WO2022126576A1 - 无线通信方法及装置、通信设备及存储介质 - Google Patents

无线通信方法及装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2022126576A1
WO2022126576A1 PCT/CN2020/137517 CN2020137517W WO2022126576A1 WO 2022126576 A1 WO2022126576 A1 WO 2022126576A1 CN 2020137517 W CN2020137517 W CN 2020137517W WO 2022126576 A1 WO2022126576 A1 WO 2022126576A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
frequency hopping
tti
frequency
frequency domain
Prior art date
Application number
PCT/CN2020/137517
Other languages
English (en)
French (fr)
Inventor
付婷
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202080004022.9A priority Critical patent/CN115553028A/zh
Priority to PCT/CN2020/137517 priority patent/WO2022126576A1/zh
Publication of WO2022126576A1 publication Critical patent/WO2022126576A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present disclosure relates to the field of wireless communication technologies, but is not limited to the field of wireless communication technologies, and in particular, relates to a wireless communication method and apparatus, a communication device, and a storage medium.
  • a Downlink Control Information In general transmission scheduling, in order to ensure the flexibility of scheduling, a Downlink Control Information (DCI) only schedules one Physical Downlink Shared Channel (PDSCH) or Physical Uplink Shared Channel (Physical Uplink Shared). Channel, PUSCH).
  • DCI Downlink Control Information
  • PDSCH Physical Downlink Shared Channel
  • Physical Uplink Shared Physical Uplink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • SI New Radio
  • TTI Multi-Transmission Time Interval scheduling. That is, one DCI schedules PDSCH/PUSCH transmission of multiple time slots (slots) to reduce the number of DCIs, thereby reducing the complexity of blind detection of DCI by the UE.
  • Embodiments of the present disclosure provide a wireless communication method and apparatus, a communication device, and a storage medium.
  • a first aspect of the embodiments of the present disclosure provides a wireless communication method, which is applied to a terminal, and the method includes: frequency hopping transmission and multiple transmission time interval TTI transmission.
  • a second aspect of the embodiments of the present disclosure provides a wireless communication method, which is applied in a base station, and the method includes:
  • a third aspect of the embodiments of the present disclosure provides a wireless communication device, which is applied in a terminal, and the method includes:
  • the first transmission module is configured to transmit multiple transmission time interval TTI transmissions by frequency hopping.
  • a fourth aspect of the embodiments of the present disclosure provides a wireless communication apparatus, which is applied in a base station, and the apparatus includes:
  • the second transmission module is configured to transmit multiple transmission time interval TTI transmissions by frequency hopping.
  • a fifth aspect of the embodiments of the present disclosure provides a communication device, including a processor, a transceiver, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor runs the executable program During the program, the wireless communication method provided by the first aspect or the second aspect is executed.
  • frequency hopping transmission is used to transmit and receive multiple TTI transmission bands, so that the frequency domain diversity gain of TTI transmission can be improved.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment
  • FIG. 2 is a schematic diagram of scheduling of multi-TTI transmission according to an exemplary embodiment
  • FIG. 3 is a schematic flowchart of a wireless communication method according to an exemplary embodiment
  • FIG. 4 is a schematic flowchart of a wireless communication method according to an exemplary embodiment
  • FIG. 5 is a schematic flowchart of a wireless communication method according to an exemplary embodiment
  • FIG. 6 is a schematic flowchart of a wireless communication method according to an exemplary embodiment
  • FIG. 7 is a schematic flowchart of a wireless communication method according to an exemplary embodiment
  • FIG. 8 is a schematic flowchart of a wireless communication method according to an exemplary embodiment
  • FIG. 9 is a schematic structural diagram of a wireless communication apparatus according to an exemplary embodiment.
  • FIG. 10 is a schematic structural diagram of a wireless communication device according to an exemplary embodiment
  • FIG. 11 is a schematic structural diagram of a UE according to an exemplary embodiment
  • Fig. 12 is a schematic structural diagram of a base station according to an exemplary embodiment.
  • first, second, third, etc. may be used in embodiments of the present disclosure to describe various pieces of information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several UEs 11 and several base stations 12 .
  • the UE11 may be a device that provides voice and/or data connectivity to the user.
  • the UE11 may communicate with one or more core networks via a Radio Access Network (RAN), and the UE11 may be an IoT UE, such as a sensor device, a mobile phone (or "cellular" phone) and an IoT-enabled UE.
  • RAN Radio Access Network
  • the UE's computer for example, may be a stationary, portable, pocket-sized, hand-held, computer-built-in, or vehicle-mounted device.
  • a station For example, a station (Station, STA), a subscriber unit (subscriber unit), a subscriber station (subscriber station), a mobile station (mobile station), a mobile station (mobile), a remote station (remote station), an access point, a remote UE ( remote terminal), access UE (access terminal), user device (user terminal), user agent (user agent), user equipment (user device), or user UE (user equipment, UE).
  • the UE11 may also be a device of an unmanned aerial vehicle.
  • the UE 11 may also be an in-vehicle device, for example, a trip computer with a wireless communication function, or a wireless communication device connected to an external trip computer.
  • the UE11 may also be a roadside device, for example, may be a streetlight, a signal light, or other roadside device having a wireless communication function.
  • the base station 12 may be a network-side device in a wireless communication system.
  • the wireless communication system may be the 4th generation mobile communication (4G) system, also known as the Long Term Evolution (Long Term Evolution, LTE) system; or, the wireless communication system may also be a 5G system, Also known as new radio (NR) system or 5G NR system.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network, a new generation of radio access network).
  • the MTC system may be a network-side device in a wireless communication system.
  • the base station 12 may be an evolved base station (eNB) used in the 4G system.
  • the base station 12 may also be a base station (gNB) that adopts a centralized distributed architecture in a 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 12 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a protocol stack of a Packet Data Convergence Protocol (PDCP) layer, a Radio Link Control Protocol (Radio Link Control, RLC) layer, and a Media Access Control (Media Access Control, MAC) layer; distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 12 is not limited in this embodiment of the present disclosure.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control Protocol
  • MAC Media Access Control
  • distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 12 is not limited in this embodiment of the present disclosure.
  • a wireless connection can be established between the base station 12 and the UE 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a 5G next-generation mobile communication network technology standard.
  • an E2E (End to End, end-to-end) connection may also be established between UE11.
  • V2V vehicle to vehicle, vehicle-to-vehicle
  • V2I vehicle to Infrastructure, vehicle-to-roadside equipment
  • V2P vehicle to pedestrian, vehicle-to-person communication in vehicle-to-everything (V2X) communication etc. scene.
  • the above wireless communication system may further include a network management device 13 .
  • the network management device 13 may be a core network device in a wireless communication system, for example, the network management device 13 may be a mobility management entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC). MME).
  • the network management device may also be other core network devices, such as a serving gateway (Serving GateWay, SGW), a public data network gateway (Public Data Network GateWay, PGW), a policy and charging rule functional unit (Policy and Charging Rules) Function, PCRF) or home subscriber server (Home Subscriber Server, HSS), etc.
  • the implementation form of the network management device 13 is not limited in this embodiment of the present disclosure.
  • one DCI schedules 4 PDSCH transmissions, namely PDSCH1, PDSCH2, PDSCH3 and PDSCH4.
  • the 4 PDSCH transmissions belong to different time slots.
  • Figure 2 shows that the time slots where the four PDSCHs are located are adjacent, but it does not rule out that the time slots where the PDSCH transmissions are located are not adjacent. For example, there are two PDSCH transmissions separated by two time slot.
  • PDSCHs scheduled by multiple TTIs can be used for repeated data transmission, or different downlink data, that is, different transport blocks (Transport Block, TB), can be transmitted respectively.
  • Transport Block Transport Block
  • the frequency domain resources of the PDSCH/PUSCH used for transmission are indicated in the DCI.
  • the resource blocks (Resource Block, RB) of the bandwidth part (BWP) semi-statically configured by the terminal are numbered RB0-RB49.
  • the DCI may specify the centralized frequency domain resource allocation method when scheduling the PDSCH, for example, specify to allocate RB10 to RB19. If a bitmap (bitmap) is used to indicate an RB group (group).
  • RB0-RB49 is divided into a total of 7 groups, namely RB0-7, RB8-15, RB16-23, RB24-31, RB32-39, RB40-48 and RB48-49, a total of 7 bits are required to indicate, for example When the indication is 0101000, it means that the frequency domain RBs allocated to the UE are RB8-15 and 24-31.
  • a method is provided in the embodiments of the present disclosure. For multiple transmissions scheduled by multiple TTIs, if the resources are allocated in a centralized frequency domain resource allocation manner, frequency hopping transmission is adopted.
  • an embodiment of the present disclosure provides a wireless communication method, which is applied in a terminal, and the method includes:
  • S110 Frequency hopping transmission for multiple transmission time interval TTI transmission.
  • the terminal may be various types of terminals, for example, a mobile phone, a tablet computer, or a vehicle-mounted terminal, etc.; the terminal may also be an Internet of Things terminal.
  • the IoT terminal includes but is not limited to: a smart water meter and/or a smart electricity meter, etc.
  • the terminal may be a broadband terminal or a narrowband terminal or the like.
  • the transmission of multi-TTI scheduling is centralized frequency domain resource transmission at one end, and when frequency hopping transmission is used, two adjacent TTI transmissions in the time domain of multi-TTI transmission use frequency hopping transmission. Different frequency domain resources are used at the time, so that the frequency domain diversity gain of multi-TTI transmission is improved.
  • the multi-TTI transmission is multiple repeated transmissions of a TB, then through frequency hopping transmission, even if the multi-TTI transmission finally uses centralized frequency domain resource transmission, but two adjacent TTI transmissions in the time domain use Different frequency domain resources, thereby improving the frequency domain diversity gain and improving the transmission quality.
  • frequency hopping transmission modes There are multiple frequency hopping transmission modes, and which frequency hopping transmission mode is specifically used is not limited in the embodiments of the present disclosure. Two optional frequency hopping transmission methods are provided below:
  • DCI indicates the starting frequency domain resource position of frequency hopping transmission band transmission.
  • frequency hopping transmission is performed at intervals of a preset bandwidth, and the preset bandwidth can be 1/N of the system bandwidth; N can be any larger than or a positive integer equal to 2;
  • the virtual resource block (Vitual Resource Block, VRB) is mapped to different physical resource blocks (Physical Resource Block, PRB) in different time slots, and this frequency hopping transmission is based on the resource mapping relationship between PRBs and VRBs.
  • frequency hopping transmission there are many ways to implement frequency hopping transmission, and it is not limited to any one of the above.
  • the transmission channel used for the multi-TTI transmission it can be divided into: multi-TTI PUSCH transmission and multi-TTI PDSCH transmission.
  • an embodiment of the present disclosure provides a wireless communication method, which is applied in a terminal, and the method includes:
  • S210 Frequency hopping to send multi-TTI physical uplink shared channel PUSCH transmission.
  • the multi-TTI PUSCH transmission is: multi-TTI transmission on the PUSCH.
  • frequency hopping transmission is adopted between the PUSCH transmissions of multiple TTIs, and the PUSCH transmissions of so many TTIs are performed on different frequency band resources, thereby improving the frequency domain diversity gain transmitted by the terminal.
  • an embodiment of the present disclosure provides a wireless communication method, which is applied in a terminal, and the method includes:
  • S310 Frequency hopping to receive multi-TTI physical downlink shared channel PDSCH transmission.
  • frequency hopping transmission is used between PDSCH transmissions of multiple TTIs, so that PDSCH transmissions of multiple TTIs are performed on different frequency band resources, thereby improving the frequency domain diversity gain received by the terminal.
  • an embodiment of the present disclosure provides a wireless communication method, which is applied in a terminal, and the method includes:
  • S410 Receive a frequency-hopping transmission indication of the multi-TTI transmission, where the frequency-hopping transmission indication at least indicates whether to frequency-hopping transmit the multi-TTI transmission.
  • the base station will send a frequency hopping transmission indication for multi-TTI transmission.
  • the terminal can determine that the base station will perform frequency hopping transmission for multi-TTI transmission.
  • the base station may also not issue a frequency hopping transmission instruction, for example, in a communication protocol or pre-scheduled, frequency hopping transmission of multi-TTI transmission is used by default for a certain type of service.
  • the frequency hopping transmission indication of the multi-TTI transmission may be received before the frequency hopping transmission multi-TTI transmission.
  • the signaling carried by the frequency hopping transmission indication may be any signaling sent by the base station.
  • the S410 includes: receiving high-layer signaling carrying the frequency hopping transmission indication.
  • the high-layer signaling here can be any signaling above the physical layer, and typical physical layer signaling can include: DCI.
  • typical physical layer signaling can include: DCI.
  • the high-layer signaling includes, but is not limited to, radio resource control (Radio Resource Control, RRC) signaling, and may also include media access control (Media Access Control, MAC) signaling.
  • RRC Radio Resource Control
  • MAC media access control
  • the S410 may further include: receiving physical downlink control information DCI carrying the frequency hopping transmission indication.
  • Using DCI to carry the frequency hopping transmission instruction has the characteristics of high transmission efficiency. For example, one or more bits in the DCI carry the frequency hopping transmission indication.
  • the frequency hopping transmission indication can be A control instruction that simply indicates whether to perform frequency hopping transmission.
  • the frequency hopping transmission indication in response to the frequency hopping transmission having multiple frequency hopping modes, the frequency hopping transmission indication further indicates the frequency hopping mode of the multi-TTI transmission.
  • frequency hopping transmission indication there are many frequency hopping methods, and which one to use can be indicated by the frequency hopping transmission indication.
  • the bit indicating whether frequency hopping transmission and the bit indicating frequency hopping mode in the frequency hopping transmission instruction may be different bits; in another embodiment, the bit indicating whether frequency hopping transmission in the frequency hopping transmission instruction It is the same bit as the bit indicating the frequency hopping transmission mode.
  • the frequency hopping transmission indication has two bits. If the values of the two bits are both "0", it indicates that the frequency hopping transmission is not performed; if the values of the two bits are not all "0", it indicates that the frequency hopping transmission is performed.
  • the frequency hopping transmission mode is specifically determined according to the values of the two bits. For example, there are three frequency hopping transmission modes. If the current value of these two bits is "01", it can be regarded as indicating frequency hopping transmission for multi-TTI transmission, and mode 1 in the frequency hopping transmission mode is adopted.
  • the frequency hopping modes of various frequency hopping transmissions can be pre-agreed in the protocol, and can also be negotiated with the base station in advance through the reception of the high-level protocol.
  • the DCI carrying the frequency hopping transmission indication is: the DCI scheduling the multi-TTI transmission.
  • the DCI for sending the frequency hopping transmission indication and the DCI for scheduling the multi-TTI transmission may be different.
  • the scheduling of multi-TTI transmission and the frequency hopping transmission indication are completed by the same DCI, which reduces the process of the terminal corresponding to the multi-TTI transmission and the corresponding frequency hopping transmission indication, and simplifies the terminal operation.
  • An embodiment of the present disclosure provides a wireless communication method, which is applicable to a terminal, including:
  • S510 Receive physical downlink control information DCI for performing the multi-TTI transmission
  • the DCI carries frequency domain resource allocation information, wherein the frequency domain resource allocation information is used to determine the frequency domain resources of the frequency hopping transmission.
  • the frequency domain resource allocation information there are various information contents of the frequency domain resource allocation information, and in a word, it can indicate the frequency domain resources for frequency hopping transmission.
  • the frequency domain resource allocation information includes:
  • Frequency domain resource information indicating the frequency band used for multi-TTI transmission
  • Frequency hopping interval indicating the frequency domain bandwidth difference between two adjacent TTI transmissions.
  • the frequency domain resource allocation information includes:
  • Frequency domain resource index sequence the sequence includes multiple frequency domain resource indices, and the frequency domain resources indicated by two adjacent frequency domain resource indices are not adjacent in the frequency domain.
  • the frequency domain resources are used in turn by polling The frequency domain resource indicated by each frequency domain resource index in the index sequence.
  • the frequency domain resource allocation information includes:
  • Initial frequency domain resource information indicating the location of the first TTI transmission frequency domain resource of the frequency hopping transmission
  • the frequency hopping mode information is used to determine the frequency domain offset between two adjacent TTI transmissions of the frequency hopping transmission or the frequency hopping pattern of the frequency hopping transmission.
  • Different frequency hopping modes may be indicated by frequency hopping mode information.
  • the frequency domain resource allocation information may indicate the starting frequency domain resource position, and directly carry the frequency hopping mode information indicating the frequency hopping mode, so that the terminal can determine the multi-TTI transmission in combination with the frequency domain resource position of the first TTI transmission.
  • the DCI carries frequency-domain resource configuration information, so other information indicating the frequency-domain resource range used for multi-TTI transmission may not be carried, which can save the bit overhead of the DCI.
  • information about the range of frequency domain resources used for multi-TTI transmission may also be carried, so as to reduce frequency hopping transmission to frequency domain resources outside the preset bandwidth.
  • an embodiment of the present disclosure provides a wireless communication method, which is applied in a base station, and the method includes:
  • S610 Frequency hopping transmission for multiple transmission time interval TTI transmission.
  • the wireless communication method is applied to a base station, and the base station can transmit multiple TTI transmissions with frequency hopping and/or receive multiple TTI transmissions with frequency hopping.
  • the frequency domain diversity gain can be improved by frequency hopping transmission of multi-TTI transmission.
  • the S610 may include: frequency hopping to receive multi-TTI physical uplink shared channel PUSCH transmission; and/or frequency hopping to send multi-TTI physical downlink shared channel PDSCH transmission.
  • the method further includes:
  • a frequency hopping transmission indication is sent, wherein the frequency hopping transmission indication at least indicates whether to transmit the multi-TTI transmission by frequency hopping.
  • the frequency hopping transmission indication may be performed before scheduling multi-TTI transmission, or may be performed synchronously when scheduling multi-TTI transmission.
  • the sending a frequency hopping transmission indication includes:
  • the frequency hopping transmission instruction is issued through high-level signaling;
  • the high-level signaling here includes but is not limited to: RRC signaling and/or MAC signaling
  • the MAC signaling here includes but is not limited to the MAC control element (Control Element). , CE);
  • the frequency hopping transmission indication is delivered through downlink control information DCI.
  • the DCI for delivering the frequency hopping transmission indication and the DCI for scheduling multi-TTI transmission may be the same DCI or different DCIs, and whether the DCI is the same DCI may be determined according to the current scheduling scenario.
  • the sending a frequency hopping transmission indication includes:
  • the frequency hopping transmission indication is sent according to the frequency domain resources used for the multi-TTI transmission.
  • the frequency-domain resources allocated for multi-TTI transmission are scattered frequency-domain resources such as comb-shaped interleaving resources, and such frequency-domain resources themselves have the effect of increasing the frequency-domain gain, it is not necessary to instruct the terminal to perform hopping for multi-TTI transmission.
  • the frequency domain resource allocated to the multi-TTI transmission is a continuous distributed frequency domain resource in the frequency domain (ie, centralized frequency domain resource)
  • the terminal can be notified of frequency hopping for multi-TTI transmission through the frequency hopping transmission instruction.
  • the sending the frequency hopping transmission indication according to the frequency domain resource type used by the multi-TTI transmission includes:
  • the frequency hopping transmission indication indicating frequency hopping transmission is sent in response to the frequency domain resources used for the multi-TTI transmission being the centrally distributed frequency domain resources.
  • the frequency hopping transmission indication in response to the multiple frequency hopping transmission modes, further indicates the frequency hopping mode of the frequency hopping transmission; the value of the indication bit corresponding to the frequency hopping transmission indication needs to be Comprehensively consider whether frequency hopping transmission and the frequency hopping method used in frequency hopping transmission, through the frequency hopping transmission instruction, whether to perform frequency hopping transmission and the frequency hopping method used in frequency hopping transmission, have the characteristics of low bit overhead .
  • the method further includes:
  • S600 Send the physical downlink control information DCI of the multi-TTI transmission; wherein the DCI carries frequency domain resource allocation information, where the frequency domain resource allocation information is used to determine the frequency domain resources of the frequency hopping transmission .
  • the scheduling signaling of multi-TTI transmission is DCI.
  • DCI is issued before performing TTI transmission.
  • the DCI of multi-TTI transmission also carries frequency domain resource allocation information, and the frequency domain resource allocation information can be used For the terminal to determine the frequency domain resource used for each TTI transmission in the multi-TTI transmission.
  • the frequency domain resource allocation information includes:
  • Starting frequency domain resource information indicating the frequency domain resource position of the first TTI transmission of the frequency hopping transmission
  • the frequency hopping mode information is used to determine the frequency domain offset between two adjacent TTI transmissions of the frequency hopping transmission or the frequency hopping pattern of the frequency hopping transmission.
  • the embodiment of the present disclosure proposes a method for frequency domain resource allocation under multi-TTI PDSCH scheduling.
  • frequency domain resources between multiple TTIs are frequency-hopped to obtain frequency diversity gain.
  • the frequency hopping pattern between multiple TTIs may be one or more schemes fixed by the protocol: for example, BWP/4 or BWP/2 frequency hopping is performed between adjacent TTIs.
  • the base station may configure frequency hopping or other types of frequency domain allocation between multiple TTIs through high-layer signaling (other types of frequency domain allocation means no frequency hopping, such as interlacing (interlacing) frequency domain resource allocation).
  • the base station is configured not to perform frequency hopping, PDSCH/PUSCH transmission in multi-TTI will occupy the same frequency domain resources. If the base station is configured with a frequency hopping method, the scheduling method can be directly applied in the scheduling of multi-TTI transmission. If the base station is configured with multiple frequency hopping modes, it may indicate in the scheduling DCI which frequency hopping mode to use for the scheduling of this multi-TTI transmission.
  • the frequency domain resource allocation information field in DCI only indicates one kind of frequency domain resource allocation.
  • the frequency domain resources transmitted by the first TTI are occupied according to the frequency domain resource allocation indicated in the DCI, and the frequency domain resources transmitted by the second and subsequent TTIs are based on the frequency domain resource allocation indicated in the DCI, according to the frequency hopping pattern. frequency hopping.
  • an embodiment of the present disclosure provides a wireless communication device, which is applied in a terminal, and the method includes:
  • the first transmission module 110 is configured to transmit multiple transmission time interval TTI transmissions by frequency hopping.
  • the first transmission module 110 may be a program module; after the program module is executed by the processor, it can implement frequency hopping transmission of the multi-TTI transmission.
  • the first transmission module 110 may be a soft-hard combination module; the soft-hard combination module includes but is not limited to various programmable arrays; the programmable array includes but is not limited to: field programmable Arrays and/or complex programmable arrays.
  • the first transmission module 110 further includes: a pure hardware module; the pure hardware module includes but is not limited to: an application specific integrated circuit.
  • the first transmission module 110 is configured to frequency hopping send multi-TTI physical uplink shared channel PUSCH transmission; and/or frequency hopping receive multi-TTI physical downlink shared channel PDSCH transmission.
  • the apparatus further comprises:
  • the first receiving module is configured to receive a frequency-hopping transmission indication of the multi-TTI transmission, wherein the frequency-hopping transmission indication at least indicates whether frequency-hopping transmission of the multi-TTI transmission is performed.
  • the first receiving module is configured to receive high-layer signaling carrying the frequency hopping transmission indication; or, receive physical downlink control information DCI carrying the frequency hopping transmission indication.
  • the multiple frequency hopping modes have multiple frequency hopping modes in response to the frequency hopping transmission, and the frequency hopping transmission indication further indicates the frequency hopping mode of the multi-TTI transmission.
  • the DCI carrying the frequency hopping transmission indication is: the DCI for scheduling the transmission of the multiple TTIs.
  • the apparatus further comprises:
  • a second receiving module configured to receive the physical downlink control information DCI for scheduling the multi-TTI transmission
  • the DCI carries frequency domain resource allocation information, wherein the frequency domain resource allocation information is used to determine the frequency domain resources of the frequency hopping transmission.
  • the frequency domain resource allocation information includes:
  • Starting frequency domain resource information indicating the frequency domain resource position of the first TTI transmission of the frequency hopping transmission
  • the frequency hopping mode information is used to determine the frequency domain offset between two adjacent TTI transmissions of the frequency hopping transmission or the frequency hopping pattern of the frequency hopping transmission.
  • an embodiment of the present disclosure provides a wireless communication apparatus, which is applied in a base station, and the apparatus includes:
  • the second transmission module 210 is configured to transmit multiple transmission time interval TTI transmissions by frequency hopping.
  • the second transmission module 210 may be a program module; after the program module is executed by the processor, it can implement frequency hopping transmission of the multi-TTI transmission.
  • the second transmission module 210 may be a soft-hard combination module; the soft-hard combination module includes but is not limited to various programmable arrays; the programmable array includes but is not limited to: field programmable Arrays and/or complex programmable arrays.
  • the second transmission module 210 further includes: a pure hardware module; the pure hardware module includes but is not limited to: an application specific integrated circuit.
  • the second transmission module 210 is configured to frequency hopping to receive multi-TTI physical uplink shared channel PUSCH transmission; and/or frequency hopping to transmit multi-TTI physical downlink shared channel PDSCH transmission.
  • the apparatus further comprises:
  • the first sending module is configured to send a frequency hopping transmission indication, wherein the frequency hopping transmission indication at least indicates whether to frequency hopping to transmit the multi-TTI transmission.
  • the first sending module is configured to deliver the frequency hopping transmission indication through high-layer signaling; or, deliver the frequency hopping transmission indication through downlink control information DCI.
  • the first sending module is configured to send the frequency hopping transmission indication according to frequency domain resources used by the multi-TTI transmission.
  • the frequency hopping transmission indication indicating frequency hopping transmission is sent.
  • the frequency hopping transmission indication further indicates a frequency hopping manner of the frequency hopping transmission in response to the multiple frequency hopping transmission manners.
  • the apparatus further comprises:
  • a second sending module configured to send the physical downlink control information DCI of the multi-TTI transmission
  • the DCI carries frequency domain resource allocation information, wherein the frequency domain resource allocation information is used to determine the frequency domain resources of the frequency hopping transmission.
  • the frequency domain resource allocation information includes:
  • Starting frequency domain resource information indicating the frequency domain resource position of the first TTI transmission of the frequency hopping transmission
  • the frequency hopping mode information is used to determine the frequency domain offset between two adjacent TTI transmissions of the frequency hopping transmission or the frequency hopping pattern of the frequency hopping transmission.
  • Embodiments of the present disclosure provide a communication device, including:
  • memory for storing processor-executable signaling
  • the processor is connected to the memory;
  • the processor is configured to execute the wireless communication method provided by any of the foregoing technical solutions.
  • the processor may include various types of storage media, which are non-transitory computer storage media that can continue to memorize information stored thereon after the communication device is powered down.
  • the communication device includes a base station or a UE.
  • the processor may be connected to the memory through a bus or the like, for reading executable programs stored in the memory, for example, at least one of the wireless communication methods shown in FIG. 3 to FIG. 8 .
  • FIG. 11 is a block diagram of a UE (ie, the aforementioned terminal) 800 according to an exemplary embodiment.
  • UE 800 may be a mobile phone, computer, digital broadcast user equipment, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • the UE 800 may include one or more of the following components: a processing component 802, a memory 804, a power supply component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, a sensor component 814, and Communication component 816.
  • the processing component 802 generally controls the overall operations of the UE 800, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to perform signaling to perform all or part of the steps of the above-described methods.
  • processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components.
  • processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
  • Memory 804 is configured to store various types of data to support operation at UE 800 . Examples of such data include signaling for any application or method operating on the UE 800, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 804 may be implemented by any type of volatile or nonvolatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply component 806 provides power to various components of UE 800 .
  • Power components 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to UE 800 .
  • Multimedia component 808 includes screens that provide an output interface between the UE 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • the multimedia component 808 includes a front-facing camera and/or a rear-facing camera. When the UE 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC) that is configured to receive external audio signals when the UE 800 is in operating modes, such as call mode, recording mode, and voice recognition mode.
  • the received audio signal may be further stored in memory 804 or transmitted via communication component 816 .
  • audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor component 814 includes one or more sensors for providing various aspects of status assessment for UE 800 .
  • the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and keypad of the UE 800, the sensor component 814 can also detect the position change of the UE 800 or a component of the UE 800, the user and the UE 800. Presence or absence of UE800 contact, UE800 orientation or acceleration/deceleration and UE800 temperature changes.
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communications between UE 800 and other devices.
  • the UE 800 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • UE 800 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gates An array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation for performing the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable gates
  • controller microcontroller, microprocessor, or other electronic component implementation for performing the above method.
  • a non-transitory computer-readable storage medium including signaling such as a memory 804 including signaling, which can be executed by the processor 820 of the UE 800 to accomplish the above method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • an embodiment of the present disclosure shows a structure of a base station.
  • the base station 900 may be provided as a network-side device.
  • base station 900 includes a processing component 922, which further includes one or more processors, and a memory resource, represented by memory 932, for storing signaling, such as application programs, executable by processing component 922.
  • An application program stored in memory 932 may include one or more modules, each corresponding to a set of signaling.
  • the processing component 922 is configured to perform signaling to perform any of the aforementioned wireless communication methods applied to the base station, eg, at least one of the wireless methods shown in FIGS. 3 to 8 .
  • the base station 900 may also include a power supply assembly 926 configured to perform power management of the base station 900, a wired or wireless network interface 950 configured to connect the base station 900 to a network, and an input output (I/O) interface 958.
  • Base station 900 may operate based on an operating system stored in memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Abstract

本公开实施例提供一种无线通信方法及装置、通信设备及存储介质。所述无线通信方法可包括:跳频传输多传输时间间隔TTI传输。

Description

无线通信方法及装置、通信设备及存储介质 技术领域
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种无线通信方法及装置、通信设备及存储介质。
背景技术
在一般的传输调度中,为了保证调度的灵活性,一个下行控制信息(Downlink Control Information,DCI)只会调度一个物理下行共享信道(Physical Downlink Shared Channel,PDSCH)或物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。在新无线(New Radio,NR)的系统消息(System Information,SI)中,一个可能的研究点是多传输时间间隔(multi-Transmission Time Interval,TTI)调度。也即一个DCI调度多个时隙(slot)的PDSCH/PUSCH传输,以降低DCI的数量,从而降低UE盲检DCI复杂度。
发明内容
本公开实施例提供一种无线通信方法及装置、通信设备及存储介质。
本公开实施例第一方面提供一种无线通信方法,应用于终端中,所述方法包括:跳频传输多传输时间间隔TTI传输。
本公开实施例第二方面提供一种无线通信方法,应用于基站中,所述方法包括:
跳频传输多传输时间间隔TTI传输。
本公开实施例第三方面提供一种无线通信装置,应用于终端中,所述方法包括:
第一传输模块,被配置为跳频传输多传输时间间隔TTI传输。
本公开实施例第四方面提供一种无线通信装置,应用于基站中,所述装置包括:
第二传输模块,被配置为跳频传输多传输时间间隔TTI传输。
本公开实施例第五方面提供一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如前述第一方面或第二方面提供的无线通信方法。
本公开实施例第六方面提供一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现前述的=第一方面或第二方面提供的无线通信方法。
本公开实施例提供的技术方案,采用跳频传输的方式进行多个TTI传输带的收发,如此,可以提升TTI传输的频域分集增益。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施 例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种多TTI传输的调度示意图;
图3是根据一示例性实施例示出的无线通信方法的流程示意图;
图4是根据一示例性实施例示出的一种无线通信方法的流程示意图;
图5是根据一示例性实施例示出的一种无线通信方法的流程示意图;;
图6是根据一示例性实施例示出的一种无线通信方法的流程示意图;
图7是根据一示例性实施例示出的一种无线通信方法的流程示意图;
图8是根据一示例性实施例示出的一种无线通信方法的流程示意图;
图9是根据一示例性实施例示出的一种无线通信装置的结构示意图;
图10是根据一示例性实施例示出的一种无线通信装置的结构示意图;
图11是根据一示例性实施例示出的一种UE的结构示意图;
图12是根据一示例性实施例示出的一种基站的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个UE11以及若干个基站12。
其中,UE11可以是指向用户提供语音和/或数据连通性的设备。UE11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,UE11可以是物联网UE,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网UE的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程UE(remote terminal)、接入UE(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户UE(user equipment,UE)。或者,UE11也可以是无人飞行器的设备。或者,UE11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,UE11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和UE11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,UE11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
以多TTI的PDSCH传输调度为例,如图2示意,一个DCI调度了4个PDSCH传输,分别是PDSCH1、 PDSCH2、PDSCH3和PDSCH4。4个PDSCH传输分属于不同的时隙。图2中显示的是4个PDSCH所在的时隙是相邻的情况,但是也不排除存在各个PDSCH传输所在的时隙并不相邻的情况,例如,前后2个PDSCH传输之间间隔2个时隙。该场景下,多个TTI调度的PDSCH可用于数据的重复传输,也可分别传输不同的下行数据,也即不同的传输块(Transport Block,TB)。
对于单个PDSCH/PUSCH调度的情况,DCI中会指示用于传输的PDSCH/PUSCH的频域资源。例如,终端被半静态配置的带宽部分(bandwidth part,BWP)的资源块(Resource Block,RB)编号为RB0-RB49。如果采用集中式的频域资源分配方式,DCI在调度PDSCH时可以指定集中式的频域资源分配方式,例如指定分配RB10至RB19。如果采用比特位图(bitmap)指示RB组(group)的方式。例如,RB0-RB49总共被分成7组,分别为RB0-7、RB8-15、RB16-23、RB24-31、RB32-39、RB40-48及RB48-49,一共需要7个比特来指示,例如指示为0101000时,表示分配给UE的频域RB为RB8-15及24-31。
为了提高频域分集增益,在本公开实施例中提供一种方法,针对多TTI调度的多个传输,若是由集中式的频域资源分配方式进行资源分配,则采用跳频传输。
如图1所示,本公开实施例提供一种无线通信方法,应用于终端中,所述方法包括:
S110:跳频传输多传输时间间隔TTI传输。
在本公开实施例中该终端可为各种类型的终端,例如,手机、平板电脑或者车载终端等;该终端还可以是物联网终端。该物联网终端包括但不限于:智能水表和/或智能电表等。
该终端可为宽带终端或者窄带终端等。
例如,多TTI传输,可以理解为多TTI调度的传输是在一端集中式的频域资源传输,则采用跳频传输时,多TTI传输在时域上相邻的两个TTI传输采用跳频传输时则使用的是不同的频域资源,如此,提升了多TTI传输的频域分集增益。
例如,这多TTI传输的可是一个TB的多次重复传输,则通过跳频传输即便最终该多TTI传输使用了集中式的频域资源传输,但是时域上相邻两次TTI传输使用的是不同频域资源,从而提升了频域分集增益,提升了传输质量。
跳频传输的方式有多种,具体使用哪一种跳频传输方式,在本公开实施例中不做任何限定。以下提供两种可选的跳频传输方式:
方式一:
DCI指示跳频传输带传输的起始频域资源位置,在进行跳频传输时,间隔预设带宽进行跳频传输,该预设带宽可为1/N的系统带宽;该N可为任意大于或等于2的正整数;
方式二:
将虚拟资源块(Vitual Resource Block,VRB)映射到不同时隙的不同物理资源块(Physical Resource Block,PRB),这种跳频传输是基于PRB和VRB之间的资源映射关系进行的。
当然以上仅是对跳频传输进行举例说明,具体实现跳频传输的方式有很多种,不局限于上述任意一种。
在一个实施例中,根据所述多TTI传输所使用的传输信道,可以分为:多TTI的PUSCH传输和多 TTI的PDSCH传输。
在一个实施例中,如图3所示,本公开实施例提供一种无线通信方法,应用于终端中,所述方法包括:
S210:跳频发送多TTI的物理上行共享信道PUSCH传输。
多TTI的PUSCH传输为:在PUSCH上的多TTI传输。
在本公开实施例中,该多TTI的PUSCH传输之间采用跳频传输,如此多TTI的PUSCH传输是在不同的频带资源上进行的,从而提升了终端发射的频域分集增益。
在一个实施例中,如图4所示,本公开实施例提供一种无线通信方法,应用于终端中,所述方法包括:
S310:跳频接收多TTI的物理下行共享信道PDSCH传输。
在本公开实施例中,该多TTI的PDSCH传输之间采用跳频传输,如此多个TTI的PDSCH传输是在不同的频带资源上进行的,从而提升了终端接收的频域分集增益。
如图5所示,本公开实施例提供一种无线通信方法,应用于终端中,所述方法包括:
S410:接收所述多TTI传输的跳频传输指示,其中,所述跳频传输指示,至少指示是否跳频传输所述多TTI传输。
在本公开实施例中,基站会发送多TTI传输的跳频传输指示。如此,终端接收到跳频传输指示,就可以确定出基站会对多TTI传输进行跳频传输。
在另一个实施例中,基站也可以不下发跳频传输指示,例如,在通信协议或者预先预定中对某一类业务默认使用多TTI传输的跳频传输。
可以理解地,该多TTI传输的跳频传输指示,可以是在跳频传输多TTI传输之前接收的。
该跳频传输指示的携带信令可为基站下发的任意信令。
在一个实施例中,所述S410,包括:接收携带有所述跳频传输指示的高层信令.
此处的高层信令可为任意物理层以上的信令,典型的物理层信令可包括:DCI。举例来说,所述高层信令包括但不限于:无线资源控制(Radio Resource Control,RRC)信令,还可包括媒体访问控制(Media Access Control,MAC)信令。
在一个实施例中,所述S410还可包括:接收携带有所述跳频传输指示的物理下行控制信息DCI。
利用DCI携带所述跳频传输指示,具有传输效率高的特点。例如,DCI中的一个或多个比特携带有所述跳频传输指示。
在一个实施例中,若多TTI传输的跳频传输方式就默认仅有一种或者预设为了特定种,则基站和终端之间无需协商使用哪种跳频传输,则此时跳频传输指示可以单纯的指示是否进行跳频传输的控制指示。
在一个实施例中,响应于所述跳频传输具有多种跳频方式,所述跳频传输指示还指示所述多TTI传输的跳频方式。
例如,跳频方式有很多种,具体使用哪一种也可以由跳频传输指示来指示。
在一个实施例中,跳频传输指示中指示是否跳频传输的比特和指示跳频方式的比特可以是不同的比 特;在另一个实施例中,跳频传输指示中指示是否跳频传输的比特和指示跳频传输方式的比特是相同的比特。
例如,跳频传输指示具有两个比特,若两个比特的取值均为“0”则指示不进行跳频传输;若这两个比特的取值不全为“0”则指示进行跳频传输,并根据两个比特的取值具体确定跳频传输方式。例如,跳频传输方式有三种,若当前这两个比特的取值为“01”,则可认为指示进行多TTI传输的跳频传输,且采用跳频传输方式中的方式一。
各种跳频传输的跳频方式可以预先约定在协议中,也可以通过高层协议的接收,与基站事先协商。
在一个实施例中,携带有所述跳频传输指示的DCI为:调度所述多TTI传输的DCI。
在一个实施例中,发送所述跳频传输指示的DCI和所述调度所述多TTI传输的DCI可以不相同,在本公开实施例中一方面为了减少DCI的个数,减少终端盲解DCI所产生的功耗;另一方面,多TTI传输的调度和跳频传输指示用同一个DCI来完成,减少了终端将多TTI传输与对应跳频传输指示对应的过程,简化了终端操作。
本公开实施例提供一种无线通信方法,适用于终端中,包括:
S510:接收进行所述多TTI传输的物理下行控制信息DCI;
其中,所述DCI携带有频域资源分配信息,其中,所述频域资源分配信息,用于确定所述跳频传输的频域资源。
该频域资源分配信息的信息内容有多种,总之能够指示跳频传输的频域资源。
在一个实施例中,该频域资源分配信息包括:
频域资源信息,指示多TTI传输使用的频带;
跳频间隔,指示相邻两个TTI传输之间差异的频域带宽。
在另一个实施例中,,该频域资源分配信息包括:
频域资源索引序列;该序列内包括多个频域资源索引,相邻两个频域资源索引指示的频域资源在频域不相邻,进行跳频传输时,依次轮询使用频域资源索引序列中的各个频域资源索引指示的频域资源。
当然以上是对频域资源分配信息的举例,具体实现时不局限于此。
在一个实施例中,所述频域资源分配信息包括:
起始频域资源信息,指示所述跳频传输的首个TTI传输频域资源位置;
跳频方式信息,用于确定跳频传输的相邻两个TTI传输之间的频域偏移量或所述跳频传输的跳频图样。
不同的跳频方式可以有跳频方式信息指示。
示例性地,频域资源分配信息可指示起始频域资源位置,且直接携带指示跳频方式的跳频方式信息,供终端结合首个TTI传输的频域资源位置,确定出多TTI传输中每一个TTI所使用的跳频传输的频域资源位置。
在本公开实施例中,所述DCI携带了频域资源配置信息,则可以不用携带其他的指示多TTI传输所使用频域资源范围等信息,这样可以节省DCI的比特开销。在另一个实施例中,当然也可以携带多TTI传输所使用的频域资源范围的信息,这样减少跳频传输到预设带宽外的频域资源上。
如图7所示,本公开实施例提供一种无线通信方法,应用于基站中,所述方法包括:
S610:跳频传输多传输时间间隔TTI传输。
该无线通信方法应用于基站中,基站可以跳频发送多TTI传输和/或跳频接收多TTI传输。通过跳频传输多TTI传输,可以提高频域分集增益。
在一个实施例中,所述S610可包括:跳频接收多TTI的物理上行共享信道PUSCH传输;和/或,跳频发送多TTI的物理下行共享信道PDSCH传输。
在一个实施例中,所述方法还包括:
发送跳频传输指示,其中,所述跳频传输指示,至少指示是否跳频传输所述多TTI传输。
该跳频传输指示可以在进行调度多TTI传输之前进行,也可以是在调度多TTI传输之时同步进行。
在一个实施例中,所述发送跳频传输指示,包括:
通过高层信令下发所述跳频传输指示;此处的高层信令包括但不限于:RRC信令和/或MAC信令,此处的MAC信令包括但不限于MAC控制单元(Control Element,CE);
或者,
通过下行控制信息DCI下发所述跳频传输指示。
示例性地,下发跳频传输指示的DCI和调度多TTI传输的DCI可以为同一个DCI也可以是不同的DCI,具体是否为同一个DCI可以根据当前的调度场景确定。
在一个实施例中,所述发送跳频传输指示,包括:
根据所述多TTI传输使用的频域资源,发送所述跳频传输指示。
若分配给多TTI传输使用的频域资源本身就是梳状的交织资源等分散频域资源,这种频域资源本身就具有提升频域增益的效果,则可以不用指示终端进行多TTI传输的跳频;若分配给这多TTI传输的频域资源为频域内一段连续分布的频域资源(即集中式频域资源)则可以通过跳频传输指示告知终端进行多TTI传输的跳频。
示例性地,所述根据所述多TTI传输使用的频域资源类型,发送所述跳频传输指示,包括:
响应于所述多TTI传输使用的频域资源为频域内的交织资源,发送指示不跳频传输的所述跳频传输指示;
和/或,
响应于所述多TTI传输使用的频域资源为集中式分布的频域资源,发送指示跳频传输的所述跳频传输指示。
在一个实施例中,响应于所述跳频传输的方式有多种,所述跳频传输指示还指示跳频传输的跳频方式;所述跳频传输指示所对应指示比特的取值,需要综合考虑是否跳频传输及在跳频传输时所使用的跳频方式,通过跳频传输指示,完成是否进行跳频传输和在跳频传输时所使用的跳频方式,具有比特开销小的特点。
在一个实施例中,如图8所示,所述方法还包括:
S600:发送所述多TTI传输的物理下行控制信息DCI;其中,所述DCI携带有频域资源分配信息,其中,所述频域资源分配信息,用于确定所述跳频传输的频域资源。
多TTI传输的调度信令是DCI,如此,在执行TTI传输之前下发DCI,在本公开实施例中,多TTI传输的DCI还携带有频域资源分配信息,该频域资源分配信息,可用于供终端确定出多TTI传输中每一个TTI传输所使用的频域资源。
示例性地,所述频域资源分配信息包括:
起始频域资源信息,指示所述跳频传输的首个TTI传输的频域资源位置;
跳频方式信息,用于确定跳频传输的相邻两个TTI传输之间的频域偏移量或所述跳频传输的跳频图样。
本公开实施例提出了为multi-TTI PDSCH调度下进行频域资源分配的方法。在该方法中,多个TTI之间的频域资源进行跳频,以获得频率分集增益。
多个TTI之间的跳频图样可以是协议固定的一种或者多种方案:例如在相邻的TTI之间进行BWP/4或者BWP/2跳频。
基站可以通过高层信令配置多个TTI之间进行跳频或者其他类型频域分配方式(其他类型的频域分配方式意味着不进行跳频,例如interlacing(交织)的频域资源分配方式)。
如果基站配置不进行跳频,在multi–TTI的PDSCH/PUSCH传输将占用相同的频域资源。如果基站配置了一种跳频方式,则在multi-TTI传输的调度中,可以直接应用该调度方式。如果基站配置了多种跳频方式,则可以在调度DCI中指示本次multi-TTI传输的调度究竟采用哪种跳频方式。
DCI中的频域资源分配信息域仅指示一种频域资源分配。
第一个TTI传输的频域资源按照DCI中指示的频域资源分配来占用,第二个及之后的TTI传输的频域资源,以DCI中指示的频域资源分配为基础,按照跳频图样进行跳频。
如图9所示,本公开实施例提供一种无线通信装置,应用于终端中,所述方法包括:
第一传输模块110,被配置为跳频传输多传输时间间隔TTI传输。
在一个实施例中,所述第一传输模块110可为程序模块;所述程序模块被被处理器执行后,能够实现跳频传输所述多TTI传输。
在另一个实施例中,所述第一传输模块110可为软硬结合模块;所述软硬结合模块包括但不限于各种可编程阵列;所述可编程阵列包括但不限于:现场可编程阵列和/或复杂可编程阵列。
在还有一些实施例中,所述第一传输模块110还包括:纯硬件模块;所述纯硬件模块包括但不限于:专用集成电路。
在一个实施例中,所述第一传输模块110,被配置为跳频发送多TTI的物理上行共享信道PUSCH传输;和/或,跳频接收多TTI的物理下行共享信道PDSCH传输。
在一个实施例中,所述装置还包括:
第一接收模块,被配置为接收所述多TTI传输的跳频传输指示,其中,所述跳频传输指示,至少指示是否跳频传输所述多TTI传输。
在一个实施例中,所述第一接收模块,被配置为接收携带有所述跳频传输指示的高层信令;或者,接收携带有所述跳频传输指示的物理下行控制信息DCI。
在一个实施例中,多种跳频方式响应于所述跳频传输具有多种跳频方式,所述跳频传输指示还指示 所述多TTI传输的跳频方式。
在一个实施例中,携带有所述跳频传输指示的DCI为:调度所述多个TTI传输的DCI。
在一个实施例中,所述装置还包括:
第二接收模块,被配置为接收调度所述多TTI传输的物理下行控制信息DCI;
其中,所述DCI携带有频域资源分配信息,其中,所述频域资源分配信息,用于确定所述跳频传输的频域资源。
在一个实施例中,所述频域资源分配信息包括:
起始频域资源信息,指示所述跳频传输的首个TTI传输的频域资源位置;
跳频方式信息,用于确定跳频传输的相邻两个TTI传输之间的频域偏移量或所述跳频传输的跳频图样。
如图10所示,本公开实施例提供一种无线通信装置,应用于基站中,所述装置包括:
第二传输模块210,被配置为跳频传输多传输时间间隔TTI传输。
在一个实施例中,所述第二传输模块210可为程序模块;所述程序模块被被处理器执行后,能够实现跳频传输所述多TTI传输。
在另一个实施例中,所述第二传输模块210可为软硬结合模块;所述软硬结合模块包括但不限于各种可编程阵列;所述可编程阵列包括但不限于:现场可编程阵列和/或复杂可编程阵列。
在还有一些实施例中,所述第二传输模块210还包括:纯硬件模块;所述纯硬件模块包括但不限于:专用集成电路。
在一个实施例中,所述第二传输模块210,被配置为跳频接收多TTI的物理上行共享信道PUSCH传输;和/或,跳频发送多TTI的物理下行共享信道PDSCH传输。
在一个实施例中,所述装置还包括:
第一发送模块,被配置为发送跳频传输指示,其中,所述跳频传输指示,至少指示是否跳频传输所述多TTI传输。
在一个实施例中,所述第一发送模块,被配置为通过高层信令下发所述跳频传输指示;或者,通过下行控制信息DCI下发所述跳频传输指示。
在一个实施例中,所述第一发送模块,被配置为根据所述多TTI传输使用的频域资源,发送所述跳频传输指示。
在一个实施例中,所述第一发送模块,被配置为响应于所述多TTI传输使用的频域资源为频域内的交织资源,发送指示不跳频传输的所述跳频传输指示;和/或,响应于所述多TTI传输使用的频域资源为集中式分布的频域资源,发送指示跳频传输的所述跳频传输指示。
在一个实施例中,响应于所述跳频传输的方式有多种,所述跳频传输指示还指示跳频传输的跳频方式。
在一个实施例中,所述装置还包括:
第二发送模块,被配置为发送所述多TTI传输的物理下行控制信息DCI;
其中,所述DCI携带有频域资源分配信息,其中,所述频域资源分配信息,用于确定所述跳频传 输的频域资源。
在一个实施例中,所述频域资源分配信息包括:
起始频域资源信息,指示所述跳频传输的首个TTI传输的频域资源位置;
跳频方式信息,用于确定跳频传输的相邻两个TTI传输之间的频域偏移量或所述跳频传输的跳频图样。
本公开实施例提供一种通信设备,包括:
用于存储处理器可执行信令的存储器;
处理器,分别存储器连接;
其中,处理器被配置为执行前述任意技术方案提供的无线通信方法。
处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
这里,所述通信设备包括基站或UE。
所述处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图3至图8所示的无线通信方法的至少其中之一。
图11是根据一示例性实施例示出的一种UE(即前述终端)800的框图。例如,UE 800可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图11,UE800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制UE800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行信令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在UE800的操作。这些数据的示例包括用于在UE800上操作的任何应用程序或方法的信令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为UE800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为UE800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述UE800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当UE800处 于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当UE800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为UE800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如所述组件为UE800的显示器和小键盘,传感器组件814还可以检测UE800或UE800一个组件的位置改变,用户与UE800接触的存在或不存在,UE800方位或加速/减速和UE800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于UE800和其他设备之间有线或无线方式的通信。UE800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括信令的非临时性计算机可读存储介质,例如包括信令的存储器804,上述信令可由UE800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图12所示,本公开一实施例示出一种基站的结构。例如,基站900可以被提供为一网络侧设备。参照图12,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的信令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组信令的模块。此外,处理组件922被配置为执行信令,以执行上述方法前述应用在所述基站的任意无线通信方法,例如,如图3至图8所示无线方法的至少其中之一。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM 或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (27)

  1. 一种无线通信方法,应用于终端中,所述方法包括:
    跳频传输多传输时间间隔TTI传输。
  2. 根据权利要求1所述的方法,其中,所述跳频传输多传输时间间隔TTI传输,包括:
    跳频发送多TTI的物理上行共享信道PUSCH传输;
    和/或,
    跳频接收多TTI的物理下行共享信道PDSCH传输。
  3. 根据权利要求1或2所述的方法,其中,所述方法还包括:
    接收所述多TTI传输的跳频传输指示,其中,所述跳频传输指示,至少指示是否跳频传输所述多TTI传输。
  4. 根据权利要求3所述的方法,其中,所述接收所述多TTI传输的跳频传输指示,包括:
    接收携带有所述跳频传输指示的高层信令;
    或者,
    接收携带有所述跳频传输指示的物理下行控制信息DCI。
  5. 根据权利要求4所述的方法,其中,响应于所述跳频传输具有多种跳频方式,所述跳频传输指示还指示所述多TTI传输的跳频方式。
  6. 根据权利要求4或5所述的方法,其中,携带有所述跳频传输指示的DCI为:调度所述多个TTI传输的DCI。
  7. 根据权利要求1至6任一项所述的方法,其中,所述方法还包括:
    接收调度所述多TTI传输的物理下行控制信息DCI;
    其中,所述DCI携带有频域资源分配信息,其中,所述频域资源分配信息,用于确定所述跳频传输的频域资源。
  8. 根据权利要求7所述的方法,其中,所述频域资源分配信息包括:
    起始频域资源信息,指示所述跳频传输的首个TTI传输的频域资源位置;
    跳频方式信息,用于确定跳频传输的相邻两个TTI传输之间的频域偏移量或所述跳频传输的跳频图样。
  9. 一种无线通信方法,应用于基站中,所述方法包括:
    跳频传输多传输时间间隔TTI传输。
  10. 根据权利要求9所述的方法,其中,所述跳频传输多传输时间间隔TTI传输,包括:
    跳频接收多TTI的物理上行共享信道PUSCH传输;
    和/或,
    跳频发送多TTI的物理下行共享信道PDSCH传输。
  11. 根据权利要求9或10所述的方法,其中,所述方法还包括:
    发送跳频传输指示,其中,所述跳频传输指示,至少指示是否跳频传输所述多TTI传输。
  12. 根据权利要求11所述的方法,其中,所述发送跳频传输指示,包括:
    通过高层信令下发所述跳频传输指示;
    或者,
    通过下行控制信息DCI下发所述跳频传输指示。
  13. 根据权利要求11或12所述的方法,其中,所述发送跳频传输指示,包括:
    根据所述多TTI传输使用的频域资源,发送所述跳频传输指示。
  14. 根据权利要求13所述的方法,其中,所述根据所述多TTI传输使用的频域资源类型,发送所述跳频传输指示,包括:
    响应于所述多TTI传输使用的频域资源为频域内的交织资源,发送指示不跳频传输的所述跳频传输指示;
    和/或,
    响应于所述多TTI传输使用的频域资源为集中式分布的频域资源,发送指示跳频传输的所述跳频传输指示。
  15. 根据权利要求11所述的方法,其中,响应于所述跳频传输的方式有多种,所述跳频传输指示还指示跳频传输的跳频方式。
  16. 根据权利要求9至15任一项所述的方法,其中,所述方法还包括:
    发送所述多TTI传输的物理下行控制信息DCI;
    其中,所述DCI携带有频域资源分配信息,其中,所述频域资源分配信息,用于确定所述跳频传输的频域资源。
  17. 根据权利要求16所述的方法,其中,所述频域资源分配信息包括:
    起始频域资源信息,指示所述跳频传输的首个TTI传输的频域资源位置;
    跳频方式信息,用于确定跳频传输的相邻两个TTI传输之间的频域偏移量或所述跳频传输的跳频图样。
  18. 一种无线通信装置,应用于终端中,所述方法包括:
    第一传输模块,被配置为跳频传输多传输时间间隔TTI传输。
  19. 根据权利要求18所述的装置,其中,所述第一传输模块,被配置为跳频发送多TTI的物理上行共享信道PUSCH传输;和/或,跳频接收多TTI的物理下行共享信道PDSCH传输。
  20. 根据权利要求18或19所述的装置,其中,所述装置还包括:
    第一接收模块,被配置为接收所述多TTI传输的跳频传输指示,其中,所述跳频传输指示,至少指示是否跳频传输所述多TTI传输。
  21. 根据权利要求20所述的装置,其中,所述第一接收模块,被配置为接收携带有所述跳频传输指示的高层信令;或者,接收携带有所述跳频传输指示的物理下行控制信息DCI。
  22. 一种无线通信装置,应用于基站中,所述装置包括:
    第二传输模块,被配置为跳频传输多传输时间间隔TTI传输。
  23. 根据权利要求22所述的装置,其中,所述第二传输模块,被配置为跳频接收多TTI的物理上行共享信道PUSCH传输;和/或,跳频发送多TTI的物理下行共享信道PDSCH传输。
  24. 根据权利要求22或23所述的装置,其中,所述装置还包括:
    第一发送模块,被配置为发送跳频传输指示,其中,所述跳频传输指示,至少指示是否跳频传输所述多TTI传输。
  25. 根据权利要求24所述的装置,其中,所述第一发送模块,被配置为根据所述多TTI传输使用的频域资源,发送所述跳频传输指示。
  26. 一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至8或9至17任一项提供的方法。
  27. 一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现如权利要求1至8或9至17任一项提供的方法。
PCT/CN2020/137517 2020-12-18 2020-12-18 无线通信方法及装置、通信设备及存储介质 WO2022126576A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080004022.9A CN115553028A (zh) 2020-12-18 2020-12-18 无线通信方法及装置、通信设备及存储介质
PCT/CN2020/137517 WO2022126576A1 (zh) 2020-12-18 2020-12-18 无线通信方法及装置、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/137517 WO2022126576A1 (zh) 2020-12-18 2020-12-18 无线通信方法及装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022126576A1 true WO2022126576A1 (zh) 2022-06-23

Family

ID=82059996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137517 WO2022126576A1 (zh) 2020-12-18 2020-12-18 无线通信方法及装置、通信设备及存储介质

Country Status (2)

Country Link
CN (1) CN115553028A (zh)
WO (1) WO2022126576A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023125912A1 (zh) * 2021-12-31 2023-07-06 维沃移动通信有限公司 上行传输的跳频、指示方法、装置、终端及网络侧设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3609104A1 (en) * 2018-08-09 2020-02-12 Panasonic Intellectual Property Corporation of America Flexible repetition of pusch mini-slots within a slot
CN111066255A (zh) * 2017-09-07 2020-04-24 株式会社Ntt都科摩 用户终端以及无线通信方法
CN111385898A (zh) * 2018-12-28 2020-07-07 北京展讯高科通信技术有限公司 多tti数据调度的dci的接收及发送方法及装置、存储设备、用户终端、网络侧

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111066255A (zh) * 2017-09-07 2020-04-24 株式会社Ntt都科摩 用户终端以及无线通信方法
EP3609104A1 (en) * 2018-08-09 2020-02-12 Panasonic Intellectual Property Corporation of America Flexible repetition of pusch mini-slots within a slot
CN111385898A (zh) * 2018-12-28 2020-07-07 北京展讯高科通信技术有限公司 多tti数据调度的dci的接收及发送方法及装置、存储设备、用户终端、网络侧

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "UL Signals and Channels for NR-U operation", 3GPP DRAFT; R1-1906542_UL_SIGNALS_AND_CHANNELS_FOR_NR_U_OPERATION_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 4 May 2019 (2019-05-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051708578 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023125912A1 (zh) * 2021-12-31 2023-07-06 维沃移动通信有限公司 上行传输的跳频、指示方法、装置、终端及网络侧设备

Also Published As

Publication number Publication date
CN115553028A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
WO2021163936A1 (zh) 通信处理方法、装置及计算机存储介质
WO2021168664A1 (zh) 通信方法、装置及计算机存储介质
WO2021258375A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2021196214A1 (zh) 传输方法、装置及计算机存储介质
WO2022021326A1 (zh) 带宽资源复用方法及装置、通信设备及存储介质
WO2021007823A1 (zh) 信息指示、确定方法及装置、通信设备及存储介质
WO2022120854A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2021237445A1 (zh) 寻呼控制消息传输方法、装置及通信设备
JP2023528613A (ja) 無線通信方法及び装置、端末及び記憶媒体
WO2021142796A1 (zh) 通信处理方法、装置及计算机存储介质
WO2022126576A1 (zh) 无线通信方法及装置、通信设备及存储介质
US20220287014A1 (en) Resource allocation methods and apparatuses, message frame processing methods, apparatuses and storage mediums
CN111316741A (zh) 传输调度方法、装置、通信设备及存储介质
WO2022204889A1 (zh) 波束测量的方法、装置、通信设备及存储介质
WO2022032581A1 (zh) 上行传输的发送、接收方法及装置、通信设备及介质
WO2021226766A1 (zh) 发送数据的方法、装置、通信设备及存储介质
WO2022147662A1 (zh) 测量间隙调度方法及装置、通信设备及存储介质
WO2022110057A1 (zh) 无线传输的方法、装置、通信设备及存储介质
US20220408469A1 (en) Downlink control information configuration method and apparatus, and communication device and storage medium
JP2023530527A (ja) 直接通信制御方法、装置、及びユーザ機器
US20230011663A1 (en) Information processing method and apparatus, base station, ue, and storage medium
WO2021007791A1 (zh) 资源配置的方法及装置、通信设备及存储介质
WO2022205475A1 (zh) 联合信道估计的配置方法、装置、设备和存储介质
WO2021159247A1 (zh) 信道测量方法、装置及通信设备
WO2022082384A1 (zh) 确定数据处理时长的方法及装置、通信设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965592

Country of ref document: EP

Kind code of ref document: A1