WO2024017078A1 - 一种被用于无线通信的通信节点中的方法和装置 - Google Patents

一种被用于无线通信的通信节点中的方法和装置 Download PDF

Info

Publication number
WO2024017078A1
WO2024017078A1 PCT/CN2023/106498 CN2023106498W WO2024017078A1 WO 2024017078 A1 WO2024017078 A1 WO 2024017078A1 CN 2023106498 W CN2023106498 W CN 2023106498W WO 2024017078 A1 WO2024017078 A1 WO 2024017078A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
preamble
frequency
rar
Prior art date
Application number
PCT/CN2023/106498
Other languages
English (en)
French (fr)
Inventor
于巧玲
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024017078A1 publication Critical patent/WO2024017078A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present application relates to transmission methods and devices in wireless communication systems, and in particular to random access transmission methods and devices.
  • this application provides a random access solution.
  • the NR system is used as an example; this application is also applicable to scenarios such as LTE systems; further, although the original intention of this application is for the Uu air interface, this application can also be used for the PC5 interface. Furthermore, although the original intention of this application is for the terminal and base station scenario, this application is also applicable to the V2X (Vehicle-to-Everything, Internet of Vehicles) scenario, the communication scenario between the terminal and the relay, and the relay and the base station. , achieving similar technical effects in terminal and base station scenarios.
  • V2X Vehicle-to-Everything, Internet of Vehicles
  • the original intention of this application is for the terminal and base station scenario
  • this application is also applicable to the IAB (Integrated Access and Backhaul, integrated access and backhaul) communication scenario, and obtains similar technologies in the terminal and base station scenario. Effect.
  • the original intention of this application is for terrestrial network (Terrestrial Network, terrestrial network) scenarios
  • this application is also applicable to non-terrestrial network (Non-Terrestrial Network, NTN) communication scenarios, achieving similar TN scenarios. technical effects.
  • using a unified solution for different scenarios can also help reduce hardware complexity and cost.
  • This application discloses a method used in a first node of wireless communication, which is characterized by including:
  • K1 which is a positive integer greater than 1; at the first moment, start the first time window; monitor the first signaling in the first time window, and the first signaling is used to schedule random access input response;
  • the first time is related to at least the cut-off time of the first time-frequency resource; the first time is not earlier than the cut-off time of the first time-frequency resource and earlier than the cut-off time of the second time-frequency resource.
  • the second time-frequency resource is the latest time-frequency resource among the K1 time-frequency resources; the expiration time of the first time window is later than the expiration time of the second time-frequency resource.
  • any two time-frequency resources among the K1 time-frequency resources do not overlap in the time domain.
  • At least two time-frequency resources among the K1 time-frequency resources do not overlap in the time domain.
  • the problems to be solved by this application include: how to receive the RAR when the UE repeatedly sends the Preamble through the PRACH.
  • the problems to be solved by this application include: how to determine to monitor the first PDCCH (Physical downlink control channel, physical downlink control channel) when at least the first time-frequency resource among the K1 time-frequency resources sends a Preamble. time interval.
  • PDCCH Physical downlink control channel, physical downlink control channel
  • the problem to be solved by this application includes: how to determine the expiration moment of the first time window when at least the first time-frequency resource among the K1 time-frequency resources sends a Preamble.
  • the problem to be solved by this application includes: how to determine the stopping moment of the first time window when at least the first time-frequency resource among the K1 time-frequency resources sends a Preamble.
  • the problems to be solved by this application include: how to transmit each time-frequency resource among the K1 time-frequency resources.
  • the problems to be solved by this application include: how to determine the first RNTI (Radio Network Temporary Identity, Wireless Network Temporary Identity).
  • RNTI Radio Network Temporary Identity, Wireless Network Temporary Identity
  • the problem to be solved by this application includes: how to determine the first RNTI.
  • the characteristics of the above method include: being able to send multiple Preambles within the first time window.
  • the characteristics of the above method include: at least the expiration time of the earliest one of the K1 time-frequency resources is used to determine the time when the first time window is started.
  • the characteristics of the above method include: one time-frequency resource among the K time-frequency resources is used to calculate the first RNTI.
  • the characteristics of the above method include: only the first time-frequency resource among the K time-frequency resources is used to calculate the first RNTI.
  • the characteristics of the above method include: determining the K1 according to at least channel quality.
  • the characteristics of the above method include: determining the K1 according to at least an RRC message.
  • the benefits of the above method include: enhanced coverage.
  • the benefits of the above method include: shortening the initial access delay.
  • the benefits of the above method include: reducing downlink signaling overhead.
  • the monitoring of the first signaling in the first time window is used to determine whether to send a Preamble in at least the second time-frequency resource.
  • the problems to be solved by this application include: how to transmit each time-frequency resource among the K1 time-frequency resources.
  • the problems to be solved by this application include: how to transmit each time-frequency resource among the K1 time-frequency resources.
  • the characteristics of the above method include: determining whether to send a Preamble in at least the second time-frequency resource according to whether the random access response is successfully received.
  • the benefits of the above method include: avoiding unnecessary sending of Preamble.
  • the benefits of the above method include: reducing signaling overhead.
  • Receive the first signaling receive the first RAR according to the schedule of the first signaling.
  • the problems to be solved by this application include: how to transmit each time-frequency resource among the K1 time-frequency resources.
  • the characteristics of the above method include: the first RAR indicates whether to send a Preamble in at least the second time-frequency resource.
  • the characteristics of the above method include: the format of the first RAR is used to determine whether to send a Preamble in at least the second time-frequency resource.
  • the benefits of the above method include: avoiding unnecessary sending of Preamble.
  • the benefits of the above method include: reducing signaling overhead.
  • the K1 time-frequency resources are respectively associated with at least two downlink RS (Reference Signal, reference signal) resources, so
  • the third message is associated with a target downlink RS resource, and the target downlink RS resource is one of the at least two downlink RS resources; the CORESET (Control resource set, control resource set) to which the first signaling belongs or A search space (search space) is used to determine the target downlink RS resource.
  • the at least two downlink RS resources are K1 downlink RS resources.
  • the at least two downlink RS resources are no more than K1 downlink RS resources.
  • the problems to be solved by this application include: how to use downlink RS resources for receiving the third message.
  • the problem to be solved by this application includes: how to determine the spatial parameters for receiving the third message.
  • the characteristics of the above method include: determining the downlink RS resource for receiving the third message through the first signaling.
  • the characteristics of the above method include: determining spatial parameters for receiving the third message through first signaling.
  • the benefits of the above method include: enabling the UE to determine downlink RS resources for receiving the third message.
  • the benefits of the above method include: enabling the UE to determine spatial parameters for receiving the third message.
  • the benefits of the above method include: reducing signaling overhead.
  • the first counter is used to count the number of sent Preambles.
  • the problems to be solved by this application include: how to update the first counter.
  • the benefits of the above method include: avoiding too many random access times.
  • the benefits of the above method include: reducing contention conflicts.
  • the second time is related to the cut-off time of the target time-frequency resource;
  • the target time-frequency resource is a time-frequency resource other than the first time-frequency resource among the K1 time-frequency resources.
  • the feature is that the K1 is used to determine the expiration moment of the first time window.
  • This application discloses a method used in a second node of wireless communication, which is characterized by including:
  • K1 is determined by the sender of the first Preamble, and the K1 is a positive integer greater than 1; at the first moment, the first time window is started by the sender of the first Preamble; at the first time The first signaling in the window is monitored by the sender of the first Preamble, and the first signaling is used to schedule a random access response; the first Preamble is monitored by the sender of the first Preamble at K1 times.
  • At least the first time-frequency resource among the frequency resources is sent, and the first time-frequency resource is the earliest time-frequency resource among the K1 time-frequency resources; the first time and at least the first time-frequency resource are It is related to the cut-off time; the first time is not earlier than the cut-off time of the first time-frequency resource and earlier than the cut-off time of the second time-frequency resource, and the second time-frequency resource is one of the K1 time-frequency resources.
  • the latest time-frequency resource; the expiration time of the first time window is later than the expiration time of the second time-frequency resource.
  • any two time-frequency resources among the K1 time-frequency resources do not overlap in the time domain.
  • At least two time-frequency resources among the K1 time-frequency resources do not overlap in the time domain.
  • the monitoring of the first signaling in the first time window is used to determine whether to send a Preamble in at least the second time-frequency resource.
  • the first signaling is sent; the first RAR is sent; the first signaling is used to schedule the first RAR.
  • the sender of the first Preamble determines whether to send the Preamble in at least the second time-frequency resource according to the content of the first RAR.
  • the sender of the first Preamble successfully receives the first RAR in the first time window is used to determine to send the third message;
  • the K1 time-frequency resources are respectively associated with at least two Downlink RS resources,
  • the third message is associated to a target downlink RS resource, and the target downlink RS resource is one of the at least two downlink RS resources;
  • the CORESET or search to which the first signaling belongs Space is used to determine the target downlink RS resource.
  • the at least two downlink RS resources are K1 downlink RS resources.
  • the at least two downlink RS resources are no more than K1 downlink RS resources.
  • the first time window is determined to be expired by the sender of the first Preamble and is used to determine to update the first counter according to the K1; the first counter is used for statistics The number of Preambles sent.
  • the first time window is restarted by the sender of the first Preamble; the second Preamble is received; the second Preamble is received by the first Preamble.
  • the sender sends in the target time-frequency resource; the second time is related to the cut-off time of the target time-frequency resource; the target time-frequency resource is the first time-frequency resource among the K1 time-frequency resources A time-frequency resource other than
  • the feature is that the K1 is used to determine the expiration moment of the first time window.
  • This application discloses a first node used for wireless communication, which is characterized by including:
  • the first receiver determines K1, which is a positive integer greater than 1; at the first moment, starts the first time window; monitors the first signaling in the first time window, and the first signaling is Used to schedule random access responses;
  • the first transmitter transmits the first Preamble in at least the first time-frequency resource among the K1 time-frequency resources, and the first time-frequency resource is the earliest time-frequency resource among the K1 time-frequency resources;
  • the first time is related to at least the cut-off time of the first time-frequency resource; the first time is not earlier than the cut-off time of the first time-frequency resource and earlier than the cut-off time of the second time-frequency resource.
  • the second time-frequency resource is the latest time-frequency resource among the K1 time-frequency resources; the expiration time of the first time window is later than the expiration time of the second time-frequency resource.
  • any two time-frequency resources among the K1 time-frequency resources do not overlap in the time domain.
  • At least two time-frequency resources among the K1 time-frequency resources do not overlap in the time domain.
  • This application discloses a second node used for wireless communication, which is characterized in that it includes:
  • the second receiver receives the first Preamble
  • K1 is determined by the sender of the first Preamble, and the K1 is a positive integer greater than 1; at the first moment, the first time window is started by the sender of the first Preamble; at the first time The first signaling in the window is monitored by the sender of the first Preamble, and the first signaling is used to schedule a random access response; the first Preamble is monitored by the sender of the first Preamble at K1 times.
  • At least the first time-frequency resource among the frequency resources is sent, and the first time-frequency resource is the earliest time-frequency resource among the K1 time-frequency resources; the first time and at least the first time-frequency resource are It is related to the cut-off time; the first time is not earlier than the cut-off time of the first time-frequency resource and earlier than the cut-off time of the second time-frequency resource, and the second time-frequency resource is one of the K1 time-frequency resources.
  • the latest time-frequency resource; the expiration time of the first time window is later than the expiration time of the second time-frequency resource.
  • any two time-frequency resources among the K1 time-frequency resources do not overlap in the time domain.
  • At least two time-frequency resources among the K1 time-frequency resources do not overlap in the time domain.
  • this application has the following advantages:
  • Figure 1 shows a flow chart of the transmission of the first Preamble according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Figure 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a wireless signal transmission flow chart according to an embodiment of the present application
  • Figure 6 shows a wireless signal transmission flow chart according to another embodiment of the present application.
  • Figure 7 shows a wireless signal transmission flow chart according to yet another embodiment of the present application.
  • Figure 8 shows a wireless signal transmission flow chart according to yet another embodiment of the present application.
  • Figure 9 shows a schematic diagram of a MAC subheader in a third candidate RAR according to an embodiment of the present application.
  • Figure 10 shows a transmission flow chart of the second Preamble according to an embodiment of the present application.
  • Figure 11 shows a schematic diagram of K1 time-frequency resources and the first time window according to an embodiment of the present application
  • Figure 12 shows a schematic diagram of K1 time-frequency resources and the first time window according to another embodiment of the present application.
  • Figure 13 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present application
  • Figure 14 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present application
  • Figure 15 shows a schematic diagram in which monitoring of the first signaling is used to determine whether to send a Preamble according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of the transmission of the first Preamble according to an embodiment of the present application, as shown in Figure 1.
  • each box represents a step. It should be particularly emphasized that the order of the boxes in the figure does not represent the temporal relationship between the steps represented.
  • the first node in this application determines K1, which is a positive integer greater than 1; at the first moment, starts the first time window; in the first time window Monitor the first signaling, which is used to schedule the random access response; send the first Preamble in at least the first time-frequency resource among the K1 time-frequency resources, and the first time-frequency resource is the The earliest time-frequency resource among the K1 time-frequency resources; wherein the first time is related to at least the cut-off time of the first time-frequency resource; the first time is not earlier than the cut-off time of the first time-frequency resource.
  • the expiration time is earlier than the expiration time of the second time-frequency resource, which is the latest time-frequency resource among the K1 time-frequency resources; the expiration time of the first time window is later than the expiration time of the K1 time-frequency resources. Describe the deadline for the second time-frequency resource.
  • the "determining K1" includes: determining the K1 based on at least channel quality.
  • the "determining K1" includes: determining the K1 according to at least channel quality and at least one offset.
  • the "determining K1" includes: determining the K1 based on at least RSRP (Reference signal received power).
  • the "determining K1" includes: determining the K1 based on at least an RSRP measurement result and an RSRP threshold.
  • the "determining K1" includes: determining the K1 based on at least an RSRP measurement result, at least one offset, and an RSRP threshold.
  • the "determining K1" includes: determining the K1 according to a random access response.
  • the "determining K1" includes: determining the K1 based on at least an RRC (Radio Resource Control) message.
  • RRC Radio Resource Control
  • the "determining K1" includes: determining the K1 according to at least the RRC message and channel quality.
  • the K1 is related to at least channel quality.
  • the K1 is preconfigured.
  • the K1 is determined among Q1 candidate integers; the Q1 candidate integers are configured through RRC messages.
  • the K1 is determined among the Q1 candidate integers according to at least channel quality.
  • the K1 is determined among the Q1 candidate integers based on at least channel quality and at least one offset.
  • the K1 is configurable.
  • K1 is variable.
  • K1 is countable.
  • the maximum value of K1 does not exceed a positive integer.
  • the RSRP measurement result is an RSRP measurement result for at least one downlink reference signal.
  • the RSRP measurement result is an RSRP measurement result for a downlink path loss reference (downlink pathloss reference).
  • the first moment is a PDCCH opportunity (Occasion).
  • the first moment is a symbol.
  • the first moment is a time slot.
  • the first moment is one millisecond.
  • the first moment is related to system configuration.
  • the first moment is related to a system frame.
  • the first moment is related to a wireless frame.
  • the first moment is related to a subframe.
  • the "starting the first time window” includes: starting the first time window from 0; and counting the first time window.
  • the "starting the first time window” includes: causing the first time window to run from the maximum value of the first time window; and counting down the first time window.
  • the start means start.
  • starting means starting.
  • the value of the first time window is incremented.
  • the value of the first time window decreases.
  • the first time window is used to determine a time interval.
  • the first time window includes a positive integer number of milliseconds.
  • the first time window is ra-ResponseWindow.
  • the name of the first time window includes ra-ResponseWindow.
  • the name of the first time window includes at least one of ra or Response or Window or CE or COVERAGE or ENHANCEMENT.
  • the monitoring means monitor.
  • the monitoring means determining whether there is an object.
  • listening means monitoring.
  • monitoring means detecting.
  • the monitoring means detection through CRC (Cyclic redundancy check, cyclic redundancy check).
  • the monitoring means passing maximum likelihood detection.
  • the monitoring means blind detection.
  • the first signaling is monitored on the PDCCH.
  • the first signaling is monitored on at least one search space (SS).
  • SS search space
  • the first signaling is monitored on the first CSS (Common Search Space).
  • first CSS Common Search Space
  • the first CSS is associated with PCell (Primary Cell).
  • the first CSS includes at least one search space.
  • the first CSS is at least one common search space dedicated to PRACH coverage enhancement.
  • the first CSS is Type1-PDCCH CSS set.
  • the first CSS is configured in PDCCH-ConfigCommon.
  • the first CSS is configured by ra-SearchSpace in PDCCH-ConfigCommon.
  • the first CSS is configured by an RRC domain whose name in PDCCH-ConfigCommon includes ra-SearchSpace.
  • the first CSS is configured in recoverySearchSpaceId.
  • the first CSS is configured by an RRC domain whose name includes recoverySearchSpaceId.
  • the first CSS is dedicated to random access.
  • the first CSS is dedicated to BFR (Beam Failure Recovery).
  • the first CSS is associated with at least one CORESET.
  • the first CSS is associated with a CORESET.
  • the first CSS is associated with the first CORESET.
  • the first signaling is transmitted on PDCCH.
  • the first signaling is a PDCCH transmission.
  • the first signaling is DCI (Downlink control information).
  • the first signaling is a DCI
  • the format of the first signaling is DCI format 1_0.
  • the first signaling is directed to a random access response.
  • the first signaling is scrambled by a first RNTI, and the first RNTI is used to monitor a random access response.
  • the first signaling is DCI scrambled by the first RNTI.
  • the first RNTI is an RA_RNTI.
  • the first RNTI is a bit string.
  • the first RNTI is a non-negative integer.
  • the first RNTI is a positive integer.
  • the first RNTI is only used for random access response.
  • the first RNTI is at least used in a random access response.
  • the first RNTI is only used to listen or receive a random access response.
  • the first RNTI is at least used to monitor or receive a random access response.
  • one time-frequency resource among the K time-frequency resources is used to calculate the first RNTI.
  • each time-frequency resource among the K time-frequency resources is used to calculate the first RNTI.
  • any one of the K time-frequency resources is used to calculate the first RNTI.
  • only the first time-frequency resource among the K time-frequency resources is used to calculate the first RNTI.
  • the first signaling is used to schedule PDSCH (Physical downlink shared channel, physical downlink shared channel).
  • PDSCH Physical downlink shared channel, physical downlink shared channel.
  • the first signaling is used to schedule PDSCH, and the PDSCH is used to carry at least a random access response.
  • the first signaling is used to schedule PDSCH, and the PDSCH is used to carry a random access response.
  • the PDSCH scheduled by the first signaling is used to carry at least a random access response.
  • the PDSCH scheduled by the first signaling is used to carry a random access response.
  • the first signaling is used to schedule a random access response for a Preamble sent in at least one of the K1 time-frequency resources.
  • the first signaling is used to schedule a random access response for the first Preamble.
  • the first signaling is used to schedule a random access response for any Preamble sent in the K1 time-frequency resources.
  • the first signaling is used to schedule a random access response for each Preamble sent in the K1 time-frequency resources.
  • the random access response scheduled by the first signaling is one of the first candidate RAR sets.
  • the first candidate RAR set includes a first candidate RAR
  • the first candidate RAR includes a MAC (Medium Access Control, media access control) subheader (subheader) and a MAC RAR
  • the MAC subheader includes the E (Extension) field, the T (Type) field and the RAPID (Random Access Preamble IDentifier) field.
  • the format of a MAC sub-header is the same as Figure 6.1.5-2 of 3GPP TS 38.321.
  • the one MAC sub-header consists of an E field, a T field and a RAPID field; for the meaning of the E field, the T field and the RAPID field, refer to 6.2 of 3GPP TS 38.321 .2 section.
  • the format of the one MAC RAR is the same as Figure 6.2.3-1 of 3GPP TS 38.321.
  • the one MAC RAR includes the Timing Advance Command domain, the UL Grant domain and the Temporary C-RNTI domain; the Timing Advance Command domain, the UL Grant domain and the Temporary C -The meaning of the RNTI domain refers to Section 6.2.3 of 3GPP TS 38.321.
  • the first candidate RAR set includes a second candidate RAR
  • the second candidate RAR only includes one MAC sub-header
  • the one MAC sub-header includes an E field, a T field, R (Reserved) domain, R domain and BI (Backoff Indicator) domain.
  • the format of a MAC sub-header is the same as Figure 6.1.5-1 of 3GPP TS 38.321.
  • the one MAC sub-header consists of an E field, a T field, an R field, an R field and a BI field.
  • the E field, the T field, the R field, the The R domain and the BI domain refer to Section 6.2.2 of 3GPP TS 38.321.
  • the second MAC sub-header includes a BI (Backoff Indicator) field.
  • the BI field includes 3 bits.
  • the BI field includes 4 bits.
  • the BI field includes 5 bits.
  • the first candidate RAR set includes a third candidate RAR
  • the third candidate RAR only includes one MAC subheader
  • the format of the one MAC subheader includes at least an E field, T domain and first domain.
  • one MAC sub-header occupies one byte.
  • one MAC sub-header occupies one octet.
  • one MAC sub-header occupies 8 bits.
  • the E domain reference refers to Section 6.2.2 of 3GPP TS 38.321.
  • the T field is set to 1, and the T field is used to determine that the one MAC sub-header includes a Random Access Preamble ID field.
  • the T field is set to 0, and the T field is used to determine that the one MAC sub-header does not include the Random Access Preamble ID field.
  • the T field is used to indicate whether the one MAC sub-header includes a Random Access Preamble ID field or a Backoff Indicator field.
  • the T field is used to indicate whether the one MAC sub-header includes a Random Access Preamble ID field or the first field.
  • the T field is set to 0, and the T field indicates that the one MAC subheader includes a Backoff Indicator field.
  • the T field is set to 0, and the T field indicates that the one MAC subheader includes the first field.
  • the first field is used to indicate whether to send a Preamble in at least the second time-frequency resource.
  • the first domain is used to determine the content of the first RAR.
  • the first field is used to determine the number of repetitions of the Preamble.
  • the first field is used to determine the number of repetitions of the next Preamble transmission.
  • the first field indicates the number of repetitions of the Preamble.
  • the first field indicates the number of repetitions of Preamble backoff.
  • the first field indicates increasing the number of repetitions of the Preamble.
  • the first field indicates reducing the number of repetitions of the Preamble.
  • the first field indicates the increment of the number of repetitions of the Preamble.
  • the increment is a positive integer.
  • the increment is a negative integer.
  • the increment is zero.
  • the first domain is not reserved.
  • the first domain is not an R domain.
  • the first field occupies 1 bit.
  • the first field occupies 2 bits.
  • the format of a MAC sub-header includes an R field.
  • the format of one MAC sub-header includes an E field, a T field, a first field and an R field.
  • the format of a MAC sub-header includes an E field, a T field, a first field, an R field and a BI field.
  • the format of the one MAC sub-header does not include the R field.
  • the format of a MAC sub-header includes an E field, a T field and a first field.
  • the format of a MAC sub-header includes an E field, a T field, a first field and a BI field.
  • the format of a MAC sub-header includes a BI field.
  • the format of a MAC sub-header includes an E field, a T field, a first field and a BI field.
  • the format of a MAC sub-header includes an E field, a T field, a first field, an R field and a BI field.
  • the BI field indicates the overload status of the cell.
  • the BI field occupies the X1 bits.
  • the BI field is located in the lowest X1 bits of the one MAC subheader.
  • the first field is at least one bit located after the T field and before the BI field.
  • the format of the one MAC sub-header does not include a BI field.
  • the format of a MAC sub-header includes an E field, a T field and a first field.
  • the format of one MAC sub-header includes an E field, a T field, a first field and an R field.
  • the first field is the 1st bit immediately following the T field.
  • the first field is the second bit immediately following the T field.
  • the first field is 2 bits immediately following the T field.
  • the first candidate RAR set includes the first candidate RAR and the second candidate RAR, and the first candidate RAR set does not include the third candidate RAR.
  • the first candidate RAR set includes the first candidate RAR and the third candidate RAR, and the first candidate RAR set does not include the second candidate RAR.
  • the K1 is a positive integer greater than 1 and is used to determine that the second candidate RAR is not included in the first candidate RAR set.
  • the "determining K1" includes: determining the K1 according to the second RAR.
  • the second RAR is received before the first Preamble is sent.
  • the first domain in the second RAR is used to determine the K1.
  • the format of the second RAR is the format of the third candidate RAR.
  • the first node determines the K1 according to the first domain in the second RAR.
  • the first node determines the K1 by looking up a table according to the first domain in the second RAR.
  • any two time-frequency resources among the K1 time-frequency resources do not overlap in the time domain.
  • any two time-frequency resources among the K1 time-frequency resources are not continuous in the time domain.
  • any two time-frequency resources among the K1 time-frequency resources are continuous in the time domain.
  • At least two time-frequency resources among the K1 time-frequency resources do not overlap in the time domain.
  • each time-frequency resource among the K1 time-frequency resources includes a time-domain resource and a frequency-domain resource.
  • the frequency domain resource occupied by each of the K1 time-frequency resources refers to an uplink carrier.
  • the carrier refers to a NUL (Normal Uplink) carrier.
  • the carrier refers to a SUL (Supplementary Uplink) carrier.
  • the frequency domain resource occupied by each of the K1 time-frequency resources includes a center frequency.
  • the frequency domain resources occupied by each of the K1 time-frequency resources include frequency and bandwidth.
  • any two time-frequency resources among the K1 time-frequency resources overlap in the frequency domain.
  • any two time-frequency resources among the K1 time-frequency resources do not overlap in the frequency domain.
  • At least 2 of the K1 time-frequency resources do not overlap in the frequency domain.
  • any two time-frequency resources among the K1 time-frequency resources occupy the same frequency domain resources.
  • any two time-frequency resources among the K1 time-frequency resources occupy different frequency domain resources.
  • At least 2 of the K1 time-frequency resources occupy the same frequency domain resources.
  • At least two time-frequency resources occupy different frequency domain resources.
  • each time-frequency resource among the K1 time-frequency resources is a PRACH opportunity in the time domain.
  • each of the K1 time-frequency resources is an uplink carrier in the frequency domain.
  • each time-frequency resource among the K1 time-frequency resources is used to send Preamble.
  • each time-frequency resource among the K1 time-frequency resources is a PRACH opportunity.
  • Preamble is sent in each of the K1 time-frequency resources.
  • sending the Preamble in each of the K1 time-frequency resources has nothing to do with the monitoring of the first signaling in the first time window.
  • sending the Preamble in each of the K1 time-frequency resources has nothing to do with the content of the first RAR.
  • Preamble is not sent in at least one time-frequency resource among the K1 time-frequency resources.
  • the Preamble sent in any two time-frequency resources among the K1 time-frequency resources is the same.
  • the Preambles sent in any two time-frequency resources among the K1 time-frequency resources are different.
  • the Preamble sent in the time-frequency resource among the K1 time-frequency resources is selected by the UE.
  • the start time of each time-frequency resource among the K1 time-frequency resources refers to the start time of each time-frequency resource in the time domain.
  • the starting time of each time-frequency resource among the K1 time-frequency resources is only related to the time domain.
  • the starting time of each time-frequency resource among the K1 time-frequency resources refers to the first symbol used to send Preamble in each of the time-frequency resources.
  • the cut-off time of each time-frequency resource among the K1 time-frequency resources refers to the cut-off time of each time-frequency resource in the time domain.
  • the cut-off time of each time-frequency resource among the K1 time-frequency resources is only related to the time domain.
  • the cut-off time of each time-frequency resource among the K1 time-frequency resources refers to the last symbol used to send Preamble in each of the time-frequency resources.
  • a Preamble is a Random Access Preamble.
  • a Preamble is a sequence.
  • a Preamble is a ZC sequence.
  • a Preamble is identified by ra-PreambleIndex.
  • a Preamble is for Msg1 (Message 1, Message 1).
  • the meaning of "any two of the K1 time-frequency resources do not overlap in the time domain" includes: before the Preamble sent by one time-frequency resource ends, before the Preamble sent by another time-frequency resource ends, Preamble is not sent for frequency resources.
  • the meaning of "any two time-frequency resources among the K1 time-frequency resources do not overlap in the time domain" includes: Any moment does not belong to a time-frequency resource other than any of the K1 time-frequency resources.
  • the first time-frequency resource is the time-frequency resource with the earliest start time among the K1 time-frequency resources.
  • the first time-frequency resource is the time-frequency resource with the earliest deadline among the K1 time-frequency resources.
  • the first moment is related to the first CSS.
  • the first moment is related to the first CORESET.
  • the first moment is related to the first PDCCH opportunity.
  • the first moment is the first PDCCH opportunity.
  • the first time is related to at least the former of the cut-off time of the first time-frequency resource or the first CSS or the first CORESET.
  • the first time is related to the cut-off time of the first time-frequency resource, the first CSS, and the first CORESET.
  • the first time is related to both the cut-off time of the first time-frequency resource and the first PDCCH opportunity.
  • the first time is the cut-off time of the first time-frequency resource.
  • the first moment is the first symbol of the earliest CORESET for receiving the PDCCH for the first CSS after the cut-off moment of the first time-frequency resource.
  • the first moment is the M1th symbol of the first CORESET, and M1 is greater than 1.
  • the first moment is the first symbol of the first CORESET.
  • the first PDCCH opportunity is the first PDCCH opportunity (the first PDCCH occasion) after the cut-off time of the first time-frequency resource.
  • the first PDCCH opportunity is related to the first CSS.
  • the first PDCCH opportunity is related to the first CORESET.
  • the first PDCCH opportunity is related to the first CSS and the first CORESET.
  • the first PDCCH opportunity is determined according to the frame structure.
  • the first PDCCH opportunity is determined according to RRC configuration.
  • the first PDCCH opportunity is preconfigured.
  • the first PDCCH opportunity is predefined.
  • the first CSS is a search space to which the first signaling belongs.
  • the first CORESET is associated with the first CSS.
  • the first CORESET is a CORESET for receiving the PDCCH for the first CSS after the cut-off time of the first time-frequency resource.
  • the first CORESET is the earliest CORESET for receiving the PDCCH for the first CSS after the cut-off time of the first time-frequency resource.
  • the first CORESET is the CORESET to which the first signaling belongs.
  • the cut-off time of the first time-frequency resource refers to the last symbol of the PRACH opportunity corresponding to the PRACH transmission of the first Preamble.
  • the cut-off time of the first time-frequency resource refers to the time when the first Preamble transmission ends.
  • the first time is a cut-off time of the first time-frequency resource or a time after the cut-off time of the first time-frequency resource.
  • the first time is the cut-off time of the first time-frequency resource.
  • the first time is after the expiration time of the first time-frequency resource.
  • the first time is before the expiration time of the second time-frequency resource.
  • the first time is the first PDCCH opportunity after the cut-off time of the first time-frequency resource.
  • the first time is the P1-th symbol after the cut-off time of the first time-frequency resource.
  • the first time is the P1-th time slot after the cut-off time of the first time-frequency resource.
  • P1 is predefined.
  • the P1 is determined by the first PDCCH opportunity after the cut-off time of the first time-frequency resource.
  • P1 is a positive integer.
  • P1 is a non-negative integer.
  • the duration length of any two time-frequency resources among the K1 time-frequency resources is equal.
  • the duration lengths of any two time-frequency resources among the K1 time-frequency resources are not equal.
  • At least two time-frequency resources among the K1 time-frequency resources have the same duration length.
  • At least two time-frequency resources among the K1 time-frequency resources have unequal duration lengths.
  • the "the second time-frequency resource is the latest time-frequency resource among the K1 time-frequency resources" includes: the second time-frequency resource is the latest time-frequency resource among the K1 time-frequency resources.
  • a time-frequency resource with the latest start time includes: the second time-frequency resource is the latest time-frequency resource among the K1 time-frequency resources.
  • the "the second time-frequency resource is the latest time-frequency resource among the K1 time-frequency resources" includes: the second time-frequency resource is the latest time-frequency resource among the K1 time-frequency resources.
  • a time-frequency resource with the latest deadline includes: the second time-frequency resource is the latest time-frequency resource among the K1 time-frequency resources.
  • the first time window is stopped before the expiration moment of the first time window.
  • the first time window is not stopped before the expiration moment of the first time window.
  • the first time window is not considered expired before the expiration time of the second time-frequency resource.
  • the first time window has not expired before the expiration time of the second time-frequency resource.
  • the first time window is not restarted.
  • the first time window is restarted.
  • the expiration moment of the first time window is related to the K1.
  • the expiration moment of the first time window has nothing to do with K1.
  • the K1 is used to determine the expiration moment of the first time window.
  • the expiration moment of the first time window is related to the first time length.
  • the expiration moment of the first time window is only related to the first time length.
  • the expiration moment of the first time window is related to the first time offset.
  • the expiration time of the first time window is related to the end time of the second time-frequency resource.
  • the expiration moment of the first time window is related to at least one of the K1 or the first time length or the first time offset or the end moment of the second time-frequency resource.
  • the maximum value of the first time window is the first time length.
  • the first time length is used to determine the expiration moment of the first time window.
  • the moment after the first time length is the expiration moment of the first time window.
  • the moment after the first time length is the expiration moment of the first time window.
  • the moment after the first time length is the expiration moment of the first time window.
  • an RRC message is used to configure the first time length.
  • an RRC IE is used to configure the first length of time.
  • an RRC domain is used to configure the first time length.
  • RACH-ConfigCommon is used to configure the first time length.
  • BeamFailureRecoveryConfig is used to configure the first time length.
  • the maximum value of the first time window is the second time length, and the second time length is not equal to the first time length.
  • the second time length is used to determine the expiration moment of the first time window.
  • the moment after the first time length is the expiration moment of the first time window.
  • the moment after the second time length is the expiration moment of the first time window, and the second time length is not equal to the first time length.
  • the second time length is related to the first time length, the first time offset and the K1.
  • the second time length is equal to (the first time length + the first time offset ⁇ the K1).
  • the second time length is equal to (the first time length + the first time offset ⁇ (the K1-1)).
  • the second time length is related to the first time length and a first time offset.
  • the second time length is equal to (the first time length + the first time offset).
  • the first time offset is specific to PRACH coverage enhancement.
  • the unit of the first time offset is the same as the unit of the first time length.
  • the first time offset is related to the K1.
  • the first time offset is related to the end time of the first time-frequency resource and the end time of the second time-frequency resource.
  • the first time offset is between the first PDCCH opportunity after the end time of the first time-frequency resource and the first PDCCH opportunity after the end time of the second time-frequency resource.
  • the time intervals between are equal.
  • the first time offset is related to the duration of one of the K1 time-frequency resources in the time domain.
  • the first time offset is equal to the duration of one of the K1 time-frequency resources in the time domain.
  • an RRC message is used to configure the first time offset.
  • an RRC IE is used to configure the first time offset.
  • an RRC domain is used to configure the first time offset.
  • RACH-ConfigCommon is used to configure the first time offset.
  • BeamFailureRecoveryConfig is used to configure the first time offset.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in Figure 2.
  • Figure 2 illustrates the network architecture 200 of the 5G NR (New Radio)/LTE (Long-Term Evolution)/LTE-A (Long-Term Evolution Advanced) system.
  • 5G NR/LTE The LTE-A network architecture 200 may be called 5GS (5G System)/EPS (Evolved Packet System) 200 or some other suitable term.
  • 5GS/EPS 200 includes UE (User Equipment) 201, RAN (Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home At least one of Subscriber Server/UDM (Unified Data Management) 220 and Internet service 230.
  • 5GS/EPS can interconnect with other access networks, but these entities/interfaces are not shown for simplicity. As shown, 5GS/EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks that provide circuit-switched services or other cellular networks.
  • the RAN includes node 203 and other nodes 204.
  • Node 203 provides user and control plane protocol termination towards UE 201.
  • Node 203 may connect to other nodes 204 via the Xn interface (eg, backhaul)/X2 interface.
  • Node 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmit Receive Node), or some other suitable terminology.
  • BSS Basic Service Set
  • ESS Extended Service Set
  • TRP Transmit Receive Node
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radio, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radio non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • Node 203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management field)/SMF (Session Management Function, session management function )211, other MME/AMF/SMF214, S-GW (Service Gateway, service gateway)/UPF (User Plane Function, user plane function) 212 and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210. Basically, MME/AMF/SMF211 provides bearer and connection management.
  • All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213.
  • P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching streaming services.
  • the UE201 corresponds to the first node in this application.
  • the UE201 is a user equipment (User Equipment, UE).
  • UE User Equipment
  • the UE201 is a base station equipment (BaseStation, BS).
  • BaseStation BaseStation, BS
  • the UE201 is a relay device.
  • the node 203 corresponds to the second node in this application.
  • the node 203 is a base station device.
  • the node 203 is a user equipment.
  • the node 203 is a relay device.
  • the node 203 is a gateway.
  • the UE 201 is a user equipment
  • the node 203 is a base station equipment.
  • the user equipment supports transmission of a terrestrial network (Non-Terrestrial Network, NTN).
  • NTN Non-Terrestrial Network
  • the user equipment supports transmission of non-terrestrial network (Terrestrial Network, terrestrial network).
  • the user equipment supports transmission in a large delay difference network.
  • the user equipment supports dual connection (Dual Connection, DC) transmission.
  • Dual Connection DC
  • the user equipment includes an aircraft.
  • the user equipment includes a vehicle-mounted terminal.
  • the user equipment includes a ship.
  • the user equipment includes an Internet of Things terminal.
  • the user equipment includes a terminal of the Industrial Internet of Things.
  • the user equipment includes equipment that supports low-latency and high-reliability transmission.
  • the user equipment includes a test device.
  • the user equipment includes a signaling tester.
  • the base station equipment includes a base transceiver station (Base Transceiver Station, BTS).
  • BTS Base Transceiver Station
  • the base station equipment includes a Node B (NodeB, NB).
  • NodeB NodeB, NB
  • the base station equipment includes a gNB.
  • the base station equipment includes an eNB.
  • the base station equipment includes ng-eNB.
  • the base station equipment includes en-gNB.
  • the base station equipment supports transmission in non-terrestrial networks.
  • the base station equipment supports transmission in a large delay difference network.
  • the base station equipment supports transmission of terrestrial networks.
  • the base station equipment includes a macro cellular (Marco Cellular) base station.
  • a macro cellular (Marco Cellular) base station includes a macro cellular (Marco Cellular) base station.
  • the base station equipment includes a micro cell (Micro Cell) base station.
  • Micro Cell Micro Cell
  • the base station equipment includes a Pico Cell base station.
  • the base station equipment includes a home base station (Femtocell).
  • Femtocell home base station
  • the base station equipment includes a base station equipment that supports a large delay difference.
  • the base station equipment includes a flight platform equipment.
  • the base station equipment includes satellite equipment.
  • the base station equipment includes a TRP (Transmitter Receiver Point, transmitting and receiving node).
  • TRP Transmitter Receiver Point, transmitting and receiving node
  • the base station equipment includes a CU (Centralized Unit).
  • CU Centralized Unit
  • the base station equipment includes a DU (Distributed Unit).
  • the base station equipment includes testing equipment.
  • the base station equipment includes a signaling tester.
  • the base station equipment includes an IAB (Integrated Access and Backhaul)-node.
  • IAB Integrated Access and Backhaul
  • the base station equipment includes an IAB-donor.
  • the base station equipment includes IAB-donor-CU.
  • the base station equipment includes IAB-donor-DU.
  • the base station equipment includes IAB-DU.
  • the base station equipment includes IAB-MT.
  • the relay device includes relay.
  • the relay device includes L3relay.
  • the relay device includes L2relay.
  • the relay device includes a router.
  • the relay device includes a switch.
  • the relay device includes user equipment.
  • the relay device includes a base station device.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300.
  • FIG. 3 shows the radio protocol architecture for the control plane 300 with three layers: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above PHY301, including MAC (Medium Access Control, media access control) sub-layer 302, RLC (Radio Link Control, wireless link layer control protocol) sub-layer 303 and PDCP (Packet Data Convergence) Protocol (Packet Data Convergence Protocol) sublayer 304.
  • MAC Medium Access Control, media access control
  • RLC Radio Link Control, wireless link layer control protocol
  • PDCP Packet Data Convergence Protocol
  • PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides cross-location support.
  • RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ (Hybrid Automatic Repeat Request, Hybrid Automatic Repeat Request).
  • MAC sublayer 302 provides multiplexing between logical and transport channels. The MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell. MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and configuring lower layers using RRC signaling.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture in the user plane 350 is for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, and the PDCP sublayer 354 in the L2 layer 355.
  • the RLC sublayer 353 and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides header compression for upper layer packets to reduce radio Transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • DRB Data Radio Bearer
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the first Preamble in this application is generated from the PHY301 or PHY351.
  • the second Preamble in this application is generated from the PHY301 or PHY351.
  • the first signaling in this application is generated in the PHY301 or PHY351.
  • the first RAR in this application is generated from the RRC 306.
  • the first RAR in this application is generated from the MAC302 or MAC352.
  • the first RAR in this application is generated from the PHY301 or PHY351.
  • the third message in this application is generated in the RRC306.
  • the third message in this application is generated by the MAC302 or MAC352.
  • the third message in this application is generated from the PHY301 or PHY351.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in the access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and an antenna 420.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and radio resource allocation to the first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer). Transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 410, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M-phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for M-phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams. Transmit processor 416 then maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the first communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial stream that is the destination. The symbols on each spatial stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover upper layer data and control signals transmitted by the second communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 that stores program code and data. Memory 460 may be referred to as computer-readable media.
  • the controller/processor 459 In transmission from the second communication device 410 to the second communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements headers based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 In transmission from the first communications device 450 to the second communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 includes: at least one processor and at least one memory, the at least one The memory includes computer program code; the at least one memory and the computer program code are configured for use with the at least one processor, the first communication device 450 at least: determines K1, the K1 is a positive value greater than 1 Integer; at the first moment, start the first time window; monitor the first signaling in the first time window, and the first signaling is used to schedule the random access response; in the K1 time-frequency resources At least the first time-frequency resource sends the first Preamble, and the first time-frequency resource is the earliest time-frequency resource among the K1 time-frequency resources; wherein the first time and at least the first time-frequency resource related to the cut-off time; the first time is not earlier than the cut-off time of the first time-frequency resource and earlier than the cut-off time of the second time-frequency resource, and the second time-frequency resource is the K1 time-frequency resources The latest time-frequency resource among the time-frequency resources; the expiration
  • the first communication device 450 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: determining K1 , the K1 is a positive integer greater than 1; at the first moment, start the first time window; monitor the first signaling in the first time window, and the first signaling is used to schedule random access responses ;Send the first Preamble in at least the first time-frequency resource among the K1 time-frequency resources, and the first time-frequency resource is the earliest time-frequency resource among the K1 time-frequency resources; wherein, the first time-frequency resource It is related to at least the cut-off time of the first time-frequency resource; the first time is not earlier than the cut-off time of the first time-frequency resource and earlier than the cut-off time of the second time-frequency resource, and the second time-frequency The resource is the latest time-frequency resource among the K1 time-frequency resources; the expiration time of the first time window is later than the expiration time of the second time-
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the second communication device 410 at least: receives the first Preamble; wherein K1 is determined by the sender of the first Preamble, and the K1 is a positive integer greater than 1; at the first moment, the first time window is determined by the The sender of the first Preamble starts; in the first time window, the first signaling is monitored by the sender of the first Preamble, and the first signaling is used to schedule a random access response; the first The Preamble is sent by the sender of the first Preamble in at least the first time-frequency resource among the K1 time-frequency resources, and the first time-frequency resource is the earliest time-frequency resource among the K1 time-frequency resources; so The first time is related to at least the cut-off time of the first time-frequency resource; the first time is not earlier than the
  • the second communication device 410 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: receiving a third A Preamble; wherein K1 is determined by the sender of the first Preamble, and the K1 is a positive integer greater than 1; at the first moment, the first time window is started by the sender of the first Preamble; in the The first signaling in the first time window is monitored by the sender of the first Preamble, and the first signaling is used to schedule a random access response; the first Preamble is monitored by the sender of the first Preamble in At least the first time-frequency resource among the K1 time-frequency resources is sent, and the first time-frequency resource is the earliest time-frequency resource among the K1 time-frequency resources; the first time is the same as at least the first time-frequency resource.
  • the first time is related to the cut-off time of the frequency resource; the first time is not earlier than the cut-off time of the first time-frequency resource and earlier than the cut-off time of the second time-frequency resource, and the second time-frequency resource is the K1 time-frequency resource.
  • any two time-frequency resources among the K1 time-frequency resources do not overlap in the time domain.
  • At least two time-frequency resources among the K1 time-frequency resources do not overlap in the time domain.
  • At least one of the antenna 452, the receiver 454, the receiving processor 456, and the controller/processor 459 is used to receive the first signaling.
  • At least one of the antenna 420, the transmitter 418, the transmission processor 416, and the controller/processor 475 is used to send the first signaling.
  • At least one of the antenna 452, the receiver 454, the receiving processor 456, and the controller/processor 459 is used to receive the first RAR.
  • At least one of the antenna 420, the transmitter 418, the transmission processor 416, and the controller/processor 475 is used to transmit the first RAR.
  • At least one of the antenna 452, the transmitter 454, the transmission processor 468, and the controller/processor 459 is used to send the first Preamble.
  • the antenna 420, the receiver 418, the receiving processor 470, the controller/processor 475 At least one of is used to receive the first Preamble.
  • At least one of the antenna 452, the transmitter 454, the transmission processor 468, and the controller/processor 459 is used to send the second Preamble.
  • At least one of the antenna 420, the receiver 418, the receiving processor 470, and the controller/processor 475 is used to receive the second Preamble.
  • At least one of the antenna 452, the transmitter 454, the transmission processor 468, and the controller/processor 459 is used to send the third message.
  • At least one of the antenna 420, the receiver 418, the receiving processor 470, and the controller/processor 475 is used to receive the third message.
  • the first communication device 450 corresponds to the first node in this application.
  • the first communication device 450 is a user equipment.
  • the first communication device 450 is a base station device (gNB/eNB/ng-eNB).
  • the first communication device 450 is a relay device.
  • the second communication device 410 corresponds to the second node in this application.
  • the second communication device 410 is a user equipment.
  • the second communication device 410 is a base station device (gNB/eNB/ng-eNB).
  • the second communication device 410 is a relay device.
  • Embodiment 5 illustrates a wireless signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 5 . It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S5101 determine K1, which is a positive integer greater than 1; in step S5102, send the first Preamble in at least the first time-frequency resource among the K1 time-frequency resources; in step In S5103, at the first moment, start the first time window; in step S5104, monitor the first signaling in the first time window, and the first signaling is used to schedule the random access response; in step S5104 In step S5105, the first signaling is received; in step S5106, the first RAR is received according to the schedule of the first signaling; in step S5107, it is determined that the first time window has expired.
  • step S5201 the first Preamble is received; in step S5202, the first signaling is sent; in step S5203, the first RAR is sent.
  • any two time-frequency resources among the K1 time-frequency resources do not overlap in the time domain, and the first time-frequency resource is the earliest time-frequency resource among the K1 time-frequency resources. resource; the first time is related to at least the cut-off time of the first time-frequency resource; the first time is not earlier than the cut-off time of the first time-frequency resource and earlier than the cut-off time of the second time-frequency resource , the second time-frequency resource is the latest time-frequency resource among the K1 time-frequency resources; the expiration time of the first time window is later than the expiration time of the second time-frequency resource.
  • the first node U01 is a user equipment.
  • the first node U01 is a base station device.
  • the first node U01 is a relay device.
  • the second node N02 is a base station device.
  • the second node N02 is a user equipment.
  • the second node N02 is a relay device.
  • the first node U01 is a user equipment
  • the second node N02 is a base station equipment.
  • the first node U01 is a user equipment
  • the second node N02 is a relay device.
  • the first node U01 is a user equipment
  • the second node N02 is a user equipment
  • the first node U01 is a base station equipment
  • the second node N02 is a base station equipment
  • the first node U01 is a relay device
  • the second node N02 is a base station device.
  • the first node U01 and the second node N02 are connected through a uu port.
  • the first node U01 and the second node N02 are connected through an Xn port.
  • the first node U01 and the second node N02 are connected through an X2 port.
  • the first node U01 and the second node N02 are connected through a PC5 port.
  • the first node U01 and the second node N02 are connected through an air interface.
  • the first time window is running.
  • the first signaling is received during the operation of the first time window.
  • the first time window has not expired within the time interval from the first moment to the moment when the first signaling is received.
  • the first time window does not reach 0; wherein the first time window counts down.
  • the first time window does not reach the maximum value of the first time window; wherein, The first time window is timing.
  • the first RAR is received according to the scheduling information of the first signaling.
  • the first RAR is scheduled by the first signaling.
  • the first RAR is a random access response.
  • the first RAR is Random Access Response.
  • the first RAR is MAC layer signaling.
  • the first RAR is the first candidate RAR.
  • the format of the first RAR is the same as the format of the first candidate RAR.
  • the first RAR is the second candidate RAR.
  • the format of the first RAR and the format of the second candidate RAR are the same.
  • the first RAR is the third candidate RAR.
  • the format of the first RAR and the format of the third candidate RAR are the same.
  • the first RAR is a candidate RAR in the first candidate RAR set.
  • the format of the first RAR is the same as the format of a candidate RAR in the first candidate RAR set.
  • the first RAR is the first candidate RAR, and the first RAR includes a RAPID field, a Random Access Preamble identifier in the RAPID field and at least one time-frequency in K1 time-frequency resources.
  • the identifier of the Preamble sent by the resource matches.
  • the Random Access Preamble identifier in the RAPID field and the identity match of the Preamble sent in at least one time-frequency resource among the K1 time-frequency resources are used to determine whether the first RAR is Response to the Preamble sent in the K1 time-frequency resources.
  • the Random Access Preamble identifier in the RAPID field matches the identifier of the Preamble sent in one of the K1 time-frequency resources.
  • the Random Access Preamble identifier in the RAPID field matches the identifier of the Preamble sent in each of the K1 time-frequency resources.
  • the Random Access Preamble identifier in the RAPID field matches the identifier of the Preamble sent in any one of the K1 time-frequency resources.
  • the Random Access Preamble identifier in the RAPID field matches the identifier of the Preamble sent by the first time-frequency resource.
  • the identifier of the Preamble is ra-PreambleIndex.
  • the identifier of the Preamble is PREAMBLE_INDEX.
  • the identifier of the Preamble is used to indicate the Preamble.
  • the identities of the Preambles sent in at least one of the K1 time-frequency resources are all equal.
  • the identity of the Preamble sent in at least one of the K1 time-frequency resources is not equal.
  • At least two Preamble identifiers sent in at least one of the K1 time-frequency resources are equal.
  • the identifier of the Preamble sent in at least one of the K1 time-frequency resources is At least 2 are not equal.
  • the matching means the same.
  • matching means equal.
  • matching means correlation
  • matching means corresponding.
  • the first RAR is the first candidate RAR and includes: the first RAR includes a RAPID field, the Random Access Preamble identifier in the RAPID field and at least one of the K1 time-frequency resources.
  • the identifier of the Preamble sent by the frequency resource matches.
  • the first RAR is the first candidate RAR, and the first RAR includes a RAPID field, a Random Access Preamble identifier in the RAPID field and at least one time-frequency in K1 time-frequency resources.
  • the identifier of the Preamble sent by the resource does not match.
  • the Random Access Preamble identifier in the RAPID field and the PREAMBLE_INDEX of the Preamble sent in at least one of the K1 time-frequency resources are used to determine the first RAR. It is not a response to the Preamble sent in the K1 time-frequency resources.
  • the Random Access Preamble identifier in the RAPID field does not match the PREAMBLE_INDEX of the Preamble sent in one of the K1 time-frequency resources.
  • the Random Access Preamble identifier in the RAPID field does not match the PREAMBLE_INDEX of the Preamble sent in each of the K1 time-frequency resources.
  • the Random Access Preamble identifier in the RAPID field does not match the PREAMBLE_INDEX of the Preamble sent in any one of the K1 time-frequency resources.
  • the Random Access Preamble identifier in the RAPID field does not match the PREAMBLE_INDEX of the Preamble sent by the first time-frequency resource.
  • the first RAR is the second candidate RAR, and the first RAR includes a Backoff Indicator field.
  • the first RAR being the second candidate RAR includes: the first RAR includes a Backoff Indicator field.
  • the first RAR and the second candidate RAR are used to determine that the first RAR includes a Backoff Indicator field.
  • the first RAR is the third candidate RAR, and the first RAR includes the first domain.
  • the first RAR being the third candidate RAR includes: the first RAR includes the first domain.
  • the first RAR is the third candidate RAR used to determine that the first RAR includes the first domain.
  • the first RAR includes a RAPID field and the Random Access Preamble identifier in the RAPID field and at least one time-frequency resource among the K1 time-frequency resources If the identifier of the sent Preamble matches, it is considered that the random access response is successfully received.
  • the random access response is considered successfully received only when the identifier of the Preamble sent by the resource matches.
  • the first RAR includes a RAPID field and the Random Access Preamble identifier in the RAPID field and at least one time-frequency resource among the K1 time-frequency resources
  • the PREAMBLE_INDEX of the sent Preamble does not match, and the random access response is not considered to be received successfully.
  • the random access response is not considered to be received successfully.
  • the random access response is not considered to be received successfully.
  • the first time window is stopped.
  • the first time window may be stopped.
  • the first time window may not be stopped.
  • the monitoring for the first signaling is stopped.
  • the dashed box F5.1 is optional.
  • the dotted box F5.1 exists.
  • the dotted box F5.1 does not exist.
  • step S5107 is optional.
  • step S5107 exists.
  • step S5107 does not exist.
  • the dotted box F5.1 exists, and the step S5107 does not exist.
  • the first time window is stopped before the first time window expires.
  • the dotted box F5.1 does not exist, and the step S5107 exists.
  • both the dotted box F5.1 and the step S5107 exist.
  • step S5103 precedes step S5104.
  • step S5103 follows step S5104.
  • Embodiment 6 illustrates a wireless signal transmission flow chart according to another embodiment of the present application, as shown in FIG. 6 . It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S6101 For the first node U01 , in step S6101, the first RAR is received; in step S6102, as a response to the first RAR being successfully received in the first time window, a third message is sent.
  • step S6201 the third message is received.
  • the K1 time-frequency resources are respectively associated with at least two downlink RS resources
  • the third message is associated with a target downlink RS resource
  • the target downlink RS resource is the at least two downlink RS resources.
  • One of the RS resources; the CORESET or search space to which the first signaling belongs is used to determine the target downlink RS resource.
  • the first RAR is the first candidate RAR.
  • the format of the first RAR is the same as the format of the first candidate RAR.
  • the MAC subheader in the first RAR includes a RAPID field, and the Random Access Preamble identifier in the RAPID field matches the identifier of the Preamble sent in at least one time-frequency resource among the K1 time-frequency resources.
  • the first RAR is successfully received in the first time window and the first RAR includes a RAPID field and the Random Access Preamble identifier in the RAPID field is in K1 time-frequency resources If the identity of the Preamble sent by at least one time-frequency resource matches the response, the third message is sent.
  • the MAC RAR in the first RAR indicates the second RNTI.
  • the Temporary C-RNTI field in the MAC RAR in the first RAR indicates the second RNTI.
  • the second RNTI is a temporary identity used for random access.
  • the second RNTI is a TC-RNTI.
  • the second RNTI is a Temporary C-RNTI.
  • the Timing Advance Command field in the MAC RAR in the first RAR indicates TA .
  • the UL Grant field in the MAC RAR in the first RAR indicates uplink resources.
  • the third message is Msg3.
  • the third message is sent on PUSCH.
  • the third message is scrambled by the second RNTI.
  • the third message is sent on the uplink resource indicated by the first RAR.
  • the time when the third message is sent is related to the TA indicated by the first RAR.
  • the third message includes the C-RNTI of the first node U01.
  • the third message includes a C-RNTI MAC CE
  • the C-RNTI MAC CE includes the C-RNTI of the first node U01.
  • the third message includes a CCCH (Common Control Channel) SDU (Service data unit (service data unit), the one CCCH SDU includes the I-RNTI of the first node U01.
  • CCCH Common Control Channel
  • SDU Service data unit (service data unit)
  • the one CCCH SDU includes the I-RNTI of the first node U01.
  • the third message is sent according to the target downlink RS resource.
  • the third message is sent according to the spatial parameters of the target downlink RS resource.
  • the K1 time-frequency resources are respectively associated with at least two downlink RS resources.
  • the K1 time-frequency resources are respectively associated with K1 downlink RS resources.
  • the at least two downlink RS resources are K1 downlink RS resources.
  • the at least two downlink RS resources are no more than K1 downlink RS resources.
  • each RS resource in the at least two downlink RS resources is an SSB.
  • each RS resource in the at least two downlink RS resources is a CSI-RS.
  • each RS resource in the at least two downlink RS resources is one of SSB or CSI-RS.
  • the CORESET to which the first signaling belongs is associated with a CORESET index.
  • the CORESET to which the first signaling belongs is the first CORESET.
  • the CORESET to which the first signaling belongs includes the first CORESET.
  • the CORESET to which the first signaling belongs includes the second CORESET.
  • the CORESET to which the first signaling belongs includes at least one CORESET.
  • the CORESET to which the first signaling belongs is associated with the first CSS.
  • the CORESET to which the first signaling belongs is associated with the second CSS.
  • the search space to which the first signaling belongs is an index of a search space.
  • the search space to which the first signaling belongs is the first CSS.
  • the search space to which the first signaling belongs includes the first CSS.
  • the search space to which the first signaling belongs includes the second CSS.
  • the search space to which the first signaling belongs includes at least one CSS.
  • the search space to which the first signaling belongs includes at least one search space.
  • At least one of the CORESET or search space to which the first signaling belongs is used to determine the target downlink RS resource.
  • the CORESET to which the first signaling belongs or the downlink RS resource associated with the search space is the target downlink RS resource.
  • the spatial parameter used to receive the first signaling and the target downlink RS resource are QCL (Quasi co-location).
  • the spatial parameter used to receive the first signaling is the same as the spatial parameter of the target downlink RS resource.
  • the spatial parameters of the target downlink RS resources are determined according to the spatial parameters of the first signaling.
  • the spatial parameters of the target downlink RS resource are determined according to the spatial parameters of the first signaling, and the spatial parameters of the first signaling include CORESET or search space to which the first signaling belongs. At least one.
  • the spatial parameter includes CORESET.
  • the spatial parameters include a search space.
  • the spatial parameters include QCL types.
  • the spatial parameters include transmit beams.
  • the spatial parameters include receiving beams.
  • Embodiment 7 illustrates a wireless signal transmission flow chart according to yet another embodiment of the present application, as shown in FIG. 7 . It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S7101 receive the first RAR; in step S7102, determine whether to send Preamble in at least the second time-frequency resource according to the content of the first RAR.
  • the first signaling is received before the first RAR is received.
  • whether to send Preamble in at least the second time-frequency resource is related to the content of the first RAR.
  • the starting time in the K1 time-frequency resources is determined according to the content of the first RAR. Whether to send Preamble in any time-frequency resource after being received.
  • the MAC subheader in the first RAR is used to determine the content of the first RAR.
  • the format of the first RAR is used to determine the content of the first RAR.
  • the first RAR indicates whether to send Preamble in at least the second time-frequency resource.
  • the first RAR explicitly indicates whether to send Preamble in at least the second time-frequency resource.
  • the first RAR implicitly indicates whether to send Preamble in at least the second time-frequency resource.
  • Preamble is not sent in at least the second time-frequency resource.
  • the first RAR includes a RAPID field and the Random Access Preamble identifier in the RAPID field matches the identifier of the Preamble sent in at least one of the K1 time-frequency resources, in at least the Preamble is not sent in the second time-frequency resource.
  • the first RAR includes a RAPID field and the Random Access Preamble identifier in the RAPID field matches the identifier of the Preamble sent in at least one of the K1 time-frequency resources, in the K1
  • the Preamble is not sent in any time-frequency resource after the first RAR is received at the starting time in the time-frequency resources.
  • the Preamble is sent to the first candidate RAR whose identifier matches the identifier of the Preamble sent in at least one of the K1 time-frequency resources.
  • a Preamble is sent.
  • Preamble is not sent in at least the second time-frequency resource.
  • the starting time in the K1 time-frequency resources is after the first RAR is received. Preamble is not sent in any time-frequency resource.
  • the Preamble is not sent in at least the second time-frequency resource.
  • the starting time in the K1 time-frequency resources is at the first Preamble is not sent in any time-frequency resource after the RAR is received.
  • the first RAR is the third candidate RAR, and the first domain indicates not to send a Preamble in at least the second time-frequency resource, in at least the second time-frequency resource Preamble is not sent.
  • the first RAR is the third candidate RAR, and the first domain indicates a starting time in the K1 time-frequency resources at any time after the first RAR is received
  • the Preamble is not sent in one time-frequency resource, and the Preamble is not sent in any time-frequency resource after the first RAR is received at the starting time among the K1 time-frequency resources.
  • a Preamble is sent in at least the second time-frequency resource.
  • a Preamble is sent in at least the second time-frequency resource.
  • a Preamble is sent in at least the second time-frequency resource.
  • the first RAR is the third candidate RAR and the first domain does not indicate reducing the number of repetitions of the Preamble, send the Preamble in at least the second time-frequency resource.
  • the first RAR is the third candidate RAR, and the first domain does not indicate not to send a Preamble in at least the second time frequency resource, in at least the second time frequency resource Send Preamble in the resource.
  • the Preamble is sent.
  • the first candidate RAR whose identifier matches the identifier of the Preamble sent in at least one time-frequency resource among the K1 time-frequency resources, and does not receive the third candidate RAR whose first field indicates reducing the number of repetitions of the Preamble, then Send Preamble.
  • the first candidate RAR whose identifier matches the identifier of the Preamble sent in at least one time-frequency resource among the K1 time-frequency resources, and the first field is not received indicating that it is not sent in at least the second time-frequency resource.
  • the third candidate RAR of Preamble sends Preamble.
  • the first RAR includes a RAPID field and the Random Access Preamble identifier in the RAPID field does not match the PREAMBLE_INDEX of the Preamble sent in at least one of the K1 time-frequency resources, or if The first RAR is the second candidate RAR, or, if the first RAR is the third candidate RAR, continue to monitor the first signaling; in the first time window, for the third candidate RAR
  • the monitoring of a signaling is used to determine whether to send a Preamble in at least the second time-frequency resource.
  • the "not sending Preamble in at least the second time-frequency resource” includes: not sending Preamble in the second time-frequency resource.
  • the "not sending Preamble in at least the second time-frequency resource” includes: any time-frequency resource after the first RAR is received at the starting time among the K1 time-frequency resources. Preamble is not sent.
  • the "not sending Preamble in at least the second time-frequency resource” includes: each time-frequency after the first RAR is received at the starting time in the K1 time-frequency resources. Preamble is not sent in the resource.
  • sending Preamble in at least the second time-frequency resource includes: sending Preamble in the second time-frequency resource.
  • the "sending Preamble in at least the second time-frequency resource” includes: starting in the K1 time-frequency resources in any time-frequency resource after the first RAR is received. Send Preamble.
  • the "sending Preamble in at least the second time-frequency resource” includes: each time-frequency resource after the first RAR is received at the starting time in the K1 time-frequency resources. Send Preamble.
  • the monitoring of the first signaling in the first time window and the content of the first RAR are jointly used to determine whether to send a Preamble in at least the second time-frequency resource.
  • the first RAR is not a first candidate RAR that includes a RAPID field and the RandomAccess Preamble identifier in the RAPID field matches the identifier of the Preamble sent in at least one of the K1 time-frequency resources, , and the first time window is running, and Preamble is sent in at least the second time-frequency resource.
  • Embodiment 8 illustrates a wireless signal transmission flow chart according to yet another embodiment of the present application, as shown in FIG. 8 . It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S8101 it is determined that the first time window has expired; in step S8102, in response to the expiration of the first time window, the first counter is updated according to the K1.
  • the first counter is used to count the number of sent Preambles.
  • the first signaling is not received before the first time window expires.
  • the first signaling is received before the first time window expires.
  • the first RAR is not received before the first time window expires.
  • the first RAR before the expiration of the first time window, the first RAR is received; wherein the first RAR is the first candidate RAR, the first RAR includes a RAPID field and the RAPID
  • the Random Access Preamble identifier in the domain does not match the PREAMBLE_INDEX of the Preamble sent in at least one time-frequency resource among the K1 time-frequency resources.
  • the RAPID field is included and the Random Access Preamble identifier in the RAPID field does not match the PREAMBLE_INDEX of the Preamble sent in at least one of the K1 time-frequency resources.
  • the first candidate RAR was not received.
  • the first RAR before the expiration of the first time window, the first RAR is received; wherein the first RAR is the second candidate RAR.
  • the second candidate RAR is not received before the first time window expires.
  • the first RAR is received before the first time window expires; wherein the first RAR is the third candidate RAR.
  • the third candidate RAR is not received before the first time window expires.
  • the RAPID field is included and the Random Access Preamble identifier in the RAPID field matches the identifier of the Preamble sent in at least one of the K1 time-frequency resources.
  • the first candidate RAR was not received.
  • the first time window expires and includes a RAPID field and the Random Access Preamble identifier in the RAPID field matches the identity of the Preamble sent in at least one time-frequency resource among K1 time-frequency resources. If the access response is not received, the first counter is updated according to K1.
  • the expiration of the first time window means that the first time window reaches the maximum value of the first time window; the first time window is counting.
  • the expiration of the first time window means that the first time window reaches 0; the first time window counts down.
  • the "updating the first counter according to the K1" includes: the first counter increases the K1.
  • the "updating the first counter according to the K1" includes: the first counter is increased by K2; the K2 is not greater than the K1, and the K2 is sent in the K1 time-frequency resources.
  • the number of different Preambles includes: the first counter is increased by K2; the K2 is not greater than the K1, and the K2 is sent in the K1 time-frequency resources. The number of different Preambles.
  • the first counter is PREAMBLE_TRANSMISSION_COUNTER.
  • the name of the first counter includes PREAMBLE_TRANSMISSION_COUNTER.
  • the name of the first counter includes at least one of PREAMBLE or TRANSMISSION or COUNTER or CE or COVERAGE or ENHANCEMENT.
  • the first counter is equal to 1.
  • the first counter is greater than 1.
  • Embodiment 9 illustrates a schematic diagram of the MAC subheader in the third candidate RAR according to an embodiment of the present application, as shown in FIG. 9 .
  • each solid line box represents at least one domain; the solid line box 901 includes the first domain; the dotted line box 9.1, the dotted line box 9.2 and the dotted line box 9.3 are respectively the An implementation manner of implementing block 901; it is particularly noted that this example does not limit the size and position of each domain included in the solid line block 901 in this application.
  • the third candidate RAR only includes one MAC sub-header.
  • the format of the one MAC sub-header includes at least the E field, the T field and the first field.
  • the one MAC sub-header occupies one octet. ;
  • the E field occupies 1 bit, and the E field is located at the highest bit in the one MAC subheader;
  • the T field occupies 1 bit, and the T field follows the E field; the first The domain is the domain following the T domain.
  • the MAC subheader in the third candidate RAR consists of the E field, the T field and the block 901.
  • all fields included in the implementation block 901 occupy 6 bits in total.
  • the dotted box 9.1 exists.
  • the format of the one MAC sub-header includes an R field and a BI field.
  • the format of a MAC sub-header consists of an E field, a T field, an R field, a first field and a BI field.
  • the first field occupies 1 bit
  • the R field occupies 1 bit
  • the BI field occupies 4 bits.
  • the first field occupies 2 bits
  • the R field occupies 1 bit
  • the BI field occupies 3 bits.
  • the first field occupies 1 bit
  • the R field occupies 2 bits
  • the BI field occupies 3 bits.
  • the first domain precedes the R domain.
  • the first domain is after the R domain.
  • the first domain is between the R domains.
  • the dotted box 9.2 does not exist, and the dotted box 9.3 does not exist.
  • the dashed box 9.2 exists.
  • the format of the one MAC sub-header does not include the R field, and the format of the one MAC sub-header includes the BI field.
  • the format of a MAC sub-header consists of an E field, a T field, a first field and a BI field.
  • the first field occupies 2 bits
  • the BI field occupies 4 bits.
  • the first field occupies 3 bits
  • the BI field occupies 3 bits
  • the dotted box 9.1 does not exist, and the dotted box 9.3 does not exist.
  • the dotted box 9.3 exists.
  • the format of the one MAC sub-header includes the R field, and the format of the one MAC sub-header does not include the BI field.
  • the format of a MAC sub-header consists of an E field, a T field, a first field and an R field.
  • the first field occupies 4 bits
  • the R field occupies 2 bits
  • the first field occupies 3 bits
  • the R field occupies 3 bits
  • the first field occupies 2 bits
  • the R field occupies 4 bits
  • the first field occupies 1 bit
  • the R field occupies 5 bits.
  • the first domain is after the R domain.
  • the first domain precedes the R domain.
  • the first domain is between the R domains.
  • the dotted box 9.1 does not exist, and the dotted box 9.2 does not exist.
  • the third candidate RAR is used for PRACH coverage enhancement.
  • the third candidate RAR is only used for PRACH coverage enhancement.
  • the third candidate RAR is only used for NR PRACH coverage enhancement.
  • Embodiment 10 illustrates the transmission flow chart of the second Preamble according to an embodiment of the present application, as shown in Figure 10. It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S10101 the second Preamble is sent in the target time-frequency resource; in step S10102, at the second moment, the first time window is restarted; in step S10103, in the first Monitor the first signaling in the time window.
  • step S10201 the second Preamble is received.
  • the second time is related to the cut-off time of the target time-frequency resource; the target time-frequency resource is one other than the first time-frequency resource among the K1 time-frequency resources. Time and frequency resources.
  • the first time window is restarted only when the first time window is running.
  • restarting the first time window includes: restarting timing of the first time window.
  • restarting the first time window includes: restarting the first time window.
  • restarting the first time window includes: causing the first time window to restart from 0; and counting the first time window.
  • restarting the first time window includes: causing the first time window to restart from the maximum value of the first time window; and counting down the first time window.
  • the target time-frequency resource is a given time-frequency resource after the first time-frequency resource among the K1 time-frequency resources.
  • the target time-frequency resource is a time-frequency resource adjacent to the first time-frequency resource among the K1 time-frequency resources.
  • the target time-frequency resource is any time-frequency resource after the first time-frequency resource among the K1 time-frequency resources.
  • the target time-frequency resource is the second time-frequency resource.
  • the second Preamble is the same as the first Preamble.
  • the second Preamble is different from the first Preamble.
  • the second moment is related to the second CSS.
  • the second moment is related to the second CORESET.
  • the first signaling is monitored on the second CSS (Common Search Space).
  • the second CSS is associated with at least one CORESET.
  • the second CSS is associated to a CORESET.
  • the second CSS is associated to a second CORESET.
  • the second CSS is a search space to which the first signaling belongs.
  • the second CSS is the first CSS.
  • the second CSS is different from the first CSS.
  • the second time is related to a second PDCCH occasion.
  • the second moment is the second PDCCH opportunity.
  • the second time is related to at least the former of the deadline time of the target time-frequency resource or the second CSS or the second CORESET.
  • the second time is related to the deadline time of the target time-frequency resource, the second CSS, and the second CORESET.
  • the second time is related to both the cut-off time of the target time-frequency resource and the second PDCCH opportunity.
  • the second time is a cut-off time of the target time-frequency resource.
  • the second time is the first symbol of the earliest CORESET for receiving the PDCCH for the second CSS after the cut-off time of the target time-frequency resource.
  • the second moment is the M2th symbol of the second CORESET, and M2 is greater than 1.
  • the second moment is the first symbol of the second CORESET.
  • the second PDCCH opportunity is the first PDCCH opportunity (the first PDCCH occasion) after the cut-off time of the target time-frequency resource.
  • the second PDCCH opportunity is related to the second CSS.
  • the second PDCCH opportunity is related to the second CORESET.
  • the second PDCCH opportunity is related to the second CSS and the second CORESET.
  • the second PDCCH timing is determined according to the frame structure.
  • the second PDCCH opportunity is determined according to RRC configuration.
  • the second PDCCH opportunity is preconfigured.
  • the second PDCCH opportunity is predefined.
  • the second CORESET is associated with the second CSS.
  • the second CORESET is a CORESET for receiving the PDCCH for the second CSS after the cut-off time of the target time-frequency resource.
  • the second CORESET is the earliest CORESET for receiving the PDCCH for the second CSS after the cut-off time of the target time-frequency resource.
  • the second CORESET is the CORESET to which the first signaling belongs.
  • the cut-off time of the target time-frequency resource refers to the last symbol of the PRACH opportunity corresponding to the PRACH transmission of the second Preamble.
  • the cut-off time of the target time-frequency resource refers to the time when the second Preamble transmission ends.
  • the second time is the cut-off time of the target time-frequency resource or a time after the cut-off time of the target time-frequency resource.
  • the second time is a cut-off time of the target time-frequency resource.
  • the second time is after the expiration time of the target time-frequency resource.
  • the second time is the first PDCCH opportunity after the expiration time of the target time-frequency resource.
  • the second time is the P2th symbol after the cut-off time of the target time-frequency resource.
  • the second time is the P2th time slot after the cut-off time of the target time-frequency resource.
  • the P2 is predefined.
  • the P2 is determined by the first PDCCH opportunity after the cut-off time of the target time-frequency resource.
  • P2 is a positive integer.
  • P2 is a non-negative integer.
  • Embodiment 11 illustrates a schematic diagram of K1 time-frequency resources and the first time window according to an embodiment of the present application, as shown in Figure 11.
  • the horizontal axis represents the time domain, and the vertical axis represents the frequency domain; blocks 1101 and 1102 respectively represent one of the K1 time-frequency resources; the block 1101 represents the first A time-frequency resource; the block 1102 represents the second time-frequency resource; the ellipsis represents the time-frequency other than the first time-frequency resource and the second time-frequency resource in the K1 time-frequency resources Resources;
  • Block 1103 represents the first time window. It is particularly noted that this example does not limit whether any two of the K1 time-frequency resources in this application overlap in the frequency domain, and does not limit the K1 time-frequency resources in this application. Whether any two time-frequency resources overlap in the time domain.
  • At least one of the K1 time-frequency resources exists between the T11.2 time and the T11.4 time; the K1 is greater than 3.
  • the K1 is equal to 2.
  • the T11.2 time and the T11.4 time are continuous in the time domain.
  • the T11.2 time and the T11.4 time are not continuous in the time domain.
  • the T11.3 time is between the T11.2 time and the T11.4 time.
  • the T11.3 time is after the T11.4 time.
  • the time interval between the T11.3 time and the T11.6 time is equal to the maximum value of the first time window.
  • the first time window is not restarted during the time interval between the T11.3 time and the T11.6 time.
  • the first time window is started.
  • the first time window expires.
  • the first signaling is received before the T11.6 time.
  • the first signaling is not received before the T11.6 time.
  • the first RAR is received before the T11.6 time; the first RAR is the first candidate RAR.
  • the first RAR before the T11.6 time, the first RAR has not been received; the first RAR is the first candidate RAR.
  • the first RAR is received before the T11.6 time; the first RAR is the second candidate RAR.
  • the first RAR before the T11.6 time, the first RAR has not been received; the first RAR is the second candidate RAR.
  • the first RAR is the third candidate RAR.
  • the first RAR before the T11.6 time, the first RAR has not been received; the first RAR is the third candidate RAR.
  • Preamble is sent in each of the K1 time-frequency resources.
  • Preamble is not sent in at least one time-frequency resource among the K1 time-frequency resources.
  • the first time window is stopped before the T11.6 time.
  • the first time window is not stopped before the T11.6 time.
  • the first time window has not expired.
  • the first time window expires.
  • the ellipses are present.
  • the ellipsis does not exist.
  • Embodiment 12 illustrates a schematic diagram of K1 time-frequency resources and the first time window according to another embodiment of the present application, as shown in Figure 12.
  • the horizontal axis represents the time domain, and the vertical axis represents the frequency domain; blocks 1201 and 1202 represent two adjacent time-frequency resources among the K1 time-frequency resources; the block 1201 represents The time-frequency resource before the target time-frequency resource; the block 1202 represents the target time-frequency resource; the ellipsis represents the time-frequency resource before the target time-frequency resource in the K1 time-frequency resources and Time-frequency resources other than the target time-frequency resources; blocks 1203 and 1204 represent the first time window. It is particularly noted that this example does not limit whether any two of the K1 time-frequency resources in this application overlap in the frequency domain, and does not limit the K1 time-frequency resources in this application. Whether any two time-frequency resources overlap in the time domain.
  • time T12.1 is the start time of the adjacent time-frequency resource before the target time-frequency resource
  • time T12.2 is the start time of the adjacent time-frequency resource before the target time-frequency resource.
  • the deadline of the frequency resource is the time when the first time window is started or restarted
  • the T12.4 moment is the start time of the target time-frequency resource
  • the T12.5 moment is the target
  • the expiration time of time-frequency resources is the time when the first time window is restarted
  • T12.7 time is the expiration time of the first time window.
  • the T12.2 time and the T12.4 time are continuous in the time domain.
  • the T12.2 time and the T12.4 time are not continuous in the time domain.
  • the T12.3 time is between the T12.2 time and the T12.4 time.
  • the T12.3 time is after the T12.4 time.
  • the time interval between the T12.6 time and the T12.7 time is equal to the maximum value of the first time window.
  • the target time-frequency resource is the second time-frequency resource.
  • the target time-frequency resource is a time-frequency resource before the second time-frequency resource and after the first time-frequency resource.
  • the target time-frequency resource is any time-frequency resource after the first time-frequency resource.
  • the first time window is not restarted.
  • the first time window is restarted within the time interval between the T12.6 time and the T12.7 time.
  • the T12.3 time is the first time.
  • the T12.6 time is the second time.
  • the time T12.3 is the first time
  • the time T12.6 is the second time
  • the time interval between the T12.3 time and the T12.6 time is less than the maximum value of the first time window.
  • the adjacent time-frequency resource before the target time-frequency resource is the first time-frequency resource.
  • the adjacent time-frequency resource before the target time-frequency resource is a time-frequency resource after the first time-frequency resource.
  • the target time-frequency resource is the second time-frequency resource.
  • the target time-frequency resource is a time-frequency resource before the second time-frequency resource.
  • the block 1201 represents the first time-frequency resource.
  • the block 1201 represents a time-frequency resource after the first time-frequency resource.
  • the first time window is restarted.
  • the first time window has not expired.
  • the first time window expires.
  • the first signaling is received before the T12.7 time.
  • the first signaling is not received before the T12.7 time.
  • the first RAR before the T12.7 time, the first RAR is received; the first RAR is the first candidate RAR.
  • the first RAR before the T12.7 time, the first RAR has not been received; the first RAR is the first candidate RAR.
  • the first RAR is received before the T12.7 time; the first RAR is the second candidate RAR.
  • the first RAR before the T12.7 time, the first RAR has not been received; the first RAR is the second candidate RAR.
  • the first RAR is the third candidate RAR.
  • the first RAR before the T12.7 time, the first RAR has not been received; the first RAR is the third candidate RAR.
  • a Preamble is sent in each of the K1 time-frequency resources.
  • no Preamble is sent in at least one time-frequency resource among the K1 time-frequency resources.
  • the first time window is stopped before the T12.7 time.
  • the first time window is not stopped before the T12.7 time.
  • the first time window is restarted within the time interval between the T12.6 time and the T12.7 time.
  • the first time window is not restarted.
  • the first time window has not expired.
  • the first time window expires.
  • the ellipsis before the T12.1 time exists.
  • the ellipses before the T12.1 time do not exist.
  • the ellipses after the T12.6 moment exist.
  • the ellipses after the T12.6 moment do not exist.
  • Embodiment 13 illustrates a structural block diagram of a processing device used in a first node according to an embodiment of the present application; as shown in FIG. 13 .
  • the processing device 1300 in the first node includes a first receiver 1301 and a first transmitter 1302.
  • the first receiver 1301 determines K1, which is a positive integer greater than 1; at the first moment, starts the first time window; monitors the first signaling in the first time window, and the first signaling Used to schedule random access responses;
  • the first transmitter 1302 transmits the first Preamble in at least the first time-frequency resource among the K1 time-frequency resources, and the first time-frequency resource is the earliest time-frequency resource among the K1 time-frequency resources;
  • the first time is related to at least the cut-off time of the first time-frequency resource; the first time is not earlier than the cut-off time of the first time-frequency resource and earlier than the second time-frequency resource.
  • the expiration time of the second time-frequency resource is the latest time-frequency resource among the K1 time-frequency resources; the expiration time of the first time window is later than the expiration time of the second time-frequency resource.
  • any two time-frequency resources among the K1 time-frequency resources do not overlap in the time domain.
  • At least two time-frequency resources among the K1 time-frequency resources do not overlap in the time domain.
  • the monitoring of the first signaling in the first time window is used to determine whether to send a Preamble in at least the second time-frequency resource.
  • the first receiver 1301 receives the first signaling and receives the first RAR according to the schedule of the first signaling.
  • the first transmitter 1302 determines whether to send a Preamble in at least the second time-frequency resource according to the content of the first RAR.
  • the first transmitter 1302 in response to the first RAR being successfully received in the first time window, sends a third message
  • the K1 time-frequency resources are respectively associated with at least two downlink RS resources
  • the third message is associated with a target downlink RS resource
  • the target downlink RS resource is one of the at least two downlink RS resources. 1.
  • the CORESET or search space to which the first signaling belongs is used to determine the target downlink RS resource.
  • the at least two downlink RS resources are K1 downlink RS resources.
  • the at least two downlink RS resources are no more than K1 downlink RS resources.
  • the first receiver 1301 determines that the first time window has expired; in response to the expiration of the first time window, updates the first counter according to the K1;
  • the first counter is used to count the number of sent Preambles.
  • the first receiver 1301 restarts the first time window at the second moment; the first transmitter 1302 sends the second Preamble in the target time-frequency resource;
  • the second time is related to the cut-off time of the target time-frequency resource;
  • the target time-frequency resource is a time-frequency resource other than the first time-frequency resource among the K1 time-frequency resources.
  • the K1 is used to determine the expiration moment of the first time window.
  • the first receiver 1301 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data in Figure 4 of this application. Source 467.
  • the first receiver 1301 includes the antenna 452, the receiver 454, the multi-antenna receiving processor 458, and the receiving processor 456 in Figure 4 of this application.
  • the first receiver 1301 includes the antenna 452, the receiver 454, and the receiving processor 456 in Figure 4 of this application.
  • the first transmitter 1302 includes the antenna 452, transmitter 454, multi-antenna transmit processor 457, transmit processor 468, controller/processor 459, memory 460 and data in Figure 4 of this application.
  • Source 467 the antenna 452, transmitter 454, multi-antenna transmit processor 457, transmit processor 468, controller/processor 459, memory 460 and data in Figure 4 of this application.
  • Source 467 the antenna 452, transmitter 454, multi-antenna transmit processor 457, transmit processor 468, controller/processor 459, memory 460 and data in Figure 4 of this application.
  • Source 467 Source 467.
  • the first transmitter 1302 includes the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, and the transmission processor 468 in Figure 4 of this application.
  • the first transmitter 1302 includes the antenna 452, the transmitter 454, and the transmission processor 468 in Figure 4 of this application.
  • Embodiment 14 illustrates a structural block diagram of a processing device used in a second node according to an embodiment of the present application; as shown in FIG. 14 .
  • the processing device 1400 in the second node includes a second transmitter 1401 and a second receiver 1402.
  • the second receiver 1402 receives the first Preamble
  • K1 is determined by the sender of the first Preamble, and the K1 is a positive integer greater than 1; at the first moment, the first time window is started by the sender of the first Preamble; in the The first signaling in the first time window is monitored by the sender of the first Preamble, and the first signaling is used to schedule a random access response; the first Preamble is monitored by the sender of the first Preamble in At least the first time-frequency resource among the K1 time-frequency resources is sent, and the first time-frequency resource is the earliest time-frequency resource among the K1 time-frequency resources; the first time is the same as at least the first time-frequency resource.
  • the first time is related to the cut-off time of the frequency resource; the first time is not earlier than the cut-off time of the first time-frequency resource and earlier than the cut-off time of the second time-frequency resource, and the second time-frequency resource is the K1 time-frequency resource.
  • any two time-frequency resources among the K1 time-frequency resources do not overlap in the time domain.
  • At least two time-frequency resources among the K1 time-frequency resources do not overlap in the time domain.
  • the monitoring of the first signaling in the first time window is used to determine whether to send a Preamble in at least the second time-frequency resource.
  • the second transmitter 1401 sends the first signaling; sends the first RAR; and the first signaling is used to schedule the first RAR.
  • the sender of the first Preamble determines whether to send the Preamble in at least the second time-frequency resource according to the content of the first RAR.
  • the second receiver 1402 receives the third message; wherein the sender of the first Preamble successfully receives the first RAR in the first time window is used to determine to send the The third message; the K1 time-frequency resources are respectively associated with at least two downlink RS resources, the third message is associated with the target downlink RS resource, and the target downlink RS resource is the at least two downlink RS resources. One of them; the CORESET or search space to which the first signaling belongs is used to determine the target downlink RS resource.
  • the at least two downlink RS resources are K1 downlink RS resources.
  • the at least two downlink RS resources are no more than K1 downlink RS resources.
  • the first time window is determined to be expired by the sender of the first Preamble and is used to determine to update the first counter according to the K1; the first counter is used to count the number of sent Preambles. .
  • the first time window is restarted by the sender of the first Preamble; the second Preamble is received; the second Preamble is received by the sender of the first Preamble at the target time Frequency resource transmission; the second time is related to the cut-off time of the target time-frequency resource; the target time-frequency resource is a time-frequency other than the first time-frequency resource among the K1 time-frequency resources. resource.
  • the K1 is used to determine the expiration moment of the first time window.
  • the second transmitter 1401 includes the antenna 420 and the transmitter 418 in Figure 4 of this application.
  • the second transmitter 1401 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471 and the transmission processor 416 in Figure 4 of this application.
  • the second transmitter 1401 includes the antenna 420, the transmitter 418, and the transmission processor 416 in Figure 4 of this application.
  • the second receiver 1402 includes the antenna 420, receiver 418, multi-antenna receiving processor 472, receiving processor 470, controller/processor 475, and memory 476 in Figure 4 of this application.
  • the second receiver 1402 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, and the receiving processor 470 in Figure 4 of this application.
  • the second receiver 1402 includes the antenna 420, the receiver 418, and the receiving processor 470 in Figure 4 of this application.
  • Embodiment 15 illustrates a schematic diagram in which monitoring of the first signaling is used to determine whether to send a Preamble according to an embodiment of the present application, as shown in FIG. 15 .
  • the monitoring of the first signaling in the first time window is used to determine whether to send a Preamble in at least the second time-frequency resource.
  • the "the monitoring of the first signaling in the first time window is used to determine whether to send a Preamble in at least the second time-frequency resource" includes: the first Whether a time window is running is used to determine whether to send a Preamble in at least the second time-frequency resource.
  • the first time window is running and is used to determine that the first signaling is being listened to.
  • the first time window is no longer running and is used to determine that the first signaling is no longer monitored.
  • a Preamble is sent in at least the second time-frequency resource.
  • Preamble is not sent in at least the second time-frequency resource.
  • the "the monitoring of the first signaling in the first time window is used to determine whether to send a Preamble in at least the second time-frequency resource" includes: in the Whether the monitoring of the first signaling in the first time window is stopped is used to determine whether to send a Preamble in at least the second time-frequency resource.
  • a Preamble is sent in at least the second time-frequency resource.
  • Preamble is not sent in at least the second time-frequency resource.
  • a Preamble is sent in any time-frequency resource.
  • any time-frequency resource at the starting moment of any time-frequency resource after the first time-frequency resource among the K1 time-frequency resources, if the first time window is running, in any time-frequency resource Send Preamble.
  • any time-frequency resource after the first time-frequency resource among the K1 time-frequency resources if the first time window is not running, at the start time of any time-frequency resource and Preamble is not sent in each time-frequency resource after any of the time-frequency resources.
  • the preamble is not sent in each time-frequency resource after the start time of the K1 time-frequency resources after the time when the first time window is stopped.
  • Preamble is not sent in the second time-frequency resource.
  • a Preamble is sent in the second time-frequency resource.
  • a Preamble is sent in the second time-frequency resource.
  • Preamble is not sent in the second time-frequency resource.
  • a signaling sending Preamble in any time-frequency resource.
  • Preamble is not sent in any of the time-frequency resources.
  • the monitoring of the first signaling in the first time window is used to determine whether to send Preamble in the remaining time-frequency resources among the K1 time-frequency resources.
  • the remaining time-frequency resources refer to time-frequency resources that have not yet started in the time domain.
  • Preamble is not sent in any time-frequency resource and in each time-frequency resource after the any time-frequency resource.
  • Preamble is not sent in each time-frequency resource of the at least one time-frequency resource.
  • the first signaling is monitored and received, and the first RAR is received, it is determined according to the content of the first RAR whether to send a Preamble in at least the second time-frequency resource.
  • User equipment, terminals and UEs in this application include but are not limited to drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC, enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost Cost-effective tablet computers and other wireless communication devices.
  • MTC Machine Type Communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, transmitting and receiving node) and other wireless communications equipment.
  • gNB NR Node B
  • TRP Transmitter Receiver Point

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的通信节点中的方法和装置。通信节点确定K1,所述K1是大于1的正整数;在第一时刻,启动第一时间窗;在所述第一时间窗中监听第一信令,所述第一信令被用于调度随机接入响应;在K1个时频资源中的至少第一时频资源发送第一Preamble,所述K1个时频资源中的任意2个时频资源在时域上不交叠,所述第一时频资源是所述K1个时频资源中最早的一个时频资源;所述第一时刻与至少所述第一时频资源的截止时刻有关;所述第一时刻不早于所述第一时频资源的截止时刻并且早于第二时频资源的截止时刻,所述第二时频资源是所述K1个时频资源中最晚的一个时频资源;所述第一时间窗的过期时刻晚于所述第二时频资源的截止时刻。

Description

一种被用于无线通信的通信节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及随机接入的传输方法和装置。
背景技术
覆盖(Coverage)是运营商在进行蜂窝通信网络商业化时考虑的关键因素之一,因为它直接影响服务质量(service quality)以及资本支出(CAPEX)和运营成本(OPEX)。在实际部署的大多数场景中,上行链路(Uplink,UL)性能可能是瓶颈,而在一些新兴的垂直用例中,上行链路流量很大,例如视频上传。在Rel-17“NR(New Radio,新空口)覆盖增强”工作项目(work item,WI)中,针对PUSCH(Physical uplink shared channel,物理上行链路共享信道)、PUCCH(Physical uplink control channel,物理上行链路控制信道)和Msg3(Message 3,消息3)的NR覆盖率进行了扩展增强。然而,PRACH(Physical random access channel,物理随机接入信道)覆盖的提高尚未得到解决。由于PRACH传输在许多过程中都是非常重要的,如初始接入和波束失效恢复,Rel-18成立了“NR覆盖的进一步增强(Further NR coverage enhancements)”工作项目,进一步增强PRACH的上行覆盖。
发明内容
在NR中,UE(User Equipment,用户设备)每发送一个Preamble,启动一个ra-ResponseWindow用于接收RAR(Random Access Response,随机接入响应),在这个ra-ResponseWindow过期之后才有机会发送另一个Preamble。针对Rel-18PRACH增强,一种可行的方式是PRACH重复,当UE通过PRACH重复发送Preamble时,现有的RAR接收机制难以满足需求。因此,如何接收RAR需要进行增强。
针对上述问题,本申请提供了一种随机接入的解决方案。针对上述问题描述中,采用NR系统作为一个例子;本申请也同样适用于例如LTE系统的场景;进一步的,虽然本申请的初衷是针对Uu空口,但本申请也能被用于PC5口。进一步的,虽然本申请的初衷是针对终端与基站场景,但本申请也同样适用于V2X(Vehicle-to-Everything,车联网)场景,终端与中继,以及中继与基站之间的通信场景,取得类似的终端与基站场景中的技术效果。进一步的,虽然本申请的初衷是针对终端与基站场景,但本申请也同样适用于IAB(Integrated Access and Backhaul,集成接入和回传)的通信场景,取得类似的终端与基站场景中的技术效果。进一步的,虽然本申请的初衷是针对地面网络(Terrestrial Network,地面网络)场景,但本申请也同样适用于非地面网络(Non-Terrestrial Network,NTN)的通信场景,取得类似的TN场景中的技术效果。此外,不同场景采用统一解决方案还有助于降低硬件复杂度和成本。
作为一个实施例,对本申请中的术语(Terminology)的解释参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
需要说明的是,在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
确定K1,所述K1是大于1的正整数;在第一时刻,启动第一时间窗;在所述第一时间窗中监听第一信令,所述第一信令被用于调度随机接入响应;
在K1个时频资源中的至少第一时频资源发送第一Preamble,所述第一时频资源是所述K1个时频资源中最早的一个时频资源;
其中,所述第一时刻与至少所述第一时频资源的截止时刻有关;所述第一时刻不早于所述第一时频资源的截止时刻并且早于第二时频资源的截止时刻,所述第二时频资源是所述K1个时频资源中最晚的一个时频资源;所述第一时间窗的过期时刻晚于所述第二时频资源的截止时刻。
作为一个实施例,所述K1个时频资源中的任意2个时频资源在时域上不交叠。
作为一个实施例,所述K1个时频资源中存在至少2个时频资源在时域上不交叠。
作为一个实施例,本申请要解决的问题包括:当UE通过PRACH重复发送Preamble时,如何接收RAR。
作为一个实施例,本申请要解决的问题包括:在K1个时频资源中的至少第一时频资源发送Preamble时,如何确定监听第一PDCCH(Physical downlink control channel,物理下行链路控制信道)的时间间隔。
作为一个实施例,本申请要解决的问题包括:在K1个时频资源中的至少第一时频资源发送Preamble时,如何确定第一时间窗的过期时刻。
作为一个实施例,本申请要解决的问题包括:在K1个时频资源中的至少第一时频资源发送Preamble时,如何确定第一时间窗的停止时刻。
作为一个实施例,本申请要解决的问题包括:在K1个时频资源中的每个时频资源如何发送。
作为一个实施例,本申请要解决的问题包括:如何确定第一RNTI(Radio Network Temporary Identity,无线网络临时标识)。
作为一个实施例,本申请要解决的问题包括:如何确定第一RNTI。
作为一个实施例,上述方法的特质包括:在所述第一时间窗内能够发送多个Preamble。
作为一个实施例,上述方法的特质包括:至少所述K1个时频资源中最早的一个时频资源的截止时刻被用于确定所述第一时间窗被启动的时刻。
作为一个实施例,上述方法的特质包括:所述K个时频资源中的一个时频资源被用于计算所述第一RNTI。
作为一个实施例,上述方法的特质包括:所述K个时频资源中仅所述第一时频资源被用于计算所述第一RNTI。
作为一个实施例,上述方法的特质包括:根据至少信道质量确定所述K1。
作为一个实施例,上述方法的特质包括:根据至少RRC消息确定所述K1。
作为一个实施例,上述方法的好处包括:增强覆盖。
作为一个实施例,上述方法的好处包括:缩短初始接入时延。
作为一个实施例,上述方法的好处包括:减少下行信令开销。
根据本申请的一个方面,其特征在于,在所述第一时间窗中针对所述第一信令的所述监听被用于确定在至少所述第二时频资源中是否发送Preamble。
作为一个实施例,本申请要解决的问题包括:在K1个时频资源中的每个时频资源如何发送。
作为一个实施例,本申请要解决的问题包括:在K1个时频资源中的每个时频资源如何发送。
作为一个实施例,上述方法的特质包括:根据随机接入响应是否被成功接收确定在至少所述第二时频资源中是否发送Preamble。
作为一个实施例,上述方法的好处包括:避免不必要的Preamble的发送。
作为一个实施例,上述方法的好处包括:降低信令开销。
根据本申请的一个方面,其特征在于,包括:
接收所述第一信令;根据所述第一信令的调度接收第一RAR。
根据本申请的一个方面,其特征在于,包括:
根据所述第一RAR的内容确定在至少所述第二时频资源中是否发送Preamble。
作为一个实施例,本申请要解决的问题包括:在K1个时频资源中的每个时频资源如何发送。
作为一个实施例,上述方法的特质包括:所述第一RAR指示是否在至少所述第二时频资源中发送Preamble。
作为一个实施例,上述方法的特质包括:所述第一RAR的格式被用于确定是否在至少所述第二时频资源中发送Preamble。
作为一个实施例,上述方法的好处包括:避免不必要的Preamble的发送。
作为一个实施例,上述方法的好处包括:降低信令开销。
根据本申请的一个方面,其特征在于,包括:
作为所述第一RAR在所述第一时间窗中被成功接收的响应,发送第三消息;
其中,所述K1个时频资源分别被关联到至少两个下行RS(Reference Signal,参考信号)资源,所 述第三消息被关联到目标下行RS资源,所述目标下行RS资源是所述至少两个下行RS资源中之一;所述第一信令所属的CORESET(Control resource set,控制资源集合)或者搜索空间(search space,搜索空间)被用于确定所述目标下行RS资源。
作为一个实施例,所述至少两个下行RS资源是K1个下行RS资源。
作为一个实施例,所述至少两个下行RS资源是不大于K1个下行RS资源。
作为一个实施例,本申请要解决的问题包括:如何用于接收第三消息的下行RS资源。
作为一个实施例,本申请要解决的问题包括:如何确定用于接收第三消息的空间参数。
作为一个实施例,上述方法的特质包括:通过第一信令确定用于接收第三消息的下行RS资源。
作为一个实施例,上述方法的特质包括:通过第一信令确定用于接收第三消息的空间参数。
作为一个实施例,上述方法的好处包括:使UE能够确定用于接收第三消息的下行RS资源。
作为一个实施例,上述方法的好处包括:使UE能够确定用于接收第三消息的空间参数。
作为一个实施例,上述方法的好处包括:降低信令开销。
根据本申请的一个方面,其特征在于,包括:
确定所述第一时间窗过期;作为所述第一时间窗过期的响应,根据所述K1更新第一计数器;
其中,所述第一计数器被用于统计被发送的Preamble的数量。
作为一个实施例,本申请要解决的问题包括:如何更新第一计数器。
作为一个实施例,上述方法的好处包括:避免随机接入次数过多。
作为一个实施例,上述方法的好处包括:减少竞争冲突。
根据本申请的一个方面,其特征在于,包括:
在第二时刻,重新启动所述第一时间窗;
在目标时频资源发送第二Preamble;
其中,所述第二时刻与所述目标时频资源的截止时刻有关;所述目标时频资源是所述K1个时频资源中的所述第一时频资源之外的一个时频资源。
根据本申请的一个方面,其特征在于,所述K1被用于确定所述第一时间窗的过期时刻。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
接收第一Preamble;
其中,K1被所述第一Preamble的发送者确定,所述K1是大于1的正整数;在第一时刻,第一时间窗被所述第一Preamble的发送者启动;在所述第一时间窗中第一信令被所述第一Preamble的发送者监听,所述第一信令被用于调度随机接入响应;所述第一Preamble被所述第一Preamble的发送者在K1个时频资源中的至少第一时频资源发送,所述第一时频资源是所述K1个时频资源中最早的一个时频资源;所述第一时刻与至少所述第一时频资源的截止时刻有关;所述第一时刻不早于所述第一时频资源的截止时刻并且早于第二时频资源的截止时刻,所述第二时频资源是所述K1个时频资源中最晚的一个时频资源;所述第一时间窗的过期时刻晚于所述第二时频资源的截止时刻。
作为一个实施例,所述K1个时频资源中的任意2个时频资源在时域上不交叠。
作为一个实施例,所述K1个时频资源中存在至少2个时频资源在时域上不交叠。
根据本申请的一个方面,其特征在于,在所述第一时间窗中针对所述第一信令的所述监听被用于确定在至少所述第二时频资源中是否发送Preamble。
根据本申请的一个方面,其特征在于,包括:
发送所述第一信令;发送第一RAR;所述第一信令被用于调度所述第一RAR。
根据本申请的一个方面,其特征在于,所述第一Preamble的发送者根据所述第一RAR的内容确定在至少所述第二时频资源中是否发送Preamble。
根据本申请的一个方面,其特征在于,包括:
接收第三消息;
其中,所述第一Preamble的发送者在所述第一时间窗中成功接收所述第一RAR被用于确定发送所述第三消息;所述K1个时频资源分别被关联到至少两个下行RS资源,所述第三消息被关联到目标下行RS资源,所述目标下行RS资源是所述至少两个下行RS资源中之一;所述第一信令所属的CORESET或者搜索 空间被用于确定所述目标下行RS资源。
作为一个实施例,所述至少两个下行RS资源是K1个下行RS资源。
作为一个实施例,所述至少两个下行RS资源是不大于K1个下行RS资源。
根据本申请的一个方面,其特征在于,所述第一时间窗被所述第一Preamble的发送者确定过期被用于确定根据所述K1更新第一计数器;所述第一计数器被用于统计被发送的Preamble的数量。
根据本申请的一个方面,其特征在于,在第二时刻,所述第一时间窗被所述第一Preamble的发送者重新启动;接收第二Preamble;所述第二Preamble被所述第一Preamble的发送者在目标时频资源发送;所述第二时刻与所述目标时频资源的截止时刻有关;所述目标时频资源是所述K1个时频资源中的所述第一时频资源之外的一个时频资源。
根据本申请的一个方面,其特征在于,所述K1被用于确定所述第一时间窗的过期时刻。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一接收机,确定K1,所述K1是大于1的正整数;在第一时刻,启动第一时间窗;在所述第一时间窗中监听第一信令,所述第一信令被用于调度随机接入响应;
第一发射机,在K1个时频资源中的至少第一时频资源发送第一Preamble,所述第一时频资源是所述K1个时频资源中最早的一个时频资源;
其中,所述第一时刻与至少所述第一时频资源的截止时刻有关;所述第一时刻不早于所述第一时频资源的截止时刻并且早于第二时频资源的截止时刻,所述第二时频资源是所述K1个时频资源中最晚的一个时频资源;所述第一时间窗的过期时刻晚于所述第二时频资源的截止时刻。
作为一个实施例,所述K1个时频资源中的任意2个时频资源在时域上不交叠。
作为一个实施例,所述K1个时频资源中存在至少2个时频资源在时域上不交叠。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二接收机,接收第一Preamble;
其中,K1被所述第一Preamble的发送者确定,所述K1是大于1的正整数;在第一时刻,第一时间窗被所述第一Preamble的发送者启动;在所述第一时间窗中第一信令被所述第一Preamble的发送者监听,所述第一信令被用于调度随机接入响应;所述第一Preamble被所述第一Preamble的发送者在K1个时频资源中的至少第一时频资源发送,所述第一时频资源是所述K1个时频资源中最早的一个时频资源;所述第一时刻与至少所述第一时频资源的截止时刻有关;所述第一时刻不早于所述第一时频资源的截止时刻并且早于第二时频资源的截止时刻,所述第二时频资源是所述K1个时频资源中最晚的一个时频资源;所述第一时间窗的过期时刻晚于所述第二时频资源的截止时刻。
作为一个实施例,所述K1个时频资源中的任意2个时频资源在时域上不交叠。
作为一个实施例,所述K1个时频资源中存在至少2个时频资源在时域上不交叠。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.增强覆盖;
-.缩短初始接入时延;
-.减少下行信令开销;
-.避免不必要的Preamble的发送;
-.降低信令开销;
-.使UE能够确定用于接收第三消息的下行RS资源;
-.使UE能够确定用于接收第三消息的空间参数;
-.降低信令开销。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一Preamble的传输的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的另一个实施例的无线信号传输流程图;
图7示出了根据本申请的又一个实施例的无线信号传输流程图;
图8示出了根据本申请的再一个实施例的无线信号传输流程图;
图9示出了根据本申请的一个实施例的第三候选RAR中的MAC子头的示意图;
图10示出了根据本申请的一个实施例的第二Preamble的传输流程图;
图11示出了根据本申请的一个实施例的K1个时频资源和第一时间窗的示意图;
图12示出了根据本申请的另一个实施例的K1个时频资源和第一时间窗的示意图;
图13示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;
图14示出了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;
图15示出了根据本申请的一个实施例的针对第一信令的监听被用于确定是否发送Preamble的示意图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一Preamble的传输的流程图,如附图1所示。附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一节点在步骤101中,确定K1,所述K1是大于1的正整数;在第一时刻,启动第一时间窗;在所述第一时间窗中监听第一信令,所述第一信令被用于调度随机接入响应;在K1个时频资源中的至少第一时频资源发送第一Preamble,所述第一时频资源是所述K1个时频资源中最早的一个时频资源;其中,所述第一时刻与至少所述第一时频资源的截止时刻有关;所述第一时刻不早于所述第一时频资源的截止时刻并且早于第二时频资源的截止时刻,所述第二时频资源是所述K1个时频资源中最晚的一个时频资源;所述第一时间窗的过期时刻晚于所述第二时频资源的截止时刻。
作为一个实施例,所述“确定K1”包括:根据至少信道质量确定所述K1。
作为一个实施例,所述“确定K1”包括:根据至少信道质量和至少一个偏移量确定所述K1。
作为一个实施例,所述“确定K1”包括:根据至少RSRP(Reference signal received power,参考信号接收功率)确定所述K1。
作为一个实施例,所述“确定K1”包括:根据至少RSRP测量结果和一个RSRP阈值确定所述K1。
作为一个实施例,所述“确定K1”包括:根据至少RSRP测量结果、至少一个偏移量和一个RSRP阈值确定所述K1。
作为一个实施例,所述“确定K1”包括:根据一个随机接入响应确定所述K1。
作为一个实施例,所述“确定K1”包括:根据至少RRC(Radio Resource Control,无线资源控制)消息确定所述K1。
作为一个实施例,所述“确定K1”包括:根据至少RRC消息和信道质量确定所述K1。
作为一个实施例,所述K1与至少信道质量有关。
作为一个实施例,所述K1是预配置的。
作为一个实施例,在Q1个候选整数中确定所述K1;所述Q1个候选整数是通过RRC消息配置的。
作为该实施例的一个子实施例,根据至少信道质量在所述Q1个候选整数中确定所述K1。
作为该实施例的一个子实施例,根据至少信道质量和至少一个偏移量在所述Q1个候选整数中确定所述K1。
作为一个实施例,所述K1是可配置的。
作为一个实施例,所述K1是可变的。
作为一个实施例,所述K1是可数的。
作为一个实施例,所述K1的最大值不超过一个正整数。
作为一个实施例,所述RSRP测量结果是针对至少一个下行链路参考信号的RSRP测量结果。
作为一个实施例,所述RSRP测量结果是针对下行链路路径损耗参考(downlink pathloss reference)的RSRP测量结果。
作为一个实施例,所述第一时刻是一个PDCCH时机(Occasion)。
作为一个实施例,所述第一时刻是一个符号(symbol)。
作为一个实施例,所述第一时刻是一个时隙(slot)。
作为一个实施例,所述第一时刻是一个毫秒。
作为一个实施例,所述第一时刻与系统配置有关。
作为一个实施例,所述第一时刻与系统帧有关。
作为一个实施例,所述第一时刻与无线帧有关。
作为一个实施例,所述第一时刻与子帧有关。
作为一个实施例,所述“启动第一时间窗”包括:使所述第一时间窗从0开始运行;所述第一时间窗正计时。
作为一个实施例,所述“启动第一时间窗”包括:使所述第一时间窗从所述第一时间窗的最大值开始运行;所述第一时间窗倒计时。
作为一个实施例,所述启动的意思是start。
作为一个实施例,所述启动的意思是开始。
作为一个实施例,所述第一时间窗被启动后,所述第一时间窗的值递增。
作为一个实施例,所述第一时间窗被启动后,所述第一时间窗的值递减。
作为一个实施例,所述第一时间窗被用于确定一个时间间隔。
作为一个实施例,所述第一时间窗包括正整数个毫秒。
作为一个实施例,所述第一时间窗是ra-ResponseWindow。
作为一个实施例,所述第一时间窗的名字中包括ra-ResponseWindow。
作为一个实施例,所述第一时间窗的名字中包括ra或者Response或者Window或者CE或者COVERAGE或者ENHANCEMENT中的至少之一。
作为一个实施例,所述监听的意思是monitor。
作为一个实施例,所述监听的意思是确定是否存在。
作为一个实施例,所述监听的意思是监测。
作为一个实施例,所述监听的意思是检测。
作为一个实施例,所述监听的意思是通过CRC(Cyclic redundancy check,循环冗余校验)检测。
作为一个实施例,所述监听的意思是通过最大似然检测。
作为一个实施例,所述监听的意思是盲检测。
作为一个实施例,在PDCCH上监听所述第一信令。
作为一个实施例,在至少一个搜索空间(Search Space,SS)上监听所述第一信令。
作为一个实施例,在第一CSS(Common Search Space,公共搜索空间)上监听所述第一信令。
作为一个实施例,所述第一CSS被关联到PCell(Primary Cell)。
作为一个实施例,所述第一CSS包括至少一个搜索空间。
作为一个实施例,所述第一CSS是PRACH覆盖增强专用的至少一个公共搜索空间。
作为一个实施例,所述第一CSS是Type1-PDCCH CSS set。
作为一个实施例,所述第一CSS在PDCCH-ConfigCommon中被配置。
作为一个实施例,所述第一CSS由PDCCH-ConfigCommon中的ra-SearchSpace配置。
作为一个实施例,所述第一CSS由PDCCH-ConfigCommon中的名字中包括ra-SearchSpace的RRC域配置。
作为一个实施例,所述第一CSS在recoverySearchSpaceId中被配置。
作为一个实施例,所述第一CSS由名字中包括recoverySearchSpaceId的RRC域配置。
作为一个实施例,所述第一CSS是随机接入专用的。
作为一个实施例,所述第一CSS是BFR(Beam Failure Recovery,波束失败恢复)专用的。
作为一个实施例,所述第一CSS被关联到至少一个CORESET。
作为一个实施例,所述第一CSS被关联到一个CORESET。
作为一个实施例,所述第一CSS被关联到第一CORESET。
作为一个实施例,所述第一信令在PDCCH上传输。
作为一个实施例,所述第一信令是一个PDCCH传输。
作为一个实施例,所述第一信令是DCI(Downlink control information,下行链路控制信息)。
作为一个实施例,所述第一信令是一个DCI,所述第一信令的格式是DCI format 1_0。
作为一个实施例,所述第一信令针对随机接入响应。
作为一个实施例,所述第一信令被第一RNTI加扰,所述第一RNTI被用于监听随机接入响应。
作为一个实施例,所述第一信令是被第一RNTI加扰的DCI。
作为一个实施例,所述第一RNTI是一个RA_RNTI。
作为一个实施例,所述第一RNTI是一个比特串。
作为一个实施例,所述第一RNTI是一个非负整数。
作为一个实施例,所述第一RNTI是一个正整数。
作为一个实施例,所述第一RNTI仅被用于随机接入响应。
作为一个实施例,所述第一RNTI至少被用于随机接入响应。
作为一个实施例,所述第一RNTI仅被用于监听或者接收随机接入响应。
作为一个实施例,所述第一RNTI至少被用于监听或者接收随机接入响应。
作为一个实施例,所述K个时频资源中的一个时频资源被用于计算所述第一RNTI。
作为一个实施例,所述K个时频资源中的每个时频资源被用于计算所述第一RNTI。
作为一个实施例,所述K个时频资源中的任一时频资源被用于计算所述第一RNTI。
作为一个实施例,所述K个时频资源中仅所述第一时频资源被用于计算所述第一RNTI。
作为一个实施例,所述第一信令被用于调度PDSCH(Physical downlink shared channel,物理下行链路共享信道)。
作为一个实施例,所述第一信令被用于调度PDSCH,所述PDSCH被用于承载至少随机接入响应。
作为一个实施例,述第一信令被用于调度PDSCH,所述PDSCH被用于承载随机接入响应。
作为一个实施例,被所述第一信令调度的PDSCH被用于承载至少随机接入响应。
作为一个实施例,被所述第一信令调度的PDSCH被用于承载随机接入响应。
作为一个实施例,所述第一信令被用于调度针对在所述K1个时频资源的至少一个时频资源发送的Preamble的随机接入响应。
作为一个实施例,所述第一信令被用于调度针对所述第一Preamble的随机接入响应。
作为一个实施例,所述第一信令被用于调度针对在所述K1个时频资源发送的任一Preamble的随机接入响应。
作为一个实施例,所述第一信令被用于调度针对在所述K1个时频资源发送的每个Preamble的随机接入响应。
作为一个实施例,被所述第一信令调度的随机接入响应是第一候选RAR集合中的之一。
作为该实施例的一个子实施例,所述第一候选RAR集合中包括第一候选RAR,所述第一候选RAR包括一个MAC(Medium Access Control,媒体接入控制)子头(subheader)和一个MAC RAR,所述一个MAC子头包括E(Extension)域、T(Type)域和RAPID(Random Access Preamble IDentifier)域。
作为该子实施例的一个附属实施例,所述一个MAC子头的格式和3GPP TS 38.321的图6.1.5-2相同。
作为该子实施例的一个附属实施例,所述一个MAC子头由E域、T域和RAPID域组成;所述E域、所述T域和所述RAPID域的意思参考3GPP TS 38.321的6.2.2节。
作为该子实施例的一个附属实施例,所述一个MAC RAR的格式和3GPP TS 38.321的图6.2.3-1相同。
作为该子实施例的一个附属实施例,所述一个MAC RAR中包括Timing Advance Command域、UL Grant域和Temporary C-RNTI域;所述Timing Advance Command域、所述UL Grant域和所述Temporary C-RNTI域的意思参考3GPP TS 38.321的6.2.3节。
作为该实施例的一个子实施例,所述第一候选RAR集合中包括第二候选RAR,所述第二候选RAR仅包括一个MAC子头,所述一个MAC子头包括E域、T域、R(Reserved)域、R域和BI(Backoff Indicator)域。
作为该子实施例的一个附属实施例,所述一个MAC子头的格式和3GPP TS 38.321的图6.1.5-1相同。
作为该子实施例的一个附属实施例,所述一个MAC子头由E域、T域、R域、R域和BI域组成,所述E域、所述T域、所述R域、所述R域和所述BI域参考3GPP TS 38.321的6.2.2节。
作为该子实施例的一个附属实施例,所述第二MAC子头包括BI(Backoff Indicator)域。
作为该附属实施例的一个下位实施例,所述BI域包括3比特。
作为该附属实施例的一个下位实施例,所述BI域包括4比特。
作为该附属实施例的一个下位实施例,所述BI域包括5比特。
作为该实施例的一个子实施例,所述第一候选RAR集合中包括第三候选RAR,所述第三候选RAR仅包括一个MAC子头,所述一个MAC子头的格式包括至少E域、T域和第一域。
作为该子实施例的一个附属实施例,所述一个MAC子头占用一个字节。
作为该子实施例的一个附属实施例,所述一个MAC子头占用一个八位组。
作为该子实施例的一个附属实施例,所述一个MAC子头占用8个比特。
作为该子实施例的一个附属实施例,所述E域参考参考3GPP TS 38.321的6.2.2节。
作为该子实施例的一个附属实施例,所述T域被设置为1,所述T域被用于确定所述一个MAC子头包括Random Access Preamble ID域。
作为该子实施例的一个附属实施例,所述T域被设置为0,所述T域被用于确定所述一个MAC子头不包括Random Access Preamble ID域。
作为该子实施例的一个附属实施例,所述T域被用于指示所述一个MAC子头包括Random Access Preamble ID域还是Backoff Indicator域。
作为该子实施例的一个附属实施例,所述T域被用于指示所述一个MAC子头包括Random Access Preamble ID域还是所述第一域。
作为该子实施例的一个附属实施例,所述T域被设置为0,所述T域指示所述一个MAC子头包括Backoff Indicator域。
作为该子实施例的一个附属实施例,所述T域被设置为0,所述T域指示所述一个MAC子头包括所述第一域。
作为该子实施例的一个附属实施例,所述第一域被用于指示在至少所述第二时频资源中是否发送Preamble。
作为该子实施例的一个附属实施例,所述第一域被用于确定所述第一RAR的内容。
作为该子实施例的一个附属实施例,所述第一域被用于确定Preamble的重复次数。
作为该子实施例的一个附属实施例,所述第一域被用于确定下一次发送Preamble的重复次数。
作为该子实施例的一个附属实施例,所述第一域指示Preamble的重复次数。
作为该子实施例的一个附属实施例,所述第一域指示Preamble的回退的重复次数。
作为该子实施例的一个附属实施例,所述第一域指示增加Preamble的重复次数。
作为该子实施例的一个附属实施例,所述第一域指示减少Preamble的重复次数。
作为该子实施例的一个附属实施例,所述第一域指示Preamble的重复次数的增量。
作为该子实施例的一个附属实施例,所述增量是正整数。
作为该子实施例的一个附属实施例,所述增量是负整数。
作为该子实施例的一个附属实施例,所述增量是0。
作为该子实施例的一个附属实施例,所述第一域不被预留。
作为该子实施例的一个附属实施例,所述第一域不是R域。
作为该子实施例的一个附属实施例,所述第一域占用1个比特。
作为该子实施例的一个附属实施例,所述第一域占用2个比特。
作为该子实施例的一个附属实施例,所述一个MAC子头的格式包括R域。
作为该附属实施例的一个下位实施例,所述一个MAC子头的格式包括E域、T域、第一域和R域。
作为该附属实施例的一个下位实施例,所述一个MAC子头的格式包括E域、T域、第一域、R域和BI域。
作为该子实施例的一个附属实施例,所述一个MAC子头的格式不包括R域。
作为该附属实施例的一个下位实施例,所述一个MAC子头的格式包括E域、T域和第一域。
作为该附属实施例的一个下位实施例,所述一个MAC子头的格式包括E域、T域、第一域和BI域。
作为该子实施例的一个附属实施例,所述一个MAC子头的格式包括BI域。
作为该附属实施例的一个下位实施例,所述一个MAC子头的格式包括E域、T域、第一域和BI域。
作为该附属实施例的一个下位实施例,所述一个MAC子头的格式包括E域、T域、第一域、R域和BI域。
作为该附属实施例的一个下位实施例,所述BI域指示小区的过载状态。
作为该附属实施例的一个下位实施例,所述BI域占用所述X1个比特。
作为该附属实施例的一个下位实施例,所述BI域位于所述一个MAC子头的最低X1个比特。
作为该附属实施例的一个下位实施例,所述第一域是位于所述T域之后并且所述BI域之前的至少一个比特。
作为该子实施例的一个附属实施例,所述一个MAC子头的格式不包括BI域。
作为该附属实施例的一个下位实施例,所述一个MAC子头的格式包括E域、T域和第一域。
作为该附属实施例的一个下位实施例,所述一个MAC子头的格式包括E域、T域、第一域和R域。
作为该子实施例的一个附属实施例,所述第一域是紧跟所述T域的第1个比特。
作为该子实施例的一个附属实施例,所述第一域是紧跟所述T域的第2个比特。
作为该子实施例的一个附属实施例,所述第一域是紧跟所述T域的2个比特。
作为该实施例的一个子实施例,所述第一候选RAR集合中包括所述第一候选RAR和所述第二候选RAR,并且,所述第一候选RAR集合中不包括所述第三候选RAR。
作为该实施例的一个子实施例,所述第一候选RAR集合中包括所述第一候选RAR和所述第三候选RAR,并且,所述第一候选RAR集合中不包括所述第二候选RAR。
作为该子实施例的一个附属实施例,所述K1是大于1的正整数被用于确定所述第一候选RAR集合中不包括所述第二候选RAR。
作为一个实施例,所述“确定K1”包括:根据第二RAR确定所述K1。
作为该实施例的一个子实施例,所述第二RAR在所述第一Preamble被发送之前被接收。
作为该实施例的一个子实施例,所述第二RAR中的所述第一域被用于确定所述K1。
作为该实施例的一个子实施例,所述第二RAR的格式是所述第三候选RAR的格式。
作为该实施例的一个子实施例,所述第一节点根据所述第二RAR中的所述第一域确定所述K1。
作为该实施例的一个子实施例,所述第一节点根据所述第二RAR中的所述第一域通过查表确定所述K1。
作为一个实施例,所述K1个时频资源中的任意2个时频资源在时域上不交叠。
作为一个实施例,所述K1个时频资源中的任意2个时频资源在时域上不是连续的。
作为一个实施例,所述K1个时频资源中的任意2个时频资源在时域上是连续的。
作为一个实施例,所述K1个时频资源中存在至少2个时频资源在时域上不交叠。
作为一个实施例,所述K1个时频资源中的每个时频资源包括时域资源和频域资源。
作为一个实施例,所述K1个时频资源中的每个时频资源占用的频域资源是指上行链路载波。
作为该实施例的一个子实施例,所述载波是指NUL(Normal Uplink,常规上行链路)载波。
作为该实施例的一个子实施例,所述载波是指SUL(Supplementary Uplink,补充上行链路)载波。
作为一个实施例,所述K1个时频资源中的每个时频资源占用的频域资源包括中心频率。
作为一个实施例,所述K1个时频资源中的每个时频资源占用的频域资源包括频率和带宽。
作为一个实施例,所述K1个时频资源中的任意2个时频资源在频域上交叠。
作为一个实施例,所述K1个时频资源中的任意2个时频资源在频域上不交叠。
作为一个实施例,所述K1个时频资源存在至少2个时频资源在频域上交叠。
作为一个实施例,所述K1个时频资源存在至少2个时频资源在频域上不交叠。
作为一个实施例,所述K1个时频资源中的任意2个时频资源占用的频域资源相同。
作为一个实施例,所述K1个时频资源中的任意2个时频资源占用的频域资源不同。
作为一个实施例,所述K1个时频资源存在至少2个时频资源占用的频域资源相同。
作为一个实施例,所述K1个时频资源存在至少2个时频资源占用的频域资源不同。
作为一个实施例,所述K1个时频资源中的每个时频资源在时域上是一个PRACH时机(occasion)。
作为一个实施例,所述K1个时频资源中的每个时频资源在频域上是一个上行链路载波。
作为一个实施例,所述K1个时频资源中的每个时频资源被用于发送Preamble。
作为一个实施例,所述K1个时频资源中的每个时频资源是一个PRACH时机。
作为一个实施例,在所述K1个时频资源中的每个时频资源发送Preamble。
作为一个实施例,在所述K1个时频资源中的每个时频资源发送Preamble与在所述第一时间窗中针对所述第一信令的所述监听无关。
作为一个实施例,在所述K1个时频资源中的每个时频资源发送Preamble与所述第一RAR的内容无关。
作为一个实施例,在所述K1个时频资源中的至少1个时频资源不发送Preamble。
作为一个实施例,在所述K1个时频资源中的任意2个时频资源发送的Preamble相同。
作为一个实施例,在所述K1个时频资源中的任意2个时频资源发送的Preamble不同。
作为一个实施例,在所述K1个时频资源中的时频资源发送的Preamble是由UE选择的。
作为一个实施例,所述K1个时频资源中的每个时频资源的开始时刻是指所述每个时频资源在时域上的开始时刻。
作为一个实施例,所述K1个时频资源中的每个时频资源的开始时刻仅与时域有关。
作为一个实施例,所述K1个时频资源中的每个时频资源的开始时刻是指被用于在所述每个时频资源发送Preamble的第一个符号。
作为一个实施例,所述K1个时频资源中的每个时频资源的截止时刻是指所述每个时频资源在时域上的截止时刻。
作为一个实施例,所述K1个时频资源中的每个时频资源的截止时刻仅与时域有关。
作为一个实施例,所述K1个时频资源中的每个时频资源的截止时刻是指被用于在所述每个时频资源发送Preamble的最后一个符号。
作为一个实施例,一个Preamble是一个Random Access Preamble。
作为一个实施例,一个Preamble是一个序列。
作为一个实施例,一个Preamble是一个ZC序列。
作为一个实施例,一个Preamble被ra-PreambleIndex标识。
作为一个实施例,一个Preamble针对Msg1(Message 1,消息1)。
作为一个实施例,所述“所述K1个时频资源中的任意2个时频资源在时域上不交叠”的意思包括:在一个时频资源发送的Preamble结束之前,在另一个时频资源不发送Preamble。
作为一个实施例,所述“所述K1个时频资源中的任意2个时频资源在时域上不交叠”的意思包括:所述K1个时频资源中的任一时频资源中的任一时刻不属于所述K1个时频资源中的所述任一时频资源之外的一个时频资源。
作为一个实施例,所述第一时频资源是所述K1个时频资源中的开始时刻最早的一个时频资源。
作为一个实施例,所述第一时频资源是所述K1个时频资源中的截止时刻最早的一个时频资源。
作为一个实施例,所述第一时刻与第一CSS有关。
作为一个实施例,所述第一时刻与第一CORESET有关。
作为一个实施例,所述第一时刻与第一PDCCH时机有关。
作为一个实施例,所述第一时刻是所述第一PDCCH时机。
作为一个实施例,所述第一时刻与所述第一时频资源的截止时刻或者所述第一CSS或者所述第一CORESET中的至少前者有关。
作为一个实施例,所述第一时刻与所述第一时频资源的截止时刻、所述第一CSS和所述第一CORESET都有关。
作为一个实施例,所述第一时刻与所述第一时频资源的截止时刻和所述第一PDCCH时机都有关。
作为一个实施例,所述第一时刻是所述第一时频资源的截止时刻。
作为一个实施例,所述第一时刻是所述第一时频资源的截止时刻之后的针对所述第一CSS的用于接收PDCCH的最早的CORESET的第一个符号。
作为一个实施例,所述第一时刻是所述第一CORESET的第M1个符号,所述M1大于1。
作为一个实施例,所述第一时刻是所述第一CORESET的第一个符号。
作为一个实施例,所述第一PDCCH时机是所述第一时频资源的截止时刻之后的第一个PDCCH时机(the first PDCCH occasion)。
作为一个实施例,所述第一PDCCH时机与第一CSS有关。
作为一个实施例,所述第一PDCCH时机与第一CORESET有关。
作为一个实施例,所述第一PDCCH时机与第一CSS和第一CORESET有关。
作为一个实施例,所述第一PDCCH时机根据帧结构确定。
作为一个实施例,所述第一PDCCH时机根据RRC配置确定。
作为一个实施例,所述第一PDCCH时机是被预配置的。
作为一个实施例,所述第一PDCCH时机是被预定义的。
作为一个实施例,所述第一CSS是所述第一信令所属的搜索空间。
作为一个实施例,所述第一CORESET被关联到所述第一CSS。
作为一个实施例,所述第一CORESET是所述第一时频资源的截止时刻之后的针对所述第一CSS的用于接收PDCCH的一个CORESET。
作为一个实施例,所述第一CORESET是所述第一时频资源的截止时刻之后的针对所述第一CSS的用于接收PDCCH的最早的CORESET。
作为一个实施例,所述第一CORESET是所述第一信令所属的CORESET。
作为一个实施例,所述第一时频资源的截止时刻是指:针对所述第一Preamble的PRACH传输所对应的PRACH时机的最后一个符号。
作为一个实施例,所述第一时频资源的截止时刻是指:所述第一Preamble传输结束的时刻。
作为一个实施例,所述第一时刻是所述第一时频资源的截止时刻或者所述第一时频资源的截止时刻之后的一个时刻。
作为一个实施例,所述第一时刻是所述第一时频资源的截止时刻。
作为一个实施例,所述第一时刻在所述第一时频资源的截止时刻之后。
作为一个实施例,所述第一时刻在所述第二时频资源的截止时刻之前。
作为一个实施例,所述第一时刻是所述第一时频资源的截止时刻之后的第一个PDCCH时机。
作为一个实施例,所述第一时刻是所述第一时频资源的截止时刻之后的第P1个符号。
作为一个实施例,所述第一时刻是所述第一时频资源的截止时刻之后的第P1个时隙。
作为一个实施例,所述P1是预定义的。
作为一个实施例,所述P1由所述第一时频资源的截止时刻之后的第一个PDCCH时机确定。
作为一个实施例,所述P1是正整数。
作为一个实施例,所述P1是非负整数。
作为一个实施例,所述K1个时频资源中的任意2个时频资源的持续时间长度相等。
作为一个实施例,所述K1个时频资源中的任意2个时频资源的持续时间长度不相等。
作为一个实施例,所述K1个时频资源中存在至少2个时频资源的持续时间长度相等。
作为一个实施例,所述K1个时频资源中存在至少2个时频资源的持续时间长度不相等。
作为一个实施例,所述“所述第二时频资源是所述K1个时频资源中最晚的一个时频资源”包括:所述第二时频资源是所述K1个时频资源中的开始时刻最晚的一个时频资源。
作为一个实施例,所述“所述第二时频资源是所述K1个时频资源中最晚的一个时频资源”包括:所述第二时频资源是所述K1个时频资源中的截止时刻最晚的一个时频资源。
作为一个实施例,在所述第一时间窗的过期时刻之前,所述第一时间窗被停止。
作为一个实施例,在所述第一时间窗的过期时刻之前,所述第一时间窗未被停止。
作为一个实施例,在所述第二时频资源的截止时刻之前,所述第一时间窗不被认为过期。
作为一个实施例,在所述第二时频资源的截止时刻之前,所述第一时间窗未过期。
作为一个实施例,所述第一时刻到所述第一时间窗的过期时刻之间的时间间隔内,所述第一时间窗不被重新启动。
作为一个实施例,所述第一时刻到所述第一时间窗的过期时刻之间的时间间隔内,所述第一时间窗被重新启动。
作为一个实施例,所述第一时间窗的过期时刻与所述K1有关。
作为一个实施例,所述第一时间窗的过期时刻与所述K1无关。
作为一个实施例,所述K1被用于确定所述第一时间窗的过期时刻。
作为一个实施例,所述第一时间窗的过期时刻与第一时间长度有关。
作为一个实施例,所述第一时间窗的过期时刻仅与第一时间长度有关。
作为一个实施例,所述第一时间窗的过期时刻与第一时间偏移量有关。
作为一个实施例,所述第一时间窗的过期时刻与所述第二时频资源的结束时刻有关。
作为一个实施例,所述第一时间窗的过期时刻与所述K1或者第一时间长度或者第一时间偏移量或者所述第二时频资源的结束时刻中的至少之一有关。
作为一个实施例,所述第一时间窗的最大值是所述第一时间长度。
作为一个实施例,所述第一时间长度被用于确定所述第一时间窗的过期时刻。
作为一个实施例,从所述第一时间窗被启动的时刻开始,经过所述第一时间长度的时刻是所述第一时间窗的过期时刻。
作为一个实施例,从所述第一时间窗被重新启动的时刻开始,经过所述第一时间长度的时刻是所述第一时间窗的过期时刻。
作为一个实施例,从所述第一时间窗被启动或者被重新启动的时刻开始,经过所述第一时间长度的时刻是所述第一时间窗的过期时刻。
作为一个实施例,一个RRC消息被用于配置所述第一时间长度。
作为一个实施例,一个RRC IE被用于配置所述第一时间长度。
作为一个实施例,一个RRC域被用于配置所述第一时间长度。
作为一个实施例,RACH-ConfigCommon被用于配置所述第一时间长度。
作为一个实施例,BeamFailureRecoveryConfig被用于配置所述第一时间长度。
作为一个实施例,所述第一时间窗的最大值是所述第二时间长度,所述第二时间长度和所述第一时间长度不相等。
作为一个实施例,所述第二时间长度被用于确定所述第一时间窗的过期时刻。
作为一个实施例,从所述第一时刻开始,经过所述第一时间长度的时刻是所述第一时间窗的过期时刻。
作为一个实施例,从所述第一时刻开始,经过所述第二时间长度的时刻是所述第一时间窗的过期时刻,所述第二时间长度和所述第一时间长度不相等。
作为一个实施例,所述第二时间长度与所述第一时间长度、第一时间偏移量和所述K1有关。
作为一个实施例,所述第二时间长度与(所述第一时间长度+所述第一时间偏移量×所述K1)相等。
作为一个实施例,所述第二时间长度与(所述第一时间长度+所述第一时间偏移量×(所述K1-1))相等。
作为一个实施例,所述第二时间长度与所述第一时间长度和第一时间偏移量有关。
作为一个实施例,所述第二时间长度与(所述第一时间长度+所述第一时间偏移量)相等。
作为一个实施例,所述第一时间偏移量是PRACH覆盖增强专用的。
作为一个实施例,所述第一时间偏移量的单位与所述第一时间长度的单位相同。
作为一个实施例,所述第一时间偏移量与所述K1有关。
作为一个实施例,所述第一时间偏移量与所述第一时频资源的结束时刻和所述第二时频资源的结束时刻有关。
作为一个实施例,所述第一时间偏移量与所述第一时频资源的结束时刻之后的第一个PDCCH时机和所述第二时频资源的结束时刻之后的第一个PDCCH时机之间的时间间隔相等。
作为一个实施例,所述第一时间偏移量与所述K1个时频资源中的一个时频资源在时域上的持续时间有关。
作为一个实施例,所述第一时间偏移量与所述K1个时频资源中的一个时频资源在时域上的持续时间相等。
作为一个实施例,一个RRC消息被用于配置所述第一时间偏移量。
作为一个实施例,一个RRC IE被用于配置所述第一时间偏移量。
作为一个实施例,一个RRC域被用于配置所述第一时间偏移量。
作为一个实施例,RACH-ConfigCommon被用于配置所述第一时间偏移量。
作为一个实施例,BeamFailureRecoveryConfig被用于配置所述第一时间偏移量。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。附图2说明了5G NR(New Radio,新空口)/LTE(Long-Term Evolution,长期演进)/LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200。5G NR/LTE/LTE-A网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。5GS/EPS 200包括UE(User Equipment,用户设备)201,RAN(无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230中的至少之一。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。RAN包括节点203和其它节点204。节点203提供朝向UE201的用户和控制平面协议终止。节点203可经由Xn接口(例如,回程)/X2接口连接到其它节点204。节点203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。节点203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。节点203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201是一个用户设备(User Equipment,UE)。
作为一个实施例,所述UE201是一个基站设备(BaseStation,BS)。
作为一个实施例,所述UE201是一个中继设备。
作为一个实施例,所述节点203对应本申请中的所述第二节点。
作为一个实施例,所述节点203是一个基站设备。
作为一个实施例,所述节点203是一个用户设备。
作为一个实施例,所述节点203是一个中继设备。
作为一个实施例,所述节点203是网关(Gateway)。
典型的,所述UE201是一个用户设备,所述节点203是一个基站设备。
作为一个实施例,所述用户设备支持地面网络(Non-Terrestrial Network,NTN)的传输。
作为一个实施例,所述用户设备支持非地面网络(Terrestrial Network,地面网络)的传输。
作为一个实施例,所述用户设备支持大时延差网络中的传输。
作为一个实施例,所述用户设备支持双连接(Dual Connection,DC)传输。
作为一个实施例,所述用户设备包括飞行器。
作为一个实施例,所述用户设备包括车载终端。
作为一个实施例,所述用户设备包括船只。
作为一个实施例,所述用户设备包括物联网终端。
作为一个实施例,所述用户设备包括工业物联网的终端。
作为一个实施例,所述用户设备包括支持低时延高可靠传输的设备。
作为一个实施例,所述用户设备包括测试设备。
作为一个实施例,所述用户设备包括信令测试仪。
作为一个实施例,所述基站设备包括基站收发台(Base Transceiver Station,BTS)。
作为一个实施例,所述基站设备包括节点B(NodeB,NB)。
作为一个实施例,所述基站设备包括gNB。
作为一个实施例,所述基站设备包括eNB。
作为一个实施例,所述基站设备包括ng-eNB。
作为一个实施例,所述基站设备包括en-gNB。
作为一个实施例,所述基站设备支持在非地面网络的传输。
作为一个实施例,所述基站设备支持在大时延差网络中的传输。
作为一个实施例,所述基站设备支持地面网络的传输。
作为一个实施例,所述基站设备包括宏蜂窝(Marco Cellular)基站。
作为一个实施例,所述基站设备包括微小区(Micro Cell)基站。
作为一个实施例,所述基站设备包括微微小区(Pico Cell)基站。
作为一个实施例,所述基站设备包括家庭基站(Femtocell)。
作为一个实施例,所述基站设备包括支持大时延差的基站设备。
作为一个实施例,所述基站设备包括飞行平台设备。
作为一个实施例,所述基站设备包括卫星设备。
作为一个实施例,所述基站设备包括TRP(Transmitter Receiver Point,发送接收节点)。
作为一个实施例,所述基站设备包括CU(Centralized Unit,集中单元)。
作为一个实施例,所述基站设备包括DU(Distributed Unit,分布单元)。
作为一个实施例,所述基站设备包括测试设备。
作为一个实施例,所述基站设备包括信令测试仪。
作为一个实施例,所述基站设备包括IAB(Integrated Access and Backhaul)-node。
作为一个实施例,所述基站设备包括IAB-donor。
作为一个实施例,所述基站设备包括IAB-donor-CU。
作为一个实施例,所述基站设备包括IAB-donor-DU。
作为一个实施例,所述基站设备包括IAB-DU。
作为一个实施例,所述基站设备包括IAB-MT。
作为一个实施例,所述中继设备包括relay。
作为一个实施例,所述中继设备包括L3relay。
作为一个实施例,所述中继设备包括L2relay。
作为一个实施例,所述中继设备包括路由器。
作为一个实施例,所述中继设备包括交换机。
作为一个实施例,所述中继设备包括用户设备。
作为一个实施例,所述中继设备包括基站设备。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一Preamble生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二Preamble生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一RAR生成于所述RRC306。
作为一个实施例,本申请中的所述第一RAR生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一RAR生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第三消息生成于所述RRC306。
作为一个实施例,本申请中的所述第三消息生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第三消息生成于所述PHY301或者PHY351。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核 心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个 存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450至少:确定K1,所述K1是大于1的正整数;在第一时刻,启动第一时间窗;在所述第一时间窗中监听第一信令,所述第一信令被用于调度随机接入响应;在K1个时频资源中的至少第一时频资源发送第一Preamble,所述第一时频资源是所述K1个时频资源中最早的一个时频资源;其中,所述第一时刻与至少所述第一时频资源的截止时刻有关;所述第一时刻不早于所述第一时频资源的截止时刻并且早于第二时频资源的截止时刻,所述第二时频资源是所述K1个时频资源中最晚的一个时频资源;所述第一时间窗的过期时刻晚于所述第二时频资源的截止时刻。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:确定K1,所述K1是大于1的正整数;在第一时刻,启动第一时间窗;在所述第一时间窗中监听第一信令,所述第一信令被用于调度随机接入响应;在K1个时频资源中的至少第一时频资源发送第一Preamble,所述第一时频资源是所述K1个时频资源中最早的一个时频资源;其中,所述第一时刻与至少所述第一时频资源的截止时刻有关;所述第一时刻不早于所述第一时频资源的截止时刻并且早于第二时频资源的截止时刻,所述第二时频资源是所述K1个时频资源中最晚的一个时频资源;所述第一时间窗的过期时刻晚于所述第二时频资源的截止时刻。
作为一个实施例,所述第二通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410至少:接收第一Preamble;其中,K1被所述第一Preamble的发送者确定,所述K1是大于1的正整数;在第一时刻,第一时间窗被所述第一Preamble的发送者启动;在所述第一时间窗中第一信令被所述第一Preamble的发送者监听,所述第一信令被用于调度随机接入响应;所述第一Preamble被所述第一Preamble的发送者在K1个时频资源中的至少第一时频资源发送,所述第一时频资源是所述K1个时频资源中最早的一个时频资源;所述第一时刻与至少所述第一时频资源的截止时刻有关;所述第一时刻不早于所述第一时频资源的截止时刻并且早于第二时频资源的截止时刻,所述第二时频资源是所述K1个时频资源中最晚的一个时频资源;所述第一时间窗的过期时刻晚于所述第二时频资源的截止时刻。
作为一个实施例,所述第二通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一Preamble;其中,K1被所述第一Preamble的发送者确定,所述K1是大于1的正整数;在第一时刻,第一时间窗被所述第一Preamble的发送者启动;在所述第一时间窗中第一信令被所述第一Preamble的发送者监听,所述第一信令被用于调度随机接入响应;所述第一Preamble被所述第一Preamble的发送者在K1个时频资源中的至少第一时频资源发送,所述第一时频资源是所述K1个时频资源中最早的一个时频资源;所述第一时刻与至少所述第一时频资源的截止时刻有关;所述第一时刻不早于所述第一时频资源的截止时刻并且早于第二时频资源的截止时刻,所述第二时频资源是所述K1个时频资源中最晚的一个时频资源;所述第一时间窗的过期时刻晚于所述第二时频资源的截止时刻。
作为一个实施例,所述K1个时频资源中的任意2个时频资源在时域上不交叠。
作为一个实施例,所述K1个时频资源中存在至少2个时频资源在时域上不交叠。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收第一信令。
作为一个实施例,所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第一信令。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收第一RAR。
作为一个实施例,所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第一RAR。
作为一个实施例,所述天线452,所述发射器454,所述发射处理器468,所述控制器/处理器459中的至少之一被用于发送第一Preamble。
作为一个实施例,所述天线420,所述接收器418,所述接收处理器470,所述控制器/处理器475中 的至少之一被用于接收第一Preamble。
作为一个实施例,所述天线452,所述发射器454,所述发射处理器468,所述控制器/处理器459中的至少之一被用于发送第二Preamble。
作为一个实施例,所述天线420,所述接收器418,所述接收处理器470,所述控制器/处理器475中的至少之一被用于接收第二Preamble。
作为一个实施例,所述天线452,所述发射器454,所述发射处理器468,所述控制器/处理器459中的至少之一被用于发送第三消息。
作为一个实施例,所述天线420,所述接收器418,所述接收处理器470,所述控制器/处理器475中的至少之一被用于接收第三消息。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第一通信设备450是一个用户设备。
作为一个实施例,所述第一通信设备450是一个基站设备(gNB/eNB/ng-eNB)。
作为一个实施例,所述第一通信设备450是一个中继设备。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第二通信设备410是一个用户设备。
作为一个实施例,所述第二通信设备410是一个基站设备(gNB/eNB/ng-eNB)。
作为一个实施例,所述第二通信设备410是一个中继设备。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S5101中,确定K1,所述K1是大于1的正整数;在步骤S5102中,在K1个时频资源中的至少第一时频资源发送第一Preamble;在步骤S5103中,在第一时刻,启动第一时间窗;在步骤S5104中,在所述第一时间窗中监听第一信令,所述第一信令被用于调度随机接入响应;在步骤S5105中,接收所述第一信令;在步骤S5106中,根据所述第一信令的调度接收第一RAR;在步骤S5107中,确定所述第一时间窗过期。
对于第二节点N02,在步骤S5201中,接收第一Preamble;在步骤S5202中,发送所述第一信令;在步骤S5203中,发送所述第一RAR。
在实施例5中,所述K1个时频资源中的任意2个时频资源在时域上不交叠,所述第一时频资源是所述K1个时频资源中最早的一个时频资源;所述第一时刻与至少所述第一时频资源的截止时刻有关;所述第一时刻不早于所述第一时频资源的截止时刻并且早于第二时频资源的截止时刻,所述第二时频资源是所述K1个时频资源中最晚的一个时频资源;所述第一时间窗的过期时刻晚于所述第二时频资源的截止时刻。
作为一个实施例,所述第一节点U01是一个用户设备。
作为一个实施例,所述第一节点U01是一个基站设备。
作为一个实施例,所述第一节点U01是一个中继设备。
作为一个实施例,所述第二节点N02是一个基站设备。
作为一个实施例,所述第二节点N02是一个用户设备。
作为一个实施例,所述第二节点N02是一个中继设备。
作为一个实施例,所述第一节点U01是一个用户设备,所述第二节点N02是一个基站设备。
作为一个实施例,所述第一节点U01是一个用户设备,所述第二节点N02是一个中继设备。
作为一个实施例,所述第一节点U01是一个用户设备,所述第二节点N02是一个用户设备。
作为一个实施例,所述第一节点U01是一个基站设备,所述第二节点N02是一个基站设备。
作为一个实施例,所述第一节点U01是一个中继设备,所述第二节点N02是一个基站设备。
作为一个实施例,所述第一节点U01和所述第二节点N02之间通过uu口连接。
作为一个实施例,所述第一节点U01和所述第二节点N02之间通过Xn口连接。
作为一个实施例,所述第一节点U01和所述第二节点N02之间通过X2口连接。
作为一个实施例,所述第一节点U01和所述第二节点N02之间通过PC5口连接。
作为一个实施例,所述第一节点U01和所述第二节点N02之间通过空口连接。
作为一个实施例,所述第一信令被接收时,所述第一时间窗正在运行。
作为一个实施例,在所述第一时间窗运行期间,所述第一信令被接收。
作为一个实施例,从所述第一时刻到所述第一信令被接收的时刻之间的时间间隔内,所述第一时间窗未过期。
作为一个实施例,从所述第一时刻到所述第一信令被接收的时刻之间的时间间隔内,所述第一时间窗未达到0;其中,所述第一时间窗倒计时。
作为一个实施例,从所述第一时刻到所述第一信令被接收的时刻之间的时间间隔内,所述第一时间窗未达到所述第一时间窗的最大值;其中,所述第一时间窗正计时。
作为一个实施例,根据所述第一信令的调度信息接收所述第一RAR。
作为一个实施例,所述第一RAR被所述第一信令调度。
作为一个实施例,所述第一RAR是随机接入响应。
作为一个实施例,所述第一RAR是Random Access Response。
作为一个实施例,所述第一RAR是MAC层信令。
作为一个实施例,所述第一RAR是所述第一候选RAR。
作为一个实施例,所述第一RAR的格式和所述第一候选RAR的格式相同。
作为一个实施例,所述第一RAR是所述第二候选RAR。
作为一个实施例,所述第一RAR的格式和所述第二候选RAR的格式相同。
作为一个实施例,所述第一RAR是所述第三候选RAR。
作为一个实施例,所述第一RAR的格式和所述第三候选RAR的格式相同。
作为一个实施例,所述第一RAR是所述第一候选RAR集合中的一个候选RAR。
作为一个实施例,所述第一RAR的格式和所述第一候选RAR集合中的一个候选RAR的格式相同。
作为一个实施例,所述第一RAR是所述第一候选RAR,所述第一RAR包括RAPID域,所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的至少一个时频资源发送的Preamble的标识匹配(match)。
作为该实施例的一个子实施例,所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的至少一个时频资源发送的Preamble的标识匹配被用于确定所述第一RAR是针对在所述K1个时频资源发送的Preamble的响应。
作为该实施例的一个子实施例,所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的一个时频资源发送的Preamble的标识匹配。
作为该实施例的一个子实施例,所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的每个时频资源发送的Preamble的标识匹配。
作为该实施例的一个子实施例,所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的任一时频资源发送的Preamble的标识匹配。
作为该实施例的一个子实施例,所述RAPID域中的Random Access Preamble identifier和所述第一时频资源发送的Preamble的标识匹配。
作为该实施例的一个子实施例,所述Preamble的所述标识是ra-PreambleIndex。
作为该实施例的一个子实施例,所述Preamble的所述标识是PREAMBLE_INDEX。
作为该实施例的一个子实施例,所述Preamble的所述标识被用于指示所述Preamble。
作为该实施例的一个子实施例,在所述K1个时频资源中的至少一个时频资源发送的Preamble的标识都相等。
作为该实施例的一个子实施例,在所述K1个时频资源中的至少一个时频资源发送的Preamble的标识都不相等。
作为该实施例的一个子实施例,在所述K1个时频资源中的至少一个时频资源发送的Preamble的标识至少有2个相等。
作为该实施例的一个子实施例,在所述K1个时频资源中的至少一个时频资源发送的Preamble的标识 至少有2个不相等。
作为该实施例的一个子实施例,所述匹配的意思是相同。
作为该实施例的一个子实施例,所述匹配的意思是相等。
作为该实施例的一个子实施例,所述匹配的意思是相关。
作为该实施例的一个子实施例,所述匹配的意思是对应。
作为一个实施例,所述第一RAR是所述第一候选RAR包括:所述第一RAR包括RAPID域,所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的至少一个时频资源发送的Preamble的标识匹配。
作为一个实施例,所述第一RAR是所述第一候选RAR,所述第一RAR包括RAPID域,所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的至少一个时频资源发送的Preamble的标识不匹配。
作为该实施例的一个子实施例,所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的至少一个时频资源发送的Preamble的PREAMBLE_INDEX不匹配被用于确定所述第一RAR不是针对在所述K1个时频资源发送的Preamble的响应。
作为该实施例的一个子实施例,所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的一个时频资源发送的Preamble的PREAMBLE_INDEX不匹配。
作为该实施例的一个子实施例,所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的每个时频资源发送的Preamble的PREAMBLE_INDEX不匹配。
作为该实施例的一个子实施例,所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的任一时频资源发送的Preamble的PREAMBLE_INDEX不匹配。
作为该实施例的一个子实施例,所述RAPID域中的Random Access Preamble identifier和所述第一时频资源发送的Preamble的PREAMBLE_INDEX不匹配。
作为一个实施例,所述第一RAR是所述第二候选RAR,所述第一RAR包括Backoff Indicator域。
作为一个实施例,所述第一RAR是所述第二候选RAR包括:所述第一RAR包括Backoff Indicator域。
作为一个实施例,所述第一RAR是所述第二候选RAR被用于确定所述第一RAR包括Backoff Indicator域。
作为一个实施例,所述第一RAR是所述第三候选RAR,所述第一RAR包括所述第一域。
作为一个实施例,所述第一RAR是所述第三候选RAR包括:所述第一RAR包括所述第一域。
作为一个实施例,所述第一RAR是所述第三候选RAR被用于确定所述第一RAR包括所述第一域。
作为一个实施例,作为所述第一RAR被接收的响应,如果所述第一RAR包括RAPID域并且所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的至少一个时频资源发送的Preamble的标识匹配,认为随机接入响应接收成功。
作为一个实施例,作为所述第一RAR被接收的响应,仅当所述第一RAR包括RAPID域并且所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的至少一个时频资源发送的Preamble的标识匹配时,才认为随机接入响应接收成功。
作为一个实施例,作为所述第一RAR被接收的响应,如果所述第一RAR包括RAPID域并且所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的至少一个时频资源发送的Preamble的PREAMBLE_INDEX不匹配,随机接入响应不被认为接收成功。
作为一个实施例,作为所述第一RAR被接收的响应,如果所述第一RAR是所述第二候选RAR,随机接入响应不被认为接收成功。
作为一个实施例,作为所述第一RAR被接收的响应,如果所述第一RAR是所述第三候选RAR,随机接入响应不被认为接收成功。
作为一个实施例,作为认为随机接入响应接收成功的响应,停止所述第一时间窗。
作为一个实施例,作为认为随机接入响应接收成功的响应,可以停止所述第一时间窗。
作为一个实施例,作为认为随机接入响应接收成功的响应,可以不停止所述第一时间窗。
作为一个实施例,如果停止所述第一时间窗,停止监听所述第一信令。
作为一个实施例,如果停止所述第一时间窗,停止针对所述第一信令的所述监听。
作为一个实施例,如果停止所述第一时间窗,停止监听随机接入响应。
作为一个实施例,虚线方框F5.1是可选的。
作为一个实施例,所述虚线方框F5.1存在。
作为一个实施例,所述虚线方框F5.1不存在。
作为一个实施例,步骤S5107是可选的。
作为一个实施例,所述步骤S5107存在。
作为一个实施例,所述步骤S5107不存在。
作为一个实施例,所述虚线方框F5.1存在,并且,所述步骤S5107不存在。
作为该实施例的一个子实施例,在所述第一时间窗过期之前,所述第一时间窗被停止。
作为一个实施例,所述虚线方框F5.1不存在,并且,所述步骤S5107存在。
作为一个实施例,所述虚线方框F5.1和所述步骤S5107都存在。
作为一个实施例,所述步骤S5103在所述步骤S5104之前。
作为一个实施例,所述步骤S5103在所述步骤S5104之后。
实施例6
实施例6示例了根据本申请的另一个实施例的无线信号传输流程图,如附图6所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S6101中,接收第一RAR;在步骤S6102中,作为所述第一RAR在所述第一时间窗中被成功接收的响应,发送第三消息。
对于第二节点N02,在步骤S6201中,接收所述第三消息。
在实施例6中,所述K1个时频资源分别被关联到至少两个下行RS资源,所述第三消息被关联到目标下行RS资源,所述目标下行RS资源是所述至少两个下行RS资源中之一;所述第一信令所属的CORESET或者搜索空间被用于确定所述目标下行RS资源。
作为一个实施例,所述第一RAR是所述第一候选RAR。
作为一个实施例,所述第一RAR的格式和所述第一候选RAR的格式相同。
作为一个实施例,所述第一RAR中的MAC子头包括RAPID域,所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的至少一个时频资源发送的Preamble的标识匹配。
作为一个实施例,作为所述第一RAR在所述第一时间窗中被成功接收并且所述第一RAR包括RAPID域并且所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的至少一个时频资源发送的Preamble的标识匹配的响应,发送第三消息。
作为一个实施例,所述第一RAR中的MAC RAR指示第二RNTI。
作为一个实施例,所述第一RAR中的MAC RAR中的Temporary C-RNTI域指示第二RNTI。
作为一个实施例,所述第二RNTI是被用于随机接入的临时标识(temporary identity)。
作为一个实施例,所述第二RNTI是一个TC-RNTI。
作为一个实施例,所述第二RNTI是一个Temporary C-RNTI。
作为一个实施例,所述第一RAR中的MAC RAR中的Timing Advance Command域指示TA
作为一个实施例,所述第一RAR中的MAC RAR中的UL Grant域指示上行链路资源。
作为一个实施例,所述第三消息是Msg3。
作为一个实施例,所述第三消息在PUSCH上被发送。
作为一个实施例,所述第三消息被所述第二RNTI加扰。
作为一个实施例,所述第三消息在被所述第一RAR指示的上行链路资源上被发送。
作为一个实施例,所述第三消息被发送的时刻与所述被所述第一RAR指示的TA有关。
作为一个实施例,所述第三消息包括所述第一节点U01的C-RNTI。
作为一个实施例,所述第三消息包括一个C-RNTI MAC CE,所述一个C-RNTI MAC CE中包括所述第一节点U01的C-RNTI。
作为一个实施例,所述第三消息包括一个CCCH(Common Control Channel,公共控制信道)SDU(Service  data unit,服务数据单元),所述一个CCCH SDU包括所述第一节点U01的I-RNTI。
作为一个实施例,所述第三消息根据所述目标下行RS资源被发送。
作为一个实施例,所述第三消息根据所述目标下行RS资源的空间参数被发送。
作为一个实施例,所述K1个时频资源分别被关联到至少两个下行RS资源。
作为一个实施例,所述K1个时频资源分别被关联到K1个下行RS资源。
作为一个实施例,所述至少两个下行RS资源是K1个下行RS资源。
作为一个实施例,所述至少两个下行RS资源是不大于K1个下行RS资源。
作为一个实施例,所述至少两个下行RS资源中的每个RS资源是SSB。
作为一个实施例,所述至少两个下行RS资源中的每个RS资源是CSI-RS。
作为一个实施例,所述至少两个下行RS资源中的每个RS资源是SSB或者CSI-RS中的之一。
作为一个实施例,所述第一信令所属的CORESET被关联到一个CORESET的索引。
作为一个实施例,所述第一信令所属的CORESET是所述第一CORESET。
作为一个实施例,所述第一信令所属的CORESET包括所述第一CORESET。
作为一个实施例,所述第一信令所属的CORESET包括所述第二CORESET。
作为一个实施例,所述第一信令所属的CORESET包括至少一个CORESET。
作为一个实施例,所述第一信令所属的CORESET被关联到所述第一CSS。
作为一个实施例,所述第一信令所属的CORESET被关联到所述第二CSS。
作为一个实施例,所述第一信令所属的搜索空间是一个搜索空间的索引。
作为一个实施例,所述第一信令所属的搜索空间是所述第一CSS。
作为一个实施例,所述第一信令所属的搜索空间包括所述第一CSS。
作为一个实施例,所述第一信令所属的搜索空间包括所述第二CSS。
作为一个实施例,所述第一信令所属的搜索空间包括至少一个CSS。
作为一个实施例,所述第一信令所属的搜索空间包括至少一个搜索空间。
作为一个实施例,所述第一信令所属的CORESET或者搜索空间中的至少之一被用于确定所述目标下行RS资源。
作为一个实施例,所述第一信令所属的CORESET或者搜索空间所关联的下行RS资源是所述目标下行RS资源。
作为一个实施例,被用于接收所述第一信令的空间参数与所述目标下行RS资源是QCL(Quasi co-location,准共址)的。
作为一个实施例,被用于接收所述第一信令的空间参数和所述目标下行RS资源的空间参数相同。
作为一个实施例,所述目标下行RS资源的空间参数根据所述第一信令的空间参数确定。
作为一个实施例,所述目标下行RS资源的空间参数根据所述第一信令的空间参数确定,所述第一信令的空间参数包括所述第一信令所属的CORESET或者搜索空间中的至少之一。
作为一个实施例,所述空间参数包括CORESET。
作为一个实施例,所述空间参数包括搜索空间。
作为一个实施例,所述空间参数包括QCL类型。
作为一个实施例,所述空间参数包括发送波束。
作为一个实施例,所述空间参数包括接收波束。
实施例7
实施例7示例了根据本申请的又一个实施例的无线信号传输流程图,如附图7所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S7101中,接收第一RAR;在步骤S7102中,根据所述第一RAR的内容确定在至少所述第二时频资源中是否发送Preamble。
作为一个实施例,所述第一RAR被接收之前,所述第一信令被接收。
作为一个实施例,在至少所述第二时频资源中是否发送Preamble与所述第一RAR的内容有关。
作为一个实施例,根据所述第一RAR的内容确定在所述K1个时频资源中的开始时刻在所述第一RAR 被接收之后的任一时频资源中是否发送Preamble。
作为一个实施例,根据所述第一RAR的内容确定在所述K1个时频资源中的开始时刻在所述第一RAR被接收之后的每个时频资源中是否发送Preamble。
作为一个实施例,根据所述第一RAR的内容确定在所述K1个时频资源中的开始时刻在所述第一RAR被接收之后的第一个时频资源中是否发送Preamble。
作为一个实施例,所述第一RAR中的MAC子头被用于确定所述第一RAR的内容。
作为一个实施例,所述第一RAR的格式被用于确定所述第一RAR的内容。
作为一个实施例,所述第一RAR指示在至少所述第二时频资源中是否发送Preamble。
作为一个实施例,所述第一RAR显式指示在至少所述第二时频资源中是否发送Preamble。
作为一个实施例,所述第一RAR隐式指示在至少所述第二时频资源中是否发送Preamble。
作为一个实施例,如果所述第一RAR是所述第一候选RAR,在至少所述第二时频资源中不发送Preamble。
作为一个实施例,如果所述第一RAR包括RAPID域并且所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的至少一个时频资源发送的Preamble的标识匹配,在至少所述第二时频资源中不发送Preamble。
作为一个实施例,如果所述第一RAR包括RAPID域并且所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的至少一个时频资源发送的Preamble的标识匹配,在所述K1个时频资源中的开始时刻在所述第一RAR被接收之后的任一时频资源中不发送Preamble。
作为一个实施例,在所述K1个时频资源的每个时频资源的开始时刻,只要在所述第一时间窗中还没接收到一个包括RAPID域并且所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的至少一个时频资源发送的Preamble的标识匹配的第一候选RAR,就发送Preamble。
作为一个实施例,在所述K1个时频资源的每个时频资源的开始时刻,只要所述第一时间窗正在运行,就发送Preamble。
作为一个实施例,如果所述第一RAR是所述第二候选RAR,并且,Backoff Indicator域大于一个阈值,在至少所述第二时频资源中不发送Preamble。
作为一个实施例,如果所述第一RAR是所述第二候选RAR,并且,Backoff Indicator域大于一个阈值,在所述K1个时频资源中的开始时刻在所述第一RAR被接收之后的任一时频资源中不发送Preamble。
作为一个实施例,如果所述第一RAR是所述第三候选RAR,并且,所述第一域指示减少Preamble的重复次数,在至少所述第二时频资源中不发送Preamble。
作为一个实施例,如果所述第一RAR是所述第三候选RAR,并且,所述第一域指示减少Preamble的重复次数,在所述K1个时频资源中的开始时刻在所述第一RAR被接收之后的任一时频资源中不发送Preamble。
作为一个实施例,如果所述第一RAR是所述第三候选RAR,并且,所述第一域指示在至少所述第二时频资源中不发送Preamble,在至少所述第二时频资源中不发送Preamble。
作为一个实施例,如果所述第一RAR是所述第三候选RAR,并且,所述第一域指示在所述K1个时频资源中的开始时刻在所述第一RAR被接收之后的任一时频资源中不发送Preamble,在所述K1个时频资源中的开始时刻在所述第一RAR被接收之后的任一时频资源中不发送Preamble。
作为一个实施例,如果所述第一RAR是所述第二候选RAR,在至少所述第二时频资源中发送Preamble。
作为一个实施例,如果所述第一RAR是所述第三候选RAR,在至少所述第二时频资源中发送Preamble。
作为一个实施例,如果所述第一RAR是所述第二候选RAR,并且,Backoff Indicator域不大于一个阈值,在至少所述第二时频资源中发送Preamble。
作为一个实施例,如果所述第一RAR是所述第三候选RAR,并且,所述第一域未指示减少Preamble的重复次数,在至少所述第二时频资源中发送Preamble。
作为一个实施例,如果所述第一RAR是所述第三候选RAR,并且,所述第一域未指示在至少所述第二时频资源中不发送Preamble,在至少所述第二时频资源中发送Preamble。
作为一个实施例,在所述K1个时频资源的每个时频资源的开始时刻,只要在所述第一时间窗中还没接收到一个包括RAPID域并且所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的至少一个时频资源发送的Preamble的标识匹配的第一候选RAR,并且,没有接收到Backoff  Indicator域大于一个阈值的第二候选RAR,就发送Preamble。
作为一个实施例,在所述K1个时频资源的每个时频资源的开始时刻,只要在所述第一时间窗中还没接收到一个包括RAPID域并且所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的至少一个时频资源发送的Preamble的标识匹配的第一候选RAR,并且,没有接收到所述第一域指示减少Preamble的重复次数的第三候选RAR,就发送Preamble。
作为一个实施例,在所述K1个时频资源的每个时频资源的开始时刻,只要在所述第一时间窗中还没接收到一个包括RAPID域并且所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的至少一个时频资源发送的Preamble的标识匹配的第一候选RAR,并且,没有接收到所述第一域指示在至少所述第二时频资源中不发送Preamble的第三候选RAR,就发送Preamble。
作为一个实施例,如果所述第一RAR包括RAPID域并且所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的至少一个时频资源发送的Preamble的PREAMBLE_INDEX不匹配,或者,如果所述第一RAR是所述第二候选RAR,或者,如果所述第一RAR是所述第三候选RAR,继续监听所述第一信令;在所述第一时间窗中针对所述第一信令的所述监听被用于确定在至少所述第二时频资源中是否发送Preamble。
作为一个实施例,所述“在至少所述第二时频资源中不发送Preamble”包括:在所述第二时频资源中不发送Preamble。
作为一个实施例,所述“在至少所述第二时频资源中不发送Preamble”包括:在所述K1个时频资源中的开始时刻在所述第一RAR被接收之后的任一时频资源中不发送Preamble。
作为一个实施例,所述“在至少所述第二时频资源中不发送Preamble”包括:在所述K1个时频资源中的开始时刻在所述第一RAR被接收之后的每个时频资源中不发送Preamble。
作为一个实施例,所述“在至少所述第二时频资源中发送Preamble”包括:在所述第二时频资源中发送Preamble。
作为一个实施例,所述“在至少所述第二时频资源中发送Preamble”包括:在所述K1个时频资源中的开始时刻在所述第一RAR被接收之后的任一时频资源中发送Preamble。
作为一个实施例,所述“在至少所述第二时频资源中发送Preamble”包括:在所述K1个时频资源中的开始时刻在所述第一RAR被接收之后的每个时频资源中发送Preamble。
作为一个实施例,在所述第一时间窗中针对所述第一信令的所述监听和所述第一RAR的内容共同被用于确定在至少所述第二时频资源中是否发送Preamble。
作为一个实施例,如果所述第一RAR不是包括RAPID域并且所述RAPID域中的RandomAccess Preamble identifier和在K1个时频资源中的至少一个时频资源发送的Preamble的标识匹配的第一候选RAR,并且,所述第一时间窗正在运行,在至少所述第二时频资源中发送Preamble。
实施例8
实施例8示例了根据本申请的再一个实施例的无线信号传输流程图,如附图8所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S8101中,确定所述第一时间窗过期;在步骤S8102中,作为所述第一时间窗过期的响应,根据所述K1更新第一计数器。
在实施例8中,所述第一计数器被用于统计被发送的Preamble的数量。
作为一个实施例,在所述第一时间窗过期之前,所述第一信令未被接收。
作为一个实施例,在所述第一时间窗过期之前,所述第一信令被接收。
作为一个实施例,在所述第一时间窗过期之前,所述第一RAR未被接收。
作为一个实施例,在所述第一时间窗过期之前,所述第一RAR被接收;其中,所述第一RAR是所述第一候选RAR,所述第一RAR包括RAPID域并且所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的至少一个时频资源发送的Preamble的PREAMBLE_INDEX不匹配。
作为一个实施例,在所述第一时间窗过期之前,包括RAPID域并且所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的至少一个时频资源发送的Preamble的PREAMBLE_INDEX不匹配的第一候选RAR未被接收。
作为一个实施例,在所述第一时间窗过期之前,所述第一RAR被接收;其中,所述第一RAR是所述第二候选RAR。
作为一个实施例,在所述第一时间窗过期之前,所述第二候选RAR未被接收。
作为一个实施例,在所述第一时间窗过期之前,所述第一RAR被接收;其中,所述第一RAR是所述第三候选RAR。
作为一个实施例,在所述第一时间窗过期之前,所述第三候选RAR未被接收。
作为一个实施例,在所述第一时间窗过期之前,包括RAPID域并且所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的至少一个时频资源发送的Preamble的标识匹配的第一候选RAR未被接收。
作为一个实施例,作为所述第一时间窗过期并且包括RAPID域并且所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的至少一个时频资源发送的Preamble的标识匹配的随机接入响应未被接收的响应,根据所述K1更新第一计数器。
作为一个实施例,所述第一时间窗过期是指所述第一时间窗达到所述第一时间窗的最大值;所述第一时间窗正计时。
作为一个实施例,所述第一时间窗过期是指所述第一时间窗达到0;所述第一时间窗倒计时。
作为一个实施例,作为所述第一时间窗过期的响应,认为所述随机接入响应未被成功接收。
作为一个实施例,所述“根据所述K1更新第一计数器”包括:所述第一计数器增加所述K1。
作为一个实施例,所述“根据所述K1更新第一计数器”包括:所述第一计数器增加K2;所述K2不大于所述K1,所述K2是在所述K1个时频资源发送的不同的Preamble的数量。
作为一个实施例,所述第一计数器是PREAMBLE_TRANSMISSION_COUNTER。
作为一个实施例,所述第一计数器的名字中包括PREAMBLE_TRANSMISSION_COUNTER。
作为一个实施例,所述第一计数器的名字中包括PREAMBLE或者TRANSMISSION或者COUNTER或者CE或者COVERAGE或者ENHANCEMENT中的至少之一。
作为一个实施例,所述第一Preamble被发送时,所述第一计数器等于1。
作为一个实施例,所述第一Preamble被发送时,所述第一计数器大于1。
实施例9
实施例9示例了根据本申请的一个实施例的第三候选RAR中的MAC子头的示意图,如附图9所示。在附图9中,每个实线方框表示至少一个域;所述实线方框901中包括所述第一域;虚线方框9.1、虚线方框9.2和虚线方框9.3分别是所述实现方框901的一种实现方式;特别说明的是本示例并不限制本申请中的所述实线方框901中所包括的每个域的尺寸和位置。
在实施例9中,所述第三候选RAR仅包括一个MAC子头,所述一个MAC子头的格式包括至少E域、T域和第一域,所述一个MAC子头占用一个八位组;所述E域占用1个比特,所述E域位于所述一个MAC子头中的最高位;所述T域占用1个比特,所述T域紧跟所述E域;所述第一域是所述T域之后的一个域。
作为一个实施例,在所述附图9中,所述第三候选RAR中的MAC子头由所述E域、所述T域和所述方框901组成。
作为一个实施例,所述实现方框901包括的所有域共占用6个比特。
作为一个实施例,所述虚线方框9.1存在。
作为该实施例的一个子实施例,所述一个MAC子头的格式中包括R域和BI域。
作为该实施例的一个子实施例,所述一个MAC子头的格式由E域、T域、R域、第一域和BI域组成。
作为该实施例的一个子实施例,所述第一域占用1个比特,所述R域占用1个比特,所述BI域占用4个比特。
作为该实施例的一个子实施例,所述第一域占用2个比特,所述R域占用1个比特,所述BI域占用3个比特。
作为该实施例的一个子实施例,所述第一域占用1个比特,所述R域占用2个比特,所述BI域占用3个比特。
作为该实施例的一个子实施例,所述第一域在所述R域之前。
作为该实施例的一个子实施例,所述第一域在所述R域之后。
作为该实施例的一个子实施例,所述第一域在所述R域之间。
作为该实施例的一个子实施例,所述虚线方框9.2不存在,所述虚线方框9.3不存在。
作为一个实施例,所述虚线方框9.2存在。
作为该实施例的一个子实施例,所述一个MAC子头的格式中不包括R域,所述一个MAC子头的格式中包括BI域。
作为该实施例的一个子实施例,所述一个MAC子头的格式由E域、T域、第一域和BI域组成。
作为该实施例的一个子实施例,所述第一域占用2个比特,所述BI域占用4个比特。
作为该实施例的一个子实施例,所述第一域占用3个比特,所述BI域占用3个比特。
作为该实施例的一个子实施例,所述虚线方框9.1不存在,所述虚线方框9.3不存在。
作为一个实施例,所述虚线方框9.3存在。
作为该实施例的一个子实施例,所述一个MAC子头的格式中包括R域,所述一个MAC子头的格式中不包括BI域。
作为该实施例的一个子实施例,所述一个MAC子头的格式由E域、T域、第一域和R域组成。
作为该实施例的一个子实施例,所述第一域占用4个比特,所述R域占用2个比特。
作为该实施例的一个子实施例,所述第一域占用3个比特,所述R域占用3个比特。
作为该实施例的一个子实施例,所述第一域占用2个比特,所述R域占用4个比特。
作为该实施例的一个子实施例,所述第一域占用1个比特,所述R域占用5个比特。
作为该实施例的一个子实施例,所述第一域在所述R域之后。
作为该实施例的一个子实施例,所述第一域在所述R域之前。
作为该实施例的一个子实施例,所述第一域在所述R域之间。
作为该实施例的一个子实施例,所述虚线方框9.1不存在,所述虚线方框9.2不存在。
作为一个实施例,所述第三候选RAR被用于PRACH覆盖增强。
作为一个实施例,所述第三候选RAR仅被用于PRACH覆盖增强。
作为一个实施例,所述第三候选RAR仅被用于NR PRACH覆盖增强。
实施例10
实施例10示例了根据本申请的一个实施例的第二Preamble的传输流程图,如附图10所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S10101中,在目标时频资源发送第二Preamble;在步骤S10102中,在第二时刻,重新启动所述第一时间窗;在步骤S10103中,在所述第一时间窗中监听第一信令。
对于第二节点N02,在步骤S10201中,接收第二Preamble。
在实施例10中,所述第二时刻与所述目标时频资源的截止时刻有关;所述目标时频资源是所述K1个时频资源中的所述第一时频资源之外的一个时频资源。
作为一个实施例,在第二时刻,如果所述第一时间窗正在运行,重新启动所述第一时间窗。
作为一个实施例,在第二时刻,仅当所述第一时间窗正在运行时,重新启动所述第一时间窗。
作为一个实施例,所述“重新启动所述第一时间窗”包括:使所述第一时间窗重新开始计时。
作为一个实施例,所述“重新启动所述第一时间窗”包括:使所述第一时间窗重新开始运行。
作为一个实施例,所述“重新启动所述第一时间窗”包括:使所述第一时间窗重新从0开始运行;所述第一时间窗正计时。
作为一个实施例,所述“重新启动所述第一时间窗”包括:使所述第一时间窗重新从所述第一时间窗的最大值开始运行;所述第一时间窗倒计时。
作为一个实施例,所述目标时频资源是所述K1个时频资源中的所述第一时频资源之后的给定时频资源。
作为一个实施例,所述目标时频资源是所述K1个时频资源中的和所述第一时频资源相邻的时频资源。
作为一个实施例,所述目标时频资源是所述K1个时频资源中的所述第一时频资源之后的任一时频资源。
作为一个实施例,所述目标时频资源是所述第二时频资源。
作为一个实施例,所述第二Preamble和所述第一Preamble相同。
作为一个实施例,所述第二Preamble和所述第一Preamble不同。
作为一个实施例,所述第二时刻与第二CSS有关。
作为一个实施例,所述第二时刻与第二CORESET有关。
作为一个实施例,在所述第二CSS(Common Search Space,公共搜索空间)上监听所述第一信令。
作为一个实施例,所述第二CSS被关联到至少一个CORESET。
作为一个实施例,所述第二CSS被关联到一个CORESET。
作为一个实施例,所述第二CSS被关联到第二CORESET。
作为一个实施例,所述第二CSS是所述第一信令所属的搜索空间。
作为一个实施例,所述第二CSS是所述第一CSS。
作为一个实施例,所述第二CSS和所述第一CSS不同。
作为一个实施例,所述第二时刻与第二PDCCH时机(occasion)有关。
作为一个实施例,所述第二时刻是所述第二PDCCH时机。
作为一个实施例,所述第二时刻与所述目标时频资源的截止时刻或者所述第二CSS或者所述第二CORESET中的至少前者有关。
作为一个实施例,所述第二时刻与所述目标时频资源的截止时刻、所述第二CSS和所述第二CORESET都有关。
作为一个实施例,所述第二时刻与所述目标时频资源的截止时刻和所述第二PDCCH时机都有关。
作为一个实施例,所述第二时刻是所述目标时频资源的截止时刻。
作为一个实施例,所述第二时刻是所述目标时频资源的截止时刻之后的针对所述第二CSS的用于接收PDCCH的最早的CORESET的第一个符号。
作为一个实施例,所述第二时刻是所述第二CORESET的第M2个符号,所述M2大于1。
作为一个实施例,所述第二时刻是所述第二CORESET的第一个符号。
作为一个实施例,所述第二PDCCH时机是所述目标时频资源的截止时刻之后的第一个PDCCH时机(the first PDCCH occasion)。
作为一个实施例,所述第二PDCCH时机与第二CSS有关。
作为一个实施例,所述第二PDCCH时机与第二CORESET有关。
作为一个实施例,所述第二PDCCH时机与第二CSS和第二CORESET有关。
作为一个实施例,所述第二PDCCH时机根据帧结构确定。
作为一个实施例,所述第二PDCCH时机根据RRC配置确定。
作为一个实施例,所述第二PDCCH时机是被预配置的。
作为一个实施例,所述第二PDCCH时机是被预定义的。
作为一个实施例,所述第二CORESET被关联到所述第二CSS。
作为一个实施例,所述第二CORESET是所述目标时频资源的截止时刻之后的针对所述第二CSS的用于接收PDCCH的一个CORESET。
作为一个实施例,所述第二CORESET是所述目标时频资源的截止时刻之后的针对所述第二CSS的用于接收PDCCH的最早的CORESET。
作为一个实施例,所述第二CORESET是所述第一信令所属的CORESET。
作为一个实施例,所述目标时频资源的截止时刻是指:针对所述第二Preamble的PRACH传输所对应的PRACH时机的最后一个符号。
作为一个实施例,所述目标时频资源的截止时刻是指:所述第二Preamble传输结束的时刻。
作为一个实施例,所述第二时刻是所述目标时频资源的截止时刻或者所述目标时频资源的截止时刻之后的一个时刻。
作为一个实施例,所述第二时刻是所述目标时频资源的截止时刻。
作为一个实施例,所述第二时刻在所述目标时频资源的截止时刻之后。
作为一个实施例,所述第二时刻是所述目标时频资源的截止时刻之后的第一个PDCCH时机。
作为一个实施例,所述第二时刻是所述目标时频资源的截止时刻之后的第P2个符号。
作为一个实施例,所述第二时刻是所述目标时频资源的截止时刻之后的第P2个时隙。
作为一个实施例,所述P2是预定义的。
作为一个实施例,所述P2由所述目标时频资源的截止时刻之后的第一个PDCCH时机确定。
作为一个实施例,所述P2是正整数。
作为一个实施例,所述P2是非负整数。
实施例11
实施例11示例了根据本申请的一个实施例的K1个时频资源和第一时间窗的示意图,如附图11所示。在附图11中,横轴表示时域,纵轴表示频域;方框1101和方框1102分别表示所述K1个时频资源中的一个时频资源;所述方框1101表示所述第一时频资源;所述方框1102表示所述第二时频资源;省略号表示所述K1个时频资源中的所述第一时频资源和所述第二时频资源之外的时频资源;方框1103表示所述第一时间窗。特别说明的是本示例不限制本申请中的所述K1个时频资源中的任意2个时频资源在频域上是否交叠,并且,不限制本申请中的所述K1个时频资源中的任意2个时频资源在时域上是否交叠。
在实施例11中,T11.1时刻是所述第一时频资源的开始时刻;T11.2时刻是所述第一时频资源的截止时刻;T11.3时刻是所述第一时刻;T11.4时刻是所述第二时频资源的开始时刻;T11.5时刻是所述第二时频资源的截止时刻;T11.6时刻是所述第一时间窗的过期时刻。
作为一个实施例,所述T11.2时刻和所述T11.4时刻之间存在所述K1个时频资源中的至少一个时频资源;所述K1大于3。
作为一个实施例,所述T11.2时刻和所述T11.4时刻之间不存在所述K1个时频资源中的任一时频资源;所述K1等于2。
作为该实施例的一个子实施例,所述T11.2时刻和所述T11.4时刻在时域上是连续的。
作为该实施例的一个子实施例,所述T11.2时刻和所述T11.4时刻在时域上不是连续的。
作为该实施例的一个子实施例,所述T11.3时刻在所述T11.2时刻和所述T11.4时刻之间。
作为该实施例的一个子实施例,所述T11.3时刻在所述T11.4时刻之后。
作为一个实施例,所述T11.3时刻到所述T11.6时刻之间的时间间隔和所述第一时间窗的最大值相等。
作为一个实施例,所述T11.3时刻到所述T11.6时刻之间的时间间隔内,所述第一时间窗不被重新启动。
作为一个实施例,在所述T11.3时刻,启动所述第一时间窗。
作为一个实施例,在所述T11.6时刻,所述第一时间窗过期。
作为一个实施例,在所述T11.6时刻之前,所述第一信令被接收。
作为一个实施例,在所述T11.6时刻之前,所述第一信令未被接收。
作为一个实施例,在所述T11.6时刻之前,所述第一RAR被接收;所述第一RAR是所述第一候选RAR。
作为一个实施例,在所述T11.6时刻之前,所述第一RAR未被接收;所述第一RAR是所述第一候选RAR。
作为一个实施例,在所述T11.6时刻之前,所述第一RAR被接收;所述第一RAR是所述第二候选RAR。
作为一个实施例,在所述T11.6时刻之前,所述第一RAR未被接收;所述第一RAR是所述第二候选RAR。
作为一个实施例,在所述T11.6时刻之前,所述第一RAR被接收;所述第一RAR是所述第三候选RAR。
作为一个实施例,在所述T11.6时刻之前,所述第一RAR未被接收;所述第一RAR是所述第三候选RAR。
作为一个实施例,在所述T11.6时刻之前,在所述K1个时频资源中的每个时频资源发送Preamble。
作为一个实施例,在所述T11.6时刻之前,在所述K1个时频资源中的至少一个时频资源未发送Preamble。
作为一个实施例,在所述T11.6时刻之前,所述第一时间窗被停止。
作为一个实施例,在所述T11.6时刻之前,所述第一时间窗未被停止。
作为一个实施例,所述第一时间窗未过期。
作为一个实施例,所述第一时间窗过期。
作为一个实施例,所述省略号存在。
作为一个实施例,所述省略号不存在。
实施例12
实施例12示例了根据本申请的另一个实施例的K1个时频资源和第一时间窗的示意图,如附图12所示。在附图12中,横轴表示时域,纵轴表示频域;方框1201和方框1202表示所述K1个时频资源中的两个相邻的时频资源;所述方框1201表示所述目标时频资源之前的时频资源;所述方框1202表示所述目标时频资源;省略号表示所述K1个时频资源中的所述目标时频资源之前的所述时频资源和所述目标时频资源之外的时频资源;方框1203和方框1204表示所述第一时间窗。特别说明的是本示例不限制本申请中的所述K1个时频资源中的任意2个时频资源在频域上是否交叠,并且,不限制本申请中的所述K1个时频资源中的任意2个时频资源在时域上是否交叠。
在实施例12中,T12.1时刻是所述目标时频资源之前的相邻的所述时频资源的开始时刻;T12.2时刻是所述目标时频资源之前的相邻的所述时频资源的截止时刻;所述T12.3时刻所述第一时间窗被启动或者被重新启动的时刻;T12.4时刻是所述目标时频资源的开始时刻;T12.5时刻是所述目标时频资源的截止时刻;T12.6时刻是所述第一时间窗被重新启动的时刻;T12.7时刻是所述第一时间窗的过期时刻。
作为一个实施例,所述T12.2时刻和所述T12.4时刻在时域上是连续的。
作为一个实施例,所述T12.2时刻和所述T12.4时刻在时域上不是连续的。
作为一个实施例,所述T12.3时刻在所述T12.2时刻和所述T12.4时刻之间。
作为一个实施例,所述T12.3时刻在所述T12.4时刻之后。
作为一个实施例,所述T12.6时刻到所述T12.7时刻之间的时间间隔和所述第一时间窗的最大值相等。
作为一个实施例,所述目标时频资源是所述第二时频资源。
作为一个实施例,所述目标时频资源是所述第二时频资源之前的且所述第一时频资源之后的一个时频资源。
作为一个实施例,所述目标时频资源是所述第一时频资源之后的任一时频资源。
作为一个实施例,所述T12.6时刻到所述T12.7时刻之间的时间间隔内,所述第一时间窗不被重新启动。
作为一个实施例,所述T12.6时刻到所述T12.7时刻之间的时间间隔内,所述第一时间窗被重新启动。
作为一个实施例,所述T12.3时刻是所述第一时刻。
作为一个实施例,所述T12.6时刻是所述第二时刻。
作为一个实施例,所述T12.3时刻是所述第一时刻,并且,所述T12.6时刻是所述第二时刻。
作为一个实施例,所述T12.3时刻到所述T12.6时刻之间的时间间隔小于所述第一时间窗的最大值。
作为一个实施例,所述目标时频资源之前的相邻的所述时频资源是所述第一时频资源。
作为一个实施例,所述目标时频资源之前的相邻的所述时频资源是所述第一时频资源之后的一个时频资源。
作为一个实施例,所述目标时频资源是所述第二时频资源。
作为一个实施例,所述目标时频资源是所述第二时频资源之前的一个时频资源。
作为一个实施例,在所述T12.3时刻,启动所述第一时间窗;所述方框1201表示所述第一时频资源。
作为一个实施例,在所述T12.6时刻,重新启动所述第一时间窗;所述方框1201表示所述第一时频资源之后的一个时频资源。
作为一个实施例,在所述T12.6时刻,重新启动所述第一时间窗。
作为一个实施例,在所述T12.6时刻,所述第一时间窗未过期。
作为一个实施例,在所述T12.7时刻,所述第一时间窗过期。
作为一个实施例,在所述T12.7时刻之前,所述第一信令被接收。
作为一个实施例,在所述T12.7时刻之前,所述第一信令未被接收。
作为一个实施例,在所述T12.7时刻之前,所述第一RAR被接收;所述第一RAR是所述第一候选RAR。
作为一个实施例,在所述T12.7时刻之前,所述第一RAR未被接收;所述第一RAR是所述第一候选RAR。
作为一个实施例,在所述T12.7时刻之前,所述第一RAR被接收;所述第一RAR是所述第二候选RAR。
作为一个实施例,在所述T12.7时刻之前,所述第一RAR未被接收;所述第一RAR是所述第二候选RAR。
作为一个实施例,在所述T12.7时刻之前,所述第一RAR被接收;所述第一RAR是所述第三候选RAR。
作为一个实施例,在所述T12.7时刻之前,所述第一RAR未被接收;所述第一RAR是所述第三候选RAR。
作为一个实施例,在所述T12.7时刻之前,在所述K1个时频资源中的每个时频资源发送Preamble。
作为一个实施例,在所述T12.7时刻之前,在所述K1个时频资源中的至少一个时频资源未发送Preamble。
作为一个实施例,在所述T12.7时刻之前,所述第一时间窗被停止。
作为一个实施例,在所述T12.7时刻之前,所述第一时间窗未被停止。
作为一个实施例,在所述T12.6时刻到所述T12.7时刻之间的时间间隔内,所述第一时间窗被重新启动。
作为一个实施例,在所述T12.6时刻到所述T12.7时刻之间的时间间隔内,所述第一时间窗未被重新启动。
作为一个实施例,所述第一时间窗未过期。
作为一个实施例,所述第一时间窗过期。
作为一个实施例,所述T12.1时刻之前的所述省略号存在。
作为一个实施例,所述T12.1时刻之前的所述省略号不存在。
作为一个实施例,所述T12.6时刻之后的所述省略号存在。
作为一个实施例,所述T12.6时刻之后的所述省略号不存在。
实施例13
实施例13示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图13所示。在附图13中,第一节点中的处理装置1300包括第一接收机1301和第一发射机1302。
第一接收机1301,确定K1,所述K1是大于1的正整数;在第一时刻,启动第一时间窗;在所述第一时间窗中监听第一信令,所述第一信令被用于调度随机接入响应;
第一发射机1302,在K1个时频资源中的至少第一时频资源发送第一Preamble,所述第一时频资源是所述K1个时频资源中最早的一个时频资源;
实施例13中,所述第一时刻与至少所述第一时频资源的截止时刻有关;所述第一时刻不早于所述第一时频资源的截止时刻并且早于第二时频资源的截止时刻,所述第二时频资源是所述K1个时频资源中最晚的一个时频资源;所述第一时间窗的过期时刻晚于所述第二时频资源的截止时刻。
作为一个实施例,所述K1个时频资源中的任意2个时频资源在时域上不交叠。
作为一个实施例,所述K1个时频资源中存在至少2个时频资源在时域上不交叠。
作为一个实施例,在所述第一时间窗中针对所述第一信令的所述监听被用于确定在至少所述第二时频资源中是否发送Preamble。
作为一个实施例,所述第一接收机1301,接收所述第一信令;根据所述第一信令的调度接收第一RAR。
作为一个实施例,所述第一发射机1302,根据所述第一RAR的内容确定在至少所述第二时频资源中是否发送Preamble。
作为一个实施例,所述第一发射机1302,作为所述第一RAR在所述第一时间窗中被成功接收的响应,发送第三消息;
其中,所述K1个时频资源分别被关联到至少两个下行RS资源,所述第三消息被关联到目标下行RS资源,所述目标下行RS资源是所述至少两个下行RS资源中之一;所述第一信令所属的CORESET或者搜索空间被用于确定所述目标下行RS资源。
作为一个实施例,所述至少两个下行RS资源是K1个下行RS资源。
作为一个实施例,所述至少两个下行RS资源是不大于K1个下行RS资源。
作为一个实施例,所述第一接收机1301,确定所述第一时间窗过期;作为所述第一时间窗过期的响应,根据所述K1更新第一计数器;
其中,所述第一计数器被用于统计被发送的Preamble的数量。
作为一个实施例,所述第一接收机1301,在第二时刻,重新启动所述第一时间窗;所述第一发射机1302,在目标时频资源发送第二Preamble;
其中,所述第二时刻与所述目标时频资源的截止时刻有关;所述目标时频资源是所述K1个时频资源中的所述第一时频资源之外的一个时频资源。
作为一个实施例,所述K1被用于确定所述第一时间窗的过期时刻。
作为一个实施例,所述第一接收机1301包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467。
作为一个实施例,所述第一接收机1301包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456。
作为一个实施例,所述第一接收机1301包括本申请附图4中的天线452,接收器454,接收处理器456。
作为一个实施例,所述第一发射机1302包括本申请附图4中的天线452,发射器454,多天线发射处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467。
作为一个实施例,所述第一发射机1302包括本申请附图4中的天线452,发射器454,多天线发射处理器457,发射处理器468。
作为一个实施例,所述第一发射机1302包括本申请附图4中的天线452,发射器454,发射处理器468。
实施例14
实施例14示例了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;如附图14所示。在附图14中,第二节点中的处理装置1400包括第二发射机1401和第二接收机1402。
第二接收机1402,接收第一Preamble;
实施例14中,K1被所述第一Preamble的发送者确定,所述K1是大于1的正整数;在第一时刻,第一时间窗被所述第一Preamble的发送者启动;在所述第一时间窗中第一信令被所述第一Preamble的发送者监听,所述第一信令被用于调度随机接入响应;所述第一Preamble被所述第一Preamble的发送者在K1个时频资源中的至少第一时频资源发送,所述第一时频资源是所述K1个时频资源中最早的一个时频资源;所述第一时刻与至少所述第一时频资源的截止时刻有关;所述第一时刻不早于所述第一时频资源的截止时刻并且早于第二时频资源的截止时刻,所述第二时频资源是所述K1个时频资源中最晚的一个时频资源;所述第一时间窗的过期时刻晚于所述第二时频资源的截止时刻。
作为一个实施例,所述K1个时频资源中的任意2个时频资源在时域上不交叠。
作为一个实施例,所述K1个时频资源中存在至少2个时频资源在时域上不交叠。
作为一个实施例,在所述第一时间窗中针对所述第一信令的所述监听被用于确定在至少所述第二时频资源中是否发送Preamble。
作为一个实施例,第二发射机1401,发送所述第一信令;发送第一RAR;所述第一信令被用于调度所述第一RAR。
作为一个实施例,所述第一Preamble的发送者根据所述第一RAR的内容确定在至少所述第二时频资源中是否发送Preamble。
作为一个实施例,所述第二接收机1402,接收第三消息;其中,所述第一Preamble的发送者在所述第一时间窗中成功接收所述第一RAR被用于确定发送所述第三消息;所述K1个时频资源分别被关联到至少两个下行RS资源,所述第三消息被关联到目标下行RS资源,所述目标下行RS资源是所述至少两个下行RS资源中之一;所述第一信令所属的CORESET或者搜索空间被用于确定所述目标下行RS资源。
作为一个实施例,所述至少两个下行RS资源是K1个下行RS资源。
作为一个实施例,所述至少两个下行RS资源是不大于K1个下行RS资源。
作为一个实施例,所述第一时间窗被所述第一Preamble的发送者确定过期被用于确定根据所述K1更新第一计数器;所述第一计数器被用于统计被发送的Preamble的数量。
作为一个实施例,在第二时刻,所述第一时间窗被所述第一Preamble的发送者重新启动;接收第二Preamble;所述第二Preamble被所述第一Preamble的发送者在目标时频资源发送;所述第二时刻与所述目标时频资源的截止时刻有关;所述目标时频资源是所述K1个时频资源中的所述第一时频资源之外的一个时频资源。
作为一个实施例,所述K1被用于确定所述第一时间窗的过期时刻。
作为一个实施例,所述第二发射机1401包括本申请附图4中的天线420,发射器418,多天线发射处 理器471,发射处理器416,控制器/处理器475,存储器476。
作为一个实施例,所述第二发射机1401包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416。
作为一个实施例,所述第二发射机1401包括本申请附图4中的天线420,发射器418,发射处理器416。
作为一个实施例,所述第二接收机1402包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475,存储器476。
作为一个实施例,所述第二接收机1402包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470。
作为一个实施例,所述第二接收机1402包括本申请附图4中的天线420,接收器418,接收处理器470。
实施例15
实施例15示例了根据本申请的一个实施例的针对第一信令的监听被用于确定是否发送Preamble的示意图,如附图15所示。
在实施例15中,在所述第一时间窗中针对所述第一信令的所述监听被用于确定在至少所述第二时频资源中是否发送Preamble。
作为一个实施例,所述“在所述第一时间窗中针对所述第一信令的所述监听被用于确定在至少所述第二时频资源中是否发送Preamble”包括:所述第一时间窗是否正在运行被用于确定在至少所述第二时频资源中是否发送Preamble。
作为一个实施例,所述第一时间窗正在运行被用于确定正在监听所述第一信令。
作为一个实施例,所述第一时间窗不在运行被用于确定不在监听所述第一信令。
作为一个实施例,如果所述第一时间窗正在运行,在至少所述第二时频资源中发送Preamble。
作为一个实施例,如果所述第一时间窗不在运行,在至少所述第二时频资源中不发送Preamble。
作为一个实施例,所述“在所述第一时间窗中针对所述第一信令的所述监听被用于确定在至少所述第二时频资源中是否发送Preamble”包括:在所述第一时间窗中针对所述第一信令的所述监听是否被停止被用于确定在至少所述第二时频资源中是否发送Preamble。
作为一个实施例,如果在所述第一时间窗中针对所述第一信令的所述监听未被停止,在至少所述第二时频资源中发送Preamble。
作为一个实施例,如果在所述第一时间窗中针对所述第一信令的所述监听被停止,在至少所述第二时频资源中不发送Preamble。
作为一个实施例,在所述K1个时频资源中的所述第一时频资源之后的任一时频资源的开始时刻,如果在所述第一时间窗中针对所述第一信令的所述监听未被停止,在所述任一时频资源中发送Preamble。
作为一个实施例,在所述K1个时频资源中的所述第一时频资源之后的任一时频资源的开始时刻,如果在所述第一时间窗中针对所述第一信令的所述监听被停止,在所述任一时频资源以及所述任一时频资源之后的每个时频资源中不发送Preamble。
作为一个实施例,在所述K1个时频资源中的所述第一时频资源之后的任一时频资源的开始时刻,如果所述第一时间窗正在运行,在所述任一时频资源中发送Preamble。
作为一个实施例,在所述K1个时频资源中的所述第一时频资源之后的任一时频资源的开始时刻,如果所述第一时间窗不在运行,在所述任一时频资源以及所述任一时频资源之后的每个时频资源中不发送Preamble。
作为一个实施例,所述第一时间窗被停止后,所述K1个时频资源中的开始时刻在所述第一时间窗被停止的时刻之后的每个时频资源中不发送Preamble。
作为一个实施例,如果在所述第一时间窗中监听到所述第一信令,在所述第二时频资源中不发送Preamble。
作为一个实施例,如果在所述第一时间窗中未监听到所述第一信令,在所述第二时频资源中发送Preamble。
作为一个实施例,如果从所述第一时刻到所述第二时频资源的开始时刻之间的时间间隔内未监听到所述第一信令,在所述第二时频资源中发送Preamble。
作为一个实施例,如果从所述第一时刻到所述第二时频资源的开始时刻之间的时间间隔内监听到所述第一信令,在所述第二时频资源中不发送Preamble。
作为一个实施例,如果从所述第一时刻到所述K1个时频资源中的所述第一时频资源之后的任一时频资源的开始时刻之间的时间间隔内未监听到所述第一信令,在所述任一时频资源中发送Preamble。
作为一个实施例,如果从所述第一时刻到所述K1个时频资源中的所述第一时频资源之后的任一时频资源的开始时刻之间的时间间隔内监听到所述第一信令,在所述任一时频资源中不发送Preamble。
作为一个实施例,在所述第一时间窗中针对所述第一信令的所述监听被用于确定在所述K1个时频资源中的剩余的时频资源中是否发送Preamble。
作为一个实施例,所述剩余的时频资源是指在时域上还没有开始的时频资源。
作为一个实施例,如果从所述第一时刻到所述K1个时频资源中的所述第一时频资源之后的任一时频资源的开始时刻之间的时间间隔内监听到所述第一信令,在所述任一时频资源以及所述任一时频资源之后的每个时频资源中不发送Preamble。
作为一个实施例,如果在所述第一时间窗中的一个时刻监听到所述第一信令,并且,所述一个时刻早于所述K1个时频资源中的至少一个时频资源的开始时刻,在所述至少一个时频资源的每个时频资源中不发送Preamble。
作为一个实施例,如果监听并接收所述第一信令,并且,接收所述第一RAR;根据所述第一RAR的内容确定在至少所述第二时频资源中是否发送Preamble。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一接收机,确定K1,所述K1是大于1的正整数;在第一时刻,启动第一时间窗;在所述第一时间窗中监听第一信令,所述第一信令被用于调度随机接入响应;
    第一发射机,在K1个时频资源中的至少第一时频资源发送第一Preamble,所述K1个时频资源中的任意2个时频资源在时域上不交叠,所述第一时频资源是所述K1个时频资源中最早的一个时频资源;
    其中,所述第一时刻与至少所述第一时频资源的截止时刻有关;所述第一时刻不早于所述第一时频资源的截止时刻并且早于第二时频资源的截止时刻,所述第二时频资源是所述K1个时频资源中最晚的一个时频资源;所述第一时间窗的过期时刻晚于所述第二时频资源的截止时刻。
  2. 根据权利要求1所述的第一节点,其特征在于,在所述第一时间窗中针对所述第一信令的所述监听被用于确定在至少所述第二时频资源中是否发送Preamble。
  3. 根据权利要求2所述的第一节点,其特征在于,包括:
    所述第一接收机,接收所述第一信令;根据所述第一信令的调度接收第一RAR。
  4. 根据权利要求3所述的第一节点,其特征在于,包括:
    所述第一发射机,根据所述第一RAR的内容确定在至少所述第二时频资源中是否发送Preamble。
  5. 根据权利要求3或4所述的第一节点,其特征在于,包括:
    所述第一发射机,作为所述第一RAR在所述第一时间窗中被成功接收的响应,发送第三消息;
    其中,所述K1个时频资源分别被关联到K1个下行RS资源,所述第三消息被关联到目标下行RS资源,所述目标下行RS资源是所述K1个下行RS资源中之一;所述第一信令所属的CORESET或者搜索空间被用于确定所述目标下行RS资源。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一接收机,确定所述第一时间窗过期;作为所述第一时间窗过期的响应,根据所述K1更新第一计数器;
    其中,所述第一计数器被用于统计被发送的Preamble的数量。
  7. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一接收机,在第二时刻,重新启动所述第一时间窗;
    所述第一发射机,在目标时频资源发送第二Preamble;
    其中,所述第二时刻与所述目标时频资源的截止时刻有关;所述目标时频资源是所述K1个时频资源中的所述第一时频资源之外的一个时频资源。
  8. 根据权利要求1至7中任一权利要求所述的第一节点,其特征在于,所述K1被用于确定所述第一时间窗的过期时刻。
  9. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二接收机,接收第一Preamble;
    其中,K1被所述第一Preamble的发送者确定,所述K1是大于1的正整数;在第一时刻,第一时间窗被所述第一Preamble的发送者启动;在所述第一时间窗中第一信令被所述第一Preamble的发送者监听,所述第一信令被用于调度随机接入响应;所述第一Preamble被所述第一Preamble的发送者在K1个时频资源中的至少第一时频资源发送,所述K1个时频资源中的任意2个时频资源在时域上不交叠,所述第一时频资源是所述K1个时频资源中最早的一个时频资源;所述第一时刻与至少所述第一时频资源的截止时刻有关;所述第一时刻不早于所述第一时频资源的截止时刻并且早于第二时频资源的截止时刻,所述第二时频资源是所述K1个时频资源中最晚的一个时频资源;所述第一时间窗的过期时刻晚于所述第二时频资源的截止时刻。
  10. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    确定K1,所述K1是大于1的正整数;在第一时刻,启动第一时间窗;在所述第一时间窗中监听第一信令,所述第一信令被用于调度随机接入响应;在K1个时频资源中的至少第一时频资源发送第一Preamble,所述K1个时频资源中的任意2个时频资源在时域上不交叠,所述第一时频资源是所述K1个时频资源中最早的一个时频资源;
    其中,所述第一时刻与至少所述第一时频资源的截止时刻有关;所述第一时刻不早于所述第一时频资 源的截止时刻并且早于第二时频资源的截止时刻,所述第二时频资源是所述K1个时频资源中最晚的一个时频资源;所述第一时间窗的过期时刻晚于所述第二时频资源的截止时刻。
  11. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    接收第一Preamble;
    其中,K1被所述第一Preamble的发送者确定,所述K1是大于1的正整数;在第一时刻,第一时间窗被所述第一Preamble的发送者启动;在所述第一时间窗中第一信令被所述第一Preamble的发送者监听,所述第一信令被用于调度随机接入响应;所述第一Preamble被所述第一Preamble的发送者在K1个时频资源中的至少第一时频资源发送,所述K1个时频资源中的任意2个时频资源在时域上不交叠,所述第一时频资源是所述K1个时频资源中最早的一个时频资源;所述第一时刻与至少所述第一时频资源的截止时刻有关;所述第一时刻不早于所述第一时频资源的截止时刻并且早于第二时频资源的截止时刻,所述第二时频资源是所述K1个时频资源中最晚的一个时频资源;所述第一时间窗的过期时刻晚于所述第二时频资源的截止时刻。
PCT/CN2023/106498 2022-07-19 2023-07-10 一种被用于无线通信的通信节点中的方法和装置 WO2024017078A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210849407.6 2022-07-19
CN202210849407.6A CN117479337A (zh) 2022-07-19 2022-07-19 一种被用于无线通信的通信节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2024017078A1 true WO2024017078A1 (zh) 2024-01-25

Family

ID=89617067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106498 WO2024017078A1 (zh) 2022-07-19 2023-07-10 一种被用于无线通信的通信节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN117479337A (zh)
WO (1) WO2024017078A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016119237A1 (en) * 2015-01-30 2016-08-04 Nokia Solutions And Networks Oy Physical random access channel and random access response detection for user equipment
CN111885737A (zh) * 2019-05-03 2020-11-03 华为技术有限公司 随机接入的方法和装置
WO2022017526A1 (zh) * 2020-07-24 2022-01-27 维沃移动通信有限公司 重复传输方法、装置及用户设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016119237A1 (en) * 2015-01-30 2016-08-04 Nokia Solutions And Networks Oy Physical random access channel and random access response detection for user equipment
CN111885737A (zh) * 2019-05-03 2020-11-03 华为技术有限公司 随机接入的方法和装置
WO2022017526A1 (zh) * 2020-07-24 2022-01-27 维沃移动通信有限公司 重复传输方法、装置及用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "RAR design supporting muiltiple preamble transmission", 3GPP TSG-RAN WG2 MEETING #99, R2-1708049, 20 August 2017 (2017-08-20), XP051317959 *

Also Published As

Publication number Publication date
CN117479337A (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
WO2024017078A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN114389770A (zh) 一种被用于无线通信的通信节点中的方法和装置
CN112910615A (zh) 一种被用于无线通信的节点中的方法和装置
WO2024078434A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024007870A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024046155A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024051626A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024046152A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023213219A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024022238A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023207604A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023174228A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024051560A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023186164A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023169322A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023207709A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023226924A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023160415A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023030425A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024032478A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023207703A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023040922A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023138486A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024001938A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024051559A1 (zh) 一种被用于无线通信的通信节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842143

Country of ref document: EP

Kind code of ref document: A1