WO2021243712A1 - 定位参考信号的传输方法及装置、电子设备及存储介质 - Google Patents

定位参考信号的传输方法及装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2021243712A1
WO2021243712A1 PCT/CN2020/094724 CN2020094724W WO2021243712A1 WO 2021243712 A1 WO2021243712 A1 WO 2021243712A1 CN 2020094724 W CN2020094724 W CN 2020094724W WO 2021243712 A1 WO2021243712 A1 WO 2021243712A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
composite
truncated
type
repeated
Prior art date
Application number
PCT/CN2020/094724
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to EP20938943.6A priority Critical patent/EP4164159A4/en
Priority to US17/928,603 priority patent/US20230300781A1/en
Priority to CN202080001160.1A priority patent/CN111869155B/zh
Priority to PCT/CN2020/094724 priority patent/WO2021243712A1/zh
Publication of WO2021243712A1 publication Critical patent/WO2021243712A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26132Structure of the reference signals using repetition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0069Allocation based on distance or geographical location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0247Traffic management, e.g. flow control or congestion control based on conditions of the access network or the infrastructure network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the embodiments of the present disclosure relate to the field of wireless communication but are not limited to the field of wireless communication, and in particular, to a positioning reference signal (Position Reference Signal, PRS) transmission method and device, electronic equipment, and storage medium.
  • PRS Position Reference Signal
  • the 3rd Generation Partnership Project (3rd Generation Partnership Project, 3GPP) has carried out research on the Lightweight Terminal (Reduced Capability NR Devices, Redcap) of the communication protocol version (Release, R) R17.
  • the project goal is to coexist with R15 or R16 terminals. In this case, the complexity of the UE is reduced and costs are saved.
  • PRS is a downlink signal sent by the upper base station.
  • the PRS can be used for UE positioning.
  • the proposal of Redcap UE will make the transmission of PRS adapt to the bandwidth supported by Redcap UE.
  • the embodiments of the present disclosure provide a positioning reference signal transmission method and device, electronic equipment, and storage medium.
  • the first aspect of the embodiments of the present disclosure provides a method for sending a positioning reference signal PRS, where the method includes:
  • the composite sequence includes a plurality of subsequences; and the part of the composite PRS corresponding to the subsequence is a truncated PRS;
  • the bandwidth occupied by the composite PRS is greater than the bandwidth occupied by the truncated PRS; and the composite PRS and the truncated PRS are used for positioning measurement of different types of UEs.
  • a second aspect of the embodiments of the present disclosure provides a method for receiving a positioning reference signal PRS, wherein the method includes:
  • the UE type receive composite PRS or truncated PRS; wherein, the composite PRS is sent according to the composite sequence; the truncated PRS is part of the composite PRS and is sent according to the subsequence of the composite sequence .
  • a third aspect of the embodiments of the present disclosure provides a device for sending a positioning reference signal PRS, wherein the device includes:
  • the sending module is configured to send the composite PRS according to the composite sequence
  • the composite sequence includes a plurality of subsequences; and the part of the composite PRS corresponding to the subsequence is a truncated PRS;
  • the bandwidth occupied by the composite PRS is greater than the bandwidth occupied by the truncated PRS; and the composite PRS and the truncated PRS are used for positioning measurement of different types of UEs.
  • a fourth aspect of the embodiments of the present disclosure provides a device for receiving a positioning reference signal PRS, wherein the device includes:
  • the receiving module is configured to receive a composite PRS or a truncated PRS; wherein the composite PRS is sent according to a composite sequence; the truncated PRS is part of the composite PRS and is a subsequence of the composite sequence Sent
  • the bandwidth occupied by the composite PRS is greater than the bandwidth occupied by the truncated PRS; and the composite PRS and the truncated PRS are used for positioning measurement of different types of UEs.
  • a fifth aspect of the embodiments of the present disclosure provides a communication device, including a processor, a transceiver, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor runs the executable
  • the program executes the methods provided in the foregoing first aspect and/or second solution.
  • a sixth aspect of the embodiments of the present disclosure provides a computer storage medium, the computer storage medium stores an executable program; after being executed by a processor, the executable program can execute as provided in the foregoing first aspect and/or second solution Methods.
  • the PRS is sent according to a composite sequence, and the PRS is formed by modulating the PRS sequence onto a carrier.
  • the composite sequence can be split into multiple subsequences.
  • the PRS corresponding to the entire complete composite sequence is the composite PRS
  • the PRS corresponding to the subsequence is the truncated PRS.
  • the base station can deliver the PRS according to the composite sequence without distinguishing the types of UEs, thereby simplifying the transmission of the PRS.
  • the PRS issued directly according to the composite sequence can be applied to the positioning measurement of different types of UEs, so that different types of UEs can be successfully based on the received PRS completes positioning measurement.
  • Fig. 1 is a schematic structural diagram showing a wireless communication system according to an exemplary embodiment
  • Fig. 2 is a schematic flow chart showing a method for sending a PRS according to an exemplary embodiment
  • Fig. 3 is a schematic flowchart showing a method for receiving PRS according to an exemplary embodiment
  • Fig. 4 is a schematic structural diagram showing a PRS sending device according to an exemplary embodiment
  • Fig. 5 is a schematic structural diagram showing a PRS receiving device according to an exemplary embodiment
  • Fig. 6 is a schematic structural diagram of a UE according to an exemplary embodiment
  • Fig. 7 is a schematic structural diagram of a base station according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • the words "if” and “if” as used herein can be interpreted as “when” or “when” or “in response to certainty”.
  • an embodiment of the present disclosure exemplifies an application scenario of an electric meter intelligent control system.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology.
  • the wireless communication system may include several terminals 110 and several base stations 120.
  • the terminal 110 may be a device that provides voice and/or data connectivity to the user.
  • the terminal 110 can communicate with one or more core networks via a radio access network (RAN).
  • RAN radio access network
  • the terminal 110 can be an Internet of Things terminal, such as a sensor device, a mobile phone (or "cellular" phone), and
  • the computer of the Internet of Things terminal for example, may be a fixed, portable, pocket-sized, handheld, computer built-in device, or a vehicle-mounted device.
  • station For example, station (Station, STA), subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point, remote terminal ( remote terminal), access terminal (access terminal), user device (user terminal), user agent (user agent), user equipment (user device), or user terminal (user equipment, terminal).
  • the terminal 110 may also be a device of an unmanned aerial vehicle.
  • the terminal 110 may also be an in-vehicle device, for example, it may be a trip computer with a wireless communication function, or a wireless terminal connected to the trip computer.
  • the terminal 110 may also be a roadside device, for example, it may be a street lamp, signal lamp, or other roadside device with a wireless communication function.
  • the base station 120 may be a network side device in a wireless communication system.
  • the wireless communication system may be the 4th generation mobile communication (4G) system, also known as the Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system, Also known as new radio (NR) system or 5G NR system.
  • the wireless communication system may also be the next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network).
  • the base station 120 may be an evolved base station (eNB) used in a 4G system.
  • the base station 120 may also be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 120 adopts a centralized and distributed architecture it usually includes a centralized unit (CU) and at least two distributed units (DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer protocol stack; distribution A physical (Physical, PHY) layer protocol stack is provided in the unit, and the embodiment of the present disclosure does not limit the specific implementation manner of the base station 120.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • distribution A physical (Physical, PHY) layer protocol stack is provided in the unit, and the embodiment of the present disclosure does not limit the specific implementation manner of the base station 120.
  • a wireless connection can be established between the base station 120 and the terminal 110 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as The wireless air interface is a new air interface; or, the wireless air interface may also be a wireless air interface based on a 5G-based next-generation mobile communication network technology standard.
  • an E2E (End to End) connection may also be established between the terminals 110.
  • V2V vehicle to vehicle
  • V2I vehicle to Infrastructure
  • V2P vehicle to pedestrian
  • the above-mentioned wireless communication system may further include a network management device 130.
  • the network management device 130 may be a core network device in a wireless communication system.
  • the network management device 130 may be a mobility management entity (Mobility Management Entity) in an Evolved Packet Core (EPC) network. MME).
  • the network management device may also be other core network devices, such as Serving GateWay (SGW), Public Data Network GateWay (PGW), and Policy and Charging Rules functional unit (Policy and Charging Rules). Function, PCRF) or Home Subscriber Server (HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network GateWay
  • Policy and Charging Rules Policy and Charging Rules
  • Function PCRF
  • HSS Home Subscriber Server
  • this embodiment provides a PRS transmission method, where the method includes:
  • S110 Send the composite PRS according to the composite sequence
  • the composite sequence includes a plurality of subsequences; and the part of the composite PRS corresponding to the subsequence is a truncated PRS;
  • the bandwidth occupied by the composite PRS is greater than the bandwidth occupied by the truncated PRS; and the composite PRS and the truncated PRS are used for positioning measurement of different types of UEs.
  • the first type of UE The first type of UE.
  • the PRS transmission method provided in the embodiments of the present disclosure can be applied to a base station.
  • the base station can assist the UE to perform its own positioning measurement through the transmission of the PRS.
  • the UE may determine the distance between itself and the base station according to the received power of the received PRS, etc.
  • the angle between the UE and the base station can also be determined according to the beam direction of the beam for transmitting the PRS, so that the base station can assist the UE to perform its own positioning measurement through the transmission of the PRS.
  • the UEs are divided according to the supported bandwidth, which can be at least divided into: a first type of UE and a second type of UE.
  • the first type of UE may be: Reduced capability NR devices, which may also be referred to as light UE for short.
  • the second type of UE may include: eMBB UE.
  • the types of the first type of UE and the second type of UE can be distinguished by the capability of the UE (for example, the supported bandwidth).
  • the maximum bandwidth supported by the UE of the first type here is less than the maximum bandwidth supported by some UEs of the second type.
  • the composite sequence is a sequence forming PRS.
  • the compound sequence can be split into multiple subsequences. Both the composite sequence itself and the subsequence split into itself meet the requirements of the sequence in communication.
  • neither the composite sequence itself nor the subsequence forming the truncated PRS after being split can be all "1" sequences or all "0" sequences.
  • the degree of difference between different composite sequences should be large enough so that the UE can distinguish which PRS sequence is currently receiving the PRS corresponding to the PRS, and multiple subsequences split from a composite sequence also satisfy the degree of difference.
  • the degree of difference is greater than the threshold, for example, the predetermined number of bit values are different, so that the UE can correctly receive the truncated PRS that needs to be received.
  • multiple subsequences split from a composite sequence can be orthogonal.
  • the orthogonality of subsequences is a manifestation of satisfying a sufficiently large difference.
  • the length of a composite sequence is not less than the sum of the two subsequences.
  • the start position of the first subsequence is the start position of the composite sequence, and/or the end position of the last subsequence may be the end position of the composite sequence Finish.
  • the sub-sequence may be formed by continuously distributed bits in the composite sequence; in another embodiment, the sub-sequence may be formed by discretely distributed bits in the composite sequence.
  • a subsequence can be formed by combining the even-numbered bits among the 2m bits, or combined by the even-numbered bits.
  • different types of UEs can be positioned according to the composite PRS or truncated PRS corresponding to the same composite sequence, and the base station can maintain a sequence set of composite sequences.
  • the sequence set stored in the base station is simplified.
  • a cell formed by a base station may include UEs of the first type, or UEs outside of a predetermined type.
  • the bandwidth supported by these two types of UEs is different.
  • the base station performs PRS transmission, if it is necessary to perform PRS transmission without distinguishing the UE type, and to reduce the PRS transmission complexity caused by the PRS transmission of the UE type, it also needs to ensure that the first type of UE can receive the UE and be able to Perform positioning measurement based on the received PRS.
  • the PRS issued directly according to the composite sequence can be applied to the positioning measurement of different types of UEs, so that different types of UEs can successfully complete positioning measurements based on the received PRS .
  • the base station can broadcast or multicast the composite PRS according to the composite sequence, and different types of UEs can choose to receive according to the PRS configuration of the base station or according to their own types.
  • Compound PRS or truncated PRS so that the base station can not only transmit the PRS at one time to assist the positioning of multiple UEs, but also the base station can also transmit the PRS at one time to assist the positioning of different types of UEs.
  • the composite sequence includes: a combination of the subsequences;
  • the subsequence is formed by truncating the compound sequence.
  • the base station may generate the composite sequence according to the sequence generation algorithm, and then split the composite sequence into one or more subsequences.
  • the base station may generate subsequences according to the sequence generation algorithm; then, multiple subsequences are combined according to a certain combination strategy to form the composite sequence.
  • At least two different types of UEs include: a first type of UE and a second type of UE; the bandwidth supported by the first type of UE is less than the bandwidth supported by the second type of UE;
  • the bandwidth occupied by the truncated PRS transmission is less than or equal to the bandwidth supported by the first-type UE.
  • the truncated PRS is used for the first type of UE. Positioning, so the bandwidth occupied by the truncated PRS transmission is less than or equal to the bandwidth supported by the first type of UE.
  • the bandwidth occupied by the truncated PRS transmission is less than or equal to 40M. If the bandwidth supported by the first type UE is not greater than 20M, the bandwidth occupied by the truncated PRS transmission is less than or equal to 20M. If the maximum bandwidth supported by the first type of UE is 10M, the bandwidth occupied by the node PRS transmission is less than or equal to 10M.
  • the bandwidth occupied by the composite PRS transmission is less than or equal to the bandwidth supported by the second-category UE, thereby ensuring that the second-category UE can successfully receive the composite PRS, thereby achieving successful positioning of the second-category UE.
  • the PRS will have a repeated configuration, and the repeated configuration can be used to repeatedly send the PRS.
  • the S110 may include:
  • the repeated configuration includes at least:
  • the number of repetitions indicating the number of repetitions of the composite PRS
  • the repeated resource configuration indicates that the resource of the composite PRS is repeated.
  • the PRS will be sent M times.
  • Repeated resource configuration indicating that the time domain resources, frequency domain resources, and/or beam resources of the composite PRS are repeatedly sent.
  • the truncated PRS corresponding to a subsequence can be set to repeat transmission on a frequency band. In this way, the UE receiving the truncated PRS may not switch the receiving frequency band. In the case of receiving the truncated PRS.
  • the PRS can be transmitted different times on different frequency bands.
  • different frequency bands may be continuous in the frequency domain.
  • this embodiment provides a PRS receiving method, which includes:
  • S210 Receive a composite PRS or a truncated PRS; wherein the composite PRS is sent according to a composite sequence; the truncated PRS is a part of the composite PRS and is sent according to a subsequence of the composite sequence; The bandwidth occupied by the composite PRS is greater than the bandwidth occupied by the truncated PRS; and the composite PRS and the truncated PRS are used for positioning measurement of different types of UEs.
  • the PRS receiving method provided in the embodiments of the present disclosure is a method applied to a UE, and the UE may be various types of UEs, for example, a UE that supports a large bandwidth and/or a UE that supports a small bandwidth.
  • the UE can choose to receive composite PRS or truncated PRS according to its own type.
  • the current UE is a UE that supports a small bandwidth and can choose to receive a truncated PRS.
  • the PRS can be truncated according to the resource configuration of the truncated PRS.
  • the composite PRS can be received according to the resource configuration of the composite PRS.
  • the base station can deliver the composite PRS according to the composite sequence, and different types of UEs can receive the composite PRS or shorten the PRS according to the delivery of the composite PRS by the base station, and then locate according to the received PRS to determine itself The relative position with the base station to complete its own positioning.
  • the S210 may include: if the UE is a UE of the first type, receiving the truncated PRS; if the UE is a UE of the second type, receiving the composite PRS; The bandwidth supported by the second type UE is greater than the bandwidth supported by the first type UE.
  • Type 1 UEs can receive truncated PRS, while Type 2 UEs that support larger bandwidths can receive composite PRS.
  • the base station When the base station needs to assist multiple UEs to perform positioning at the same time, it can assist multiple UEs to complete positioning through one composite PRS transmission.
  • the S210 includes:
  • the repeated configuration includes at least:
  • the number of repetitions indicating the number of repetitions of the composite PRS
  • the repeated resource configuration indicates that the resource of the composite PRS is repeated.
  • the PRS in order to ensure the successful reception of the PRS, the PRS will have a repeated configuration. At this time, the base station will repeatedly send the PRS. At this time, the UE will receive the PRS multiple times. The UE depends on its own type or the base station uses the UE as the UE PRS configuration issued with granularity, receiving truncated PRS or composite PRS.
  • the repeatedly receiving the composite PRS or the truncated PRS according to the UE type and repeated configuration includes:
  • the repeated configuration is a time domain repeated configuration
  • the composite PRS or the truncated PRS is repeatedly received according to the time domain repeated configuration on different symbols of the same frequency band.
  • a positioning reference signal PRS sending device includes:
  • the sending module 110 is configured to send the composite PRS according to the composite sequence
  • the composite sequence includes a plurality of subsequences; and the part of the composite PRS corresponding to the subsequence is a truncated PRS;
  • the bandwidth occupied by the composite PRS is greater than the bandwidth occupied by the truncated PRS; and the composite PRS and the truncated PRS are used for positioning measurement of different types of UEs.
  • the sending module 110 may be a program module; after the program module is executed by the processor, it can send a composite PRS according to a composite sequence.
  • the receiving module and the demodulation module may be a combination of software and hardware; the combination of software and hardware includes, but is not limited to: a programmable array; the programmable array includes, but is not limited to, a complex Programmable array or field programmable array.
  • the receiving module and the demodulating module further include: a pure hardware module; the pure hardware module includes, but is not limited to: an application specific integrated circuit.
  • the composite sequence includes: a combination of the subsequences; or, the subsequence is formed by truncating the composite sequence.
  • At least two different types of UEs include: a first type of UE and a second type of UE; the bandwidth supported by the first type of UE is less than the bandwidth supported by the second type of UE;
  • the bandwidth occupied by the truncated PRS transmission is less than or equal to the bandwidth supported by the first-type UE.
  • the sending module 110 is configured to repeatedly send the composite PRS according to the composite sequence and repeated configuration
  • the repeated configuration includes at least:
  • the number of repetitions indicating the number of repetitions of the composite PRS
  • the repeated resource configuration indicates that the resource of the composite PRS is repeated.
  • the repeated configuration includes:
  • Time domain repeated configuration indicating the time domain resources used when the composite PRS configuration is repeated in the time domain
  • the repeated resource configuration is a repeated time domain configuration
  • multiple repetitions of the truncated PRS are located on different symbols of the same frequency band.
  • an embodiment of the present disclosure provides a PRS receiving device, which includes:
  • the receiving module 210 is configured to receive a composite PRS or a truncated PRS; wherein the composite PRS is sent according to a composite sequence; the truncated PRS is a part of the composite PRS, and is a child of the composite sequence Serially sent
  • the bandwidth occupied by the composite PRS is greater than the bandwidth occupied by the truncated PRS; and the composite PRS and the truncated PRS are used for positioning measurement of different types of UEs.
  • the receiving module 210 may be a program module; after the program module is executed by the processor, it can receive composite PRS or truncated PRS.
  • the receiving module 210 and the demodulation module may be a combination of software and hardware; the combination of software and hardware includes, but is not limited to: a programmable array; the programmable array includes, but is not limited to, complex Programmable array or field programmable array.
  • the receiving module 210 and the demodulation module further include: a pure hardware module; the pure hardware module includes, but is not limited to: an application specific integrated circuit.
  • the receiving module 210 is configured to receive the truncated PRS if the UE is a first-type UE;
  • the UE is a second-type UE, receive the composite PRS; wherein the bandwidth supported by the second-type UE is greater than the bandwidth supported by the first-type UE.
  • the receiving module 210 is configured to repeatedly receive the composite PRS or the truncated PRS according to the UE type and repeated configuration;
  • the repeated configuration includes at least:
  • the number of repetitions indicating the number of repetitions of the composite PRS
  • the repeated resource configuration indicates that the resource of the composite PRS is repeated.
  • the repeatedly receiving the composite PRS or the truncated PRS according to the UE type and repeated configuration includes:
  • the repeated configuration is a time domain repeated configuration
  • the composite PRS or the truncated PRS is repeatedly received according to the time domain repeated configuration on different symbols of the same frequency band.
  • the embodiment of the present disclosure also provides a PRS transmission method, including:
  • PRS is sent; different types of UEs have different PRS sending modes.
  • the PRS is repeatedly sent on the first bandwidth; for the second type of UE that supports a larger bandwidth than the first type of UE, the PRS is sent on the second bandwidth.
  • the second bandwidth is greater than the first bandwidth.
  • the first bandwidth is less than or equal to the bandwidth supported by the first type of UE.
  • the second bandwidth is greater than the bandwidth supported by the UE of the first type, and less than or equal to the bandwidth supported by the UE of the second type.
  • the second bandwidth is more than twice the first bandwidth.
  • the number of first time domain resources occupied by the PRS for the first type of UE is greater than the number of second time domain resources occupied by the PRS for the second type of UE.
  • the total communication resource quantity corresponding to the first bandwidth and the first time domain resource quantity may be the same as the total communication resource quantity corresponding to the second bandwidth and the second time domain resource quantity.
  • the second bandwidth is twice the first bandwidth; the number of second time domain resources is 1/2 the number of first time domain resources.
  • the first bandwidth may also be 3/4 of the second bandwidth.
  • the time domain units corresponding to the second time domain resource quantity are discretely distributed in the time domain; and the time domain units corresponding to the first time domain resource quantity are continuously distributed in the time domain.
  • the time domain unit here includes, but is not limited to: symbols or mini-slots. This discrete distribution may make the time domain units separated by the second amount of time domain resources.
  • the time domain unit is a symbol
  • the second time domain resource quantity is 2
  • the first time domain resource quantity is 4, and there are at least 2 symbols between the two symbols corresponding to the second time domain resource quantity.
  • the first type of UE includes but is not limited to: enhanced Mobile Broadband (eMBB) UE.
  • eMBB enhanced Mobile Broadband
  • the PRS transmission for e, MBB UE is transmitted on 2 symbols of one resource element (Resource Element, RE), and the PRS transmission for redcap UE is transmitted on 4 symbols on half of the RE.
  • resource element Resource Element
  • the PRS transmission here includes: PRS transmission by the base station and/or PRS reception by the UE.
  • the base station and the UE transmit PRS in different ways for different types of UEs, and realize the decoupling of the PRS of different types of UEs, so as to ensure that each type of UE can receive the PRS suitable for its own positioning measurement. , Realize positioning measurement.
  • PRS is a downlink signal sent by a base station in the 3GPP NR air interface for positioning.
  • the bandwidth of positioning is directly proportional to the accuracy. Therefore, the bandwidth of PRS ranges from a minimum of 24 physical resource blocks (PRB) to a maximum of 272PRB.
  • PRB physical resource blocks
  • Redcap UE is limited by the UE bandwidth.
  • PRS bandwidth of the maximum supported bandwidth of the UE such as 20M, then the accuracy will drop a lot.
  • Redcap UE For normal UE (that is, the supported bandwidth is greater than the redcap UE) two symbols, the RE configuration can be separated. Because Redcap UE's bandwidth is exceeded, Redcap UE is configured with 4 symbols of small bandwidth repetition. However, the positioning accuracy and the large bandwidth ratio are not enough. Here is an example of 2 times, or 3/4 times the bandwidth. .
  • the base station configures Redcap UE to use cross-symbol frequency hopping, that is, the first part of the sequence is configured on the first symbol, and the second part is configured to the adjacent different bandwidths of the second symbol.
  • the third symbol and so on (if the bandwidth exceeds 2 times).
  • the PRS sequence of the PRS is divided into n parts; for example, there are 2 parts in the figure, the first part is sent in the first frequency domain of the first symbol; the second part is sent in the second frequency domain of the second symbol, And so on for the third and fourth symbols.
  • Another scheme is that the first part is sent in the first frequency domain of the first symbol; the second part is sent in the second frequency domain of the third symbol; the second part is sent in the first frequency domain of the second symbol, as shown in the figure In the second part.
  • the base station side ensures that the first part...nth part of the n parts is continuous in the frequency domain, and guarantees the modulation phase of the last modulation signal of the previous part in the adjacent two parts, and the first modulation signal of the next part
  • the modulation fiber is continuous in the phase sequence of the modulation phase, and the above two configurations implicitly guarantee the continuity of the phase.
  • the base station may also not configure the modulation phases of two adjacent parts to be continuous on the phase sequence corresponding to the modulation phase through multiple time domain repetitions; the base station may also not configure phase continuity, but configure it through frequency hopping repetition.
  • UE side UE receives PRS according to the PRS configuration of the base station, and performs combined demodulation of different parts
  • the embodiments of the present disclosure provide a communication device, including a processor, a transceiver, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor executes any of the foregoing technical solutions when the executable program is running. It is applied to the control channel detection method in the UE, or executes the information processing method applied in the base station provided by any of the foregoing technical solutions.
  • the communication device may be the aforementioned base station or UE.
  • the processor may include various types of storage media.
  • the storage media is a non-transitory computer storage medium that can continue to memorize and store information thereon after the communication device is powered off.
  • the communication device includes a base station or user equipment.
  • the processor may be connected to the memory through a bus or the like, and is used to read an executable program stored on the memory, for example, at least one of FIGS. 2 to 3.
  • the embodiments of the present disclosure provide a computer storage medium that stores an executable program; after the executable program is executed by a processor, the method shown in any technical solution of the first aspect or the second aspect can be implemented, For example, at least one of FIGS. 2 to 3.
  • Fig. 6 is a block diagram showing a UE 800 according to an exemplary embodiment.
  • UE800 can be a mobile phone, a computer, a digital broadcast user equipment, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and so on.
  • UE800 may include at least one of the following components: a processing component 802, a memory 804, a power component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, a sensor component 814, and a communication component 816.
  • the processing component 802 generally controls the overall operations of the UE 800, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include at least one processor 820 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 802 may include at least one module to facilitate the interaction between the processing component 802 and other components.
  • the processing component 802 may include a multimedia module to facilitate the interaction between the multimedia component 808 and the processing component 802.
  • the memory 804 is configured to store various types of data to support operations in the UE 800. Examples of these data include instructions for any application or method operating on the UE800, contact data, phonebook data, messages, pictures, videos, etc.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable and Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable and Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic Disk Magnetic Disk or Optical Disk.
  • the power supply component 806 provides power for various components of the UE800.
  • the power supply component 806 may include a power management system, at least one power supply, and other components associated with generating, managing, and distributing power for the UE 800.
  • the multimedia component 808 includes a screen that provides an output interface between the UE 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes at least one touch sensor to sense touch, sliding, and gestures on the touch panel. The touch sensor can not only sense the boundary of a touch or slide action, but also detect wake-up time and pressure related to the touch or slide operation.
  • the multimedia component 808 includes a front camera and/or a rear camera. When UE800 is in an operating mode, such as shooting mode or video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC), and when the UE 800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive external audio signals.
  • the received audio signal may be further stored in the memory 804 or transmitted via the communication component 816.
  • the audio component 810 further includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module.
  • the above-mentioned peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 814 includes at least one sensor, which is used to provide the UE 800 with various status assessments.
  • the sensor component 814 can detect the on/off status of the device 800 and the relative positioning of the components.
  • the component is the display and keypad of the UE800.
  • the sensor component 814 can also detect the position change of the UE800 or a component of the UE800. The presence or absence of contact with UE800, the orientation or acceleration/deceleration of UE800, and the temperature change of UE800.
  • the sensor component 814 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the UE 800 and other devices.
  • the UE 800 can access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication component 816 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • UE800 may be used by at least one application specific integrated circuit (ASIC), digital signal processor (DSP), digital signal processing device (DSPD), programmable logic device (PLD), field programmable gate array ( FPGA), a controller, a microcontroller, a microprocessor, or other electronic components are used to implement the above methods.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • DSPD digital signal processing device
  • PLD programmable logic device
  • FPGA field programmable gate array
  • controller a microcontroller, a microprocessor, or other electronic components are used to implement the above methods.
  • non-transitory computer-readable storage medium including instructions, such as the memory 804 including instructions, and the foregoing instructions may be executed by the processor 820 of the UE 800 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • an embodiment of the present disclosure shows a structure of a base station.
  • the base station 900 may be provided as a network device.
  • the base station 900 includes a processing component 922, which further includes at least one processor, and a memory resource represented by a memory 932, for storing instructions that can be executed by the processing component 922, such as application programs.
  • the application program stored in the memory 932 may include one or more modules each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to execute any of the aforementioned methods applied to the base station, for example, the methods shown in FIGS. 2 to 3.
  • the base station 900 may also include a power supply component 926 configured to perform power management of the base station 900, a wired or wireless network interface 950 configured to connect the base station 900 to the network, and an input output (I/O) interface 958.
  • the base station 900 can operate based on an operating system stored in the memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Abstract

本公开实施例提供一种定位参考信号传输方法及装置、电子设备及存储介质。所述定位参考信号传输方法中的定位参考信号发送方法包括:根据复合序列,发送复合PRS;所述复合序列包含多个子序列;且所述子序列对应的部分所述复合PRS为截短PRS;所述复合PRS占用的带宽大于所述截短PRS占用的带宽;且所述复合PRS和所述截短PRS,用于不同类型UE的定位测量。

Description

定位参考信号的传输方法及装置、电子设备及存储介质 技术领域
本公开实施例涉及无线通信领域但不限于无线通信领域,尤其涉及一种定位参考信号(Position Reference Signal,PRS)传输方法及装置、电子设备及存储介质。
背景技术
目前第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)开展了通信协议版本(Release,R)R17的轻型终端(Reduced capability NR devices,Redcap)项目研究,项目目标是再和R15或R16终端共存的情况下,减少UE的复杂度并节省成本。
PRS是上基站发送的下行信号。该PRS可用于UE的定位。但是Redcap UE的提出,会使得PRS的发送适配Redcap UE支持的带宽提出了挑战。
发明内容
本公开实施例提供一种定位参考信号传输方法及装置、电子设备及存储介质。
本公开实施例第一方面提供一种定位参考信号PRS的发送方法,其中,所述方法包括:
根据复合序列,发送复合PRS;
所述复合序列包含多个子序列;且所述子序列对应的部分所述复合PRS为截短PRS;
所述复合PRS占用的带宽大于所述截短PRS占用的带宽;且所述复合PRS和所述截短PRS,用于不同类型UE的定位测量。
本公开实施例第二方面提供一种定位参考信号PRS的接收方法,其中,所述方法包括:
根据UE类型,接收复合PRS或者截短PRS;其中,所述复合PRS为根据复合序列发送的;所述截短PRS为所述复合PRS的部分,且是根据所述复合序列的子序列发送的。
本公开实施例第三方面提供一种定位参考信号PRS的发送装置,其中,所述装置包括:
发送模块,被配置为根据复合序列,发送复合PRS;
所述复合序列包含多个子序列;且所述子序列对应的部分所述复合PRS为截短PRS;
所述复合PRS占用的带宽大于所述截短PRS占用的带宽;且所述复合PRS和所述截短PRS,用于不同类型UE的定位测量。
本公开实施例第四方面提供一种定位参考信号PRS的接收装置,其中,所述装置包括:
接收模块,被配置为接收复合PRS或者截短PRS;其中,所述复合PRS为根据复合序列发送的;所述截短PRS为所述复合PRS的部分,且是根据所述复合序列的子序列发送的;
所述复合PRS占用的带宽大于所述截短PRS占用的带宽;且所述复合PRS和所述截短PRS,用于不同类型UE的定位测量。
本公开实施例第五方面提供一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如前述第一方面和/或第二方案提供的方法。
本公开实施例第六方面提供一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够执行如前述 第一方面和/或第二方案提供的方法。
本公开实施例中提供的技术方案,PRS是根据复合序列发送的,PRS为将PRS序列调制到载波上形成的。而复合序列是可以拆分成多个子序列的,如此,整个完整的复合序列对应的PRS为复合PRS,而子序列对应的PRS为截断PRS。如此,基站可以不区分UE类型的,根据复合序列下发PRS,从而简化PRS的发送。于此同时,由于复合PRS和截短PRS都可以用于UE定位测量,因此直接根据复合序列下发的PRS,可以适用于不同类型UE的定位测量,从而使得不同类型UE都能够成功根据接收的PRS完成定位测量。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种PRS发送方法的流程示意图;
图3是根据一示例性实施例示出的一种PRS接收方法的流程示意图;
图4是根据一示例性实施例示出的一种PRS发送装置的结构示意图;
图5是根据一示例性实施例示出的一种PRS接收装置的结构示意图;
图6是根据一示例性实施例示出的UE的结构示意图;
图7是根据一示例性实施例示出的基站的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述 的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
为了更好地描述本公开任一实施例,本公开一实施例以一个电表智能控制系统的应用场景为例进行示例性说明。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个终端110以及若干个基站120。
其中,终端110可以是指向用户提供语音和/或数据连通性的设备。终端110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端110可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代 理(user agent)、用户设备(user device)、或用户终端(user equipment,终端)。或者,终端110也可以是无人飞行器的设备。或者,终端110也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线终端。或者,终端110也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站120可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。
其中,基站120可以是4G系统中采用的演进型基站(eNB)。或者,基站120也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站120的具体实现方式不加以限定。
基站120和终端110之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端110之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备130可以是无线通信系统中的核心网设备,比如,该网络管理设备130可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备130的实现形态,本公开实施例不做限定。
如图2所示,本实施例提供一种PRS的发送方法,其中,所述方法包括:
S110:根据复合序列,发送复合PRS;
所述复合序列包含多个子序列;且所述子序列对应的部分所述复合PRS为截短PRS;
所述复合PRS占用的带宽大于所述截短PRS占用的带宽;且所述复合PRS和所述截短PRS,用于不同类型UE的定位测量。
第一类UE。
本公开实施例提供的PRS的发送方法,可应用于基站中。基站通过PRS的发送,可以辅助UE进行自身的定位测量。例如,UE可以根据接收到的PRS的接收功率等,确定出自身与基站之间的距离。再例如,可 以根据发送PRS的波束的波束方向,还可以确定出UE与基站之间的角度,从而基站通过PRS的发送,可以辅助UE进行自身的定位测量。
在一些实施例中,按照支持的带宽划分UE,至少可分为:第一类UE和第二类UE。
所述第一类UE可为:轻能力新无线设备(Reduced capability NR devices)该轻能力新无线设备又可以简称轻型UE。所述第二类UE可包括:eMBB UE。
在应用过程中,第一类UE和第二类UE的类型可以通过UE的能力(例如,支持的带宽)来区分。此处的所述第一类UE支持的最大带宽小于某些第二类UE支持的最大带宽。
所述复合序列为形成PRS一种序列。复合序列可以拆分成多个子序列。复合序列自身和拆分成的子序列自身都满足通信中对序列的要求。
例如,所述复合序列本身和被拆分后形成截短PRS的子序列都不能是全“1”序列或者全“0”等。
再例如,不同复合序列之间的差异度要足够大,使得UE能够区分当前接收的是哪个PRS序列对应的PRS,则一个复合序列拆分出的多个子序列也是满足差异度足够大,例如,差异度大于阈值,例如,预定个数的比特值不同等,从而使得UE能够正确接收到需要接收的截短PRS。
在一些特定情况下,一个复合序列拆分出的多个子序列可正交。子序列正交是满足差异度足够大的一种体现。
在一个实施例中,若一个复合序列可以拆分成两个子序列,则一个复合序列的长度不小于2个子序列之和。
在另一个实施例中,为了简化基站的PRS发送,第一个子序列的起始位置为复合序列的起始位置开始,和/或,最后一个子序列的终止位置可为复合序列的终止位置结束。
在一些实施例中,子序列中可为复合序列中连续分布的比特形成的;在另一个实施例中,子序列中可为复合序列中离散分布的比特形成的。
例如,复合序列包含2m个比特时,则一个子序列可为2m个比特中的第偶数个比特组合而成,或者,第偶数个比特组合而成。
总之,不同类型的UE可以根据相同的复合序列对应的复合PRS或者截短PRS进行定位,则基站可以进维护一个复合序列的序列集即可,
简化了基站中存储的序列集。
基站形成的一个小区内可包含第一类UE,也可以包含预定类型外的UE。这两种类型的UE支持的带宽是不同。基站在进行PRS发送时,若需要不区分UE类型的进行PRS发送,减少基站在区分UE类型的PRS发送导致的PRS发送复杂度时,还需要确保第一类UE能够接收到该UE,并能够根据该接收的PRS进行定位测量。由于复合PRS和截短PRS都可以用于UE定位测量,因此直接根据复合序列下发的PRS,可以适用于不同类型UE的定位测量,从而使得不同类型UE都能够成功根据接收的PRS完成定位测量。
在一些情况下,基站内多个UE同时需要进行定位时,基站可以根据复合序列广播或组播复合PRS,而不同类型的UE,可以根据基站给自己的PRS配置或者根据自己的类型,选择接收复合PRS或截短PRS,从而基站不仅可以通过PRS的一次性发送,可以辅助多个UE的定位,而且基站还可以通过PRS的一次发送,辅助不同类型UE的定位。在一些实施例中,所述复合序列包括:由所述子序列组合而成;
或者,
所述子序列为:所述复合序列截短形成的。
在一种情况下,基站可以根据序列生成算法,生成所述复合序列,然后将所述复合序列拆分成一个或多个子序列。
在另一种情况下,基站可以根据序列生成算法,生成子序列;然后将多个子序列按照一定的组合策略,组合形成所述复合序列。
在一个实施例中,至少两种不同类型UE包含:第一类UE和第二类UE;所述第一类UE支持的带宽小于所述第二类UE支持的带宽;
所述截短PRS发送占用的带宽,小于或等于所述第一类UE支持的带宽。
若不同类型的UE按照支持的带宽分,至少可以分为两类,且第一类UE支持的带宽较小,为了方便第一类UE的定位,所述截短PRS用于第一类UE的定位,故截短PRS发送占用的带宽小于或等于第一类UE支持的带宽。
例如,第一类UE支持的带宽不大于40M,则所述截短PRS发送占用的带宽小于或等于40M。若所述第一类UE支持的带宽不大于20M,则截短PRS发送占用的带宽小于或等于20M。若第一类UE支持的最大带宽为10M,则节点PRS发送占用的带宽小于或等于10M。
如此,确保截短PRS能够被第一类UE的成功接收。
而复合PRS发送占用的带宽小于或等于第二类UE支持的带宽,从而,能够确保第二类UE可以成功接收到复合PRS,从而实现第二类UE的成功定位。
为了确保PRS的接收功率,确保UE的定位成功进行,在本公开实施例中,则PRS会具有重复配置,该重复配置可用于重复发送PRS。
所述S110可包括:
根据所述复合序列及重复配置,重复发送所述复合PRS;
其中,所述重复配置至少包括:
重复次数,指示所述复合PRS的重复次数;
和/或,
重复资源配置,指示重复所述复合PRS的资源。
若重复次数为M,则PRS会发送M次。
重复资源配置,指示的重复发送复合PRS的时域资源、频域资源、和/或波束资源等。
值得注意的是:为了简化支持带宽小的UE对截短PRS的接收,通常一个子序列对应的截短PRS可设置在一个频段上重复发送,如此,接收截短PRS的UE可以不切换接收频带的情况下,接收所述截短PRS。
当然为了具有频率增益,若具有多次重复发送,可以在不同的频带上发送PRS的不同次。此时,为了简化UE切换频带的接收,不同频带在频域可是连续的。
如图3所示,本实施例提供一种PRS接收方法,其中,包括:
S210:接收复合PRS或者截短PRS;其中,所述复合PRS为根据复合序列发送的;所述截短PRS为所述复合PRS的部分,且是根据所述复合序列的子序列发送的;所述复合PRS占用的带宽大于所述截短PRS占用的带宽;且所述复合PRS和所述截短PRS,用于不同类型UE的定位测量。
在本公开实施例中提供的PRS接收方法,为应用于UE中的方法,该UE可为各种类型的UE,例如,支持大带宽的UE和/或支持小带宽的UE。例如,前述的Redcap UE和/或eMBB UE等。
UE可以根据自己的类型,选择接收复合PRS或者截短PRS。例如,当前UE为支持小带宽的UE,可以选择接收截短PRS,如此,可以根据截短PRS的资源配置进行截短PRS的。若当前UE为支持带宽的UE,可以选择接收复合PRS,例如,可以根据复合PRS的资源配置进行复合PRS的接收。
总之,基站可以根据复合序列下发复合PRS,而不同类型的UE,可 以根据基站的一次复合PRS的下发,进行复合PRS接收或者截短PRS,然后根据接收的PRS进行定位,从而确定出自身与基站之间的相对位置,从而完成自身的定位。
在一些实施例中,所述S210可包括:若所述UE为第一类UE,接收所述截短PRS;若所述UE为第二类UE,接收所述复合PRS;其中,所述第二类UE支持的带宽大于所述第一类UE支持的带宽。
不同类型的UE至少可以分为两类,一类是第一类UE,另一类是第二类UE,第一类UE支持大带宽小于第二类UE,第一类UE支持的带宽小于第二类UE支持的带宽,因此,第一类UE可以接收截短PRS,而支持较大带宽的第二类UE接收复合PRS。
在基站需要辅助多个UE同时进行定位时,可以通过一次复合PRS的发送,辅助多个UE完成定位。
在一些实施例中,所述S210包括:
根据所述UE类型及重复配置,重复接收所述复合PRS或者所述截短PRS;
其中,所述重复配置至少包括:
重复次数,指示所述复合PRS的重复次数;
和/或,
重复资源配置,指示重复所述复合PRS的资源。
在一些实施例中,为了确保PRS的成功接收,PRS会具有重复配置,则此时基站会重复发送PRS,此时,UE会重复接收多次PRS,UE根据自身的类型,或者基站以UE为粒度下发的PRS配置,接收截短PRS或者复合PRS。
在一些实施例中,所述根据所述UE类型及重复配置,重复接收所述复合PRS或者所述截短PRS,包括:
若所述重复配置为时域重复配置,根据所述时域重复配置在相同频带的不同符号上,重复接收所述复合PRS或者所述截短PRS。
如图4所示,一种定位参考信号PRS发送装置,其中,包括:
发送模块110,被配置为根据复合序列,发送复合PRS;
所述复合序列包含多个子序列;且所述子序列对应的部分所述复合PRS为截短PRS;
所述复合PRS占用的带宽大于所述截短PRS占用的带宽;且所述复合PRS和所述截短PRS,用于不同类型UE的定位测量。
在一些实施例中,所述发送模块110可为程序模块;所述程序模块被处理器执行后,能够实现根据复合序列,发送复合PRS。
在另一些实施例中,所述接收模块及所述解调模块可为软硬结合模块;所述软硬结合模块包括但不限于:可编程阵列;所述可编程阵列包括但不限于复杂可编程阵列或现场可编程阵列。
在还有一些实施例中,所述接收模块及所述解调模块还包括:纯硬件模块;所述纯硬件模块包括但不限于:专用集成电路。
在一些实施例中,所述复合序列包括:由所述子序列组合而成;或者,所述子序列为:所述复合序列截短形成的。
在一些实施例中,至少两种不同类型UE包含:第一类UE和第二类UE;所述第一类UE支持的带宽小于所述第二类UE支持的带宽;
所述截短PRS发送占用的带宽,小于或等于所述第一类UE支持的带宽。
在一些实施例中,所述发送模块110,被配置为根据所述复合序列及重复配置,重复发送所述复合PRS;
其中,所述重复配置至少包括:
重复次数,指示所述复合PRS的重复次数;
和/或,
重复资源配置,指示重复所述复合PRS的资源。
在一些实施例中,所述重复配置包括:
时域重复配置,指示在时域重复所述复合PRS配置时使用的时域资源;
若所述重复资源配置为重复时域配置,所述截短PRS的多次重复位于相同频带的不同符号上。
如图5所示,本公开实施例提供一种PRS接收装置,其中,包括:
接收模块210,被配置为接收复合PRS或者截短PRS;其中,所述复合PRS为根据复合序列发送的;所述截短PRS为所述复合PRS的部分,且是根据所述复合序列的子序列发送的;
所述复合PRS占用的带宽大于所述截短PRS占用的带宽;且所述复合PRS和所述截短PRS,用于不同类型UE的定位测量。
在一些实施例中,所述接收模块210可为程序模块;所述程序模块被处理器执行后,能够实现接收复合PRS或截短PRS。
在另一些实施例中,所述接收模块210及所述解调模块可为软硬结合模块;所述软硬结合模块包括但不限于:可编程阵列;所述可编程阵列包括但不限于复杂可编程阵列或现场可编程阵列。
在还有一些实施例中,所述接收模块210及所述解调模块还包括:纯硬件模块;所述纯硬件模块包括但不限于:专用集成电路。
在一些实施例中,所述接收模块210,被配置为若所述UE为第一类UE,接收所述截短PRS;
若所述UE为第二类UE,接收所述复合PRS;其中,所述第二类UE支持的带宽大于所述第一类UE支持的带宽。
在一些实施例中,所述接收模块210,被配置为根据所述UE类型及 重复配置,重复接收所述复合PRS或者所述截短PRS;
其中,所述重复配置至少包括:
重复次数,指示所述复合PRS的重复次数;
和/或,
重复资源配置,指示重复所述复合PRS的资源。
在一些实施例中,所述根据所述UE类型及重复配置,重复接收所述复合PRS或者所述截短PRS,包括:
若所述重复配置为时域重复配置,根据所述时域重复配置在相同频带的不同符号上,重复接收所述复合PRS或者所述截短PRS。
本公开实施例还提供一种PRS传输方法,包括:
根据UE类型,发送PRS;不同类型的UE的PRS的发送方式不同。
例如,针对前述第一类UE,则在第一带宽上重复发送PRS;针对比第一类UE支持带宽大的第二类UE,则在第二带宽上发送PRS。第二带宽大于所述第一带宽。
在一些实施例中,所述第一带宽小于或等于所述第一类UE支持的带宽。
所述第二带宽大于所述第一类UE支持的带宽,且小于或等于第二类UE支持的带宽。
在一些实施例中,所述第二带宽为2倍以上的所述第一带宽。
在一些实施例中,针对第一类UE的PRS占用的第一时域资源数量,大于针对第二类UE的PRS占用的第二时域资源数量。
在另一些实施例中,所述第一带宽和第一时域资源数量对应的总通信资源数量,与第二带宽和第二时域资源数量对应的总通信资源数量可相同。
在一些实施例中,所述第二带宽为2倍所述第一带宽;所述第二时域资源数量为1/2所述第一时域资源数量。
当然在另一些实施例中,所述第一带宽也可以为3/4的所述第二带宽。
所述第二时域资源数量对应的时域单位在时域离散分布;而第一时域资源数量对应的时域单位在时域连续分布。此处的时域单位包括但不限于:符号或微时隙。这种离散分布可使得间隔了第二时域资源数量的所述时域单位。
例如,时域单位为符号,第二时域资源数量为2,则第一时域资源数量为4,则第二时域资源数量对应的2个符号之间至少间隔2个符号。如此,针对不同类型的UE的PRS传输,可以使用同一个资源池进行传输,如此,不同类型的UE可以共用同一片传输PRS的资源池。
在一些情况下,所述第一类UE包括但不限于:增强移动带宽(enhance Mobile Broadband,eMBB)UE。
例如,针对e,MBB UE的PRS传输,则在1个资源单元(Resource Element,RE)的2个符号上传输,而针对redcap UE的PRS传输,则半个RE上的4个符号上传输。
此处的PRS传输包括:基站的PRS发送和/或UE的PRS接收。
在本公开实施例中,基站和UE,针对不同类型的UE以不用的方式传输PRS,实现了不同类型UE的PRS解耦,从而能够确保每一种UE都能够接收到适合自身定位测量的PRS,实现定位测量。
以下结合上述任意实施例提供几个具体示例:
示例1:
在应用场景中有传感器的设备,视频监控和可穿戴类设备,其带宽要求通常比较低,20-40M,甚至10M的可能。以支持20M带宽的Redcap UE为例。
PRS是3GPP NR空口中基站发送的下行信号,用于定位。众所周知,定位的带宽和精度成正比,因此PRS的带宽从最小24个物理资源块 (Physical Resource Block,PRB)到最大272PRB,通常基站会根据定位精度要求,系统资源的情况,选择合适的带宽,例如,96个PRB,SCS=30KHz,约35M,并最小配置两个连续的时域符号。
如果要提高精度,则会配置更大的带宽或者更多的时域符号,或者一起(频域带宽的扩展精度提升要高于时域重复)。但是对于Redcap UE受限于UE带宽,同一时间只能配置UE最大支持带宽的PRS的带宽,比如20M,那么精度就会下降很多,为了保证Redcap UE在某些需求下能达到更高的定位精度,需要在PRS的配置上兼容Redcap UE,并尽可能节省资源。
正常UE(即指支持的带宽大于所述redcap UE)两个符号,间隔RE配置即可。因为超过了Redcap UE的带宽,给Redcap UE配置4个符号的小带宽重复,然而这样的定位精度和大带宽比不够,这里给出了一个2倍的例子,也可能是3/4倍的带宽。
示例2:
对于一个带宽为n的PRS序列,基站配置给Redcap UE采用跨符号跳频的方式,即将序列的第一部分配置在第一个符号,第2部分配置到第2个符号的相邻的不同带宽,第3个符号以此类推(如果带宽超过2倍)。
在配置上将PRS的PRS序列分为n个部分;比如图中是2个部分,第一个部分在第一个符号第一频域发送;第二部分在第二符号第二频域发送,以此类推第三,第四符号。
还有一种方案是第一个部分在第一个符号第一频域发送;第二部分在第三符号第二频域发送;第二部分在第二个符号的第一频域发送,如图中的第二个部分。
基站侧保证n个部分中第一部分……第n部分在频域上连续,并保证相邻两个部分中前一个部分的最后一个调制信号的调制相位,和后一个部分的首个调制信号的调制纤维,在调制相位的相位序列上连续,以上两种 配置隐含保证相位连续。
基站也可以不配置相邻两个部分的调制相位在调制相位对应的相位序列上连续,通过多次时域重复的方法;基站也可以不配置相位连续,通过跳频重复的方法配置。
UE侧:UE根据基站的PRS配置进行PRS接收,并进行不同部分的合并解调
本公开实施例提供一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有处理器运行的可执行程序,其中,处理器运行可执行程序时执行前述任意技术方案提供的应用于UE中的控制信道检测方法,或执行前述任意技术方案提供的应用于基站中的信息处理方法。
该通信设备可为前述的基站或者UE。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。这里,所述通信设备包括基站或用户设备。
所述处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图2至图3的至少其中之一。
本公开实施例提供一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现第一方面或第二方面任意技术方案所示的方法,例如,如图2至图3的至少其中之一。
图6是根据一示例性实施例示出的一种UE800的框图。例如,UE800可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图6,UE800可以包括以下至少一个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制UE800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括至少一个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括至少一个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在UE800的操作。这些数据的示例包括用于在UE800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为UE800的各种组件提供电力。电源组件806可以包括电源管理系统,至少一个电源,及其他与为UE800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述UE800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括至少一个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的唤醒时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当UE800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜 系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当UE800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括至少一个传感器,用于为UE800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如所述组件为UE800的显示器和小键盘,传感器组件814还可以检测UE800或UE800一个组件的位置改变,用户与UE800接触的存在或不存在,UE800方位或加速/减速和UE800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于UE800和其他设备之间有线或无线方式的通信。UE800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术, 超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE800可以被至少一个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由UE800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图7所示,本公开一实施例示出一种基站的结构。例如,基站900可以被提供为一网络设备。参照图7,基站900包括处理组件922,其进一步包括至少一个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述基站的任意方法,例如,如图2至图3所示方法。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包 括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (13)

  1. 一种定位参考信号PRS发送方法,其中,包括:
    根据复合序列,发送复合PRS;
    所述复合序列包含多个子序列;且所述子序列对应的部分所述复合PRS为截短PRS;
    所述复合PRS占用的带宽大于所述截短PRS占用的带宽;且所述复合PRS和所述截短PRS,用于不同类型UE的定位测量。
  2. 根据权利要求1所述的方法,其中,
    所述复合序列包括:由所述子序列组合而成;
    或者,
    所述子序列为:所述复合序列截短形成的。
  3. 根据权利要求1所述的方法,其中,至少两种不同类型UE包含:第一类UE和第二类UE;所述第一类UE支持的带宽小于所述第二类UE支持的带宽;
    所述截短PRS发送占用的带宽,小于或等于所述第一类UE支持的带宽。
  4. 根据权利要求1至3任一项所述的方法,其中,所述根据复合序列,发送复合PRS,包括:
    根据所述复合序列及重复配置,重复发送所述复合PRS;
    其中,所述重复配置至少包括:
    重复次数,指示所述复合PRS的重复次数;
    和/或,
    重复资源配置,指示重复所述复合PRS的资源。
  5. 根据权利要求4所述的方法,其中,所述重复配置包括:
    时域重复配置,指示在时域重复所述复合PRS配置时使用的时域资 源;
    若所述重复资源配置为重复时域配置,所述截短PRS的多次重复位于相同频带的不同符号上。
  6. 一种PRS接收方法,其中,包括:
    接收复合PRS或者截短PRS;其中,所述复合PRS为根据复合序列发送的;所述截短PRS为所述复合PRS的部分,且是根据所述复合序列的子序列发送的;
    所述复合PRS占用的带宽大于所述截短PRS占用的带宽;且所述复合PRS和所述截短PRS,用于不同类型UE的定位测量。
  7. 根据权利要求6所述的方法,其中,所述根据UE类型,接收复合PRS或者截短PRS,包括:
    若所述UE为第一类UE,接收所述截短PRS;
    若所述UE为第二类UE,接收所述复合PRS;其中,所述第二类UE支持的带宽大于所述第一类UE支持的带宽。
  8. 根据权利要求7或8所述的方法,其中,所述根据UE类型,接收复合PRS或者截短PRS,包括:
    根据所述UE类型及重复配置,重复接收所述复合PRS或者所述截短PRS;
    其中,所述重复配置至少包括:
    重复次数,指示所述复合PRS的重复次数;
    和/或,
    重复资源配置,指示重复所述复合PRS的资源。
  9. 根据权利要求8所述的方法,其中,所述根据所述UE类型及重复配置,重复接收所述复合PRS或者所述截短PRS,包括:
    若所述重复配置为时域重复配置,根据所述时域重复配置在相同频 带的不同符号上,重复接收所述复合PRS或者所述截短PRS。
  10. 一种定位参考信号PRS发送装置,其中,包括:
    发送模块,被配置为根据复合序列,发送复合PRS;
    所述复合序列包含多个子序列;且所述子序列对应的部分所述复合PRS为截短PRS;
    所述复合PRS占用的带宽大于所述截短PRS占用的带宽;且所述复合PRS和所述截短PRS,用于不同类型UE的定位测量。
  11. 一种PRS接收装置,其中,包括:
    接收模块,被配置为接收复合PRS或者截短PRS;其中,所述复合PRS为根据复合序列发送的;所述截短PRS为所述复合PRS的部分,且是根据所述复合序列的子序列发送的;
    所述复合PRS占用的带宽大于所述截短PRS占用的带宽;且所述复合PRS和所述截短PRS,用于不同类型UE的定位测量。
  12. 一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至5或6至9任一项提供的方法。
  13. 一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现如权利要求1至5或6至9任一项提供的方法。
PCT/CN2020/094724 2020-06-05 2020-06-05 定位参考信号的传输方法及装置、电子设备及存储介质 WO2021243712A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20938943.6A EP4164159A4 (en) 2020-06-05 2020-06-05 METHOD AND DEVICE FOR TRANSMISSION OF POSITIONING REFERENCE SIGNALS, ELECTRONIC DEVICE AND STORAGE MEDIA
US17/928,603 US20230300781A1 (en) 2020-06-05 2020-06-05 Positioning reference signal transmission method and electronic
CN202080001160.1A CN111869155B (zh) 2020-06-05 2020-06-05 定位参考信号的传输方法及装置、电子设备及存储介质
PCT/CN2020/094724 WO2021243712A1 (zh) 2020-06-05 2020-06-05 定位参考信号的传输方法及装置、电子设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/094724 WO2021243712A1 (zh) 2020-06-05 2020-06-05 定位参考信号的传输方法及装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021243712A1 true WO2021243712A1 (zh) 2021-12-09

Family

ID=72968551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094724 WO2021243712A1 (zh) 2020-06-05 2020-06-05 定位参考信号的传输方法及装置、电子设备及存储介质

Country Status (4)

Country Link
US (1) US20230300781A1 (zh)
EP (1) EP4164159A4 (zh)
CN (1) CN111869155B (zh)
WO (1) WO2021243712A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230128537A (ko) * 2021-01-08 2023-09-05 후아웨이 테크놀러지 컴퍼니 리미티드 위치결정 정보 송신 방법 및 장치
WO2023206264A1 (en) * 2022-04-28 2023-11-02 Mediatek Singapore Pte. Ltd. Dl-prs transmission mechanism
WO2023245688A1 (en) * 2022-06-24 2023-12-28 Nec Corporation Methods of communication, terminal device, network device and computer readable medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180035256A1 (en) * 2005-12-15 2018-02-01 Polte Corporation Angle of arrival (aoa) positioning method and system for positional finding and tracking objects using reduced attenuation rf technology
CN107734635A (zh) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 一种信号接收方法、装置及终端
CN109792361A (zh) * 2016-09-30 2019-05-21 瑞典爱立信有限公司 窄带定位参考信号
CN110192117A (zh) * 2017-02-02 2019-08-30 高通股份有限公司 用于定位信号的获取的方法和/或系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10716084B2 (en) * 2016-05-18 2020-07-14 Qualcomm Incorporated Narrowband positioning signal design and procedures
CN107465497B (zh) * 2016-06-03 2021-08-06 中兴通讯股份有限公司 定位参考信号的传输方法和装置
WO2018030681A1 (ko) * 2016-08-08 2018-02-15 엘지전자 주식회사 Nprs 전송 방법 및 이를 위한 장치
US10631301B2 (en) * 2016-09-30 2020-04-21 Qualcomm Incorporated Positioning reference signal enhancements
US10660109B2 (en) * 2016-11-16 2020-05-19 Qualcomm Incorporated Systems and methods to support multiple configurations for positioning reference signals in a wireless network
US20190297489A1 (en) * 2018-03-23 2019-09-26 Qualcomm Incorporated Waveform design and signaling support for positioning enhancement
US11297589B2 (en) * 2018-09-28 2022-04-05 Qualcomm Incorporated Systems and methods for network procedures for on-demand random access channel (RACH)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180035256A1 (en) * 2005-12-15 2018-02-01 Polte Corporation Angle of arrival (aoa) positioning method and system for positional finding and tracking objects using reduced attenuation rf technology
CN107734635A (zh) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 一种信号接收方法、装置及终端
CN109792361A (zh) * 2016-09-30 2019-05-21 瑞典爱立信有限公司 窄带定位参考信号
CN110192117A (zh) * 2017-02-02 2019-08-30 高通股份有限公司 用于定位信号的获取的方法和/或系统

Also Published As

Publication number Publication date
CN111869155B (zh) 2023-05-23
EP4164159A4 (en) 2023-07-19
EP4164159A1 (en) 2023-04-12
CN111869155A (zh) 2020-10-30
US20230300781A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
CN111656813B (zh) 配置测量信息传输方法及装置、通信设备及存储介质
CN116234049A (zh) 配置信息传输方法及装置、通信设备及存储介质
WO2021163936A1 (zh) 通信处理方法、装置及计算机存储介质
WO2021168664A1 (zh) 通信方法、装置及计算机存储介质
WO2021243712A1 (zh) 定位参考信号的传输方法及装置、电子设备及存储介质
JP2023532042A (ja) 情報伝送方法、装置、通信機器及び記憶媒体
WO2021243714A1 (zh) 定位参考信号的传输方法及装置、电子设备及存储介质
CN112236977B (zh) 参数配置方法、装置、通信设备和存储介质
WO2020237679A1 (zh) 随机接入方法及装置、通信设备及存储介质
WO2021237445A1 (zh) 寻呼控制消息传输方法、装置及通信设备
CN111096063B (zh) 非连续接收drx的处理方法、装置及计算机存储介质
WO2021142796A1 (zh) 通信处理方法、装置及计算机存储介质
WO2021003675A1 (zh) 信息处理方法、装置及计算机存储介质
US20220287014A1 (en) Resource allocation methods and apparatuses, message frame processing methods, apparatuses and storage mediums
WO2022126576A1 (zh) 无线通信方法及装置、通信设备及存储介质
WO2022205472A1 (zh) 上行传输时域资源的确定方法及装置、ue、网络设备及存储介质
WO2021226766A1 (zh) 发送数据的方法、装置、通信设备及存储介质
WO2021223235A1 (zh) 数据传输处理方法、装置、通信设备及存储介质
CN114080852A (zh) 能力信息的上报方法、装置、通信设备及存储介质
RU2798864C1 (ru) Способ и устройство связи
US20230396399A1 (en) Information transmission method, communication device and storage medium
EP4319258A1 (en) Measurement gap pre-configuration processing method and apparatus, communication device, and storage medium
CN112205053B (zh) 激活资源切换方法及装置、通信设备及存储介质
CN115398843B (zh) 降低干扰的方法及装置、通信设备和存储介质
US20240163696A1 (en) Measurement gap pre-configuration processing method and apparatus, communication device and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938943

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020938943

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020938943

Country of ref document: EP

Effective date: 20230105

NENP Non-entry into the national phase

Ref country code: DE