WO2022017207A1 - 一种工作模式的指示方法、装置以及系统 - Google Patents

一种工作模式的指示方法、装置以及系统 Download PDF

Info

Publication number
WO2022017207A1
WO2022017207A1 PCT/CN2021/105631 CN2021105631W WO2022017207A1 WO 2022017207 A1 WO2022017207 A1 WO 2022017207A1 CN 2021105631 W CN2021105631 W CN 2021105631W WO 2022017207 A1 WO2022017207 A1 WO 2022017207A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
information
port number
working mode
mimo
Prior art date
Application number
PCT/CN2021/105631
Other languages
English (en)
French (fr)
Inventor
曲韦霖
郑娟
李超君
金哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21846179.6A priority Critical patent/EP4187831A4/en
Publication of WO2022017207A1 publication Critical patent/WO2022017207A1/zh
Priority to US18/155,881 priority patent/US20230156595A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the field relates to the field of communications, and in particular, to a method and device for indicating a multi-antenna working mode.
  • the exchange information between the terminal equipment and the network equipment is carried through the physical channel.
  • the control information sent by the network device that is, downlink control information (Downlink Control Information, DCI)
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • the network device needs to configure a corresponding demodulation reference signal (Demodulation Reference Signal, DMRS) port for each antenna port of the terminal device.
  • DMRS demodulation Reference Signal
  • the DCI can be used to indicate the number of DMRS Code Division Multiplexing (Code Division Multiplexing, CDM) groups and the port number of the DMRS.
  • One orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbol in the time domain and one subcarrier in the frequency domain may form a time-frequency resource unit.
  • the DMRS is generally divided into the first type of DMRS and the second type of DMRS, and the number of time-frequency resource units corresponding to the DMRS ports corresponding to the first type of DMRS and the second type of DMRS is different.
  • Each DMRS CDM group includes multiple DMRS ports, and the number of time-frequency resource units included in the time-frequency resource block corresponding to each DMRS CDM group is the sum of the time-frequency resource units corresponding to the multiple DMRS ports included in the DMRS CDM group.
  • the time-frequency resource block corresponding to each DMRS CDM group is used to carry the DMRS sent through the DMRS ports in the DMRS CDM group.
  • the network device When the network device indicates one or more specific DMRS ports for a terminal device through DCI, it will allocate other DMRS ports in the DMRS CDM group to which the one or more specific DMRS ports belong to other terminals in the communication system one or more of the devices.
  • the time-frequency resources corresponding to the above-mentioned other DMRS ports are also used for data transmission between the above-mentioned other terminal equipment and the network equipment. This configuration method enables the network device to send data streams to multiple terminal devices at the same time on a given time-frequency resource.
  • the terminal devices in the communication system work by default in multiple user-multiple input multiple output (Multiple User-Multiple Input Multiple Output, MU-MIMO) mode. Therefore, even if the multi-antenna working mode of the terminal device is suitable for the case of Single User-Multiple Input Multiple Output (SU-MIMO), this configuration makes the NR system always assume that the terminal device works in MU-MIMO.
  • the terminal device needs to estimate the interference signal, and then demodulate the information transmitted through the DMRS port number corresponding to the terminal device.
  • the interference signal may include but is not limited to the DMRS signal corresponding to other terminal devices and/or other Downlink data or uplink data transmitted by the DMRS port number corresponding to the terminal device.
  • downlink data is carried in a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH), and uplink data is carried in a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the present application provides a communication method for indicating a single user-multiple input multiple output (Single User-Multiple Input Multiple Output, SU-MIMO) mode or a multiple user-multiple input multiple output (Multiple User-Multiple Input Multiple Output, MU) mode -MIMO) mode, which solves the problems of increased power consumption and waste of resources caused by the terminal device still working in the MU-MIMO mode by default in the single-port transmission mode in the prior art.
  • Single User-Multiple Input Multiple Output, SU-MIMO Single User-Multiple Input Multiple Output
  • MU Multiple Input Multiple Output
  • the present application provides a method for indicating a multi-antenna working mode.
  • the execution body of the method may be a terminal device, or a chip or an integrated circuit applied in the terminal device.
  • the execution body is the terminal device as an example below. describe.
  • the method includes: the first terminal device receives first information from a network device, where the first information is used to indicate a first multi-antenna working mode of the first terminal device; the first terminal device receives second information from the network device, the second The information is used to indicate the second multi-antenna working mode of the first terminal device, and the corresponding at least one first demodulation reference signal DMRS port number and the demodulation reference signal DMRS code division multiplexing CDM group in the second multi-antenna working mode.
  • a number N, the N DMRS CDM groups including the at least one first DMRS port number.
  • the first terminal device determines that the multi-antenna operation mode is the second multi-antenna operation mode according to the first information and the second information.
  • the first terminal device can determine the working mode through the indication information of the network device, which solves the problems of increased power consumption and waste of resources caused by the first terminal device always working in the MU-MIMO mode by default in the prior art.
  • the first information is carried in high-level signaling, and the high-level signaling may be Radio Resource Control (Radio Resource Control, RRC) signaling or Media Access Control (Media Access Control, MAC) signaling signaling;
  • the second information is carried in physical layer signaling, such as downlink control information (Downlink Control Information, DCI).
  • RRC Radio Resource Control
  • MAC Media Access Control
  • the static scenario adopts the static scheduling method, and the network device permanently assigns the associated resources;
  • the semi-static scenario adopts the semi-static scheduling method, and the network device periodically allocates the corresponding resources to the terminal device within a period of time through a resource configuration.
  • dynamic scheduling is used, and network equipment dynamically configures the resources of terminal equipment.
  • the working mode of the first terminal device when the first terminal device executes a certain service in a static or semi-static manner of the network device, and/or the first terminal device is applied to a static or semi-static scenario, for example, an industrial wireless sensor Periodic business scenarios in the network (Industry Wireless Sensor Network, IWSN) and/or video surveillance (Video surveillance), in this case, the working mode of the first terminal device generally does not change, and the network device indicates through high-level signaling
  • the multi-antenna working mode of the first terminal device ensures system communication performance while reducing the overhead of physical layer signaling; when the first terminal device executes services in a way of dynamic scheduling by the network device, the first terminal device is used in dynamic scenarios, and/ Or, when the first terminal device is used in a scenario where it is paired with a terminal device in other dynamic scenarios, for example, an aperiodic service scenario in IWSN and/or video surveillance, in this case, the working mode of the first terminal device may be Changes frequently occur, and the network device indicates the multi
  • the network device performs the multi-antenna working mode of the first terminal device through the combination of high-level signaling and physical layer signaling. indication, so that the multi-antenna working mode of the first terminal device can be flexibly configured.
  • the first multi-antenna working mode is configured for the first terminal device by using the first information. If the first multi-antenna working mode is suitable for the first terminal device at this time, the network device configures the second multi-antenna working mode according to the first multi-antenna working mode. information, then the first terminal device works in the first working mode; if the first multi-antenna working mode is not applicable to the first terminal device, the network device can use the second information to indicate that the first multi-antenna working mode is different from the first multi-antenna working mode. Two multi-antenna working modes, the first terminal device realizes switching of the multi-antenna working modes through the second information.
  • the network device configures the first terminal device from the multi-antenna operation mode indicated by the first information.
  • the second information is adjusted to configure the second information according to the multi-antenna working mode applicable to the first terminal device, and the first terminal device switches the multi-antenna working mode according to the second information.
  • the N DMRS CDM groups include at least one first DMRS port number and at least one second DMRS port number.
  • the at least one second DMRS port number is different from the at least one first DMRS port number.
  • the N DMRS CDM groups are composed of at least one first DMRS port number and at least one second DMRS port number; or, the N DMRS CDM groups are composed of at least one first DMRS port number and at least one second DMRS port number, and Other port numbers can be included.
  • the first information indicates SU-MIMO, and the second information indicates MU-MIMO; or, the first information indicates MU-MIMO, and the second information indicates MU-MIMO.
  • the first terminal device determines that the multi-antenna working mode is MU-MIMO, the first terminal device determines that at least one second DMRS port number is allocated to the second terminal device, and the second terminal device determines is at least one of the remaining terminal devices other than the first terminal device in the communication system where the first terminal is located.
  • the first information indicates MU-MIMO, and the second information indicates SU-MIMO; or, the first information indicates SU-MIMO, and the second information indicates SU-MIMO.
  • the first terminal device determines that the multi-antenna working mode is SU-MIMO, the first terminal device determines that at least one second DMRS port number is not assigned to the second terminal device, and the second terminal device determines that the at least one second DMRS port number is not allocated to the second terminal device.
  • the device is at least one of the remaining terminal devices other than the first terminal device in the communication system where the first terminal is located.
  • the first terminal device determines that the multi-antenna working mode is SU-MIMO according to the indication information of the network device, which solves the problem that the first terminal device still works in the MU-MIMO mode by default in the single-port transmission mode in the prior art The resulting problem of increased power consumption and waste of resources.
  • the first terminal device determines that the multi-antenna working mode is SU-MIMO, and when the number N of DMRS CDM groups is greater than 1, the second information is further used to indicate at least one second DMRS port number corresponding to The time-frequency resource is not used for data transmission, or is used for data transmission between the first terminal device and the network device; or, if the second information is not used to indicate the use of the above-mentioned time-frequency resource, the method further includes: the first terminal The device may also receive third information, where the third information is used to indicate that the time-frequency resource corresponding to the at least one second DMRS port number is not used for data transmission, or is used for data transmission between the first terminal device and the network device.
  • the DMRS of the first terminal device can obtain the benefit of power enhancement, which is helpful for improving the Channel estimation performance. If the transmit power of the network device remains unchanged, and the time-frequency resource corresponding to at least one second DMRS port number does not transmit data, the network device sends the DMRS to the first terminal device with the above transmit power, so that the first terminal can be implemented. The signal-to-noise ratio of the DMRS received by the device is improved, which improves the channel estimation performance. If the second information or the third information indicates that time-frequency resources corresponding to at least one second DMRS port number are used for data transmission between the first terminal device and the network device, resource waste is avoided.
  • the time domain length of data transmission between the first terminal device and the network device is greater than 2 OFDM symbols.
  • the data is carried in the PDSCH.
  • the data transmission is a single transmission or a data transmission between the network device and the first terminal device.
  • the network device configuration information indicates the multi-antenna working mode of the first terminal device and at least one second DMRS
  • the multi-antenna working mode of the first terminal device may be SU-MIMO or MU-MIMO at this time.
  • the first terminal device may assume that at least one The time-frequency resource corresponding to the second DMRS port number is not used for data transmission, and only data between the network device and the first terminal device is transmitted on the given time-frequency resource.
  • the multi-antenna working mode of the first terminal device is SU -MIMO, in this way, the data transmission efficiency between the first terminal device and the network device can be guaranteed when the length of the data transmission time domain is small.
  • the first terminal device sends fourth information to the network device, which is used to indicate at least one of the following:
  • the application scenario of the first terminal device includes at least one of an industrial wireless sensor network (Industry Wireless Sensor Network, IWSN) and a video surveillance (Video surveillance);
  • the type of the first terminal device includes a reduced capability (Reduced Capability, REDCAP) terminal device, for example, at least one of industrial wireless sensors, video surveillance cameras or wearable devices;
  • the capability information of the first terminal device includes that the multi-antenna working mode supported by the first terminal device is SU-MIMO and/or or MU-MIMO.
  • the first terminal device reports information so that the network device configures the information for indicating the multi-antenna working mode according to the application scenario of the first terminal, the type of the first terminal, or the capability information of the first terminal to solve the problem.
  • the first terminal device always works in the MU-MIMO mode by default, and the working mode of the first terminal device may not match the actually applicable working mode of the first terminal device, resulting in increased power consumption and waste of resources.
  • the application scenario corresponds to a specific service type. Therefore, the network device can determine the multi-antenna working mode indicated by the configuration information according to the application scenario of the first terminal device.
  • the application scenario reported by the first terminal device at this time is an application scenario corresponding to a specific service type.
  • the IWSN and/or video surveillance application scenario further includes periodic services and aperiodic services
  • the application scenario reported by the first terminal device is the IWSN and/or video surveillance corresponding to the periodic service, or the first The application scenario reported by the terminal device is IWSN and/or video surveillance corresponding to aperiodic services.
  • the present application provides a communication method.
  • the execution body of the method may be a terminal device, or a chip or an integrated circuit applied in the terminal device.
  • the method includes: the first terminal receives fifth information from the network device, where the fifth information is used to indicate that the multi-antenna working mode of the first terminal device is SU-MIMO or MU-MIMO; the first terminal device determines the The multi-antenna working mode is SU-MIMO or MU-MIMO.
  • the fifth information is further used to indicate at least one first DMRS port number and the number N of DMRS CDM groups corresponding to the multi-antenna working mode of the first terminal device, and the N DMRS CDM groups include the at least one first DMRS CDM group.
  • a DMRS port number is further used to indicate at least one first DMRS port number and the number N of DMRS CDM groups corresponding to the multi-antenna working mode of the first terminal device, and the N DMRS CDM groups include the at least one first DMRS CDM group.
  • the first terminal device determines the multi-antenna working mode according to the fifth information, which solves the problems of increased power consumption and waste of resources caused by the first terminal device always working in the MU-MIMO mode by default in the prior art.
  • the fifth information is carried in the DCI.
  • the first terminal device directly obtains the working mode indicated by the network device through the downlink control information, the first terminal device obtains the working mode indicated by the network device through the fifth information at the same time, and at least one first terminal device configured by the network device obtains the working mode indicated by the network device at the same time. Whether a DMRS port number and at least one second DMRS port number are allocated to the second terminal device, the first terminal device can more conveniently implement switching of the working mode.
  • the N DMRS CDM groups include at least one first DMRS port number and at least one second DMRS port number.
  • the at least one second DMRS port number is different from the at least one first DMRS port number.
  • the N DMRS CDM groups are composed of at least one first DMRS port number and at least one second DMRS port number; or, the N DMRS CDM groups are composed of at least one first DMRS port number and at least one second DMRS port number, and Other port numbers can be included.
  • the fifth information indicates that the multi-antenna working mode of the first terminal device is MU-MIMO, and the first terminal device determines according to the fifth information that at least one second DMRS port number is allocated to the second terminal device, The second terminal device is at least one of the remaining terminal devices other than the first terminal device in the communication system where the first terminal is located.
  • the fifth information indicates that the multi-antenna working mode of the first terminal device is SU-MIMO, and the first terminal device determines according to the fifth information that at least one second DMRS port number is not allocated to the second terminal device , the second terminal device is at least one of the remaining terminal devices other than the first terminal device in the communication system where the first terminal is located.
  • the first terminal device determines that the multi-antenna working mode is SU-MIMO according to the indication information of the network device, which solves the problem of the single-port transmission mode in the prior art. In this case, the first terminal device still works in the MU-MIMO mode by default, which causes the problem of increased power consumption and waste of resources.
  • the first terminal device determines that the multi-antenna working mode is SU-MIMO, and when the number N of DMRS CDM groups is greater than 1, the fifth information is also used to indicate at least one second DMRS port number corresponding to The time-frequency resource is not used for data transmission, or is used for data transmission between the first terminal device and the network device; or, if the fifth information is not used to indicate the use of the above-mentioned time-frequency resource, the method further includes: the first terminal The device may also receive sixth information, where the sixth information is used to indicate that the time-frequency resource corresponding to the at least one second DMRS port number is not used for data transmission, or is used for data transmission between the first terminal device and the network device.
  • the DMRS of the first terminal device can obtain the benefit of power enhancement, which is helpful for improving the Channel estimation performance. If the transmit power of the network device remains unchanged, and the time-frequency resource corresponding to at least one second DMRS port number does not transmit data, the network device sends the DMRS to the first terminal device with the above transmit power, so that the first terminal can be implemented. The signal-to-noise ratio of the DMRS received by the device is improved, which improves the channel estimation performance. If the second information or the third information indicates that time-frequency resources corresponding to at least one second DMRS port number are used for data transmission between the first terminal device and the network device, resource waste is avoided.
  • the time domain length of data transmission between the first terminal device and the network device is greater than 2 OFDM symbols.
  • the data is carried in the PDSCH.
  • the data transmission is a single transmission or a data transmission between the network device and the first terminal device.
  • the network device configuration information indicates the multi-antenna working mode of the first terminal device and at least one second DMRS Use of time-frequency resources corresponding to the port number.
  • the multi-antenna working mode of the first terminal device may be SU-MIMO or MU-MIMO.
  • the first terminal device may assume that at least one The time-frequency resource corresponding to the second DMRS port number is not used for data transmission, and only data between the network device and the first terminal device is transmitted on the given time-frequency resource.
  • the multi-antenna working mode of the first terminal device is SU -MIMO, in this way, the data transmission efficiency between the first terminal device and the network device can be guaranteed when the length of the data transmission time domain is small.
  • the first terminal device sends seventh information to the network device, which is used to indicate at least one of the following:
  • the application scenario of the first terminal device includes at least one of an industrial wireless sensor network (Industry Wireless Sensor Network, IWSN) and a video surveillance (Video surveillance);
  • the type of the first terminal device includes a reduced capability (Reduced Capability, REDCAP) terminal device, for example, at least one of industrial wireless sensors, video surveillance cameras or wearable devices;
  • the capability information of the first terminal device includes that the first terminal device supports multi-antenna working modes as SU-MIMO and/or MU-MIMO.
  • the first terminal device reports the information so that the network device configures the type of the first terminal device or the capability information of the first terminal device to indicate the multi-antenna working mode according to the application scenario of the first terminal device.
  • information which solves the increased power consumption and resources caused by the fact that the first terminal device always works in the MU-MIMO mode by default in the prior art, and the working mode of the first terminal device may not match the actually applicable working mode of the first terminal device. waste problem.
  • the application scenario corresponds to a specific service type. Therefore, the network device can determine the multi-antenna working mode indicated by the configuration information according to the application scenario of the first terminal device.
  • the application scenario reported by the first terminal device at this time is an application scenario corresponding to a specific service type.
  • the IWSN and/or video surveillance application scenario further includes periodic services and aperiodic services
  • the application scenario reported by the first terminal device is the IWSN and/or video surveillance corresponding to the periodic service, or the first The application scenario reported by the terminal device is IWSN and/or video surveillance corresponding to aperiodic services.
  • the first terminal device is in a radio resource control connected state (RRC connected state).
  • RRC connected state radio resource control connected state
  • the present application provides a communication method, and the execution body of the method may be a network device, or a chip or an integrated circuit in the network device.
  • the following description takes the execution subject being a network device as an example.
  • the method includes: the network device sends first information to the first terminal device, where the first information is used to indicate a first multi-antenna working mode of the first terminal device; the network device sends second information to the first terminal device, the second information is used for In order to indicate at least one first DMRS port number corresponding to the second multi-antenna working mode of the first terminal device and the number N of DMRS CDM groups, the N DMRS CDM groups include the at least one first DMRS port number, the N is a positive integer.
  • the network device indicates the multi-antenna working mode of the first terminal by configuring the first information and the second information.
  • the problem of increased power consumption and resource waste caused by the first terminal device always working in the MU-MIMO mode by default in the prior art is solved.
  • the first information is carried in high layer signaling, and the high layer signaling may be RRC signaling or MAC signaling; the second information is carried in physical layer signaling, such as DCI.
  • the first terminal device when the first terminal device performs a certain service in a static or semi-static scheduling manner of the network device, and/or the first terminal device is applied to a static or semi-static scenario, for example, an industrial wireless sensor network Periodic business scenarios in (Industry Wireless Sensor Network, IWSN) and/or video surveillance (Video surveillance), in this case, the working mode of the first terminal device generally does not change, and the network device indicates the first terminal device through high-level signaling.
  • IWSN Industrial Wireless Sensor Network
  • Video surveillance Video surveillance
  • a multi-antenna working mode of a terminal device when the first terminal device executes services through dynamic scheduling of network devices, the first terminal device is applied to the dynamic scene, and/or, the first terminal device is applied to the terminal device in the dynamic scene Scenarios of paired work, for example, aperiodic business scenarios in Industrial Wireless Sensor Network (IWSN) and/or video surveillance (Video surveillance), in this case, the working mode of the first terminal device may be Changes frequently occur, and the network device indicates the multi-antenna working mode of the first terminal device through physical layer signaling, so as to flexibly realize dynamic switching of the multi-antenna working mode of the first terminal device.
  • IWSN Industrial Wireless Sensor Network
  • Video surveillance Video surveillance
  • the network device performs the multi-antenna working mode of the first terminal device through the combination of high-level signaling and physical layer signaling. indication, so that the multi-antenna working mode of the first terminal device can be flexibly configured.
  • the first multi-antenna working mode is configured for the first terminal device by using the first information. If the first multi-antenna working mode is suitable for the first terminal device at this time, the network device configures the second multi-antenna working mode according to the first multi-antenna working mode. information, then the first terminal device works in the first working mode; if the first multi-antenna working mode is not applicable to the first terminal device, the network device can use the second information to indicate that the first multi-antenna working mode is different from the first multi-antenna working mode. Two multi-antenna working modes, the first terminal device realizes switching of the multi-antenna working modes.
  • the network device configures the first terminal device from the multi-antenna operation mode indicated by the first information.
  • the second information is adjusted to configure the second information according to the multi-antenna working mode applicable to the first terminal device, and the first terminal device switches the multi-antenna working mode according to the second information.
  • the N DMRS CDM groups include at least one first DMRS port number and at least one second DMRS port number.
  • the at least one second DMRS port number is different from the at least one first DMRS port number.
  • the N DMRS CDM groups are composed of at least one first DMRS port number and at least one second DMRS port number; or, the N DMRS CDM groups are composed of at least one first DMRS port number and at least one second DMRS port number, and Other port numbers can be included.
  • the first information indicates SU-MIMO, and the second information indicates MU-MIMO; or, the first information indicates MU-MIMO, and the second information indicates MU-MIMO.
  • the network device determines that at least one second DMRS port number is allocated to the second terminal device.
  • the second terminal device is at least one of the remaining terminal devices other than the first terminal device in the communication system where the first terminal is located.
  • the first information indicates SU-MIMO, and the second information indicates SU-MIMO; or, the first information indicates MU-MIMO, and the second information indicates SU-MIMO.
  • the network device determines that at least one second DMRS port number is not allocated to the second terminal device, and the second terminal device is the first terminal device in the communication system where the first terminal is located except the first terminal device. at least one of the remaining terminal devices outside.
  • the first terminal device determines that the multi-antenna working mode is SU-MIMO according to the first information and the second information sent by the network device, which solves the problem that in the prior art, the first terminal device still has problems in the single-port transmission mode.
  • the problem of increased power consumption and waste of resources caused by working in MU-MIMO mode by default.
  • the network device determines that at least one second DMRS port number is not allocated to the second terminal device, and when the number N of DMRS CDM groups is greater than 1, the second information is further used to indicate at least one second DMRS port number
  • the time-frequency resource corresponding to the port number is not used for data transmission, or is used for data transmission between the first terminal device and the network device; or, if the second information is not used to indicate the use of the above-mentioned time-frequency resource, the method further includes :
  • the network device may also send third information to the first terminal device, where the third information is used to indicate that the time-frequency resource corresponding to at least one second DMRS port number is not used for data transmission, or is used between the first terminal device and the network device data transmission.
  • the DMRS of the first terminal device can obtain the benefit of power enhancement, which is helpful for improving the Channel estimation performance. If the transmit power of the network device remains unchanged, and the time-frequency resource corresponding to at least one second DMRS port number does not transmit data, the network device sends the DMRS to the first terminal device with the above transmit power, so that the first terminal can be implemented. The signal-to-noise ratio of the DMRS received by the device is improved, which improves the channel estimation performance. If the second information or the third information indicates that time-frequency resources corresponding to at least one second DMRS port number are used for data transmission between the first terminal device and the network device, resource waste is avoided.
  • the time domain length of data transmission between the first terminal device and the network device is greater than 2 OFDM symbols, and specifically, the data is carried in the PDSCH.
  • the data transmission is a single transmission or a data transmission between the network device and the first terminal device.
  • the network device configuration information indicates the multi-antenna working mode of the first terminal device and at least one second DMRS Use of time-frequency resources corresponding to the port number.
  • the multi-antenna working mode configured by the network device of the first terminal device may be SU-MIMO or MU-MIMO.
  • the first terminal device may assume that at least one The time-frequency resource corresponding to the second DMRS port number is not used for data transmission.
  • the network device configures the multi-antenna operation of the first terminal device.
  • the mode is SU-MIMO, which can ensure the data transmission efficiency between the first terminal device and the network device when the length of the data transmission time domain is small.
  • the network device receives fourth information from the first terminal device, which is used to indicate at least one of the following:
  • the application scenario of the first terminal device includes at least one of an industrial wireless sensor network (Industry Wireless Sensor Network, IWSN) and a video surveillance (Video surveillance);
  • the type of the first terminal device includes a reduced capability (Reduced Capability, REDCAP) terminal device, for example, at least one of industrial wireless sensors, video surveillance cameras or wearable devices;
  • the capability information of the first terminal device includes that the first terminal device supports multi-antenna working modes as SU-MIMO and/or MU-MIMO.
  • the network device configures the information used to indicate the multi-antenna working mode according to the application scenario of the first terminal device, the type of the first terminal device or the capability information of the first terminal device, which solves the problem in the prior art.
  • a terminal device always works in the MU-MIMO mode by default, and the working mode of the first terminal device may not match the actually applicable working mode of the first terminal device, resulting in increased power consumption and waste of resources.
  • the application scenario corresponds to a specific service type. Therefore, the network device can determine the multi-antenna working mode indicated by the configuration information according to the application scenario of the first terminal device.
  • the application scenario reported by the first terminal device at this time is an application scenario corresponding to a specific service type.
  • the IWSN and/or video surveillance application scenario further includes periodic services and aperiodic services
  • the application scenario reported by the first terminal device is the IWSN and/or video surveillance corresponding to the periodic service, or the first The application scenario reported by the terminal device is IWSN and/or video surveillance corresponding to aperiodic services.
  • the present application provides a communication method, and the execution body of the method may be a network device, or a chip or an integrated circuit in the network device.
  • the following description takes the execution subject being a network device as an example.
  • the method includes: the network device sends fifth information to the first terminal device, where the fifth information is used to indicate that the multi-antenna working mode of the first terminal device is SU-MIMO or MU-MIMO.
  • the fifth information is further used to indicate at least one first DMRS port number and the number N of DMRS CDM groups corresponding to the multi-antenna working mode of the first terminal device, and the N DMRS CDM groups include the at least one first DMRS CDM group.
  • a DMRS port number, the N is a positive integer.
  • the network device indicates the multi-antenna working mode of the first terminal by configuring the fifth information.
  • the problem of increased power consumption and resource waste caused by the first terminal device always working in the MU-MIMO mode by default in the prior art is solved.
  • the fifth information is carried in the DCI.
  • the network device indicates the multi-antenna working mode of the first terminal device through the downlink control information, the network device simultaneously indicates the multi-antenna working mode of the first terminal device through the fifth information, and the first terminal device corresponds to at least Whether a first DMRS port number and at least one second DMRS port number are allocated to the second terminal device, the network device can conveniently instruct the first terminal device to switch the multi-antenna working mode.
  • the N DMRS CDM groups include at least one first DMRS port number and at least one second DMRS port number.
  • the at least one second DMRS port number is different from the at least one first DMRS port number.
  • the N DMRS CDM groups are composed of at least one first DMRS port number and at least one second DMRS port number; or, the N DMRS CDM groups are composed of at least one first DMRS port number and at least one second DMRS port number, and Other port numbers can be included.
  • the fifth information indicates that the multi-antenna working mode of the first terminal device is MU-MIMO, and the network device determines that at least one second DMRS port number is allocated to the second terminal device.
  • the second terminal device is at least one of the remaining terminal devices other than the first terminal device in the communication system where the first terminal device is located.
  • the fifth information indicates that the multi-antenna working mode of the first terminal device is SU-MIMO, and the network device determines that at least one second DMRS port number is not allocated to the second terminal device.
  • the second terminal device is at least one of the remaining terminal devices other than the first terminal device in the communication system where the first terminal is located.
  • the network device configures the fifth information to indicate that the multi-antenna working mode of the first terminal device is SU-MIMO, and accordingly, the first terminal device determines, according to the fifth information, that the multi-antenna working mode is SU-MIMO,
  • the problem of increased power consumption and resource waste caused by the first terminal device still working in the MU-MIMO mode by default in the single-port transmission mode in the prior art is solved.
  • the network device determines that at least one second DMRS port number is not allocated to the second terminal device, and when the number N of DMRS CDM groups is greater than 1, the fifth information is further used to indicate at least one second DMRS port number
  • the time-frequency resource corresponding to the port number is not used for data transmission, or is used for data transmission between the first terminal device and the network device; or, if the fifth information is not used to indicate the use of the above-mentioned time-frequency resource, the method further includes :
  • the network device can also send sixth information to the first terminal device, where the sixth information is used to indicate that the time-frequency resource corresponding to at least one second DMRS port number is not used for data transmission, or is used between the first terminal device and the network device data transmission.
  • the DMRS of the first terminal device can obtain the benefit of power enhancement, which is helpful for improving the Channel estimation performance. If the transmit power of the network device remains unchanged, and the time-frequency resource corresponding to at least one second DMRS port number does not transmit data, the network device sends the DMRS to the first terminal device with the above transmit power, so that the first terminal can be implemented. The signal-to-noise ratio of the DMRS received by the device is improved, which improves the channel estimation performance. If the second information or the third information indicates that time-frequency resources corresponding to at least one second DMRS port number are used for data transmission between the first terminal device and the network device, resource waste is avoided.
  • the time domain length of data transmission between the first terminal device and the network device is greater than 2 OFDM symbols, and specifically, the data is carried in the PDSCH.
  • the data transmission is a single transmission or a data transmission between the network device and the first terminal device.
  • the network device configuration information indicates the multi-antenna working mode of the first terminal device and at least one second DMRS Use of time-frequency resources corresponding to the port number.
  • the multi-antenna working mode configured by the network device of the first terminal device may be SU-MIMO or MU-MIMO.
  • the first terminal device may assume that at least one The time-frequency resource corresponding to the second DMRS port number is not used for data transmission.
  • the network device configures the multi-antenna operation of the first terminal device.
  • the mode is SU-MIMO, which can ensure the data transmission efficiency between the first terminal device and the network device when the length of the data transmission time domain is small.
  • the network device receives seventh information from the first terminal device, which is used to indicate at least one of the following:
  • the application scenario of the first terminal device includes at least one of an industrial wireless sensor network (Industry Wireless Sensor Network, IWSN) and a video surveillance (Video surveillance);
  • the type of the first terminal device includes a reduced capability (Reduced Capability, REDCAP) terminal device, for example, at least one of industrial wireless sensors, video surveillance cameras or wearable devices;
  • the capability information of the first terminal device includes that the first terminal device supports multi-antenna working modes as SU-MIMO and/or MU-MIMO.
  • the network device configures the information used to indicate the multi-antenna working mode according to the application scenario of the first terminal, the type of the first terminal or the capability information of the first terminal, which solves the problem of the first terminal device in the prior art. It always works in the MU-MIMO mode by default, and the working mode of the first terminal device may not match the actually applicable working mode of the first terminal device, resulting in increased power consumption and waste of resources. It should be noted that, under normal circumstances, the application scenario corresponds to a specific service type. Therefore, the network device can determine the multi-antenna working mode indicated by the configuration information according to the application scenario of the first terminal device.
  • the application scenario reported by the first terminal device at this time is an application scenario corresponding to a specific service type.
  • the IWSN and/or video surveillance application scenario further includes periodic services and aperiodic services
  • the application scenario reported by the first terminal device is the IWSN and/or video surveillance corresponding to the periodic service, or the first The application scenario reported by the terminal device is IWSN and/or video surveillance corresponding to aperiodic services.
  • the communication apparatus may be the first terminal device in the above method embodiments, or a chip or an integrated circuit provided in the first terminal device.
  • the device includes at least one processor and an interface circuit, and optionally, a memory.
  • the memory is used for storing computer programs or instructions
  • the processor is coupled with the memory and the interface circuit.
  • the interface circuit is used to provide at least one processor with input or output of instructions and/or data, and when the at least one processor executes the above-mentioned instructions, the apparatus enables the apparatus to implement the function of the first terminal device in the above-mentioned method.
  • At least one processor is configured to perform the function of determining the multi-antenna working mode in the above method.
  • the interface circuit is configured to perform the function of the first terminal device receiving the first information and the second information from the network device, or the interface circuit is configured to perform the function of the first terminal device receiving the fifth information from the network device.
  • the interface circuit is further configured to perform a function of sending the fourth information to the network device by the first terminal device, or to perform a function of sending the seventh information to the network device by the first terminal device.
  • the communication apparatus may be the network device in the above method embodiments, or a chip or an integrated circuit provided in the network device.
  • the device includes at least one processor and an interface circuit, and optionally, a memory.
  • the memory is used for storing computer programs or instructions
  • the processor is coupled with the memory and the interface circuit.
  • the interface circuit is used to provide at least one processor with input or output of instructions and/or data, and when the at least one processor executes the above-mentioned instructions, the apparatus enables the apparatus to implement the function of the network device in the above-mentioned method.
  • At least one processor is configured to perform the function of configuring the multi-antenna working mode in the foregoing method.
  • the interface circuit is configured to perform the function of the network device sending the first information and the second information to the first terminal device, or the interface circuit is configured to perform the function of the network device sending the fifth information to the first terminal device.
  • the interface circuit is further configured to perform a function of the network device receiving fourth information sent from the first terminal device, or performing a function of the network device receiving seventh information sent from the first terminal device.
  • the present application provides a communication device, the communication device having the function of implementing the behavior in the method example of the first aspect or the third aspect.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication apparatus includes: a receiving module, configured to receive first information and second information from a network device, where the first information is used to indicate the first information of the first terminal device. Antenna working mode, the second information is used to indicate the second multi-antenna working mode of the first terminal device; or, used to receive fifth information from the network device, the fifth information is used to indicate the first terminal device. Multi-antenna working mode.
  • a processing module configured to determine that the multi-antenna working mode of the first terminal device is SU-MIMO or MU-MIMO.
  • a sending module configured to send fourth information to the network device, where the fourth information is used to indicate the application scenario of the first terminal device, the type of the first terminal device, and/or the capability information of the first terminal device;
  • the seventh information is sent to the network device, where the seventh information is used to indicate the application scenario of the first terminal device, the type of the first terminal device, and/or the capability information of the first terminal device.
  • the present application provides a communication device, the communication device having the function of implementing the behavior in the method example of the third aspect or the fourth aspect.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication apparatus includes: a sending module, configured to send first information and second information to the first terminal device, where the first information is used to indicate the first information of the first terminal device a multi-antenna working mode, where the second information is used to indicate the second multi-antenna working mode of the first terminal device; or, is used to send fifth information to the first terminal device, where the fifth information is used to indicate the first terminal The device's multi-antenna operating mode.
  • a processing module configured to determine that the multi-antenna working mode of the first terminal device indicated by the configuration information is SU-MIMO or MU-MIMO.
  • a receiving module configured to receive fourth information from the first terminal device, where the fourth information is used to indicate the application scenario of the first terminal device, the type of the first terminal device, and/or the capability information of the first terminal device; Or, it is used to receive seventh information from the first terminal device, where the seventh information is used to indicate the application scenario of the first terminal device, the type of the first terminal device, and/or the capability information of the first terminal device.
  • a computer program product includes: computer program code, when the computer program code is executed by at least one processor, the method in the above aspects is executed by the first terminal device be executed.
  • a computer program product comprising: computer program code, when the computer program code is executed by at least one processor, the method performed by the network device in the above aspects is executed .
  • the present application provides a chip system
  • the chip system includes at least one processor and an interface circuit, and the interface circuit is configured to provide input or output of instructions and/or data for the at least one processor, When the at least one processor executes the above instructions, the chip system is configured to implement the functions of the first terminal device in the methods of the above aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a chip system
  • the chip system includes at least one processor and an interface circuit, where the interface circuit is configured to provide input or output of instructions and/or data for the at least one processor, When the at least one processor executes the above instructions, the chip system is configured to implement the functions of the network device in the methods of the above aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • a thirteenth aspect provides a computer-readable storage medium for storing a computer program, the computer program comprising instructions for performing the method in any of the possible implementations of the first aspect or the second aspect.
  • a fourteenth aspect provides a computer-readable storage medium for storing a computer program, the computer program comprising instructions for performing the method in any of the possible implementations of the third aspect or the fourth aspect.
  • a fifteenth aspect provides a communication system, where the communication system includes the network device and the terminal device involved in any one of the foregoing aspects.
  • the solution provided by the present application can flexibly configure the multi-antenna working mode of the first terminal device.
  • the MU-MIMO mode can be configured to ensure the user data transmission rate and improve the system transmission efficiency.
  • the number of terminal devices in the communication system where the first terminal device is located is small
  • the SU-MIMO mode is configured, the data transmission performance between the first terminal device and the network device can be ensured, and the complexity of the first terminal device can be reduced.
  • FIG. 1 is a schematic diagram of a communication scenario provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the hardware structure of a network device and a communication device according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a method for indicating a multi-antenna working mode according to an embodiment of the present application
  • FIG. 4 is a schematic flowchart of another method for indicating a multi-antenna working mode provided by an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a chip according to an embodiment of the present application.
  • SU-MIMO Single User-Multiple Input Multiple Output
  • SU-MIMO Multiple User-Multiple Input Multiple Output
  • each terminal device corresponds to one or more data streams.
  • DCI format 1_1 and DCI format 1_0 are two DCI formats related to DCI and physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) transmission.
  • PDSCH Physical Downlink Shared Channel
  • the DCI with the format of 1-1 may indicate the port information of the DMRS, and the port information includes the number of demodulation reference signal (Demodulation Reference Signal, DMRS) code division multiplexing (Code Division Multiplexing, CDM) groups without data and the DMRS port number.
  • the number of symbols of the pre-DMRS configured by the network device is 1 or 2, and the number of symbols of the pre-DMRS is the number of OFDM symbols occupied by the DMRS.
  • the DMRS type configured by the network device further includes the first type of DMRS and the second type of DMRS.
  • each DMRS CDM group includes a plurality of DMRS ports, and the specific situation in the prior art can be expressed as follows:
  • each DMRS CDM group includes two DMRS ports, and each DMRS port number corresponds to three time-frequency resource units.
  • each DMRS CDM group contains 12 time-frequency resource units
  • each DMRS CDM group contains four DMRS ports
  • each DMRS port number corresponds to three time-frequency resource units.
  • the OFDM symbols occupied by the DMRS support 3 DMRS CDM groups.
  • the time-frequency resource block corresponding to each DMRS CDM group contains 4 time-frequency resource units, each DMRS CDM group contains two DMRS ports, and each DMRS port number corresponds to 2 time-frequency resource units.
  • each DMRS CDM group contains 8 time-frequency resource units
  • each DMRS CDM group includes four DMRS ports
  • each DMRS port number corresponds to 2 time-frequency resource units.
  • the NR communication system can transmit at most two codewords during one data transmission.
  • Table 1 shows that when the NR communication system performs data transmission, the network equipment is configured to use one codeword transmission, the number of pre-DMRS symbols is 1, and the In the case of one type of DMRS, the format is the status table of the DMRS port number indicated by the DCI of 1_1.
  • Each DMRS CDM group can contain two DMRS port numbers, and N DMRS CDM groups can contain 2N DMRS port numbers. If the port number indicated in the state table is called the first DMRS port number, the relationship between the number N of DMRS CDM groups and the first DMRS port number is one of the following four cases:
  • the number N of DMRS CDM groups is 1, and the first DMRS port number is 1;
  • DMRS CDM group number N is 1, and the first DMRS port number is multiple;
  • the number N of DMRS CDM groups is greater than 1, and the first DMRS port number is 1;
  • the number N of DMRS CDM groups is greater than 1, and the first DMRS port number is multiple.
  • the DCI with format 1_0 does not explicitly indicate the DMRS CDM group and DMRS port number.
  • the terminal device receives the DCI in the format 1_0 and assumes that the number of DMRS CDM groups is 1; when the duration of the PDSCH scheduled by the DCI in the format 1_0 is more than two OFDM symbols When the number of OFDM symbols is 1, the terminal device receives the DCI in the format 1_0, and assumes that the number of DMRS CDM groups is 2.
  • DMRS CDM groups For single-port transmission, only one DMRS CDM group and one DMRS port need to be configured by the network device, but for this determination method, when the duration of the PDSCH received by the terminal device exceeds two OFDM symbols, the number of DMRS CDM groups determined by the terminal device It is still 2. Although there is no assumption of MU-MIMO, two DMRS CDM groups need to correspond to two time-frequency resource blocks, which will not only waste resources, but also cause problems in the rate matching of data transmission between network equipment and terminal equipment.
  • REDCAP Reduced Capacity
  • NR New Radio
  • the technical solution provided in this application can be applied to various communication systems, for example, it can be applied to a fifth generation (5th generation mobile networks, 5G) communication system, a future evolution system or a variety of communication fusion systems.
  • the technical solutions provided in this application can be applied to various application scenarios of the above communication system, such as Industrial Wireless Sensor Network (IWSN) and Video Surveillance.
  • the technical solutions that can be provided in this application can support multiple types of terminal equipment, for example, REDCAP terminal equipment. Including, industrial wireless sensors, video surveillance cameras, wearable devices (smart watches), etc.
  • words such as “first” and “second” are only used for the purpose of distinguishing and describing, and cannot be understood as indicating or implying relative importance, nor can they be understood as indicating or implying order.
  • “At least one” means one or more
  • “plurality” means two or more.
  • “And/or”, which describes the association relationship of the associated objects indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an "or” relationship.
  • At least one item(s) below or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one (a) of a, b or c may represent: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c Can be single or multiple.
  • the embodiments of the present application may be applied to a communication system as shown in FIG. 1 , where the system includes at least one network device 10 and at least one communication device 20 .
  • the communication device 30 is at least one of other communication devices other than the communication device 20 in the communication system.
  • the network device 10 may be an access network device, and the access network device may also be referred to as a radio access network (radio access network, RAN) device, which is a device that provides a wireless communication function for a communication device.
  • Access network equipment includes, but is not limited to, the next generation base station (generation nodeB, gNB), evolved node B (evolved node B, eNB), baseband unit (baseband unit, BBU) in 5G, transmitting and receiving points (transmitting and receiving), for example, but not limited to: point, TRP), transmitting point (transmitting point, TP), the base station in the future mobile communication system or the access point in the WiFi system, etc.
  • the application scenarios of the network device 10 include, but are not limited to, industrial wireless sensor networks (Industry Wireless Sensor Network, IWSN), video surveillance (Video surveillance), and/or application scenarios of wearable devices, and the like.
  • the services performed by the network device 10 include, but are not limited to, periodic services and aperiodic services in IWSN and/or video surveillance (Video surveillance) scenarios, enhanced mobile bandwidth (Enhanced Mobile Broadband, eMBB), high-reliability and low-latency communication ( Ultra-reliable low-latency communication, URLLC) and Massive Machine-type Communications (mMTC), etc.
  • the communication device 20 provides voice and/or data connection services for the user, and can be, for example, a terminal device (Terminal Equipment), also referred to as a user equipment (User Equipment, UE), a user terminal (User Terminal, UT), a mobile terminal ( Mobile Terminal, MT), mobile station (Mobile Station, MS), etc., can communicate with one or more core networks via a radio access network (Radio Access Network, RAN).
  • a terminal device can be a mobile phone (or called a "cellular" phone) or a computer with a mobile terminal, etc. Exchange voice and/or data with the radio access network.
  • the application scenarios of the communication device 20 include but are not limited to industrial wireless sensor networks (Industry Wireless Sensor Network, IWSN), video surveillance (Video surveillance) and/or application scenarios of wearable devices, etc.
  • the types of communication devices 20 include but are not limited to Limited to wearable devices.
  • the services performed by the communication device 20 include, but are not limited to, periodic services and aperiodic services in IWSN and/or video surveillance (Video surveillance) scenarios, enhanced mobile bandwidth (Enhanced Mobile Broadband, eMBB), high-reliability and low-latency communication ( Ultra-reliable low-latency communication, URLLC) and Massive Machine-type Communications (mMTC), etc.
  • FIG. 2 is a schematic diagram of a hardware structure of a network device and a communication device according to an embodiment of the present application.
  • the network device 10 includes at least one processor 101 , at least one memory 102 , at least one transceiver 103 and at least one network interface 104 .
  • the processor 101, the memory 102, the transceiver 103 and the network interface 104 are connected by a bus.
  • the network interface 104 is used to connect with the core network device through a link (such as the S1 interface), or connect with the network interface of other access network devices through a wired or wireless link (such as the X2 interface) (not shown in the figure). ), which is not specifically limited in the embodiments of the present application.
  • the processor 101 may be a general-purpose central processing unit (Central Processing Unit, CPU), a microprocessor, an application-specific integrated circuit (Application-Specific Integrated Circuit, ASIC), or one or more processors for controlling the execution of the programs of the present application. integrated circuit.
  • the processor 201 may also include multiple CPUs, and the processor 201 may be a single-CPU processor or a multi-CPU processor.
  • a processor herein may refer to one or more devices, circuits, or processing cores for processing data (eg, computer program instructions).
  • Memory 102 may be Read-Only Memory (ROM) or other types of static storage devices that can store static information and instructions, Random Access Memory (RAM), or other types of information and instructions It can also be an electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, optical disk storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being executed by a computer Access any other medium without limitation.
  • the memory 102 may exist independently and be connected to the processor 101 through a bus.
  • the memory 102 may also be integrated with the processor 101 .
  • the memory 102 is used for storing the application program code for executing the solution of the present application, and the execution is controlled by the processor 101 .
  • the processor 101 is configured to execute the computer program code stored in the memory 102, thereby implementing the method for indicating the multi-antenna working mode described in the embodiments of the present application.
  • the transceiver 103 can use any transceiver-like device for communicating with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), Wireless Local Area Networks (WLAN), etc. .
  • the transceiver 203 includes a transmitter Tx and a receiver Rx.
  • the communication device 20 includes at least one processor 201 , at least one memory 202 , and at least one transceiver 203 , and optionally, the communication device 20 may further include an output device 204 and an input device 205 .
  • the processor 201, the memory 202 and the transceiver 203 are connected by a bus.
  • the description of the processor 201 , the memory 202 and the transceiver 203 reference may be made to the description of the processor 101 , the memory 102 and the transceiver 103 in the network device 10 , and details are not repeated here.
  • the output device 204 communicates with the processor 201 and can display information in a variety of ways.
  • the output device 204 may be a Liquid Crystal Display (LCD), a Light Emitting Diode (LED) display device, a Cathode Ray Tube (CRT) display device, or a projector (projector) Wait.
  • the input device 205 is in communication with the processor 201 and can receive user input in a variety of ways.
  • the input device 205 may be a mouse, a keyboard, a touch screen device or a sensing device, or the like.
  • the present application provides a method for indicating a multi-antenna working mode, which is described below by taking the communication device being a terminal device as an example.
  • the network device sends configuration information to the first terminal device, which is used to indicate the multi-antenna working mode of the first terminal device, and the first terminal device determines the multi-antenna working mode according to the indication information configured by the network device, thereby solving the problem that the terminal device always works in the default mode.
  • the problem of increased power consumption and waste of resources caused by the MU-MIMO mode is described below by taking the communication device being a terminal device as an example.
  • FIG. 3 is a schematic flowchart of a method for indicating a multi-antenna working mode provided by the present application. The method includes steps 300-306.
  • the network device determines the first multi-antenna working mode.
  • the network device may determine the first multi-antenna working mode according to the application scenario of the first terminal device, the device type of the first terminal device, and/or the capability information of the first terminal device; or, the network device may determine the first multi-antenna working mode according to Predefined or preconfigured to determine the first multi-antenna working mode.
  • the network device sends the first information to the first terminal device, and correspondingly, the first terminal device receives the first information from the network device.
  • the first information is used to indicate the first multi-antenna working mode of the first terminal device.
  • the first information is carried in radio resource control (Radio Resource Control, RRC) signaling or media access control (Media Access Control, MAC) signaling.
  • RRC Radio Resource Control
  • MAC Media Access Control
  • the first information indicates that the first multi-antenna operation mode of the first terminal device is SU-MIMO, and the first terminal device receives the first information and determines that the multi-antenna operation mode is SU-MIMO.
  • the network device uses the first information to indicate.
  • the multi-antenna working mode of the first terminal device is MU-MIMO, that is, if the first multi-antenna working mode is not indicated by the above RRC signaling or MAC signaling, the terminal device works in the MU-MIMO mode by default.
  • the first information indicates that the first multi-antenna working mode of the first terminal device is SU-MIMO or MU-MIMO. That is to say, in this optional design, there is no default multi-antenna operation mode, and the first terminal device determines the first multi-antenna operation mode according to the indication of the first information.
  • the network device determines the second multi-antenna working mode.
  • the network device determines the second multi-antenna working mode according to the application scenario of the first terminal device, the device type of the first terminal device, and/or the capability information of the first terminal device; Pre-configured to determine the second multi-antenna working mode.
  • the network device sends second information to the first terminal device, correspondingly, the first terminal device receives the second information from the network device, and the second information is used to indicate that the multi-antenna working mode of the first terminal device is SU- MIMO or MU-MIMO. Further, the second information is also used to indicate at least one first demodulation reference signal DMRS port number corresponding to the second multi-antenna working mode of the first terminal device and the number N of the demodulation reference signal DMRS code division multiplexing CDM groups , the N DMRS CDM groups include the at least one first DMRS port number, and the N is a positive integer.
  • the second information indicates that the second multi-antenna working mode of the first terminal device is SU-MIMO or MU-MIMO.
  • the second information is carried in downlink control information, and the format of the downlink control information may be DCI format 1_1.
  • the N DMRS CDM groups include at least one first DMRS port number and at least one second DMRS port number.
  • the at least one second DMRS port number is different from the at least one first DMRS port number.
  • the N DMRS CDM groups are composed of at least one first DMRS port number and at least one second DMRS port number; or, the N DMRS CDM groups are composed of at least one first DMRS port number and at least one second DMRS port number, and Other port numbers can be included.
  • the second information may be carried by an indication field in the downlink control information.
  • the indication field may contain 4 bits. The second information indicates different information to the first terminal device through different values of the indication field.
  • the corresponding relationship is predefined or configured.
  • the corresponding relationship is embodied in the form of a table below, but the present application does not limit the specific embodiment form of the corresponding relationship.
  • the second information is carried by a 4-bit indication field, corresponding to 16 kinds of information values.
  • the information values 0-11 indicate the MU-MIMO working mode to the first terminal device, which has better compatibility with the prior art; the information values 12 and 13 indicate the SU-MIMO working mode to the first terminal device.
  • Information values 14 and 15 are reserved and do not indicate any multi-antenna working mode for the time being.
  • the information value 12 in Table 2 indicates the SU-MIMO working mode
  • the number of DMRS CDM groups it indicates may be 1, and the DMRS port number that it indicates may be 0;
  • the information value 13 indicates the SU-MIMO working mode , the number of DMRS CDM groups indicated by it may be 2, and the DMRS port number indicated by it may be 0, 1.
  • Single-antenna port terminal equipment can transmit data with network equipment through one DMRS port, while dual-antenna port terminal equipment can perform data transmission with network equipment through two DMRS ports.
  • the information value 12 may be used to indicate the SU-MIMO mode of the single-antenna port terminal device
  • the information value 13 may be used to indicate the SU-MIMO mode of the dual-antenna port terminal device.
  • the first terminal device determines that the multi-antenna working mode is the second multi-antenna working mode.
  • the DMRS is a signal type known to the network device and the terminal device and is used for channel estimation. It can be understood that the DMRS is not valid data.
  • the PDSCH in addition to the DMRS, there is also data that the terminal device needs to demodulate the information sent by the network device to obtain it. This part of the data can be understood as valid data, that is, the PDSCH contains DMRS and valid data.
  • the first terminal device when the first terminal device works in MU-MIMO, the first terminal device receives downlink control information from the network device, and determines at least one second DMRS port number to allocate to the second terminal device. At this time, there is a DMRS in the time-frequency resource corresponding to at least one second DMRS port number.
  • the first terminal device demodulates the valid data in the PDSCH sent by the network device, the DMRS corresponding to the second terminal device and the data transmitted by at least one second DMRS port corresponding to the second terminal device need to be processed as interference signals. , at this time, the power consumption and complexity of the first terminal device are relatively high.
  • the first terminal device When the first terminal device works in SU-MIMO, the first terminal device receives downlink control information from the network device and determines that at least one second DMRS port number is not allocated to the second terminal device. At this time, there is no DMRS in the time-frequency resources corresponding to the at least one second DMRS port number, so there is no DMRS corresponding to the second terminal device and at least one corresponding to the second terminal device in the MU-MIMO mode by the first terminal device. In the step of processing the data transmitted by a second DMRS port as an interference signal, the power consumption and complexity of the first terminal device will be reduced at this time.
  • Example 1 the first multi-antenna operation mode indicated by the first information is SU-MIMO, and the second multi-antenna operation mode indicated by the second information is MU-MIMO.
  • the first terminal device receives the first information and the second information
  • the The multi-antenna working mode of a terminal device is MU-MIMO, and at least one second DMRS port number is allocated to the second terminal device.
  • the first multi-antenna operation mode indicated by the first information is SU-MIMO
  • the second multi-antenna operation mode indicated by the second information is also SU-MIMO.
  • the multi-antenna working mode of the first terminal device is SU-MIMO.
  • At least one second DMRS port number is not assigned to the second terminal device.
  • Example 3 The first multi-antenna working mode indicated by the first information is MU-MIMO, and the second multi-antenna working mode indicated by the second information is also MU-MIMO. After receiving the first information and the second information, the first terminal device, The multi-antenna working mode of the first terminal device is MU-MIMO, and at least one second DMRS port number is allocated to the second terminal device.
  • Example 4 The first multi-antenna working mode indicated by the first information is MU-MIMO, and the second multi-antenna working mode indicated by the second information is SU-MIMO. After the first terminal device receives the first information and the second information, the The multi-antenna working mode of a terminal device is SU-MIMO, and at least one second DMRS port number is not allocated to the second terminal device.
  • the network device sends the eighth information to the first terminal device.
  • the eighth information is used to indicate a third multi-antenna operation mode of the first terminal device, and the eighth information is further used to indicate at least one corresponding first demodulation reference signal in the third multi-antenna operation mode DMRS port number and the number N1 of demodulation reference signal DMRS code division multiplexing CDM groups, the N1 DMRS CDM groups include the at least one first DMRS port number, and the N1 is a positive integer.
  • the eighth information indicates that the third multi-antenna working mode of the first terminal device is SU-MIMO or MU-MIMO.
  • the eighth information is carried in downlink control information, and the format of the downlink control information may be DCI format 1_1.
  • the N1 DMRS CDM groups include at least one first DMRS port number and at least one second DMRS port number. At least one first DMRS port number is different from at least one second DMRS port number.
  • N1 DMRS CDM groups consist of at least one first DMRS port number and at least one second DMRS port number; alternatively, N1 DMRS CDM groups include at least one first DMRS port number and at least one second DMRS port number, and Other port numbers can be included.
  • the distribution mode of the DMRS CDM group in the eighth information to the DMRS port number may be the same or different from the distribution mode of the DMRS CDM group in the second information to the DMRS port number.
  • the at least one first DMRS port number in the eighth information and the at least one first DMRS port number in the second information may be the same or different.
  • the at least one second DMRS port number in the eighth information and the at least one second DMRS port number in the second information may be the same or different.
  • the first terminal device receives the eighth information, and determines that the multi-antenna working mode is the third multi-day working mode.
  • the possible situations include the following four:
  • the third multi-antenna working mode and the second multi-antenna working mode are both MU-MIMO.
  • the first terminal device determines that the multi-antenna working mode is the third multi-antenna working mode. Keep MU-MIMO working mode.
  • the second is that both the third multi-antenna working mode and the second multi-antenna working mode are SU-MIMO.
  • the first terminal device determines that the multi-antenna working mode is the third multi-antenna working mode. Keep the SU-MIMO working mode.
  • the second multi-antenna working mode is SU-MIMO
  • the third multi-antenna working mode is MU-MIMO.
  • the second multi-antenna working mode is MU-MIMO
  • the third multi-antenna working mode is SU-MIMO.
  • the first terminal device determines that the multi-antenna working mode is switched from MU-MIMO to SU-MIMO.
  • the first terminal device determines the second multi-antenna operation mode from the first information and the second information
  • the first terminal device operates in the second multi-antenna operation mode. If after that, the multi-antenna working mode applicable to the first terminal device changes, and the working mode needs to be adjusted, the eighth information can be selected to realize the switching of the multi-antenna working mode of the first terminal device.
  • the time-frequency resource blocks corresponding to the N and/or N1 DMRS CDM groups are also greater than 1.
  • At least one second DMRS port number is not allocated to the second terminal device, and its corresponding time-frequency resources are no longer used for data transmission between the second terminal device and the network device.
  • the first terminal device determines that the multi-antenna working mode is SU-MIMO, and the number of DMRS CDM groups N and/or N1 is greater than 1, further use the time-frequency resource corresponding to the at least one second DMRS port number.
  • the first method is to use different information values of the above-mentioned 4-bit indication field in the DCI with the format of 1-1 to indicate the usage mode of the time-frequency resource corresponding to the at least one second DMRS port number.
  • one or more information values indicate the SU-MIMO mode
  • the one or more information values may also indicate at least one second DMRS The usage mode of the time-frequency resource corresponding to the port number.
  • the information value 12 indicates that in the SU-MIMO mode, and the number of DMRS CDM groups N and/or N1 is greater than 1, the time-frequency resource corresponding to at least one second DMRS port number is not used for data transmission, that is, SU-MIMO- 1.
  • the information value 13 indicates that in the SU-MIMO mode, and when the number of DMRS CDM groups N and/or N1 is greater than 1, the time-frequency resource corresponding to at least one second DMRS port number is used for data transmission between the first terminal device and the network device, Namely SU-MIMO-2.
  • the information value 12 in Table 3 indicates the SU-MIMO-1 working mode
  • the number of DMRS CDM groups it indicates can be 2, and the DMRS port numbers that it indicates can be 0, 1.
  • the information value 12 may indicate that when the dual-antenna port terminal device operates in SU-MIMO, the time-frequency resource corresponding to the at least one second DMRS port number is not used for data transmission.
  • the information value 13 indicates the SU-MIMO-2 working mode
  • the number of DMRS CDM groups it indicates may be 2
  • the DMRS port number that it indicates may be 0, 1.
  • the information value 13 may indicate that when the dual-antenna port terminal device operates in SU-MIMO, the time-frequency resource corresponding to at least one second DMRS port number is used for data transmission between the first terminal device and the network device.
  • the second is to use other indication fields in the DCI with the format of 1-1 except the above-mentioned 4-bit indication field to indicate the usage mode of the time-frequency resource corresponding to the at least one second DMRS port number.
  • the third information one bit other than the above-mentioned four-bit indication field is used as the third information, and one bit corresponds to two kinds of information values.
  • the information value 0 of the third information is used to indicate that the time-frequency resource corresponding to the at least one second DMRS port number is not used for data transmission
  • the information value 1 of the third information is used to indicate that the at least one second DMRS port number corresponds to.
  • the time-frequency resources are used for data transmission between the first terminal device and the network device.
  • the third method is to use the high-level signaling configured by the network device to indicate the usage mode of the time-frequency resource corresponding to the at least one second DMRS port number. For example, the network device sends the third information to the first terminal device to indicate that the time-frequency resource corresponding to the at least one second DMRS port number is not used for data transmission, or is used for data transmission between the first terminal device and the network device.
  • the method further includes: 305, the first terminal device reports fourth information to the network device.
  • the network device receives the fourth information.
  • the fourth information is used to indicate an application scenario of the first terminal.
  • the application scenario indicated by the fourth information includes at least one of an industrial wireless sensor network (Industry Wireless Sensor Network, IWSN) and a video surveillance (Video surveillance).
  • IWSN Industrial Wireless Sensor Network
  • Video surveillance Video surveillance
  • the fourth information indicates the device type of the first terminal device.
  • the device type indicated by the fourth information includes a reduced capability (REDCAP) terminal device, for example, at least one of an industrial wireless sensor, a video surveillance camera, or a wearable device.
  • REDCAP reduced capability
  • the fourth information indicates capability information of the first terminal device.
  • the capability information of the terminal device indicated by the fourth information includes that the multi-antenna working mode supported by the first terminal device includes SU-MIMO and/or MU-MIMO.
  • the information indicated by the fourth information may also be any combination of the information described in the above examples.
  • the method further includes: 306: The network device configures a corresponding working mode according to the fourth information.
  • the network device performs step 300 according to the fourth information. Further optionally, the network device may also perform step 302 according to the first information.
  • the first information indicates that the first multi-antenna working mode of the first terminal device is SU-MIMO, and the first terminal device receives the first information and determines the multi-antenna working mode for SU-MIMO.
  • the network device uses the first information to indicate.
  • the multi-antenna working mode of the first terminal device is MU-MIMO, that is, if the first multi-antenna working mode is not indicated by the above RRC signaling or MAC signaling, the terminal device works in the MU-MIMO mode by default.
  • the network device does not indicate the first multi-antenna working mode through RRC signaling or MAC signaling, and the terminal device works in the MU-MIMO mode by default. Further, the network device sends the second information to the terminal device, the terminal device receives the second information from the network device, and determines the multi-antenna working mode as SU-MIMO or MU-MIMO according to the second information.
  • the network device sends second information to the first terminal device, the second multi-antenna working mode indicated by the second information is MU-MIMO, and the first terminal device determines that at least one second DMRS port number is allocated to the second terminal device, The first terminal device determines that the multi-antenna working mode is MU-MIMO.
  • the network device sends second information to the first terminal device, the second multi-antenna working mode indicated by the second information is SU-MIMO, and the first terminal device determines that at least one second DMRS port number is not allocated to the second terminal device , the first terminal device determines that the multi-antenna working mode is SU-MIMO.
  • the usage mode of the time-frequency resource corresponding to at least one second DMRS port number may be further indicated, and the indication method can refer to Relevant description in step 304 .
  • FIG. 4 is a schematic flowchart of another multi-antenna working mode indication method provided by the present application. The method includes steps 400-404.
  • the network device determines the multi-antenna working mode of the first terminal device.
  • the network device determines the multi-antenna working mode of the first terminal device according to the application scenario of the first terminal device, the device type of the first terminal device, and/or the capability information of the first terminal device; or, the network device determines the multi-antenna working mode of the first terminal device according to It is pre-defined or pre-configured to determine the multi-antenna working mode of the first terminal device.
  • the network device sends fifth information, where the fifth information is used to indicate that the multi-antenna working mode of the first terminal device is SU-MIMO or MU-MIMO. Further, the fifth information is also used to indicate at least one first demodulation reference signal DMRS port number corresponding to the multi-antenna working mode of the first terminal device and the DMRS code division multiplexing CDM group of the demodulation reference signal.
  • the number N, the N DMRS CDM groups include the at least one first DMRS port number, and the N is a positive integer.
  • the fifth information is carried in downlink control information, and the format of the downlink control information may be DCI format 1_1.
  • the N DMRS CDM groups include at least one first DMRS port number and at least one second DMRS port number.
  • the at least one first DMRS port number is different from the at least one second DMRS port number.
  • the N DMRS CDM groups are composed of the at least one first DMRS port number and the at least one second DMRS port number; or, the N DMRS CDM groups are composed of the at least one first DMRS port number and the at least one second DMRS port number.
  • a second DMRS port number which may also include other port numbers.
  • the fifth information may be carried by an indication field in the downlink control information.
  • the indication field may contain 4 bits.
  • the fifth information indicates different information to the first terminal device through different values of the indication field.
  • the corresponding relationship is predefined or configured.
  • the corresponding relationship may be embodied in the form of a table.
  • the first terminal device determines, according to the fifth information, that the multi-antenna working mode is SU-MIMO or MU-MIMO.
  • the DMRS is a signal type known to the network device and the terminal device and is used for channel estimation. It can be understood that the DMRS is not valid data.
  • the PDSCH in addition to the DMRS, there is also data that the terminal device needs to demodulate the information sent by the network device to obtain it. This part of the data can be understood as valid data, that is, the PDSCH contains DMRS and valid data.
  • the first terminal device when the first terminal device works in MU-MIMO, the first terminal device receives downlink control information from the network device, and determines at least one second DMRS port number to assign to the second terminal device. There is a DMRS in the time-frequency resources corresponding to the two DMRS port numbers.
  • the first terminal device demodulates the valid data in the PDSCH sent by the network device, it needs to convert the DMRS corresponding to the second terminal device and the at least one corresponding to the second terminal device.
  • the data transmitted by a second DMRS port is processed as an interference signal. At this time, the power consumption and complexity of the first terminal device are relatively high.
  • the first terminal device When the first terminal device works in SU-MIMO, the first terminal device receives downlink control information from the network device and determines that at least one second DMRS port number is not allocated to the second terminal device. At this time, there is no DMRS in the time-frequency resources corresponding to at least one second DMRS port number, and there is no DMRS corresponding to the second terminal device and the DMRS corresponding to the second terminal device when the first terminal device operates in the MU-MIMO mode. In the step of processing the data transmitted by the at least one second DMRS port as an interference signal, the power consumption and complexity of the first terminal device will be reduced at this time.
  • the fifth information indicates that the multi-antenna working mode of the first terminal device is MU-MIMO
  • the first terminal device receives the fifth information, determines that the second DMRS port number is allocated to the second terminal device, and the first terminal device determines The multi-antenna working mode is MU-MIMO.
  • the fifth information indicates that the multi-antenna working mode of the first terminal device is SU-MIMO, and the first terminal device receives the fifth information and determines that the second DMRS port number is not allocated to the second terminal device.
  • the time-frequency resource blocks corresponding to the N DMRS CDM groups are also greater than 1.
  • At least one second DMRS port number is not allocated to the second terminal device, and its corresponding time-frequency resources are no longer used for data transmission between the second terminal device and the network device.
  • the first terminal device determines that the multi-antenna working mode is SU-MIMO, and the number N of DMRS CDM groups is greater than 1, optionally, further indicate the usage mode of time-frequency resources corresponding to at least one second DMRS port number:
  • the first is to use the fifth information to indicate the use of time-frequency resources corresponding to at least one second DMRS port number, and the indication method may refer to the relevant description in the embodiment shown in FIG. 3 , which will not be repeated here.
  • the second is to use other indication fields in the DCI with the format of 1-1 except the above-mentioned 4-bit information to indicate the usage mode of the time-frequency resource corresponding to at least one DMRS port number.
  • one bit other than the above-mentioned 4-bit indication field is used as the sixth information.
  • 1 bit corresponds to two information values.
  • the information value 0 of the sixth information is used to indicate that the time-frequency resource corresponding to the at least one second DMRS port number is not used for data transmission.
  • the information value 1 of the sixth information is used to indicate that the time-frequency resource corresponding to the at least one second DMRS port is used for data transmission between the first terminal device and the network device.
  • the third method is to use the high-level signaling configured by the network device to indicate the usage mode of the time-frequency resource corresponding to the at least one second DMRS port number. For example, the network device sends sixth information to the first terminal device, which is used to indicate that the time-frequency resource corresponding to the at least one second DMRS port number is not used for data transmission, or is used for data transmission between the first terminal device and the network device.
  • the method further includes: 403: The first terminal device reports seventh information to the network device. Correspondingly, the network device receives the seventh information.
  • the seventh information is used to indicate an application scenario of the first terminal.
  • the application scenario indicated by the seventh information includes at least one of an industrial wireless sensor network (Industry Wireless Sensor Network, IWSN) and a video surveillance (Video surveillance).
  • IWSN Industrial Wireless Sensor Network
  • Video surveillance Video surveillance
  • the seventh information indicates the device type of the first terminal device.
  • the device type of the first terminal device indicated by the seventh information includes a reduced capability (Reduced Capability, REDCAP) terminal device, for example, at least one of an industrial wireless sensor, a video surveillance camera, or a wearable device.
  • the seventh information indicates capability information of the first terminal device.
  • the capability information of the terminal device indicated by the seventh information includes that the multi-antenna working mode supported by the first terminal device is SU-MIMO and/or MU-MIMO.
  • the information indicated by the seventh information may also be any combination of the information described in the above examples.
  • the method further includes: 404: The network device configures a corresponding multi-antenna working mode according to the seventh information.
  • the network device performs the step of determining the multi-antenna working mode indicated by the fifth information in the process 400 according to the seventh information.
  • the communication device and the network device include corresponding hardware structures and/or software modules for executing each function.
  • the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is implemented by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the communication device and the network device may be divided according to the foregoing method examples.
  • each module or unit may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software modules or units.
  • the division of modules or units in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • FIG. 5 shows a possible schematic structural diagram of the communication apparatus involved in the above embodiment.
  • the communication apparatus 500 includes: a processing module 501 , a sending module 502 and a receiving module 503 .
  • the communication apparatus may be the network device itself, or a chip system or an integrated circuit inside the network device.
  • the processing module 501 is configured to support the network device to perform determining the first multi-antenna working mode of the first terminal device and determining the first multi-antenna working mode of the first terminal device.
  • the function of the second multi-antenna working mode For example, step 300 in FIG. 3 and step 302 in FIG. 3 .
  • the sending module 502 is configured to support the network device to perform the function of sending the first information and the second information to the terminal device, eg, step 301, step 303 in FIG. 3, and/or other processes for the techniques described herein.
  • the receiving module 503 is configured to support the network device to perform the function of receiving the fourth information sent from the first terminal device, for example, step 305 in FIG. 3 , and/or other processes for the techniques described herein.
  • the processing module 501 is configured to support the network device to perform the function of determining the multi-antenna working mode of the first terminal device. For example, step 400 in FIG. 4 .
  • the sending module 502 is configured to support the network device to perform the function of sending fifth information to the terminal device, eg, step 401 in FIG. 4 , and/or other processes for the techniques described herein.
  • the receiving module 503 is configured to support the network device to perform the function of receiving the seventh information sent from the first terminal device, for example, step 403 in FIG. 4 , and/or other processes for the techniques described herein.
  • FIG. 6 shows a possible schematic structural diagram of the communication apparatus involved in the above embodiment.
  • the communication apparatus 600 includes: a processing module 601 , a sending module 602 and a receiving module 603 .
  • the communication apparatus may be the terminal device itself, or a chip system or an integrated circuit inside the terminal device.
  • the processing module 601 is configured to support the first terminal device to perform the function of determining the multi-antenna working mode. For example, step 304 in FIG. 3 .
  • the receiving module 603 is used to support the first terminal device to perform the function of receiving the first information and the second information sent from the network device, for example, step 301, step 303 in FIG. 3, and/or other processes for the technology described herein .
  • the sending module 602 is configured to support the function of the first terminal device to send the fourth information to the network device, for example, step 305 in FIG. 3 , and/or other processes for the techniques described herein.
  • the processing module 601 is configured to support the first terminal device to perform the function of determining the multi-antenna working mode. For example, step 402 in FIG. 4 .
  • the receiving module 603 is configured to support the first terminal device to perform the function of receiving the fifth information sent by the network device, for example, step 401 in FIG. 4 , and/or other processes for the techniques described herein.
  • the sending module 602 is configured to support the first terminal device to perform the function of sending the seventh information to the network device, for example, step 403 in FIG. 4 , and/or other processes for the technology described herein.
  • the apparatus is presented in a form of dividing each functional module corresponding to each function, or the apparatus is presented in a form of dividing each functional module in an integrated manner.
  • a “module” here may include an Application-Specific Integrated Circuit (ASIC), a circuit, a processor and memory executing one or more software or firmware programs, an integrated logic circuit, or other devices that can provide the above-mentioned functions .
  • ASIC Application-Specific Integrated Circuit
  • the network device can be implemented by using the network device shown in FIG. 2 .
  • the sending module 502 in FIG. 5 may be implemented by the communication interface 103 in FIG. 2
  • the processing module 501 may be implemented by the processor 101 in FIG. 2 , which is not limited in this embodiment of the present application.
  • the present application also provides a computer-readable storage medium, in which instructions are stored; when the computer-readable storage medium is executed on a computer, the network device and the terminal in the method shown in the present application are implemented. function of the device.
  • the present application provides a chip system, and the chip system is used to support the implementation of the indication method of the multi-antenna working mode provided by the present application, for example, the indication method of the multi-antenna working mode shown in FIG. 3 and FIG. 4 .
  • the chip system includes at least one processor and an interface circuit, and the interface circuit is used to provide the input or output of instructions and/or data for the at least one processor.
  • the chip system is used to implement the present invention.
  • the application provides the function of the network device or the terminal device in the indication method of the multi-antenna working mode.
  • the system-on-a-chip also includes memory.
  • the memory is used to store necessary program instructions and data for the network device.
  • the memory may not be in the system-on-chip.
  • the chip system may be composed of chips, or may include chips and other discrete devices, which are not specifically limited in this embodiment of the present application.
  • FIG. 7 shows an example of a chip system provided by the present application.
  • the chip system 700 includes a processor 701 and an interface circuit 702 .
  • the processor 701 and the interface circuit 702 may be connected through a bus 703 .
  • the present application provides a communication system, including the aforementioned one or more network devices and the aforementioned one or more communication devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请提供一种多天线工作模式的指示方法及装置,涉及通信领域,用于解决现有技术中单端口传输模式下终端设备仍然默认工作于多用户-多输入多输出MU-MIMO模式造成的功耗增大和资源浪费的问题。该方法包括:网络设备向终端设备发送指示信息,指示终端设备的多天线工作模式为单用户-多输入多输出SU-MIMO或者多用户-多输入多输出MU-MIMO,终端设备根据来自网络设备的指示信息,确定其对应的解调参考信号DMRS端口号以及非其对应的DMRS端口号是否分配给其他终端设备,实现多天线工作模式的调整。

Description

一种工作模式的指示方法、装置以及系统 技术领域
本领域涉及通信领域,尤其涉及一种多天线工作模式的指示方法和设备。
背景技术
新无线(New Radio,NR)通信系统中,终端设备和网络设备之间交互信息通过物理信道承载。网络设备发送的控制信息,也即下行控制信息(Downlink Control Information,DCI),通常通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)承载。对于下行调度,网络设备需为终端设备的每个天线端口配置一个对应的解调参考信号(Demodulation Reference Signal,DMRS)端口。DCI可以用于指示DMRS码分复用(Code Division Multiplexing,CDM)组的数目和DMRS的端口号。
时域的一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号和频域的一个子载波可以组成一个时频资源单元。DMRS一般分为第一类DMRS和第二类DMRS,第一类DMRS和第二类DMRS对应的DMRS端口对应的时频资源单元个数不同。每个DMRS CDM组包含多个DMRS端口,每个DMRS CDM组对应的时频资源块包含的时频资源单元的数目为该DMRS CDM组包含的多个DMRS端口对应的时频资源单元的总和。对于NR系统,所述每个DMRS CDM组对应的时频资源块用于承载通过所述DMRS CDM组中的DMRS端口发送的DMRS。当网络设备通过DCI为某一终端设备指示一个或者多个特定的DMRS端口时,会将该一个或多个特定DMRS端口所属的DMRS CDM组内其他的DMRS端口分配给通信系统内的其他的终端设备中的一个或者多个。此时上述其他DMRS端口对应的时频资源也用于上述其他终端设备和网络设备之间的数据传输。这种配置方式使得网络设备在给定的时频资源上同时向多个终端设备发送数据流,通信系统中的终端设备默认工作于多用户-多输入多输出(Multiple User-Multiple Input Multiple Output,MU-MIMO)模式。因此即使对于终端设备的多天线工作模式适用于单用户-多输入多输出(Single User-Multiple Input Multiple Output,SU-MIMO)的情况,这种配置方式使得NR系统也总是假设终端设备工作于MU-MIMO。在实际工作中,终端设备需要估计干扰信号,然后解调通过对应所述终端设备的DMRS端口号传输的信息,所述干扰信号可以包括但不限于通过其它终端设备对应的DMRS信号和/或其他终端设备对应的DMRS端口号传输的下行数据或者上行数据。其中,下行数据承载在物理下行共享信道(Physical Downlink Shared Channel,PDSCH)中,上行数据承载在物理上行共享信道(Physical Uplink Shared Channel,PUSCH)中。这会增大终端设备的复杂度和功耗,造成资源浪费。
发明内容
本申请提供一种通信方法,用于指示单用户-多输入多输出(Single User-Multiple Input  Multiple Output,SU-MIMO)模式或多用户-多输入多输出(Multiple User-Multiple Input Multiple Output,MU-MIMO)模式,解决了现有技术中单端口传输模式下终端设备仍然默认工作于MU-MIMO模式下造成的功耗增大和资源浪费的问题。
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请提供一种多天线工作模式的指示方法,该方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片或者集成电路,下面以执行主体是终端设备为例进行描述。该方法包括,第一终端设备接收来自网络设备的第一信息,第一信息用于指示第一终端设备的第一多天线工作模式;第一终端设备接收来自网络设备的第二信息,第二信息用于指示第一终端设备的第二多天线工作模式,以及第二多天线工作模式下对应的至少一个第一解调参考信号DMRS端口号和解调参考信号DMRS码分复用CDM组的数目N,所述N个DMRS CDM组包括所述至少一个第一DMRS端口号。第一终端设备根据第一信息和第二信息,确定多天线工作模式为第二多天线工作模式。
基于上述方案,第一终端设备可以通过网络设备的指示信息确定工作模式,解决了现有技术中第一终端设备一直默认工作于MU-MIMO模式下造成的功耗增大和资源浪费的问题。
在一种可能的实现方式中,第一信息承载于高层信令中,所述高层信令可以为无线资源控制(Radio Resource Control,RRC)信令或者媒体接入控制(Media Access Control,MAC)信令;第二信息承载于物理层信令,例如下行控制信息(Downlink Control Information,DCI)中。
静态场景采用静态调度的方式,网络设备永久性的指定关联的资源;半静态场景采用半静态调度的方式,网络设备通过一次资源配置,在一段时间内,周期性的将相应资源分配给终端设备。动态场景采用动态调度,网络设备动态配置终端设备的资源。基于该可选的方式,当第一终端设备通过网络设备静态或者半静态调度的方式执行某种业务,和/或,第一终端设备应用于静态或者半静态场景时,例如,工业无线传感网络(Industry Wireless Sensor Network,IWSN)和/或视频监控(Video surveillance)中的周期性业务场景,这种情况下,第一终端设备的工作方式一般不会发生改变,网络设备通过高层信令指示第一终端设备的多天线工作模式,保证系统通信性能的同时降低物理层信令的开销;当第一终端设备通过网络设备动态调度的方式执行业务,第一终端设备应用于动态场景,和/或,第一终端设备应用于与其他动态场景中的终端设备配对工作的场景时,例如,IWSN和/或视频监控中的非周期业务场景,这种情况下,第一终端设备的工作方式可能会频繁发生变化,网络设备通过物理层信令指示第一终端设备的多天线工作模式,灵活地实现第一终端设备多天线工作模式的动态切换。在其它可能的场景中,例如存在静态或者半静态场景与动态场景的结合或者频繁切换的场景,网络设备通过高层信令和物理层信令结合的方式对第一终端设备的多天线工作模式进行指示,从而能够灵活地配置第一终端设备的多天线工作模式。
例如,可选的,通过第一信息为第一终端设备配置第一多天线工作模式,若此时第一多天线工作模式适合第一终端设备,网络设备按照第一多天线工作模式配置第二信息,则第一终端设备工作在第一工作模式下;若第一多天线工作模式不适用于第一终端设备,此 时网络设备可以通过第二信息指示与第一多天线工作模式不同的第二多天线工作模式,第一终端设备通过第二信息实现多天线工作模式的切换。或者,第一终端设备工作在第一多天线工作模式下一段时间后,第一终端设备适用的多天线工作模式发生变化,此时,网络设备从按照第一信息指示的多天线工作模式配置第二信息,调整为按照适用于第一终端设备的多天线工作模式配置第二信息,第一终端设备根据第二信息切换多天线工作模式。
在一种可能的实现方式中,N个DMRS CDM组包括至少一个第一DMRS端口号和至少一个第二DMRS端口号。所述至少一个第二DMRS端口号不同于所述至少一个第一DMRS端口号。例如,N个DMRS CDM组由至少一个第一DMRS端口号和至少一个第二DMRS端口号组成;或者,N个DMRS CDM组包括至少一个第一DMRS端口号和至少一个第二DMRS端口号,还可以包括其他端口号。
在一种可能的实现方式中,第一信息指示SU-MIMO,第二信息指示MU-MIMO;或者,第一信息指示MU-MIMO,第二信息指示MU-MIMO。在这两种场景中的任一种场景下,第一终端设备确定多天线工作模式为MU-MIMO,第一终端设备确定至少一个第二DMRS端口号分配给第二终端设备,第二终端设备为第一终端所在的通信系统中除第一终端设备之外的剩余终端设备中的至少一个。
在一种可能的实现方式中,第一信息指示MU-MIMO,第二信息指示SU-MIMO;或者,第一信息指示SU-MIMO,第二信息指示SU-MIMO。在这两种场景中的任一种场景下,第一终端设备确定多天线工作模式为SU-MIMO,第一终端设备确定至少一个第二DMRS端口号未分配给第二终端设备,第二终端设备为第一终端所在的通信系统中除第一终端设备之外的剩余终端设备中的至少一个。
基于该可能的实现方式,第一终端设备根据网络设备的指示信息确定多天线工作模式为SU-MIMO,解决了现有技术中单端口传输模式下第一终端设备仍然默认工作于MU-MIMO模式造成的功耗增大和资源浪费的问题。
在一种可能的实现方式中,第一终端设备确定多天线工作模式为SU-MIMO,当DMRS CDM组的数目N大于1时,第二信息还用于指示至少一个第二DMRS端口号对应的时频资源不用于数据传输,或者用于第一终端设备和网络设备之间的数据传输;或者,若不用第二信息对上述时频资源的使用进行指示,所述方法还包括:第一终端设备还可接收第三信息,第三信息用于指示至少一个第二DMRS端口号对应的时频资源不用于数据传输,或者用于第一终端设备和网络设备之间的数据传输。
基于该可能的实现方式,第二信息或者第三信息若指示至少一个第二DMRS端口号对应的时频资源不用于数据传输,第一终端设备的DMRS可以获得功率增强的好处,有助于提升信道估计性能。若网络设备的发射功率不变,且至少一个第二DMRS端口号对应的时频资源不传输数据,则所述网络设备以上述发射功率向所述第一终端设备发送DMRS,可以实现第一终端设备接收到的DMRS信噪比提升,提升了信道估计性能。第二信息或者第三信息若指示至少一个第二DMRS端口号对应的时频资源用于第一终端设备和网络设备之间的数据传输,避免了资源浪费。
在一种可能的实现方式中,第一终端设备和网络设备之间数据传输的时域长度大于2 个OFDM符号。具体的,所述数据承载于PDSCH中。可选的,所述数据传输为单次传输或者为网络设备与第一终端设备进行的一次数据传输。
基于该可能的实现方式,当第一终端设备和网络设备之间的数据传输时域长度大于2个OFDM符号时,网络设备配置信息指示第一终端设备的多天线工作模式和至少一个第二DMRS端口号对应的时频资源的使用,此时第一终端设备的多天线工作模式可以为SU-MIMO,也可以为MU-MIMO。当第一终端设备和网络设备之间的数据传输时域长度不大于2个OFDM符号时,由于用于数据传输的OFDM符号个数少,在这种情况下,第一终端设备可以假设至少一个第二DMRS端口号对应的时频资源不用于数据传输,在给定的时频资源上只传输网络设备和第一终端设备之间的数据,此时第一终端设备的多天线工作模式为SU-MIMO,这样可以使得第一终端设备与网络设备之间在数据传输时域长度较小时的数据传输效率得到保证。
在一种可能的实现方式中,第一终端设备向网络设备发送第四信息,用于指示以下至少一项:
第一终端设备的应用场景;
第一终端设备的类型;
第一终端设备的能力信息。
其中,可选的,第一终端设备的应用场景包括工业无线传感网络(Industry Wireless Sensor Network,IWSN)和视频监控(Video surveillance)中的至少一个;第一终端设备的类型包括能力降低(Reduced Capability,REDCAP)的终端设备,例如,工业无线传感器,视频监控摄像头或可穿戴设备中的至少一个;第一终端设备的能力信息包括第一终端设备支持的多天线工作模式为SU-MIMO和/或MU-MIMO。
基于该可能的实现方式,第一终端设备通过上报信息,使得网络设备根据第一终端的应用场景,第一终端的类型或第一终端的能力信息配置用于指示多天线工作模式的信息,解决了现有技术中第一终端设备一直默认工作于MU-MIMO模式下,第一终端设备的工作模式可能和第一终端设备实际适用的工作模式不匹配而造成的功耗增大和资源浪费的问题。需要说明的是,通常情况下,应用场景对应特定的业务类型,因此,网络设备可以根据第一终端设备的应用场景来确定配置信息所指示的多天线工作模式,若某一个或者多个应用场景里包含适用于不同多天线工作模式的业务类型,此时第一终端设备上报的应用场景为对应于特定业务类型的应用场景。例如,若IWSN和/或视频监控应用场景还进一步包括周期性业务和非周期性业务,则第一终端设备上报的应用场景为对应于周期性业务的IWSN和/或视频监控,或者,第一终端设备上报的应用场景为对应于非周期性业务的IWSN和/或视频监控。
第二方面,本申请提供一种通信方法,该方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片或者集成电路,下面以执行主体是终端设备为例进行描述。该方法包括:第一终端接收来自网络设备的第五信息,第五信息用于指示第一终端设备的多天线工作模式为SU-MIMO或者MU-MIMO;第一终端设备根据第五信息确定所述多天线工作模式为SU-MIMO或者MU-MIMO。
其中,第五信息还用于指示第一终端设备的所述多天线工作模式对应的至少一个第一DMRS端口号和DMRS CDM组的数目N,所述N个DMRS CDM组包括所述至少一个第一DMRS端口号。
基于上述方案,第一终端设备根据第五信息确定多天线工作模式,解决了现有技术中第一终端设备一直默认工作于MU-MIMO模式下造成的功耗增大和资源浪费的问题。
在一种可能的实现方式中,第五信息承载于DCI。
基于该可能的实现方式,第一终端设备直接通过下行控制信息获得网络设备所指示的工作模式,第一终端设备通过第五信息,同时获得网络设备指示的工作模式,网络设备配置的至少一个第一DMRS端口号,和至少一个第二DMRS端口号是否分配给第二终端设备,第一终端设备可以较为方便的实现工作模式的切换。
在一种可能的实现方式中,N个DMRS CDM组包括至少一个第一DMRS端口号和至少一个第二DMRS端口号。所述至少一个第二DMRS端口号不同于所述至少一个第一DMRS端口号。例如,N个DMRS CDM组由至少一个第一DMRS端口号和至少一个第二DMRS端口号组成;或者,N个DMRS CDM组包括至少一个第一DMRS端口号和至少一个第二DMRS端口号,还可以包括其他端口号。
在一种可能的实现方式中,第五信息指示第一终端设备的多天线工作模式为MU-MIMO,第一终端设备根据第五信息确定至少一个第二DMRS端口号分配给第二终端设备,第二终端设备为第一终端所在的通信系统中除第一终端设备之外的剩余终端设备中的至少一个。
在一种可能的实现方式中,第五信息指示第一终端设备的多天线工作模式为SU-MIMO,第一终端设备根据第五信息确定至少一个第二DMRS端口号未分配给第二终端设备,第二终端设备为第一终端所在的通信系统中除第一终端设备之外的剩余终端设备中的至少一个。
基于该可能的实现方式,当第一终端设备适用于SU-MIMO模式时,第一终端设备根据网络设备的指示信息确定多天线工作模式为SU-MIMO,解决了现有技术中单端口传输模式下第一终端设备仍然默认工作于MU-MIMO模式下造成的功耗增大和资源浪费的问题。
在一种可能的实现方式中,第一终端设备确定多天线工作模式为SU-MIMO,当DMRS CDM组的数目N大于1时,第五信息还用于指示至少一个第二DMRS端口号对应的时频资源不用于数据传输,或者用于第一终端设备和网络设备之间的数据传输;或者,若不用第五信息对上述时频资源的使用进行指示,所述方法还包括:第一终端设备还可接收第六信息,第六信息用于指示至少一个第二DMRS端口号对应的时频资源不用于数据传输,或者用于第一终端设备和网络设备之间的数据传输。
基于该可能的实现方式,第二信息或者第三信息若指示至少一个第二DMRS端口号对应的时频资源不用于数据传输,第一终端设备的DMRS可以获得功率增强的好处,有助于提升信道估计性能。若网络设备的发射功率不变,且至少一个第二DMRS端口号对应的时 频资源不传输数据,则所述网络设备以上述发射功率向所述第一终端设备发送DMRS,可以实现第一终端设备接收到的DMRS信噪比提升,提升了信道估计性能。第二信息或者第三信息若指示至少一个第二DMRS端口号对应的时频资源用于第一终端设备和网络设备之间的数据传输,避免了资源浪费。
在一种可能的实现方式中,第一终端设备和网络设备之间的数据传输的时域长度大于2个OFDM符号。具体的,所述数据承载于PDSCH中。可选的,所述数据传输为单次传输或者为网络设备与第一终端设备进行的一次数据传输。
基于该可能的实现方式,当第一终端设备和网络设备之间的数据传输时域长度大于2个OFDM符号时,网络设备配置信息指示第一终端设备的多天线工作模式和至少一个第二DMRS端口号对应的时频资源的使用。此时第一终端设备的多天线工作模式可以为SU-MIMO,也可以为MU-MIMO。当第一终端设备和网络设备之间的数据传输时域长度不大于2个OFDM符号时,由于用于数据传输的OFDM符号个数少,在这种情况下,第一终端设备可以假设至少一个第二DMRS端口号对应的时频资源不用于数据传输,在给定的时频资源上只传输网络设备和第一终端设备之间的数据,此时第一终端设备的多天线工作模式为SU-MIMO,这样可以使得第一终端设备与网络设备之间在数据传输时域长度较小时的数据传输效率得到保证。
在一种可能的实现方式中,第一终端设备向网络设备发送第七信息,用于指示以下至少一项:
第一终端设备的应用场景;
第一终端设备的类型;
第一终端设备的能力信息。
其中,可选的,第一终端设备的应用场景包括工业无线传感网络(Industry Wireless Sensor Network,IWSN)和视频监控(Video surveillance)中的至少一个;第一终端设备的类型包括能力降低(Reduced Capability,REDCAP)的终端设备,例如,工业无线传感器,视频监控摄像头或可穿戴设备中的至少一个;第一终端设备的能力信息包括第一终端设备支持多天线工作模式为SU-MIMO和/或MU-MIMO。
基于该可能的实现方式,第一终端设备通过上报信息,使得网络设备根据第一终端设备的应用场景,第一终端设备的类型或第一终端设备的能力信息配置用于指示多天线工作模式的信息,解决了现有技术中第一终端设备一直默认工作于MU-MIMO模式下,第一终端设备的工作模式可能和第一终端设备实际适用的工作模式不匹配而造成的功耗增大和资源浪费的问题。需要说明的是,通常情况下,应用场景对应特定的业务类型,因此,网络设备可以根据第一终端设备的应用场景来确定配置信息所指示的多天线工作模式,若某一个或者多个应用场景里包含适用于不同多天线工作模式的业务类型,此时第一终端设备上报的应用场景为对应于特定业务类型的应用场景。例如,若IWSN和/或视频监控应用场景还进一步包括周期性业务和非周期性业务,则第一终端设备上报的应用场景为对应于周期性业务的IWSN和/或视频监控,或者,第一终端设备上报的应用场景为对应于非周期性业务的IWSN和/或视频监控。
在一种可能的实现方式中,第一终端设备处于无线资源控制连接态(RRC connected sate)。
第三方面,本申请提供一种通信方法,该方法的执行主体可以是网络设备,也可以是网络设备中的芯片或者集成电路。下面以执行主体是网络设备为例进行描述。该方法包括:网络设备向第一终端设备发送第一信息,第一信息用于指示第一终端设备的第一多天线工作模式;网络设备向第一终端设备发送第二信息,第二信息用于指示第一终端设备的第二多天线工作模式对应的至少一个第一DMRS端口号和DMRS CDM组的数目N,所述N个DMRS CDM组包括所述至少一个第一DMRS端口号,所述N为正整数。
基于上述方案,网络设备通过配置第一信息和第二信息,指示第一终端的多天线工作模式。解决了现有技术中第一终端设备一直默认工作于MU-MIMO模式下造成的功耗增大和资源浪费的问题。
在一种可能的实现方式中,第一信息承载于高层信令中,所述高层信令可以是RRC信令或者MAC信令;第二信息承载于物理层信令,例如DCI。
基于该可选的方式,当第一终端设备通过网络设备静态或者半静态调度方式执行某种业务,和/或,第一终端设备应用于静态或者半静态场景时,例如,工业无线传感网络(Industry Wireless Sensor Network,IWSN)和/或视频监控(Video surveillance)中的周期性业务场景,这种情况下,第一终端设备的工作方式一般不会发生改变,网络设备通过高层信令指示第一终端设备的多天线工作模式;当第一终端设备通过网络设备动态调度的方式执行业务,第一终端设备应用于动态场景,和/或,第一终端设备应用于与动态场景中的终端设备配对工作的场景,例如,工业无线传感网络(Industry Wireless Sensor Network,IWSN)和/或视频监控(Video surveillance)中的非周期性业务场景,这种情况下,第一终端设备的工作方式可能会频繁发生变化,网络设备通过物理层信令指示第一终端设备的多天线工作模式,灵活地实现第一终端设备多天线工作模式的动态切换。在其它可能的场景中,例如存在静态或者半静态场景与动态场景的结合或者频繁切换的场景,网络设备通过高层信令和物理层信令结合的方式对第一终端设备的多天线工作模式进行指示,从而能够灵活地配置第一终端设备的多天线工作模式。
例如,可选的,通过第一信息为第一终端设备配置第一多天线工作模式,若此时第一多天线工作模式适合第一终端设备,网络设备按照第一多天线工作模式配置第二信息,则第一终端设备工作在第一工作模式下;若第一多天线工作模式不适用于第一终端设备,此时网络设备可以通过第二信息指示与第一多天线工作模式不同的第二多天线工作模式,第一终端设备实现多天线工作模式的切换。或者,第一终端设备工作在第一多天线工作模式下一段时间后,第一终端设备适用的多天线工作模式发生变化,此时,网络设备从按照第一信息指示的多天线工作模式配置第二信息,调整为按照适用于第一终端设备的多天线工作模式配置第二信息,第一终端设备根据第二信息切换多天线工作模式。
在一种可能的实现方式中,N个DMRS CDM组包括至少一个第一DMRS端口号和至少一个第二DMRS端口号。所述至少一个第二DMRS端口号不同于所述至少一个第一DMRS端口号。例如,N个DMRS CDM组由至少一个第一DMRS端口号和至少一个第二 DMRS端口号组成;或者,N个DMRS CDM组包括至少一个第一DMRS端口号和至少一个第二DMRS端口号,还可以包括其他端口号。
在一种可能的实现方式中,第一信息指示SU-MIMO,第二信息指示MU-MIMO;或者,第一信息指示MU-MIMO,第二信息指示MU-MIMO。在这两种场景中的任一种场景下,网络设备确定至少一个第二DMRS端口号分配给第二终端设备。第二终端设备为第一终端所在的通信系统中除第一终端设备之外的剩余终端设备中的至少一个。
在一种可能的实现方式中,第一信息指示SU-MIMO,第二信息指示SU-MIMO;或者,第一信息指示MU-MIMO,第二信息指示SU-MIMO。在这两种场景中的任一种场景下,网络设备确定至少一个第二DMRS端口号未分配给第二终端设备,第二终端设备为第一终端所在的通信系统中除第一终端设备之外的剩余终端设备中的至少一个。
基于该可能的实现方式,第一终端设备根据网络设备发送的第一信息和第二信息,确定多天线工作模式为SU-MIMO,解决了现有技术中单端口传输模式下第一终端设备仍然默认工作于MU-MIMO模式造成的功耗增大和资源浪费的问题。
在一种可能的实现方式中,网络设备确定至少一个第二DMRS端口号未分配给第二终端设备,当DMRS CDM组的数目N大于1时,第二信息还用于指示至少一个第二DMRS端口号对应的时频资源不用于数据传输,或者用于第一终端设备和网络设备之间的数据传输;或者,若不用第二信息对上述时频资源的使用进行指示,所述方法还包括:网络设备还可向第一终端设备发送第三信息,第三信息用于指示至少一个第二DMRS端口号对应的时频资源不用于数据传输,或者用于第一终端设备和网络设备之间的数据传输。
基于该可能的实现方式,第二信息或者第三信息若指示至少一个第二DMRS端口号对应的时频资源不用于数据传输,第一终端设备的DMRS可以获得功率增强的好处,有助于提升信道估计性能。若网络设备的发射功率不变,且至少一个第二DMRS端口号对应的时频资源不传输数据,则所述网络设备以上述发射功率向所述第一终端设备发送DMRS,可以实现第一终端设备接收到的DMRS信噪比提升,提升了信道估计性能。第二信息或者第三信息若指示至少一个第二DMRS端口号对应的时频资源用于第一终端设备和网络设备之间的数据传输,避免了资源浪费。
在一种可能的实现方式中,第一终端设备和网络设备之间的数据传输的时域长度大于2个OFDM符号,具体的,所述数据承载于PDSCH中。可选的,所述数据传输为单次传输或者为网络设备与第一终端设备进行的一次数据传输。
基于该可能的实现方式,当第一终端设备和网络设备之间的数据传输时域长度大于2个OFDM符号时,网络设备配置信息指示第一终端设备的多天线工作模式和至少一个第二DMRS端口号对应的时频资源的使用。此时,网络设备配置第一终端设备的多天线工作模式可以为SU-MIMO,也可以为MU-MIMO。当第一终端设备和网络设备之间的数据传输时域长度不大于2个OFDM符号时,由于用于数据传输的OFDM符号个数少,在这种情况下,第一终端设备可以假设至少一个第二DMRS端口号对应的时频资源不用于数据传输,在给定的时频资源上只传输网络设备和第一终端设备之间的数据,此时网络设备配置第一终端设备的多天线工作模式为SU-MIMO,这样可以使得第一终端设备与网络设备之间在 数据传输时域长度较小时的数据传输效率得到保证。
在一种可能的实现方式中,网络设备接收来自第一终端设备的第四信息,用于指示以下至少一项:
第一终端设备的应用场景;
第一终端设备的类型;
第一终端设备的能力信息。
其中,可选的,第一终端设备的应用场景包括工业无线传感网络(Industry Wireless Sensor Network,IWSN)和视频监控(Video surveillance)中的至少一个;第一终端设备的类型包括能力降低(Reduced Capability,REDCAP)的终端设备,例如,工业无线传感器,视频监控摄像头或可穿戴设备中的至少一个;第一终端设备的能力信息包括第一终端设备支持多天线工作模式为SU-MIMO和/或MU-MIMO。
基于该可能的实现方式,网络设备根据第一终端设备的应用场景,第一终端设备的类型或第一终端设备的能力信息配置用于指示多天线工作模式的信息,解决了现有技术中第一终端设备一直默认工作于MU-MIMO模式下,第一终端设备的工作模式可能和第一终端设备实际适用的工作模式不匹配而造成的功耗增大和资源浪费的问题。需要说明的是,通常情况下,应用场景对应特定的业务类型,因此,网络设备可以根据第一终端设备的应用场景来确定配置信息所指示的多天线工作模式,若某一个或者多个应用场景里包含适用于不同多天线工作模式的业务类型,此时第一终端设备上报的应用场景为对应于特定业务类型的应用场景。例如,若IWSN和/或视频监控应用场景还进一步包括周期性业务和非周期性业务,则第一终端设备上报的应用场景为对应于周期性业务的IWSN和/或视频监控,或者,第一终端设备上报的应用场景为对应于非周期性业务的IWSN和/或视频监控。
第四方面,本申请提供一种通信方法,该方法的执行主体可以是网络设备,也可以是网络设备中的芯片或者集成电路。下面以执行主体是网络设备为例进行描述。该方法包括:网络设备向第一终端设备发送第五信息,第五信息用于指示第一终端设备的多天线工作模式为SU-MIMO或者MU-MIMO。
其中,第五信息还用于指示第一终端设备的所述多天线工作模式对应的至少一个第一DMRS端口号和DMRS CDM组的数目N,所述N个DMRS CDM组包括所述至少一个第一DMRS端口号,所述N为正整数。
基于上述方案,网络设备通过配置第五信息,指示第一终端的多天线工作模式。解决了现有技术中第一终端设备一直默认工作于MU-MIMO模式下造成的功耗增大和资源浪费的问题。
在一种可能的实现方式中,第五信息承载于DCI。
基于该可能的实现方式,网络设备通过下行控制信息指示第一终端设备的多天线工作模式,网络设备通过第五信息,同时指示第一终端设备的多天线工作模式,第一终端设备对应的至少一个第一DMRS端口号,和至少一个第二DMRS端口号是否分配给第二终端设备,网络设备可以较为方便的指示第一终端设备多天线工作模式的切换。
在一种可能的实现方式中,N个DMRS CDM组包括至少一个第一DMRS端口号和至少一个第二DMRS端口号。所述至少一个第二DMRS端口号不同于所述至少一个第一DMRS端口号。例如,N个DMRS CDM组由至少一个第一DMRS端口号和至少一个第二DMRS端口号组成;或者,N个DMRS CDM组包括至少一个第一DMRS端口号和至少一个第二DMRS端口号,还可以包括其他端口号。
在一种可能的实现方式中,第五信息指示第一终端设备的多天线工作模式为MU-MIMO,网络设备确定至少一个第二DMRS端口号分配给第二终端设备。第二终端设备为第一终端设备所在的通信系统中除第一终端设备之外的剩余终端设备中的至少一个。
在一种可能的实现方式中,第五信息指示第一终端设备的多天线工作模式为SU-MIMO,网络设备确定至少一个第二DMRS端口号未分配给第二终端设备。第二终端设备为第一终端所在的通信系统中除第一终端设备之外的剩余终端设备中的至少一个。
基于该可能的实现方式,网络设备配置第五信息指示第一终端设备的多天线工作模式为SU-MIMO,相应的,第一终端设备根据第五信息,确定多天线工作模式为SU-MIMO,解决了现有技术中单端口传输模式下第一终端设备仍然默认工作于MU-MIMO模式造成的功耗增大和资源浪费的问题。
在一种可能的实现方式中,网络设备确定至少一个第二DMRS端口号未分配给第二终端设备,当DMRS CDM组的数目N大于1时,第五信息还用于指示至少一个第二DMRS端口号对应的时频资源不用于数据传输,或者用于第一终端设备和网络设备之间的数据传输;或者,若不用第五信息对上述时频资源的使用进行指示,所述方法还包括:网络设备还可向第一终端设备发送第六信息,第六信息用于指示至少一个第二DMRS端口号对应的时频资源不用于数据传输,或者用于第一终端设备和网络设备之间的数据传输。
基于该可能的实现方式,第二信息或者第三信息若指示至少一个第二DMRS端口号对应的时频资源不用于数据传输,第一终端设备的DMRS可以获得功率增强的好处,有助于提升信道估计性能。若网络设备的发射功率不变,且至少一个第二DMRS端口号对应的时频资源不传输数据,则所述网络设备以上述发射功率向所述第一终端设备发送DMRS,可以实现第一终端设备接收到的DMRS信噪比提升,提升了信道估计性能。第二信息或者第三信息若指示至少一个第二DMRS端口号对应的时频资源用于第一终端设备和网络设备之间的数据传输,避免了资源浪费。
在一种可能的实现方式中,第一终端设备和网络设备之间的数据传输的时域长度大于2个OFDM符号,具体的,所述数据承载于PDSCH中。可选的,所述数据传输为单次传输或者为网络设备与第一终端设备进行的一次数据传输。
基于该可能的实现方式,当第一终端设备和网络设备之间的数据传输时域长度大于2个OFDM符号时,网络设备配置信息指示第一终端设备的多天线工作模式和至少一个第二DMRS端口号对应的时频资源的使用。此时,网络设备配置第一终端设备的多天线工作模式可以为SU-MIMO,也可以为MU-MIMO。当第一终端设备和网络设备之间的数据传输时域长度不大于2个OFDM符号时,由于用于数据传输的OFDM符号个数少,在这种情况下,第一终端设备可以假设至少一个第二DMRS端口号对应的时频资源不用于数据传输, 在给定的时频资源上只传输网络设备和第一终端设备之间的数据,此时网络设备配置第一终端设备的多天线工作模式为SU-MIMO,这样可以使得第一终端设备与网络设备之间在数据传输时域长度较小时的数据传输效率得到保证。
在一种可能的实现方式中,网络设备接收来自第一终端设备的第七信息,用于指示以下至少一项:
第一终端设备的应用场景;
第一终端设备的类型;
第一终端设备的能力信息。
其中,可选的,第一终端设备的应用场景包括工业无线传感网络(Industry Wireless Sensor Network,IWSN)和视频监控(Video surveillance)中的至少一个;第一终端设备的类型包括能力降低(Reduced Capability,REDCAP)的终端设备,例如,工业无线传感器,视频监控摄像头或可穿戴设备中的至少一个;第一终端设备的能力信息包括第一终端设备支持多天线工作模式为SU-MIMO和/或MU-MIMO。
基于该可能的实现方式,网络设备根据第一终端的应用场景,第一终端的类型或第一终端的能力信息配置用于指示多天线工作模式的信息,解决了现有技术中第一终端设备一直默认工作于MU-MIMO模式下,第一终端设备的工作模式可能和第一终端设备实际适用的工作模式不匹配而造成的功耗增大和资源浪费的问题。需要说明的是,通常情况下,应用场景对应特定的业务类型,因此,网络设备可以根据第一终端设备的应用场景来确定配置信息所指示的多天线工作模式,若某一个或者多个应用场景里包含适用于不同多天线工作模式的业务类型,此时第一终端设备上报的应用场景为对应于特定业务类型的应用场景。例如,若IWSN和/或视频监控应用场景还进一步包括周期性业务和非周期性业务,则第一终端设备上报的应用场景为对应于周期性业务的IWSN和/或视频监控,或者,第一终端设备上报的应用场景为对应于非周期性业务的IWSN和/或视频监控。
第五方面,本申请提供一种通信装置,有益效果可以参见第一方面或第二方面的描述此处不再赘述。该通信装置可以为上述方法实施例中的第一终端设备,或者为设置在第一终端设备中的芯片或集成电路。该装置包括至少一个处理器及接口电路,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、接口电路耦合。接口电路用于为至少一个处理器提供指令和/或数据的输入或输出,至少一个处理器执行上述指令时,使得所述装置实现上述方法中第一终端设备的功能。在一种可选的实现方式中,至少一个处理器用于执行上述方法中确定多天线工作模式的功能。接口电路用于执行第一终端设备接收来自网络设备的第一信息和第二信息的功能,或者,接口电路用于执行第一终端设备接收来自网络设备的第五信息的功能。可选的,接口电路还用于执行第一终端设备向网络设备发送第四信息的功能,或者,执行第一终端设备向网络设备发送第七信息的功能。
第六方面,本申请提供一种通信装置,有益效果可以参见第三方面或者第四方面的描述此处不再赘述。该通信装置可以为上述方法实施例中的网络设备,或者为设置在网络设备中的芯片或集成电路。该装置包括至少一个处理器及接口电路,可选的,还包括存储器。 其中,该存储器用于存储计算机程序或指令,处理器与存储器、接口电路耦合。接口电路用于为至少一个处理器提供指令和/或数据的输入或输出,至少一个处理器执行上述指令时,使得所述装置实现上述方法中网络设备的功能。在一种可选的实现方式中,至少一个处理器用于执行上述方法中配置多天线工作模式的功能。接口电路用于执行网络设备向第一终端设备发送第一信息和第二信息的功能,或者,接口电路用于执行网络设备向第一终端设备发送第五信息的功能。可选的,接口电路还用于执行网络设备接收来自第一终端设备发送的第四信息的功能,或者,执行网络设备接收来自第一终端设备发送的第七信息的功能。
第七方面,本申请提供一种通信装置,所述通信装置具有实现上述第一方面或第三方面的方法实例中行为的功能。有益效果可以参见第一方面或第二方面的描述,此处不再赘述。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可选的实现方式中,所述通信装置包括:接收模块,用于接收来自网络设备的第一信息和第二信息,所述第一信息用于指示第一终端设备的第一多天线工作模式,所述第二信息用于指示第一终端设备的第二多天线工作模式;或者,用于接收来自网络设备的第五信息,所述第五信息用于指示第一终端设备的多天线工作模式。处理模块,用于确定第一终端设备的多天线工作模式为SU-MIMO或者MU-MIMO。发送模块,用于向网络设备发送第四信息,所述第四信息用于指示第一终端设备的应用场景、第一终端设备的类型、和/或第一终端设备的能力信息;或者,用于向网络设备发送第七信息,所述第七信息用于指示第一终端设备的应用场景、第一终端设备的类型、和/或第一终端设备的能力信息。
第八方面,本申请提供一种通信装置,所述通信装置具有实现上述第三方面或第四方面的方法实例中行为的功能。有益效果可以参见第三方面或第四方面的描述,此处不再赘述。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可选的实现方式中,所述通信装置包括:发送模块,用于向第一终端设备发送第一信息和第二信息,所述第一信息用于指示第一终端设备的第一多天线工作模式,所述第二信息用于指示第一终端设备的第二多天线工作模式;或者,用于向第一终端设备发送第五信息,所述第五信息用于指示第一终端设备的多天线工作模式。处理模块,用于确定配置信息所指示的第一终端设备的多天线工作模式为SU-MIMO或者MU-MIMO。接收模块,用于接收来自第一终端设备的第四信息,所述第四信息用于指示第一终端设备的应用场景、第一终端设备的类型、和/或第一终端设备的能力信息;或者,用于接收来自第一终端设备的第七信息,所述第七信息用于指示第一终端设备的应用场景、第一终端设备的类型、和/或第一终端设备的能力信息。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被至少一个处理器运行时,使得上述各方面中由第一终端设备执行的方法被执行。
第十方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被至少一个处理器运行时,使得上述各方面中由网络设备执行的方法被执行。
第十一方面,本申请提供了一种芯片系统,该芯片系统包括至少一个处理器以及接口电路,所述接口电路用于为所述至少一个处理器提供指令和/或数据的输入或输出,所述至少一个处理器执行上述指令时,所述芯片系统用于实现上述各方面的方法中第一终端设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十二方面,本申请提供了一种芯片系统,该芯片系统包括至少一个处理器以及接口电路,所述接口电路用于为所述至少一个处理器提供指令和/或数据的输入或输出,所述至少一个处理器执行上述指令时,所述芯片系统用于实现上述各方面的方法中网络设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十三方面,提供一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第二方面中任一种可能实现方式中的方法的指令。
第十四方面,提供一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第三方面或第四方面中任一种可能实现方式中的方法的指令。
第十五方面,提供了一种通信系统,所述通信系统包括上述任一方面涉及的网络设备以及终端设备。
相较于现有技术,本申请提供的方案可以灵活配置第一终端设备的多天线工作模式。例如,当第一终端设备所在的通信系统内终端设备数量较多时,可以配置MU-MIMO模式保证用户数据传输速率以及提升系统传输效率,当第一终端设备所在的通信系统内终端设备数量较少时,可以配置SU-MIMO模式保证第一终端设备与网络设备之间的数据传输性能,以及实现第一终端设备的复杂度降低。
附图说明
下面将参照所示附图对本申请实施例进行更详细的描述:
图1为本申请实施例提供的一种通信场景示意图,
图2为本申请实施例提供的一种网络设备和通信设备的硬件结构示意图,
图3为本申请实施例提供的一种多天线工作模式的指示方法流程示意图,
图4为本申请实施例提供的另一种多天线工作模式的指示方法流程示意图,
图5为本申请实施例提供的一种通信装置的结构示意图,
图6为本申请实施例提供的一种通信装置的结构示意图,
图7为本申请实施例提供的一种芯片的示意图。
具体实施方式
本申请的说明书和权利要求书及附图中的术语“第一”、“第二”和“第三”等是用于区别不同对象,而不是用于限定特定顺序。在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例 或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了便于理解本申请,现对本申请实施例涉及到的相关概念进行描述。
一、单用户-多输入多输出(Single User-Multiple Input Multiple Output,SU-MIMO)模式,是指网络设备在给定的时间-频率资源(时频资源)上向单个终端设备发送多个数据流。
二、多用户-多输入多输出(Multiple User-Multiple Input Multiple Output,SU-MIMO)模式,是指网络设备在给定的时间-频率资源(时频资源)上向多个终端设备发送多个数据流,每个终端设备对应一个或多个数据流。
三、DCI格式1_1和DCI格式1_0为DCI与物理下行共享信道(Physical Downlink Shared Channel,PDSCH)传输有关的两种DCI格式。
格式为1_1的DCI可以指示DMRS的端口信息,所述端口信息包括无数据的解调参考信号(Demodulation Reference Signal,DMRS)码分复用(Code Division Multiplexing,CDM)组的数目和DMRS端口号。网络设备配置的前置DMRS的符号数为1或者2,前置DMRS的符号数为该DMRS占据的OFDM符号的数目。此外,网络设备配置的DMRS类型又包括第一类DMRS和第二类DMRS。第一类DMRS和第二类DMRS所对应的DMRS端口对应的时频资源单元个数不同,每个DMRS CDM组包含多个DMRS端口,现有技术中的具体情况可以表示如下:
前置DMRS的符号数为1,且DMRS类型为第一类时,该DMRS占据的OFDM符号支持2个DMRS CDM组,每个DMRS CDM组对应的时频资源块内含有6个时频资源单元,每个DMRS CDM组包含两个DMRS端口,每个DMRS端口号对应3个时频资源单元。
前置DMRS的符号数为2,且DMRS类型为第一类时,该DMRS占据的OFDM符号支持2个DMRS CDM组。每个DMRS CDM组对应的时频资源块内含有12个时频资源单元,每个DMRS CDM组包含四个DMRS端口,每个DMRS端口号对应3个时频资源单元。
前置DMRS的符号数为1,且DMRS类型为第二类时,该DMRS占据的OFDM符号支持3个DMRS CDM组。每个DMRS CDM组对应的时频资源块内含有4个时频资源单元,每个DMRS CDM组包含两个DMRS端口,每个DMRS端口号对应2个时频资源单元。
前置DMRS的符号数为2,且DMRS类型为第二类时,该DMRS占据的OFDM符号支持3个DMRS CDM组。每个DMRS CDM组对应的时频资源块内含有8个时频资源单元,每个DMRS CDM组包含四个DMRS端口,每个DMRS端口号对应2个时频资源单 元。
NR通信系统在进行一次数据传输时最多可以传输两个码字,表1为NR通信系统在进行数据传输时,网络设备配置的使用一个码字传输,前置DMRS符号的数目为1以及使用第一类DMRS情况下,格式为1_1的DCI指示的DMRS端口号的状态表。
表1
Figure PCTCN2021105631-appb-000001
格式为1_1的DCI中有一个4比特指示字段用于指示DMRS端口值信息,对应16种信息值。信息值0-11用于指示DMRS端口信息,信息值12-15为保留状态,不做任何DMRS端口信息的指示。每个DMRS CDM组可以包含两个DMRS端口号,N个DMRS CDM组可以包含2N个DMRS端口号。若将该状态表中指示的端口号称为第一DMRS端口号,则DMRS CDM组数目N和第一DMRS端口号的关系为以下四种情况中的一种:
DMRS CDM组数目N为1,第一DMRS端口号为1个;
DMRS CDM组数目N为1,第一DMRS端口号为多个;
DMRS CDM组数目N大于1,第一DMRS端口号为1个;
DMRS CDM组数目N大于1,第一DMRS端口号为多个。
格式为1_0的DCI不对DMRS CDM组和DMRS端口号进行明确指示。当格式为1_0的DCI调度的PDSCH持续时间为两个OFDM符号时,终端设备接收上述格式为1_0的DCI,会假设DMRS CDM组数目为1;当格式为1_0的DCI调度的PDSCH持续时间超过两个OFDM符号时,终端设备接收上述格式为1_0的DCI,会假设DMRS CDM组数目为2。对于单端口传输,只需要网络设备配置一个DMRS CDM组和一个DMRS端口,但是对于这种判定方式,当终端设备接收到的PDSCH持续时间超过两个OFDM符号时,终端设备判定的DMRS CDM组数目仍旧为2,尽管没有MU-MIMO的假设,两个DMRS  CDM组需要对应两个时频资源块,这不仅会造成资源浪费,网络设备和终端设备之间数据传输的速率匹配也会出现问题。
四、能力降低的(Reduced Capacity,REDCAP)终端设备,新无线(New Radio,NR)通信系统中,存在应用场景需要支持REDCAP终端设备。REDCAP终端设备通常具有更窄的带宽、更少的天线端口数和/或更低的传输速率等。另外,REDCAP终端设备的电池寿命更长,处理复杂度更低和/或成本也更低。
本申请提供的技术方案可以应用于各种通信系统,如:可以应用于第五代(5th generation mobile networks,5G)通信系统,未来演进系统或多种通信融合系统等中。本申请提供的技术方案可以应用于上述通信系统的多种应用场景中,例如工业无线传感(Industry Wireless Sensor Network,IWSN)和视频监控(Video surveillance)。本申请可以提供的技术方案可以支持多种终端设备类型,例如,REDCAP终端设备。包括,工业无线传感器,视频监控摄像头,可穿戴设备(智能手表)等。
在本申请实施例中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a、b、c、a和b、a和c、b和c,或a和b和c,其中a、b、c可以是单个,也可以是多个。
为了使本领域技术人员更好地理解本申请实施例提供的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例可以应用于如图1中所示的通信系统,该系统包括至少一个网络设备10和至少一个通信设备20。通信设备30为通信系统中除去通信设备20之外的其他通信设备中的至少一个。
网络设备10可以是接入网设备,接入网设备也可以称为无线接入网(radio access network,RAN)设备,是一种为通信设备提供无线通信功能的设备。接入网设备例如包括但不限于:5G中的下一代基站(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、基带单元(baseband unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、未来移动通信系统中的基站或WiFi系统中的接入点等。
网络设备10应用的场景包括但不限于工业无线传感网络(Industry Wireless Sensor Network,IWSN)、视频监控(Video surveillance)和/或可穿戴设备的应用场景等。网络设备10执行的业务包括但不限于IWSN和/或视频监控(Video surveillance)场景中的周期性业务和非周期业务、增强型移动带宽(Enhanced Mobile Broadband,eMBB)、高可靠低时 延通信(ultra-reliable low-latency communication,URLLC)以及海量机器类通信(Massive Machine-type Communications,mMTC)等。
通信设备20为用户提供语音和/或数据连接服务,例如可以是终端设备(Terminal Equipment),也可称之为用户设备(User Equipment,UE),用户终端(User Terminal,UT)、移动终端(Mobile Terminal,MT)、移动台(Mobile Station,MS)等,可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信。例如,终端设备可以是移动电话(或称为“蜂窝”电话)或具有移动终端的计算机等,例如,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。
通信设备20应用的场景包括但不限于工业无线传感网络(Industry Wireless Sensor Network,IWSN)、视频监控(Video surveillance)和/或可穿戴设备的应用场景等,通信设备的20的类型包括但不限于可穿戴设备。通信设备20执行的业务包括但不限于IWSN和/或视频监控(Video surveillance)场景中的周期性业务和非周期业务、增强型移动带宽(Enhanced Mobile Broadband,eMBB)、高可靠低时延通信(ultra-reliable low-latency communication,URLLC)以及海量机器类通信(Massive Machine-type Communications,mMTC)等。
图2为本申请实施例提供的一种网络设备和通信设备的硬件结构示意图。
网络设备10包括至少一个处理器101、至少一个存储器102、至少一个收发器103和至少一个网络接口104。处理器101、存储器102、收发器103和网络接口104通过总线相连接。其中,网络接口104用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它接入网设备的网络接口进行连接(图中未示出),本申请实施例对此不作具体限定。
处理器101可以是一个通用中央处理器(Central Processing Unit,CPU)、微处理器、特定应用集成电路(Application-Specific Integrated Circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。处理器201也可以包括多个CPU,并且处理器201可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器102可以是只读存储器(Read-Only Memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(Random Access Memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器102可以是独立存在,通过总线与处理器101相连接。存储器102也可以和处理器101集成在一起。其中,存储器102用于存储执行本申请方案的应用程序代码,并由处理器101来控制执行。处理器101用于执行存储器102中存储的计算机程序代码,从而实现本申请实施例中所述多天线工作模式的指示方法。
收发器103可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(Radio Access Network,RAN)、无线局域网(Wireless Local Area Networks,WLAN)等。收发器203包括发射机Tx和接收机Rx。
通信设备20包括至少一个处理器201、至少一个存储器202、至少一个收发器203,可选的,通信设备20还可以包括输出设备204和输入设备205。处理器201、存储器202和收发器203通过总线相连接。另外,处理器201、存储器202和收发器203的相关描述可参考网络设备10中处理器101、存储器102和收发器103的描述,在此不再赘述。
输出设备204和处理器201通信,可以以多种方式来显示信息。例如,输出设备204可以是液晶显示器(Liquid Crystal Display,LCD),发光二级管(Light Emitting Diode,LED)显示设备,阴极射线管(Cathode Ray Tube,CRT)显示设备,或投影仪(projector)等。输入设备205和处理器201通信,可以以多种方式接收用户的输入。例如,输入设备205可以是鼠标、键盘、触摸屏设备或传感设备等。
本申请提供一种多天线工作模式的指示方法,以下以通信装置是终端设备为例进行描述。网络设备向第一终端设备发送配置信息,用于指示第一终端设备的多天线工作模式,第一终端设备根据网络设备配置的指示信息确定多天线工作模式,从而解决了终端设备一直默认工作于MU-MIMO模式造成的功耗增大和资源浪费的问题。
图3为本申请提供的一种多天线工作模式指示方法的流程示意图。所述方法包括步骤300-306。
300:网络设备确定第一多天线工作模式。
具体的,所述网络设备可以根据第一终端设备的应用场景、第一终端设备的设备类型、和/或第一终端设备的能力信息确定所述第一多天线工作模式;或者,网络设备根据预先定义或预先配置,确定所述第一多天线工作模式。
301:网络设备向第一终端设备发送第一信息,相应的,第一终端设备接收来自网络设备的第一信息。其中,所述第一信息用于指示第一终端设备的第一多天线工作模式。
具体的,第一信息承载于无线资源控制(Radio Resource Control,RRC)信令或者媒体接入控制(Media Access Control,MAC)信令。
一种可选的设计中,所述第一信息指示第一终端设备的第一多天线工作模式为SU-MIMO,第一终端设备接收第一信息,确定多天线工作模式为SU-MIMO。在该可选的设计中,网络设备在需要配置第一终端设备的多天线工作模式为SU-MIMO时,通过第一信息进行指示。否则,第一终端设备的多天线工作模式为MU-MIMO,即在未通过上述RRC信令或者MAC信令指示第一多天线工作模式的情况下,终端设备默认工作在MU-MIMO模式。
又一种可选的设计中,所述第一信息指示第一终端设备的第一多天线工作模式为SU-MIMO或者MU-MIMO。也就是说,在该可选的设计中,不存在默认的多天线工作模式,第一终端设备根据所述第一信息的指示确定所述第一多天线工作模式。
302:网络设备确定第二多天线工作模式。
具体的,所述网络设备根据第一终端设备的应用场景、第一终端设备的设备类型、和/或第一终端设备的能力信息确定第二多天线工作模式;或者,网络设备根据预先定义或预先配置,确定第二多天线工作模式。
303:网络设备向第一终端设备发送第二信息,相应的,第一终端设备接收来自所述网络设备的第二信息,第二信息用于指示第一终端设备的多天线工作模式为SU-MIMO或者MU-MIMO。进一步,所述第二信息还用于指示第一终端设备的第二多天线工作模式对应的至少一个第一解调参考信号DMRS端口号和解调参考信号DMRS码分复用CDM组的数目N,所述N个DMRS CDM组包括所述至少一个第一DMRS端口号,所述N为正整数。
具体的,第二信息指示第一终端设备的第二多天线工作模式为SU-MIMO或者MU-MIMO。可选的,第二信息承载于下行控制信息,所述下行控制信息的格式可以为DCI格式1_1。
其中,所述N个DMRS CDM组包括至少一个第一DMRS端口号和至少一个第二DMRS端口号。至少一个第二DMRS端口号不同于至少一个第一DMRS端口号。例如,N个DMRS CDM组由至少一个第一DMRS端口号和至少一个第二DMRS端口号组成;或者,N个DMRS CDM组包括至少一个第一DMRS端口号和至少一个第二DMRS端口号,还可以包括其他端口号。
一种示例中,所述第二信息可以通过所述下行控制信息中的一个指示字段承载。可选的,所述指示字段可以包含4个比特。所述第二信息通过所述指示字段的不同取值向第一终端设备指示不同的信息。
具体的,所述第二信息的取值和多天线工作模式之间存在对应关系。所述对应关系是预先定义或者配置的。作为示例,下文通过表格的方式体现所述对应关系,但是本申请不限定该对应关系的具体体现形式。
一种可能的对应关系可以如表2所示,第二信息由4比特的指示字段承载,对应16种信息值。信息值0-11向第一终端设备指示MU-MIMO工作模式,与现有技术有较好的兼容性;信息值12和13向第一终端设备指示SU-MIMO工作模式。信息值14和15为保留状态,暂不做任何多天线工作模式的指示。
表2
Figure PCTCN2021105631-appb-000002
一种示例中,表2中信息值12指示SU-MIMO工作模式时,其指示的DMRS CDM组的数目可以是1,其指示的DMRS端口号可以是0;信息值13指示SU-MIMO工作模式时,其指示的DMRS CDM组的数目可以是2,其指示的DMRS端口号可以是0,1。单天线端口终端设备可以通过一个DMRS端口与网络设备进行数据传输,而双天线端口终端设备可以通过两个DMRS端口与网络设备进行数据传输。进一步可选的,信息值12可以用于指示单天线端口终端设备的SU-MIMO模式,信息值13可以用于指示双天线端口终端设备的SU-MIMO模式。
表2所体现的DMRS CDM组的数目N和DMRS端口号的对应关系仅是一种示例,本申请对此不做具体限定。
304:第一终端设备确定多天线工作模式为第二多天线工作模式。
在通信过程中,DMRS为网络设备和终端设备已知的信号类型,用于信道估计,可以理解为,DMRS不是有效数据。而在PDSCH中,除DMRS之外,还存在终端设备需要对网络设备发送的信息进行解调才能获知的数据,这部分数据可以理解为有效数据,也即PDSCH中含有DMRS和有效数据。
具体的,当第一终端设备工作于MU-MIMO时,第一终端设备接收来自网络设备的下行控制信息,确定至少一个第二DMRS端口号分配给第二终端设备。此时,至少一个第二DMRS端口号对应的时频资源中存在DMRS。第一终端设备在对网络设备发送的PDSCH中的有效数据进行解调时,需要将第二终端设备对应的DMRS以及第二终端设备对应的至少一个第二DMRS端口传输的数据作为干扰信号进行处理,此时,第一种终端设备的功耗和复杂度较高。当第一终端设备工作于SU-MIMO时,第一终端设备接收来自网络设备的下行控制信息,会确定至少一个第二DMRS端口号未分配给第二终端设备。此时,至少一个第二DMRS端口号对应的时频资源中不存在DMRS,也就不存在第一终端设备在MU-MIMO模式下将第二终端设备对应的DMRS以及第二终端设备对应的至少一个第二 DMRS端口传输的数据作为干扰信号处理这一步骤,此时第一终端设备的功耗和复杂度都会降低。
示例一,第一信息指示的第一多天线工作模式为SU-MIMO,第二信息指示的第二多天线工作模式为MU-MIMO,第一终端设备接收第一信息和第二信息后,第一终端设备的多天线工作模式为MU-MIMO,至少一个第二DMRS端口号分配给第二终端设备。
示例二,第一信息指示的第一多天线工作模式为SU-MIMO,第二信息指示的第二多天线工作模式同样为SU-MIMO,第一终端在接收第一信息和第二信息后,第一终端设备的多天线工作模式为SU-MIMO。至少一个第二DMRS端口号未分配给第二终端设备。
示例三,第一信息指示的第一多天线工作模式为MU-MIMO,第二信息指示的第二多天线工作模式同样为MU-MIMO,第一终端设备接收第一信息和第二信息后,第一终端设备的多天线工作模式为MU-MIMO,至少一个第二DMRS端口号分配给第二终端设备。
示例四,第一信息指示的第一多天线工作模式为MU-MIMO,第二信息指示的第二多天线工作模式为SU-MIMO,第一终端设备接收第一信息和第二信息后,第一终端设备的多天线工作模式为SU-MIMO,至少一个第二DMRS端口号未分配给第二终端设备。
进一步可选的,网络设备向第一终端设备发送第八信息。
所述第八信息用于指示所述第一终端设备的第三多天线工作模式,所述第八信息还用于指示所述第三多天线工作模式下对应的至少一个第一解调参考信号DMRS端口号和解调参考信号DMRS码分复用CDM组的数目N1,所述N1个DMRS CDM组包括所述至少一个第一DMRS端口号,所述N1为正整数。
具体的,第八信息指示第一终端设备的第三多天线工作模式为SU-MIMO或者MU-MIMO。可选的,第八信息承载于下行控制信息,所述下行控制信息的格式可以为DCI格式1_1。
其中,所述N1个DMRS CDM组包括至少一个第一DMRS端口号和至少一个第二DMRS端口号。至少一个第一DMRS端口号不同于至少一个第二DMRS端口号。例如,N1个DMRS CDM组由至少一个第一DMRS端口号和至少一个第二DMRS端口号组成;或者,N1个DMRS CDM组包括至少一个第一DMRS端口号和至少一个第二DMRS端口号,还可以包括其他端口号。需要说明的是,第八信息中的DMRS CDM组对DMRS端口号的分配方式,与第二信息中的DMRS CDM组对DMRS端口号的分配方式可以相同,也可以不同。第八信息中的至少一个第一DMRS端口号与第二信息中的至少一个第一DMRS端口号可以相同,也可以不同。第八信息中的至少一个第二DMRS端口号和第二信息中的至少一个第二DMRS端口号可以相同,也可以不同。
相应的,第一终端设备接收第八信息,确定多天线工作模式为第三多天工作模式。
具体的,可能的情况包含以下四种:
第一种,第三多天线工作模式与第二多天线工作模式都为MU-MIMO,第一终端设备接收第八信息后,确定多天线工作模式为第三多天线工作模式,第一终端设备保持MU-MIMO的工作模式。
第二种,第三多天线工作模式与第二多天线工作模式都为SU-MIMO,第一终端设备接收第八信息后,确定多天线工作模式为第三多天线工作模式,第一终端设备保持SU-MIMO的工作模式。
第三种,第二多天线工作模式为SU-MIMO,第三多天线工作模式为MU-MIMO。第一终端设备接收第八信息后,确定多天线工作模式从SU-MIMO切换至MU-MIMO。
第四种,第二多天线工作模式为MU-MIMO,第三多天线工作模式为SU-MIMO。第一终端设备接收第八信息后,确定多天线工作模式从MU-MIMO切换至SU-MIMO。
基于上述四种情况的描述,当第一终端设备由第一信息和第二信息确定了第二多天线工作模式时,第一终端设备工作于第二多天线工作模式。若这之后,第一终端设备适用的多天线工作模式发生变化,需要进行工作模式的调整,可以选用第八信息实现第一终端设备多天线工作模式的切换。
在第一终端设备确定多天线工作模式为SU-MIMO,且DMRS CDM组数目N和/或N1大于1时,N个和/或N1个DMRS CDM组所对应的时频资源块也大于1。至少一个第二DMRS端口号不分配给第二终端设备,其对应的时频资源也不再用于第二终端设备和网络设备之间的数据传输。
可选的,在第一终端设备确定多天线工作模式为SU-MIMO,且DMRS CDM组数目N和/或N1大于1时,进一步对至少一个第二DMRS端口号对应的时频资源的使用方式进行指示:
第一种,利用格式为1-1的DCI中上述4比特指示字段的不同信息值指示至少一个第二DMRS端口号对应的时频资源的使用方式。可选的,在某一个或多个信息值指示SU-MIMO模式的同时,当DMRS CDM组的数目N和/或N1大于1时,该一个或多个信息值还可指示至少一个第二DMRS端口号对应的时频资源的使用方式。
例如表3,信息值12指示SU-MIMO模式下,且DMRS CDM组数目N和/或N1大于1时,至少一个第二DMRS端口号对应的时频资源不用于数据传输,即SU-MIMO-1。信息值13指示SU-MIMO模式下,且DMRS CDM组数目N和/或N1大于1时,至少一个第二DMRS端口号对应的时频资源用于第一终端设备与网络设备之间数据传输,即SU-MIMO-2。
表3
Figure PCTCN2021105631-appb-000003
表3中信息值12指示SU-MIMO-1工作模式时,其指示的DMRS CDM组的数目可以是2,其指示的DMRS端口号可以是0,1。例如,信息值12可以指示双天线端口终端设备工作于SU-MIMO时,至少一个第二DMRS端口号对应的时频资源不用于数据传输。又如,信息值13指示SU-MIMO-2工作模式时,其指示的DMRS CDM组的数目可以是2,其指示的DMRS端口号可以是0,1。再如,信息值13可以指示双天线端口终端设备工作于SU-MIMO时,至少一个第二DMRS端口号对应的时频资源用于第一终端设备和网络设备之间的数据传输。
表3所体现的DMRS CDM组的数目N和DMRS端口号的对应关系仅是一种示例,本申请对此不做具体限定。
第二种,利用格式为1-1的DCI中除上述4比特指示字段之外的其他指示字段指示至少一个第二DMRS端口号对应的时频资源的使用方式。例如,将除上述4比特指示字段之外的某1比特作为第三信息,1比特对应两种信息值。可选的,第三信息的信息值0用于指示至少一个第二DMRS端口号对应的时频资源不用于数据传输,以及第三信息的信息值1用于指示至少一个第二DMRS端口对应的时频资源用于第一终端设备与网络设备之间数据传输。
第三种,利用网络设备配置的高层信令指示至少一个第二DMRS端口号对应的时频资源的使用方式。例如,网络设备向第一终端设备发送第三信息,用于指示至少一个第二DMRS端口号对应的时频资源不用于数据传输,或者用于第一终端设备和网络设备之间的数据传输。
可选的,所述方法还包括:305,第一终端设备向网络设备上报第四信息。相应的,网络设备接收第四信息。
一种示例中,第四信息用于指示第一终端的应用场景。可选的,第四信息指示的应用场景包括工业无线传感网络(Industry Wireless Sensor Network,IWSN)和视频监控(Video surveillance)中的至少一个。
另一种示例中,第四信息指示第一终端设备的设备类型。可选的,第四信息指示的设备类型包括能力降低(reduced capability,REDCAP)的终端设备,例如,工业无线传感器,视频监控摄像头或可穿戴设备中的至少一个。
另一种示例中,第四信息指示第一终端设备的能力信息。可选的,第四信息指示的终端设备的能力信息包括第一终端设备支持的多天线工作模式包括SU-MIMO和/或MU-MIMO。
另外,第四信息所指示的信息还可以是以上多个示例中所述信息的任意组合。
可选的,所述方法还包括:306:网络设备根据第四信息,配置相应的工作模式。
具体的,网络设备根据第四信息,执行步骤300。进一步可选的,网络设备也可以根据所述第一信息,执行步骤302。
另外,由于步骤301中,存在一种可选的设计为,第一信息指示第一终端设备的第一多天线工作模式为SU-MIMO,第一终端设备接收第一信息,确定多天线工作模式为SU-MIMO。在该可选的设计中,网络设备在需要配置第一终端设备为SU-MIMO时,通过第一信息进行指示。否则,第一终端设备的多天线工作模式为MU-MIMO,即在未通过上述RRC信令或者MAC信令指示第一多天线工作模式的情况下,终端设备默认工作在MU-MIMO模式。在此情况下,存在可能的示例为:网络设备未通过RRC信令或者MAC信令指示第一多天线工作模式,终端设备默认工作在MU-MIMO模式。进一步的,网络设备向终端设备发送第二信息,终端设备接收来自网络设备的第二信息,根据第二信息确定多天线工作模式为SU-MIMO或者MU-MIMO。
具体的,网络设备向第一终端设备发送第二信息,第二信息指示的第二多天线工作模式为MU-MIMO,第一终端设备确定至少一个第二DMRS端口号分配给第二终端设备,第一终端设备确定多天线工作模式为MU-MIMO。
具体的,网络设备向第一终端设备发送第二信息,第二信息指示的第二多天线工作模式为SU-MIMO,第一终端设备确定至少一个第二DMRS端口号未分配给第二终端设备,第一终端设备确定多天线工作模式为SU-MIMO。
进一步的,在第二信息指示SU-MIMO模式,且DMRS CDM组的数目N大于1时,还可进一步对至少一个第二DMRS端口号对应的时频资源的使用方式进行指示,指示方法可以参考步骤304中的相关描述。
图4为本申请提供的另一种多天线工作模式指示方法的流程示意图。所述方法包括步骤400-404。
400:网络设备确定第一终端设备的多天线工作模式。
具体的,所述网络设备根据第一终端设备的应用场景、第一终端设备的设备类型、和/或第一终端设备的能力信息确定第一终端设备的多天线工作模式;或者,网络设备根据预先定义或预先配置,确定第一终端设备的多天线工作模式。
401:网络设备发送第五信息,所述第五信息用于指示第一终端设备的多天线工作模式 为SU-MIMO或者MU-MIMO。进一步,所述第五信息还用于指示所述第一终端设备的所述多天线工作模式对应的至少一个第一解调参考信号DMRS端口号和解调参考信号DMRS码分复用CDM组的数目N,所述N个DMRS CDM组包括所述至少一个第一DMRS端口号,所述N为正整数。
可选的,第五信息承载于下行控制信息,所述下行控制信息的格式可以为DCI格式1_1。
其中,所述N个DMRS CDM组包括至少一个第一DMRS端口号和至少一个第二DMRS端口号。所述至少一个第一DMRS端口号不同于所述至少一个第二DMRS端口号。例如,N个DMRS CDM组由所述至少一个第一DMRS端口号和所述至少一个第二DMRS端口号组成;或者,N个DMRS CDM组包括所述至少一个第一DMRS端口号和所述至少一个第二DMRS端口号,还可以包括其他端口号。
一种示例中,第五信息可以通过下行控制信息中的一个指示字段承载。可选的,所述指示字段可以包含4个比特。第五信息通过所述指示字段的不同取值向第一终端设备指示不同的信息。
具体的,第五信息的取值和多天线工作模式之间存在对应关系。所述对应关系是预先定义或者配置的。可选的,所述对应关系可以通过表格的方式体现。所述取值和多天线工作模式之间的对应关系可以参考图3所述的实施例中的相关描述,在此不再赘述。
402:第一终端设备根据第五信息,确定多天线工作模式为SU-MIMO或者MU-MIMO。
在通信过程中,DMRS为网络设备和终端设备已知的信号类型,用于信道估计,可以理解为,DMRS不是有效数据。而在PDSCH中,除DMRS之外,还存在终端设备需要对网络设备发送的信息进行解调才能获知的数据,这部分数据可以理解为有效数据,也即PDSCH中含有DMRS和有效数据。
具体的,当第一终端设备工作于MU-MIMO时,第一终端设备接收来自网络设备的下行控制信息,会确定至少一个第二DMRS端口号分配给第二终端设备,此时,至少一个第二DMRS端口号对应的时频资源中存在DMRS,第一终端设备在对网络设备发送的PDSCH中的有效数据进行解调时,需要将第二终端设备对应的DMRS以及第二终端设备对应的至少一个第二DMRS端口传输的数据作为干扰信号进行处理,此时,第一种终端设备的功耗和复杂度较高。当第一终端设备工作于SU-MIMO时,第一终端设备接收来自网络设备的下行控制信息,会确定至少一个第二DMRS端口号未分配给第二终端设备。此时,至少一个第二DMRS端口号对应的时频资源中不存在DMRS,也就不存在第一终端设备工作在MU-MIMO模式下将第二终端设备对应的DMRS以及第二终端设备对应的至少一个第二DMRS端口传输的数据作为干扰信号处理这一步骤,此时第一终端设备的功耗和复杂度都会降低。
一种示例中,第五信息指示第一终端设备的多天线工作模式为MU-MIMO,第一终端设备接收第五信息,确定第二DMRS端口号分配给第二终端设备,第一终端设备确定多天线工作模式为MU-MIMO。
另一种示例中,第五信息指示第一终端设备的多天线工作模式为SU-MIMO,第一终端 设备接收第五信息,确定第二DMRS端口号未分配给第二终端设备。
在第一终端设备确定多天线工作模式为SU-MIMO,且DMRS CDM组数目N大于1时,N个DMRS CDM组所对应的时频资源块也大于1。至少一个第二DMRS端口号不分配给第二终端设备,其对应的时频资源也不再用于第二终端设备和网络设备之间的数据传输。
在第一终端设备确定多天线工作模式为SU-MIMO,且DMRS CDM组数目N大于1时,可选的,进一步对至少一个第二DMRS端口号对应的时频资源的使用方式进行指示:
第一种,利用第五信息指示至少一个第二DMRS端口号对应的时频资源的使用,指示方法可以参考图3所述的实施例中的相关描述,在此不再赘述。
第二种,利用格式为1-1的DCI中除上述4比特信息之外的其他指示字段指示至少一个DMRS端口号对应的时频资源的使用方式。例如,将上述4比特指示字段之外的某1比特作为第六信息。1比特对应两种信息值。可选的,第六信息的信息值0用于指示至少一个第二DMRS端口号对应的时频资源不用于数据传输。第六信息的信息值1用于指示至少一个第二DMRS端口对应的时频资源用于第一终端设备与网络设备之间数据传输。
第三种,利用网络设备配置的高层信令指示至少一个第二DMRS端口号对应的时频资源的使用方式。例如,网络设备向第一终端设备发送第六信息,用于指示至少一个第二DMRS端口号对应的时频资源不用于数据传输,或者用于第一终端设备和网络设备之间的数据传输。
可选的,所述方法还包括:403:第一终端设备向网络设备上报第七信息。相应的,网络设备接收第七信息。
一种示例中,第七信息用于指示第一终端的应用场景。可选的,第七信息指示的应用场景包括工业无线传感网络(Industry Wireless Sensor Network,IWSN)和视频监控(Video surveillance)中的至少一个。
另一种示例中,第七信息指示第一终端设备的设备类型。可选的,第七信息指示的第一终端设备的设备类型包括能力降低(Reduced Capability,REDCAP)终端设备,例如,工业无线传感器,视频监控摄像头或可穿戴设备中的至少一个。另一种示例中,第七信息指示第一终端设备的能力信息。可选的,第七信息指示的终端设备的能力信息包括第一终端设备支持的多天线工作模式为SU-MIMO和/或MU-MIMO。
另外,第七信息所指示的信息还可以是以上多个示例中所述信息的任意组合。
可选的,所述方法还包括:404:网络设备根据第七信息,配置相应的多天线工作模式。
具体的,网络设备根据第七信息,执行流程400中,确定第五信息指示的多天线工作模式步骤。
上述主要从通信设备与网络设备交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,通信设备以及网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行, 取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对通信设备以及网络设备进行划分,例如,可以对应各个功能划分各个模块或者单元,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件模块或者单元的形式实现。其中,本申请实施例中对模块或者单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,在采用对应各个功能划分各个功能模块的情况下,图5示出了上述实施例中所涉及的通信装置的一种可能的结构示意图。如图5所示,通信装置500包括:处理模块501、发送模块502和接收模块503。所述通信装置可以为网络设备本身,或者网络设备内部的芯片系统或者集成电路。
当通信装置500用于实现图3所述方法实施例中的网络设备的功能时,处理模块501用于支持网络设备执行确定第一终端设备的第一多天线工作模式和确定第一终端设备的第二多天线工作模式的功能。例如,图3中的步骤300和图3中的步骤302。发送模块502用于支持网络设备执行向终端设备发送第一信息和第二信息的功能,例如,图3中步骤301、步骤303,和/或用于本文描述的技术的其他过程。接收模块503,用于支持网络设备执行接收来自第一终端设备发送的第四信息的功能,例如,图3中的步骤305,和/或用于本文描述的技术的其他过程。
当通信装置500用于实现图4所述方法实施例中的网络设备的功能时,处理模块501用于支持网络设备执行确定第一终端设备的多天线工作模式的功能。例如,图4中的步骤400。发送模块502用于支持网络设备执行向终端设备发送第五信息的功能,例如,图4中步骤401,和/或用于本文描述的技术的其他过程。接收模块503,用于支持网络设备执行接收来自第一终端设备发送的第七信息的功能,例如,图4中的步骤403,和/或用于本文描述的技术的其他过程。
比如,在采用对应各个功能划分各个功能模块的情况下,图6示出了上述实施例中所涉及的通信装置的一种可能的结构示意图。如图6所示,该通信装置600包括:处理模块601、发送模块602和接收模块603。所述通信装置可以为终端设备本身,或者终端设备内部的芯片系统或者集成电路。
当通信装置600用于实现图3所述方法实施例中的第一终端设备的功能时,处理模块601用于支持第一终端设备执行确定多天线工作模式的功能。例如,图3中的步骤304。接收模块603用于支持第一终端设备执行接收来自网络设备发送的第一信息和第二信息的功能,例如,图3中步骤301、步骤303,和/或用于本文描述的技术的其他过程。发送模块602,用于支持第一终端设备向网络设备发送第四信息的功能,例如,图3中的步骤305,和/或用于本文描述的技术的其他过程。
当通信装置600用于实现图4所述方法实施例中的第一终端设备的功能时,处理模块601用于支持第一终端设备执行确定多天线工作模式的功能。例如,图4中的步骤402。接收模块603用于支持第一终端设备执行接收网络设备发送的第五信息的功能,例如,图4中步骤401,和/或用于本文描述的技术的其他过程。发送模块602,用于支持第一终端设备执行向网络设备发送第七信息的功能,例如,图4中的步骤403, 和/或用于本文描述的技术的其他过程。
在本申请实施例中,该装置以对应各个功能划分各个功能模块的形式来呈现,或者,该装置以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以包括特定应用集成电路(Application-Specific Integrated Circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该网络设备可以采用图2所示的网络设备来实现。比如,图5中的发送模块502可以由图2中的通信接口103来实现,处理模块501可以由图2中的处理器101来实现,本申请实施例对此不作任何限制。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令;当所述计算机可读存储介质在计算机上执行时,实现本申请所示方法中的网络设备和终端设备的功能。
可选的,本申请提供了一种芯片系统,该芯片系统用于支持本申请提供的多天线工作模式的指示方法的实现,例如,图3和图4所示的多天线工作模式的指示方法。所述芯片系统包括至少一个处理器以及接口电路,接口电路用于为至少一个处理器提供指令和/或数据的输入或输出,至少一个处理器执行上述指令时,所述芯片系统用于实现本申请提供的多天线工作模式的指示方法中网络设备或者终端设备的功能。在一种可能的设计中,该芯片系统还包括存储器。该存储器用于保存网络设备必要的程序指令和数据。当然,存储器也可以不在芯片系统中。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
图7所示为本申请提供的芯片系统的一种示例,该芯片系统700包括处理器701,接口电路702,可选的,处理器701和接口电路702可以通过总线703相连。
本申请提供了一种通信系统,包括前述的一个或多个网络设备以及前述的一个或多个通信设备。
最后说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或者替换,都应该涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (44)

  1. 一种通信方法,其特征在于,所述方法包括:
    接收来自网络设备的第一信息,所述第一信息用于指示第一终端设备的第一多天线工作模式;
    接收来自所述网络设备的第二信息,所述第二信息用于指示所述第一终端设备的第二多天线工作模式对应的至少一个第一解调参考信号DMRS端口号和解调参考信号DMRS码分复用CDM组的数目N,所述N个DMRS CDM组包括所述至少一个第一DMRS端口号,所述N为正整数;
    确定所述第一终端设备的多天线工作模式为所述第二多天线工作模式。
  2. 如权利要求1所述的方法,其特征在于,所述第一信息承载于无线资源控制RRC信令或者媒体接入控制MAC信令。
  3. 如权利要求1或2所述的方法,其特征在于,所述第二信息承载于下行控制信息DCI。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述N个DMRS CDM组还包括至少一个第二DMRS端口号,所述至少一个第二DMRS端口号不同于所述至少一个第一DMRS端口号。
  5. 如权利要求4所述的方法,其特征在于:
    所述第一多天线工作模式为多用户-多输入多输出MU-MIMO,所述第二多天线工作模式为多用户-多输入多输出MU-MIMO;或者
    所述第一多天线工作模式为单用户-多输入多输出SU-MIMO,所述第二多天线工作模式为多用户-多输入多输出MU-MIMO;
    所述方法还包括:
    确定所述至少一个第二DMRS端口号分配给第二终端设备,所述第二终端设备与所述第一终端设备不同。
  6. 如权利要求4所述的方法,其特征在于:
    所述第一多天线工作模式为多用户-多输入多输出MU-MIMO,所述第二多天线工作模式为单用户-多输入多输出SU-MIMO;或者
    所述第一多天线工作模式为单用户-多输入多输出SU-MIMO,所述第二多天线工作模式为单用户-多输入多输出SU-MIMO;
    所述方法还包括:
    确定所述至少一个第二DMRS端口号未分配给第二终端设备,所述第二终端设备与所述第一终端设备不同。
  7. 如权利要求6所述的方法,其特征在于,所述N大于1;
    所述第二信息还用于指示所述至少一个第二DMRS端口号对应的时频资源不用于数据传输或者用于所述第一终端设备与所述网络设备之间的数据传输。
  8. 如权利要求6所述的方法,其特征在于,所述N大于1;
    所述方法还包括:
    接收第三信息,所述第三信息用于指示所述至少一个第二DMRS端口号对应的时频资源不用于数据传输或者用于所述第一终端设备与所述网络设备之间的数据传输。
  9. 如权利要求1-8任一项所述的方法,其特征在于,所述第一终端设备与所述网络设备之间的数据传输的时域长度大于2个正交频分复用OFDM符号。
  10. 如权利要求1-9任一项所述的方法,其特征在于,所述方法还包括:向所述网络设备发送第四信息,所述第四信息用于指示以下至少一项:
    所述第一终端设备的应用场景;
    所述第一终端设备的类型;
    所述第一终端设备的能力信息。
  11. 如权利要求1-10任一项所述的方法,其特征在于,所述第一终端设备处于无线资源控制连接态(RRC connected sate)。
  12. 一种通信方法,其特征在于,包括:
    接收来自网络设备的第五信息,所述第五信息用于指示第一终端设备的多天线工作模式为单用户-多输入多输出SU-MIMO或者多用户-多输入多输出MU-MIMO;
    根据所述第五信息,确定所述第一终端设备的所述多天线工作模式为SU-MIMO或者MU-MIMO;
    其中,所述第五信息还用于指示所述第一终端设备的所述多天线工作模式对应的至少一个第一解调参考信号DMRS端口号和解调参考信号DMRS码分复用CDM组的数目N,所述N个DMRS CDM组包括所述至少一个第一DMRS端口号,所述N为正整数。
  13. 如权利要求12所述的方法,其特征在于,所述第五信息承载于下行控制信息DCI。
  14. 如权利要求12或13所述的方法,其特征在于,所述N个DMRS CDM组还包括至少一个第二DMRS端口号,所述至少一个第二DMRS端口号不同于所述至少一个第一DMRS端口号。
  15. 如权利要求14所述的方法,其特征在于,所述第五信息指示所述第一终端设备的多天线工作模式为MU-MIMO;
    所述方法还包括:
    根据所述第五信息,确定所述至少一个第二DMRS端口号分配给第二终端设备,所述第二终端设备与所述第一终端设备不同。
  16. 如权利要求14所述的方法,其特征在于,所述第五信息指示所述第一终端设备的多天线工作模式为SU-MIMO;
    所述方法还包括:
    根据所述第五信息,确定所述至少一个第二DMRS端口号未分配给第二终端设备,所述第二终端设备与所述第一终端设备不同。
  17. 如权利要求16所述的方法,其特征在于,所述N大于1;
    所述第五信息还用于指示所述至少一个第二DMRS端口号对应的时频资源不用于数据传输或者用于所述第一终端设备与所述网络设备之间的数据传输。
  18. 如权利要求16所述的方法,其特征在于,所述N大于1;
    所述方法还包括:
    接收第六信息,所述第六信息用于指示所述至少一个第二DMRS端口号对应的时频资源不用于数据传输或者用于所述第一终端设备与所述网络设备之间的数据传输。
  19. 如权利要求12-18任一项所述的方法,其特征在于,所述第一终端设备与所述网 络设备之间的数据传输的时域长度大于2个正交频分复用OFDM符号。
  20. 如权利要求12-19任一项所述的方法,其特征在于,所述方法还包括,向所述网络设备发送第七信息,所述第七信息用于指示以下至少一项:
    所述第一终端设备的应用场景;
    所述第一终端设备的类型;
    所述第一终端设备的能力信息。
  21. 如权利要求12-20任一项所述的方法,其特征在于,所述第一终端设备处于无线资源控制连接态(RRC connected sate)。
  22. 一种通信方法,其特征在于,包括:
    向第一终端设备发送第一信息,所述第一信息用于指示所述第一终端设备的第一多天线工作模式;
    向所述第一终端设备发送第二信息,所述第二信息用于指示所述第一终端设备的第二多天线工作模式对应的至少一个第一解调参考信号DMRS端口号和解调参考信号DMRS码分复用CDM组的数目N,所述N个DMRS CDM组包括所述至少一个第一DMRS端口号,所述N为正整数。
  23. 如权利要求22所述的方法,其特征在于,所述第一信息承载于无线资源控制RRC信令或者媒体接入控制MAC信令。
  24. 如权利要求22或23所述的方法,其特征在于,所述第二信息承载于下行控制信息DCI。
  25. 如权利要求22-24任一项所述的方法,其特征在于,所述N个DMRS CDM组还包括至少一个第二DMRS端口号,所述至少一个第二DMRS端口号不同于所述至少一个第一DMRS端口号。
  26. 如权利要求25所述的方法,其特征在于,
    所述第一多天线工作模式为多用户-多输入多输出MU-MIMO,所述第二多天线工作模式为多用户-多输入多输出MU-MIMO;或者
    所述第一多天线工作模式为单用户-多输入多输出SU-MIMO,所述第二多天线工作模式为多用户-多输入多输出MU-MIMO;
    所述方法还包括:
    确定所述至少一个第二DMRS端口号分配给第二终端设备,所述第二终端设备与所述第一终端设备不同。
  27. 如权利要求25所述的方法,其特征在于,
    所述第一多天线工作模式为多用户-多输入多输出MU-MIMO,所述第二多天线工作模式为单用户-多输入多输出SU-MIMO;或者
    所述第一多天线工作模式为单用户-多输入多输出SU-MIMO,所述第二多天线工作模式为单用户-多输入多输出SU-MIMO;
    所述方法还包括:
    确定所述至少一个第二DMRS端口号未分配给第二终端设备,所述第二终端设备与所述第一终端设备不同。
  28. 如权利要求27所述的方法,其特征在于,所述N大于1;
    所述第二信息还用于指示所述至少一个第二DMRS端口号对应的时频资源不用于数据传输或者用于所述第一终端设备与所述网络设备之间的数据传输。
  29. 如权利要求27所述的方法,其特征在于,所述N大于1;
    所述方法还包括:
    向所述第一终端设备发送第三信息,所述第三信息用于指示所述至少一个第二DMRS端口号对应的时频资源不用于数据传输或者用于所述第一终端设备与所述网络设备之间的数据传输。
  30. 如权利要求22-29任一项所述的方法,其特征在于,所述第一终端设备与所述网络设备之间的数据传输的时域长度大于2个正交频分复用OFDM符号。
  31. 如权利要求22-30任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一终端设备第四信息,所述第四信息用于指示以下至少一项:
    所述第一终端设备的应用场景;
    所述第一终端设备的类型;
    所述第一终端设备的能力信息。
  32. 一种通信方法,其特征在于,包括:
    向第一终端设备发送的第五信息,所述第五信息用于指示所述第一终端设备的多天线工作模式为单用户-多输入多输出SU-MIMO或者多用户-多输入多输出MU-MIMO;
    其中,所述第五信息还用于指示所述第一终端设备的所述多天线工作模式对应的至少一个第一解调参考信号DMRS端口号和解调参考信号DMRS码分复用CDM组的数目N,所述N个DMRS CDM组包括所述至少一个第一DMRS端口号,所述N为正整数。
  33. 如权利要求32所述的方法,其特征在于,所述第五信息承载于下行控制信息DCI。
  34. 如权利要求32或33所述的方法,其特征在于,所述N个DMRS CDM组还包括至少一个第二DMRS端口号,所述至少一个第二DMRS端口号不同于所述至少一个第一DMRS端口号。
  35. 如权利要求34所述的方法,其特征在于,所述多天线工作模式为MU-MIMO;
    所述方法还包括:
    确定所述至少一个第二DMRS端口号分配给第二终端设备,所述第二终端设备与所述第一终端设备不同。
  36. 如权利要求34所述的方法,其特征在于,所述多天线工作模式为SU-MIMO;
    所述方法还包括:
    确定所述至少一个第二DMRS端口号未分配给第二终端设备,所述第二终端设备与所述第一终端设备不同。
  37. 如权利要求36所述的方法,其特征在于,所述N大于1;
    所述第五信息还用于指示所述至少一个第二DMRS端口号对应的时频资源不用于数据传输或者用于所述第一终端设备与所述网络设备之间的数据传输。
  38. 如权利要求36所述的方法,其特征在于,所述N大于1;
    所述方法还包括:
    向所述第一终端设备发送第六信息,所述第六信息用于指示所述至少一个第二DMRS端口号对应的时频资源不用于数据传输或者用于所述第一终端设备与所述网络设备之间 的数据传输。
  39. 如权利要求32-38任一项所述的方法,其特征在于,所述第一终端设备与所述网络设备之间的数据传输的时域长度大于2个正交频分复用OFDM符号。
  40. 如权利要求32-39任一项所述的方法,其特征在于,还包括:
    接收来自所述第一终端设备第七信息,所述第七信息用于指示以下至少一项:
    所述第一终端设备的应用场景;
    所述第一终端设备的类型;
    所述第一终端设备的能力信息。
  41. 一种通信装置,其特征在于,包括,至少一个处理器以及接口电路,所述接口电路用于为所述至少一个处理器提供指令和/或数据的输入或输出,所述至少一个处理器执行上述指令时,使得所述装置实现如权利要求1-11或者权利要求12-21任一项所述的方法。
  42. 一种通信装置,其特征在于,包括,至少一个处理器以及接口电路,所述接口电路用于为所述至少一个处理器提供指令和/或数据的输入或输出,所述至少一个处理器执行上述指令时,使得所述装置实现如权利要求22-31或者32-40任一项所述的方法。
  43. 一种可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行时,如权利要求1-11或者权利要求12-21任一项所述的方法被执行。
  44. 一种可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行时,如权利要求22-31或者32-40任一项所述的方法被执行。
PCT/CN2021/105631 2020-07-24 2021-07-10 一种工作模式的指示方法、装置以及系统 WO2022017207A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21846179.6A EP4187831A4 (en) 2020-07-24 2021-07-10 OPERATION MODE INDICATION METHOD AND APPARATUS, AND SYSTEM
US18/155,881 US20230156595A1 (en) 2020-07-24 2023-01-18 Operation mode indication method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010723884.9A CN113973357A (zh) 2020-07-24 2020-07-24 一种工作模式的指示方法、装置以及系统
CN202010723884.9 2020-07-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/155,881 Continuation US20230156595A1 (en) 2020-07-24 2023-01-18 Operation mode indication method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2022017207A1 true WO2022017207A1 (zh) 2022-01-27

Family

ID=79585987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105631 WO2022017207A1 (zh) 2020-07-24 2021-07-10 一种工作模式的指示方法、装置以及系统

Country Status (4)

Country Link
US (1) US20230156595A1 (zh)
EP (1) EP4187831A4 (zh)
CN (1) CN113973357A (zh)
WO (1) WO2022017207A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809609A (zh) * 2017-08-11 2018-11-13 华为技术有限公司 一种dmrs指示和接收方法,发射端和接收端
US20200112478A1 (en) * 2018-10-05 2020-04-09 Qualcomm Incorporated User equipment processing for multi-trp and mu-mimo communications
US20200136690A1 (en) * 2018-10-26 2020-04-30 Samsung Electronics Co., Ltd. Method and apparatus for non-coherent joint transmission in wireless communication system
WO2020136416A1 (en) * 2018-12-26 2020-07-02 Telefonaktiebolaget Lm Ericsson (Publ) Configuration and resource allocation for downlink demodulation reference signals

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3602814A1 (en) * 2017-03-24 2020-02-05 Intel IP Corporation Control signaling for demodulation reference signal antenna port indication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809609A (zh) * 2017-08-11 2018-11-13 华为技术有限公司 一种dmrs指示和接收方法,发射端和接收端
US20200112478A1 (en) * 2018-10-05 2020-04-09 Qualcomm Incorporated User equipment processing for multi-trp and mu-mimo communications
US20200136690A1 (en) * 2018-10-26 2020-04-30 Samsung Electronics Co., Ltd. Method and apparatus for non-coherent joint transmission in wireless communication system
WO2020136416A1 (en) * 2018-12-26 2020-07-02 Telefonaktiebolaget Lm Ericsson (Publ) Configuration and resource allocation for downlink demodulation reference signals

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Conclusion on the need for CSI-RS and DMRS PAPR reduction", 3GPP DRAFT; R1-1811184 CONCLUSION ON THE NEED FOR DMRS AND CSI-RS PAPR REDUCTION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chengdu, China; 20181008 - 20181012, 29 September 2018 (2018-09-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051518585 *
See also references of EP4187831A4 *

Also Published As

Publication number Publication date
EP4187831A4 (en) 2024-01-24
CN113973357A (zh) 2022-01-25
EP4187831A1 (en) 2023-05-31
US20230156595A1 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
US11528099B2 (en) Communication method and apparatus
US10313073B2 (en) Transmission of reference signals
AU2021204172B2 (en) Allocation of communication resources for control signals in the uplink
CN107733628B (zh) 在无线通信系统中接收下行链路控制信号的方法和装置
US10594450B2 (en) Asymmetric OFDMA tone mapping and dynamic channel access using non-primary channels
WO2019029329A1 (zh) 一种dmrs指示和接收方法,发射端和接收端
CN109831827B (zh) 数据传输方法、终端和基站
WO2019062585A1 (zh) 一种资源调度方法、网络设备以及通信设备
CN109644431B (zh) 上行信息传输方法、装置及系统
WO2014176967A1 (zh) 一种解调参考信号图样信息的选取方法、系统及装置
JP7152418B2 (ja) リソース指示方法および装置
CN109152017B (zh) 一种传输块大小的确定方法和装置
US11018740B2 (en) Method for antenna port indication and apparatus
WO2019095334A1 (zh) 一种下行控制信息的发送方法、终端设备和网络设备
WO2020029949A1 (zh) 时域资源配置方法
JP2022530668A (ja) クロススロットスケジューリング適応化のための装置及び方法
JP7189207B2 (ja) 信号送信方法、関連する装置及びシステム
CN110933747B (zh) 一种资源配置方法及通信装置
CN114340001A (zh) 一种上行控制信道的传输方法、装置、存储介质及芯片
WO2022017207A1 (zh) 一种工作模式的指示方法、装置以及系统
WO2023078422A1 (zh) 一种通信方法及装置
WO2024031463A1 (zh) Sl通信方法、装置、设备、存储介质及程序产品
WO2023030205A1 (zh) 资源指示方法和通信装置
WO2023207650A1 (zh) 一种通信方法及装置
WO2021032167A1 (zh) 传输块大小确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21846179

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021846179

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021846179

Country of ref document: EP

Effective date: 20230223