WO2022121830A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2022121830A1
WO2022121830A1 PCT/CN2021/135657 CN2021135657W WO2022121830A1 WO 2022121830 A1 WO2022121830 A1 WO 2022121830A1 CN 2021135657 W CN2021135657 W CN 2021135657W WO 2022121830 A1 WO2022121830 A1 WO 2022121830A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
recovery process
link recovery
signal set
signal
Prior art date
Application number
PCT/CN2021/135657
Other languages
English (en)
French (fr)
Inventor
武露
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2022121830A1 publication Critical patent/WO2022121830A1/zh
Priority to US18/204,391 priority Critical patent/US20230328552A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment

Definitions

  • the present application relates to a transmission method and apparatus in a wireless communication system, in particular to a wireless signal transmission method and apparatus in a wireless communication system supporting a cellular network.
  • Massive MIMO Multi-Input Multi-Output
  • Massive MIMO multiple antennas use beamforming to form narrower beams pointing in a specific direction to improve communication quality.
  • the beam failure recovery (beam failure recovery) mechanism in order to cope with the rapid recovery when the beam fails, the beam failure recovery (beam failure recovery) mechanism has been adopted, that is, the UE (User Equipment, user equipment) measures the service beam during the communication process. When the service beam is found When the quality is not good, the beam failure recovery mechanism is activated, and the base station then replaces the serving beam.
  • the present application discloses a solution. It should be noted that although the above description uses massive MIMO and beam-based communication scenarios as examples, the present application is also applicable to other scenarios such as LTE multi-antenna systems, and achieves techniques similar to those used in massive MIMO and beam-based communication scenarios Effect. In addition, a unified solution for different scenarios (including but not limited to massive MIMO, beam-based communication and LTE multi-antenna systems) also helps reduce hardware complexity and cost. In the case of no conflict, the embodiments and features of the embodiments in any node of the present application may be applied in any other node, and vice versa. The embodiments of the present application and features in the embodiments may be combined with each other arbitrarily, provided that there is no conflict.
  • the interpretation of the terms in this application refers to the definition of the normative protocol of the IEEE (Institute of Electrical and Electronics Engineers, Institute of Electrical and Electronics Engineers).
  • the present application discloses a method used in a first node of wireless communication, which is characterized by comprising:
  • the first target link recovery process is the first link recovery process
  • the first target signal set includes the second signal set
  • the The first target link recovery process is a second link recovery process
  • the first signal set and the second signal set respectively include at least one reference signal associated with the first cell, and there is at least one reference signal that only belongs to one of the first signal set and the second signal set
  • the first link recovery procedure and the second link recovery procedure include random access procedures on the same cell.
  • the problem to be solved in this application is: for multi-TRP, when a beam failure occurs, how to quickly restore the beam is a key problem that needs to be studied.
  • the essence of the above method is that, for the first cell, the link failure for the first signal set corresponds to the first link recovery process, and the link failure for the second signal set corresponds to the second link recovery process, Both the first link recovery procedure and the second link recovery procedure include random access procedures.
  • the advantage of using the above method is that, for the same cell, by monitoring multiple link failures, the probability of communication interruption in this cell is reduced, and the communication quality of the user is improved.
  • only one link recovery process among the first link recovery process and the second link recovery process includes a contention-free random access process.
  • the first target link recovery process includes: sending a first target message; when the first target link recovery process is the first link recovery process, the The first target message is a first type of message; when the first target link recovery process is the second link recovery process, the first target message is a second type of message.
  • the phrase determining the first target link failure according to the measurement on the first target signal set includes: as the reception quality of each reference signal in the first target signal set In response to a response lower than the first threshold, a first-type indication for updating the first counter is reported to a higher layer; it is determined that the first target link fails according to the first counter being not less than the first value.
  • the second target signal set when the first target signal set includes the first signal set, the second target signal set includes the second signal set, and the second target link recovery process is the second link Recovery process; when the first target signal set includes the second signal set, the second target signal set includes the first signal set, and the second target link recovery process is the first link road recovery process.
  • the first target link recovery process and the second target link recovery process include a same time point.
  • the second target link recovery process is determined to be triggered according to the satisfaction of the first condition set;
  • the first condition set includes: the first target link recovery process is in the The behavior determines that a second target link recovery procedure was initiated before failing and was not successfully completed, the first target link recovery procedure is the second link recovery procedure, and the second target link recovery procedure is the first target link recovery procedure Link recovery process.
  • the present application discloses a method used in a second node for wireless communication, which is characterized by comprising:
  • the first target link recovery process when the measurement on the first target signal set is used to determine that the first target link fails, the first target link recovery process is started; when the first target signal set includes the first signal set When the first target link recovery process is the first link recovery process; when the first target signal set includes the second signal set, the first target link recovery process is the second link recovery process ; the first signal set and the second signal set respectively include at least one reference signal associated with the first cell, and there is at least one reference signal belonging to both the first signal set and the second signal set only One of the above; the first link recovery process and the second link recovery process include a random access process on the same cell.
  • only one link recovery process among the first link recovery process and the second link recovery process includes a contention-free random access process.
  • the first target link recovery process includes: receiving a first target message; when the first target link recovery process is the first link recovery process, the The first target message is a first type of message; when the first target link recovery process is the second link recovery process, the first target message is a second type of message.
  • the second target link recovery process is started; when the first target signal set includes the first target signal set When the signal set is set, the second target signal set includes the second signal set, and the second target link recovery process is the second link recovery process; when the first target signal set includes the first target signal set When there are two signal sets, the second target signal set includes the first signal set, and the second target link recovery process is the first link recovery process.
  • the first target link recovery process and the second target link recovery process include a same point in time.
  • the second target link recovery process when the first condition set is satisfied, the second target link recovery process is triggered; the first condition set includes: the first target link recovery process is in The behavior determines that a second target link recovery procedure was initiated before failing and was not successfully completed, the first target link recovery procedure is the second link recovery procedure, and the second target link recovery procedure is the The first link recovery process.
  • the first response is used to determine that at least one of the first target link recovery process and the second target link recovery process is successfully completed.
  • the present application discloses a first node device used for wireless communication, which is characterized by comprising:
  • a first receiver receiving a first target signal set; determining that the first target link fails according to the measurement on the first target signal set;
  • the first transceiver in response to the behavior determining that the first target link fails, initiates a first target link recovery process
  • the first target link recovery process is the first link recovery process
  • the first target signal set includes the second signal set
  • the The first target link recovery process is a second link recovery process
  • the first signal set and the second signal set respectively include at least one reference signal associated with the first cell, and there is at least one reference signal that only belongs to one of the first signal set and the second signal set
  • the first link recovery procedure and the second link recovery procedure include random access procedures on the same cell.
  • the present application discloses a second node device used for wireless communication, which is characterized by comprising:
  • a second transceiver monitoring whether the first target link recovery process is started
  • the first target link recovery process when the measurement on the first target signal set is used to determine that the first target link fails, the first target link recovery process is started; when the first target signal set includes the first signal set When the first target link recovery process is the first link recovery process; when the first target signal set includes the second signal set, the first target link recovery process is the second link recovery process ; the first signal set and the second signal set respectively include at least one reference signal associated with the first cell, and there is at least one reference signal belonging to both the first signal set and the second signal set only One of the above; the first link recovery process and the second link recovery process include a random access process on the same cell.
  • the present application has the following advantages:
  • FIG. 1 shows a flowchart of a first target signal set, a first target link failure and a first target link recovery process according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a radio protocol architecture for the user plane and the control plane according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG. 5 shows a flowchart of wireless transmission according to an embodiment of the present application
  • FIG. 6 shows a schematic diagram of a first link recovery process and a second link recovery process according to an embodiment of the present application
  • FIG. 7 shows a schematic diagram of a first link recovery process and a second link recovery process according to another embodiment of the present application.
  • FIG. 8 shows a schematic diagram of a first target link failure according to an embodiment of the present application.
  • FIG. 9 shows a schematic diagram of a second target link recovery process according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of a second target link recovery process according to another embodiment of the present application.
  • FIG. 11 shows a schematic diagram of a first response according to an embodiment of the present application.
  • FIG. 12 shows a structural block diagram of a processing apparatus used in a first node device according to an embodiment of the present application
  • FIG. 13 shows a structural block diagram of a processing apparatus for a device in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of a first target signal set, a first target link failure, and a first target link recovery process according to an embodiment of the present application, as shown in FIG. 1 .
  • each block represents a step.
  • the order of the steps in the blocks does not represent a specific chronological relationship between the various steps.
  • the first node in the present application receives the first target signal set in step 101; in step 102, it is determined that the first target link fails according to the measurement on the first target signal set; in step 102 In step 103, as a response to the failure of the first target link determined by the behavior, a first target link recovery process is started; wherein, when the first target signal set includes the first signal set, the first target link The recovery process is a first link recovery process; when the first target signal set includes a second signal set, the first target link recovery process is a second link recovery process; the first signal set and all The second signal set respectively includes at least one reference signal associated with the first cell, and there is at least one reference signal belonging to only one of the first signal set and the second signal set; the first chain The path recovery process and the second link recovery process include a random access process on the same cell.
  • the first signal set includes CSI-RS (Channel State Information-Reference Signal, channel state information reference signal).
  • CSI-RS Channel State Information-Reference Signal, channel state information reference signal
  • the first signal set includes periodic (Periodic) CSI-RS.
  • the first signal set includes at least one of CSI-RS or SS/PBCH (Synchronization Signal/Physical Broadcast CHannel) block (Block).
  • CSI-RS CSI-RS
  • SS/PBCH Synchronization Signal/Physical Broadcast CHannel
  • the second signal set includes CSI-RS (Channel State Information-Reference Signal, channel state information reference signal).
  • CSI-RS Channel State Information-Reference Signal, channel state information reference signal
  • the second signal set includes periodic (Periodic) CSI-RS.
  • the second signal set includes at least one of CSI-RS or SS/PBCH (Synchronization Signal/Physical Broadcast CHannel) block (Block).
  • CSI-RS CSI-RS
  • SS/PBCH Synchronization Signal/Physical Broadcast CHannel
  • the first signal set and the second signal set are used for beam failure detection (Beam Failure Detection) in a beam failure recovery (Beam Failure Recovery) mechanism.
  • beam failure recovery beam failure recovery
  • the first set of signals is
  • the second set of signals is
  • the first set of signals is configured by failureDetectionResources.
  • the second set of signals is configured by failureDetectionResources.
  • the first signal set includes a reference signal indicated by a TCI state of a corresponding CORESET(s) used for monitoring a PDCCH (Physical Downlink Control CHannel, physical downlink control channel).
  • PDCCH Physical Downlink Control CHannel, physical downlink control channel
  • the second signal set includes reference signals indicated by the TCI status of the corresponding CORESET(s) used to monitor the PDCCH.
  • the first signal set includes reference signals indicated by a TCI state corresponding to the first CORESET set
  • the second signal set includes reference signals indicated by a TCI state corresponding to the second CORESET set.
  • the name of the index of the first CORESET set includes CORESETPoolIndex
  • the name of the index of the second CORESET set includes CORESETPoolIndex
  • the name of the index of the first CORESET set includes CORESET
  • the name of the index of the second CORESET set includes CORESET
  • the first set of signals includes reference signals indicated by the TCI status of CORESET(s) associated with the first set of search spaces
  • the second set of signals includes CORESET(s) associated with the second set of search spaces s) the reference signal indicated by the TCI status.
  • the first CORESET set includes at least one CORESET in the second CORESET set.
  • the first CORESET set includes the second CORESET set.
  • any CORESET in the first CORESET set does not belong to the second CORESET set.
  • the first set of search spaces includes at least one search space in the second set of search spaces.
  • the first set of search spaces includes the second set of search spaces.
  • any search space in the first set of search spaces does not belong to the second set of search spaces.
  • one TCI state is used to indicate a positive integer number of reference signals.
  • a reference signal indicated by a TCI state includes at least one of CSI-RS, SRS, or SS/PBCH blocks.
  • a reference signal indicated by a TCI state includes a reference signal whose type is QCL-TypeD.
  • a reference signal indicated by a TCI state is used to determine a QCL (Quasi-Co-Located, Quasi-Co-Located) parameter.
  • a reference signal indicated by a TCI state is used to determine spatial filtering.
  • a reference signal indicated by a TCI state is used to determine spatial reception parameters.
  • a reference signal indicated by a TCI state is used to determine the spatial transmission parameters.
  • the first cell is SpCell.
  • the first cell is a PCell.
  • the first cell is a PSCell.
  • the first cell is a serving cell of the first node.
  • the first signal set includes a positive integer number of reference signals
  • the second signal set includes a positive integer number of reference signals
  • the reference signal is one CSI-RS resource or one SS/PBCH block.
  • the reference signal is a CSI-RS resource or an SS/PBCH block indicated by an SS/PBCH block index.
  • the reference signal is a CSI-RS resource.
  • the reference signal is an SS/PBCH block.
  • the reference signal is an SS/PBCH block indicated by an SS/PBCH block index.
  • the first signal set includes at least one reference signal associated with a serving cell other than the first cell.
  • the first set of signals consists of reference signals associated only to the first cell.
  • the second signal set includes at least one reference signal associated with a serving cell other than the first cell.
  • the second set of signals consists of reference signals associated only to the first cell.
  • the first set of signals includes the second set of signals.
  • the first set of signals includes at least one reference signal in the second set of signals.
  • any reference signal in the first signal set does not belong to the second signal set.
  • the first signal set and the second signal set are respectively sent by different TRPs.
  • At least one reference signal in the first signal set and the second signal set are sent by the same TRP.
  • At least one reference signal in the first signal set and the second signal set are sent by different TRPs.
  • the first signal set and the second signal set are configured by the same IE (Information Element, information element).
  • the first signal set and the second signal set are respectively configured by two IEs.
  • the name of the IE used to configure the first signal set includes BeamFailureRecovery.
  • the name of the IE used to configure the first signal set includes BeamFailure.
  • the name of the IE used to configure the second signal set includes BeamFailureRecovery.
  • the name of the IE used to configure the second signal set includes BeamFailure.
  • the first signal set corresponds to a first index
  • the first index is a non-negative integer
  • the second signal set corresponds to a second index
  • the second index is a non-negative integer.
  • the first index and the second index are two different non-negative integers.
  • the first index and the second index respectively correspond to two TRPs of the first cell.
  • the first index is an index of the first set of signals.
  • the second index is an index of the second set of signals.
  • the first index is an index of the first CORESET set.
  • the second index is an index of the second CORESET set.
  • the first index is an index of the first set of search spaces.
  • the second index is an index of the second set of search spaces.
  • the name of the first index includes set.
  • the name of the second index includes set.
  • the name of the first index includes SET.
  • the name of the second index includes SET.
  • the name of the first index includes CORESETPoolIndex.
  • the name of the second index includes CORESETPoolIndex.
  • the name of the first index includes CORESET.
  • the name of the second index includes CORESET.
  • the name of the first index includes TRP.
  • the name of the second index includes TRP.
  • the name of the first index includes TCI.
  • the name of the second index includes TCI.
  • the name of the first index includes tci.
  • the name of the second index includes tci.
  • the first CORESET set includes all CORESETs whose CORESETPoolIndex value is equal to 0.
  • the first CORESET set includes all CORESETs whose CORESETPoolIndex value is equal to 1.
  • the second CORESET set includes all CORESETs whose CORESETPoolIndex value is equal to 0.
  • the second CORESET set includes all CORESETs whose CORESETPoolIndex value is equal to 1.
  • the given reference signal is a reference signal associated with a given cell, and a PCI (Physical Cell Identity, physical cell identity) of the given cell is used to generate the given reference signal.
  • PCI Physical Cell Identity, physical cell identity
  • the given cell is the first cell.
  • the given cell is a serving cell other than the first cell.
  • the given reference signal is a reference signal associated to a given cell, and the given reference signal and the SSB of the given cell are QCL.
  • the given cell is the first cell.
  • the given cell is a serving cell other than the first cell.
  • the given reference signal is a reference signal associated with a given cell, and the given reference signal is transmitted by the given cell.
  • the given cell is the first cell.
  • the given cell is a serving cell other than the first cell.
  • the given reference signal is a reference signal associated with a given cell
  • the air interface resource occupied by the given reference signal is indicated by a configuration signaling
  • the RLC A Radio Link Control (Radio Link Control, Radio Link Control) bearer (Bearer) is configured through a CellGroupConfig IE
  • the SpCell Special Cell, special cell
  • SCell Secondary Cell
  • the given cell is the first cell.
  • the given cell is a serving cell other than the first cell.
  • the given reference signal is a reference signal associated with a given cell
  • the air interface resource occupied by the given reference signal is indicated by a configuration signaling
  • the RLC A Radio Link Control (Radio Link Control, radio link control) bearer (Bearer) is configured through a CellGroupConfig IE
  • the Spcell Specific cell, special cell configured by the one CellGroupConfig IE includes the given cell.
  • the given cell is the first cell.
  • the given cell is a serving cell other than the first cell.
  • the configuration signaling includes higher layer signaling.
  • the configuration signaling includes RRC signaling.
  • the method in the first node includes:
  • the first information group is used to indicate the first signal set.
  • the first receiver receives a first set of information; wherein the first set of information is used to indicate the first set of signals.
  • the method in the first node includes:
  • the second information group is used to indicate the second signal set.
  • the first receiver receives a second set of information; wherein the second set of information is used to indicate the second set of signals.
  • the first information group is carried by RRC signaling.
  • the second information group is carried by RRC signaling.
  • the first information group includes all or part of fields (Fields) in an IE.
  • the second information group includes all or part of the fields in an IE.
  • the first information group and the first information group belong to the same IE.
  • the first information group and the first information group respectively include two IEs.
  • the first information group explicitly indicates the first signal set.
  • the first information group implicitly indicates the first signal set.
  • the first information group indicates the TCI (Transmission Configuration Indicator, sending configuration indication) state (State) corresponding to the CORESET(s) used when monitoring the PDCCH (Physical Downlink Control CHannel, physical downlink control channel).
  • TCI Transmission Configuration Indicator, sending configuration indication
  • State State corresponding to the CORESET(s) used when monitoring the PDCCH (Physical Downlink Control CHannel, physical downlink control channel).
  • the first information group indicates an index of each reference signal in the first signal set.
  • the first information group includes configuration information of each reference signal in the first signal set.
  • the configuration information of any reference signal in the first signal set includes a period, a time domain offset (offset), occupied time domain resources, occupied frequency domain resources, and occupied code domain At least one of resource, cyclic shift, OCC (Orthogonal Cover Code, orthogonal mask), occupied antenna port group, sequence (sequence), TCI state, spatial filtering, spatial reception parameters, and spatial transmission parameters one.
  • a time domain offset offset
  • occupied time domain resources occupied frequency domain resources
  • occupied code domain At least one of resource, cyclic shift, OCC (Orthogonal Cover Code, orthogonal mask), occupied antenna port group, sequence (sequence), TCI state, spatial filtering, spatial reception parameters, and spatial transmission parameters one.
  • the first information group includes S1 information blocks
  • the first signal set includes S1 reference signals
  • the S1 information blocks are respectively used to indicate the S1 reference signals
  • S1 is greater than A positive integer of 1.
  • the second information group explicitly indicates the second signal set.
  • the second information group implicitly indicates the second signal set.
  • the second information group indicates the TCI state of the corresponding CORESET(s) used when monitoring the PDCCH (Physical Downlink Control CHannel, physical downlink control channel).
  • the first information group indicates a first CORESET set
  • the second information group indicates a second CORESET set
  • the first information group indicates the TCI state corresponding to the first CORESET set
  • the second information group indicates the TCI state corresponding to the second CORESET set.
  • the first set of information indicates a first set of search spaces
  • the second set of information indicates a second set of search spaces
  • the second information group indicates an index of each reference signal in the second signal set.
  • the second information group includes configuration information of each reference signal in the second signal set.
  • the configuration information of any reference signal in the second signal set includes a period, a time domain offset (offset), occupied time domain resources, occupied frequency domain resources, and occupied code domain At least one of resource, cyclic shift, OCC (Orthogonal Cover Code, orthogonal mask), occupied antenna port group, sequence (sequence), TCI state, spatial filtering, spatial reception parameters, and spatial transmission parameters one.
  • a time domain offset offset
  • occupied time domain resources occupied frequency domain resources
  • occupied code domain At least one of resource, cyclic shift, OCC (Orthogonal Cover Code, orthogonal mask), occupied antenna port group, sequence (sequence), TCI state, spatial filtering, spatial reception parameters, and spatial transmission parameters one.
  • the second information group includes S2 information blocks
  • the second signal set includes S2 reference signals
  • the S2 information blocks are respectively used to indicate the S2 reference signals
  • S2 is greater than A positive integer of 1.
  • whether the first target link recovery process is the first link recovery process or the first link recovery process is determined according to whether the first target signal set is the first signal set or the second signal set Second link recovery process.
  • the same cell is the first cell.
  • the same cell is a serving cell other than the first cell.
  • the same cell is SpCell.
  • the types of random access procedures respectively included in the first link recovery process and the second link recovery process are different.
  • the types of the random access procedure include a contention-based random access procedure and a contention-free random access procedure.
  • the types of the random access procedure include a four-step (4-step) random access procedure and a two-step (2-step) random access procedure.
  • the types of the random access procedure include a contention-based random access procedure, a contention-free random access procedure, a four-step (4-step) random access procedure, and a two-step (2-step) random access procedure. access process.
  • the type of the random access procedure includes the format of the BFR MAC CE.
  • only one link recovery process among the first link recovery process and the second link recovery process includes a two-step random access process.
  • the formats of the BFR MAC CEs respectively included in the first link recovery process and the second link recovery process are different.
  • the formats of the truncated BFR MAC CEs respectively included in the first link recovery process and the second link recovery process are different.
  • At least the second link recovery process in the first link recovery process or the second link recovery process includes a BFR MAC CE or a truncated BFR MAC CE.
  • the first link recovery process includes a contention-based random access process or a contention-free random access process.
  • the second link recovery procedure includes a contention-based random access procedure.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG. 2 .
  • FIG. 2 illustrates a network architecture 200 of LTE (Long-Term Evolution, Long Term Evolution), LTE-A (Long-Term Evolution Advanced, Enhanced Long Term Evolution) and future 5G systems.
  • the network architecture 200 of LTE, LTE-A and future 5G systems is called EPS (Evolved Packet System, Evolved Packet System) 200.
  • EPS Evolved Packet System, Evolved Packet System
  • 5G NR or LTE network architecture 200 may be called 5GS (5G System)/EPS (Evolved Packet System, evolved grouping system) 200 or some other suitable term.
  • the 5GS/EPS 200 may include one or more UE (User Equipment, user equipment) 201, a UE 241 for sidelink (Sidelink) communication with the UE 201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G CoreNetwork, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Server)/UDM (Unified Data Management, Unified Data Management) 220 and Internet Services 230.
  • 5GS/EPS200 Interconnections with other access networks are possible, but these entities/interfaces are not shown for simplicity.
  • the 5GS/EPS 200 provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks that provide circuit-switched services.
  • the NG-RAN 202 includes an NR (New Radio) Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201 .
  • gNBs 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • the gNB 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmit Receive Point) or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, MP3 players), cameras, game consoles, drones, aircraft, narrowband physical network devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any other similarly functional device.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management domain
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway, service gateway)/UPF (User Plane Function, user plane function) 212 and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • the MME/AMF/SMF 211 is the control node that handles signaling between the UE 201 and the 5GC/EPC 210 .
  • MME/AMF/SMF 211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through the S-GW/UPF212, and the S-GW/UPF212 itself is connected to the P-GW/UPF213.
  • the P-GW provides UE IP address allocation and other functions.
  • the P-GW/UPF 213 is connected to the Internet service 230 .
  • the Internet service 230 includes Internet protocol services corresponding to operators, and may specifically include Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching (Packet switching) services.
  • the first node in this application includes the UE201.
  • the first node in this application includes the UE241.
  • the second node in this application includes the gNB203.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to an embodiment of the present application, as shown in FIG. 3 .
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300, showing three layers for a first communication node device (UE, gNB or RSU in V2X) and a second The radio protocol architecture of the control plane 300 between communication node devices (gNB, UE or RSU in V2X), or between two UEs: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY301.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device, or between two UEs.
  • L2 layer 305 includes MAC (Medium Access Control, Media Access Control) sublayer 302, RLC (Radio Link Control, Radio Link Layer Control Protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, Packet Data Convergence Protocol) sublayer 304, the sublayers are terminated at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides for providing security by encrypting data packets, as well as providing handoff support for the first communication node device between the second communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer packets, retransmission of lost packets, and reordering of packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, Radio Resource Control) sublayer 306 in the layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the communication between the second communication node device and the first communication node device.
  • the RRC signaling between them is used to configure the lower layers.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer), the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350
  • L1 layer layer 1
  • L2 layer layer 2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 is also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer). , to support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side and another terminating in a connection Application layer at one end (eg, remote UE, server, etc.).
  • the radio protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the radio protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the first target signal set is generated in the PHY 301 .
  • the first target signal set is generated in the PHY 351 .
  • the second target signal set is generated in the PHY 301 .
  • the second target signal set is generated in the PHY 351 .
  • the first target link failure is determined in the MAC sublayer 302 .
  • the first target link failure is determined in the MAC sublayer 302 and the PHY 301 .
  • the first target link failure is determined in the MAC sublayer 352 .
  • the first target link failure is determined in the MAC sublayer 352 and the PHY 351 .
  • the second target link failure is determined in the MAC sublayer 302 .
  • the second target link failure is determined in the MAC sublayer 302 and the PHY 301 .
  • the second target link failure is determined in the MAC sublayer 352 .
  • the second target link failure is determined in the MAC sublayer 352 and the PHY 351 .
  • the first target link procedure is determined in the MAC sublayer 302 .
  • the first target link procedure is determined in the MAC sublayer 302 and the PHY 301 .
  • the first target link procedure is determined in the MAC sublayer 352 .
  • the first target link procedure is determined in the MAC sublayer 352 and the PHY 351 .
  • the second target link procedure is determined in the MAC sublayer 302 .
  • the second target link process is determined in the MAC sublayer 302 and the PHY 301 .
  • the second target link procedure is determined in the MAC sublayer 352 .
  • the second target link procedure is determined in the MAC sublayer 352 and the PHY 351 .
  • Embodiment 4 illustrates a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application, as shown in FIG. 4 .
  • FIG. 4 is a block diagram of a first communication device 410 and a second communication device 450 that communicate with each other in an access network.
  • the first communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • Second communication device 450 includes controller/processor 459, memory 460, data source 467, transmit processor 468, receive processor 456, multiple antenna transmit processor 457, multiple antenna receive processor 458, transmitter/receiver 454 and antenna 452.
  • upper layer data packets from the core network are provided to the controller/processor 475 .
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and the second communication device 450 based on various priority metrics Radio resource allocation.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the second communication device 450.
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, the physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, and based on various modulation schemes (eg, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M Phase Shift Keying (M-PSK), M Quadrature Amplitude Modulation (M-QAM)) constellation mapping.
  • modulation schemes eg, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M Phase Shift Keying (M-PSK), M Quadrature Amplitude Modulation (M-QAM)
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • M-PSK M Phase Shift Keying
  • M-QAM M Quadrature Amplitude Modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the encoded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing
  • the transmit processor 416 maps each parallel stream to a subcarrier, multiplexes the modulated symbols with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) ) to generate a physical channel that carries a multi-carrier symbol stream in the time domain. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time-domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • a reference signal eg, a pilot
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives a signal through its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454 .
  • the receive processor 456 uses a Fast Fourier Transform (FFT) to convert the received analog precoding/beamforming operation of the baseband multicarrier symbol stream from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered by the multi-antenna receiving processor 458 after multi-antenna detection.
  • Communication device 450 is any parallel stream of destination. The symbols on each parallel stream are demodulated and recovered in receive processor 456 and soft decisions are generated.
  • the receive processor 456 then decodes and de-interleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459 .
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer packets from the core network.
  • the upper layer packets are then provided to all protocol layers above the L2 layer.
  • Various control signals may also be provided to L3 for L3 processing.
  • the controller/processor 459 is also responsible for error detection using acknowledgement (ACK) and/or negative acknowledgement (NACK) protocols to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459 .
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and logical AND based on the radio resource allocation of the first communication device 410 Multiplexing between transport channels, implementing L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the first communication device 410.
  • Transmit processor 468 performs modulation mapping, channel coding processing, multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated parallel stream into a multi-carrier/single-carrier symbol stream, which undergoes an analog precoding/beamforming operation in the multi-antenna transmit processor 457 and then provides it to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into a radio frequency symbol stream, which is then provided to the antenna 452 .
  • the function at the first communication device 410 is similar to that in the transmission from the first communication device 410 to the second communication device 450
  • the receive function at the second communication device 450 described in the transmission of .
  • Each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • Memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer data packets from the second communication device 450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the controller/processor 475 is also responsible for error detection using the ACK and/or NACK protocol to support HARQ operations.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to interact with the used together with at least one processor.
  • the second communication device 450 means at least: receiving the first target signal set; determining that the first target link fails according to the measurement for the first target signal set; determining the failure of the first target link as a response to the behavior, Start a first target link recovery process; wherein, when the first target signal set includes a first signal set, the first target link recovery process is a first link recovery process; when the first target signal set When the set includes a second signal set, the first target link recovery process is a second link recovery process; the first signal set and the second signal set respectively include at least one reference associated with the first cell signal, there is at least one reference signal belonging to only one of the first signal set and the second signal set; the first link recovery process and the second link recovery process include the random access process.
  • the second communication device 450 includes: a memory storing a program of computer-readable instructions, the program of computer-readable instructions generating actions when executed by at least one processor, the actions comprising: receiving a first a target signal set; determining that the first target link fails according to the measurement on the first target signal set; as a response to determining that the first target link fails by the behavior, a first target link recovery process is started; wherein, when When the first target signal set includes a first signal set, the first target link recovery process is a first link recovery process; when the first target signal set includes a second signal set, the first target link recovery process The target link recovery process is the second link recovery process; the first signal set and the second signal set respectively include at least one reference signal associated with the first cell, and there is at least one reference signal belonging to the first cell only.
  • One of a signal set and the second signal set; the first link recovery procedure and the second link recovery procedure include random access procedures on the same cell.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to interact with the used together with at least one processor.
  • the first communication device 410 means at least: sending a first target signal set; monitoring whether a first target link recovery process is started; wherein, when the measurement on the first target signal set is used to determine the first target chain When the link fails, the first target link recovery process is started; when the first target signal set includes the first signal set, the first target link recovery process is the first link recovery process; when all When the first target signal set includes a second signal set, the first target link recovery process is a second link recovery process; the first signal set and the second signal set respectively include at least one For the reference signal of the first cell, there is at least one reference signal belonging to only one of the first signal set and the second signal set; the first link recovery process and the second link recovery process Including random access procedures on the same cell.
  • the first communication device 410 includes: a memory for storing a program of computer-readable instructions, the program of computer-readable instructions generating actions when executed by at least one processor, the actions comprising: sending a first a target signal set; monitoring whether the first target link recovery process is started; wherein, when the measurement for the first target signal set is used to determine that the first target link fails, the first target link is recovered The process is started; when the first target signal set includes a first signal set, the first target link recovery process is a first link recovery process; when the first target signal set includes a second signal set , the first target link recovery process is a second link recovery process; the first signal set and the second signal set respectively include at least one reference signal associated with the first cell, and at least one reference signal exists belonging to only one of the first signal set and the second signal set; the first link recovery procedure and the second link recovery procedure include random access procedures on the same cell.
  • the first node in this application includes the second communication device 450 .
  • the second node in this application includes the first communication device 410 .
  • the antenna 452 the receiver 454, the receive processor 456, the multi-antenna receive processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to determine that the first target link has failed.
  • the antenna 452 the receiver 454, the receive processor 456, the multi-antenna receive processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to determine that the second target link has failed.
  • the antenna 452 the receiver 454, the receive processor 456, the multi-antenna receive processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first set of target signals.
  • At least one of ⁇ the antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471, the controller/processor 475, the memory 476 ⁇ One is used to transmit the first set of target signals.
  • the antenna 452 the receiver 454, the receive processor 456, the multi-antenna receive processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the second set of target signals.
  • At least one of ⁇ the antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471, the controller/processor 475, the memory 476 ⁇ One is used to transmit the second set of target signals.
  • the antenna 452 the transmitter/receiver 454, the transmit processor 468, the multi-antenna transmit processor 457, the receive processor 456, the multi-antenna receive processor 458, at least one of the controller/processor 459, the memory 460, the data source 467 ⁇ is used to initiate a first target link recovery process.
  • the antenna 420, the transmitter/receiver 418, the receive processor 470, the multi-antenna receive processor 472, the transmit processor 416, the multi-antenna transmit processor 471, at least one of the controller/processor 475, the memory 476 ⁇ is used to monitor whether the first target link recovery process is started.
  • the antenna 452 the transmitter/receiver 454, the transmit processor 468, the multi-antenna transmit processor 457, the receive processor 456, the multi-antenna receive processor 458, at least one of the controller/processor 459, the memory 460, the data source 467 ⁇ is used to initiate a second target link recovery process.
  • the antenna 420, the transmitter/receiver 418, the receive processor 470, the multi-antenna receive processor 472, the transmit processor 416, the multi-antenna transmit processor 471, at least one of the controller/processor 475, the memory 476 ⁇ is used to monitor whether the second target link recovery process is started.
  • Embodiment 5 illustrates a flowchart of wireless transmission according to an embodiment of the present application, as shown in FIG. 5 .
  • the first node U01 and the second node N02 are communication nodes that transmit in pairs through the air interface.
  • the steps in block F1 are optional.
  • the first target signal set is received in step S5101; in step S5102, it is determined that the first target link fails according to the measurement for the first target signal set; in step S5103, the first target link is determined as the behavior.
  • the first target link recovery process is started; in step S5104, a second target signal set is received; in step S5105, it is determined that the second target link fails according to the measurement on the second target signal set ; In step S5106, as described behavior determines the response that the second target link fails, start the second target link recovery process;
  • the first target link recovery process when the first target signal set includes a first signal set, the first target link recovery process is a first link recovery process; when the first target signal set includes a second signal When set, the first target link recovery process is a second link recovery process; the first signal set and the second signal set respectively include at least one reference signal associated with the first cell, and there is at least one The reference signal belongs to only one of the first signal set and the second signal set; the first link recovery procedure and the second link recovery procedure include random access procedures on the same cell .
  • the second target signal set includes the second signal set
  • the second target link recovery procedure is the second link recovery procedure
  • the first target signal set includes the second signal set
  • the second target signal set includes the first signal set
  • the second target link recovery process is the first link recovery process process
  • the first target link recovery process includes: the first transceiver sends a first target message; when the first target link recovery process is the first link recovery process, the The first target message is a first type of message; when the first target link recovery process is the second link recovery process, the first target message is a second type of message.
  • one reference signal in the second target signal set is earlier than one reference signal in the first target signal set.
  • one reference signal in the second target signal set is not earlier than one reference signal in the first target signal set.
  • any reference signal in the second target signal set is earlier than any reference signal in the first target signal set.
  • any reference signal in the second target signal set is not earlier than any reference signal in the first target signal set.
  • the first target link recovery process includes: the second transceiver monitors whether a wireless signal is sent in the first air interface resource set.
  • the first target link recovery process includes: the second transceiver monitors whether the first signal is sent in the first air interface resource group.
  • the behavior of monitoring whether the first target link recovery process is started means that: the second transceiver monitors whether a wireless signal is sent in the first air interface resource set.
  • the second node determines that the first target link recovery process is started ; when the result of the action "monitoring whether a wireless signal is sent in the first air interface resource set” is negative, the second node judges that the first target link recovery process is not started.
  • the behavior of monitoring whether the first target link recovery process is started means that the second transceiver monitors whether the first signal is sent in the first air interface resource group.
  • the second node determines the first target link recovery process is started; when the result of the action “monitoring whether the first signal is sent in the first air interface resource group” is negative, the second node determines that the first target link recovery process has not been start up.
  • the second target link recovery process includes: the second transceiver monitors whether a wireless signal is sent in the second air interface resource set.
  • the second target link recovery process includes: the second transceiver monitors the second signal in the second air interface resource group.
  • the behavior of monitoring whether the second target link recovery process is started means that: the second transceiver monitors whether a wireless signal is sent in the second air interface resource set.
  • the second node determines that the second target link recovery process is started ;
  • the second node judges that the second target link recovery process is not started.
  • the behavior of monitoring whether the second target link recovery process is started means that: the second transceiver monitors whether the second signal is sent in the second air interface resource group.
  • the second node determines the second target link recovery process is started; when the result of the action "monitoring whether the second signal is sent in the second air interface resource group" is negative, the second node determines that the second target link recovery process has not been start up.
  • whether the second target link recovery process is the first link recovery process or the second link recovery process is determined according to whether the second target signal set is the first signal set or the second signal set Second link recovery process.
  • the first target link failure includes a beam failure (Beam Failure, BF).
  • Beam Failure BF
  • the failure of the first target link includes that the first counter is not less than the first value.
  • the first target link failure includes RLF (Radio Link Failure, radio link failure).
  • the first target link failure includes a downlink control channel failure of the first cell.
  • the first target link failure includes a PDCCH failure of the first cell.
  • the second target link failure includes a beam failure (Beam Failure, BF).
  • Beam Failure BF
  • the second target link failure includes that the second counter is not less than the second value.
  • the first target link recovery process includes sending a random access preamble (Preamble).
  • Preamble a random access preamble
  • the first target link recovery procedure includes the first transceiver sending a first target message.
  • the first target link recovery process includes BFR (Beam Failure Recovery, beam failure recovery).
  • the second target link recovery process includes sending a second target message.
  • the first target link recovery process includes: the first transceiver sends a first signal in a first air interface resource group.
  • the first target link recovery process includes: the second transceiver receives a first signal in a first air interface resource group.
  • the first target link failure is used by the first node U01 to trigger the first signal.
  • the first target link failure is used by the first node U01 to trigger the generation of the first target message.
  • the first signal carries a first target message.
  • the first target message is used by the first node U01 to trigger the first signal.
  • the first target message includes a MAC CE.
  • the first target message includes a PUSCH MAC CE.
  • the first target message includes a BFR (Beam Failure Recovery, beam failure recovery) MAC CE.
  • BFR Beam Failure Recovery, beam failure recovery
  • the first target message includes a truncated (Truncated) BFR MAC CE.
  • the first air interface resource group includes a positive integer number of air interface resources.
  • the air interface resources include at least one of time-frequency resources or code domain resources.
  • the air interface resources include time-frequency resources.
  • the air interface resources include code domain resources.
  • the air interface resources include time-frequency resources and code domain resources.
  • the code domain resource includes an RS sequence, a preamble (Preamble), a pseudorandom sequence, a low PAPR sequence, a cyclic shift (cyclic shift), an OCC (Orthogonal Cover Code, orthogonal mask), an orthogonal sequence (orthogonal sequence), one or more of the frequency-domain orthogonal sequence and the time-domain orthogonal sequence.
  • the first signal includes a random access preamble (Random Access Preamble).
  • the first signal includes a first sequence of features.
  • the first characteristic sequence includes one or more of a pseudo-random (pseudo-random) sequence, a Zadoff-Chu sequence or a low PAPR (Peak-to-Average Power Ratio, peak-to-average ratio) sequence.
  • a pseudo-random (pseudo-random) sequence a Zadoff-Chu sequence or a low PAPR (Peak-to-Average Power Ratio, peak-to-average ratio) sequence.
  • the first feature sequence includes a CP (Cyclic Prefix, cyclic prefix).
  • the first air interface resource group includes PRACH (Physical Random Access CHannel) resources or at least PRACH resources in the air interface resources occupied by the PUSCH scheduled by the RAR (Random Access Response) uplink grant (UL grant).
  • PRACH Physical Random Access CHannel
  • RAR Random Access Response
  • the first air interface resource group includes PRACH resources.
  • the first air interface resource group includes PRACH resources and air interface resources occupied by the PUSCH scheduled by the RAR uplink grant.
  • the first air interface resource group is configured by a higher layer parameter.
  • the first air interface resource group is configured by PRACH-ResourceDedicatedBFR.
  • the first air interface resource group includes a first air interface resource block and a second air interface resource block
  • the first signal includes a first sub-signal and a second sub-signal
  • the first air interface resource block includes all The air interface resources occupied by the first sub-signal
  • the second air interface resource block includes the air interface resources occupied by the second sub-signal.
  • the first sub-signal includes a first feature sequence.
  • the first sub-signal includes a random access preamble (Random Access Preamble).
  • the second sub-signal includes MAC CE (Medium Access Control layer Control Element, medium access control layer control element).
  • MAC CE Medium Access Control layer Control Element, medium access control layer control element
  • the second sub-signal includes a BFR (Beam Failure Recovery, beam failure recovery) MAC CE.
  • BFR Beam Failure Recovery, beam failure recovery
  • the second sub-signal includes a truncated (Truncated) BFR MAC CE.
  • the second sub-signal carries the first target message.
  • the first sub-signal includes Msg1
  • the second sub-signal includes Msg3PUSCH.
  • the first sub-signal includes Msg1
  • the second sub-signal includes the PUSCH scheduled by the RAR uplink grant.
  • the first signal includes MsgA
  • the first sub-signal includes a random access preamble in MsgA
  • the second sub-signal includes PUSCH in MsgA.
  • the first air interface resource block includes PRACH resources.
  • the first air interface resource block includes PRACH-ResourceDedicatedBFR.
  • the second air interface resource block includes PUSCH resources.
  • the first target link recovery process includes: the physical layer of the first node receives a first information block from a higher layer of the first node; wherein the first information block is used by to indicate the first reference signal.
  • the first signal is used by the first node U01 to indicate a first reference signal.
  • the first air interface resource group is used by the first node U01 to indicate the first reference signal.
  • the second sub-signal is used by the first node U01 to indicate the first reference signal.
  • the first air interface resource group is an air interface resource group corresponding to the first reference signal in the first air interface resource set.
  • the first reference signal is used to determine the spatial relationship of the third air interface resource group.
  • the second target link recovery process includes: the first transceiver sends a second signal in a second air interface resource group.
  • the second target link recovery process includes: the first transceiver receives a second signal in a second air interface resource group.
  • determining whether the second target message is the first type of message or the second type of news is the first type of message or the second type of news.
  • the second target message is the first type of message.
  • the second target message is the second type of message.
  • the first target message is the second type of message
  • the second target message is the first type of message
  • the first target message is the first type of message
  • the second target message is the second type of message
  • the second target link failure is used by the first node U01 to trigger the generation of the second target message.
  • the second target message is used by the first node U01 to trigger the second signal.
  • the second target message includes a MAC CE.
  • the second target message includes a PUSCH MAC CE.
  • the second target message includes a BFR (Beam Failure Recovery, beam failure recovery) MAC CE.
  • BFR Beam Failure Recovery, beam failure recovery
  • the second target message includes a truncated (Truncated) BFR MAC CE.
  • the second air interface resource group is different from the first air interface resource group.
  • the first signal set corresponds to a first air interface resource set
  • the second signal set corresponds to a second air interface resource set
  • the first air interface resource group belongs to the first air interface resource set, so
  • the second air interface resource group belongs to the second air interface resource set; the first air interface resource set and the second air interface resource set are configured by higher layer signaling.
  • the first signal set corresponds to a first air interface resource group
  • the second signal set corresponds to a second air interface resource group
  • the second air interface resource group includes a positive integer number of air interface resources.
  • the second signal includes a random access preamble (Random Access Preamble).
  • the second signal includes a second signature sequence.
  • the second characteristic sequence includes one or more of a pseudo-random (pseudo-random) sequence, a Zadoff-Chu sequence or a low PAPR (Peak-to-Average Power Ratio, peak-to-average ratio) sequence.
  • a pseudo-random (pseudo-random) sequence a Zadoff-Chu sequence or a low PAPR (Peak-to-Average Power Ratio, peak-to-average ratio) sequence.
  • the second characteristic sequence includes a CP (Cyclic Prefix, cyclic prefix).
  • the second signal carries a second target message.
  • the PUSCH resource included in the second air interface resource group is used by the first node U01 to carry the second target message.
  • the second air interface resource group includes PRACH (Physical Random Access CHannel) resources and air interface resources occupied by the PUSCH scheduled by the RAR (Random Access Response) uplink grant (UL grant).
  • PRACH Physical Random Access CHannel
  • RAR Random Access Response
  • the second air interface resource group is configured by a higher layer parameter.
  • the second air interface resource group is configured by PRACH-ResourceDedicatedBFR.
  • the second air interface resource group includes a third air interface resource block and a fourth air interface resource block
  • the second signal includes a third sub-signal and a fourth sub-signal
  • the third air interface resource block includes all the air interface resources occupied by the third sub-signal
  • the fourth air interface resource block includes the air interface resources occupied by the fourth sub-signal.
  • the third air interface resource block includes PRACH resources.
  • the third air interface resource block includes PRACH-ResourceDedicatedBFR.
  • the fourth air interface resource block includes PUSCH resources.
  • the third sub-signal includes a first characteristic sequence.
  • the third sub-signal includes a random access preamble (Random Access Preamble).
  • the fourth sub-signal includes MAC CE (Medium Access Control layer Control Element, medium access control layer control element).
  • MAC CE Medium Access Control layer Control Element, medium access control layer control element
  • the fourth sub-signal includes BFR (Beam Failure Recovery, beam failure recovery) MAC CE.
  • BFR Beam Failure Recovery, beam failure recovery
  • the fourth sub-signal includes a truncated (Truncated) BFR MAC CE.
  • the fourth sub-signal carries the second target message.
  • the third sub-signal includes Msg1
  • the fourth sub-signal includes Msg3PUSCH.
  • the third sub-signal includes Msg1
  • the fourth sub-signal includes the PUSCH scheduled by the RAR uplink grant.
  • the second signal includes the MsgA
  • the third sub-signal includes the random access preamble in the MsgA
  • the fourth sub-signal includes the PUSCH in the MsgA.
  • the second link recovery process includes: the physical layer of the first node receives a second information block from a higher layer of the first node; wherein the second information block is used for Indicates the second reference signal.
  • the second signal is used by the first node U01 to indicate a second reference signal.
  • the fourth sub-signal is used by the first node U01 to indicate the second reference signal.
  • the second air interface resource group is an air interface resource group corresponding to the second reference signal in the second air interface resource set.
  • the second reference signal is used to determine the spatial relationship of the fourth air interface resource group.
  • the airspace relationship includes a TCI (Transmission Configuration Indicator, transmission configuration indicator) state (state).
  • TCI Transmission Configuration Indicator, transmission configuration indicator
  • the airspace relationship includes a QCL (Quasi co-location, quasi co-location) parameter.
  • the spatial relationship includes a spatial domain filter.
  • the spatial relationship includes a spatial domain transmission filter.
  • the spatial relationship includes a spatial domain reception filter.
  • the spatial relationship includes a spatial transmission parameter (Spatial Tx parameter).
  • the spatial relationship includes a Spatial Rx parameter.
  • the spatial transmission parameter includes transmit antenna port, transmit antenna port group, transmit beam, transmit analog beamforming matrix, transmit analog beamforming vector, transmit beamforming matrix, transmit beam One or more of shaped vector or spatial transmit filtering.
  • the spatial reception parameter includes a receive beam, a receive analog beamforming matrix, a receive analog beamforming vector, a receive beamforming matrix, a receive beamforming vector, or a receive beamforming vector in the spatial domain receive filtering. one or more.
  • a given reference signal is used to determine the spatial relationship of a given air interface resource group.
  • the given reference signal is the first reference signal
  • the given air interface resource group is the third air interface resource group.
  • the given reference signal is the second reference signal
  • the given air interface resource group is the fourth air interface resource group.
  • the TCI state of the given reference signal is used to determine the spatial relationship of the given air interface resource group.
  • the airspace relationship includes a TCI state
  • the TCI state of the given reference signal is the same as the TCI state of the given air interface resource group.
  • the QCL parameter of the given reference signal is used to determine the spatial relationship of the given air interface resource group.
  • the spatial relationship includes a QCL parameter
  • the QCL parameter of the given reference signal is the same as the QCL parameter of the given air interface resource group.
  • the spatial filtering of the given reference signal is used to determine the spatial relationship of the given air interface resource group.
  • the spatial relationship includes spatial filtering, and the spatial filtering of the given reference signal is the same as the spatial filtering of the given air interface resource group.
  • the spatial relationship includes spatial transmission filtering
  • the given reference signal is an uplink signal
  • the spatial transmission filtering of the given reference signal
  • the spatial transmission of the given air interface resource group Filtering is the same.
  • the spatial relationship includes spatial transmission filtering
  • the given reference signal is a downlink signal
  • the spatial reception filtering of the given reference signal
  • the spatial transmission of the given air interface resource group Filtering is the same.
  • the spatial relationship includes spatial reception filtering
  • the given reference signal is an uplink signal
  • the spatial reception filtering of the given reference signal
  • the spatial reception of the given air interface resource group Filtering is the same.
  • the spatial relationship includes spatial reception filtering
  • the given reference signal is a downlink signal
  • the spatial transmission filtering of the given reference signal
  • the spatial reception of the given air interface resource group Filtering is the same.
  • the spatial parameter of the given reference signal is used to determine the spatial relationship of the given air interface resource group.
  • the spatial relationship includes spatial transmission parameters, and the spatial parameters of the given reference signal are the same as the spatial transmission parameters of the given air interface resource group.
  • the spatial relationship includes spatial transmission parameters
  • the given reference signal is an uplink signal
  • the spatial transmission parameters of the given reference signal and the spatial transmission of the given air interface resource group The parameters are the same.
  • the spatial relationship includes spatial transmission parameters
  • the given reference signal is a downlink signal
  • the spatial reception parameters of the given reference signal and the spatial transmission of the given air interface resource group The parameters are the same.
  • the spatial relationship includes spatial reception parameters, and the spatial parameters of the given reference signal are the same as the spatial reception parameters of the given air interface resource group.
  • the spatial relationship includes spatial reception parameters
  • the given reference signal is an uplink signal
  • the spatial reception parameters of the given reference signal and the spatial reception of the given air interface resource group The parameters are the same.
  • the spatial relationship includes spatial reception parameters
  • the given reference signal is a downlink signal
  • the spatial transmission parameters of the given reference signal
  • the spatial reception of the given air interface resource group The parameters are the same.
  • the phrase determining the first target link failure according to the measurement on the first target signal set includes: judging the value of the first counter according to the measurement on the first target signal set; according to the first target signal set A counter not less than the first value determines that the first target link fails.
  • the phrase determining that the first target link fails according to the measurement on the first target signal set includes: every time the higher layer receives an indication of the first type, changing the value of the first counter 1 is added, and it is determined that the first target link fails according to the fact that the first counter is not less than the first value.
  • the phrase determining that the first target link fails according to the measurement for the first target signal set includes: as the measurement for the first target signal set determines that the quality of the wireless link is worse than the first In response to the threshold, a first-type indication for updating the first counter is reported to the higher layer.
  • the phrase "the wireless link quality determined by the measurement for the first target signal set is worse than a first threshold” means that the wireless link quality determined by the measurement for the first target signal set is: The link quality is less than the first threshold.
  • the radio link quality is RSRP.
  • the radio link quality is L1-RSRP.
  • the radio link quality is SINR.
  • the radio link quality is L1-SINR.
  • the phrase "the wireless link quality determined by the measurement for the first target signal set is worse than a first threshold” means that the wireless link quality determined by the measurement for the first target signal set is: The link quality is greater than the first threshold.
  • the wireless link quality is BLER.
  • the wireless link quality is hypothetical BLER.
  • the wireless link quality is obtained by looking up the RSRP table.
  • the wireless link quality is obtained by looking up the L1-RSRP table.
  • the wireless link quality is obtained by looking up the SINR table.
  • the wireless link quality is obtained by looking up the L1-SINR table.
  • the radio link quality is obtained according to hypothetical PDCCH transmission parameters (hypothetical PDCCH transmission parameters).
  • the phrase "the reception quality of each reference signal in the first target signal set is lower than the first threshold” means that the reception quality of each reference signal in the first target signal set is lower than the first threshold. less than the first threshold.
  • the received quality is RSRP.
  • the received quality is L1-RSRP.
  • the reception quality is SINR.
  • the received quality is L1-SINR.
  • the phrase "the reception quality of each reference signal in the first target signal set is lower than the first threshold” means that the reception quality of each reference signal in the first target signal set is lower than the first threshold. greater than the first threshold.
  • the reception quality is BLER.
  • the reception quality is hypothetical BLER.
  • the receiving quality is obtained by looking up the RSRP table.
  • the receiving quality is obtained by looking up the L1-RSRP table.
  • the receiving quality is obtained by looking up the SINR table.
  • the received quality is obtained by looking up the L1-SINR table.
  • the reception quality is obtained according to hypothetical PDCCH transmission parameters (hypothetical PDCCH transmission parameters).
  • the phrase determining that the second target link fails according to the measurement on the second target signal set includes: as the reception quality of each reference signal in the second target signal set is lower than a second threshold In response, a second-type indication for updating the second counter is reported to a higher layer; it is determined that the second target link fails according to the second counter being not less than a second value.
  • the second counter is not less than a second value, it is determined that the second target link fails.
  • the second threshold is the same as the first threshold.
  • the second threshold and the first threshold are respectively configured by two higher layer parameters.
  • the second threshold and the first threshold are configured by the same higher layer parameter.
  • the first value is the same as the second value.
  • the second value and the first value are configured by two higher layer parameters, respectively.
  • the second value and the first value are configured by the same higher layer parameter.
  • the second threshold is a real number.
  • the second threshold is a non-negative real number.
  • the second threshold is a non-negative real number not greater than 1.
  • the second threshold is one of Q out_L , Q out_LR_SSB or Q out_LR_CSI-RS .
  • the second threshold is configured by a higher layer parameter rlmInSyncOutOfSyncThreshold.
  • a said second type of indication is a beam failure instance indication.
  • a said second type of indication is a radio link quality indication.
  • a said second type of indication is a reception quality indication.
  • the second type of indication corresponds to the second counter.
  • the second type of indication corresponds to the second index.
  • the second type of indication corresponds to the second target signal set.
  • the second counter is BFI_COUNTER.
  • the initial value of the second counter is 0.
  • the value of the second counter is a non-negative integer.
  • the second value is a positive integer.
  • the second value is beamFailureInstanceMaxCount.
  • the second value is configured by a higher layer parameter.
  • the higher layer parameter configuring the second value includes all or part of the information in the beamFailureInstanceMaxCount field of the RadioLinkMonitoringConfig IE.
  • the higher layer starts or re-enables a second timer every time an indication of the second type is received, and increments the second counter by one.
  • the second timer is beamFailureDetectionTimer.
  • the second counter is cleared.
  • the initial value of the second timer is a positive integer.
  • the initial value of the second timer is a positive real number.
  • the initial value of the second timer is configured by a higher layer parameter beamFailureDetectionTimer.
  • the initial value of the second timer is configured by an IE.
  • the name of the IE for configuring the initial value of the second timer includes RadioLinkMonitoring.
  • the phrase "determining that the second target link fails according to the measurement for the second target signal set” includes: the measurement for the second target signal set is used to determine the value of the second counter; It is determined that the second target link fails according to the second counter being not less than the second value.
  • the phrase "determining that the second target link fails according to the measurement on the second target signal set” includes: every time the higher layer receives an indication of the second type, setting the second counter to The value of is incremented by 1, and it is determined that the second target link fails according to that the second counter is not less than the second value.
  • the phrase "determining a second target link failure based on measurements on the second set of target signals” includes: as determined by the measurements on the second set of target signals, the wireless link quality is lower than In response to the second threshold, a second-type indication for updating the second counter is reported to the higher layer.
  • the phrase "the wireless link quality determined by the measurement for the second target signal set is worse than a second threshold” means that the wireless link quality determined by the measurement for the second target signal set is: The link quality is less than the second threshold.
  • the radio link quality is RSRP.
  • the radio link quality is L1-RSRP.
  • the radio link quality is SINR.
  • the radio link quality is L1-SINR.
  • the phrase "the wireless link quality determined by the measurement for the second target signal set is worse than a second threshold” means that the wireless link quality determined by the measurement for the second target signal set is: The link quality is greater than the second threshold.
  • the wireless link quality is BLER.
  • the wireless link quality is hypothetical BLER.
  • the wireless link quality is obtained by looking up the RSRP table.
  • the wireless link quality is obtained by looking up the L1-RSRP table.
  • the wireless link quality is obtained by looking up the SINR table.
  • the wireless link quality is obtained by looking up the L1-SINR table.
  • the radio link quality is obtained according to hypothetical PDCCH transmission parameters (hypothetical PDCCH transmission parameters).
  • the phrase "the reception quality of each reference signal in the second target signal set is lower than the second threshold” means that the reception quality of each reference signal in the second target signal set is lower than the second threshold. less than the second threshold.
  • the received quality is RSRP.
  • the received quality is L1-RSRP.
  • the reception quality is SINR.
  • the received quality is L1-SINR.
  • the phrase "the reception quality of each reference signal in the second target signal set is lower than the second threshold” means that the reception quality of each reference signal in the second target signal set is lower than the second threshold. greater than the second threshold.
  • the reception quality is BLER.
  • the reception quality is hypothetical BLER.
  • the receiving quality is obtained by looking up the RSRP table.
  • the receiving quality is obtained by looking up the L1-RSRP table.
  • the receiving quality is obtained by looking up the SINR table.
  • the received quality is obtained by looking up the L1-SINR table.
  • the reception quality is obtained according to hypothetical PDCCH transmission parameters (hypothetical PDCCH transmission parameters).
  • one of the first-type indications is used to indicate a first-type signal and a first-type reception quality; the first-type reception quality is determined for the measurement of the first-type signal , the one first-type receiving quality is not less than the third threshold; the one first-type signal is one of M1 reference signals, and M1 is a positive integer greater than 1.
  • the first reference signal is one of the M1 reference signals.
  • one of the first reference signal and the M1 reference signals is QCL.
  • the first receiver receives the M1 reference signals.
  • any one of the M1 reference signals includes CSI-RS or SSB.
  • the M1 reference signals are configured by higher layer parameters.
  • the higher layer parameters for configuring the M1 reference signals include all or part of the information in the candidateBeamRSList field of the BeamFailureRecoveryConfig IE.
  • the M1 reference signals are configured by one IE.
  • the M1 reference signals are configured by multiple IEs.
  • the name of the IE used to configure the M1 reference signals includes BeamFailureRecovery.
  • the name of the IE used to configure the M1 reference signals includes BeamFailure.
  • the one first type of received quality is RSRP.
  • the first type of received quality is L1-RSRP.
  • the first type of reception quality is SINR.
  • the first type of reception quality is L1-SINR.
  • the third threshold is a real number.
  • the third threshold is a non-negative real number.
  • the third threshold is Q in_LR .
  • Qin_LR for the definition of Qin_LR , refer to 3GPP TS38.133.
  • the third threshold is configured by a higher layer parameter rsrp-ThresholdSSB.
  • one of the second-type indications is used to indicate a second-type signal and a second-type reception quality; the one second-type reception quality is determined for the measurement of the one second-type signal , the one receiving quality of the second type is not less than the fourth threshold.
  • the one second type signal is one of M1 reference signals, where M1 is a positive integer greater than 1.
  • the one second type signal is one of M2 reference signals, where M2 is a positive integer greater than 1.
  • the second reference signal is one of the M1 reference signals.
  • the second reference signal is one of the M2 reference signals.
  • one of the second reference signal and the M1 reference signals is QCL.
  • one of the second reference signal and the M2 reference signals is QCL.
  • the first receiver receives the M2 reference signals.
  • any one of the M2 reference signals includes CSI-RS or SSB.
  • the M2 reference signals are configured by higher layer parameters.
  • the higher layer parameters for configuring the M2 reference signals include all or part of the information in the candidateBeamRSList field of the BeamFailureRecoveryConfig IE.
  • the name of the IE used to configure the M2 reference signals includes BeamFailureRecovery.
  • the name of the IE used to configure the M2 reference signals includes BeamFailure.
  • the M1 reference signals and the M2 reference signals are configured by different IEs.
  • the M1 reference signals and the M2 reference signals are configured by the same IE.
  • the M1 reference signals correspond to the first index.
  • the M2 reference signals correspond to the second index.
  • the M1 reference signals correspond to the first target signal set.
  • the M2 reference signals correspond to the second target signal set.
  • the one second type of reception quality is RSRP.
  • the one second type of reception quality is L1-RSRP.
  • the one second type of reception quality is SINR.
  • the one second type of reception quality is L1-SINR.
  • the fourth threshold and the third threshold are the same.
  • the fourth threshold is a real number.
  • the fourth threshold is a non-negative real number.
  • the fourth threshold is Qin_LR .
  • the fourth threshold is configured by a higher layer parameter rsrp-ThresholdSSB.
  • the fourth threshold and the third threshold are the same and configured by the same higher layer parameter.
  • the fourth threshold and the third threshold are independently configured.
  • the first link recovery procedure includes a first random access procedure
  • the first random access procedure is a contention-free random access procedure
  • the first random access procedure includes sending a random access procedure.
  • the successful completion of the first link recovery procedure includes successfully receiving a response to the random access preamble in the first random access procedure.
  • the unsuccessfully completing the first link recovery procedure includes failing to successfully receive a response to the random access preamble in the first random access procedure.
  • the first link recovery procedure includes a first random access procedure
  • the first random access procedure is a contention-free random access procedure
  • the first random access procedure includes sending a random access procedure.
  • Incoming preamble the successful completion of the first link recovery procedure includes successfully receiving the RAR for the random access preamble.
  • the failure to successfully complete the first link recovery process includes failure to successfully receive the RAR for the random access preamble.
  • the successful completion of the first link recovery process includes successfully receiving an activation command from a higher layer for a TCI state, or a higher layer parameter tci-StatesPDCCH-ToAddList and/or tci-StatesPDCCH-ToReleaseList The activation command of any parameter.
  • the failure to complete the first link recovery process includes failure to successfully receive an activation command from a higher layer for a TCI state, or higher layer parameters tci-StatesPDCCH-ToAddList and/or or the activation command of any parameter in tci-StatesPDCCH-ToReleaseList.
  • the first link recovery procedure includes a first random access procedure
  • the first random access procedure is a contention-based random access procedure
  • the successful completion of the first link recovery procedure includes successful completion of the first link recovery procedure.
  • the failure to successfully complete the first link recovery process includes failure to successfully receive the Msg4 of the first random access process.
  • the first link recovery procedure includes a first random access procedure
  • the first random access procedure is a contention-based random access procedure
  • the successful completion of the first link recovery procedure includes successful completion of the first link recovery procedure.
  • the MsgB of the first random access procedure is received.
  • the failure to successfully complete the first link recovery process includes failure to successfully receive the MsgB of the first random access process.
  • the second link recovery procedure includes a second random access procedure
  • the second random access procedure is a contention-based random access procedure
  • the successful completion of the second link recovery procedure includes successful completion of the second link recovery procedure.
  • a Msg4 of the second random access procedure is received.
  • the failure to successfully complete the second link recovery process includes failure to successfully receive the Msg4 of the second random access process.
  • the second link recovery procedure includes a second random access procedure
  • the second random access procedure is a contention-based random access procedure
  • the successful completion of the second link recovery procedure includes successful completion of the second link recovery procedure.
  • the MsgB of the second random access procedure is received.
  • the unsuccessfully completing the second link recovery procedure includes failing to successfully receive the MsgB of the second random access procedure.
  • the first counter is set to 0 in response to the successful completion of the first target link recovery procedure.
  • the second counter is set to 0 in response to the successful completion of the second target link recovery procedure.
  • the first counter and the The second counters are all set to zero.
  • the first counter is set to 0 .
  • the first counter and the The second counters are all set to zero.
  • the second counter is set to 0 .
  • the radio link of the first cell fails (Radio Link Failure) is triggered.
  • the second target link recovery process is the first link recovery process and the second target link recovery process
  • the radio link failure Radio Link Failure
  • the radio link of the first cell fails. Failure (Radio Link Failure) is triggered.
  • a radio link failure (Radio Link Failure) of the first cell is triggered.
  • the first target link recovery process includes: the first transceiver monitors a response to the first signal in a third air interface resource group; wherein the third air interface resource group is at the time of The domain belongs to the first time window, and the start time of the first time window is later than the end time of the first air interface resource group.
  • the first target link recovery process includes: the second transceiver sends a response to the first signal in a third air interface resource group; wherein the third air interface resource group is at the time of The domain belongs to the first time window, and the start time of the first time window is later than the end time of the first air interface resource group.
  • the first time window includes continuous time domain resources.
  • the duration of the first time window is configured by higher layer signaling.
  • the duration of the first time window is configured by the BeamFailureRecoveryConfig IE.
  • the duration of the first time window is configured by beamFailureRecoveryTimer.
  • the duration of the first time window is configured by ra-ContentionResolutionTimer.
  • the third air interface resource group includes a positive integer number of air interface resources.
  • the third air interface resource group includes a search space (search space).
  • the third air interface resource group includes a search space set (search space set).
  • the third air interface resource group includes one or more PDCCH (Physical Downlink Control Channel, physical downlink control channel) candidates (candidate).
  • PDCCH Physical Downlink Control Channel, physical downlink control channel candidates
  • the third air interface resource group includes a CORESET (COntrol REsource SET, control resource set).
  • the search space set to which the third air interface resource group belongs is identified by recoverySearchSpaceId.
  • the index of the search space set to which the third air interface resource group belongs is equal to 0.
  • the search space set to which the third air interface resource group belongs includes a Type1-PDCCH CSS (Common search space, common search space) set.
  • the third air interface resource group belongs to a PDCCH CSS (Common search space, common search space) set.
  • PDCCH CSS Common search space, common search space
  • the third air interface resource group is associated with the first index.
  • the response to the first signal includes a higher layer activation command for a TCI state.
  • the response to the first signal includes an activation command of higher layer parameters tci-StatesPDCCH-ToAddList and/or tci-StatesPDCCH-ToReleaseList.
  • the response to the first signal includes a MAC CE for indicating the PDCCH TCI.
  • the response to the first signal includes RRC signaling for configuring CORESET TCI-state.
  • the response to the first signal includes DCI (Downlink control information, downlink control information).
  • the response to the first signal includes physical layer signaling.
  • the response to the first signal is transmitted on the PDCCH.
  • the response to the first signal includes Msg4.
  • the response to the first signal includes MsgB.
  • the response to the first signal includes a PDSCH (Contention Resolution).
  • PDSCH Contention Resolution
  • the CRC of the response to the first signal is scrambled by C-RNTI or MCS (Modulation and Coding Scheme, modulation and coding scheme)-C-RNTI.
  • C-RNTI or MCS (Modulation and Coding Scheme, modulation and coding scheme)-C-RNTI.
  • the CRC of the response to the first signal is scrambled by TC-RNTI.
  • the CRC of the response to the first signal is scrambled by a C-RNTI.
  • the CRC of the response to the first signal is scrambled by MsgB-RNTI.
  • the CRC of the response to the first signal is scrambled by RA (Random Access)-RNTI.
  • the first node determines whether the first target link recovery process is successfully completed according to whether the response to the first signal is detected in the first time window.
  • the first target link recovery process is successfully completed.
  • the first target link recovery procedure is not successfully completed.
  • the second target link recovery process includes: the first transceiver monitors a response to the second signal in a fourth air interface resource group; wherein the fourth air interface resource group is at the time of The domain belongs to a second time window, and the start time of the second time window is later than the end time of the second air interface resource group.
  • the second target link recovery process includes: the second transceiver sends a response to the second signal in a fourth air interface resource group; wherein the fourth air interface resource group is at the time of The domain belongs to a second time window, and the start time of the second time window is later than the end time of the second air interface resource group.
  • the second time window includes continuous time domain resources.
  • the duration of the second time window is configured by higher layer signaling.
  • the duration of the second time window is configured by the BeamFailureRecoveryConfig IE.
  • the duration of the second time window is configured by beamFailureRecoveryTimer.
  • the duration of the second time window is configured by ra-ContentionResolutionTimer.
  • the duration of the second time window is different from the duration of the first time window.
  • the duration of the second time window and the duration of the first time window are respectively configured by two higher layer parameters.
  • the fourth air interface resource group includes a positive integer number of air interface resources.
  • the fourth air interface resource group includes a search space (search space).
  • the fourth air interface resource group includes a search space set (search space set).
  • the fourth air interface resource group includes one or more PDCCH (Physical Downlink Control Channel, physical downlink control channel) candidates (candidate).
  • PDCCH Physical Downlink Control Channel, physical downlink control channel candidates
  • the fourth air interface resource group includes a CORESET (COntrol REsource SET, control resource set).
  • the search space set to which the fourth air interface resource group belongs is identified by recoverySearchSpaceId.
  • the index of the search space set to which the fourth air interface resource group belongs is equal to 0.
  • the search space set to which the fourth air interface resource group belongs includes a Type1-PDCCH CSS (Common search space, common search space) set.
  • the fourth air interface resource group belongs to a PDCCH CSS (Common search space, common search space) set.
  • PDCCH CSS Common search space, common search space
  • the fourth air interface resource group is associated with the second index.
  • the response to the second signal includes a higher layer activation command for a TCI state.
  • the response to the second signal includes an activation command of higher layer parameters tci-StatesPDCCH-ToAddList and/or tci-StatesPDCCH-ToReleaseList.
  • the response to the second signal includes a MAC CE for indicating the PDCCH TCI.
  • the response to the second signal includes RRC signaling for configuring CORESET TCI-state.
  • the response to the second signal includes DCI (Downlink control information, downlink control information).
  • the response to the second signal includes physical layer signaling.
  • the response to the second signal is transmitted on the PDCCH.
  • the response to the second signal includes Msg4.
  • the response to the second signal includes MsgB.
  • the response to the second signal includes a PDSCH (Contention Resolution).
  • PDSCH Contention Resolution
  • the CRC of the response to the second signal is scrambled by C-RNTI or MCS (Modulation and Coding Scheme, modulation and coding scheme)-C-RNTI.
  • C-RNTI or MCS (Modulation and Coding Scheme, modulation and coding scheme)-C-RNTI.
  • the CRC of the response to the second signal is scrambled by a TC-RNTI.
  • the CRC of the response to the second signal is scrambled by a C-RNTI.
  • the CRC of the response to the second signal is scrambled by MsgB-RNTI.
  • the CRC of the response to the second signal is scrambled by RA (Random Access)-RNTI.
  • the first node determines whether the second target link recovery process is successfully completed according to whether the response to the second signal is detected in the second time window.
  • the second target link recovery process is successfully completed when the first node detects the response to the second signal in the second time window.
  • the second target link recovery procedure is not successfully completed.
  • the meaning of the sentence "monitoring a given signal” includes determining whether or not to transmit for the given signal according to the CRC.
  • the meaning of the sentence "Monitoring a given signal” includes: determining whether the given signal is transmitted before judging whether the decoding is correct according to the CRC.
  • the meaning of the sentence "monitoring a given signal” includes determining whether the given signal is transmitted according to coherent detection.
  • the meaning of the sentence "Monitoring a given signal” includes determining whether or not the given signal is transmitted prior to coherent detection.
  • the meaning of the sentence "monitoring a given signal” includes: determining whether the given signal is transmitted according to energy detection.
  • the meaning of the sentence "Monitoring a given signal” includes determining whether the given signal is transmitted before energy detection.
  • the given signal is the first signal.
  • the given signal is the second signal.
  • the given signal is the response to the first signal.
  • the given signal is the response to the second signal.
  • Embodiment 6 illustrates a schematic diagram of a first link recovery process and a second link recovery process according to an embodiment of the present application; as shown in FIG. 6 .
  • only one of the first link recovery procedure and the second link recovery procedure includes a contention-free random access procedure.
  • the first link recovery procedure includes a contention-free random access procedure
  • the second link recovery procedure includes a contention-based random access procedure
  • only the first link recovery process among the first link recovery process and the second link recovery process includes a contention-free random access process.
  • At least the second link recovery process in the first link recovery process or the second link recovery process includes a contention-based random access process.
  • Embodiment 7 illustrates a schematic diagram of a first link recovery process and a second link recovery process according to another embodiment of the present application; as shown in FIG. 7 .
  • the first target link recovery process includes: the first transceiver sends a first target message; when the first target link recovery process is the first link recovery process, The first target message is a first type of message; when the first target link recovery procedure is the second link recovery procedure, the first target message is a second type of message.
  • both the first link recovery procedure and the second link recovery procedure are contention-based random access procedures.
  • the first link recovery procedure includes sending a first type of message
  • the second link recovery procedure includes sending a second type of message
  • the first target message is the first type of message or the second type of news.
  • the first type of message includes one MAC CE
  • the second type of message includes one MAC CE
  • the first type of message includes PUSCH MAC CE
  • the second type of message includes PUSCH MAC CE
  • the first type of message includes a BFR (Beam Failure Recovery, beam failure recovery) MAC CE.
  • BFR Beam Failure Recovery, beam failure recovery
  • the second type of message includes a BFR MAC CE.
  • the first type of message includes a truncated (Truncated) BFR MAC CE.
  • the second type of message includes a truncated BFR MAC CE.
  • the first type of messages and the second type of messages are different.
  • the formats of the first type of message and the second type of message are different.
  • the interpretation of the same field in the first type of message and the second type of message is different.
  • both the first type of message and the second type of message include a third field, respectively for the third field in the first type of message and the second type of message
  • the interpretation of the third field is different, and the third field includes a positive integer number of bits.
  • both the first type of message and the second type of message include a second field.
  • the value of the second field in the first type of message is equal to 1, and the value of the second field in the second type of message is equal to 1.
  • the second field is used to indicate that a link failure occurs in the first cell.
  • the second field includes a positive integer number of bits.
  • the second field includes one bit.
  • the second field is an SP field (Field).
  • the specific definition of the SP field refers to Section 6.1.3 in 3GPP TS38.321.
  • the third domain includes the second domain.
  • the third domain is a domain other than the second domain.
  • the first domain belongs to only the second type of messages among the first type of messages and the second type of messages.
  • the first domain belongs to only one of the first type of messages and the second type of messages.
  • the first target message is a second type of message
  • the first target message in the second type of message field is used to determine that the first target link failed.
  • the first target message is a second type of message
  • the first target message in the second type of message field is used to indicate that the first target link failed.
  • both the first type of message and the second type of message are used to determine link failure.
  • the first type of message is used to determine that the link determined by the measurement for the first set of signals has failed
  • the second type of message is used to determine the failure of the link for the second set of signals. The link identified by the measurement has failed.
  • the first field in the second type of message is used to determine that the link determined by the measurement for the second set of signals has failed.
  • the first field in the second type of message is used to indicate that the link determined by the measurement for the second set of signals has failed.
  • the first field in the second type of message is used to determine the second index.
  • the first field in the second type of message is used to indicate the second index.
  • the first field in the second type of message explicitly indicates the second index.
  • the first field in the second type of message implicitly indicates the second index.
  • the first field is used to indicate a link failure in the first cell.
  • the first field is used to indicate at least one link failure in the first cell.
  • Embodiment 8 illustrates a schematic diagram of a failure of the first target link according to an embodiment of the present application; as shown in FIG. 8 .
  • the phrase determining the first target link failure according to the measurement on the first target signal set includes: as the received quality of each reference signal in the first target signal set is lower than a first threshold In response, a first-type indication for updating the first counter is reported to the higher layer; it is determined that the first target link fails according to the first counter being not less than the first value.
  • the first counter is not less than a first value, it is determined that the first target link fails.
  • the behavior update includes incrementing the current value by one.
  • the first threshold is a real number.
  • the first threshold is a non-negative real number.
  • the first threshold is a non-negative real number not greater than 1.
  • the first threshold is one of Q out_L , Q out_LR_SSB or Q out_LR_CSI-RS .
  • Q out_LR Q out_LR_SSB and Q out_LR_CSI-RS refer to 3GPP TS38.133.
  • the first threshold is configured by a higher layer parameter rlmInSyncOutOfSyncThreshold.
  • a said first type of indication is a beam failure instance indication.
  • an indication of the first type is a radio link quality indication.
  • an indication of the first type is a reception quality indication.
  • the first type of indication corresponds to the first counter.
  • the first type of indication corresponds to the first index.
  • the first type of indication corresponds to the first target signal set.
  • the first counter is BFI_COUNTER.
  • the initial value of the first counter is 0.
  • the value of the first counter is a non-negative integer.
  • the first value is a positive integer.
  • the first value is beamFailureInstanceMaxCount.
  • the first value is configured by a higher layer parameter.
  • the higher layer parameter configuring the first value includes all or part of the information in the beamFailureInstanceMaxCount field of the RadioLinkMonitoringConfig IE.
  • the higher layer starts or re-enables a first timer every time an indication of the first type is received, and increments the first counter by one.
  • the first timer is beamFailureDetectionTimer.
  • the first counter is cleared.
  • the initial value of the first timer is a positive integer.
  • the initial value of the first timer is a positive real number.
  • the initial value of the first timer is configured by a higher layer parameter beamFailureDetectionTimer.
  • the initial value of the first timer is configured by an IE.
  • the name of the IE for configuring the initial value of the first timer includes RadioLinkMonitoring.
  • Embodiment 9 illustrates a schematic diagram of a second target link recovery process according to an embodiment of the present application; as shown in FIG. 9 .
  • the first target link recovery process and the second target link recovery process include a same time point.
  • the first target link recovery procedure is initiated and not successfully completed before the behavior determines that the second target link has failed.
  • the first target link recovery process is started before the behavior determines that the second target link fails, and the first target link recovery process starts the second target link recovery process after the behavior has not been successfully completed before.
  • the first target link recovery process and the second target link recovery process overlap in time.
  • the first target link recovery process is the first link recovery process
  • the second target link recovery process is the second link recovery process
  • the first target link recovery process is the second link recovery process
  • the second target link recovery process is the first link recovery process
  • Embodiment 10 illustrates a schematic diagram of a second target link recovery process according to another embodiment of the present application; as shown in FIG. 10 .
  • the first set of conditions includes: the first target link recovery process determines a second target when the behavior is The first target link recovery procedure is the second link recovery procedure that was initiated before the link failure and was not successfully completed, and the second target link recovery procedure is the first link recovery procedure.
  • the first condition set includes more than one condition; when any condition in the first condition set is satisfied, the first condition set is satisfied.
  • the first set of conditions includes a first condition including: the first target link recovery procedure is initiated and unsuccessful before the behavior determines that the second target link fails Complete, the first target link recovery process is the second link recovery process, and the second target link recovery process is the first link recovery process.
  • the first set of conditions includes a second condition including: the first target link recovery process is successfully completed before the behavior determines that the second target link fails.
  • the first condition is one condition in the first condition set.
  • the second condition is one condition in the first condition set.
  • Embodiment 11 illustrates a schematic diagram of a first response according to an embodiment of the present application; as shown in FIG. 11 .
  • the first receiver receives a first response; wherein at least one of the first target link recovery procedure and the second target link recovery procedure is determined according to the first response Completed successfully.
  • the first response belongs to one of the first target link recovery process and the second target link recovery process.
  • the first response includes a response to the first signal or a response to the second signal.
  • the first response includes at least one of a response to the first signal or a response to the second signal.
  • the first target link recovery process when the first response includes a response to the first signal, the first target link recovery process is successfully completed; when the first response includes a response to the second signal , the second target link recovery process is successfully completed.
  • the first target link recovery process and the second target link recovery process all completed successfully.
  • the first target link recovery procedure and the second target link recovery process is successfully completed.
  • the meaning of the sentence "at least one of the first target link recovery process and the second target link recovery process is successfully completed” includes: the first node considers that the first At least one of the target link recovery process and the second target link recovery process is successfully completed.
  • the meaning of the sentence "the first target link recovery process is successfully completed” includes: the first node considers that the first target link recovery process is successfully completed.
  • the meaning of the sentence "the second target link recovery process is successfully completed” includes: the first node considers that the second target link recovery process is successfully completed.
  • the first target link recovery process and the second target link recovery process are determined according to the first response.
  • the second target link recovery process is successfully completed.
  • which of the first target link recovery process and the second target link recovery process is successfully completed is determined according to the first response.
  • the first target link recovery process and the second target link recovery process are determined according to whether the first response belongs to the first target link recovery process or the second target link recovery process Which of the processes completed successfully.
  • the first response belongs to the first target link recovery process
  • the first response belongs to the second target link
  • the first target link recovery process and the second target link recovery process are determined according to whether the first response belongs to the first target link recovery process or the second target link recovery process Which or all of the processes completed successfully.
  • the first response belongs to the second target link recovery process and the second target link recovery process is the first link recovery process
  • determining the first target link Both the recovery process and the second target link recovery process are successfully completed
  • the first response belongs to the first target link recovery process and the first target link recovery process is the second link recovery process
  • it is determined that the first target link recovery process is successfully completed.
  • the first response belongs to the first link recovery process
  • a response belongs to the second link recovery process it is determined that one of the first target link recovery process and the second target link recovery process that is the second link recovery process is successful Finish.
  • the first response is used to indicate which of the first target link recovery procedure and the second target link recovery procedure completed successfully.
  • the first response explicitly indicates which of the first target link recovery process and the second target link recovery process is successfully completed.
  • the first response implicitly indicates which of the first target link recovery process and the second target link recovery process is successfully completed.
  • the first response is used to determine whether the first response belongs to the first target link recovery procedure or the second target link recovery procedure.
  • the first response is used to indicate whether the first response belongs to the first target link recovery procedure or the second target link recovery procedure.
  • the first response explicitly indicates whether the first response belongs to the first target link recovery process or the second target link recovery process.
  • the first response implicitly indicates whether the first response belongs to the first target link recovery process or the second target link recovery process.
  • the first response is used to determine whether the first response belongs to the first link recovery procedure or the second link recovery procedure.
  • the first response is used to indicate whether the first response belongs to the first link recovery procedure or the second link recovery procedure.
  • the first response explicitly indicates whether the first response belongs to the first link recovery process or the second link recovery process.
  • the first response implicitly indicates whether the first response belongs to the first link recovery process or the second link recovery process.
  • the first response belongs to the first target link recovery process and the second target link recovery process is A link recovery process of the first link recovery process; when it is determined that the first response belongs to the second link recovery process, the first response belongs to the first target link recovery process and the second link recovery process.
  • the second target link recovery process is a link recovery process of the second link recovery process.
  • the first response is used to indicate which or both of the first target link recovery procedure and the second target link recovery procedure are successfully completed.
  • the first response explicitly indicates which or both of the first target link recovery process and the second target link recovery process are successfully completed.
  • the first response implicitly indicates which or both of the first target link recovery process and the second target link recovery process are successfully completed.
  • which one of the first target link recovery process and the second target link recovery process is successfully completed is determined according to the time-frequency resources occupied by the first response.
  • which or both of the first target link recovery process and the second target link recovery process are successfully completed is determined according to the time-frequency resources occupied by the first response.
  • the time-frequency resource occupied by the first response belongs to the third air interface resource group, it is determined that the first response belongs to the first target link recovery process.
  • the time-frequency resource occupied by the first response belongs to the third air interface resource group, it is determined that the first target link recovery process is successfully completed.
  • the time-frequency resource occupied by the first response is outside the third air interface resource group, it is determined that the second target link recovery process is successfully completed.
  • the time-frequency resource occupied by the first response is outside the third air interface resource group, it is determined that the first response belongs to the second target link recovery process.
  • the time-frequency resource occupied by the first response belongs to the fourth air interface resource group, it is determined that the second target link recovery process is successfully completed.
  • the time-frequency resource occupied by the first response belongs to the fourth air interface resource group, it is determined that the first response belongs to the second target link recovery process.
  • the first response includes Msg4.
  • the first response includes MsgB.
  • the first response includes a conflict resolution (Contention Resolution) PDSCH.
  • the first response includes a DCI whose CRC is scrambled by C-RNTI or MCS (Modulation and Coding Scheme, modulation and coding scheme)-C-RNTI.
  • C-RNTI or MCS (Modulation and Coding Scheme, modulation and coding scheme)-C-RNTI.
  • MCS Modulation and Coding Scheme, modulation and coding scheme
  • the first response includes a DCI whose CRC is scrambled by the TC-RNTI.
  • the first response includes a DCI whose CRC is scrambled by the C-RNTI.
  • the first response includes a DCI whose CRC is scrambled by the MsgB-RNTI.
  • the first response includes a DCI whose CRC is scrambled by RA (Random Access)-RNTI.
  • RA Random Access
  • the first response includes an activation command from a higher layer for a TCI state.
  • the first response includes an activation command (activation command) of higher layer parameters tci-StatesPDCCH-ToAddList and/or tci-StatesPDCCH-ToReleaseList.
  • the first target link recovery process and the second target link recovery process are in the process of recovery. which completed successfully.
  • the first target link recovery process and the second target link recovery process are in the process of recovery. which or all of them completed successfully.
  • the second target link recovery process is successfully completed.
  • the first target link Both the recovery process and the second target link recovery process are successfully completed.
  • the first target link recovery process is successfully completed.
  • the second target link recovery process is successfully completed.
  • the meaning of the phrase that one TCI state corresponds to one CORESET set includes: the one TCI state is the TCI state of one CORESET in the one CORESET set.
  • the meaning of the phrase one TCI state corresponding to one CORESET set includes: the one TCI state is the TCI state of at least one CORESET in the one CORESET set.
  • which of the first target link recovery process and the second target link recovery process is determined according to the correspondence between the TCI state activated by the first response and the first index and the second index Completed successfully.
  • which of the first target link recovery process and the second target link recovery process is determined according to the correspondence between the TCI state activated by the first response and the first index and the second index or all completed successfully.
  • the second target link recovery process is successfully completed.
  • the first target link recovery process and the second target link recovery process is successfully completed.
  • the first target link recovery process is successfully completed.
  • the second target link recovery process is successfully completed.
  • Embodiment 12 illustrates a structural block diagram of a processing apparatus used in a first node device according to an embodiment of the present application; as shown in FIG. 12 .
  • the processing apparatus 1200 in the first node device includes a first receiver 1201 and a first transceiver 1202 .
  • the first node device is user equipment.
  • the first node device is a relay node device.
  • the first receiver 1201 includes ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, data source in Embodiment 4 467 ⁇ at least one.
  • the first transceiver 1202 includes ⁇ the antenna 452, the transmitter/receiver 454, the transmit processor 468, the multi-antenna transmit processor 457, the at least one of the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, and the data source 467 ⁇ .
  • the first receiver 1201 receiving a first target signal set; determining that the first target link fails according to the measurement on the first target signal set;
  • the first transceiver 1202 in response to determining the failure of the first target link by the behavior, starts the first target link recovery process;
  • the first target link recovery process when the first target signal set includes a first signal set, the first target link recovery process is a first link recovery process; when the first target signal set includes a second signal When set, the first target link recovery process is a second link recovery process; the first signal set and the second signal set respectively include at least one reference signal associated with the first cell, and there is at least one The reference signal belongs to only one of the first signal set and the second signal set; the first link recovery procedure and the second link recovery procedure include random access procedures on the same cell .
  • only one of the first link recovery procedure and the second link recovery procedure includes a contention-free random access procedure.
  • the first target link recovery process includes: the first transceiver 1202 sends a first target message; when the first target link recovery process is the first link recovery process, The first target message is a first type of message; when the first target link recovery procedure is the second link recovery procedure, the first target message is a second type of message.
  • the phrase determining that the first target link fails according to the measurement on the first target signal set includes: as the reception quality of each reference signal in the first target signal set is lower than a first threshold In response, a first-type indication for updating the first counter is reported to a higher layer; it is determined that the first target link fails according to the fact that the first counter is not less than a first value.
  • the first receiver 1201 receives the second target signal set; determines that the second target link fails according to the measurement on the second target signal set; as the behavior determines that the second target link fails
  • the first transceiver 1202 initiates a second target link recovery procedure; wherein, when the first target signal set includes the first signal set, the second target signal set includes the second signal set, The second target link recovery process is the second link recovery process; when the first target signal set includes the second signal set, the second target signal set includes the first signal set , the second target link recovery process is the first link recovery process.
  • the first target link recovery process and the second target link recovery process include a same time point.
  • the first condition set includes: the first target link recovery process determines the second target link when the behavior is determined.
  • the first target link recovery process is the second link recovery process, and the second target link recovery process is the first link recovery process.
  • the first receiver 1201 receives a first response; wherein, at least one of the first target link recovery process and the second target link recovery process is determined according to the first response Completed successfully.
  • Embodiment 13 illustrates a structural block diagram of a processing apparatus used in a second node device according to an embodiment of the present application; as shown in FIG. 13 .
  • the processing apparatus 1300 in the second node device includes a second transmitter 1301 and a second transceiver 1302 .
  • the second node device is a base station device.
  • the second node device is user equipment.
  • the second node device is a relay node device.
  • the second transmitter 1301 includes ⁇ antenna 420, transmitter 418, transmit processor 416, multi-antenna transmit processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4 at least one.
  • the second transceiver 1302 includes ⁇ the antenna 420, the transmitter/receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the at least one of the transmit processor 416, the multi-antenna transmit processor 471, the controller/processor 475, and the memory 476 ⁇ .
  • the second transmitter 1301 sends the first target signal set
  • the second transceiver 1302 monitors whether the first target link recovery process is started
  • the first target link recovery procedure is initiated when measurements for the first target signal set are used to determine that the first target link fails; when the first target signal set includes When the first signal set is used, the first target link recovery process is the first link recovery process; when the first target signal set includes the second signal set, the first target link recovery process is the second target link recovery process.
  • Link recovery process; the first signal set and the second signal set respectively include at least one reference signal associated with the first cell, and there is at least one reference signal that only belongs to the first signal set and the second signal set One of the two sets of signals; the first link recovery procedure and the second link recovery procedure include random access procedures on the same cell.
  • only one of the first link recovery procedure and the second link recovery procedure includes a contention-free random access procedure.
  • the first target link recovery process includes: the second transceiver 1302 receives a first target message; when the first target link recovery process is the first link recovery process, The first target message is a first type of message; when the first target link recovery procedure is the second link recovery procedure, the first target message is a second type of message.
  • the second transmitter 1301 sends a second target signal set; the second transceiver 1302 monitors whether the second target link recovery process is started; When the measurement is used to determine that the second target link fails, the second target link recovery process is started; when the first target signal set includes the first signal set, the second target signal set includes the second signal set, the second target link recovery process is the second link recovery process; when the first target signal set includes the second signal set, the second target signal set Including the first signal set, the second target link recovery process is the first link recovery process.
  • the first target link recovery process and the second target link recovery process include a same time point.
  • the second target link recovery process when the first condition set is satisfied, the second target link recovery process is triggered; the first condition set includes: the first target link recovery process determines the second The target link was started before failure and was not successfully completed, the first target link recovery procedure is the second link recovery procedure, and the second target link recovery procedure is the first link recovery procedure .
  • the second transmitter 1301 sends a first response; wherein the first response is used to determine at least one of the first target link recovery process and the second target link recovery process One completed successfully.
  • User equipment, terminals and UEs in this application include but are not limited to drones, communication modules on drones, remote-controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, in-vehicle communication equipment, wireless sensors, network cards, IoT terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication, machine type communication) terminal, eMTC (enhanced MTC, enhanced MTC) terminal, data card, network card, vehicle communication equipment, low-cost mobile phone, low Wireless communication devices such as tablet PCs.
  • MTC Machine Type Communication, machine type communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, Transmitter Receiver Node) and other wireless communications equipment.
  • gNB NR Node B
  • TRP Transmitter Receiver Point, Transmitter Receiver Node

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点接收第一目标信号集合;根据针对所述第一目标信号集合的测量确定第一目标链路失败;作为所述行为确定第一目标链路失败的响应,启动第一目标链路恢复过程。当所述第一目标信号集合包括第一信号集合时,所述第一目标链路恢复过程是第一链路恢复过程;当所述第一目标信号集合包括第二信号集合时,所述第一目标链路恢复过程是第二链路恢复过程;所述第一信号集合和所述第二信号集合分别包括至少一个被关联到第一小区的参考信号,至少存在一个参考信号仅属于所述第一信号集合和所述第二信号集合二者中之一;所述第一链路恢复过程和所述第二链路恢复过程包括同一个小区上的随机接入过程。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是支持蜂窝网的无线通信系统中的无线信号的传输方法和装置。
背景技术
在5G NR(New Radio,新无线)中,大规模(Massive)MIMO(Multi-Input Multi-Output)是一个重点技术。大规模MIMO中,多个天线通过波束赋型,形成较窄的波束指向一个特定方向来提高通信质量。在5G NR中,为应对波束失败时的快速恢复,已经采纳了波束失败恢复(beam failure recovery)机制,即UE(User Equipement,用户设备)在通信过程中对服务波束进行测量,当发现服务波束质量不好时,启动波束失败恢复机制,基站继而更换服务波束。
对于多TRP(Transmission and Reception Point,发送接收点)下,基于波束的通信在发生波束失败时,如何快速恢复波束需要被进一步考虑。
发明内容
发明人通过研究发现,对于多TRP下的波束失败恢复机制是需要研究的一个关键问题。
针对上述问题,本申请公开了一种解决方案。需要说明的是,虽然上述描述采用大规模MIMO和基于波束的通信场景作为例子,本申请也适用于其他场景比如LTE多天线系统,并取得类似在大规模MIMO和基于波束的通信场景中的技术效果。此外,不同场景(包括但不限于大规模MIMO,基于波束的通信和LTE多天线系统)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到其他任一节点中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一目标信号集合;根据针对所述第一目标信号集合的测量确定第一目标链路失败;
作为所述行为确定第一目标链路失败的响应,启动第一目标链路恢复过程;
其中,当所述第一目标信号集合包括第一信号集合时,所述第一目标链路恢复过程是第一链路恢复过程;当所述第一目标信号集合包括第二信号集合时,所述第一目标链路恢复过程是第二链路恢复过程;所述第一信号集合和所述第二信号集合分别包括至少一个被关联到第一小区的参考信号,至少存在一个参考信号仅属于所述第一信号集合和所述第二信号集合二者中之一;所述第一链路恢复过程和所述第二链路恢复过程包括同一个小区上的随机接入过程。
作为一个实施例,本申请要解决的问题是:对于多TRP下,当发生波束失败时,如何快速恢复波束是需要研究的一个关键问题。
作为一个实施例,上述方法的实质在于,对于第一小区,针对第一信号集合的链路失败对应第一链路恢复过程,针对第二信号集合的链路失败对应第二链路恢复过程,第一链路恢复过程和第二链路恢复过程都包括随机接入过程。采用上述方法的好处在于,针对同一个小区,通过对多个链路失败的监测,降低了这个小区出现通信中断的概率,提升了用户通信质量。
根据本申请的一个方面,其特征在于,所述第一链路恢复过程和所述第二链路恢复过程中的仅一个链路恢复过程包括免竞争的随机接入过程。
根据本申请的一个方面,其特征在于,所述第一目标链路恢复过程包括:发送第一目标消息; 当所述第一目标链路恢复过程是所述第一链路恢复过程时,所述第一目标消息是第一类消息;当所述第一目标链路恢复过程是所述第二链路恢复过程时,所述第一目标消息是第二类消息。
根据本申请的一个方面,其特征在于,所述短语根据针对所述第一目标信号集合的测量确定第一目标链路失败包括:作为所述第一目标信号集合中每个参考信号的接收质量低于第一阈值的响应,向更高层上报用于更新第一计数器的一个第一类指示;根据所述第一计数器不小于第一值确定所述第一目标链路失败。
根据本申请的一个方面,其特征在于,包括:
接收第二目标信号集合;根据针对所述第二目标信号集合的测量确定第二目标链路失败;
作为所述行为确定第二目标链路失败的响应,启动第二目标链路恢复过程;
其中,当所述第一目标信号集合包括所述第一信号集合时,所述第二目标信号集合包括所述第二信号集合,所述第二目标链路恢复过程是所述第二链路恢复过程;当所述第一目标信号集合包括所述第二信号集合时,所述第二目标信号集合包括所述第一信号集合,所述第二目标链路恢复过程是所述第一链路恢复过程。
根据本申请的一个方面,其特征在于,所述第一目标链路恢复过程和所述第二目标链路恢复过程包括一个相同的时间点。
根据本申请的一个方面,其特征在于,根据第一条件集合被满足确定触发所述第二目标链路恢复过程;所述第一条件集合包括:所述第一目标链路恢复过程在所述行为确定第二目标链路失败之前被启动且未被成功完成,所述第一目标链路恢复过程是所述第二链路恢复过程,所述第二目标链路恢复过程是所述第一链路恢复过程。
根据本申请的一个方面,其特征在于,包括:
接收第一响应;
其中,根据所述第一响应确定所述第一目标链路恢复过程和所述第二目标链路恢复过程中的至少之一成功完成。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一目标信号集合;
监测第一目标链路恢复过程是否被启动;
其中,当针对所述第一目标信号集合的测量被用于确定第一目标链路失败时,所述第一目标链路恢复过程被启动;当所述第一目标信号集合包括第一信号集合时,所述第一目标链路恢复过程是第一链路恢复过程;当所述第一目标信号集合包括第二信号集合时,所述第一目标链路恢复过程是第二链路恢复过程;所述第一信号集合和所述第二信号集合分别包括至少一个被关联到第一小区的参考信号,至少存在一个参考信号仅属于所述第一信号集合和所述第二信号集合二者中之一;所述第一链路恢复过程和所述第二链路恢复过程包括同一个小区上的随机接入过程。
根据本申请的一个方面,其特征在于,所述第一链路恢复过程和所述第二链路恢复过程中的仅一个链路恢复过程包括免竞争的随机接入过程。
根据本申请的一个方面,其特征在于,所述第一目标链路恢复过程包括:接收第一目标消息;当所述第一目标链路恢复过程是所述第一链路恢复过程时,所述第一目标消息是第一类消息;当所述第一目标链路恢复过程是所述第二链路恢复过程时,所述第一目标消息是第二类消息。
根据本申请的一个方面,其特征在于,包括:
发送第二目标信号集合;
监测第二目标链路恢复过程是否被启动;
其中,当针对所述第二目标信号集合的测量被用于确定第二目标链路失败时,所述第二目标链路恢复过程被启动;当所述第一目标信号集合包括所述第一信号集合时,所述第二目标信号集合包括所述第二信号集合,所述第二目标链路恢复过程是所述第二链路恢复过程;当所述第一目标信号集合包括所述第二信号集合时,所述第二目标信号集合包括所述第一信号集合,所述第二目标链路恢复过程是所述第一链路恢复过程。
根据本申请的一个方面,其特征在于,所述第一目标链路恢复过程和所述第二目标链路恢复过 程包括一个相同的时间点。
根据本申请的一个方面,其特征在于,当第一条件集合被满足时,所述第二目标链路恢复过程被触发;所述第一条件集合包括:所述第一目标链路恢复过程在所述行为确定第二目标链路失败之前被启动且未被成功完成,所述第一目标链路恢复过程是所述第二链路恢复过程,所述第二目标链路恢复过程是所述第一链路恢复过程。
根据本申请的一个方面,其特征在于,包括:
发送第一响应;
其中,所述第一响应被用于确定所述第一目标链路恢复过程和所述第二目标链路恢复过程中的至少之一成功完成。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一接收机,接收第一目标信号集合;根据针对所述第一目标信号集合的测量确定第一目标链路失败;
第一收发机,作为所述行为确定第一目标链路失败的响应,启动第一目标链路恢复过程;
其中,当所述第一目标信号集合包括第一信号集合时,所述第一目标链路恢复过程是第一链路恢复过程;当所述第一目标信号集合包括第二信号集合时,所述第一目标链路恢复过程是第二链路恢复过程;所述第一信号集合和所述第二信号集合分别包括至少一个被关联到第一小区的参考信号,至少存在一个参考信号仅属于所述第一信号集合和所述第二信号集合二者中之一;所述第一链路恢复过程和所述第二链路恢复过程包括同一个小区上的随机接入过程。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二发射机,发送第一目标信号集合;
第二收发机,监测第一目标链路恢复过程是否被启动;
其中,当针对所述第一目标信号集合的测量被用于确定第一目标链路失败时,所述第一目标链路恢复过程被启动;当所述第一目标信号集合包括第一信号集合时,所述第一目标链路恢复过程是第一链路恢复过程;当所述第一目标信号集合包括第二信号集合时,所述第一目标链路恢复过程是第二链路恢复过程;所述第一信号集合和所述第二信号集合分别包括至少一个被关联到第一小区的参考信号,至少存在一个参考信号仅属于所述第一信号集合和所述第二信号集合二者中之一;所述第一链路恢复过程和所述第二链路恢复过程包括同一个小区上的随机接入过程。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-针对同一个小区,通过对多个链路失败的监测,降低了这个小区出现通信中断的概率,提升了用户通信质量。
-
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一目标信号集合、第一目标链路失败和第一目标链路恢复过程的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线传输的流程图;
图6示出了根据本申请的一个实施例的第一链路恢复过程和第二链路恢复过程的示意图;
图7示出了根据本申请的另一个实施例的第一链路恢复过程和第二链路恢复过程的示意图;
图8示出了根据本申请的一个实施例的第一目标链路失败的示意图;
图9示出了根据本申请的一个实施例的第二目标链路恢复过程的示意图;
图10示出了根据本申请的另一个实施例的第二目标链路恢复过程的示意图;
图11示出了根据本申请的一个实施例的第一响应的示意图;
图12示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的用于第二节点中设备的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一目标信号集合、第一目标链路失败和第一目标链路恢复过程的流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。特别的,方框中的步骤的顺序不代表各个步骤之间特定的时间先后关系。
在实施例1中,本申请中的所述第一节点在步骤101中接收第一目标信号集合;在步骤102中根据针对所述第一目标信号集合的测量确定第一目标链路失败;在步骤103中作为所述行为确定第一目标链路失败的响应,启动第一目标链路恢复过程;其中,当所述第一目标信号集合包括第一信号集合时,所述第一目标链路恢复过程是第一链路恢复过程;当所述第一目标信号集合包括第二信号集合时,所述第一目标链路恢复过程是第二链路恢复过程;所述第一信号集合和所述第二信号集合分别包括至少一个被关联到第一小区的参考信号,至少存在一个参考信号仅属于所述第一信号集合和所述第二信号集合二者中之一;所述第一链路恢复过程和所述第二链路恢复过程包括同一个小区上的随机接入过程。
作为一个实施例,所述第一信号集合包括CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)。
作为一个实施例,所述第一信号集合包括周期性(Periodic)CSI-RS。
作为一个实施例,所述第一信号集合包括CSI-RS或者SS/PBCH(Synchronization Signal/Physical Broadcast CHannel)块(Block)中的至少之一。
作为一个实施例,所述第二信号集合包括CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)。
作为一个实施例,所述第二信号集合包括周期性(Periodic)CSI-RS。
作为一个实施例,所述第二信号集合包括CSI-RS或者SS/PBCH(Synchronization Signal/Physical Broadcast CHannel)块(Block)中的至少之一。
作为一个实施例,所述第一信号集合和所述第二信号集合被用于波束失败恢复(Beam Failure Recovery)机制中的波束失败探测(Beam Failure Detection)。
作为一个实施例,波束失败恢复(beam failure recovery)机制的具体定义参见3GPP TS38.213中的6章节。
作为一个实施例,所述第一信号集合是
Figure PCTCN2021135657-appb-000001
作为一个实施例,所述第二信号集合是
Figure PCTCN2021135657-appb-000002
作为一个实施例,所述
Figure PCTCN2021135657-appb-000003
的具体定义参见3GPP TS38.213中的第6章节。
作为一个实施例,所述第一信号集合由failureDetectionResources配置。
作为一个实施例,所述第二信号集合由failureDetectionResources配置。
作为一个实施例,所述failureDetectionResources的具体定义参见3GPP TS38.213中的第6章节。
作为一个实施例,所述第一信号集合包括被用于监测PDCCH(Physical Downlink Control CHannel,物理下行控制信道)的对应CORESET(s)的TCI状态所指示的参考信号。
作为一个实施例,所述第二信号集合包括被用于监测PDCCH的对应CORESET(s)的TCI状态所指示的参考信号。
作为一个实施例,所述第一信号集合包括对应第一CORESET集合的TCI状态所指示的参考信号,所述第二信号集合包括对应第二CORESET集合的TCI状态所指示的参考信号。
作为一个实施例,所述第一CORESET集合的索引的名称包括CORESETPoolIndex,所述第二CORESET 集合的索引的名称包括CORESETPoolIndex。
作为一个实施例,所述第一CORESET集合的索引的名称包括CORESET,所述第二CORESET集合的索引的名称包括CORESET。
作为一个实施例,所述第一信号集合包括与第一搜索空间集合关联的CORESET(s)的TCI状态所指示的参考信号,所述第二信号集合包括与第二搜索空间集合关联的CORESET(s)的TCI状态所指示的参考信号。
作为一个实施例,所述第一CORESET集合包括所述第二CORESET集合中的至少一个CORESET。
作为一个实施例,所述第一CORESET集合包括所述第二CORESET集合。
作为一个实施例,所述第一CORESET集合中的任一CORESET不属于所述第二CORESET集合。
作为一个实施例,所述第一搜索空间集合包括所述第二搜索空间集合中的至少一个搜索空间。
作为一个实施例,所述第一搜索空间集合包括所述第二搜索空间集合。
作为一个实施例,所述第一搜索空间集合中的任一搜索空间不属于所述第二搜索空间集合。
作为一个实施例,一个TCI状态被用于指示正整数个参考信号。
作为一个实施例,一个TCI状态所指示的参考信号包括CSI-RS、SRS或者SS/PBCH块中的至少之一。
作为一个实施例,一个TCI状态所指示的参考信号包括一个类型是QCL-TypeD的参考信号。
作为一个实施例,所述QCL-TypeD的具体定义参见3GPP TS38.214中的第5.1.5章节。
作为一个实施例,一个TCI状态所指示的参考信号被用于确定QCL(Quasi-Co-Located,准共址)参数。
作为一个实施例,一个TCI状态所指示的参考信号被用于确定空域滤波。
作为一个实施例,一个TCI状态所指示的参考信号被用于确定空间接收参数。
作为一个实施例,一个TCI状态所指示的参考信号被用于确定空间发送参数。
作为一个实施例,所述第一小区是SpCell。
作为一个实施例,所述第一小区是PCell。
作为一个实施例,所述第一小区是PSCell。
作为一个实施例,所述第一小区是所述第一节点的服务小区。
作为一个实施例,所述第一信号集合包括正整数个参考信号,所述第二信号集合包括正整数个参考信号。
作为一个实施例,所述参考信号是一个CSI-RS资源或者一个SS/PBCH块。
作为一个实施例,所述参考信号是一个CSI-RS资源或者被一个SS/PBCH块索引(index)指示的SS/PBCH块。
作为一个实施例,所述参考信号是一个CSI-RS资源。
作为一个实施例,所述参考信号是SS/PBCH块。
作为一个实施例,所述参考信号是被一个SS/PBCH块索引(index)指示的SS/PBCH块。
作为一个实施例,至少存在一个参考信号同时属于所述第一信号集合和所述第二信号集合。
作为一个实施例,至少存在一个被关联到第一小区的参考信号同时属于所述第一信号集合和所述第二信号集合。
作为一个实施例,所述第一信号集合包括至少一个被关联到所述第一小区之外的一个服务小区的参考信号。
作为一个实施例,所述第一信号集合由仅被关联到第一小区的参考信号组成。
作为一个实施例,所述第二信号集合包括至少一个被关联到所述第一小区之外的一个服务小区的参考信号。
作为一个实施例,所述第二信号集合由仅被关联到第一小区的参考信号组成。
作为一个实施例,存在一个参考信号属于所述第一信号集合和所述第二信号集合二者中的仅所述第一信号集合。
作为一个实施例,所述第一信号集合包括所述第二信号集合。
作为一个实施例,所述第一信号集合包括所述第二信号集合中的至少一个参考信号。
作为一个实施例,所述第一信号集合中的任一参考信号不属于所述第二信号集合。
作为一个实施例,所述第一信号集合和所述第二信号集合分别由不同的TRP发送。
作为一个实施例,所述第一信号集合中至少一个参考信号与所述第二信号集合被相同的TRP发送。
作为一个实施例,所述第一信号集合中至少一个参考信号与所述第二信号集合被不同的TRP发送。
作为一个实施例,所述第一信号集合和所述第二信号集合由同一个IE(Information Element,信息单元)配置。
作为一个实施例,所述第一信号集合和所述第二信号集合分别由两个IE配置。
作为一个实施例,被用于配置所述第一信号集合的IE的名称里包括BeamFailureRecovery。
作为一个实施例,被用于配置所述第一信号集合的IE的名称里包括BeamFailure。
作为一个实施例,被用于配置所述第二信号集合的IE的名称里包括BeamFailureRecovery。
作为一个实施例,被用于配置所述第二信号集合的IE的名称里包括BeamFailure。
作为一个实施例,所述第一信号集合对应第一索引,所述第一索引是非负整数。
作为一个实施例,所述第二信号集合对应第二索引,所述第二索引是非负整数。.
作为一个实施例,所述第一索引和所述第二索引是两个不同的非负整数。
作为一个实施例,所述第一索引和所述第二索引分别对应所述第一小区的两个TRP。
作为一个实施例,所述第一索引是所述第一信号集合的索引。
作为一个实施例,所述第二索引是所述第二信号集合的索引。
作为一个实施例,所述第一索引是所述第一CORESET集合的索引。
作为一个实施例,所述第二索引是所述第二CORESET集合的索引。
作为一个实施例,所述第一索引是所述第一搜索空间集合的索引。
作为一个实施例,所述第二索引是所述第二搜索空间集合的索引。
作为一个实施例,所述第一索引的名称包括set。
作为一个实施例,所述第二索引的名称包括set。
作为一个实施例,所述第一索引的名称包括SET。
作为一个实施例,所述第二索引的名称包括SET。
作为一个实施例,所述第一索引的名称包括CORESETPoolIndex。
作为一个实施例,所述第二索引的名称包括CORESETPoolIndex。
作为一个实施例,所述第一索引的名称包括CORESET。
作为一个实施例,所述第二索引的名称包括CORESET。
作为一个实施例,所述第一索引的名称包括TRP。
作为一个实施例,所述第二索引的名称包括TRP。
作为一个实施例,所述第一索引的名称包括TCI。
作为一个实施例,所述第二索引的名称包括TCI。
作为一个实施例,所述第一索引的名称包括tci。
作为一个实施例,所述第二索引的名称包括tci。
作为一个实施例,所述第一CORESET集合包括CORESETPoolIndex值等于0的所有CORESET。
作为一个实施例,所述第一CORESET集合包括CORESETPoolIndex值等于1的所有CORESET。
作为一个实施例,所述第二CORESET集合包括CORESETPoolIndex值等于0的所有CORESET。
作为一个实施例,所述第二CORESET集合包括CORESETPoolIndex值等于1的所有CORESET。
作为一个实施例,给定参考信号是一个被关联到给定小区的参考信号,所述给定小区的PCI(Physical Cell Identity,物理小区身份)被用于生成所述给定参考信号。
作为上述实施例的一个子实施例,所述给定小区是所述第一小区。
作为上述实施例的一个子实施例,所述给定小区是所述第一小区之外的一个服务小区。
作为一个实施例,给定参考信号是一个被关联到给定小区的参考信号,所述给定参考信号与所述给定小区的SSB是QCL。
作为上述实施例的一个子实施例,所述给定小区是所述第一小区。
作为上述实施例的一个子实施例,所述给定小区是所述第一小区之外的一个服务小区。
作为一个实施例,给定参考信号是一个被关联到给定小区的参考信号,所述给定参考信号被所述给定小区发送。
作为上述实施例的一个子实施例,所述给定小区是所述第一小区。
作为上述实施例的一个子实施例,所述给定小区是所述第一小区之外的一个服务小区。
作为一个实施例,给定参考信号是一个被关联到给定小区的参考信号,所述给定参考信号所占用的空口资源被一个配置信令指示,所述一个配置信令所经过的RLC(Radio Link Control,无线链路控制)承载(Bearer)是通过一个CellGroupConfig IE被配置的,所述一个CellGroupConfig IE配置的SpCell(Special Cell,特殊小区)或SCell(Secondary Cell)包括所述给定小区。
作为上述实施例的一个子实施例,所述给定小区是所述第一小区。
作为上述实施例的一个子实施例,所述给定小区是所述第一小区之外的一个服务小区。
作为一个实施例,给定参考信号是一个被关联到给定小区的参考信号,所述给定参考信号所占用的空口资源被一个配置信令指示,所述一个配置信令所经过的RLC(Radio Link Control,无线链路控制)承载(Bearer)是通过一个CellGroupConfig IE被配置的,所述一个CellGroupConfig IE配置的Spcell(Special cell,特殊小区)包括所述给定小区。
作为上述实施例的一个子实施例,所述给定小区是所述第一小区。
作为上述实施例的一个子实施例,所述给定小区是所述第一小区之外的一个服务小区。
作为一个实施例,所述配置信令包括更高层信令。
作为一个实施例,所述配置信令包括RRC信令。
作为一个实施例,所述第一节点中的方法包括:
接收第一信息组;
其中,所述第一信息组被用于指示所述第一信号集合。
作为一个实施例,所述第一接收机接收第一信息组;其中,所述第一信息组被用于指示所述第一信号集合。
作为一个实施例,所述第一节点中的方法包括:
接收第二信息组;
其中,所述第二信息组被用于指示所述第二信号集合。
作为一个实施例,所述第一接收机接收第二信息组;其中,所述第二信息组被用于指示所述第二信号集合。
作为一个实施例,所述第一信息组由RRC信令携带。
作为一个实施例,所述第二信息组由RRC信令携带。
作为一个实施例,所述第一信息组包括一个IE中的全部或部分域(Field)。
作为一个实施例,所述第二信息组包括一个IE中的全部或部分域。
作为一个实施例,所述第一信息组和所述第一信息组属于同一个IE。
作为一个实施例,所述第一信息组和所述第一信息组分别包括两个IE。
作为一个实施例,所述第一信息组显式的指示所述第一信号集合。
作为一个实施例,所述第一信息组隐式的指示所述第一信号集合。
作为一个实施例,所述第一信息组指示在监测PDCCH(Physical Downlink Control CHannel,物理下行控制信道)时所使用的对应CORESET(s)的TCI(Transmission Configuration Indicator,发送配置指示)状态(State)。
作为一个实施例,所述第一信息组指示所述第一信号集合中的每个参考信号的索引。
作为一个实施例,所述第一信息组包括所述第一信号集合中的每个参考信号的配置信息。
作为一个实施例,所述第一信号集合中的任一参考信号的配置信息包括周期、时域偏移(offset)、所占用的时域资源、所占用的频域资源、所占用的码域资源、循环位移量(cyclic shift)、OCC(Orthogonal Cover Code,正交掩码)、所占用的天线端口组、序列(sequence)、TCI状态、空域滤波、空间接收参数、空间发送参数中的至少之一。
作为一个实施例,所述第一信息组包括S1个信息块,所述第一信号集合包括S1个参考信号,所述S1个信息块分别被用于指示所述S1个参考信号,S1是大于1的正整数。
作为一个实施例,所述第二信息组显式的指示所述第二信号集合。
作为一个实施例,所述第二信息组隐式的指示所述第二信号集合。
作为一个实施例,所述第二信息组指示在监测PDCCH(Physical Downlink Control CHannel,物理下行控制信道)时所使用的对应CORESET(s)的TCI状态。
作为一个实施例,所述第一信息组指示第一CORESET集合,所述第二信息组指示第二CORESET集合。
作为一个实施例,所述第一信息组指示对应第一CORESET集合的TCI状态,所述第二信息组指示对应第二CORESET集合的TCI状态。
作为一个实施例,所述第一信息组指示第一搜索空间集合,所述第二信息组指示第二搜索空间集合。
作为一个实施例,所述第二信息组指示所述第二信号集合中的每个参考信号的索引。
作为一个实施例,所述第二信息组包括所述第二信号集合中的每个参考信号的配置信息。
作为一个实施例,所述第二信号集合中的任一参考信号的配置信息包括周期、时域偏移(offset)、所占用的时域资源、所占用的频域资源、所占用的码域资源、循环位移量(cyclic shift)、OCC(Orthogonal Cover Code,正交掩码)、所占用的天线端口组、序列(sequence)、TCI状态、空域滤波、空间接收参数、空间发送参数中的至少之一。
作为一个实施例,所述第二信息组包括S2个信息块,所述第二信号集合包括S2个参考信号,所述S2个信息块分别被用于指示所述S2个参考信号,S2是大于1的正整数。
作为一个实施例,根据所述第一目标信号集合是所述第一信号集合还是所述第二信号集合确定所述第一目标链路恢复过程是所述第一链路恢复过程还是所述第二链路恢复过程。
作为一个实施例,所述同一个小区是所述第一小区。
作为一个实施例,所述同一个小区是所述第一小区之外的一个服务小区。
作为一个实施例,所述同一个小区是SpCell。
作为一个实施例,所述第一链路恢复过程和所述第二链路恢复过程分别包括的随机接入过程的类型不同。
作为一个实施例,所述随机接入过程的类型包括基于竞争的随机接入过程、免竞争的随机接入过程。
作为一个实施例,所述随机接入过程的类型包括四步(4-step)随机接入过程、二步(2-step)随机接入过程。
作为一个实施例,所述随机接入过程的类型包括基于竞争的随机接入过程、免竞争的随机接入过程、四步(4-step)随机接入过程、二步(2-step)随机接入过程。
作为一个实施例,所述随机接入过程的类型包括BFR MAC CE的格式。
作为一个实施例,所述第一链路恢复过程和所述第二链路恢复过程中的仅一个链路恢复过程包括二步随机接入过程。
作为一个实施例,所述第一链路恢复过程和所述第二链路恢复过程中分别包括的BFR MAC CE的格式不同。
作为一个实施例,所述第一链路恢复过程和所述第二链路恢复过程中分别包括的截短的BFR MAC CE的格式不同。
作为一个实施例,所述第一链路恢复过程或所述第二链路恢复过程中的至少所述第二链路恢复过程包括BFR MAC CE或者截短的BFR MAC CE。
作为一个实施例,所述第一链路恢复过程包括基于竞争的随机接入过程或者免竞争的随机接入过程。
作为一个实施例,所述第二链路恢复过程包括基于竞争的随机接入过程。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE,LTE-A及未来5G系统的网络架构200称为EPS(Evolved Packet System,演进分组系统)200。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200或某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(下一代无线接入网络)202,5GC(5G CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,5GS/EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。NG-RAN202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网,内联网,IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换(Packet switching)服务。
作为一个实施例,本申请中的所述第一节点包括所述UE201。
作为一个实施例,本申请中的所述第一节点包括所述UE241。
作为一个实施例,本申请中的所述第二节点包括所述gNB203。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间,或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,负责第一通信节点设备与第二通信节点设备之间,或者两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造 成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第一目标信号集合生成于所述PHY301。
作为一个实施例,所述第一目标信号集合生成于所述PHY351。
作为一个实施例,所述第二目标信号集合生成于所述PHY301。
作为一个实施例,所述第二目标信号集合生成于所述PHY351。
作为一个实施例,所述第一目标链路失败在所述MAC子层302中被确定。
作为一个实施例,所述第一目标链路失败在所述MAC子层302和所述PHY301中被确定。
作为一个实施例,所述第一目标链路失败在所述MAC子层352中被确定。
作为一个实施例,所述第一目标链路失败在所述MAC子层352和所述PHY351中被确定。
作为一个实施例,所述第二目标链路失败在所述MAC子层302中被确定。
作为一个实施例,所述第二目标链路失败在所述MAC子层302和所述PHY301中被确定。
作为一个实施例,所述第二目标链路失败在所述MAC子层352中被确定。
作为一个实施例,所述第二目标链路失败在所述MAC子层352和所述PHY351中被确定。
作为一个实施例,所述第一目标链路过程在所述MAC子层302中被确定。
作为一个实施例,所述第一目标链路过程在所述MAC子层302和所述PHY301中被确定。
作为一个实施例,所述第一目标链路过程在所述MAC子层352中被确定。
作为一个实施例,所述第一目标链路过程在所述MAC子层352和所述PHY351中被确定。
作为一个实施例,所述第二目标链路过程在所述MAC子层302中被确定。
作为一个实施例,所述第二目标链路过程在所述MAC子层302和所述PHY301中被确定。
作为一个实施例,所述第二目标链路过程在所述MAC子层352中被确定。
作为一个实施例,所述第二目标链路过程在所述MAC子层352和所述PHY351中被确定。
实施例4
实施例4示例了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。附图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与传输信道之间的多路复用,以及基于各种优先级量度对第二通信设备450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包 的重新发射,和到第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的星座映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个并行流。发射处理器416随后将每一并行流映射到子载波,将调制后的符号在时域和/或频域中与参考信号(例如,导频)复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以第二通信设备450为目的地的任何并行流。每一并行流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述第一通信设备410处的发送功能,控制器/处理器459基于第一通信设备410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的并行流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。控制器/处理器475提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收第一目标信号集合;根据针对所述第一目标信号集 合的测量确定第一目标链路失败;作为所述行为确定第一目标链路失败的响应,启动第一目标链路恢复过程;其中,当所述第一目标信号集合包括第一信号集合时,所述第一目标链路恢复过程是第一链路恢复过程;当所述第一目标信号集合包括第二信号集合时,所述第一目标链路恢复过程是第二链路恢复过程;所述第一信号集合和所述第二信号集合分别包括至少一个被关联到第一小区的参考信号,至少存在一个参考信号仅属于所述第一信号集合和所述第二信号集合二者中之一;所述第一链路恢复过程和所述第二链路恢复过程包括同一个小区上的随机接入过程。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一目标信号集合;根据针对所述第一目标信号集合的测量确定第一目标链路失败;作为所述行为确定第一目标链路失败的响应,启动第一目标链路恢复过程;其中,当所述第一目标信号集合包括第一信号集合时,所述第一目标链路恢复过程是第一链路恢复过程;当所述第一目标信号集合包括第二信号集合时,所述第一目标链路恢复过程是第二链路恢复过程;所述第一信号集合和所述第二信号集合分别包括至少一个被关联到第一小区的参考信号,至少存在一个参考信号仅属于所述第一信号集合和所述第二信号集合二者中之一;所述第一链路恢复过程和所述第二链路恢复过程包括同一个小区上的随机接入过程。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送第一目标信号集合;监测第一目标链路恢复过程是否被启动;其中,当针对所述第一目标信号集合的测量被用于确定第一目标链路失败时,所述第一目标链路恢复过程被启动;当所述第一目标信号集合包括第一信号集合时,所述第一目标链路恢复过程是第一链路恢复过程;当所述第一目标信号集合包括第二信号集合时,所述第一目标链路恢复过程是第二链路恢复过程;所述第一信号集合和所述第二信号集合分别包括至少一个被关联到第一小区的参考信号,至少存在一个参考信号仅属于所述第一信号集合和所述第二信号集合二者中之一;所述第一链路恢复过程和所述第二链路恢复过程包括同一个小区上的随机接入过程。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一目标信号集合;监测第一目标链路恢复过程是否被启动;其中,当针对所述第一目标信号集合的测量被用于确定第一目标链路失败时,所述第一目标链路恢复过程被启动;当所述第一目标信号集合包括第一信号集合时,所述第一目标链路恢复过程是第一链路恢复过程;当所述第一目标信号集合包括第二信号集合时,所述第一目标链路恢复过程是第二链路恢复过程;所述第一信号集合和所述第二信号集合分别包括至少一个被关联到第一小区的参考信号,至少存在一个参考信号仅属于所述第一信号集合和所述第二信号集合二者中之一;所述第一链路恢复过程和所述第二链路恢复过程包括同一个小区上的随机接入过程。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450。
作为一个实施例,本申请中的所述第二节点包括所述第一通信设备410。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于确定第一目标链路失败。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于确定第二目标链路失败。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收第一目标信号集合。
作为一个实施例,{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送第一目标信号集合。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收第二目标信号集合。
作为一个实施例,{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送第二目标信号集合。
作为一个实施例,{所述天线452,所述发射器/接收器454,所述发射处理器468,所述多天线发射处理器457,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于启动第一目标链路恢复过程。
作为一个实施例,{所述天线420,所述发射器/接收器418,所述接收处理器470,所述多天线接收处理器472,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于监测第一目标链路恢复过程是否被启动。
作为一个实施例,{所述天线452,所述发射器/接收器454,所述发射处理器468,所述多天线发射处理器457,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于启动第二目标链路恢复过程。
作为一个实施例,{所述天线420,所述发射器/接收器418,所述接收处理器470,所述多天线接收处理器472,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于监测第二目标链路恢复过程是否被启动。
实施例5
实施例5示例了根据本申请的一个实施例的无线传输的流程图,如附图5所示。在附图5中,第一节点U01和第二节点N02是两两通过空中接口传输的通信节点。附图5中,方框F1中的步骤是可选的。
对于 第一节点U01,在步骤S5101中接收第一目标信号集合;在步骤S5102中根据针对所述第一目标信号集合的测量确定第一目标链路失败;在步骤S5103中作为所述行为确定第一目标链路失败的响应,启动第一目标链路恢复过程;在步骤S5104中接收第二目标信号集合;在步骤S5105中根据针对所述第二目标信号集合的测量确定第二目标链路失败;在步骤S5106中作为所述行为确定第二目标链路失败的响应,启动第二目标链路恢复过程;
对于 第二节点N02,在步骤S5201中发送第一目标信号集合;在步骤S5202中监测第一目标链路恢复过程是否被启动;在步骤S5203中发送第二目标信号集合;在步骤S5204中监测第二目标链路恢复过程是否被启动;
在实施例5中,当所述第一目标信号集合包括第一信号集合时,所述第一目标链路恢复过程是第一链路恢复过程;当所述第一目标信号集合包括第二信号集合时,所述第一目标链路恢复过程是第二链路恢复过程;所述第一信号集合和所述第二信号集合分别包括至少一个被关联到第一小区的参考信号,至少存在一个参考信号仅属于所述第一信号集合和所述第二信号集合二者中之一;所述第一链路恢复过程和所述第二链路恢复过程包括同一个小区上的随机接入过程。当所述第一目标信号集合包括所述第一信号集合时,所述第二目标信号集合包括所述第二信号集合,所述第二目标链路恢复过程是所述第二链路恢复过程;当所述第一目标信号集合包括所述第二信号集合时,所述第二目标信号集合包括所述第一信号集合,所述第二目标链路恢复过程是所述第一链路恢复过程。
作为一个实施例,所述第一目标链路恢复过程包括:所述第一收发机发送第一目标消息;当所述第一目标链路恢复过程是所述第一链路恢复过程时,所述第一目标消息是第一类消息;当所述第一目标链路恢复过程是所述第二链路恢复过程时,所述第一目标消息是第二类消息。
作为一个实施例,所述第二目标信号集合中存在一个参考信号早于所述第一目标信号集合中的一个参考信号。
作为一个实施例,所述第二目标信号集合中存在一个参考信号不早于所述第一目标信号集合中的一个参考信号。
作为一个实施例,所述第二目标信号集合中的任一参考信号早于所述第一目标信号集合中的任一参考信号。
作为一个实施例,所述第二目标信号集合中的任一参考信号不早于所述第一目标信号集合中的任一参考信号。
作为一个实施例,所述第一目标链路恢复过程包括:所述第二收发机在第一空口资源集合中监测是否有无线信号被发送。
作为一个实施例,所述第一目标链路恢复过程包括:所述第二收发机在第一空口资源组中监测 第一信号是否被发送。
作为一个实施例,所述行为监测第一目标链路恢复过程是否被启动的意思包括:所述第二收发机在所述第一空口资源集合中监测是否有无线信号被发送。
作为一个实施例,当所述行为“在所述第一空口资源集合中监测是否有无线信号被发送”的结果为是时,所述第二节点判断所述第一目标链路恢复过程被启动;当所述行为“在所述第一空口资源集合中监测是否有无线信号被发送”的结果为否时,所述第二节点判断所述第一目标链路恢复过程未被启动。
作为一个实施例,所述行为监测第一目标链路恢复过程是否被启动的意思包括:所述第二收发机在所述第一空口资源组中监测所述第一信号是否被发送。
作为一个实施例,当所述行为“在所述第一空口资源组中监测所述第一信号是否被发送”的结果为是时,所述第二节点判断所述第一目标链路恢复过程被启动;当所述行为“在所述第一空口资源组中监测所述第一信号是否被发送”的结果为否时,所述第二节点判断所述第一目标链路恢复过程未被启动。
作为一个实施例,所述第二目标链路恢复过程包括:所述第二收发机在第二空口资源集合中监测是否有无线信号被发送。
作为一个实施例,所述第二目标链路恢复过程包括:所述第二收发机在第二空口资源组中监测第二信号。
作为一个实施例,所述行为监测第二目标链路恢复过程是否被启动的意思包括:所述第二收发机在所述第二空口资源集合中监测是否有无线信号被发送。
作为一个实施例,当所述行为“在所述第二空口资源集合中监测是否有无线信号被发送”的结果为是时,所述第二节点判断所述第二目标链路恢复过程被启动;当所述行为“在所述第二空口资源集合中监测是否有无线信号被发送”的结果为否时,所述第二节点判断所述第二目标链路恢复过程未被启动。
作为一个实施例,所述行为监测第二目标链路恢复过程是否被启动的意思包括:所述第二收发机在所述第二空口资源组中监测所述第二信号是否被发送。
作为一个实施例,当所述行为“在所述第二空口资源组中监测所述第二信号是否被发送”的结果为是时,所述第二节点判断所述第二目标链路恢复过程被启动;当所述行为“在所述第二空口资源组中监测所述第二信号是否被发送”的结果为否时,所述第二节点判断所述第二目标链路恢复过程未被启动。
作为一个实施例,根据所述第二目标信号集合是所述第一信号集合还是所述第二信号集合确定所述第二目标链路恢复过程是所述第一链路恢复过程还是所述第二链路恢复过程。
作为一个实施例,所述第一目标链路失败包括波束失败(Beam Failure,BF)。
作为一个实施例,所述第一目标链路失败包括BFI_COUNTER>=beamFailureInstanceMaxCount。
作为一个实施例,所述第一目标链路失败包括第一计数器不小于第一值。
作为一个实施例,所述第一目标链路失败包括RLF(Radio Link Failure,无线链路失败)。
作为一个实施例,所述第一目标链路失败包括所述第一小区的下行控制信道失败。
作为一个实施例,所述第一目标链路失败包括所述第一小区的PDCCH失败。
作为一个实施例,所述第二目标链路失败包括波束失败(Beam Failure,BF)。
作为一个实施例,所述第二目标链路失败包括第二计数器不小于第二值。
作为一个实施例,所述第二目标链路失败包括BFI_COUNTER>=beamFailureInstanceMaxCount。
作为一个实施例,所述第一目标链路恢复过程和所述第二目标链路恢复过程之间不存在其他的针对所述第一小区的链路恢复过程。
作为一个实施例,所述第一目标链路恢复过程包括发送随机接入前导(Preamble)。
作为一个实施例,所述第一目标链路恢复过程包括所述第一收发机发送第一目标消息。
作为一个实施例,所述第一目标链路恢复过程包括BFR(Beam Failure Recovery,波束失败恢复)。
作为一个实施例,所述第二目标链路恢复过程包括发送第二目标消息。
作为一个实施例,所述第一目标链路恢复过程包括:所述第一收发机在第一空口资源组中发送第一信号。
作为一个实施例,所述第一目标链路恢复过程包括:所述第二收发机在第一空口资源组中接收第一信号。
作为一个实施例,所述第一目标链路失败被所述第一节点U01用于触发所述第一信号。
作为一个实施例,所述第一目标链路失败被所述第一节点U01用于触发第一目标消息的生成。
作为一个实施例,所述第一信号承载第一目标消息。
作为一个实施例,所述第一目标消息被所述第一节点U01用于触发所述第一信号。
作为一个实施例,所述第一目标消息包括一个MAC CE。
作为一个实施例,所述第一目标消息包括PUSCH MAC CE。
作为一个实施例,所述第一目标消息包括BFR(Beam Failure Recovery,波束失败恢复)MAC CE。
作为一个实施例,所述第一目标消息包括截短的(Truncated)BFR MAC CE。
作为一个实施例,所述第一空口资源组包括正整数个空口资源。
作为一个实施例,所述空口资源包括时频资源或者码域资源中的至少之一。
作为一个实施例,所述空口资源包括时频资源。
作为一个实施例,所述空口资源包括码域资源。
作为一个实施例,所述空口资源包括时频资源和码域资源。
作为一个实施例,所述码域资源包括RS序列、前导(Preamble)、伪随机序列,低PAPR序列,循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码),正交序列(orthogonal sequence),频域正交序列和时域正交序列中的一种或多种。
作为一个实施例,所述第一信号包括随机接入前导(Random Access Preamble)。
作为一个实施例,所述第一信号包括第一特征序列。
作为一个实施例,所述第一特征序列包括伪随机(pseudo-random)序列,Zadoff-Chu序列或低PAPR(Peak-to-Average Power Ratio,峰均比)序列中的一种或多种。
作为一个实施例,所述第一特征序列包括CP(Cyclic Prefix,循环前缀)。
作为一个实施例,所述第一空口资源组包括PRACH(Physical Random Access CHannel)资源或者RAR(Random Access Response)上行授予(UL grant)所调度的PUSCH所占用的空口资源中的至少PRACH资源。
作为一个实施例,所述第一空口资源组包括PRACH资源。
作为一个实施例,所述第一空口资源组包括PRACH资源和RAR上行授予所调度的PUSCH所占用的空口资源。
作为一个实施例,所述第一空口资源组是更高层(higher layer)参数配置的。
作为一个实施例,所述第一空口资源组由PRACH-ResourceDedicatedBFR配置。
作为一个实施例,所述第一空口资源组包括第一空口资源块和第二空口资源块,所述第一信号包括第一子信号和第二子信号,所述第一空口资源块包括所述第一子信号占用的空口资源,所述第二空口资源块包括所述第二子信号占用的空口资源。
作为一个实施例,所述第一子信号包括第一特征序列。
作为一个实施例,所述第一子信号包括随机接入前导(Random Access Preamble)。
作为一个实施例,所述第二子信号包括MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)。
作为一个实施例,所述第二子信号包括BFR(Beam Failure Recovery,波束失败恢复)MAC CE。
作为一个实施例,所述第二子信号包括截短的(Truncated)BFR MAC CE。
作为一个实施例,所述第二子信号承载第一目标消息。
作为一个实施例,所述第一子信号包括Msg1,所述第二子信号包括Msg3PUSCH。
作为一个实施例,所述第一子信号包括Msg1,所述第二子信号包括RAR上行授予所调度的PUSCH。
作为一个实施例,所述第一信号包括MsgA,所述第一子信号包括MsgA中的随机接入前导,所述第二子信号包括MsgA中的PUSCH。
作为一个实施例,所述第一空口资源块包括PRACH资源。
作为一个实施例,所述第一空口资源块包括PRACH-ResourceDedicatedBFR。
作为一个实施例,所述第二空口资源块包括PUSCH资源。
作为一个实施例,所述第一目标链路恢复过程包括:所述第一节点的物理层接收来自所述第一节点的更高层的第一信息块;其中,所述第一信息块被用于指示第一参考信号。
作为一个实施例,所述第一信号被所述第一节点U01用于指示第一参考信号。
作为一个实施例,所述第一空口资源组被所述第一节点U01用于指示第一参考信号。
作为一个实施例,所述第二子信号被所述第一节点U01用于指示第一参考信号。
作为一个实施例,所述第一空口资源组是所述第一空口资源集合中的与第一参考信号对应的一个空口资源组。
作为一个实施例,所述第一参考信号被用于确定所述第三空口资源组的空域关系。
作为一个实施例,所述第二目标链路恢复过程包括:所述第一收发机在第二空口资源组中发送第二信号。
作为一个实施例,所述第二目标链路恢复过程包括:所述第一收发机在第二空口资源组中接收第二信号。
作为一个实施例,根据所述第二目标链路恢复过程是所述第一链路恢复过程还是所述第二链路恢复过程确定所述第二目标消息是所述第一类消息还是所述第二类消息。
作为一个实施例,当所述第二目标链路恢复过程是所述第一链路恢复过程时,所述第二目标消息是所述第一类消息。
作为一个实施例,当所述第二目标链路恢复过程是所述第二链路恢复过程时,所述第二目标消息是所述第二类消息。
作为一个实施例,所述第一目标消息是所述第二类消息,所述第二目标消息是所述第一类消息。
作为一个实施例,所述第一目标消息是所述第一类消息,所述第二目标消息是所述第二类消息。
作为一个实施例,所述第二目标链路失败被所述第一节点U01用于触发第二目标消息的生成。
作为一个实施例,所述第二目标消息被所述第一节点U01用于触发所述第二信号。
作为一个实施例,所述第二目标消息包括一个MAC CE。
作为一个实施例,所述第二目标消息包括PUSCH MAC CE。
作为一个实施例,所述第二目标消息包括BFR(Beam Failure Recovery,波束失败恢复)MAC CE。
作为一个实施例,所述第二目标消息包括截短的(Truncated)BFR MAC CE。
作为一个实施例,所述第二空口资源组和所述第一空口资源组不同。
作为一个实施例,所述第一信号集合和第一空口资源集合对应,所述第二信号集合和第二空口资源集合对应,所述第一空口资源组属于所述第一空口资源集合,所述第二空口资源组属于所述第二空口资源集合;所述第一空口资源集合和第二空口资源集合由更高层信令配置。
作为一个实施例,所述第一信号集合和第一空口资源组对应,所述第二信号集合和第二空口资源组对应。
作为一个实施例,所述第二空口资源组包括正整数个空口资源。
作为一个实施例,所述第二信号包括随机接入前导(Random Access Preamble)。
作为一个实施例,所述第二信号包括第二特征序列。
作为一个实施例,所述第二特征序列包括伪随机(pseudo-random)序列,Zadoff-Chu序列或低PAPR(Peak-to-Average Power Ratio,峰均比)序列中的一种或多种。
作为一个实施例,所述第二特征序列包括CP(Cyclic Prefix,循环前缀)。
作为一个实施例,所述第二信号承载第二目标消息。
作为一个实施例,所述第二空口资源组包括的PUSCH资源被所述第一节点U01用于承载第二目标消息。
作为一个实施例,所述第二空口资源组包括PRACH(Physical Random Access CHannel)资源和RAR(Random Access Response)上行授予(UL grant)所调度的PUSCH所占用的空口资源。
作为一个实施例,所述第二空口资源组是更高层(higher layer)参数配置的。
作为一个实施例,所述第二空口资源组由PRACH-ResourceDedicatedBFR配置。
作为一个实施例,所述第二空口资源组包括第三空口资源块和第四空口资源块,所述第二信号包括第三子信号和第四子信号,所述第三空口资源块包括所述第三子信号占用的空口资源,所述第四空口资源块包括所述第四子信号占用的空口资源。
作为一个实施例,所述第三空口资源块包括PRACH资源。
作为一个实施例,所述第三空口资源块包括PRACH-ResourceDedicatedBFR。
作为一个实施例,所述第四空口资源块包括PUSCH资源。
作为一个实施例,所述第三子信号包括第一特征序列。
作为一个实施例,所述第三子信号包括随机接入前导(Random Access Preamble)。
作为一个实施例,所述第四子信号包括MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)。
作为一个实施例,所述第四子信号包括BFR(Beam Failure Recovery,波束失败恢复)MAC CE。
作为一个实施例,所述第四子信号包括截短的(Truncated)BFR MAC CE。
作为一个实施例,所述第四子信号承载第二目标消息。
作为一个实施例,所述第三子信号包括Msg1,所述第四子信号包括Msg3PUSCH。
作为一个实施例,所述第三子信号包括Msg1,所述第四子信号包括RAR上行授予所调度的PUSCH。
作为一个实施例,所述第二信号包括MsgA,所述第三子信号包括MsgA中的随机接入前导,所述第四子信号包括MsgA中的PUSCH。
作为一个实施例,所述第二链路恢复过程包括:所述第一节点的物理层接收来自所述第一节点的更高层的第二信息块;其中,所述第二信息块被用于指示第二参考信号。
作为一个实施例,所述第二信号被所述第一节点U01用于指示第二参考信号。
作为一个实施例,所述第四子信号被所述第一节点U01用于指示第二参考信号。
作为一个实施例,所述第二空口资源组是所述第二空口资源集合中的与第二参考信号对应的一个空口资源组。
作为一个实施例,所述第二参考信号被用于确定所述第四空口资源组的空域关系。
作为一个实施例,所述空域关系包括TCI(Transmission Configuration Indicator,传输配置指示)状态(state)。
作为一个实施例,所述空域关系包括QCL(Quasi co-location,准共址)参数。
作为一个实施例,所述空域关系包括空域滤波(Spatial domain filter)。
作为一个实施例,所述空域关系包括空域发送滤波(Spatial domain transmission filter)。
作为一个实施例,所述空域关系包括空域接收滤波(Spatial domain reception filter)。
作为一个实施例,所述空域关系包括空间发送参数(Spatial Tx parameter)。
作为一个实施例,所述空域关系包括空间接收参数(Spatial Rx parameter)。
作为一个实施例,所述空间发送参数(Spatial Tx parameter)包括发送天线端口、发送天线端口组、发送波束、发送模拟波束赋型矩阵、发送模拟波束赋型向量、发送波束赋型矩阵、发送波束赋型向量或者空域发送滤波中的一种或多种。
作为一个实施例,所述空间接收参数(Spatial Rx parameter)包括接收波束、接收模拟波束赋型矩阵、接收模拟波束赋型向量、接收波束赋型矩阵、接收波束赋型向量或者空域接收滤波中的一种或多种。
作为一个实施例,给定参考信号被用于确定给定空口资源组的空域关系。
作为上述实施例的一个子实施例,所述给定参考信号是所述第一参考信号,所述给定空口资源组是所述第三空口资源组。
作为上述实施例的一个子实施例,所述给定参考信号是所述第二参考信号,所述给定空口资源组是所述第四空口资源组。
作为上述实施例的一个子实施例,所述给定参考信号的TCI状态被用于确定所述给定空口资源组的空域关系。
作为上述实施例的一个子实施例,所述空域关系包括TCI状态,所述给定参考信号的TCI状态和所述给定空口资源组的TCI状态相同。
作为上述实施例的一个子实施例,所述给定参考信号的QCL参数被用于确定所述给定空口资源组的空域关系。
作为上述实施例的一个子实施例,所述空域关系包括QCL参数,所述给定参考信号的QCL参数和所述给定空口资源组的QCL参数相同。
作为上述实施例的一个子实施例,所述给定参考信号的空域滤波被用于确定所述给定空口资源组的空域关系。
作为上述实施例的一个子实施例,所述空域关系包括空域滤波,所述给定参考信号的空域滤波和所述给定空口资源组的空域滤波相同。
作为上述实施例的一个子实施例,所述空域关系包括空域发送滤波,所述给定参考信号是上行信号,所述给定参考信号的空域发送滤波和所述给定空口资源组的空域发送滤波相同。
作为上述实施例的一个子实施例,所述空域关系包括空域发送滤波,所述给定参考信号是下行信号,所述给定参考信号的空域接收滤波和所述给定空口资源组的空域发送滤波相同。
作为上述实施例的一个子实施例,所述空域关系包括空域接收滤波,所述给定参考信号是上行信号,所述给定参考信号的空域接收滤波和所述给定空口资源组的空域接收滤波相同。
作为上述实施例的一个子实施例,所述空域关系包括空域接收滤波,所述给定参考信号是下行信号,所述给定参考信号的空域发送滤波和所述给定空口资源组的空域接收滤波相同。
作为上述实施例的一个子实施例,所述给定参考信号的空间参数被用于确定所述给定空口资源组的空域关系。
作为上述实施例的一个子实施例,所述空域关系包括空间发送参数,所述给定参考信号的空间参数和所述给定空口资源组的空间发送参数相同。
作为上述实施例的一个子实施例,所述空域关系包括空间发送参数,所述给定参考信号是上行信号,所述给定参考信号的空间发送参数和所述给定空口资源组的空间发送参数相同。
作为上述实施例的一个子实施例,所述空域关系包括空间发送参数,所述给定参考信号是下行信号,所述给定参考信号的空间接收参数和所述给定空口资源组的空间发送参数相同。
作为上述实施例的一个子实施例,所述空域关系包括空间接收参数,所述给定参考信号的空间参数和所述给定空口资源组的空间接收参数相同。
作为上述实施例的一个子实施例,所述空域关系包括空间接收参数,所述给定参考信号是上行信号,所述给定参考信号的空间接收参数和所述给定空口资源组的空间接收参数相同。
作为上述实施例的一个子实施例,所述空域关系包括空间接收参数,所述给定参考信号是下行信号,所述给定参考信号的空间发送参数和所述给定空口资源组的空间接收参数相同。
作为一个实施例,所述短语根据针对所述第一目标信号集合的测量确定第一目标链路失败包括:根据针对所述第一目标信号集合的测量判断第一计数器的值;根据所述第一计数器不小于所述第一值确定所述第一目标链路失败。
作为一个实施例,所述短语根据针对所述第一目标信号集合的测量确定第一目标链路失败包括:所述更高层每次收到一个所述第一类指示就将第一计数器的值加1,根据所述第一计数器不小于第一值确定所述第一目标链路失败。
作为一个实施例,所述短语根据针对所述第一目标信号集合的测量确定第一目标链路失败包括:作为针对所述第一目标信号集合的测量所确定的无线链路质量差于第一阈值的响应,向更高层上报用于更新第一计数器的一个第一类指示。
作为一个实施例,短语“针对所述第一目标信号集合的测量所确定的无线链路质量差于第一阈值”的意思包括:针对所述第一目标信号集合的测量所确定的所述无线链路质量小于所述第一阈值。
作为上述实施例的一个子实施例,所述无线链路质量是RSRP。
作为上述实施例的一个子实施例,所述无线链路质量是L1-RSRP。
作为上述实施例的一个子实施例,所述无线链路质量是SINR。
作为上述实施例的一个子实施例,所述无线链路质量是L1-SINR。
作为一个实施例,短语“针对所述第一目标信号集合的测量所确定的无线链路质量差于第一阈值”的意思包括:针对所述第一目标信号集合的测量所确定的所述无线链路质量大于所述第一阈值。
作为上述实施例的一个子实施例,所述无线链路质量是BLER。
作为上述实施例的一个子实施例,所述无线链路质量是假设的(hypothetical)BLER。
作为上述实施例的一个子实施例,所述无线链路质量是通过对RSRP查表得到的。
作为上述实施例的一个子实施例,所述无线链路质量是通过对L1-RSRP查表得到的。
作为上述实施例的一个子实施例,所述无线链路质量是通过对SINR查表得到的。
作为上述实施例的一个子实施例,所述无线链路质量是通过对L1-SINR查表得到的。
作为上述实施例的一个子实施例,所述无线链路质量是根据假设的PDCCH传输参数(hypothetical PDCCH transmission parameters)得到的。
作为一个实施例,短语“所述第一目标信号集合中每个参考信号的接收质量低于第一阈值”的意思包括:所述第一目标信号集合中每个参考信号的所述接收质量都小于所述第一阈值。
作为上述实施例的一个子实施例,所述接收质量是RSRP。
作为上述实施例的一个子实施例,所述接收质量是L1-RSRP。
作为上述实施例的一个子实施例,所述接收质量是SINR。
作为上述实施例的一个子实施例,所述接收质量是L1-SINR。
作为一个实施例,短语“所述第一目标信号集合中每个参考信号的接收质量低于第一阈值”的意思包括:所述第一目标信号集合中每个参考信号的所述接收质量都大于所述第一阈值。
作为上述实施例的一个子实施例,所述接收质量是BLER。
作为上述实施例的一个子实施例,所述接收质量是假设的(hypothetical)BLER。
作为上述实施例的一个子实施例,所述接收质量是通过对RSRP查表得到的。
作为上述实施例的一个子实施例,所述接收质量是通过对L1-RSRP查表得到的。
作为上述实施例的一个子实施例,所述接收质量是通过对SINR查表得到的。
作为上述实施例的一个子实施例,所述接收质量是通过对L1-SINR查表得到的。
作为上述实施例的一个子实施例,所述接收质量是根据假设的PDCCH传输参数(hypothetical PDCCH transmission parameters)得到的。
作为一个实施例,所述短语根据针对所述第二目标信号集合的测量确定第二目标链路失败包括:作为所述第二目标信号集合中每个参考信号的接收质量低于第二阈值的响应,向更高层上报用于更新第二计数器的一个第二类指示;根据所述第二计数器不小于第二值确定所述第二目标链路失败。
作为一个实施例,当所述第二计数器不小于第二值时,确定所述第二目标链路失败。
作为一个实施例,所述第二阈值和所述第一阈值相同。
作为一个实施例,所述第二阈值和所述第一阈值分别由两个更高层参数配置。
作为一个实施例,所述第二阈值和所述第一阈值由同一个更高层参数配置。
作为一个实施例,所述第一值与所述第二值相同。
作为一个实施例,所述第二值和所述第一值分别由两个更高层参数配置。
作为一个实施例,所述第二值和所述第一值由同一个更高层参数配置。
作为一个实施例,所述第二阈值是实数。
作为一个实施例,所述第二阈值是非负实数。
作为一个实施例,所述第二阈值是不大于1的非负实数。
作为一个实施例,所述第二阈值是Q out_L,Q out_LR_SSB或Q out_LR_CSI-RS中之一。
作为一个实施例,所述第二阈值由更高层参数rlmInSyncOutOfSyncThreshold配置。
作为一个实施例,一个所述第二类指示是一个波束失败事件指示(beam failure instance indication)。
作为一个实施例,一个所述第二类指示是一个无线链路质量指示。
作为一个实施例,一个所述第二类指示是一个接收质量指示。
作为一个实施例,所述第二类指示对应所述第二计数器。
作为一个实施例,所述第二类指示对应所述第二索引。
作为一个实施例,所述第二类指示对应所述第二目标信号集合。
作为一个实施例,所述第二计数器是BFI_COUNTER。
作为一个实施例,所述第二计数器的初始值是0。
作为一个实施例,所述第二计数器的值是非负整数。
作为一个实施例,所述第二值是正整数。
作为一个实施例,所述第二值是beamFailureInstanceMaxCount。
作为一个实施例,所述第二值由更高层(higher layer)参数配置。
作为一个实施例,配置所述第二值的更高层参数包括RadioLinkMonitoringConfig IE的beamFailureInstanceMaxCount域中的全部或部分信息。
作为一个实施例,所述更高层每次收到一个所述第二类指示就启动或重新启用第二计时器,并将所述第二计数器加1。
作为一个实施例,所述第二计时器是beamFailureDetectionTimer。
作为一个实施例,当所述第二计时器过期(expire)时,所述第二计数器被清零。
作为一个实施例,所述第二计时器的初始值是正整数。
作为一个实施例,所述第二计时器的初始值是正实数。
作为一个实施例,所述第二计时器的初始值由更高层参数beamFailureDetectionTimer配置。
作为一个实施例,所述第二计时器的初始值由一个IE配置。
作为一个实施例,配置所述第二计时器的初始值的IE的名称里包括RadioLinkMonitoring。
作为一个实施例,所述短语“根据针对所述第二目标信号集合的测量确定第二目标链路失败”包括:针对所述第二目标信号集合的测量被用于判断第二计数器的值;根据所述第二计数器不小于所述第二值确定所述第二目标链路失败。
作为一个实施例,所述短语“根据针对所述第二目标信号集合的测量确定第二目标链路失败”包括:所述更高层每次收到一个所述第二类指示就将第二计数器的值加1,根据所述第二计数器不小于第二值确定所述第二目标链路失败。
作为一个实施例,所述短语“根据针对所述第二目标信号集合的测量确定第二目标链路失败”包括:作为针对所述第二目标信号集合的测量所确定的无线链路质量低于第二阈值的响应,向更高层上报用于更新第二计数器的一个第二类指示。
作为一个实施例,短语“针对所述第二目标信号集合的测量所确定的无线链路质量差于第二阈值”的意思包括:针对所述第二目标信号集合的测量所确定的所述无线链路质量小于所述第二阈值。
作为上述实施例的一个子实施例,所述无线链路质量是RSRP。
作为上述实施例的一个子实施例,所述无线链路质量是L1-RSRP。
作为上述实施例的一个子实施例,所述无线链路质量是SINR。
作为上述实施例的一个子实施例,所述无线链路质量是L1-SINR。
作为一个实施例,短语“针对所述第二目标信号集合的测量所确定的无线链路质量差于第二阈值”的意思包括:针对所述第二目标信号集合的测量所确定的所述无线链路质量大于所述第二阈值。
作为上述实施例的一个子实施例,所述无线链路质量是BLER。
作为上述实施例的一个子实施例,所述无线链路质量是假设的(hypothetical)BLER。
作为上述实施例的一个子实施例,所述无线链路质量是通过对RSRP查表得到的。
作为上述实施例的一个子实施例,所述无线链路质量是通过对L1-RSRP查表得到的。
作为上述实施例的一个子实施例,所述无线链路质量是通过对SINR查表得到的。
作为上述实施例的一个子实施例,所述无线链路质量是通过对L1-SINR查表得到的。
作为上述实施例的一个子实施例,所述无线链路质量是根据假设的PDCCH传输参数(hypothetical PDCCH transmission parameters)得到的。
作为一个实施例,短语“所述第二目标信号集合中每个参考信号的接收质量低于第二阈值”的意思包括:所述第二目标信号集合中每个参考信号的所述接收质量都小于所述第二阈值。
作为上述实施例的一个子实施例,所述接收质量是RSRP。
作为上述实施例的一个子实施例,所述接收质量是L1-RSRP。
作为上述实施例的一个子实施例,所述接收质量是SINR。
作为上述实施例的一个子实施例,所述接收质量是L1-SINR。
作为一个实施例,短语“所述第二目标信号集合中每个参考信号的接收质量低于第二阈值”的意思包括:所述第二目标信号集合中每个参考信号的所述接收质量都大于所述第二阈值。
作为上述实施例的一个子实施例,所述接收质量是BLER。
作为上述实施例的一个子实施例,所述接收质量是假设的(hypothetical)BLER。
作为上述实施例的一个子实施例,所述接收质量是通过对RSRP查表得到的。
作为上述实施例的一个子实施例,所述接收质量是通过对L1-RSRP查表得到的。
作为上述实施例的一个子实施例,所述接收质量是通过对SINR查表得到的。
作为上述实施例的一个子实施例,所述接收质量是通过对L1-SINR查表得到的。
作为上述实施例的一个子实施例,所述接收质量是根据假设的PDCCH传输参数(hypothetical PDCCH transmission parameters)得到的。
作为一个实施例,一个所述第一类指示被用于指示一个第一类信号和一个第一类接收质量;所述一个第一类接收质量是针对所述一个第一类信号的测量确定的,所述一个第一类接收质量不小于第三阈值;所述一个第一类信号是M1个参考信号中之一,M1是大于1的正整数。
作为一个实施例,所述第一参考信号是所述M1个参考信号中之一。
作为一个实施例,所述第一参考信号和所述M1个参考信号中的一个参考信号是QCL。
作为一个实施例,所述第一接收机接收所述M1个参考信号。
作为一个实施例,所述M1个参考信号中任一参考信号包括CSI-RS或SSB。
作为一个实施例,所述M1个参考信号是更高层(higher layer)参数配置的。
作为一个实施例,配置所述M1个参考信号的更高层参数包括BeamFailureRecoveryConfig IE的candidateBeamRSList域中的全部或部分信息。
作为一个实施例,所述M1个参考信号由一个IE配置。
作为一个实施例,所述M1个参考信号由多个IE配置。
作为一个实施例,被用于配置所述M1个参考信号的IE的名称里包括BeamFailureRecovery。
作为一个实施例,被用于配置所述M1个参考信号的IE的名称里包括BeamFailure。
作为一个实施例,所述一个第一类接收质量是RSRP。
作为一个实施例,所述一个第一类接收质量是L1-RSRP。
作为一个实施例,所述一个第一类接收质量是SINR。
作为一个实施例,所述一个第一类接收质量是L1-SINR。
作为一个实施例,所述第三阈值是实数。
作为一个实施例,所述第三阈值是非负实数。
作为一个实施例,所述第三阈值是Q in_LR
作为一个实施例,Q in_LR的定义参见3GPP TS38.133。
作为一个实施例,所述第三阈值由更高层参数rsrp-ThresholdSSB配置。
作为一个实施例,一个所述第二类指示被用于指示一个第二类信号和一个第二类接收质量;所述一个第二类接收质量是针对所述一个第二类信号的测量确定的,所述一个第二类接收质量不小于第四阈值。
作为一个实施例,所述一个第二类信号是M1个参考信号中之一,M1是大于1的正整数。
作为一个实施例,所述一个第二类信号是M2个参考信号中之一,M2是大于1的正整数。
作为一个实施例,所述第二参考信号是所述M1个参考信号中之一。
作为一个实施例,所述第二参考信号是所述M2个参考信号中之一。
作为一个实施例,所述第二参考信号和所述M1个参考信号中的一个参考信号是QCL。
作为一个实施例,所述第二参考信号和所述M2个参考信号中的一个参考信号是QCL。
作为一个实施例,所述第一接收机接收所述M2个参考信号。
作为一个实施例,所述M2个参考信号中任一参考信号包括CSI-RS或SSB。
作为一个实施例,所述M2个参考信号是更高层(higher layer)参数配置的。
作为一个实施例,配置所述M2个参考信号的更高层参数包括BeamFailureRecoveryConfig IE的candidateBeamRSList域中的全部或部分信息。
作为一个实施例,被用于配置所述M2个参考信号的IE的名称里包括BeamFailureRecovery。
作为一个实施例,被用于配置所述M2个参考信号的IE的名称里包括BeamFailure。
作为一个实施例,所述M1个参考信号和所述M2个参考信号被不同的IE配置。
作为一个实施例,所述M1个参考信号和所述M2个参考信号被同一个IE配置。
作为一个实施例,所述M1个参考信号对应所述第一索引。
作为一个实施例,所述M2个参考信号对应所述第二索引。
作为一个实施例,所述M1个参考信号对应所述第一目标信号集合。
作为一个实施例,所述M2个参考信号对应所述第二目标信号集合。
作为一个实施例,所述一个第二类接收质量是RSRP。
作为一个实施例,所述一个第二类接收质量是L1-RSRP。
作为一个实施例,所述一个第二类接收质量是SINR。
作为一个实施例,所述一个第二类接收质量是L1-SINR。
作为一个实施例,所述第四阈值和所述第三阈值相同。
作为一个实施例,所述第四阈值是实数。
作为一个实施例,所述第四阈值是非负实数。
作为一个实施例,所述第四阈值是Q in_LR
作为一个实施例,所述第四阈值由更高层参数rsrp-ThresholdSSB配置。
作为一个实施例,所述第四阈值和所述第三阈值相同并且由同一个更高层参数配置。
作为一个实施例,所述第四阈值和所述第三阈值是被独立配置的。
作为一个实施例,所述第一链路恢复过程包括第一随机接入过程,所述第一随机接入过程是免竞争的随机接入过程,所述第一随机接入过程包括发送随机接入前导,所述第一链路恢复过程成功完成包括成功接收针对所述第一随机接入过程中的所述随机接入前导的响应。
作为上述实施例的一个子实施例,所述第一链路恢复过程未被成功完成包括未成功接收针对所述第一随机接入过程中的所述随机接入前导的响应。
作为一个实施例,所述第一链路恢复过程包括第一随机接入过程,所述第一随机接入过程是免竞争的随机接入过程,所述第一随机接入过程包括发送随机接入前导,所述第一链路恢复过程成功完成包括成功接收针对所述随机接入前导的RAR。
作为上述实施例的一个子实施例,所述第一链路恢复过程未被成功完成包括未成功接收针对所述随机接入前导的RAR。
作为一个实施例,所述第一链路恢复过程成功完成包括成功接收更高层针对一个TCI状态的激活(activation command),或者更高层参数tci-StatesPDCCH-ToAddList和/或tci-StatesPDCCH-ToReleaseList中的任一参数的激活(activation command)。
作为上述实施例的一个子实施例,所述第一链路恢复过程未被成功完成包括未成功接收更高层针对一个TCI状态的激活(activation command),或者更高层参数tci-StatesPDCCH-ToAddList和/或tci-StatesPDCCH-ToReleaseList中的任一参数的激活(activation command)。
作为一个实施例,所述第一链路恢复过程包括第一随机接入过程,所述第一随机接入过程是基于竞争的随机接入过程,所述第一链路恢复过程成功完成包括成功接收所述第一随机接入过程的Msg4。
作为上述实施例的一个子实施例,所述第一链路恢复过程未被成功完成包括未成功接收所述第 一随机接入过程的Msg4。
作为一个实施例,所述第一链路恢复过程包括第一随机接入过程,所述第一随机接入过程是基于竞争的随机接入过程,所述第一链路恢复过程成功完成包括成功接收所述第一随机接入过程的MsgB。
作为上述实施例的一个子实施例,所述第一链路恢复过程未被成功完成包括未成功接收所述第一随机接入过程的MsgB。
作为一个实施例,所述第二链路恢复过程包括第二随机接入过程,所述第二随机接入过程是基于竞争的随机接入过程,所述第二链路恢复过程成功完成包括成功接收所述第二随机接入过程的Msg4。
作为上述实施例的一个子实施例,所述第二链路恢复过程未被成功完成包括未成功接收所述第二随机接入过程的Msg4。
作为一个实施例,所述第二链路恢复过程包括第二随机接入过程,所述第二随机接入过程是基于竞争的随机接入过程,所述第二链路恢复过程成功完成包括成功接收所述第二随机接入过程的MsgB。
作为上述实施例的一个子实施例,所述第二链路恢复过程未被成功完成包括未成功接收所述第二随机接入过程的MsgB。
作为一个实施例,作为成功完成所述第一目标链路恢复过程的响应,将所述第一计数器置为0。
作为一个实施例,作为成功完成所述第二目标链路恢复过程的响应,将所述第二计数器置为0。
作为一个实施例,当所述第一目标链路恢复过程是所述第一链路恢复过程时,作为成功完成所述第一目标链路恢复过程的响应,将所述第一计数器和所述第二计数器都置为0。
作为一个实施例,当所述第一目标链路恢复过程是所述第二链路恢复过程时,作为成功完成所述第一目标链路恢复过程的响应,将所述第一计数器置为0。
作为一个实施例,当所述第二目标链路恢复过程是所述第一链路恢复过程时,作为成功完成所述第二目标链路恢复过程的响应,将所述第一计数器和所述第二计数器都置为0。
作为一个实施例,当所述第二目标链路恢复过程是所述第二链路恢复过程时,作为成功完成所述第二目标链路恢复过程的响应,将所述第二计数器置为0。
作为一个实施例,当所述第一目标链路恢复过程是所述第一链路恢复过程并且所述第一目标链路恢复过程发生失败时,所述第一小区的无线链路失败(Radio Link Failure)被触发。
作为一个实施例,当所述第一目标链路恢复过程是所述第二链路恢复过程,所述第二目标链路恢复过程是所述第一链路恢复过程并且所述第二目标链路恢复过程发生失败时,所述第一小区的无线链路失败(Radio Link Failure)被触发。
作为一个实施例,当所述第一目标链路恢复过程或者所述第二目标链路恢复过程中的至少所述第二目标链路恢复过程发生失败时,所述第一小区的无线链路失败(Radio Link Failure)被触发。
作为一个实施例,当所述第一目标链路恢复过程和所述第二目标链路恢复过程都发生失败时,所述第一小区的无线链路失败(Radio Link Failure)被触发。
作为一个实施例,所述第一目标链路恢复过程包括:所述第一收发机在第三空口资源组中监测针对所述第一信号的响应;其中,所述第三空口资源组在时域上属于第一时间窗,所述第一时间窗的起始时刻晚于所述第一空口资源组的终止时刻。
作为一个实施例,所述第一目标链路恢复过程包括:所述第二收发机在第三空口资源组中发送针对所述第一信号的响应;其中,所述第三空口资源组在时域上属于第一时间窗,所述第一时间窗的起始时刻晚于所述第一空口资源组的终止时刻。
作为一个实施例,所述第一时间窗包括连续的时域资源。
作为一个实施例,所述第一时间窗的持续时间由更高层信令配置。
作为一个实施例,所述第一时间窗的持续时间由BeamFailureRecoveryConfig IE配置。
作为一个实施例,所述第一时间窗的持续时间由beamFailureRecoveryTimer配置。
作为一个实施例,所述第一时间窗的持续时间由ra-ContentionResolutionTimer配置。
作为一个实施例,所述第三空口资源组包括正整数个空口资源。
作为一个实施例,所述第三空口资源组包括一个搜索空间(search space)。
作为一个实施例,所述第三空口资源组包括一个搜索空间集合(search space set)。
作为一个实施例,所述第三空口资源组包括一个或多个PDCCH(Physical Downlink Control Channel,物理下行控制信道)候选项(candidate)。
作为一个实施例,所述第三空口资源组包括一个CORESET(COntrol REsource SET,控制资源集合)。
作为一个实施例,所述第三空口资源组所属的搜索空间集合被recoverySearchSpaceId所标识。
作为一个实施例,所述第三空口资源组所属的搜索空间集合的索引等于0。
作为一个实施例,所述第三空口资源组所属的搜索空间集合包括Type1-PDCCH CSS(Common search space,公共搜索空间)集合。
作为一个实施例,所述第三空口资源组属于PDCCH CSS(Common search space,公共搜索空间)集合。
作为一个实施例,所述第三空口资源组被关联到所述第一索引。
作为一个实施例,针对所述第一信号的所述响应包括更高层针对一个TCI状态的激活(activation command)。
作为一个实施例,针对所述第一信号的所述响应包括更高层参数tci-StatesPDCCH-ToAddList和/或tci-StatesPDCCH-ToReleaseList的激活(activation command)。
作为一个实施例,针对所述第一信号的所述响应包括用于指示PDCCH TCI的MAC CE。
作为一个实施例,针对所述第一信号的所述响应包括用于配置CORESET TCI-state的RRC信令。
作为一个实施例,针对所述第一信号的所述响应包括DCI(Downlink control information,下行控制信息)。
作为一个实施例,针对所述第一信号的所述响应包括物理层信令。
作为一个实施例,针对所述第一信号的所述响应在PDCCH上被传输。
作为一个实施例,针对所述第一信号的所述响应包括Msg4。
作为一个实施例,针对所述第一信号的所述响应包括MsgB。
作为一个实施例,针对所述第一信号的所述响应包括冲突解决(Contention Resolution)PDSCH。
作为一个实施例,针对所述第一信号的所述响应的CRC被C-RNTI或MCS(Modulation and Coding Scheme,调制编码方式)-C-RNTI加扰。
作为一个实施例,针对所述第一信号的所述响应的CRC被TC-RNTI加扰。
作为一个实施例,针对所述第一信号的所述响应的CRC被C-RNTI加扰。
作为一个实施例,针对所述第一信号的所述响应的CRC被MsgB-RNTI加扰。
作为一个实施例,针对所述第一信号的所述响应的CRC被RA(Random Access)-RNTI加扰。
作为一个实施例,所述第一节点根据在所述第一时间窗中是否检测到针对所述第一信号的所述响应确定所述第一目标链路恢复过程是否成功完成。
作为一个实施例,当所述第一节点在所述第一时间窗中检测到针对所述第一信号的所述响应时,所述第一目标链路恢复过程成功完成。
作为一个实施例,当所述第一节点在所述第一时间窗中未检测到针对所述第一信号的所述响应时,所述第一目标链路恢复过程未被成功完成。
作为一个实施例,所述第二目标链路恢复过程包括:所述第一收发机在第四空口资源组中监测针对所述第二信号的响应;其中,所述第四空口资源组在时域上属于第二时间窗,所述第二时间窗的起始时刻晚于所述第二空口资源组的终止时刻。
作为一个实施例,所述第二目标链路恢复过程包括:所述第二收发机在第四空口资源组中发送针对所述第二信号的响应;其中,所述第四空口资源组在时域上属于第二时间窗,所述第二时间窗的起始时刻晚于所述第二空口资源组的终止时刻。
作为一个实施例,所述第二时间窗包括连续的时域资源。
作为一个实施例,所述第二时间窗的持续时间由更高层信令配置。
作为一个实施例,所述第二时间窗的持续时间由BeamFailureRecoveryConfig IE配置。
作为一个实施例,所述第二时间窗的持续时间由beamFailureRecoveryTimer配置。
作为一个实施例,所述第二时间窗的持续时间由ra-ContentionResolutionTimer配置。
作为一个实施例,所述第二时间窗的持续时间和所述第一时间窗的持续时间不同。
作为一个实施例,所述第二时间窗的持续时间和所述第一时间窗的持续时间由两个更高层参数分别配置。
作为一个实施例,所述第四空口资源组包括正整数个空口资源。
作为一个实施例,所述第四空口资源组包括一个搜索空间(search space)。
作为一个实施例,所述第四空口资源组包括一个搜索空间集合(search space set)。
作为一个实施例,所述第四空口资源组包括一个或多个PDCCH(Physical Downlink Control Channel,物理下行控制信道)候选项(candidate)。
作为一个实施例,所述第四空口资源组包括一个CORESET(COntrol REsource SET,控制资源集合)。
作为一个实施例,所述第四空口资源组所属的搜索空间集合被recoverySearchSpaceId所标识。
作为一个实施例,所述第四空口资源组所属的搜索空间集合的索引等于0。
作为一个实施例,所述第四空口资源组所属的搜索空间集合包括Type1-PDCCH CSS(Common search space,公共搜索空间)集合。
作为一个实施例,所述第四空口资源组属于PDCCH CSS(Common search space,公共搜索空间)集合。
作为一个实施例,所述第四空口资源组被关联到所述第二索引。
作为一个实施例,针对所述第二信号的所述响应包括更高层针对一个TCI状态的激活(activation command)。
作为一个实施例,针对所述第二信号的所述响应包括更高层参数tci-StatesPDCCH-ToAddList和/或tci-StatesPDCCH-ToReleaseList的激活(activation command)。
作为一个实施例,针对所述第二信号的所述响应包括用于指示PDCCH TCI的MAC CE。
作为一个实施例,针对所述第二信号的所述响应包括用于配置CORESET TCI-state的RRC信令。
作为一个实施例,针对所述第二信号的所述响应包括DCI(Downlink control information,下行控制信息)。
作为一个实施例,针对所述第二信号的所述响应包括物理层信令。
作为一个实施例,针对所述第二信号的所述响应在PDCCH上被传输。
作为一个实施例,针对所述第二信号的所述响应包括Msg4。
作为一个实施例,针对所述第二信号的所述响应包括MsgB。
作为一个实施例,针对所述第二信号的所述响应包括冲突解决(Contention Resolution)PDSCH。
作为一个实施例,针对所述第二信号的所述响应的CRC被C-RNTI或MCS(Modulation and Coding Scheme,调制编码方式)-C-RNTI加扰。
作为一个实施例,针对所述第二信号的所述响应的CRC被TC-RNTI加扰。
作为一个实施例,针对所述第二信号的所述响应的CRC被C-RNTI加扰。
作为一个实施例,针对所述第二信号的所述响应的CRC被MsgB-RNTI加扰。
作为一个实施例,针对所述第二信号的所述响应的CRC被RA(Random Access)-RNTI加扰。
作为一个实施例,所述第一节点根据在所述第二时间窗中是否检测到针对所述第二信号的所述响应确定所述第二目标链路恢复过程是否成功完成。
作为一个实施例,当所述第一节点在所述第二时间窗中检测到针对所述第二信号的所述响应时,所述第二目标链路恢复过程成功完成。
作为一个实施例,当所述第一节点在所述第二时间窗中未检测到针对所述第二信号的所述响应时,所述第二目标链路恢复过程未被成功完成。
作为一个实施例,句子“监测(Monitor)给定信号”的意思包括:根据CRC确定针对所述给定信号是否被发送。
作为一个实施例,句子“监测(Monitor)给定信号”的意思包括:在根据CRC判断译码是否正确之前不确定所述给定信号是否被发送。
作为一个实施例,句子“监测(Monitor)给定信号”的意思包括:根据相干检测确定所述给定信号是否被发送。
作为一个实施例,句子“监测(Monitor)给定信号”的意思包括:在相干检测之前不确定所述给定信号是否被发送。
作为一个实施例,句子“监测(Monitor)给定信号”的意思包括:根据能量检测确定所述给定信号是否被发送。
作为一个实施例,句子“监测(Monitor)给定信号”的意思包括:在能量检测之前不确定所述给定信号是否被发送。
作为一个实施例,所述给定信号是所述第一信号。
作为一个实施例,所述给定信号是所述第二信号。
作为一个实施例,所述给定信号是针对所述第一信号的所述响应。
作为一个实施例,所述给定信号是针对所述第二信号的所述响应。
实施例6
实施例6示例了根据本申请的一个实施例的第一链路恢复过程和第二链路恢复过程的示意图;如附图6所示。
在实施例6中,所述第一链路恢复过程和所述第二链路恢复过程中的仅一个链路恢复过程包括免竞争的随机接入过程。
作为一个实施例,所述第一链路恢复过程包括免竞争的随机接入过程,所述第二链路恢复过程包括基于竞争的随机接入过程。
作为一个实施例,所述第一链路恢复过程和所述第二链路恢复过程中的仅所述第一链路恢复过程包括免竞争的随机接入过程。
作为一个实施例,所述第一链路恢复过程或所述第二链路恢复过程中的至少所述第二链路恢复过程包括基于竞争的随机接入过程。
实施例7
实施例7示例了根据本申请的另一个实施例的第一链路恢复过程和第二链路恢复过程的示意图;如附图7所示。
在实施例7中,所述第一目标链路恢复过程包括:所述第一收发机发送第一目标消息;当所述第一目标链路恢复过程是所述第一链路恢复过程时,所述第一目标消息是第一类消息;当所述第一目标链路恢复过程是所述第二链路恢复过程时,所述第一目标消息是第二类消息。
作为一个实施例,所述第一链路恢复过程和所述第二链路恢复过程都是基于竞争的随机接入过程。
作为一个实施例,所述第一链路恢复过程包括发送第一类消息,所述第二链路恢复过程包括发送第二类消息。
作为一个实施例,根据所述第一目标链路恢复过程是所述第一链路恢复过程还是所述第二链路恢复过程确定所述第一目标消息是所述第一类消息还是所述第二类消息。
作为一个实施例,所述第一类消息包括一个MAC CE,所述第二类消息包括一个MAC CE。
作为一个实施例,所述第一类消息包括PUSCH MAC CE,所述第二类消息包括PUSCH MAC CE。
作为一个实施例,所述第一类消息包括BFR(Beam Failure Recovery,波束失败恢复)MAC CE。
作为一个实施例,所述第二类消息包括BFR MAC CE。
作为一个实施例,所述第一类消息包括截短的(Truncated)BFR MAC CE。
作为一个实施例,所述第二类消息包括截短的BFR MAC CE。
作为一个实施例,所述第一类消息和所述第二类消息不同。
作为一个实施例,所述第一类消息和所述第二类消息的格式不同。
作为一个实施例,存在一个域属于所述第一类消息和所述第二类消息中的仅所述第二类消息。
作为一个实施例,存在一个域属于所述第一类消息和所述第二类消息中的仅一个。
作为一个实施例,针对所述第一类消息和所述第二类消息中的同一个域的解读不同。
作为一个实施例,所述第一类消息和所述第二类消息都包括第三域,分别针对所述第一类消息中的所述第三域和所述第二类消息中的所述第三域的解读不同,所述第三域包括正整数个比特。
作为一个实施例,所述第一类消息和所述第二类消息都包括第二域。
作为一个实施例,所述第一类消息中的所述第二域的值等于1,所述第二类消息中的所述第二域的值等于1。
作为一个实施例,所述第二域被用于指示所述第一小区发生链路失败。
作为一个实施例,所述第二域包括正整数个比特。
作为一个实施例,所述第二域包括一个比特。
作为一个实施例,所述第二域是SP域(Field)。
作为一个实施例,所述SP域(Field)的具体定义参加3GPP TS38.321中第6.1.3章节。
作为一个实施例,所述第三域包括所述第二域。
作为一个实施例,所述第三域是所述第二域之外的一个域。
作为一个实施例,第一域属于所述第一类消息和所述第二类消息中的仅所述第二类消息。
作为一个实施例,第一域属于所述第一类消息和所述第二类消息中的仅一个。
作为一个实施例,当所述第一目标链路恢复过程是所述第二链路恢复过程时,所述第一目标消息是第二类消息,所述第二类消息中的所述第一域被用于确定所述第一目标链路失败。
作为一个实施例,当所述第一目标链路恢复过程是所述第二链路恢复过程时,所述第一目标消息是第二类消息,所述第二类消息中的所述第一域被用于指示所述第一目标链路失败。
作为一个实施例,所述第一类消息和所述第二类消息都被用于确定链路失败。
作为一个实施例,所述第一类消息被用于确定针对所述第一信号集合的测量所确定的链路发生失败,所述第二类消息被用于确定针对所述第二信号集合的测量所确定的链路发生失败。
作为一个实施例,所述第二类消息中的所述第一域被用于确定针对所述第二信号集合的测量所确定的链路发生失败。
作为一个实施例,所述第二类消息中的所述第一域被用于指示针对所述第二信号集合的测量所确定的链路发生失败。
作为一个实施例,所述第二类消息中的所述第一域被用于确定所述第二索引。
作为一个实施例,所述第二类消息中的所述第一域被用于指示所述第二索引。
作为一个实施例,所述第二类消息中的所述第一域显式的指示所述第二索引。
作为一个实施例,所述第二类消息中的所述第一域隐式的指示所述第二索引。
作为一个实施例,所述第一域被用于指示所述第一小区中的一个链路失败。
作为一个实施例,所述第一域被用于指示所述第一小区中的至少一个链路失败。
实施例8
实施例8示例了根据本申请的一个实施例的第一目标链路失败的示意图;如附图8所示。
在实施例8中,所述短语根据针对所述第一目标信号集合的测量确定第一目标链路失败包括:作为所述第一目标信号集合中每个参考信号的接收质量低于第一阈值的响应,向更高层上报用于更新第一计数器的一个第一类指示;根据所述第一计数器不小于第一值确定所述第一目标链路失败。
作为一个实施例,所述假设的PDCCH传输参数的具体定义参见3GPP TS38.133。
作为一个实施例,当所述第一计数器不小于第一值时,确定所述第一目标链路失败。
作为一个实施例,所述行为更新包括将当前值加1。
作为一个实施例,所述第一阈值是实数。
作为一个实施例,所述第一阈值是非负实数。
作为一个实施例,所述第一阈值是不大于1的非负实数。
作为一个实施例,所述第一阈值是Q out_L,Q out_LR_SSB或Q out_LR_CSI-RS中之一。
作为一个实施例,Q out_LR,Q out_LR_SSB和Q out_LR_CSI-RS的定义参见3GPP TS38.133。
作为一个实施例,所述第一阈值由更高层参数rlmInSyncOutOfSyncThreshold配置。
作为一个实施例,一个所述第一类指示是一个波束失败事件指示(beam failure instance indication)。
作为一个实施例,一个所述第一类指示是一个无线链路质量指示。
作为一个实施例,一个所述第一类指示是一个接收质量指示。
作为一个实施例,所述第一类指示对应所述第一计数器。
作为一个实施例,所述第一类指示对应所述第一索引。
作为一个实施例,所述第一类指示对应所述第一目标信号集合。
作为一个实施例,所述第一计数器是BFI_COUNTER。
作为一个实施例,所述第一计数器的初始值是0。
作为一个实施例,所述第一计数器的值是非负整数。
作为一个实施例,所述第一值是正整数。
作为一个实施例,所述第一值是beamFailureInstanceMaxCount。
作为一个实施例,所述第一值由更高层(higher layer)参数配置。
作为一个实施例,配置所述第一值的更高层参数包括RadioLinkMonitoringConfig IE的beamFailureInstanceMaxCount域中的全部或部分信息。
作为一个实施例,所述更高层每次收到一个所述第一类指示就启动或重新启用第一计时器,并将所述第一计数器加1。
作为一个实施例,所述第一计时器是beamFailureDetectionTimer。
作为一个实施例,当所述第一计时器过期(expire)时,所述第一计数器被清零。
作为一个实施例,所述第一计时器的初始值是正整数。
作为一个实施例,所述第一计时器的初始值是正实数。
作为一个实施例,所述第一计时器的初始值由更高层参数beamFailureDetectionTimer配置。
作为一个实施例,所述第一计时器的初始值由一个IE配置。
作为一个实施例,配置所述第一计时器的初始值的IE的名称里包括RadioLinkMonitoring。
实施例9
实施例9示例了根据本申请的一个实施例的第二目标链路恢复过程的示意图;如附图9所示。
在实施例9中,所述第一目标链路恢复过程和所述第二目标链路恢复过程包括一个相同的时间点。
作为一个实施例,所述第一目标链路恢复过程在所述行为确定第二目标链路失败之前被启动且未被成功完成。
作为一个实施例,所述第一目标链路恢复过程在所述行为确定第二目标链路失败之前被启动,所述第一目标链路恢复过程在所述行为启动第二目标链路恢复过程之前未被成功完成。
作为一个实施例,所述第一目标链路恢复过程和所述第二目标链路恢复过程在时间上交叠。
作为一个实施例,所述第一目标链路恢复过程是所述第一链路恢复过程,所述第二目标链路恢复过程是所述第二链路恢复过程。
作为一个实施例,所述第一目标链路恢复过程是所述第二链路恢复过程,所述第二目标链路恢复过程是所述第一链路恢复过程。
实施例10
实施例10示例了根据本申请的另一个实施例的第二目标链路恢复过程的示意图;如附图10所示。
在实施例10中,根据第一条件集合被满足确定触发所述第二目标链路恢复过程;所述第一条件集合包括:所述第一目标链路恢复过程在所述行为确定第二目标链路失败之前被启动且未被成功完成,所述第一目标链路恢复过程是所述第二链路恢复过程,所述第二目标链路恢复过程是所述第一 链路恢复过程。
作为一个实施例,所述第一条件集合包括大于一个条件;当所述第一条件集合中的任一条件被满足时,所述第一条件集合被满足。
作为一个实施例,所述第一条件集合包括第一条件,所述第一条件包括:所述第一目标链路恢复过程在所述行为确定第二目标链路失败之前被启动且未被成功完成,所述第一目标链路恢复过程是所述第二链路恢复过程,所述第二目标链路恢复过程是所述第一链路恢复过程。
作为一个实施例,所述第一条件集合包括第二条件,所述第二条件包括:所述第一目标链路恢复过程在所述行为确定第二目标链路失败之前成功完成。
作为一个实施例,所述第一条件是所述第一条件集合中的一个条件。
作为一个实施例,所述第二条件是所述第一条件集合中的一个条件。
实施例11
实施例11示例了根据本申请的一个实施例的第一响应的示意图;如附图11所示。
在实施例11中,所述第一接收机接收第一响应;其中,根据所述第一响应确定所述第一目标链路恢复过程和所述第二目标链路恢复过程中的至少之一成功完成。
作为一个实施例,所述第一响应属于所述第一目标链路恢复过程和所述第二目标链路恢复过程中之一。
作为一个实施例,所述第一响应包括针对所述第一信号的响应或者针对所述第二信号的响应。
作为一个实施例,所述第一响应包括针对所述第一信号的响应或者针对所述第二信号的响应中的至少之一。
作为一个实施例,当所述第一响应包括针对所述第一信号的响应时,所述第一目标链路恢复过程成功完成;当所述第一响应包括针对所述第二信号的响应时,所述第二目标链路恢复过程成功完成。
作为一个实施例,当所述第一响应包括针对所述第一信号的响应和针对所述第二信号的响应时,所述第一目标链路恢复过程和所述第二目标链路恢复过程都成功完成。
作为一个实施例,当所述第一响应包括针对所述第二信号的响应并且所述第二目标链路恢复过程是所述第一链路恢复过程时,所述第一目标链路恢复过程和所述第二目标链路恢复过程都成功完成。
作为一个实施例,根据所述第一响应确定所述第一目标链路恢复过程和所述第二目标链路恢复过程都成功完成。
作为一个实施例,所述句子“所述第一目标链路恢复过程和所述第二目标链路恢复过程中的至少之一成功完成”的意思包括:所述第一节点认为所述第一目标链路恢复过程和所述第二目标链路恢复过程中的至少之一成功完成。
作为一个实施例,所述句子“所述第一目标链路恢复过程成功完成”的意思包括:所述第一节点认为所述第一目标链路恢复过程成功完成。
作为一个实施例,所述句子“所述第二目标链路恢复过程成功完成”的意思包括:所述第一节点认为所述第二目标链路恢复过程成功完成。
作为一个实施例,无论所述第一响应属于所述第一目标链路恢复过程还是属于所述第二目标链路恢复过程,根据所述第一响应确定所述第一目标链路恢复过程和所述第二目标链路恢复过程都成功完成。
作为一个实施例,根据所述第一响应确定所述第一目标链路恢复过程和所述第二目标链路恢复过程中的仅一个成功完成。
作为一个实施例,根据所述第一响应确定所述第一目标链路恢复过程和所述第二目标链路恢复过程中的哪个成功完成。
作为一个实施例,根据所述第一响应属于所述第一目标链路恢复过程还是所述第二目标链路恢复过程确定所述第一目标链路恢复过程和所述第二目标链路恢复过程中的哪个成功完成。
作为一个实施例,当所述第一响应属于所述第一目标链路恢复过程时,确定所述第一目标链路恢复过程成功完成;当所述第一响应属于所述第二目标链路恢复过程时,确定所述第二目标链路恢复过程成功完成。
作为一个实施例,根据所述第一响应属于所述第一目标链路恢复过程还是所述第二目标链路恢复过程确定所述第一目标链路恢复过程和所述第二目标链路恢复过程中的哪个或全部成功完成。
作为一个实施例,根据所述第一响应属于所述第一链路恢复过程还是所述第二链路恢复过程确定所述第一目标链路恢复过程和所述第二目标链路恢复过程中的哪个或全部成功完成。
作为一个实施例,当所述第一响应属于所述第二目标链路恢复过程并且所述第二目标链路恢复过程是所述第一链路恢复过程时,确定所述第一目标链路恢复过程和所述第二目标链路恢复过程都成功完成;当所述第一响应属于所述第一目标链路恢复过程并且所述第一目标链路恢复过程是所述第二链路恢复过程时,确定所述第一目标链路恢复过程成功完成。
作为一个实施例,当所述第一响应属于所述第一链路恢复过程时,确定所述第一目标链路恢复过程和所述第二目标链路恢复过程都成功完成;当所述第一响应属于所述第二链路恢复过程时,确定所述第一目标链路恢复过程和所述第二目标链路恢复过程中是所述第二链路恢复过程的一个链路恢复过程成功完成。
作为一个实施例,所述第一响应被用于指示所述第一目标链路恢复过程和所述第二目标链路恢复过程中的哪个成功完成。
作为一个实施例,所述第一响应显式的指示所述第一目标链路恢复过程和所述第二目标链路恢复过程中的哪个成功完成。
作为一个实施例,所述第一响应隐式的指示所述第一目标链路恢复过程和所述第二目标链路恢复过程中的哪个成功完成。
作为一个实施例,所述第一响应被用于确定所述第一响应属于所述第一目标链路恢复过程还是属于所述第二目标链路恢复过程。
作为一个实施例,所述第一响应被用于指示所述第一响应属于所述第一目标链路恢复过程还是属于所述第二目标链路恢复过程。
作为一个实施例,所述第一响应显式的指示所述第一响应属于所述第一目标链路恢复过程还是属于所述第二目标链路恢复过程。
作为一个实施例,所述第一响应隐式的指示所述第一响应属于所述第一目标链路恢复过程还是属于所述第二目标链路恢复过程。
作为一个实施例,所述第一响应被用于确定所述第一响应属于所述第一链路恢复过程还是属于所述第二链路恢复过程。
作为一个实施例,所述第一响应被用于指示所述第一响应属于所述第一链路恢复过程还是属于所述第二链路恢复过程。
作为一个实施例,所述第一响应显式的指示所述第一响应属于所述第一链路恢复过程还是属于所述第二链路恢复过程。
作为一个实施例,所述第一响应隐式的指示所述第一响应属于所述第一链路恢复过程还是属于所述第二链路恢复过程。
作为一个实施例,当确定所述第一响应属于所述第一链路恢复过程时,所述第一响应属于所述第一目标链路恢复过程和所述第二目标链路恢复过程中是所述第一链路恢复过程的一个链路恢复过程;当确定所述第一响应属于所述第二链路恢复过程时,所述第一响应属于所述第一目标链路恢复过程和所述第二目标链路恢复过程中是所述第二链路恢复过程的一个链路恢复过程。
作为一个实施例,所述第一响应被用于指示所述第一目标链路恢复过程和所述第二目标链路恢复过程中的哪个或全部成功完成。
作为一个实施例,所述第一响应显式的指示所述第一目标链路恢复过程和所述第二目标链路恢复过程中的哪个或全部成功完成。
作为一个实施例,所述第一响应隐式的指示所述第一目标链路恢复过程和所述第二目标链路恢 复过程中的哪个或全部成功完成。
作为一个实施例,根据所述第一响应占用的时频资源确定所述第一目标链路恢复过程和所述第二目标链路恢复过程中的哪个成功完成。
作为一个实施例,根据所述第一响应占用的时频资源确定所述第一目标链路恢复过程和所述第二目标链路恢复过程中的哪个或全部成功完成。
作为一个实施例,当所述第一响应占用的时频资源属于所述第三空口资源组时,确定所述第一响应属于所述第一目标链路恢复过程。
作为一个实施例,当所述第一响应占用的时频资源属于所述第三空口资源组时,确定所述第一目标链路恢复过程成功完成。
作为一个实施例,当所述第一响应占用的时频资源在所述第三空口资源组之外时,确定所述第二目标链路恢复过程成功完成。
作为一个实施例,当所述第一响应占用的时频资源在所述第三空口资源组之外时,确定所述第一响应属于所述第二目标链路恢复过程。
作为一个实施例,当所述第一响应占用的时频资源属于所述第四空口资源组时,确定所述第二目标链路恢复过程成功完成。
作为一个实施例,当所述第一响应占用的时频资源属于所述第四空口资源组时,确定所述第一响应属于所述第二目标链路恢复过程。
作为一个实施例,所述第一响应包括Msg4。
作为一个实施例,所述第一响应包括MsgB。
作为一个实施例,所述第一响应包括冲突解决(Contention Resolution)PDSCH。
作为一个实施例,所述第一响应包括CRC被C-RNTI或MCS(Modulation and Coding Scheme,调制编码方式)-C-RNTI加扰的一个DCI。
作为一个实施例,所述第一响应包括CRC被TC-RNTI加扰的一个DCI。
作为一个实施例,所述第一响应包括CRC被C-RNTI加扰的一个DCI。
作为一个实施例,所述第一响应包括CRC被MsgB-RNTI加扰的一个DCI。
作为一个实施例,所述第一响应包括CRC被RA(Random Access)-RNTI加扰的一个DCI。
作为一个实施例,所述第一响应包括更高层针对一个TCI状态的激活(activation command)。
作为一个实施例,所述第一响应包括更高层参数tci-StatesPDCCH-ToAddList和/或tci-StatesPDCCH-ToReleaseList的激活(activation command)。
作为一个实施例,根据被所述第一响应激活的TCI状态与第一CORESET集合和第二CORESET集合的对应关系确定所述第一目标链路恢复过程和所述第二目标链路恢复过程中的哪个成功完成。
作为一个实施例,根据被所述第一响应激活的TCI状态与第一CORESET集合和第二CORESET集合的对应关系确定所述第一目标链路恢复过程和所述第二目标链路恢复过程中的哪个或全部成功完成。
作为一个实施例,当被所述第一响应激活的任一TCI状态都对应第一CORESET集合和第二CORESET集合中的同一个CORESET集合时,所述第二目标链路恢复过程成功完成。
作为一个实施例,当存在被所述第一响应激活的一个TCI状态对应第一CORESET集合并且存在被所述第一响应激活的一个TCI状态对应第二CORESET集合时,所述第一目标链路恢复过程和所述第二目标链路恢复过程都成功完成。
作为一个实施例,当被所述第一响应激活的任一TCI状态都对应第一CORESET集合时,所述第一目标链路恢复过程成功完成。
作为一个实施例,当被所述第一响应激活的任一TCI状态都对应第二CORESET集合时,所述第二目标链路恢复过程成功完成。
作为一个实施例,短语一个TCI状态对应一个CORESET集合的含义包括:所述一个TCI状态是所述一个CORESET集合中的一个CORESET的TCI状态。
作为一个实施例,短语一个TCI状态对应一个CORESET集合的含义包括:所述一个TCI状态是 所述一个CORESET集合中的至少一个CORESET的TCI状态。
作为一个实施例,根据被所述第一响应激活的TCI状态与第一索引和第二索引的对应关系确定所述第一目标链路恢复过程和所述第二目标链路恢复过程中的哪个成功完成。
作为一个实施例,根据被所述第一响应激活的TCI状态与第一索引和第二索引的对应关系确定所述第一目标链路恢复过程和所述第二目标链路恢复过程中的哪个或全部成功完成。
作为一个实施例,当被所述第一响应激活的任一TCI状态都对应第一索引和第二索引中的同一个索引时,所述第二目标链路恢复过程成功完成。
作为一个实施例,当存在被所述第一响应激活的一个TCI状态对应第一索引并且存在被所述第一响应激活的一个TCI状态对应第二索引时,所述第一目标链路恢复过程和所述第二目标链路恢复过程都成功完成。
作为一个实施例,当被所述第一响应激活的任一TCI状态都对应第一索引时,所述第一目标链路恢复过程成功完成。
作为一个实施例,当被所述第一响应激活的任一TCI状态都对应第二索引时,所述第二目标链路恢复过程成功完成。
实施例12
实施例12示例了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;如附图12所示。在附图12中,第一节点设备中的处理装置1200包括第一接收机1201和第一收发机1202。
作为一个实施例,所述第一节点设备是用户设备。
作为一个实施例,所述第一节点设备是中继节点设备。
作为一个实施例,所述第一接收机1201包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一收发机1202包括实施例4中的{所述天线452,所述发射器/接收器454,所述发射处理器468,所述多天线发射处理器457,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一。
第一接收机1201,接收第一目标信号集合;根据针对所述第一目标信号集合的测量确定第一目标链路失败;
第一收发机1202,作为所述行为确定第一目标链路失败的响应,启动第一目标链路恢复过程;
在实施例12中,当所述第一目标信号集合包括第一信号集合时,所述第一目标链路恢复过程是第一链路恢复过程;当所述第一目标信号集合包括第二信号集合时,所述第一目标链路恢复过程是第二链路恢复过程;所述第一信号集合和所述第二信号集合分别包括至少一个被关联到第一小区的参考信号,至少存在一个参考信号仅属于所述第一信号集合和所述第二信号集合二者中之一;所述第一链路恢复过程和所述第二链路恢复过程包括同一个小区上的随机接入过程。
作为一个实施例,所述第一链路恢复过程和所述第二链路恢复过程中的仅一个链路恢复过程包括免竞争的随机接入过程。
作为一个实施例,所述第一目标链路恢复过程包括:所述第一收发机1202发送第一目标消息;当所述第一目标链路恢复过程是所述第一链路恢复过程时,所述第一目标消息是第一类消息;当所述第一目标链路恢复过程是所述第二链路恢复过程时,所述第一目标消息是第二类消息。
作为一个实施例,所述短语根据针对所述第一目标信号集合的测量确定第一目标链路失败包括:作为所述第一目标信号集合中每个参考信号的接收质量低于第一阈值的响应,向更高层上报用于更新第一计数器的一个第一类指示;根据所述第一计数器不小于第一值确定所述第一目标链路失败。
作为一个实施例,所述第一接收机1201接收第二目标信号集合;根据针对所述第二目标信号集合的测量确定第二目标链路失败;作为所述行为确定第二目标链路失败的响应,第一收发机1202启动第二目标链路恢复过程;其中,当所述第一目标信号集合包括所述第一信号集合时,所述第二目标信号集合包括所述第二信号集合,所述第二目标链路恢复过程是所述第二链路恢复过程;当所述第一目标信号集合包括所述第二信号集合时,所述第二目标信号集合包括所述第一信号集合,所述第 二目标链路恢复过程是所述第一链路恢复过程。
作为一个实施例,所述第一目标链路恢复过程和所述第二目标链路恢复过程包括一个相同的时间点。
作为一个实施例,根据第一条件集合被满足确定触发所述第二目标链路恢复过程;所述第一条件集合包括:所述第一目标链路恢复过程在所述行为确定第二目标链路失败之前被启动且未被成功完成,所述第一目标链路恢复过程是所述第二链路恢复过程,所述第二目标链路恢复过程是所述第一链路恢复过程。
作为一个实施例,所述第一接收机1201接收第一响应;其中,根据所述第一响应确定所述第一目标链路恢复过程和所述第二目标链路恢复过程中的至少之一成功完成。
实施例13
实施例13示例了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图;如附图13所示。在附图13中,第二节点设备中的处理装置1300包括第二发射机1301和第二收发机1302。
作为一个实施例,所述第二节点设备是基站设备。
作为一个实施例,所述第二节点设备是用户设备。
作为一个实施例,所述第二节点设备是中继节点设备。
作为一个实施例,所述第二发射机1301包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二收发机1302包括实施例4中的{所述天线420,所述发射器/接收器418,所述接收处理器470,所述多天线接收处理器472,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一。
第二发射机1301,发送第一目标信号集合;
第二收发机1302,监测第一目标链路恢复过程是否被启动;
在实施例13中,当针对所述第一目标信号集合的测量被用于确定第一目标链路失败时,所述第一目标链路恢复过程被启动;当所述第一目标信号集合包括第一信号集合时,所述第一目标链路恢复过程是第一链路恢复过程;当所述第一目标信号集合包括第二信号集合时,所述第一目标链路恢复过程是第二链路恢复过程;所述第一信号集合和所述第二信号集合分别包括至少一个被关联到第一小区的参考信号,至少存在一个参考信号仅属于所述第一信号集合和所述第二信号集合二者中之一;所述第一链路恢复过程和所述第二链路恢复过程包括同一个小区上的随机接入过程。
作为一个实施例,所述第一链路恢复过程和所述第二链路恢复过程中的仅一个链路恢复过程包括免竞争的随机接入过程。
作为一个实施例,所述第一目标链路恢复过程包括:所述第二收发机1302接收第一目标消息;当所述第一目标链路恢复过程是所述第一链路恢复过程时,所述第一目标消息是第一类消息;当所述第一目标链路恢复过程是所述第二链路恢复过程时,所述第一目标消息是第二类消息。
作为一个实施例,所述第二发射机1301发送第二目标信号集合;所述第二收发机1302监测第二目标链路恢复过程是否被启动;其中,当针对所述第二目标信号集合的测量被用于确定第二目标链路失败时,所述第二目标链路恢复过程被启动;当所述第一目标信号集合包括所述第一信号集合时,所述第二目标信号集合包括所述第二信号集合,所述第二目标链路恢复过程是所述第二链路恢复过程;当所述第一目标信号集合包括所述第二信号集合时,所述第二目标信号集合包括所述第一信号集合,所述第二目标链路恢复过程是所述第一链路恢复过程。
作为一个实施例,所述第一目标链路恢复过程和所述第二目标链路恢复过程包括一个相同的时间点。
作为一个实施例,当第一条件集合被满足时,所述第二目标链路恢复过程被触发;所述第一条件集合包括:所述第一目标链路恢复过程在所述行为确定第二目标链路失败之前被启动且未被成功完成,所述第一目标链路恢复过程是所述第二链路恢复过程,所述第二目标链路恢复过程是所述第一链路恢复过程。
作为一个实施例,所述第二发射机1301发送第一响应;其中,所述第一响应被用于确定所述第一目标链路恢复过程和所述第二目标链路恢复过程中的至少之一成功完成。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种被用于无线通信的第一节点设备,其中,包括:
    第一接收机,接收第一目标信号集合;根据针对所述第一目标信号集合的测量确定第一目标链路失败;
    第一收发机,作为所述行为确定第一目标链路失败的响应,启动第一目标链路恢复过程;
    其中,当所述第一目标信号集合包括第一信号集合时,所述第一目标链路恢复过程是第一链路恢复过程;当所述第一目标信号集合包括第二信号集合时,所述第一目标链路恢复过程是第二链路恢复过程;所述第一信号集合和所述第二信号集合分别包括至少一个被关联到第一小区的参考信号,至少存在一个参考信号仅属于所述第一信号集合和所述第二信号集合二者中之一;所述第一链路恢复过程和所述第二链路恢复过程包括同一个小区上的随机接入过程。
  2. 根据权利要求1所述的第一节点设备,其特征在于,所述第一链路恢复过程和所述第二链路恢复过程中的仅一个链路恢复过程包括免竞争的随机接入过程。
  3. 根据权利要求1所述的第一节点设备,其特征在于,所述第一目标链路恢复过程包括:所述第一收发机发送第一目标消息;当所述第一目标链路恢复过程是所述第一链路恢复过程时,所述第一目标消息是第一类消息;当所述第一目标链路恢复过程是所述第二链路恢复过程时,所述第一目标消息是第二类消息。
  4. 根据权利要求1至3中任一权利要求所述的第一节点设备,其特征在于,所述短语根据针对所述第一目标信号集合的测量确定第一目标链路失败包括:作为所述第一目标信号集合中每个参考信号的接收质量低于第一阈值的响应,向更高层上报用于更新第一计数器的一个第一类指示;根据所述第一计数器不小于第一值确定所述第一目标链路失败。
  5. 根据权利要求1至4中任一权利要求所述的第一节点设备,其特征在于,所述第一接收机接收第二目标信号集合;根据针对所述第二目标信号集合的测量确定第二目标链路失败;作为所述行为确定第二目标链路失败的响应,第一收发机启动第二目标链路恢复过程;其中,当所述第一目标信号集合包括所述第一信号集合时,所述第二目标信号集合包括所述第二信号集合,所述第二目标链路恢复过程是所述第二链路恢复过程;当所述第一目标信号集合包括所述第二信号集合时,所述第二目标信号集合包括所述第一信号集合,所述第二目标链路恢复过程是所述第一链路恢复过程。
  6. 根据权利要求5所述的第一节点设备,其特征在于,所述第一目标链路恢复过程和所述第二目标链路恢复过程包括一个相同的时间点。
  7. 根据权利要求5或6所述的第一节点设备,其特征在于,根据第一条件集合被满足确定触发所述第二目标链路恢复过程;所述第一条件集合包括:所述第一目标链路恢复过程在所述行为确定第二目标链路失败之前被启动且未被成功完成,所述第一目标链路恢复过程是所述第二链路恢复过程,所述第二目标链路恢复过程是所述第一链路恢复过程。
  8. 一种被用于无线通信的第二节点设备,其中,包括:
    第二发射机,发送第一目标信号集合;
    第二收发机,监测第一目标链路恢复过程是否被启动;
    其中,当针对所述第一目标信号集合的测量被用于确定第一目标链路失败时,所述第一目标链路恢复过程被启动;当所述第一目标信号集合包括第一信号集合时,所述第一目标链路恢复过程是第一链路恢复过程;当所述第一目标信号集合包括第二信号集合时,所述第一目标链路恢复过程是第二链路恢复过程;所述第一信号集合和所述第二信号集合分别包括至少一个被关联到第一小区的参考信号,至少存在一个参考信号仅属于所述第一信号集合和所述第二信号集合二者中之一;所述第一链路恢复过程和所述第二链路恢复过程包括同一个小区上的随机接入过程。
  9. 一种被用于无线通信的第一节点中的方法,其中,包括:
    接收第一目标信号集合;根据针对所述第一目标信号集合的测量确定第一目标链路失败;
    作为所述行为确定第一目标链路失败的响应,启动第一目标链路恢复过程;
    其中,当所述第一目标信号集合包括第一信号集合时,所述第一目标链路恢复过程是第一链路恢复过程;当所述第一目标信号集合包括第二信号集合时,所述第一目标链路恢复过程是第二链路恢复过程;所述第一信号集合和所述第二信号集合分别包括至少一个被关联到第一小区的参考信号, 至少存在一个参考信号仅属于所述第一信号集合和所述第二信号集合二者中之一;所述第一链路恢复过程和所述第二链路恢复过程包括同一个小区上的随机接入过程。
  10. 一种被用于无线通信的第二节点中的方法,其中,包括:
    发送第一目标信号集合;
    监测第一目标链路恢复过程是否被启动;
    其中,当针对所述第一目标信号集合的测量被用于确定第一目标链路失败时,所述第一目标链路恢复过程被启动;当所述第一目标信号集合包括第一信号集合时,所述第一目标链路恢复过程是第一链路恢复过程;当所述第一目标信号集合包括第二信号集合时,所述第一目标链路恢复过程是第二链路恢复过程;所述第一信号集合和所述第二信号集合分别包括至少一个被关联到第一小区的参考信号,至少存在一个参考信号仅属于所述第一信号集合和所述第二信号集合二者中之一;所述第一链路恢复过程和所述第二链路恢复过程包括同一个小区上的随机接入过程。
PCT/CN2021/135657 2020-12-07 2021-12-06 一种被用于无线通信的节点中的方法和装置 WO2022121830A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/204,391 US20230328552A1 (en) 2020-12-07 2023-06-01 Method and device in nodes used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011416753.2 2020-12-07
CN202011416753.2A CN114599050A (zh) 2020-12-07 2020-12-07 一种被用于无线通信的节点中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/204,391 Continuation US20230328552A1 (en) 2020-12-07 2023-06-01 Method and device in nodes used for wireless communication

Publications (1)

Publication Number Publication Date
WO2022121830A1 true WO2022121830A1 (zh) 2022-06-16

Family

ID=81812865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135657 WO2022121830A1 (zh) 2020-12-07 2021-12-06 一种被用于无线通信的节点中的方法和装置

Country Status (3)

Country Link
US (1) US20230328552A1 (zh)
CN (3) CN114599050A (zh)
WO (1) WO2022121830A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803298A (zh) * 2017-11-17 2019-05-24 华硕电脑股份有限公司 无线通信系统中控制信道监听行为的方法和设备
CN110519815A (zh) * 2018-05-22 2019-11-29 华为技术有限公司 通信方法及装置
US20200314942A1 (en) * 2019-03-29 2020-10-01 Qualcomm Incorporated Link failure recovery procedure for a primary cell (pcell) and a secondary cell (scell)
US20200350972A1 (en) * 2019-05-01 2020-11-05 Yunjung Yi Beam Failure Recovery In Mult-TRP Scenarios
WO2020228589A1 (zh) * 2019-05-10 2020-11-19 华为技术有限公司 通信方法和通信装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112673579B (zh) * 2018-07-12 2024-03-19 株式会社Ntt都科摩 终端、无线通信方法以及系统
WO2020010630A1 (en) * 2018-07-13 2020-01-16 Nec Corporation Beam failure recovery
CN111278122B (zh) * 2019-01-25 2023-03-24 维沃移动通信有限公司 波束失败恢复方法、处理方法、终端及网络侧设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803298A (zh) * 2017-11-17 2019-05-24 华硕电脑股份有限公司 无线通信系统中控制信道监听行为的方法和设备
CN110519815A (zh) * 2018-05-22 2019-11-29 华为技术有限公司 通信方法及装置
US20200314942A1 (en) * 2019-03-29 2020-10-01 Qualcomm Incorporated Link failure recovery procedure for a primary cell (pcell) and a secondary cell (scell)
US20200350972A1 (en) * 2019-05-01 2020-11-05 Yunjung Yi Beam Failure Recovery In Mult-TRP Scenarios
WO2020228589A1 (zh) * 2019-05-10 2020-11-19 华为技术有限公司 通信方法和通信装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Summary 3 on Remaing issues on Beam Failure Recovery", 3GPP DRAFT; R1-1805730_7 1 2 2 4_SUMMARY_1_BFR_V08, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Sanya, China; 20180416 - 20180420, 24 April 2018 (2018-04-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051435684 *
OPPO: "MAC impacts on supporting BFR procedure on SCell", 3GPP DRAFT; R2-1807415-MAC IMPACTS ON SUPPORTING BFR PROCEDURE ON SCELL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Busan, Korea; 20180521 - 20180525, 10 May 2018 (2018-05-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051464138 *

Also Published As

Publication number Publication date
CN117544982A (zh) 2024-02-09
CN114599050A (zh) 2022-06-07
US20230328552A1 (en) 2023-10-12
CN117560698A (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
US20230232250A1 (en) Method and device in nodes used for wireless communication
WO2022161233A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021160008A1 (zh) 被用于无线通信的用户设备、基站中的方法和装置
CN112910615A (zh) 一种被用于无线通信的节点中的方法和装置
US20220141909A1 (en) Method and device in communication nodes for wireless communication
WO2022052971A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022057693A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN114337741B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020192350A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022121830A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022100639A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023020453A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022121831A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN114553272B (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023040922A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022073490A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113315609B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024046155A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2022161389A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024017078A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN114268968A (zh) 一种被用于无线通信的节点中的方法和装置
CN116155459A (zh) 一种被用于无线通信的节点中的方法和装置
CN116015373A (zh) 一种被用于无线通信的节点中的方法和装置
CN115379568A (zh) 一种被用于无线通信的节点中的方法和装置
CN114285533A (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/11/2023)