WO2022082384A1 - 确定数据处理时长的方法及装置、通信设备和存储介质 - Google Patents

确定数据处理时长的方法及装置、通信设备和存储介质 Download PDF

Info

Publication number
WO2022082384A1
WO2022082384A1 PCT/CN2020/121986 CN2020121986W WO2022082384A1 WO 2022082384 A1 WO2022082384 A1 WO 2022082384A1 CN 2020121986 W CN2020121986 W CN 2020121986W WO 2022082384 A1 WO2022082384 A1 WO 2022082384A1
Authority
WO
WIPO (PCT)
Prior art keywords
data processing
preset data
pdcch monitoring
monitoring complexity
time
Prior art date
Application number
PCT/CN2020/121986
Other languages
English (en)
French (fr)
Inventor
付婷
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2020/121986 priority Critical patent/WO2022082384A1/zh
Priority to US18/032,368 priority patent/US20230397222A1/en
Priority to CN202080002833.5A priority patent/CN114651501A/zh
Publication of WO2022082384A1 publication Critical patent/WO2022082384A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties

Definitions

  • the embodiments of the present disclosure relate to the field of wireless communication, but are not limited to the field of wireless communication, and in particular, relate to a method and apparatus for determining data processing duration, a communication device, and a storage medium.
  • the base station realizes the scheduling of uplink and downlink resources for terminal communication by sending Downlink Control Information (DCI) carried by the Physical Downlink Control Channel (PDCCH) to the terminal.
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • the terminal parses its own DCI by monitoring the PDCCH, and transmits data on the corresponding scheduled uplink and downlink resources.
  • the 5G New Radio (NR) protocol defines the downlink physical shared channel (Physical Downlink Shared Channel, PDSCH) monitoring complexity on the basis of a single time slot (slot), it determines the time to demodulate the data transmitted by the PDSCH And the time to prepare the uplink physical shared channel (Physical Uplink Shared Channel, PUSCH) transmission data.
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the present disclosure provides a method and apparatus for determining data processing duration, a communication device and a storage medium.
  • a method for determining data processing duration including:
  • the preset data processing is: physical downlink scheduled by downlink control information DCI monitored on the PDCCH Demodulation of shared channel PDSCH transmission, or preparation of physical uplink shared channel PUSCH transmission.
  • the obtaining the time increment required for performing preset data processing determined according to the PDCCH monitoring complexity includes:
  • the time increment required for performing preset data processing and determined according to the PDCCH monitoring complexity reported by the user equipment UE is received.
  • the method further includes:
  • the time increment required for performing preset data processing is determined according to the PDCCH monitoring complexity, including:
  • a time increment required for performing preset data processing is determined.
  • the PDCCH monitoring complexity is associated with a time unit that defines the PDCCH monitoring complexity
  • the time increment required for performing preset data processing is determined according to the PDCCH monitoring complexity, including:
  • the time increment required for performing preset data processing is determined according to the time unit defining the PDCCH monitoring complexity.
  • the method further includes:
  • the time unit for defining the monitoring complexity of the PDCCH is determined according to the subcarrier spacing SCS applied by the user equipment UE.
  • the time increment is a time increment relative to the time duration required for performing preset data processing when the time unit defining the PDCCH monitoring complexity is 1 time slot.
  • a method for determining data processing duration is provided, wherein the method is applied to a terminal, including:
  • the preset data processing is: physical downlink sharing scheduled by downlink control information DCI monitored on the PDCCH Demodulation of channel PDSCH transmission, or preparation of physical uplink shared channel PUSCH transmission.
  • the method further includes:
  • the processing capability information of the terminal is reported to the base station.
  • the PDCCH monitoring complexity is associated with a time unit that defines the PDCCH monitoring complexity
  • the time increment required for performing preset data processing is determined according to the PDCCH monitoring complexity, including:
  • the time increment required for performing preset data processing is determined according to the time unit defining the PDCCH monitoring complexity.
  • the method further includes:
  • the time unit defining the monitoring complexity of the PDCCH is determined according to the SCS applied by the terminal.
  • the time increment is a time increment relative to the time duration required for performing preset data processing when the time unit defining the PDCCH monitoring complexity is 1 time slot.
  • the method further includes:
  • the time increment is reported to the base station.
  • an apparatus for determining data processing duration is provided, wherein the apparatus is applied to a base station, including:
  • an acquisition module configured to acquire the time increment required for performing preset data processing determined according to the monitoring complexity of the physical downlink control channel PDCCH, wherein the preset data processing is: downlink control information DCI monitored on the PDCCH Demodulation of scheduled physical downlink shared channel PDSCH transmission, or preparation of physical uplink shared channel PUSCH transmission.
  • the obtaining module includes:
  • a first determining module configured to determine the time increment required for performing preset data processing according to the PDCCH monitoring complexity
  • the first receiving module is configured to receive the time increment required for preset data processing and determined according to the PDCCH monitoring complexity reported by the user equipment UE.
  • the apparatus further includes:
  • a second receiving module configured to receive processing capability information of the UE
  • the time increment required for performing preset data processing is determined according to the PDCCH monitoring complexity, including:
  • a time increment required for performing preset data processing is determined.
  • the PDCCH monitoring complexity is associated with a time unit that defines the PDCCH monitoring complexity
  • the time increment required for performing preset data processing is determined according to the PDCCH monitoring complexity, including:
  • the time increment required for performing preset data processing is determined according to the time unit defining the PDCCH monitoring complexity.
  • the apparatus further includes:
  • the second determining module is configured to determine the time unit defining the monitoring complexity of the PDCCH according to the subcarrier interval SCS applied by the user equipment UE.
  • the time increment is a time increment relative to the time duration required for performing preset data processing when the time unit defining the PDCCH monitoring complexity is 1 time slot.
  • an apparatus for determining data processing duration is provided, wherein the apparatus is applied to a terminal, including:
  • the third determining module is configured to determine the time increment required for performing preset data processing according to the monitoring complexity of the physical downlink control channel PDCCH, wherein the preset data processing is: downlink control information monitored on the PDCCH Demodulation of PDSCH transmission on the physical downlink shared channel scheduled by DCI, or preparation of physical uplink shared channel PUSCH transmission.
  • the apparatus further includes:
  • the first reporting module is configured to report the processing capability information of the terminal to the base station.
  • the PDCCH monitoring complexity is associated with a time unit that defines the PDCCH monitoring complexity
  • the third determining module includes:
  • the first determination submodule is configured to determine the time increment required for performing preset data processing according to the time unit defining the PDCCH monitoring complexity.
  • the apparatus further includes:
  • the fourth determining module is configured to determine, according to the SCS applied by the terminal, the time unit that defines the monitoring complexity of the PDCCH.
  • the time increment is a time increment relative to the time duration required for performing preset data processing when the time unit defining the PDCCH monitoring complexity is 1 time slot.
  • the apparatus further includes:
  • the second reporting module is configured to report the time increment to the base station.
  • a communication device includes at least a processor and a memory for storing executable instructions that can be executed on the processor, wherein:
  • the executable instructions execute the steps in any of the above-mentioned methods for determining processing duration.
  • a non-transitory computer-readable storage medium wherein computer-executable instructions are stored in the computer-readable storage medium, and the computer-executable instructions are implemented when executed by a processor Steps in the above method of determining processing duration.
  • the embodiments of the present disclosure determine the time increment required for demodulation of PDSCH transmission or preparation for PUSCH transmission based on the PDCCH monitoring complexity, so as to provide a corresponding time increment. In this way, it is convenient for the terminal to demodulate the DCI received in a short time in the processing duration including the above-mentioned duration increment, and complete the above-mentioned demodulation of PDSCH transmission or preparation for PUSCH transmission.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment
  • FIG. 2 is a schematic flowchart 1 of a method for determining predetermined data processing according to an exemplary embodiment
  • FIG. 3 is a second schematic flowchart of a method for determining predetermined data processing according to an exemplary embodiment
  • FIG. 4 is a third schematic flowchart of a method for determining predetermined data processing according to an exemplary embodiment
  • FIG. 5 is a structural block diagram 1 of an apparatus for determining predetermined data processing according to an exemplary embodiment
  • FIG. 6 is a second structural block diagram of an apparatus for determining predetermined data processing according to an exemplary embodiment
  • FIG. 7 is a schematic structural diagram 1 of a communication device according to an exemplary embodiment
  • FIG. 8 is a second schematic structural diagram of a communication device according to an exemplary embodiment.
  • first, second, third, etc. may be used in embodiments of the present disclosure to describe various pieces of information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the words "if” and “if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • an embodiment of the present disclosure takes an application scenario of access control as an example for illustrative description.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several terminals 11 and several base stations 12 .
  • the terminal 11 may be a device that provides voice and/or data connectivity to the user.
  • the terminal 11 may communicate with one or more core networks via a radio access network (RAN), and the terminal 11 may be an IoT terminal such as a sensor device, a mobile phone (or "cellular" phone) and a
  • RAN radio access network
  • the computer of the IoT terminal for example, may be a fixed, portable, pocket, hand-held, built-in computer or a vehicle-mounted device.
  • a station For example, a station (Station, STA), a subscriber unit (subscriber unit), a subscriber station (subscriber station), a mobile station (mobile station), a mobile station (mobile), a remote station (remote station), an access point, a remote terminal ( remote terminal), access terminal, user terminal, user agent, user device, or user equipment (terminal).
  • the terminal 11 may also be a device of an unmanned aerial vehicle.
  • the terminal 11 may also be a vehicle-mounted device, for example, a trip computer with a wireless communication function, or a wireless terminal connected to an external trip computer.
  • the terminal 11 may also be a roadside device, for example, a street light, a signal light, or other roadside devices with a wireless communication function.
  • the base station 12 may be a network-side device in a wireless communication system.
  • the wireless communication system may be a fourth generation mobile communication (the 4th generation mobile communication, 4G) system, also known as a long term evolution (Long Term Evolution, LTE) system; or, the wireless communication system may also be a 5G system, Also known as new radio (NR) system or 5G NR system.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network, a new generation of radio access network).
  • the base station 12 may be an evolved base station (eNB) used in the 4G system.
  • the base station 12 may also be a base station (gNB) that adopts a centralized distributed architecture in a 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 12 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a protocol stack of a Packet Data Convergence Protocol (PDCP) layer, a Radio Link Control Protocol (Radio Link Control, RLC) layer, and a Media Access Control (Media Access Control, MAC) layer; distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 12 is not limited in this embodiment of the present disclosure.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control Protocol
  • MAC Media Access Control
  • distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 12 is not limited in this embodiment of the present disclosure.
  • a wireless connection can be established between the base station 12 and the terminal 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a 5G next-generation mobile communication network technology standard.
  • an E2E (End to End, end-to-end) connection may also be established between the terminals 11 .
  • V2V vehicle to vehicle, vehicle-to-vehicle
  • V2I vehicle to Infrastructure, vehicle-to-roadside equipment
  • V2P vehicle to pedestrian, vehicle-to-person communication in vehicle-to-everything (V2X) communication etc. scene.
  • the above wireless communication system may further include a network management device 13 .
  • the network management device 13 may be a core network device in a wireless communication system, for example, the network management device 13 may be a mobility management entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC). MME).
  • the network management device may also be other core network devices, such as a serving gateway (Serving GateWay, SGW), a public data network gateway (Public Data Network GateWay, PGW), a policy and charging rules functional unit (Policy and Charging Rules) Function, PCRF) or home subscriber server (Home Subscriber Server, HSS), etc.
  • the implementation form of the network management device 13 is not limited in this embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a method for determining data processing duration, applied to a base station, including:
  • Step S101 obtaining the time increment required to perform preset data processing according to the monitoring complexity of the PDCCH, wherein the preset data processing is: demodulation of PDSCH transmission scheduled by DCI monitored on the PDCCH, Or preparation for PUSCH transmission.
  • the base station sends downlink control information through the physical layer channel PDCCH to provide various control information to the terminal, including: Hybrid Automatic Repeat Request (HARQ, Hybrid Automatic Repeat Request), power control commands, identification data Transport format and power control, etc.
  • HARQ Hybrid Automatic Repeat Request
  • the base station sends DCI, it will simultaneously send multiple kinds of control information to multiple users. Therefore, the UE needs to identify the DCI required by itself through a blind detection method.
  • the above-mentioned PDCCH monitoring complexity that is, the ability of the UE's own system to perform blind detection of PDCCH monitoring events, including the maximum number of blind detections in a single time slot, and the maximum number of non-overlapping CCEs (Control Channel Element, Control Channel Element), etc. .
  • the time required for the UE to demodulate the DCI can be determined, and then the above preset data processing: the time required for the demodulation of PDSCH transmission and the preparation of PUSCH transmission can be determined.
  • the downlink data is carried on the PDSCH, and the uplink data is carried on the PUSCH.
  • the base station schedules transmission on PDSCH and/or transmission on PUSCH through DCI.
  • the DCI is carried on the PDCCH for transmission, and the resources on the PDCCH are the control information resource set (CORESET, control resource set).
  • the minimum PDSCH demodulation time (the shortest interval from the PDSCH end position to the start position of the HARQ response message) N1 value under different SCS (15/30/60/120KHz) is defined, and the PUSCH preparation time (From the end position of the PDCCH where the scheduling DCI is located to the start position of the PUSCH) N2 value.
  • the N1 value is as shown in Table 1 below (subcarrier 0/1/2/3 represent 15/30/60/120kHz, respectively):
  • N2 value is shown in Table 2 below:
  • the blind detection capability of the UE on a single carrier is specified.
  • the NR protocol is only used for frequencies below 52.6GHZ, and the optional SCS is 15KHz/30KHz/60KHz/120KHz.
  • the duration of a time slot is 1ms in the case of 15KHz subcarrier bandwidth, 0.5ms in the case of 30KHz subcarrier bandwidth, 0.25ms in the case of 60KHz subcarrier bandwidth, and so on. It can be seen that the larger the SCS, the shorter the duration of one slot, so the PDCCH monitoring complexity can be defined by multiple slots.
  • the time unit for defining the PDCCH monitoring complexity is multiple time slots, it may occur that a large number of DCIs are gathered in a certain time slot for centralized transmission within one PDCCH monitoring period.
  • This aggregated sending manner may have an impact on the duration of the terminal's demodulation of DCI.
  • the DCI is concentrated and sent on a certain 2 or 3 symbols in a time slot, when the average DCI detection complexity is the same in the same unit time, the larger the time unit, the more the terminal needs to be able to guarantee the demodulated output. The longer the time for all DCIs.
  • the demodulation of the PDSCH transmission or the time increment of the time required for the preparation of the PUSCH transmission can be determined according to the PDCCH monitoring complexity, so as to provide sufficient time relative to the time length defined under a single time slot. The duration is longer, so as to satisfy the capability of the terminal and demodulate all the DCIs.
  • the obtaining the time increment required for performing preset data processing determined according to the PDCCH monitoring complexity includes:
  • the time increment required for performing preset data processing and determined according to the PDCCH monitoring complexity reported by the user equipment UE is received.
  • the base station obtains the above-mentioned time increment from the terminal, or the base station itself can determine the time increment. That is, the method of determining the data processing duration may be performed by a base station or UE performing wireless communication. For example, the base station determines the above-mentioned time increment by acquiring the PDCCH monitoring complexity of the UE or determining the PDCCH monitoring complexity through a protocol. Further, the time required for performing the above-mentioned preset data processing can be determined by the time increment and the known reference time length, and data scheduling can be performed according to the time length.
  • the method further includes:
  • Step S201 receiving processing capability information of the UE
  • the time increment required for performing preset data processing is determined according to the PDCCH monitoring complexity, including:
  • Step S202 Determine the time increment required for performing preset data processing according to the PDCCH monitoring complexity and the processing capability of the UE indicated by the processing capability information.
  • the base station can learn the PDCCH monitoring complexity supported by the terminal and the processing capability of the UE through a protocol, and can also directly receive the PDCCH monitoring complexity supported by the UE and the processing capability of the UE through the UE reporting processing capability.
  • the processing capability of the UE includes the processing speed of the UE to demodulate the DCI, the decoding capability of the downlink data, the encoding capability of the uplink data, and the like.
  • the above-mentioned time increment is determined according to the above-mentioned PDCCH monitoring complexity and the processing capability of the UE.
  • the PDCCH monitoring complexity is associated with a time unit that defines the PDCCH monitoring complexity
  • the time increment required for performing preset data processing is determined according to the PDCCH monitoring complexity, including:
  • the time increment required for performing preset data processing is determined according to the time unit defining the PDCCH monitoring complexity.
  • the time of a single time slot is short, and not necessarily every time slot can be used to send DCI. Therefore, the corresponding PDCCH listening complexity can be defined in time units of multiple time slots.
  • the PDCCH monitoring complexity is represented by the time unit, and the PDCCH monitoring complexity supported by the terminal is: the maximum number of blind detections and the maximum number of non-overlapping CCEs supported in the time unit.
  • the PDCCH monitoring complexity is the maximum number of blind detection times and the maximum number of non-overlapping CCEs supported by the terminal in every 4 time slots.
  • the average maximum number of blind detections and the maximum number of non-overlapping CCEs in each time slot is 1/4 of the above-mentioned listening complexity.
  • the DCI may be received in every time slot, or it may only receive DCI in some time slots, that is, the terminal only analyzes the DCI after receiving it, so the use of multiple time slots contains multiple time slots.
  • the time unit to define the above PDCCH monitoring complexity
  • a larger sub-carrier bandwidth such as 960 KHz
  • a larger SCS corresponds to a smaller slot duration.
  • the duration of one time slot is 0.015625ms, that is, 1/64ms. Due to the short duration of a time slot in a high-frequency communication system, there may be the following two complex ways to define PDCCH monitoring:
  • Mode 1 The PDCCH monitoring complexity is still defined with each time slot as a time unit;
  • the maximum number of blind detections supported is 30;
  • the maximum number of non-overlapping CCEs supported is 40.
  • the advantage of using multiple time slots as a time unit is that the terminal does not need to unnecessarily disperse the blind detection capability in each time slot, and the base station can also configure a longer period of PDCCH monitoring period, which can make the terminal in most of the time slots. It is not necessary to monitor the PDCCH in the time slot, but only needs to receive the PDCCH in a concentrated manner in some time slots, which is beneficial to the energy saving of the terminal.
  • the PDCCH monitoring complexity is calculated on the basis of the duration of the above-mentioned predetermined data processing corresponding to the average maximum number of blind detections per time slot and the maximum number of non-overlapping CCEs, and also considering the time unit The time increment required for the UE to perform the above-mentioned preset processing when all the DCIs are sent in a centralized manner, so that the determination of the demodulation duration of the PDSCH transmission and the preparation of the PUSCH transmission can satisfy the capability of the UE for demodulation.
  • the method further includes:
  • the time unit defining the monitoring complexity of the PDCCH is determined.
  • the monitoring complexity of the PDCCHs of the terminals corresponding to different SCSs on a single time slot is different. Therefore, in high-frequency communication, the time units for defining the PDCCH monitoring complexity under different SCSs are also different. For example, when the frequency of the SCS is low, the PDCCH monitoring complexity is defined in a single time slot, while when the SCS is located in different frequency bands, the PDCCH monitoring complexity is defined in a different number of time slots corresponding to the above-mentioned PDCCH monitoring complexity. degree time unit.
  • the time unit for defining the PDCCH monitoring complexity is more flexible, which is convenient to meet the communication requirements of the UE under different SCSs.
  • the time increment is a time increment relative to the time duration required for performing preset data processing when the time unit defining the PDCCH monitoring complexity is 1 time slot.
  • the terminal itself performs DCI demodulation and performs demodulation of PDSCH transmission or preparation for PUSCH transmission is usually performed in units of one time slot.
  • the PDCCH monitoring complexity is defined in time units of multiple time slots, multiple DCIs may be sent in the same time slot, thus increasing the duration and side of the terminal for demodulation.
  • the above-mentioned duration increment is defined as the duration required to perform preset data processing when the time unit for defining the PDCCH monitoring complexity is one slot.
  • the time duration required to actually perform the preset data processing is the corresponding processing duration when one time slot is originally defined as the time unit plus the above-mentioned duration increment.
  • the time required for the preset data processing is N transmission symbols, and the time length increment is 0 transmission symbols, then when the time including multiple time slots
  • the time required for the above-mentioned preset data processing may be determined as N+O.
  • an embodiment of the present disclosure provides a method for determining data processing duration, applied to a terminal, including:
  • Step S301 Determine the time increment required for performing preset data processing according to the PDCCH monitoring complexity of the physical downlink control channel, wherein the preset data processing is: the downlink control information scheduled on the PDCCH is scheduled by the downlink control information DCI. Demodulation of PDSCH transmission on the physical downlink shared channel, or preparation for transmission of the physical uplink shared channel PUSCH.
  • the subject performing the above method for determining a time increment is a terminal, and the terminal reports the determined time increment to a base station that is in communication connection with the terminal.
  • the terminal may be any UE with a wireless communication function, such as a mobile phone, a notebook computer, a wireless wearable device, and various other communication devices.
  • the terminal may determine the above-mentioned time increment according to the PDCCH monitoring complexity and communication capability supported by the terminal.
  • the method further includes:
  • the time increment is reported to the base station.
  • the base station may also directly determine the above-mentioned time increment through a protocol.
  • the method for determining the data processing duration provided by the embodiments of the present disclosure includes:
  • the processing capability information of the terminal is reported to the base station.
  • the processing capability of the terminal includes the processing speed of the terminal to demodulate the DCI, the decoding capability of the downlink data, the encoding capability of the uplink data, and so on.
  • the method for determining data processing duration provided by the embodiments of the present disclosure, applied to a UE includes:
  • the processing capability information is used by the base station to determine the time increment required for performing preset data processing in combination with the complexity of the PDCCH, wherein the preset data processing is: in the PDCCH The demodulation of the PDSCH transmission on the physical downlink shared channel scheduled by the downlink control information DCI monitored on the Internet, or the preparation for the transmission of the physical uplink shared channel PUSCH.
  • the processing capabilities of different terminals are different, and therefore, the durations required for PDSCH transmission in demodulating DCI and demodulating the response and preparing for PUSCH transmission are different. Therefore, in the embodiment of the present disclosure, the terminal reports its own processing capability to the base station, and the base station determines the above-mentioned time increment according to the above-mentioned PDCCH monitoring complexity and the terminal's processing ability.
  • the PDCCH monitoring complexity is associated with a time unit that defines the PDCCH monitoring complexity
  • the time increment required for performing preset data processing is determined according to the PDCCH monitoring complexity, including:
  • the time increment required for performing preset data processing is determined according to the time unit defining the PDCCH monitoring complexity.
  • the time of a single time slot is short, and not necessarily every time slot can be used to send DCI. Therefore, the corresponding PDCCH listening complexity can be defined in time units of multiple time slots.
  • the PDCCH monitoring complexity is represented by the time unit, and the PDCCH monitoring complexity supported by the terminal is: the maximum number of blind detections and the maximum number of non-overlapping CCEs supported in the time unit.
  • the PDCCH monitoring complexity is the maximum number of blind detection times and the maximum number of non-overlapping CCEs supported by the terminal in every 4 time slots.
  • the average maximum number of blind detection times and the maximum number of non-overlapping CCEs in each time slot is 1/4 of the above-mentioned listening complexity.
  • the DCI may be received in every time slot, or it may only receive DCI in some time slots, that is, the terminal only analyzes the DCI after receiving it, so the use of multiple time slots contains multiple time slots.
  • the time unit to define the above PDCCH monitoring complexity
  • the method further includes:
  • the time unit that defines the PDCCH monitoring complexity is determined.
  • the monitoring complexity of the PDCCHs of the terminals corresponding to different SCSs on a single time slot is different. Therefore, in high-frequency communication, the time units for defining the PDCCH monitoring complexity under different SCSs are also different. For example, when the frequency of the SCS is low, the PDCCH monitoring complexity is defined in a single time slot, while when the SCS is located in different frequency bands, the PDCCH monitoring complexity is defined in a different number of time slots corresponding to the above-mentioned PDCCH monitoring complexity. degree time unit.
  • the time unit for defining the PDCCH monitoring complexity is more flexible, which is convenient to meet the communication requirements of the UE under different SCSs.
  • the time increment is a time increment relative to the time duration required for performing preset data processing when the time unit defining the PDCCH monitoring complexity is 1 time slot.
  • the terminal itself performs DCI demodulation and performs demodulation of PDSCH transmission or preparation for PUSCH transmission is usually performed in units of one time slot.
  • the PDCCH monitoring complexity is defined in time units of multiple time slots, multiple DCIs may be sent in the same time slot, thus increasing the duration and side of the terminal for demodulation.
  • the above-mentioned duration increment is defined as the duration required to perform preset data processing when the time unit for defining the PDCCH monitoring complexity is one slot.
  • the time duration required to actually perform the preset data processing is the corresponding processing duration when one time slot is originally defined as the time unit plus the above-mentioned duration increment.
  • the time required for the preset data processing is N transmission symbols, and the time length increment is 0 transmission symbols, then when the time including multiple time slots
  • the time required for the above-mentioned preset data processing may be determined as N+O.
  • a method for determining data processing duration including:
  • the preset data processing is: demodulation of PDSCH transmission scheduled by DCI monitored on the PDCCH, or PUSCH transmission preparation.
  • the method of determining the data processing duration may be performed by a base station or UE performing wireless communication.
  • the base station determines the above-mentioned time increment by acquiring the PDCCH monitoring complexity of the UE or determining the PDCCH monitoring complexity through a protocol.
  • the time required for performing the above-mentioned preset data processing can be determined by the time increment and the known reference time length, and data scheduling can be performed according to the time length.
  • the monitoring complexity of the PDCCH is associated with a time unit that defines the monitoring complexity of the PDCCH
  • the time increment required for performing preset data processing is determined according to the monitoring complexity of the PDCCH, including:
  • the time increment required for performing preset data processing is determined according to the time unit defining the PDCCH monitoring complexity.
  • the method further includes:
  • the time unit defining the monitoring complexity of the PDCCH is determined.
  • determining the time increment required for performing preset data processing according to the monitoring complexity of the PDCCH includes:
  • the time increment required for performing preset data processing is determined according to the monitoring complexity of the PDCCH and the processing capability of the UE.
  • the method is applied to a terminal; the method further includes:
  • the time increment is a time increment relative to the time duration required for performing preset data processing when the time unit defining the PDCCH monitoring complexity is 1 time slot.
  • an optional time unit of PDCCH monitoring complexity is defined directly in the protocol, and the time increment of PDSCH demodulation and the time increment of PUSCH processing under this time unit are defined.
  • the time increment is an increment of a PDSCH demodulation duration or an increment of a PUSCH processing duration relative to a single time slot as a time unit to define the PDCCH monitoring complexity.
  • the protocol is defined under 480khz SCS, the optional time unit of PDCCH monitoring complexity is 4 time slots, the time increment of PDSCH demodulation under this time unit is O1 symbol; the time increment of PUSCH processing is O2 symbol.
  • the protocol defines that the PDSCH demodulation duration that defines the PDCCH monitoring complexity in a single time slot is N1 symbols; the PUSCH processing duration is N2 symbols.
  • the time unit of PDCCH monitoring complexity is 4 time slots
  • the PDSCH demodulation duration is determined by N1 and O1, such as the sum of N1 and O1
  • the PUSCH processing duration is determined by N2 and O2 symbols, such as , the sum of N2 and O2.
  • the terminal can report its own blind detection capability in a certain time unit to the base station, and also report the corresponding incremental duration.
  • the time increment is the increment of the PDSCH demodulation duration or the increment of the PUSCH processing duration defined in the protocol with a single time slot as the time unit to define the PDCCH monitoring complexity.
  • the terminal reports to the base station that under the 480khz SCS, the time unit that defines the PDCCH monitoring capability of the terminal is 4 time slots, and the time increment for PDSCH demodulation reported in this time unit is O1 symbol; the time increment for PUSCH processing increases The amount is in O2 symbol.
  • the duration of PDSCH demodulation in which a single time slot is used as the time unit to define the PDCCH monitoring complexity is N1 symbols; the duration of PUSCH processing is N2 symbols.
  • the PDSCH demodulation duration is determined by N1 and O1 symbols, such as the sum of N1 and O1; the PUSCH processing duration is determined by N2, O2 symbols, such as The sum of N2 and O2.
  • an embodiment of the present disclosure further provides an apparatus 500 for determining data processing duration.
  • the apparatus is applied to a base station and includes:
  • the obtaining module 501 is configured to obtain the time increment required for performing preset data processing determined according to the PDCCH monitoring complexity of the physical downlink control channel, wherein the preset data processing is: downlink control information monitored on the PDCCH Demodulation of PDSCH transmission on the physical downlink shared channel scheduled by DCI, or preparation of physical uplink shared channel PUSCH transmission.
  • the obtaining module includes:
  • a first determining module configured to determine the time increment required for preset data processing according to the PDCCH monitoring complexity
  • the first receiving module is configured to receive the time increment required for preset data processing and determined according to the PDCCH monitoring complexity reported by the user equipment UE.
  • the apparatus further includes:
  • a second receiving module configured to receive processing capability information of the UE
  • the time increment required for performing preset data processing is determined according to the PDCCH monitoring complexity, including:
  • a time increment required for performing preset data processing is determined.
  • the PDCCH monitoring complexity is associated with a time unit that defines the PDCCH monitoring complexity
  • the time increment required for performing preset data processing is determined according to the PDCCH monitoring complexity, including:
  • the time increment required for performing preset data processing is determined according to the time unit defining the PDCCH monitoring complexity.
  • the apparatus further includes:
  • the second determining module is configured to determine the time unit defining the monitoring complexity of the PDCCH according to the subcarrier interval SCS applied by the user equipment UE.
  • the time increment is a time increment relative to the time duration required for performing preset data processing when the time unit defining the PDCCH monitoring complexity is 1 time slot.
  • an embodiment of the present disclosure further provides an apparatus 600 for determining data processing duration.
  • the apparatus is applied to the terminal 600 and includes:
  • the third determining module 601 is configured to determine the time increment required for performing preset data processing according to the PDCCH monitoring complexity of the physical downlink control channel, wherein the preset data processing is: downlink control monitored on the PDCCH The demodulation of the PDSCH transmission on the physical downlink shared channel scheduled by the information DCI, or the preparation of the physical uplink shared channel PUSCH transmission.
  • the apparatus further includes:
  • the first reporting module is configured to report the processing capability information of the terminal to the base station.
  • the PDCCH monitoring complexity is associated with a time unit that defines the PDCCH monitoring complexity
  • the third determining module includes:
  • the first determination submodule is configured to determine the time increment required for performing preset data processing according to the time unit defining the PDCCH monitoring complexity.
  • the apparatus further includes:
  • the fourth determining module is configured to determine, according to the SCS applied by the terminal, the time unit that defines the monitoring complexity of the PDCCH.
  • the time increment is a time increment relative to the time duration required for performing preset data processing when the time unit defining the PDCCH monitoring complexity is 1 time slot.
  • the apparatus further includes:
  • the second reporting module is configured to report the time increment to the base station.
  • FIG. 7 is a structural block diagram of a communication device provided by an embodiment of the present disclosure.
  • the communication device may be a terminal.
  • communication device 700 may be a mobile phone, computer, digital broadcast user equipment, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • the communication device 700 may include at least one of the following components: a processing component 702, a memory 704, a power supply component 706, a multimedia component 708, an audio component 710, an input/output (I/O) interface 712, a sensor component 714, and Communication component 716 .
  • the processing component 702 generally controls the overall operation of the communication device 700, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 702 may include at least one processor 720 to execute instructions to perform all or part of the steps of the above-described methods. Additionally, processing component 702 may include at least one module that facilitates interaction between processing component 702 and other components. For example, processing component 702 may include a multimedia module to facilitate interaction between multimedia component 708 and processing component 702.
  • Memory 704 is configured to store various types of data to support operation at communication device 700 . Examples of such data include instructions for any application or method operating on the communication device 700, contact data, phonebook data, messages, pictures, videos, and the like. Memory 704 may be implemented by any type of volatile or nonvolatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply component 706 provides power to various components of communication device 700 .
  • Power supply components 706 may include a power management system, at least one power supply, and other components associated with generating, managing, and distributing power to communication device 700.
  • Multimedia component 708 includes a screen that provides an output interface between the communication device 700 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes at least one touch sensor to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundaries of a touch or swipe action, but also detect wake-up time and pressure associated with the touch or swipe action.
  • multimedia component 708 includes a front-facing camera and/or a rear-facing camera. When the communication device 700 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 710 is configured to output and/or input audio signals.
  • audio component 710 includes a microphone (MIC) that is configured to receive external audio signals when communication device 700 is in operating modes, such as call mode, recording mode, and voice recognition mode. The received audio signal may be further stored in memory 704 or transmitted via communication component 716 .
  • audio component 710 also includes a speaker for outputting audio signals.
  • the I/O interface 712 provides an interface between the processing component 702 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 714 includes at least one sensor for providing various aspects of status assessment for communication device 700 .
  • the sensor assembly 714 can detect the open/closed state of the device 700, the relative positioning of the components, such as the display and keypad of the communication device 700, the sensor assembly 714 can also detect the communication device 700 or a component of the communication device 700
  • the position of the communication device 700 changes, the presence or absence of user contact with the communication device 700, the orientation or acceleration/deceleration of the communication device 700, and the temperature change of the communication device 700.
  • Sensor assembly 714 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 714 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 714 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 716 is configured to facilitate wired or wireless communication between communication device 700 and other devices.
  • Communication device 700 may access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 716 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 716 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • communication device 700 may be implemented by at least one application specific integrated circuit (ASIC), digital signal processor (DSP), digital signal processing device (DSPD), programmable logic device (PLD), field programmable gate An array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation for performing the above method.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • DSPD digital signal processing device
  • PLD programmable logic device
  • FPGA field programmable gate An array
  • controller microcontroller, microprocessor, or other electronic component implementation for performing the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 704 including instructions, executable by the processor 920 of the communication device 700 to perform the method described above.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • an embodiment of the present disclosure shows the structure of another communication device.
  • the communication device may be the base station involved in the embodiment of the present disclosure.
  • the communication device 800 may be provided as a network device.
  • the communication device 800 includes a processing component 822, which further includes at least one processor, and a memory resource, represented by memory 832, for storing instructions executable by the processing component 822, such as an application program.
  • An application program stored in memory 832 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 822 is configured to execute instructions to perform any of the aforementioned methods applied to the communication device.
  • the communication device 800 may also include a power supply assembly 826 configured to perform power management of the communication device 800, a wired or wireless network interface 850 configured to connect the communication device 800 to a network, and an input output (I/O) interface 858 .
  • Communication device 800 may operate based on an operating system stored in memory 832, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供了一种确定数据处理时长的方法及装置、通信设备和存储介质。本公开实施例所提供的确定数据处理时长的方法包括:获取根据物理下行控制信道PDCCH监听复杂度确定的进行预设数据处理所需时间增量,其中,所述预设数据处理为:在所述PDCCH上监听到的下行控制信息DCI所调度的物理下行共享信道PDSCH传输的解调,或者物理上行共享信道PUSCH传输的准备。

Description

确定数据处理时长的方法及装置、通信设备和存储介质 技术领域
本公开实施例涉及无线通信领域但不限于无线通信领域,尤其涉及一种确定数据处理时长的方法及装置、通信设备和存储介质。
背景技术
在5G通信中,基站通过向终端发送由物理下行控制信道(Physical Downlink Control Channel,PDCCH)承载的下行控制信息(Downlink Control Information,DCI),实现对终端通信的上行、下行资源的调度。终端通过监听PDCCH解析属于自身的DCI,并在对应调度的上行、下行资源上进行数据的传输。
5G新无线(New Radio,NR)协议在单一时隙(slot)的基础上定义下行物理共享信道(Physical Downlink Shared Channel,PDSCH)监听复杂度时,确定了对PDSCH传输的数据进行解调的时间以及对上行物理共享信道(Physical Uplink Shared Channel,PUSCH)传输数据进行准备的时间。然而,针对高频通信中更大的子载波间隔(Subcarrier Spacing,SCS)时,单一时隙持续时间过短。若采用包含多个时隙的时间单元(time unit)定义PDCCH监听复杂度,则难以保证终端能够有足够的时长解调出所需的DCI。
发明内容
本公开提供一种确定数据处理时长的方法及装置、通信设备和存储介质。
根据本公开实施例的第一方面,提供一种确定数据处理时长的方法,所述方法应用于基站,包括:
获取根据物理下行控制信道PDCCH监听复杂度确定的进行预设数据处理所需时间增量,其中,所述预设数据处理为:在所述PDCCH上监听到的下行控制信息DCI所调度的物理下行共享信道PDSCH传输的解调,或者物理上行共享信道PUSCH传输的准备。
在一些实施例中,所述获取根据PDCCH监听复杂度确定的进行预设数据处理所需时间增量,包括:
根据PDCCH监听复杂度,确定进行预设数据处理所需时间增量;
或者
接收用户设备UE上报的根据PDCCH监听复杂度确定的进行预设数据处理所需时间增量。
在一些实施例中,所述方法还包括:
接收UE的处理能力信息;
所述根据PDCCH监听复杂度,确定进行预设数据处理所需时间增量,包括:
根据所述PDCCH监听复杂度及所述处理能力信息指示的UE的处理能力,确定进行预设数据处理所需时间增量。
在一些实施例中,所述PDCCH监听复杂度,与定义所述PDCCH监听复杂度的时间单元关联;
所述根据PDCCH监听复杂度,确定进行预设数据处理所需时间增量,包括:
根据定义所述PDCCH监听复杂度的时间单元,确定进行预设数据处理所需时间增量。
在一些实施例中,所述方法还包括:
根据用户设备UE应用的子载波间隔SCS,确定定义所述PDCCH监听复杂度的时间单元。
在一些实施例中,所述时间增量是:相对于定义所述PDCCH监听复杂度的时间单元为1个时隙时进行预设数据处理所需时长的时长增量。
根据本公开实施例的第二方面,提供一种确定数据处理时长的方法,其中,所述方法应用于终端,包括:
根据物理下行控制信道PDCCH监听复杂度,确定进行预设数据处理所需时间增量,其中,所述预设数据处理为:在所述PDCCH上监听到的下行控制信息DCI所调度的物理下行共享信道PDSCH传输的解调,或者物理上行共享信道PUSCH传输的准备。
在一些实施例中,所述方法还包括:
向基站上报所述终端的处理能力信息。
在一些实施例中,所述PDCCH监听复杂度,与定义所述PDCCH监听复杂度的时间单元关联;
所述根据PDCCH监听复杂度,确定进行预设数据处理所需时间增量,包括:
根据定义所述PDCCH监听复杂度的时间单元,确定进行预设数据处理所需时间增量。
在一些实施例中,所述方法还包括:
根据终端应用的SCS,确定定义所述PDCCH监听复杂度的时间单元。
在一些实施例中,所述时间增量是:相对于定义所述PDCCH监听复杂度的时间单元为1个时隙时进行预设数据处理所需时长的时长增量。
在一些实施例中,所述方法还包括:
向基站上报所述时间增量。
根据本公开实施例的第三方面,提供一种确定数据处理时长的装置,其中,所述装置应用于基站,包括:
获取模块,配置为获取根据物理下行控制信道PDCCH监听复杂度确定的进行预设数据处理所需时间增量,其中,所述预设数据处理为:在所述PDCCH上监听到的下行控制信息DCI所调度的物理下行共享信道PDSCH传输的解调,或者物理上行共享信道PUSCH传输的准备。
在一些实施例中,所述获取模块,包括:
第一确定模块,配置为根据PDCCH监听复杂度,确定进行预设数据处理所需时间增量;
或者
第一接收模块,配置为接收用户设备UE上报的根据PDCCH监听复杂度确定的进行预设数据处理所需时间增量。
在一些实施例中,所述装置还包括:
第二接收模块,配置为接收UE的处理能力信息;
所述根据PDCCH监听复杂度,确定进行预设数据处理所需时间增量,包括:
根据所述PDCCH监听复杂度及所述处理能力信息指示的UE的处理能力,确定进行预设数据处理所需时间增量。
在一些实施例中,所述PDCCH监听复杂度,与定义所述PDCCH监听复杂度的时间单元关联;
所述根据PDCCH监听复杂度,确定进行预设数据处理所需时间增量,包括:
根据定义所述PDCCH监听复杂度的时间单元,确定进行预设数据处理所需时间增量。
在一些实施例中,所述装置还包括:
第二确定模块,配置为根据用户设备UE应用的子载波间隔SCS,确定定义所述PDCCH监听复杂度的时间单元。
在一些实施例中,所述时间增量是:相对于定义所述PDCCH监听复杂度的时间单元为1个时隙时进行预设数据处理所需时长的时长增量。
根据本公开实施例的第四方面,提供一种确定数据处理时长的装置,其中,所述装置应用于终端,包括:
第三确定模块,配置为根据物理下行控制信道PDCCH监听复杂度,确定进行预设数据处理所需时间增量,其中,所述预设数据处理为:在所述PDCCH上监听到的下行控制信息DCI所调度的物理下行共享信道PDSCH传输的解调,或者物理上行共享信道PUSCH传输的准备。
在一些实施例中,所述装置还包括:
第一上报模块,配置为向基站上报所述终端的处理能力信息。
在一些实施例中,所述PDCCH监听复杂度,与定义所述PDCCH监听复杂度的时间单元关联;
所述第三确定模块,包括:
第一确定子模块,配置为根据定义所述PDCCH监听复杂度的时间单元,确定进行预设数据处理所需时间增量。
在一些实施例中,所述装置还包括:
第四确定模块,配置为根据终端应用的SCS,确定定义所述PDCCH监听复杂度的时间单元。
在一些实施例中,所述时间增量是:相对于定义所述PDCCH监听复杂度的时间单元为1个时隙时进行预设数据处理所需时长的时长增量。
在一些实施例中,所述装置还包括:
第二上报模块,配置为向基站上报所述时间增量。
根据本公开实施例的第五方面,提供一种通信设备,其中,所述通信设备至少包括:处理器和用于存储能够在所述处理器上运行的可执行指令的存储器,其中:
处理器用于运行所述可执行指令时,所述可执行指令执行上述任一确定处理时长的方法中的步骤。
根据本公开实施例的第六方面,提供一种非临时性计算机可读存储介质,其中,所述计算机可读存储介质中存储有计算机可执行指令,该计算机可执行指令被处理器执行时实现上述确定处理时长的方法中的步骤。
本公开实施例基于PDCCH监听复杂度确定了在进行PDSCH传输的解调或者PUSCH传输的准备所需的时长增量,从而相对于单一时隙下定义的对上述处理确定的时长,提供了对应的时长增量。如此,便于终端在包含上述时长增量的处理时长中解调出在短时间内接收到的DCI,并完成上述PDSCH传输的解调或者PUSCH传输的准备。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种确定预定数据处理的方法的流程示意图一;
图3是根据一示例性实施例示出的一种确定预定数据处理的方法的流程示意图二;
图4是根据一示例性实施例示出的一种确定预定数据处理的方法的流程示意图三;
图5是根据一示例性实施例示出的一种确定预定数据处理的装置的结构框图一;
图6是根据一示例性实施例示出的一种确定预定数据处理的装置的结构框图二;
图7是根据一示例性实施例示出的一种通信设备的结构示意图一;
图8是根据一示例性实施例示出的通信设备的结构示意图二。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
为了更好地描述本公开任一实施例,本公开一实施例以一个接入控制的应用场景为例进行示例性说明。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个终端11以及若干个基站12。
其中,终端11可以是指向用户提供语音和/或数据连通性的设备。终端 11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端11可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,终端)。或者,终端11也可以是无人飞行器的设备。或者,终端11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线终端。或者,终端11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层 的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和终端11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
如图2所示,本公开实施例提供一种确定数据处理时长的方法,应用于基站,包括:
步骤S101、获取根据PDCCH监听复杂度,确定进行预设数据处理所需时间增量,其中,所述预设数据处理为:在所述PDCCH上监听到的 DCI所调度的PDSCH传输的解调,或者PUSCH传输的准备。
在UE与基站进行通信的过程中,基站通过物理层信道PDCCH发送下行控制信息向终端提供各种控制信息,包括:混合自动重传请求(HARQ,Hybrid Automatic Repeat Request)、功率控制命令、标识数据传输格式以及功率控制等。基站在发送DCI时会同时向多个用户发送多种控制信息,因此,UE需要通过盲检测的方法来识别出自己所需的DCI。
上述PDCCH监听复杂度,即UE自身系统对于PDCCH进行监听事件盲检侧的能力,包括单一时隙上的最大盲检次数,以及最大非重叠CCE(Control Channel Element,控制信道单元)的个数等。基于PDCCH监听复杂度,能够确定出UE在解调DCI所需的时长,进而确定进行上述预设数据处理:PDSCH传输的解调以及PUSCH传输的准备所需的时长。
在本公开实施例中,下行数据承载在PDSCH上,上行数据承载在PUSCH上。基站通过DCI调度在PDSCH的传输和/或在PUSCH的传输。DCI承载在PDCCH上传输,PDCCH上的资源也即控制信息资源集合(CORESET,control resource set)。
在5G NR协议中,定义了不同SCS(15/30/60/120KHz)下的最小PDSCH解调时间(从PDSCH结束位置到HARQ应答消息的起始位置的最短间隔)N1值,以及PUSCH准备时长(从调度DCI所在PDCCH的结束位置到PUSCH的起始位置)N2值。
例如,在一种UE能力和网络配置情况下,N1值如下表1所示(子载波0/1/2/3分别表示15/30/60/120kHz):
子载波 N 1符号数
0 8
1 10
2 17
3 20
表1
例如,在一种UE能力和网络配置情况下,N2值如下表2所示:
子载波 N 2符号数
0 10
1 12
2 23
3 36
表2
然而,更大SCS情况下(240/480/960KHz等)PDSCH解调时长和PUSCH准备时长则尚未被确定。
5GNR协议中,对于单个载波上UE的盲检能力做出了规定,根据SCS的不同,规定了一个时隙内UE的盲检能力,主要包括每个时隙内最大的盲检次数,如表3所示,以及每个时隙内最大的非重叠CCE的个数,如表4所示。(表格中μ=0表示SCS位15KHz,μ=1表示SCS位30KHz,μ=2表示SCS位60KHz,以此类推)
Figure PCTCN2020121986-appb-000001
表3
Figure PCTCN2020121986-appb-000002
表4
目前NR协议只用于52.6GHZ以下的频率中,可选的SCS为15KHz/30KHz/60KHz/120KHz。一个时隙的时长在15KHz子载波带宽的情况下,时长为1ms,在30KHz子载波带宽的情况下,时长为0.5ms,在60KHz子载波带宽的情况下,时长为0.25ms,依次类推。可以看到SCS越大,一个时隙的持续时间越短,因此可以以多个时隙来定义PDCCH监听复杂度。
然而,在定义PDCCH监听复杂度的时间单元为多个时隙的情况下,可能出现在一个PDCCH监听周期内,大量DCI都聚集在某个时隙中集中发送的情况。这种聚集的发送方式可能会对终端解调DCI的时长有影响。考 虑到DCI集中到一个时隙中某2个或3个符号上集中发送的情况,在相同单位时间内平均DCI检测复杂度相同的情况下,时间单元越大,终端需要的能够保证解调出所有DCI的时间越长。
因此,在本公开实施例中,可根据PDCCH监听复杂度,确定上述PDSCH传输的解调,或者PUSCH传输的准备所需时长的时间增量,从而相对于单一时隙下定义的时长提供足够的时长,进而能够满足终端的能力,解调出所有的DCI。
在一些实施例中,所述获取根据PDCCH监听复杂度确定的进行预设数据处理所需时间增量,包括:
根据PDCCH监听复杂度,确定进行预设数据处理所需时间增量;
或者
接收用户设备UE上报的根据PDCCH监听复杂度确定的进行预设数据处理所需时间增量。
在本公开实施例中,基站从终端获取上述时间增量,也可由基站自身确定时间增量。也就是说,确定数据处理时长的方法可以由进行无线通信的基站或者UE执行。例如,基站通过获取UE的PDCCH监听复杂度或者通过协议确定PDCCH监听复杂度,确定上述时间增量。进而可以通过该时间增量以及已知的基准时长,确定进行上述预设数据处理所需的时长,并根据该时长进行数据的调度。
在一些实施例中,如图3所示,所述方法还包括:
步骤S201、接收UE的处理能力信息;
所述根据PDCCH监听复杂度,确定进行预设数据处理所需时间增量,包括:
步骤S202、根据所述PDCCH监听复杂度及所述处理能力信息指示的UE的处理能力,确定进行预设数据处理所需时间增量。
在本公开实施例中,基站可通过协议获知终端支持的PDCCH监听复杂度以及UE的处理能力,也可通过UE上报处理能力直接接收该UE所支持的PDCCH监听复杂度以及UE的处理能力。UE的处理能力,包括UE对DCI进行解调的处理速度、对下行数据解码能力以及上行数据的编码能力等等。
不同UE的处理能力存在差异,因此,对于在解调DCI并解调响应的PDSCH传输以及准备PUSCH传输所需要的时长不同。因此,在本公开实施例中,通过上述PDCCH监听复杂度以及UE的处理能力来确定上述时间增量。
如此,便于终端在足够长的时段内完成DCI的解调以及上述预定数据处理。
在一些实施例中,所述PDCCH监听复杂度,与定义所述PDCCH监听复杂度的时间单元关联;
所述根据PDCCH监听复杂度,确定进行预设数据处理所需时间增量,包括:
根据定义所述PDCCH监听复杂度的时间单元,确定进行预设数据处理所需时间增量。
在本公开实施例中,考虑到高频通信等场景中,单一时隙的时间较短,不一定每个时隙都能够用于发送DCI。因此,可通过在多个时隙的时间单元内定义对应的PDCCH监听复杂度。
这里,PDCCH监听复杂度通过时间单元来体现,终端支持的PDCCH监听复杂度则为:在时间单元内支持的最大盲检次数以及最大非重叠CCE的个数等。例如,若时间单元为4个时隙,则PDCCH监听复杂度为在每4个时隙上终端所支持的最大盲检次数以及最大非重叠CCE的个数。此时,平均每个时隙上的最大盲检次数以及最大非重叠CCE个数则 为上述监听复杂度的1/4。但实际上在每4个时隙中可能每个时隙都接收到的DCI,也可能仅在部分时隙集中接收DCI,即终端仅在接收到DCI后进行解析,因而采用包含多个时隙的时间单元来定义上述PDCCH监听复杂度。
示例性地,在高频段60GHz左右,为了应对相位噪声,可选取较大的子载波带宽,例如960KHz。较大的SCS对应着较小的时隙时长。在960KHz的情况下,一个时隙的持续时间长度为0.015625ms也即1/64ms。由于高频通信系统中,一个时隙的时长较短,所以可能有以下两种定义PDCCH监听复杂的方式:
方式1:仍然以每个时隙为时间单元定义PDCCH监听复杂度;
方式2:按照多个时隙为单位的时间单元来定义终端的最大PDCCH监听复杂度。例如,在SCS=480KHz情况下,定义终端所支持的PDCCH监听复杂度为:
在每4个时隙内,支持最大盲检次数为30;
在每4个时隙内,支持最大非重叠CCE的个数为40。
以多个时隙为一个时间单元的好处是,终端不需要把盲检能力不必要的分散在每个时隙中,同时基站还可以配置较长周期的PDCCH监听周期,可以使得终端在大部分时隙内都不用监听PDCCH而只需要在某些时隙上集中的接收PDCCH,因而有利于终端节能。
基于本公开实施例中,将PDCCH监听复杂度在平均每一时隙的最大盲检次数以及最大非重叠CCE的个数所对应的进行上述预定数据处理的时长的基础上,还考虑到了在时间单元内所有DCI集中发送时UE进行上述预设处理所需时间增量,进而使得确定PDSCH传输的解调时长以及PUSCH传输的准备能够满足UE解调的能力。
在一些实施例中,所述方法还包括:
根据UE应用的SCS,确定定义所述PDCCH监听复杂度的时间单元。
在本公开实施例中,由于不同的SCS对应终端的PDCCH在单一时隙上的监听复杂度不同。因此在高频通信中,不同SCS下定义PDCCH监听复杂度的时间单元也不同。例如,在SCS频率较低时,均在单一时隙定义PDCCH监听复杂度,而在SCS位于不同频段范围内时,则分别对应在不同数量的多个时隙来确定用于定义上述PDCCH监听复杂度的时间单元。
这样,定义PDCCH监听复杂度的时间单元更加灵活,便于符合UE不同SCS下的通信需求。
在一些实施例中,所述时间增量是:相对于定义所述PDCCH监听复杂度的时间单元为1个时隙时进行预设数据处理所需时长的时长增量。
在本公开实施例中,考虑到终端自身进行DCI解调并进行PDSCH传输的解调或者进行PUSCH传输的准备通常是在以一个时隙为单位进行的。在此基础上,如果以多个时隙的时间单元定义PDCCH监听复杂度,多个DCI可能会集中在同一时隙进行发送,因而使得终端进行解调的时长边长。
因此,在本公开实施例中,以相对于定义所述PDCCH监听复杂度的时间单元为1个时隙时进行预设数据处理所需时长来定义上述时长增量。这样,实际进行预设数据处理所需的时长则是在原有定义的以1个时隙为时间单元时对应的处理时长加上上述时长增量。例如,定义所述PDCCH监听复杂度的时间单元为1个时隙时进行预设数据处理所需时长为N个传输符号,时长增量为O个传输符号,则在包含多个时隙的时间单元上定义的PDCCH监听复杂度时进行上述预设数据处理所需的时长则可以确定为N+O。
如此,通过确定时长增量的方式,便于兼容现有协议对应的单一时 隙定义PDCCH监听复杂度,使得UE具有足够的时长完成上述预设数据处理。
如图4所示,本公开实施例提供一种确定数据处理时长的方法,应用于终端,包括:
步骤S301、根据物理下行控制信道PDCCH监听复杂度,确定进行预设数据处理所需时间增量,其中,所述预设数据处理为:在所述PDCCH上监听到的下行控制信息DCI所调度的物理下行共享信道PDSCH传输的解调,或者物理上行共享信道PUSCH传输的准备。
在本实施例中,执行上述确定时间增量的方法的主体为终端,终端将确定后的时间增量上报至与该终端进行通信连接的基站。
这里,终端可以是具有无线通信功能的任意UE,例如,手机、笔记本电脑、无线可穿戴设备以及其他各种通信设备。在本公开实施例中,终端可通过自身所支持的PDCCH监听复杂度以及通信能力等确定上述时间增量。
在一些实施例中,所述方法还包括:
向基站上报所述时间增量。
在另一实施例中,基站也可通过协议直接确定上述时间增量。
在一些实施例中,本公开实施例提供的确定数据处理时长的方法,包括:
向基站上报所述终端的处理能力信息。
终端的处理能力,包括终端对DCI进行解调的处理速度、对下行数据解码能力以及上行数据的编码能力等等。
在一些实施例中,本公开实施例提供的确定数据处理时长的方法,应用于UE中,包括:
上报UE的处理能力信息,其中,所述处理能力信息,用于供基站结 合PDCCH复杂度,确定进行预设数据处理所需时间增量,其中,所述预设数据处理为:在所述PDCCH上监听到的下行控制信息DCI所调度的物理下行共享信道PDSCH传输的解调,或者物理上行共享信道PUSCH传输的准备。
不同终端的处理能力存在差异,因此,对于在解调DCI并解调响应的PDSCH传输以及准备PUSCH传输所需要的时长不同。因此,在本公开实施例中,终端向基站上报自身的处理能力,基站再通过上述PDCCH监听复杂度以及终端的处理能力来确定上述时间增量。
在一些实施例中,所述PDCCH监听复杂度,与定义所述PDCCH监听复杂度的时间单元关联;
所述根据PDCCH监听复杂度,确定进行预设数据处理所需时间增量,包括:
根据定义所述PDCCH监听复杂度的时间单元,确定进行预设数据处理所需时间增量。
在本公开实施例中,考虑到高频通信等场景中,单一时隙的时间较短,不一定每个时隙都能够用于发送DCI。因此,可通过在多个时隙的时间单元内定义对应的PDCCH监听复杂度。
这里,PDCCH监听复杂度通过时间单元来体现,终端支持的PDCCH监听复杂度则为:在时间单元内支持的最大盲检次数以及最大非重叠CCE的个数等。例如,若时间单元为4个时隙,则PDCCH监听复杂度为在每4个时隙上终端所支持的最大盲检次数以及最大非重叠CCE的个数。此时,平均每个时隙上的最大盲检次数以及最大非重叠CCE个数则为上述监听复杂度的1/4。但实际上在每4个时隙中可能每个时隙都接收到的DCI,也可能仅在部分时隙集中接收DCI,即终端仅在接收到DCI后进行解析,因而采用包含多个时隙的时间单元来定义上述PDCCH监听 复杂度。
在一些实施例中,所述方法还包括:
根据终端应用的SCS,确定定义PDCCH监听复杂度的时间单元。
在本公开实施例中,由于不同的SCS对应终端的PDCCH在单一时隙上的监听复杂度不同。因此在高频通信中,不同SCS下定义PDCCH监听复杂度的时间单元也不同。例如,在SCS频率较低时,均在单一时隙定义PDCCH监听复杂度,而在SCS位于不同频段范围内时,则分别对应在不同数量的多个时隙来确定用于定义上述PDCCH监听复杂度的时间单元。
这样,定义PDCCH监听复杂度的时间单元更加灵活,便于符合UE不同SCS下的通信需求。
在一些实施例中,所述时间增量是:相对于定义所述PDCCH监听复杂度的时间单元为1个时隙时进行预设数据处理所需时长的时长增量。
在本公开实施例中,考虑到终端自身进行DCI解调并进行PDSCH传输的解调或者进行PUSCH传输的准备通常是在以一个时隙为单位进行的。在此基础上,如果以多个时隙的时间单元定义PDCCH监听复杂度,多个DCI可能会集中在同一时隙进行发送,因而使得终端进行解调的时长边长。
因此,在本公开实施例中,以相对于定义所述PDCCH监听复杂度的时间单元为1个时隙时进行预设数据处理所需时长来定义上述时长增量。这样,实际进行预设数据处理所需的时长则是在原有定义的以1个时隙为时间单元时对应的处理时长加上上述时长增量。例如,定义所述PDCCH监听复杂度的时间单元为1个时隙时进行预设数据处理所需时长为N个传输符号,时长增量为O个传输符号,则在包含多个时隙的时间单元上定义的PDCCH监听复杂度时进行上述预设数据处理所需的时长 则可以确定为N+O。
如此,通过确定时长增量的方式,便于兼容现有协议对应的单一时隙定义PDCCH监听复杂度,使得UE具有足够的时长完成上述预设数据处理。
在本公开实施例,提供一种确定数据处理时长的方法,包括:
根据PDCCH的监听复杂度,确定进行预设数据处理所需时间增量,其中,所述预设数据处理为:在所述PDCCH上监听到的DCI所调度的PDSCH传输的解调,或者PUSCH传输的准备。
这里,确定数据处理时长的方法可以由进行无线通信的基站或者UE执行。例如,基站通过获取UE的PDCCH监听复杂度或者通过协议确定PDCCH监听复杂度,确定上述时间增量。进而可以通过该时间增量以及已知的基准时长,确定进行上述预设数据处理所需的时长,并根据该时长进行数据的调度。
在一些实施例中,所述PDCCH的监听复杂度,与定义所述PDCCH监听复杂度的时间单元关联;
所述根据PDCCH的监听复杂度,确定进行预设数据处理所需时间增量,包括:
根据定义所述PDCCH监听复杂度的时间单元,确定进行预设数据处理所需时间增量。
在一些实施例中,所述方法还包括:
根据UE应用的SCS,确定定义所述PDCCH监听复杂度的时间单元。
在一些实施例中,所述根据PDCCH的监听复杂度,确定进行预设数据处理所需时间增量,包括:
根据PDCCH的监听复杂度和所述UE的处理能力,确定进行预设数据处理所需时间增量。
在一些实施例中,所述方法应用于终端;所述方法还包括:
上报确定的时间增量。
在一些实施例中,所述时间增量是:相对于定义所述PDCCH监听复杂度的时间单元为1个时隙时进行预设数据处理所需时长的时长增量。
本公开实施例还提供如下示例:
在协议中直接定义不同SCS下,定义PDCCH监听复杂度的可选时间单元,并定义在该时间单元下的PDSCH解调的时间增量及PUSCH处理的时间增量。该时间增量,是相对于以单个时隙为时间单元定义PDCCH监听复杂度的PDSCH解调时长的增量或者PUSCH处理时长的增量。
例如,协议定义在480khz SCS下,PDCCH监听复杂度的可选时间单元为4个时隙,该时间单元下的PDSCH解调的时间增量为O1符号;PUSCH处理的时间增量为O2符号。另外,协议定义了在以单个时隙为时间单元定义PDCCH监听复杂度的PDSCH解调时长为N1符号;PUSCH处理时长为N2符号。那么在480khz SCS下,PDCCH监听复杂度的时间单元为4个时隙时,PDSCH解调时长由N1和O1确定,如,N1与O1之和;PUSCH处理时长由N2和O2符号来确定,如,N2与O2之和。
此外,可以通过终端向基站上报自己的以某时间单元为单位的盲检能力,同时也上报对应的增量时长。该时间增量,是相对于协议中定义的以单个时隙为时间单元定义PDCCH监听复杂度的PDSCH解调时长的增量或者PUSCH处理时长的增量。
例如,终端向基站上报在480khz SCS下,定义本终端PDCCH监听能力的时间单元为4个时隙,并且上报在该时间单元下的PDSCH解调的时间增量为O1符号;PUSCH处理的时间增量为O2符号。另外,协议中定义了在以单个时隙为时间单元定义PDCCH监听复杂度的PDSCH解 调的时长为N1符号;PUSCH处理时长为N2符号。那么在480khz SCS下,PDCCH监听复杂度的时间单元为4个时隙时,PDSCH解调时长由N1和O1符号确定,如N1与O1之和;PUSCH处理时长由N2,O2符号来确定,如N2与O2之和。
如图5所示,本公开实施例还提供一种确定数据处理时长的装置500,所述装置应用于基站,包括:
获取模块501,配置为获取根据物理下行控制信道PDCCH监听复杂度确定的进行预设数据处理所需时间增量,其中,所述预设数据处理为:在所述PDCCH上监听到的下行控制信息DCI所调度的物理下行共享信道PDSCH传输的解调,或者物理上行共享信道PUSCH传输的准备。
在一些实施例中,所述获取模块,包括:
第一确定模块,配置为根据PDCCH监听复杂度,确定进行预设数据处理所需时间增量;或者
第一接收模块,配置为接收用户设备UE上报的根据PDCCH监听复杂度确定的进行预设数据处理所需时间增量。
在一些实施例中,所述装置还包括:
第二接收模块,配置为接收UE的处理能力信息;
所述根据PDCCH监听复杂度,确定进行预设数据处理所需时间增量,包括:
根据所述PDCCH监听复杂度及所述处理能力信息指示的UE的处理能力,确定进行预设数据处理所需时间增量。
在一些实施例中,所述PDCCH监听复杂度,与定义所述PDCCH监听复杂度的时间单元关联;
所述根据PDCCH监听复杂度,确定进行预设数据处理所需时间增量,包括:
根据定义所述PDCCH监听复杂度的时间单元,确定进行预设数据处理所需时间增量。
在一些实施例中,所述装置还包括:
第二确定模块,配置为根据用户设备UE应用的子载波间隔SCS,确定定义所述PDCCH监听复杂度的时间单元。
在一些实施例中,所述时间增量是:相对于定义所述PDCCH监听复杂度的时间单元为1个时隙时进行预设数据处理所需时长的时长增量。
如图6所示,本公开实施例还提供一种确定数据处理时长的装置600,所述装置应用于终端600,包括:
第三确定模块601,配置为根据物理下行控制信道PDCCH监听复杂度,确定进行预设数据处理所需时间增量,其中,所述预设数据处理为:在所述PDCCH上监听到的下行控制信息DCI所调度的物理下行共享信道PDSCH传输的解调,或者物理上行共享信道PUSCH传输的准备。
在一些实施例中,所述装置还包括:
第一上报模块,配置为向基站上报所述终端的处理能力信息。
在一些实施例中,所述PDCCH监听复杂度,与定义所述PDCCH监听复杂度的时间单元关联;
所述第三确定模块,包括:
第一确定子模块,配置为根据定义所述PDCCH监听复杂度的时间单元,确定进行预设数据处理所需时间增量。
在一些实施例中,所述装置还包括:
第四确定模块,配置为根据终端应用的SCS,确定定义所述PDCCH监听复杂度的时间单元。
在一些实施例中,所述时间增量是:相对于定义所述PDCCH监听复杂度的时间单元为1个时隙时进行预设数据处理所需时长的时长增量。
在一些实施例中,所述装置还包括:
第二上报模块,配置为向基站上报所述时间增量。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图7是本公开实施例提供的一种通信设备的结构框图。该通信设备可以是终端。例如,通信设备700可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图7,通信设备700可以包括以下至少一个组件:处理组件702,存储器704,电源组件706,多媒体组件708,音频组件710,输入/输出(I/O)的接口712,传感器组件714,以及通信组件716。
处理组件702通常控制通信设备700的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件702可以包括至少一个处理器720来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件702可以包括至少一个模块,便于处理组件702和其他组件之间的交互。例如,处理组件702可以包括多媒体模块,以方便多媒体组件708和处理组件702之间的交互。
存储器704被配置为存储各种类型的数据以支持在通信设备700的操作。这些数据的示例包括用于在通信设备700上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器704可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件706为通信设备700的各种组件提供电力。电源组件706可 以包括电源管理系统,至少一个电源,及其他与为通信设备700生成、管理和分配电力相关联的组件。
多媒体组件708包括在所述通信设备700和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括至少一个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的唤醒时间和压力。在一些实施例中,多媒体组件708包括一个前置摄像头和/或后置摄像头。当通信设备700处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件710被配置为输出和/或输入音频信号。例如,音频组件710包括一个麦克风(MIC),当通信设备700处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器704或经由通信组件716发送。在一些实施例中,音频组件710还包括一个扬声器,用于输出音频信号。
I/O接口712为处理组件702和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件714包括至少一个传感器,用于为通信设备700提供各个方面的状态评估。例如,传感器组件714可以检测到设备700的打开/关闭状态,组件的相对定位,例如所述组件为通信设备700的显示器和小键盘,传感器组件714还可以检测通信设备700或通信设备700一个组件的位置改变,用户与通信设备700接触的存在或不存在,通信设备700方位或加 速/减速和通信设备700的温度变化。传感器组件714可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件714还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件714还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件716被配置为便于通信设备700和其他设备之间有线或无线方式的通信。通信设备700可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件716经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件716还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,通信设备700可以被至少一个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器704,上述指令可由通信设备700的处理器920执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图8所示,本公开一实施例示出另一种通信设备的结构。该通信设备可为本公开实施例所涉及的基站。例如,通信设备800可以被提供为一网络设备。参照图8,通信设备800包括处理组件822,其进一步包括至少 一个处理器,以及由存储器832所代表的存储器资源,用于存储可由处理组件822的执行的指令,例如应用程序。存储器832中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件822被配置为执行指令,以执行上述方法前述应用在所述通信设备的任意方法。
通信设备800还可以包括一个电源组件826被配置为执行通信设备800的电源管理,一个有线或无线网络接口850被配置为将通信设备800连接到网络,和一个输入输出(I/O)接口858。通信设备800可以操作基于存储在存储器832的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (26)

  1. 一种确定数据处理时长的方法,其中,所述方法应用于基站,包括:
    获取根据物理下行控制信道PDCCH监听复杂度确定的进行预设数据处理所需时间增量,其中,所述预设数据处理为:在所述PDCCH上监听到的下行控制信息DCI所调度的物理下行共享信道PDSCH传输的解调,或者物理上行共享信道PUSCH传输的准备。
  2. 根据权利要求1所述的方法,其中,所述获取根据PDCCH监听复杂度确定的进行预设数据处理所需时间增量,包括:
    根据PDCCH监听复杂度,确定进行预设数据处理所需时间增量;
    或者
    接收用户设备UE上报的根据PDCCH监听复杂度确定的进行预设数据处理所需时间增量。
  3. 根据权利要求1或2所述的方法,其中,所述方法还包括:
    接收UE的处理能力信息;
    所述根据PDCCH监听复杂度,确定进行预设数据处理所需时间增量,包括:
    根据所述PDCCH监听复杂度及所述处理能力信息指示的UE的处理能力,确定进行预设数据处理所需时间增量。
  4. 根据权利要求1至3任一所述的方法,其中,所述PDCCH监听复杂度,与定义所述PDCCH监听复杂度的时间单元关联;
    所述根据PDCCH监听复杂度,确定进行预设数据处理所需时间增量,包括:
    根据定义所述PDCCH监听复杂度的时间单元,确定进行预设数据处 理所需时间增量。
  5. 根据权利要求4所述的方法,其中,所述方法还包括:
    根据用户设备UE应用的子载波间隔SCS,确定定义所述PDCCH监听复杂度的时间单元。
  6. 根据权利要求1至4任一所述的方法,其中,所述时间增量是:相对于定义所述PDCCH监听复杂度的时间单元为1个时隙时进行预设数据处理所需时长的时长增量。
  7. 一种确定数据处理时长的方法,其中,所述方法应用于终端,包括:
    根据物理下行控制信道PDCCH监听复杂度,确定进行预设数据处理所需时间增量,其中,所述预设数据处理为:在所述PDCCH上监听到的下行控制信息DCI所调度的物理下行共享信道PDSCH传输的解调,或者物理上行共享信道PUSCH传输的准备。
  8. 根据权利要求7所述的方法,其中,所述方法还包括:
    向基站上报所述终端的处理能力信息。
  9. 根据权利要求7或8所述的方法,其中,所述PDCCH监听复杂度,与定义所述PDCCH监听复杂度的时间单元关联;
    所述根据PDCCH监听复杂度,确定进行预设数据处理所需时间增量,包括:
    根据定义所述PDCCH监听复杂度的时间单元,确定进行预设数据处理所需时间增量。
  10. 根据权利要求9所述的方法,其中,所述方法还包括:
    根据终端应用的SCS,确定定义所述PDCCH监听复杂度的时间单元。
  11. 根据权利要求7至10任一所述的方法,其中,所述时间增量是: 相对于定义所述PDCCH监听复杂度的时间单元为1个时隙时进行预设数据处理所需时长的时长增量。
  12. 根据权利要求7至11任一所述方法,其中,所述方法还包括:
    向基站上报所述时间增量。
  13. 一种确定数据处理时长的装置,其中,所述装置应用于基站,包括:
    获取模块,配置为获取根据物理下行控制信道PDCCH监听复杂度确定的进行预设数据处理所需时间增量,其中,所述预设数据处理为:在所述PDCCH上监听到的下行控制信息DCI所调度的物理下行共享信道PDSCH传输的解调,或者物理上行共享信道PUSCH传输的准备。
  14. 根据权利要求13所述的装置,其中,所述获取模块,包括:
    第一确定模块,配置为根据PDCCH监听复杂度,确定进行预设数据处理所需时间增量;
    或者
    第一接收模块,配置为接收用户设备UE上报的根据PDCCH监听复杂度确定的进行预设数据处理所需时间增量。
  15. 根据权利要求13或14所述的装置,其中,所述装置还包括:
    第二接收模块,配置为接收UE的处理能力信息;
    所述根据PDCCH监听复杂度,确定进行预设数据处理所需时间增量,包括:
    根据所述PDCCH监听复杂度及所述处理能力信息指示的UE的处理能力,确定进行预设数据处理所需时间增量。
  16. 根据权利要求13至15任一所述的装置,其中,所述PDCCH监听复杂度,与定义所述PDCCH监听复杂度的时间单元关联;
    所述根据PDCCH监听复杂度,确定进行预设数据处理所需时间增 量,包括:
    根据定义所述PDCCH监听复杂度的时间单元,确定进行预设数据处理所需时间增量。
  17. 根据权利要求16所述的装置,其中,所述装置还包括:
    第二确定模块,配置为根据用户设备UE应用的子载波间隔SCS,确定定义所述PDCCH监听复杂度的时间单元。
  18. 根据权利要求13至17任一所述的装置,其中,所述时间增量是:相对于定义所述PDCCH监听复杂度的时间单元为1个时隙时进行预设数据处理所需时长的时长增量。
  19. 一种确定数据处理时长的装置,其中,所述装置应用于终端,包括:
    第三确定模块,配置为根据物理下行控制信道PDCCH监听复杂度,确定进行预设数据处理所需时间增量,其中,所述预设数据处理为:在所述PDCCH上监听到的下行控制信息DCI所调度的物理下行共享信道PDSCH传输的解调,或者物理上行共享信道PUSCH传输的准备。
  20. 根据权利要求19所述的装置,其中,所述装置还包括:
    第一上报模块,配置为向基站上报所述终端的处理能力信息。
  21. 根据权利要求19或20所述的装置,其中,所述PDCCH监听复杂度,与定义所述PDCCH监听复杂度的时间单元关联;
    所述第三确定模块,包括:
    第一确定子模块,配置为根据定义所述PDCCH监听复杂度的时间单元,确定进行预设数据处理所需时间增量。
  22. 根据权利要求21所述的装置,其中,所述装置还包括:
    第四确定模块,配置为根据终端应用的SCS,确定定义所述PDCCH监听复杂度的时间单元。
  23. 根据权利要求19至22任一所述的装置,其中,所述时间增量是:相对于定义所述PDCCH监听复杂度的时间单元为1个时隙时进行预设数据处理所需时长的时长增量。
  24. 根据权利要求19至22任一所述的装置,其中,所述装置还包括:
    第二上报模块,配置为向基站上报所述时间增量。
  25. 一种通信设备,其中,所述通信设备至少包括:处理器和用于存储能够在所述处理器上运行的可执行指令的存储器,其中:
    处理器用于运行所述可执行指令时,所述可执行指令执行上述权利要求1至6或7至12任一项提供的确定处理时长的方法中的步骤。
  26. 一种非临时性计算机可读存储介质,其中,所述计算机可读存储介质中存储有计算机可执行指令,该计算机可执行指令被处理器执行时实现上述权利要求1至6或7至12任一项提供的确定处理时长的方法中的步骤。
PCT/CN2020/121986 2020-10-19 2020-10-19 确定数据处理时长的方法及装置、通信设备和存储介质 WO2022082384A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/121986 WO2022082384A1 (zh) 2020-10-19 2020-10-19 确定数据处理时长的方法及装置、通信设备和存储介质
US18/032,368 US20230397222A1 (en) 2020-10-19 2020-10-19 Method and apparatus for determining data processing duration, communication device and storage medium
CN202080002833.5A CN114651501A (zh) 2020-10-19 2020-10-19 确定数据处理时长的方法及装置、通信设备和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/121986 WO2022082384A1 (zh) 2020-10-19 2020-10-19 确定数据处理时长的方法及装置、通信设备和存储介质

Publications (1)

Publication Number Publication Date
WO2022082384A1 true WO2022082384A1 (zh) 2022-04-28

Family

ID=81291344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121986 WO2022082384A1 (zh) 2020-10-19 2020-10-19 确定数据处理时长的方法及装置、通信设备和存储介质

Country Status (3)

Country Link
US (1) US20230397222A1 (zh)
CN (1) CN114651501A (zh)
WO (1) WO2022082384A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190289622A1 (en) * 2018-05-11 2019-09-19 Intel Corporation Support of advanced user equipment (ue) minimum processing times in new radio (nr) systems
CN111148236A (zh) * 2018-11-02 2020-05-12 华为技术有限公司 一种数据传输方法和装置
US20200163031A1 (en) * 2018-11-21 2020-05-21 Lenovo (Singapore) Pte. Ltd. Determining a power headroom report

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190289622A1 (en) * 2018-05-11 2019-09-19 Intel Corporation Support of advanced user equipment (ue) minimum processing times in new radio (nr) systems
CN111148236A (zh) * 2018-11-02 2020-05-12 华为技术有限公司 一种数据传输方法和装置
US20200163031A1 (en) * 2018-11-21 2020-05-21 Lenovo (Singapore) Pte. Ltd. Determining a power headroom report

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Potential UE complexity reduction features for RedCap", 3GPP DRAFT; R1-2005234, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051917284 *

Also Published As

Publication number Publication date
CN114651501A (zh) 2022-06-21
US20230397222A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
JP2023520478A (ja) 構成情報伝送方法および装置、通信機器および記憶媒体
WO2021163936A1 (zh) 通信处理方法、装置及计算机存储介质
WO2021168664A1 (zh) 通信方法、装置及计算机存储介质
WO2021258375A1 (zh) 信息传输方法、装置、通信设备和存储介质
CN111096063B (zh) 非连续接收drx的处理方法、装置及计算机存储介质
WO2021237445A1 (zh) 寻呼控制消息传输方法、装置及通信设备
WO2022052024A1 (zh) 参数配置方法、装置、通信设备和存储介质
WO2022236626A1 (zh) 系统消息的传输方法、装置及通信设备
WO2022027496A1 (zh) 资源配置方法、装置、通信设备和存储介质
WO2021243714A1 (zh) 定位参考信号的传输方法及装置、电子设备及存储介质
WO2022261877A1 (zh) Drx定时器的启动方法、装置、通信设备及存储介质
WO2022151436A1 (zh) 信息配置方法及装置、通信设备和存储介质
WO2021142796A1 (zh) 通信处理方法、装置及计算机存储介质
WO2021164011A1 (zh) 通信处理方法、装置及计算机存储介质
WO2021003675A1 (zh) 信息处理方法、装置及计算机存储介质
WO2023050362A1 (zh) 下行传输配置、接收方法及装置、通信设备及存储介质
WO2023050350A1 (zh) Cfr的确定方法、装置、通信设备及存储介质
WO2022126576A1 (zh) 无线通信方法及装置、通信设备及存储介质
WO2022032581A1 (zh) 上行传输的发送、接收方法及装置、通信设备及介质
WO2022082384A1 (zh) 确定数据处理时长的方法及装置、通信设备和存储介质
WO2021114049A1 (zh) 非连续接收的处理方法及装置
US20220408469A1 (en) Downlink control information configuration method and apparatus, and communication device and storage medium
WO2022198589A1 (zh) 降低干扰的方法及装置、通信设备和存储介质
WO2022205475A1 (zh) 联合信道估计的配置方法、装置、设备和存储介质
WO2024016233A1 (zh) 初始bwp处理方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20957973

Country of ref document: EP

Kind code of ref document: A1