WO2022063145A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2022063145A1
WO2022063145A1 PCT/CN2021/119744 CN2021119744W WO2022063145A1 WO 2022063145 A1 WO2022063145 A1 WO 2022063145A1 CN 2021119744 W CN2021119744 W CN 2021119744W WO 2022063145 A1 WO2022063145 A1 WO 2022063145A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
signal
subset
air interface
group
Prior art date
Application number
PCT/CN2021/119744
Other languages
English (en)
French (fr)
Inventor
武露
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Priority to EP21871514.2A priority Critical patent/EP4213400A4/en
Publication of WO2022063145A1 publication Critical patent/WO2022063145A1/zh
Priority to US18/123,994 priority patent/US20230232250A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06964Re-selection of one or more beams after beam failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06968Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using quasi-colocation [QCL] between signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application relates to a transmission method and apparatus in a wireless communication system, in particular to a wireless signal transmission method and apparatus in a wireless communication system supporting a cellular network.
  • an inter-cell handover In an LTE (Long-term Evolution, long-term evolution) system, an inter-cell handover (Handover) is controlled by a base station based on measurements of a UE (User Equipment, user equipment).
  • the inter-cell handover in 3GPP (3rd Generation Partner Project) R (Release, version) 15 basically follows the mechanism in LTE.
  • 3GPP 3rd Generation Partner Project
  • NR New Radio, New Radio
  • Some application scenarios such as URLLC (Ultra-Reliable and Low Latency Communications), propose a High requirements, but also new challenges for inter-cell handover.
  • Massive MIMO Multiple Input Multiple Output, Multiple Input Multiple Output
  • large-scale MIMO multiple antennas are beamformed to form narrow beams pointing in a specific direction to improve communication quality.
  • the beams formed by multi-antenna beamforming are generally relatively narrow, and the beams of both parties need to be aligned for effective communication.
  • the inventors have found through research that beam-based communication will bring negative effects on inter-cell handover, such as extra delay and ping-pong effect. How to reduce these negative impacts and further improve the performance of cell boundary users to meet the needs of various application scenarios is a problem that needs to be solved.
  • the present application discloses a solution. It should be noted that although the above description takes large-scale MIMO and beam-based communication scenarios as examples, the present application is also applicable to other scenarios such as LTE multi-antenna systems, and achieves similar techniques in large-scale MIMO and beam-based communication scenarios Effect. In addition, a unified solution for different scenarios (including but not limited to large-scale MIMO, beam-based communication and LTE multi-antenna systems) also helps reduce hardware complexity and cost. In the case of no conflict, the embodiments and features of the embodiments in any node of the present application may be applied in any other node, and vice versa. The embodiments of the present application and features in the embodiments may be combined with each other arbitrarily, provided that there is no conflict.
  • the interpretation of the terms in this application refers to the definition of the normative protocol of the IEEE (Institute of Electrical and Electronics Engineers, Institute of Electrical and Electronics Engineers).
  • the present application discloses a method used in a first node of wireless communication, which is characterized by comprising:
  • the first information group is used to indicate the first reference signal group, and the measurement for the first reference signal group is used to determine whether the first condition is satisfied; whether the first condition is satisfied Satisfaction is used to determine whether to transmit the first signal; the first signal is used to determine a second reference signal, the second reference signal is one of M reference signals, and M is a positive integer greater than 1;
  • the first condition includes that the value of the first counter is not less than the first threshold; the first reference signal is used to determine the spatial relationship of the first air interface resource group; whether the first reference signal and the second reference signal are QCL is related to whether the second reference signal belongs to the first reference signal subset or the second reference signal subset; when the second reference signal belongs to the first reference signal subset, the first reference signal and the second reference signal is QCL; when the second reference signal belongs to the second reference signal subset, the first reference signal and the second reference signal are not QCL; the first threshold is positive Integer, the first reference signal subset and the second reference signal subset are respectively subsets of the M reference
  • the problems to be solved by this application include: how to quickly switch between beams of different cells to improve the performance of users at the cell boundary, and at the same time avoid the ping-pong effect caused by frequent cell switching.
  • the UE measures the reference signals from the own cell and neighboring cells and reports the beam to the current cell, and the beam report includes the beam selected by the UE, which solves the above problems.
  • the characteristics of the above method include: the reference signals in the first reference signal subset are all reference signals of the local cell, and when the beam selected by the first node is from the local cell, it is used to send the beam report
  • the beam selected by the first node and the selected beam are QCLs;
  • the second reference signal subset includes the reference signals of neighboring cells. When the beam selected by the first node is from a neighboring cell, it is used to send the beam reported by the beam and the selected beam. Not QCL.
  • the advantages of the above method include: realizing fast cross-cell beam switching, improving the performance of cell border users, and avoiding delay and potential service interruption caused by cell switching.
  • the advantages of the above method include: regardless of whether the beam selected by the UE is from the local cell or the adjacent cell, the UE sends the beam report to the local cell preferentially, and the local cell decides whether to switch to the adjacent cell, while ensuring the quality of service. The ping-pong effect caused by frequent cell handovers is avoided.
  • the sender of the first reference signal subset is a first cell
  • the sender of the second reference signal subset is a second cell
  • the first cell is the the serving cell of the first node
  • the second cell is a non-serving cell of the first node
  • the first air interface resource group includes a first air interface resource block and a second air interface resource block
  • the first signal includes a first sub-signal and a second sub-signal
  • the first sub-signal is sent in the first air interface resource block
  • the second sub-signal is sent in the second air interface resource block
  • the second sub-signal carries a first information block
  • the first information block is used to indicate the second reference signal.
  • the first reference signal belongs to the first reference signal subset, or the first reference signal belongs to the first reference signal subset.
  • the reference signal and one reference signal in the first subset of reference signals is QCL.
  • the second signal is used to determine the second reference signal
  • the third reference signal is used to determine the spatial relationship of the second air interface resource group
  • the second reference signal and the third reference signal is QCL.
  • the time domain resource occupied by the first signal is used to determine the first time window, and the first time window is not later than the start sending moment of the second signal, and the second signal is used to determine the second reference signal, the third reference signal is used to determine the spatial relationship of the second air interface resource group, the second reference signal and the third reference signal are QCL; the second condition Including: the response to the first signal is not detected in the first time window.
  • the M configuration information blocks are respectively used to indicate the M reference signals.
  • the present application discloses a method used in a second node for wireless communication, which is characterized by comprising:
  • the first information group is used to indicate a first reference signal group, and any reference signal in the first reference signal subgroup belongs to the first reference signal group;
  • the measurement is used to determine whether a first condition is satisfied; whether the first condition is satisfied is used to determine whether the first signal is transmitted; the first signal is used to determine a second reference signal, the first
  • the second reference signal is one of M reference signals, where M is a positive integer greater than 1; the first condition includes that the value of the first counter is not less than a first threshold; the first reference signal is used to determine the first air interface Spatial relationship of resource groups; whether the first reference signal and the second reference signal are QCL is related to whether the second reference signal belongs to the first reference signal subset or the second reference signal subset; When two reference signals belong to the first reference signal subset, the first reference signal and the second reference signal are QCL; when the second reference signal belongs to the second reference signal subset, the The first reference signal and the second reference signal are not QCLs; the first threshold is a positive integer, and the first reference signal subset
  • the sender of the first reference signal subset is a first cell
  • the sender of the second reference signal subset is a second cell
  • the first cell is the the serving cell of the sender of the first signal
  • the second cell is the non-serving cell of the sender of the first signal
  • the second node is the maintenance base station of the first cell
  • the first air interface resource group includes a first air interface resource block and a second air interface resource block
  • the first signal includes a first sub-signal and a second sub-signal
  • the first sub-signal is sent in the first air interface resource block
  • the second sub-signal is sent in the second air interface resource block
  • the second sub-signal carries a first information block
  • the first information block is used to indicate the second reference signal.
  • the first reference signal belongs to the first reference signal subset, or the first reference signal belongs to the first reference signal subset.
  • the reference signal and one reference signal in the first subset of reference signals is QCL.
  • the time domain resource occupied by the first signal is used to determine the first time window.
  • the M configuration information blocks are respectively used to indicate the M reference signals.
  • the first air interface resource group is any air interface resource group in the first air interface resource set, and the first signal is a wireless signal monitored in the first air interface resource group.
  • the present application discloses a method used in a third node for wireless communication, characterized in that it includes:
  • any reference signal in the second reference signal subgroup belongs to the first reference signal group, and the measurement for the first reference signal group is used by the sender of the second signal to determine whether the first condition is met Satisfied;
  • the first condition includes that the value of the first counter is not less than the first threshold;
  • the second signal is used to determine the second reference signal, and the third reference signal is used to determine the air space of the second air interface resource group relationship, the second reference signal and the third reference signal are QCL;
  • the second reference signal is one of M reference signals, M is a positive integer greater than 1; whether the first condition is satisfied and Whether the second reference signal belongs to the first reference signal subset or the second reference signal subset is jointly used by the sender of the second signal to determine whether the second signal is sent;
  • the necessary conditions for the signal to be sent include: the first condition is satisfied and the second reference signal belongs to the second reference signal subset; the first threshold is a positive integer, the first reference signal subset and the second reference signal subset are The second reference signal
  • the sender of the first reference signal subset is a first cell
  • the sender of the second reference signal subset is a second cell
  • the first cell is the a serving cell of the sender of the second signal
  • the second cell is a non-serving cell of the sender of the second signal
  • the third node is a maintenance base station of the second cell
  • the necessary conditions for the second signal to be sent include: both the first condition and the second condition are satisfied, and the second reference signal belongs to the second reference signal subsection set; the second condition includes: no response to the first signal is detected in the first time window; whether the first condition is satisfied is used to determine whether the first signal is sent; the first The signal is used to determine a second reference signal, the second reference signal being one of the M reference signals.
  • the second air interface resource group is any air interface resource group in the second air interface resource set, and the second signal is a wireless signal monitored in the second air interface resource group.
  • the time domain resource occupied by the second signal is used to determine the second time window.
  • the second subset of reference signals is transmitted.
  • the present application discloses a first node device used for wireless communication, which is characterized by comprising:
  • a first receiver receiving a first information group; receiving a first reference signal group;
  • the first transmitter when the first condition is satisfied, sends the first signal in the first air interface resource group;
  • the first information group is used to indicate the first reference signal group, and the measurement for the first reference signal group is used to determine whether the first condition is satisfied; whether the first condition is satisfied Satisfaction is used to determine whether to transmit the first signal; the first signal is used to determine a second reference signal, the second reference signal is one of M reference signals, and M is a positive integer greater than 1;
  • the first condition includes that the value of the first counter is not less than the first threshold; the first reference signal is used to determine the spatial relationship of the first air interface resource group; whether the first reference signal and the second reference signal are QCL is related to whether the second reference signal belongs to the first reference signal subset or the second reference signal subset; when the second reference signal belongs to the first reference signal subset, the first reference signal and the second reference signal is QCL; when the second reference signal belongs to the second reference signal subset, the first reference signal and the second reference signal are not QCL; the first threshold is positive Integer, the first reference signal subset and the second reference signal subset are respectively subsets of the M reference
  • the present application discloses a second node device used for wireless communication, which is characterized by comprising:
  • the second transmitter sending the first information group; sending the first reference signal subgroup;
  • a second receiver monitoring the first signal in the first air interface resource group
  • the first information group is used to indicate a first reference signal group, and any reference signal in the first reference signal subgroup belongs to the first reference signal group;
  • the measurement is used to determine whether a first condition is satisfied; whether the first condition is satisfied is used to determine whether the first signal is transmitted; the first signal is used to determine a second reference signal, the first
  • the second reference signal is one of M reference signals, where M is a positive integer greater than 1; the first condition includes that the value of the first counter is not less than a first threshold; the first reference signal is used to determine the first air interface Spatial relationship of resource groups; whether the first reference signal and the second reference signal are QCL is related to whether the second reference signal belongs to the first reference signal subset or the second reference signal subset; When two reference signals belong to the first reference signal subset, the first reference signal and the second reference signal are QCL; when the second reference signal belongs to the second reference signal subset, the The first reference signal and the second reference signal are not QCLs; the first threshold is a positive integer, and the first reference signal subset
  • the present application discloses a third node device used for wireless communication, which is characterized by comprising:
  • a third transmitter sending a second reference signal subset
  • a third receiver monitoring the second signal in the second air interface resource group
  • any reference signal in the second reference signal subgroup belongs to the first reference signal group, and the measurement on the first reference signal group is used to determine whether the first condition is satisfied;
  • the first condition includes The value of the first counter is not less than the first threshold;
  • the second signal is used to determine the second reference signal,
  • the third reference signal is used to determine the spatial relationship of the second air interface resource group, the second reference signal and the third reference signal is QCL;
  • the second reference signal is one of M reference signals, where M is a positive integer greater than 1; whether the first condition is satisfied and s and the second reference signal Whether it belongs to the first reference signal subset or the second reference signal subset is jointly used to determine whether the second signal is sent;
  • the necessary conditions for the second signal to be sent include: the first condition is satisfied and The second reference signal belongs to the second reference signal subset;
  • the first threshold is a positive integer, and the first reference signal subset and the second reference signal subset are respectively the M reference signals Subset;
  • the first reference signal group includes a positive integer number
  • the present application has the following advantages:
  • the UE sends the beam report to the local cell first, and the local cell decides whether to switch to the adjacent cell, which ensures the quality of service and avoids the ping-pong effect caused by frequent cell switching. .
  • FIG. 1 shows a flowchart of a first information group, a first reference signal group and a first signal according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a radio protocol architecture for the user plane and the control plane according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG. 5 shows a flowchart of wireless transmission according to an embodiment of the present application
  • FIG. 6 shows a schematic diagram of a second reference signal according to an embodiment of the present application.
  • FIG. 7 shows a schematic diagram of a first reference signal subset and a second reference signal subset according to an embodiment of the present application
  • FIG. 8 is a schematic diagram illustrating that the first signal is used to determine the second reference signal according to an embodiment of the present application.
  • FIG. 9 shows a schematic diagram of a first reference signal according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of a second signal according to an embodiment of the present application.
  • FIG. 11 shows a schematic diagram of a second signal according to another embodiment of the present application.
  • FIG. 12 shows a structural block diagram of a processing apparatus used in a first node device according to an embodiment of the present application
  • FIG. 13 shows a structural block diagram of a processing apparatus for a device in a second node according to an embodiment of the present application
  • FIG. 14 shows a structural block diagram of a processing apparatus for a device in a third node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of the first information group, the first reference signal group, and the first signal according to an embodiment of the present application, as shown in FIG. 1 .
  • each block represents a step.
  • the order of the steps in the blocks does not represent a specific chronological relationship between the various steps.
  • the first node in this application receives the first information group in step 101; receives the first reference signal group in step 102; in step 103, when the first condition is satisfied, in the first A first signal is sent in an air interface resource group; wherein, the first information group is used to indicate the first reference signal group, and the measurement for the first reference signal group is used to determine whether the first condition is not is satisfied; whether the first condition is satisfied is used to determine whether to transmit the first signal; the first signal is used to determine the second reference signal, the second reference signal is one of the M reference signals One, M is a positive integer greater than 1; the first condition includes that the value of the first counter is not less than the first threshold; the first reference signal is used to determine the spatial relationship of the first air interface resource group; the first Whether the reference signal and the second reference signal are QCL is related to whether the second reference signal belongs to the first reference signal subset or the second reference signal subset; when the second reference signal belongs to the first reference signal When the second reference signal belongs to the second reference signal subset,
  • the first information group is carried by higher layer signaling.
  • the first information group is carried by RRC signaling.
  • the first information group includes a positive integer number of IEs in the RRC signaling.
  • the first information group includes multiple IEs in RRC signaling.
  • the first information group includes part or all of a field (Field) of an IE in the RRC signaling.
  • Field a field of an IE in the RRC signaling.
  • the first information group is carried by MAC CE signaling.
  • the first information group includes only one information block.
  • the first information group includes more than one information block.
  • any two information blocks of the first information group belong to the same IE in the RRC signaling.
  • the first information group includes the failureDetectionResourcesToAddModList field and the failureDetectionResourcesToReleaseList field in the RadioLinkMonitoringConfig IE.
  • the RadioLinkMonitoringConfig IE the failureDetectionResourcesToAddModList field and the failureDetectionResourcesToReleaseList field, see Section 6.3.2 in 3GPP TS38.331 chapter.
  • the first information group includes failureDetectionResources, and the specific definition of the failureDetectionResources can refer to Chapter 6 in 3GPP TS38.213.
  • the first information group includes beamFailureDetectionResourceList
  • the specific definition of the beamFailureDetectionResourceList can refer to Chapter 6 in 3GPP TS38.213.
  • the first information group includes a positive integer number of ControlResourceSet IEs, and for the specific definition of the ControlResourceSet IEs, refer to Section 6.3.2 in 3GPP TS38.331.
  • the first reference signal group includes a CSI-RS (Channel State Information-Reference Signal, channel state information reference signal).
  • CSI-RS Channel State Information-Reference Signal, channel state information reference signal
  • the first reference signal group includes periodic (Periodic) CSI-RS.
  • the first reference signal group includes at least one of CSI-RS or SS/PBCH (Synchronization Signal/Physical Broadcast CHannel) block (Block).
  • CSI-RS CSI-RS
  • SS/PBCH Synchronization Signal/Physical Broadcast CHannel
  • the first reference signal group is used for beam failure detection (Beam Failure Detection) in a beam failure recovery (Beam Failure Recovery) mechanism.
  • beam failure recovery beam failure recovery
  • the first reference signal group is
  • the first reference signal group is configured by failureDetectionResources.
  • the maximum number of reference signals included in the first reference signal group is configured by maxNrofFailureDetectionResources.
  • the first information group indicates the TCI (Transmission Configuration Indicator, sending configuration indication) state (State) of the corresponding CORESETs used when monitoring the PDCCH (Physical Downlink Control CHannel, physical downlink control channel), and the The first reference signal group includes reference signals indicated by the TCI state of the corresponding CORESETs used when monitoring the PDCCH (Physical Downlink Control CHannel, physical downlink control channel).
  • TCI Transmission Configuration Indicator, sending configuration indication
  • State Send Configuration Indicator
  • the first reference signal group includes reference signals indicated by the TCI state of the corresponding CORESETs used when monitoring the PDCCH (Physical Downlink Control CHannel, physical downlink control channel).
  • one TCI state is used to indicate a positive integer number of reference signals.
  • a reference signal indicated by a TCI state includes at least one of CSI-RS, SRS, or SS/PBCH blocks.
  • a TCI state is used to indicate a reference signal of type QCL-TypeD.
  • a reference signal indicated by a TCI state is used to determine a QCL (Quasi-Co-Located, Quasi-Co-Located) parameter.
  • a reference signal indicated by a TCI state is used to determine spatial filtering.
  • a reference signal indicated by a TCI state is used to determine spatial reception parameters.
  • a reference signal indicated by a TCI state is used to determine the spatial transmission parameters.
  • the QCL corresponds to QCL-TypeD.
  • the first information group explicitly indicates the first reference signal group.
  • the first information group implicitly indicates the first reference signal group.
  • the first information group indicates an index of each reference signal in the first reference signal group.
  • the first information group includes configuration information of each reference signal in the first reference signal group.
  • the configuration information of any reference signal in the first reference signal group includes a period, a time domain offset (offset), an occupied time domain resource, an occupied frequency domain resource, and an occupied code Domain resources, cyclic shift (cyclic shift), OCC (Orthogonal Cover Code, orthogonal mask), occupied antenna port group, sequence (sequence), TCI state, spatial domain filtering, spatial reception parameters, and spatial transmission parameters. at least one.
  • the first information group includes S information blocks
  • the first reference signal group includes S reference signals
  • the S information blocks are respectively used to indicate the S reference signals
  • S is A positive integer greater than 1.
  • the first condition is satisfied.
  • the first condition is satisfied if and only if the value of the first counter is not less than the first threshold.
  • the first condition is not satisfied.
  • the first node when the first condition is not satisfied, the first node does not send the first signal.
  • the first condition is satisfied to trigger beam failure recovery (Beam Failuer Recovery).
  • the first counter is BFI_COUNTER.
  • the initial value of the first counter is 0.
  • the initial value of the first counter is a positive integer.
  • the value of the first counter is a non-negative integer.
  • the first threshold is configured by an IE.
  • the first threshold is configured by a higher layer parameter.
  • the higher layer parameter for configuring the first threshold includes all or part of the information in the beamFailureInstanceMaxCount field of the RadioLinkMonitoringConfig IE.
  • a higher layer of the first node initializes the first counter to zero.
  • a higher layer of the first node starts or re-enables a first timer, and increments the first counter 1.
  • the first timer is beamFailureDetectionTimer.
  • the first counter is cleared.
  • the initial value of the first timer is a positive integer.
  • the initial value of the first timer is a positive real number.
  • the unit of the initial value of the first timer is the Q out, LR reporting period of the beam failure detection RS.
  • the initial value of the first timer is configured by a higher layer parameter beamFailureDetectionTimer.
  • the initial value of the first timer is configured by an IE
  • the name of the IE for configuring the initial value of the first timer includes RadioLinkMonitoring.
  • the first counter is cleared.
  • the first counter is cleared.
  • the first counter when the first node receives the first PDCCH, the first counter is cleared; wherein the first signal includes a BFR MAC CE or a truncated BFR MAC CE, the first signal Corresponding HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request) process number (process number) is the first HARQ process number; the first PDCCH indicates the uplink grant of a new transmission corresponding to the first HARQ process number ( UL grant), the CRC of the first PDCCH is scrambled by C (Cell, cell)-RNTI (Radio Network Temporary Identifier, wireless network tentative identifier).
  • C Cell, cell
  • RTI Radio Network Temporary Identifier
  • the physical layer of the first node receives a third information block from a higher layer of the first node; wherein the third information block triggers the Transmission of the first signal.
  • the third information block indicates the second reference signal.
  • the physical layer of the first node after receiving a request from a higher layer, sends a fourth information block to a higher layer of the first node; wherein the fourth information block indicates M0 reference signals and M0 received qualities of the second type, any reference signal in the M0 reference signals is one of the M reference signals, M0 is a positive integer not greater than the M, for the M0 reference signals
  • the measurements of are respectively used to determine the M0 second-type reception qualities; any second-type reception quality among the M0 second-type reception qualities is not worse than the third threshold.
  • the M0 is equal to one.
  • the M0 is greater than 1.
  • the M0 reference signals include the second reference signal.
  • the physical layer of the first node receives a fifth information block from a higher layer of the first node; wherein the fifth information block indicates the second reference signal.
  • a higher layer of the first node selects the second reference signal from the M0 reference signals.
  • the first counter is maintained by the first node.
  • the meaning that the measurement of the first reference signal group is used to judge whether the first condition is satisfied in the sentence includes: the measurement of the first reference signal group is used to judge the Whether the value of the first counter is incremented by 1.
  • the meaning that the measurement of the first reference signal group is used to judge whether the first condition is satisfied in the sentence includes: the measurement of the first reference signal group is used to judge the Whether the third condition is satisfied.
  • the first air interface resource group includes PRACH (Physical Random Access CHannel) resources.
  • PRACH Physical Random Access CHannel
  • the first air interface resource group includes PRACH (Physical Random Access CHannel) resources or at least PRACH resources in the air interface resources occupied by the PUSCH scheduled by the RAR (Random Access Response) uplink grant (UL grant).
  • PRACH Physical Random Access CHannel
  • RAR Random Access Response
  • the first air interface resource group includes at least the air interface resources occupied by Msg1 in the air interface resources occupied by Msg1 or the air interface resources occupied by the Msg3 PUSCH.
  • the first air interface resource group includes at least the air interface resources occupied by Msg1 from the air interface resources occupied by Msg1 or the air interface resources occupied by the PUSCH scheduled by RAR (Random Access Response) uplink grant (UL grant).
  • RAR Random Access Response
  • UL grant uplink grant
  • the first air interface resource group includes air interface resources occupied by Msg1 and air interface resources occupied by Msg3 PUSCH.
  • the first air interface resource group includes air interface resources occupied by Msg1 and air interface resources occupied by a PUSCH scheduled by a RAR (Random Access Response) uplink grant (UL grant).
  • RAR Random Access Response
  • the first air interface resource group includes air interface resources occupied by the MsgA.
  • the first air interface resource group includes time-frequency resources.
  • the first air interface resource group includes time-frequency resources and code domain resources.
  • one air interface resource includes time-frequency resources
  • one air interface resource group includes time-frequency resources
  • one air interface resource includes time-frequency resources and code domain resources
  • one air interface resource group includes time-frequency resources and code domain resources
  • the first air interface resource group is configured by a higher layer parameter.
  • the higher layer parameters for configuring the first air interface resource group include all or part of the information in the candidateBeamRSList field of the BeamFailureRecoveryConfig IE.
  • the M reference signals are in one-to-one correspondence with M air interface resource groups
  • the first air interface resource group is an air interface corresponding to the first reference signal in the M air interface resource groups resource group.
  • the M reference signals are in one-to-one correspondence with M air interface resource groups, and the first air interface resource group is an air interface corresponding to the second reference signal in the M air interface resource groups resource group.
  • the first reference signal subset includes M1 reference signals, the M1 reference signals are in one-to-one correspondence with M1 air interface resource groups, and the first air interface resource group is the M1 air interface resources For an air interface resource group in the group corresponding to the first reference signal, M1 is a positive integer smaller than the M.
  • the first reference signal subset includes M1 reference signals, the M1 reference signals are in one-to-one correspondence with M1 air interface resource groups, and the first air interface resource group is the M1 air interface resources For one air interface resource group in the group corresponding to the second reference signal, M1 is a positive integer smaller than the M.
  • any reference signal in the second reference signal subset corresponds to one air interface resource group in the M1 air interface resource groups.
  • the meaning that a given reference signal corresponds to a given air interface resource group includes: the given reference signal is used to determine the spatial relationship of the given air interface resource group.
  • the meaning that a given reference signal corresponds to a given air interface resource group includes: the given air interface resource group is used to determine the given reference signal.
  • the meaning that a given reference signal corresponds to a given air interface resource group includes: the given air interface resource group is used to indicate the given reference signal.
  • the meaning that a given reference signal corresponds to a given air interface resource group includes: higher layer signaling configures a correspondence between the given reference signal and the given air interface resource group.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG. 2 .
  • FIG. 2 illustrates a network architecture 200 of LTE (Long-Term Evolution, Long Term Evolution), LTE-A (Long-Term Evolution Advanced, Enhanced Long Term Evolution) and future 5G systems.
  • the network architecture 200 of LTE, LTE-A and future 5G systems is called EPS (Evolved Packet System, Evolved Packet System) 200.
  • EPS Evolved Packet System, Evolved Packet System
  • 5G NR or LTE network architecture 200 may be called 5GS (5G System)/EPS (Evolved Packet System, evolved grouping system) 200 or some other suitable term.
  • the 5GS/EPS 200 may include one or more UE (User Equipment, user equipment) 201, a UE 241 for sidelink (Sidelink) communication with the UE 201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G CoreNetwork, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Server)/UDM (Unified Data Management, Unified Data Management) 220 and Internet Services 230.
  • 5GS/EPS200 Interconnections with other access networks are possible, but these entities/interfaces are not shown for simplicity.
  • the 5GS/EPS 200 provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks that provide circuit-switched services.
  • the NG-RAN 202 includes an NR (New Radio) Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201 .
  • gNBs 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • the gNB 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmit Receive Point) or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, MP3 players), cameras, game consoles, drones, aircraft, narrowband physical network devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any other similarly functional device.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management domain
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway, service gateway)/UPF (User Plane Function, user plane function) 212 and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • the MME/AMF/SMF 211 is the control node that handles signaling between the UE 201 and the 5GC/EPC 210 .
  • MME/AMF/SMF 211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through the S-GW/UPF212, and the S-GW/UPF212 itself is connected to the P-GW/UPF213.
  • the P-GW provides UE IP address allocation and other functions.
  • the P-GW/UPF 213 is connected to the Internet service 230 .
  • the Internet service 230 includes the Internet Protocol service corresponding to the operator, and may specifically include Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching (Packet switching) service.
  • IMS IP Multimedia Subsystem
  • IP Multimedia Subsystem IP Multimedia Subsystem
  • Packet switching Packet switching
  • the first node in this application includes the UE201.
  • the first node in this application includes the UE241.
  • the second node in this application includes the gNB203.
  • the third node in this application includes the gNB204.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to an embodiment of the present application, as shown in FIG. 3 .
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300, showing three layers for a first communication node device (UE, gNB or RSU in V2X) and a second The radio protocol architecture of the control plane 300 between communication node devices (gNB, UE or RSU in V2X), or between two UEs: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY301.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device, or between two UEs.
  • the L2 layer 305 includes a MAC (Medium Access Control, Media Access Control) sublayer 302 , an RLC (Radio Link Control, Radio Link Layer Control Protocol) sublayer 303 and a PDCP (Packet Data Convergence Protocol, Packet Data Convergence Protocol) sublayer 304 , these sublayers terminate at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides for providing security by encrypting data packets, as well as providing handoff support for the first communication node device between the second communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer packets, retransmission of lost packets, and reordering of packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, Radio Resource Control) sublayer 306 in the layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the communication between the second communication node device and the first communication node device.
  • the RRC signaling between them is used to configure the lower layers.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer), the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350
  • L1 layer layer 1
  • L2 layer layer 2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 is also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer). , to support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side and another terminating in a connection Application layer at one end (eg, remote UE, server, etc.).
  • the radio protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the radio protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the radio protocol architecture in FIG. 3 is applicable to the third node in this application.
  • the first information group is generated in the RRC sublayer 306 .
  • the first information group is generated in the MAC sublayer 302 or the MAC sublayer 352 .
  • the first reference signal group is generated in the PHY 301 or the PHY 351 .
  • the M reference signals are generated in the PHY 301 or the PHY 351.
  • the first signal is generated by the PHY 301 or the PHY 351 .
  • the first signal is generated in the MAC sublayer 302 or the MAC sublayer 352 .
  • the second signal is generated by the PHY 301 or the PHY 351 .
  • the second signal is generated in the MAC sublayer 302 or the MAC sublayer 352 .
  • Embodiment 4 illustrates a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application, as shown in FIG. 4 .
  • FIG. 4 is a block diagram of a first communication device 410 and a second communication device 450 that communicate with each other in an access network.
  • the first communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • Second communication device 450 includes controller/processor 459, memory 460, data source 467, transmit processor 468, receive processor 456, multiple antenna transmit processor 457, multiple antenna receive processor 458, transmitter/receiver 454 and antenna 452.
  • upper layer data packets from the core network are provided to the controller/processor 475 .
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and the second communication device 450 based on various priority metrics Radio resource allocation.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the second communication device 450.
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, the physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, and based on various modulation schemes (eg, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M Phase Shift Keying (M-PSK), M Quadrature Amplitude Modulation (M-QAM)) constellation mapping.
  • modulation schemes eg, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M Phase Shift Keying (M-PSK), M Quadrature Amplitude Modulation (M-QAM)
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • M-PSK M Phase Shift Keying
  • M-QAM M Quadrature Amplitude Modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the encoded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing
  • the transmit processor 416 maps each parallel stream to a subcarrier, multiplexes the modulated symbols with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) ) to generate a physical channel that carries a multi-carrier symbol stream in the time domain. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time-domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • a reference signal eg, a pilot
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives a signal through its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454 .
  • the receive processor 456 uses a Fast Fourier Transform (FFT) to convert the received analog precoding/beamforming operation of the baseband multicarrier symbol stream from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered by the multi-antenna receiving processor 458 after multi-antenna detection.
  • Communication device 450 is any parallel stream of destination. The symbols on each parallel stream are demodulated and recovered in receive processor 456 and soft decisions are generated.
  • the receive processor 456 then decodes and de-interleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459 .
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer packets from the core network.
  • the upper layer packets are then provided to all protocol layers above the L2 layer.
  • Various control signals may also be provided to L3 for L3 processing.
  • the controller/processor 459 is also responsible for error detection using acknowledgement (ACK) and/or negative acknowledgement (NACK) protocols to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459 .
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and logical AND based on the radio resource allocation of the first communication device 410 Multiplexing between transport channels, implementing L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the first communication device 410.
  • Transmit processor 468 performs modulation mapping, channel coding processing, multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated parallel stream into a multi-carrier/single-carrier symbol stream, which undergoes an analog precoding/beamforming operation in the multi-antenna transmit processor 457 and then provides it to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into a radio frequency symbol stream, which is then provided to the antenna 452 .
  • the function at the first communication device 410 is similar to that in the transmission from the first communication device 410 to the second communication device 450
  • the receive function at the second communication device 450 described in the transmission of .
  • Each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • Memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer data packets from the second communication device 450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the controller/processor 475 is also responsible for error detection using the ACK and/or NACK protocol to support HARQ operations.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to interact with the used together with at least one processor.
  • the second communication device 450 means at least: receiving the first information group; receiving the first reference signal group; when the first condition is satisfied, sending the first signal in the first air interface resource group; wherein, the first information The group is used to indicate the first reference signal group, and the measurement for the first reference signal group is used to determine whether the first condition is satisfied; whether the first condition is satisfied is used to determine whether to transmit the first signal; the first signal is used to determine a second reference signal, the second reference signal is one of M reference signals, where M is a positive integer greater than 1; the first condition includes the first The value of a counter is not less than the first threshold; the first reference signal is used to determine the spatial relationship of the first air interface resource group; whether the first reference signal and the second reference signal are QCL and the second reference signal Whether the signal belongs to the first reference signal
  • the second communication device 450 includes: a memory storing a program of computer-readable instructions, the program of computer-readable instructions generating actions when executed by at least one processor, the actions comprising: receiving a first an information group; receiving a first reference signal group; when a first condition is satisfied, sending a first signal in a first air interface resource group; wherein, the first information group is used to indicate the first reference signal group , the measurement for the first reference signal group is used to determine whether the first condition is satisfied; whether the first condition is satisfied is used to determine whether to transmit the first signal; the first signal is for determining a second reference signal, the second reference signal is one of M reference signals, and M is a positive integer greater than 1; the first condition includes that the value of the first counter is not less than the first threshold; the first The reference signal is used to determine the spatial relationship of the first air interface resource group; whether the first reference signal and the second reference signal QCL and the second reference signal belong to the first reference signal subset or the second reference signal.
  • Two reference signal subsets are related; when the second reference signal belongs to the first reference signal subset, the first reference signal and the second reference signal are QCL; when the second reference signal belongs to the When the second reference signal subset is selected, the first reference signal and the second reference signal are not QCL; the first threshold is a positive integer, the first reference signal subset and the second reference signal subset are respectively a subset of the M reference signals; the first information group includes a positive integer number of information blocks.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to interact with the used together with at least one processor.
  • the first communication device 410 means at least: sending a first information group; sending a first reference signal subgroup; monitoring a first signal in a first air interface resource group; wherein the first information group is used to indicate the first a reference signal group, any reference signal in the first reference signal subgroup belongs to the first reference signal group; the measurement for the first reference signal group is used to determine whether the first condition is satisfied; the Whether the first condition is satisfied is used to determine whether the first signal is transmitted; the first signal is used to determine the second reference signal, the second reference signal is one of M reference signals, M is a positive integer greater than 1; the first condition includes that the value of the first counter is not less than the first threshold; the first reference signal is used to determine the spatial relationship of the first air interface resource group; the first reference signal and all Whether the second reference signal is Q
  • the first communication device 410 includes: a memory for storing a program of computer-readable instructions, the program of computer-readable instructions generating actions when executed by at least one processor, and the actions include: sending a first an information group; sending a first reference signal subgroup; monitoring a first signal in a first air interface resource group; wherein the first information group is used to indicate a first reference signal group, the first reference signal subgroup Any one of the reference signals belongs to the first reference signal group; the measurement for the first reference signal group is used to determine whether the first condition is satisfied; whether the first condition is satisfied is used to determine the whether a first signal is sent; the first signal is used to determine a second reference signal, the second reference signal is one of M reference signals, where M is a positive integer greater than 1; the first condition includes The value of the first counter is not less than the first threshold; the first reference signal is used to determine the spatial relationship of the first air interface resource group; whether the first reference signal and the second reference signal are QCL and the second reference signal Whether the reference signal belongs to the first
  • the first node in this application includes the second communication device 450 .
  • the second node in this application includes the first communication device 410 .
  • the third node in this application includes the first communication device 410 .
  • the antenna 452 the receiver 454, the receive processor 456, the multi-antenna receive processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first information group in this application;
  • the antenna 452 the receiver 454, the receive processor 456, the multi-antenna receive processor 458, the controller/processor 459, the memory 460, the data
  • At least one of the sources 467 ⁇ is used to receive the M configuration information blocks in this application
  • ⁇ the antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471 , at least one of the controller/processor 475, and the memory 476 ⁇ is used to send the M configuration information blocks in this application.
  • the antenna 452 the receiver 454, the receive processor 456, the multi-antenna receive processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first reference signal group in this application;
  • the antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471 , at least one of the controller/processor 475, and the memory 476 ⁇ is used to transmit the first reference signal group in this application.
  • the antenna 452 the receiver 454, the receive processor 456, the multi-antenna receive processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the M reference signals in this application;
  • the antenna 452 the receiver 454, the receive processor 456, the multi-antenna receive processor 458, the controller/processor 459, the memory 460, the data at least one of the sources 467 ⁇ is used to monitor the response to the first signal in the first time window in this application;
  • the antenna 420, the transmitter 418, the transmit process at least one of the multi-antenna transmit processor 471, the controller/processor 475, the memory 476 ⁇ is used to transmit data for the the response to the first signal.
  • the antenna 452 the receiver 454, the receive processor 456, the multi-antenna receive processor 458, the controller/processor 459, the memory 460, the data at least one of the sources 467 ⁇ is used to monitor the response to the second signal in the second time window in this application;
  • the antenna 420, the transmitter 418, the transmit process at least one of the multi-antenna transmit processor 471, the controller/processor 475, the memory 476 ⁇ is used to transmit data for the second time window in this application the response of the second signal.
  • At least one of ⁇ the antenna 452, the transmitter 454, the transmit processor 468, the multi-antenna transmit processor 457, the controller/processor 459, the memory 460 ⁇ One is used to send the first signal in the first air interface resource group in this application; ⁇ the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processing At least one of the controller 472, the controller/processor 475, the memory 476 ⁇ is used to receive the first signal in the first air interface resource group in the present application.
  • At least one of ⁇ the antenna 452, the transmitter 454, the transmit processor 468, the multi-antenna transmit processor 457, the controller/processor 459, the memory 460 ⁇ One is used to transmit the second signal in the second air interface resource group in this application; ⁇ the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processing At least one of the controller 472, the controller/processor 475, the memory 476 ⁇ is used to receive the second signal in the second air interface resource group in the present application.
  • Embodiment 5 illustrates a flowchart of wireless transmission according to an embodiment of the present application, as shown in FIG. 5 .
  • the first node U01, the second node N02 and the third node N03 are communication nodes that transmit through the air interface in pairs.
  • the steps in blocks F1 to F8 are respectively optional.
  • the first node U01 receive the first information group in step S5101; receive M configuration information blocks in step S5102; receive the first reference signal group in step S5103; receive M reference signals in step S5104;
  • the first signal is sent in the first air interface resource group;
  • the response to the first signal is monitored in the first time window;
  • the second signal is sent in the second air interface resource group; in step S5107 Monitoring the response to the second signal in the second time window in S5108;
  • the first information group is sent in step S5201; the M configuration information blocks are sent in step S5202; the first reference signal subset is sent in step S5203; the first reference signal subset is sent in step S5204 ;
  • step S5205 monitor the first signal in the first air interface resource group;
  • step S5206 monitor wireless signals in each air interface resource group outside the first air interface resource group in the first air interface resource set;
  • step S5207 in sending a response to the first signal in the first time window;
  • the second reference signal subset is sent in step S5301; the second reference signal subset is sent in step S5302; the second signal is monitored in the second air interface resource group in step S5303; Wireless signals are monitored in each air interface resource group except the second air interface resource group in the two air interface resource sets; in step S5305, a response to the second signal is sent in the second time window.
  • the first information group is used to indicate the first reference signal group, and the measurement of the first reference signal group by the first node U01 is used by the first node U01 to determine Whether the first condition is satisfied; whether the first condition is satisfied is used by the first node U01 to determine whether to send the first signal; the first signal is used to determine the second reference signal, so the second reference signal is one of M reference signals, where M is a positive integer greater than 1; the first condition includes that the value of the first counter is not less than a first threshold; the first reference signal is used to determine the first A spatial relationship of an air interface resource group; whether the first reference signal and the second reference signal are QCL is related to whether the second reference signal belongs to the first reference signal subset or the second reference signal subset; When the second reference signal belongs to the first reference signal subset, the first reference signal and the second reference signal are QCL; when the second reference signal belongs to the second reference signal subset, The first reference signal and the second reference signal are not QCL; the first threshold is a positive integer,
  • the second signal is used to determine the second reference signal
  • the third reference signal is used to determine the spatial relationship of the second air interface resource group
  • the second reference signal and the third reference signal are QCL .
  • Any reference signal in the first reference signal subset belongs to the first reference signal group.
  • the first air interface resource group is any air interface resource group in the first air interface resource set, and the first signal is a wireless signal monitored by the second node N02 in the first air interface resource group.
  • Any reference signal in the second reference signal subset belongs to the first reference signal group.
  • the second air interface resource group is any air interface resource group in the second air interface resource set, and the second signal is a wireless signal monitored by the third node N03 in the second air interface resource group.
  • the non-serving cell in this application can be used to transmit data.
  • the non-serving cell in this application can be used to transmit wireless signals.
  • the non-serving cell in this application can be used to transmit reference signals.
  • a non-serving cell in this application refers to a cell that can be selected for sending and receiving data.
  • a non-serving cell in this application refers to a cell that can be selected for transmitting and receiving wireless signals.
  • a non-serving cell in this application refers to a cell that can be selected for transmitting and receiving reference signals.
  • the first node U01 when the first condition is satisfied, the first node U01 sends the first signal in the first air interface resource group, and block F1 exists.
  • the first node U01 when the first condition is satisfied and the second reference signal belongs to the second reference signal subset, the first node U01 sends the second signal in the second air interface resource group, so that the Box F2 exists.
  • the first node U01 when both the first condition and the second condition are satisfied and the second reference signal belongs to the second reference signal subset, the first node U01 sends in the second air interface resource group The second signal, block F2 exists.
  • the second node N02 when the second node N02 detects the first signal in the first air interface resource group, the second node N02 sends a response to the first signal in the first time window, Box F4 exists.
  • the third node N03 when the third node N03 detects the second signal in the second air interface resource group, the third node N03 sends a response to the second signal in the second time window, Box F5 exists.
  • block F5 includes: both blocks F2 and F7 exist.
  • the necessary conditions for the existence of the block F6 include: the existence of the block F2.
  • the act of sending the second signal in the second air interface resource group is earlier than the act of monitoring the response to the first signal in the first time window.
  • the act sends the second signal in the second air interface resource group no later than the act monitors the response to the first signal in the first time window.
  • the act of sending the second signal in the second air interface resource group is later than the act of monitoring a response to the first signal in the first time window.
  • the first information group is used by the first node U01 to indicate the first reference signal group.
  • the first signal is used by the first node U01 to determine a second reference signal.
  • the first reference signal is used by the first node U01 to determine the spatial relationship of the first air interface resource group.
  • the second signal is used by the first node U01 to determine the second reference signal.
  • the third reference signal is used by the first node U01 to determine the spatial relationship of the second air interface resource group.
  • the first information group is used by the second node N02 to indicate the first reference signal group.
  • the first signal is used by the second node N02 to determine a second reference signal.
  • the first reference signal is used by the second node N02 to determine the spatial relationship of the first air interface resource group.
  • the second signal is used by the second node N02 to determine the second reference signal.
  • the third reference signal is used by the second node N02 to determine the spatial relationship of the second air interface resource group.
  • the first information group is used by the third node N03 to indicate the first reference signal group.
  • the first signal is used by the third node N03 to determine a second reference signal.
  • the first reference signal is used by the third node N03 to determine the spatial relationship of the first air interface resource group.
  • the second signal is used by the third node N03 to determine the second reference signal.
  • the third reference signal is used by the third node N03 to determine the spatial relationship of the second air interface resource group.
  • the value of the first counter is incremented by 1; the third condition includes: each first type of reception quality in the first type of reception quality group is worse than all the second threshold; the measurement for the first reference signal group is used by the first node to determine the first type of reception quality group.
  • the third condition is satisfied.
  • the third condition is not satisfied.
  • the physical layer of the first node when the third condition is satisfied, sends a beam failure instance indication to a higher layer of the first node.
  • whether the third condition is satisfied is used by the first node to determine whether the value of the first counter is incremented by one.
  • the number of reference signals included in the first reference signal group is equal to the number of first-type reception qualities included in the first-type reception quality group.
  • the first reference signal group includes only one reference signal
  • the first-type reception quality group includes only one first-type reception quality
  • the measurement for the one reference signal is used to determine The 1 first-class reception quality
  • the first reference signal group includes S reference signals
  • the first-type reception quality group includes S first-type reception qualities
  • S is a positive integer greater than 1; for the S reference signals
  • the measurements of , respectively, are used to determine the S first-type reception qualities.
  • the measurement for the given reference signal within the first time interval is used to determine the first reference signal corresponding to the given reference signal Class reception quality.
  • the first node obtains, by the first node only, the given reference signal received within a first time interval for calculating the reference signal.
  • the measurements include channel measurements.
  • the measurements include interference measurements.
  • the first time interval is a continuous time period.
  • the length of the first time interval is T Evaluate_BFD_SSB ms or T Evaluate_BFD_CSI-RS ms.
  • T Evaluate_BFD_SSB and T Evaluate_BFD_CSI-RS refer to 3GPP TS38.133.
  • any first type of reception quality in the first type of reception quality group is RSRP (Reference Signal Received Power, reference signal received power).
  • any first type of reception quality in the first type of reception quality group is layer 1 (L1)-RSRP.
  • any first type of reception quality in the first type of reception quality group is SINR (Signal-to-noise and interference ratio, signal-to-interference and noise ratio).
  • any first type of reception quality in the first type of reception quality group is L1-SINR.
  • any first type of reception quality in the first type of reception quality group is BLER (BLock Error Rate, block error rate).
  • the given reception quality is one of RSRP, L1-RSRP, SINR or L1-SINR, and the given reception quality is any one of the first type of reception quality in the first type of reception quality group;
  • the meaning that the given reception quality is worse than the second threshold includes: the given reception quality is less than the second threshold; the meaning of the sentence that the given reception quality is not worse than the second threshold includes: the The given reception quality is not less than the second threshold.
  • the given reception quality is BLER
  • the given reception quality is any one of the first type of reception quality in the first type of reception quality group; the given reception quality is worse than the second threshold.
  • the meaning includes: the given reception quality is greater than the second threshold; the meaning of the sentence that the given reception quality is not worse than the second threshold includes: the given reception quality is not greater than the second threshold.
  • any first type of reception quality in the first type of reception quality group is obtained by looking up the RSRP, L1-RSRP, SINR or L1-SINR of the corresponding reference signal.
  • any first type of reception quality in the first type of reception quality group is obtained according to hypothetical PDCCH transmission parameters (hypothetical PDCCH transmission parameters).
  • the second threshold is a real number.
  • the second threshold is a non-negative real number.
  • the second threshold is a non-negative real number not greater than 1.
  • the second threshold is one of Q out_L , Q out_LR_SSB or Q out_LR_CSI-RS .
  • Q out_LR Q out_LR_SSB and Q out_LR_CSI-RS refer to 3GPP TS38.133.
  • the second threshold is determined by a higher layer parameter rlmInSyncOutOfSyncThreshold.
  • the method in the first node includes:
  • the measurements on the M reference signals are respectively used to determine M second-type reception qualities; the second-type reception qualities corresponding to the second reference signals among the M second-type reception qualities are not bad at the third threshold.
  • the M reference signals include CSI-RS.
  • the M reference signals include SSBs.
  • the M reference signals include SRS.
  • any one of the M reference signals includes CSI-RS or SSB.
  • the M reference signals are configured by higher layer parameters.
  • the higher layer parameters for configuring the M reference signals include all or part of the information in the candidateBeamRSList field of the BeamFailureRecoveryConfig IE.
  • the M reference signals are configured by one IE.
  • the M reference signals are configured by two IEs.
  • the name of the IE used to configure the M reference signals includes BeamFailureRecovery.
  • the name of the IE used to configure the M reference signals includes BeamFailure.
  • the name of the IE used for configuring the M reference signals includes BF.
  • the M is equal to two.
  • the M is greater than 2.
  • any one of the M reference signals is a periodic reference signal.
  • any one of the M reference signals is a periodic reference signal or a semi-persistent reference signal.
  • one of the M reference signals is a quasi-static reference signal or an aperiodic reference signal.
  • any two reference signals among the M reference signals belong to the same carrier (Carrier) in the frequency domain.
  • any two reference signals in the M reference signals belong to the same BWP (Bandwidth Part, bandwidth interval) in the frequency domain.
  • two reference signals in the M reference signals belong to different carriers in the frequency domain.
  • two reference signals in the M reference signals belong to different BWPs in the frequency domain.
  • the M reference signals are composed of all reference signals in the first reference signal subset and the second reference signal subset.
  • one reference signal among the M reference signals does not belong to the first reference signal subset nor the second reference signal subset.
  • the first reference signal subset includes at least one reference signal among the M reference signals
  • the second reference signal subset includes at least one reference signal among the M reference signals; the Any reference signal in the first reference signal subset does not belong to the second reference signal subset.
  • the second reference signal belongs to the first reference signal subset or the second reference signal subset.
  • the sender of the first subset of reference signals and the sender of the second subset of reference signals are different.
  • the first reference signal subset is sent by a first cell
  • the second reference signal subset is sent by a second cell.
  • the sender of any reference signal in the first reference signal subset is a serving cell of the first node.
  • the sender of any reference signal in the second reference signal subset is a non-serving cell of the first node.
  • the first reference signal subset is configured by one IE.
  • the second reference signal subset is configured by one IE.
  • the first reference signal subset and the second reference signal subset are configured by the same IE.
  • the first reference signal subset and the second reference signal subset are respectively configured by two IEs.
  • the name of the IE used to configure the first reference signal subset includes BeamFailureRecovery.
  • the name of the IE used to configure the first reference signal subset includes BeamFailure.
  • the name of the IE used to configure the first reference signal subset includes BF.
  • the name of the IE used to configure the second reference signal subset includes BeamFailureRecovery.
  • the name of the IE used to configure the second reference signal subset includes BeamFailure.
  • the name of the IE used to configure the second reference signal subset includes BF.
  • the first reference signal subset is sent by SpCell.
  • the first reference signal subset is sent by PCell.
  • the second reference signal subset is sent by the SCell.
  • the first reference signal subset corresponds to a first index
  • the second reference signal subset corresponds to a second index
  • the first index and the second index are two different non-negative integers .
  • a first index is used to determine the first reference signal subset
  • a second index is used to determine the second reference signal subset
  • the first index and the second index are two different non-negative integers.
  • the first index is used to indicate the first cell
  • the second index is used to indicate the second cell
  • the first cell and the second cell are different.
  • the name of the first index includes set, and the name of the second index includes set.
  • the name of the first index includes SET, and the name of the second index includes SET.
  • the name of the first index includes CORESETPoolIndex
  • the name of the second index includes CORESETPoolIndex
  • the name of the first index includes CORESET
  • the name of the second index includes CORESET
  • the name of the first index includes coreset
  • the name of the second index includes coreset
  • the name of the first index includes TRP
  • the name of the second index includes TRP
  • the name of the first index includes cell
  • the name of the second index includes cell
  • the name of the first index includes Cell
  • the name of the second index includes Cell
  • the name of the first index includes TCI
  • the name of the second index includes TCI
  • the name of the first index includes tci
  • the name of the second index includes tci
  • the airspace relationship includes a TCI (Transmission Configuration Indicator, transmission configuration indicator) state (state).
  • TCI Transmission Configuration Indicator, transmission configuration indicator
  • the airspace relationship includes a QCL (Quasi co-location, quasi co-location) parameter.
  • the spatial relationship includes a spatial domain filter.
  • the spatial relationship includes a spatial domain transmission filter.
  • the spatial relationship includes a spatial domain reception filter.
  • the spatial relationship includes a spatial transmission parameter (Spatial Tx parameter).
  • the spatial relationship includes a Spatial Rx parameter.
  • the spatial transmission parameter includes transmit antenna port, transmit antenna port group, transmit beam, transmit analog beamforming matrix, transmit analog beamforming vector, transmit beamforming matrix, transmit beam One or more of shaped vector or spatial transmit filtering.
  • the spatial reception parameter includes a receive beam, a receive analog beamforming matrix, a receive analog beamforming vector, a receive beamforming matrix, a receive beamforming vector, or a receive beamforming vector in the spatial domain receive filtering. one or more.
  • a given reference signal is used to determine the spatial relationship of a given air interface resource group.
  • the given reference signal is the first reference signal
  • the given air interface resource group is the first air interface resource group
  • the given reference signal is the third reference signal
  • the given air interface resource group is the second air interface resource group.
  • the TCI state of the given reference signal is used to determine the spatial relationship of the given air interface resource group.
  • the airspace relationship includes a TCI state
  • the TCI state of the given reference signal is the same as the TCI state of the given air interface resource group.
  • the QCL parameter of the given reference signal is used to determine the spatial relationship of the given air interface resource group.
  • the spatial relationship includes a QCL parameter
  • the QCL parameter of the given reference signal is the same as the QCL parameter of the given air interface resource group.
  • the spatial filtering of the given reference signal is used to determine the spatial relationship of the given air interface resource group.
  • the spatial relationship includes spatial filtering, and the spatial filtering of the given reference signal is the same as the spatial filtering of the given air interface resource group.
  • the spatial relationship includes spatial transmission filtering
  • the given reference signal is an uplink signal
  • the spatial transmission filtering of the given reference signal
  • the spatial transmission of the given air interface resource group Filtering is the same.
  • the spatial relationship includes spatial transmission filtering
  • the given reference signal is a downlink signal
  • the spatial reception filtering of the given reference signal
  • the spatial transmission of the given air interface resource group Filtering is the same.
  • the spatial relationship includes spatial reception filtering
  • the given reference signal is an uplink signal
  • the spatial reception filtering of the given reference signal
  • the spatial reception of the given air interface resource group Filtering is the same.
  • the spatial relationship includes spatial reception filtering
  • the given reference signal is a downlink signal
  • the spatial transmission filtering of the given reference signal
  • the spatial reception of the given air interface resource group Filtering is the same.
  • the spatial parameter of the given reference signal is used to determine the spatial relationship of the given air interface resource group.
  • the spatial relationship includes spatial transmission parameters, and the spatial parameters of the given reference signal are the same as the spatial transmission parameters of the given air interface resource group.
  • the spatial relationship includes spatial transmission parameters
  • the given reference signal is an uplink signal
  • the spatial transmission parameters of the given reference signal and the spatial transmission of the given air interface resource group The parameters are the same.
  • the spatial relationship includes spatial transmission parameters
  • the given reference signal is a downlink signal
  • the spatial reception parameters of the given reference signal and the spatial transmission of the given air interface resource group The parameters are the same.
  • the spatial relationship includes spatial reception parameters, and the spatial parameters of the given reference signal are the same as the spatial reception parameters of the given air interface resource group.
  • the spatial relationship includes spatial reception parameters
  • the given reference signal is an uplink signal
  • the spatial reception parameters of the given reference signal and the spatial reception of the given air interface resource group The parameters are the same.
  • the spatial relationship includes spatial reception parameters
  • the given reference signal is a downlink signal
  • the spatial transmission parameters of the given reference signal
  • the spatial reception of the given air interface resource group The parameters are the same.
  • the second node is a maintenance base station of a serving cell of the first node.
  • the first subset of reference signals is sent by the second node.
  • the second node is not a maintenance base station of the second cell.
  • the first cell when the second reference signal belongs to the second reference signal subset, the first cell sends a third signal to the first node, and the third signal carries the same signal as the second reference signal.
  • Community related information when the second reference signal belongs to the second reference signal subset, the first cell sends a third signal to the first node, and the third signal carries the same signal as the second reference signal.
  • the first cell relays (Relays) information related to the second cell to the first node.
  • the method in the first node includes:
  • the third signal includes information related to the second cell.
  • the first node receives the third signal after sending the first signal.
  • the information related to the second cell includes at least one of a second index or a first identity.
  • the third signal includes Msg4.
  • the third signal includes a conflict resolution (Contention Resolution) MAC PDU.
  • the first identifier is C (Cell, cell)-RNTI (Radio Network Temporary Identifier, wireless network tentative identifier).
  • C Cell, cell
  • RTI Radio Network Temporary Identifier, wireless network tentative identifier
  • the first identifier is RNTI.
  • the first identifier is a non-negative integer.
  • the second index is a non-negative integer.
  • the second index is the CellIdentity of the second cell.
  • the second index is the PhysCellId of the second cell.
  • the first signal is used for a beam failure request (Beam Failure Request).
  • the first signal includes a baseband signal.
  • the first signal includes a wireless signal.
  • the first signal includes a radio frequency signal.
  • the first signal includes a first sequence of features.
  • the first characteristic sequence includes one or more of a pseudo-random (pseudo-random) sequence, a Zadoff-Chu sequence or a low PAPR (Peak-to-Average Power Ratio, peak-to-average ratio) sequence.
  • a pseudo-random (pseudo-random) sequence a Zadoff-Chu sequence or a low PAPR (Peak-to-Average Power Ratio, peak-to-average ratio) sequence.
  • the first feature sequence includes a CP (Cyclic Prefix, cyclic prefix).
  • the first signal includes a random access preamble (Random Access Preamble).
  • the first signal includes UCI (Uplink control information, uplink control information).
  • UCI Uplink control information, uplink control information
  • the first signal includes LRR (Link Recovery Request, link recovery request).
  • the first signal includes MAC CE (Medium Access Control layer Control Element, medium access control layer control element).
  • MAC CE Medium Access Control layer Control Element, medium access control layer control element
  • the first signal includes a BFR (Beam Failure Recovery, beam failure recovery) MAC CE or a truncated (Truncated) BFR MAC CE.
  • BFR Beam Failure Recovery, beam failure recovery
  • the first signal includes a random access preamble or at least the random access preamble in a BFR MAC CE.
  • the first signal when the second reference signal belongs to the second reference signal subset, the first signal includes a first sub-signal and a second sub-signal, and the first sub-signal includes a random access preamble , the second sub-signal includes a BFR MAC CE or a truncated (Truncated) BFR MAC CE; when the second reference signal belongs to the first reference signal subset, the first signal includes a random access preamble , BFR MAC CE, truncated BFR MAC CE, only the random access preamble.
  • the first signal includes a random access preamble or at least the random access preamble in a truncated (Truncated) BFR MAC CE.
  • the first signal includes a random access preamble or at least the random access preamble in the MAC CE.
  • the first signal when the second reference signal belongs to the second reference signal subset, the first signal includes a first sub-signal and a second sub-signal, and the first sub-signal includes a random access preamble , the second sub-signal includes a MAC CE; when the second reference signal belongs to the first reference signal subset, the first signal includes a random access preamble and only the random access in the MAC CE leading.
  • the first signal includes at least Msg1 in Msg1 or Msg3 PUSCH.
  • the first signal when the second reference signal belongs to the second reference signal subset, the first signal includes a first sub-signal and a second sub-signal, the first sub-signal includes Msg1, the The second sub-signal includes the Msg3 PUSCH; when the second reference signal belongs to the first reference signal subset, the first signal includes only Msg1 in the Msg1 and the Msg3 PUSCH.
  • the first signal includes Msg1 and Msg3 PUSCH.
  • the first signal includes Msg1 or at least Msg1 in the PUSCH scheduled by the RAR uplink grant.
  • the first signal when the second reference signal belongs to the second reference signal subset, the first signal includes a first sub-signal and a second sub-signal, the first sub-signal includes Msg1, the The second sub-signal includes the PUSCH scheduled by the RAR uplink grant; when the second reference signal belongs to the first reference signal subset, the first signal includes Msg1 and only Msg1 in the PUSCH scheduled by the RAR uplink grant .
  • the first signal includes Msg1 and the PUSCH scheduled by the RAR uplink grant.
  • the first signal includes MsgA.
  • the first signal when the second reference signal belongs to the second reference signal subset, the first signal includes the first sub-signal and the second sub-signal; when the second reference signal When belonging to the second reference signal subset, the first signal includes only the first sub-signal of the first sub-signal and the second sub-signal.
  • the first air interface resource group includes a first air interface resource block and a second air interface resource block
  • the first signal includes a first sub-signal and a second sub-signal
  • the first sub-signal is in the The second sub-signal is sent in the first air interface resource block
  • the second sub-signal is sent in the second air interface resource block.
  • the second reference signal belongs to only the second reference signal subset of the first reference signal subset and the second reference signal subset.
  • the second reference signal belongs to the first reference signal subset or the second reference signal subset.
  • the first sub-signal includes Msg1
  • the second sub-signal includes Msg3 PUSCH.
  • the first sub-signal includes Msg1
  • the second sub-signal includes the PUSCH scheduled by the RAR uplink grant.
  • the first signal includes MsgA
  • the first sub-signal includes a random access preamble in MsgA
  • the second sub-signal includes PUSCH in MsgA.
  • the first sub-signal includes a first feature sequence.
  • the first sub-signal includes a random access preamble (Random Access Preamble).
  • the second sub-signal includes MAC CE (Medium Access Control layer Control Element, medium access control layer control element).
  • MAC CE Medium Access Control layer Control Element, medium access control layer control element
  • the second sub-signal includes a BFR (Beam Failure Recovery, beam failure recovery) MAC CE or a truncated (Truncated) BFR MAC CE.
  • BFR Beam Failure Recovery, beam failure recovery
  • the method in the first node includes:
  • the time domain resource occupied by the first signal is used to determine the first time window, and the first time window is not later than the start sending moment of the first signal.
  • the method in the first node includes:
  • the time domain resource occupied by the second signal is used to determine the second time window, and the second time window is not later than the start sending moment of the second signal.
  • the M configuration information blocks are respectively used to indicate the M air interface resource groups.
  • the M configuration information blocks are respectively used to indicate the correspondence between the M air interface resource groups and the M reference signals.
  • each configuration information block corresponding to the reference signal sent by the first cell in the M configuration information blocks includes a first index, and the first index is used to indicate the first cell; the Each of the M configuration information blocks corresponding to the reference signal sent by the second cell includes a second index, where the second index is used to indicate the second cell.
  • any configuration information block in the M configuration information blocks is carried by RRC signaling.
  • any configuration information block in the M configuration information blocks is carried by MAC CE signaling.
  • one configuration information block in the M configuration information blocks is jointly carried by RRC signaling and MAC CE signaling.
  • any one of the M configuration information blocks includes information in all or part of fields (Field) in one IE.
  • any one of the M configuration information blocks includes part or all of the information in the candidateBeamRSList field in the BeamFailureRecoveryConfig IE.
  • the M configuration information blocks belong to the same IE in the RRC signaling.
  • two configuration information blocks in the M configuration information blocks belong to two IEs in the RRC signaling.
  • the M1 configuration information blocks include a configuration information block corresponding to each reference signal in the first reference signal subset in the M configuration information blocks
  • the M2 configuration information blocks include the M configuration information A configuration information block corresponding to each reference signal in the first reference signal subset in the information block.
  • the M1 configuration information blocks belong to the same IE in the RRC signaling.
  • the M2 configuration information blocks belong to the same IE in the RRC signaling.
  • the M1 configuration information blocks and the M2 configuration information blocks respectively belong to two IEs in the RRC signaling.
  • the M1 configuration information blocks and the M2 configuration information blocks are respectively sent by two cells.
  • the M1 configuration information blocks are sent by the first cell, and the M2 configuration information blocks are sent by the second cell.
  • any one of the M1 configuration information blocks is sent by a serving cell of the first node.
  • any one of the M2 configuration information blocks is sent by a non-serving cell of the first node.
  • the senders of the M configuration information blocks are all the first cell.
  • the sender of one configuration information block in the M configuration information blocks is the first cell.
  • the sender of one configuration information block in the M configuration information blocks is the second cell.
  • the sender of any one of the M configuration information blocks is a serving cell of the first node.
  • the sender of one configuration information block in the M configuration information blocks is a serving cell of the first node.
  • the sender of one configuration information block in the M configuration information blocks is a non-serving cell of the first node.
  • the first index is a non-negative integer.
  • the first index is the SCellIndex corresponding to the first cell.
  • the first index is the ServCellIndex corresponding to the first cell.
  • the first index is the PhysCellId corresponding to the first cell.
  • the second index is a non-negative integer.
  • the second index is the CellIdentity corresponding to the second cell.
  • the second index is the PhysCellId corresponding to the second cell.
  • any configuration information block in the M configuration information blocks includes a first-type index, and the first-type index included in any given configuration information block in the M configuration information blocks is It is used to identify the reference signal corresponding to the given configuration information block among the M reference signals.
  • the first type of index included in the given configuration information block is an index of a reference signal corresponding to the given configuration information block in the M reference signals.
  • the index of the first type is a non-negative integer.
  • the first type of index includes SSB-Index.
  • the first type of index includes SSBRI (SSB Resource Indicator, SSB resource identifier).
  • SSBRI SSB Resource Indicator, SSB resource identifier
  • the first type of index includes NZP-CSI-RS-ResourceId.
  • the first type of index includes CRI (CSI-RS Resource Indicator, CSI-RS resource identifier).
  • any configuration information block in the M configuration information blocks includes a second-type index
  • any given configuration information block in the M configuration information blocks includes the second-type index Indicates the air interface resource group corresponding to the reference signal corresponding to the given configuration information block in the M air interface resource groups.
  • the second type of index is a non-negative integer.
  • the second type of index includes ra-PreambleIndex.
  • the configuration information block corresponding to the first reference signal among the M configuration information blocks indicates air interface resources occupied by the first signal.
  • the first index and the second index are respectively composed of Q1 bits and Q2 bits, and Q1 and Q2 are two mutually different positive integers.
  • the Q1 is smaller than the Q2.
  • the Q2 is 10.
  • the Q2 is 28.
  • the Q2 is 9.
  • the Q1 is 5.
  • the Q1 is 3.
  • the first air interface resource set includes the M air interface resource groups.
  • the first air interface resource set includes some air interface resource groups in the M air interface resource groups.
  • the first air interface resource set includes the M1 air interface resource groups.
  • the first air interface resource set includes some air interface resource groups in the M1 air interface resource groups.
  • the first air interface resource set includes the M3 air interface resource groups.
  • the first air interface resource set includes some air interface resource groups in the M3 air interface resource groups.
  • the first reference signal subset is the first reference signal group.
  • the first information group includes a first information subgroup and a second information subgroup
  • the first reference signal group includes a first reference signal subgroup and a second reference signal subgroup
  • the first An information subgroup is used to indicate the first reference signal subgroup
  • the second information subgroup is used to indicate the second reference signal subgroup
  • any information block in the first information subgroup belongs to In the first information group
  • any information block in the second information subgroup belongs to the second information group
  • the first reference signal subgroup includes a positive integer number of reference signals
  • the second reference signal subgroup A group includes a positive integer number of reference signals.
  • the sender of the first reference signal subgroup and the sender of the second reference signal subgroup are different.
  • any information block in the first information subgroup does not belong to the second information subgroup.
  • the first information group includes S information blocks
  • the first information subgroup includes S1 information blocks
  • the first reference signal subgroup includes S1 reference signals
  • the S1 information blocks are respectively used to indicate the S1 reference signals
  • S is a positive integer greater than 1
  • S1 is a positive integer not greater than the S.
  • the S1 is smaller than the S.
  • the S1 is equal to the S.
  • the first information group includes S information blocks
  • the second information subgroup includes S2 information blocks
  • the second reference signal subgroup includes S2 reference signals
  • the S2 information blocks are respectively used to indicate the S2 reference signals
  • S is a positive integer greater than 1
  • S2 is a positive integer not greater than the S.
  • the S1 is smaller than the S
  • the S2 is smaller than the S.
  • the sum of the S1 and the S2 is equal to the S.
  • the second subset of reference signals is sent by a third node.
  • the third node is not the maintenance base station of the serving cell of the first node.
  • the third node is not the maintenance base station of the first cell.
  • the third node is not the maintenance base station of the first cell.
  • the third node is a maintenance base station of the second cell.
  • any cell maintained by the third node is a non-serving cell of the sender of the first signal.
  • the method in the third node includes:
  • any reference signal in the second reference signal subgroup belongs to the first reference signal group, and the second reference signal subgroup includes a positive integer number of reference signals.
  • the method in the third node includes:
  • the second signal is used to determine the second reference signal
  • the third reference signal is used to determine the spatial relationship of the second air interface resource group
  • the second reference signal and the third reference signal is QCL.
  • the method in the third node includes:
  • the second air interface resource group is any air interface resource group in the second air interface resource set, and the second signal is a wireless signal monitored in the first air interface resource group.
  • the second air interface resource set includes the M2 air interface resource groups.
  • the second air interface resource set includes some air interface resource groups in the M2 air interface resource groups.
  • the method in the third node includes:
  • the time domain resource occupied by the second signal is used to determine the second time window.
  • Embodiment 6 illustrates a schematic diagram of a second reference signal according to an embodiment of the present application; as shown in FIG. 6 .
  • the measurements on the M reference signals are respectively used to determine M second-type reception qualities; among the M second-type reception qualities, the second type corresponding to the second reference signal The reception quality is not worse than the third threshold.
  • the measurement for the given reference signal in the second time interval is used to determine the second category corresponding to the given reference signal reception quality.
  • the first node for any given reference signal among the M reference signals, the first node only obtains the reference signal for calculating the given reference signal according to the given reference signal received within the second time interval.
  • the second time interval is a continuous time period.
  • the length of the second time interval is T Evaluate_CBD_SSB ms or T Evaluate_CBD_CSI-RS ms.
  • T Evaluate_CBD_SSB or T Evaluate_CBD_CSI-RS can be found in 3GPP TS38.133.
  • any one of the M second-type reception qualities is RSRP.
  • any one of the M second-type reception qualities is layer 1 (L1)-RSRP.
  • any one of the M second-type reception qualities is SINR.
  • any one of the M second-type reception qualities is L1-SINR.
  • any one of the M second-type reception qualities is BLER.
  • meaning that the given reception quality of the sentence is not worse than the third threshold includes: the given reception quality is one of RSRP, L1-RSRP, SINR or L1-SINR, and the given reception quality is one of RSRP, L1-RSRP, SINR or L1-SINR. greater than or equal to the third threshold; the given reception quality is any second type of reception quality among the M second type of reception qualities.
  • meaning that the given reception quality of the sentence is not worse than the third threshold includes: the given reception quality is BLER, the given reception quality is less than or equal to the third threshold; the given reception quality is less than or equal to the third threshold; The reception quality is any one of the M second-type reception qualities.
  • any one of the M second-type reception qualities is obtained by looking up the RSRP, L1-RSRP, SINR or L1-SINR of the corresponding reference signal.
  • the third threshold is a real number.
  • the third threshold is a non-negative real number.
  • the third threshold is a non-negative real number not greater than 1.
  • the third threshold is Q in_LR .
  • Qin_LR for the definition of Qin_LR , refer to 3GPP TS38.133.
  • the third threshold is configured by a higher layer parameter rsrp-ThresholdSSB.
  • the value of the third threshold is different.
  • the third threshold is equal to the first value; when the second reference signal belongs to the second reference signal subset , the third threshold is equal to the second value; the first value and the second value are respectively real numbers, and the first value is not equal to the second value.
  • the first condition includes: the second type of reception quality corresponding to one reference signal among the M reference signals is not worse than the third threshold.
  • the first condition is satisfied.
  • the first condition is not satisfied.
  • the third threshold is equal to the first value; when the given reference signal belongs to the second reference signal subset, the third threshold is equal to the first value.
  • the third threshold value is equal to the second value; the first value and the second value are respectively real numbers, the first value is not equal to the second value; the given reference signal is the M reference signals any reference signal.
  • Embodiment 7 illustrates a schematic diagram of the first reference signal subset and the second reference signal subset according to an embodiment of the present application; as shown in FIG. 7 .
  • the sender of the first reference signal subset is a first cell
  • the sender of the second reference signal subset is a second cell
  • the first cell is owned by the first node a serving cell
  • the second cell is a non-serving cell of the first node.
  • the first cell is SpCell.
  • the first cell is a PCell.
  • the second cell is an SCell.
  • the first cell is a cell serving the first node before the first condition is satisfied.
  • the first cell is a cell serving the first node before beam failure recovery.
  • the first cell is a beam-maintaining cell serving the first node before the first condition is satisfied.
  • the first cell is a beam-maintaining cell serving the first node prior to beam failure recovery.
  • the second node is a maintenance base station of the first cell.
  • the sender of one reference signal among the M reference signals is a third cell, and the third cell is different from the first cell and the second cell.
  • the third cell is a non-serving cell of the first node.
  • the third cell is a serving cell of the first node.
  • the first reference signal belongs to the first reference signal subset.
  • the sender of the first reference signal is the first cell.
  • the sender of the first reference signal is a serving cell of the first node.
  • the meaning of the sentence that the second cell is a non-serving cell of the first node includes: the first node does not perform a secondary serving cell addition (SCell addition) for the second cell.
  • SCell addition secondary serving cell addition
  • the meaning of the sentence that the second cell is a non-serving cell of the first node includes: the latest sCellToAddModList received by the first node does not include the second cell.
  • the meaning of the sentence that the second cell is a non-serving cell of the first node includes: neither the sCellToAddModList nor the sCellToAddModListSCG newly received by the first node includes the second cell.
  • the meaning of the sentence that the second cell is a non-serving cell of the first node includes: the first node is not assigned an SCellIndex for the second cell.
  • the SCellIndex is a positive integer not greater than 31.
  • the meaning of the sentence that the second cell is a non-serving cell of the first node includes: the first node is not assigned a ServCellIndex for the second cell.
  • the ServCellIndex is a non-negative integer not greater than 31.
  • the meaning of the sentence that the second cell is a non-serving cell of the first node includes: the second cell is not a PCell (Primary serving Cell, primary serving cell) of the first node.
  • PCell Primary serving Cell, primary serving cell
  • the meaning of the sentence that the second cell is a non-serving cell of the first node includes: no RRC connection is established between the first node and the second cell.
  • the meaning of the sentence that the second cell is a non-serving cell of the first node includes: the C-RNTI of the first node is not allocated by the second cell.
  • the meaning of the sentence that the first cell is the serving cell of the first node includes: the first node performs addition of a secondary serving cell for the first cell.
  • the meaning of the sentence that the first cell is the serving cell of the first node includes: the sCellToAddModList newly received by the first node includes the first cell.
  • the meaning of the sentence that the first cell is the serving cell of the first node includes: the sCellToAddModList or sCellToAddModListSCG newly received by the first node includes the first cell.
  • the meaning of the sentence that the first cell is the serving cell of the first node includes: the first node is allocated an SCellIndex for the first cell.
  • the meaning of the sentence that the first cell is the serving cell of the first node includes: the first node is allocated a ServCellIndex for the first cell.
  • the meaning of the sentence that the first cell is the serving cell of the first node includes: an RRC connection has been established between the first node and the first cell.
  • the meaning of the sentence that the first cell is the serving cell of the first node includes: the C-RNTI of the first node is allocated by the first cell.
  • the sender of any reference signal in the first reference signal subset is a serving cell of the first node.
  • the first reference signal subset includes all reference signals sent by the serving cell of the first node among the M reference signals.
  • the first node performs secondary serving cell addition for the sender of any reference signal in the first reference signal subset.
  • the sCellToAddModList newly received by the first node includes the sender of any reference signal in the first reference signal subset.
  • the first node is allocated an SCellIndex and/or a ServCellIndex for the sender of any reference signal in the first reference signal subset.
  • an RRC connection has been established between the first node and the sender of any reference signal in the first reference signal subset.
  • the sender of any reference signal in the second reference signal subset is a non-serving cell of the first node.
  • the second reference signal subset includes all reference signals sent by the non-serving cell of the first node among the M reference signals.
  • the first node does not perform secondary serving cell addition for the sender of any reference signal in the second subset of reference signals.
  • the sCellToAddModList newly received by the first node does not include the sender of any reference signal in the second reference signal subset.
  • the first node is not allocated an SCellIndex and/or a ServCellIndex for the sender of any reference signal in the second reference signal subset.
  • the sender of any reference signal in the second reference signal subset is not the PCell of the first node.
  • no RRC connection is established between the first node and the sender of any reference signal in the second reference signal subset.
  • Embodiment 8 illustrates a schematic diagram in which the first signal is used to determine the second reference signal according to an embodiment of the present application; as shown in FIG. 8 .
  • the first air interface resource group includes a first air interface resource block and a second air interface resource block
  • the first signal includes a first sub-signal and a second sub-signal
  • the first sub-signal is transmitted in the first air interface resource block
  • the second sub-signal is transmitted in the second air interface resource block
  • the second sub-signal is transmitted in the second air interface resource block.
  • the sub-signal carries a first block of information that is used to indicate the second reference signal.
  • the first signal is used to determine the first reference signal and the second reference signal.
  • the first sub-signal is used to determine the first reference signal
  • the second sub-signal is used to determine the second reference signal
  • the second reference signal belongs to the second reference signal subset
  • air interface resources occupied by the first sub-signal are used to determine the first reference signal
  • the second sub-signal A signal is used to indicate the second reference signal
  • the first sub-signal when the second reference signal belongs to the second reference signal subset, includes a random access preamble, and the random access preamble included in the first sub-signal is for determining the first reference signal.
  • the M3 reference signals are in one-to-one correspondence with the M3 air interface resource groups, and the first air interface resource group is an air interface resource in the M3 air interface resource groups that includes the air interface resources occupied by the first sub-signal.
  • An air interface resource group, and the first reference signal is a reference signal corresponding to the first air interface resource group among the M3 reference signals.
  • the M reference signals are in one-to-one correspondence with M air interface resource groups, and the first air interface resource group is an air interface occupied by the first sub-signal in the M air interface resource groups.
  • An air interface resource group of resources, and the first reference signal is a reference signal corresponding to the first air interface resource group among the M reference signals.
  • the meaning of the sentence that the first signal is used to determine the second reference signal includes: the first signal includes the first sub-signal and the second sub-signal, the first reference The signal subset includes M1 reference signals, the M1 reference signals are in one-to-one correspondence with M1 air interface resource groups, and the first air interface resource group is one of the M1 air interface resource groups that includes the first sub-signal An air interface resource group of occupied air interface resources, the first reference signal is a reference signal corresponding to the first air interface resource group among the M reference signals, and M1 is a positive integer smaller than the M.
  • the first air interface resource block and the second air interface resource block are orthogonal.
  • the first information block includes a BFR MAC CE.
  • the first information block includes a truncated (Truncated) BFR MAC CE.
  • the first information block includes a first field, and the value of the first field in the first information block is equal to 1.
  • the first domain is the SP domain in the BFR MAC CE.
  • the first domain is the SP domain in a truncated (Truncated) BFR MAC CE.
  • the first information block includes a second field, and the second field in the first information block is used to indicate the second reference signal.
  • the first information block includes a second field, and the second field in the first information block indicates an index of the second reference signal.
  • the second domain is for the second cell.
  • the second domain is for the first cell.
  • the sentence that the first signal is used to determine the meaning of the second reference signal includes: when the second reference signal belongs to the second reference signal subset, the second sub-signal is for determining the second reference signal.
  • the sentence that the first signal is used to determine the meaning of the second reference signal includes: when the second reference signal belongs to the second reference signal subset, the second sub-signal is used to indicate the second reference signal.
  • the meaning of the sentence that the first signal is used to determine the second reference signal includes: the air interface resources occupied by the first signal are used to determine the second reference signal.
  • the meaning of the sentence that the first signal is used to determine the second reference signal includes: the first signal includes a first feature sequence, and the first feature sequence is used to determine the second reference signal. reference signal.
  • the meaning of the sentence that the first signal is used to determine the second reference signal includes: the air interface resource occupied by the first signal indicates the second reference signal from the M reference signals .
  • the meaning of the sentence that the first signal is used to determine the second reference signal includes: the M reference signals are in a one-to-one correspondence with M air interface resource groups, and the first air interface resource group is One of the M air interface resource groups that includes the air interface resources occupied by the first signal, and the second reference signal is one of the M reference signals corresponding to the first air interface resource group a reference signal.
  • the meaning of the sentence that the first signal is used to determine the second reference signal includes: the first reference signal subset includes M1 reference signals, and the M1 reference signals are respectively associated with M1 air interfaces Resource groups are in one-to-one correspondence, the first air interface resource group is one air interface resource group including the air interface resources occupied by the first signal among the M1 air interface resource groups, and the second reference signal is the M1 air interface resource group.
  • M1 is a positive integer smaller than the M.
  • the meaning of the sentence that the first signal is used to determine the second reference signal includes: the first signal includes a first bit field, and the first bit field includes a positive integer number of bits; the The value of the first bit field indicates the second reference signal.
  • the meaning of the sentence that the first signal is used to determine the second reference signal includes: the first signal includes the first sub-signal and the second sub-signal, the second sub-signal
  • the signal includes a second bit field including a positive integer number of bits; the value of the second bit field indicates the second reference signal.
  • the meaning of the sentence that the first signal is used to determine the second reference signal includes: the first signal includes the first sub-signal and the second sub-signal, and the first sub-signal includes the first sub-signal and the second sub-signal.
  • the air interface resource occupied by the signal is used to determine the second reference signal.
  • the meaning of the sentence that the first signal is used to determine the second reference signal includes: the first signal includes the first sub-signal and the second sub-signal, and the first sub-signal includes the first sub-signal and the second sub-signal.
  • the air interface resource occupied by the signal indicates the second reference signal from the M reference signals.
  • the meaning of the sentence that the first signal is used to determine the second reference signal includes: the first signal includes the first sub-signal and the second sub-signal, the M reference signals Signals are in one-to-one correspondence with M air interface resource groups, and the first air interface resource group is an air interface resource group in the M air interface resource groups that includes the air interface resources occupied by the first sub-signal.
  • the second reference signal is one reference signal corresponding to the first air interface resource group among the M reference signals.
  • the meaning of the sentence that the first signal is used to determine the second reference signal includes: the first signal includes the first sub-signal and the second sub-signal, the first reference The signal subset includes M1 reference signals, the M1 reference signals are in one-to-one correspondence with M1 air interface resource groups, and the first air interface resource group is one of the M1 air interface resource groups that includes the first sub-signal An air interface resource group of occupied air interface resources, the second reference signal is a reference signal corresponding to the first air interface resource group among the M reference signals, and M1 is a positive integer smaller than the M.
  • the M air interface resource groups respectively include M PRACH (Physical Random Access Channel, physical random access channel) resources.
  • M PRACH Physical Random Access Channel, physical random access channel
  • the M1 air interface resource groups respectively include M1 PRACH (Physical Random Access Channel, physical random access channel) resources.
  • M1 PRACH Physical Random Access Channel, physical random access channel
  • the sentence that the first signal is used to determine the meaning of the second reference signal includes: when the second reference signal belongs to the first reference signal subset, the first sub-signal is for determining the second reference signal.
  • the meaning of the sentence that the first signal is used to determine the second reference signal includes: when the second reference signal belongs to the subset of the first reference signal, the first signal is used for to indicate the second reference signal.
  • the meaning of the sentence that the first signal is used to determine the second reference signal includes: when the second reference signal belongs to the first reference signal subset, the first signal occupies Air interface resources are used to determine the second reference signal.
  • the meaning of the sentence that the first signal is used to determine the second reference signal includes: when the second reference signal belongs to the first reference signal subset, the first signal includes The preamble is used to determine the second reference signal.
  • the meaning of the sentence that the first signal is used to determine the second reference signal includes: when the second reference signal belongs to the first reference signal subset, the first signal includes A random access preamble (Random Access Preamble) is used to determine the second reference signal.
  • a random access preamble Random Access Preamble
  • the meaning of the sentence that the first signal is used to determine the second reference signal includes: when the second reference signal belongs to the first reference signal subset, the first air interface resource group It includes a first air interface resource block and a second air interface resource block, the first signal includes a first sub-signal and a second sub-signal, the first sub-signal is sent in the first air interface resource block, and the first sub-signal is sent in the first air interface resource block. Two sub-signals are sent in the second air interface resource block, and the first sub-signal is used to determine the second reference signal.
  • the second sub-signal is sent in the second air interface resource block, and the second sub-signal carries a second information block.
  • the second sub-signal is not used to indicate the second reference signal.
  • the air interface resources occupied by the first sub-signal are used to determine the second reference signal.
  • the preamble (Preamble) included in the first sub-signal is used to determine the second reference signal.
  • the random access preamble included in the first sub-signal is used to determine the second reference signal.
  • the second information block includes a BFR MAC CE.
  • the second information block includes a truncated (Truncated) BFR MAC CE.
  • the first information block and the second information block are different.
  • the second information block includes the first field, and the value of the first field in the second information block is equal to 1.
  • the second information block does not include the second field.
  • the first information block is used to indicate the second reference signal, and the second information block is not used to indicate the second reference signal.
  • Embodiment 9 illustrates a schematic diagram of a first reference signal according to an embodiment of the present application; as shown in FIG. 9 .
  • the first reference signal belongs to the first reference signal subset, or the first reference signal and the One reference signal in the first subset of reference signals is QCL.
  • the first reference signal belongs to the first reference signal subset.
  • the first reference signal and one reference signal in the first reference signal subset are QCL.
  • the first reference signal and one reference signal in the first reference signal subset are QCL and correspond to QCL-TypeD.
  • the M1 second-type reception qualities are the same as the first reference signal subset among the M second-type reception qualities All corresponding second-type reception qualities
  • the target reference signal is a reference signal corresponding to the first reference signal subset and the target reception quality
  • the target reception quality is one of the M1 second-type reception qualities
  • M1 is a positive integer smaller than the M
  • the first reference signal is the target reference signal, or the first reference signal and the target reference signal are QCL.
  • the first reference signal and the target reference signal are QCL and correspond to QCL-TypeD.
  • the first reference signal is the target reference signal.
  • the first reference signal and the target reference signal are QCL.
  • the target reception quality is not worse than the third threshold.
  • the target reception quality is the best second-class reception quality among the M1 second-class reception qualities.
  • the target reception quality is the best second-type reception quality among the M1 second-type reception qualities that is not worse than the third threshold.
  • the first node randomly selects the target reception quality from the M1 reception qualities of the second type.
  • the selection of the target reception quality from the M1 second-type reception qualities is related to the implementation of the first node.
  • the meaning of the sentence that the target reception quality is the best second-class reception quality among the M1 second-class reception qualities includes: the second-class reception quality is RSRP, L1-RSRP, SINR or In one of the L1-SINRs, the target reception quality is the maximum value among the M1 second-type reception qualities.
  • the meaning of the sentence that the target reception quality is the best second-class reception quality among the M1 second-class reception qualities includes: the second-class reception quality is BLER, and the target reception quality is The minimum value among the M1 second-type reception qualities.
  • the meaning of the sentence that the target reception quality is the best second-class reception quality among the M1 second-class reception qualities satisfying the third threshold value includes: the second-class reception quality
  • the quality is one of RSRP, L1-RSRP, SINR or L1-SINR, and the target reception quality is a maximum value that satisfies not less than the third threshold among the M1 second-type reception qualities.
  • the meaning of the sentence that the target reception quality is the best second-class reception quality among the M1 second-class reception qualities satisfying the third threshold value includes: the second-class reception quality The quality is BLER, and the target reception quality is a minimum value of the M1 second-type reception qualities that satisfies not greater than the third threshold.
  • Embodiment 10 illustrates a schematic diagram of a second signal according to an embodiment of the present application; as shown in FIG. 10 .
  • a second signal is sent in a second air interface resource group; wherein the second reference signal The signal is used to determine the second reference signal, the third reference signal is used to determine the spatial relationship of the second air interface resource group, and the second reference signal and the third reference signal are QCL.
  • the second air interface resource group includes PRACH resources.
  • the second air interface resource group includes at least PRACH resources among air interface resources occupied by PRACH and PUSCH scheduled by an uplink grant (UL grant).
  • UL grant uplink grant
  • the second air interface resource group includes at least the air interface resources occupied by Msg1 in the air interface resources occupied by Msg1 or the air interface resources occupied by the Msg3 PUSCH.
  • the second air interface resource group includes at least the air interface resources occupied by Msg1 from the air interface resources occupied by Msg1 or the air interface resources occupied by the PUSCH scheduled by the RAR uplink grant (UL grant).
  • the second air interface resource group includes air interface resources occupied by Msg1 and air interface resources occupied by Msg3 PUSCH.
  • the second air interface resource group includes air interface resources occupied by Msg1 and air interface resources occupied by PUSCH scheduled by RAR (Random Access Response) uplink grant (UL grant).
  • RAR Random Access Response
  • the second air interface resource group includes air interface resources occupied by the MsgA.
  • the second air interface resource group includes time-frequency resources.
  • the second air interface resource group includes time-frequency resources and code domain resources.
  • the second air interface resource group is configured by a higher layer parameter.
  • the correspondence between the second air interface resource group and the second reference signal is configured by a higher layer parameter.
  • the correspondence between the second air interface resource group and the M reference signals is configured by a higher layer parameter.
  • the higher layer parameters for configuring the second air interface resource group include all or part of the information in the candidateBeamRSList field of the BeamFailureRecoveryConfig IE.
  • the higher layer parameter configuring the correspondence between the second air interface resource group and the second reference signal includes all or part of the information in the candidateBeamRSList field of the BeamFailureRecoveryConfig IE.
  • the higher layer parameter configuring the correspondence between the second air interface resource group and the M reference signals includes all or part of the information in the candidateBeamRSList field of the BeamFailureRecoveryConfig IE.
  • the M reference signals are in one-to-one correspondence with M air interface resource groups
  • the second air interface resource group is an air interface corresponding to the second reference signal in the M air interface resource groups resource group.
  • the second reference signal subset includes M2 reference signals, the M2 reference signals are in one-to-one correspondence with M2 air interface resource groups, and the second air interface resource group is the M2 air interface resources For an air interface resource group in the group corresponding to the second reference signal, M2 is a positive integer smaller than the M.
  • the second signal is used for a beam failure request (Beam Failure Request).
  • the second signal includes a baseband signal.
  • the second signal includes a wireless signal.
  • the second signal includes a radio frequency signal.
  • the second signal includes a second signature sequence.
  • the second characteristic sequence includes one or more of a pseudo-random (pseudo-random) sequence, a Zadoff-Chu sequence or a low PAPR (Peak-to-Average Power Ratio, peak-to-average ratio) sequence.
  • a pseudo-random (pseudo-random) sequence a Zadoff-Chu sequence or a low PAPR (Peak-to-Average Power Ratio, peak-to-average ratio) sequence.
  • the second characteristic sequence includes a CP (Cyclic Prefix, cyclic prefix).
  • the second signal includes a random access preamble (Random Access Preamble).
  • the second signal includes UCI (Uplink control information, uplink control information).
  • UCI Uplink control information, uplink control information
  • the second signal includes LRR (Link Recovery Request, link recovery request).
  • the second signal includes MAC CE (Medium Access Control layer Control Element, medium access control layer control element).
  • MAC CE Medium Access Control layer Control Element, medium access control layer control element
  • the second signal includes a BFR (Beam Failure Recovery, beam failure recovery) MAC CE or a truncated (Truncated) BFR MAC CE.
  • BFR Beam Failure Recovery, beam failure recovery
  • the second signal includes a random access preamble or at least the random access preamble in a BFR MAC CE.
  • the second signal includes a random access preamble or at least the random access preamble in a truncated (Truncated) BFR MAC CE.
  • the second signal includes a random access preamble or at least the random access preamble in the MAC CE.
  • the second signal includes at least Msg1 in Msg1 or Msg3 PUSCH.
  • the second signal includes MsgA.
  • the second air interface resource group includes a third air interface resource block and a fourth air interface resource block
  • the second signal includes a third sub-signal and a fourth sub-signal
  • the third sub-signal is in the The fourth sub-signal is sent in the third air interface resource block
  • the fourth sub-signal is sent in the fourth air interface resource block.
  • the third sub-signal includes Msg1.
  • the fourth sub-signal includes Msg3 PUSCH.
  • the fourth sub-signal includes the PUSCH scheduled by the RAR uplink grant.
  • the second signal includes the MsgA
  • the third sub-signal includes the random access preamble in the MsgA
  • the fourth sub-signal includes the PUSCH in the MsgA.
  • the third sub-signal includes a second signature sequence.
  • the third sub-signal includes a random access preamble (Random Access Preamble).
  • the fourth sub-signal includes MAC CE (Medium Access Control layer Control Element, medium access control layer control element).
  • MAC CE Medium Access Control layer Control Element, medium access control layer control element
  • the fourth sub-signal includes a BFR (Beam Failure Recovery, beam failure recovery) MAC CE or a truncated (Truncated) BFR MAC CE.
  • BFR Beam Failure Recovery, beam failure recovery
  • the second reference signal and the third reference signal are QCL and correspond to QCL-TypeD.
  • the sentence that the second signal is used to determine the meaning of the second reference signal includes: the second signal is used to indicate the second reference signal.
  • the meaning of the sentence that the second signal is used to determine the second reference signal includes: the air interface resources occupied by the second signal are used to determine the second reference signal.
  • the meaning of the sentence when the second signal is used to determine the second reference signal includes: the air interface resources occupied by the second signal indicate the second reference signal from the M reference signals .
  • the meaning of the sentence that the second signal is used to determine the second reference signal includes: the air interface resources occupied by the second signal indicate the second reference signal from the M2 reference signals .
  • the meaning of the sentence when the second signal is used to determine the second reference signal includes: the M reference signals are in one-to-one correspondence with M air interface resource groups, and the second air interface resource group is One of the M air interface resource groups including the air interface resources occupied by the second signal, where the second reference signal is one of the M reference signals corresponding to the second air interface resource group a reference signal.
  • the meaning of the sentence that the second signal is used to determine the second reference signal includes: the second reference signal subset includes M1 reference signals, and the M1 reference signals are respectively associated with M1 air interfaces Resource groups are in one-to-one correspondence, the second air interface resource group is one air interface resource group including the air interface resources occupied by the second signal among the M1 air interface resource groups, and the second reference signal is the M1 air interface resource group.
  • M1 is a positive integer smaller than the M.
  • the meaning of the sentence that the second signal is used to determine the second reference signal includes: the second signal includes a third bit field, and the third bit field includes a positive integer number of bits; the The value of the third bit field indicates the second reference signal.
  • the meaning of the sentence that the second signal is used to determine the second reference signal includes: the second signal includes a third sub-signal and a fourth sub-signal, and the third sub-signal occupies an area of Air interface resources are used to determine the second reference signal.
  • the meaning of the sentence that the second signal is used to determine the second reference signal includes: the second signal includes a second feature sequence, and the second feature sequence is used to determine the second reference signal. reference signal.
  • the meaning of the sentence that the second signal is used to determine the second reference signal includes: the second signal includes a random access preamble, and the random access preamble included in the second signal is for determining the second reference signal.
  • the second condition includes that the response to the first signal is not detected in the first time window.
  • the fourth condition includes: the response to the second signal is not detected in the second time window.
  • the first node when both the fourth condition and the second condition are satisfied, the first node considers that beam failure recovery is unsuccessful.
  • a radio link failure (Radio Link Failure) is triggered.
  • a radio link failure (Radio Link Failure) is not triggered.
  • the first node when only one of the fourth condition and the second condition is satisfied, the first node considers that the beam failure recovery is successful.
  • a radio link failure (Radio Link Failure) is not triggered.
  • the first node when neither the fourth condition nor the second condition is satisfied, the first node considers that the beam failure recovery is successful.
  • the second time window and the first time window overlap.
  • Embodiment 11 illustrates a schematic diagram of a second signal according to another embodiment of the present application; as shown in FIG. 11 .
  • the second signal is sent in the second air interface resource group; wherein , the time domain resources occupied by the first signal are used to determine the first time window, and the first time window is not later than the start transmission moment of the second signal, and the second signal is used to determine the first time window.
  • the third reference signal is used to determine the spatial relationship of the second air interface resource group, the second reference signal and the third reference signal are QCL; the second condition includes : the response to the first signal is not detected in the first time window.
  • the first node is in the second air interface resource group send the second signal.
  • the first condition when the first condition is satisfied, the second condition is not satisfied, and the second reference signal belongs to the second reference signal subset, the first node is not in the second air interface resource A second signal is sent in the group.
  • the first node when the first condition is satisfied and the second reference signal belongs to the first reference signal subset, the first node does not transmit the second signal in the second air interface resource group.
  • the second condition is satisfied when the response to the first signal is not detected in the first time window.
  • the second condition is not satisfied when the response to the first signal is detected in the first time window.
  • the first condition is satisfied.
  • the first condition is satisfied if and only if the value of the first counter is not less than the first threshold.
  • the first condition is not satisfied.
  • the first node when the first condition is not satisfied, the first node does not send the first signal.
  • the meaning of the sentence monitoring (Monitor) a given signal includes: the monitoring refers to blind decoding, that is, receiving a signal and performing a decoding operation; if according to CRC (Cyclic Redundancy Check, cyclic redundancy check ) bit determines that the decoding is correct, then it is judged that the given signal is detected; otherwise, it is judged that the given signal is not detected.
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • the given signal is the response to the first signal.
  • the given signal is the first signal.
  • the monitoring refers to coherent detection, that is, performing coherent reception and measuring the energy of the signal obtained after the coherent reception; if the energy of the signal obtained after the coherent reception is greater than a first given threshold, Then it is judged that the given signal is detected; otherwise, it is judged that the given signal is not detected.
  • the given signal is the response to the first signal.
  • the given signal is the first signal.
  • the meaning of the sentence monitoring a given signal includes: the monitoring refers to energy detection, that is, sensing (Sense) the energy of the wireless signal and averaging to obtain the received energy; if the received energy is greater than the second given energy If the threshold is set, it is judged that the given signal is detected; otherwise, it is judged that the given signal is not detected.
  • the given signal is the response to the first signal.
  • the given signal is the first signal.
  • the sentence monitoring the meaning of the given signal includes: determining whether the given signal is transmitted according to the CRC.
  • the given signal is the response to the first signal.
  • the given signal is the first signal.
  • the meaning of the sentence monitoring a given signal includes determining whether the given signal is transmitted before determining whether the decoding is correct according to the CRC.
  • the given signal is the response to the first signal.
  • the given signal is the first signal.
  • the sentence monitoring the meaning of a given signal includes determining whether the given signal is transmitted according to coherent detection.
  • the given signal is the response to the first signal.
  • the given signal is the first signal.
  • the sentence monitoring a given signal means that it is uncertain whether the given signal is transmitted prior to coherent detection.
  • the given signal is the response to the first signal.
  • the given signal is the first signal.
  • the meaning of the sentence monitoring a given signal includes: determining whether the given signal is transmitted according to energy detection.
  • the given signal is the response to the first signal.
  • the given signal is the first signal.
  • the sentence monitoring a given signal means that it is not certain whether the given signal is transmitted prior to energy detection.
  • the given signal is the response to the first signal.
  • the given signal is the first signal.
  • the response to the first signal includes physical layer signaling.
  • the response to the first signal is transmitted on the PDCCH.
  • the response to the first signal includes Msg4.
  • the response to the first signal includes a PDSCH (Contention Resolution).
  • PDSCH Contention Resolution
  • the search space set to which the first resource block set belongs is identified by recoverySearchSpaceId.
  • the CRC of the response to the first signal is determined by C-RNTI or MCS (Modulation and Coding Scheme, modulation and coding scheme). )-C-RNTI scrambling.
  • the CRC of the response to the first signal is scrambled by TC-RNTI.
  • the CRC of the response to the first signal is scrambled by C-RNTI.
  • the CRC of the response to the first signal is scrambled by MsgB-RNTI.
  • the first resource block set belongs to a PDCCH CSS (Common search space, common search space) set.
  • the first resource block set belongs to a Type1-PDCCH CSS (Common search space, common search space) set.
  • the first node detects the response to the first signal in the first time window, and the first counter is cleared.
  • the first node detects the response to the first signal in the first time window, and the first node considers that the beam failure recovery is successful.
  • the response to the first signal includes DCI (Downlink control information, downlink control information).
  • the CRC of the response to the first signal is scrambled by TC-RNTI.
  • the CRC of the response to the first signal is scrambled by MsgB-RNTI.
  • the CRC of the response to the first signal is scrambled by C-RNTI or MCS (Modulation and Coding Scheme, modulation and coding scheme)-C-RNTI.
  • C-RNTI or MCS (Modulation and Coding Scheme, modulation and coding scheme)-C-RNTI.
  • the CRC of the response to the first signal is scrambled by RA (Random Access)-RNTI.
  • the first node monitors a response to the first signal in a first set of resource blocks, and the first set of resource blocks belongs to the first time window in the time domain.
  • the first set of resource blocks is configured by the sender of the first reference signal.
  • the first set of resource blocks is configured by the first cell.
  • the first resource block set includes a search space set (search space set).
  • the first resource block set includes one or more PDCCH (Physical Downlink Control Channel, physical downlink control channel) candidates (candidates).
  • PDCCH Physical Downlink Control Channel, physical downlink control channel candidates
  • the first resource block set includes a CORESET (COntrol REsource SET, control resource set).
  • CORESET COntrol REsource SET, control resource set.
  • the search space set to which the first resource block set belongs is identified by recoverySearchSpaceId.
  • the index of the search space set to which the first resource block set belongs is equal to 0.
  • the search space set to which the first resource block set belongs includes a Type1-PDCCH CSS (Common search space, common search space) set.
  • Type1-PDCCH CSS Common search space, common search space
  • the first node receives the first reference signal with the same spatial filter and monitors the response to the first signal in the first time window.
  • the first node assumes that the same antenna port QCL parameters are used to receive the first reference signal and monitor the response to the first signal in the first time window.
  • the first node assumes that the response to the first signal and the first reference signal transmitted in the first time window are QCL.
  • the first node assumes a DMRS (DeModulation Reference Signals, demodulation reference signal) port of a response to the first signal transmitted in the first time window and the first reference signal is QCL.
  • DMRS Demodulation Reference Signals, demodulation reference signal
  • the first time window includes continuous time domain resources.
  • the duration of the first time window is configured by higher layer signaling.
  • the duration of the first time window is configured by the BeamFailureRecoveryConfig IE.
  • the duration of the first time window is configured by beamFailureRecoveryTimer.
  • the first time slot is a time slot (slot) including time domain resources occupied by the first signal, and the first time slot is used to determine the first time window.
  • the first time slot is time slot n1
  • the first time window starts from time slot n1+X1
  • X1 is a positive integer
  • the X1 is equal to 4.
  • the X1 is not equal to 4.
  • the X1 is configured by higher layer signaling.
  • the X1 is predefined.
  • the radio link failure (Radio Link Failure) does not is triggered.
  • a radio link failure (Radio Link Failure) is triggered.
  • the first node when the fourth condition is satisfied, the first node considers that beam failure recovery is unsuccessful.
  • the radio link failure (Radio Link Failure) is not triggered.
  • the first node when the fourth condition is not satisfied, the first node considers that the beam failure recovery is successful.
  • the first node when the fourth condition is not satisfied, the first node considers that the beam failure recovery is successful.
  • the first counter is cleared.
  • the second time window and the first time window are orthogonal.
  • the start time of the second time window is not earlier than the end time of the first time window.
  • the fourth condition is satisfied when the response to the second signal is not detected in the second time window.
  • the response to the second signal is detected in the second time window, and the fourth condition is not satisfied.
  • the second time window includes continuous time domain resources.
  • the duration of the second time window is the same as the duration of the first time window.
  • the duration of the second time window is different from the duration of the first time window.
  • the duration of the second time window and the duration of the first time window are respectively configured by two higher layer parameters.
  • the duration of the second time window is configured by higher layer signaling.
  • the duration of the second time window is configured by the BeamFailureRecoveryConfig IE.
  • the duration of the second time window is configured by beamFailureRecoveryTimer.
  • the second time slot is a time slot (slot) including time domain resources occupied by the second signal, and the second time slot is used to determine the second time window.
  • the second time slot is time slot n2, the second time window starts from time slot n2+X2, and X2 is a positive integer.
  • the X2 is equal to 4.
  • the X2 is not equal to 4.
  • the X2 is configured by higher layer signaling.
  • the X2 is predefined.
  • the response to the second signal includes physical layer signaling.
  • the response to the second signal is transmitted on the PDCCH.
  • the response to the second signal includes Msg4.
  • the response to the second signal includes a PDSCH (Contention Resolution).
  • PDSCH Contention Resolution
  • the response to the second signal includes DCI (Downlink control information, downlink control information).
  • the CRC of the response to the second signal is scrambled by a TC-RNTI.
  • the CRC of the response to the second signal is scrambled by MsgB-RNTI.
  • the CRC of the response to the second signal is scrambled by C-RNTI or MCS (Modulation and Coding Scheme, modulation and coding scheme)-C-RNTI.
  • C-RNTI or MCS (Modulation and Coding Scheme, modulation and coding scheme)-C-RNTI.
  • the CRC of the response to the second signal is scrambled by RA (Random Access)-RNTI.
  • the first node monitors a response to the second signal in a second set of resource blocks, the second set of resource blocks belonging to the second time window in the time domain.
  • the second set of resource blocks is configured by the sender of the second reference signal.
  • the second set of resource blocks is configured by the second cell.
  • the second set of resource blocks is configured by the sender of the first reference signal.
  • the second set of resource blocks is configured by the first cell.
  • the second resource block set includes a search space set (search space set).
  • the second resource block set includes one or more PDCCH (Physical Downlink Control Channel, physical downlink control channel) candidates (candidates).
  • PDCCH Physical Downlink Control Channel, physical downlink control channel candidates
  • the second resource block set includes a CORESET (COntrol REsource SET, control resource set).
  • the search space set to which the second resource block set belongs is identified by recoverySearchSpaceId.
  • the index of the search space set to which the second resource block set belongs is equal to 0.
  • the search space set to which the second resource block set belongs includes a Type1-PDCCH CSS (Common search space, common search space) set.
  • the first node receives the second reference signal with the same spatial filter and monitors the response to the second signal in the second time window.
  • the first node assumes that the same antenna port QCL parameters are used for receiving the second reference signal and monitoring the response to the second signal in the second time window.
  • the first node assumes that the response to the second signal and the second reference signal transmitted in the second time window are QCL.
  • the first node assumes a DMRS (DeModulation Reference Signals, demodulation reference signal) port of a response to the second signal transmitted in the second time window and the second reference signal is QCL.
  • DMRS Demodulation Reference Signals, demodulation reference signal
  • Embodiment 12 illustrates a structural block diagram of a processing apparatus used in a first node device according to an embodiment of the present application; as shown in FIG. 12 .
  • the processing apparatus 1200 in the first node device includes a first receiver 1201 and a first transmitter 1202 .
  • the first node device is user equipment.
  • the first node device is a relay node device.
  • the first receiver 1201 includes ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, data source in Embodiment 4 467 ⁇ at least one.
  • the first transmitter 1202 includes ⁇ antenna 452, transmitter 454, transmit processor 468, multi-antenna transmit processor 457, controller/processor 459, memory 460, data source in Embodiment 4 467 ⁇ at least one.
  • the first receiver 1201 receive the first information group; receive the first reference signal group;
  • the first transmitter 1202 when the first condition is satisfied, send the first signal in the first air interface resource group.
  • the first information group is used to indicate the first reference signal group, and the measurement for the first reference signal group is used to determine whether the first condition is satisfied; the first reference signal group Whether a condition is met is used to determine whether to transmit the first signal; the first signal is used to determine a second reference signal, the second reference signal being one of M reference signals, M being greater than 1
  • the first condition includes that the value of the first counter is not less than the first threshold value; the first reference signal is used to determine the spatial relationship of the first air interface resource group; the first reference signal and the Whether the second reference signal is QCL is related to whether the second reference signal belongs to the first reference signal subset or the second reference signal subset; when the second reference signal belongs to the first reference signal subset, the the first reference signal and the second reference signal are QCL; when the second reference signal belongs to the second reference signal subset, the first reference signal and the second reference signal are not QCL; the The first threshold is a positive integer, the first reference signal subset and the second reference signal subset are respectively subsets of
  • the sender of the first reference signal subset is a first cell
  • the sender of the second reference signal subset is a second cell
  • the first cell is served by the first node cell
  • the second cell is a non-serving cell of the first node
  • the first air interface resource group includes a first air interface resource block and a second air interface resource block
  • the first signal includes a first air interface resource block and a second air interface resource block.
  • a sub-signal and a second sub-signal the first sub-signal is transmitted in the first air interface resource block
  • the second sub-signal is transmitted in the second air interface resource block
  • the second sub-signal is transmitted
  • the signal carries a first block of information that is used to indicate the second reference signal.
  • the first reference signal belongs to the first reference signal subset, or the first reference signal and the first reference signal
  • One reference signal in a subset of reference signals is QCL.
  • the first transmitter 1202 transmits the second signal in the second air interface resource group; Wherein, the second signal is used to determine the second reference signal, the third reference signal is used to determine the spatial relationship of the second air interface resource group, the second reference signal and the third reference signal is QCL.
  • the first receiver 1201 monitors the response to the first signal in a first time window; when both the first condition and the second condition are satisfied and the second reference signal belongs to the When the second reference signal subset is selected, the first transmitter 1202 sends a second signal in the second air interface resource group; wherein the time domain resources occupied by the first signal are used to determine the first time window, the first time window is not later than the start transmission moment of the second signal, the second signal is used to determine the second reference signal, and the third reference signal is used to determine the second reference signal a spatial relationship of an air interface resource group, the second reference signal and the third reference signal are QCLs; the second condition includes: the first time window is not detected for the first signal response.
  • the first receiver 1201 receives M configuration information blocks and receives the M reference signals; wherein the M configuration information blocks are respectively used to indicate the M reference signals.
  • Embodiment 13 illustrates a structural block diagram of a processing apparatus used in a second node device according to an embodiment of the present application; as shown in FIG. 13 .
  • the processing apparatus 1300 in the second node device includes a second transmitter 1301 and a second receiver 1302 .
  • the second node device is a base station device.
  • the second node device is user equipment.
  • the second node device is a relay node device.
  • the second transmitter 1301 includes ⁇ antenna 420, transmitter 418, transmit processor 416, multi-antenna transmit processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4 at least one.
  • the second receiver 1302 includes ⁇ antenna 420, receiver 418, receiving processor 470, multi-antenna receiving processor 472, controller/processor 475, memory 476 ⁇ in Embodiment 4 at least one.
  • the second receiver 1302 monitors the first signal in the first air interface resource group
  • the first information group is used to indicate a first reference signal group, and any reference signal in the first reference signal subgroup belongs to the first reference signal group; for the first reference signal group
  • the measurement of the reference signal group is used to determine whether the first condition is satisfied; whether the first condition is satisfied is used to determine whether the first signal is transmitted; the first signal is used to determine the second reference signal , the second reference signal is one of M reference signals, where M is a positive integer greater than 1; the first condition includes that the value of the first counter is not less than the first threshold; the first reference signal is used to determine the the spatial relationship of the first air interface resource group; whether the first reference signal and the second reference signal are QCL is related to whether the second reference signal belongs to the first reference signal subset or the second reference signal subset; When the second reference signal belongs to the first reference signal subset, the first reference signal and the second reference signal are QCL; when the second reference signal belongs to the second reference signal subset , the first reference signal and the second reference signal are not QCL; the first threshold is a positive
  • the sender of the first reference signal subset is a first cell
  • the sender of the second reference signal subset is a second cell
  • the first cell is the sender of the first signal the serving cell of the sender
  • the second cell is the non-serving cell of the sender of the first signal
  • the second node is the maintenance base station of the first cell
  • the first air interface resource group includes a first air interface resource block and a second air interface resource block
  • the first signal includes a first air interface resource block and a second air interface resource block.
  • a sub-signal and a second sub-signal the first sub-signal is transmitted in the first air interface resource block
  • the second sub-signal is transmitted in the second air interface resource block
  • the second sub-signal is transmitted
  • the signal carries a first block of information that is used to indicate the second reference signal.
  • the first reference signal belongs to the first reference signal subset, or the first reference signal and the first reference signal
  • One reference signal in a subset of reference signals is QCL.
  • the second transmitter 1301 when the first signal is detected in the first air interface resource group, the second transmitter 1301 sends a response to the first signal in a first time window; wherein the The time domain resource occupied by the first signal is used to determine the first time window.
  • the second transmitter 1301 sends M configuration information blocks and sends the first reference signal subset; wherein the M configuration information blocks are respectively used to indicate the M reference signals.
  • the second receiver 1302 monitors radio signals in each air interface resource group other than the first air interface resource group in the first air interface resource set; wherein the first air interface resource group is Any air interface resource group in the first air interface resource set, and the first signal is a wireless signal monitored in the first air interface resource group.
  • Embodiment 14 illustrates a structural block diagram of a processing apparatus used in a third node device according to an embodiment of the present application; as shown in FIG. 14 .
  • the processing apparatus 1400 in the third node device includes a third transmitter 1401 and a third receiver 1402 .
  • the third node device is user equipment.
  • the third node device is a relay node device.
  • the third transmitter 1401 includes ⁇ antenna 452, transmitter 454, transmit processor 468, multi-antenna transmit processor 457, controller/processor 459, memory 460, data source in Embodiment 4 467 ⁇ at least one.
  • the third receiver 1402 includes ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, data source in Embodiment 4 467 ⁇ at least one.
  • the third transmitter 1401 sending the second reference signal subset
  • the third receiver 1402 monitor the second signal in the second air interface resource group
  • any reference signal in the second reference signal subgroup belongs to the first reference signal group, and the measurement for the first reference signal group is used to determine whether the first condition is satisfied;
  • the The first condition includes that the value of the first counter is not less than the first threshold;
  • the second signal is used to determine the second reference signal, the third reference signal is used to determine the spatial relationship of the second air interface resource group, the The second reference signal and the third reference signal are QCL;
  • the second reference signal is one of M reference signals, where M is a positive integer greater than 1; whether the first condition is satisfied and s and the Whether the second reference signal belongs to the first reference signal subset or the second reference signal subset is jointly used to determine whether the second signal is sent;
  • the necessary conditions for the second signal to be sent include: the first the condition is satisfied and the second reference signal belongs to the second reference signal subset;
  • the first threshold is a positive integer, the first reference signal subset and the second reference signal subset are the M respectively A subset of reference signals;
  • the first reference signal group includes a
  • the sender of the first reference signal subset is a first cell
  • the sender of the second reference signal subset is a second cell
  • the first cell is the transmitter of the second signal the serving cell of the sender
  • the second cell is the non-serving cell of the sender of the second signal
  • the third node is the maintenance base station of the second cell.
  • the necessary conditions for the second signal to be sent include: both the first condition and the second condition are satisfied and the second reference signal belongs to the second reference signal subset; the second reference signal The conditions include: no response to the first signal is detected in the first time window; whether the first condition is satisfied is used to determine whether the first signal is sent; the first signal is used to determine the first signal Two reference signals, the second reference signal is one of the M reference signals.
  • the third receiver 1402 monitors wireless signals in each air interface resource group other than the second air interface resource group in the second air interface resource set; wherein the second air interface resource group is Any air interface resource group in the second air interface resource set, and the second signal is a wireless signal monitored in the second air interface resource group.
  • the third transmitter 1401 when the second signal is detected in the second air interface resource group, the third transmitter 1401 sends a response to the second signal in a second time window; wherein the The time domain resource occupied by the second signal is used to determine the second time window.
  • the third transmitter 1401 transmits the second reference signal subset.
  • User equipment, terminals and UEs in this application include, but are not limited to, drones, communication modules on drones, remote-controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, in-vehicle communication equipment, wireless sensors, network cards, IoT terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication, machine type communication) terminal, eMTC (enhanced MTC, enhanced MTC) terminal, data card, network card, vehicle communication equipment, low-cost mobile phone, low Wireless communication devices such as tablet PCs.
  • MTC Machine Type Communication, machine type communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, sending and receiving node) and other wireless communication equipment.
  • gNB NR Node B
  • TRP Transmitter Receiver Point

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点接收第一参考信号组;当第一条件被满足时,在第一空口资源组中发送第一信号。针对所述第一参考信号组的测量被用于判断所述第一条件是否被满足;所述第一条件是否被满足被用于确定是否发送所述第一信号;所述第一信号被用于确定第二参考信号;所述第一条件包括第一计数器的值不小于第一阈值;第一参考信号被用于确定所述第一空口资源组的空域关系;所述第一参考信号和所述第二参考信号是否QCL与所述第二参考信号是属于第一参考信号子集还是属于第二参考信号子集有关;当所述第二参考信号属于所述第二参考信号子集时,所述第一参考信号和所述第二参考信号不是QCL。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是支持蜂窝网的无线通信系统中的无线信号的传输方法和装置。
背景技术
在LTE(Long-term Evolution,长期演进)系统中,小区间切换(Handover)是基站基于UE(User Equipment,用户设备)的测量来控制的。3GPP(3rd Generation Partner Project,第三代合作伙伴项目)R(Release,版本)15中的小区间切换基本沿用了LTE中的机制。在NR(New Radio,新无线电)系统中,更多应用场景需要被支持,一些应用场景,比如URLLC(Ultra-Reliable and Low Latency Communications,超高可靠性和低延迟通信),对时延提出了很高的要求,同时也对小区间切换提出了新的挑战。
在NR系统中,大尺度(Massive)MIMO(Multiple Input Multiple Output,多输入多输出)是一个重要的技术特征。大尺度MIMO中,多个天线通过波束赋型,形成较窄的波束指向一个特定方向来提高通信质量。多天线波束赋型形成的波束一般比较窄,通信双方的波束需要对准才能进行有效的通信。
发明内容
发明人通过研究发现,基于波束的通信会给小区间切换带来负面的影响,比如额外的延时和乒乓效应。如何降低这些负面影响,并且进一步提高小区边界用户的性能来满足各类应用场景的需求,是需要解决的问题。
针对上述问题,本申请公开了一种解决方案。需要说明的是,虽然上述描述采用大尺度MIMO和基于波束的通信场景作为例子,本申请也适用于其他场景比如LTE多天线系统,并取得类似在大尺度MIMO和基于波束的通信场景中的技术效果。此外,不同场景(包括但不限于大尺度MIMO,基于波束的通信和LTE多天线系统)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到其他任一节点中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信息组;
接收第一参考信号组;
当第一条件被满足时,在第一空口资源组中发送第一信号;
其中,所述第一信息组被用于指示所述第一参考信号组,针对所述第一参考信号组的测量被用于判断所述第一条件是否被满足;所述第一条件是否被满足被用于确定是否发送所述第一信号;所述第一信号被用于确定第二参考信号,所述第二参考信号是M个参考信号中之一,M是大于1的正整数;所述第一条件包括第一计数器的值不小于第一阈值;第一参考信号被用于确定所述第一空口资源组的空域关系;所述第一参考信号和所述第二参考信号是否QCL与所述第二参考信号是属于第一参考信号子集还是属于第二参考信号子集有关;当所述第二参考信号属于所述第一参考信号子集时,所述第一参考信号和所述第二参考信号是QCL;当所述第二参考信号属于所述第二参考信号子集时,所述第一参考信号和所述第二参考信号不是QCL;所述第一阈值是正整数,所述第一参考信号子集和所述第二参考信号子集分别是所述M个参考信号的子集;所述第一信息组包括正整数个信息块。
作为一个实施例,本申请要解决的问题包括:如何在不同小区的波束间快速切换以提高小区边界用户 的性能,并同时避免频繁的小区切换带来的乒乓效应。在上述方法中,UE测量来自本小区和邻小区的参考信号并向本小区进行波束上报,波束上报包括UE选择的波束,解决了上述问题。
作为一个实施例,上述方法的特质包括:所述第一参考信号子集中的参考信号都是本小区的参考信号,当所述第一节点选择的波束来自本小区时,被用于发送波束上报的波束与选择的波束是QCL;所述第二参考信号子集包括邻小区的参考信号,当所述第一节点选择的波束来自邻小区时,被用于发送波束上报的波束与选择的波束不是QCL。
作为一个实施例,上述方法的好处包括:实现了快速的跨小区的波束切换,提高了小区边界用户的性能,同时避免了小区切换来的延时和潜在的服务中断。
作为一个实施例,上述方法的好处包括:无论UE选择的波束是来自本小区还是邻小区,UE将波束上报优先发送给本小区,由本小区来决定是否切换到邻小区,在保证服务质量的同时避免了频繁小区切换带来的乒乓效应。
根据本申请的一个方面,其特征在于,所述第一参考信号子集的发送者是第一小区,所述第二参考信号子集的发送者是第二小区,所述第一小区是所述第一节点的服务小区,所述第二小区是所述第一节点的非服务小区。
根据本申请的一个方面,其特征在于,当所述第二参考信号属于所述第二参考信号子集时,所述第一空口资源组包括第一空口资源块和第二空口资源块,所述第一信号包括第一子信号和第二子信号,所述第一子信号在所述第一空口资源块中被发送,所述第二子信号在所述第二空口资源块中被发送,所述第二子信号携带第一信息块,所述第一信息块被用于指示所述第二参考信号。
根据本申请的一个方面,其特征在于,当所述第二参考信号属于所述第二参考信号子集时,所述第一参考信号属于所述第一参考信号子集,或者所述第一参考信号和所述第一参考信号子集中的一个参考信号是QCL。
根据本申请的一个方面,其特征在于,包括:
当所述第一条件被满足并且所述第二参考信号属于所述第二参考信号子集时,在第二空口资源组中发送第二信号;
其中,所述第二信号被用于确定所述第二参考信号,第三参考信号被用于确定所述第二空口资源组的空域关系,所述第二参考信号和所述第三参考信号是QCL。
根据本申请的一个方面,其特征在于,包括:
在第一时间窗中监测针对所述第一信号的响应;
当所述第一条件和第二条件都被满足并且所述第二参考信号属于所述第二参考信号子集时,在第二空口资源组中发送第二信号;
其中,所述第一信号所占用的时域资源被用于确定所述第一时间窗,所述第一时间窗不晚于所述第二信号的起始发送时刻,所述第二信号被用于确定所述第二参考信号,第三参考信号被用于确定所述第二空口资源组的空域关系,所述第二参考信号和所述第三参考信号是QCL;所述第二条件包括:在所述第一时间窗中未检测到针对所述第一信号的所述响应。
根据本申请的一个方面,其特征在于,包括:
接收M个配置信息块;
接收所述M个参考信号;
其中,所述M个配置信息块分别被用于指示所述M个参考信号。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信息组;
发送第一参考信号子组;
在第一空口资源组中监测第一信号;
其中,所述第一信息组被用于指示第一参考信号组,所述第一参考信号子组中的任一参考信号属于所述第一参考信号组;针对所述第一参考信号组的测量被用于判断第一条件是否被满足;所述第一条件是否被满足被用于确定所述第一信号是否被发送;所述第一信号被用于确定第二参考信号,所述第二参考信号是M个参考信号中之一,M是大于1的正整数;所述第一条件包括第一计数器的值不小于第一阈值;第 一参考信号被用于确定所述第一空口资源组的空域关系;所述第一参考信号和所述第二参考信号是否QCL与所述第二参考信号是属于第一参考信号子集还是属于第二参考信号子集有关;当所述第二参考信号属于所述第一参考信号子集时,所述第一参考信号和所述第二参考信号是QCL;当所述第二参考信号属于所述第二参考信号子集时,所述第一参考信号和所述第二参考信号不是QCL;所述第一阈值是正整数,所述第一参考信号子集和所述第二参考信号子集分别是所述M个参考信号的子集;所述第一信息组包括正整数个信息块,所述第一参考信号组包括正整数个参考信号,所述第一参考信号子组包括正整数个参考信号。
根据本申请的一个方面,其特征在于,所述第一参考信号子集的发送者是第一小区,所述第二参考信号子集的发送者是第二小区,所述第一小区是所述第一信号的发送者的服务小区,所述第二小区是所述第一信号的发送者的非服务小区,所述第二节点是所述第一小区的维持基站。
根据本申请的一个方面,其特征在于,当所述第二参考信号属于所述第二参考信号子集时,所述第一空口资源组包括第一空口资源块和第二空口资源块,所述第一信号包括第一子信号和第二子信号,所述第一子信号在所述第一空口资源块中被发送,所述第二子信号在所述第二空口资源块中被发送,所述第二子信号携带第一信息块,所述第一信息块被用于指示所述第二参考信号。
根据本申请的一个方面,其特征在于,当所述第二参考信号属于所述第二参考信号子集时,所述第一参考信号属于所述第一参考信号子集,或者所述第一参考信号和所述第一参考信号子集中的一个参考信号是QCL。
根据本申请的一个方面,其特征在于,包括:
当在所述第一空口资源组中检测到所述第一信号时,在第一时间窗中发送针对所述第一信号的响应;
其中,所述第一信号所占用的时域资源被用于确定所述第一时间窗。
根据本申请的一个方面,其特征在于,包括:
发送M个配置信息块;
发送所述第一参考信号子集;
其中,所述M个配置信息块分别被用于指示所述M个参考信号。
根据本申请的一个方面,其特征在于,包括:
在第一空口资源集合中的所述第一空口资源组之外的每个空口资源组中监测无线信号;
其中,所述第一空口资源组是所述第一空口资源集合中的任一空口资源组,所述第一信号是在所述第一空口资源组中被监测的无线信号。
本申请公开了一种被用于无线通信的第三节点中的方法,其特征在于,包括:
发送第二参考信号子组;
在第二空口资源组中监测第二信号;
其中,所述第二参考信号子组中的任一参考信号属于第一参考信号组,针对所述第一参考信号组的测量被所述第二信号的发送者用于判断第一条件是否被满足;所述第一条件包括第一计数器的值不小于第一阈值;所述第二信号被用于确定第二参考信号,第三参考信号被用于确定所述第二空口资源组的空域关系,所述第二参考信号和所述第三参考信号是QCL;所述第二参考信号是M个参考信号中之一,M是大于1的正整数;所述第一条件是否被满足以及所述第二参考信号是属于第一参考信号子集还是属于第二参考信号子集共同被所述第二信号的所述发送者用于确定所述第二信号是否被发送;所述第二信号被发送的必要条件包括:所述第一条件被满足并且所述第二参考信号属于所述第二参考信号子集;所述第一阈值是正整数,所述第一参考信号子集和所述第二参考信号子集分别是所述M个参考信号的子集;所述第一参考信号组包括正整数个参考信号,所述第二参考信号子组包括正整数个参考信号。
根据本申请的一个方面,其特征在于,所述第一参考信号子集的发送者是第一小区,所述第二参考信号子集的发送者是第二小区,所述第一小区是所述第二信号的发送者的服务小区,所述第二小区是所述第二信号的所述发送者的非服务小区,所述第三节点是所述第二小区的维持基站。
根据本申请的一个方面,其特征在于,所述第二信号被发送的必要条件包括:所述第一条件和第二条件都被满足并且所述第二参考信号属于所述第二参考信号子集;所述第二条件包括:在第一时间窗中未检测到针对第一信号的响应;所述第一条件是否被满足被用于确定所述第一信号是否被发送;所述第一信号被用于确定第二参考信号,所述第二参考信号是所述M个参考信号中之一。
根据本申请的一个方面,其特征在于,包括:
在第二空口资源集合中的所述第二空口资源组之外的每个空口资源组中监测无线信号;
其中,所述第二空口资源组是所述第二空口资源集合中的任一空口资源组,所述第二信号是在所述第二空口资源组中被监测的无线信号。
根据本申请的一个方面,其特征在于,包括:
当在所述第二空口资源组中检测到所述第二信号时,在第二时间窗中发送针对所述第二信号的响应;
其中,所述第二信号所占用的时域资源被用于确定所述第二时间窗。
根据本申请的一个方面,其特征在于,包括:
发送所述第二参考信号子集。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一接收机,接收第一信息组;接收第一参考信号组;
第一发射机,当第一条件被满足时,在第一空口资源组中发送第一信号;
其中,所述第一信息组被用于指示所述第一参考信号组,针对所述第一参考信号组的测量被用于判断所述第一条件是否被满足;所述第一条件是否被满足被用于确定是否发送所述第一信号;所述第一信号被用于确定第二参考信号,所述第二参考信号是M个参考信号中之一,M是大于1的正整数;所述第一条件包括第一计数器的值不小于第一阈值;第一参考信号被用于确定所述第一空口资源组的空域关系;所述第一参考信号和所述第二参考信号是否QCL与所述第二参考信号是属于第一参考信号子集还是属于第二参考信号子集有关;当所述第二参考信号属于所述第一参考信号子集时,所述第一参考信号和所述第二参考信号是QCL;当所述第二参考信号属于所述第二参考信号子集时,所述第一参考信号和所述第二参考信号不是QCL;所述第一阈值是正整数,所述第一参考信号子集和所述第二参考信号子集分别是所述M个参考信号的子集;所述第一信息组包括正整数个信息块。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二发射机,发送第一信息组;发送第一参考信号子组;
第二接收机,在第一空口资源组中监测第一信号;
其中,所述第一信息组被用于指示第一参考信号组,所述第一参考信号子组中的任一参考信号属于所述第一参考信号组;针对所述第一参考信号组的测量被用于判断第一条件是否被满足;所述第一条件是否被满足被用于确定所述第一信号是否被发送;所述第一信号被用于确定第二参考信号,所述第二参考信号是M个参考信号中之一,M是大于1的正整数;所述第一条件包括第一计数器的值不小于第一阈值;第一参考信号被用于确定所述第一空口资源组的空域关系;所述第一参考信号和所述第二参考信号是否QCL与所述第二参考信号是属于第一参考信号子集还是属于第二参考信号子集有关;当所述第二参考信号属于所述第一参考信号子集时,所述第一参考信号和所述第二参考信号是QCL;当所述第二参考信号属于所述第二参考信号子集时,所述第一参考信号和所述第二参考信号不是QCL;所述第一阈值是正整数,所述第一参考信号子集和所述第二参考信号子集分别是所述M个参考信号的子集;所述第一信息组包括正整数个信息块,所述第一参考信号组包括正整数个参考信号,所述第一参考信号子组包括正整数个参考信号。
本申请公开了一种被用于无线通信的第三节点设备,其特征在于,包括:
第三发射机,发送第二参考信号子组;
第三接收机,在第二空口资源组中监测第二信号;
其中,所述第二参考信号子组中的任一参考信号属于第一参考信号组,针对所述第一参考信号组的测量被用于判断第一条件是否被满足;所述第一条件包括第一计数器的值不小于第一阈值;所述第二信号被用于确定第二参考信号,第三参考信号被用于确定所述第二空口资源组的空域关系,所述第二参考信号和所述第三参考信号是QCL;所述第二参考信号是M个参考信号中之一,M是大于1的正整数;所述第一条件是否被满足以s及所述第二参考信号是属于第一参考信号子集还是属于第二参考信号子集共同被用于确定所述第二信号是否被发送;所述第二信号被发送的必要条件包括:所述第一条件被满足并且所述第二参考信号属于所述第二参考信号子集;所述第一阈值是正整数,所述第一参考信号子集和所述第二参考信号子集分别是所述M个参考信号的子集;所述第一参考信号组包括正整数个参考信号,所述第二参考信号子组包括正整数个参考信号。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-实现了快速的跨小区波束切换,提高了小区边界用户的性能;
-能获得小区切换带来的性能提升,同时避免了由此而来的延时和潜在的服务中断;
-无论UE选择的波束是来自本小区还是邻小区,UE将波束上报优先发送给本小区,由本小区来决定是否切换到邻小区,在保证服务质量的同时避免了频繁小区切换带来的乒乓效应。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信息组、第一参考信号组和第一信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线传输的流程图;
图6示出了根据本申请的一个实施例的第二参考信号的示意图;
图7示出了根据本申请的一个实施例的第一参考信号子集和第二参考信号子集的示意图;
图8示出了根据本申请的一个实施例的第一信号被用于确定第二参考信号的示意图;
图9示出了根据本申请的一个实施例的第一参考信号的示意图;
图10示出了根据本申请的一个实施例的第二信号的示意图;
图11示出了根据本申请的另一个实施例的第二信号的示意图;
图12示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的用于第二节点中设备的处理装置的结构框图;
图14示出了根据本申请的一个实施例的用于第三节点中设备的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信息组、第一参考信号组和第一信号的流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。特别的,方框中的步骤的顺序不代表各个步骤之间特定的时间先后关系。
在实施例1中,本申请中的所述第一节点在步骤101中接收第一信息组;在步骤102中接收第一参考信号组;在步骤103中当第一条件被满足时,在第一空口资源组中发送第一信号;其中,所述第一信息组被用于指示所述第一参考信号组,针对所述第一参考信号组的测量被用于判断所述第一条件是否被满足;所述第一条件是否被满足被用于确定是否发送所述第一信号;所述第一信号被用于确定第二参考信号,所述第二参考信号是M个参考信号中之一,M是大于1的正整数;所述第一条件包括第一计数器的值不小于第一阈值;第一参考信号被用于确定所述第一空口资源组的空域关系;所述第一参考信号和所述第二参考信号是否QCL与所述第二参考信号是属于第一参考信号子集还是属于第二参考信号子集有关;当所述第二参考信号属于所述第一参考信号子集时,所述第一参考信号和所述第二参考信号是QCL;当所述第二参考信号属于所述第二参考信号子集时,所述第一参考信号和所述第二参考信号不是QCL;所述第一阈值是正整数,所述第一参考信号子集和所述第二参考信号子集分别是所述M个参考信号的子集;所述第一信息组包括正整数个信息块。
作为一个实施例,所述第一信息组由更高层信令承载。
作为一个实施例,所述第一信息组由RRC信令承载。
作为一个实施例,所述第一信息组包括RRC信令中的正整数个IE。
作为一个实施例,所述第一信息组包括RRC信令中的多个IE。
作为一个实施例,所述第一信息组包括RRC信令中的一个IE部分或全部域(Field)。
作为一个实施例,所述第一信息组由MAC CE信令承载。
作为一个实施例,所述第一信息组仅包括一个信息块。
作为一个实施例,所述第一信息组包括大于一个信息块。
作为一个实施例,所述第一信息组中存在两个信息块属于RRC信令中的两个IE。
作为一个实施例,所述第一信息组的任意两个信息块属于RRC信令中的同一个IE。
作为一个实施例,所述第一信息组包括RadioLinkMonitoringConfig IE中的failureDetectionResourcesToAddModList域和failureDetectionResourcesToReleaseList域,所述RadioLinkMonitoringConfig IE,所述failureDetectionResourcesToAddModList域和所述failureDetectionResourcesToReleaseList域的具体定义参见3GPP TS38.331中的第6.3.2章节。
作为一个实施例,所述第一信息组包括failureDetectionResources,所述failureDetectionResources的具体定义参见3GPP TS38.213中的第6章节。
作为一个实施例,所述第一信息组包括beamFailureDetectionResourceList,所述beamFailureDetectionResourceList的具体定义参见3GPP TS38.213中的第6章节。
作为一个实施例,所述第一信息组包括正整数个ControlResourceSet IE,所述ControlResourceSet IE的具体定义参见3GPP TS38.331中的第6.3.2章节。
作为一个实施例,所述第一参考信号组包括CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)。
作为一个实施例,所述第一参考信号组包括周期性(Periodic)CSI-RS。
作为一个实施例,所述第一参考信号组包括CSI-RS或者SS/PBCH(Synchronization Signal/Physical Broadcast CHannel)块(Block)中的至少之一。
作为一个实施例,所述第一参考信号组被用于波束失败恢复(Beam Failure Recovery)机制中的波束失败探测(Beam Failure Detection)。
作为一个实施例,波束失败恢复(beam failure recovery)机制的具体定义参见3GPP TS38.213中的6章节。
作为一个实施例,所述第一参考信号组是
Figure PCTCN2021119744-appb-000001
作为一个实施例,所述
Figure PCTCN2021119744-appb-000002
的具体定义参见3GPP TS38.213中的第6章节。
作为一个实施例,所述第一参考信号组由failureDetectionResources配置。
作为一个实施例,所述failureDetectionResources的具体定义参见3GPP TS38.213中的第6章节。
作为一个实施例,所述第一参考信号组中包括的参考信号的最大数量由maxNrofFailureDetectionResources配置。
作为一个实施例,所述maxNrofFailureDetectionResources的具体定义参见3GPP TS38.331中的第6.3.2章节。
作为一个实施例,所述第一信息组指示在监测PDCCH(Physical Downlink Control CHannel,物理下行控制信道)时所使用的对应CORESETs的TCI(Transmission Configuration Indicator,发送配置指示)状态(State),所述第一参考信号组包括在监测PDCCH(Physical Downlink Control CHannel,物理下行控制信道)时所使用的对应CORESETs的TCI状态所指示的参考信号。
作为一个实施例,一个TCI状态被用于指示正整数个参考信号。
作为一个实施例,一个TCI状态所指示的参考信号包括CSI-RS、SRS或者SS/PBCH块中的至少之一。
作为一个实施例,一个TCI状态被用于指示一个类型是QCL-TypeD的参考信号。
作为一个实施例,所述QCL-TypeD的具体定义参见3GPP TS38.214中的第5.1.5章节。
作为一个实施例,一个TCI状态所指示的参考信号被用于确定QCL(Quasi-Co-Located,准共址)参数。
作为一个实施例,一个TCI状态所指示的参考信号被用于确定空域滤波。
作为一个实施例,一个TCI状态所指示的参考信号被用于确定空间接收参数。
作为一个实施例,一个TCI状态所指示的参考信号被用于确定空间发送参数。
作为一个实施例,所述QCL对应QCL-TypeD。
作为一个实施例,所述第一信息组显式的指示所述第一参考信号组。
作为一个实施例,所述第一信息组隐式的指示所述第一参考信号组。
作为一个实施例,所述第一信息组指示所述第一参考信号组中的每个参考信号的索引。
作为一个实施例,所述第一信息组包括所述第一参考信号组中的每个参考信号的配置信息。
作为一个实施例,所述第一参考信号组中的任一参考信号的配置信息包括周期、时域偏移(offset)、所占用的时域资源、所占用的频域资源、所占用的码域资源、循环位移量(cyclic shift)、OCC(Orthogonal Cover Code,正交掩码)、所占用的天线端口组、序列(sequence)、TCI状态、空域滤波、空间接收参数、空间发送参数中的至少之一。
作为一个实施例,所述第一信息组包括S个信息块,所述第一参考信号组包括S个参考信号,所述S个信息块分别被用于指示所述S个参考信号,S是大于1的正整数。
作为一个实施例,当所述第一计数器的值不小于所述第一阈值时,所述第一条件被满足。
作为一个实施例,当且仅当所述第一计数器的值不小于所述第一阈值时,所述第一条件被满足。
作为一个实施例,当所述第一计数器的值小于所述第一阈值时,所述第一条件不被满足。
作为一个实施例,当所述第一条件不被满足时,所述第一节点不发送所述第一信号。
作为一个实施例,所述第一条件被满足触发波束失败恢复(Beam Failuer Recovery)。
作为一个实施例,所述第一计数器是BFI_COUNTER。
作为一个实施例,所述第一计数器的初始值是0。
作为一个实施例,所述第一计数器的初始值是正整数。
作为一个实施例,所述第一计数器的值是非负整数。
作为一个实施例,所述第一阈值由一个IE配置。
作为一个实施例,所述第一阈值由更高层(higher layer)参数配置。
作为一个实施例,配置所述第一阈值的更高层参数包括RadioLinkMonitoringConfig IE的beamFailureInstanceMaxCount域中的全部或部分信息。
作为一个实施例,所述第一节点的更高层初始化所述第一计数器为0。
作为一个实施例,当接收到来自所述第一节点的物理层的一个波束失败事件指示后,所述第一节点的更高层启动或重新启用第一计时器,并将所述第一计数器加1。
作为一个实施例,所述第一计时器是beamFailureDetectionTimer。
作为一个实施例,如果所述第一计时器过期(expire),所述第一计数器被清零。
作为一个实施例,所述第一计时器的初始值是正整数。
作为一个实施例,所述第一计时器的初始值是正实数。
作为一个实施例,所述第一计时器的初始值的单位是波束失败检测RS的Q out,LR汇报周期。
作为一个实施例,所述第一计时器的初始值由更高层参数beamFailureDetectionTimer配置。
作为一个实施例,所述第一计时器的初始值由一个IE配置
作为一个实施例,配置所述第一计时器的初始值的IE的名称里包括RadioLinkMonitoring。
作为一个实施例,当所述第一计时器过期时,所述第一计数器被清零。
作为一个实施例,当所述第一信号对应的随机接入过程成功结束时,所述第一计数器被清零。
作为一个实施例,当所述第一节点接收到第一PDCCH时,所述第一计数器被清零;其中所述第一信号包括BFR MAC CE或截短的BFR MAC CE,所述第一信号对应的HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号(process number)是第一HARQ进程号;所述第一PDCCH指示对应所述第一HARQ进程号的一次新传输的上行授予(UL grant),所述第一PDCCH的CRC被C(Cell,小区)-RNTI(Radio Network Temporary Identifier,无线网络暂定标识)所加扰。
作为一个实施例,当所述第一条件被满足时,所述第一节点的物理层接收来自所述第一节点的更高层的第三信息块;其中,所述第三信息块触发所述第一信号的发送。
作为一个实施例,所述第三信息块指示所述第二参考信号。
作为一个实施例,在收到更高层的请求后,所述第一节点的物理层向所述第一节点的更高层发送第四信息块;其中,所述第四信息块指示M0个参考信号和M0个第二类接收质量,所述M0个参考信号中的 任一参考信号是所述M个参考信号中之一,M0是不大于所述M的正整数,针对所述M0个参考信号的测量分别被用于确定所述M0个第二类接收质量;所述M0个第二类接收质量中任一第二类接收质量不差于所述第三阈值。
作为一个实施例,所述M0等于1。
作为一个实施例,所述M0大于1。
作为一个实施例,所述M0个参考信号包括所述第二参考信号。
作为一个实施例,所述第一节点的物理层接收来自所述第一节点的更高层的第五信息块;其中,所述第五信息块指示所述第二参考信号。
作为一个实施例,所述第一节点的更高层从所述M0个参考信号中选择所述第二参考信号。
作为一个实施例,所述第一计数器被所述第一节点维持。
作为一个实施例,所述句子针对所述第一参考信号组的测量被用于判断所述第一条件是否被满足的意思包括:针对所述第一参考信号组的测量被用于判断所述第一计数器的值是否被加1。
作为一个实施例,所述句子针对所述第一参考信号组的测量被用于判断所述第一条件是否被满足的意思包括:针对所述第一参考信号组的测量被用于判断所述第三条件是否被满足。
作为一个实施例,所述第一空口资源组包括PRACH(Physical Random Access CHannel)资源。
作为一个实施例,所述第一空口资源组包括PRACH(Physical Random Access CHannel)资源或者RAR(Random Access Response)上行授予(UL grant)所调度的PUSCH所占用的空口资源中的至少PRACH资源。
作为一个实施例,所述第一空口资源组包括Msg1所占用的空口资源或者Msg3 PUSCH所占用的空口资源中的至少Msg1所占用的空口资源。
作为一个实施例,所述第一空口资源组包括Msg1所占用的空口资源或者RAR(Random Access Response)上行授予(UL grant)所调度的PUSCH所占用的空口资源中的至少Msg1所占用的空口资源。
作为一个实施例,所述第一空口资源组包括Msg1所占用的空口资源和Msg3 PUSCH所占用的空口资源。
作为一个实施例,所述第一空口资源组包括Msg1所占用的空口资源和RAR(Random Access Response)上行授予(UL grant)所调度的PUSCH所占用的空口资源。
作为一个实施例,所述第一空口资源组包括MsgA所占用的空口资源。
作为一个实施例,所述第一空口资源组包括时频资源。
作为一个实施例,所述第一空口资源组包括时频资源和码域资源。
作为一个实施例,一个空口资源包括时频资源,一个空口资源组包括时频资源。
作为一个实施例,一个空口资源包括时频资源和码域资源,一个空口资源组包括时频资源和码域资源。
作为一个实施例,所述第一空口资源组是更高层(higher layer)参数配置的。
作为一个实施例,配置所述第一空口资源组的更高层参数包括BeamFailureRecoveryConfig IE的candidateBeamRSList域中的全部或部分信息。
作为一个实施例,所述M个参考信号分别与M个空口资源组一一对应,所述第一空口资源组是所述M个空口资源组中的与所述第一参考信号对应的一个空口资源组。
作为一个实施例,所述M个参考信号分别与M个空口资源组一一对应,所述第一空口资源组是所述M个空口资源组中的与所述第二参考信号对应的一个空口资源组。
作为一个实施例,所述第一参考信号子集包括M1个参考信号,所述M1个参考信号分别与M1个空口资源组一一对应,所述第一空口资源组是所述M1个空口资源组中的与所述第一参考信号对应的一个空口资源组,M1是小于所述M的正整数。
作为一个实施例,所述第一参考信号子集包括M1个参考信号,所述M1个参考信号分别与M1个空口资源组一一对应,所述第一空口资源组是所述M1个空口资源组中的与所述第二参考信号对应的一个空口资源组,M1是小于所述M的正整数。
作为一个实施例,所述第二参考信号子集中的任一参考信号对应所述M1个空口资源组中的一个空口资源组。
作为一个实施例,给定参考信号对应给定空口资源组的意思包括:所述给定参考信号被用于确定所述 给定空口资源组的空域关系。
作为一个实施例,给定参考信号对应给定空口资源组的意思包括:所述给定空口资源组被用于确定所述给定参考信号。
作为一个实施例,给定参考信号对应给定空口资源组的意思包括:所述给定空口资源组被用于指示所述给定参考信号。
作为一个实施例,给定参考信号对应给定空口资源组的意思包括:更高层信令配置所述给定参考信号和所述给定空口资源组的对应关系。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE,LTE-A及未来5G系统的网络架构200称为EPS(Evolved Packet System,演进分组系统)200。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200或某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(下一代无线接入网络)202,5GC(5G CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,5GS/EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。NG-RAN202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网,内联网,IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换(Packet switching)服务。
作为一个实施例,本申请中的所述第一节点包括所述UE201。
作为一个实施例,本申请中的所述第一节点包括所述UE241。
作为一个实施例,本申请中的所述第二节点包括所述gNB203。
作为一个实施例,本申请中的所述第三节点包括所述gNB204。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间,或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,负责第一通信节点设备与第二通信节点设备之间,或者两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(PacketData Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第三节点。
作为一个实施例,所述第一信息组生成于所述RRC子层306。
作为一个实施例,所述第一信息组生成于所述MAC子层302,或所述MAC子层352。
作为一个实施例,所述第一参考信号组生成于所述PHY301,或所述PHY351。
作为一个实施例,所述M个参考信号生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一信号生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一信号生成于所述MAC子层302,或所述MAC子层352。
作为一个实施例,所述第二信号生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第二信号生成于所述MAC子层302,或所述MAC子层352。
实施例4
实施例4示例了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。附图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与传输信道之间的多路复用,以及基于各种优先级量度对第二通信设备450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包 的重新发射,和到第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的星座映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个并行流。发射处理器416随后将每一并行流映射到子载波,将调制后的符号在时域和/或频域中与参考信号(例如,导频)复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以第二通信设备450为目的地的任何并行流。每一并行流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述第一通信设备410处的发送功能,控制器/处理器459基于第一通信设备410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的并行流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。控制器/处理器475提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收第一信息组;接收第一参考信号组;当第一条件被满足 时,在第一空口资源组中发送第一信号;其中,所述第一信息组被用于指示所述第一参考信号组,针对所述第一参考信号组的测量被用于判断所述第一条件是否被满足;所述第一条件是否被满足被用于确定是否发送所述第一信号;所述第一信号被用于确定第二参考信号,所述第二参考信号是M个参考信号中之一,M是大于1的正整数;所述第一条件包括第一计数器的值不小于第一阈值;第一参考信号被用于确定所述第一空口资源组的空域关系;所述第一参考信号和所述第二参考信号是否QCL与所述第二参考信号是属于第一参考信号子集还是属于第二参考信号子集有关;当所述第二参考信号属于所述第一参考信号子集时,所述第一参考信号和所述第二参考信号是QCL;当所述第二参考信号属于所述第二参考信号子集时,所述第一参考信号和所述第二参考信号不是QCL;所述第一阈值是正整数,所述第一参考信号子集和所述第二参考信号子集分别是所述M个参考信号的子集;所述第一信息组包括正整数个信息块。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信息组;接收第一参考信号组;当第一条件被满足时,在第一空口资源组中发送第一信号;其中,所述第一信息组被用于指示所述第一参考信号组,针对所述第一参考信号组的测量被用于判断所述第一条件是否被满足;所述第一条件是否被满足被用于确定是否发送所述第一信号;所述第一信号被用于确定第二参考信号,所述第二参考信号是M个参考信号中之一,M是大于1的正整数;所述第一条件包括第一计数器的值不小于第一阈值;第一参考信号被用于确定所述第一空口资源组的空域关系;所述第一参考信号和所述第二参考信号是否QCL与所述第二参考信号是属于第一参考信号子集还是属于第二参考信号子集有关;当所述第二参考信号属于所述第一参考信号子集时,所述第一参考信号和所述第二参考信号是QCL;当所述第二参考信号属于所述第二参考信号子集时,所述第一参考信号和所述第二参考信号不是QCL;所述第一阈值是正整数,所述第一参考信号子集和所述第二参考信号子集分别是所述M个参考信号的子集;所述第一信息组包括正整数个信息块。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送第一信息组;发送第一参考信号子组;在第一空口资源组中监测第一信号;其中,所述第一信息组被用于指示第一参考信号组,所述第一参考信号子组中的任一参考信号属于所述第一参考信号组;针对所述第一参考信号组的测量被用于判断第一条件是否被满足;所述第一条件是否被满足被用于确定所述第一信号是否被发送;所述第一信号被用于确定第二参考信号,所述第二参考信号是M个参考信号中之一,M是大于1的正整数;所述第一条件包括第一计数器的值不小于第一阈值;第一参考信号被用于确定所述第一空口资源组的空域关系;所述第一参考信号和所述第二参考信号是否QCL与所述第二参考信号是属于第一参考信号子集还是属于第二参考信号子集有关;当所述第二参考信号属于所述第一参考信号子集时,所述第一参考信号和所述第二参考信号是QCL;当所述第二参考信号属于所述第二参考信号子集时,所述第一参考信号和所述第二参考信号不是QCL;所述第一阈值是正整数,所述第一参考信号子集和所述第二参考信号子集分别是所述M个参考信号的子集;所述第一信息组包括正整数个信息块,所述第一参考信号组包括正整数个参考信号,所述第一参考信号子组包括正整数个参考信号。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信息组;发送第一参考信号子组;在第一空口资源组中监测第一信号;其中,所述第一信息组被用于指示第一参考信号组,所述第一参考信号子组中的任一参考信号属于所述第一参考信号组;针对所述第一参考信号组的测量被用于判断第一条件是否被满足;所述第一条件是否被满足被用于确定所述第一信号是否被发送;所述第一信号被用于确定第二参考信号,所述第二参考信号是M个参考信号中之一,M是大于1的正整数;所述第一条件包括第一计数器的值不小于第一阈值;第一参考信号被用于确定所述第一空口资源组的空域关系;所述第一参考信号和所述第二参考信号是否QCL与所述第二参考信号是属于第一参考信号子集还是属于第二参考信号子集有关;当所述第二参考信号属于所述第一参考信号子集时,所述第一参考信号和所述第二参考信号是QCL;当所述第二参考信号属于所述第二参考信号子集时,所述第一参考信号和所述第二参考信号不是QCL;所述第一阈值是正整数,所述第一参考信号子集和所述第二参考信号子集分别是所述M个参考 信号的子集;所述第一信息组包括正整数个信息块,所述第一参考信号组包括正整数个参考信号,所述第一参考信号子组包括正整数个参考信号。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450。
作为一个实施例,本申请中的所述第二节点包括所述第一通信设备410。
作为一个实施例,本申请中的所述第三节点包括所述第一通信设备410。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收本申请中的所述第一信息组;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信息组。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收本申请中的所述M个配置信息块;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述M个配置信息块。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收本申请中的所述第一参考信号组;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一参考信号组。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收本申请中的所述M个参考信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述M个参考信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于在本申请中的所述第一时间窗中监测针对所述第一信号的所述响应;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第一时间窗中发送针对所述第一信号的所述响应。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于在本申请中的所述第二时间窗中监测针对所述第二信号的所述响应;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第二时间窗中发送针对所述第二信号的所述响应。
作为一个实施例,{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460}中的至少之一被用于在本申请中的所述第一空口资源组中发送所述第一信号;{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第一空口资源组中接收所述第一信号。
作为一个实施例,{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460}中的至少之一被用于在本申请中的所述第二空口资源组中发送所述第二信号;{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第二空口资源组中接收所述第二信号。
实施例5
实施例5示例了根据本申请的一个实施例的无线传输的流程图,如附图5所示。在附图5中,第一节点U01,第二节点N02和第三节点N03是两两通过空中接口传输的通信节点。附图5中,方框F1至F8中的步骤分别是可选的。
对于 第一节点U01,在步骤S5101中接收第一信息组;在步骤S5102中接收M个配置信息块;在步骤S5103中接收第一参考信号组;在步骤S5104中接收M个参考信号;在步骤S5105中在第一空口资源组中发送第一信号;在步骤S5106中在第一时间窗中监测针对第一信号的响应;在步骤S5107中在第二空口资源组中发送第二信号;在步骤S5108中在第二时间窗中监测针对第二信号的响应;
对于 第二节点N02,在步骤S5201中发送第一信息组;在步骤S5202中发送M个配置信息块;在步骤S5203中发送第一参考信号子组;在步骤S5204中发送第一参考信号子集;在步骤S5205中在第一空口资源组中监测第一信号;S5206中在第一空口资源集合中的第一空口资源组之外的每个空口资源组中监测无线信号;在步骤S5207中在第一时间窗中发送针对第一信号的响应;
对于 第三节点N03,在步骤S5301中发送第二参考信号子组;在步骤S5302中发送第二参考信号子集;在步骤S5303中在第二空口资源组中监测第二信号;S5304中在第二空口资源集合中的第二空口资源组之外的每个空口资源组中监测无线信号;在步骤S5305中在第二时间窗中发送针对第二信号的响应。
在实施例5中,所述第一信息组被用于指示所述第一参考信号组,所述第一节点U01针对所述第一参考信号组的测量被所述第一节点U01用于判断所述第一条件是否被满足;所述第一条件是否被满足被所述第一节点U01用于确定是否发送所述第一信号;所述第一信号被用于确定第二参考信号,所述第二参考信号是M个参考信号中之一,M是大于1的正整数;所述第一条件包括第一计数器的值不小于第一阈值;第一参考信号被用于确定所述第一空口资源组的空域关系;所述第一参考信号和所述第二参考信号是否QCL与所述第二参考信号是属于第一参考信号子集还是属于第二参考信号子集有关;当所述第二参考信号属于所述第一参考信号子集时,所述第一参考信号和所述第二参考信号是QCL;当所述第二参考信号属于所述第二参考信号子集时,所述第一参考信号和所述第二参考信号不是QCL;所述第一阈值是正整数,所述第一参考信号子集和所述第二参考信号子集分别是所述M个参考信号的子集;所述第一信息组包括正整数个信息块。所述第二信号被用于确定所述第二参考信号,第三参考信号被用于确定所述第二空口资源组的空域关系,所述第二参考信号和所述第三参考信号是QCL。所述第一参考信号子组中的任一参考信号属于所述第一参考信号组。所述第一空口资源组是所述第一空口资源集合中的任一空口资源组,所述第一信号是在所述第一空口资源组中被所述第二节点N02监测的无线信号。所述第二参考信号子组中的任一参考信号属于第一参考信号组。所述第二空口资源组是所述第二空口资源集合中的任一空口资源组,所述第二信号是在所述第二空口资源组中被所述第三节点N03监测的无线信号。
作为一个实施例,本申请中的所述非服务小区能用于传输数据。
作为一个实施例,本申请中的所述非服务小区能用于传输无线信号。
作为一个实施例,本申请中的所述非服务小区能用于传输参考信号。
作为一个实施例,本申请中的非服务小区是指能够被选为用于收发数据的小区。
作为一个实施例,本申请中的非服务小区是指能够被选为用于收发无线信号的小区。
作为一个实施例,本申请中的非服务小区是指能够被选为用于收发参考信号的小区。
作为一个实施例,当第一条件被满足时,所述第一节点U01在所述第一空口资源组中发送所述第一信号,方框F1存在。
作为一个实施例,当所述第一条件被满足并且所述第二参考信号属于所述第二参考信号子集时,所述第一节点U01在第二空口资源组中发送第二信号,方框F2存在。
作为一个实施例,当所述第一条件和第二条件都被满足并且所述第二参考信号属于所述第二参考信号子集时,所述第一节点U01在第二空口资源组中发送第二信号,方框F2存在。
作为一个实施例,当所述第二节点N02在所述第一空口资源组中检测到所述第一信号时,所述第二节点N02在第一时间窗中发送针对第一信号的响应,方框F4存在。
作为一个实施例,当所述第三节点N03在所述第二空口资源组中检测到所述第二信号时,所述第三节点N03在第二时间窗中发送针对第二信号的响应,方框F5存在。
作为一个实施例,方框F5存在的必要条件包括:方框F2和F7都存在。
作为一个实施例,方框F6存在的必要条件包括:方框F2存在。
作为一个实施例,所述行为在第二空口资源组中发送第二信号早于所述行为在第一时间窗中监测针对第一信号的响应。
作为一个实施例,所述行为在第二空口资源组中发送第二信号不晚于所述行为在第一时间窗中监测针对第一信号的响应。
作为一个实施例,所述行为在第二空口资源组中发送第二信号晚于于所述行为在第一时间窗中监测针对第一信号的响应。
作为一个实施例,所述第一信息组被所述第一节点U01用于指示所述第一参考信号组。
作为一个实施例,所述第一信号被所述第一节点U01用于确定第二参考信号。
作为一个实施例,第一参考信号被所述第一节点U01用于确定所述第一空口资源组的空域关系。
作为一个实施例,所述第二信号被所述第一节点U01用于确定所述第二参考信号。
作为一个实施例,第三参考信号被所述第一节点U01用于确定所述第二空口资源组的空域关系。
作为一个实施例,所述第一信息组被所述第二节点N02用于指示所述第一参考信号组。
作为一个实施例,所述第一信号被所述第二节点N02用于确定第二参考信号。
作为一个实施例,第一参考信号被所述第二节点N02用于确定所述第一空口资源组的空域关系。
作为一个实施例,所述第二信号被所述第二节点N02用于确定所述第二参考信号。
作为一个实施例,第三参考信号被所述第二节点N02用于确定所述第二空口资源组的空域关系。
作为一个实施例,所述第一信息组被所述第三节点N03用于指示所述第一参考信号组。
作为一个实施例,所述第一信号被所述第三节点N03用于确定第二参考信号。
作为一个实施例,第一参考信号被所述第三节点N03用于确定所述第一空口资源组的空域关系。
作为一个实施例,所述第二信号被所述第三节点N03用于确定所述第二参考信号。
作为一个实施例,第三参考信号被所述第三节点N03用于确定所述第二空口资源组的空域关系。
作为一个实施例,当第三条件被满足时,所述第一计数器的值被加1;所述第三条件包括:第一类接收质量组中的每个第一类接收质量都差于所述第二阈值;针对所述第一参考信号组的测量被所述第一节点用于确定所述第一类接收质量组。
作为一个实施例,当所述第一类接收质量组中的每个第一类接收质量都差于所述第二阈值时,所述第三条件被满足。
作为一个实施例,当所述第一类接收质量组中存在一个第一类接收质量不差于所述第二阈值时,所述第三条件不被满足。
作为一个实施例,当所述第三条件被满足时,所述第一节点的物理层向所述第一节点的更高层发送一个波束失败事件(beam failure instance)指示(indication)。
作为一个实施例,所述第三条件是否被满足被所述第一节点用于确定所述第一计数器的值是否被加1。
作为一个实施例,所述第一参考信号组包括的参考信号的数量等于所述第一类接收质量组包括的第一类接收质量的数量。
作为一个实施例,所述第一参考信号组仅包括1个参考信号,所述第一类接收质量组仅包括1个第一类接收质量,针对所述1个参考信号的测量被用于确定所述1个第一类接收质量。
作为一个实施例,所述第一参考信号组包括S个参考信号,所述第一类接收质量组包括S个第一类接收质量,S是大于1的正整数;针对所述S个参考信号的测量分别被用于确定所述S个第一类接收质量。
作为一个实施例,对于所述第一参考信号组中任一给定参考信号,在第一时间间隔内针对所述给定参考信号的测量被用于确定所述给定参考信号对应的第一类接收质量。
作为一个实施例,对于所述第一参考信号组中任一给定参考信号,所述第一节点仅根据在第一时间间隔内接收到的所述给定参考信号来获得用于计算所述给定参考信号对应的第一类接收质量的测量。
作为一个实施例,所述测量包括信道测量。
作为一个实施例,所述测量包括干扰测量。
作为一个实施例,所述第一时间间隔是一个连续的时间段。
作为一个实施例,所述第一时间间隔的长度是T Evaluate_BFD_SSB ms或T Evaluate_BFD_CSI-RS ms。
作为一个实施例,T Evaluate_BFD_SSB和T Evaluate_BFD_CSI-RS的定义参见3GPP TS38.133。
作为一个实施例,所述第一类接收质量组中的任一第一类接收质量是RSRP(Reference Signal Received Power,参考信号接收功率)。
作为一个实施例,所述第一类接收质量组中的任一第一类接收质量是层1(L1)-RSRP。
作为一个实施例,所述第一类接收质量组中的任一第一类接收质量是SINR(Signal-to-noise and interference ratio,信干噪比)。
作为一个实施例,所述第一类接收质量组中的任一第一类接收质量是L1-SINR。
作为一个实施例,所述第一类接收质量组中的任一第一类接收质量是BLER(BLock Error Rate,误块率)。
作为一个实施例,给定接收质量是RSRP,L1-RSRP,SINR或L1-SINR中之一,给定接收质量是所述第一类接收质量组中的任一第一类接收质量;句子所述给定接收质量差于所述第二阈值的意思包括:所述给定接收质量小于所述第二阈值;句子所述给定接收质量不差于所述第二阈值的意思包括:所述给定接收质量不小于所述第二阈值。
作为一个实施例,给定接收质量是BLER,给定接收质量是所述第一类接收质量组中的任一第一类接收质量;句子所述给定接收质量差于所述第二阈值的意思包括:所述给定接收质量大于所述第二阈值;句子所述给定接收质量不差于所述第二阈值的意思包括:所述给定接收质量不大于所述第二阈值。
作为一个实施例,所述第一类接收质量组中任一第一类接收质量是通过对对应的参考信号的RSRP,L1-RSRP,SINR或L1-SINR查表得到的。
作为一个实施例,所述第一类接收质量组中任一第一类接收质量是根据假设的PDCCH传输参数(hypothetical PDCCH transmission parameters)得到的。
作为一个实施例,所述假设的PDCCH传输参数的具体定义参见3GPP TS38.133。
作为一个实施例,所述第二阈值是实数。
作为一个实施例,所述第二阈值是非负实数。
作为一个实施例,所述第二阈值是不大于1的非负实数。
作为一个实施例,所述第二阈值是Q out_L,Q out_LR_SSB或Q out_LR_CSI-RS中之一。
作为一个实施例,Q out_LR,Q out_LR_SSB和Q out_LR_CSI-RS的定义参见3GPP TS38.133。
作为一个实施例,所述第二阈值由更高层参数rlmInSyncOutOfSyncThreshold确定。
作为一个实施例,所述第一节点中的方法包括:
接收所述M个参考信号;
其中,针对所述M个参考信号的测量分别被用于确定M个第二类接收质量;所述M个第二类接收质量中和所述第二参考信号对应的第二类接收质量不差于第三阈值。
作为一个实施例,所述M个参考信号包括CSI-RS。
作为一个实施例,所述M个参考信号包括SSB。
作为一个实施例,所述M个参考信号包括SRS。
作为一个实施例,所述M个参考信号中任一参考信号包括CSI-RS或SSB。
作为一个实施例,所述M个参考信号是更高层(higher layer)参数配置的。
作为一个实施例,配置所述M个参考信号的更高层参数包括BeamFailureRecoveryConfig IE的candidateBeamRSList域中的全部或部分信息。
作为一个实施例,所述M个参考信号由一个IE配置。
作为一个实施例,所述M个参考信号由两个IE配置。
作为一个实施例,被用于配置所述M个参考信号的IE的名称里包括BeamFailureRecovery。
作为一个实施例,被用于配置所述M个参考信号的IE的名称里包括BeamFailure。
作为一个实施例,被用于配置所述M个参考信号的IE的名称里包括BF。
作为一个实施例,所述M等于2。
作为一个实施例,所述M大于2。
作为一个实施例,所述M个参考信号中任一参考信号是周期性(periodic)参考信号。
作为一个实施例,所述M个参考信号中任一参考信号是周期性参考信号或准静态(semi-persistent)参考信号。
作为一个实施例,所述M个参考信号中存在一个参考信号是准静态参考信号或非周期性(aperiodic) 参考信号。
作为一个实施例,所述M个参考信号中任意两个参考信号在频域属于同一个载波(Carrier)。
作为一个实施例,所述M个参考信号中任意两个参考信号在频域属于同一个BWP(Bandwidth Part,带宽区间)。
作为一个实施例,所述M个参考信号中存在两个参考信号在频域属于不同的载波。
作为一个实施例,所述M个参考信号中存在两个参考信号在频域属于不同的BWP。
作为一个实施例,所述M个参考信号由所述第一参考信号子集和所述第二参考信号子集中的所有参考信号组成。
作为一个实施例,所述M个参考信号中存在一个参考信号不属于所述第一参考信号子集也不属于所述第二参考信号子集。
作为一个实施例,所述第一参考信号子集包括所述M个参考信号中的至少一个参考信号,所述第二参考信号子集包括所述M个参考信号中的至少一个参考信号;所述第一参考信号子集中的任一参考信号不属于所述第二参考信号子集。
作为一个实施例,所述第二参考信号属于所述第一参考信号子集或者所述第二参考信号子集。
作为一个实施例,所述第一参考信号子集的发送者和所述第二参考信号子集的发送者不同。
作为一个实施例,所述第一参考信号子集由第一小区发送,所述第二参考信号子集由第二小区发送。
作为一个实施例,所述第一参考信号子集中的任一参考信号的发送者是所述第一节点的一个服务小区。
作为一个实施例,所述第二参考信号子集中的任一参考信号的发送者是所述第一节点的一个非服务小区。
作为一个实施例,所述第一参考信号子集由一个IE配置。
作为一个实施例,所述第二参考信号子集由一个IE配置。
作为一个实施例,所述第一参考信号子集和所述第二参考信号子集由同一个IE配置。
作为一个实施例,所述第一参考信号子集和所述第二参考信号子集分别由两个IE配置。
作为一个实施例,被用于配置所述第一参考信号子集的IE的名称里包括BeamFailureRecovery。
作为一个实施例,被用于配置所述第一参考信号子集的IE的名称里包括BeamFailure。
作为一个实施例,被用于配置所述第一参考信号子集的IE的名称里包括BF。
作为一个实施例,被用于配置所述第二参考信号子集的IE的名称里包括BeamFailureRecovery。
作为一个实施例,被用于配置所述第二参考信号子集的IE的名称里包括BeamFailure。
作为一个实施例,被用于配置所述第二参考信号子集的IE的名称里包括BF。
作为一个实施例,所述第一参考信号子集由SpCell发送。
作为一个实施例,所述第一参考信号子集由PCell发送。
作为一个实施例,所述第二参考信号子集由SCell发送。
作为一个实施例,所述第一参考信号子集对应第一索引,所述第二参考信号子集对应第二索引,所述第一索引和所述第二索引是两个不同的非负整数。
作为一个实施例,第一索引被用于确定所述第一参考信号子集,第二索引被用于确定所述第二参考信号子集,所述第一索引和所述第二索引是两个不同的非负整数。
作为一个实施例,所述第一索引被用于指示第一小区,所述第二索引被用于指示第二小区。
作为一个实施例,所述第一小区和所述第二小区不同。
作为一个实施例,所述第一索引的名称包括set,所述第二索引的名称包括set。
作为一个实施例,所述第一索引的名称包括SET,所述第二索引的名称包括SET。
作为一个实施例,所述第一索引的名称包括CORESETPoolIndex,所述第二索引的名称包括CORESETPoolIndex。
作为一个实施例,所述第一索引的名称包括CORESET,所述第二索引的名称包括CORESET。
作为一个实施例,所述第一索引的名称包括coreset,所述第二索引的名称包括coreset。
作为一个实施例,所述第一索引的名称包括TRP,所述第二索引的名称包括TRP。
作为一个实施例,所述第一索引的名称包括cell,所述第二索引的名称包括cell。
作为一个实施例,所述第一索引的名称包括Cell,所述第二索引的名称包括Cell。
作为一个实施例,所述第一索引的名称包括TCI,所述第二索引的名称包括TCI。
作为一个实施例,所述第一索引的名称包括tci,所述第二索引的名称包括tci。
作为一个实施例,所述空域关系包括TCI(Transmission Configuration Indicator,传输配置指示)状态(state)。
作为一个实施例,所述空域关系包括QCL(Quasi co-location,准共址)参数。
作为一个实施例,所述空域关系包括空域滤波(Spatial domain filter)。
作为一个实施例,所述空域关系包括空域发送滤波(Spatial domain transmission filter)。
作为一个实施例,所述空域关系包括空域接收滤波(Spatial domain reception filter)。
作为一个实施例,所述空域关系包括空间发送参数(Spatial Tx parameter)。
作为一个实施例,所述空域关系包括空间接收参数(Spatial Rx parameter)。
作为一个实施例,所述空间发送参数(Spatial Tx parameter)包括发送天线端口、发送天线端口组、发送波束、发送模拟波束赋型矩阵、发送模拟波束赋型向量、发送波束赋型矩阵、发送波束赋型向量或者空域发送滤波中的一种或多种。
作为一个实施例,所述空间接收参数(Spatial Rx parameter)包括接收波束、接收模拟波束赋型矩阵、接收模拟波束赋型向量、接收波束赋型矩阵、接收波束赋型向量或者空域接收滤波中的一种或多种。
作为一个实施例,给定参考信号被用于确定给定空口资源组的空域关系。
作为上述实施例的一个子实施例,所述给定参考信号是所述第一参考信号,所述给定空口资源组是所述第一空口资源组。
作为上述实施例的一个子实施例,所述给定参考信号是所述第三参考信号,所述给定空口资源组是所述第二空口资源组。
作为上述实施例的一个子实施例,所述给定参考信号的TCI状态被用于确定所述给定空口资源组的空域关系。
作为上述实施例的一个子实施例,所述空域关系包括TCI状态,所述给定参考信号的TCI状态和所述给定空口资源组的TCI状态相同。
作为上述实施例的一个子实施例,所述给定参考信号的QCL参数被用于确定所述给定空口资源组的空域关系。
作为上述实施例的一个子实施例,所述空域关系包括QCL参数,所述给定参考信号的QCL参数和所述给定空口资源组的QCL参数相同。
作为上述实施例的一个子实施例,所述给定参考信号的空域滤波被用于确定所述给定空口资源组的空域关系。
作为上述实施例的一个子实施例,所述空域关系包括空域滤波,所述给定参考信号的空域滤波和所述给定空口资源组的空域滤波相同。
作为上述实施例的一个子实施例,所述空域关系包括空域发送滤波,所述给定参考信号是上行信号,所述给定参考信号的空域发送滤波和所述给定空口资源组的空域发送滤波相同。
作为上述实施例的一个子实施例,所述空域关系包括空域发送滤波,所述给定参考信号是下行信号,所述给定参考信号的空域接收滤波和所述给定空口资源组的空域发送滤波相同。
作为上述实施例的一个子实施例,所述空域关系包括空域接收滤波,所述给定参考信号是上行信号,所述给定参考信号的空域接收滤波和所述给定空口资源组的空域接收滤波相同。
作为上述实施例的一个子实施例,所述空域关系包括空域接收滤波,所述给定参考信号是下行信号,所述给定参考信号的空域发送滤波和所述给定空口资源组的空域接收滤波相同。
作为上述实施例的一个子实施例,所述给定参考信号的空间参数被用于确定所述给定空口资源组的空域关系。
作为上述实施例的一个子实施例,所述空域关系包括空间发送参数,所述给定参考信号的空间参数和所述给定空口资源组的空间发送参数相同。
作为上述实施例的一个子实施例,所述空域关系包括空间发送参数,所述给定参考信号是上行信号, 所述给定参考信号的空间发送参数和所述给定空口资源组的空间发送参数相同。
作为上述实施例的一个子实施例,所述空域关系包括空间发送参数,所述给定参考信号是下行信号,所述给定参考信号的空间接收参数和所述给定空口资源组的空间发送参数相同。
作为上述实施例的一个子实施例,所述空域关系包括空间接收参数,所述给定参考信号的空间参数和所述给定空口资源组的空间接收参数相同。
作为上述实施例的一个子实施例,所述空域关系包括空间接收参数,所述给定参考信号是上行信号,所述给定参考信号的空间接收参数和所述给定空口资源组的空间接收参数相同。
作为上述实施例的一个子实施例,所述空域关系包括空间接收参数,所述给定参考信号是下行信号,所述给定参考信号的空间发送参数和所述给定空口资源组的空间接收参数相同。
作为一个实施例,所述第二节点是所述第一节点的服务小区的维持基站。
作为一个实施例,所述第一参考信号子集被所述第二节点发送。
作为一个实施例,所述第二节点不是所述第二小区的维持基站。
作为一个实施例,当所述第二参考信号属于所述第二参考信号子集时,所述第一小区向所述第一节点发送第三信号,所述第三信号携带与所述第二小区相关的信息。
作为一个实施例,当所述第二参考信号属于所述第二参考信号子集时,所述第一小区将与所述第二小区相关的信息中继(Relay)给所述第一节点。
作为一个实施例,所述第一节点中的方法包括:
接收第三信号;
其中,所述第三信号包括与所述第二小区相关的信息。
作为一个实施例,在发送所述第一信号之后,所述第一节点接收所述第三信号。
作为一个实施例,与所述第二小区相关的所述信息包括第二索引或者第一标识中的至少之一。
作为一个实施例,所述第三信号包括Msg4。
作为一个实施例,所述第三信号包括冲突解决(Contention Resolution)MAC PDU。
作为一个实施例,所述第一标识是C(Cell,小区)-RNTI(Radio Network Temporary Identifier,无线网络暂定标识)。
作为一个实施例,所述第一标识是RNTI。
作为一个实施例,所述第一标识是非负整数。
作为一个实施例,所述第二索引是非负整数。
作为一个实施例,所述第二索引是所述第二小区的CellIdentity。
作为一个实施例,所述第二索引是所述第二小区的PhysCellId。
作为一个实施例,所述第一信号被用于波束失败请求(Beam Failure Request)。
作为一个实施例,所述第一信号包括基带信号。
作为一个实施例,所述第一信号包括无线信号。
作为一个实施例,所述第一信号包括射频信号。
作为一个实施例,所述第一信号包括第一特征序列。
作为一个实施例,所述第一特征序列包括伪随机(pseudo-random)序列,Zadoff-Chu序列或低PAPR(Peak-to-Average Power Ratio,峰均比)序列中的一种或多种。
作为一个实施例,所述第一特征序列包括CP(Cyclic Prefix,循环前缀)。
作为一个实施例,所述第一信号包括随机接入前导(Random Access Preamble)。
作为一个实施例,所述第一信号包括UCI(Uplink control information,上行控制信息)。
作为一个实施例,所述第一信号包括LRR(Link Recovery Request,链路恢复请求)。
作为一个实施例,所述第一信号包括MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)。
作为一个实施例,所述第一信号包括BFR(Beam Failure Recovery,波束失败恢复)MAC CE或截短的(Truncated)BFR MAC CE。
作为一个实施例,所述第一信号包括随机接入前导或者BFR MAC CE中的至少所述随机接入前导。
作为一个实施例,当所述第二参考信号属于所述第二参考信号子集时,所述第一信号包括第一子信号和第二子信号,所述第一子信号包括随机接入前导,所述第二子信号包括BFR MAC CE或者截短的(Truncated)BFR MAC CE;当所述第二参考信号属于所述第一参考信号子集时,所述第一信号包括随机接入前导、BFR MAC CE、截短的BFR MAC CE中的仅所述随机接入前导。
作为一个实施例,所述第一信号包括随机接入前导或者截短的(Truncated)BFR MAC CE中的至少所述随机接入前导。
作为一个实施例,所述第一信号包括随机接入前导或者MAC CE中的至少所述随机接入前导。
作为一个实施例,当所述第二参考信号属于所述第二参考信号子集时,所述第一信号包括第一子信号和第二子信号,所述第一子信号包括随机接入前导,所述第二子信号包括MAC CE;当所述第二参考信号属于所述第一参考信号子集时,所述第一信号包括随机接入前导和MAC CE中的仅所述随机接入前导。
作为一个实施例,所述第一信号包括Msg1或者Msg3 PUSCH中的至少Msg1。
作为一个实施例,当所述第二参考信号属于所述第二参考信号子集时,所述第一信号包括第一子信号和第二子信号,所述第一子信号包括Msg1,所述第二子信号包括Msg3 PUSCH;当所述第二参考信号属于所述第一参考信号子集时,所述第一信号包括Msg1和Msg3 PUSCH中的仅Msg1。
作为一个实施例,所述第一信号包括Msg1和Msg3 PUSCH。
作为一个实施例,所述第一信号包括Msg1或者RAR上行授予所调度的PUSCH中的至少Msg1。
作为一个实施例,当所述第二参考信号属于所述第二参考信号子集时,所述第一信号包括第一子信号和第二子信号,所述第一子信号包括Msg1,所述第二子信号包括RAR上行授予所调度的PUSCH;当所述第二参考信号属于所述第一参考信号子集时,所述第一信号包括Msg1和RAR上行授予所调度的PUSCH中的仅Msg1。
作为一个实施例,所述第一信号包括Msg1和RAR上行授予所调度的PUSCH。
作为一个实施例,所述第一信号包括MsgA。
作为一个实施例,当所述第二参考信号属于所述第二参考信号子集时,所述第一信号包括所述第一子信号和所述第二子信号;当所述第二参考信号属于所述第二参考信号子集时,所述第一信号包括所述第一子信号和所述第二子信号中的仅所述第一子信号。
作为一个实施例,所述第一空口资源组包括第一空口资源块和第二空口资源块,所述第一信号包括第一子信号和第二子信号,所述第一子信号在所述第一空口资源块中被发送,所述第二子信号在所述第二空口资源块中被发送。
作为上述实施例的一个子实施例,所述第二参考信号属于所述第一参考信号子集和所述第二参考信号子集中的仅所述第二参考信号子集。
作为上述实施例的一个子实施例,所述第二参考信号属于所述第一参考信号子集或者所述第二参考信号子集。
作为一个实施例,所述第一子信号包括Msg1,所述第二子信号包括Msg3 PUSCH。
作为一个实施例,所述第一子信号包括Msg1,所述第二子信号包括RAR上行授予所调度的PUSCH。
作为一个实施例,所述第一信号包括MsgA,所述第一子信号包括MsgA中的随机接入前导,所述第二子信号包括MsgA中的PUSCH。
作为一个实施例,所述第一子信号包括第一特征序列。
作为一个实施例,所述第一子信号包括随机接入前导(Random Access Preamble)。
作为一个实施例,所述第二子信号包括MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)。
作为一个实施例,所述第二子信号包括BFR(Beam Failure Recovery,波束失败恢复)MAC CE或截短的(Truncated)BFR MAC CE。
作为一个实施例,所述第一节点中的方法包括:
在第一时间窗中监测针对所述第一信号的响应;
其中,所述第一信号所占用的时域资源被用于确定所述第一时间窗,所述第一时间窗不晚于所述第一信号的起始发送时刻。
作为一个实施例,所述第一节点中的方法包括:
在第二时间窗中监测针对所述第二信号的响应;
其中,所述第二信号所占用的时域资源被用于确定所述第二时间窗,所述第二时间窗不晚于所述第二信号的起始发送时刻。
作为一个实施例,所述M个配置信息块分别被用于指示所述M个空口资源组。
作为一个实施例,所述M个配置信息块分别被用于指示所述M个空口资源组和所述M个参考信号之间的对应关系。
作为一个实施例,所述M个配置信息块中与被第一小区发送的参考信号对应的每个配置信息块包括第一索引,所述第一索引被用于指示所述第一小区;所述M个配置信息块中与被第二小区发送的参考信号对应的每个配置信息块包括第二索引,所述第二索引被用于指示所述第二小区。
作为一个实施例,所述M个配置信息块中的任一配置信息块由RRC信令携带。
作为一个实施例,所述M个配置信息块中的任一配置信息块由MAC CE信令携带。
作为一个实施例,所述M个配置信息块中存在一个配置信息块由RRC信令和MAC CE信令共同携带。
作为一个实施例,所述M个配置信息块中的任一配置信息块包括一个IE中的全部或部分域(Field)中的信息。
作为一个实施例,所述M个配置信息块中的任一配置信息块包括BeamFailureRecoveryConfig IE中的candidateBeamRSList域中的部分或全部信息。
作为一个实施例,所述M个配置信息块属于RRC信令中的同一个IE。
作为一个实施例,所述M个配置信息块中存在两个配置信息块属于RRC信令中的两个IE。
作为一个实施例,M1个配置信息块包括所述M个配置信息块中与所述第一参考信号子集中的每个参考信号对应的配置信息块,M2个配置信息块包括所述M个配置信息块中与所述第一参考信号子集中的每个参考信号对应的配置信息块。
作为一个实施例,所述M1个配置信息块属于RRC信令中的同一个IE。
作为一个实施例,所述M2个配置信息块属于RRC信令中的同一个IE。
作为一个实施例,所述M1个配置信息块和所述M2个配置信息块分别属于RRC信令中的两个IE。
作为一个实施例,所述M1个配置信息块和所述M2个配置信息块分别由两个小区发送。
作为一个实施例,所述M1个配置信息块由第一小区发送,所述M2个配置信息块由第二小区发送。
作为一个实施例,所述M1个配置信息块中的任一配置信息块由所述第一节点的一个服务小区发送。
作为一个实施例,所述M2个配置信息块中的任一配置信息块由所述第一节点的一个非服务小区发送。
作为一个实施例,所述M个配置信息块的发送者都是所述第一小区。
作为一个实施例,所述M个配置信息块中存在一个配置信息块的发送者是所述第一小区。
作为一个实施例,所述M个配置信息块中存在一个配置信息块的发送者是所述第二小区。
作为一个实施例,所述M个配置信息块中任一配置信息块的发送者是所述第一节点的一个服务小区。
作为一个实施例,所述M个配置信息块中存在一个配置信息块的发送者是所述第一节点的一个服务小区。
作为一个实施例,所述M个配置信息块中存在一个配置信息块的发送者是所述第一节点的一个非服务小区。
作为一个实施例,所述第一索引是非负整数。
作为一个实施例,所述第一索引是所述第一小区对应的SCellIndex。
作为一个实施例,所述第一索引是所述第一小区对应的ServCellIndex。
作为一个实施例,所述第一索引是所述第一小区对应的PhysCellId。
作为一个实施例,所述第二索引是非负整数。
作为一个实施例,所述第二索引是所述第二小区对应的CellIdentity。
作为一个实施例,所述第二索引是所述第二小区对应的PhysCellId。
作为一个实施例,所述M个配置信息块中的任一配置信息块包括第一类索引,所述M个配置信息块中的任一给定配置信息块包括的所述第一类索引被用于标识所述M个参考信号中和所述给定配置信息块 对应的参考信号。
作为一个实施例,所述给定配置信息块包括的所述第一类索引是所述M个参考信号中和所述给定配置信息块对应的参考信号的索引。
作为一个实施例,所述第一类索引是非负整数。
作为一个实施例,所述第一类索引包括SSB-Index。
作为一个实施例,所述第一类索引包括SSBRI(SSB Resource Indicator,SSB资源标识)。
作为一个实施例,所述第一类索引包括NZP-CSI-RS-ResourceId。
作为一个实施例,所述第一类索引包括CRI(CSI-RS Resource Indicator,CSI-RS资源标识)。
作为一个实施例,所述M个配置信息块中的任一配置信息块包括一个第二类索引,所述M个配置信息块中的任一给定配置信息块包括的所述第二类索引指示所述M个空口资源组中和所述给定配置信息块对应的参考信号对应的空口资源组。
作为一个实施例,所述第二类索引是非负整数。
作为一个实施例,所述第二类索引包括ra-PreambleIndex。
作为一个实施例,所述M个配置信息块中与所述第一参考信号对应的配置信息块指示所述第一信号所占用的空口资源。
作为一个实施例,所述第一索引和所述第二索引分别由Q1个比特和Q2个比特组成,Q1和Q2是两个互不相同的正整数。
作为一个实施例,所述Q1小于所述Q2。
作为一个实施例,所述Q2为10。
作为一个实施例,所述Q2为28。
作为一个实施例,所述Q2为9。
作为一个实施例,所述Q1为5。
作为一个实施例,所述Q1为3。
作为一个实施例,所述第一空口资源集合包括所述M个空口资源组。
作为一个实施例,所述第一空口资源集合包括所述M个空口资源组中的部分空口资源组。
作为一个实施例,所述第一空口资源集合包括所述M1个空口资源组。
作为一个实施例,所述第一空口资源集合包括所述M1个空口资源组中的部分空口资源组。
作为一个实施例,所述第一空口资源集合包括所述M3个空口资源组。
作为一个实施例,所述第一空口资源集合包括所述M3个空口资源组中的部分空口资源组。
作为一个实施例,所述第一参考信号子组是所述第一参考信号组。
作为一个实施例,所述第一参考信号组中存在一个参考信号不属于所述第一参考信号子组。
作为一个实施例,所述第一信息组包括第一信息子组和第二信息子组,所述第一参考信号组包括第一参考信号子组和第二参考信号子组,所述第一信息子组被用于指示所述第一参考信号子组,所述第二信息子组被用于指示所述第二参考信号子组;所述第一信息子组中的任一信息块属于所述第一信息组,所述第二信息子组中的任一信息块属于所述第二信息组;所述第一参考信号子组包括正整数个参考信号,所述第二参考信号子组包括正整数个参考信号。
作为一个实施例,所述第一参考信号子组的发送者和所述第二参考信号子组的发送者不同。
作为一个实施例,所述第一信息子组中的任一信息块不属于所述第二信息子组。
作为一个实施例,所述第一信息组包括S个信息块,所述第一信息子组包括S1个信息块,所述第一参考信号子组包括S1个参考信号,所述S1个信息块分别被用于指示所述S1个参考信号,S是大于1的正整数,S1是不大于所述S的正整数。
作为一个实施例,所述S1小于所述S。
作为一个实施例,所述S1等于所述S。
作为一个实施例,所述第一信息组包括S个信息块,所述第二信息子组包括S2个信息块,所述第二参考信号子组包括S2个参考信号,所述S2个信息块分别被用于指示所述S2个参考信号,S是大于1的正整数,S2是不大于所述S的正整数。
作为一个实施例,所述S1小于所述S,所述S2小于所述S。
作为一个实施例,所述S1和所述S2之和等于所述S。
作为一个实施例,所述第二参考信号子集被第三节点发送。
作为一个实施例,所述第三节点不是所述第一节点的服务小区的维持基站。
作为一个实施例,所述第三节点不是所述第一小区的维持基站。
作为一个实施例,所述第三节点不是所述第一小区的维持基站。
作为一个实施例,所述第三节点是所述第二小区的维持基站。
作为一个实施例,所述第三节点维持的任一小区是所述第一信号的发送者的非服务小区。
作为一个实施例,所述第三节点中的方法包括:
发送第二参考信号子组;
其中,所述第二参考信号子组中的任一参考信号属于所述第一参考信号组,所述第二参考信号子组包括正整数个参考信号。
作为一个实施例,所述第三节点中的方法包括:
在第二空口资源组中监测第二信号;
其中,所述第二信号被用于确定所述第二参考信号,第三参考信号被用于确定所述第二空口资源组的空域关系,所述第二参考信号和所述第三参考信号是QCL。
作为一个实施例,所述第三节点中的方法包括:
在第二空口资源集合中的所述第二空口资源组之外的每个空口资源组中监测无线信号;
其中,所述第二空口资源组是所述第二空口资源集合中的任一空口资源组,所述第二信号是在所述第一空口资源组中被监测的无线信号。
作为一个实施例,所述第二空口资源集合包括所述M2个空口资源组。
作为一个实施例,所述第二空口资源集合包括所述M2个空口资源组中的部分空口资源组。
作为一个实施例,所述第三节点中的方法包括:
当在所述第二空口资源组中检测到所述第二信号时,在第二时间窗中发送针对所述第二信号的响应;
其中,所述第二信号所占用的时域资源被用于确定所述第二时间窗。
实施例6
实施例6示例了根据本申请的一个实施例的第二参考信号的示意图;如附图6所示。在实施例6中,针对所述M个参考信号的测量分别被用于确定M个第二类接收质量;所述M个第二类接收质量中和所述第二参考信号对应的第二类接收质量不差于第三阈值。
作为一个实施例,对于所述M个参考信号中任一给定参考信号,在第二时间间隔内针对所述给定参考信号的测量被用于确定所述给定参考信号对应的第二类接收质量。
作为一个实施例,对于所述M个参考信号中任一给定参考信号,所述第一节点仅根据在第二时间间隔内接收到的所述给定参考信号来获得用于计算所述给定参考信号对应的第二类接收质量的测量。
作为一个实施例,所述第二时间间隔是一个连续的时间段。
作为一个实施例,所述第二时间间隔的长度是T Evaluate_CBD_SSB ms或T Evaluate_CBD_CSI-RS ms。
作为一个实施例,T Evaluate_CBD_SSB或T Evaluate_CBD_CSI-RS的定义参见3GPP TS38.133。
作为一个实施例,所述M个第二类接收质量中的任一第二类接收质量是RSRP。
作为一个实施例,所述M个第二类接收质量中任一第二类接收质量是层1(L1)-RSRP。
作为一个实施例,所述M个第二类接收质量中的任一第二类接收质量是SINR。
作为一个实施例,所述M个第二类接收质量中的任一第二类接收质量是L1-SINR。
作为一个实施例,所述M个第二类接收质量中的任一第二类接收质量是BLER。
作为一个实施例,句子给定接收质量不差于所述第三阈值的意思包括:所述给定接收质量是RSRP,L1-RSRP,SINR或L1-SINR中之一,所述给定接收质量大于或等于所述第三阈值;所述给定接收质量是所述M个第二类接收质量中的任一第二类接收质量。
作为一个实施例,句子给定接收质量不差于所述第三阈值的意思包括:所述给定接收质量是BLER, 所述给定接收质量小于或等于所述第三阈值;所述给定接收质量是所述M个第二类接收质量中的任一第二类接收质量。
作为一个实施例,所述M个第二类接收质量中任一第二类接收质量是通过对对应的参考信号的RSRP,L1-RSRP,SINR或L1-SINR查表得到的。
作为一个实施例,所述第三阈值是实数。
作为一个实施例,所述第三阈值是非负实数。
作为一个实施例,所述第三阈值是不大于1的非负实数。
作为一个实施例,所述第三阈值是Q in_LR
作为一个实施例,Q in_LR的定义参见3GPP TS38.133。
作为一个实施例,所述第三阈值由更高层参数rsrp-ThresholdSSB配置。
作为一个实施例,对于所述第一参考信号子集中的参考信号和所述第二参考信号子集中的参考信号,所述第三阈值的值不同。
作为一个实施例,当所述第二参考信号属于所述第一参考信号子集时,所述第三阈值等于第一数值;当所述第二参考信号属于所述第二参考信号子集时,所述第三阈值等于第二数值;所述第一数值和所述第二数值分别是实数,所述第一数值不等于所述第二数值。
作为一个实施例,所述第一条件包括:所述M个参考信号中存在一个参考信号对应的第二类接收质量不差于所述第三阈值。
作为一个实施例,当所述第一计数器的值不小于所述第一阈值,并且所述M个参考信号中存在一个参考信号对应的第二类接收质量不差于所述第三阈值时,所述第一条件被满足。
作为一个实施例,当所述M个参考信号中任一参考信号对应的第二类接收质量都差于所述第三阈值时,所述第一条件不被满足。
作为一个实施例,当给定参考信号属于所述第一参考信号子集时,所述第三阈值等于第一数值;当所述给定参考信号属于所述第二参考信号子集时,所述第三阈值等于第二数值;所述第一数值和所述第二数值分别是实数,所述第一数值不等于所述第二数值;所述给定参考信号是所述M个参考信号中的任一参考信号。
实施例7
实施例7示例了根据本申请的一个实施例的第一参考信号子集和第二参考信号子集的示意图;如附图7所示。在实施例7中,所述第一参考信号子集的发送者是第一小区,所述第二参考信号子集的发送者是第二小区,所述第一小区是所述第一节点的服务小区,所述第二小区是所述第一节点的非服务小区。
作为一个实施例,所述第一小区是SpCell。
作为一个实施例,所述第一小区是PCell。
作为一个实施例,所述第二小区是SCell。
作为一个实施例,所述第一小区是所述第一条件被满足之前正在给所述第一节点服务的小区。
作为一个实施例,所述第一小区是在波束失败恢复之前给所述第一节点服务的小区。
作为一个实施例,所述第一小区是所述第一条件被满足之前正在给所述第一节点服务的波束维持小区。
作为一个实施例,所述第一小区是在波束失败恢复之前正在给所述第一节点服务的波束维持小区。
作为一个实施例,所述第二节点是所述第一小区的维持基站。
作为一个实施例,所述M个参考信号中存在一个参考信号的发送者是第三小区,所述第三小区不同于所述第一小区和所述第二小区。
作为一个实施例,所述第三小区是所述第一节点的非服务小区。
作为一个实施例,所述第三小区是所述第一节点的服务小区。
作为一个实施例,所述第一参考信号属于所述第一参考信号子集。
作为一个实施例,所述第一参考信号的发送者是所述第一小区。
作为一个实施例,所述第一参考信号的发送者是所述第一节点的一个服务小区。
作为一个实施例,所述句子所述第二小区是所述第一节点的非服务小区的意思包括:所述第一节点未 针对所述第二小区执行辅服务小区添加(SCell addition)。
作为一个实施例,所述句子所述第二小区是所述第一节点的非服务小区的意思包括:所述第一节点最新接收到的sCellToAddModList不包括所述第二小区。
作为一个实施例,所述句子所述第二小区是所述第一节点的非服务小区的意思包括:所述第一节点最新接收到的sCellToAddModList和sCellToAddModListSCG都不包括所述第二小区。
作为一个实施例,所述句子所述第二小区是所述第一节点的非服务小区的意思包括:所述第一节点未被分配针对所述第二小区的SCellIndex。
作为一个实施例,所述SCellIndex是不大于31的正整数。
作为一个实施例,所述句子所述第二小区是所述第一节点的非服务小区的意思包括:所述第一节点未被分配针对所述第二小区的ServCellIndex。
作为一个实施例,所述ServCellIndex是不大于31的非负整数。
作为一个实施例,所述句子所述第二小区是所述第一节点的非服务小区的意思包括:所述第二小区不是所述第一节点的PCell(Primary serving Cell,主服务小区)。
作为一个实施例,所述句子所述第二小区是所述第一节点的非服务小区的意思包括:所述第一节点与所述第二小区之间没有建立RRC连接。
作为一个实施例,所述句子所述第二小区是所述第一节点的非服务小区的意思包括:所述第一节点的C-RNTI不是由所述第二小区分配的。
作为一个实施例,所述句子所述第一小区是所述第一节点的服务小区的意思包括:所述第一节点针对所述第一小区执行了辅服务小区添加。
作为一个实施例,所述句子所述第一小区是所述第一节点的服务小区的意思包括:所述第一节点最新接收到的sCellToAddModList包括所述第一小区。
作为一个实施例,所述句子所述第一小区是所述第一节点的服务小区的意思包括:所述第一节点最新接收到的sCellToAddModList或sCellToAddModListSCG包括所述第一小区。
作为一个实施例,所述句子所述第一小区是所述第一节点的服务小区的意思包括:所述第一节点被分配了针对所述第一小区的SCellIndex。
作为一个实施例,所述句子所述第一小区是所述第一节点的服务小区的意思包括:所述第一节点被分配了针对所述第一小区的ServCellIndex。
作为一个实施例,所述句子所述第一小区是所述第一节点的服务小区的意思包括:所述第一节点与所述第一小区之间已建立RRC连接。
作为一个实施例,所述句子所述第一小区是所述第一节点的服务小区的意思包括:所述第一节点的C-RNTI是由所述第一小区分配的。
作为一个实施例,所述第一参考信号子集中的任一参考信号的发送者是所述第一节点的一个服务小区。
作为一个实施例,所述第一参考信号子集包括所述M个参考信号中所有被所述第一节点的服务小区发送的参考信号。
作为一个实施例,所述第一节点针对所述第一参考信号子集中的任一参考信号的发送者执行了辅服务小区添加。
作为一个实施例,所述第一节点最新接收到的sCellToAddModList包括所述第一参考信号子集中的任一参考信号的发送者。
作为一个实施例,所述第一节点被分配了针对所述第一参考信号子集中的任一参考信号的发送者的SCellIndex和/或ServCellIndex。
作为一个实施例,所述第一节点与所述第一参考信号子集中的任一参考信号的发送者之间已建立RRC连接。
作为一个实施例,所述第二参考信号子集中的任一参考信号的发送者是所述第一节点的一个非服务小区。
作为一个实施例,所述第二参考信号子集包括所述M个参考信号中所有被所述第一节点的非服务小区发送的参考信号。
作为一个实施例,所述第一节点未针对所述第二参考信号子集中的任一参考信号的发送者执行辅服务小区添加。
作为一个实施例,所述第一节点最新接收到的sCellToAddModList不包括所述第二参考信号子集中的任一参考信号的发送者。
作为一个实施例,所述第一节点未被分配针对所述第二参考信号子集中的任一参考信号的发送者的SCellIndex和/或ServCellIndex。
作为一个实施例,所述第二参考信号子集中的任一参考信号的发送者不是所述第一节点的PCell。
作为一个实施例,所述第一节点与所述第二参考信号子集中的任一参考信号的发送者之间没有建立RRC连接。
实施例8
实施例8示例了根据本申请的一个实施例的第一信号被用于确定第二参考信号的示意图;如附图8所示。在实施例8中,当所述第二参考信号属于所述第二参考信号子集时,所述第一空口资源组包括第一空口资源块和第二空口资源块,所述第一信号包括第一子信号和第二子信号,所述第一子信号在所述第一空口资源块中被发送,所述第二子信号在所述第二空口资源块中被发送,所述第二子信号携带第一信息块,所述第一信息块被用于指示所述第二参考信号。
作为一个实施例,当所述第二参考信号属于所述第二参考信号子集时,所述第一信号被用于确定所述第一参考信号和所述第二参考信号。
作为一个实施例,当所述第二参考信号属于所述第二参考信号子集时,所述第一子信号被用于确定所述第一参考信号,所述第二子信号被用于确定所述第二参考信号。
作为一个实施例,当所述第二参考信号属于所述第二参考信号子集时,所述第一子信号所占用的空口资源被用于确定所述第一参考信号,所述第二子信号被用于指示所述第二参考信号。
作为一个实施例,当所述第二参考信号属于所述第二参考信号子集时,所述第一子信号包括随机接入前导,所述第一子信号包括的所述随机接入前导被用于确定所述第一参考信号。
作为一个实施例,M3个参考信号分别与M3个空口资源组一一对应,所述第一空口资源组是所述M3个空口资源组中的包括所述第一子信号所占用的空口资源的一个空口资源组,所述第一参考信号是所述M3个参考信号中和所述第一空口资源组对应的一个参考信号。
作为一个实施例,所述M个参考信号分别与M个空口资源组一一对应,所述第一空口资源组是所述M个空口资源组中的包括所述第一子信号所占用的空口资源的一个空口资源组,所述第一参考信号是所述M个参考信号中和所述第一空口资源组对应的一个参考信号。
作为一个实施例,所述句子所述第一信号被用于确定第二参考信号的意思包括:所述第一信号包括所述第一子信号和所述第二子信号,所述第一参考信号子集包括M1个参考信号,所述M1个参考信号分别与M1个空口资源组一一对应,所述第一空口资源组是所述M1个空口资源组中的包括所述第一子信号所占用的空口资源的一个空口资源组,所述第一参考信号是所述M个参考信号中和所述第一空口资源组对应的一个参考信号,M1是小于所述M的正整数。
作为一个实施例,所述第一空口资源块和所述第二空口资源块正交。
作为一个实施例,所述第一信息块包括BFR MAC CE。
作为一个实施例,所述第一信息块包括截短的(Truncated)BFR MAC CE。
作为一个实施例,所述第一信息块包括第一域,所述第一信息块中的所述第一域的值等于1。
作为一个实施例,所述第一域是BFR MAC CE中的SP域。
作为一个实施例,所述第一域是截短的(Truncated)BFR MAC CE中的SP域。
作为一个实施例,所述第一信息块包括第二域,所述第一信息块中的所述第二域被用于指示所述第二参考信号。
作为一个实施例,所述第一信息块包括第二域,所述第一信息块中的所述第二域指示所述第二参考信号的索引。
作为一个实施例,所述第二域是针对所述第二小区的。
作为一个实施例,所述第二域是针对所述第一小区的。
作为一个实施例,所述句子所述第一信号被用于确定第二参考信号的意思包括:当所述第二参考信号属于所述第二参考信号子集时,所述第二子信号被用于确定所述第二参考信号。
作为一个实施例,所述句子所述第一信号被用于确定第二参考信号的意思包括:当所述第二参考信号属于所述第二参考信号子集时,所述第二子信号被用于指示所述第二参考信号。
作为一个实施例,所述句子所述第一信号被用于确定第二参考信号的意思包括:所述第一信号所占用的空口资源被用于确定所述第二参考信号。
作为一个实施例,所述句子所述第一信号被用于确定第二参考信号的意思包括:所述第一信号包括第一特征序列,所述第一特征序列被用于确定所述第二参考信号。
作为一个实施例,所述句子所述第一信号被用于确定第二参考信号的意思包括:所述第一信号所占用的空口资源从所述M个参考信号中指示所述第二参考信号。
作为一个实施例,所述句子所述第一信号被用于确定第二参考信号的意思包括:所述M个参考信号分别与M个空口资源组一一对应,所述第一空口资源组是所述M个空口资源组中的包括所述第一信号所占用的空口资源的一个空口资源组,所述第二参考信号是所述M个参考信号中和所述第一空口资源组对应的一个参考信号。
作为一个实施例,所述句子所述第一信号被用于确定第二参考信号的意思包括:所述第一参考信号子集包括M1个参考信号,所述M1个参考信号分别与M1个空口资源组一一对应,所述第一空口资源组是所述M1个空口资源组中的包括所述第一信号所占用的空口资源的一个空口资源组,所述第二参考信号是所述M个参考信号中和所述第一空口资源组对应的一个参考信号,M1是小于所述M的正整数。
作为一个实施例,所述句子所述第一信号被用于确定第二参考信号的意思包括:所述第一信号包括第一比特域,所述第一比特域包括正整数个比特;所述第一比特域的值指示所述第二参考信号。
作为一个实施例,所述句子所述第一信号被用于确定第二参考信号的意思包括:所述第一信号包括所述第一子信号和所述第二子信号,所述第二子信号包括第二比特域,所述第二比特域包括正整数个比特;所述第二比特域的值指示所述第二参考信号。
作为一个实施例,所述句子所述第一信号被用于确定第二参考信号的意思包括:所述第一信号包括所述第一子信号和所述第二子信号,所述第一子信号所占用的空口资源被用于确定所述第二参考信号。
作为一个实施例,所述句子所述第一信号被用于确定第二参考信号的意思包括:所述第一信号包括所述第一子信号和所述第二子信号,所述第一子信号所占用的空口资源从所述M个参考信号中指示所述第二参考信号。
作为一个实施例,所述句子所述第一信号被用于确定第二参考信号的意思包括:所述第一信号包括所述第一子信号和所述第二子信号,所述M个参考信号分别与M个空口资源组一一对应,所述第一空口资源组是所述M个空口资源组中的包括所述第一子信号所占用的空口资源的一个空口资源组,所述第二参考信号是所述M个参考信号中和所述第一空口资源组对应的一个参考信号。
作为一个实施例,所述句子所述第一信号被用于确定第二参考信号的意思包括:所述第一信号包括所述第一子信号和所述第二子信号,所述第一参考信号子集包括M1个参考信号,所述M1个参考信号分别与M1个空口资源组一一对应,所述第一空口资源组是所述M1个空口资源组中的包括所述第一子信号所占用的空口资源的一个空口资源组,所述第二参考信号是所述M个参考信号中和所述第一空口资源组对应的一个参考信号,M1是小于所述M的正整数。
作为一个实施例,所述M个空口资源组分别包括M个PRACH(Physical Random Access Channel,物理随机接入信道)资源。
作为一个实施例,所述M1个空口资源组分别包括M1个PRACH(Physical Random Access Channel,物理随机接入信道)资源。
作为一个实施例,所述句子所述第一信号被用于确定第二参考信号的意思包括:当所述第二参考信号属于所述第一参考信号子集时,所述第一子信号被用于确定所述第二参考信号。
作为一个实施例,所述句子所述第一信号被用于确定第二参考信号的意思包括:当所述第二参考信号属于所述第一参考信号子集时,所述第一信号被用于指示所述第二参考信号。
作为一个实施例,所述句子所述第一信号被用于确定第二参考信号的意思包括:当所述第二参考信号属于所述第一参考信号子集时,所述第一信号占用的空口资源被用于确定第二参考信号。
作为一个实施例,所述句子所述第一信号被用于确定第二参考信号的意思包括:当所述第二参考信号属于所述第一参考信号子集时,所述第一信号包括的前导(Preamble)被用于确定第二参考信号。
作为一个实施例,所述句子所述第一信号被用于确定第二参考信号的意思包括:当所述第二参考信号属于所述第一参考信号子集时,所述第一信号包括的随机接入前导(Random Access)Preamble)被用于确定第二参考信号。
作为一个实施例,所述句子所述第一信号被用于确定第二参考信号的意思包括:当所述第二参考信号属于所述第一参考信号子集时,所述第一空口资源组包括第一空口资源块和第二空口资源块,所述第一信号包括第一子信号和第二子信号,所述第一子信号在所述第一空口资源块中被发送,所述第二子信号在所述第二空口资源块中被发送,所述第一子信号被用于确定所述第二参考信号。
作为上述实施例的一个子实施例,所述第二子信号在所述第二空口资源块中被发送,所述第二子信号携带第二信息块。
作为上述实施例的一个子实施例,所述第二子信号不被用于指示所述第二参考信号。
作为上述实施例的一个子实施例,所述第一子信号占用的空口资源被用于确定第二参考信号。
作为上述实施例的一个子实施例,所述第一子信号包括的前导(Preamble)被用于确定第二参考信号。
作为上述实施例的一个子实施例,所述第一子信号包括的随机接入前导被用于确定第二参考信号。
作为一个实施例,所述第二信息块包括BFR MAC CE。
作为一个实施例,所述第二信息块包括截短的(Truncated)BFR MAC CE。
作为一个实施例,所述第一信息块和所述第二信息块不同。
作为一个实施例,所述第二信息块包括所述第一域,所述第二信息块中的所述第一域的值等于1。
作为一个实施例,所述第二信息块不包括所述第二域。
作为一个实施例,所述第一信息块被用于指示所述第二参考信号,所述第二信息块不被用于指示所述第二参考信号。
实施例9
实施例9示例了根据本申请的一个实施例的第一参考信号的示意图;如附图9所示。
在实施例9中,当所述第二参考信号属于所述第二参考信号子集时,所述第一参考信号属于所述第一参考信号子集,或者所述第一参考信号和所述第一参考信号子集中的一个参考信号是QCL。
作为一个实施例,当所述第二参考信号属于所述第二参考信号子集时,所述第一参考信号属于所述第一参考信号子集。
作为一个实施例,当所述第二参考信号属于所述第二参考信号子集时,所述第一参考信号和所述第一参考信号子集中的一个参考信号是QCL。
作为一个实施例,当所述第二参考信号属于所述第二参考信号子集时,所述第一参考信号和所述第一参考信号子集中的一个参考信号是QCL且对应QCL-TypeD。
作为一个实施例,当所述第二参考信号属于所述第二参考信号子集时,M1个第二类接收质量是所述M个第二类接收质量中与所述第一参考信号子集对应的所有第二类接收质量,目标参考信号是所述第一参考信号子集和目标接收质量对应的参考信号,所述目标接收质量是所述M1个第二类接收质量中之一,M1是小于所述M的正整数;所述第一参考信号是所述目标参考信号,或者所述第一参考信号和所述目标参考信号是QCL。
作为上述实施例的一个子实施例,所述第一参考信号和所述目标参考信号是QCL且对应QCL-TypeD。
作为上述实施例的一个子实施例,所述第一参考信号是所述目标参考信号。
作为上述实施例的一个子实施例,所述第一参考信号和所述目标参考信号是QCL。
作为上述实施例的一个子实施例,所述目标接收质量不差于所述第三阈值。
作为上述实施例的一个子实施例,所述目标接收质量是所述M1个第二类接收质量中的最好第二类接收质量。
作为上述实施例的一个子实施例,所述目标接收质量是所述M1个第二类接收质量中的满足不差于所述第三阈值的最好第二类接收质量。
作为上述实施例的一个子实施例,所述第一节点从所述M1个第二类接收质量中随机选择所述目标接收质量。
作为上述实施例的一个子实施例,从所述M1个第二类接收质量中选择所述目标接收质量是所述第一节点实现相关的。
作为一个实施例,句子所述目标接收质量是所述M1个第二类接收质量中的最好第二类接收质量的意思包括:所述第二类接收质量是RSRP,L1-RSRP,SINR或L1-SINR中之一,所述目标接收质量是所述M1个第二类接收质量中的最大值。
作为一个实施例,句子所述目标接收质量是所述M1个第二类接收质量中的最好第二类接收质量的意思包括:所述第二类接收质量是BLER,所述目标接收质量是所述M1个第二类接收质量中的最小值。
作为一个实施例,句子所述目标接收质量是所述M1个第二类接收质量中的满足不差于所述第三阈值的最好第二类接收质量的意思包括:所述第二类接收质量是RSRP,L1-RSRP,SINR或L1-SINR中之一,所述目标接收质量是所述M1个第二类接收质量中的满足不小于所述第三阈值的最大值。
作为一个实施例,句子所述目标接收质量是所述M1个第二类接收质量中的满足不差于所述第三阈值的最好第二类接收质量的意思包括:所述第二类接收质量是BLER,所述目标接收质量是所述M1个第二类接收质量中的满足不大于所述第三阈值的最小值。
实施例10
实施例10示例了根据本申请的一个实施例的第二信号的示意图;如附图10所示。
在实施例10中,当所述第一条件被满足并且所述第二参考信号属于所述第二参考信号子集时,在第二空口资源组中发送第二信号;其中,所述第二信号被用于确定所述第二参考信号,第三参考信号被用于确定所述第二空口资源组的空域关系,所述第二参考信号和所述第三参考信号是QCL。
作为一个实施例,所述第二空口资源组包括PRACH资源。
作为一个实施例,所述第二空口资源组包括PRACH和上行授予(UL grant)所调度的PUSCH所占用的空口资源中的至少PRACH资源。
作为一个实施例,所述第二空口资源组包括Msg1所占用的空口资源或者Msg3 PUSCH所占用的空口资源中的至少Msg1所占用的空口资源。
作为一个实施例,所述第二空口资源组包括Msg1所占用的空口资源或者RAR上行授予(UL grant)所调度的PUSCH所占用的空口资源中的至少Msg1所占用的空口资源。
作为一个实施例,所述第二空口资源组包括Msg1所占用的空口资源和Msg3 PUSCH所占用的空口资源。
作为一个实施例,所述第二空口资源组包括Msg1所占用的空口资源和RAR(Random Access Response)上行授予(UL grant)所调度的PUSCH所占用的空口资源。
作为一个实施例,所述第二空口资源组包括MsgA所占用的空口资源。
作为一个实施例,所述第二空口资源组包括时频资源。
作为一个实施例,所述第二空口资源组包括时频资源和码域资源。
作为一个实施例,所述第二空口资源组是更高层(higher layer)参数配置的。
作为一个实施例,所述第二空口资源组和所述第二参考信号之间的对应关系是更高层参数配置的。
作为一个实施例,所述第二空口资源组和所述M个参考信号之间的对应关系是更高层参数配置的。
作为一个实施例,配置所述第二空口资源组的更高层参数包括BeamFailureRecoveryConfig IE的candidateBeamRSList域中的全部或部分信息。
作为一个实施例,配置所述第二空口资源组和所述第二参考信号之间的对应关系的更高层参数包括BeamFailureRecoveryConfig IE的candidateBeamRSList域中的全部或部分信息。
作为一个实施例,配置所述第二空口资源组和所述M个参考信号之间的对应关系的更高层参数包括BeamFailureRecoveryConfig IE的candidateBeamRSList域中的全部或部分信息。
作为一个实施例,所述M个参考信号分别与M个空口资源组一一对应,所述第二空口资源组是所述 M个空口资源组中的与所述第二参考信号对应的一个空口资源组。
作为一个实施例,所述第二参考信号子集包括M2个参考信号,所述M2个参考信号分别与M2个空口资源组一一对应,所述第二空口资源组是所述M2个空口资源组中的与所述第二参考信号对应的一个空口资源组,M2是小于所述M的正整数。
作为一个实施例,所述第二信号被用于波束失败请求(Beam Failure Request)。
作为一个实施例,所述第二信号包括基带信号。
作为一个实施例,所述第二信号包括无线信号。
作为一个实施例,所述第二信号包括射频信号。
作为一个实施例,所述第二信号包括第二特征序列。
作为一个实施例,所述第二特征序列包括伪随机(pseudo-random)序列,Zadoff-Chu序列或低PAPR(Peak-to-Average Power Ratio,峰均比)序列中的一种或多种。
作为一个实施例,所述第二特征序列包括CP(Cyclic Prefix,循环前缀)。
作为一个实施例,所述第二信号包括随机接入前导(Random Access Preamble)。
作为一个实施例,所述第二信号包括UCI(Uplink control information,上行控制信息)。
作为一个实施例,所述第二信号包括LRR(Link Recovery Request,链路恢复请求)。
作为一个实施例,所述第二信号包括MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)。
作为一个实施例,所述第二信号包括BFR(Beam Failure Recovery,波束失败恢复)MAC CE或截短的(Truncated)BFR MAC CE。
作为一个实施例,所述第二信号包括随机接入前导或者BFR MAC CE中的至少所述随机接入前导。
作为一个实施例,所述第二信号包括随机接入前导或者截短的(Truncated)BFR MAC CE中的至少所述随机接入前导。
作为一个实施例,所述第二信号包括随机接入前导或者MAC CE中的至少所述随机接入前导。
作为一个实施例,所述第二信号包括Msg1或者Msg3 PUSCH中的至少Msg1。
作为一个实施例,所述第二信号包括MsgA。
作为一个实施例,所述第二空口资源组包括第三空口资源块和第四空口资源块,所述第二信号包括第三子信号和第四子信号,所述第三子信号在所述第三空口资源块中被发送,所述第四子信号在所述第四空口资源块中被发送。
作为一个实施例,所述第三子信号包括Msg1。
作为一个实施例,所述第四子信号包括Msg3 PUSCH。
作为一个实施例,所述第四子信号包括RAR上行授予所调度的PUSCH。
作为一个实施例,所述第二信号包括MsgA,所述第三子信号包括MsgA中的随机接入前导,所述第四子信号包括MsgA中的PUSCH。
作为一个实施例,所述第三子信号包括第二特征序列。
作为一个实施例,所述第三子信号包括随机接入前导(Random Access Preamble)。
作为一个实施例,所述第四子信号包括MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)。
作为一个实施例,所述第四子信号包括BFR(Beam Failure Recovery,波束失败恢复)MAC CE或截短的(Truncated)BFR MAC CE。
作为一个实施例,所述第二参考信号和所述第三参考信号是QCL且对应QCL-TypeD。
作为一个实施例,所述句子所述第二信号被用于确定第二参考信号的意思包括:所述第二信号被用于指示所述第二参考信号。
作为一个实施例,所述句子所述第二信号被用于确定第二参考信号的意思包括:所述第二信号所占用的空口资源被用于确定所述第二参考信号。
作为一个实施例,所述句子所述第二信号被用于确定第二参考信号的意思包括:所述第二信号所占用的空口资源从所述M个参考信号中指示所述第二参考信号。
作为一个实施例,所述句子所述第二信号被用于确定第二参考信号的意思包括:所述第二信号所占用的空口资源从所述M2个参考信号中指示所述第二参考信号。
作为一个实施例,所述句子所述第二信号被用于确定第二参考信号的意思包括:所述M个参考信号分别与M个空口资源组一一对应,所述第二空口资源组是所述M个空口资源组中的包括所述第二信号所占用的空口资源的一个空口资源组,所述第二参考信号是所述M个参考信号中和所述第二空口资源组对应的一个参考信号。
作为一个实施例,所述句子所述第二信号被用于确定第二参考信号的意思包括:所述第二参考信号子集包括M1个参考信号,所述M1个参考信号分别与M1个空口资源组一一对应,所述第二空口资源组是所述M1个空口资源组中的包括所述第二信号所占用的空口资源的一个空口资源组,所述第二参考信号是所述M个参考信号中和所述第二空口资源组对应的一个参考信号,M1是小于所述M的正整数。
作为一个实施例,所述句子所述第二信号被用于确定第二参考信号的意思包括:所述第二信号包括第三比特域,所述第三比特域包括正整数个比特;所述第三比特域的值指示所述第二参考信号。
作为一个实施例,所述句子所述第二信号被用于确定第二参考信号的意思包括:所述第二信号包括第三子信号和第四子信号,所述第三子信号所占用的空口资源被用于确定所述第二参考信号。
作为一个实施例,所述句子所述第二信号被用于确定第二参考信号的意思包括:所述第二信号包括第二特征序列,所述第二特征序列被用于确定所述第二参考信号。
作为一个实施例,所述句子所述第二信号被用于确定第二参考信号的意思包括:所述第二信号包括随机接入前导,所述第二信号包括的所述随机接入前导被用于确定所述第二参考信号。
作为一个实施例,第二条件包括:在所述第一时间窗中未检测到针对所述第一信号的所述响应。
作为一个实施例,第四条件包括:在所述第二时间窗中未检测到针对所述第二信号的所述响应。
作为一个实施例,当所述第四条件和所述第二条件都被满足时,所述第一节点认为波束失败恢复不成功。
作为一个实施例,当所述第四条件和所述第二条件都被满足时,无线链路失败(Radio Link Failure)被触发。
作为一个实施例,当所述第四条件和所述第二条件中仅一个条件被满足时,无线链路失败(Radio Link Failure)不被触发。
作为一个实施例,当所述第四条件和所述第二条件中仅一个条件被满足时,所述第一节点认为波束失败恢复成功。
作为一个实施例,当所述第四条件和所述第二条件都不被满足时,无线链路失败(Radio Link Failure)不被触发。
作为一个实施例,当所述第四条件和所述第二条件都不被满足时,所述第一节点认为波束失败恢复成功。
作为一个实施例,所述第二时间窗和所述第一时间窗是交叠的。
实施例11
实施例11示例了根据本申请的另一个实施例的第二信号的示意图;如附图11所示。
在实施例11中,当所述第一条件和第二条件都被满足并且所述第二参考信号属于所述第二参考信号子集时,在第二空口资源组中发送第二信号;其中,所述第一信号所占用的时域资源被用于确定所述第一时间窗,所述第一时间窗不晚于所述第二信号的起始发送时刻,所述第二信号被用于确定所述第二参考信号,第三参考信号被用于确定所述第二空口资源组的空域关系,所述第二参考信号和所述第三参考信号是QCL;所述第二条件包括:在所述第一时间窗中未检测到针对所述第一信号的所述响应。
作为一个实施例,当且仅当所述第一条件和第二条件都被满足并且所述第二参考信号属于所述第二参考信号子集时,所述第一节点在第二空口资源组中发送第二信号。
作为一个实施例,当所述第一条件被满足,所述第二条件不被满足并且所述第二参考信号属于所述第二参考信号子集时,所述第一节点不在第二空口资源组中发送第二信号。
作为一个实施例,当所述第一条件被满足并且所述第二参考信号属于所述第一参考信号子集时,所述 第一节点不在第二空口资源组中发送第二信号。
作为一个实施例,当在所述第一时间窗中未检测到针对所述第一信号的所述响应时,所述第二条件被满足。
作为一个实施例,当在所述第一时间窗中检测到针对所述第一信号的所述响应时,所述第二条件不被满足。
作为一个实施例,当所述第一计数器的值不小于所述第一阈值时,所述第一条件被满足。
作为一个实施例,当且仅当所述第一计数器的值不小于所述第一阈值时,所述第一条件被满足。
作为一个实施例,当所述第一计数器的值小于所述第一阈值时,所述第一条件不被满足。
作为一个实施例,当所述第一条件不被满足时,所述第一节点不发送所述第一信号。
作为一个实施例,所述句子监测(Monitor)给定信号的意思包括:所述监测是指盲译码,即接收信号并执行译码操作;如果根据CRC(Cyclic Redundancy Check,循环冗余校验)比特确定译码正确,则判断检测(detect)到所述给定信号;否则判断未检测到所述给定信号。
作为上述实施例的一个子实施例,所述给定信号是针对所述第一信号的所述响应。
作为上述实施例的一个子实施例,所述给定信号是所述第一信号。
作为一个实施例,所述监测是指相干检测,即进行相干接收并测量所述相干接收后得到的信号的能量;如果所述相干接收后得到的所述信号的能量大于第一给定阈值,则判断检测到给定信号;否则判断未检测到所述给定信号。
作为上述实施例的一个子实施例,所述给定信号是针对所述第一信号的所述响应。
作为上述实施例的一个子实施例,所述给定信号是所述第一信号。
作为一个实施例,所述句子监测给定信号的意思包括:所述监测是指能量检测,即感知(Sense)无线信号的能量并平均以获得接收能量;如果所述接收能量大于第二给定阈值,则判断检测到所述给定信号;否则判断未检测到所述给定信号。
作为上述实施例的一个子实施例,所述给定信号是针对所述第一信号的所述响应。
作为上述实施例的一个子实施例,所述给定信号是所述第一信号。
作为一个实施例,所述句子监测给定信号的意思包括:根据CRC确定所述给定信号是否被发送。
作为上述实施例的一个子实施例,所述给定信号是针对所述第一信号的所述响应。
作为上述实施例的一个子实施例,所述给定信号是所述第一信号。
作为一个实施例,所述句子监测给定信号的意思包括:在根据CRC判断译码是否正确之前不确定所述给定信号是否被发送。
作为上述实施例的一个子实施例,所述给定信号是针对所述第一信号的所述响应。
作为上述实施例的一个子实施例,所述给定信号是所述第一信号。
作为一个实施例,所述句子监测给定信号的意思包括:根据相干检测确定所述给定信号是否被发送。
作为上述实施例的一个子实施例,所述给定信号是针对所述第一信号的所述响应。
作为上述实施例的一个子实施例,所述给定信号是所述第一信号。
作为一个实施例,所述句子监测给定信号的意思包括:在相干检测之前不确定所述给定信号是否被发送。
作为上述实施例的一个子实施例,所述给定信号是针对所述第一信号的所述响应。
作为上述实施例的一个子实施例,所述给定信号是所述第一信号。
作为一个实施例,所述句子监测给定信号的意思包括:根据能量检测确定所述给定信号是否被发送。
作为上述实施例的一个子实施例,所述给定信号是针对所述第一信号的所述响应。
作为上述实施例的一个子实施例,所述给定信号是所述第一信号。
作为一个实施例,所述句子监测给定信号的意思包括:在能量检测之前不确定所述给定信号是否被发送。
作为上述实施例的一个子实施例,所述给定信号是针对所述第一信号的所述响应。
作为上述实施例的一个子实施例,所述给定信号是所述第一信号。
作为一个实施例,针对所述第一信号的所述响应包括物理层信令。
作为一个实施例,针对所述第一信号的所述响应在PDCCH上被传输。
作为一个实施例,针对所述第一信号的所述响应包括Msg4。
作为一个实施例,针对所述第一信号的所述响应包括冲突解决(Contention Resolution)PDSCH。
作为一个实施例,当所述第二参考信号属于所述第一参考信号子集时,所述第一资源块集合所属的搜索空间集合被recoverySearchSpaceId所标识。
作为一个实施例,当所述第二参考信号属于所述第一参考信号子集时,针对所述第一信号的所述响应的CRC被C-RNTI或MCS(Modulation and Coding Scheme,调制编码方式)-C-RNTI加扰。
作为一个实施例,当所述第二参考信号属于所述第二参考信号子集时,针对所述第一信号的所述响应的CRC被TC-RNTI加扰。
作为一个实施例,当所述第二参考信号属于所述第二参考信号子集时,针对所述第一信号的所述响应的CRC被C-RNTI加扰。
作为一个实施例,当所述第二参考信号属于所述第二参考信号子集时,针对所述第一信号的所述响应的CRC被MsgB-RNTI加扰。
作为一个实施例,当所述第二参考信号属于所述第二参考信号子集时,所述第一资源块集合属于PDCCH CSS(Common search space,公共搜索空间)集合。
作为一个实施例,当所述第二参考信号属于所述第二参考信号子集时,所述第一资源块集合属于Type1-PDCCH CSS(Common search space,公共搜索空间)集合。
作为一个实施例,所述第一节点在所述第一时间窗中检测到针对所述第一信号的所述响应,所述第一计数器被清零。
作为一个实施例,所述第一节点在所述第一时间窗中检测到针对所述第一信号的所述响应,所述第一节点认为波束失败恢复成功。
作为一个实施例,针对所述第一信号的所述响应包括DCI(Downlink control information,下行控制信息)。
作为一个实施例,针对所述第一信号的所述响应的CRC被TC-RNTI加扰。
作为一个实施例,针对所述第一信号的所述响应的CRC被MsgB-RNTI加扰。
作为一个实施例,针对所述第一信号的所述响应的CRC被C-RNTI或MCS(Modulation and Coding Scheme,调制编码方式)-C-RNTI加扰。
作为一个实施例,针对所述第一信号的所述响应的CRC被RA(Random Access)-RNTI加扰。
作为一个实施例,所述第一节点在第一资源块集合中监测针对所述第一信号的响应,所述第一资源块集合在时域上属于所述第一时间窗。
作为一个实施例,所述第一资源块集合由所述第一参考信号的发送者配置。
作为一个实施例,所述第一资源块集合由所述第一小区配置。
作为一个实施例,所述第一资源块集合包括一个搜索空间集合(search space set)。
作为一个实施例,所述第一资源块集合包括一个或多个PDCCH(Physical Downlink Control Channel,物理下行控制信道)候选项(candidate)。
作为一个实施例,所述第一资源块集合包括一个CORESET(COntrol REsource SET,控制资源集合)。
作为一个实施例,所述第一资源块集合所属的搜索空间集合被recoverySearchSpaceId所标识。
作为一个实施例,所述第一资源块集合所属的搜索空间集合的索引等于0。
作为一个实施例,所述第一资源块集合所属的搜索空间集合包括Type1-PDCCH CSS(Common search space,公共搜索空间)集合。
作为一个实施例,所述第一节点用相同的空域滤波器接收所述第一参考信号和在所述第一时间窗中监测针对所述第一信号的响应。
作为一个实施例,所述第一节点假设相同的天线端口QCL参数被用于接收所述第一参考信号和在所述第一时间窗中监测针对所述第一信号的响应。
作为一个实施例,所述第一节点假设在所述第一时间窗中被传输的针对所述第一信号的所述响应和所述第一参考信号是QCL。
作为一个实施例,所述第一节点假设在所述第一时间窗中被传输的针对所述第一信号的响应的DMRS(DeModulation Reference Signals,解调参考信号)端口和所述第一参考信号是QCL。
作为一个实施例,所述第一时间窗包括连续的时域资源。
作为一个实施例,所述第一时间窗的持续时间由更高层信令配置。
作为一个实施例,所述第一时间窗的持续时间由BeamFailureRecoveryConfig IE配置。
作为一个实施例,所述第一时间窗的持续时间由beamFailureRecoveryTimer配置。
作为一个实施例,第一时隙是包括所述第一信号所占用的时域资源的一个时隙(slot),所述第一时隙被用于确定所述第一时间窗。
作为一个实施例,所述第一时隙是时隙n1,所述第一时间窗起始于时隙n1+X1,所述X1是正整数。
作为上述实施例的一个子实施例,所述X1等于4。
作为上述实施例的一个子实施例,所述X1不等于4。
作为上述实施例的一个子实施例,所述X1是由更高层信令配置的。
作为上述实施例的一个子实施例,所述X1是预定义的。
作为一个实施例,当所述第一条件被满足,所述第二条件不被满足并且所述第二参考信号属于所述第二参考信号子集时,无线链路失败(Radio Link Failure)不被触发。
作为一个实施例,当所述第四条件被满足时,无线链路失败(Radio Link Failure)被触发。
作为一个实施例,当所述第四条件被满足时,所述第一节点认为波束失败恢复不成功。
作为一个实施例,当所述第四条件不被满足时,无线链路失败(Radio Link Failure)不被触发。
作为一个实施例,当所述第四条件不被满足时,所述第一节点认为波束失败恢复成功。
作为一个实施例,当所述第四条件不被满足时,所述第一节点认为波束失败恢复成功。
作为一个实施例,当所述第四条件不被满足时,所述第一计数器被清零。
作为一个实施例,所述第二时间窗和所述第一时间窗是正交的。
作为一个实施例,所述第二时间窗的起始时刻不早于所述第一时间窗的终止时刻。
作为一个实施例,在所述第二时间窗中未检测到针对所述第二信号的所述响应,所述第四条件被满足。
作为一个实施例,在所述第二时间窗中检测到针对所述第二信号的所述响应,所述第四条件不被满足。
作为一个实施例,所述第二时间窗包括连续的时域资源。
作为一个实施例,所述第二时间窗的持续时间和所述第一时间窗的持续时间相同。
作为一个实施例,所述第二时间窗的持续时间和所述第一时间窗的持续时间不同。
作为一个实施例,所述第二时间窗的持续时间和所述第一时间窗的持续时间分别由两个更高层参数配置。
作为一个实施例,所述第二时间窗的持续时间由更高层信令配置。
作为一个实施例,所述第二时间窗的持续时间由BeamFailureRecoveryConfig IE配置。
作为一个实施例,所述第二时间窗的持续时间由beamFailureRecoveryTimer配置。
作为一个实施例,第二时隙是包括所述第二信号所占用的时域资源的一个时隙(slot),所述第二时隙被用于确定所述第二时间窗。
作为一个实施例,所述第二时隙是时隙n2,所述第二时间窗起始于时隙n2+X2,所述X2是正整数。
作为上述实施例的一个子实施例,所述X2等于4。
作为上述实施例的一个子实施例,所述X2不等于4。
作为上述实施例的一个子实施例,所述X2是由更高层信令配置的。
作为上述实施例的一个子实施例,所述X2是预定义的。
作为一个实施例,针对所述第二信号的所述响应包括物理层信令。
作为一个实施例,针对所述第二信号的所述响应在PDCCH上被传输。
作为一个实施例,针对所述第二信号的所述响应包括Msg4。
作为一个实施例,针对所述第二信号的所述响应包括冲突解决(Contention Resolution)PDSCH。
作为一个实施例,针对所述第二信号的所述响应包括DCI(Downlink control information,下行控制信息)。
作为一个实施例,针对所述第二信号的所述响应的CRC被TC-RNTI加扰。
作为一个实施例,针对所述第二信号的所述响应的CRC被MsgB-RNTI加扰。
作为一个实施例,针对所述第二信号的所述响应的CRC被C-RNTI或MCS(Modulation and Coding Scheme,调制编码方式)-C-RNTI加扰。
作为一个实施例,针对所述第二信号的所述响应的CRC被RA(Random Access)-RNTI加扰。
作为一个实施例,所述第一节点在第二资源块集合中监测针对所述第二信号的响应,所述第二资源块集合在时域上属于所述第二时间窗。
作为一个实施例,所述第二资源块集合由所述第二参考信号的发送者配置。
作为一个实施例,所述第二资源块集合由所述第二小区配置。
作为一个实施例,所述第二资源块集合由所述第一参考信号的发送者配置。
作为一个实施例,所述第二资源块集合由所述第一小区配置。
作为一个实施例,所述第二资源块集合包括一个搜索空间集合(search space set)。
作为一个实施例,所述第二资源块集合包括一个或多个PDCCH(Physical Downlink Control Channel,物理下行控制信道)候选项(candidate)。
作为一个实施例,所述第二资源块集合包括一个CORESET(COntrol REsource SET,控制资源集合)。
作为一个实施例,所述第二资源块集合所属的搜索空间集合被recoverySearchSpaceId所标识。
作为一个实施例,所述第二资源块集合所属的搜索空间集合的索引等于0。
作为一个实施例,所述第二资源块集合所属的搜索空间集合包括Type1-PDCCH CSS(Common search space,公共搜索空间)集合。
作为一个实施例,所述第一节点用相同的空域滤波器接收所述第二参考信号和在所述第二时间窗中监测针对所述第二信号的响应。
作为一个实施例,所述第一节点假设相同的天线端口QCL参数被用于接收所述第二参考信号和在所述第二时间窗中监测针对所述第二信号的响应。
作为一个实施例,所述第一节点假设在所述第二时间窗中被传输的针对所述第二信号的所述响应和所述第二参考信号是QCL。
作为一个实施例,所述第一节点假设在所述第二时间窗中被传输的针对所述第二信号的响应的DMRS(DeModulation Reference Signals,解调参考信号)端口和所述第二参考信号是QCL。
实施例12
实施例12示例了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;如附图12所示。在附图12中,第一节点设备中的处理装置1200包括第一接收机1201和第一发射机1202。
作为一个实施例,所述第一节点设备是用户设备。
作为一个实施例,所述第一节点设备是中继节点设备。
作为一个实施例,所述第一接收机1201包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一发射机1202包括实施例4中的{天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一。
第一接收机1201:接收第一信息组;接收第一参考信号组;
第一发射机1202:当第一条件被满足时,在第一空口资源组中发送第一信号。
在实施例12中,所述第一信息组被用于指示所述第一参考信号组,针对所述第一参考信号组的测量被用于判断所述第一条件是否被满足;所述第一条件是否被满足被用于确定是否发送所述第一信号;所述第一信号被用于确定第二参考信号,所述第二参考信号是M个参考信号中之一,M是大于1的正整数;所述第一条件包括第一计数器的值不小于第一阈值;第一参考信号被用于确定所述第一空口资源组的空域关系;所述第一参考信号和所述第二参考信号是否QCL与所述第二参考信号是属于第一参考信号子集还是属于第二参考信号子集有关;当所述第二参考信号属于所述第一参考信号子集时,所述第一参考信号和所述第二参考信号是QCL;当所述第二参考信号属于所述第二参考信号子集时,所述第一参考信号和所述 第二参考信号不是QCL;所述第一阈值是正整数,所述第一参考信号子集和所述第二参考信号子集分别是所述M个参考信号的子集;所述第一信息组包括正整数个信息块。
作为一个实施例,所述第一参考信号子集的发送者是第一小区,所述第二参考信号子集的发送者是第二小区,所述第一小区是所述第一节点的服务小区,所述第二小区是所述第一节点的非服务小区。
作为一个实施例,当所述第二参考信号属于所述第二参考信号子集时,所述第一空口资源组包括第一空口资源块和第二空口资源块,所述第一信号包括第一子信号和第二子信号,所述第一子信号在所述第一空口资源块中被发送,所述第二子信号在所述第二空口资源块中被发送,所述第二子信号携带第一信息块,所述第一信息块被用于指示所述第二参考信号。
作为一个实施例,当所述第二参考信号属于所述第二参考信号子集时,所述第一参考信号属于所述第一参考信号子集,或者所述第一参考信号和所述第一参考信号子集中的一个参考信号是QCL。
作为一个实施例,当所述第一条件被满足并且所述第二参考信号属于所述第二参考信号子集时,所述第一发射机1202在第二空口资源组中发送第二信号;其中,所述第二信号被用于确定所述第二参考信号,第三参考信号被用于确定所述第二空口资源组的空域关系,所述第二参考信号和所述第三参考信号是QCL。
作为一个实施例,所述第一接收机1201在第一时间窗中监测针对所述第一信号的响应;当所述第一条件和第二条件都被满足并且所述第二参考信号属于所述第二参考信号子集时,所述第一发射机1202在第二空口资源组中发送第二信号;其中,所述第一信号所占用的时域资源被用于确定所述第一时间窗,所述第一时间窗不晚于所述第二信号的起始发送时刻,所述第二信号被用于确定所述第二参考信号,第三参考信号被用于确定所述第二空口资源组的空域关系,所述第二参考信号和所述第三参考信号是QCL;所述第二条件包括:在所述第一时间窗中未检测到针对所述第一信号的所述响应。
作为一个实施例,所述第一接收机1201接收M个配置信息块和接收所述M个参考信号;其中,所述M个配置信息块分别被用于指示所述M个参考信号。
实施例13
实施例13示例了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图;如附图13所示。在附图13中,第二节点设备中的处理装置1300包括第二发射机1301和第二接收机1302。
作为一个实施例,所述第二节点设备是基站设备。
作为一个实施例,所述第二节点设备是用户设备。
作为一个实施例,所述第二节点设备是中继节点设备。
作为一个实施例,所述第二发射机1301包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二接收机1302包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
第二发射机1301,发送第一信息组;发送第一参考信号子组;
第二接收机1302,在第一空口资源组中监测第一信号;
在实施例13中,所述第一信息组被用于指示第一参考信号组,所述第一参考信号子组中的任一参考信号属于所述第一参考信号组;针对所述第一参考信号组的测量被用于判断第一条件是否被满足;所述第一条件是否被满足被用于确定所述第一信号是否被发送;所述第一信号被用于确定第二参考信号,所述第二参考信号是M个参考信号中之一,M是大于1的正整数;所述第一条件包括第一计数器的值不小于第一阈值;第一参考信号被用于确定所述第一空口资源组的空域关系;所述第一参考信号和所述第二参考信号是否QCL与所述第二参考信号是属于第一参考信号子集还是属于第二参考信号子集有关;当所述第二参考信号属于所述第一参考信号子集时,所述第一参考信号和所述第二参考信号是QCL;当所述第二参考信号属于所述第二参考信号子集时,所述第一参考信号和所述第二参考信号不是QCL;所述第一阈值是正整数,所述第一参考信号子集和所述第二参考信号子集分别是所述M个参考信号的子集;所述第一信息组包括正整数个信息块,所述第一参考信号组包括正整数个参考信号,所述第一参考信号子组包括正整数个参考信号。
作为一个实施例,所述第一参考信号子集的发送者是第一小区,所述第二参考信号子集的发送者是第 二小区,所述第一小区是所述第一信号的发送者的服务小区,所述第二小区是所述第一信号的发送者的非服务小区,所述第二节点是所述第一小区的维持基站。
作为一个实施例,当所述第二参考信号属于所述第二参考信号子集时,所述第一空口资源组包括第一空口资源块和第二空口资源块,所述第一信号包括第一子信号和第二子信号,所述第一子信号在所述第一空口资源块中被发送,所述第二子信号在所述第二空口资源块中被发送,所述第二子信号携带第一信息块,所述第一信息块被用于指示所述第二参考信号。
作为一个实施例,当所述第二参考信号属于所述第二参考信号子集时,所述第一参考信号属于所述第一参考信号子集,或者所述第一参考信号和所述第一参考信号子集中的一个参考信号是QCL。
作为一个实施例,当在所述第一空口资源组中检测到所述第一信号时,所述第二发射机1301在第一时间窗中发送针对所述第一信号的响应;其中,所述第一信号所占用的时域资源被用于确定所述第一时间窗。
作为一个实施例,所述第二发射机1301发送M个配置信息块和发送所述第一参考信号子集;其中,所述M个配置信息块分别被用于指示所述M个参考信号。
作为一个实施例,所述第二接收机1302在第一空口资源集合中的所述第一空口资源组之外的每个空口资源组中监测无线信号;其中,所述第一空口资源组是所述第一空口资源集合中的任一空口资源组,所述第一信号是在所述第一空口资源组中被监测的无线信号。
实施例14
实施例14示例了根据本申请的一个实施例的用于第三节点设备中的处理装置的结构框图;如附图14所示。在附图14中,第三节点设备中的处理装置1400包括第三发射机1401和第三接收机1402。
作为一个实施例,所述第三节点设备是用户设备。
作为一个实施例,所述第三节点设备是中继节点设备。
作为一个实施例,所述第三发射机1401包括实施例4中的{天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第三接收机1402包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
第三发射机1401:发送第二参考信号子组;
第三接收机1402:在第二空口资源组中监测第二信号;
在实施例14中,所述第二参考信号子组中的任一参考信号属于第一参考信号组,针对所述第一参考信号组的测量被用于判断第一条件是否被满足;所述第一条件包括第一计数器的值不小于第一阈值;所述第二信号被用于确定第二参考信号,第三参考信号被用于确定所述第二空口资源组的空域关系,所述第二参考信号和所述第三参考信号是QCL;所述第二参考信号是M个参考信号中之一,M是大于1的正整数;所述第一条件是否被满足以s及所述第二参考信号是属于第一参考信号子集还是属于第二参考信号子集共同被用于确定所述第二信号是否被发送;所述第二信号被发送的必要条件包括:所述第一条件被满足并且所述第二参考信号属于所述第二参考信号子集;所述第一阈值是正整数,所述第一参考信号子集和所述第二参考信号子集分别是所述M个参考信号的子集;所述第一参考信号组包括正整数个参考信号,所述第二参考信号子组包括正整数个参考信号。
作为一个实施例,所述第一参考信号子集的发送者是第一小区,所述第二参考信号子集的发送者是第二小区,所述第一小区是所述第二信号的发送者的服务小区,所述第二小区是所述第二信号的所述发送者的非服务小区,所述第三节点是所述第二小区的维持基站。
作为一个实施例,所述第二信号被发送的必要条件包括:所述第一条件和第二条件都被满足并且所述第二参考信号属于所述第二参考信号子集;所述第二条件包括:在第一时间窗中未检测到针对第一信号的响应;所述第一条件是否被满足被用于确定所述第一信号是否被发送;所述第一信号被用于确定第二参考信号,所述第二参考信号是所述M个参考信号中之一。
作为一个实施例,所述第三接收机1402在第二空口资源集合中的所述第二空口资源组之外的每个空口资源组中监测无线信号;其中,所述第二空口资源组是所述第二空口资源集合中的任一空口资源组,所 述第二信号是在所述第二空口资源组中被监测的无线信号。
作为一个实施例,当在所述第二空口资源组中检测到所述第二信号时,所述第三发射机1401在第二时间窗中发送针对所述第二信号的响应;其中,所述第二信号所占用的时域资源被用于确定所述第二时间窗。
作为一个实施例,所述第三发射机1401发送所述第二参考信号子集。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种被用于无线通信的第一节点设备,其特征在于,包括:
    第一接收机,接收第一信息组;接收第一参考信号组;
    第一发射机,当第一条件被满足时,在第一空口资源组中发送第一信号;
    其中,所述第一信息组被用于指示所述第一参考信号组,针对所述第一参考信号组的测量被用于判断所述第一条件是否被满足;所述第一条件是否被满足被用于确定是否发送所述第一信号;所述第一信号被用于确定第二参考信号,所述第二参考信号是M个参考信号中之一,M是大于1的正整数;所述第一条件包括第一计数器的值不小于第一阈值;第一参考信号被用于确定所述第一空口资源组的空域关系;所述第一参考信号和所述第二参考信号是否QCL与所述第二参考信号是属于第一参考信号子集还是属于第二参考信号子集有关;当所述第二参考信号属于所述第一参考信号子集时,所述第一参考信号和所述第二参考信号是QCL;当所述第二参考信号属于所述第二参考信号子集时,所述第一参考信号和所述第二参考信号不是QCL;所述第一阈值是正整数,所述第一参考信号子集和所述第二参考信号子集分别是所述M个参考信号的子集;所述第一信息组包括正整数个信息块。
  2. 根据权利要求1所述的第一节点设备,其特征在于,当所述第二参考信号属于所述第二参考信号子集时,所述第一空口资源组包括第一空口资源块和第二空口资源块,所述第一信号包括第一子信号和第二子信号,所述第一子信号在所述第一空口资源块中被发送,所述第二子信号在所述第二空口资源块中被发送,所述第二子信号携带第一信息块,所述第一信息块被用于指示所述第二参考信号。
  3. 根据权利要求1或2所述的第一节点设备,其特征在于,当所述第二参考信号属于所述第二参考信号子集时,所述第一参考信号属于所述第一参考信号子集,或者所述第一参考信号和所述第一参考信号子集中的一个参考信号是QCL。
  4. 根据权利要求1至3中任一权利要求所述的第一节点设备,其特征在于,当所述第一条件被满足并且所述第二参考信号属于所述第二参考信号子集时,所述第一发射机在第二空口资源组中发送第二信号;其中,所述第二信号被用于确定所述第二参考信号,第三参考信号被用于确定所述第二空口资源组的空域关系,所述第二参考信号和所述第三参考信号是QCL;
    或者,所述第一接收机在第一时间窗中监测针对所述第一信号的响应;当所述第一条件和第二条件都被满足并且所述第二参考信号属于所述第二参考信号子集时,所述第一发射机在第二空口资源组中发送第二信号;其中,所述第一信号所占用的时域资源被用于确定所述第一时间窗,所述第一时间窗不晚于所述第二信号的起始发送时刻,所述第二信号被用于确定所述第二参考信号,第三参考信号被用于确定所述第二空口资源组的空域关系,所述第二参考信号和所述第三参考信号是QCL;所述第二条件包括:在所述第一时间窗中未检测到针对所述第一信号的所述响应。
  5. 根据权利要求1至4中任一权利要求所述的第一节点设备,其特征在于,所述第一接收机接收M个配置信息块;接收所述M个参考信号;其中,所述M个配置信息块分别被用于指示所述M个参考信号。
  6. 一种被用于无线通信的第二节点设备,其特征在于,包括:
    第二发射机,发送第一信息组;发送第一参考信号子组;
    第二接收机,在第一空口资源组中监测第一信号;
    其中,所述第一信息组被用于指示第一参考信号组,所述第一参考信号子组中的任一参考信号属于所述第一参考信号组;针对所述第一参考信号组的测量被用于判断第一条件是否被满足;所述第一条件是否被满足被用于确定所述第一信号是否被发送;所述第一信号被用于确定第二参考信号,所述第二参考信号是M个参考信号中之一,M是大于1的正整数;所述第一条件包括第一计数器的值不小于第一阈值;第一参考信号被用于确定所述第一空口资源组的空域关系;所述第一参考信号和所述第二参考信号是否QCL与所述第二参考信号是属于第一参考信号子集还是属于第二参考信号子集有关;当所述第二参考信号属于所述第一参考信号子集时,所述第一参考信号和所述第二参考信号是QCL;当所述第二参考信号属于所述第二参考信号子集时,所述第一参考信号和所述第二参考信号不是QCL;所述第一阈值是正整数,所述第一参考信号子集和所述第二参考信号子集分别是所述M个参考信号的子集;所述第一信息组包括正整数个信息块,所述第一参考信号组包括正整数个参考信号,所述第一参考信号子组包括正整数个参考信号。
  7. 一种被用于无线通信的第三节点设备,其特征在于,包括:
    第三发射机,发送第二参考信号子组;
    第三接收机,在第二空口资源组中监测第二信号;
    其中,所述第二参考信号子组中的任一参考信号属于第一参考信号组,针对所述第一参考信号组的测量被用于判断第一条件是否被满足;所述第一条件包括第一计数器的值不小于第一阈值;所述第二信号被用于确定第二参考信号,第三参考信号被用于确定所述第二空口资源组的空域关系,所述第二参考信号和所述第三参考信号是QCL;所述第二参考信号是M个参考信号中之一,M是大于1的正整数;所述第一条件是否被满足以及所述第二参考信号是属于第一参考信号子集还是属于第二参考信号子集共同被用于确定所述第二信号是否被发送;所述第二信号被发送的必要条件包括:所述第一条件被满足并且所述第二参考信号属于所述第二参考信号子集;所述第一阈值是正整数,所述第一参考信号子集和所述第二参考信号子集分别是所述M个参考信号的子集;所述第一参考信号组包括正整数个参考信号,所述第二参考信号子组包括正整数个参考信号。
  8. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信息组;
    接收第一参考信号组;
    当第一条件被满足时,在第一空口资源组中发送第一信号;
    其中,所述第一信息组被用于指示所述第一参考信号组,针对所述第一参考信号组的测量被用于判断所述第一条件是否被满足;所述第一条件是否被满足被用于确定是否发送所述第一信号;所述第一信号被用于确定第二参考信号,所述第二参考信号是M个参考信号中之一,M是大于1的正整数;所述第一条件包括第一计数器的值不小于第一阈值;第一参考信号被用于确定所述第一空口资源组的空域关系;所述第一参考信号和所述第二参考信号是否QCL与所述第二参考信号是属于第一参考信号子集还是属于第二参考信号子集有关;当所述第二参考信号属于所述第一参考信号子集时,所述第一参考信号和所述第二参考信号是QCL;当所述第二参考信号属于所述第二参考信号子集时,所述第一参考信号和所述第二参考信号不是QCL;所述第一阈值是正整数,所述第一参考信号子集和所述第二参考信号子集分别是所述M个参考信号的子集;所述第一信息组包括正整数个信息块。
  9. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信息组;
    发送第一参考信号子组;
    在第一空口资源组中监测第一信号;
    其中,所述第一信息组被用于指示第一参考信号组,所述第一参考信号子组中的任一参考信号属于所述第一参考信号组;针对所述第一参考信号组的测量被用于判断第一条件是否被满足;所述第一条件是否被满足被用于确定所述第一信号是否被发送;所述第一信号被用于确定第二参考信号,所述第二参考信号是M个参考信号中之一,M是大于1的正整数;所述第一条件包括第一计数器的值不小于第一阈值;第一参考信号被用于确定所述第一空口资源组的空域关系;所述第一参考信号和所述第二参考信号是否QCL与所述第二参考信号是属于第一参考信号子集还是属于第二参考信号子集有关;当所述第二参考信号属于所述第一参考信号子集时,所述第一参考信号和所述第二参考信号是QCL;当所述第二参考信号属于所述第二参考信号子集时,所述第一参考信号和所述第二参考信号不是QCL;所述第一阈值是正整数,所述第一参考信号子集和所述第二参考信号子集分别是所述M个参考信号的子集;所述第一信息组包括正整数个信息块,所述第一参考信号组包括正整数个参考信号,所述第一参考信号子组包括正整数个参考信号。
  10. 一种被用于无线通信的第三节点中的方法,其特征在于,包括:
    发送第二参考信号子组;
    在第二空口资源组中监测第二信号;
    其中,所述第二参考信号子组中的任一参考信号属于第一参考信号组,针对所述第一参考信号组的测量被用于判断第一条件是否被满足;所述第一条件包括第一计数器的值不小于第一阈值;所述第二信号被用于确定第二参考信号,第三参考信号被用于确定所述第二空口资源组的空域关系,所述第二参考信号和所述第三参考信号是QCL;所述第二参考信号是M个参考信号中之一,M是大于1的正整数;所述第一条件是否被满足以及所述第二参考信号是属于第一参考信号子集还是属于第二参考信号子集共同被用于确定所述第二信号是否被发送;所述第二信号被发送的必要条件包括:所述第一条件被满足并且所述第二 参考信号属于所述第二参考信号子集;所述第一阈值是正整数,所述第一参考信号子集和所述第二参考信号子集分别是所述M个参考信号的子集;所述第一参考信号组包括正整数个参考信号,所述第二参考信号子组包括正整数个参考信号。
PCT/CN2021/119744 2020-09-25 2021-09-23 一种被用于无线通信的节点中的方法和装置 WO2022063145A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21871514.2A EP4213400A4 (en) 2020-09-25 2021-09-23 METHOD AND APPARATUS FOR USE IN A WIRELESS COMMUNICATIONS NODE
US18/123,994 US20230232250A1 (en) 2020-09-25 2023-03-21 Method and device in nodes used for wireless communication

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011024677 2020-09-25
CN202011024677.0 2020-09-25
CN202110555976.5A CN114257276B (zh) 2020-09-25 2021-05-21 一种被用于无线通信的节点中的方法和装置
CN202110555976.5 2021-05-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/123,994 Continuation US20230232250A1 (en) 2020-09-25 2023-03-21 Method and device in nodes used for wireless communication

Publications (1)

Publication Number Publication Date
WO2022063145A1 true WO2022063145A1 (zh) 2022-03-31

Family

ID=80791128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119744 WO2022063145A1 (zh) 2020-09-25 2021-09-23 一种被用于无线通信的节点中的方法和装置

Country Status (4)

Country Link
US (1) US20230232250A1 (zh)
EP (1) EP4213400A4 (zh)
CN (3) CN115664474A (zh)
WO (1) WO2022063145A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024061249A1 (zh) * 2022-09-24 2024-03-28 上海朗帛通信技术有限公司 一种被用于定位的方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117135560A (zh) * 2022-05-19 2023-11-28 上海朗帛通信技术有限公司 用于定位的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180287860A1 (en) * 2017-03-31 2018-10-04 Futurewei Technologies, Inc. System and Method for Communications Beam Recovery
CN110535592A (zh) * 2018-09-28 2019-12-03 中兴通讯股份有限公司 一种信息传输的方法及相关设备
CN110719156A (zh) * 2018-07-13 2020-01-21 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020062150A1 (en) * 2018-09-29 2020-04-02 Qualcomm Incorporated Quasi co-located reference signals for measurement reporting
CN111357230A (zh) * 2017-09-11 2020-06-30 瑞典爱立信有限公司 统一的ul和dl波束指示

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631984B (zh) * 2017-03-24 2022-11-15 中兴通讯股份有限公司 一种信息配置方法及装置
US20190379509A1 (en) * 2018-06-08 2019-12-12 Google Llc User Equipment-Initiated Phase Tracking for Fifth Generation New Radio
EP3629492A1 (en) * 2018-09-25 2020-04-01 Comcast Cable Communications LLC Beam configuration for secondary cells
CN111106913B (zh) * 2018-11-02 2021-04-27 维沃移动通信有限公司 无线通信的方法和设备
CN111147203B (zh) * 2018-11-02 2021-08-27 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180287860A1 (en) * 2017-03-31 2018-10-04 Futurewei Technologies, Inc. System and Method for Communications Beam Recovery
CN111357230A (zh) * 2017-09-11 2020-06-30 瑞典爱立信有限公司 统一的ul和dl波束指示
CN110719156A (zh) * 2018-07-13 2020-01-21 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110535592A (zh) * 2018-09-28 2019-12-03 中兴通讯股份有限公司 一种信息传输的方法及相关设备
WO2020062150A1 (en) * 2018-09-29 2020-04-02 Qualcomm Incorporated Quasi co-located reference signals for measurement reporting

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
3GPP TS36
3GPP TS37
3GPP TS38
3GPP TS38. 213
3GPP TS38.213
3GPP TS38.214
3GPP TS38.331
HUAWEI, HISILICON: "Need for new MAC CEs for UL and DL beam management", 3GPP DRAFT; R2-1712561, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, Nevada, USA; 20171127 - 20171201, 17 November 2017 (2017-11-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051371523 *
See also references of EP4213400A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024061249A1 (zh) * 2022-09-24 2024-03-28 上海朗帛通信技术有限公司 一种被用于定位的方法和装置

Also Published As

Publication number Publication date
CN115664473A (zh) 2023-01-31
US20230232250A1 (en) 2023-07-20
CN114257276A (zh) 2022-03-29
CN115664474A (zh) 2023-01-31
CN114257276B (zh) 2022-10-28
EP4213400A1 (en) 2023-07-19
EP4213400A4 (en) 2024-05-29

Similar Documents

Publication Publication Date Title
US11424882B2 (en) Method and device for wireless communication in UE and base station
WO2020233405A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20230232250A1 (en) Method and device in nodes used for wireless communication
CN109257075B (zh) 一种用于无线通信的用户设备、基站中的方法和装置
WO2022161233A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113271673B (zh) 被用于无线通信的用户设备、基站中的方法和装置
US20230208582A1 (en) Method and device in nodes used for wireless communication
US20220141909A1 (en) Method and device in communication nodes for wireless communication
CN109152011B (zh) 一种用于无线通信的用户设备、基站中的方法和装置
CN114337741B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020192350A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022121830A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022100639A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022073490A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023020453A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023040922A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN114374497B (zh) 一种被用于无线通信的节点中的方法和装置
CN113938170B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2023066082A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022121831A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022057817A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN114268968A (zh) 一种被用于无线通信的节点中的方法和装置
CN114553272A (zh) 一种被用于无线通信的通信节点中的方法和装置
CN114765490A (zh) 一种被用于无线通信的节点中的方法和装置
CN116155459A (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021871514

Country of ref document: EP

Effective date: 20230410