WO2020237679A1 - 随机接入方法及装置、通信设备及存储介质 - Google Patents

随机接入方法及装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2020237679A1
WO2020237679A1 PCT/CN2019/089682 CN2019089682W WO2020237679A1 WO 2020237679 A1 WO2020237679 A1 WO 2020237679A1 CN 2019089682 W CN2019089682 W CN 2019089682W WO 2020237679 A1 WO2020237679 A1 WO 2020237679A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
preamble
carrying
access preamble
frequency domain
Prior art date
Application number
PCT/CN2019/089682
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN201980000995.2A priority Critical patent/CN110337835B/zh
Priority to PCT/CN2019/089682 priority patent/WO2020237679A1/zh
Publication of WO2020237679A1 publication Critical patent/WO2020237679A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • This application relates to the field of wireless communication technology but is not limited to the field of wireless communication technology, and in particular to a random access method and device, communication equipment and storage medium.
  • the terminal In order to establish uplink synchronization, the terminal needs to establish an uplink connection with the base station through random access.
  • the terminal or user equipment User Equipment, UE selects an RO from a set of configured optional random access opportunities (Random Occasion, RO),
  • the random access preamble is sent to the base station through the random access channel (Physical Random Access Channel, PRACH), and then the terminal will receive the RAR from the base station within the random access feedback (Random Access Response, RAR) time window.
  • the base station determines the random access radio network temporary identifier (RA-RNTI) through the resource location of the PRACH, and uses the RA-RNTI to scramble the RAR.
  • RA-RNTI random access radio network temporary identifier
  • the terminal judges whether the preamble sequence number in the RAR is consistent with the previously sent one, and if they are consistent, the RAR is considered to be received successfully.
  • the embodiments of the present application provide a random access enhancement method and device, communication equipment, and storage medium.
  • a random access method including:
  • a random access request method including:
  • a random access feedback is sent.
  • the receiving and repeatedly sending multiple random access requests carrying random access preambles includes:
  • a random access device including:
  • the first sending module is configured to repeatedly send multiple random access requests carrying random access preambles before receiving the random access feedback.
  • a random access request device including:
  • a receiving module configured to receive multiple random access requests carrying random access preambles repeatedly sent
  • the second sending module is configured to send a random access feedback based on multiple random access requests.
  • a communication device including:
  • the processor is respectively connected to the antenna and the memory, and is used to control the antenna to send and receive wireless signals by executing an executable program stored on the memory, and can execute the steps of the random access method provided by any of the foregoing technical solutions .
  • a non-transitory computer-readable storage medium stores an executable program, wherein the executable program can be executed by a processor Perform the steps of the random access method provided by any of the foregoing technical solutions.
  • a non-transitory computer-readable storage medium storing an executable program, wherein the executable program is executed by a processor to implement the random access method provided by any of the foregoing technical solutions A step of.
  • the terminal will repeatedly send a random access request carrying a random access preamble before receiving the random access feedback; in this way, compared to a random access process Only one random access request is allowed to be sent, which can increase the probability that a random access request sent by a single terminal in a random access process is responded to by the base station, thereby improving the success rate of random access for a single terminal. If a random access request is not responded, there is no need to wait until the next random access process to send the random access request; in this way, the response rate of random access is increased for a single terminal.
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic flowchart of a random access method provided by an embodiment of this application.
  • FIG. 3 is a schematic flowchart of a random access method provided by an embodiment of this application.
  • 4A is a schematic diagram of frequency domain resource selection for a random access request repeatedly sent according to an embodiment of the application
  • FIG. 4B is a schematic diagram of frequency domain resource selection for another repeatedly sent random access request according to an embodiment of this application.
  • FIG. 5 is a schematic flowchart of another random access method provided by an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of a random access device provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of another random access device provided by an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of a terminal provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a base station provided by an embodiment of this application.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • the words "if” and “if” as used herein can be interpreted as “when” or “when” or “in response to certainty”.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include several terminals 11 and several base stations 12.
  • the terminal 11 may be a device that provides voice and/or data connectivity to the user.
  • the terminal 11 can communicate with one or more core networks via a radio access network (RAN).
  • RAN radio access network
  • the terminal 11 can be an IoT terminal, such as a sensor device, a mobile phone (or “cellular” phone), and
  • the computer of the Internet of Things terminal for example, may be a fixed, portable, pocket-sized, handheld, computer-built-in or vehicle-mounted device.
  • station For example, station (Station, STA), subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point, remote terminal ( remote terminal), access terminal (access terminal), user device (user terminal), user agent (user agent), user equipment (user device), or user terminal (user equipment, UE).
  • the terminal 11 may also be a device of an unmanned aerial vehicle.
  • the terminal 11 may also be an in-vehicle device, for example, it may be a trip computer with a wireless communication function, or a wireless communication device external to the trip computer.
  • the terminal 11 may also be a roadside device, for example, it may be a street lamp, signal lamp, or other roadside device with a wireless communication function.
  • the base station 12 may be a network side device in a wireless communication system.
  • the wireless communication system may be the 4th generation mobile communication (4G) system, also known as the Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system, Also known as the new radio (NR) system or 5G NR system.
  • the wireless communication system may also be the next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network). Or, MTC system.
  • the base station 12 may be an evolved base station (eNB) used in a 4G system.
  • the base station 12 may also be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
  • the base station 12 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • a physical (Physical, PHY) layer protocol stack is provided in the unit, and the embodiment of the present disclosure does not limit the specific implementation of the base station 12.
  • a wireless connection can be established between the base station 12 and the terminal 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as The wireless air interface is a new air interface; or, the wireless air interface may also be a wireless air interface based on 5G-based next-generation mobile communication network technology standards.
  • E2E (End to End, end-to-end) connections may also be established between the terminals 11.
  • V2V (vehicle to vehicle) communication V2I (vehicle to Infrastructure) communication
  • V2P (vehicle to pedestrian) communication in vehicle to everything (V2X) communication Waiting for the scene.
  • the above-mentioned wireless communication system may further include a network management device 13.
  • the network management device 13 may be a core network device in a wireless communication system.
  • the network management device 13 may be a mobility management entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC). MME).
  • the network management device may also be other core network devices, such as Serving GateWay (SGW), Public Data Network GateWay (PGW), policy and charging rules function unit (Policy and Charging Rules). Function, PCRF) or home subscriber network side device (Home Subscriber Server, HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network GateWay
  • Policy and Charging Rules Policy and Charging Rules
  • Function PCRF
  • HSS home subscriber network side device
  • the implementation form of the network management device 13 is not limited in the embodiment of the present disclosure.
  • this embodiment provides a random access method, including:
  • Step S110 Before receiving the random access feedback, repeatedly sending multiple random access requests carrying random access preambles.
  • the random access method provided in this embodiment can be applied to a terminal, and the terminal can be various types of mobile terminals, such as a mobile phone, a tablet computer, or a wearable device.
  • the terminal before receiving the random access feedback, the terminal will repeatedly send multiple random access requests carrying random access preambles. In this way, in a random access process, with the random access When the number of requests increases, the probability that the random access request is successfully received and responded to by the base station increases, thereby increasing the success rate of random access for a single terminal. Because multiple random access preambles are repeatedly sent The access request does not need to wait until the next random access process to send the random access request, thereby reducing the random access delay and improving the efficiency of random access.
  • random access preambles carried in multiple random access requests are the same.
  • the random access preamble carried in the random access request of a terminal is the same.
  • multiple random access requests include: a random access request for initial transmission and a random access request for retransmission.
  • the terminal Before the initial transmission of the random access request, the terminal can randomly select a random access preamble, and when retransmitting the random access request, it can use the random access preamble randomly selected during the initial transmission to continue retransmitting the random access request.
  • this also facilitates the base station to determine which random access requests belong to the same terminal according to the random access preamble.
  • the step S110 may include:
  • the random access resources on the PRACH are divided into multiple ROs.
  • the repeated random access requests are sent on different ROs. That is, the random access request carrying the random access preamble sent by a terminal is sent separately in the time domain.
  • the step S110 may include:
  • Step S111 randomly select one of the random access preambles
  • Step S112 Randomly select frequency domain resources on the physical random access channel, and initially transmit the random access request carrying the random access preamble.
  • a random access preamble is randomly selected, thereby ensuring the randomness of random access preamble selection in the random access process.
  • the frequency domain resource is selected on the PRACH, and the random access request carrying the random access preamble is transmitted for the first time.
  • the random access preambles carried in the repeated random access requests may be the same or different.
  • the random access preamble carried in the repeated random access request is the same.
  • the step S112 may include:
  • a frequency domain resource is selected on the physical random access channel, and the random access request carrying the random access preamble is retransmitted.
  • the random access preamble carried in the random access request for transmission and retransmission is the same. Before the random access request carrying the random access preamble is retransmitted, it will be randomly selected according to the initial transmission. Random access to the preamble index, select frequency domain resources on PRACH.
  • the corresponding relationship between the index of the random access preamble and the frequency domain resource on the PRACH is pre-configured.
  • the frequency domain resource can be selected quickly and easily based on this correspondence.
  • the random access request carrying the random access preamble is sent in the RO by using the selected frequency domain resource.
  • the step S112 may include:
  • n1 Is a positive integer.
  • the index of the random access preamble is used as the numerical value involved in the mathematical calculation. Then the value is demodulated to n1 to obtain a remainder, and the frequency domain resource is selected based on the remainder. For example, if the remainder is m, the frequency domain resource numbered m is selected, or the m-th frequency domain resource is selected to retransmit the random access request carrying the random access preamble.
  • the n is a positive integer, and specifically may be a positive integer greater than 2.
  • the first frequency domain resource in the frequency domain is randomly selected.
  • the 0th frequency domain resource performs retransmission of the random access request carrying the random access preamble.
  • the step S112 may include:
  • a frequency domain resource is selected on the physical random access channel, and the random access preamble carrying the random access preamble is retransmitted. Random access request.
  • the frequency domain resource is selected by combining the index of the random access preamble and the number of retransmissions of the random access request.
  • the index is index
  • this random access request is the xth retransmission
  • index and x will be combined to determine the frequency domain resource used for this random access request transmission.
  • the step S112 may include:
  • Random access resources Take the sum of the result of n2 and the number of retransmissions according to the random access preamble index, select frequency domain resources on the physical random access channel, and retransmit the random access preamble carrying the random access preamble. Random access resources.
  • n1 or n2 is the number of frequency division multiplexing resources corresponding to one random access occasion.
  • the n1 or n2 may be pre-configured by the base station, or may be dynamically determined.
  • n1 and n2 may be the same parameter or different parameters.
  • this embodiment provides a random access method, including:
  • Step S210 receiving multiple random access requests carrying random access preambles repeatedly sent
  • Step S220 Send a random access feedback based on multiple random access requests.
  • the random access method can be applied to a base station, and the base station can be a 3G base station, a 4G base station, or a 5G base station.
  • the base station may also be a macro base station, a micro base station, a small base station, etc.
  • the base station will receive multiple random access requests that carry random access preambles. For example, in a random access window, if a terminal sends multiple random access requests, the base station may receive multiple random access requests sent by a terminal.
  • the probability of a single terminal being successfully responded increases, that is, the probability that the base station will send random access feedback to a terminal increases Up.
  • the base station If the base station receives multiple random access requests sent by a terminal, it will only return one random access feedback instead of sending one random access feedback for each random access request, reducing the signaling overhead and the random access feedback. Transmission resource overhead, and reduce confusion.
  • the step S210 may include:
  • the random access preambles carried in multiple random access requests sent by a terminal are the same.
  • the base station can determine which random access preambles are sent by the same terminal according to whether the random access preambles are the same. of.
  • the step S220 may include: sending a random access feedback based on the first random access request received.
  • An RO base station may only receive random access requests sent by one or more terminals, but the random access The request may be an initial transmission or a retransmission.
  • the base station in order to increase the rate of random access, the base station sends the random access feedback after receiving the first random access request, so that the terminal will receive the random access feedback within the first time, reducing The delay of random access is increased.
  • the base station determines the radio network temporary identification RA-RNTI according to the resource location of the first random access request; and uses the RA-RNTI to scramble the random access feedback.
  • the method further includes:
  • a random access request carrying the same random access preamble as the first random access request is received, and no random access feedback is sent.
  • the base station sends random access feedback for a random access request of a terminal, and then receives a random access request carrying the same random access preamble, it will no longer send random access feedback, thereby reducing random access feedback
  • the repeated transmission of random access requests reduces the signaling overhead and transmission resource overhead caused by the repeated transmission of random access requests.
  • the method further includes:
  • the random access configuration information includes: the random access configuration information includes: indication information for selecting frequency domain resources according to the index of the random access preamble and/or the number of repetitions.
  • the random access configuration information can be configured by the base station, or the base station and the terminal negotiate with each other.
  • radio resource control Radio Resource Control, RRC
  • RRC Radio Resource Control
  • the random access configuration information may include the aforementioned n1 and/or n2.
  • this embodiment provides a random access device, including:
  • the first sending module 110 is configured to repeatedly send multiple random access requests carrying random access preambles before receiving the random access feedback.
  • the random access device provided in this embodiment may be located in a terminal.
  • the random access device may also include a storage module for storing random access requests and/or random access preambles.
  • the first sending module 110 may be a program module. After the program module is executed by the processor, before receiving the random access feedback, it will repeatedly send multiple random access preambles carrying random access preambles. Entry request.
  • the first sending module 110 may be a combination of software and hardware; the combination of software and hardware may include various programmable arrays; and the programmable arrays include but are not limited to complex programmable arrays or field programmable arrays.
  • the first sending module 110 may include a pure hardware module; the pure hardware module includes but is not limited to an application specific integrated circuit.
  • the random access preambles carried by multiple random access requests are the same.
  • Multiple random access requests sent by a terminal carry the same random access preamble.
  • the first sending module 110 is configured to repeatedly send multiple random access requests carrying random access preambles at different physical random access occasions.
  • the first sending module 110 is configured to randomly select a random access preamble; randomly select frequency domain resources on the physical random access channel, and initially transmit a random access request carrying the random access preamble .
  • the first sending module 110 is configured to select frequency domain resources on the physical random access channel according to the index of the random access preamble, and retransmit the random access request carrying the random access preamble.
  • the first sending module 110 is configured to select frequency domain resources on the physical random access channel according to the result of modulo n1 according to the index of the random access preamble, and retransmit the data that carries the random access preamble. Random access request, where n1 is a positive integer.
  • the first sending module 110 is configured to select frequency domain resources on the physical random access channel according to the index of the random access preamble and the number of retransmissions of the random access request, and the retransmission carries the random access Random access request with preamble.
  • the first sending module 110 is configured to take the result of n2 and the number of retransmissions according to the random access preamble index, and select frequency domain resources on the physical random access channel, and the retransmission carries random access.
  • n2 is a positive integer.
  • n1 or n2 is the number of frequency division multiplexing resources corresponding to one random access occasion.
  • this embodiment provides a random access device, including:
  • the receiving module 210 is configured to receive multiple random access requests carrying random access preambles repeatedly sent;
  • the second sending module 220 is configured to send a random access feedback based on multiple random access requests.
  • the receiving module 210 and the second sending module 220 may be program modules, which can receive repeated random access requests and send random access feedback after being executed by the processor.
  • the receiving module 210 and the second sending module 220 can be a combination of software and hardware; the combination of software and hardware can include various programmable arrays; programmable arrays include but are not limited to complex programmable arrays or field programmable arrays .
  • the receiving module 210 and the second sending module 220 may include pure hardware modules; the pure hardware modules include but are not limited to application specific integrated circuits.
  • the receiving module 210 is configured to receive multiple random access requests carrying the same random access preamble that are repeatedly sent.
  • the sending module is configured to send a random access feedback based on the first random access request received.
  • the apparatus further includes: after sending the random access feedback, receiving a random access request carrying the same random access preamble as the first random access request, and not sending the random access feedback.
  • the wireless communication system supports a certain terminal to send multiple random access preambles on the configured PRACH time-frequency resource when it initiates uplink random access. effect.
  • the base station receives multiple random access preambles sent by the same terminal, and only responds for the first time; that is, the base station sends only one random access preamble for multiple random access preambles sent by the same terminal in one random access process. Feedback.
  • the first random access preamble resource in the repetition is the same as the retransmission resource is not considered. That is, the first random access preamble transmission in the retransmission does not distinguish the initial transmission and retransmission resources, and the randomness remains unchanged. .
  • the same random access preamble code is selected for retransmission instead of random selection.
  • the frequency domain resource for repeatedly sending the random access preamble is selected according to the number n of FDM resources included in a certain RO time configured by the system.
  • the frequency domain resources are determined according to the result of random access preamble code modulo n during retransmission.
  • the index of the frequency domain resource can be increased by 1 for each retransmission, that is, the frequency domain resource with index 0 is used for the first initial transmission, and for the second transmission (ie, the first retransmission)
  • Use frequency domain resources with an index of 1 instead of selecting a random access preamble with an index of 0 and use the frequency domain resource with an index of 0 every time.
  • the retransmission resources are indexed according to the random access preamble number initially transmitted. If the base station does not receive the UE's initial transmission, it will treat the received retransmission as the UE's initial transmission. Does not affect.
  • This embodiment also provides a communication device, including:
  • the processor is respectively connected to the antenna and the memory, and is used to control the antenna to send and receive wireless signals by executing an executable program stored on the memory, and can execute the steps of the random access method provided in any of the foregoing embodiments.
  • the communication device provided in this embodiment may be the aforementioned terminal or base station.
  • the terminal can be various human-borne terminals or vehicle-mounted terminals.
  • the base station may be various types of base stations, for example, a 4G base station or a 5G base station.
  • the antenna may be various types of antennas, for example, a mobile antenna such as a 3G antenna, a 4G antenna, or a 5G antenna; the antenna may also include a WiFi antenna or a wireless charging antenna.
  • a mobile antenna such as a 3G antenna, a 4G antenna, or a 5G antenna
  • the antenna may also include a WiFi antenna or a wireless charging antenna.
  • the memory may include various types of storage media, and the storage media is a non-transitory computer storage medium that can continue to store the information stored thereon after the communication device is powered off.
  • the processor may be connected to the antenna and the memory through a bus or the like, and is used to read executable programs stored on the memory, for example, through the random access method shown in FIG. 2, FIG. 3, and/or FIG. 5.
  • the implementation of this application also provides a non-transitory computer-readable storage medium, which stores an executable program, where the executable program is executed by a processor to implement the random access provided by any of the foregoing embodiments
  • the steps of the method are, for example, at least one of the methods shown in FIG. 2, FIG. 3, and/or FIG. 5.
  • the terminal 800 may specifically be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc. .
  • the terminal 800 may include one or more of the following components: a processing component 802, a memory 804, a power supply component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, a sensor component 814, And the communication component 816.
  • the processing component 802 generally controls the overall operations of the terminal 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 802 may include one or more modules to facilitate the interaction between the processing component 802 and other components.
  • the processing component 802 may include a multimedia module to facilitate the interaction between the multimedia component 808 and the processing component 802.
  • the memory 804 is configured to store various types of data to support the operation of the device 800. Examples of these data include instructions for any application or method operated on the terminal 800, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 804 can be implemented by any type of volatile or nonvolatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic Disk Magnetic Disk or Optical Disk.
  • the power supply component 806 provides power for various components of the terminal 800.
  • the power supply component 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the terminal 800.
  • the multimedia component 808 includes a screen that provides an output interface between the terminal 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor can not only sense the boundary of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC).
  • the microphone When the terminal 800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal may be further stored in the memory 804 or transmitted via the communication component 816.
  • the audio component 810 further includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 814 includes one or more sensors for providing the terminal 800 with various status assessments.
  • the sensor component 814 can detect the on/off status of the device 800 and the relative positioning of components, such as the display and keypad of the terminal 800.
  • the sensor component 814 can also detect the position change of the terminal 800 or a component of the terminal 800. The presence or absence of contact with the terminal 800, the orientation or acceleration/deceleration of the terminal 800, and the temperature change of the terminal 800.
  • the sensor component 814 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the terminal 800 and other devices.
  • the terminal 800 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the terminal 800 may be configured by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • non-transitory computer-readable storage medium including instructions, such as the memory 804 including instructions, which can be executed by the processor 820 of the terminal 800 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • the terminal may be used to implement the aforementioned random access method, for example, the random access method shown in FIG. 2 and/or FIG. 6.
  • Fig. 9 is a block diagram showing a base station 900 according to an exemplary embodiment.
  • the base station 900 may be provided as a network side device.
  • the base station 900 includes a processing component 922, which further includes one or more processors, and a memory resource represented by a memory 932, for storing instructions that can be executed by the processing component 922, such as application programs.
  • the application program stored in the memory 932 may include one or more modules each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to execute the random access method provided in any of the foregoing embodiments of the above method, for example, the method shown in FIG. 2 and/or FIG. 6.
  • the base station 900 may also include a power supply component 926 configured to perform power management of the base station 900, a wired or wireless network interface 950 configured to connect the base station 900 to the network, and an input output (I/O) interface 958.
  • the base station 900 can operate based on an operating system stored in the memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • the wireless network interface 950 includes but is not limited to the antenna of the aforementioned communication device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种随机接入方法及装置、通信设备及存储介质。所述随机接入方法,包括:在接收到随机接入反馈之前,重复发送携带有随机接入前导码的多个随机接入请求。

Description

随机接入方法及装置、通信设备及存储介质 技术领域
本申请涉及无线通信技术领域但是不限于无线通信技术领域,尤其涉及一种随机接入方法及装置、通信设备及存储介质。
背景技术
为了建立上行同步,终端需要通过随机接入与基站建立上行连接。在NR Rel-15的基于竞争的随机接入过程中,终端或称为用户设备(User Equipment,UE)在配置好的可选的随机接入时机(Random Occasion,RO)集合中选择一个RO,通过随机接入信道(Physical Random Access Channel,PRACH)向基站发送随机接入前导码,然后终端会在随机接入反馈(Random Access Response,RAR)时间窗内接收来自于基站的RAR。基站通过PRACH的资源位置确定随机接入无线网络临时标识(RA-RNTI),并用RA-RNTI对RAR进行加扰。终端收到RAR后,判断RAR中的前导码序号是否与此前发送的相一致,若一致则认为RAR接收成功。
但是在这些情况下,以及在后续的系统增强中,有的时候出现了随机接入延时大或者随机接入成功率低的问题。
发明内容
本申请实施例提供一种随机接入增强方法及装置、通信设备及存储介质。
根据本公开实施例的第一方面提供一种随机接入方法,包括:
在接收到随机接入反馈之前,重复发送携带有随机接入前导码的多个随机接入请求。
根据本公开实施例的第二方面提供一种随机接入请求方法,包括:
接收重复发送携带有随机接入前导码的多个随机接入请求;
基于多个随机接入请求,发送一个随机接入反馈。
基于上述方案,所述接收重复发送携带有随机接入前导码的多个随机接入请求,包括:
接收重复发送的携带有相同随机接入前导码的多个所述随机接入请求。
根据本公开实施例的第三方面提供一种随机接入装置,包括:
第一发送模块,配置为在接收到随机接入反馈之前,重复发送携带有随机接入前导码的多个随机接入请求。
根据本公开实施例的第四方面提供一种随机接入请求装置,包括:
接收模块,配置为接收重复发送携带有随机接入前导码的多个随机接入请求;
第二发送模块,配置为基于多个随机接入请求,发送一个随机接入反馈。
根据本公开实施例的第四方面提供一种通信设备,包括:
天线;
存储器;
处理器,分别与所述天线及存储器连接,用于通过执行存储在所述存储器上的可执行程序,控制所述天线收发无线信号,并能够执行前述任意技术方案提供的随机接入方法的步骤。
根据本公开实施例的第五方面提供一种非临时性计算机可读存储介质,所述非临时性计算机可读存储介质存储有可执行程序,其中,所述可 执行程序被处理器执行时能够执行前述任意技术方案提供的随机接入方法的步骤。
一种非临时性计算机可读存储介质,所述非临时性计算机可读存储介质存储有可执行程序,其中,所述可执行程序被处理器执行时实现前述任意技术方案提供的随机接入方法的步骤。
本申请实施例中会一次随机接入过程中,终端在未收到随机接入反馈之前,会重复发送携带有随机接入前导码的随机接入请求;如此,相对于一次随机接入过程中仅允许发送一个随机接入请求,可以提升单个终端一次随机接入过程中发送的随机接入请求被基站响应的概率,从而对于单个终端而言,能够提升随机接入的成功率。若一个随机接入请求未被响应时,无需等到下一次随机接入过程再发送随机接入请求;如此,对于单个终端而言提升了随机接入的响应速率。
附图说明
图1为本申请实施例提供的一种无线通信系统的结构示意图;
图2为本申请实施例提供的一种随机接入方法的流程示意图;
图3为本申请实施例提供的一种随机接入方法的流程示意图;
图4A为本申请实施例提供的一种重复发送的随机接入请求的频域资源选择示意图;
图4B为本申请实施例提供的另一种重复发送的随机接入请求的频域资源选择示意图;
图5为本申请实施例提供的另一种随机接入方法的流程示意图;
图6为本申请实施例提供的一种随机接入装置的结构示意图;
图7为本申请实施例提供的另一种随机接入装置的结构示意图;
图8为本申请实施例提供的一种终端的结构示意图;
图9为本申请实施例提供的一种基站的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个终端11以及若干个基站12。
其中,终端11可以是指向用户提供语音和/或数据连通性的设备。终端11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端11可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、 订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,UE)。或者,终端11也可以是无人飞行器的设备。或者,终端11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,终端11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和终端11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线 空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户网络侧设备(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
如图2所示,本实施例提供一种随机接入方法,包括:
步骤S110:在接收到随机接入反馈之前,重复发送携带有随机接入前导码的多个随机接入请求。
在本实施例中提供的随机接入方法可以应用于终端中,该终端可为各种类型的移动终端,例如,手机、平板电脑或可穿戴式设备。
在本实施例,终端在接收到随机接入反馈之前,会重复发送携带有随机接入前导码的多个随机接入请求,如此,在一次随机接入过程中,随着发送的随机接入请求的个数增多,则该随机接入请求被基站成功接 收并响应的概率提升了,从而提高了单个终端的随机接入的成功率,由于重复发送多个携带有随机接入前导码的随机接入请求,不用在等到下一次随机接入过程中再发送随机接入请求,从而减少了随机接入时延,提升了随机接入的效率。
在一些实施例中,多个所述随机接入请求携带的随机接入前导码相同。
在一次随机接入过程中,一个终端的随机接入请求携带的随机接入前导码相同。例如,多次随机接入请求包括:初传的随机接入请求,和重传的随机接入请求。在初传随机接入请求之前,终端可以随机选择一个随机接入前导码,在重传随机接入请求时,可以利用初传时随机选择的随机接入前导码继续重传所述随机接入请求。
采用相同的随机接入前导码发送多个随机接入请求,如此,也方便基站根据随机接入前导码确定哪些随机接入请求是属于同一个终端发送的。
在一些实施例中,所述步骤S110可包括:
在不同物理随机接入时机,重复发送携带有所述随机接入前导码的多个所述随机接入请求。
在本实施例中,所述PRACH上的随机接入资源划为了多个RO。在本实施例中,重复发送的随机接入请求是在不同的RO上发送的。即,一个终端发送的携带有随机接入前导码的随机接入请求在时域上分开发送的。
进一步地,如图3所示,所述步骤S110可包括:
步骤S111:随机选择一个所述随机接入前导码;
步骤S112:在物理随机接入信道上随机选择频域资源,初传携带有所述随机接入前导码的所述随机接入请求。
随机选择了一个随机接入前导码,从而确保了随机接入过程中随机接入前导码选择的随机性。
在PRACH上选择频域资源,初次传输携带有所述该随机接入前导码的随机接入请求。
在一些实施例中,重复发送的随机接入请求携带的随机接入前导码可以相同或者不同。
在本实施例中,重复发送的随机接入请求中携带的随机接入前导码相同。进一步地,所述步骤S112可包括:
根据所述随机接入前导码的索引,在所述物理随机接入信道上选择频域资源,重传携带有所述随机接入前导码的所述随机接入请求。
在本实施例中,处传和重传的随机接入请求携带的随机接入前导码相同,在重传携带有随机接入前导码的随机接入请求之前,会根据初传时随机选择的随机接入前导码的索引,在PRACH上选择频域资源。
例如,预先配置了随机接入前导码的索引与PRACH上频域资源之间的对应关系,如此,可以根据这种对应关系,快速简便的选择出所述频域资源。利用选择频域资源在RO内发送携带所述随机接入前导码的随机接入请求。
在一些实施例中,所述步骤S112可包括:
根据所述随机接入前导码的索引取模n1的结果,在所述物理随机接入信道上选择频域资源,重传携带有所述随机接入前导码的所述随机接入请求,n1为正整数。
在本实施例中,根据随机接入前导码的索引作为参与数学计算的数值。然后将该数值对n1去模得到余数,基于该余数选择所述频域资源。例如,余数为m则,选择编号为m的频域资源,或者,选择第m个频域资源重传携带有所述随机接入前导码的随机接入请求。在本实施例中, 所述n为正整数,具体可为大于2的正整数。
参考图4A所示,在所述随机接入请求初传时,随机选择了频域的第1个频域资源,在重传时,若随机接入前导码的索引为0,且n1为任意正整数,例如,n1=2或4时,则对n1取模之后得到余数为0,则后续的第一次重传和第二重传,甚至第二次重传以后的重传,都选择第0个频域资源进行携带有所述随机接入前导码的随机接入请求的重传。
在一些实施例中,所述步骤S112可包括:
根据所述随机接入前导码的索引及所述随机接入请求的重传次数,在所述物理随机接入信道上选择频域资源,重传携带有所述随机接入前导码的所述随机接入请求。
在本实施例中,同时会结合随机接入前导码的索引和随机接入请求的重传次数,来选择频域资源。例如,该索引为index,而本次随机接入请求是第x次重传,将结合index和x共同确定用于本次随机接入请求发送的频域资源。
在一些实施例中,所述步骤S112可包括:
根据所述随机接入前导码索引取n2的结果与所述重传次数之和,在所述物理随机接入信道上选择频域资源,重传携带有所述随机接入前导码的所述随机接入资源。
例如,将index对n2进行取模操作得到余数,然后将该余数与x进行求和运算,得到和sum,基于该sum选择频域资源。具体如,选择PRACH上第sum个频域资源传输本次的随机接入请求,或者,选择编号为sum的频域资源传输所述随机接入请求。
参考图4B所示,在随机接入请求初传时,随机选择了第1个频域资源传输携带有随机接入前导码的随机接入请求,若随机接入前导码的索引为0,且n为任意正整数,例如,n2=2或4时,则对n取模之后得到 余数为0,同时结合重传次数,本次重传是第一次重传,则0+1为1,故在第一次重传时使用第1个频域资源进行携带有所述随机接入前导码的随机接入请求的重传。在第二次重传时,使用第2个频域资源进行携带有所述随机接入请求前导码的随机接入请求的重传。
在一些实施例中,n1或n2为一个所述随机接入时机所对应频分复用资源的个数。
本实施例中,所述n1或n2可为基站预先配置的,也可以是动态确定的。
在一些实施例中,n1和n2可为同一个参数,也可以为不同的参数。例如,所述n1和n2为一个随机接入时机所包含的频分复用资源的个数,则此时n1=n2。
如图5所示,本实施例提供一种随机接入方法,包括:
步骤S210:接收重复发送携带有随机接入前导码的多个随机接入请求;
步骤S220:基于多个随机接入请求,发送一个随机接入反馈。
在本实施例中,该随机接入方法可应用于基站中,该基站可为3G基站、4G基站或5G基站。该基站还可为宏基站、微基站、小基站等。
本实施例中,基站会接收到携带有随机接入前导码的多个随机接入请求。具体如,在一个随机接入窗口,一个终端会发送多个随机接入请求,则基站可能会接收到一个终端发送的多个随机接入请求。
由于,终端会重复发送多个携带有随机接入请求导码的随机接入请求,则单个终端被成功响应的概率就增大了,即基站会向一个终端发送随机接入反馈的概率就提升了。
基站若接收到一个终端发送的多个随机接入请求,仅会返回一个随机接入反馈,而不是针对每一个随机接入请求发送一个随机接入反馈, 减少随机接入反馈的信令开销和传输资源的开销,并且减少混乱。
在一些实施例中,所述步骤S210可包括:
接收重复发送的携带有相同随机接入前导码的多个所述随机接入请求。
在本实施例中,一个终端发送的多个随机接入请求携带的随机接入前导码相同,如此,基站可以根据随机接入前导码是否相同,确定哪些随机接入前导码是同一个终端发送的。
在一些实施例中,所述步骤S220可包括:基于收到的首个所述随机接入请求,发送一个随机接入反馈。
在随机接入请求是随机发送的,则不同终端发送的随机接入请求可能会相互冲突,在一个RO基站可能仅接收了一个或多个终端发送的随机接入请求,而接收的随机接入请求可能是初传,也可以是重传。在本实施例中,为了提升随机接入的速率,基站接收到首个随机接入请求,就发送所述随机接入反馈,如此终端会在第一时间内接收所述随机接入反馈,减少了随机接入的延时。
例如,基站基于接收的首个随机接入请求,根据首个随机接入请求的资源位置,确定无线网络临时标识RA-RNTI;并利用所述RA-RNTI加扰所述随机接入反馈。
在一些实施例中,所述方法还包括:
在发送所述随机接入反馈后,接收到与首个所述随机接入请求携带有相同随机接入前导码的随机接入请求,不发送随机接入反馈。
若基站针对一个终端的随机接入请求发送了随机接入反馈之后,再接收到携带相同随机接入前导码的随机接入请求之后,就不再发送随机接入反馈,从而减少随机接入反馈的重复发送,减少随机接入请求的重复发送导致的信令开销和传输资源的开销。
在一些实施例中,所述方法还包括:
发送随机接入配置信息,其中,所述随机接入配置信息包括:该随机接入配置信息包括:根据随机接入前导码的索引和/或重复次数选择频域资源的指示信息等。
该随机接入配置信息可以由基站配置,或者,基站和终端相互协商。
在具体实现时,可以利用无线资源控制(Radio Resource Control,RRC)信令等来发送所述随机接入配置信息等。
在本实施例中,随机接入配置信息可包括前述的n1和/或n2。
如图6所示,本实施例提供一种随机接入装置,包括:
第一发送模块110,配置为在接收到随机接入反馈之前,重复发送携带有随机接入前导码的多个随机接入请求。
本实施例提供的随机接入装置可位于终端中,该随机接入装置除了包括第一发送模块110,还可包括存储随机接入请求和/或随机接入前导码的存储模块。
在本实施例中,第一发送模块110可为程序模块,该程序模块被处理器执行后,能够在接收到随机接入反馈之前,会重复发送携带有随机接入前导码的多个随机接入请求。
在一些实施例中,第一发送模块110可为软硬结合模块;软硬结合模块可包括各种可编程阵列;可编程阵列包括但不限于复杂可编程阵列或现场可编程阵列。
在还有一些实施例中,第一发送模块110可包括纯硬件模块;纯硬件模块包括但不限于专用集成电路。
在一些实施例中,多个随机接入请求携带的随机接入前导码相同。一个终端发送的多个随机接入请求携带的随机接入前导码相同,一方面不用终端在每次随机接入请求之前都选择随机接入前导码,同时可以方 便基站根据随机接入前导码的异同,确定是否多个随机接入前导码是否来自同一个终端。
在一些实施例中,第一发送模块110,具配置为在不同物理随机接入时机,重复发送携带有随机接入前导码的多个随机接入请求。
在一些实施例中,第一发送模块110,配置为随机选择一个随机接入前导码;在物理随机接入信道上随机选择频域资源,初传携带有随机接入前导码的随机接入请求。
在一些实施例中,第一发送模块110,配置为根据随机接入前导码的索引,在物理随机接入信道上选择频域资源,重传携带有随机接入前导码的随机接入请求。
在一些实施例中,第一发送模块110,配置为根据随机接入前导码的索引取模n1的结果,在物理随机接入信道上选择频域资源,重传携带有随机接入前导码的随机接入请求,其中,n1为正整数。
在一些实施例中,第一发送模块110,配置为根据随机接入前导码的索引及随机接入请求的重传次数,在物理随机接入信道上选择频域资源,重传携带有随机接入前导码的随机接入请求。
在一些实施例中,第一发送模块110,配置为根据随机接入前导码索引取n2的结果与重传次数之和,在物理随机接入信道上选择频域资源,重传携带有随机接入前导码的随机接入资源,n2为正整数。
在一些实施例中,n1或n2为一个随机接入时机所对应频分复用资源的个数。
如图7所示,本实施例提供一种随机接入装置,包括:
接收模块210,配置为接收重复发送携带有随机接入前导码的多个随机接入请求;
第二发送模块220,配置为基于多个随机接入请求,发送一个随机接 入反馈。
在一些实施例中,接收模块210及第二发送模块220可为程序模块,该程序模块被处理器执行后,能够接收重复发送的随机接入请求及发送随机接入反馈。
在一些实施例中,接收模块210及第二发送模块220可为软硬结合模块;软硬结合模块可包括各种可编程阵列;可编程阵列包括但不限于复杂可编程阵列或现场可编程阵列。
在一些实施例中,接收模块210及第二发送模块220可包括纯硬件模块;纯硬件模块包括但不限于专用集成电路。
在一些实施例中,接收模块210,配置为接收重复发送的携带有相同随机接入前导码的多个随机接入请求。
在一些实施例中,发送模块,配置为基于收到的首个随机接入请求,发送一个随机接入反馈。在一些实施例中,装置还包括:在发送随机接入反馈后,接收到与首个随机接入请求携带有相同随机接入前导码的随机接入请求,不发送随机接入反馈。以下结合上述任意实施例提供几个具体示例:无线通信系统支持某个终端在发起上行随机接入的时候,在配置的PRACH的时频资源上发送多次随机接入前导码,达到重复发送的效果。基站收到同一个终端的多个随机接入前导码发送,只响应第一次;即基站针对同一个终端一次随机接入过程中发送的多次随机接入前导码,仅发送一个随机接入反馈。重复中的首次发送随机接入前导码资源和不考虑重复发送资源一致,也就对于重传中的第一次随机接入前导码发送是不区分初传和重传资源的,随机性不变。当初传随机选择了一个随机接入前导码码后,重传选择相同的随机接入前导码码,而不是随机选。频域上根据系统配置的某个RO时刻所包含的FDM资源的个数n,来选择重复发送随机接入前导码的频域资源。
根据无线通信系统配置的某个RO时刻的FDM资源(比如n个频分复用的资源),重传时根据随机接入前导码码模n的结果,来确定频域资源。为增加随机化,进一步地,每次重传可以频域资源的索引都加1,即第一次初传用索引为0的频域资源,第二次传输(即第一次重传)时用索引为1的频域资源,而不是选择了随机接入前导码的索引为0就每次都用索引为0的频域资源。重传资源根据初传的随机接入前导码号来索引根据。如果基站没有收到UE的初传,会把收到的重传作为该UE初传处理。不影响。
本实施例还提供一种通信设备,包括:
天线;
存储器;
处理器,分别与天线及存储器连接,用于通过执行存储在存储器上的可执行程序,控制天线收发无线信号,并能够执行前述任意实施例提供的随机接入方法的步骤。
本实施例提供的通信设备可为前述的终端或基站。该终端可为各种人载终端或车载终端。基站可为各种类型的基站,例如,4G基站或5G基站等。
天线可为各种类型的天线、例如,3G天线、4G天线或5G天线等移动天线;天线还可包括:WiFi天线或无线充电天线等。
存储器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
处理器可以通过总线等与天线和存储器连接,用于读取存储器上存储的可执行程序,通过例如图2、图3和/或图5所示的随机接入方法等。
本申请实施还提供一种非临时性计算机可读存储介质,非临时性计算机可读存储介质存储有可执行程序,其中,可执行程序被处理器执行时实 现前述任意实施例提供的随机接入方法的步骤,例如,如图2、图3和/或图5所示方法的至少其中之一。
参照图8所示终端800本实施例提供一种终端800,该终端具体可是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图8,终端800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制终端800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在设备800的操作。这些数据的示例包括用于在终端800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为终端800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为终端800生成、管理和分配电力相关联的组件。
多媒体组件808包括在终端800和用户之间的提供一个输出接口的屏 幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当终端800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为终端800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如组件为终端800的显示器和小键盘,传感器组件814还可以检测终端800或终端800一个组件的位置改变,用户与终端800接触的存在或不存在,终端800方位或加速/减速和终端800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该 传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于终端800和其他设备之间有线或无线方式的通信。终端800可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,终端800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由终端800的处理器820执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
该终端可以用于实现前述的随机接入方法,例如,如图2和/或图6的随机接入方法。
图9是根据一示例性实施例示出的一种基站900的框图。例如,基站900可以被提供为一网络侧设备。参照图9,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方 法前述任意实施例提供的随机接入方法,例如,如图2和/或图6所示的方法。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
该无线网络接口950包括但不限于前述通信设备的天线。本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (28)

  1. 一种随机接入方法,其中,包括:
    在接收到随机接入反馈之前,重复发送携带有随机接入前导码的多个随机接入请求。
  2. 根据权利要求1所述的方法,其中,多个所述随机接入请求携带的随机接入前导码相同。
  3. 根据权利要求1所述的方法,其中,所述在接收到随机接入反馈之前,重复发送携带有随机接入前导码的多次随机接入请求,包括:
    在不同物理随机接入时机,重复发送携带有所述随机接入前导码的多个所述随机接入请求。
  4. 根据权利要求3所述的方法,其中,所述在不同随机接入时机,重复发送携带有所述随机接入前导码的多个所述随机接入请求,包括:
    随机选择一个所述随机接入前导码;
    在物理随机接入信道上随机选择频域资源,初传携带有所述随机接入前导码的所述随机接入请求。
  5. 根据权利要求4所述的方法,其中,所述在不同随机接入时机,重复发送携带有所述随机接入前导码的多个所述随机接入请求,包括:
    根据所述随机接入前导码的索引,在所述物理随机接入信道上选择频域资源,重传携带有所述随机接入前导码的所述随机接入请求。
  6. 根据权利要求5所述的方法,其中,所述根据所述随机接入前导码的索引,在所述物理随机接入信道上选择频域资源,重传携带有所述随机接入前导码的所述随机接入请求,包括:
    根据所述随机接入前导码的索引取模n1的结果,在所述物理随机接入信道上选择频域资源,重传携带有所述随机接入前导码的所述随机接入请求,其中,n1为正整数。
  7. 根据权利要求5所述的方法,其中,所述根据所述随机接入前导码的索引,在所述物理随机接入信道上选择频域资源,重传携带有所述随机接入前导码的所述随机接入请求,包括:
    根据所述随机接入前导码的索引及所述随机接入请求的重传次数,在所述物理随机接入信道上选择频域资源,重传携带有所述随机接入前导码的所述随机接入请求。
  8. 根据权利要求7所述的方法,其中,所述根据所述随机接入前导码的索引及所述随机接入请求的重传次数,在所述物理随机接入信道上选择频域资源,重传携带有所述随机接入前导码的所述随机接入请求,包括:
    根据所述随机接入前导码索引取n2的结果与所述重传次数之和,在所述物理随机接入信道上选择频域资源,重传携带有所述随机接入前导码的所述随机接入资源,n2为正整数。
  9. 根据权利要求6或8所述的方法,其中,n1或n2为一个所述随机接入时机所对应频分复用资源的个数。
  10. 一种随机接入请求方法,其中,包括:
    接收重复发送携带有随机接入前导码的多个随机接入请求;
    基于多个随机接入请求,发送一个随机接入反馈。
  11. 根据权利要求10所述的方法,其中,所述接收重复发送携带有随机接入前导码的多个随机接入请求,包括:
    接收重复发送的携带有相同随机接入前导码的多个所述随机接入请求。
  12. 根据权利要求11所述的方法,其中,所述基于多个随机接入请求,发送一个随机接入反馈,包括:
    基于收到的首个所述随机接入请求,发送一个随机接入反馈。
  13. 根据权利要求11或12所述的方法,其中,所述方法还包括:
    在发送所述随机接入反馈后,接收到与首个所述随机接入请求携带有相同随机接入前导码的随机接入请求,不发送随机接入反馈。
  14. 一种随机接入装置,其中,包括:
    第一发送模块,配置为在接收到随机接入反馈之前,重复发送携带有随机接入前导码的多个随机接入请求。
  15. 根据权利要求14所述的装置,其中,多个所述随机接入请求携带的随机接入前导码相同。
  16. 根据权利要求15所述的装置,其中,所述第一发送模块,配置为在不同物理随机接入时机,重复发送携带有所述随机接入前导码的多个所述随机接入请求。
  17. 根据权利要求16所述的装置,其中,所述第一发送模块,配置为随机选择一个所述随机接入前导码;在物理随机接入信道上随机选择频域资源,初传携带有所述随机接入前导码的所述随机接入请求。
  18. 根据权利要求17所述的装置,其中,所述第一发送模块,配置为根据所述随机接入前导码的索引,在所述物理随机接入信道上选择频域资源,重传携带有所述随机接入前导码的所述随机接入请求。
  19. 根据权利要求18所述的装置,其中,所述第一发送模块,配置为根据所述随机接入前导码的索引取模n1的结果,在所述物理随机接入信道上选择频域资源,重传携带有所述随机接入前导码的所述随机接入请求,其中,n1为正整数。
  20. 根据权利要求18所述的装置,其中,所述第一发送模块,配置为根据所述随机接入前导码的索引及所述随机接入请求的重传次数,在所述物理随机接入信道上选择频域资源,重传携带有所述随机接入前导码的所述随机接入请求。
  21. 根据权利要求20所述的装置,其中,所述第一发送模块,配置为根据所述随机接入前导码索引取n2的结果与所述重传次数之和,在所述物理随机接入信道上选择频域资源,重传携带有所述随机接入前导码的所述随机接入资源,n2为正整数。
  22. 根据权利要求19或21所述的装置,其中,n1或n2为一个所述随机接入时机所对应频分复用资源的个数。
  23. 一种随机接入请求装置,其中,包括:
    接收模块,配置为接收重复发送携带有随机接入前导码的多个随机接入请求;
    第二发送模块,配置为基于多个随机接入请求,发送一个随机接入反馈。
  24. 根据权利要求23所述的装置,其中,所述接收模块,配置为接收重复发送的携带有相同随机接入前导码的多个所述随机接入请求。
  25. 根据权利要求23所述的装置,其中,所述发送模块,配置为基于收到的首个所述随机接入请求,发送一个随机接入反馈。
  26. 根据权利要求24或25所述的装置,其中,所述装置还包括:
    在发送所述随机接入反馈后,接收到与首个所述随机接入请求携带有相同随机接入前导码的随机接入请求,不发送随机接入反馈。
  27. 一种通信设备,其中,包括:
    天线;
    存储器;
    处理器,分别与所述天线及存储器连接,配置为通过执行存储在所述存储器上的可执行程序,控制所述天线收发无线信号,并能够执行如权利要求1至9或10至13任一项所述随机接入方法的步骤。
  28. 一种非临时性计算机可读存储介质,所述非临时性计算机可读存 储介质存储有可执行程序,其中,所述可执行程序被处理器执行时实现如权利要求1至9或10至13任一项所述随机接入方法的步骤。
PCT/CN2019/089682 2019-05-31 2019-05-31 随机接入方法及装置、通信设备及存储介质 WO2020237679A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980000995.2A CN110337835B (zh) 2019-05-31 2019-05-31 随机接入方法及装置、通信设备及存储介质
PCT/CN2019/089682 WO2020237679A1 (zh) 2019-05-31 2019-05-31 随机接入方法及装置、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/089682 WO2020237679A1 (zh) 2019-05-31 2019-05-31 随机接入方法及装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2020237679A1 true WO2020237679A1 (zh) 2020-12-03

Family

ID=68150206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089682 WO2020237679A1 (zh) 2019-05-31 2019-05-31 随机接入方法及装置、通信设备及存储介质

Country Status (2)

Country Link
CN (1) CN110337835B (zh)
WO (1) WO2020237679A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023125345A1 (zh) * 2021-12-29 2023-07-06 展讯通信(上海)有限公司 一种随机接入方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021227074A1 (en) * 2020-05-15 2021-11-18 Qualcomm Incorporated Random access radio network temporary identifier (ra-rnti) with physical random access channel (prach) repetition
WO2022061847A1 (en) * 2020-09-28 2022-03-31 Zte Corporation Methods, apparatus and systems for preamble aggregation in a random access procedure
CN115968035A (zh) * 2021-10-09 2023-04-14 维沃软件技术有限公司 Prach重复传输方法、终端及网络侧设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1713607A (zh) * 2005-07-29 2005-12-28 北京邮电大学 一种用于时分正交频分多址系统中的随机接入方法
WO2014137310A1 (en) * 2013-03-04 2014-09-12 Nokia Corporation Synchronized physical layer reconfiguration among user equipment, macrocell, and small cell in macrocell-assisted small cell deployments
CN106162916A (zh) * 2015-03-25 2016-11-23 联想(北京)有限公司 信息处理方法及终端

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2868775T3 (es) * 2015-01-30 2021-10-21 Nokia Solutions & Networks Oy Canal físico de acceso aleatorio y detección de respuesta de acceso aleatorio para equipo de usuario
WO2017188697A1 (ko) * 2016-04-27 2017-11-02 엘지전자(주) 무선 통신 시스템에서 임의 접속을 수행하기 위한 방법 및 이를 지원하는 장치
CN109495222B (zh) * 2017-09-11 2021-06-15 大唐移动通信设备有限公司 一种ra-rnti确定方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1713607A (zh) * 2005-07-29 2005-12-28 北京邮电大学 一种用于时分正交频分多址系统中的随机接入方法
WO2014137310A1 (en) * 2013-03-04 2014-09-12 Nokia Corporation Synchronized physical layer reconfiguration among user equipment, macrocell, and small cell in macrocell-assisted small cell deployments
CN106162916A (zh) * 2015-03-25 2016-11-23 联想(北京)有限公司 信息处理方法及终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023125345A1 (zh) * 2021-12-29 2023-07-06 展讯通信(上海)有限公司 一种随机接入方法及装置

Also Published As

Publication number Publication date
CN110337835A (zh) 2019-10-15
CN110337835B (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
JP2023520478A (ja) 構成情報伝送方法および装置、通信機器および記憶媒体
WO2020237679A1 (zh) 随机接入方法及装置、通信设备及存储介质
CN110622617B (zh) 信息处理方法、装置及计算机存储介质
WO2021163936A1 (zh) 通信处理方法、装置及计算机存储介质
WO2020237681A1 (zh) 随机接入方法及装置、通信设备及存储介质
EP4120760A1 (en) Method and device for communication processing
WO2021092734A1 (zh) 随机接入方法及装置、终端及存储介质
WO2021138914A1 (zh) 传输数据的指示方法、装置、通信设备及存储介质
WO2021108966A1 (zh) 无线链路失败的处理方法、装置及计算机存储介质
WO2021237624A1 (zh) 非授权信道的检测方法、装置、通信设备及存储介质
WO2021243712A1 (zh) 定位参考信号的传输方法及装置、电子设备及存储介质
WO2021030979A1 (zh) 数据处理方法及装置、通信设备及存储介质
CN113597814B (zh) Drx定时器的启动方法、装置、通信设备及存储介质
WO2021063153A1 (zh) 信息处理方法、网元设备、终端及存储介质
WO2021142796A1 (zh) 通信处理方法、装置及计算机存储介质
WO2021174510A1 (zh) 无线网络接入方法、装置、通信设备及存储介质
US20230199832A1 (en) Channel detection method, communication device, and storage medium
WO2021174494A1 (zh) 增强上行覆盖的处理方法、装置及存储介质
WO2021102960A1 (zh) 帧传输方法及装置、通信端及存储介质
WO2021007728A1 (zh) 获取系统消息的方法及装置、通信设备及存储介质
WO2021012131A1 (zh) 资源分配方法及装置、消息帧处理方法及装置、存储介质
WO2022110057A1 (zh) 无线传输的方法、装置、通信设备及存储介质
WO2021226766A1 (zh) 发送数据的方法、装置、通信设备及存储介质
WO2021007791A1 (zh) 资源配置的方法及装置、通信设备及存储介质
WO2021223235A1 (zh) 数据传输处理方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931166

Country of ref document: EP

Kind code of ref document: A1