WO2023206264A1 - Dl-prs transmission mechanism - Google Patents

Dl-prs transmission mechanism Download PDF

Info

Publication number
WO2023206264A1
WO2023206264A1 PCT/CN2022/089983 CN2022089983W WO2023206264A1 WO 2023206264 A1 WO2023206264 A1 WO 2023206264A1 CN 2022089983 W CN2022089983 W CN 2022089983W WO 2023206264 A1 WO2023206264 A1 WO 2023206264A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
transmission
bandwidth
frequency
starting
Prior art date
Application number
PCT/CN2022/089983
Other languages
French (fr)
Inventor
Pengli YANG
Chiao-Yao CHUANG
Jijian CHEN
Xuancheng Zhu
Xiao Liang
Original Assignee
Mediatek Singapore Pte. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediatek Singapore Pte. Ltd. filed Critical Mediatek Singapore Pte. Ltd.
Priority to PCT/CN2022/089983 priority Critical patent/WO2023206264A1/en
Priority to PCT/CN2023/090964 priority patent/WO2023208070A1/en
Priority to CN202380017298.4A priority patent/CN118556388A/en
Priority to TW112115894A priority patent/TW202349993A/en
Publication of WO2023206264A1 publication Critical patent/WO2023206264A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • This present disclosure relates generally to wireless communications, and more specifically, to techniques of positioning a user equipment (UE) with the limited measurement bandwidth.
  • UE user equipment
  • a reduced capacity UE has the limited maximum bandwidth for downlink and uplink.
  • RedCap UE has the limited maximum bandwidth for downlink and uplink.
  • PRS positioning reference signal
  • the purpose of this disclosure is to propose a PRS transmission mechanism that can improve the positioning accuracy of RedCap UE.
  • the UE receives the higher layer assistance information of one or more positioning frequency layers for downlink PRS configuration, including the spatial information and frequency position ofeach PRS resource.
  • the PRS resources are transmitted from BS with three bandwidth types, respectively for larger-bandwidth PRS transmission, smaller-bandwidth PRS transmission, and larger-bandwidth PRS transmission in conjunction with smaller-bandwidth.
  • the smaller-bandwidth PRS transmission with a different frequency layer maybe overlapped partially in frequency domain.
  • the UE receives PRS resources of across positioning frequency layers indicated with the associated spatial transmission filter or indicated with the QCL relation between resources.
  • the UE is able to receive PRS resources with a larger bandwidth as compared to the limited reception bandwidth after combining the received bandwidth in different time instance obtained by RF retuning.
  • Fig. 1 is an example for a UE with limited reception bandwidth to perform reception bandwidth hopping in order to observe larger PRS bandwidth under the transmission of large PRS bandwidth with sufficient repetition number.
  • Fig. 2 is an example for a UE with limited reception bandwidth to perform reception bandwidth hopping in order to observe larger PRS bandwidth under the transmission of large PRS bandwidth with insufficient repetition number, the PRS with smaller bandwidth could be transmitted in conjunction with the larger-bandwidth PRS.
  • Fig. 3 is an example for a UE with limited reception bandwidth to perform reception bandwidth hopping in order to observe larger PRS bandwidth under the transmission of only small PRS bandwidth.
  • Fig. 4 (a) and Fig. 4 (b) are an example for the starting PRB index calculation for each positioning frequency layer when the starting PRB index increases with time instance.
  • Fig. 5 (a) and Fig. 5 (b) are an example for the starting PRB index calculation for each positioning frequency layer when the starting PRB index decreases with time instance.
  • Fig. 6 is an example of the PRS hopping together with existing transmission pattern that is sweeping after repetition.
  • Fig. 7 is an example of the PRS hopping together with existing transmission pattern that is repetition after sweeping.
  • a positioning frequency layer consists of one or more PRS resource sets, and there is corresponding subcarrier spacing, cyclic prefix and the absolute frequency of a reference point which could also be named as point A.
  • a PRS resource set defines a same bandwidth for the associated PRS resources. Further, all the PRS resource sets within a same positioning frequency layer have the same bandwidth.
  • a PRS resource set defines a same starting PRB index with respect to the point A for the associated PRS resources. Further, all the PRS resource sets within a same positioning frequency layer have the same starting PRB index.
  • a UE with limited reception bandwidth may re-tune to change the center frequency with time.
  • the UE may be able to receive with a larger bandwidth as compared to the limited reception bandwidth after combining the received bandwidth in different time instance, as illustrated in Fig. 1.
  • the large-bandwidth PRS is generally defined to be comparable to the channel bandwidth of a component carrier.
  • the repetition of transmission generally indicates that the transmissions are based on a same spatial transmission filter. Further, for example, the time instance could be in the unit of slot time.
  • the smaller-bandwidth PRS with a different starting PRB index in frequency domain in a different time instance could be transmitted in conjunction with the larger-bandwidth PRS.
  • the UE may also be able to receive with a larger bandwidth as compared to the limited reception bandwidth after combining the received bandwidth in different time instance, as illustrated in Fig. 2.
  • the smaller-bandwidth PRS is generally defined to be comparable to the maximum reception bandwidth of RedCap UEs, and the maximum reception bandwidth of RedCap UEs is generally smaller than the channel bandwidth of a component carrier.
  • the UE may also be able to receive with a larger bandwidth as compared to the limited reception bandwidth after combining the received bandwidth in different time instance, as illustrated in Fig. 3.
  • the smaller-bandwidth PRS transmission with a different starting PRB index in frequency domain in a different time instance maybe overlapped partially in frequency domain, as shown in Fig. 2 and Fig. 3.
  • the UE is able to observe the same RS within a frequency domain segment in different time instance in order to estimate the change of the receiving phase due to RF re-tuning.
  • the starting PRB index associated to the small bandwidth transmission in next time instance based on that in current time instance is determined by
  • startPRB 0 is the first starting frequency position of the PRS transmission for hopping
  • startPRB index of the first small bandwidth PRS transmission as illustrated in Fig. 4 and Fig. 5.
  • the first starting PRB index of the small bandwidth transmission for hopping is determined by
  • N rep denotes the repetition factor for the larger-bandwidth PRS transmission, denotes the large PRS transmission BW
  • startPRB normal denotes the starting PRB index of the large PRS BW transmission, as illustrated in Fig. 4 (a) and Fig. 5 (a) .
  • the resource 0, resource 1 and resource 2 correspond to three positioning frequency layers with different starting PRB index startPRB normal , startPRB 0 , startPRB 1 , respectively.
  • startPRB 0 is the lowest RB index of data transmission bandwidth, as illustrated in Fig. 4 (b) and Fig. 5 (b) .
  • the smaller-bandwidth PRS transmission with a different starting PRB index in frequency domain in a different time instance could be treated as the PRS transmission in a different positioning frequency layer, since the PRS resources and resource sets within a positioning frequency layer have the same starting PRB index and bandwidth.
  • the PRS resources of across positioning frequency layers may be indicated with the associated spatial transmission filter, or be indicated with the QCL relation between resources. For example, all the resources in Fig. 1-Fig. 5 are indicated with the associated spatial transmission filter.
  • Fig. 6 shows an example of the PRS hopping together with existing transmission pattern that is sweeping after repetition.
  • the resource slot offset in each time instance and QCL relation between resources are also shown in Fig. 5.
  • one resource set with large BW is for the normal UE.
  • the system can additionally allocate two more resource sets with different startPRB to facilitate RedCap UE for obtaining larger PRS BW.
  • these resources at instance 0, 1, 2, 3 are QCL type D with each other, due to being associated with same spatial transmission filter. Similar QCL relation between resources in instance 4, 5, 6, 7, or between resources in instance 8, 9, 10, 11, or between resources in instance 12, 13, 14, 15.
  • Fig. 7 shows an example of the PRS hopping together with existing transmission pattern that is repetition after sweeping.
  • these resources at instance 0, 4, 8, 12 are QCL type D with each other. Similar QCL relation between resources in instance 1, 5, 9, 13, or between resources in instance 2, 6, 10, 14, or between resources in instance 3, 7, 11, 15.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This disclosure provides a new transmission mechanism of positioning reference signal (PRS) that can enhance the positioning performance of the RedCap UE. The UE with limited reception bandwidth receives the PRS resources of one or more positioning frequency layers by adjusting the center frequency according to the provided higher layer assistance information for downlink PRS configuration. Besides, the PRS resources of across positioning frequency layers are indicated with the associated spatial transmission filter and are partially overlapped in frequency domain. Thus, the UE is able to receive with a larger bandwidth by combining each of the limited reception bandwidth in different time instance, in this way, the measurement accuracy will be improved.

Description

DL-PRS TRANSMISSION MECHANISM FIELD
This present disclosure relates generally to wireless communications, and more specifically, to techniques of positioning a user equipment (UE) with the limited measurement bandwidth.
BACKGROUND
A reduced capacity UE (RedCap UE) has the limited maximum bandwidth for downlink and uplink. In order to assist the RedCap UE to leverage the large bandwidth of positioning reference signal (PRS) for improving measurement accuracy and also to maintain the system RS overhead, a new transmission mechanism of PRS different from the transmission with large PRS bandwidth may be beneficial.
SUMMARY
The purpose of this disclosure is to propose a PRS transmission mechanism that can improve the positioning accuracy of RedCap UE.
In the first aspect of this disclosure, the UE receives the higher layer assistance information of one or more positioning frequency layers for downlink PRS configuration, including the spatial information and frequency position ofeach PRS resource.
In the second aspect ofthis disclosure, the PRS resources are transmitted from BS with three bandwidth types, respectively for larger-bandwidth PRS transmission, smaller-bandwidth PRS transmission, and larger-bandwidth PRS transmission in conjunction with smaller-bandwidth. The smaller-bandwidth PRS transmission with a different frequency layer maybe overlapped partially in frequency domain.
In the third aspect of this disclosure, the UE receives PRS resources of across positioning frequency layers indicated with the associated spatial transmission filter or indicated with the QCL relation between resources.
In the fourth aspect of this disclosure, the UE is able to receive PRS resources with a larger bandwidth as compared to the limited reception bandwidth after combining the received bandwidth in different time instance obtained by RF retuning.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is an example for a UE with limited reception bandwidth to perform reception bandwidth hopping in order to observe larger PRS bandwidth under the transmission of large PRS bandwidth with sufficient repetition number.
Fig. 2 is an example for a UE with limited reception bandwidth to perform reception bandwidth hopping in order to observe larger PRS bandwidth under the transmission of large PRS bandwidth with insufficient repetition number, the PRS with smaller bandwidth could be transmitted in conjunction with the larger-bandwidth PRS.
Fig. 3 is an example for a UE with limited reception bandwidth to perform reception bandwidth hopping in order to observe larger PRS bandwidth under the transmission of only small PRS bandwidth.
Fig. 4 (a) and Fig. 4 (b) are an example for the starting PRB index calculation for each positioning frequency layer when the starting PRB index increases with time instance.
Fig. 5 (a) and Fig. 5 (b) are an example for the starting PRB index calculation for each positioning frequency layer  when the starting PRB index decreases with time instance.
Fig. 6 is an example of the PRS hopping together with existing transmission pattern that is sweeping after repetition.
Fig. 7 is an example of the PRS hopping together with existing transmission pattern that is repetition after sweeping.
DETAILED DESCRIPTION
Certain terms are used throughout the description and following claims to refer to particular components. As one skilled in the art will appreciate, manufacturers may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. In the following description and in the claims, the terms "include" and "comprise" are used in an open-ended fashion, and thus should be interpreted to mean "include, but not limited to ... ". Also, the term "couple" is intended to mean either an indirect or direct electrical connection. Accordingly, ifone device is coupled to another device, that connection may be through a direct electrical connection, or through an indirect electrical connection via other devices and connections. The making and using of the embodiments of the disclosure are discussed in detail below. It should be appreciated, however, that the embodiments can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative, and do not limit the scope of the disclosure. Some variations of the embodiments are described. Throughout the various views and illustrative embodiments, like reference numbers are used to designate like elements.
Let us define that a positioning frequency layer consists of one or more PRS resource sets, and there is corresponding subcarrier spacing, cyclic prefix and the absolute frequency of a reference point which could also be named as point A.
Let us further define that a PRS resource set defines a same bandwidth for the associated PRS resources. Further, all the PRS resource sets within a same positioning frequency layer have the same bandwidth.
Let us further define that a PRS resource set defines a same starting PRB index with respect to the point A for the associated PRS resources. Further, all the PRS resource sets within a same positioning frequency layer have the same starting PRB index.
When a system with base stations is able to transmit the large-bandwidth PRS with sufficient repetition number, a UE with limited reception bandwidth may re-tune to change the center frequency with time. As such, the UE may be able to receive with a larger bandwidth as compared to the limited reception bandwidth after combining the received bandwidth in different time instance, as illustrated in Fig. 1. The large-bandwidth PRS is generally defined to be comparable to the channel bandwidth of a component carrier. The repetition of transmission generally indicates that the transmissions are based on a same spatial transmission filter. Further, for example, the time instance could be in the unit of slot time.
When a system with base stations is not able to transmit the larger-bandwidth PRS with sufficient repetition number, the smaller-bandwidth PRS with a different starting PRB index in frequency domain in a different time instance could be transmitted in conjunction with the larger-bandwidth PRS. As such, the UE may also be able to receive with a larger bandwidth as compared to the limited reception bandwidth after combining the received bandwidth in different time instance, as illustrated in Fig. 2. The smaller-bandwidth PRS is generally defined to be comparable to the maximum reception bandwidth of RedCap UEs, and the maximum reception bandwidth of RedCap UEs is generally smaller than the channel bandwidth of a component carrier.
When a system with base stations is not able to transmit any larger-bandwidth PRS, only the smaller-bandwidth  PRS with a different starting PRB index in frequency domain in a different time instance could be transmitted. As such, the UE may also be able to receive with a larger bandwidth as compared to the limited reception bandwidth after combining the received bandwidth in different time instance, as illustrated in Fig. 3.
The smaller-bandwidth PRS transmission with a different starting PRB index in frequency domain in a different time instance maybe overlapped partially in frequency domain, as shown in Fig. 2 and Fig. 3. In this way, the UE is able to observe the same RS within a frequency domain segment in different time instance in order to estimate the change of the receiving phase due to RF re-tuning.
The starting PRB index associated to the small bandwidth transmission in next time instance based on that in current time instance is determined by
Figure PCTCN2022089983-appb-000001
Figure PCTCN2022089983-appb-000002
where
Figure PCTCN2022089983-appb-000003
denotes the small transmission BW, 
Figure PCTCN2022089983-appb-000004
is the partial overlapping BW between two PRS transmissions in adjacent time instances, 
Figure PCTCN2022089983-appb-000005
is the positioning frequency layer transmission number, startPRB 0 is the first starting frequency position of the PRS transmission for hopping, means the starting PRB index of the first small bandwidth PRS transmission, as illustrated in Fig. 4 and Fig. 5.
When the smaller-bandwidth PRS is transmitted in conjunction with larger-bandwidth PRS, the first starting PRB index of the small bandwidth transmission for hopping is determined by
Figure PCTCN2022089983-appb-000006
or
Figure PCTCN2022089983-appb-000007
N rep denotes the repetition factor for the larger-bandwidth PRS transmission, 
Figure PCTCN2022089983-appb-000008
denotes the large PRS transmission BW, startPRB normal denotes the starting PRB index of the large PRS BW transmission, as illustrated in Fig. 4 (a) and Fig. 5 (a) . For example, in Fig. 4 (a) , the repetition factor of resource 0 under large BW transmission is 2, i.e., N rep = 2. The resource 0, resource 1 and resource 2 correspond to three positioning frequency layers with different starting PRB index startPRB normal, startPRB 0, startPRB 1, respectively.
When there is no larger-bandwidth PRS is transmitted, startPRB 0 is the lowest RB index of data transmission bandwidth, as illustrated in Fig. 4 (b) and Fig. 5 (b) . For example, in Fig. 4 (b) , the four resources, resource 0, resource 1, resource 2, and resource 3, corresponding to four positioning frequency layers with different starting PRB indexesstartPRB 0, startPRB 1, startPRB 2, startPRB 3, respectively.
When there is no smaller-bandwidth PRS is transmitted, as illustrated in Fig. 1, there is only one positioning frequency layer which contains resource 0 with the repetition factor 4 (N rep = 4) , and there is one starting PRB index.
The smaller-bandwidth PRS transmission with a different starting PRB index in frequency domain in a different time instance could be treated as the PRS transmission in a different positioning frequency layer, since the PRS resources and resource sets within a positioning frequency layer have the same starting PRB index and bandwidth. Further, the PRS resources of across positioning frequency layers may be indicated with the associated spatial transmission filter, or be indicated with the QCL relation between resources. For example, all the resources in Fig. 1-Fig. 5 are indicated with the associated spatial transmission filter.
Fig. 6 shows an example of the PRS hopping together with existing transmission pattern that is sweeping after repetition. The resource slot offset in each time instance and QCL relation between resources are also shown in Fig. 5.In this example, one resource set with large BW is for the normal UE. The system can additionally allocate two more resource sets with different startPRB to facilitate RedCap UE for obtaining larger PRS BW. For UE reception,  these resources at  instance  0, 1, 2, 3 are QCL type D with each other, due to being associated with same spatial transmission filter. Similar QCL relation between resources in  instance  4, 5, 6, 7, or between resources in  instance  8, 9, 10, 11, or between resources in  instance  12, 13, 14, 15.
Fig. 7 shows an example of the PRS hopping together with existing transmission pattern that is repetition after sweeping. For UE reception, these resources at  instance  0, 4, 8, 12 are QCL type D with each other. Similar QCL relation between resources in  instance  1, 5, 9, 13, or between resources in  instance  2, 6, 10, 14, or between resources in  instance  3, 7, 11, 15.
While aspects of the present disclosure have been described in conjunction with the specific embodiments thereof that are proposed as examples, altematives, modifications, and variations to the examples may be made. Accordingly, embodiments as set forth herein are intended to be illustrative and not limiting. There are changes that may be made without departing from the scope of the claims set forth below.

Claims (6)

  1. A method of wireless communication of a user equipment (UE) , comprising:
     receiving, from a serving base station of the UE, the higher layer assistance information of downlink positioning reference signal (PRS) configuration, wherein it comprises the PRS resource configuration of multiple frequency layers, each layer being associated with a starting PRB index;
    measuring, at a baseband of the UE, the PRS within the reception bandwidth with first starting frequency position;
    re-adjusting, at the RF frequency of the UE, for the measurement of the PRS within the reception bandwidth with multiple starting frequency positions; and
    calculating the results based on the measured PRS within the reception bandwidth with multiple starting frequency positions.
  2. The method of claim 1, wherein the PRS configuration further comprises the QCL relation between the PRS resources of across layers.
  3. The method of claim 2, wherein the QCL relation is type D as Spatial Rx parameter.
  4. The method of claim 1, further comprising:
    requesting, by the UE, the DL-PRS transmission with several starting PRB indexes, each starting PRB index associated to the transmission in a time instance.
  5. The method of claim 1, wherein the PRS resources associated to different positioning frequency layers has overlapping in frequency domain for transmission.
  6. The method of claim 4, wherein the starting PRB index associated to the transmission in next time instance based on that in current time instance is determined by
    Figure PCTCN2022089983-appb-100001
    or, 
    Figure PCTCN2022089983-appb-100002
    where
    Figure PCTCN2022089983-appb-100003
    denotes the transmission BW, 
    Figure PCTCN2022089983-appb-100004
    is the overlapping BW between two PRS transmissions in adjacent time instances, n is the positioning frequency layer transmission number, startPRB 0 is the first starting frequency position of the PRS transmission for hopping.
PCT/CN2022/089983 2022-04-28 2022-04-28 Dl-prs transmission mechanism WO2023206264A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2022/089983 WO2023206264A1 (en) 2022-04-28 2022-04-28 Dl-prs transmission mechanism
PCT/CN2023/090964 WO2023208070A1 (en) 2022-04-28 2023-04-26 Methods and apparatus for reduced capacity user equipment positioning
CN202380017298.4A CN118556388A (en) 2022-04-28 2023-04-26 Method and device for positioning low-capacity user equipment
TW112115894A TW202349993A (en) 2022-04-28 2023-04-28 Methods for reduced capability user equipment positioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/089983 WO2023206264A1 (en) 2022-04-28 2022-04-28 Dl-prs transmission mechanism

Publications (1)

Publication Number Publication Date
WO2023206264A1 true WO2023206264A1 (en) 2023-11-02

Family

ID=88516788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089983 WO2023206264A1 (en) 2022-04-28 2022-04-28 Dl-prs transmission mechanism

Country Status (1)

Country Link
WO (1) WO2023206264A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111342943A (en) * 2019-04-29 2020-06-26 维沃移动通信有限公司 PRS resource configuration method, measurement interval configuration method and related equipment
CN111869155A (en) * 2020-06-05 2020-10-30 北京小米移动软件有限公司 Transmission method and device of positioning reference signal, electronic equipment and storage medium
US20210185632A1 (en) * 2019-12-16 2021-06-17 Qualcomm Incorporated Signaling details for prs stitching for positioning in a wireless network
CN114374494A (en) * 2020-10-15 2022-04-19 维沃移动通信有限公司 Positioning method, terminal and network side equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111342943A (en) * 2019-04-29 2020-06-26 维沃移动通信有限公司 PRS resource configuration method, measurement interval configuration method and related equipment
US20210185632A1 (en) * 2019-12-16 2021-06-17 Qualcomm Incorporated Signaling details for prs stitching for positioning in a wireless network
CN111869155A (en) * 2020-06-05 2020-10-30 北京小米移动软件有限公司 Transmission method and device of positioning reference signal, electronic equipment and storage medium
CN114374494A (en) * 2020-10-15 2022-04-19 维沃移动通信有限公司 Positioning method, terminal and network side equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (INTEL CORPORATION): "FL Summary #1 on DL Reference Signals for NR Positioning", 3GPP TSG RAN WG1 #101-E R1-2004726, 30 May 2020 (2020-05-30), XP051892275 *

Similar Documents

Publication Publication Date Title
CN111837354B (en) Cell activation method of secondary cell and electronic equipment thereof
JP7106562B2 (en) Sending Devices, Receiving Devices, and Their Methods
US20200220685A1 (en) Uplink OFDMA Processing in WLANs
EP3928568B1 (en) Method and apparatus for configuring prs resources, ue and network device
EP1496632A1 (en) Radio transmitter apparatus, radio receiver apparatus, and method thereof
CA3046405C (en) Method for transmitting information, network device and terminal device
RU2341897C1 (en) Improved method and device for transmitting beacond signals
US11252611B2 (en) Apparatus and method for determining bandwidth in wireless communication system
CN111669257B (en) PRS frequency domain resource mapping method, device and storage medium
CN105356981B (en) A kind of method of communication, equipment and system
US20190289591A1 (en) Uplink signal transmission method and device
US20200076549A1 (en) Method and Apparatus for Wireless Communication
CN117546568A (en) Method, apparatus and computer storage medium for communication
US10779326B2 (en) Carrier aggregation method and device in wireless communication system
WO2023206264A1 (en) Dl-prs transmission mechanism
CN102131276B (en) Method for sending and receiving system information of co-station multiple cells and evolution node base (eNB)
WO2023206435A1 (en) Srs transmission mechanism for positioning
WO2023208070A1 (en) Methods and apparatus for reduced capacity user equipment positioning
WO2023044717A1 (en) Indication of simultaneous rx beams capability and related measurement resource coordination
US20240178889A1 (en) Channel state information (csi) ommission in advanced multiple input multiple output (mimo) csi feedback
RU2782443C1 (en) Method and apparatus for detecting the physical downlink control channel
WO2024068632A1 (en) Positioning using a positioning reference signal transmission employing a frequency-hop pattern
JP2008244860A (en) Radio communication system, base station and terminal
CN113490220A (en) Transmission method, device and storage medium of control channel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939116

Country of ref document: EP

Kind code of ref document: A1