific integrated circuits
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD programmable logic device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic components to implement the above applications Communication processing method on the UE side.
  • a non-transitory computer storage medium including executable instructions, such as a memory 804 including executable instructions.
  • the executable instructions can be executed by the processor 820 of the device 800 to complete the foregoing method.
  • the non-transitory computer storage medium may be ROM, random access memory (Random Access Memory, RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • Fig. 7 is a block diagram showing a device 900 for implementing communication processing according to an exemplary embodiment.
  • the device 900 may be provided as a server.
  • the apparatus 900 includes a processing component 922, which further includes one or more processors, and a memory resource represented by a memory 932, for storing instructions that can be executed by the processing component 922, such as an application program.
  • the application program stored in the memory 932 may include one or more modules each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to execute the aforementioned communication processing method applied to the network device side.
  • the device 900 may also include a power supply component 926 configured to perform power management of the device 900, a wired or wireless network interface 950 configured to connect the device 900 to a network, and an input output (I/O) interface 958.
  • the device 900 can operate based on an operating system stored in the memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Computer And Data Communications (AREA)

Abstract

本公开实施例公开了一种通信处理方法、装置以及计算机存储介质,其中,应用于网络设备的通信处理方法,包括:配置用户设备UE接收同一下行控制信息DCI的至少两个时域参数和/或至少两个接收波束;基于所述至少两个时域参数,通过物理下行控制信道PDCCH向所述UE发送所述DCI。

Description

通信处理方法、装置及计算机存储介质 技术领域
本公开涉及通信技术,尤其涉及一种通信处理方法、装置及计算机存储介质。
背景技术
在第5代移动通信技术(5th generation mobile networks或5th generation wireless systems,简称5G)新空口(New Radio,NR)系统中,特别是通信频段在6GHz以上时,由于高频信道衰减较快,为了保证覆盖范围,需要使用基于波束(beam)的发送和接收。
相关技术中,针对用于物理下行控制信道(Physical Downlink Control Channel,PDCCH)发送的控制资源集合(Control resource set,CORESET)而言,每个CORESET对应的介质访问控制层(Media Access Control,MAC)信令,只会相应的激活其无线资源控制(Radio Resource Control,RRC)层信令配置的多个传输配置指示(Transmission Configuration Indication,TCI)状态中的一个TCI状态,那么UE接收该PDCCH时,使用接收该TCI状态标识对应的参考信号(Reference Signal,RS)时所使用的最优接收光束(Rx beam)。当基站有多个传输接收点(Transmitter Receiver Point,TRP)、每个TRP又有一个或多个发送天线面板(panel),或者基站只有一个TRP、该TRP有多个发送panel时,基站可以使用多个panel向同一个用户设备(User Equipment,UE)发送数据,该多个panel可以来自一个小区的同一个TRP或不同的TRP,也可以来自不同小区。同理,当UE也有多个panel时,UE可以使用多个panel接收基站发送的数据。因此,PDCCH的可靠性有待进一步提高。
发明内容
本公开提供一种通信处理方法、装置及计算机存储介质。
根据本公开实施例的第一方面,提供一种通信处理方法,应用于网络设备,所述方法包括:
配置用户设备(UE)接收同一下行控制信息(Downlink Control Information,DCI)的至少两个时域参数和/或至少两个接收波束;
基于所述至少两个时域参数,通过物理下行控制信道(PDCCH)向所述UE发送所述DCI。
上述方案中,所述方法还包括:
为所述UE配置一个搜索空间,所述至少两个时域参数对应同一个所述搜索空间。
上述方案中,所述至少两个时域参数对应所述搜索空间中一个时隙内的不同符号。
上述方案中,所述至少两个时域参数对应所述搜索空间中不同时隙中的符号。
上述方案中,所述方法还包括:
为所述UE配置一个搜索空间,所述至少两个时域参数中的第一时域参数对应所述搜索空间;
为所述UE配置搜索空间相对偏移值,所述搜索空间相对偏移值是所述至少两个时域参数中的第二时域参数相对所述第一时域参数的偏移值。
上述方案中,所述搜索空间相对偏移值,包括:
PDCCH监测周期的相对偏移值,PDCCH监测时隙偏移值的相对偏移值和时隙内监测符号位置的相对偏移值中的一项或多项组合。
上述方案中,所述方法还包括:为所述UE配置至少两个搜索空间,所述至少两个时域参数中不同时域参数对应不同的搜索空间。
上述方案中,所述搜索空间的配置包括如下参数的配置:
PDCCH监测周期,PDCCH监测时隙偏移值和时隙内监测符号位置。
上述方案中,所述方法还包括:
为所述UE配置一个控制资源集合,所述至少两个搜索空间对应同一个所述控制资源集合。
上述方案中,所述方法还包括:
为所述控制资源集合配置控制资源集合标识,所述控制资源集合标识用于表示所述控制资源集合内的不同搜索空间对应的接收波束不同。
上述方案中,在所述至少两个搜索空间的配置参数中,PDCCH监测周期参数、PDCCH监测时隙偏移量参数和时隙内监测符号位置参数中的至少有一种参数不同。
上述方案中,所述方法还包括:
为所述UE配置至少两个控制资源集合,所述至少两个搜索空间中不同的搜索空间,对应所述至少两个控制资源集合中的不同的控制资源集合。
上述方案中,所述至少两个控制资源集合的频域资源相同。
上述方案中,所述至少两个控制资源集合的时域资源相同,所述至少两个控制资源集合的控制资源集合标识或小区标识不同。
上述方案中,所述方法还包括:
针对同一搜索空间为所述UE配置至少两个不同的接收波束,或
针对同一控制资源集合下的不同搜索空间为所述UE配置不同的接收波束,或
针对不同控制资源集合为所述UE配置不同的接收波束。
上述方案中,不同的所述接收波束,用于供所述UE接收来自不同小区的DCI,或来自同一小区的不同TRP的DCI,或来自同一TRP的不同天线面板的DCI。
上述方案中,所述方法还包括:
发送配置信令,所述配置信令用于通知所述UE将使用不同的接收波束在至少两个时域参数接收的DCI相同。
上述方案中,所述方法还包括:
下发包含传输配置指示(TCI)状态的信令,所述TCI状态包括至少一个小区的TCI状态信息,或包括一个小区内至少一个TRP的TCI状态信息,或包括一个TRP的至少一个天线面板的TCI状态信息。
根据本公开实施例的第二方面,提供了一种通信处理方法,应用于用户设备(UE),所述方法包括:
确定接收同一下行控制信息(DCI)的至少两个时域参数和/或至少两个接收波束;
基于在所述至少两个时域参数的不同时域参数,使用不同的接收波束接收网络设备在不同所述时域参数下通过物理下行控制信道(PDCCH)下发的同一所述DCI。
上述方案中,所述方法还包括:
确定所述网络设备配置的一个搜索空间,所述至少两个时域参数对应同一个所述搜索空间。
上述方案中,所述至少两个时域参数对应所述搜索空间中一个时隙内的不同符号。
上述方案中,所述至少两个时域参数对应所述搜索空间中不同时隙中的符号。
上述方案中,所述方法还包括:
确定所述网络设备配置的搜索空间相对偏移值以及一个搜索空间,所述至少两个时域参数中的第一时域参数对应所述搜索空间,所述搜索空间相对偏移值是所述至少两个时域参数中的第二时域参数相对所述第一时域参数的偏移值;
根据所述搜索空间和所述搜索空间相对偏移值确定所述至少两个时域 参数中的第二时域参数。
上述方案中,所述搜索空间相对偏移值,包括:
PDCCH监测周期的相对偏移值,PDCCH监测时隙偏移值的相对偏移值和时隙内监测符号位置的相对偏移值中的一项或多项组合。
上述方案中,所述方法还包括:
确定所述网络设备配置的至少两个搜索空间,所述至少两个时域参数中不同时域参数对应不同的搜索空间。
上述方案中,所述搜索空间的配置包括如下参数的配置:
PDCCH监测周期,PDCCH监测时隙偏移值和时隙内监测符号位置。
上述方案中,所述方法还包括:
确定所述网络设备配置的一个控制资源集合,所述至少两个搜索空间对应同一个所述控制资源集合。
上述方案中,所述确定所述网络设备配置的一个控制资源集合,包括:
确定控制资源集合标识,根据控制资源集合标识确定所述控制资源集合内的不同搜索空间对应的接收波束不同。
上述方案中,在所述至少两个搜索空间的配置参数中,PDCCH监测周期参数、PDCCH监测时隙偏移量参数和时隙内监测符号位置参数中的至少有一种参数不同。
上述方案中,所述方法还包括:
确定所述网络设备配置的至少两个控制资源集合,所述至少两个搜索空间中不同的搜索空间,对应所述至少两个控制资源集合中的不同的控制资源集合。
上述方案中,所述至少两个控制资源集合的频域资源相同。
上述方案中,所述至少两个控制资源集合的时域资源相同,所述至少两个控制资源集合的控制资源集合标识或小区标识不同。
上述方案中,所述方法还包括:
确定所述网络设备针对同一搜索空间配置的至少两个不同的接收波束,或
确定所述网络设备针对同一控制资源集合下的不同搜索空间配置的不同的接收波束,或
确定所述网络设备针对不同控制资源集合配置的不同的接收波束。
上述方案中,不同的所述接收波束,用于接收来自不同小区的DCI,或来自同一小区的不同TRP的DCI,或来自同一TRP的不同天线面板的DCI。
上述方案中,所述方法还包括:
根据配置信令,确定所述网络设备将通过PDCCH在至少两个时域参数下发送的DCI相同。
上述方案中,所述方法还包括:
接收包含传输配置指示(TCI)状态的信令,根据TCI状态确定接收波束。
根据本公开实施例的第三方面,提供了一种通信处理装置,应用于网络设备,包括:
配置单元,被配置为配置用户设备(UE)接收同一下行控制信息(DCI)的至少两个时域参数和/或至少两个接收波束;
第一通信单元,被配置为基于所述至少两个时域参数,通过物理下行控制信道(PDCCH)向所述UE发送同一所述DCI。
根据本公开实施例的第四方面,提供了一种通信处理装置,应用于用户设备(UE),包括:
确定单元,被配置为确定接收同一下行控制信息(DCI)的至少两个时域参数和/或至少两个接收波束;
第二通信单元,被配置为基于所述至少两个时域参数的不同时域参数,使用不同的接收波束接收网络设备在所述不同时域参数通过物理下行控制 信道(PDCCH)下发的同一所述DCI。
根据本公开实施例的第五方面,提供一种通信处理装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为通过执行所述可执行指令,实现前述任意一个应用于网络设备侧技术方案所述的通信处理方法。
根据本公开实施例的第六方面,提供一种通信处理装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为通过执行所述可执行指令,实现前述任意一个应用于UE侧技术方案所述的通信处理方法。
根据本公开实施例的第七方面,提供一种计算机存储介质,所述计算机存储介质中存储有可执行指令,所述可执行指令被处理器执行之后,能够实现前述任意一个应用于网络设备侧技术方案所述的通信处理方法。
根据本公开实施例的第八方面,提供一种计算机存储介质,所述计算机存储介质中存储有可执行指令,所述可执行指令被处理器执行之后,能够实现前述任意一个应用于UE侧技术方案所述的通信处理方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
配置UE接收同一DCI的至少两个时域参数和/或至少两个接收波束;在所述至少两个时域参数通过PDCCH向所述UE发送所述DCI;如此,在至少两个时域参数通过PDCCH重复发送同一DCI给同一UE,使得UE在至少两个时域参数可以使用不同的接收波束来接收同一DCI,从而提高PDCCH通信的可靠性和鲁棒性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种通信处理方法的流程图一;
图3是根据一示例性实施例示出的一种通信处理方法的流程图二;
图4是根据一示例性实施例示出的一种通信处理装置的框图一;
图5是根据一示例性实施例示出的一种通信处理装置的框图二;
图6是根据一示例性实施例示出的一种用于实现通信处理的装置800的框图;
图7是根据一示例性实施例示出的一种用于实现通信处理的装置900的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“一个”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类 型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个终端11以及若干个基站12。
其中,终端11可以是指向用户提供语音和/或数据连通性的设备。终端11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端11可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(User Equipment,UE)。或者,终端11也可以是无人飞行器的设备。或者,终端11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,终端11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(New Radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入 网)。或者,机器类型通信(Machine-Type Communication,MTC)系统。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(Central Unit,CU)和至少两个分布单元(Distributed Unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和终端11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(Vehicle to Everything,V2X)中的V2V(Vehicle to Vehicle,车对车)通信、V2I(Vehicle to Infrastructure,车对路边设备)通信和V2P(Vehicle to Pedestrian,车对人)通信等场景。而终端11和基站12也可能都是车载设备。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving Gate Way,SGW)、公用数据网网关(Public Data Network Gate Way,PGW)、策略与计费规则功能单元 (Policy and Charging Rules Function,PCRF)或者归属签约用户网络侧设备(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
在NR系统中,特别是通信频段在6GHz以上时,由于高频信道衰减较快,为了保证覆盖范围,需要使用基于波束(beam)的发送和接收。
目前对于基于波束的接收,基站通过信令指示type D的TCI状态,告知UE接收时需要使用的波束。每个TCI状态对应一个RS ID,该RS可以是非零功率信道状态信息参考信号(Non-Zero Power Channel State Information-Reference Signal resource,NZP CSI-RS),也可以是同步信号块(Synchronization Signal Block,SSB),还可以是探测参考信号(Sounding Reference Signal,SRS)。目前考虑的情况都是基站使用一个panel向UE发送PDCCH,对于PDCCH的TCI状态,是RRC信令针对每个CORESET配置一个TCI状态的list,list上有多个(比如64)TCI状态,然后MAC信令针对每个CORESET激活RRC信令配置的多个TCI状态中的一个TCI状态。那么基站在给UE发送PDCCH时,UE则使用MAC激活的那个TCI状态对应的参考信号的接收波束来接收该CORESET资源上的PDCCH。目前来说,基站针对一个CORESET资源上的PDCCH只给UE配置一个TCI状态。
当基站有多个TRP、每个TRP又有一个或多个发送panel,或者基站只有一个TRP、该TRP有多个发送panel时,基站可以使用多个panel(该多个panel可以来自同一个TRP或不同的TRP)同时向同一个UE发送同一个PDCCH,即重复发送PDCCH,而且不同小区也可以使用不同的panel向同一UE重复发送PDCCH。这种情况下,不同panel的发送方向不一样,所以UE也需要使用不同的panel来接收多个PDCCH,那么基站需要指示不同的TCI状态给UE,每个TCI状态对应UE的每个panel上的一个接收波束方向。
当信令给出type D的TCI状态标识时,指示用户接收该PDCCH时,使用接收该TCI状态标识对应的RS时使用的最优接收波束(Rx beam),如表1所述。
Figure PCTCN2020072844-appb-000001
表1
相关技术中,针对用于PDCCH发送的CORESET而言,每个CORESET对应的MAC信令只会相应的激活其RRC信令配置的多个TCI状态中的一个TCI状态,那么UE在接收该CORESET上发送的PDCCH时,就使用MAC激活的这一个TCI状态来确定接收波束。
基站在给UE配置CORESET时,可以配置一个CORESET池索引(来自同一个TRP的同一panel的CORESET的CORESET池索引一样),还配置一个CORESET ID,以及CORESET占用的时域(时域只配置了符号数,起始符号位置由搜索空间(search space)确定)和频域位置,再加上MAC激活的TCI状态即空域资源。
基于上述无线通信系统,如何提高PDCCH的可靠性,提出本公开方法各个实施例。
图2是根据一示例性实施例示出的一种通信处理方法的流程图一,如图2所示,该通信处理方法用于网络设备如基站中,包括以下步骤。
在步骤S11中,配置用户设备(UE)接收同一下行控制信息(DCI)的至少两个时域参数和/或至少两个接收波束;
在步骤S12中,基于所述至少两个时域参数,通过物理下行控制信道(PDCCH)向所述UE发送所述DCI。
本实施例中,所述时域参数可以指搜索空间(search space)中其中一个周期出现的PDCCH监测时域参数,也可以指每个周期出现的PDCCH监测时域参数。
本实施例中,所述时域参数包括时域位置。
本公开实施例所述技术方案,网络设备为UE配置接收同一DCI的至少两个时域参数和/或至少两个接收波束,并在所述至少两个时域参数通过PDCCH向所述UE发送所述DCI;如此,基于至少两个时域参数通过PDCCH重复发送同一DCI给同一UE,使得UE在至少两个时域参数可以使用不同的接收波束来接收同一DCI,从而提高PDCCH通信的可靠性和鲁棒性。
考虑到所述至少两个时域参数可以属于同一个搜索空间,在一些实施例中,上述方案中,所述方法还包括:
为所述UE配置一个搜索空间,所述至少两个时域参数对应同一个所述搜索空间。
其中,所述搜索空间的配置包括如下参数的配置:
PDCCH监测周期,PDCCH监测时隙偏移值和时隙内监测符号位置。
其中,PDCCH监测周期为N个时隙(slot);PDCCH监测时隙偏移值为M个slot,M为0~N-1;时隙内监测符号位置指示了CORESET的起始符号位置,加上CORESET的符号数即确定了CORESET的符号位置。
在一些实施方式中,所述至少两个时域参数对应所述搜索空间中一个时隙内的不同符号。
时隙内监测符号位置是一个14个bit长的序列,即1个slot内的14个符号。如果某个符号需要监测,则bit位显示“1”,否则“0”。因为是14bit的序列,可以PDCCH监测周期和PDCCH监测时隙偏移值相同,但是用时隙内监测符号位置来区分不同的panel为终端发送DCI的时域参数。以两个 panel为例,前面7bit指示的是panel#0发送PDCCH的起始符号位置,即对应第一个TCI状态;后面7bit指示的是panel#1发送的PDCCH的起始符号位置,即对应第二个TCI状态。而每个panel对应的发送PDCCH的符号数与该搜索空间对应的CORESET的时域资源配置的符号数一样。当有多于两个panel时,将14bit分为更多个bit集合,每个bit集合对应指示一个panel的PDCCH起始符号位置。或者另一个指示方法:时隙内监测符号位置14个bit长的序列还是只用来指示一个PDCCH的起始符号位置,但该搜索空间对应的CORESET的时域资源配置的符号中,一半符号用于一个panel发送PDCCH,另一半符号用于另一个panel发送PDCCH。以panel#0和panel#1为例,比如搜索空间对应的时隙内监测符号位置为符号#0,而搜索空间对应的CORESET的时域资源配置的符号数为4,那么符号#0和符号#1用于panel#0为UE发送PDCCH,且对应第一个TCI状态;符号#2和符号#3用于panel#1为UE发送PDCCH,且对应第二个TCI状态。当有多于两个panel时,将CORESET配置的时域符号分成更多个符号集合,每个符号集合对应用于一个panel为终端发送PDCCH,且对应一个不同的TCI状态。所以针对同一搜索空间的至少两个不同时域参数的DCI,需要为终端配置至少两个不同的接收波束。
其中,不同的panel可能为同一TRP的不同panel,或不同TRP的不同panel,或不同小区的不同panel。后文不再赘述。
如此,通过为UE配置一个搜索空间的方式来指示所述至少两个时域参数。
在另一些实施方式中,所述至少两个时域参数对应所述搜索空间中不同时隙中的符号。
示例性地,当PDCCH监测符号在不同slot出现时,第一个有PDCCH监测符号的slot内的PDCCH监测符号用于第一个panel为终端发送DCI,第二个有PDCCH监测符号的slot内的PDCCH监测符号用于第二个panel 为终端发送DCI。当有多于两个panel时,每个panel对应的用于为终端发送PDCCH的slot轮询出现。所以针对同一搜索空间的至少两个不同时域参数的DCI,需要为终端配置至少两个不同的接收波束。
如此,通过为UE配置一个搜索空间的方式来指示所述至少两个时域参数。
考虑到所述至少两个时域参数可能属于不同搜索空间但属于同一个CORESET,因此,在一些实施例中,所述方法还包括:
为所述UE配置一个搜索空间,所述至少两个时域参数中的第一时域参数对应所述搜索空间;
为所述UE配置搜索空间相对偏移值,所述搜索空间相对偏移值是所述至少两个时域参数中的第二时域参数相对所述第一时域参数的偏移值。
本实施例中,所述第二时域参数是除所述至少两个时域参数中除所述第一时域参数之外的其他时域参数。
其中,所述搜索空间的配置包括如下参数的配置:
PDCCH监测周期,PDCCH监测时隙偏移值和时隙内监测符号位置。
其中,PDCCH监测周期为N个时隙(slot);PDCCH监测时隙偏移值为M个slot,M为0~N-1;时隙内监测符号位置指示了CORESET的起始符号位置,加上CORESET的符号数即确定了CORESET的PDCCH监测符号位置。
在一些实施方式中,所述搜索空间相对偏移值,包括:
PDCCH监测周期的相对偏移值,PDCCH监测时隙偏移值的相对偏移值和时隙内监测符号位置的相对偏移值中的一项或多项组合。
比如PDCCH监测周期的相对偏移值,PDCCH监测时隙偏移值的相对偏移值都为0,而时隙内监测符号位置的相对偏移值为CORESET配置的符号数,即两个搜索空间的PDCCH监测周期和PDCCH监测时隙偏移量都相同,只是起始符号位置不同。从而实现了两个搜索空间的PDCCH监测符号 在同一时隙的不同符号位置。
如此,通过为UE配置一个搜索空间和搜索空间相对偏移值的方式,告知UE使用不同波束接收同一DCI的所述至少两个时域参数。
考虑到所述至少两个时域参数可能属于不同搜索空间,因此,在一些实施例中,所述方法还包括:为所述UE配置至少两个搜索空间,所述至少两个时域参数中不同时域参数对应不同的搜索空间。
其中,所述搜索空间的配置包括如下参数的配置:
PDCCH监测周期,PDCCH监测时隙偏移值和时隙内监测符号位置。
其中,PDCCH监测周期为N个时隙(slot);PDCCH监测时隙偏移值为M个slot,M为0~N-1;时隙内监测符号位置指示了CORESET的起始符号符号位置,加上CORESET的符号数即确定了CORESET的PDCCH监测符号位置。
如此,通过为UE配置不同的搜索空间的方式,告知UE使用不同波束接收同一DCI的所述至少两个时域参数。
考虑到CORESET配置中只给出了占用的符号数,而在哪个slot以及在slot内的起始符号位置都是由搜索空间配置的PDCCH监测周期,PDCCH监测时隙偏移值和时隙内监测符号位置三个参数来确定的,所以可以不同的panel对应不同时域参数的搜索空间,因此,在一些实施例中,所述方法还包括:
为所述UE配置一个控制资源集合,所述至少两个搜索空间对应同一个所述控制资源集合。
上述方案中,所述方法还包括:
为所述控制资源集合配置控制资源集合标识,所述控制资源集合标识用于表示所述控制资源集合内的不同搜索空间对应的接收波束不同。
上述方案中,在所述至少两个搜索空间的配置参数中,PDCCH监测周期参数、PDCCH监测时隙偏移量参数和时隙内监测符号位置参数中的至少 有一种参数不同。
示例性地,PDCCH监测周期相同,PDCCH监测时隙偏移量不同。
示例性地,PDCCH监测周期不同,PDCCH监测时隙偏移量不同。
示例性地,PDCCH监测周期相同,PDCCH监测时隙偏移量相同,但时隙内监测符号位置不同。
如此,通过为UE配置一个控制资源集合中的两个搜索空间、且针对不同搜索空间配置不同的TCI状态的方式,即可实现不同的panel对应使用不同搜索空间的不同时域参数来为UE发送同一DCI。
考虑到CORESET配置中只给出了占用的符号数,而在哪个slot以及在slot内的起始符号位置都是由搜索空间配置的PDCCH监测周期,PDCCH监测时隙偏移值和时隙内监测符号位置三个参数来确定的,所以可以不同的panel对应不同搜索空间的不同时域参数,因此,在一些实施例中,所述方法还包括:
为所述UE配置至少两个控制资源集合,所述至少两个搜索空间中不同的搜索空间,对应所述至少两个控制资源集合中的不同的控制资源集合。
也就是说,不同搜索空间对应不同的控制资源集合。
上述方案中,所述至少两个控制资源集合的频域资源相同。
上述方案中,所述至少两个控制资源集合的时域资源相同,所述至少两个控制资源集合的控制资源集合标识或小区标识不同。
如此,通过为UE配置多个控制资源集合的方式,且针对不同控制资源集合配置不同的TCI状态,即可实现不同的panel对应使用不同控制资源集合的不同搜索空间的不同时域参数为终端发送同一DCI。
考虑到为了使UE在至少两个时域参数使用不同的接收波束来接收同一DCI,在一些实施例中,所述方法还包括:
针对同一搜索空间为所述UE配置至少两个不同的接收波束,或
针对同一控制资源集合下的不同搜索空间为所述UE配置不同的接收 波束,或
针对不同控制资源集合为所述UE配置不同的接收波束。
上述方案中,不同的所述接收波束,用于供所述UE接收来自不同小区的DCI,或来自同一小区的不同TRP的DCI,或来自同一TRP的不同天线面板的DCI。
针对同一搜索空间为所述UE配置至少两个不同的接收波束情况下,在一些实施方式中,所述方法还包括:发送RRC(Radio Resource Control,无线资源控制)信令为终端配置多个传输配置指示TCI状态列表,每个传输配置指示TCI状态列表分别对应一个panel的TCI状态信息;或者,RRC信令为终端配置一个TCI状态列表,所述TCI状态列表包括多个panel的TCI状态信息。所述方法还包括:发送多个MAC CE信令,每个MAC CE信令激活一个TCI状态,每个TCI状态用于终端接收对应的一个panel发送的DCI;或者发送一个MAC CE信令,所述MAC CE信令激活多个TCI状态,每个TCI状态用于终端接收对应的一个panel发送的DCI。
针对同一控制资源集合下的不同搜索空间为所述UE配置不同的接收波束情况下,在一些实施方式中,所述方法还包括:发送RRC信令为终端配置多个传输配置指示TCI状态列表,每个传输配置指示TCI状态列表分别对应一个panel的TCI状态信息;或者,RRC信令为终端配置一个TCI状态列表,所述TCI状态列表包括多个panel的TCI状态信息。所述方法还包括:发送多个MAC CE信令,每个MAC CE信令激活一个TCI状态,每个TCI状态用于终端接收对应的一个panel发送的DCI;或者发送一个MAC CE信令,所述MAC CE信令激活多个TCI状态,每个TCI状态用于终端接收对应的一个panel发送的DCI。
针对不同控制资源集合为所述UE配置不同的接收波束情况下,在一些实施方式中,所述方法还包括:发送RRC信令为终端配置多个传输配置指示TCI状态列表,每个传输配置指示TCI状态列表分别对应一个panel的 TCI状态信息;或者,RRC信令为终端配置一个TCI状态列表,所述TCI状态列表包括多个panel的TCI状态信息。所述方法还包括:发送多个MAC CE信令,每个MAC CE信令激活一个TCI状态,每个TCI状态用于终端接收对应的一个panel发送的DCI;或者发送一个MAC CE信令,所述MAC CE信令激活多个TCI状态,每个TCI状态用于终端接收对应的一个panel发送的DCI。
为了告知UE具体的配置信息,上述方案中,所述方法还包括:
发送配置信令,所述配置信令用于通知所述UE将使用不同的接收波束在至少两个时域参数接收的DCI相同。
示例性地,所述配置信令为RRC信令或MAC信令;该配置信令还可以为配置用户设备UE接收同一下行控制信息DCI的至少两个时域参数和/或至少两个接收波束的配置信令,比如针对同一搜索空间配置的至少两个接收波束或针对同一控制资源集合下的不同搜索空间配置不同的接收波束,即隐式的告知终端,不同时域参数发送的DCI是相同的,是可以进行合并接收来提高可靠性的。
为了使UE确定接收波束,上述方案中,所述方法还包括:
下发包含传输配置指示(TCI)状态的信令,所述TCI状态包括至少一个小区的TCI状态信息,或包括一个小区内至少一个TRP的TCI状态信息,或包括一个TRP的至少一个天线面板的TCI状态信息。
示例性地,包含TCI状态的信令可以是RRC信令,还可以是MAC信令。
示例性地,在为所述UE配置多个控制资源集合,且为每个所述控制资源集合分别配置一个传输配置指示TCI状态列表情况下,对于每个控制资源集合,分别通过介质访问控制层MAC控制元素CE激活所述TCI状态列表中与所述控制资源集合对应的一个TCI状态。
示例性地,在为所述UE配置多个控制资源集合,且为所述多个控制资 源集合配置一个TCI状态列表情况下,对于所述多个控制资源集合,通过一个MAC CE激活所述TCI状态列表中所述多个控制资源集合对应的TCI状态。
示例性地,在为所述UE配置一个控制资源集合,且为所述控制资源集合配置一个TCI状态列表,所述TCI状态列表包括多个panel的TCI状态信息,通过一个MAC层CE激活所述TCI状态列表中与所述控制资源集合对应的多个TCI状态。
本申请提供的通信处理方法,配置UE接收同一DCI的至少两个时域参数和/或至少两个接收波束;在所述至少两个时域参数通过PDCCH向所述UE发送所述DCI;如此,在至少两个时域参数通过PDCCH重复发送同一DCI给同一UE,使得UE在至少两个时域参数可以使用不同的接收波束来接收同一DCI,从而提高PDCCH通信的可靠性和鲁棒性。
图3是根据一示例性实施例示出的一种通信处理方法的流程图二,如图3所示,该通信处理方法用于用户设备(UE)中,包括以下步骤。
在步骤S21中,确定接收同一下行控制信息(DCI)的至少两个时域参数和/或至少两个接收波束;
在步骤S22中,基于所述至少两个时域参数的不同时域参数,使用不同的接收波束接收网络设备基于所述不同时域参数通过物理下行控制信道(PDCCH)下发的同一所述DCI。
本实施例提供的通信处理方法,使得UE在至少两个时域参数下可以使用不同的接收波束来接收同一DCI,从而提高PDCCH通信的可靠性和鲁棒性。
在一些实施例中,所述方法还包括:
确定所述网络设备配置的一个搜索空间,所述至少两个时域参数对应同一个所述搜索空间。
如此,使得UE根据所述搜索空间确定接收网络设备发送的同一DCI 的至少两个时域参数。
在一些实施例中,所述至少两个时域参数对应所述搜索空间中一个时隙内的不同符号。
如此,使得UE根据搜索空间中一个时隙内的不同符号确定接收网络设备发送的同一DCI的至少两个时域参数。
上述方案中,所述至少两个时域参数对应所述搜索空间中不同时隙中的符号。
如此,使得UE根据搜索空间中不同时隙中的符号确定接收网络设备发送的同一DCI的至少两个时域参数。
在一些实施例中,所述方法还包括:
确定所述网络设备配置的搜索空间相对偏移值以及一个搜索空间,所述至少两个时域参数中的第一时域参数对应所述搜索空间,所述搜索空间相对偏移值是所述至少两个时域参数中的第二时域参数相对所述第一时域参数的偏移值;
根据所述搜索空间和所述搜索空间相对偏移值确定所述至少两个时域参数中的第二时域参数。
上述方案中,所述搜索空间相对偏移值,包括:
PDCCH监测周期的相对偏移值,PDCCH监测时隙偏移值的相对偏移值和时隙内监测符号位置的相对偏移值中的一项或多项组合。
如此,UE能够根据搜索空间和搜索空间相对偏移值确定所述至少两个时域参数中的第一时域参数以及除所述第一时域参数之外的第二时域参数。
在一些实施例中,所述方法还包括:
确定所述网络设备配置的至少两个搜索空间,所述至少两个时域参数中不同时域参数对应不同的搜索空间。
其中,所述搜索空间的配置包括如下参数的配置:
PDCCH监测周期,PDCCH监测时隙偏移值和时隙内监测符号位置。
如此,UE能够根据不同搜索空间确定所述至少两个时域参数中的不同时域参数。
在一些实施例中,所述方法还包括:
确定所述网络设备配置的一个控制资源集合,所述至少两个搜索空间对应同一个所述控制资源集合。
其中,所述确定所述网络设备配置的一个控制资源集合,包括:
确定控制资源集合标识,根据控制资源集合标识确定所述控制资源集合内的不同搜索空间对应的接收波束不同。
上述方案中,在所述至少两个搜索空间的配置参数中,PDCCH监测周期参数、PDCCH监测时隙偏移量参数和时隙内监测符号位置参数中的至少有一种参数不同。
如此,UE通过网络设备配置的一个控制资源集合下的不同搜索空间,确定在不同搜索空间的不同时域参数使用不同接收波束接收不同的panel为终端发送的DCI。
在一些实施例中,所述方法还包括:
确定所述网络设备配置的至少两个控制资源集合,所述至少两个搜索空间中不同的搜索空间,对应所述至少两个控制资源集合中的不同的控制资源集合。
上述方案中,所述至少两个控制资源集合的频域资源相同。
上述方案中,所述至少两个控制资源集合的时域资源相同,所述至少两个控制资源集合的控制资源集合标识或小区标识不同。
如此,UE通过网络设备配置的多个控制资源集合下的不同搜索空间,确定在不同搜索空间的不同时域参数使用不同接收波束接收不同的panel为终端发送的DCI。
在一些实施例中,所述方法还包括:
确定所述网络设备针对同一搜索空间配置的至少两个不同的接收波束,或
确定所述网络设备针对同一控制资源集合下的不同搜索空间配置的不同的接收波束,或
确定所述网络设备针对不同控制资源集合配置的不同的接收波束。
上述方案中,不同的所述接收波束,用于供所述UE接收来自不同小区的DCI,或来自同一小区的不同TRP的DCI,或来自同一TRP的不同天线面板的DCI。
在一些实施例中,所述方法还包括:
根据配置信令,确定所述网络设备将通过PDCCH在至少两个时域参数发送的DCI相同。
示例性地,所述配置信令为RRC信令或MAC信令。
在一些实施例中,所述方法还包括:
接收包含传输配置指示(TCI)状态的信令,根据TCI状态确定接收波束。
示例性地,包含TCI状态的信令可以是RRC信令,还可以是MAC信令。
本申请所提供的通信处理方法,能确定接收同一DCI的至少两个时域参数和/或至少两个接收波束;基于所述至少两个时域参数的不同时域参数,使用不同的接收波束接收网络设备在所述不同时域参数下通过PDCCH下发的同一所述DCI;如此,使得UE在至少两个时域参数可以使用不同的接收波束来接收同一DCI,从而提高PDCCH通信的可靠性和鲁棒性。
图4是根据一示例性实施例示出的一种通信处理装置框图一。该通信处理装置应用于网络设备如基站侧,参照图4,该装置包括配置单元10和第一通信单元20。
所述配置单元10,被配置为配置UE接收同一DCI的至少两个时域参 数和/或至少两个接收波束;
所述第一通信单元20,被配置为基于所述至少两个时域参数,通过PDCCH向所述UE发送所述DCI。
在一些实施例中,所述配置单元10,还被配置为:
为所述UE配置一个搜索空间,所述至少两个时域参数对应同一个所述搜索空间。
在一些实施方式中,所述至少两个时域参数对应所述搜索空间中一个时隙内的不同符号。
在一些实施方式中,所述至少两个时域参数对应所述搜索空间中不同时隙中的符号。
在一些实施例中,所述配置单元10,还被配置为:
为所述UE配置一个搜索空间,所述至少两个时域参数中的第一时域参数对应所述搜索空间;
为所述UE配置搜索空间相对偏移值,所述搜索空间相对偏移值是所述至少两个时域参数中的第二时域参数相对所述第一时域参数的偏移值。
上述方案中,所述搜索空间相对偏移值,包括:
PDCCH监测周期的相对偏移值,PDCCH监测时隙偏移值的相对偏移值和时隙内监测符号位置的相对偏移值中的一项或多项组合。
在一些实施例中,所述配置单元10,还被配置为:
为所述UE配置至少两个搜索空间,所述至少两个时域参数中不同时域参数对应不同的搜索空间。
上述方案中,所述搜索空间的配置包括如下参数的配置:
PDCCH监测周期,PDCCH监测时隙偏移值和时隙内监测符号位置。
在一些实施例中,所述配置单元10,还被配置为:
为所述UE配置一个控制资源集合,所述至少两个搜索空间对应同一个所述控制资源集合。
在一些实施例中,所述配置单元10,还被配置为:
为所述控制资源集合配置控制资源集合标识,所述控制资源集合标识用于表示所述控制资源集合内的不同搜索空间对应的接收波束不同。
上述方案中,在所述至少两个搜索空间的配置参数中,PDCCH监测周期参数、PDCCH监测时隙偏移量参数和时隙内监测符号位置参数中的至少有一种参数不同。
在一些实施例中,所述配置单元10,还被配置为:
为所述UE配置至少两个控制资源集合,所述至少两个搜索空间中不同的搜索空间,对应所述至少两个控制资源集合中的不同的控制资源集合。
上述方案中,所述至少两个控制资源集合的频域资源相同。
上述方案中,所述至少两个控制资源集合的时域资源相同,所述至少两个控制资源集合的控制资源集合标识或小区标识不同。
在一些实施例中,所述配置单元10,还被配置为:
针对同一搜索空间为所述UE配置至少两个不同的接收波束,或
针对同一控制资源集合下的不同搜索空间为所述UE配置不同的接收波束,或
针对不同控制资源集合为所述UE配置不同的接收波束。
上述方案中,不同的所述接收波束,用于供所述UE接收来自不同小区的DCI,或来自同一小区的不同TRP的DCI,或来自同一TRP的不同天线面板的DCI。
在一些实施例中,所述第一通信单元20,还被配置为:
发送配置信令,所述配置信令用于通知所述UE将使用不同的接收波束在至少两个时域参数接收的DCI相同。
在一些实施例中,所述第一通信单元20,还被配置为:
下发包含传输配置指示(TCI)状态的信令,所述TCI状态包括至少一个小区的TCI状态信息,或包括一个小区内至少一个TRP的TCI状态信息, 或包括一个TRP的至少一个天线面板的TCI状态信息。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
实际应用中,上述配置单元10和第一通信单元20的具体结构均可由该通信处理装置或该通信处理装置所属网络设备中的中央处理器(CPU,Central Processing Unit)、微处理器(MCU,Micro Controller Unit)、数字信号处理器(DSP,Digital Signal Processing)或可编程逻辑器件(PLC,Programmable Logic Controller)等实现。
本实施例所述的通信处理装置可设置于网络设备如基站侧。
本领域技术人员应当理解,本公开实施例的通信处理装置中各处理模块的功能,可参照前述应用于网络设备侧的通信处理方法的相关描述而理解,本公开实施例的通信处理装置中各处理模块,可通过实现本公开实施例所述的功能的模拟电路而实现,也可以通过执行本公开实施例所述的功能的软件在网络设备上的运行而实现。
本公开实施例所述的通信处理装置,提高PDCCH通信的可靠性和鲁棒性。
图5是根据一示例性实施例示出的一种通信处理装置框图二。该通信处理装置应用于UE侧,参照图5,该装置包括确定单元30和第二通信单元40。
确定单元30,被配置为确定接收同一DCI的至少两个时域参数和/或至少两个接收波束;
第二通信单元40,被配置为基于所述至少两个时域参数的不同时域参数,使用不同的接收波束接收网络设备在所述不同时域参数下通过PDCCH下发的同一DCI。
在一些实施例中,所述确定单元30,还被配置为:
确定所述网络设备配置的一个搜索空间,所述至少两个时域参数对应 同一个所述搜索空间。
在一些实施例中,所述至少两个时域参数对应所述搜索空间中一个时隙内的不同符号。
在一些实施例中,所述至少两个时域参数对应所述搜索空间中不同时隙中的符号。
在一些实施例中,所述确定单元30,还被配置为:
确定所述网络设备配置的搜索空间相对偏移值以及一个搜索空间,所述至少两个时域参数中的第一时域参数对应所述搜索空间,所述搜索空间相对偏移值是所述至少两个时域参数中的第二时域参数相对所述第一时域参数的偏移值;
根据所述搜索空间和所述搜索空间相对偏移值确定所述至少两个时域参数中的第二时域参数。
上述方案中,所述搜索空间相对偏移值,包括:
PDCCH监测周期的相对偏移值,PDCCH监测时隙偏移值的相对偏移值和时隙内监测符号位置的相对偏移值中的一项或多项组合。
在一些实施例中,所述确定单元30,还被配置为:
确定所述网络设备配置的至少两个搜索空间,所述至少两个时域参数中不同时域参数对应不同的搜索空间。
其中,所述搜索空间的配置包括如下参数的配置:
PDCCH监测周期,PDCCH监测时隙偏移值和时隙内监测符号位置。
在一些实施例中,所述确定单元30,还被配置为:
确定所述网络设备配置的一个控制资源集合,所述至少两个搜索空间对应同一个所述控制资源集合。
在一些实施例中,所述确定单元30,还被配置为:
确定控制资源集合标识,根据控制资源集合标识确定所述控制资源集合内的不同搜索空间对应的接收波束不同。
在一些实施例中,在所述至少两个搜索空间的配置参数中,PDCCH监测周期参数、PDCCH监测时隙偏移量参数和时隙内监测符号位置参数中的至少有一种参数不同。
在一些实施例中,所述确定单元30,还被配置为:
确定所述网络设备配置的至少两个控制资源集合,所述至少两个搜索空间中不同的搜索空间,对应所述至少两个控制资源集合中的不同的控制资源集合。
在一些实施例中,所述至少两个控制资源集合的频域资源相同。
在一些实施例中,所述至少两个控制资源集合的时域资源相同,所述至少两个控制资源集合的控制资源集合标识或小区标识不同。
在一些实施例中,所述确定单元30,还被配置为:
确定所述网络设备针对同一搜索空间配置的至少两个不同的接收波束,或
确定所述网络设备针对同一控制资源集合下的不同搜索空间配置的不同的接收波束,或
确定所述网络设备针对不同控制资源集合配置的不同的接收波束。
其中,不同的所述接收波束,用于供所述UE接收来自不同小区的DCI,或来自同一小区的不同TRP的DCI,或来自同一TRP的不同天线面板的DCI。
在一些实施例中,所述确定单元30,还被配置为:
根据配置信令,确定所述网络设备将通过PDCCH在至少两个时域参数发送的DCI相同。
在一些实施例中,所述第二通信单元40,还被配置为:
接收包含传输配置指示(TCI)状态的信令,根据TCI状态确定接收波束。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在 有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
实际应用中,上述确定单元30和第二通信单元40的具体结构均可由该通信处理装置或该通信处理装置所属UE中的CPU、MCU、DSP或PLC等实现。
本实施例所述的通信处理装置可设置于UE侧。
本领域技术人员应当理解,本公开实施例的通信处理装置中各处理模块的功能,可参照前述应用于UE侧的通信处理方法的相关描述而理解,本公开实施例的通信处理装置中各处理模块,可通过实现本公开实施例所述的功能的模拟电路而实现,也可以通过执行本公开实施例所述的功能的软件在终端上的运行而实现。
本公开实施例所述的通信处理装置,能提高PDCCH通信的可靠性和鲁棒性。
图6是根据一示例性实施例示出的一种用于实现通信处理的装置800的框图。例如,装置800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图6,装置800可以包括以下一个或多个组件:处理组件802,存储器804,电力组件806,多媒体组件808,音频组件810,输入/输出(I/O,Input/Output)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制装置800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在装置800的操作。 这些数据的示例包括用于在装置800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(Static Random-Access Memory,SRAM),电可擦除可编程只读存储器(Electrically-Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),可编程只读存储器(Programmable read-only memory,PROM),只读存储器(Read Only Memory,ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件806为装置800的各种组件提供电力。电力组件806可以包括电源管理系统,一个或多个电源,及其他与为装置800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述装置800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(Liquid Crystal Display,LCD)和触摸面板(Touch Panel,TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当装置800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(microphone,简称MIC),当装置800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信 号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为装置800提供各个方面的状态评估。例如,传感器组件814可以检测到装置800的打开/关闭状态,组件的相对定位,例如所述组件为装置800的显示器和小键盘,传感器组件814还可以检测装置800或装置800一个组件的位置改变,用户与装置800接触的存在或不存在,装置800方位或加速/减速和装置800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)或电荷耦合元件(Charge-coupled Device,CCD)图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于装置800和其他设备之间有线或无线方式的通信。装置800可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(Near Field Communication,NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(Radio Frequency Identification,RFID)技术,红外数据协会(Infrared Data Association,IrDA)技术,超宽带(Ultra Wide Band,UWB)技术,蓝牙(Blue Tooth,BT)技术和其他技术来实现。
在示例性实施例中,装置800可以被一个或多个应用专用集成电路(Application Specific Integrated Circuit,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理设备(Digital Signal Processing Device,DSPD)、可编程逻辑器件(Programmable Logic Device,PLD)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述应用于UE侧的通信处理方法。
在示例性实施例中,还提供了一种包括可执行指令的非临时性的计算机存储介质,例如包括可执行指令的存储器804,上述可执行指令可由装置800的处理器820执行以完成上述方法。例如,所述非临时性的计算机存储介质可以是ROM、随机存取存储器(Random Access Memory,RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图7是根据一示例性实施例示出的一种用于实现通信处理的装置900的框图。例如,装置900可以被提供为一服务器。参照图7,装置900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述应用于网络设备侧的通信处理方法。
装置900还可以包括一个电源组件926被配置为执行装置900的电源管理,一个有线或无线网络接口950被配置为将装置900连接到网络,和一个输入输出(I/O)接口958。装置900可以操作基于存储在存储器932的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本公开实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (42)

  1. 一种通信处理方法,应用于网络设备,所述方法包括:
    配置用户设备UE接收同一下行控制信息DCI的至少两个时域参数和/或至少两个接收波束;
    基于所述至少两个时域参数,通过物理下行控制信道PDCCH向所述UE发送所述DCI。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    为所述UE配置一个搜索空间,所述至少两个时域参数对应同一个所述搜索空间。
  3. 根据权利要求2所述的方法,其中,所述至少两个时域参数对应所述搜索空间中一个时隙内的不同符号。
  4. 根据权利要求2所述的方法,其中,所述至少两个时域参数对应所述搜索空间中不同时隙中的符号。
  5. 根据权利要求1所述的方法,其中,所述方法还包括:
    为所述UE配置一个搜索空间,所述至少两个时域参数中的第一时域参数对应所述搜索空间;
    为所述UE配置搜索空间相对偏移值,所述搜索空间相对偏移值是所述至少两个时域参数中的第二时域参数相对所述第一时域参数的偏移值。
  6. 根据权利要求5所述的方法,其中,所述搜索空间相对偏移值,包括:
    PDCCH监测周期的相对偏移值,PDCCH监测时隙偏移值的相对偏移值和时隙内监测符号位置的相对偏移值中的一项或多项组合。
  7. 根据权利要求1所述的方法,其中,所述方法还包括:为所述UE配置至少两个搜索空间,所述至少两个时域参数中不同时域参数对应不同的搜索空间。
  8. 根据权利要求2、5或7中任意一项所述的方法,其中,所述搜索空间的配置包括如下参数的配置:
    PDCCH监测周期,PDCCH监测时隙偏移值和时隙内监测符号位置。
  9. 根据权利要求7所述的方法,其中,所述方法还包括:
    为所述UE配置一个控制资源集合,所述至少两个搜索空间对应同一个所述控制资源集合。
  10. 根据权利要求9所述的方法,其中,所述方法还包括:
    为所述控制资源集合配置控制资源集合标识,所述控制资源集合标识用于表示所述控制资源集合内的不同搜索空间对应的接收波束不同。
  11. 根据权利要求9所述的方法,其中,
    在所述至少两个搜索空间的配置参数中,PDCCH监测周期参数、PDCCH监测时隙偏移量参数和时隙内监测符号位置参数中的至少有一种参数不同。
  12. 根据权利要求7所述的方法,其中,所述方法还包括:
    为所述UE配置至少两个控制资源集合,所述至少两个搜索空间中不同的搜索空间,对应所述至少两个控制资源集合中的不同的控制资源集合。
  13. 根据权利要求12所述的方法,其中,
    所述至少两个控制资源集合的频域资源相同。
  14. 根据权利要求13所述的方法,其中,所述至少两个控制资源集合的时域资源相同,所述至少两个控制资源集合的控制资源集合标识或小区标识不同。
  15. 根据权利要求1-14中任意一项所述的方法,其中,所述方法还包括:
    针对同一搜索空间为所述UE配置至少两个不同的接收波束,或
    针对同一控制资源集合下的不同搜索空间为所述UE配置不同的接收波束,或
    针对不同控制资源集合为所述UE配置不同的接收波束。
  16. 根据权利要求15所述的方法,其中,
    不同的所述接收波束,用于供所述UE接收来自不同小区的DCI,或来自同一小区的不同TRP的DCI,或来自同一TRP的不同天线面板的DCI。
  17. 根据权利要求1所述的方法,其中,所述方法还包括:
    发送配置信令,所述配置信令用于通知所述UE将使用不同的接收波束在至少两个时域参数接收的DCI相同。
  18. 根据权利要求1所述的方法,其中,所述方法还包括:
    下发包含传输配置指示TCI状态的信令,所述TCI状态包括至少一个小区的TCI状态信息,或包括一个小区内至少一个TRP的TCI状态信息,或包括一个TRP的至少一个天线面板的TCI状态信息。
  19. 一种通信处理方法,应用于用户设备UE,所述方法包括:
    确定接收同一下行控制信息DCI的至少两个时域参数和/或至少两个接收波束;
    基于所述至少两个时域参数的不同时域参数,使用不同的接收波束接收网络设备基于所述不同时域参数通过物理下行控制信道PDCCH下发的同一所述DCI。
  20. 根据权利要求19所述的方法,其中,所述方法还包括:
    确定所述网络设备配置的一个搜索空间,所述至少两个时域参数对应同一个所述搜索空间。
  21. 根据权利要求20所述的方法,其中,所述至少两个时域参数对应所述搜索空间中一个时隙内的不同符号。
  22. 根据权利要求20所述的方法,其中,所述至少两个时域参数对应所述搜索空间中不同时隙中的符号。
  23. 根据权利要求19所述的方法,其中,所述方法还包括:
    确定所述网络设备配置的搜索空间相对偏移值以及一个搜索空间,所 述至少两个时域参数中的第一时域参数对应所述搜索空间,所述搜索空间相对偏移值是所述至少两个时域参数中的第二时域参数相对所述第一时域参数的偏移值;
    根据所述搜索空间和所述搜索空间相对偏移值确定所述至少两个时域参数中的第二时域参数。
  24. 根据权利要求23所述的方法,其中,所述搜索空间相对偏移值,包括:
    PDCCH监测周期的相对偏移值,PDCCH监测时隙偏移值的相对偏移值和时隙内监测符号位置的相对偏移值中的一项或多项组合。
  25. 根据权利要求19所述的方法,其中,所述方法还包括:
    确定所述网络设备配置的至少两个搜索空间,所述至少两个时域参数中不同时域参数对应不同的搜索空间。
  26. 根据权利要求20所述的方法,其中,所述搜索空间的配置包括如下参数的配置:
    PDCCH监测周期,PDCCH监测时隙偏移值和时隙内监测符号位置。
  27. 根据权利要求25所述的方法,其中,所述方法还包括:
    确定所述网络设备配置的一个控制资源集合,所述至少两个搜索空间对应同一个所述控制资源集合。
  28. 根据权利要求27所述的方法,其中,所述确定所述网络设备配置的一个控制资源集合,包括:
    确定控制资源集合标识,根据控制资源集合标识确定所述控制资源集合内的不同搜索空间对应的接收波束不同。
  29. 根据权利要求27所述的方法,其中,
    在所述至少两个搜索空间的配置参数中,PDCCH监测周期参数、PDCCH监测时隙偏移量参数和时隙内监测符号位置参数中的至少有一种参数不同。
  30. 根据权利要求25所述的方法,其中,所述方法还包括:
    确定所述网络设备配置的至少两个控制资源集合,所述至少两个搜索空间中不同的搜索空间,对应所述至少两个控制资源集合中的不同的控制资源集合。
  31. 根据权利要求30所述的方法,其中,
    所述至少两个控制资源集合的频域资源相同。
  32. 根据权利要求31所述的方法,其中,所述至少两个控制资源集合的时域资源相同,所述至少两个控制资源集合的控制资源集合标识或小区标识不同。
  33. 根据权利要求19-32中任意一项所述的方法,其中,所述方法还包括:
    确定所述网络设备针对同一搜索空间配置的至少两个不同的接收波束,或
    确定所述网络设备针对同一控制资源集合下的不同搜索空间配置的不同的接收波束,或
    确定所述网络设备针对不同控制资源集合配置的不同的接收波束。
  34. 根据权利要求33所述的方法,其中,
    不同的所述接收波束,用于接收来自不同小区的DCI,或来自同一小区的不同TRP的DCI,或来自同一TRP的不同天线面板的DCI。
  35. 根据权利要求19所述的方法,其中,所述方法还包括:
    根据配置信令,确定所述网络设备将通过PDCCH在至少两个时域参数下发送的DCI相同。
  36. 根据权利要求19所述的方法,其中,所述方法还包括:
    接收包含传输配置指示TCI状态的信令,根据TCI状态确定接收波束。
  37. 一种通信处理装置,应用于网络设备,包括:
    配置单元,被配置为配置用户设备UE接收同一下行控制信息DCI的 至少两个时域参数和/或至少两个接收波束;
    第一通信单元,被配置为基于所述至少两个时域参数,通过物理下行控制信道PDCCH向所述UE发送同一所述DCI。
  38. 一种通信处理装置,应用于用户设备UE,包括:
    确定单元,被配置为确定接收同一下行控制信息DCI的至少两个时域参数和/或至少两个接收波束;
    第二通信单元,被配置为基于所述至少两个时域参数的不同时域参数,使用不同的接收波束接收网络设备基于所述不同时域参数通过物理下行控制信道PDCCH下发的同一DCI。
  39. 一种通信处理装置,包括:
    处理器;
    用于存储可执行指令的存储器;
    其中,所述处理器被配置为:执行所述可执行指令时实现权利要求1至18任一项所述的通信处理方法。
  40. 一种通信处理装置,包括:
    处理器;
    用于存储可执行指令的存储器;
    其中,所述处理器被配置为:执行所述可执行指令时实现权利要求19至36所述的通信处理方法。
  41. 一种计算机存储介质,所述计算机存储介质中存储有可执行指令,所述可执行指令被处理器执行时,使得所述处理器执行权利要求1至18任一项所述的通信处理方法。
  42. 一种计算机存储介质,所述计算机存储介质中存储有可执行指令,所述可执行指令被处理器执行时,使得所述处理器执行权利要求19至36所述的通信处理方法。
PCT/CN2020/072844 2020-01-17 2020-01-17 通信处理方法、装置及计算机存储介质 WO2021142796A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202080000137.0A CN111279778A (zh) 2020-01-17 2020-01-17 通信处理方法、装置及计算机存储介质
BR112022013869A BR112022013869A2 (pt) 2020-01-17 2020-01-17 Método para processamento de comunicação, dispositivo de rede, e, equipamento de usuário
US17/791,872 US20230085875A1 (en) 2020-01-17 2020-01-17 Methods for communication processing and user equipment
JP2022543186A JP7335452B2 (ja) 2020-01-17 2020-01-17 通信処理方法、装置及びコンピュータ記憶媒体
PCT/CN2020/072844 WO2021142796A1 (zh) 2020-01-17 2020-01-17 通信处理方法、装置及计算机存储介质
KR1020227026851A KR20220124743A (ko) 2020-01-17 2020-01-17 통신 처리 방법, 장치 및 컴퓨터 저장 매체
EP20913836.1A EP4093110A4 (en) 2020-01-17 2020-01-17 COMMUNICATIONS PROCESSING METHODS AND DEVICES AND COMPUTER STORAGE MEDIUM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072844 WO2021142796A1 (zh) 2020-01-17 2020-01-17 通信处理方法、装置及计算机存储介质

Publications (1)

Publication Number Publication Date
WO2021142796A1 true WO2021142796A1 (zh) 2021-07-22

Family

ID=70999848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072844 WO2021142796A1 (zh) 2020-01-17 2020-01-17 通信处理方法、装置及计算机存储介质

Country Status (7)

Country Link
US (1) US20230085875A1 (zh)
EP (1) EP4093110A4 (zh)
JP (1) JP7335452B2 (zh)
KR (1) KR20220124743A (zh)
CN (1) CN111279778A (zh)
BR (1) BR112022013869A2 (zh)
WO (1) WO2021142796A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113170469B (zh) * 2021-02-25 2023-09-26 北京小米移动软件有限公司 波束指示方法及装置
CN117377098A (zh) * 2021-03-24 2024-01-09 Oppo广东移动通信有限公司 Pdcch配置的方法、终端设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150181576A1 (en) * 2013-12-20 2015-06-25 Samsung Electronics Co., Ltd. Determining timing for transmission or reception of signaling in a coverage enhanced operating mode
CN110351009A (zh) * 2018-04-04 2019-10-18 展讯通信(上海)有限公司 Dci传输和接收方法、装置、存储介质、基站、终端
CN110536451A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 信息增强方法、装置、设备和存储介质
CN110612693A (zh) * 2017-05-08 2019-12-24 三星电子株式会社 用于在无线通信系统中传输下行链路控制信道的方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10367677B2 (en) * 2016-05-13 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
EP4290912A3 (en) * 2016-08-04 2024-03-13 Ntt Docomo, Inc. User terminal and wireless communication method
US10547429B2 (en) * 2017-02-09 2020-01-28 Qualcomm Incorporated Search candidates in multi-link control channel
KR20200017474A (ko) * 2017-06-15 2020-02-18 콘비다 와이어리스, 엘엘씨 빔 기반 다운링크 제어 시그널링
US20200229216A1 (en) * 2017-09-30 2020-07-16 Beijing Xiaomi Mobile Software Co., Ltd. Downlink control information transmission method and apparatus
US10868604B2 (en) * 2018-03-29 2020-12-15 Samsung Electronics Co., Ltd. Method and apparatus for reference signal for measurements
EP3618492B1 (en) * 2018-04-02 2022-06-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for determining reference signal, and network device, ue and computer storage medium
CN110351746B (zh) * 2018-04-04 2022-03-29 展讯通信(上海)有限公司 用户设备及其物理下行控制信道的检测方法及装置
CN112702155B (zh) * 2018-05-11 2024-04-09 华为技术有限公司 用于指示控制信道的方法与装置
EP3905803A4 (en) * 2018-12-25 2022-08-10 Beijing Xiaomi Mobile Software Co., Ltd. DATA TRANSMISSION METHOD, BASE STATION, USER EQUIPMENT AND STORAGE MEDIUM

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150181576A1 (en) * 2013-12-20 2015-06-25 Samsung Electronics Co., Ltd. Determining timing for transmission or reception of signaling in a coverage enhanced operating mode
CN110612693A (zh) * 2017-05-08 2019-12-24 三星电子株式会社 用于在无线通信系统中传输下行链路控制信道的方法和装置
CN110351009A (zh) * 2018-04-04 2019-10-18 展讯通信(上海)有限公司 Dci传输和接收方法、装置、存储介质、基站、终端
CN110536451A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 信息增强方法、装置、设备和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS,: "Discussion on PDCCH repetition for URLLC,", 3GPP TSG RAN WG1 MEETING #92BIS, R1-1804571,, 20 April 2018 (2018-04-20), XP051413993 *

Also Published As

Publication number Publication date
JP2023510387A (ja) 2023-03-13
BR112022013869A2 (pt) 2022-09-13
KR20220124743A (ko) 2022-09-14
EP4093110A1 (en) 2022-11-23
CN111279778A (zh) 2020-06-12
JP7335452B2 (ja) 2023-08-29
EP4093110A4 (en) 2023-01-25
US20230085875A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
JP2023520478A (ja) 構成情報伝送方法および装置、通信機器および記憶媒体
WO2021163936A1 (zh) 通信处理方法、装置及计算机存储介质
WO2020258329A1 (zh) 初始接入指示方法、装置及存储介质
WO2021168664A1 (zh) 通信方法、装置及计算机存储介质
WO2021258375A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022052024A1 (zh) 参数配置方法、装置、通信设备和存储介质
WO2021237445A1 (zh) 寻呼控制消息传输方法、装置及通信设备
CN111096063B (zh) 非连续接收drx的处理方法、装置及计算机存储介质
WO2021243714A1 (zh) 定位参考信号的传输方法及装置、电子设备及存储介质
WO2022027496A1 (zh) 资源配置方法、装置、通信设备和存储介质
WO2022120854A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2021007789A1 (zh) 信息处理方法、装置及计算机存储介质
WO2020237679A1 (zh) 随机接入方法及装置、通信设备及存储介质
WO2021243712A1 (zh) 定位参考信号的传输方法及装置、电子设备及存储介质
WO2021142796A1 (zh) 通信处理方法、装置及计算机存储介质
WO2021174510A1 (zh) 无线网络接入方法、装置、通信设备及存储介质
WO2021003675A1 (zh) 信息处理方法、装置及计算机存储介质
US20220287014A1 (en) Resource allocation methods and apparatuses, message frame processing methods, apparatuses and storage mediums
WO2022226739A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022126576A1 (zh) 无线通信方法及装置、通信设备及存储介质
WO2022151387A1 (zh) 信息动态指示方法及装置、网络设备、用户设备及存储介质
WO2021007791A1 (zh) 资源配置的方法及装置、通信设备及存储介质
US20220408469A1 (en) Downlink control information configuration method and apparatus, and communication device and storage medium
CN110786035A (zh) 控制资源集合的处理方法、装置及计算机存储介质
RU2798864C1 (ru) Способ и устройство связи

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913836

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022543186

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022013869

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227026851

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020913836

Country of ref document: EP

Effective date: 20220817

ENP Entry into the national phase

Ref document number: 112022013869

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220713