WO2021159247A1 - 信道测量方法、装置及通信设备 - Google Patents

信道测量方法、装置及通信设备 Download PDF

Info

Publication number
WO2021159247A1
WO2021159247A1 PCT/CN2020/074657 CN2020074657W WO2021159247A1 WO 2021159247 A1 WO2021159247 A1 WO 2021159247A1 CN 2020074657 W CN2020074657 W CN 2020074657W WO 2021159247 A1 WO2021159247 A1 WO 2021159247A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
measurement period
inter
temporary
period
Prior art date
Application number
PCT/CN2020/074657
Other languages
English (en)
French (fr)
Inventor
李媛媛
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202080000238.8A priority Critical patent/CN113545123A/zh
Priority to PCT/CN2020/074657 priority patent/WO2021159247A1/zh
Publication of WO2021159247A1 publication Critical patent/WO2021159247A1/zh
Priority to US17/884,401 priority patent/US20220386157A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application relates to the field of wireless communication technology, but is not limited to the field of wireless communication technology, and in particular to channel measurement methods, devices, and communication equipment.
  • a user equipment when doing mobility measurements, necessary to periodically measure neighboring cell reference Signal.
  • UE User Equipment
  • the user equipment can measure the adjacent cell at a certain time interval, and the base station can configure the user equipment for inter-frequency signal measurement.
  • Measurement interval Measurement Gap. For example: a measurement interval period of every 40ms, each measurement interval lasts 6ms, the offset configured for the measurement interval is 20ms, then 20-25ms, 60-65ms and 100-105ms are the measurement intervals.
  • the neighboring cell may be an inter-frequency cell.
  • the user equipment can also monitor the synchronization signal block (SSB, Synchronized Signal Block) of the inter-frequency cell.
  • the base station may perform SSB measurement time configuration (SMTC, SSB Measurement Timing Configuration) settings for the user equipment.
  • the configuration content of the SMTC includes: monitoring period, offset, duration, and the cell identity (ID, Identity) of the monitored SSB.
  • the user equipment will monitor the SSB of the inter-frequency cell within the specified duration. For example, the monitoring period is 80ms, the displacement is 40ms, and the duration is 5ms; then the user equipment will monitor the SSB of the neighboring cell at 40-44ms, 120-124ms, and 200-204ms.
  • the embodiments of the present disclosure provide a channel measurement method, device, and communication equipment.
  • a channel measurement method which is applied to a user equipment, and the method includes:
  • the inter-frequency signal measurement is performed in a temporary measurement period, wherein the temporary measurement period is different from the periodic measurement period used for the inter-frequency signal measurement.
  • a channel measurement method which is applied to a base station, and the method includes:
  • DCI Downlink Control Information
  • the DCI is used to instruct the user equipment to perform inter-frequency signal measurement in a temporary measurement period, where the temporary measurement period is different from the period used for the inter-frequency signal measurement Measurement period.
  • a channel measurement device which is applied to user equipment, and the device includes: a measurement module, wherein:
  • the measurement module is configured to perform inter-frequency signal measurement in a temporary measurement period, wherein the temporary measurement period is different from the periodic measurement period used for the inter-frequency signal measurement.
  • a channel measurement device which is applied to a base station, and the device includes: a first sending module, wherein:
  • the first sending module is configured to send DCI, where the DCI is used to instruct the user equipment to perform inter-frequency signal measurement in a temporary measurement period, wherein the temporary measurement period is different from that used for the inter-frequency signal measurement The period of the measurement period.
  • a communication device including a processor, a transceiver, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor runs all When the executable program is described, the steps of the channel measurement method described in the first aspect are executed.
  • a communication device including a processor, a transceiver, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor runs all When the executable program is described, the steps of the channel measurement method described in the second aspect are executed.
  • the channel measurement method, device and communication equipment provided by the embodiments of the present disclosure.
  • the inter-frequency signal measurement is performed in a temporary measurement period, wherein the temporary measurement period is different from the periodic measurement period used for the inter-frequency signal measurement.
  • the inter-frequency signal measurement is performed during the configured temporary measurement period, which improves the flexibility of selecting the inter-frequency signal measurement period and reduces the inability of the user equipment to perform cell handover or positioning in time due to the inability of the user equipment to obtain the time domain resources for inter-frequency signal measurement. problem.
  • Fig. 1 is a schematic structural diagram showing a communication system according to an exemplary embodiment
  • Fig. 2 is a schematic flowchart of a channel measurement method according to an exemplary embodiment
  • Fig. 3 is a schematic flowchart showing another channel measurement method according to an exemplary embodiment
  • Fig. 4 is a schematic diagram showing a position of a temporary measurement period according to an exemplary embodiment
  • Fig. 5 is a schematic flowchart of a channel measurement method according to an exemplary embodiment
  • Fig. 6 is a schematic flowchart showing another channel measurement method according to an exemplary embodiment
  • Fig. 7 is a block diagram showing the structure of a channel measurement device according to an exemplary embodiment
  • Fig. 8 is a block diagram showing the structure of another channel measurement device according to an exemplary embodiment
  • Fig. 9 is a block diagram showing a device for channel measurement according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • word “if” as used herein can be interpreted as "when” or "when” or "in response to determination”.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology.
  • the wireless communication system may include several terminals 11 and several base stations 12.
  • the terminal 11 may be a device that provides voice and/or data connectivity to the user.
  • the terminal 11 can communicate with one or more core networks via a radio access network (Radio Access Network, RAN).
  • the terminal 11 can be an Internet of Things terminal, such as a sensor device, a mobile phone (or “cellular” phone), and
  • the computer of the Internet of Things terminal for example, may be a fixed, portable, pocket-sized, handheld, built-in computer or vehicle-mounted device.
  • station For example, station (Station, STA), subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point, remote terminal ( remote terminal), access terminal (access terminal), user device (user terminal), user agent (user agent), user equipment (user device), or user terminal (user equipment, UE).
  • the terminal 11 may also be a device of an unmanned aerial vehicle.
  • the terminal 11 may also be an in-vehicle device, for example, it may be a trip computer with a wireless communication function, or a wireless communication device connected to the trip computer.
  • the terminal 11 may also be a roadside device, for example, it may be a street lamp, signal lamp, or other roadside device with a wireless communication function.
  • the base station 12 may be a network side device in a wireless communication system.
  • the wireless communication system may be the 4th generation mobile communication (4G) system, also known as the Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system. Also known as new radio (NR) system or 5G NR system.
  • the wireless communication system may also be the next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network). Or, MTC system.
  • the base station 12 may be an evolved base station (eNB) used in a 4G system.
  • the base station 12 may also be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 12 adopts a centralized distributed architecture it usually includes a centralized unit (CU) and at least two distributed units (DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer protocol stack; distribution
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • the unit is provided with a physical (Physical, PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation manner of the base station 12.
  • a wireless connection can be established between the base station 12 and the terminal 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as The wireless air interface is a new air interface; or, the wireless air interface may also be a wireless air interface based on a 5G-based next-generation mobile communication network technology standard.
  • an E2E (End to End) connection may also be established between the terminals 11.
  • V2V vehicle to vehicle
  • V2I vehicle to Infrastructure
  • V2P vehicle to pedestrian
  • the above-mentioned wireless communication system may further include a network management device 13.
  • the network management device 13 may be a core network device in a wireless communication system.
  • the network management device 13 may be a mobility management entity (Mobility Management Entity) in an Evolved Packet Core (EPC) network. MME).
  • the network management device may also be other core network devices, such as Serving GateWay (SGW), Public Data Network GateWay (PGW), Policy and Charging Rules function unit (Policy and Charging Rules). Function, PCRF) or Home Subscriber Server (HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network GateWay
  • Policy and Charging Rules function unit Policy and Charging Rules
  • Function PCRF
  • HSS Home Subscriber Server
  • the executive bodies involved in the embodiments of the present disclosure include, but are not limited to: user equipment and base stations that use 5G NR technology to communicate.
  • An application scenario of the embodiments of the present disclosure is that if the receiver bandwidth of the user equipment is not enough to cover the service frequency of the cell and the service frequency of the neighboring cell to be tested at the same time, in order to ensure ultra-high reliability and low-latency communication (URLLC) , Ultra Reliable and Low Latency Communication) service data and other high-priority downlink services with low latency, the user equipment continues to receive downlink data on the frequency of the serving cell within the measurement interval (Measurement Gap) of the inter-frequency cell without Will enter the measurement interval to measure inter-frequency cells.
  • URLLC ultra-high reliability and low-latency communication
  • Measurement Gap the measurement interval of the inter-frequency cell without Will enter the measurement interval to measure inter-frequency cells.
  • the user equipment does have a need for inter-frequency signal measurement at this time, for example, it needs to perform inter-frequency signal measurement for determining whether to perform cell handover, then the user equipment will not be able to obtain measurement resources, and thus cannot perform cell handover in time.
  • this exemplary embodiment provides a channel measurement method, which can be applied to user equipment of wireless communication, and the method includes:
  • Step 201 Perform inter-frequency signal measurement in a temporary measurement period, where the temporary measurement period is different from the periodic measurement period used for inter-frequency signal measurement.
  • the inter-frequency signal can be a signal that is different from the center frequency of the current serving cell of the user equipment; it can also be a signal of another BWP inter-frequency cell that is different from the current occupied bandwidth part (BWP, Band Width Part) of the user equipment, etc.; In SSB measurement, signals of inter-frequency cells with different center frequencies or different sub-carrier spacing (SCS, Sub-Carrier Space), etc. Inter-frequency signal measurement can be signal quality measurement of inter-frequency signals or monitoring of inter-frequency signals.
  • the base station allocates a periodic measurement period, that is, a periodic measurement interval, to the user equipment, and the user equipment periodically performs inter-frequency signal measurement during the periodic measurement period.
  • the user equipment cannot perform inter-frequency signal measurement of the inter-frequency cell and data transmission of the serving cell at the same time. For example, the user equipment cannot simultaneously perform inter-frequency signal measurement during the periodic measurement period and receive downlink data with the PDSCH resource in the serving cell using the physical downlink shared channel (PDSCH, Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the user equipment continues to receive downlink data on the frequency of the serving cell during the periodic measurement period of the inter-frequency cell without performing inter-frequency signal measurement.
  • the periodic measurement period overlaps with the PDSCH resources of the high-priority downlink service, and inter-frequency signal measurement cannot be performed during the periodic measurement period.
  • a temporary measurement period can be set outside the periodic measurement period.
  • the user equipment can perform inter-frequency signal measurement during the temporary measurement period.
  • the location of the temporary measurement may be preset or indicated by the base station sending signaling.
  • the user equipment or the base station may set a temporary measurement period for a periodic measurement period that overlaps with PDSCH transmission resources.
  • a temporary measurement period can be set after the periodic measurement period overlapping with the PDSCH transmission resource, and the user equipment can perform inter-frequency signal measurement during the temporary measurement period.
  • the temporary measurement period can consist of one or more.
  • the inter-frequency signal measurement is performed during the configured temporary measurement period, which improves the flexibility of selecting the inter-frequency signal measurement period and reduces the inability of the user equipment to perform cell handover or positioning in time due to the inability of the user equipment to obtain the time domain resources for inter-frequency signal measurement. problem.
  • the temporary measurement frequency band may not be set.
  • step 201 may include: receiving DCI; in response to determining that the DCI indicates that the temporary measurement period is triggered, performing inter-frequency signal measurement in the temporary measurement period.
  • the temporary measurement period can be configured in advance through high-level signaling, etc., and triggered by DCI.
  • An information domain can be set in DCI.
  • the information field can occupy 1 or more bits and is used to trigger temporary measurements. For example, the information field occupies 1 bit, "0" can be used to indicate that the temporary measurement period is not triggered, and "1" can be used to indicate that a temporary measurement period is triggered.
  • the temporary measurement period for inter-frequency signal measurement may include: a temporary measurement period for the user equipment to perform reference signal measurement on the inter-frequency cell; and/or a temporary duration period for the user equipment to perform SSB monitoring on the inter-frequency cell.
  • the information field that triggers the temporary measurement period occupies two bits. The information field can use "00" to indicate that the temporary measurement period is not triggered, and "01” can be used to indicate that a temporary measurement period for reference signal measurement on inter-frequency cells is triggered. "10" can be used to indicate a temporary duration for triggering SSB monitoring on an inter-frequency cell.
  • the base station uses DCI to trigger whether to use the temporary measurement period, which improves the flexibility of triggering the temporary measurement period.
  • step 201 may include: performing inter-frequency signal measurement in a temporary measurement period after a first period of time after receiving the DCI.
  • the time offset of the temporary measurement period relative to the DCI can be agreed by a communication protocol or the like. After receiving the DCI indicating the activation of the temporary measurement period, the temporary measurement period is activated at the location agreed by the communication protocol, and the inter-frequency signal measurement is performed during the temporary measurement period.
  • the first duration may be determined according to the response speed of the user equipment. For example, the user equipment needs to analyze the DCI after receiving the DCI. In this case, the first duration may be the analysis duration of the DCI by the user equipment.
  • the channel checking method may further include: determining the first duration according to an indication of a received first radio resource control (RRC, Radio Resource Control) instruction.
  • RRC Radio Resource Control
  • the base station uses the RRC instruction to configure the time offset between the temporary measurement period and the received DCI indicating that the temporary measurement period is enabled.
  • the interval value configured by RRC is 3 ms.
  • the user equipment starts to enter the temporary measurement period after receiving the DCI interval of 3ms. Assuming that the temporary measurement period configured by the base station is 4ms, the user equipment will switch to the frequency of the serving cell after the temporary measurement period ends and start normal downlink data reception. .
  • the first duration includes: one or more symbols; or, one or more time slots.
  • the first time length agreed by the communication protocol or configured by the RRC command can be represented by symbols or time slots.
  • the first duration configured by the RRC instruction may be 3 time slots; if the DCI is located in time slot #15. Then, in time slot #18, the UE can start to enter the temporary measurement period. Assuming that the duration of a time slot is 1ms and the duration of the temporary measurement period configured by the base station is 4ms, then the UE will maintain the temporary measurement period in time slot #18/19/20/21, and enter the serving cell at the frequency of time slot #22. Click to start normal downlink data reception.
  • the temporary measurement period will be entered after an interval of M symbols after the symbol where the DCI is located.
  • one slot may contain 12 symbols.
  • the first duration is greater than the duration of the user equipment parsing the DCI.
  • the first duration may be set to be greater than the duration of the UE demodulating the DCI. If this is done, it can be ensured that the DCI has been demodulated at the beginning of the temporary measurement period.
  • the base station in response to determining that the PDSCH resource of the predetermined priority and the periodic measurement period have overlapping time periods in the time domain, transmits the DCI, and the user equipment receives the DCI.
  • the base station can determine whether the PDSCH resource and the periodic measurement period have overlapping time periods in the time domain, that is, whether the PDSCH resource and the periodic measurement period conflict. If there are overlapping time periods, the base station can send DCI to trigger a temporary measurement period.
  • the base station in response to determining the predetermined priority of Semi-Persistent Scheduling (SPS, Semi-Persistent Scheduling) PDSCH resources and the periodic measurement period have overlapping time periods in the time domain, the base station sends DCI before the overlapping time period, and the The user equipment receives the DCI.
  • SPS Semi-Persistent Scheduling
  • PDSCH resources include SPS PDSCH resources.
  • SPS PDSCH resources and periodic measurement periods are both semi-statically configured by the base station through RRC layer signaling. In this way, both the base station and user equipment can predict in advance whether there will be conflicts between SPS PDSCH resources and the periodic measurement period, resulting in the inability to enter inter-frequency. The signal measurement situation occurs. Therefore, the base station can issue DCI to trigger the temporary measurement period before the conflict occurs, that is, before the overlap period.
  • the channel measurement method may further include: maintaining downlink communication with the base station during the overlapping time period.
  • the downlink communication between the user equipment and the base station may be maintained during the overlap period between the PDSCH resource used to transmit the high-priority downlink service and the periodic measurement period.
  • the high-priority downlink service may include: URLLC service, etc., and the downlink communication includes the transmission of high-priority downlink service data, and the like.
  • step 201 may include: in response to determining that the PDSCH resource of the predetermined priority and the periodic measurement period have overlapping time periods in the time domain, performing inter-frequency inter-frequency measurement after the end of the periodic measurement period with a second-long temporary measurement period Signal measurement.
  • the temporary measurement period can be set after the second time interval after the end time point of the periodic measurement period of the transmission conflict.
  • a temporary measurement period starts after T time after the end time of the periodic measurement period.
  • the duration of the temporary measurement period can be configured by the base station through RRC.
  • the channel measurement method may further include:
  • Step 202 Receive the second RRC signaling; according to the second RRC signaling, determine whether the user equipment is configured by the base station to allow inter-frequency signal measurement during the temporary measurement period.
  • the user equipment performs inter-frequency signal measurement in the temporary measurement period.
  • the user equipment When the indication information of the second RRC signaling indicates that the user equipment is allowed to enable inter-frequency signal measurement in the temporary measurement period, and the location of the temporary measurement period is agreed in the communication protocol, the user equipment performs the inter-frequency signal in the temporary measurement period of the agreed location Measurement.
  • the channel measurement method may further include: determining the duration of the temporary measurement period according to the received third RRC signaling.
  • the base station may set indication information for indicating the duration of the temporary measurement period in the predetermined information field of the third RRC signaling. After receiving the third RRC signaling, the user equipment determines the duration of the temporary measurement period according to the indication information of the predetermined information field.
  • first RRC signaling, the second RRC signaling, and the third RRC signaling may be the same RRC signaling or different RRC signaling.
  • the first RRC signaling, the second RRC signaling, and the third RRC signaling Any two RRC signaling in the RRC signaling may be the same RRC signaling.
  • the inter-frequency signal measurement includes: reference signal measurement performed on the inter-frequency cell; and/or SSB monitoring performed on the inter-frequency cell.
  • the temporary measurement period for the user equipment to perform inter-frequency signal measurement on the inter-frequency cell includes: the temporary measurement period for the user equipment to perform reference signal measurement on the inter-frequency cell; and/or the user equipment to perform SSB monitoring on the inter-frequency cell Temporary duration.
  • the reference signal measurement may be a reference signal of an inter-frequency cell measured when the user equipment performs mobility measurement.
  • the user equipment can measure the reference signal of the inter-frequency cell during the temporary measurement period.
  • the base station can configure a temporary duration for the user equipment to monitor the SSB of the inter-frequency cell.
  • this exemplary embodiment provides a channel measurement method, which can be applied to a wireless communication base station, and the method includes:
  • Step 501 Send DCI, where DCI is used to instruct the user equipment to perform inter-frequency signal measurement in a temporary measurement period, where the temporary measurement period is different from the periodic measurement period for inter-frequency signal measurement.
  • the inter-frequency signal can be a signal that is different from the center frequency of the current serving cell of the user equipment; it can also be a signal of another BWP inter-frequency cell that is different from the current occupied bandwidth part (BWP, Band Width Part) of the user equipment, etc.; In SSB measurement, signals of inter-frequency cells with different center frequencies or different sub-carrier spacing (SCS, Sub-Carrier Space), etc. Inter-frequency signal measurement can be signal quality measurement of inter-frequency signals or monitoring of inter-frequency signals.
  • the base station allocates a periodic measurement period, that is, a periodic measurement interval, to the user equipment, and the user equipment periodically performs inter-frequency signal measurement during the periodic measurement period.
  • the user equipment cannot perform inter-frequency signal measurement of the inter-frequency cell and data transmission of the serving cell at the same time. For example, the user equipment cannot simultaneously perform inter-frequency signal measurement and use PDSCH resources to receive downlink data in the serving cell during the periodic measurement period.
  • the user equipment continues to receive downlink data on the frequency of the serving cell during the periodic measurement period of the inter-frequency cell without performing inter-frequency signal measurement.
  • the periodic measurement period overlaps with the PDSCH resources of the high-priority downlink service, and inter-frequency signal measurement cannot be performed during the periodic measurement period.
  • a temporary measurement period can be set outside the periodic measurement period.
  • the user equipment can perform inter-frequency signal measurement during the temporary measurement period.
  • the location of the temporary measurement can be preset or indicated by the base station sending signaling.
  • the user equipment or the base station may set a temporary measurement period for a periodic measurement period that overlaps with PDSCH transmission resources.
  • a temporary measurement period may be set after a periodic measurement period overlapping with PDSCH transmission resources, and the user equipment may perform inter-frequency signal measurement during the temporary measurement period.
  • the temporary measurement period can consist of one or more.
  • the inter-frequency signal measurement is performed during the configured temporary measurement period, which improves the flexibility of selecting the inter-frequency signal measurement period and reduces the inability of the user equipment to perform cell handover or positioning in time due to the inability of the user equipment to obtain the time domain resources for inter-frequency signal measurement. problem.
  • the temporary measurement frequency band may not be set.
  • the temporary measurement period can be configured in advance through high-level signaling, etc., and triggered by DCI.
  • An information domain can be set in DCI.
  • the information field can occupy 1 or more bits and is used to trigger temporary measurements. For example, the information field occupies 1 bit, "0" can be used to indicate that the temporary measurement period is not triggered, and "1" can be used to indicate that a temporary measurement period is triggered.
  • the temporary measurement period for inter-frequency signal measurement may include: a temporary measurement period for the user equipment to perform reference signal measurement on the inter-frequency cell; and/or a temporary duration period for the user equipment to perform SSB monitoring on the inter-frequency cell.
  • the information field that triggers the temporary measurement period occupies two bits. The information field can use "00" to indicate that the temporary measurement period is not triggered, and "01” can be used to indicate that a temporary measurement period for reference signal measurement on inter-frequency cells is triggered. "10" can be used to indicate a temporary duration for triggering SSB monitoring on an inter-frequency cell.
  • the base station uses DCI to trigger whether to use the temporary measurement period, which improves the flexibility of triggering the temporary measurement period.
  • the channel measurement method may further include:
  • Step 502 Send a first RRC command, where the RRC command is used to indicate that the temporary measurement period is located after the first time interval after the DCI.
  • the first duration may be determined according to the response speed of the user equipment. For example, the user equipment needs to parse the DCI after receiving the DCI.
  • the first time length may be the time length of the user equipment to parse the DCI.
  • the base station uses the RRC instruction to configure the time offset between the temporary measurement period and the received DCI indicating that the temporary measurement period is enabled.
  • the interval value configured by RRC is 3 ms.
  • the user equipment starts to enter the temporary measurement period after receiving the DCI interval of 3ms. Assuming that the temporary measurement period configured by the base station is 4ms, the user equipment will switch to the frequency of the serving cell after the temporary measurement period ends and start normal downlink data reception. .
  • the first duration includes: one or more symbols; or, one or more time slots.
  • the first duration configured by the RRC instruction can be represented by symbols or time slots.
  • the first duration configured by the RRC instruction may be 3 time slots; if the DCI is located in time slot #15. Then, in time slot #18, the UE can start to enter the temporary measurement period. Assuming that the duration of a time slot is 1ms and the duration of the temporary measurement period configured by the base station is 4ms, then the UE will maintain the temporary measurement period in time slot #18/19/20/21, and enter the serving cell at the frequency of time slot #22. Click to start normal downlink data reception.
  • the temporary measurement period will be entered after an interval of M symbols after the symbol where the DCI is located.
  • one slot may contain 12 symbols.
  • the first duration is greater than the duration of the user equipment parsing the DCI.
  • the first duration may be set to be greater than the duration of the UE demodulating the DCI. If this is done, it can be ensured that the DCI has been demodulated at the beginning of the temporary measurement period.
  • step 501 may include:
  • the DCI is transmitted.
  • the base station can determine whether the PDSCH resource and the periodic measurement period have overlapping time periods in the time domain, that is, whether the PDSCH resource and the periodic measurement period conflict. If there are overlapping time periods, the base station can send DCI to trigger a temporary measurement period.
  • sending DCI in response to determining that the SPS PDSCH resource of the predetermined priority and the periodic measurement period have overlapping time periods in the time domain, sending DCI includes:
  • the DCI is sent before the overlapping time period.
  • PDSCH resources include SPS PDSCH resources.
  • SPS PDSCH resources and periodic measurement periods are both semi-statically configured by the base station through RRC layer signaling. In this way, both the base station and user equipment can predict in advance whether there will be conflicts between SPS PDSCH resources and the periodic measurement period, resulting in the inability to enter inter-frequency. The signal measurement situation occurs. Therefore, the base station can issue DCI to trigger the temporary measurement period before the conflict occurs, that is, before the overlap period.
  • the channel measurement method may further include: maintaining downlink communication with the user equipment during the overlapping time period.
  • the downlink communication between the user equipment and the base station may be maintained during the overlap period between the PDSCH resource used for the high-priority downlink service and the periodic measurement period.
  • the high-priority downlink service may include: URLLC service, etc., and the downlink communication includes the transmission of high-priority downlink service data, and the like.
  • the channel measurement method may further include:
  • the second RRC signaling is sent, and the second RRC signaling is used to configure whether the user equipment is allowed to perform inter-frequency signal measurement in the temporary measurement period.
  • the base station may indicate whether the user equipment is allowed to enable inter-frequency signal measurement in the temporary measurement period through the indication information of the second RRC signaling.
  • the user equipment performs inter-frequency signal measurement in the temporary measurement period.
  • the user equipment When the indication information of the second RRC signaling indicates that the user equipment is allowed to enable inter-frequency signal measurement in the temporary measurement period, and the location of the temporary measurement period is agreed in the communication protocol, the user equipment performs the inter-frequency signal in the temporary measurement period of the agreed location Measurement.
  • the channel measurement method may further include: sending third RRC signaling, where the third RRC signaling is used to indicate the duration of the temporary measurement period.
  • the base station may set indication information for indicating the duration of the temporary measurement period in the predetermined information field of the third RRC signaling. After receiving the third RRC signaling, the user equipment determines the duration of the temporary measurement period according to the indication information of the predetermined information field.
  • first RRC signaling, the second RRC signaling, and the third RRC signaling may be the same RRC signaling or different RRC signaling.
  • the first RRC signaling, the second RRC signaling, and the third RRC signaling Any two RRC signaling in the RRC signaling may be the same RRC signaling.
  • the information field is 2 bits, when it is 00, it means not triggering, when it is 01, it means triggering a temporary measurement gap, and when it is 10 it means triggering a SMTC temporary duration (duration).
  • the above information field exists in the DCI depends on the RRC configuration. For example, if the base station uses RRC signaling to configure the user equipment to allow the temporary measurement period to be triggered, the above information field will be included in the DCI. If the base station configures the user equipment not to allow the temporary measurement period to be triggered, there will be no such information field in the DCI
  • the user equipment After the user equipment receives the DCI that triggers a temporary measurement period, it can determine the time domain position of the temporary measurement period in the following ways:
  • the interval value configured by RRC is 3 time slots, and DCI is located in time slot #15.
  • time slot #18 the user equipment can start to enter the temporary measurement period. Assuming that the duration of one time slot is 1ms and the duration of the temporary measurement period configured by the base station is 4ms, then the user equipment will keep the temporary measurement period in time slot #18/19/20/21 and enter the serving cell in time slot #22 Start normal downlink data reception.
  • the temporary measurement period will be entered after an interval of M symbols after the symbol where the DCI is located. Since the user equipment needs to demodulate the DCI before determining whether the temporary measurement period is triggered, the M symbol needs to be longer than the time period for the user equipment to demodulate the DCI.
  • both the station and user equipment can predict in advance whether there will be SPS PDSCH.
  • the phenomenon that the transmission resource conflicts with the periodic measurement period, which results in the inability to enter the inter-frequency signal measurement. Therefore, the base station can issue the aforementioned DCI to trigger the temporary measurement period before the conflict occurs. Of course, after the conflict occurs, the base station can also trigger a temporary measurement period.
  • the base station can trigger one or more temporary measurement periods according to actual measurement requirements, and it is not limited to triggering only when a conflict occurs.
  • a temporary measurement period can be started after T time after the end time of the periodical measurement period.
  • the duration of the temporary measurement period can be configured by the base station through RRC.
  • FIG. 7 is a schematic diagram of the composition structure of the channel measurement device 100 provided by an embodiment of the present invention; as shown in FIG. 7, the device 100 includes: measurement Module 110, of which,
  • the measurement module 110 is configured to perform inter-frequency signal measurement in a temporary measurement period, where the temporary measurement period is different from the periodic measurement period used for inter-frequency signal measurement.
  • the measurement module 110 includes:
  • the receiving submodule 111 is configured to receive DCI
  • the first measurement sub-module 112 is configured to perform inter-frequency signal measurement in the temporary measurement period in response to determining that the DCI indicates that the temporary measurement period is triggered.
  • the measurement module 110 includes:
  • the second measurement sub-module 113 is configured to perform inter-frequency signal measurement in a temporary measurement period after a first interval of time after receiving the DCI.
  • the apparatus 100 further includes:
  • the first determining module 120 is configured to determine the first duration according to an indication of the received first RRC instruction.
  • the first duration includes:
  • the first duration is greater than the duration of the user equipment parsing the DCI.
  • the DCI is sent by the base station in response to determining the PDSCH resource of the predetermined priority and the periodic measurement period having overlapping time periods in the time domain.
  • the DCI is sent by the base station in response to the SPS PDSCH resource of the predetermined priority and the periodic measurement period having an overlapping time period in the time domain, and is sent before the overlapping time period.
  • the apparatus 100 further includes:
  • the first transmission module 130 is configured to maintain downlink communication with the base station during the overlapping time period.
  • the measurement module 110 includes:
  • the third measurement submodule 114 is configured to, in response to determining the PDSCH resource of the predetermined priority and the periodic measurement period, have overlapping time periods in the time domain, and perform inter-frequency signal measurement after the end of the periodic measurement period with a second interval of temporary measurement periods .
  • the apparatus 100 further includes:
  • the receiving module 140 is configured to receive the second RRC signaling before the inter-frequency signal measurement is performed in the temporary measurement period;
  • the configuration module 150 is configured to determine whether the user equipment is configured to allow inter-frequency signal measurement in a temporary measurement period according to the second RRC signaling.
  • the apparatus 100 further includes:
  • the second determining module 160 is configured to determine the duration of the temporary measurement period according to the received third RRC signaling.
  • inter-frequency signal measurement includes:
  • FIG. 8 is a schematic diagram of the composition structure of the channel measurement device 200 provided by an embodiment of the present invention; as shown in FIG. 8, the device 200 includes: A sending module 210, in which,
  • the first sending module 210 is configured to send DCI, where the DCI is used to instruct the user equipment to perform inter-frequency signal measurement in a temporary measurement period, where the temporary measurement period is different from the periodic measurement period for inter-frequency signal measurement.
  • the apparatus 200 further includes:
  • the second sending module 220 is configured to send a first RRC command, where the RRC command is used to indicate that the temporary measurement period is located after the DCI after the first time interval.
  • the first duration includes:
  • the first duration is greater than the duration of the user equipment parsing the DCI.
  • the first sending module 210 includes:
  • the sending submodule 211 sends the DCI in response to determining that the PDSCH resource of the predetermined priority and the periodic measurement period have overlapping time periods in the time domain.
  • the first sending submodule 211 includes:
  • the sending unit 2111 is configured to respond to determining the predetermined priority of the SPS PDSCH resource and the periodic measurement period having an overlapping time period in the time domain, and send the DCI before the overlapping time period.
  • the apparatus 200 further includes:
  • the second transmission module 230 is configured to maintain downlink communication with the user equipment during the overlapping time period.
  • the apparatus 200 further includes:
  • the third sending module 240 is configured to send second RRC signaling, and the second RRC signaling is used to configure whether the user equipment is allowed to perform inter-frequency signal measurement in the temporary measurement period.
  • the apparatus 200 further includes:
  • the fourth sending module 250 is configured to send third RRC signaling, where the third RRC signaling is used to indicate the duration of the temporary measurement period.
  • the second transmission module 230, the third transmission module 240, and the fourth transmission module 250 can be configured by one or more central processing units (CPU, Central Processing Unit), graphics processing units (GPU, Graphics Processing Unit), and baseband processors (BP).
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • BP baseband processors
  • Baseband processor Baseband processor
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processor
  • PLD programmable logic device
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • controller controller
  • MCU Micro Controller Unit
  • microprocessor Microprocessor
  • Fig. 9 is a block diagram showing an apparatus 3000 for channel measurement according to an exemplary embodiment.
  • the device 3000 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the device 3000 may include one or more of the following components: a processing component 3002, a memory 3004, a power supply component 3006, a multimedia component 3008, an audio component 3010, an input/output (I/O) interface 3012, a sensor component 3014, And the communication component 3016.
  • a processing component 3002 a memory 3004, a power supply component 3006, a multimedia component 3008, an audio component 3010, an input/output (I/O) interface 3012, a sensor component 3014, And the communication component 3016.
  • the processing component 3002 generally controls the overall operations of the device 3000, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 3002 may include one or more processors 3020 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 3002 may include one or more modules to facilitate the interaction between the processing component 3002 and other components.
  • the processing component 3002 may include a multimedia module to facilitate the interaction between the multimedia component 3008 and the processing component 3002.
  • the memory 3004 is configured to store various types of data to support the operation of the device 3000. Examples of such data include instructions for any application or method operating on the device 3000, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 3004 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic Disk Magnetic Disk or Optical Disk.
  • the power supply component 3006 provides power for various components of the device 3000.
  • the power supply component 3006 may include a power management system, one or more power supplies, and other components associated with the generation, management, and distribution of power for the device 3000.
  • the multimedia component 3008 includes a screen that provides an output interface between the device 3000 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor can not only sense the boundary of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
  • the multimedia component 3008 includes a front camera and/or a rear camera. When the device 3000 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 3010 is configured to output and/or input audio signals.
  • the audio component 3010 includes a microphone (MIC), and when the device 3000 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive external audio signals.
  • the received audio signal may be further stored in the memory 3004 or transmitted via the communication component 3016.
  • the audio component 3010 further includes a speaker for outputting audio signals.
  • the I/O interface 3012 provides an interface between the processing component 3002 and the peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
  • the sensor assembly 3014 includes one or more sensors for providing the device 3000 with various aspects of status assessment.
  • the sensor component 3014 can detect the on/off status of the device 3000 and the relative positioning of components, such as the display and keypad of the device 3000.
  • the sensor component 3014 can also detect the position change of the device 3000 or a component of the device 3000. The presence or absence of contact with the device 3000, the orientation or acceleration/deceleration of the device 3000, and the temperature change of the device 3000.
  • the sensor assembly 3014 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 3014 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 3014 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 3016 is configured to facilitate wired or wireless communication between the device 3000 and other devices.
  • the device 3000 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 3016 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 3016 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the device 3000 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • a non-transitory computer-readable storage medium including instructions such as a memory 3004 including instructions, and the foregoing instructions may be executed by the processor 3020 of the device 3000 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例是关于信道测量方法、装置及通信设备。在临时测量时段进行异频信号测量,其中,所述临时测量时段不同于用于所述异频信号测量的周期测量时段。

Description

信道测量方法、装置及通信设备 技术领域
本申请涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及信道测量方法、装置及通信设备。
背景技术
在第五代(5G,5 th Generation)蜂窝移动通信技术新空口(NR,New Radio)系统中,用户设备(UE,User Equipment)在做移动性测量时,需要周期性测量相邻小区的参考信号。如果用户设备的接收机带宽不足以同时覆盖服务小区频点与相邻小区的频点,则用户设备可以以一定的时间间隔对相邻小区进行测量,基站可以为用户设备配置异频信号测量的测量间隔(Measurement Gap)。例如:每40ms一个测量间隔周期,每次测量间隔持续6ms,测量间隔配置的位移(offset)为20ms,则20~25ms、60-65ms和100-105ms为测量间隔。这里,相邻小区可以为异频小区。
针对异频小区,用户设备还可以对异频小区的同步信号块(SSB,Synchronized Signal Block)进行监听。基站可以为用户设备进行SSB测量时间配置(SMTC,SSB Measurement Timing Configuration)的设置。SMTC的配置内容包括:监听周期、offset、持续时长(duration),以及监听的SSB的小区标识(ID,Identity),用户设备将会在指定的持续时长内监听异频小区的SSB。例如,监听周期为80ms,位移为40ms,持续时长为5ms;那么用户设备将在40~44ms、120~124ms和200~204ms等时间上进行邻小区SSB的监听。
发明内容
有鉴于此,本公开实施例提供了一种信道测量方法、装置及通信设备。
根据本公开实施例的第一方面,提供一种信道测量方法,其中,应用于用户设备,所述方法包括:
在临时测量时段进行异频信号测量,其中,所述临时测量时段不同于用于所述异频信号测量的周期测量时段。
根据本公开实施例的第二方面,提供一种信道测量方法,其中,应用于基站,所述方法包括:
发送下行控制信息(DCI,DownlinkControlInformation),其中,所述DCI用于指示触发用户设备在临时测量时段进行异频信号测量,其中,所述临时测量时段不同于用于所述异频信号测量的周期测量时段。
根据本公开实施例的第三方面,提供一种信道测量装置,其中,应用于用户设备,所述装置包括:测量模块,其中,
所述测量模块,配置为在临时测量时段进行异频信号测量,其中,所述临时测量时段不同于用于所述异频信号测量的周期测量时段。
根据本公开实施例的第四方面,提供一种信道测量装置,其中,应用于基站,所述装置包括:第一发送模块,其中,
所述第一发送模块,配置为发送DCI,其中,所述DCI用于指示触发用户设备在临时测量时段进行异频信号测量,其中,所述临时测量时段不同于用于所述异频信号测量的周期测量时段。
根据本公开实施例的第五方面,提供一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如第一方面所述信道测量方法的步骤。
根据本公开实施例的第六方面,提供一种通信设备,包括处理器、收 发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如第二方面所述信道测量方法的步骤。
本公开实施例提供的信道测量方法、装置及通信设备。在临时测量时段进行异频信号测量,其中,所述临时测量时段不同于用于所述异频信号测量的周期测量时段。如此,在配置的临时测量时段进行异频信号测量,提高了异频信号测量时段选择灵活性,减少用户设备因为无法取得异频信号测量的时域资源而导致的无法及时进行小区切换或定位等问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种通信系统的结构示意图;
图2是根据一示例性实施例示出的一种信道测量方法的流程示意图;
图3是根据一示例性实施例示出的另一种信道测量方法的流程示意图;
图4是根据一示例性实施例示出的临时测量时段位置示意图;
图5是根据一示例性实施例示出的一种信道测量方法的流程示意图;
图6是根据一示例性实施例示出的另一种信道测量方法的流程示意图;
图7是根据一示例性实施例示出的一种信道测量装置组成结构框图;
图8是根据一示例性实施例示出的另一种信道测量装置组成结构框图;
图9是根据一示例性实施例示出的一种用于信道测量的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面 的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个终端11以及若干个基站12。
其中,终端11可以是指向用户提供语音和/或数据连通性的设备。终端11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端11可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote  terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,UE)。或者,终端11也可以是无人飞行器的设备。或者,终端11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,终端11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和终端11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的 更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
本公开实施例涉及的执行主体包括但不限于:采用5G NR技术进行通信的用户设备和基站等。
本公开实施例的一种应用场景为,如果用户设备的接收机带宽不足以同时覆盖本小区的服务频点与待测相邻小区的服务频点,为了保证超高可靠低时延通信(URLLC,Ultra Reliable and Low Latency Communication)业务数据等高优先级下行业务的低时延,用户设备在异频小区的测量间隔(Measurement Gap)内,继续在服务小区的频点上接收下行数据,而不会进入测量间隔中去测量异频小区。如果用户设备此时确实有异频信号测量的需求,例如,需要进行用于判断是否进行小区切换的异频信号测量,那么用户设备将无法获得测量资源,因而导致无法及时的进行小区切换。
如图2所示,本示例性实施例提供一种信道测量方法,可以应用于无线通信的用户设备中,该方法包括:
步骤201:在临时测量时段进行异频信号测量,其中,临时测量时段不同于用于异频信号测量的周期测量时段。
异频信号可以是与用户设备当前所在服务小区的中心频率不同的信号;也可以是与用户设备当前占用带宽部分(BWP,Band Width Part)不同的其他BWP的异频小区的信号等;还可以是在SSB测量中,中心频率不同或子载波间隔(SCS,Sub-Carrier Space)不同的异频小区的信号等。异频信号测量可以是对异频信号进行信号质量测量或对异频信号的监听等。
基站会为用户设备分配周期测量时段,即周期性的测量间隔,用户设备周期性的在周期测量时段进行异频信号测量。
如果用户设备的接收机带宽不足以同时覆盖服务小区信号频点与异频小区信号频点,用户设备无法同时进行异频小区的异频信号测量和服务小区的数据传输。例如,用户设备不能同时在周期测量时段进行异频信号测量和与采用物理下行共享信道(PDSCH,Physical Downlink Shared Channel)PDSCH资源在服务小区的接收下行数据。
为了保证URLLC业务数据等高优先级下行业务的低时延,用户设备在异频小区的周期测量时段内,继续在服务小区的频点上接收下行数据,而不会进行异频信号测量。
这里,如图3所示,周期测量时段与高优先级下行业务的PDSCH资源重叠,无法在周期测量时段进行异频信号测量,可以在周期测量时段之外设置临时测量时段。用户设备可以在临时测量时段内进行异频信号测量。临时测量的位置可以预先设定或者由基站发送信令进行指示等。
用户设备或基站可以针对出现与PDSCH传输资源重叠的周期测量时段设置临时测量时段。例如,可以在与PDSCH传输资源重叠的周期测量时 段之后设置临时测量时段,用户设备可以在临时测量时段进行异频信号测量。临时测量时段可以由一个或多个。
如此,在配置的临时测量时段进行异频信号测量,提高了异频信号测量时段选择灵活性,减少用户设备因为无法取得异频信号测量的时域资源而导致的无法及时进行小区切换或定位等问题。
如果用户周期测量时段未与PDSCH资源出现重叠,用户设备能进行异频信号测量,则可以不设置临时测量频段。
在一个实施例中,步骤201可以包括:接收DCI;响应于确定DCI指示触发临时测量时段,在临时测量时段进行异频信号测量。
临时测量时段可以预先通过高层信令等进行配置,由DCI进行触发启用。
DCI中可以设置一个信息域。信息域可以占用1个或多个比特位,用于触发临时测量时。例如,该信息域占用1个比特位,可以用“0”表示不触发临时测量时段,可以用“1”表示触发一个临时测量时段。
异频信号测量的临时测量时段可以包括:用户设备在异频小区上进行参考信号测量的临时测量时段;和/或,用户设备在异频小区上进行SSB监听的临时持续时段。触发临时测量时段的信息域占用两个个比特位,信息域可以用“00”表示不触发临时测量时段,可以用“01”表示触发一个在异频小区上进行参考信号测量的临时测量时段,可以用“10”表示触发一个在异频小区上进行SSB监听的临时持续时段。
如此,基站采用DCI对是否采用临时测量时段进行触发,提高临时测量时段触发的灵活性。
在一个实施例中,步骤201可以包括:在接收到DCI之后间隔第一时长后的临时测量时段进行异频信号测量。
临时测量时段相对DCI的时间偏移量,即第一时长,可以由通信协议 等进行约定。当接收到指示启用临时测量时段的DCI后,在通信协议约定的位置启用临时测量时段,并在临时测量时段进行异频信号测量。
第一时长可以根据用户设备的响应速度确定。例如,用户设备在接收到DCI后需要对DCI进行解析,此时,第一时长可以是用户设备对DCI的解析时长。
在一个实施例中,信道检查方法还可以包括:根据接收的第一无线资源控制(RRC,Radio Resource Control)指令的指示,确定第一时长。
示例性的,基站采用RRC指令配置临时测量时段与接收的指示启用临时测量时段的DCI之间的时间偏移量。例如,RRC配置的间隔值是3ms。用户设备在接收到DCI间隔3ms后开始进入临时测量时段,假定基站配置的临时测量时段时长为4ms,那么,用户设备将在临时测量时段结束后切换到服务小区的频点开始正常的下行数据接收。
在一个实施例中,第一时长包括:1个或多个符号;或,1个或多个时隙。
通信协议进行约定或RRC指令配置的第一时长可以采用符号或时隙表示。
示例性的,RRC指令配置的第一时长可以是3个时隙;如果DCI位于时隙#15。那么,在时隙#18,UE就可以开始进入临时测量时段。假定1个时隙时长为1ms,基站配置的临时测量时段时长为4ms,那么,UE将在时隙#18/19/20/21保持为临时测量时段,在时隙#22进入服务小区的频点开始正常的下行数据接收。
还可以在通信协议中约定,该DCI所在的符号之后M个符号的间隔后进入临时测量时段。
示例性的,一个时隙中可以包含12个符号。
在一个实施例中,第一时长大于用户设备解析DCI的时长。
由于于UE需要解调该DCI之后才能确定是否触发了临时测量时段,因此,可以设置第一时长大于UE解调DCI的时长。若此,可以确保在临时测量时段开始时,DCI已经被解调。
在一个实施例中,响应于确定预定优先级的PDSCH资源和周期测量时段在时域上具有重叠时间段,基站发送DCI,并由用户设备接收该DCI。
由于PDSCH资源和周期测量时段都是由基站调度或配置的,因此,基站可以确定PDSCH资源和周期测量时段在时域上是否具有重叠时间段,即PDSCH资源和周期测量时段是否冲突。如果存在重叠时间段,则基站可以发送DCI,触发临时测量时段。
在一个实施例中,响应于确定预定优先级的半持续调度(SPS,Semi-Persistent Scheduling)PDSCH资源和周期测量时段在时域上具有重叠时间段,在重叠时间段之前基站发送DCI,并由用户设备接收该DCI。
PDSCH资源包括SPS PDSCH资源。SPS PDSCH资源与周期测量时段都是基站通过RRC层信令半静态配置的,如此,基站和用户设备都可以提前预知会不会有SPS PDSCH资源与周期测量时段发生冲突而导致的无法进入异频信号测量的情况发生。因而,基站可以在冲突发生之前,即在重叠时间段之前,下发DCI触发临时测量时段。
在一个实施例中,信道测量方法还可以包括:在重叠时间段保持与基站的下行链路通信。
为保证高优先级下行业务的传输,可以在用于传输高优先级下行业务的PDSCH资源与周期测量时段的重叠时间段保持用户设备与基站的下行链路通信。这里,高优先级下行业务可以包括:URLLC业务等,下行链路通信包括高优先级下行业务数据的传输等。
在一个实施例中,步骤201可以包括:响应于确定预定优先级的PDSCH资源和周期测量时段在时域上具有重叠时间段,在周期测量时段结束之后 间隔第二时长的临时测量时段进行异频信号测量。
如果在周期测量时段与接收SPS下行数据的PDSCH资源在时域上具有重叠时间段,周期测量时段不能用于异频信号测量。则可以在发送冲突的周期测量时段结束时间点后第二时间间隔之后设置临时测量时段。
例如,某个周期测量时段与PDSCH资源冲突,UE无法使用该周期测量时段的情况下,在周期测量时段的结束时刻之后的T时间后,开始一个临时测量时段。临时测量时段的时长可以由基站通过RRC配置。
在一个实施例中,如图4所示,在步骤201之前,信道测量方法还可以包括:
步骤202:接收第二RRC信令;根据第二RRC信令,确定用户设备是否被基站配置为允许在临时测量时段进行异频信号测量。
例如,当第二RRC信令的指示信息指示用户设备允许启用在临时测量时段进行异频信号测量,并且通过DCI中包含的触发信息的触发时,用户设备在临时测量时段进行异频信号测量。
或者,
当第二RRC信令的指示信息指示用户设备允许启用在临时测量时段进行异频信号测量,并且通信协议中约定了临时测量时段的位置时,用户设备在约定位置的临时测量时段进行异频信号测量。
在一个实施例中,信道测量方法还可以包括:根据接收的第三RRC信令,确定临时测量时段的时长。
基站可以在第三RRC信令的预定信息域中设置用于指示临时测量时段的时长的指示信息。用户设备接收到第三RRC信令后,根据预定信息域的指示信息确定临时测量时段的时长。
这里,第一RRC信令、第二RRC信令和第三RRC信令可以是同一个RRC信令,也可以是不同的RRC信令,第一RRC信令、第二RRC信令和 第三RRC信令中任两个RRC信令可以为同一个RRC信令。
在一个实施例中,异频信号测量包括:在异频小区上进行的参考信号测量;和/或,在异频小区上进行的SSB监听。
用户设备在异频小区上进行异频信号测量的临时测量时段,包括:用户设备在异频小区上进行参考信号测量的临时测量时段;和/或,用户设备在异频小区上进行SSB监听的临时持续时段。
这里,参考信号测量可以是用户设备进行移动性测量时测量的异频小区的参考信号。用户设备可以在临时测量时段测量异频小区的参考信号。
基站可以为用户设备配置临时持续时段用来监听异频小区的SSB。
如图5所示,本示例性实施例提供一种信道测量方法,可以应用于无线通信的基站中,该方法包括:
步骤501:发送DCI,其中,DCI用于指示触发用户设备在临时测量时段进行异频信号测量,其中,临时测量时段不同于用于异频信号测量的周期测量时段。
异频信号可以是与用户设备当前所在服务小区的中心频率不同的信号;也可以是与用户设备当前占用带宽部分(BWP,Band Width Part)不同的其他BWP的异频小区的信号等;还可以是在SSB测量中,中心频率不同或子载波间隔(SCS,Sub-Carrier Space)不同的异频小区的信号等。异频信号测量可以是对异频信号进行信号质量测量或对异频信号的监听等。
基站会为用户设备分配周期测量时段,即周期性的测量间隔,用户设备周期性的在周期测量时段进行异频信号测量。
如果用户设备的接收机带宽不足以同时覆盖服务小区信号频点与异频小区信号频点,用户设备无法同时进行异频小区的异频信号测量和服务小区的数据传输。例如,用户设备不能同时在周期测量时段进行异频信号测量和与采用PDSCH资源在服务小区的接收下行数据。
为了保证URLLC业务数据等高优先级下行业务的低时延,用户设备在异频小区的周期测量时段内,继续在服务小区的频点上接收下行数据,而不会进行异频信号测量。
这里,如图3所示,周期测量时段与高优先级下行业务的PDSCH资源重叠,无法在周期测量时段进行异频信号测量,可以在周期测量时段之外设置临时测量时段。用户设备可以在临时测量时段内进行异频信号测量。临时测量的位置可以预先设定或者由基站发送信令进行指示等。
用户设备或基站可以针对出现与PDSCH传输资源重叠的周期测量时段设置临时测量时段。例如,可以在与PDSCH传输资源重叠的周期测量时段之后设置临时测量时段,用户设备可以在临时测量时段进行异频信号测量。临时测量时段可以由一个或多个。
如此,在配置的临时测量时段进行异频信号测量,提高了异频信号测量时段选择灵活性,减少用户设备因为无法取得异频信号测量的时域资源而导致的无法及时进行小区切换或定位等问题。
如果用户周期测量时段未与PDSCH资源出现重叠,用户设备能进行异频信号测量,则可以不设置临时测量频段。
发临时测量时段,在临时测量时段进行异频信号测量。
临时测量时段可以预先通过高层信令等进行配置,由DCI进行触发启用。
DCI中可以设置一个信息域。信息域可以占用1个或多个比特位,用于触发临时测量时。例如,该信息域占用1个比特位,可以用“0”表示不触发临时测量时段,可以用“1”表示触发一个临时测量时段。
异频信号测量的临时测量时段可以包括:用户设备在异频小区上进行参考信号测量的临时测量时段;和/或,用户设备在异频小区上进行SSB监听的临时持续时段。触发临时测量时段的信息域占用两个个比特位,信息 域可以用“00”表示不触发临时测量时段,可以用“01”表示触发一个在异频小区上进行参考信号测量的临时测量时段,可以用“10”表示触发一个在异频小区上进行SSB监听的临时持续时段。
如此,基站采用DCI对是否采用临时测量时段进行触发,提高临时测量时段触发的灵活性。
在一个实施例中,如图6所示,信道测量方法还可以包括:
步骤502:发送第一RRC指令,其中,RRC指令用于指示临时测量时段位于DCI之后间隔第一时长后。
第一时长可以根据用户设备的响应速度确定。例如,用户设备在接收到DCI后需要对DCI进行解析,此时,第一时长可以是用户设备对DCI的解析时长。
示例性的,基站采用RRC指令配置临时测量时段与接收的指示启用临时测量时段的DCI之间的时间偏移量。例如,RRC配置的间隔值是3ms。用户设备在接收到DCI间隔3ms后开始进入临时测量时段,假定基站配置的临时测量时段时长为4ms,那么,用户设备将在临时测量时段结束后切换到服务小区的频点开始正常的下行数据接收。
在一个实施例中,第一时长包括:1个或多个符号;或,1个或多个时隙。
RRC指令配置的第一时长可以采用符号或时隙表示。
示例性的,RRC指令配置的第一时长可以是3个时隙;如果DCI位于时隙#15。那么,在时隙#18,UE就可以开始进入临时测量时段。假定1个时隙时长为1ms,基站配置的临时测量时段时长为4ms,那么,UE将在时隙#18/19/20/21保持为临时测量时段,在时隙#22进入服务小区的频点开始正常的下行数据接收。
还可以在通信协议中约定,该DCI所在的符号之后M个符号的间隔后 进入临时测量时段。
示例性的,一个时隙中可以包含12个符号。
在一个实施例中,第一时长大于用户设备解析DCI的时长。
由于于UE需要解调该DCI之后才能确定是否触发了临时测量时段,因此,可以设置第一时长大于UE解调DCI的时长。若此,可以确保在临时测量时段开始时,DCI已经被解调。
在一个实施例中,步骤501可以包括:
响应于确定预定优先级的PDSCH资源和周期测量时段在时域上具有重叠时间段,发送DCI。
由于PDSCH资源和周期测量时段都是由基站调度或配置的,因此,基站可以确定PDSCH资源和周期测量时段在时域上是否具有重叠时间段,即PDSCH资源和周期测量时段是否冲突。如果存在重叠时间段,则基站可以发送DCI,触发临时测量时段。
在一个实施例中,响应于确定预定优先级的SPS PDSCH资源和周期测量时段在时域上具有重叠时间段,发送DCI,包括:
响应于确定预定优先级的SPS PDSCH资源和周期测量时段在时域上具有重叠时间段,在重叠时间段之前发送DCI。
PDSCH资源包括SPS PDSCH资源。SPS PDSCH资源与周期测量时段都是基站通过RRC层信令半静态配置的,如此,基站和用户设备都可以提前预知会不会有SPS PDSCH资源与周期测量时段发生冲突而导致的无法进入异频信号测量的情况发生。因而,基站可以在冲突发生之前,即在重叠时间段之前,下发DCI触发临时测量时段。
在一个实施例中,信道测量方法还可以包括:在重叠时间段保持与用户设备的下行链路通信。
为保证高优先级下行业务的传输,可以在用于高优先级下行业务的 PDSCH资源与周期测量时段的重叠时间段保持用户设备与基站的下行链路通信。这里,高优先级下行业务可以包括:URLLC业务等,下行链路通信包括高优先级下行业务数据的传输等。
在一个实施例中,信道测量方法还可以包括:
发送第二RRC信令,第二RRC信令用于配置用户设备是否允许在临时测量时段进行异频信号测量。
基站可以通过第二RRC信令的指示信息指示用户设备是否允许启用在临时测量时段进行异频信号测量。
例如,当第二RRC信令的指示信息指示用户设备允许启用在临时测量时段进行异频信号测量,并且通过DCI中包含的触发信息的触发时,用户设备在临时测量时段进行异频信号测量。
或者,
当第二RRC信令的指示信息指示用户设备允许启用在临时测量时段进行异频信号测量,并且通信协议中约定了临时测量时段的位置时,用户设备在约定位置的临时测量时段进行异频信号测量。
在一个实施例中,信道测量方法还可以包括:发送第三RRC信令,其中,第三RRC信令用于指示临时测量时段的时长。
基站可以在第三RRC信令的预定信息域中设置用于指示临时测量时段的时长的指示信息。用户设备接收到第三RRC信令后,根据预定信息域的指示信息确定临时测量时段的时长。
这里,第一RRC信令、第二RRC信令和第三RRC信令可以是同一个RRC信令,也可以是不同的RRC信令,第一RRC信令、第二RRC信令和第三RRC信令中任两个RRC信令可以为同一个RRC信令。
以下结合上述任意实施例提供一个具体示例:
基站发给用户设备的DCI中有一个信息域用于表示是否触发一个临时 测量时段。例如,该信息域为2bit,当为00时表示不触发,当为01时表示触发一个临时测量时段(measurement gap),当为10时表示触发一个SMTC临时持续时段(duration)。
上述信息域在DCI中存在与否取决于RRC配置。例如,基站使用RRC信令为用户设备配置允许触发临时测量时段,那么在DCI中就会有上述信息域。如果基站为该用户设备配置不允许触发临时测量时段,那么DCI中就不会有该信息域
用户设备收到触发一个临时测量时段的DCI后,可以通过以下方式确定临时测量时段的时域位置:
1、在RRC层配置临时测量时段与接收的DCI所在的时隙(slot)之间的间隔。例如,RRC配置的间隔值是3个时隙,DCI位于时隙#15。那么在时隙#18,用户设备就可以开始进入该临时测量时段。又假定1个时隙时长为1ms,基站配置的临时测量时段时长为4ms,那么,用户设备将在时隙#18/19/20/21保持为临时测量时段,在时隙#22进入服务小区的频点开始正常的下行数据接收。
2、在协议中约定,该DCI所在的符号之后M个符号的间隔后进入该临时测量时段。由于用户设备需要解调该DCI之后才能确定是否触发了临时测量时段,所以M符号需要大于用户设备解调DCI的时长。
如果传输URLLC业务的是采用SPS PDSCH传输资源传输的,由于SPS PDSCH传输资源与周期测量时段都是基站通过RRC层信令半静态配置的,站和用户设备都可以提前预知会不会有SPS PDSCH传输资源与周期测量时段发生冲突而导致的无法进入进行异频信号测量的现象。因而,基站可以在冲突发生之前就可以下发上述DCI触发临时测量时段。当然,在冲突发生之后,基站也可以触发临时测量时段。
基站可以根据实际的测量需求,触发一次或者多次临时测量时段,并 不局限于一定是发生了冲突的情况才能去触发。
如果在某个周期测量时段与SPS PDSCH传输资源发生冲突,用户设备无法使用该周期测量时段的情况下,在周期测量时段的结束时刻之后的T时间后,可以开始一个临时测量时段。临时测量时段的时长可以由基站通过RRC配置。
本发明实施例还提供了一种信道测量装置,应用于无线通信的用户设备,图7为本发明实施例提供的信道测量装置100的组成结构示意图;如图7所示,装置100包括:测量模块110,其中,
测量模块110,配置为在临时测量时段进行异频信号测量,其中,临时测量时段不同于用于异频信号测量的周期测量时段。
在一个实施例中,测量模块110,包括:
接收子模块111,配置为接收DCI;
第一测量子模块112,配置为响应于确定DCI指示触发临时测量时段,在临时测量时段进行异频信号测量。
在一个实施例中,测量模块110,包括:
第二测量子模块113,配置为在接收到DCI之后间隔第一时长后的临时测量时段进行异频信号测量。
在一个实施例中,装置100还包括:
第一确定模块120,配置为根据接收的第一RRC指令的指示,确定第一时长。
在一个实施例中,第一时长包括:
1个或多个符号;
或,
1个或多个时隙。
在一个实施例中,第一时长大于用户设备解析DCI的时长。
在一个实施例中,DCI是由基站响应于确定预定优先级的PDSCH资源和周期测量时段在时域上具有重叠时间段,发送的。
在一个实施例中,DCI是由基站响应于确定预定优先级的SPS PDSCH资源和周期测量时段在时域上具有重叠时间段,在重叠时间段之前发送的。
在一个实施例中,装置100还包括:
第一传输模块130,配置为在重叠时间段保持与基站的下行链路通信。
在一个实施例中,测量模块110,包括:
第三测量子模块114,配置为响应于确定预定优先级的PDSCH资源和周期测量时段在时域上具有重叠时间段,在周期测量时段结束之后间隔第二时长的临时测量时段进行异频信号测量。
在一个实施例中,装置100还包括:
接收模块140,配置为在临时测量时段进行异频信号测量之前,接收第二RRC信令;
配置模块150,配置为根据第二RRC信令,确定用户设备是否被配置为允许在临时测量时段进行异频信号测量。
在一个实施例中,装置100还包括:
第二确定模块160,配置为根据接收的第三RRC信令,确定临时测量时段的时长。
在一个实施例中,异频信号测量包括:
在异频小区上进行的参考信号测量;
和/或,
在异频小区上进行的SSB监听。
本发明实施例还提供了一种信道测量装置,应用于无线通信的用户设备,图8为本发明实施例提供的信道测量装置200的组成结构示意图;如图8所示,装置200包括:第一发送模块210,其中,
第一发送模块210,配置为发送DCI,其中,DCI用于指示触发用户设备在临时测量时段进行异频信号测量,其中,临时测量时段不同于用于异频信号测量的周期测量时段。
在一个实施例中,装置200还包括:
第二发送模块220,配置为发送第一RRC指令,其中,RRC指令用于指示临时测量时段位于DCI之后间隔第一时长后。
在一个实施例中,第一时长包括:
1个或多个符号;
或,
1个或多个时隙。
在一个实施例中,第一时长大于用户设备解析DCI的时长。
在一个实施例中,第一发送模块210,包括:
发送子模块211,响应于确定预定优先级的PDSCH资源和周期测量时段在时域上具有重叠时间段,发送DCI。
在一个实施例中,第一发送子模块211,包括:
发送单元2111,配置为响应于确定预定优先级的SPS PDSCH资源和周期测量时段在时域上具有重叠时间段,在重叠时间段之前发送DCI。
在一个实施例中,装置200还包括:
第二传输模块230,配置为在重叠时间段保持与用户设备的下行链路通信。
在一个实施例中,装置200还包括:
第三发送模块240,配置为发送第二RRC信令,第二RRC信令用于配置用户设备是否允许在临时测量时段进行异频信号测量。
在一个实施例中,装置200还包括:
第四发送模块250,配置为发送第三RRC信令,其中,第三RRC信令 用于指示临时测量时段的时长。
在示例性实施例中,测量模块110、第一确定模块120、第一传输模块130、接收模块140、配置模块150、第二确定模块160、第一发送模块210、第二发送模块220、第二传输模块230、第三发送模块240和第四发送模块250等可以被一个或多个中央处理器(CPU,Central Processing Unit)、图形处理器(GPU,Graphics Processing Unit)、基带处理器(BP,baseband processor)、应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
图9是根据一示例性实施例示出的一种用于信道测量装置3000的框图。例如,装置3000可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图9,装置3000可以包括以下一个或多个组件:处理组件3002,存储器3004,电源组件3006,多媒体组件3008,音频组件3010,输入/输出(I/O)的接口3012,传感器组件3014,以及通信组件3016。
处理组件3002通常控制装置3000的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件3002可以包括一个或多个处理器3020来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件3002可以包括一个或多个模块,便于处理组件3002和其他组件之间的交互。例如,处理组件3002可以包括多媒体模块,以方便多媒体组件3008和处理组件3002之间的交互。
存储器3004被配置为存储各种类型的数据以支持在设备3000的操作。 这些数据的示例包括用于在装置3000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器3004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件3006为装置3000的各种组件提供电力。电源组件3006可以包括电源管理系统,一个或多个电源,及其他与为装置3000生成、管理和分配电力相关联的组件。
多媒体组件3008包括在装置3000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件3008包括一个前置摄像头和/或后置摄像头。当设备3000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件3010被配置为输出和/或输入音频信号。例如,音频组件3010包括一个麦克风(MIC),当装置3000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器3004或经由通信组件3016发送。在一些实施例中,音频组件3010还包括一个扬声器,用于输出音频信号。
I/O接口3012为处理组件3002和外围接口模块之间提供接口,上述外 围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件3014包括一个或多个传感器,用于为装置3000提供各个方面的状态评估。例如,传感器组件3014可以检测到设备3000的打开/关闭状态,组件的相对定位,例如组件为装置3000的显示器和小键盘,传感器组件3014还可以检测装置3000或装置3000一个组件的位置改变,用户与装置3000接触的存在或不存在,装置3000方位或加速/减速和装置3000的温度变化。传感器组件3014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件3014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件3014还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件3016被配置为便于装置3000和其他设备之间有线或无线方式的通信。装置3000可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件3016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件3016还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置3000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器3004,上述指令可由装置3000的处理器 3020执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明实施例的其它实施方案。本申请旨在涵盖本发明实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明实施例的一般性原理并包括本公开实施例未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明实施例并不局限于上面已经描述并在附图中示出的精确结构可以在不脱离其范围进行各种修改和改变。本发明实施例的范围仅由所附的权利要求来限制。

Claims (30)

  1. 一种信道测量方法,其中,应用于用户设备,所述方法包括:
    在临时测量时段进行异频信号测量,其中,所述临时测量时段不同于用于所述异频信号测量的周期测量时段。
  2. 根据权利要求1所述的方法,其中,所述在临时测量时段进行异频信号测量,包括:
    接收下行控制信息DCI;
    响应于确定所述DCI指示触发所述临时测量时段,在所述临时测量时段进行所述异频信号测量。
  3. 根据权利要求2所述的方法,其中,所述在临时测量时段进行异频信号测量,包括:
    在接收到所述DCI之后间隔第一时长后的所述临时测量时段进行异频信号测量。
  4. 根据权利要求3所述的方法,其中,所述方法还包括:
    根据接收的第一无线资源控制RRC指令的指示,确定所述第一时长。
  5. 根据权利要求3所述的方法,其中,所述第一时长包括:
    1个或多个符号;
    或,
    1个或多个时隙。
  6. 根据权利要求3所述的方法,其中,所述第一时长大于所述用户设备解析所述DCI的时长。
  7. 根据权利要求2至6任一项所述的方法,其中,所述DCI,是由基站响应于确定预定优先级的物理下行共享信道PDSCH资源和所述周期测量时段在时域上具有重叠时间段,发送的。
  8. 根据权利要求7所述的方法,其中,所述DCI,是由所述基站响应 于确定所述预定优先级的半持续调度SPS PDSCH资源和所述周期测量时段在时域上具有所述重叠时间段,在所述重叠时间段之前发送的。
  9. 根据权利要求7所述的方法,其中,所述方法还包括:在所述重叠时间段保持与基站的下行链路通信。
  10. 根据权利要求1至6任一项所述的方法,其中,所述在临时测量时段进行异频信号测量,包括:
    响应于确定预定优先级的PDSCH资源和所述周期测量时段在时域上具有重叠时间段,在所述周期测量时段结束之后间隔第二时长的所述临时测量时段进行所述异频信号测量。
  11. 根据权利要求1至6任一项所述的方法,其中,所述在临时测量时段进行异频信号测量之前,所述方法还包括:
    接收第二RRC信令;
    根据所述第二RRC信令,确定所述用户设备是否被配置为允许在所述临时测量时段进行所述异频信号测量。
  12. 根据权利要求1至6任一项所述的方法,其中,所述方法还包括:
    根据接收的第三RRC信令,确定所述所述临时测量时段的时长。
  13. 根据权利要求1至6任一项所述的方法,其中,所述异频信号测量包括:
    在异频小区上进行的参考信号测量;
    和/或,
    在异频小区上进行的同步信号块SSB监听。
  14. 一种信道测量方法,其中,应用于基站,所述方法包括:
    发送下行控制信息DCI,其中,所述DCI用于指示触发用户设备在临时测量时段进行异频信号测量,其中,所述临时测量时段不同于用于所述异频信号测量的周期测量时段。
  15. 根据权利要求14所述的方法,其中,所述方法还包括:
    发送第一无线资源控制RRC指令,其中,所述RRC指令用于指示所述临时测量时段位于所述DCI之后间隔第一时长后。
  16. 根据权利要求15所述的方法,其中,
    所述第一时长包括:
    1个或多个符号;
    或,
    1个或多个时隙。
  17. 根据权利要求15或16所述的方法,其中,所述第一时长大于用户设备解析所述DCI的时长。
  18. 根据权利要求14至16任一项所述的方法,其中,所述发送DCI,包括:
    响应于确定预定优先级的物理下行共享信道PDSCH资源和所述周期测量时段在时域上具有重叠时间段,发送所述DCI。
  19. 根据权利要求18所述的方法,其中,所述响应于确定预定优先级的PDSCH资源和所述周期测量时段在时域上具有重叠时间段,发送所述DCI,包括:
    响应于确定所述预定优先级的半持续调度SPS PDSCH资源和所述周期测量时段在时域上具有所述重叠时间段,在所述重叠时间段之前发送所述DCI。
  20. 根据权利要求18所述的方法,其中,所述方法还包括:在所述重叠时间段保持与用户设备的下行链路通信。
  21. 根据权利要求14至16任一项所述的方法,其中,所述方法还包括:
    发送第二RRC信令,所述第二RRC信令用于配置所述用户设备是否 允许在所述临时测量时段进行所述异频信号测量。
  22. 根据权利要求14至16任一项所述的方法,其中,所述方法还包括:
    发送第三RRC信令,其中,所述第三RRC信令用于指示所述临时测量时段的时长。
  23. 一种信道测量装置,其中,应用于用户设备,所述装置包括:测量模块,其中,
    所述测量模块,配置为在临时测量时段进行异频信号测量,其中,所述临时测量时段不同于用于所述异频信号测量的周期测量时段。
  24. 根据权利要求23所述的装置,其中,所述测量模块,包括:
    接收子模块,配置为接收下行控制信息DCI;
    第一测量子模块,配置为响应于确定所述DCI指示触发所述临时测量时段,在所述临时测量时段进行所述异频信号测量。
  25. 根据权利要求24所述的装置,其中,所述测量模块,包括:
    第二测量子模块,配置为在接收到所述DCI之后间隔第一时长后的所述临时测量时段进行异频信号测量。
  26. 根据权利要求25所述的装置,其中,所述装置还包括:
    第一确定模块,配置为根据接收的第一无线资源控制RRC指令的指示,确定所述第一时长。
  27. 一种信道测量装置,其中,应用于基站,所述装置包括:第一发送模块,其中,
    所述第一发送模块,配置为发送下行控制信息DCI,其中,所述DCI用于指示触发用户设备在临时测量时段进行异频信号测量,其中,所述临时测量时段不同于用于所述异频信号测量的周期测量时段。
  28. 根据权利要求27所述的装置,其中,所述装置还包括:
    第二发送模块,配置为发送第一无线资源控制RRC指令,其中,所述RRC指令用于指示所述临时测量时段位于所述DCI之后间隔第一时长后。
  29. 一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至13任一项所述信道测量方法的步骤。
  30. 一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求14至22任一项所述信道测量方法的步骤。
PCT/CN2020/074657 2020-02-10 2020-02-10 信道测量方法、装置及通信设备 WO2021159247A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080000238.8A CN113545123A (zh) 2020-02-10 2020-02-10 信道测量方法、装置及通信设备
PCT/CN2020/074657 WO2021159247A1 (zh) 2020-02-10 2020-02-10 信道测量方法、装置及通信设备
US17/884,401 US20220386157A1 (en) 2020-02-10 2022-08-09 Channel measurement method and apparatus, and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074657 WO2021159247A1 (zh) 2020-02-10 2020-02-10 信道测量方法、装置及通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/884,401 Continuation US20220386157A1 (en) 2020-02-10 2022-08-09 Channel measurement method and apparatus, and communication device

Publications (1)

Publication Number Publication Date
WO2021159247A1 true WO2021159247A1 (zh) 2021-08-19

Family

ID=77291969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074657 WO2021159247A1 (zh) 2020-02-10 2020-02-10 信道测量方法、装置及通信设备

Country Status (3)

Country Link
US (1) US20220386157A1 (zh)
CN (1) CN113545123A (zh)
WO (1) WO2021159247A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101959210A (zh) * 2009-07-20 2011-01-26 大唐移动通信设备有限公司 一种测量时机的计算方法及装置
US20190319748A1 (en) * 2018-04-16 2019-10-17 Qualcomm Incorporated Synchronization signal block and downlink channel multiplexing
CN110392386A (zh) * 2018-04-20 2019-10-29 华为技术有限公司 一种信号测量方法及相关设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104602267B (zh) * 2015-01-30 2018-10-26 深圳酷派技术有限公司 一种异频测量非授权频谱的测量间隔配置方法及服务基站
CN106559826A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 非授权载波测量间隙配置及测量方法及相应基站、终端
CN105307190B (zh) * 2015-11-06 2019-01-15 东莞酷派软件技术有限公司 一种基于非授权频谱的rssi配置方法、测量方法和相关设备
WO2017111185A1 (ko) * 2015-12-22 2017-06-29 엘지전자(주) 무선통신 시스템에서 데이터를 송수신하기 위한 방법 및 장치
ES2815450T3 (es) * 2016-08-22 2021-03-30 Samsung Electronics Co Ltd Procedimiento y aparato para inserción de índice de bloque de código en un sistema celular de comunicación inalámbrica
CN108024364B (zh) * 2016-11-04 2023-09-05 华为技术有限公司 一种上行测量参考信号传输方法、装置和系统
CN110062413B (zh) * 2019-04-25 2021-10-26 重庆邮电大学 一种解决5g nr终端异频测量的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101959210A (zh) * 2009-07-20 2011-01-26 大唐移动通信设备有限公司 一种测量时机的计算方法及装置
US20190319748A1 (en) * 2018-04-16 2019-10-17 Qualcomm Incorporated Synchronization signal block and downlink channel multiplexing
CN110392386A (zh) * 2018-04-20 2019-10-29 华为技术有限公司 一种信号测量方法及相关设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "On intra-frequency measurement with gap or interruption", 3GPP DRAFT; R4-1800138 ON INTRA-FREQUENCY MEASUREMENT WITH GAP OR INTERRUPTION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. San Diego, CA, US; 20180122 - 20180126, 15 January 2018 (2018-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051387872 *

Also Published As

Publication number Publication date
CN113545123A (zh) 2021-10-22
US20220386157A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
WO2021163936A1 (zh) 通信处理方法、装置及计算机存储介质
CN110495203B (zh) 共存干扰上报方法及装置、移动终端及存储介质
CN112236977B (zh) 参数配置方法、装置、通信设备和存储介质
JP2023528613A (ja) 無線通信方法及び装置、端末及び記憶媒体
CN111149388B (zh) 通信处理方法、装置及计算机存储介质
WO2021142796A1 (zh) 通信处理方法、装置及计算机存储介质
US20220386357A1 (en) Data transmission method and apparatus, and communication device
WO2022126576A1 (zh) 无线通信方法及装置、通信设备及存储介质
WO2021146872A1 (zh) 数据传输方法、装置、通信设备及存储介质
EP4319258A1 (en) Measurement gap pre-configuration processing method and apparatus, communication device, and storage medium
WO2022205472A1 (zh) 上行传输时域资源的确定方法及装置、ue、网络设备及存储介质
WO2021163969A1 (zh) 数据传输方法、装置和通信设备
CN114902730A (zh) 信息传输方法、装置、通信设备和存储介质
CN110945827B (zh) 下行控制信息配置方法、装置、通信设备及存储介质
WO2021159247A1 (zh) 信道测量方法、装置及通信设备
JP2023530527A (ja) 直接通信制御方法、装置、及びユーザ機器
CN111727653A (zh) 转移业务的方法、装置、通信设备及存储介质
WO2023197188A1 (zh) 信息传输方法、装置、通信设备和存储介质
CN114450901B (zh) 通信方法、装置、通信设备和存储介质
WO2022073243A1 (zh) 通信方法及装置、用户设备及存储介质
US12035354B2 (en) Method for processing data, communication device and storage medium
CN113383589B (zh) 数据传输方法、装置及计算机存储介质
US20230396399A1 (en) Information transmission method, communication device and storage medium
WO2023230901A1 (zh) 保护间隔配置方法及装置、通信设备及存储介质
US20240163135A1 (en) Configuration method and apparatus for joint channel estimation, and device and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918525

Country of ref document: EP

Kind code of ref document: A1