WO2022121831A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2022121831A1
WO2022121831A1 PCT/CN2021/135658 CN2021135658W WO2022121831A1 WO 2022121831 A1 WO2022121831 A1 WO 2022121831A1 CN 2021135658 W CN2021135658 W CN 2021135658W WO 2022121831 A1 WO2022121831 A1 WO 2022121831A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
signal
signaling
type
transmission state
Prior art date
Application number
PCT/CN2021/135658
Other languages
English (en)
French (fr)
Inventor
吴克颖
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2022121831A1 publication Critical patent/WO2022121831A1/zh
Priority to US18/144,176 priority Critical patent/US20230276281A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to a transmission method and apparatus in a wireless communication system, in particular to a wireless signal transmission method and apparatus in a wireless communication system supporting a cellular network.
  • Multi-antenna technology is a key technology in 3GPP (3rd Generation Partner Project, 3rd Generation Partnership Project) LTE (Long-term Evolution, Long Term Evolution) system and NR (New Radio, New Radio) system. Additional spatial degrees of freedom are obtained by configuring multiple antennas at a communication node, such as a base station or a UE (User Equipment, user equipment). Multiple antennas use beamforming to form beams pointing in a specific direction to improve communication quality. When multiple antennas belong to multiple TRPs (Transmitter Receiver Points)/panels (antenna panels), additional diversity gain can be obtained by utilizing the spatial differences between different TRPs/panels.
  • TRPs Transmitter Receiver Points
  • panels antennana panels
  • the beams formed by multi-antenna beamforming are generally relatively narrow, and the beams of both parties need to be aligned for effective communication.
  • the transmission/reception beams are out of sync due to UE movement and other reasons, the communication quality will be greatly degraded or even unable to communicate.
  • beam management is used for beam selection, update and indication between communicating parties, thereby realizing the performance gain brought by multiple antennas.
  • NR R15 and R16 different beam management/indication mechanisms are used for the control channel and data channel, and different beam management/indication mechanisms are also used for uplink and downlink.
  • the control channel and the data channel can use the same beam
  • the uplink and downlink channels also have channel reciprocity in many application scenarios, and the same beam can be used.
  • Using this feature can greatly reduce the complexity of the system, signaling overhead and delay.
  • the 3GPP RAN (Radio Access Network, Radio Access Network) 1#103e meeting the technology of simultaneously updating the beams of the control channel and the data channel using physical layer signaling has been adopted.
  • the uplink and downlink beams can be updated simultaneously with physical layer signaling. The adoption of this technology, what impact will it have on some existing beam-related functions, is a problem that needs to be solved.
  • the present application discloses a solution. It should be noted that although the above description takes the cellular network as an example, the present application is also applicable to other scenarios, such as a V2X (Vehicle-to-Everything) scenario, and achieves similar technical effects in the cellular network. In addition, using a unified solution for different scenarios (including but not limited to cellular and V2X) also helps reduce hardware complexity and cost.
  • the embodiments and features of the embodiments in the first node of the present application may be applied in the second node and vice versa, provided there is no conflict.
  • the embodiments of the present application and features in the embodiments may be combined with each other arbitrarily, provided that there is no conflict.
  • the interpretation of the terms in this application refers to the definition of the normative protocol of the IEEE (Institute of Electrical and Electronics Engineers, Institute of Electrical and Electronics Engineers).
  • the present application discloses a method used in a first node of wireless communication, which is characterized by comprising:
  • the first signal is used for random access, and the first signal is used to determine a target reference signal; for the monitoring of the first type of channel in the first resource set, the The first node assumes the same QCL parameters as the target reference signal; the first signaling includes DCI; the first signaling is used to schedule the first channel; the first signaling is used to determine the first transmission state, the first transmission state is applied to the first channel; when the first transmission state is only applied to the first channel, the first node is in the Continue to monitor the first type of channel in the first resource set; when the first transmission state is also applied to at least the second channel in addition to the first channel, the first node after the target time Stop monitoring the first type of channel in the first resource set.
  • the problem to be solved in this application includes: how to enhance the existing beam failure recovery (beam failure recovery) mechanism by utilizing the advantages of the physical layer signaling to update the beam.
  • the characteristics of the above method include: the first signaling is a physical layer signaling, and according to whether the first signaling updates multiple beams of different channels at the same time, it is determined whether to terminate the PDCCH in RecoverySearchSpace. (Physical Downlink Control Channel, physical downlink control channel) monitoring.
  • the advantages of the above method include: making full use of the advantages of the physical layer signaling to update the beam, and speeding up the process of beam failure recovery.
  • the first information is used to determine whether the first transmission state is applied to at least the second channel in addition to the first channel.
  • the first node in the first transmission state is also applied to at least the first channel in addition to the first channel
  • stop monitoring the first type of channel in the first resource set after the target time the first condition set includes at least one condition.
  • the first set of conditions includes that the first signaling is transmitted in the first set of resources.
  • the advantages of the above method include avoiding misunderstanding between the sender and the receiver due to the missed detection of the first signal by the sender of the first signaling.
  • the advantages of the above method include that the receiving quality of the first signaling is improved.
  • the first condition set includes that the first node does not receive the second type of signaling after sending the first signal and before receiving the first signaling.
  • the second signal is used to determine that the first signaling is correctly received; the time domain resources occupied by the second signal are used to determine the target moment, and the first signaling is used to Determine the time domain resources occupied by the second signal.
  • the first signaling includes scheduling information of the third signal
  • the second signal includes HARQ-ACK for the third signal
  • the first node is a user equipment.
  • the first node is a relay node.
  • the present application discloses a method used in a second node for wireless communication, which is characterized by comprising:
  • the first signal is used for random access, and the first signal is used to determine a target reference signal; in response to the behavior of sending the first signal, the sender of the first signal is in the first resource monitoring the first type of channel in the set; for the monitoring of the first type of channel in the first resource set, the sender of the first signal assumes the same QCL parameters as the target reference signal; the first signaling includes DCI; the first signaling is used to schedule a first channel; the first signaling is used to determine a first transmission state, the first transmission state is applied to the first channel; when the first transmission state is only applied to the first channel, the sender of the first signal continues to monitor the first type of channel in the first resource set after the target time ; when the first transmission state is applied to at least a second channel in addition to the first channel, the sender of the first signal stops monitoring the first resource set after the target time the first type of channel.
  • the first information is used to determine whether the first transmission state is applied to at least the second channel in addition to the first channel.
  • the sender of the first signal in the first transmission state is also received in addition to the first channel.
  • the monitoring of the first type of channel in the first resource set is stopped after the target time; the first condition set includes at least one condition.
  • the first set of conditions includes that the first signaling is transmitted in the first set of resources.
  • the first condition set includes that the sender of the first signal does not receive a second type of signal after sending the first signal and before receiving the first signaling make.
  • the second signal is used to determine that the first signaling is correctly received; the time domain resources occupied by the second signal are used to determine the target moment, and the first signaling is used to Determine the time domain resources occupied by the second signal.
  • the first signaling includes scheduling information of the third signal
  • the second signal includes HARQ-ACK for the third signal
  • the second node is a base station.
  • the second node is a user equipment.
  • the second node is a relay node.
  • the present application discloses a first node device used for wireless communication, which is characterized by comprising:
  • a first transmitter for sending a first signal
  • a first processor monitoring a first type of channel in a first set of resources in response to the act of sending the first signal
  • the first processor receiving first signaling, where the first signaling is used to determine the target time;
  • the first processor continues to monitor the first type channel in the first resource set after the target time, or stops monitoring the first resource set in the first resource set after the target time first-class channel;
  • the first signal is used for random access, and the first signal is used to determine a target reference signal; for the monitoring of the first type of channel in the first resource set, the The first node assumes the same QCL parameters as the target reference signal; the first signaling includes DCI; the first signaling is used to schedule the first channel; the first signaling is used to determine the first transmission state, the first transmission state is applied to the first channel; when the first transmission state is only applied to the first channel, the first node is in the Continue to monitor the first type of channel in the first resource set; when the first transmission state is also applied to at least the second channel in addition to the first channel, the first node after the target time Stop monitoring the first type of channel in the first resource set.
  • the present application discloses a second node device used for wireless communication, which is characterized by comprising:
  • a first receiver receiving the first signal
  • a second transmitter sending first signaling, where the first signaling is used to determine the target time
  • the first signal is used for random access, and the first signal is used to determine a target reference signal; in response to the behavior of sending the first signal, the sender of the first signal is in the first resource monitoring the first type of channel in the set; for the monitoring of the first type of channel in the first resource set, the sender of the first signal assumes the same QCL parameters as the target reference signal; the first signaling includes DCI; the first signaling is used to schedule a first channel; the first signaling is used to determine a first transmission state, the first transmission state is applied to the first channel; when the first transmission state is only applied to the first channel, the sender of the first signal continues to monitor the first type of channel in the first resource set after the target time ; when the first transmission state is applied to at least a second channel in addition to the first channel, the sender of the first signal stops monitoring the first resource set after the target time the first type of channel.
  • the present application has the following advantages:
  • FIG. 1 shows a flow chart of a first signal, a first type of channel and a first signaling according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a radio protocol architecture for the user plane and the control plane according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a flow chart of transmission according to an embodiment of the present application
  • FIG. 6 shows a schematic diagram of a first transmission state being applied to a given channel according to an embodiment of the present application
  • FIG. 7 shows a schematic diagram of monitoring a second given channel according to an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of a first resource set according to an embodiment of the present application.
  • FIG. 9 shows a schematic diagram of a first node monitoring a first type of channel in a first resource set according to an embodiment of the present application
  • FIG. 10 shows a schematic diagram of first information according to an embodiment of the present application.
  • FIG. 11 shows a schematic diagram of a first condition set according to an embodiment of the present application.
  • FIG. 12 shows a schematic diagram of a second signal according to an embodiment of the present application.
  • FIG. 13 shows a schematic diagram of a third signal according to an embodiment of the present application.
  • FIG. 14 shows a structural block diagram of a processing apparatus used in a first node device according to an embodiment of the present application
  • FIG. 15 shows a structural block diagram of a processing apparatus for a device in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of the first signal, the first type of channel and the first signaling according to an embodiment of the present application, as shown in FIG. 1 .
  • each block represents a step.
  • the order of the steps in the blocks does not represent a specific chronological relationship between the various steps.
  • the first node in this application sends a first signal in step 101; in step 102, in response to sending the first signal as the behavior, monitors the first resource set in the first class channel; receive first signaling in step 103, the first signaling is used to determine a target time; in step 104 continue to monitor the first resource set in the first resource set after the target time class channel, or stop monitoring the first class channel in the first resource set after the target time.
  • the first signal is used for random access, and the first signal is used to determine a target reference signal; for the monitoring of the first type of channel in the first resource set, the The first node assumes the same QCL parameters as the target reference signal; the first signaling includes DCI; the first signaling is used to schedule the first channel; the first signaling is used to determine the first transmission state, the first transmission state is applied to the first channel; when the first transmission state is only applied to the first channel, the first node is in the Continue to monitor the first type of channel in the first resource set; when the first transmission state is also applied to at least the second channel in addition to the first channel, the first node after the target time Stop monitoring the first type of channel in the first resource set.
  • whether the first transmission state is applied to at least the second channel in addition to the first channel is used to determine whether to continue monitoring in the first resource set after the target time the first type of channel.
  • the first node continues to monitor the first type of channel in the first resource set after the target time.
  • the first node stops in the first set of resources after the target time instant The first type of channel is monitored.
  • the TCI Transmission Configuration Indicator, transmission configuration indicator
  • the QCL Quadsi-Co-Located, quasi-co-located parameter of the second channel is irrelevant to the first signaling .
  • the spatial relationship of the second channel is irrelevant to the first signaling.
  • higher layer signaling is used to indicate whether the first transmission state is applied to at least the second channel in addition to the first channel.
  • RRC Radio Resource Control, Radio Resource Control
  • Radio Resource Control Radio Resource Control
  • MAC CE Medium Access Control layer Control Element, medium access control layer control element
  • MAC CE Medium Access Control Element, medium access control layer control element
  • physical layer signaling is used to indicate whether the first transmission state is applied to at least the second channel in addition to the first channel.
  • layer 1 (L1) signaling is used to indicate whether the first transmission state is applied to at least the second channel in addition to the first channel.
  • the first signaling is used to indicate whether the first transmission state is applied to at least the second channel in addition to the first channel.
  • the first node in response to the act of sending the first signal, starts monitoring the first type of channel in the first resource set from a second time instant;
  • the occupied time domain resources are used to determine the second time instant.
  • the first signal occupies a time unit n in the time domain, and the second moment is the start moment of the time unit (n+first interval); the first interval is a non-negative integer.
  • the unit of the first interval is the time unit.
  • the unit of the first interval is a slot.
  • the unit of the first interval is a sub-slot.
  • the unit of the first interval is a multi-carrier symbol.
  • the first interval is fixed.
  • the first interval is fixed at 4.
  • the first interval is configured by a higher layer parameter.
  • one of said time units is one slot.
  • one of said time units is one sub-slot.
  • one of said time units is one multi-carrier symbol.
  • one of the time units includes a positive integer number of consecutive multi-carrier symbols greater than 1.
  • the number of multi-carrier symbols included in one time unit is configured by a higher layer parameter.
  • the first signal includes a baseband signal.
  • the first signal includes a wireless signal.
  • the first signal includes a radio frequency signal.
  • the first signal includes a first sequence of features.
  • the first characteristic sequence includes one or more of a pseudo-random (pseudo-random) sequence, a Zadoff-Chu sequence or a low PAPR (Peak-to-Average Power Ratio, peak-to-average ratio) sequence.
  • a pseudo-random (pseudo-random) sequence a Zadoff-Chu sequence or a low PAPR (Peak-to-Average Power Ratio, peak-to-average ratio) sequence.
  • the first feature sequence includes a CP (Cyclic Prefix, cyclic prefix).
  • the first signal includes a random access preamble (Random Access Preamble).
  • the first signal includes a RACH (Random Access Channel, random access channel) preamble (Preamble).
  • RACH Random Access Channel, random access channel
  • Preamble preamble
  • the first signal includes a contention-free random access preamble.
  • the first signal includes a contention-based random access preamble.
  • the first signal includes a random access preamble for a beam failure recovery request (Beam Failure Recovery Request).
  • the first signal includes UCI (Uplink control information, uplink control information).
  • UCI Uplink control information, uplink control information
  • the first signal includes LRR (Link Recovery Request, link recovery request).
  • the first signal includes a MAC CE.
  • the first signal includes a BFR (Beam Failure Recovery, beam failure recovery) MAC CE or a truncated (Truncated) BFR MAC CE.
  • BFR Beam Failure Recovery, beam failure recovery
  • the channel occupied by the first signal includes PRACH (Physical Random Access CHannel, physical random access channel).
  • PRACH Physical Random Access CHannel, physical random access channel
  • the channel occupied by the first signal includes PUSCH (Physical Uplink Shared CHannel, physical uplink shared channel).
  • PUSCH Physical Uplink Shared CHannel, physical uplink shared channel
  • the channel occupied by the first signal includes PUCCH (Physical Uplink Control Channel, physical uplink control channel).
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • the air interface resources occupied by the first signal include PRACH resources.
  • the PRACH resource occupied by the first signal implicitly indicates the time-frequency resource location of the PUSCH occupied by the first signal.
  • the PRACH resource occupied by the first signal is used to determine the target reference signal.
  • the PRACH resources occupied by the first signal belong to a target PRACH resource set in M PRACH resource sets, where M is a positive integer; the M PRACH resource sets correspond to M reference signals respectively; the target The reference signal is a reference signal corresponding to the target PRACH resource set among the M reference signals; any PRACH resource set in the M PRACH resource sets includes at least one PRACH resource.
  • one PRACH resource set in the M PRACH resource sets includes only one PRACH resource.
  • one PRACH resource set includes multiple PRACH resources in the M PRACH resource sets.
  • the M PRACH resource sets are configured by higher layer parameters.
  • the higher-level parameters for configuring the M PRACH resource sets include the candidateBeamRSList field (field) in the BeamFailureRecoveryConfig IE (Information Element, information element) or all or part of the information in the candidateBeamRSListExt-v1610 field.
  • one PRACH resource includes one PRACH occasion.
  • one PRACH resource includes one random access preamble.
  • one PRACH resource includes one PRACH preamble.
  • one PRACH resource includes one random access preamble index.
  • one PRACH resource includes time-frequency resources.
  • one PRACH resource includes code domain resources.
  • the code domain resource includes a random access preamble, a PRACH preamble, a preamble sequence (preamble sequence), a cyclic shift (cyclic shift), a logical root sequence (logical root sequence), a root sequence (root sequence) or One or more of Zadoff-Chu sequences.
  • the random access preamble included in the first signal is one of M random access preambles, where M is a positive integer; the M random access preambles correspond to M reference signals respectively; the target The reference signal is a reference signal corresponding to the random access preamble included in the first signal among the M reference signals.
  • the M random access preambles are configured by higher layer parameters.
  • the higher layer parameters for configuring the M random access preambles include all or part of the information in the candidateBeamRSList field or the candidateBeamRSListExt-v1610 field in the BeamFailureRecoveryConfig IE.
  • the M is equal to one.
  • the M is greater than 1.
  • the M is not greater than 16.
  • the M is not greater than 64.
  • the first signal includes a first bit field, and the first bit field includes a positive integer number of binary bits; the value of the first bit field indicates the target reference signal.
  • the target reference signal includes a downlink reference signal.
  • the target reference signal includes an uplink reference signal.
  • the target reference signal includes a CSI-RS (Channel State Information-Reference Signal, channel state information reference signal).
  • CSI-RS Channel State Information-Reference Signal, channel state information reference signal
  • the target reference signal includes NZP (Non-Zero Power, non-zero power) CSI-RS.
  • the target reference signal includes SSB (Synchronisation Signal/physical broadcast channel Block, synchronization signal/physical broadcast channel block).
  • SSB Synchronisation Signal/physical broadcast channel Block, synchronization signal/physical broadcast channel block.
  • the target reference signal includes an SRS (Sounding Reference Signal, sounding reference signal).
  • SRS Sounding Reference Signal, sounding reference signal
  • the target reference signal is CSI-RS or SSB.
  • the target reference signal is one of CSI-RS, SSB or SRS.
  • the reference signal includes reference signal resources.
  • the reference signal includes a reference signal port.
  • the modulation symbols included in the reference signal are known by the first node.
  • the M reference signals include CSI-RS.
  • the M reference signals include SSBs.
  • the M reference signals include SRS.
  • the first signaling includes physical layer signaling.
  • the first signaling is physical layer signaling.
  • the first signaling includes dynamic signaling.
  • the first signaling includes layer 1 (L1) signaling.
  • the first signaling is layer 1 (L1) signaling.
  • the first signaling includes layer 1 (L1) control signaling.
  • the DCI refers to Downlink Control Information.
  • the first signaling is DCI.
  • the first signaling includes DCI for a downlink grant (DL Grant).
  • DL Grant downlink grant
  • the first signaling is DCI for downlink grant.
  • the first signaling includes DCI for an uplink grant (UL Grant).
  • UL Grant uplink grant
  • the first signaling is DCI for uplink grant.
  • the time-frequency resources occupied by the first signaling belong to the first resource set.
  • the time-frequency resources occupied by the first signaling do not belong to the first resource set.
  • the DCI format (format) corresponding to the first signaling belongs to a first format set, and the first format set includes at least one DCI format.
  • the first format set includes DCI format 1_1.
  • the first format set includes DCI format 1_2.
  • the first format set consists of DCI format 1_1 and DCI format 1_2.
  • the first format set includes one or more of DCI format 1_0, DCI format 0_0, DCI format 0_1 or DCI format 0_2.
  • the CRC (Cyclic Redundancy Check, cyclic redundancy check) of the first signaling is scrambled by an RNTI (Radio Network Temporary Identifier, wireless network tentative identifier) in the first identifier set, so
  • the first identification set includes at least one RNTI.
  • the first identifier set includes C(Cell, cell)-RNTI.
  • the first identification set includes only C-RNTI.
  • the first identification set includes MCS (Modulation and Coding Scheme, modulation and coding scheme)-C-RNTI.
  • MCS Modulation and Coding Scheme, modulation and coding scheme
  • the first identification set is composed of C-RNTI and MCS-C-RNTI.
  • the first identifier set includes CS (Configured Scheduling, configuration scheduling)-RNTI.
  • the physical channel occupied by the first signaling is a channel of the first type.
  • the physical channel occupied by the first signaling is not the first type of channel.
  • the first signaling is a first type of signaling; the first node does not detect other first type of signaling after sending the first signal and before receiving the first signaling signaling.
  • the first signaling is a first type of signaling; the first node is not in the first resource set after sending the first signal and before receiving the first signaling Other signaling of the first type is detected.
  • the first signaling is a first type of signaling; the first signaling is the first one of the first type detected by the first node after sending the first signal signaling.
  • the first signaling is a first type of signaling; the first signaling is detected by the first node in the first resource set after sending the first signal The first is the first type of signaling.
  • the first type of signaling includes DCI.
  • the first type of signaling includes a DCI format.
  • any DCI format corresponding to the first type of signaling belongs to the first format set.
  • the CRC of any one of the first type of signaling is scrambled by the RNTI in the first identification set.
  • the first signaling and the first signal belong to the same BWP (Bandwidth part, bandwidth interval) in the frequency domain.
  • the first signaling and the first signal belong to different BWPs in the frequency domain.
  • the first signaling and the first signal belong to the same carrier (Carrier) in the frequency domain.
  • the first signaling and the first signal belong to different carriers in the frequency domain.
  • the first signaling and the first signal belong to the same cell in the frequency domain.
  • the first signaling and the first signal belong to different cells in the frequency domain.
  • the first signal and the first resource set belong to the same BWP in the frequency domain.
  • the first signal and the first resource set belong to different BWPs in the frequency domain.
  • the first signal and the first resource set belong to the same carrier (Carrier) in the frequency domain.
  • the first signal and the first resource set belong to different carriers in the frequency domain.
  • the first signal and the first resource set belong to the same cell in the frequency domain.
  • the first signal and the first resource set belong to different cells in the frequency domain.
  • the first signaling and the first resource set belong to the same BWP in the frequency domain.
  • the first signaling and the first resource set belong to different BWPs in the frequency domain.
  • the first signaling and the first resource set belong to the same carrier (Carrier) in the frequency domain.
  • the first signaling and the first resource set belong to different carriers in the frequency domain.
  • the first signaling and the first resource set belong to the same cell in the frequency domain.
  • the first signaling and the first resource set belong to different cells in the frequency domain.
  • the time domain resource occupied by the first signaling is used to determine the target time.
  • the time interval between the target moment and the first reference moment is a second interval; the first reference moment is earlier than the target moment, and the time domain resources occupied by the first signaling are for determining the first reference time.
  • the first reference time is the start time of the time domain resource occupied by the first signaling.
  • the first reference moment is the end moment of the time domain resource occupied by the first signaling.
  • the first reference time is the start time of the time unit occupied by the first signaling.
  • the first reference time is the end time of the time unit occupied by the first signaling.
  • the unit of the second interval is the time unit.
  • the unit of the second interval is a slot.
  • the unit of the second interval is a sub-slot.
  • the unit of the second interval is a multi-carrier symbol.
  • the second interval is a non-negative integer.
  • the second interval is fixed.
  • the second interval is configured by a higher layer parameter.
  • the first signaling includes a first field, and the first field includes at least one binary bit; the first field in the first signaling indicates the first transmission state.
  • the number of binary bits included in the first field is equal to one.
  • the number of binary bits included in the first field is greater than 1.
  • the number of binary bits included in the first field is equal to three.
  • the first field includes information in the Transmission configuration indication field.
  • Transmission configuration indication field refers to Section 7.3 of 3GPP TS38.212.
  • the first field indicates TCI.
  • the first field in the first signaling indicates a TCI codepoint (codepoint) corresponding to the first transmission state.
  • the value of the first field in the first signaling is equal to the TCI code point corresponding to the first transmission state.
  • the first field in the first signaling indicates a TCI state identifier (TCI-StateId) corresponding to the first transmission state.
  • TCI-StateId TCI state identifier
  • any one of the first type of signaling includes one of the first fields.
  • the meaning of the sentence that the first signaling is used to schedule the first channel includes: the first signaling indicates the time-frequency resources occupied by the first channel.
  • the meaning of the sentence that the first signaling is used to schedule the first channel includes: the first signaling indicates scheduling information of the first channel.
  • the meaning of the sentence that the first signaling is used to schedule the first channel includes: the first signaling indicates scheduling information of a signal transmitted in the first channel.
  • the scheduling information includes time domain resources, frequency domain resources, MCS, DMRS (DeModulation Reference Signals, demodulation reference signal) port (port), HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request) process One or more of the number (process number), RV (Redundancy Version, redundancy version) or NDI (New Data Indicator, new data indication).
  • the first channel includes a physical channel.
  • the first channel includes a layer 1 (L1) channel.
  • the first channel includes a transport channel.
  • the first channel includes a downlink channel.
  • the first channel includes only downlink channels.
  • the first channel includes an uplink channel.
  • the first channel only includes an uplink channel.
  • the first channel includes a physical shared channel.
  • the first channel includes only a physical shared channel.
  • the first channel includes PDSCH (Physical Downlink Shared CHannel, physical downlink shared channel).
  • PDSCH Physical Downlink Shared CHannel, physical downlink shared channel
  • the first channel only includes PDSCH.
  • the first channel is a PDSCH.
  • the first channel includes a DL-SCH (DownLink-Shared CHannel, downlink shared channel).
  • DL-SCH DownLink-Shared CHannel, downlink shared channel
  • the first channel is a DL-SCH.
  • the first channel includes a UL-SCH (UpLink-Shared CHannel, uplink shared channel).
  • UL-SCH UpLink-Shared CHannel, uplink shared channel
  • the first channel is a UL-SCH.
  • the first channel includes the PDSCH scheduled by the first signaling.
  • the first channel includes all PDSCHs scheduled by the first signaling.
  • the first channel consists of all PDSCHs scheduled by the first signaling.
  • the first signaling schedules multiple physical channels, and the first channel includes the multiple physical channels scheduled by the first signaling.
  • the first channel is composed of the plurality of physical channels scheduled by the first signaling.
  • the physical channel is PDSCH.
  • the physical channel is PUSCH.
  • the first signaling schedules multiple repeated transmissions of the first bit block, where the first bit block includes a TB (Transport Block, transport block), a CB (Code Block, code block) or At least one of a CBG (Code Block Group, code block group); the first channel includes all physical channels occupied by the multiple repeated transmissions of the first bit block.
  • the first bit block includes a TB (Transport Block, transport block), a CB (Code Block, code block) or At least one of a CBG (Code Block Group, code block group)
  • the first channel includes all physical channels occupied by the multiple repeated transmissions of the first bit block.
  • the first channel consists of all physical channels occupied by the multiple repeated transmissions of the first bit block.
  • the physical channel is PDSCH.
  • the physical channel is PUSCH.
  • the meaning of the sentence that the first signaling schedules multiple repeated transmissions of the first bit block includes: the first signaling is used to determine the size of the first bit block.
  • the meaning of the sentence that the first signaling schedules multiple repeated transmissions of the first bit block includes: the first signaling indicates that the multiple repeated transmissions of the first bit block are frequency.
  • the meaning of the sentence that the first signaling schedules multiple repeated transmissions of the first bit block includes: the first signaling indicates that the multiple repeated transmissions of the first bit block are scheduling information for each repeated transmission.
  • the second channel includes a physical channel.
  • the second channel includes a layer 1 (L1) channel.
  • the second channel includes a transport channel.
  • the second channel includes a downlink channel.
  • the second channel includes an uplink channel.
  • the first channel includes only a downlink channel
  • the second channel includes an uplink channel
  • the first channel includes only an uplink channel
  • the second channel includes a downlink channel
  • the first channel includes a downlink channel
  • the second channel includes an uplink channel
  • the first channel includes an uplink channel
  • the second channel includes a downlink channel
  • the second channel includes a physical control channel.
  • the first channel includes only a physical shared channel
  • the second channel includes a physical control channel
  • the first channel includes a physical shared channel
  • the second channel includes a physical control channel
  • the second channel includes PDSCH.
  • the second channel only includes PDSCH.
  • the second channel includes PUSCH.
  • the second channel only includes PUSCH.
  • the first channel includes only PDSCH
  • the second channel includes PUSCH
  • the first channel includes only PUSCH
  • the second channel includes PDSCH
  • the first channel includes PDSCH
  • the second channel includes PUSCH
  • the first channel includes PUSCH
  • the second channel includes PDSCH
  • the second channel includes PDCCH.
  • the second channel is a PDCCH.
  • the second channel is composed of multiple PDCCHs.
  • the first channel includes only PDSCH
  • the second channel includes PDCCH
  • the first channel includes only PUSCH
  • the second channel includes PDCCH
  • the first channel includes PDSCH
  • the second channel includes PDCCH
  • the first channel includes PUSCH
  • the second channel includes PDCCH
  • the second channel includes DL-SCH.
  • the second channel includes UL-SCH.
  • the first channel includes DL-SCH
  • the second channel includes UL-SCH
  • the first channel includes UL-SCH
  • the second channel includes DL-SCH
  • the second channel has nothing to do with the first signaling.
  • the time-frequency resources occupied by the second channel are irrelevant to the first signaling.
  • the scheduling information of the second channel is irrelevant to the first signaling.
  • the scheduling information of the signal transmitted in the second channel is irrelevant to the first signaling.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG. 2 .
  • FIG. 2 illustrates a network architecture 200 of LTE (Long-Term Evolution, Long Term Evolution), LTE-A (Long-Term Evolution Advanced, Enhanced Long Term Evolution) and future 5G systems.
  • the network architecture 200 of LTE, LTE-A and future 5G systems is called EPS (Evolved Packet System, Evolved Packet System) 200.
  • the 5G NR or LTE network architecture 200 may be called 5GS (5G System)/EPS (Evolved Packet System, evolved grouping system) 200 or some other suitable term.
  • the 5GS/EPS 200 may include one or more UE (User Equipment, user equipment) 201, a UE 241 for sidelink (Sidelink) communication with the UE 201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G CoreNetwork, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Server)/UDM (Unified Data Management, Unified Data Management) 220 and Internet Services 230.
  • 5GS/EPS200 Interconnections with other access networks are possible, but these entities/interfaces are not shown for simplicity.
  • the 5GS/EPS 200 provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks that provide circuit-switched services.
  • the NG-RAN 202 includes an NR (New Radio) Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201 .
  • gNBs 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • the gNB 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmit Receive Point) or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, MP3 players), cameras, game consoles, drones, aircraft, narrowband physical network devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any other similarly functional device.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management domain
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway, service gateway)/UPF (User Plane Function, user plane function) 212 and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • the MME/AMF/SMF 211 is the control node that handles signaling between the UE 201 and the 5GC/EPC 210 .
  • MME/AMF/SMF 211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through the S-GW/UPF212, and the S-GW/UPF212 itself is connected to the P-GW/UPF213.
  • the P-GW provides UE IP address allocation and other functions.
  • the P-GW/UPF 213 is connected to the Internet service 230 .
  • the Internet service 230 includes the Internet Protocol service corresponding to the operator, and may specifically include Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching (Packet switching) service.
  • IMS IP Multimedia Subsystem
  • IP Multimedia Subsystem IP Multimedia Subsystem
  • Packet switching Packet switching
  • the first node in this application includes the UE201.
  • the second node in this application includes the gNB203.
  • the wireless link between the UE 201 and the gNB 203 is a cellular network link.
  • the sender of the first signal in this application includes the UE201.
  • the receiver of the first signal in this application includes the gNB203.
  • the sender of the first signaling in this application includes the gNB203.
  • the recipient of the first signaling in this application includes the UE201.
  • the sender of the first type of channel in this application includes the gNB203.
  • the receiver of the first type of channel in this application includes the UE201.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to an embodiment of the present application, as shown in FIG. 3 .
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300, showing three layers for a first communication node device (UE, gNB or RSU in V2X) and a second The radio protocol architecture of the control plane 300 between communication node devices (gNB, UE or RSU in V2X), or between two UEs: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY301.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device, or between two UEs.
  • L2 layer 305 includes MAC (Medium Access Control, Media Access Control) sublayer 302, RLC (Radio Link Control, Radio Link Layer Control Protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, Packet Data Convergence Protocol) sublayer 304, the sublayers are terminated at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides for providing security by encrypting data packets, as well as providing handoff support for the first communication node device between the second communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer packets, retransmission of lost packets, and reordering of packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, Radio Resource Control) sublayer 306 in the layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the communication between the second communication node device and the first communication node device.
  • the RRC signaling between them is used to configure the lower layers.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer), the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350
  • L1 layer layer 1
  • L2 layer layer 2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 is also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer). , to support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side and another terminating in a connection Application layer at one end (eg, remote UE, server, etc.).
  • the radio protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the radio protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the first signal is generated by the PHY 301 or the PHY 351 .
  • the first signaling is generated in the PHY 301 or the PHY 351.
  • the first signaling is generated in the MAC sublayer 302 or the MAC sublayer 352 .
  • the first type of channel is generated in the PHY 301 or the PHY 351.
  • Embodiment 4 illustrates a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application, as shown in FIG. 4 .
  • FIG. 4 is a block diagram of a first communication device 410 and a second communication device 450 that communicate with each other in an access network.
  • the first communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • Second communication device 450 includes controller/processor 459, memory 460, data source 467, transmit processor 468, receive processor 456, multiple antenna transmit processor 457, multiple antenna receive processor 458, transmitter/receiver 454 and antenna 452.
  • upper layer data packets from the core network are provided to the controller/processor 475 .
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and the second communication device 450 based on various priority metrics Radio resource allocation.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the second communication device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, the physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, and based on various modulation schemes (eg, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M Phase Shift Keying (M-PSK), M Quadrature Amplitude Modulation (M-QAM)) constellation mapping.
  • modulation schemes eg, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M Phase Shift Keying (M-PSK), M Quadrature Amplitude Modulation (M-QAM)
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • M-PSK M Phase Shift Keying
  • M-QAM M Quadrature Amplitude Modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the encoded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing
  • the transmit processor 416 maps each parallel stream to a subcarrier, multiplexes the modulated symbols with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) ) to generate a physical channel that carries a multi-carrier symbol stream in the time domain. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time-domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • a reference signal eg, a pilot
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives a signal through its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454.
  • the receive processor 456 uses a Fast Fourier Transform (FFT) to convert the received analog precoding/beamforming operation of the baseband multicarrier symbol stream from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered by the multi-antenna receiving processor 458 after multi-antenna detection.
  • Communication device 450 is any parallel stream of destination. The symbols on each parallel stream are demodulated and recovered in receive processor 456 and soft decisions are generated.
  • the receive processor 456 then decodes and de-interleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459 .
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer packets from the core network.
  • the upper layer packets are then provided to all protocol layers above the L2 layer.
  • Various control signals may also be provided to L3 for L3 processing.
  • the controller/processor 459 is also responsible for error detection using acknowledgement (ACK) and/or negative acknowledgement (NACK) protocols to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459 .
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and logical AND based on the radio resource allocation of the first communication device 410 Multiplexing between transport channels, implementing L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the first communication device 410.
  • Transmit processor 468 performs modulation mapping, channel coding processing, multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated parallel stream into a multi-carrier/single-carrier symbol stream, which undergoes an analog precoding/beamforming operation in the multi-antenna transmit processor 457 and then provides it to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into a radio frequency symbol stream, which is then provided to the antenna 452 .
  • the function at the first communication device 410 is similar to that in the transmission from the first communication device 410 to the second communication device 450
  • the receive function at the second communication device 450 described in the transmission of .
  • Each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • Memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer data packets from the second communication device 450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the controller/processor 475 is also responsible for error detection using the ACK and/or NACK protocol to support HARQ operations.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to interact with the used together with at least one processor.
  • the second communication device 450 means at least: sending the first signal; monitoring the first type of channel in the first resource set in response to the act of sending the first signal; receiving the first signal. a signaling; continue monitoring the first type of channel in the first resource set after the target time, or stop monitoring the first type of channel in the first resource set after the target time channel.
  • the second communication device 450 includes: a memory storing a program of computer-readable instructions, the program of computer-readable instructions, when executed by at least one processor, produces actions, the actions comprising: sending the monitoring the first type of channel in the first resource set in response to the act of sending the first signal; receiving the first signaling; Continue to monitor the first type of channel in the first resource set, or stop monitoring the first type of channel in the first resource set after the target time.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to interact with the used together with at least one processor.
  • the first communication device 410 means at least: receiving the first signal; and sending the first signaling.
  • the first communication device 410 includes: a memory storing a program of computer-readable instructions, the program of computer-readable instructions generating actions when executed by at least one processor, the actions comprising: receiving the received the first signal; sending the first signaling.
  • the first node in this application includes the second communication device 450 .
  • the second node in this application includes the first communication device 410 .
  • At least one of ⁇ the antenna 420, the receiver 418, the receive processor 470, the multi-antenna receive processor 472, the controller/processor 475, the memory 476 ⁇ One is used to receive the first signal; ⁇ the antenna 452, the transmitter 454, the transmit processor 468, the multi-antenna transmit processor 457, the controller/processor 459, the At least one of the memories 460 ⁇ is used to transmit the first signal.
  • the antenna 452 the receiver 454, the receive processor 456, the multi-antenna receive processor 458, the controller/processor 459, the memory 460, the data at least one of the sources 467 ⁇ is used to receive the first signaling;
  • the antenna 452 the receiver 454, the receive processor 456, the multi-antenna receive processor 458, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to monitor the first type of channel in the first set of resources.
  • At least one of ⁇ the antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471, the controller/processor 475, the memory 476 ⁇ One is used to transmit the first type of channel in the first set of resources.
  • Embodiment 5 illustrates a flowchart of wireless transmission according to an embodiment of the present application, as shown in FIG. 5 .
  • the second node U1 and the first node U2 are communication nodes transmitting over the air interface.
  • the steps in blocks F51 to F56 are respectively optional.
  • the first information is sent in step S5101; the first signal is received in step S511; the first type of channel is sent in the first resource set in step S5102; the first signaling is sent in step S512;
  • step S5103 the third signal is sent in the first channel; in step S5104 the second signal is received; in step S5105 the fourth signal is received in the first channel; in step S5106 after the target time in the first Send the first type of channel in the resource set, or stop sending the first type of channel in the first resource set after the target time.
  • the first information is received in step S5201; the first signal is sent in step S521; in step S522, the first signal is sent as a response to the behavior, and the first resource set is monitored in the first resource set.
  • the monitoring of the first type of channel in the first resource set is continued after the target time, or the monitoring of the first type of channel in the first resource set is stopped after the target time.
  • the first signal is used for random access, and the first signal is used by the second node U1 to determine a target reference signal;
  • the first node U2 assumes the same QCL parameters as the target reference signal; the first signaling includes DCI; the first signaling is used by the first node U2 determining the target time; the first signaling is used to schedule the first channel; the first signaling is used by the first node U2 to determine a first transmission state, the first transmission state is applied to the first channel; when the first transmission state is only applied to the first channel, the first node U2 continues to monitor the first resource set after the target time Channels of the first type; when the first transmission state is applied to at least a second channel in addition to the first channel, the first node U2 stops in the first set of resources after the target time instant The first type of channel is monitored.
  • the first node U2 is the first node in this application.
  • the second node U1 is the second node in this application.
  • the air interface between the second node U1 and the first node U2 includes a wireless interface between the base station equipment and the user equipment.
  • the air interface between the second node U1 and the first node U2 includes a wireless interface between user equipment and user equipment.
  • the second node U1 is a serving cell maintenance base station of the first node U2.
  • the first signaling is used by the second node U1 to determine the target time.
  • the first signal is transmitted on PRACH.
  • the first signal is transmitted on the PUSCH.
  • the first signal is transmitted on the PUCCH.
  • the first signal is transmitted on PRACH and PUSCH.
  • the first signal is transmitted on PUCCH and PUSCH.
  • the first signaling is transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the first signaling is transmitted on PDCCH (Physical Downlink Control Channel, physical downlink control channel).
  • PDCCH Physical Downlink Control Channel, physical downlink control channel.
  • the first signaling is transmitted on PSCCH (Physical Sidelink Control Channel, Physical Sidelink Control Channel).
  • PSCCH Physical Sidelink Control Channel, Physical Sidelink Control Channel.
  • the steps in block F51 in Fig. 5 exist; the first information is used by the first node U2 to determine whether the first transmission state is applied in addition to the first channel on at least the second channel.
  • the first information is transmitted on PDSCH.
  • the first information is transmitted on the PDCCH.
  • the steps in block F52 in FIG. 5 exist; the second node U1 transmits the first type of channel in the first resource set.
  • the second node U1 transmits the first type of channel in the first set of resources in response to the act of receiving the first signal.
  • the steps in block F54 in Figure 5 exist; the second signal is used by the second node U1 to determine that the first signaling is correctly received.
  • the time domain resource occupied by the second signal is used by the first node U2 to determine the target moment.
  • the time domain resource occupied by the second signal is used by the second node U1 to determine the target moment.
  • the first signaling is used by the first node U2 to determine the time domain resources occupied by the second signal.
  • the second signal is transmitted on the PUCCH.
  • the second signal is transmitted on the PUSCH.
  • both the steps in block F3 and block F54 in FIG. 5 exist; the first signaling includes scheduling information of the third signal, and the second signal includes the scheduling information for the third signal.
  • HARQ-ACK of the signal includes
  • the third signal is transmitted on PDSCH.
  • the step in block F55 in FIG. 5 exists; the first signaling includes scheduling information of the fourth signal, and the time domain resources occupied by the fourth signal are replaced by the first signaling.
  • the node U2 is used to determine the target time; the first signaling is used by the first node U2 to determine the time domain resources occupied by the fourth signal.
  • the fourth signal includes a baseband signal.
  • the fourth signal includes a wireless signal.
  • the fourth signal includes a radio frequency signal.
  • the fourth signal is transmitted on the PUSCH.
  • the time interval between the target moment and the third reference moment is a fifth interval; the third reference moment is earlier than the target moment, and the time domain resources occupied by the fourth signal are used for determining the third reference time.
  • the third reference moment is the start moment of the time domain resource occupied by the fourth signal.
  • the third reference moment is the end moment of the time domain resource occupied by the fourth signal.
  • the third reference time is the start time of the time unit occupied by the fourth signal.
  • the third reference time is the end time of the time unit occupied by the fourth signal.
  • the unit of the fifth interval is a slot.
  • the unit of the fifth interval is a multi-carrier symbol.
  • the fifth interval is a non-negative integer.
  • the fifth interval is fixed.
  • the fifth interval is configured by a higher layer parameter.
  • the first signaling indicates time domain resources occupied by the fourth signal.
  • the first signaling belongs to a third time unit in the time domain
  • the fourth signal belongs to a fourth time unit in the time domain
  • the time interval is the sixth interval.
  • the sixth interval is fixed.
  • the first signaling indicates the sixth interval.
  • the unit of the sixth interval is a slot.
  • the unit of the sixth interval is a multi-carrier symbol.
  • the sixth interval is a non-negative integer.
  • the first signaling indicates the position of the first multi-carrier symbol occupied by the fourth signal in the fourth time unit.
  • the steps in block F54 and the steps in block F55 in FIG. 5 do not exist at the same time.
  • the step in block F56 in FIG. 5 exists; when the first transmission state is applied only to the first channel, the second node U1 is continue to send the first type of channel in the first resource set; when the first transmission state is also applied to at least the second channel in addition to the first channel, the second node U1 Stop sending the first type of channel in the first resource set after the target time.
  • Embodiment 6 illustrates a schematic diagram in which the first transmission state is applied to a given channel according to an embodiment of the present application; as shown in FIG. 6 .
  • the given channel is the first channel, or the given channel is the second channel.
  • the first transmission state indicates a first reference signal.
  • the given channel is the first channel.
  • the given channel is the second channel.
  • the given channel is a channel different from the first channel and the second channel.
  • the first transmission state is a TCI state.
  • the first transmission state includes information in all or part of a field (Field) in an IE.
  • the first transmission state includes all or part of the information in a TCI-State IE.
  • the first transmission state indicates the identity of the first reference signal.
  • the identifier of the first reference signal includes NZP-CSI-RS-ResourceId.
  • the identifier of the first reference signal includes an SSB-Index.
  • the identifier of the first reference signal includes SRS-ResourceId.
  • the first transmission state indicates a cell identity corresponding to the first reference signal.
  • the cell identifier corresponding to the first reference signal includes ServCellIndex.
  • the first transmission state indicates a BWP identifier corresponding to the first reference signal.
  • the first transmission state indicates that the QCL type corresponding to the first reference signal is the first QCL type.
  • the first QCL type is QCL-TypeA or QCL-TypeD.
  • the first QCL type is one of QCL-TypeA, QCL-TypeB, QCL-TypeC or QCL-TypeD.
  • the first reference signal includes CSI-RS.
  • the first reference signal includes NZP CSI-RS.
  • the first reference signal includes SSB.
  • the first reference signal includes an SRS.
  • the first reference signal is CSI-RS or SSB.
  • the first reference signal is one of CSI-RS, SSB or SRS.
  • the first reference signal is the target reference signal.
  • the first reference signal and the target reference signal QCL are identical to each other.
  • the first reference signal and the target reference signal QCL correspond to QCL-TypeD.
  • the first reference signal and the target reference signal are not QCL.
  • the first reference signal and the target reference signal are not QCLs corresponding to QCL-TypeD.
  • the meaning of the sentence that the first transmission state is applied to a given channel includes: the TCI state of the given channel is the first transmission state.
  • the meaning of the sentence that the first transmission state is applied to a given channel includes that the first transmission state is used to determine the QCL relationship of the given channel.
  • the meaning of the sentence that the first transmission state is applied to a given channel includes that the first transmission state is used to determine the QCL parameter of the given channel.
  • the meaning of the sentence that the first transmission state is applied to a given channel includes that the first transmission state is used to determine a spatial relation of the given channel.
  • the meaning of the sentence that the first transmission state is applied to a given channel includes: the first reference signal is used to determine the QCL relationship of the DMRS of the given channel.
  • the meaning of the sentence that the first transmission state is applied to a given channel includes that the first reference signal is used to determine the spatial relationship of the DMRS of the given channel.
  • the meaning of the sentence that the first transmission state is applied to a given channel includes that the first reference signal is used to determine the QCL relationship of the given channel.
  • the meaning of the sentence that the first transmission state is applied to a given channel includes that the first reference signal is used to determine the QCL parameter of the given channel.
  • the meaning of the sentence that the first transmission state is applied to a given channel includes that the first reference signal is used to determine a spatial relation of the given channel.
  • the meaning of the sentence that the first transmission state is applied to a given channel includes: the first node assumes the transmit antenna port of the given channel and the first reference signal QCL.
  • the meaning of the sentence that the first transmission state is applied to a given channel includes: the first node assumes that the transmit antenna port of the given channel and the first reference signal QCL correspond to the first reference signal QCL.
  • a QCL type the meaning of the sentence that the first transmission state is applied to a given channel.
  • the meaning of the sentence that the first transmission state is applied to a given channel includes: the first node uses the same spatial domain filter to receive the first reference signal and the given channel channel.
  • the meaning of the sentence that the first transmission state is applied to a given channel includes that the first node transmits the first reference signal and receives the given channel with the same spatial filter.
  • the meaning of the sentence that the first transmission state is applied to a given channel includes that the first node uses the same spatial filter to receive the first reference signal and transmit the given channel.
  • the meaning of the sentence that the first transmission state is applied to a given channel includes: the first node transmits the first reference signal and the given channel with the same spatial filter.
  • the meaning of the sentence that the first transmission state is applied to a given channel includes: from the large-scale characteristics of the channel experienced by the first reference signal, it is possible to infer the characteristics of the channel experienced by the given channel. large scale features.
  • the large-scale properties include delay spread, Doppler spread, Doppler shift, and average delay , or one or more of the Spatial Rx parameters.
  • Embodiment 7 illustrates a schematic diagram of monitoring the first type of channel according to an embodiment of the present application; as shown in FIG. 7 .
  • the meaning of the sentence monitoring the first type of channel includes: monitoring the DCI (Downlink control information, downlink control information) format (format) transmitted in the first type of channel.
  • the meaning of the sentence monitoring the first type of channel includes: monitoring a PDCCH candidate (candidate) to determine whether the first type of channel is transmitted.
  • the meaning of the sentence monitoring the first type of channel includes: monitoring PDCCH candidates to determine whether the first type of channel is transmitted in a PDCCH candidate.
  • the meaning of the sentence monitoring the first type of channel includes: monitoring PDCCH candidates to determine whether a DCI format is detected in a PDCCH candidate.
  • the meaning of the sentence monitoring the first type of channel includes: monitoring PDCCH candidates to determine whether a DCI format is detected in a PDCCH candidate to be transmitted in the first type of channel.
  • the monitoring refers to blind decoding
  • the meaning of the sentence monitoring the first type of channel includes: performing a decoding operation in a PDCCH candidate; if it is determined that the decoding is correct according to the CRC in a PDCCH candidate, Then it is judged that a DCI format is detected in the one PDCCH candidate; otherwise, it is judged that no DCI format is detected in the one PDCCH candidate.
  • the monitoring refers to blind decoding
  • the meaning of the sentence monitoring the first type of channel includes: performing a decoding operation in a PDCCH candidate; if it is determined that the decoding is correct according to the CRC in a PDCCH candidate, Then it is judged that a DCI format is detected in the one PDCCH candidate to be transmitted in the first type of channel; otherwise, it is judged that no DCI format is detected in the one PDCCH candidate.
  • the monitoring refers to coherent detection
  • the meaning of the sentence monitoring the first type of channel includes: performing coherent reception in a PDCCH candidate and measuring the energy of the signal obtained after the coherent reception; if the coherent reception The energy of the signal obtained after receiving is greater than the first given threshold in a PDCCH candidate, then it is determined that a DCI format is detected in the one PDCCH candidate to be transmitted in the first type of channel; otherwise, determine No DCI format is detected in the one PDCCH candidate.
  • the monitoring refers to energy detection
  • the meaning of the sentence monitoring the first type of channel includes: sensing (Sense) the energy of the wireless signal in the PDCCH candidates and averaging to obtain the received energy; if the received energy If one of the PDCCH candidates is greater than the second given threshold, it is judged that a DCI format is detected in the one PDCCH candidate to be transmitted in the first type of channel; otherwise, it is judged that there is no DCI format in the one PDCCH candidate DCI format detected.
  • the meaning of the sentence monitoring the first-type channel includes: determining whether the first-type channel is transmitted according to the CRC, and determining whether the first-type channel is transmitted before judging whether the decoding is correct according to the CRC .
  • the meaning of the sentence monitoring the first-type channel includes: determining whether there is DCI transmitted in the first-type channel according to the CRC, and determining whether there is DCI in the first-type channel before judging whether the decoding is correct according to the CRC. is transmitted in the first type of channel described above.
  • the meaning of the sentence monitoring the first-type channel includes: determining whether the first-type channel is transmitted according to coherent detection; and determining whether the first-type channel is transmitted before the coherent detection.
  • the meaning of the sentence monitoring the first type of channel includes: determining whether there is DCI transmitted in the first type channel according to coherent detection; determining whether there is DCI in the first type channel before coherent detection transmitted in the channel.
  • the meaning of the sentence monitoring the first-type channel includes: determining whether the first-type channel is transmitted according to energy detection; and determining whether the first-type channel is transmitted before the energy detection.
  • the meaning of the sentence monitoring the first type of channel includes: determining whether there is DCI transmitted in the first type channel according to energy detection; determining whether there is DCI in the first type channel before energy detection transmitted in the channel.
  • Embodiment 8 illustrates a schematic diagram of a first resource set according to an embodiment of the present application; as shown in FIG. 8 .
  • the first resource set occupies a positive integer number of REs (Resource Elements, resource elements) in the time-frequency domain.
  • REs Resource Elements, resource elements
  • one RE occupies one multi-carrier symbol in the time domain and occupies one subcarrier in the frequency domain.
  • the multi-carrier symbols are OFDM (Orthogonal Frequency Division Multiplexing, orthogonal frequency division multiplexing) symbols.
  • the multi-carrier symbols are SC-FDMA (Single Carrier-Frequency Division Multiple Access, single-carrier frequency division multiple access) symbols.
  • the multi-carrier symbols are DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbols.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • the first resource set occupies a positive integer number of multi-carrier symbols in the time domain.
  • the first resource set occupies a positive integer number of RBs in the frequency domain.
  • the first resource set includes a search space set.
  • the first resource set is a search space set.
  • the first resource set includes one or more PDCCH candidates.
  • the first resource set includes all or part of the PDCCH candidates in a search space set.
  • the first resource set includes CORESET (COntrol REsource SET, control resource set).
  • the first resource set is a CORESET.
  • the first resource set occurs periodically in the time domain.
  • the first resource set appears multiple times in the time domain.
  • the first resource set occurs only once in the time domain.
  • the search space set to which the first resource set belongs is identified by recoverySearchSpaceId.
  • the first resource set is a search space set, and the first resource set is identified by recoverySearchSpaceId.
  • the SearchSpaceId corresponding to the search space set to which the first resource set belongs is equal to the recoverySearchSpaceId.
  • the first resource set is a search space set
  • the SearchSpaceId corresponding to the first resource set is equal to recoverySearchSpaceId.
  • the first resource set is configured by a first higher layer parameter.
  • the first resource set is a search space set
  • the SearchSpaceId corresponding to the first resource set is configured by a first higher layer parameter.
  • the first resource set is a search space set
  • the first higher layer parameter indicates the SearchSpaceId corresponding to the first resource set.
  • the first node is configured with K resource sets, where K is a positive integer greater than 1; the first resource set is one of the K resource sets; the first higher layer parameter is selected from all The first resource set is indicated in the K resource sets.
  • the first higher layer parameter includes information included in the recoverySearchSpaceId field (field) in the BeamFailureRecoveryConfig IE.
  • the name of the first higher layer parameter includes recoverySearchSpaceId.
  • the K resource sets belong to the same BWP in the frequency domain.
  • the K resource sets belong to the same carrier (Carrier) in the frequency domain.
  • the K resource sets belong to the same cell.
  • the K resource sets respectively include K search space sets.
  • the K resource sets are respectively K search space sets.
  • the K resource sets respectively include K CORESETs.
  • the K resource sets are configured by a higher layer parameter searchSpacesToAddModList.
  • the K resource sets are configured by a higher layer parameter searchSpacesToReleaseList.
  • the K resource sets are respectively identified by K indices, and the K indices are not equal to each other; any one of the K indices is a non-negative integer.
  • the K indices are respectively search space identifiers corresponding to the K resource sets.
  • the K indices are CORESET identifiers corresponding to the K resource sets respectively.
  • Embodiment 9 illustrates a schematic diagram of the first node monitoring the first type of channel in the first resource set according to an embodiment of the present application; as shown in FIG. 9 .
  • the first node assumes the same QCL parameter as the target reference signal.
  • the first type of channels includes physical channels.
  • the first type of channel is a physical channel.
  • the first type of channel includes a layer 1 (L1) channel.
  • the first type of channel is a layer 1 (L1) channel.
  • the first type of channel is for the RNTI in the second identification set.
  • the first type of channel is identified by the RNTI in the second identification set.
  • the CRC of the DCI transmitted in the first type of channel is scrambled by the RNTI in the second identification set.
  • the first type of channel includes a downlink physical layer control channel (that is, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel that is, a downlink channel that can only be used to carry physical layer signaling.
  • the first type of channel includes PDCCH.
  • the first type of channel is PDCCH.
  • the first type of channel is the PDCCH for the RNTI in the second identification set.
  • the first type of channel is a PDCCH whose CRC is scrambled by the RNTI in the second identification set.
  • the second identification set includes at least one RNTI.
  • the second identification set includes C-RNTI.
  • the second identification set includes only C-RNTI.
  • the second identification set includes MCS-C-RNTI.
  • the second identification set is composed of C-RNTI and MCS-C-RNTI.
  • the second identification set includes RA (Random Access)-RNTI.
  • the second identification set is composed of C-RNTI and RA-RNTI.
  • the second identification set is composed of C-RNTI, MCS-C-RNTI and RA-RNTI.
  • the first set of identifications is the second set of identifications.
  • the QCL refers to: Quasi-Co-Located.
  • the QCL includes QCL Type-A.
  • the QCL includes QCL Type-B.
  • the QCL includes QCL Type-C.
  • the QCL includes QCL Type-D.
  • the meaning that the first node assumes the same QCL parameter as the target reference signal in the sentence includes: The first node assumes the transmit antenna port of the channel of the first type and the target reference signal QCL to be transmitted in the first resource set.
  • the meaning that the first node assumes the same QCL parameter as the target reference signal in the sentence includes: The first node assumes that the transmit antenna port of the channel of the first type and the target reference signal QCL to be transmitted in the first resource set corresponds to QCL-TypeD.
  • the meaning that the first node assumes the same QCL parameter as the target reference signal in the sentence includes: the target reference signal and the fourth reference signal QCL, the first node assumes the transmit antenna port of the first type of channel and the fourth reference signal QCL transmitted in the first resource set.
  • the meaning that the first node assumes the same QCL parameter as the target reference signal in the sentence includes: The first node uses the same spatial filter to receive the target reference signal and monitor the first type of channel in the first set of resources.
  • the meaning that the first node assumes the same QCL parameter as the target reference signal in the sentence includes: The first node uses the same spatial filter to transmit the target reference signal and monitor the first type of channel in the first resource set.
  • the meaning that the first node assumes the same QCL parameter as the target reference signal in the sentence includes: the target reference signal and the fourth reference signal QCL, the first node uses the same spatial filter to receive the fourth reference signal and monitor the first type of channel in the first resource set.
  • the meaning of the sentence that the first node assumes the same QCL parameter as the target reference signal includes: from The large-scale characteristics of the channel experienced by the target reference signal may infer the large-scale characteristics of the channel experienced by the first type of channel transmitted in the first set of resources.
  • the meaning that the first node assumes the same QCL parameter as the target reference signal in the sentence includes: the target reference signal and the fourth reference signal QCL, the channel experienced by the first type of channel transmitted in the first resource set can be inferred from the large-scale characteristics of the channel experienced by the fourth reference signal large-scale properties.
  • the fourth reference signal includes SSB.
  • Embodiment 10 illustrates a schematic diagram of the first information according to an embodiment of the present application; as shown in FIG. 10 .
  • the first information is used to determine whether the first transmission state is applied to at least the second channel in addition to the first channel.
  • the first information indicates that the first transmission state is only applied to the first channel, or the first information indicates that the first transmission state is applied to the first channel in addition to the first channel applied to at least the second channel.
  • the first information is carried by higher layer signaling.
  • the first information is carried by RRC signaling.
  • the first information is carried by the MAC CE.
  • the first information is carried by physical layer signaling.
  • the first information is carried by layer 1 (L1) signaling.
  • the first information is jointly carried by higher layer signaling and layer 1 (L1) signaling.
  • the first information is carried by the first signaling.
  • the first signaling includes a second field, and the second field includes at least one binary bit; the second field in the first signaling indicates that the first transmission state is divided into the Whether the first channel is also applied to at least the second channel.
  • the second field includes only one binary bit; if the one binary bit is equal to the first bit value, the first transmission state is only applied to the first channel; if the one binary bit Not equal to the first bit value, the first transmission state is applied to at least the second channel in addition to the first channel.
  • the first bit value is equal to zero.
  • the first bit value is equal to one.
  • a second higher layer parameter indicates whether the first transmission state is applied to at least the second channel in addition to the first channel.
  • the second higher layer parameter is an RRC parameter.
  • the second higher layer parameter is a MAC CE parameter.
  • the second higher layer parameter includes information in one field or fields in an IE.
  • the second higher layer parameter includes information in one field or fields in one MAC CE.
  • the second higher layer parameter explicitly indicates whether the first transmission state is applied to at least the second channel in addition to the first channel.
  • the second higher layer parameter includes a second bit field
  • the second bit field includes at least one binary bit
  • the value of the second bit field indicates that the first transmission state is divided by the first Whether out-of-channel is also applied to at least the second channel.
  • the second bit field includes only one binary bit; if the value of the second bit field is equal to the first bit value, the first transmission state is only applied to the first channel; if all The value of the second bit field is not equal to the first bit value, and the first transmission state is applied to at least the second channel in addition to the first channel.
  • the second higher layer parameter implicitly indicates whether the first transmission state is applied to at least the second channel in addition to the first channel.
  • other information indicated by the second higher layer parameter is used to determine whether the first transmission state is applied to at least the second channel in addition to the first channel.
  • the second higher layer parameter is used to determine a first version number; if the first version number belongs to a first set of version numbers, the first transmission state is only applied to the first channel ; if the first version number belongs to a second version number set, the first transmission state is applied to at least the second channel in addition to the first channel; the first version number set and the first The two version number sets respectively include at least one version number.
  • the first version number set includes R(Release)15.
  • the first set of version numbers includes R16.
  • the second set of version numbers includes R17.
  • the frequency domain resource occupied by the first signal is used to determine whether the first transmission state is also applied to at least the second channel in addition to the first channel.
  • the first signal belongs to a first frequency domain interval in the frequency domain, and the first frequency domain interval is used to determine whether the first transmission state is also applied to at least the first channel in addition to the first channel. the second channel.
  • the first transmission state is only applied to the first channel; if the first frequency domain interval belongs to the second frequency domain an interval set, the first transmission state is applied to at least the second channel in addition to the first channel; the first frequency domain interval set and the second frequency domain interval set respectively include at least one frequency domain interval.
  • one of the frequency domain intervals is a continuous frequency domain resource.
  • one of the frequency domain bins is one BWP.
  • one of the frequency domain intervals is one carrier.
  • the first set of frequency domain intervals includes an intermediate frequency domain interval located in a frequency band of FR (Frequency Range) 1.
  • the second set of frequency-domain intervals includes frequency-domain intervals within the FR2 frequency band.
  • the first signal is transmitted in a first cell that is used to determine whether the first transmission state is applied to at least the second channel in addition to the first channel channel.
  • the first transmission state is only applied to the first channel; if the first cell belongs to a second set of cells, the first transmission state A state is applied to at least the second channel in addition to the first channel; the first set of cells and the second set of cells each include at least one cell.
  • the first signaling implicitly indicates whether the first transmission state is also applied to at least the second channel in addition to the first channel.
  • other information indicated by the first signaling is used to determine whether the first transmission state is also applied to at least the second channel in addition to the first channel.
  • the occupied time-frequency resource of the first signaling is used to determine whether the first transmission state is also applied to at least the second channel in addition to the first channel.
  • the first transmission state is only applied to the first channel;
  • the occupied time-frequency resources belong to a second set of time-frequency resources, and the first transmission state is applied to at least the second channel in addition to the first channel.
  • the CRC of the first signaling is scrambled by a first RNTI
  • the first RNTI is used to determine whether the first transmission state is applied to at least the first channel in addition to the first channel the second channel.
  • the first transmission state is only applied to the first channel; if the first RNTI belongs to the second identifier subset, the first transmission state is applied to the first channel only; A transmission state is applied to at least the second channel in addition to the first channel; the first identifier subset and the second identifier subset each include at least one RNTI.
  • Embodiment 11 illustrates a schematic diagram of the first condition set according to an embodiment of the present application; as shown in FIG. 11 .
  • the first node in the first transmission state is applied to at least the first channel in addition to the first channel only when all the conditions in the first set of conditions are satisfied.
  • the monitoring of the first type of channel in the first resource set is stopped after the target time; the first condition set includes at least one condition.
  • the first condition set includes only one condition.
  • the first set of conditions includes a plurality of conditions.
  • the first The node continues to monitor the first type of channel in the first resource set after the target time.
  • the first node if one condition in the first condition set is not satisfied, whether the first node continues to monitor the first type of channel and the other condition in the first resource set after the target time It is irrelevant whether the first transmission state is applied to at least the second channel in addition to the first channel.
  • whether the first transmission state is also applied to at least the second channel in addition to the first channel is used to determine if all conditions in the first set of conditions are satisfied Whether to continue monitoring the first type of channel in the first resource set after the target time.
  • the first set of conditions includes that the first signaling is transmitted in the first set of resources.
  • the first set of conditions includes only that the first signaling is transmitted in the first set of resources.
  • the channel is independent of whether the first transmission state is applied to at least the second channel in addition to the first channel.
  • the first set of conditions includes that the first node does not receive the second type of signaling after sending the first signal and before receiving the first signaling.
  • the first set of conditions only includes that the first node does not receive the second type of signaling after sending the first signal and before receiving the first signaling.
  • the first set of conditions includes that the first signaling is transmitted in the first set of resources, and the first node after sending the first signal and receiving the first signal The second type of signaling has not been received before.
  • the first node only when the first node does not receive the second type of signaling after sending the first signal and before receiving the first signaling, the first node in the first When a transmission state is only applied to the first channel, the monitoring of the first type of channel is continued in the first resource set after the target time.
  • the first node if the first node receives the second type of signaling after sending the first signal and before receiving the first signaling, the first node will Monitoring of the first type of channel in the first set of resources has stopped.
  • the second type of signaling includes higher layer signaling.
  • the second type of signaling is higher layer signaling.
  • the second type of signaling includes MAC CE.
  • the second type of signaling is MAC CE.
  • the second type of signaling includes RRC signaling.
  • the second type of signaling includes TCI state activation MAC CE.
  • the second type of signaling is TCI state activation MAC CE.
  • the second type of signaling includes TCI state activation/deactivation of MAC CE.
  • the second type of signaling is TCI state activation/deactivation MAC CE.
  • the second type of signaling includes UE-specific PDSCH TCI state activation/deactivation of MAC CE.
  • the second type of signaling includes enhanced UE-specific PDSCH TCI state activation/deactivation of MAC CE.
  • the second type of signaling includes TCI status indication MAC CE.
  • the second type of signaling is TCI status indication MAC CE.
  • the second type of signaling includes UE-specific PDCCH TCI status indication MAC CE.
  • any of the second type of signaling is UE-specific PDSCH TCI state activation/deactivation MAC CE, enhanced UE-specific PDSCH TCI state activation/deactivation MAC CE, or UE-specific PDCCH TCI state indication MAC CE one of them.
  • the first signaling is not the second type of signaling.
  • the first signal belongs to a first frequency domain interval in the frequency domain, and the first condition set includes that after the first node sends the first signal and before receiving the first signaling The second type of signaling is not received within the first frequency domain interval.
  • the first signal is transmitted in a first cell; the first set of conditions includes the first node after sending the first signal and before receiving the first signaling The second type of signaling is not received in the first cell.
  • the second type of signaling is transmitted on PDSCH.
  • Embodiment 12 illustrates a schematic diagram of a second signal according to an embodiment of the present application; as shown in FIG. 12 .
  • the second signal is used to determine that the first signaling is correctly received; the time domain resources occupied by the second signal are used to determine the target moment, the first signaling is used to determine the time domain resources occupied by the second signal.
  • the second signal indicates that the first signaling is correctly received.
  • the second signal includes a baseband signal.
  • the second signal includes a wireless signal.
  • the second signal includes a radio frequency signal.
  • the second signal includes UCI.
  • the second signal includes HARQ-ACK (Hybrid Automatic Repeat reQuest-Acknowledgement, hybrid automatic repeat request-acknowledgement).
  • HARQ-ACK Hybrid Automatic Repeat reQuest-Acknowledgement, hybrid automatic repeat request-acknowledgement
  • the second signal includes ACK.
  • the first channel does not include a channel occupied by the second signal.
  • the first channel does not include a physical channel occupied by the second signal.
  • the first signaling is used to determine air interface resources occupied by the second signal.
  • the air interface resources include time-frequency resources.
  • the air interface resources include code domain resources.
  • the code domain resource includes a pseudo-random sequence, a low PAPR sequence, a cyclic shift (cyclic shift), an OCC (Orthogonal Cover Code, orthogonal mask), a frequency-domain orthogonal sequence or a time-domain orthogonal sequence one or more of.
  • the first signaling is used to determine a first PUCCH resource in which the second signal is transmitted.
  • the first signaling includes a third field, and the third field includes at least one binary bit; the third field in the first signaling indicates the first PUCCH resource.
  • the time-frequency resource occupied by the first signaling is used to determine the first PUCCH resource.
  • the sender of the first signaling judges whether the first signaling is correctly received according to whether the second signal is received; if the second signal is received, judges the first signaling The signaling is correctly received; if the second signal is not received, it is determined that the first signaling is not correctly received.
  • the time domain resource occupied by the second signal is used to determine the target moment.
  • the time interval between the target moment and the second reference moment is a third interval; the second reference moment is earlier than the target moment, and the time domain resources occupied by the second signal are used for determining the second reference time.
  • the second reference moment is the start moment of the time domain resource occupied by the second signal.
  • the second reference moment is the end moment of the time domain resource occupied by the second signal.
  • the second reference time is the start time of the time unit occupied by the second signal.
  • the second reference time is the end time of the time unit occupied by the second signal.
  • the unit of the third interval is the time unit.
  • the unit of the third interval is a slot.
  • the unit of the third interval is a sub-slot.
  • the unit of the third interval is a multi-carrier symbol.
  • the third interval is a non-negative integer.
  • the third interval is equal to zero.
  • the third interval is greater than zero.
  • the third interval is fixed.
  • the third interval is configured by a higher layer parameter.
  • the first signaling indicates time domain resources occupied by the second signal.
  • the time domain resource occupied by the first signaling is used to determine the time domain resource occupied by the second signal.
  • the first signaling belongs to a first time unit in the time domain
  • the second signal belongs to a second time unit in the time domain
  • the difference between the first time unit and the second time unit is The time interval is the fourth interval.
  • the third signal belongs to a first time unit in the time domain
  • the second signal belongs to a second time unit in the time domain
  • the interval is the fourth interval.
  • the fourth interval is default.
  • the fourth interval is fixed.
  • the first signaling indicates the fourth interval.
  • the fourth interval is configured by RRC signaling.
  • the unit of the fourth interval is the time unit.
  • the unit of the fourth interval is a slot.
  • the unit of the fourth interval is a multi-carrier symbol.
  • the fourth interval is a non-negative integer.
  • the fourth interval is equal to zero.
  • the fourth interval is greater than zero.
  • the end time of the first time unit is not later than the start time of the second time unit.
  • the time interval between two time units refers to: the start time of the previous time unit in the two time units and the start time of the next time unit in the two time units time interval between.
  • the time interval between two time units refers to: between the end time of the previous time unit of the two time units and the end time of the next time unit of the two time units time interval.
  • the time interval between two time units refers to: the difference between the end time of the previous time unit of the two time units and the start time of the next time unit of the two time units time interval between.
  • the position of the first multi-carrier symbol occupied by the second signal in the second time unit is configured by RRC signaling.
  • Embodiment 13 illustrates a schematic diagram of a third signal according to an embodiment of the present application; as shown in FIG. 13 .
  • the third signal is transmitted in the first channel; the first signaling includes scheduling information for the third signal, and the second signal includes scheduling information for the third signal HARQ-ACK.
  • the HARQ-ACK includes ACK.
  • the HARQ-ACK includes a NACK (Negative ACKnowledgement, acknowledgment).
  • NACK Negative ACKnowledgement, acknowledgment
  • the third signal includes a baseband signal.
  • the third signal includes a wireless signal.
  • the third signal includes a radio frequency signal.
  • the third signal carries a first block of bits, and the first block of bits includes one of a TB, a CB, or a CBG.
  • the first channel includes a physical channel occupied by the third channel.
  • the first channel includes a transmission channel occupied by the third channel.
  • the second signal indicates whether the third signal was received correctly.
  • the second signal indicates that the third signal was correctly received.
  • the second signal indicates whether the first block of bits was received correctly.
  • the second signal indicates that the first block of bits was correctly received.
  • the first signaling indicates time-frequency resources occupied by the third signal.
  • the first signaling indicates time domain resources occupied by the third signal.
  • the first signaling belongs to a fifth time unit in the time domain
  • the third signal belongs to a sixth time unit in the time domain
  • the first signaling indicates that the fifth time unit and the The time interval between sixth time units.
  • the first signaling indicates the position of the first multi-carrier symbol occupied by the third signal in the sixth time unit.
  • the end time of the fifth time unit is not later than the start time of the sixth time unit.
  • Embodiment 14 illustrates a structural block diagram of a processing apparatus used in a first node device according to an embodiment of the present application; as shown in FIG. 14 .
  • the processing apparatus 1400 in the first node device includes a first transmitter 1401 and a first processor 1402 .
  • the first transmitter 1401 sends the first signal; the first processor 1402 monitors the first type of channel in the first resource set in response to the behavior sending the first signal; receives the first signal and continue monitoring the first type of channel in the first resource set after the target time, or stop monitoring the first type of channel in the first resource set after the target time.
  • the first signaling is used to determine the target time; the first signal is used for random access, and the first signal is used to determine a target reference signal; For the monitoring of the first type of channel in the first resource set, the first node assumes the same QCL parameter as the target reference signal; the first signaling includes DCI; the first signaling is for scheduling a first channel; the first signaling is used to determine a first transmission state, the first transmission state is applied to the first channel; when the first transmission state is only applied to the When the first channel is used, the first node continues to monitor the first type of channel in the first resource set after the target time; when the first transmission state is also applied in addition to the first channel For at least a second channel, the first node stops monitoring the first type of channel in the first resource set after the target time.
  • the first information is used to determine whether the first transmission state is applied to at least the second channel in addition to the first channel.
  • the first set of conditions includes that the first signaling is transmitted in the first set of resources.
  • the first set of conditions includes that the first node does not receive the second type of signaling after sending the first signal and before receiving the first signaling.
  • the first transmitter 1401 sends a second signal; wherein, the second signal is used to determine that the first signaling is correctly received; the time domain resources occupied by the second signal are For determining the target time, the first signaling is used to determine the time domain resources occupied by the second signal.
  • the first processor 1402 receives a third signal in the first channel; wherein the first signaling includes scheduling information of the third signal, and the second signal includes HARQ-ACK of the third signal.
  • the first node device is user equipment.
  • the first node device is a relay node device.
  • the first transmitter 1401 includes ⁇ antenna 452, transmitter 454, transmit processor 468, multi-antenna transmit processor 457, controller/processor 459, memory 460, data source in Embodiment 4 467 ⁇ at least one.
  • the first processor 1402 includes ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, data source in Embodiment 4 467 ⁇ at least one.
  • Embodiment 15 illustrates a structural block diagram of a processing apparatus used in a second node device according to an embodiment of the present application; as shown in FIG. 15 .
  • the processing apparatus 1500 in the second node device includes a first receiver 1501 and a second transmitter 1502 .
  • the first receiver 1501 receives the first signal; the second transmitter 1502 sends the first signaling.
  • the first signaling is used to determine the target time; the first signal is used for random access, and the first signal is used to determine the target reference signal; In response to a signal, the sender of the first signal monitors a first type of channel in a first set of resources; for the monitoring of the first type of channel in the first set of resources, the first The sender of the signal assumes the same QCL parameters as the target reference signal; the first signaling includes DCI; the first signaling is used to schedule the first channel; the first signaling is used to determine the first signal.
  • the first transmission state is applied to the first channel; when the first transmission state is only applied to the first channel, the sender of the first signal is at the target time Then continue to monitor the first type of channel in the first resource set; when the first transmission state is also applied to at least the second channel in addition to the first channel, the sender of the first signal Stop monitoring the first type of channel in the first resource set after the target time.
  • the first information is used to determine whether the first transmission state is applied to at least the second channel in addition to the first channel.
  • the sender of the first signal in the first transmission state is also applied to at least the first channel in addition to the first channel
  • the monitoring of the first type of channel in the first resource set is stopped after the target time; the first condition set includes at least one condition.
  • the first set of conditions includes that the first signaling is transmitted in the first set of resources.
  • the first set of conditions includes that the sender of the first signal does not receive the second type of signaling after sending the first signal and before receiving the first signaling.
  • the first receiver 1501 receives a second signal; wherein, the second signal is used to determine that the first signaling is correctly received; the time domain resources occupied by the second signal are For determining the target time, the first signaling is used to determine the time domain resources occupied by the second signal.
  • the second transmitter 1502 sends a third signal in the first channel; wherein the first signaling includes scheduling information of the third signal, and the second signal includes HARQ-ACK of the third signal.
  • the second node device is a base station device.
  • the second node device is user equipment.
  • the second node device is a relay node device.
  • the first receiver 1501 includes ⁇ antenna 420, receiver 418, receiving processor 470, multi-antenna receiving processor 472, controller/processor 475, memory 476 ⁇ in Embodiment 4 at least one.
  • the second transmitter 1502 includes ⁇ antenna 420, transmitter 418, transmit processor 416, multi-antenna transmit processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4 at least one.
  • User equipment, terminals and UEs in this application include, but are not limited to, drones, communication modules on drones, remote-controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, in-vehicle communication equipment, vehicles, vehicles, RSU, wireless sensor, network card, IoT terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication, machine type communication) terminal, eMTC (enhanced MTC, enhanced MTC) terminal, data card, network card, vehicle Communication equipment, low-cost mobile phones, low-cost tablet computers and other wireless communication equipment.
  • MTC Machine Type Communication, machine type communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes but is not limited to macro cell base station, micro cell base station, small cell base station, home base station, relay base station, eNB, gNB, TRP (Transmitter Receiver Point, sending and receiving node), GNSS, relay Satellite, satellite base station, air base station, RSU (Road Side Unit, roadside unit), UAV, test equipment, such as wireless communication equipment such as transceiver devices or signaling testers that simulate some functions of the base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点发送第一信号;作为行为发送第一信号的响应,在第一资源集合中监测第一类信道;接收第一信令,所述第一信令被用于确定目标时刻;在所述目标时刻之后在所述第一资源集合中继续监测或停止监测所述第一类信道。所述第一信令包括DCI;所述第一信令被用于调度第一信道;所述第一信令被用于确定第一传输状态;当所述第一传输状态仅被应用于所述第一信道时,所述第一节点在所述目标时刻之后在所述第一资源集合中继续监测所述第一类信道;否则,所述第一节点在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道。上述方法加速了波束失败恢复的过程。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是支持蜂窝网的无线通信系统中的无线信号的传输方法和装置。
背景技术
多天线技术是3GPP(3rd Generation Partner Project,第三代合作伙伴项目)LTE(Long-term Evolution,长期演进)系统和NR(New Radio,新无线电)系统中的关键技术。通过在通信节点处,比如基站或UE(User Equipment,用户设备)处,配置多根天线来获得额外的空间自由度。多根天线通过波束赋型,形成波束指向一个特定方向来提高通信质量。当多根天线属于多个TRP(Transmitter Receiver Point,发送接收节点)/panel(天线面板)时,利用不同TRP/panel之间的空间差异,可以获得额外的分集增益。多天线波束赋型形成的波束一般比较窄,通信双方的波束需要对准才能进行有效的通信。当由于UE移动等原因造成发送/接收波束之间失步时,通信质量将大幅下降甚至无法通信。在NR R(release)15和R16中波束管理被用于通信双方之间的波束选择、更新和指示,从而实现多天线带来的性能增益。
发明内容
在NR R15和R16中,控制信道和数据信道采用不同的波束管理/指示机制,上下行也采用不同的波束管理/指示机制。然而在很多情况下,控制信道和数据信道可以采用相同的波束,上下行信道之间在很多应用场景下也存在信道互易性,可以采用相同的波束。利用这一特性可以大大降低系统的复杂度,信令开销和延时。在3GPP RAN(Radio Access Network,无线接入网)1#103e次会议中,采用物理层信令同时更新控制信道和数据信道的波束的技术已被采纳,在存在上下行信道互易性的场景下,可以用物理层信令同时更新上下行的波束。这一技术的采用,对某些现有的波束相关的功能会产生哪些影响,是需要解决的问题。
针对上述问题,本申请公开了一种解决方案。需要说明的是,虽然上述描述采用基于蜂窝网作为例子,本申请也适用于其他场景比如V2X(Vehicle-to-Everything)场景,并取得类似在蜂窝网中的技术效果。此外,不同场景(包括但不限于蜂窝网和V2X)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的第一节点中的实施例和实施例中的特征可以应用到第二节点中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
发送第一信号;
作为所述行为发送所述第一信号的响应,在第一资源集合中监测第一类信道;
接收第一信令,所述第一信令被用于确定目标时刻;
在所述目标时刻之后在所述第一资源集合中继续监测所述第一类信道,或者,在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道;
其中,所述第一信号被用于随机接入,所述第一信号被用于确定目标参考信号;对于在所述第一资源集合中针对所述第一类信道的所述监测,所述第一节点假设和所述目标参考信号相同的QCL参数;所述第一信令包括DCI;所述第一信令被用于调度第一信道;所述第一信令被用于确定第一传输状态,所述第一传输状态被应用于所述第一信道;当所述第一传输状态仅被应用于所述第一信道时,所述第一节点在所述目标时刻之后在所述第一资源集合中继续监测所述第一类信道;当所述第一传输状态除所述第一信道外还被应用于至少第二信道时,所述第一节点在所述目标时刻之后在所述第一资源集合中停止监测所述第一 类信道。
作为一个实施例,本申请要解决的问题包括:如何利用物理层信令更新波束的优势来增强现有的波束失败恢复(beam failure recovery)机制。
作为一个实施例,上述方法的特质包括:所述第一信令是一个物理层信令,根据所述第一信令是否同时更新了多个不同信道的波束,确定是否终止在RecoverySearchSpace中对PDCCH(Physical Downlink Control Channel,物理下行控制信道)的监测。
作为一个实施例,上述方法的好处包括:充分利用了物理层信令更新波束的优势,加速了波束失败恢复的过程。
根据本申请的一个方面,其特征在于,第一信息被用于确定所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
根据本申请的一个方面,其特征在于,只有当第一条件集合中的所有条件都被满足时,所述第一节点在所述第一传输状态除所述第一信道外还被应用于至少所述第二信道时,在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道;所述第一条件集合包括至少一个条件。
根据本申请的一个方面,其特征在于,所述第一条件集合包括所述第一信令在所述第一资源集合中被传输。
作为一个实施例,上述方法的好处包括,避免了由于所述第一信令的发送者对所述第一信号的漏检造成的收发双方之间的误解。
作为一个实施例,上述方法的好处包括,提高了所述第一信令的接收质量。
根据本申请的一个方面,其特征在于,所述第一条件集合包括所述第一节点在发送所述第一信号之后和接收所述第一信令之前没有接收到第二类信令。
根据本申请的一个方面,其特征在于,包括:
发送第二信号;
其中,所述第二信号被用于确定所述第一信令被正确接收;所述第二信号所占用的时域资源被用于确定所述目标时刻,所述第一信令被用于确定所述第二信号所占用的时域资源。
根据本申请的一个方面,其特征在于,包括:
在所述第一信道中接收第三信号;
其中,所述第一信令包括所述第三信号的调度信息,所述第二信号包括针对所述第三信号的HARQ-ACK。
根据本申请的一个方面,其特征在于,所述第一节点是用户设备。
根据本申请的一个方面,其特征在于,所述第一节点是中继节点。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
接收第一信号;
发送第一信令,所述第一信令被用于确定目标时刻;
其中,所述第一信号被用于随机接入,所述第一信号被用于确定目标参考信号;作为行为发送所述第一信号的响应,所述第一信号的发送者在第一资源集合中监测第一类信道;对于在所述第一资源集合中针对所述第一类信道的所述监测,所述第一信号的发送者假设和所述目标参考信号相同的QCL参数;所述第一信令包括DCI;所述第一信令被用于调度第一信道;所述第一信令被用于确定第一传输状态,所述第一传输状态被应用于所述第一信道;当所述第一传输状态仅被应用于所述第一信道时,所述第一信号的发送者在所述目标时刻之后在所述第一资源集合中继续监测所述第一类信道;当所述第一传输状态除所述第一信道外还被应用于至少第二信道时,所述第一信号的发送者在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道。
根据本申请的一个方面,其特征在于,第一信息被用于确定所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
根据本申请的一个方面,其特征在于,只有当第一条件集合中的所有条件都被满足时,所述第一信号的发送者在所述第一传输状态除所述第一信道外还被应用于至少所述第二信道时,在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道;所述第一条件集合包括至少一个条件。
根据本申请的一个方面,其特征在于,所述第一条件集合包括所述第一信令在所述第一资源集合中被传输。
根据本申请的一个方面,其特征在于,所述第一条件集合包括所述第一信号的发送者在发送所述第一信号之后和接收所述第一信令之前没有接收到第二类信令。
根据本申请的一个方面,其特征在于,包括:
接收第二信号;
其中,所述第二信号被用于确定所述第一信令被正确接收;所述第二信号所占用的时域资源被用于确定所述目标时刻,所述第一信令被用于确定所述第二信号所占用的时域资源。
根据本申请的一个方面,其特征在于,包括:
在所述第一信道中发送第三信号;
其中,所述第一信令包括所述第三信号的调度信息,所述第二信号包括针对所述第三信号的HARQ-ACK。
根据本申请的一个方面,其特征在于,所述第二节点是基站。
根据本申请的一个方面,其特征在于,所述第二节点是用户设备。
根据本申请的一个方面,其特征在于,所述第二节点是中继节点。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一发送机,发送第一信号;
第一处理器,作为所述行为发送所述第一信号的响应,在第一资源集合中监测第一类信道;
所述第一处理器,接收第一信令,所述第一信令被用于确定目标时刻;
所述第一处理器,在所述目标时刻之后在所述第一资源集合中继续监测所述第一类信道,或者,在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道;
其中,所述第一信号被用于随机接入,所述第一信号被用于确定目标参考信号;对于在所述第一资源集合中针对所述第一类信道的所述监测,所述第一节点假设和所述目标参考信号相同的QCL参数;所述第一信令包括DCI;所述第一信令被用于调度第一信道;所述第一信令被用于确定第一传输状态,所述第一传输状态被应用于所述第一信道;当所述第一传输状态仅被应用于所述第一信道时,所述第一节点在所述目标时刻之后在所述第一资源集合中继续监测所述第一类信道;当所述第一传输状态除所述第一信道外还被应用于至少第二信道时,所述第一节点在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第一接收机,接收第一信号;
第二发送机,发送第一信令,所述第一信令被用于确定目标时刻;
其中,所述第一信号被用于随机接入,所述第一信号被用于确定目标参考信号;作为行为发送所述第一信号的响应,所述第一信号的发送者在第一资源集合中监测第一类信道;对于在所述第一资源集合中针对所述第一类信道的所述监测,所述第一信号的发送者假设和所述目标参考信号相同的QCL参数;所述第一信令包括DCI;所述第一信令被用于调度第一信道;所述第一信令被用于确定第一传输状态,所述第一传输状态被应用于所述第一信道;当所述第一传输状态仅被应用于所述第一信道时,所述第一信号的发送者在所述目标时刻之后在所述第一资源集合中继续监测所述第一类信道;当所述第一传输状态除所述第一信道外还被应用于至少第二信道时,所述第一信号的发送者在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道。
作为一个实施例,和传统方案相比,本申请具备如下优势:
充分利用了物理层信令更新波束的优势,加速了波束失败恢复的过程。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信号,第一类信道和第一信令的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的传输的流程图;
图6示出了根据本申请的一个实施例的第一传输状态被应用于给定信道的示意图;
图7示出了根据本申请的一个实施例的监测第二给定信道的示意图;
图8示出了根据本申请的一个实施例的第一资源集合的示意图;
图9示出了根据本申请的一个实施例的第一节点在第一资源集合中监测第一类信道的示意图;
图10示出了根据本申请的一个实施例的第一信息的示意图;
图11示出了根据本申请的一个实施例的第一条件集合的示意图;
图12示出了根据本申请的一个实施例的第二信号的示意图;
图13示出了根据本申请的一个实施例的第三信号的示意图;
图14示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图15示出了根据本申请的一个实施例的用于第二节点中设备的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信号,第一类信道和第一信令的流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。特别的,方框中的步骤的顺序不代表各个步骤之间特定的时间先后关系。
在实施例1中,本申请中的所述第一节点在步骤101中发送第一信号;在步骤102中作为所述行为发送所述第一信号的响应,在第一资源集合中监测第一类信道;在步骤103中接收第一信令,所述第一信令被用于确定目标时刻;在步骤104中在所述目标时刻之后在所述第一资源集合中继续监测所述第一类信道,或者,在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道。其中,所述第一信号被用于随机接入,所述第一信号被用于确定目标参考信号;对于在所述第一资源集合中针对所述第一类信道的所述监测,所述第一节点假设和所述目标参考信号相同的QCL参数;所述第一信令包括DCI;所述第一信令被用于调度第一信道;所述第一信令被用于确定第一传输状态,所述第一传输状态被应用于所述第一信道;当所述第一传输状态仅被应用于所述第一信道时,所述第一节点在所述目标时刻之后在所述第一资源集合中继续监测所述第一类信道;当所述第一传输状态除所述第一信道外还被应用于至少第二信道时,所述第一节点在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道。
作为一个实施例,所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道被用于确定在所述目标时刻之后是否在所述第一资源集合中继续监测所述第一类信道。
作为一个实施例,如果所述第一传输状态仅被应用于所述第一信道,所述第一节点在所述目标时刻之后在所述第一资源集合中继续监测所述第一类信道。
作为一个实施例,如果所述第一传输状态除所述第一信道外还被应用于至少所述第二信道,所述第一节点在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道。
作为一个实施例,当所述第一传输状态仅被应用于所述第一信道时,所述第二信道的TCI(Transmission Configuration Indicator,传输配置标识)状态(state)和所述第一信令无关。
作为一个实施例,当所述第一传输状态仅被应用于所述第一信道时,所述第二信道的QCL(Quasi-Co-Located,准共址)参数和所述第一信令无关。
作为一个实施例,当所述第一传输状态仅被应用于所述第一信道时,所述第二信道的空间关系(spatial relation)和所述第一信令无关。
作为一个实施例,更高层(higher layer)信令被用于指示所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
作为一个实施例,RRC(Radio Resource Control,无线电资源控制)信令被用于指示所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
作为一个实施例,MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)被用于指示所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
作为一个实施例,物理层信令被用于指示所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
作为一个实施例,层1(L1)的信令被用于指示所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
作为一个实施例,所述第一信令被用于指示所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
作为一个实施例,作为所述行为发送所述第一信号的响应,所述第一节点从第二时刻开始在所述第一资源集合中监测所述第一类信道;所述第一信号所占用的时域资源被用于确定所述第二时刻。
作为一个实施例,所述第一信号在时域占用时间单元n,所述第二时刻是时间单元(n+第一间隔)的起始时刻;所述第一间隔是非负整数。
作为一个实施例,所述第一间隔的单位是所述时间单元。
作为一个实施例,所述第一间隔的单位是时隙(slot)。
作为一个实施例,所述第一间隔的单位是子时隙(sub-slot)。
作为一个实施例,所述第一间隔的单位是多载波符号。
作为一个实施例,所述第一间隔是固定的。
作为一个实施例,所述第一间隔固定为4。
作为一个实施例,所述第一间隔是更高层参数配置的。
作为一个实施例,一个所述时间单元是一个时隙(slot)。
作为一个实施例,一个所述时间单元是一个子时隙(sub-slot)。
作为一个实施例,一个所述时间单元是一个多载波符号。
作为一个实施例,一个所述时间单元包括大于1的正整数个连续的多载波符号。
作为一个实施例,一个所述时间单元包括的多载波符号的数量是更高层参数配置的。
作为一个实施例,所述第一信号包括基带信号。
作为一个实施例,所述第一信号包括无线信号。
作为一个实施例,所述第一信号包括射频信号。
作为一个实施例,所述第一信号包括第一特征序列。
作为一个实施例,所述第一特征序列包括伪随机(pseudo-random)序列,Zadoff-Chu序列或低PAPR(Peak-to-Average Power Ratio,峰均比)序列中的一种或多种。
作为一个实施例,所述第一特征序列包括CP(Cyclic Prefix,循环前缀)。
作为一个实施例,所述第一信号包括随机接入前导(Random Access Preamble)。
作为一个实施例,所述第一信号包括RACH(Random Access Channel,随机接入信道)前导(Preamble)。
作为一个实施例,所述第一信号包括免竞争(contention-free)随机接入前导。
作为一个实施例,所述第一信号包括基于竞争(contention-based)的随机接入前导。
作为一个实施例,所述第一信号包括用于波束失败恢复请求(Beam Failure Recovery Request)的随机接入前导。
作为一个实施例,所述第一信号包括UCI(Uplink control information,上行控制信息)。
作为一个实施例,所述第一信号包括LRR(Link Recovery Request,链路恢复请求)。
作为一个实施例,所述第一信号包括MAC CE。
作为一个实施例,所述第一信号包括BFR(Beam Failure Recovery,波束失败恢复)MAC CE或截短的(Truncated)BFR MAC CE。
作为一个实施例,所述第一信号所占用的信道包括PRACH(Physical Random Access CHannel,物理随机接入信道)。
作为一个实施例,所述第一信号所占用的信道包括PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)。
作为一个实施例,所述第一信号所占用的信道包括PUCCH(Physical Uplink Control Channel,物理上行控制信道)。
作为一个实施例,所述第一信号所占用的空口资源包括PRACH资源。
作为一个实施例,所述第一信号占用的PRACH资源隐式的指示了所述第一信号所占用的PUSCH的时频资源位置。
作为一个实施例,所述第一信号所占用的PRACH资源被用于确定所述目标参考信号。
作为一个实施例,所述第一信号所占用的PRACH资源属于M个PRACH资源集合中的目标PRACH资源集合,M是正整数;所述M个PRACH资源集合分别和M个参考信号对应;所述目标参考信号是所述M个参考信号中和所述目标PRACH资源集合对应的参考信号;所述M个PRACH资源集合中的任一PRACH资源集合包括至少一个PRACH资源。
作为一个实施例,所述M个PRACH资源集合中存在一个PRACH资源集合仅包括1个PRACH资源。
作为一个实施例,所述M个PRACH资源集合中存在一个PRACH资源集合包括多个PRACH资源。
作为一个实施例,所述M个PRACH资源集合是更高层(higher layer)参数配置的。
作为一个实施例,配置所述M个PRACH资源集合的更高层参数包括BeamFailureRecoveryConfig IE(Information Element,信息单元)中的candidateBeamRSList域(field)或candidateBeamRSListExt-v1610域中全部或部分信息。
作为一个实施例,一个PRACH资源包括一个PRACH时机(occasion)。
作为一个实施例,一个PRACH资源包括一个随机接入前导。
作为一个实施例,一个PRACH资源包括一个PRACH前导。
作为一个实施例,一个PRACH资源包括一个随机接入前导索引。
作为一个实施例,一个PRACH资源包括时频资源。
作为一个实施例,一个PRACH资源包括码域资源。
作为一个实施例,所述码域资源包括随机接入前导,PRACH前导,前导序列(preamble sequence),循环位移量(cyclic shift),逻辑根序列(logical root sequence),根序列(root sequence)或Zadoff-Chu序列(Zadoff-Chu sequence)中的一种或多种。
作为一个实施例,所述第一信号包括的随机接入前导是M个随机接入前导中之一,M是正整数;所述M个随机接入前导分别和M个参考信号对应;所述目标参考信号是所述M个参考信号中和所述第一信号包括的所述随机接入前导对应的参考信号。
作为一个实施例,所述M个随机接入前导是更高层(higher layer)参数配置的。
作为一个实施例,配置所述M个随机接入前导的更高层参数包括BeamFailureRecoveryConfig IE中的candidateBeamRSList域或candidateBeamRSListExt-v1610域中全部或部分信息。
作为一个实施例,所述M等于1。
作为一个实施例,所述M大于1。
作为一个实施例,所述M不大于16。
作为一个实施例,所述M不大于64。
作为一个实施例,所述第一信号包括第一比特域,所述第一比特域包括正整数个二进制比特;所述第一比特域的值指示所述目标参考信号。
作为一个实施例,所述目标参考信号包括下行参考信号。
作为一个实施例,所述目标参考信号包括上行参考信号。
作为一个实施例,所述目标参考信号包括CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)。
作为一个实施例,所述目标参考信号包括NZP(Non-Zero Power,非零功率)CSI-RS。
作为一个实施例,所述目标参考信号包括SSB(Synchronisation Signal/physical broadcast channel Block,同步信号/物理广播信道块)。
作为一个实施例,所述目标参考信号包括SRS(Sounding Reference Signal,探测参考信号)。
作为一个实施例,所述目标参考信号是CSI-RS或SSB。
作为一个实施例,所述目标参考信号是CSI-RS,SSB或SRS中之一。
作为一个实施例,所述参考信号包括参考信号资源。
作为一个实施例,所述参考信号包括参考信号端口。
作为一个实施例,所述参考信号所包括的调制符号是所述第一节点已知的。
作为一个实施例,所述M个参考信号包括CSI-RS。
作为一个实施例,所述M个参考信号包括SSB。
作为一个实施例,所述M个参考信号包括SRS。
作为一个实施例,所述第一信令包括物理层信令。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令包括动态信令。
作为一个实施例,所述第一信令包括层1(L1)的信令。
作为一个实施例,所述第一信令是层1(L1)的信令。
作为一个实施例,所述第一信令包括层1(L1)的控制信令。
作为一个实施例,所述DCI是指Downlink Control Information。
作为一个实施例,所述第一信令是DCI。
作为一个实施例,所述第一信令包括用于下行授予(DL Grant)的DCI。
作为一个实施例,所述第一信令是用于下行授予的DCI。
作为一个实施例,所述第一信令包括用于上行授予(UL Grant)的DCI。
作为一个实施例,所述第一信令是用于上行授予的DCI。
作为一个实施例,所述第一信令所占用的时频资源属于所述第一资源集合。
作为一个实施例,所述第一信令所占用的时频资源不属于所述第一资源集合。
作为一个实施例,所述第一信令对应的DCI格式(format)属于第一格式集合,所述第一格式集合包括至少一个DCI格式。
作为一个实施例,所述第一格式集合包括DCI format 1_1。
作为一个实施例,所述第一格式集合包括DCI format 1_2。
作为一个实施例,所述第一格式集合由DCI format 1_1和DCI format 1_2组成。
作为一个实施例,所述第一格式集合包括DCI format 1_0,DCI format 0_0,DCI format 0_1或DCI format 0_2中的一个或多个。
作为一个实施例,所述第一信令的CRC(Cyclic Redundancy Check,循环冗余校验)被第一标识集合中的一个RNTI(Radio Network Temporary Identifier,无线网络暂定标识)所加扰,所述第一标识集合包括至少一个RNTI。
作为一个实施例,所述第一标识集合包括C(Cell,小区)-RNTI。
作为一个实施例,所述第一标识集合仅包括C-RNTI。
作为一个实施例,所述第一标识集合包括MCS(Modulation and Coding Scheme,调制编码方式)-C-RNTI。
作为一个实施例,所述第一标识集合由C-RNTI和MCS-C-RNTI组成。
作为一个实施例,所述第一标识集合包括CS(Configured Scheduling,配置调度)-RNTI。
作为一个实施例,所述第一信令所占用的物理信道是一个所述第一类信道。
作为一个实施例,所述第一信令所占用的物理信道不是所述第一类信道。
作为一个实施例,所述第一信令是一个第一类信令;所述第一节点在发送所述第一信号之后和接收所述第一信令之前没有检测到其他所述第一类信令。
作为一个实施例,所述第一信令是一个第一类信令;所述第一节点在发送所述第一信号之后和接收所述第一信令之前没有在所述第一资源集合中检测到其他所述第一类信令。
作为一个实施例,所述第一信令是一个第一类信令;所述第一信令是所述第一节点在发送所述第一信号之后检测到的第一个所述第一类信令。
作为一个实施例,所述第一信令是一个第一类信令;所述第一信令是所述第一节点在发送所述第一信号之后在所述第一资源集合中检测到的第一个所述第一类信令。
作为一个实施例,所述第一类信令包括DCI。
作为一个实施例,所述第一类信令包括DCI格式(format)。
作为一个实施例,任一所述第一类信令对应的DCI格式属于所述第一格式集合。
作为一个实施例,任一所述第一类信令的CRC被所述第一标识集合中的RNTI所加扰。
作为一个实施例,所述第一信令和所述第一信号在频域属于同一个BWP(Bandwidth part,带宽区间)。
作为一个实施例,所述第一信令和所述第一信号在频域属于不同的BWP。
作为一个实施例,所述第一信令和所述第一信号在频域属于同一个载波(Carrier)。
作为一个实施例,所述第一信令和所述第一信号在频域属于不同的载波。
作为一个实施例,所述第一信令和所述第一信号在频域属于同一个小区。
作为一个实施例,所述第一信令和所述第一信号在频域属于不同的小区。
作为一个实施例,所述第一信号和所述第一资源集合在频域属于同一个BWP。
作为一个实施例,所述第一信号和所述第一资源集合在频域属于不同的BWP。
作为一个实施例,所述第一信号和所述第一资源集合在频域属于同一个载波(Carrier)。
作为一个实施例,所述第一信号和所述第一资源集合在频域属于不同的载波。
作为一个实施例,所述第一信号和所述第一资源集合在频域属于同一个小区。
作为一个实施例,所述第一信号和所述第一资源集合在频域属于不同的小区。
作为一个实施例,所述第一信令和所述第一资源集合在频域属于同一个BWP。
作为一个实施例,所述第一信令和所述第一资源集合在频域属于不同的BWP。
作为一个实施例,所述第一信令和所述第一资源集合在频域属于同一个载波(Carrier)。
作为一个实施例,所述第一信令和所述第一资源集合在频域属于不同的载波。
作为一个实施例,所述第一信令和所述第一资源集合在频域属于同一个小区。
作为一个实施例,所述第一信令和所述第一资源集合在频域属于不同的小区。
作为一个实施例,所述第一信令所占用的时域资源被用于确定所述目标时刻。
作为一个实施例,所述目标时刻和第一参考时刻之间的时间间隔是第二间隔;所述第一参考时刻早于所述目标时刻,所述第一信令所占用的时域资源被用于确定所述第一参考时刻。
作为一个实施例,所述第一参考时刻是所述第一信令所占用的时域资源的起始时刻。
作为一个实施例,所述第一参考时刻是所述第一信令所占用的时域资源的结束时刻。
作为一个实施例,所述第一参考时刻是所述第一信令所占用的时间单元的起始时刻。
作为一个实施例,所述第一参考时刻是所述第一信令所占用的时间单元的结束时刻。
作为一个实施例,所述第二间隔的单位是所述时间单元。
作为一个实施例,所述第二间隔的单位是时隙(slot)。
作为一个实施例,所述第二间隔的单位是子时隙(sub-slot)。
作为一个实施例,所述第二间隔的单位是多载波符号。
作为一个实施例,所述第二间隔是非负整数。
作为一个实施例,所述第二间隔是固定的。
作为一个实施例,所述第二间隔是更高层参数配置的。
作为一个实施例,所述第一信令包括第一域,所述第一域包括至少一个二进制比特;所述第一信令中的所述第一域指示所述第一传输状态。
作为一个实施例,所述第一域包括的二进制比特的数量等于1。
作为一个实施例,所述第一域包括的二进制比特的数量大于1。
作为一个实施例,所述第一域包括的二进制比特的数量等于3。
作为一个实施例,所述第一域包括Transmission configuration indication域中的信息。
作为一个实施例,Transmission configuration indication域的定义参见3GPP TS38.212的7.3章节。
作为一个实施例,所述第一域指示TCI。
作为一个实施例,所述第一信令中的所述第一域指示所述第一传输状态对应的TCI码点(codepoint)。
作为一个实施例,所述第一信令中的所述第一域的值等于所述第一传输状态对应的TCI码点。
作为一个实施例,所述第一信令中的所述第一域指示所述第一传输状态对应的TCI状态标识(TCI-StateId)。
作为一个实施例,任一所述第一类信令包括一个所述第一域。
作为一个实施例,所述句子所述第一信令被用于调度第一信道的意思包括:所述第一信令指示所述第一信道所占用的时频资源。
作为一个实施例,所述句子所述第一信令被用于调度第一信道的意思包括:所述第一信令指示所述第一信道的调度信息。
作为一个实施例,所述句子所述第一信令被用于调度第一信道的意思包括:所述第一信令指示在所述第一信道中被传输的信号的调度信息。
作为一个实施例,所述调度信息包括时域资源,频域资源,MCS,DMRS(DeModulation Reference Signals,解调参考信号)端口(port),HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号(process number),RV(Redundancy Version,冗余版本)或NDI(New Data Indicator,新数据指示)中的一种或多种。
作为一个实施例,所述第一信道包括物理信道。
作为一个实施例,所述第一信道包括层1(L1)的信道。
作为一个实施例,所述第一信道包括传输(transport)信道。
作为一个实施例,所述第一信道包括下行信道。
作为一个实施例,所述第一信道仅包括下行信道。
作为一个实施例,所述第一信道包括上行信道。
作为一个实施例,所述第一信道仅包括上行信道。
作为一个实施例,所述第一信道包括物理共享信道。
作为一个实施例,所述第一信道仅包括物理共享信道。
作为一个实施例,所述第一信道包括PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)。
作为一个实施例,所述第一信道仅包括PDSCH。
作为一个实施例,所述第一信道是一个PDSCH。
作为一个实施例,所述第一信道包括DL-SCH(DownLink-Shared CHannel,下行共享信道)。
作为一个实施例,所述第一信道是一个DL-SCH。
作为一个实施例,所述第一信道包括UL-SCH(UpLink-Shared CHannel,上行共享信道)。
作为一个实施例,所述第一信道是一个UL-SCH。
作为一个实施例,所述第一信道包括被所述第一信令所调度的PDSCH。
作为一个实施例,所述第一信道包括被所述第一信令所调度的所有PDSCH。
作为一个实施例,所述第一信道由被所述第一信令调度的所有PDSCH组成。
作为一个实施例,所述第一信令调度了多个物理信道,所述第一信道包括所述第一信令调度的所述多个物理信道。
作为上述实施例的一个子实施例,所述第一信道由所述第一信令调度的所述多个物理信道组成。
作为上述实施例的一个子实施例,所述物理信道是PDSCH。
作为上述实施例的一个子实施例,所述物理信道是PUSCH。
作为一个实施例,所述第一信令调度了第一比特块的多次重复传输,所述第一比特块包括一个TB(Transport Block,传输块),一个CB(Code Block,码块)或一个CBG(Code Block Group,码块组)中至少之一;所述第一信道包括所述第一比特块的所述多次重复传输所占用的所有物理信道。
作为上述实施例的一个子实施例;所述第一信道由所述第一比特块的所述多次重复传输所占用的所有物理信道组成。
作为上述实施例的一个子实施例,所述物理信道是PDSCH。
作为上述实施例的一个子实施例,所述物理信道是PUSCH。
作为一个实施例,所述句子所述第一信令调度了第一比特块的多次重复传输的意思包括:所述第一信 令被用于确定所述第一比特块的大小。
作为一个实施例,所述句子所述第一信令调度了第一比特块的多次重复传输的意思包括:所述第一信令指示所述第一比特块的所述多次重复传输的次数。
作为一个实施例,所述句子所述第一信令调度了第一比特块的多次重复传输的意思包括:所述第一信令指示所述第一比特块的所述多次重复传输中的每一次重复传输的调度信息。
作为一个实施例,所述第二信道包括物理信道。
作为一个实施例,所述第二信道包括层1(L1)的信道。
作为一个实施例,所述第二信道包括传输(transport)信道。
作为一个实施例,所述第二信道包括下行信道。
作为一个实施例,所述第二信道包括上行信道。
作为一个实施例,所述第一信道仅包括下行信道,所述第二信道包括上行信道。
作为一个实施例,所述第一信道仅包括上行信道,所述第二信道包括下行信道。
作为一个实施例,所述第一信道包括下行信道,所述第二信道包括上行信道。
作为一个实施例,所述第一信道包括上行信道,所述第二信道包括下行信道。
作为一个实施例,所述第二信道包括物理控制信道。
作为一个实施例,所述第一信道仅包括物理共享信道,所述第二信道包括物理控制信道。
作为一个实施例,所述第一信道包括物理共享信道,所述第二信道包括物理控制信道。
作为一个实施例,所述第二信道包括PDSCH。
作为一个实施例,所述第二信道仅包括PDSCH。
作为一个实施例,所述第二信道包括PUSCH。
作为一个实施例,所述第二信道仅包括PUSCH。
作为一个实施例,所述第一信道仅包括PDSCH,所述第二信道包括PUSCH。
作为一个实施例,所述第一信道仅包括PUSCH,所述第二信道包括PDSCH。
作为一个实施例,所述第一信道包括PDSCH,所述第二信道包括PUSCH。
作为一个实施例,所述第一信道包括PUSCH,所述第二信道包括PDSCH。
作为一个实施例,所述第二信道包括PDCCH。
作为一个实施例,所述第二信道是一个PDCCH。
作为一个实施例,所述第二信道由多个PDCCH组成。
作为一个实施例,所述第一信道仅包括PDSCH,所述第二信道包括PDCCH。
作为一个实施例,所述第一信道仅包括PUSCH,所述第二信道包括PDCCH。
作为一个实施例,所述第一信道包括PDSCH,所述第二信道包括PDCCH。
作为一个实施例,所述第一信道包括PUSCH,所述第二信道包括PDCCH。
作为一个实施例,所述第二信道包括DL-SCH。
作为一个实施例,所述第二信道包括UL-SCH。
作为一个实施例,所述第一信道包括DL-SCH,所述第二信道包括UL-SCH。
作为一个实施例,所述第一信道包括UL-SCH,所述第二信道包括DL-SCH。
作为一个实施例,所述第二信道和所述第一信令无关。
作为一个实施例,所述第二信道所占用的时频资源和所述第一信令无关。
作为一个实施例,所述第二信道的调度信息和所述第一信令无关。
作为一个实施例,在所述第二信道中被传输的信号的调度信息和所述第一信令无关。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE,LTE-A及未来5G系统的网络架构200称为EPS(Evolved Packet System,演进分组系统)200。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet  System,演进分组系统)200或某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(下一代无线接入网络)202,5GC(5G CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,5GS/EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。NG-RAN202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网,内联网,IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换(Packet switching)服务。
作为一个实施例,本申请中的所述第一节点包括所述UE201。
作为一个实施例,本申请中的所述第二节点包括所述gNB203。
作为一个实施例,所述UE201与所述gNB203之间的无线链路是蜂窝网链路。
作为一个实施例,本申请中的所述第一信号的发送者包括所述UE201。
作为一个实施例,本申请中的所述第一信号的接收者包括所述gNB203。
作为一个实施例,本申请中的所述第一信令的发送者包括所述gNB203。
作为一个实施例,本申请中的所述第一信令的接收者包括所述UE201。
作为一个实施例,本申请中的所述第一类信道的发送者包括所述gNB203。
作为一个实施例,本申请中的所述第一类信道的接收者包括所述UE201。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间,或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,负责第一通信节点设备与第二通信节点设备之间,或者两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备 处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第一信号生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一信令生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一信令生成于所述MAC子层302,或所述MAC子层352。
作为一个实施例,所述第一类信道生成于所述PHY301,或所述PHY351。
实施例4
实施例4示例了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。附图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与传输信道之间的多路复用,以及基于各种优先级量度对第二通信设备450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的星座映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个并行流。发射处理器416随后将每一并行流映射到子载波,将调制后的符号在时域和/或频域中与参考信号(例如,导频)复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型 操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以第二通信设备450为目的地的任何并行流。每一并行流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述第一通信设备410处的发送功能,控制器/处理器459基于第一通信设备410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的并行流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。控制器/处理器475提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:发送所述第一信号;作为所述行为发送所述第一信号的响应,在所述第一资源集合中监测所述第一类信道;接收所述第一信令;在所述目标时刻之后在所述第一资源集合中继续监测所述第一类信道,或者,在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送所述第一信号;作为所述行为发送所述第一信号的响应,在所述第一资源集合中监测所述第一类信道;接收所述第一信令;在所述目标时刻之后在所述第一资源集合中继续监测所述第一类信道,或者,在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:接收所述第一信号;发送所述第一信令。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收所述第一信号;发送所述第一信 令。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450。
作为一个实施例,本申请中的所述第二节点包括所述第一通信设备410。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收所述第一信号;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460}中的至少之一被用于发送所述第一信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收所述第一信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送所述第一信令。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于在所述第一资源集合中监测所述第一类信道。
作为一个实施例,{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于在所述第一资源集合中发送所述第一类信道。
实施例5
实施例5示例了根据本申请的一个实施例的无线传输的流程图,如附图5所示。在附图5中,第二节点U1和第一节点U2是通过空中接口传输的通信节点。附图5中,方框F51至F56中的步骤分别是可选的。
对于 第二节点U1,在步骤S5101中发送第一信息;在步骤S511中接收第一信号;在步骤S5102中在第一资源集合中发送第一类信道;在步骤S512中发送第一信令;在步骤S5103中在第一信道中发送第三信号;在步骤S5104中接收第二信号;在步骤S5105中在第一信道中接收第四信号;在步骤S5106中在目标时刻之后在所述第一资源集合中发送所述第一类信道,或者,在所述目标时刻之后在所述第一资源集合中停止发送所述第一类信道。
对于 第一节点U2,在步骤S5201中接收第一信息;在步骤S521中发送第一信号;在步骤S522中作为所述行为发送所述第一信号的响应,在第一资源集合中监测第一类信道;在步骤S523中接收第一信令;在步骤S5202中在第一信道中接收第三信号;在步骤S5203中发送第二信号;在步骤S5204中在第一信道中发送第四信号;在步骤S524中在目标时刻之后在所述第一资源集合中继续监测所述第一类信道,或者,在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道。
在实施例5中,所述第一信号被用于随机接入,所述第一信号被所述第二节点U1用于确定目标参考信号;对于在所述第一资源集合中针对所述第一类信道的所述监测,所述第一节点U2假设和所述目标参考信号相同的QCL参数;所述第一信令包括DCI;所述第一信令被所述第一节点U2用于确定所述目标时刻;所述第一信令被用于调度所述第一信道;所述第一信令被所述第一节点U2用于确定第一传输状态,所述第一传输状态被应用于所述第一信道;当所述第一传输状态仅被应用于所述第一信道时,所述第一节点U2在所述目标时刻之后在所述第一资源集合中继续监测所述第一类信道;当所述第一传输状态除所述第一信道外还被应用于至少第二信道时,所述第一节点U2在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道。
作为一个实施例,所述第一节点U2是本申请中的所述第一节点。
作为一个实施例,所述第二节点U1是本申请中的所述第二节点。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U1是所述第一节点U2的服务小区维持基站。
作为一个实施例,所述第一信令被所述第二节点U1用于确定所述目标时刻。
作为一个实施例,所述第一信号在PRACH上被传输。
作为一个实施例,所述第一信号在PUSCH上被传输。
作为一个实施例,所述第一信号在PUCCH上被传输。
作为一个实施例,所述第一信号在PRACH和PUSCH上被传输。
作为一个实施例,所述第一信号在PUCCH和PUSCH上被传输。
作为一个实施例,所述第一信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上被传输。
作为一个实施例,所述第一信令在PDCCH(Physical Downlink Control Channel,物理下行控制信道)上被传输。
作为一个实施例,所述第一信令在PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)上被传输。
作为一个实施例,附图5中的方框F51中的步骤存在;所述第一信息被所述第一节点U2用于确定所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
作为一个实施例,所述第一信息在PDSCH上被传输。
作为一个实施例,所述第一信息在PDCCH上被传输。
作为一个实施例,附图5中的方框F52中的步骤存在;所述第二节点U1在所述第一资源集合中发送所述第一类信道。
作为一个实施例,作为所述行为接收所述第一信号的响应,所述第二节点U1在所述第一资源集合中发送所述第一类信道。
作为一个实施例,附图5中的方框F54中的步骤存在;所述第二信号被所述第二节点U1用于确定所述第一信令被正确接收。
作为一个实施例,所述第二信号所占用的时域资源被所述第一节点U2用于确定所述目标时刻。
作为一个实施例,所述第二信号所占用的时域资源被所述第二节点U1用于确定所述目标时刻。
作为一个实施例,所述第一信令被所述第一节点U2用于确定所述第二信号所占用的时域资源。
作为一个实施例,所述第二信号在PUCCH上被传输。
作为一个实施例,所述第二信号在PUSCH上被传输。
作为一个实施例,附图5中的方框F3和方框F54中的步骤均存在;所述第一信令包括所述第三信号的调度信息,所述第二信号包括针对所述第三信号的HARQ-ACK。
作为一个实施例,所述第三信号在PDSCH上被传输。
作为一个实施例,附图5中的方框F55中的步骤存在;所述第一信令包括所述第四信号的调度信息,所述第四信号所占用的时域资源被所述第一节点U2用于确定所述目标时刻;所述第一信令被所述第一节点U2用于确定所述第四信号所占用的时域资源。
作为一个实施例,所述第四信号包括基带信号。
作为一个实施例,所述第四信号包括无线信号。
作为一个实施例,所述第四信号包括射频信号。
作为一个实施例,所述第四信号在PUSCH上被传输。
作为一个实施例,所述目标时刻和第三参考时刻之间的时间间隔是第五间隔;所述第三参考时刻早于所述目标时刻,所述第四信号所占用的时域资源被用于确定所述第三参考时刻。
作为一个实施例,所述第三参考时刻是所述第四信号所占用的时域资源的起始时刻。
作为一个实施例,所述第三参考时刻是所述第四信号所占用的时域资源的结束时刻。
作为一个实施例,所述第三参考时刻是所述第四信号所占用的时间单元的起始时刻。
作为一个实施例,所述第三参考时刻是所述第四信号所占用的时间单元的结束时刻。
作为一个实施例,所述第五间隔的单位是时隙(slot)。
作为一个实施例,所述第五间隔的单位是多载波符号。
作为一个实施例,所述第五间隔是非负整数。
作为一个实施例,所述第五间隔是固定的。
作为一个实施例,所述第五间隔是更高层参数配置的。
作为一个实施例,所述第一信令指示所述第四信号所占用的时域资源。
作为一个实施例,所述第一信令在时域属于第三时间单元,所述第四信号在时域属于第四时间单元,所述第三时间单元和所述第四时间单元之间的时间间隔是第六间隔。
作为一个实施例,所述第六间隔是固定的。
作为一个实施例,所述第一信令指示所述第六间隔。
作为一个实施例,所述第六间隔的单位是时隙(slot)。
作为一个实施例,所述第六间隔的单位是多载波符号。
作为一个实施例,所述第六间隔是非负整数。
作为一个实施例,所述第一信令指示所述第四信号所占用的第一个多载波符号在所述第四时间单元中的位置。
作为一个实施例,附图5中的方框F54中的步骤和方框F55中的步骤不会同时存在。
作为一个实施例,附图5中的方框F53中的步骤和方框F55中的步骤不会同时存在。
作为一个实施例,附图5中的方框F56中的步骤存在;当所述第一传输状态仅被应用于所述第一信道时,所述第二节点U1在所述目标时刻之后在所述第一资源集合中继续发送所述第一类信道;当所述第一传输状态除所述第一信道外还被应用于至少所述第二信道时,所述第二节点U1在所述目标时刻之后在所述第一资源集合中停止发送所述第一类信道。
实施例6
实施例6示例了根据本申请的一个实施例的第一传输状态被应用于给定信道的示意图;如附图6所示。在实施例6中,所述给定信道是所述第一信道,或者,所述给定信道是所述第二信道。在实施例6中,所述第一传输状态指示第一参考信号。
作为一个实施例,所述给定信道是所述第一信道。
作为一个实施例,所述给定信道是所述第二信道。
作为一个实施例,所述给定信道是不同于所述第一信道和所述第二信道的一个信道。
作为一个实施例,所述第一传输状态是一个TCI状态(state)。
作为一个实施例,所述第一传输状态包括一个IE中的全部或部分域(Field)中的信息。
作为一个实施例,所述第一传输状态包括一个TCI-State IE中的全部或部分信息。
作为一个实施例,TCI-State IE的具体定义参见3GPP TS38.331。
作为一个实施例,所述第一传输状态指示所述第一参考信号的标识。
作为一个实施例,所述第一参考信号的所述标识包括NZP-CSI-RS-ResourceId。
作为一个实施例,所述第一参考信号的所述标识包括SSB-Index。
作为一个实施例,所述第一参考信号的所述标识包括SRS-ResourceId。
作为一个实施例,所述第一传输状态指示所述第一参考信号对应的小区标识。
作为一个实施例,所述第一参考信号对应的小区标识包括ServCellIndex。
作为一个实施例,所述第一传输状态指示所述第一参考信号对应的BWP标识。
作为一个实施例,所述第一传输状态指示所述第一参考信号对应的QCL类型是第一QCL类型。
作为一个实施例,所述第一QCL类型是QCL-TypeA或QCL-TypeD。
作为一个实施例,所述第一QCL类型是QCL-TypeA,QCL-TypeB,QCL-TypeC或QCL-TypeD中之一。
作为一个实施例,所述第一参考信号包括CSI-RS。
作为一个实施例,所述第一参考信号包括NZP CSI-RS。
作为一个实施例,所述第一参考信号包括SSB。
作为一个实施例,所述第一参考信号包括SRS。
作为一个实施例,所述第一参考信号是CSI-RS或SSB。
作为一个实施例,所述第一参考信号是CSI-RS,SSB或SRS中之一。
作为一个实施例,所述第一参考信号是所述目标参考信号。
作为一个实施例,所述第一参考信号和所述目标参考信号QCL。
作为一个实施例,所述第一参考信号和所述目标参考信号QCL且对应QCL-TypeD。
作为一个实施例,所述第一参考信号和所述目标参考信号不是QCL的。
作为一个实施例,所述第一参考信号和所述目标参考信号不是对应QCL-TypeD的QCL。
作为一个实施例,所述句子第一传输状态被应用于给定信道的意思包括:所述给定信道的TCI状态是所述第一传输状态。
作为一个实施例,所述句子第一传输状态被应用于给定信道的意思包括:所述第一传输状态被用于确定所述给定信道的QCL关系。
作为一个实施例,所述句子第一传输状态被应用于给定信道的意思包括:所述第一传输状态被用于确定所述给定信道的QCL参数。
作为一个实施例,所述句子第一传输状态被应用于给定信道的意思包括:所述第一传输状态被用于确定所述给定信道的空间关系(spatial relation)。
作为一个实施例,所述句子第一传输状态被应用于给定信道的意思包括:所述第一参考信号被用于确定所述给定信道的DMRS的QCL关系。
作为一个实施例,所述句子第一传输状态被应用于给定信道的意思包括:所述第一参考信号被用于确定所述给定信道的DMRS的空间关系(spatial relation)。
作为一个实施例,所述句子第一传输状态被应用于给定信道的意思包括:所述第一参考信号被用于确定所述给定信道的QCL关系。
作为一个实施例,所述句子第一传输状态被应用于给定信道的意思包括:所述第一参考信号被用于确定所述给定信道的QCL参数。
作为一个实施例,所述句子第一传输状态被应用于给定信道的意思包括:所述第一参考信号被用于确定所述给定信道的空间关系(spatial relation)。
作为一个实施例,所述句子第一传输状态被应用于给定信道的意思包括:所述第一节点假设所述给定信道的发送天线端口和所述第一参考信号QCL。
作为一个实施例,所述句子第一传输状态被应用于给定信道的意思包括:所述第一节点假设所述给定信道的发送天线端口和所述第一参考信号QCL且对应所述第一QCL类型。
作为一个实施例,所述句子第一传输状态被应用于给定信道的意思包括:所述第一节点用相同的空域滤波器(spatial domain filter)接收所述第一参考信号和所述给定信道。
作为一个实施例,所述句子第一传输状态被应用于给定信道的意思包括:所述第一节点用相同的空域滤波器发送所述第一参考信号和接收所述给定信道。
作为一个实施例,所述句子第一传输状态被应用于给定信道的意思包括:所述第一节点用相同的空域滤波器接收所述第一参考信号和发送所述给定信道。
作为一个实施例,所述句子第一传输状态被应用于给定信道的意思包括:所述第一节点用相同的空域滤波器发送所述第一参考信号和所述给定信道。
作为一个实施例,所述句子第一传输状态被应用于给定信道的意思包括:从所述第一参考信号所经历的信道的大尺度特性可以推断出所述给定信道所经历的信道的大尺度特性。
作为一个实施例,所述大尺度特性(large-scale properties)包括延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒位移(Doppler shift),平均延时(average delay),或空域接收参数(Spatial Rx parameter)中的一种或者多种。
实施例7
实施例7示例了根据本申请的一个实施例的监测第一类信道的示意图;如附图7所示。
作为一个实施例,所述句子监测第一类信道的意思包括:监测在所述第一类信道中被传输的DCI (Downlink control information,下行控制信息)格式(format)。
作为一个实施例,所述句子监测第一类信道的意思包括:监测PDCCH候选项(candidate)以判断所述第一类信道是否被传输。
作为一个实施例,所述句子监测第一类信道的意思包括:监测PDCCH候选项以判断所述第一类信道是否在一个PDCCH候选项中被传输。
作为一个实施例,所述句子监测第一类信道的意思包括:监测PDCCH候选项以判断是否在一个PDCCH候选项中检测到一个DCI格式。
作为一个实施例,所述句子监测第一类信道的意思包括:监测PDCCH候选项以判断是否在一个PDCCH候选项中检测到一个DCI格式在所述第一类信道中被传输。
作为一个实施例,所述监测是指盲译码,所述句子监测第一类信道的意思包括:在PDCCH候选项中执行译码操作;如果在一个PDCCH候选项中根据CRC确定译码正确,则判断在所述一个PDCCH候选项中检测到一个DCI格式;否则判断在所述一个PDCCH候选项中未检测到DCI格式。
作为一个实施例,所述监测是指盲译码,所述句子监测第一类信道的意思包括:在PDCCH候选项中执行译码操作;如果在一个PDCCH候选项中根据CRC确定译码正确,则判断在所述一个PDCCH候选项中检测到一个DCI格式在所述第一类信道中被传输;否则判断在所述一个PDCCH候选项中未检测到DCI格式。
作为一个实施例,所述监测是指相干检测,所述句子监测第一类信道的意思包括:在PDCCH候选项中进行相干接收并测量所述相干接收后得到的信号的能量;如果所述相干接收后得到的所述信号的能量在一个PDCCH候选项中大于第一给定阈值,则判断在所述一个PDCCH候选项中检测到一个DCI格式在所述第一类信道中被传输;否则判断在所述一个PDCCH候选项中未检测到DCI格式。
作为一个实施例,所述监测是指能量检测,所述句子监测第一类信道的意思包括:在PDCCH候选项中感知(Sense)无线信号的能量并平均以获得接收能量;如果所述接收能量在一个PDCCH候选项中大于第二给定阈值,则判断在所述一个PDCCH候选项中检测到一个DCI格式在所述第一类信道中被传输;否则判断在所述一个PDCCH候选项中未检测到DCI格式。
作为一个实施例,所述句子监测第一类信道的意思包括:根据CRC确定所述第一类信道是否被传输,在根据CRC判断译码是否正确之前不确定所述第一类信道是否被传输。
作为一个实施例,所述句子监测第一类信道的意思包括:根据CRC确定是否存在DCI在所述第一类信道中被传输,在根据CRC判断译码是否正确之前不确定是否存在DCI在所述第一类信道中被传输。
作为一个实施例,所述句子监测第一类信道的意思包括:根据相干检测确定所述第一类信道是否被传输;在相干检测之前不确定所述第一类信道是否被传输。
作为一个实施例,所述句子监测第一类信道的意思包括:根据相干检测确定是否存在DCI在所述第一类信道中被传输;在相干检测前不确定是否存在DCI在所述第一类信道中被传输。
作为一个实施例,所述句子监测第一类信道的意思包括:根据能量检测确定所述第一类信道是否被传输;在能量检测之前不确定所述第一类信道是否被传输。
作为一个实施例,所述句子监测第一类信道的意思包括:根据能量检测确定是否存在DCI在所述第一类信道中被传输;在能量检测前不确定是否存在DCI在所述第一类信道中被传输。
实施例8
实施例8示例了根据本申请的一个实施例的第一资源集合的示意图;如附图8所示。在实施例8中,所述第一资源集合在时频域占用正整数个RE(Resource Elemen,资源粒子)。
作为一个实施例,一个RE在时域占用一个多载波符号,在频域占用一个子载波。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅 里叶变化正交频分复用)符号。
作为一个实施例,所述第一资源集合在时域占用正整数个多载波符号。
作为一个实施例,所述第一资源集合在频域占用正整数个RB。
作为一个实施例,所述第一资源集合包括搜索空间集合(search space set)。
作为一个实施例,所述第一资源集合是一个搜索空间集合。
作为一个实施例,所述第一资源集合包括一个或多个PDCCH候选项(candidate)。
作为一个实施例,所述第一资源集合包括一个搜索空间集合中全部或部分PDCCH候选项。
作为一个实施例,所述第一资源集合包括CORESET(COntrol REsource SET,控制资源集合)。
作为一个实施例,所述第一资源集合是一个CORESET。
作为一个实施例,所述第一资源集合在时域周期性出现。
作为一个实施例,所述第一资源集合在时域多次出现。
作为一个实施例,所述第一资源集合在时域仅出现一次。
作为一个实施例,所述第一资源集合所属的搜索空间集合被recoverySearchSpaceId所标识。
作为一个实施例,所述第一资源集合是一个搜索空间集合,所述第一资源集合被recoverySearchSpaceId所标识。
作为一个实施例,所述第一资源集合所属的搜索空间集合对应的SearchSpaceId等于recoverySearchSpaceId。
作为一个实施例,所述第一资源集合是一个搜索空间集合,所述第一资源集合对应的SearchSpaceId等于recoverySearchSpaceId。
作为一个实施例,所述第一资源集合被第一更高层参数配置。
作为一个实施例,所述第一资源集合是一个搜索空间集合,所述第一资源集合对应的SearchSpaceId被第一更高层参数配置。
作为一个实施例,所述第一资源集合是一个搜索空间集合,第一更高层参数指示所述第一资源集合对应的SearchSpaceId。
作为一个实施例,所述第一节点被配置了K个资源集合,K是大于1的正整数;所述第一资源集合是所述K个资源集合中之一;第一更高层参数从所述K个资源集合中指示所述第一资源集合。
作为一个实施例,所述第一更高层参数包括BeamFailureRecoveryConfig IE中的recoverySearchSpaceId域(field)所包括的信息。
作为一个实施例,所述第一更高层参数的名称里包括recoverySearchSpaceId。
作为一个实施例,所述K个资源集合在频域属于同一个BWP。
作为一个实施例,所述K个资源集合在频域属于同一个载波(Carrier)。
作为一个实施例,所述K个资源集合属于同一个小区。
作为一个实施例,所述K个资源集合分别包括K个搜索空间集合。
作为一个实施例,所述K个资源集合分别是K个搜索空间集合。
作为一个实施例,所述K个资源集合分别包括K个CORESET。
作为一个实施例,所述K个资源集合被更高层参数searchSpacesToAddModList配置。
作为一个实施例,所述K个资源集合被更高层参数searchSpacesToReleaseList配置。
作为一个实施例,所述K个资源集合分别被K个索引所标识,所述K个索引两两互不相等;所述K个索引中的任一索引是一个非负整数。
作为一个实施例,所述K个索引分别是所述K个资源集合对应的搜索空间标识。
作为一个实施例,所述K个索引分别是所述K个资源集合对应的CORESET标识。
实施例9
实施例9示例了根据本申请的一个实施例的第一节点在第一资源集合中监测第一类信道的示意图;如附图9所示。在实施例9中,对于在所述第一资源集合中针对所述第一类信道的所述监测,所述第一节点假设和所述目标参考信号相同的QCL参数。
作为一个实施例,所述第一类信道包括物理信道。
作为一个实施例,所述第一类信道是物理信道。
作为一个实施例,所述第一类信道包括层1(L1)的信道。
作为一个实施例,所述第一类信道是层1(L1)的信道。
作为一个实施例,所述第一类信道是针对第二标识集合中的RNTI的。
作为一个实施例,所述第一类信道被第二标识集合中的RNTI所标识。
作为一个实施例,在所述第一类信道中被传输的DCI的CRC被第二标识集合中的RNTI所加扰。
作为一个实施例,所述第一类信道包括下行物理层控制信道(即仅能用于承载物理层信令的下行信道)。
作为一个实施例,所述第一类信道包括PDCCH。
作为一个实施例,所述第一类信道是PDCCH。
作为一个实施例,所述第一类信道是针对第二标识集合中的RNTI的PDCCH。
作为一个实施例,所述第一类信道是CRC被第二标识集合中的RNTI所加扰的PDCCH。
作为一个实施例,所述第二标识集合包括至少一个RNTI。
作为一个实施例,所述第二标识集合包括C-RNTI。
作为一个实施例,所述第二标识集合仅包括C-RNTI。
作为一个实施例,所述第二标识集合包括MCS-C-RNTI。
作为一个实施例,所述第二标识集合由C-RNTI和MCS-C-RNTI组成。
作为一个实施例,所述第二标识集合包括RA(Random Access)-RNTI。
作为一个实施例,所述第二标识集合由C-RNTI和RA-RNTI组成。
作为一个实施例,所述第二标识集合由C-RNTI,MCS-C-RNTI和RA-RNTI组成。
作为一个实施例,所述第一标识集合是所述第二标识集合。
作为一个实施例,所述第一标识集合中存在一个不属于所述第二标识集合的RNTI。
作为一个实施例,所述第二标识集合中存在一个不属于所述第一标识集合的RNTI。
作为一个实施例,所述QCL是指:Quasi-Co-Located。
作为一个实施例,所述QCL包括QCL Type-A。
作为一个实施例,所述QCL包括QCL Type-B。
作为一个实施例,所述QCL包括QCL Type-C。
作为一个实施例,所述QCL包括QCL Type-D。
作为一个实施例,所述句子对于在所述第一资源集合中针对所述第一类信道的所述监测,所述第一节点假设和所述目标参考信号相同的QCL参数的意思包括:所述第一节点假设在所述第一资源集合中被传输的所述第一类信道的发送天线端口和所述目标参考信号QCL。
作为一个实施例,所述句子对于在所述第一资源集合中针对所述第一类信道的所述监测,所述第一节点假设和所述目标参考信号相同的QCL参数的意思包括:所述第一节点假设在所述第一资源集合中被传输的所述第一类信道的发送天线端口和所述目标参考信号QCL且对应QCL-TypeD。
作为一个实施例,所述句子对于在所述第一资源集合中针对所述第一类信道的所述监测,所述第一节点假设和所述目标参考信号相同的QCL参数的意思包括:所述目标参考信号和第四参考信号QCL,所述第一节点假设在所述第一资源集合中被传输的所述第一类信道的发送天线端口和所述第四参考信号QCL。
作为一个实施例,所述句子对于在所述第一资源集合中针对所述第一类信道的所述监测,所述第一节点假设和所述目标参考信号相同的QCL参数的意思包括:所述第一节点用相同的空域滤波器接收所述目标参考信号和在所述第一资源集合中监测所述第一类信道。
作为一个实施例,所述句子对于在所述第一资源集合中针对所述第一类信道的所述监测,所述第一节点假设和所述目标参考信号相同的QCL参数的意思包括:所述第一节点用相同的空域滤波器发送所述目标参考信号和在所述第一资源集合中监测所述第一类信道。
作为一个实施例,所述句子对于在所述第一资源集合中针对所述第一类信道的所述监测,所述第一节点假设和所述目标参考信号相同的QCL参数的意思包括:所述目标参考信号和第四参考信号QCL,所述第一节点用相同的空域滤波器接收所述第四参考信号和在所述第一资源集合中监测所述第一类信道。
作为一个实施例,所述句子对于在所述第一资源集合中针对所述第一类信道的所述监测,所述第一节点假设和所述目标参考信号相同的QCL参数的意思包括:从所述目标参考信号所经历的信道的大尺度特性可以推断出在所述第一资源集合中被传输的所述第一类信道所经历的信道的大尺度特性。
作为一个实施例,所述句子对于在所述第一资源集合中针对所述第一类信道的所述监测,所述第一节点假设和所述目标参考信号相同的QCL参数的意思包括:所述目标参考信号和第四参考信号QCL,从所述第四参考信号所经历的信道的大尺度特性可以推断出在所述第一资源集合中被传输的所述第一类信道所经历的信道的大尺度特性。
作为一个实施例,所述第四参考信号包括SSB。
实施例10
实施例10示例了根据本申请的一个实施例的第一信息的示意图;如附图10所示。在实施例10中,所述第一信息被用于确定所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
作为一个实施例,所述第一信息指示所述第一传输状态仅被应用于所述第一信道,或者,所述第一信息指示所述第一传输状态除所述第一信道外还被应用于至少所述第二信道。
作为一个实施例,所述第一信息由更高层(higher layer)信令携带。
作为一个实施例,所述第一信息由RRC信令携带。
作为一个实施例,所述第一信息由MAC CE携带。
作为一个实施例,所述第一信息由物理层信令携带。
作为一个实施例,所述第一信息由层1(L1)的信令携带。
作为一个实施例,所述第一信息由更高层信令和层1(L1)的信令共同携带。
作为一个实施例,所述第一信息由所述第一信令携带。
作为一个实施例,所述第一信令包括第二域,所述第二域包括至少一个二进制比特;所述第一信令中的所述第二域指示所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
作为一个实施例,所述第二域仅包括一个二进制比特;如果所述一个二进制比特等于第一比特值,所述第一传输状态仅被应用于所述第一信道;如果所述一个二进制比特不等于所述第一比特值,所述第一传输状态除所述第一信道外还被应用于至少所述第二信道。
作为一个实施例,所述第一比特值等于0。
作为一个实施例,所述第一比特值等于1。
作为一个实施例,第二更高层参数指示所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
作为一个实施例,所述第二更高层参数是RRC参数。
作为一个实施例,所述第二更高层参数是MAC CE参数。
作为一个实施例,所述第二更高层参数包括一个IE中的一个域或多个域中的信息。
作为一个实施例,所述第二更高层参数包括一个MAC CE中的一个域或多个域中的信息。
作为一个实施例,所述第二更高层参数显式的指示所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
作为一个实施例,所述第二更高层参数包括第二比特域,所述第二比特域包括至少一个二进制比特,所述第二比特域的值指示所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
作为一个实施例,所述第二比特域仅包括一个二进制比特;如果所述第二比特域的值等于第一比特值,所述第一传输状态仅被应用于所述第一信道;如果所述第二比特域的值不等于所述第一比特值,所述第一传输状态除所述第一信道外还被应用于至少所述第二信道。
作为一个实施例,所述第二更高层参数隐式的指示所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
作为一个实施例,所述第二更高层参数指示的其他信息被用于确定所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
作为一个实施例,所述第二更高层参数被用于确定第一版本号;如果所述第一版本号属于第一版本号 集合,所述第一传输状态仅被应用于所述第一信道;如果所述第一版本号属于第二版本号集合,所述第一传输状态除所述第一信道外还被应用于至少所述第二信道;所述第一版本号集合和所述第二版本号集合分别包括至少一个版本号。
作为一个实施例,所述第一版本号集合包括R(Release)15。
作为一个实施例,所述第一版本号集合包括R16。
作为一个实施例,所述第二版本号集合包括R17。
作为一个实施例,所述第一信号所占用的频域资源被用于确定所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
作为一个实施例,所述第一信号在频域属于第一频域区间,所述第一频域区间被用于确定所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
作为一个实施例,如果所述第一频域区间属于第一频域区间集合,所述第一传输状态仅被应用于所述第一信道;如果所述第一频域区间属于第二频域区间集合,所述第一传输状态除所述第一信道外还被应用于至少所述第二信道;所述第一频域区间集合和所述第二频域区间集合分别包括至少一个频域区间。
作为一个实施例,一个所述频域区间是一个连续的频域资源。
作为一个实施例,一个所述频域区间是一个BWP。
作为一个实施例,一个所述频域区间是一个载波(Carrier)。
作为一个实施例,所述第一频域区间集合包括位于FR(Frequency Range)1频段内的中频域区间。
作为一个实施例,所述第二频域区间集合包括位于FR2频段内的频域区间。
作为一个实施例,所述第一信号在第一小区中被传输,所述第一小区被用于确定所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
作为一个实施例,如果所述第一小区属于第一小区集合,所述第一传输状态仅被应用于所述第一信道;如果所述第一小区属于第二小区集合,所述第一传输状态除所述第一信道外还被应用于至少所述第二信道;所述第一小区集合和所述第二小区集合分别包括至少一个小区。
作为一个实施例,所述第一信令隐式的指示所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
作为一个实施例,所述第一信令指示的其他信息被用于确定所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
作为一个实施例,所述第一信令所述占用的时频资源被用于确定所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
作为一个实施例,如果所述第一信令所占用的时频资源属于第一时频资源集合,所述第一传输状态仅被应用于所述第一信道;如果所述第一信令所占用的时频资源属于第二时频资源集合,所述第一传输状态除所述第一信道外还被应用于至少所述第二信道。
作为一个实施例,所述第一信令的CRC被第一RNTI所加扰,所述第一RNTI被用于确定所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
作为一个实施例,如果所述第一RNTI属于第一标识子集,所述第一传输状态仅被应用于所述第一信道;如果所述第一RNTI属于第二标识子集,所述第一传输状态除所述第一信道外还被应用于至少所述第二信道;所述第一标识子集和所述第二标识子集分别包括至少一个RNTI。
实施例11
实施例11示例了根据本申请的一个实施例的第一条件集合的示意图;如附图11所示。在实施例11中,只有当所述第一条件集合中的所有条件都被满足时,所述第一节点在所述第一传输状态除所述第一信道外还被应用于至少所述第二信道时,在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道;所述第一条件集合包括至少一个条件。
作为一个实施例,所述第一条件集合仅包括一个条件。
作为一个实施例,所述第一条件集合包括多个条件。
作为一个实施例,如果所述第一条件集合中的一个条件不被满足,当所述第一传输状态除所述第一信 道外还被应用于至少所述第二信道时,所述第一节点在所述目标时刻之后在所述第一资源集合中继续监测所述第一类信道。
作为一个实施例,如果所述第一条件集合中的一个条件不被满足,所述第一节点在所述目标时刻之后在所述第一资源集合中是否继续监测所述第一类信道与所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道无关。
作为一个实施例,只有当所述第一条件集合中的所有条件都被满足时,所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道被用于确定在所述目标时刻之后是否在所述第一资源集合中继续监测所述第一类信道。
作为一个实施例,所述第一条件集合包括所述第一信令在所述第一资源集合中被传输。
作为一个实施例,所述第一条件集合仅包括所述第一信令在所述第一资源集合中被传输。
作为一个实施例,如果所述第一信令在所述第一资源集合以外被传输,所述第一节点在所述目标时刻之后在所述第一资源集合中是否继续监测所述第一类信道与所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道无关。
作为一个实施例,所述第一条件集合包括所述第一节点在发送所述第一信号之后和接收所述第一信令之前没有接收到第二类信令。
作为一个实施例,所述第一条件集合仅包括所述第一节点在发送所述第一信号之后和接收所述第一信令之前没有接收到所述第二类信令。
作为一个实施例,所述第一条件集合包括所述第一信令在所述第一资源集合中被传输,以及所述第一节点在发送所述第一信号之后和接收所述第一信令之前没有接收到所述第二类信令。
作为一个实施例,只有当所述第一节点在发送所述第一信号之后和接收所述第一信令之前没有接收到所述第二类信令时,所述第一节点在所述第一传输状态仅被应用于所述第一信道时,在所述目标时刻之后在所述第一资源集合中继续监测所述第一类信道。
作为一个实施例,如果所述第一节点在发送所述第一信号之后和接收所述第一信令之前接收到所述第二类信令,所述第一节点在所述目标时刻之前就已经停止在所述第一资源集合中监测所述第一类信道。
作为一个实施例,所述第二类信令包括更高层信令。
作为一个实施例,所述第二类信令是更高层信令。
作为一个实施例,所述第二类信令包括MAC CE。
作为一个实施例,所述第二类信令是MAC CE。
作为一个实施例,所述第二类信令包括RRC信令。
作为一个实施例,所述第二类信令包括TCI状态激活MAC CE。
作为一个实施例,所述第二类信令是TCI状态激活MAC CE。
作为一个实施例,所述第二类信令包括TCI状态激活/去激活MAC CE。
作为一个实施例,所述第二类信令是TCI状态激活/去激活MAC CE。
作为一个实施例,所述第二类信令包括UE特定PDSCH TCI状态激活/去激活MAC CE。
作为一个实施例,所述第二类信令包括增强的UE特定PDSCH TCI状态激活/去激活MAC CE。
作为一个实施例,所述第二类信令包括TCI状态指示MAC CE。
作为一个实施例,所述第二类信令是TCI状态指示MAC CE。
作为一个实施例,所述第二类信令包括UE特定的PDCCH TCI状态指示MAC CE。
作为一个实施例,任一所述第二类信令是UE特定PDSCH TCI状态激活/去激活MAC CE,增强的UE特定PDSCH TCI状态激活/去激活MAC CE或UE特定的PDCCH TCI状态指示MAC CE中之一。
作为一个实施例,所述第一信令不是一个所述第二类信令。
作为一个实施例,所述第一信号在频域属于第一频域区间,所述第一条件集合包括所述第一节点在发送所述第一信号之后和接收所述第一信令之前在所述第一频域区间内没有接收到第二类信令。
作为一个实施例,所述第一信号在第一小区中被传输;所述第一条件集合包括所述第一节点在发送所述第一信号之后和接收所述第一信令之前在所述第一小区中没有接收到第二类信令。
作为一个实施例,所述第二类信令在PDSCH上被传输。
实施例12
实施例12示例了根据本申请的一个实施例的第二信号的示意图;如附图12所示。在实施例12中,所述第二信号被用于确定所述第一信令被正确接收;所述第二信号所占用的时域资源被用于确定所述目标时刻,所述第一信令被用于确定所述第二信号所占用的时域资源。
作为一个实施例,所述第二信号指示所述第一信令被正确接收。
作为一个实施例,所述第二信号包括基带信号。
作为一个实施例,所述第二信号包括无线信号。
作为一个实施例,所述第二信号包括射频信号。
作为一个实施例,所述第二信号包括UCI。
作为一个实施例,所述第二信号包括HARQ-ACK(Hybrid Automatic Repeat reQuest-Acknowledgement,混合自动重传请求-确认)。
作为一个实施例,所述第二信号包括ACK。
作为一个实施例,所述第一信道不包括所述第二信号所占用的信道。
作为一个实施例,所述第一信道不包括所述第二信号所占用的物理信道。
作为一个实施例,所述第一信令被用于确定所述第二信号所占用的空口资源。
作为一个实施例,所述空口资源包括时频资源。
作为一个实施例,所述空口资源包括码域资源。
作为一个实施例,所述码域资源包括伪随机序列,低PAPR序列,循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码),频域正交序列或时域正交序列中的一种或多种。
作为一个实施例,所述第一信令被用于确定第一PUCCH资源,所述第二信号在所述第一PUCCH资源中被传输。
作为一个实施例,所述第一信令包括第三域,所述第三域包括至少一个二进制比特;所述第一信令中的所述第三域指示所述第一PUCCH资源。
作为一个实施例,所述第一信令所占用的时频资源被用于确定所述第一PUCCH资源。
作为一个实施例,所述第一信令的发送者根据是否接收到所述第二信号判断所述第一信令是否被正确接收;如果接收到所述第二信号,则判断所述第一信令被正确接收;如果没有接收到所述第二信号,则判断所述第一信令未被正确接收。
作为一个实施例,所述第二信号所占用的时域资源被用于确定所述目标时刻。
作为一个实施例,所述目标时刻和第二参考时刻之间的时间间隔是第三间隔;所述第二参考时刻早于所述目标时刻,所述第二信号所占用的时域资源被用于确定所述第二参考时刻。
作为一个实施例,所述第二参考时刻是所述第二信号所占用的时域资源的起始时刻。
作为一个实施例,所述第二参考时刻是所述第二信号所占用的时域资源的结束时刻。
作为一个实施例,所述第二参考时刻是所述第二信号所占用的时间单元的起始时刻。
作为一个实施例,所述第二参考时刻是所述第二信号所占用的时间单元的结束时刻。
作为一个实施例,所述第三间隔的单位是所述时间单元。
作为一个实施例,所述第三间隔的单位是时隙(slot)。
作为一个实施例,所述第三间隔的单位是子时隙(sub-slot)。
作为一个实施例,所述第三间隔的单位是多载波符号。
作为一个实施例,所述第三间隔是非负整数。
作为一个实施例,所述第三间隔等于0。
作为一个实施例,所述第三间隔大于0。
作为一个实施例,所述第三间隔是固定的。
作为一个实施例,所述第三间隔是更高层参数配置的。
作为一个实施例,所述第一信令指示所述第二信号所占用的时域资源。
作为一个实施例,所述第一信令所占用的时域资源被用于确定所述第二信号所占用的时域资源。
作为一个实施例,所述第一信令在时域属于第一时间单元,所述第二信号在时域属于第二时间单元, 所述第一时间单元和所述第二时间单元之间的时间间隔是第四间隔。
作为一个实施例,所述第三信号在时域属于第一时间单元,所述第二信号在时域属于第二时间单元,所述第一时间单元和所述第二时间单元之间的时间间隔是第四间隔。
作为一个实施例,所述第四间隔是默认的。
作为一个实施例,所述第四间隔是固定的。
作为一个实施例,所述第一信令指示所述第四间隔。
作为一个实施例,所述第四间隔是RRC信令配置的。
作为一个实施例,所述第四间隔的单位是所述时间单元。
作为一个实施例,所述第四间隔的单位是时隙(slot)。
作为一个实施例,所述第四间隔的单位是多载波符号。
作为一个实施例,所述第四间隔是非负整数。
作为一个实施例,所述第四间隔等于0。
作为一个实施例,所述第四间隔大于0。
作为一个实施例,所述第一时间单元的结束时刻不晚于所述第二时间单元的起始时刻。
作为一个实施例,两个时间单元之间的时间间隔是指:所述两个时间单元中的前一个时间单元的起始时刻和所述两个时间单元中的后一个时间单元的起始时刻之间的时间间隔。
作为一个实施例,两个时间单元之间的时间间隔是指:所述两个时间单元中的前一个时间单元的结束时刻和所述两个时间单元中的后一个时间单元的结束时刻之间的时间间隔。
作为一个实施例,两个时间单元之间的时间间隔是指:所述两个时间单元中的前一个时间单元的结束时刻和所述两个时间单元中的后一个时间单元的起始时刻之间的时间间隔。
作为一个实施例,所述第二信号所占用的第一个多载波符号在所述第二时间单元中的位置是RRC信令配置的。
实施例13
实施例13示例了根据本申请的一个实施例的第三信号的示意图;如附图13所示。在实施例13中,所述第三信号在所述第一信道中被传输;所述第一信令包括所述第三信号的调度信息,所述第二信号包括针对所述第三信号的HARQ-ACK。
作为一个实施例,所述HARQ-ACK包括ACK。
作为一个实施例,所述HARQ-ACK包括NACK(Negative ACKnowledgement,否认)。
作为一个实施例,所述第三信号包括基带信号。
作为一个实施例,所述第三信号包括无线信号。
作为一个实施例,所述第三信号包括射频信号。
作为一个实施例,所述第三信号携带第一比特块,所述第一比特块包括一个TB,一个CB或一个CBG中之一。
作为一个实施例,所述第一信道包括所述第三信道所占用的物理信道。
作为一个实施例,所述第一信道包括所述第三信道所占用的传输信道。
作为一个实施例,所述第二信号指示所述第三信号是否被正确接收。
作为一个实施例,所述第二信号指示所述第三信号被正确接收。
作为一个实施例,所述第二信号指示所述第一比特块是否被正确接收。
作为一个实施例,所述第二信号指示所述第一比特块被正确接收。
作为一个实施例,所述第一信令指示所述第三信号所占用的时频资源。
作为一个实施例,所述第一信令指示所述第三信号所占用的时域资源。
作为一个实施例,所述第一信令在时域属于第五时间单元,所述第三信号在时域属于第六时间单元,所述第一信令指示所述第五时间单元和所述第六时间单元之间的时间间隔。
作为一个实施例,所述第一信令指示所述第三信号所占用的第一个多载波符号在所述第六时间单元中的位置。
作为一个实施例,所述第五时间单元的结束时刻不晚于所述第六时间单元的起始时刻。
实施例14
实施例14示例了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;如附图14所示。在附图14中,第一节点设备中的处理装置1400包括第一发送机1401和第一处理器1402。
在实施例14中,第一发送机1401发送第一信号;第一处理器1402作为所述行为发送所述第一信号的响应,在第一资源集合中监测第一类信道;接收第一信令;并且在目标时刻之后在所述第一资源集合中继续监测所述第一类信道,或者,在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道。
在实施例14中,所述第一信令被用于确定所述目标时刻;所述第一信号被用于随机接入,所述第一信号被用于确定目标参考信号;对于在所述第一资源集合中针对所述第一类信道的所述监测,所述第一节点假设和所述目标参考信号相同的QCL参数;所述第一信令包括DCI;所述第一信令被用于调度第一信道;所述第一信令被用于确定第一传输状态,所述第一传输状态被应用于所述第一信道;当所述第一传输状态仅被应用于所述第一信道时,所述第一节点在所述目标时刻之后在所述第一资源集合中继续监测所述第一类信道;当所述第一传输状态除所述第一信道外还被应用于至少第二信道时,所述第一节点在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道。
作为一个实施例,第一信息被用于确定所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
作为一个实施例,只有当第一条件集合中的所有条件都被满足时,所述第一节点在所述第一传输状态除所述第一信道外还被应用于至少所述第二信道时,在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道;所述第一条件集合包括至少一个条件。
作为一个实施例,所述第一条件集合包括所述第一信令在所述第一资源集合中被传输。
作为一个实施例,所述第一条件集合包括所述第一节点在发送所述第一信号之后和接收所述第一信令之前没有接收到第二类信令。
作为一个实施例,所述第一发送机1401发送第二信号;其中,所述第二信号被用于确定所述第一信令被正确接收;所述第二信号所占用的时域资源被用于确定所述目标时刻,所述第一信令被用于确定所述第二信号所占用的时域资源。
作为一个实施例,所述第一处理器1402在所述第一信道中接收第三信号;其中,所述第一信令包括所述第三信号的调度信息,所述第二信号包括针对所述第三信号的HARQ-ACK。
作为一个实施例,所述第一节点设备是用户设备。
作为一个实施例,所述第一节点设备是中继节点设备。
作为一个实施例,所述第一发送机1401包括实施例4中的{天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一处理器1402包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
实施例15
实施例15示例了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图;如附图15所示。在附图15中,第二节点设备中的处理装置1500包括第一接收机1501和第二发送机1502。
在实施例15中,第一接收机1501接收第一信号;第二发送机1502发送第一信令。
在实施例15中,所述第一信令被用于确定目标时刻;所述第一信号被用于随机接入,所述第一信号被用于确定目标参考信号;作为行为发送所述第一信号的响应,所述第一信号的发送者在第一资源集合中监测第一类信道;对于在所述第一资源集合中针对所述第一类信道的所述监测,所述第一信号的发送者假设和所述目标参考信号相同的QCL参数;所述第一信令包括DCI;所述第一信令被用于调度第一信道;所述第一信令被用于确定第一传输状态,所述第一传输状态被应用于所述第一信道;当所述第一传输状态仅被应用于所述第一信道时,所述第一信号的发送者在所述目标时刻之后在所述第一资源集合中继续监测所述第一类信道;当所述第一传输状态除所述第一信道外还被应用于至少第二信道时,所述第一信号的发 送者在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道。
作为一个实施例,第一信息被用于确定所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
作为一个实施例,只有当第一条件集合中的所有条件都被满足时,所述第一信号的发送者在所述第一传输状态除所述第一信道外还被应用于至少所述第二信道时,在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道;所述第一条件集合包括至少一个条件。
作为一个实施例,所述第一条件集合包括所述第一信令在所述第一资源集合中被传输。
作为一个实施例,所述第一条件集合包括所述第一信号的发送者在发送所述第一信号之后和接收所述第一信令之前没有接收到第二类信令。
作为一个实施例,所述第一接收机1501接收第二信号;其中,所述第二信号被用于确定所述第一信令被正确接收;所述第二信号所占用的时域资源被用于确定所述目标时刻,所述第一信令被用于确定所述第二信号所占用的时域资源。
作为一个实施例,所述第二发送机1502在所述第一信道中发送第三信号;其中,所述第一信令包括所述第三信号的调度信息,所述第二信号包括针对所述第三信号的HARQ-ACK。
作为一个实施例,所述第二节点设备是基站设备。
作为一个实施例,所述第二节点设备是用户设备。
作为一个实施例,所述第二节点设备是中继节点设备。
作为一个实施例,所述第一接收机1501包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二发送机1502包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,,交通工具,车辆,RSU,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,小蜂窝基站,家庭基站,中继基站,eNB,gNB,TRP(Transmitter Receiver Point,发送接收节点),GNSS,中继卫星,卫星基站,空中基站,RSU(Road Side Unit,路边单元),无人机,测试设备,例如模拟基站部分功能的收发装置或信令测试仪等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (28)

  1. 一种被用于无线通信的第一节点设备,其特征在于,包括:
    第一发送机,发送第一信号;
    第一处理器,作为所述行为发送所述第一信号的响应,在第一资源集合中监测第一类信道;
    所述第一处理器,接收第一信令,所述第一信令被用于确定目标时刻;
    所述第一处理器,在所述目标时刻之后在所述第一资源集合中继续监测所述第一类信道,或者,在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道;
    其中,所述第一信号被用于随机接入,所述第一信号被用于确定目标参考信号;对于在所述第一资源集合中针对所述第一类信道的所述监测,所述第一节点假设和所述目标参考信号相同的QCL参数;所述第一信令包括DCI;所述第一信令被用于调度第一信道;所述第一信令被用于确定第一传输状态,所述第一传输状态被应用于所述第一信道;当所述第一传输状态仅被应用于所述第一信道时,所述第一节点在所述目标时刻之后在所述第一资源集合中继续监测所述第一类信道;当所述第一传输状态除所述第一信道外还被应用于至少第二信道时,所述第一节点在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道。
  2. 根据权利要求1所述的第一节点设备,其特征在于,第一信息被用于确定所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
  3. 根据权利要求1或2所述的第一节点设备,其特征在于,只有当第一条件集合中的所有条件都被满足时,所述第一节点在所述第一传输状态除所述第一信道外还被应用于至少所述第二信道时,在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道;所述第一条件集合包括至少一个条件。
  4. 根据权利要求3所述的第一节点设备,其特征在于,所述第一条件集合包括所述第一信令在所述第一资源集合中被传输。
  5. 根据权利要求3或4所述的第一节点设备,其特征在于,所述第一条件集合包括所述第一节点在发送所述第一信号之后和接收所述第一信令之前没有接收到第二类信令。
  6. 根据权利要求1至5中任一权利要求所述的第一节点设备,其特征在于,所述第一发送机发送第二信号;其中,所述第二信号被用于确定所述第一信令被正确接收;所述第二信号所占用的时域资源被用于确定所述目标时刻,所述第一信令被用于确定所述第二信号所占用的时域资源。
  7. 根据权利要求6所述的第一节点设备,其特征在于,所述第一处理器在所述第一信道中接收第三信号;其中,所述第一信令包括所述第三信号的调度信息,所述第二信号包括针对所述第三信号的HARQ-ACK。
  8. 一种被用于无线通信的第二节点设备,其特征在于,包括:
    第一接收机,接收第一信号;
    第二发送机,发送第一信令,所述第一信令被用于确定目标时刻;
    其中,所述第一信号被用于随机接入,所述第一信号被用于确定目标参考信号;作为行为发送所述第一信号的响应,所述第一信号的发送者在第一资源集合中监测第一类信道;对于在所述第一资源集合中针对所述第一类信道的所述监测,所述第一信号的发送者假设和所述目标参考信号相同的QCL参数;所述第一信令包括DCI;所述第一信令被用于调度第一信道;所述第一信令被用于确定第一传输状态,所述第一传输状态被应用于所述第一信道;当所述第一传输状态仅被应用于所述第一信道时,所述第一信号的发送者在所述目标时刻之后在所述第一资源集合中继续监测所述第一类信道;当所述第一传输状态除所述第一信道外还被应用于至少第二信道时,所述第一信号的发送者在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道。
  9. 根据权利要求8所述的第二节点设备,其特征在于,第一信息被用于确定所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
  10. 根据权利要求8或9所述的第二节点设备,其特征在于,只有当第一条件集合中的所有条件都被满足时,所述第一信号的发送者在所述第一传输状态除所述第一信道外还被应用于至少所述第二信道时,在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道;所述第一条件集合包括至少一个条件。
  11. 根据权利要求10所述的第二节点设备,其特征在于,所述第一条件集合包括所述第一信令在所述 第一资源集合中被传输。
  12. 根据权利要求10或11所述的第二节点设备,其特征在于,所述第一条件集合包括所述第一信号的发送者在发送所述第一信号之后和接收所述第一信令之前没有接收到第二类信令。
  13. 根据权利要求8至12中任一权利要求所述的第二节点设备,其特征在于,所述第一接收机接收第二信号;其中,所述第二信号被用于确定所述第一信令被正确接收;所述第二信号所占用的时域资源被用于确定所述目标时刻,所述第一信令被用于确定所述第二信号所占用的时域资源。
  14. 根据权利要求13所述的第二节点设备,其特征在于,所述第二发送机在所述第一信道中发送第三信号;其中,所述第一信令包括所述第三信号的调度信息,所述第二信号包括针对所述第三信号的HARQ-ACK。
  15. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    发送第一信号;
    作为所述行为发送所述第一信号的响应,在第一资源集合中监测第一类信道;
    接收第一信令,所述第一信令被用于确定目标时刻;
    在所述目标时刻之后在所述第一资源集合中继续监测所述第一类信道,或者,在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道;
    其中,所述第一信号被用于随机接入,所述第一信号被用于确定目标参考信号;对于在所述第一资源集合中针对所述第一类信道的所述监测,所述第一节点假设和所述目标参考信号相同的QCL参数;所述第一信令包括DCI;所述第一信令被用于调度第一信道;所述第一信令被用于确定第一传输状态,所述第一传输状态被应用于所述第一信道;当所述第一传输状态仅被应用于所述第一信道时,所述第一节点在所述目标时刻之后在所述第一资源集合中继续监测所述第一类信道;当所述第一传输状态除所述第一信道外还被应用于至少第二信道时,所述第一节点在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道。
  16. 根据权利要求15所述的方法,其特征在于,第一信息被用于确定所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
  17. 根据权利要求15或16所述的方法,其特征在于,只有当第一条件集合中的所有条件都被满足时,所述第一节点在所述第一传输状态除所述第一信道外还被应用于至少所述第二信道时,在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道;所述第一条件集合包括至少一个条件。
  18. 根据权利要求17所述的方法,其特征在于,所述第一条件集合包括所述第一信令在所述第一资源集合中被传输。
  19. 根据权利要求17或18所述的方法,其特征在于,所述第一条件集合包括所述第一节点在发送所述第一信号之后和接收所述第一信令之前没有接收到第二类信令。
  20. 根据权利要求15至19中任一权利要求所述的方法,其特征在于,包括:
    发送第二信号;
    其中,所述第二信号被用于确定所述第一信令被正确接收;所述第二信号所占用的时域资源被用于确定所述目标时刻,所述第一信令被用于确定所述第二信号所占用的时域资源。
  21. 根据权利要求20所述的方法,其特征在于,包括:
    在所述第一信道中接收第三信号;
    其中,所述第一信令包括所述第三信号的调度信息,所述第二信号包括针对所述第三信号的HARQ-ACK。
  22. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    接收第一信号;
    发送第一信令,所述第一信令被用于确定目标时刻;
    其中,所述第一信号被用于随机接入,所述第一信号被用于确定目标参考信号;作为行为发送所述第一信号的响应,所述第一信号的发送者在第一资源集合中监测第一类信道;对于在所述第一资源集合中针对所述第一类信道的所述监测,所述第一信号的发送者假设和所述目标参考信号相同的QCL参数;所述第一信令包括DCI;所述第一信令被用于调度第一信道;所述第一信令被用于确定第一传输状态,所述第 一传输状态被应用于所述第一信道;当所述第一传输状态仅被应用于所述第一信道时,所述第一信号的发送者在所述目标时刻之后在所述第一资源集合中继续监测所述第一类信道;当所述第一传输状态除所述第一信道外还被应用于至少第二信道时,所述第一信号的发送者在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道。
  23. 根据权利要求22所述的方法,其特征在于,第一信息被用于确定所述第一传输状态除所述第一信道外是否还被应用于至少所述第二信道。
  24. 根据权利要求22或23所述的方法,其特征在于,只有当第一条件集合中的所有条件都被满足时,所述第一信号的发送者在所述第一传输状态除所述第一信道外还被应用于至少所述第二信道时,在所述目标时刻之后在所述第一资源集合中停止监测所述第一类信道;所述第一条件集合包括至少一个条件。
  25. 根据权利要求24所述的方法,其特征在于,所述第一条件集合包括所述第一信令在所述第一资源集合中被传输。
  26. 根据权利要求24或25所述的方法,其特征在于,所述第一条件集合包括所述第一信号的发送者在发送所述第一信号之后和接收所述第一信令之前没有接收到第二类信令。
  27. 根据权利要求22至26中任一权利要求所述的方法,其特征在于,包括:
    接收第二信号;
    其中,所述第二信号被用于确定所述第一信令被正确接收;所述第二信号所占用的时域资源被用于确定所述目标时刻,所述第一信令被用于确定所述第二信号所占用的时域资源。
  28. 根据权利要求27所述的方法,其特征在于,包括:
    在所述第一信道中发送第三信号;
    其中,所述第一信令包括所述第三信号的调度信息,所述第二信号包括针对所述第三信号的HARQ-ACK。
PCT/CN2021/135658 2020-12-07 2021-12-06 一种被用于无线通信的节点中的方法和装置 WO2022121831A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/144,176 US20230276281A1 (en) 2020-12-07 2023-05-06 Method and device in nodes used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011417501.1 2020-12-07
CN202011417501.1A CN114599113A (zh) 2020-12-07 2020-12-07 一种被用于无线通信的节点中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/144,176 Continuation US20230276281A1 (en) 2020-12-07 2023-05-06 Method and device in nodes used for wireless communication

Publications (1)

Publication Number Publication Date
WO2022121831A1 true WO2022121831A1 (zh) 2022-06-16

Family

ID=81803212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135658 WO2022121831A1 (zh) 2020-12-07 2021-12-06 一种被用于无线通信的节点中的方法和装置

Country Status (3)

Country Link
US (1) US20230276281A1 (zh)
CN (1) CN114599113A (zh)
WO (1) WO2022121831A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149179A (zh) * 2018-02-12 2019-08-20 维沃移动通信有限公司 一种波束失败恢复的方法和设备
US20200112974A1 (en) * 2018-10-08 2020-04-09 Qualcomm Incorporated Semi-static transmission configuration indicator configuration
CN111727583A (zh) * 2018-02-16 2020-09-29 高通股份有限公司 用于关于准共址组的传输配置指示状态的方法和装置
US20200314881A1 (en) * 2019-03-27 2020-10-01 Lenovo (Singapore) Pte. Ltd. Method and Apparatus for Downlink Resource Allocation for Multi-Transmission and Reception Point Transmission

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10686573B2 (en) * 2017-09-11 2020-06-16 Lenovo (Singapore) Pte Ltd Reference signals for radio link monitoring
CN111769926B (zh) * 2018-03-12 2024-04-16 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020090120A1 (ja) * 2018-11-02 2020-05-07 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN111586843B (zh) * 2019-02-15 2023-04-07 上海朗帛通信技术有限公司 被用于无线通信的用户设备、基站中的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149179A (zh) * 2018-02-12 2019-08-20 维沃移动通信有限公司 一种波束失败恢复的方法和设备
CN111727583A (zh) * 2018-02-16 2020-09-29 高通股份有限公司 用于关于准共址组的传输配置指示状态的方法和装置
US20200112974A1 (en) * 2018-10-08 2020-04-09 Qualcomm Incorporated Semi-static transmission configuration indicator configuration
US20200314881A1 (en) * 2019-03-27 2020-10-01 Lenovo (Singapore) Pte. Ltd. Method and Apparatus for Downlink Resource Allocation for Multi-Transmission and Reception Point Transmission

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC: "Discussion on multi-beam operation", 3GPP DRAFT; R1-2009174, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946879 *
SAMSUNG: "Multi-beam enhancements", 3GPP DRAFT; R1-2008148, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051945331 *

Also Published As

Publication number Publication date
US20230276281A1 (en) 2023-08-31
CN114599113A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2022161233A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022063145A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN114978447A (zh) 一种被用于无线通信的节点中的方法和装置
WO2020207244A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022166702A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022052971A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020192350A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN112637810B (zh) 一种被用于无线通信的节点中的方法和装置
WO2022121831A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN115348676A (zh) 一种被用于无线通信的节点中的方法和装置
CN113904758A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2023020453A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023040922A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113315609B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023093516A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022242613A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN114828035B (zh) 一种被用于无线通信的节点中的方法和装置
WO2022194114A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023221800A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113541891B (zh) 一种被用于无线通信的节点中的方法和装置
WO2022100639A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113938170B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2023066082A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022121830A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022017127A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 15/11/2023 )