WO2023207604A1 - 一种被用于无线通信的通信节点中的方法和装置 - Google Patents

一种被用于无线通信的通信节点中的方法和装置 Download PDF

Info

Publication number
WO2023207604A1
WO2023207604A1 PCT/CN2023/087949 CN2023087949W WO2023207604A1 WO 2023207604 A1 WO2023207604 A1 WO 2023207604A1 CN 2023087949 W CN2023087949 W CN 2023087949W WO 2023207604 A1 WO2023207604 A1 WO 2023207604A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
signaling
time
node
uplink
Prior art date
Application number
PCT/CN2023/087949
Other languages
English (en)
French (fr)
Inventor
于巧玲
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2023207604A1 publication Critical patent/WO2023207604A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows

Definitions

  • the present application relates to transmission methods and devices in wireless communication systems, and in particular to mobility transmission methods and devices.
  • the serving cell change is triggered by L3 (layer 3, layer three) measurement, and triggers PCell (Primary Cell, primary cell) and PSCell (Primary SCG) through RRC (Radio Resource Control, radio resource control) signaling.
  • L3 layer 3, layer three
  • PCell Primary Cell
  • PSCell Primary SCG
  • RRC Radio Resource Control, radio resource control
  • TAGs Timing Advance Group
  • PTAG Primary TAG
  • SpCell Special Cell, special cell
  • STAG Secondary TAG
  • any activated SCell in this STAG serves as the timing reference cell of the cell in this STAG. Timing reference cell.
  • the UE When the UE changes from the source SpCell to the target SpCell through L3 signaling, the UE will reset the MAC (Medium Access Control, media access control) entity and consider that the SCell in the entire cell group has been deactivated, resulting in the uplink of the entire cell group.
  • MAC Medium Access Control
  • the link is out of sync, and the UE needs to reacquire the uplink timing of the target cell group through the random access (Random Access) process. Since L1/L2 mobility is based on L1 measurement and reporting, movement between cells will be more frequent. How to maintain uplink synchronization to ensure uplink transmission needs to be enhanced.
  • this application provides a solution for maintaining uplink synchronization for L1/L2 mobility.
  • the mobility scenario based on L1/L2 is used as an example; this application is also applicable to mobility scenarios based on L3, for example, and achieves similar technical effects in mobility based on L1/L2.
  • the original intention of this application is for the Uu air interface
  • this application can also be used for the PC5 interface.
  • the original intention of this application is for the terminal and base station scenario
  • this application is also applicable to the V2X (Vehicle-to-Everything, Internet of Vehicles) scenario, the communication scenario between the terminal and the relay, and the relay and the base station. , achieving similar technical effects in terminal and base station scenarios.
  • V2X Vehicle-to-Everything, Internet of Vehicles
  • the original intention of this application is for the terminal and base station scenario
  • this application is also applicable to the IAB (Integrated Access and Backhaul, integrated access and backhaul) communication scenario, and obtains similar technologies in the terminal and base station scenario. Effect.
  • the original intention of this application is for terrestrial network (Terrestrial Network, terrestrial network) scenarios
  • this application is also applicable to non-terrestrial network (Non-Terrestrial Network, NTN) communication scenarios, achieving similar TN scenarios. technical effects.
  • using a unified solution for different scenarios can also help reduce hardware complexity and cost.
  • This application discloses a method used in a first node of wireless communication, which is characterized by including:
  • the first signaling is generated at a protocol layer below the RRC layer, and the first signaling is used to indicate to stop executing the first set of operations for the first cell starting from the first time;
  • the first operation set includes monitoring PDCCH (Physical downlink control channel, physical downlink control channel) on the corresponding cell, monitoring the PDCCH used to schedule the corresponding cell, and sending UL-SCH (Uplink Shared) on the corresponding cell.
  • PDCCH Physical downlink control channel
  • PDCCH Physical downlink control channel
  • UL-SCH Uplink Shared
  • Channel at least one of the three uplink shared channels
  • the starting time of the first uplink frame is earlier than the starting time of the first downlink frame by a first time interval
  • the The first downlink frame belongs to the first cell.
  • This application discloses a method used in a first node of wireless communication, which is characterized by including:
  • the first signaling is generated at a protocol layer below the RRC layer, and the first signaling is used to indicate to stop executing the first set of operations for the first cell starting from the first time;
  • the first operation set includes at least one of monitoring PDCCH on the corresponding cell, monitoring PDCCH used to schedule the corresponding cell, and sending UL-SCH on the corresponding cell; the first uplink frame The starting time of is earlier than the starting time of the first downlink frame by a first time interval; the first downlink frame belongs to the first cell.
  • the problems to be solved by this application include: how to determine the timing reference of a cell.
  • the problems to be solved by this application include: for an uplink frame, how to determine the corresponding uplink frame.
  • the problems to be solved by this application include: how to shorten the transmission delay.
  • the problems to be solved by this application include: how to ensure the transmission timing of the uplink.
  • the problems to be solved by this application include: how to avoid uplink desynchronization.
  • the problems to be solved by this application include: how to maintain the timing advance of the uplink of a cell.
  • the problem to be solved by this application includes: when the UE determines to use the resources of a candidate cell based on L1/L2 signaling, how to determine the uplink transmission timing of other cells in the TAG to which the source serving cell belongs.
  • the problem to be solved by this application includes: when the UE determines to use the resources of a candidate cell based on L1/L2 signaling, how to determine the uplink transmission timing of this candidate cell.
  • the characteristics of the above method include: the second cell is a candidate cell.
  • the characteristics of the above method include: at least one time slot before the first time, the second cell and the first cell are both serving cells of the first node.
  • the characteristics of the above method include: the second cell and the first cell use the same timing advance.
  • the characteristics of the above method include: after the first time, the timing reference cell of the second cell is the first cell.
  • the advantages of the above method include: no need to re-obtain the timing advance of the second cell.
  • the benefits of the above method include: shortening transmission delay.
  • the benefits of the above method include: avoiding uplink desynchronization.
  • the benefits of the above method include: ensuring the transmission timing of the uplink.
  • the benefits of the above method include: maintaining the timing advance of the uplink of a cell.
  • the benefits of the above method include: when the UE determines to use resources of a candidate cell based on L1/L2 signaling, it does not need to reacquire the timing advance of the second cell.
  • At least one timing advance command is received, the at least one timing advance command being used to determine the first time interval.
  • the first signaling is used to indicate performing a second set of operations for the first cell; the second set of operations includes clearing all HARQ buffers associated with the first cell. Pool, or clear any PUSCH resources associated with the first cell for semi-persistent CSI reporting, or clear any configured downlink allocation and any configured uplink grant type associated with the first cell 2. Alternatively, clear at least one of any configured uplink grant types 1 associated with the first cell.
  • the starting time of the second uplink frame is earlier than the starting time of the second downlink frame by a second time interval; the second downlink frame belongs to the first cell; The first cell and the second cell belong to the same cell group, and the first cell and the second cell have different serving cell identities.
  • the characteristics of the above method include: when the UE determines to use resources of a candidate cell based on L1/L2 signaling, the timing reference of the second cell remains unchanged.
  • the characteristics of the above method include: before the first time and after the first time, the timing reference of the second cell is the first cell.
  • the characteristics of the above method include: at least one time slot before the first time, the second cell and the first cell are both serving cells of the first node.
  • the characteristics of the above method include: the first signaling is not used to determine that the second cell is deactivated.
  • the characteristics of the above method include: the first signaling is not used to change the activation/deactivation state of the second cell.
  • the benefits of the above method include: shortening transmission delay.
  • the benefits of the above method include: guaranteed uplink transmission.
  • the first signaling is used to instruct execution of the first operation set for the second cell; before stopping execution of the first operation set for the first cell, the first operation set for the second cell is The operation set is not executed; the configuration information of the second cell includes at least an identity of the second cell.
  • the characteristics of the above method include: the second cell is a candidate cell of the first cell.
  • the characteristics of the above method include: when the UE determines to use resources of a candidate cell based on L1/L2 signaling, the first cell is used as a timing reference.
  • the benefits of the above method include: avoiding the initial synchronization process.
  • the benefits of the above method include: shortening transmission delay.
  • the third signaling being used to determine that the first cell is a timing reference of the second cell;
  • the timing reference that the first cell is the second cell is used to determine that the first downlink frame belongs to the first cell.
  • the second cell and the first cell belong to the same TAG.
  • satisfying the first condition is used to trigger the first signaling.
  • the target cell satisfying the first condition is used to trigger the first signaling.
  • the present application is characterized in that before the first signaling, a first message is received, and the first message includes the configuration information of the target cell.
  • the target cell is the second cell.
  • the target cell is not the second cell.
  • This application discloses a method used in a second node of wireless communication, which is characterized by including:
  • the first signaling is sent, and the receiver of the first signaling is the sender of the first wireless signal, or the sender of the first signaling is the sender of the first wireless signal.
  • the first signaling is generated at the protocol layer below the RRC layer, and the first signaling is used to indicate that the first set of operations should be stopped for the first cell starting from the first time;
  • the operation set includes at least one of monitoring the PDCCH on the corresponding cell, monitoring the PDCCH used to schedule the corresponding cell, and transmitting the UL-SCH on the corresponding cell; the starting time of the first uplink frame is compared to The starting time of the first downlink frame is advanced by the first time interval; the first downlink frame belongs to the first cell.
  • At least one timing advance command is sent, and the recipient of the at least one timing advance command is the sender of the first wireless signal; the at least one timing advance command is used for Determine the first time interval.
  • the first signaling is used to indicate performing a second set of operations for the first cell; the second set of operations includes clearing all HARQ buffers associated with the first cell. Pool, or clear any PUSCH resources associated with the first cell for semi-persistent CSI reporting, or clear any configured downlink allocation and any configured uplink grant type associated with the first cell 2, or clear any configured uplink grant type 1 associated with the first cell. At least one.
  • the starting time of the second uplink frame is earlier than the starting time of the second downlink frame by a second time interval; the second downlink frame belongs to the first cell; The first cell and the second cell belong to the same cell group, and the first cell and the second cell have different serving cell identities.
  • the present application it is characterized in that, before the first signaling, a second signaling is sent, and the recipient of the second signaling is the sender of the first wireless signal;
  • the second signaling includes configuration information of the second cell;
  • the first signaling is used to instruct execution of the first operation set for the second cell; before stopping execution of the first operation set for the first cell , the first set of operations is not executed for the second cell;
  • the configuration information of the second cell includes at least an identifier of the second cell.
  • a third signaling is sent, and the recipient of the third signaling is the sender of the first wireless signal;
  • Three signaling is used to determine that the first cell is the timing reference of the second cell; the timing reference that the first cell is the second cell is used to determine that the first downlink frame belongs to The first cell.
  • the second cell and the first cell belong to the same TAG.
  • This application discloses a first node used for wireless communication, which is characterized by including:
  • the first transmitter sends first signaling.
  • the first signaling is generated at a protocol layer below the RRC layer.
  • the first signaling is used to indicate to stop executing the first signal on the first cell starting from the first time. a set of operations;
  • the first transmitter sends the first wireless signal on the second cell in the first uplink frame after the first time
  • the first operation set includes monitoring PDCCH (Physical downlink control channel, physical downlink control channel) on the corresponding cell, monitoring the PDCCH used to schedule the corresponding cell, and sending UL-SCH (Uplink Shared) on the corresponding cell.
  • PDCCH Physical downlink control channel
  • PDCCH Physical downlink control channel
  • UL-SCH Uplink Shared
  • Channel at least one of the three uplink shared channels
  • the starting time of the first uplink frame is earlier than the starting time of the first downlink frame by a first time interval
  • the The first downlink frame belongs to the first cell.
  • This application discloses a first node used for wireless communication, which is characterized by including:
  • the first receiver receives first signaling.
  • the first signaling is generated at a protocol layer below the RRC layer.
  • the first signaling is used to indicate to stop executing the first cell on the first cell from the first time. a set of operations;
  • the first transmitter sends the first wireless signal on the second cell in the first uplink frame after the first time
  • the first operation set includes at least one of monitoring PDCCH on the corresponding cell, monitoring PDCCH used to schedule the corresponding cell, and sending UL-SCH on the corresponding cell; the first uplink frame The starting time of is earlier than the starting time of the first downlink frame by a first time interval; the first downlink frame belongs to the first cell.
  • This application discloses a second node used for wireless communication, which is characterized in that it includes:
  • the second receiver receives the first wireless signal on the second cell in the first uplink frame after the first time
  • the first signaling is sent, and the receiver of the first signaling is the sender of the first wireless signal, or the sender of the first signaling is the sender of the first wireless signal.
  • the first signaling is generated at the protocol layer below the RRC layer, and the first signaling is used to indicate that the first set of operations should be stopped for the first cell starting from the first time;
  • the operation set includes at least one of monitoring the PDCCH on the corresponding cell, monitoring the PDCCH used to schedule the corresponding cell, and transmitting the UL-SCH on the corresponding cell; the starting time of the first uplink frame is compared to The starting time of the first downlink frame is advanced by the first time interval; the first downlink frame belongs to the first cell.
  • this application has the following advantages:
  • the UE determines to use the resources of a candidate cell based on L1/L2 signaling, it does not need to re-obtain the timing advance of the second cell.
  • Figure 1 shows a flow chart of the transmission of first signaling and first wireless signals according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Figure 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a wireless signal transmission flow chart according to an embodiment of the present application
  • Figure 6 shows a wireless signal transmission flow chart according to another embodiment of the present application.
  • Figure 7 shows a wireless signal transmission flow chart according to yet another embodiment of the present application.
  • Figure 8 shows a wireless signal transmission flow chart according to yet another embodiment of the present application.
  • Figure 9 shows a schematic diagram in which the second cell and the first cell belong to the same TAG according to an embodiment of the present application.
  • Figure 10 shows a schematic diagram of the timing relationship between the first uplink frame and the first downlink frame according to an embodiment of the present application
  • Figure 11 shows a schematic diagram of a time slot occupied by a first wireless signal according to an embodiment of the present application
  • Figure 12 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present application
  • Figure 13 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present application
  • FIG. 14 shows a schematic diagram in which the first condition is satisfied and used to trigger the first signaling according to an embodiment of the present application
  • Figure 15 shows a schematic diagram in which the first message includes configuration information of the target cell according to an embodiment of the present application
  • Figure 16 shows a schematic diagram of the timing relationship between the second uplink frame and the second downlink frame according to an embodiment of the present application
  • Figure 17 shows a schematic diagram of time slots occupied by the second wireless signal according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of the transmission of first signaling and first wireless signals according to an embodiment of the present application, as shown in FIG. 1 .
  • each box represents a step. It should be particularly emphasized that the order of the boxes in the figure does not represent the temporal relationship between the steps represented.
  • the first node in this application receives or sends the first signaling.
  • the first signaling is generated at the protocol layer below the RRC layer.
  • the first signaling is Used to indicate to stop executing the first set of operations for the first cell starting from the first time; in step 102, in the first uplink frame after the first time, send the first wireless signal on the second cell ;
  • the first operation set includes at least one of monitoring PDCCH on the corresponding cell, monitoring the PDCCH used to schedule the corresponding cell, and sending UL-SCH on the corresponding cell;
  • the first uplink The starting time of the frame is advanced by a first time interval compared to the starting time of the first downlink frame; the first downlink frame belongs to the first cell.
  • the "the first signaling is used to indicate to stop executing the first set of operations for the first cell starting from the first time" may be replaced by: as a response to the first signaling being received, Stop performing the first set of operations for the first cell.
  • the "the first signaling is used to indicate to stop executing the first set of operations for the first cell starting from the first time" may be replaced by: as a response to the first signaling being sent, Stop performing the first set of operations for the first cell.
  • the "the first signaling is used to indicate to stop executing the first set of operations for the first cell from the first time" may be replaced by: stop executing the first set of operations for the first cell and send the first signaling.
  • the first set of operations also includes sending SRS on the corresponding cell, or reporting CSI on the corresponding cell, or sending on the RACH of the corresponding cell, or sending on the PUCCH of the corresponding cell. At least one.
  • the first operation set does not include sending SRS on the corresponding cell, or reporting CSI on the corresponding cell, or sending on the RACH of the corresponding cell, or sending on the PUCCH of the corresponding cell. At least one.
  • the first cell is a serving cell of the first node.
  • the first cell is a serving cell of the first node.
  • the first cell is a serving cell in the first cell group of the first node.
  • a serving cell in the first cell group is SpCell or SCell, and the SpCell is PCell or PSCell.
  • the first cell group only includes SpCell.
  • the first cell group includes SpCell and at least one SCell.
  • the first cell group is MCG (Master Cell Group).
  • the first cell is a PCell.
  • the first cell is a SCell.
  • the first cell is a SCell, and the first cell is in an active state.
  • the first cell group is SCG (Secondary Cell Group).
  • the first cell group is in an active state.
  • the first cell is PSCell.
  • the first cell is a SCell.
  • the first cell is a SCell, and the first cell is in an active state.
  • the first cell before the first time, the first cell is the timing reference of the first TAG; after the first time, the first cell is the timing reference of the first TAG;
  • the first TAG includes at least one serving cell in the first cell group, and the at least one serving cell includes the first cell.
  • the first signaling is used to trigger L1/L2 mobility based on L1/L2 signaling.
  • the first signaling is used to determine that L1/L2 mobility based on L1/L2 signaling is completed.
  • the first signaling is used to indicate changing the first cell to a target cell.
  • the first signaling is used to indicate that the first cell is changed to a target cell.
  • the first signaling indicates a target cell.
  • the target cell is used for L1/L2 mobility based on L1/L2 signaling.
  • the target cell is a candidate cell of the first cell.
  • the target cell is a candidate cell in a first candidate cell set
  • the first candidate cell set includes at least one candidate cell
  • each candidate cell in the first candidate cell set is used Based on L1/L2 mobility based on L1/L2 signaling.
  • each candidate cell in the first candidate cell set is a candidate cell of the first cell.
  • the target cell is the second cell.
  • the target cell is not the second cell.
  • the serving cell identifiers of the target cell and the first cell are the same.
  • the serving cell identities of the target cell and the first cell are different.
  • the PCI (physical cell identity) of the target cell is the same as the PCI of the first cell.
  • the PCI of the target cell is different from the PCI of the first cell.
  • the candidate cell means including a candidate cell.
  • the candidate cell means that the first node does not use the PUSCH (Physical uplink shared channel) of the candidate cell before the configuration information of the candidate cell is applied.
  • the content of the first signaling is assembled in the protocol layer below the RRC layer.
  • the content of the first signaling is set in the protocol layer below the RRC layer.
  • the protocol layer below the RRC layer is not an RRC layer.
  • the protocol layer below the RRC layer is a MAC layer.
  • the first signaling is MAC layer signaling.
  • the first signaling is a MAC PDU (Protocol Data Unit).
  • MAC PDU Protocol Data Unit
  • the first signaling is a MAC subPDU (subPDU).
  • the first signaling is a MAC CE (Control Element).
  • the first signaling includes at least one MAC field (Field).
  • the first signaling includes a MAC CE.
  • the first signaling includes a MAC subheader.
  • the protocol layer below the RRC layer is a physical layer.
  • the first signaling is physical layer signaling.
  • the first signaling is an ACK.
  • the phrase “receiving or sending the first signaling” may be replaced by: receiving the first signaling.
  • the first signaling is received.
  • the first signaling is downlink signaling.
  • the first signaling is used to instruct the first node to replace the first cell with the target cell.
  • the first signaling is a DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • the first signaling is used to schedule PDSCH.
  • the first signaling includes DCI format (format) 1_0.
  • the first signaling includes DCI format 1_1.
  • the first signaling includes DCI format 1_2.
  • the first signaling is used to schedule PUSCH.
  • the first signaling includes at least one DCI domain.
  • the first signaling is transmitted through PDCCH.
  • phrase “receiving or sending the first signaling” may be replaced by: sending the first signaling.
  • the first signaling is sent.
  • the first signaling is uplink signaling.
  • the first signaling is used to confirm that the change from the first cell to the target cell is successfully completed.
  • the first signaling is a UCI (Uplink Control Information).
  • UCI Uplink Control Information
  • the first signaling includes HARQ-ACK.
  • the first signaling includes at least one UCI field.
  • the first signaling is transmitted through PUCCH (Physical uplink control channel, physical uplink control channel).
  • PUCCH Physical uplink control channel, physical uplink control channel.
  • the first signaling is used to indicate changing the first cell to the target cell.
  • the first signaling is used to determine to change the first cell to the target cell.
  • the timing reference that the first cell is the second cell is used to determine that the first downlink frame belongs to the first cell.
  • the timing reference of the first cell being the first TAG is used to determine that the first downlink frame belongs to the first cell.
  • the timing reference that the first cell is the second cell is used to determine that the first downlink frame belongs to the first cell.
  • the timing reference that the first cell is the first TAG is used to determine that the first downlink frame belongs to the first cell.
  • the first cell is a serving cell of the first node.
  • the first node if the first cell is a serving cell of the first node, the first node The cell performs at least one of the first set of operations.
  • the first node before the first time, performs at least one of the first set of operations for the first cell.
  • the phrase "the first signaling is used to indicate to stop performing the first set of operations for the first cell starting from the first time” includes: the first signaling is used to determine from the first time Stop executing the first operation set for the first cell at the first time.
  • the phrase "the first signaling is used to indicate to stop performing the first set of operations for the first cell starting from the first time” includes: the first signaling is sent to determine from The first time starts to stop executing the first set of operations for the first cell.
  • the phrase "the first signaling is used to indicate to stop performing the first set of operations for the first cell starting from the first time” includes: the first signaling is received and is used to determine from The first time starts to stop executing the first set of operations for the first cell.
  • the first time is a moment.
  • the first time is a time slot.
  • the first time is a time slot in a wireless link frame.
  • the first time is the moment when the first condition is satisfied.
  • the first time is the K2th time slot after the first condition is satisfied.
  • the first time is a moment determined by the first condition.
  • the first time is a moment determined by the first signaling.
  • the first time is the moment when the first signaling is sent.
  • the first time is the moment when the first signaling is received.
  • the first time is the first time slot after the end of the first signaling is sent.
  • the first time is the first time slot after the end of the first signaling is received.
  • the end refers to the last symbol.
  • the end refers to the last time slot.
  • the end refers to the last unit of the time domain.
  • the first signaling is used to determine the first time.
  • At least the first signaling is used to determine the first time.
  • the moment when the first signaling is sent is used to determine the first time.
  • the first time is a time slot after the first signaling is sent.
  • the first time is a time slot after the first signaling is received.
  • the first time is an end time slot of the first signaling.
  • the first time is an end time slot of the time domain resource occupied by the first signaling.
  • the first signaling ends at time slot n, and the first time is the time slot n.
  • the first time is n+K1.
  • the first time is the K1th time slot after the first signaling is sent, and K1 is a positive integer.
  • the first time is the K1th time slot after the first signaling is received, and K1 is a positive integer.
  • the first time is the K1th time slot after the last symbol of the first signaling is sent, and K1 is a positive integer.
  • the first time is the K1th time slot after the last symbol of the first signaling is received, and K1 is a positive integer.
  • K1 is equal to 1.
  • K1 is not greater than 4.
  • K1 is not greater than 8.
  • K1 is fixed.
  • the K1 is related to subcarrier spacing (Subcarrier spacing, SCS).
  • the K1 is related to the number of slots included in a subframe (number of slots per subframe).
  • the K1 and related to described Referring to 3GPP TS 38.213 and 3GPP TS 38.211, the ⁇ is.
  • the first uplink frame belongs to the second cell.
  • the first uplink frame is configured for the second cell.
  • the first uplink frame is used to determine the time domain location at which an uplink signal is sent in the second cell.
  • the first uplink frame is used to determine the time domain location at which the first wireless signal is sent in the second cell.
  • the first uplink frame is an uplink frame of the second cell.
  • the first uplink frame is used for the second cell.
  • the first uplink frame is the first uplink frame after the first time.
  • the first uplink frame is any uplink frame after the first time.
  • the first uplink frame is the Q1-th uplink frame after the first time, and Q1 is a positive integer.
  • the first uplink frame is the uplink frame at the first time.
  • the first uplink frame is an uplink frame subsequent to the uplink frame at the first time.
  • the first time has an overlapping time with the first uplink frame.
  • the first time has no overlapping time with the first uplink frame.
  • the second cell and the first cell are two different serving cells in the same cell group.
  • the second cell is a candidate cell of the first cell.
  • the second cell is the target cell.
  • the second cell is not the target cell.
  • the second cell and the first cell have different PCIs.
  • the second cell and the first cell have the same TA.
  • the second cell and the first cell have different TAs.
  • the second cell and the first cell are associated with the same TAG.
  • the second cell is configured with the serving cell identity of the first cell.
  • the first wireless signal occupies at least one time slot of the first uplink frame.
  • the first wireless signal occupies one time slot of the first uplink frame.
  • the time slot position of the first wireless signal in the first uplink frame is preconfigured.
  • the time slot position of the first wireless signal in the first uplink frame is predefined.
  • the time slot position of the first wireless signal in the first uplink frame is specified.
  • the time slot position of the first wireless signal in the first uplink frame is determined by the UE.
  • the first wireless signal is a physical layer signal.
  • the first wireless signal is PUCCH.
  • the first wireless signal is SRS.
  • the first wireless signal is PUSCH.
  • the first wireless signal is any one of PUCCH, SRS or PUSCH.
  • the first wireless signal is transmitted through PUCCH.
  • the first wireless signal is transmitted through PUSCH.
  • the first wireless signal is transmitted through SRS resources.
  • the corresponding cell includes only one cell.
  • the corresponding cell can include multiple cells.
  • the corresponding cell includes multiple cells.
  • the corresponding cell includes one or more cells.
  • the first signaling is used to indicate to stop executing a first set of operations for the first cell starting from the first time.
  • the first set of operations includes monitoring the PDCCH on the corresponding cell, monitoring for scheduling the corresponding At least one of the PDCCH of the cell and the UL-SCH transmitted on the corresponding cell.
  • the first operation set is executed for the first cell.
  • the first operation set includes monitoring PDCCH on the corresponding cell, monitoring for scheduling At least one of the PDCCH of the corresponding cell and the UL-SCH sent on the corresponding cell.
  • the corresponding cell is the first cell.
  • the corresponding cell is the first cell; the corresponding cell does not include any cell other than the first cell in the cell group to which the first cell belongs.
  • the corresponding cell is the first cell; the first cell is a SCell.
  • the corresponding cell is the first cell; the first cell is SpCell.
  • the corresponding cell is the first cell, and the first cell is an SCell; the corresponding cell does not include the first cell in the cell group to which the first cell belongs. Any community outside the community.
  • the corresponding cell is the first cell, and the first cell is SpCell; the corresponding cell does not include the first cell in the cell group to which the first cell belongs. Any community outside the community.
  • the corresponding cell includes the first cell.
  • the corresponding cell includes the first cell and an SCell in the cell group to which the first cell belongs; the first cell is SpCell.
  • the corresponding cell includes the first cell and an SCell in the TAG to which the first cell belongs; the first cell is SpCell.
  • the PDCCH is monitored on at least one CORESET (Control resource set, control resource set) associated with the corresponding cell.
  • CORESET Control resource set, control resource set
  • the PDCCH is monitored on at least one search space associated with the corresponding cell.
  • C-RNTI Cell RNTI
  • MCS-C-RNTI Modulation and Coding Scheme C-RNTI
  • CS-RNTI Configured Scheduling RNTI
  • the PDCCH is monitored on the corresponding cell, and the PDCCH is sent by the corresponding cell.
  • a cell outside the corresponding cell monitors the PDCCH used for scheduling the corresponding cell.
  • the PDCCH used for scheduling the corresponding cell is monitored through at least one of C-RNTI or MCS-C-RNTI or CS-RNTI.
  • the PDCCH used for scheduling the corresponding cell is monitored, and the PDCCH is sent by a cell other than the corresponding cell.
  • the PDCCH used for scheduling the corresponding cell is monitored, and the PDCCH is used for scheduling the PUSCH of the corresponding cell.
  • the PDCCH used for scheduling the corresponding cell is monitored, and the PDCCH is used for scheduling the PDSCH of the corresponding cell.
  • monitoring the PDCCH refers to determining whether there is a DCI on the PDCCH.
  • monitoring the PDCCH means searching on the PDCCH.
  • monitoring the PDCCH means detecting whether there is a DCI.
  • the behavior of sending UL-SCH on the corresponding cell includes: sending PUSCH on the corresponding cell.
  • the act of sending the UL-SCH on the corresponding cell includes: performing a sending operation on the UL-SCH of the corresponding cell.
  • the behavior of sending UL-SCH on the corresponding cell includes: sending PUSCH on the UL-SCH of the corresponding cell.
  • the act of sending UL-SCH on the corresponding cell includes: sending uplink data on the UL-SCH of the corresponding cell.
  • the first time interval is equal to a time interval in which the starting time of the first uplink frame is earlier than the starting time of the first downlink frame.
  • the first time interval is equal to a time interval in which the timing of the first uplink frame is earlier than the timing of the first downlink frame.
  • the first time interval is used to determine the uplink transmission timing of the second cell.
  • the first time interval includes a time interval.
  • the first time interval is configurable.
  • the first time interval includes a positive integer number of first time units.
  • the number of first time units included in the first time interval is configurable.
  • the first time unit is a time unit.
  • the first time unit is part of a subframe.
  • the first time unit is a T c .
  • the first time unit includes a positive integer number of milliseconds.
  • the first time unit is configurable.
  • the first time unit is preconfigured.
  • the first time unit is related to subcarrier spacing.
  • the T c T sf /( ⁇ f max N f /1000), and the definitions of the T sf , the ⁇ f max and the N f refer to TS 38.211 or TS 38.300.
  • the first uplink frame and the first downlink frame have the same frame number.
  • the first uplink frame is an uplink frame corresponding to the first downlink frame.
  • the first downlink frame is a timing reference frame of the first uplink frame.
  • the first downlink frame is a reference frame of the first uplink frame.
  • the first downlink frame is a timing reference frame of the first uplink frame
  • the first cell is a timing reference cell of the second cell.
  • the first downlink frame is a downlink frame in the first cell.
  • the first cell is a timing reference cell.
  • the downlink frame in the first cell is a timing reference frame of an uplink frame of at least one cell.
  • the downlink timing of a downlink frame in the first cell is used to determine the uplink transmission timing of at least one uplink frame.
  • the first downlink frame is configured for the first cell.
  • the downlink timing of the first downlink frame is determined by the first cell.
  • the first downlink frame is a downlink frame configured for the first cell.
  • the timing reference of the first downlink frame is the first cell.
  • the first cell is a candidate cell of the first node.
  • the first cell is not a serving cell of the first node.
  • the configuration information of the first cell is released.
  • the configuration information of the first cell is not released.
  • At least part of the configuration information of the first cell is not released.
  • the target cell is a serving cell of the first node.
  • the first cell is used as the timing reference of the second cell.
  • a PBCH Physical broadcast channel, physical broadcast channel
  • SSB Synchronization Signal, synchronization signal/PBCH block
  • SSB Synchronization Signal Block, synchronization signal block
  • the first cell is used as the timing reference of the second cell.
  • the first set of operations is stopped for the first cell starting from the first time.
  • the first time before includes at least one time slot before the first signaling is received.
  • the first time before includes at least one time slot before the first signaling is sent.
  • after the first time includes at least one time slot after the first signaling is received.
  • after the first time includes at least one time slot after the first signaling is sent.
  • the time slot refers to a slot.
  • the time slot refers to a continuous time interval.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in Figure 2.
  • Figure 2 illustrates the network architecture 200 of the 5G NR (New Radio)/LTE (Long-Term Evolution)/LTE-A (Long-Term Evolution Advanced) system.
  • 5G NR/LTE The LTE-A network architecture 200 may be called 5GS (5G System)/EPS (Evolved Packet System) 200 or some other suitable term.
  • 5GS/EPS 200 includes UE (User Equipment) 201, RAN (Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home At least one of Subscriber Server/UDM (Unified Data Management) 220 and Internet service 230.
  • 5GS/EPS can interconnect with other access networks, but these entities/interfaces are not shown for simplicity. As shown, 5GS/EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks that provide circuit-switched services or other cellular networks.
  • the RAN includes node 203 and other nodes 204.
  • Node 203 provides user and control plane protocol termination towards UE 201.
  • Node 203 may connect to other nodes 204 via the Xn interface (eg, backhaul)/X2 interface.
  • Node 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmit Receive Node), or some other suitable terminology.
  • BSS Basic Service Set
  • ESS Extended Service Set
  • TRP Transmit Receive Node
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radio, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radio non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • Node 203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management field)/SMF (Session Management Function, session management function) )211, other MME/AMF/SMF214, S-GW (Service Gateway, service gateway)/UPF (User Plane Function, user plane function) 212 and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210. Basically, MME/AMF/SMF211 provides bearer and connection management.
  • All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213.
  • P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • the Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching streaming services.
  • the UE201 corresponds to the first node in this application.
  • the UE201 is a user equipment (User Equipment, UE).
  • UE User Equipment
  • the node 203 corresponds to the second node in this application.
  • the node 203 is a base station equipment (BaseStation, BS).
  • BaseStation BaseStation, BS
  • the node 203 is a base transceiver station (Base Transceiver Station, BTS).
  • BTS Base Transceiver Station
  • the node 203 is a Node B (NodeB, NB).
  • the node 203 is a gNB.
  • the node 203 is an eNB.
  • the node 203 is an ng-eNB.
  • the node 203 is an en-gNB.
  • the node 203 is a CU (Centralized Unit).
  • the node 203 is a DU (Distributed Unit).
  • the node 203 is user equipment.
  • the node 203 is a relay.
  • the node 203 is a gateway.
  • the node 204 corresponds to the third node in this application.
  • the node 204 is a BS.
  • the node 204 is a BTS.
  • the node 204 is an NB.
  • the node 204 is a gNB.
  • the node 204 is an eNB.
  • the node 204 is an ng-eNB.
  • the node 204 is an en-gNB.
  • the node 204 is user equipment.
  • the node 204 is a relay.
  • the node 204 is a gateway.
  • the node 204 is a CU.
  • the node 204 is a DU.
  • the node 203 and the node 204 are connected through an ideal backhaul.
  • the node 203 and the node 204 are connected through a non-ideal backhaul.
  • the node 203 and the node 204 provide wireless resources for the UE 201 at the same time.
  • the node 203 and the node 204 do not provide radio resources for the UE 201 at the same time.
  • the node 203 and the node 204 are the same node.
  • the node 203 and the node 204 are two different nodes.
  • the user equipment supports transmission of a terrestrial network (Non-Terrestrial Network, NTN).
  • NTN Non-Terrestrial Network
  • the user equipment supports transmission of non-terrestrial network (Terrestrial Network, terrestrial network).
  • the user equipment supports transmission in a large delay difference network.
  • the user equipment supports dual connection (Dual Connection, DC) transmission.
  • Dual Connection DC
  • the user equipment includes an aircraft.
  • the user equipment includes a vehicle-mounted terminal.
  • the user equipment includes a ship.
  • the user equipment includes an Internet of Things terminal.
  • the user equipment includes a terminal of the Industrial Internet of Things.
  • the user equipment includes equipment that supports low-latency and high-reliability transmission.
  • the user equipment includes a test device.
  • the user equipment includes a signaling tester.
  • the base station equipment supports transmission in non-terrestrial networks.
  • the base station equipment supports transmission in a large delay difference network.
  • the base station equipment supports transmission of terrestrial networks.
  • the base station equipment includes a macro cellular (Marco Cellular) base station.
  • a macro cellular (Marco Cellular) base station includes a macro cellular (Marco Cellular) base station.
  • the base station equipment includes a micro cell (Micro Cell) base station.
  • Micro Cell Micro Cell
  • the base station equipment includes a Pico Cell base station.
  • the base station equipment includes a home base station (Femtocell).
  • Femtocell home base station
  • the base station equipment includes a base station equipment that supports a large delay difference.
  • the base station equipment includes a flight platform equipment.
  • the base station equipment includes satellite equipment.
  • the base station equipment includes a TRP (Transmitter Receiver Point, transmitting and receiving node).
  • TRP Transmitter Receiver Point, transmitting and receiving node
  • the base station equipment includes a CU (Centralized Unit).
  • CU Centralized Unit
  • the base station equipment includes a DU (Distributed Unit).
  • the base station equipment includes testing equipment.
  • the base station equipment includes a signaling tester.
  • the base station equipment includes an IAB (Integrated Access and Backhaul)-node.
  • IAB Integrated Access and Backhaul
  • the base station equipment includes an IAB-donor.
  • the base station equipment includes IAB-donor-CU.
  • the base station equipment includes IAB-donor-DU.
  • the base station equipment includes IAB-DU.
  • the base station equipment includes IAB-MT.
  • the relay includes relay.
  • the relay includes L3relay.
  • the relay includes L2relay.
  • the relay includes a router.
  • the relay includes a switch.
  • the relay includes user equipment.
  • the relay includes base station equipment.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300.
  • FIG. 3 shows the radio protocol architecture for the control plane 300 with three layers: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above PHY301, including MAC (Medium Access Control, media access control) sub-layer 302, RLC (Radio Link Control, wireless link layer control protocol) sub-layer 303 and PDCP (Packet Data Convergence) Protocol (Packet Data Convergence Protocol) sublayer 304.
  • PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides cross-location support.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell.
  • MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and configuring lower layers using RRC signaling.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture in the user plane 350 is for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, and the PDCP sublayer 354 in the L2 layer 355.
  • the RLC sublayer 353 and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides header compression for upper layer packets to reduce radio Transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the first signaling in this application is generated in the RRC306.
  • the first signaling in this application is generated by the MAC302 or MAC352.
  • the first signaling in this application is generated in the PHY301 or PHY351.
  • the second signaling in this application is generated in the RRC306.
  • the second signaling in this application is generated by the MAC302 or MAC352.
  • the second signaling in this application is generated from the PHY301 or PHY351.
  • the third signaling in this application is generated in the RRC306.
  • the third signaling in this application is generated by the MAC302 or MAC352.
  • the third signaling in this application is generated from the PHY301 or PHY351.
  • the first wireless signal in this application is generated by the RRC306.
  • the first wireless signal in this application is generated by the MAC302 or MAC352.
  • the first wireless signal in this application is generated by the PHY301 or PHY351.
  • the second wireless signal in this application is generated by the RRC306.
  • the second wireless signal in this application is generated by the MAC302 or MAC352.
  • the second wireless signal in this application is generated from the PHY301 or PHY351.
  • one of the at least one timing advance command in this application is generated in the RRC 306 .
  • one of the at least one timing advance command in this application is generated in the MAC 302 or MAC 352.
  • one of the at least one timing advance command in this application is generated in the PHY301 or PHY351.
  • the first message in this application is generated in the RRC306.
  • the first message in this application is generated by the MAC302 or MAC352.
  • the first message in this application is generated by the PHY301 or PHY351.
  • the first measurement report in this application is generated by the RRC306.
  • the first measurement report in this application is generated by the MAC302 or MAC352.
  • the first measurement report in this application is generated from the PHY301 or PHY351.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in the access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and an antenna 420.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and radio resource allocation to the first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer). Transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 410, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M-phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for M-phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams. Transmit processor 416 then maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the first communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream
  • the converted baseband multi-carrier symbol stream is provided to the receive processor 456.
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial stream that is the destination. The symbols on each spatial stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover upper layer data and control signals transmitted by the second communications device 410 on the physical channel. Upper layer data and control signals are then provided to controller/processor 459. Controller/processor 459 implements the functions of the L2 layer.
  • Controller/processor 459 may be associated with memory 460 that stores program code and data. Memory 460 may be referred to as computer-readable media.
  • the controller/processor 459 In transmission from the second communication device 410 to the second communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements headers based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 In transmission from the first communications device 450 to the second communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Using at least one processor together, the first communication device 450 at least: receives first signaling, the first signaling is generated at the protocol layer below the RRC layer, and the first signaling is used to indicate from Stop executing the first operation set for the first cell at the first time; in the first uplink frame after the first time, send the first wireless signal on the second cell; wherein the first operation set It includes at least one of monitoring the PDCCH on the corresponding cell, monitoring the PDCCH used for scheduling the corresponding cell, and sending the UL-SCH on the corresponding cell; the starting time of the first uplink frame is compared with the first The starting time of the downlink frame is advanced by the first time interval; the first downlink frame belongs to the first cell.
  • the first communication device 450 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: receiving a first A signaling, the first signaling is generated at the protocol layer below the RRC layer, the first signaling is used to indicate to stop executing the first set of operations for the first cell from the first time; in the In the first uplink frame after the first time, the first wireless signal is sent on the second cell; wherein the first operation set includes monitoring the PDCCH on the corresponding cell, monitoring the PDCCH used to schedule the corresponding cell, and Send at least one of the three UL-SCHs on the corresponding cell; the starting time of the first uplink frame is earlier than the starting time of the first downlink frame by a first time interval; The first downlink frame belongs to the first cell.
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the second communication device 410 at least: receives the first wireless signal on the second cell in the first uplink frame after the first time; wherein the first signaling is sent, and the first signaling
  • the receiver is the sender of the first wireless signal, or the sender of the first signaling is the sender of the first wireless signal; the first signaling is used in the protocol layer below the RRC layer.
  • the first signaling is used to indicate to stop executing a first operation set for the first cell starting from the first time;
  • the first operation set includes monitoring PDCCH on the corresponding cell, monitoring for scheduling the corresponding cell At least one of PDCCH and UL-SCH is sent on the corresponding cell;
  • the starting time of the first uplink frame is advanced by a first time compared to the starting time of the first downlink frame. interval; the first downlink frame belongs to the first cell.
  • the second communication device 410 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: in the first In the first uplink frame a time later, the first wireless signal is received on the second cell; wherein the first signaling is sent, and the recipient of the first signaling is the sender of the first wireless signal Or, the sender of the first signaling is the sender of the first wireless signal; the first signaling is generated at the protocol layer below the RRC layer, and the first signaling is used Instructing to stop executing the first operation set for the first cell starting from the first time; the first operation set includes monitoring the PDCCH on the corresponding cell, monitoring the PDCCH used to schedule the corresponding cell, and sending UL- on the corresponding cell. At least one of SCH; the starting time of the first uplink frame is earlier than the starting time of the first downlink frame by a first time interval; the first downlink frame Belongs to the first community.
  • the antenna 452, the receiver 454, the receiving processor 456, and the controller/processor 459 are used to receive the first signaling.
  • At least one of the antenna 420, the transmitter 418, the transmission processor 416, and the controller/processor 475 is used to send the first signaling.
  • the antenna 452, the receiver 454, the receiving processor 456, and the controller/processor 459 are used to receive the second signaling.
  • At least one of the antenna 420, the transmitter 418, the transmission processor 416, and the controller/processor 475 is used to send the second signaling.
  • the antenna 452, the receiver 454, the receiving processor 456, and the controller/processor 459 are used to receive the third signaling.
  • At least one of the antenna 420, the transmitter 418, the transmission processor 416, and the controller/processor 475 is used to send third signaling.
  • the antenna 452, the receiver 454, the receiving processor 456, and the controller/processor 459 are configured to receive at least one timing advance command.
  • At least one of the antenna 420, the transmitter 418, the transmit processor 416, and the controller/processor 475 is used to send at least one timing advance command.
  • the antenna 452, the receiver 454, the receiving processor 456, and the controller/processor 459 are used to receive the first message.
  • At least one of the antenna 420, the transmitter 418, the transmit processor 416, and the controller/processor 475 is used to send the first message.
  • the antenna 452, the transmitter 454, the transmit processor 468, and the controller/processor 459 are used to transmit a first wireless signal.
  • At least one of the antenna 420, the receiver 418, the receiving processor 470, and the controller/processor 475 is used to receive the first wireless signal.
  • the antenna 452, the transmitter 454, the transmit processor 468, and the controller/processor 459 are used to transmit the second wireless signal.
  • At least one of the antenna 420, the receiver 418, the receiving processor 470, and the controller/processor 475 is used to receive the second wireless signal.
  • the antenna 452, the transmitter 454, the transmit processor 468, and the controller/processor 459 are used to send a first measurement report.
  • At least one of the antenna 420, the receiver 418, the receiving processor 470, and the controller/processor 475 is used to receive the first measurement report.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a user equipment.
  • the first communication device 450 is a user equipment that supports a large delay difference.
  • the first communication device 450 is a user equipment supporting NTN.
  • the first communication device 450 is an aircraft device.
  • the first communication device 450 has positioning capabilities.
  • the first communication device 450 does not have constant energy capability.
  • the first communication device 450 is a user equipment supporting TN.
  • the second communication device 410 is a base station device (gNB/eNB/ng-eNB).
  • the second communication device 410 is a base station device that supports a large delay difference.
  • the second communication device 410 is a base station device supporting NTN.
  • the second communication device 410 is a satellite device.
  • the second communication device 410 is a flight platform device.
  • the second communication device 410 is a base station device supporting TN.
  • Embodiment 5 illustrates a wireless signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 5 . It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S5101 For the first node U01 , in step S5101, the third signaling is received, and the third signaling is used to determine that the first cell is the timing reference of the second cell; in step S5102, the first Signaling; in step S5103, send the first signaling; in step S5104, stop executing the first operation set for the first cell from the first time; in step S5105, execute the second operation set for the first cell; In step S5106, in the first uplink frame after the first time, the first wireless signal is sent on the second cell.
  • step S5201 the first wireless signal is received.
  • step S5301 the first signaling is sent; in step S5302, the first signaling is received.
  • step S5401 the third signaling is sent.
  • the first signaling is generated at a protocol layer below the RRC layer, and the first signaling is used to indicate to stop executing the first set of operations for the first cell from the first time; so
  • the first operation set includes at least one of monitoring the PDCCH on the corresponding cell, monitoring the PDCCH used to schedule the corresponding cell, and transmitting the UL-SCH on the corresponding cell; the start of the first uplink frame
  • the time is a first time interval earlier than the starting time of the first downlink frame; the first downlink frame belongs to the first cell; the first cell is the timing reference of the second cell.
  • the first signaling is used to indicate performing a second set of operations for the first cell; the second set of operations includes clearing the All HARQ buffer pools of the first cell, or clear any PUSCH resources associated with the first cell for semi-persistent CSI reporting, or clear any configured downlink allocation associated with the first cell Any configured uplink grant type 2, or at least one of any configured uplink grant type 1 associated with the first cell is cleared.
  • the first node U01 is user equipment.
  • the first node U01 is a base station device.
  • the first node U01 is a relay device.
  • the second node N02 is user equipment.
  • the second node N02 is a base station device.
  • the second node N02 is a relay device.
  • the second node N02 is the maintenance base station of the second cell.
  • the second node N02 is the maintenance base station of the receiver of the first wireless signal.
  • the third node N03 is user equipment.
  • the third node N03 is a base station device.
  • the third node N03 is a relay device.
  • the third node N03 is the maintenance base station of the first cell.
  • the third node N03 is the maintenance base station of the sender of the first signaling.
  • the fourth node N04 is user equipment.
  • the fourth node N04 is a base station device.
  • the fourth node N04 is a relay device.
  • the fourth node N04 is the maintenance base station of the first cell.
  • the fourth node N04 is the maintenance base station of the sender of the third signaling.
  • the third node N03 and the second node N02 are the same.
  • the third node N03 and the second node N02 are different.
  • the third node N03 and the fourth node N04 are the same.
  • the third node N03 and the fourth node N04 are different.
  • the sender of the first signaling is the maintenance base station of a serving cell in the first cell group.
  • the sender of the third signaling is the maintenance base station of a serving cell in the first cell group.
  • the sender of the first signaling and the sender of the third signaling are the same.
  • the sender of the first signaling and the sender of the third signaling are different.
  • the first signaling is used to determine that the first cell is a timing reference of the second cell.
  • the timing reference of the second cell when the first signaling is received is the timing reference used by the first cell to determine that the first cell is the second cell.
  • the timing reference of the second cell before the first signaling is received is the timing reference used by the first cell to determine that the first cell is the second cell.
  • the candidate cell that the second cell is the first cell is used to determine the timing reference that the first cell is the second cell.
  • the second cell and the first cell belonging to the same TAG are used to determine that the first cell is the timing reference of the second cell.
  • the second cell and the first cell belonging to the first TAG are used to determine that the first cell is a timing reference for the second cell.
  • the third signaling is received before the first signaling.
  • the third signaling is not received before the first signaling.
  • the third signaling exists.
  • the third signaling does not exist.
  • the third signaling is an RRC message.
  • the third signaling is a downlink (Downlink, DL) message.
  • the third signaling is a Sidelink (SL) message.
  • SL Sidelink
  • the third signaling is transmitted through DCCH (Dedicated Control Channel).
  • DCCH Dedicated Control Channel
  • the third signaling is transmitted through SCCH (Sidelink Control Channel).
  • SCCH Servicelink Control Channel
  • the third signaling includes at least one IE in the RRC message.
  • the third signaling includes at least one field in the RRC message.
  • the third signaling includes a RRCReconfiguration message.
  • the third signaling is at least one IE in the RRCReconfiguration message.
  • the third signaling is at least one field in the RRCReconfiguration message.
  • the third signaling includes CellGroupConfig IE, and a field in the CellGroupConfig IE is A timing reference used to determine that the first cell is the second cell.
  • the third signaling includes a SpCellConfig field or a SCellConfig field, and one of the SpCellConfig fields or the SCellConfig field is used to determine that the first cell is a timing reference for the second cell.
  • the third signaling includes ServingCellConfig IE, and a field in the ServingCellConfig IE is used to determine that the first cell is a timing reference of the second cell.
  • the third signaling indicates that the first cell is a timing reference of the second cell.
  • the third signaling explicitly indicates that the first cell is a timing reference of the second cell.
  • the third signaling implicitly indicates that the first cell is a timing reference of the second cell.
  • the third signaling indicates that the first cell is an anchor cell.
  • the third signaling indicates that the first cell is a timing reference of the first TAG.
  • the third signaling is used to indicate the timing reference of the first TAG.
  • the third signaling is configured to be used to determine that the first cell is a timing reference of the second cell.
  • the third signaling is set to true and is used to determine that the first cell is a timing reference of the second cell.
  • the third signaling is set as a timing reference in which the identity of the first cell is used to determine that the first cell is the second cell.
  • the timing reference that the first cell is the first TAG is used to determine that the first cell is the timing reference of the second cell.
  • the downlink frame of the first cell is a timing reference frame of the uplink frame of any cell in the first TAG.
  • the first cell is a timing reference cell of the first TAG.
  • the first TAG includes at least the first cell.
  • the first TAG includes the second cell.
  • the first TAG includes the third cell.
  • the third signaling in response to the first signaling being received, if the third signaling is received, and the third signaling indicates that the first cell is the timing reference of the second cell, The first cell is the timing reference for the second cell.
  • the second set of operations is reset for the first cell.
  • the second set of operations is only directed to the first cell.
  • the second set of operations is MAC reset for the first cell.
  • the second set of operations is to reset the first cell.
  • the second set of operations is triggered by the first signaling.
  • the second set of operations is triggered by the first condition.
  • the behavior of flushing all HARQ (Hybrid Automatic Repeat Request, Hybrid Automatic Repeat Request) buffer pools (buffers) associated with the first cell includes: flushing (flush) associated with the first cell HARQ buffer pool for each HARQ process in a cell.
  • the behavior of clearing any PUSCH resources associated with the first cell for semi-persistent CSI (Channel state information) reporting includes: if the first node U01 is configured PUSCH resources associated with the first cell for semi-persistent CSI reporting, and clearing PUSCH resources associated with the first cell for semi-persistent CSI reporting.
  • the behavior clearing any configured downlink assignment (configured downlink assignment) and any configured uplink grant Type 2 (configured uplink grant Type 2) associated with the first cell includes: if the The first node U01 is configured with a configured downlink allocation associated with the first cell, clearing the configured downlink allocation associated with the first cell; if the first node U01 is configured The configured uplink grant type 2 associated with the first cell is cleared, and the configured uplink grant type 2 associated with the first cell is cleared.
  • the configured uplink grant type 2 refers to the uplink grant provided through RRC.
  • the behavior clearing any configured uplink grant Type 1 (configured uplink grant Type 1) associated with the first cell includes: if the first node U01 is configured to be associated with the first cell Arbitrarily configured uplinks for a cell The uplink grant type 1 is cleared to clear any configured uplink grant type 1 associated with the first cell.
  • the configured uplink grant type 1 refers to the uplink grant provided through the PDCCH.
  • the configured uplink grant type 1 indicates activation or deactivation of the configured uplink grant based on L1 signaling.
  • the configured uplink grant type 1 is stored or deleted based on L1 signaling.
  • the first signaling is not used to indicate clearing all HARQ buffer pools associated with the third cell, or clearing any PUSCH resources associated with the third cell for semi-persistent CSI reporting, or , clear any configured downlink allocation and any configured uplink grant type 2 associated with the third cell, or clear any configured uplink grant type 1 associated with the third cell At least one.
  • the first cell is a SCell.
  • the first cell is SpCell.
  • the first signaling is not used to indicate clearing all HARQ buffer pools associated with the third cell, or clearing all HARQ buffer pools associated with the third cell.
  • the third cell and the first cell belong to the same cell group.
  • the third cell is any cell other than the first cell in the first cell group.
  • the third cell is the second cell.
  • the third cell is not the second cell.
  • the third cell before the first signaling, the third cell is configured.
  • the third cell is activated before the first signaling.
  • the first node U01 before the first signaling, performs the first operation set for the third cell.
  • the first operation set includes monitoring PDCCH on the corresponding cell, monitoring At least one of scheduling the PDCCH of the corresponding cell and transmitting the UL-SCH on the corresponding cell; the corresponding cell is the third cell.
  • step S5105 is optional.
  • step S5105 exists.
  • step S5105 does not exist.
  • the dashed box F5.1 is optional.
  • the dotted box F5.1 exists.
  • the dotted box F5.1 does not exist.
  • the dashed box F5.2 is optional.
  • dashed box F5.3 is optional.
  • one of the dotted box F5.2 and the dotted box F5.3 exists.
  • the dotted box F5.2 exists, and the dotted box F5.3 does not exist.
  • the dotted box F5.2 does not exist, and the dotted box F5.3 exists.
  • Embodiment 6 illustrates a wireless signal transmission flow chart according to another embodiment of the present application, as shown in FIG. 6 . It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S6101 in the second uplink frame before the first time, send the second wireless signal on the second cell; in step S6102, receive the first signaling; in step S6103 , send the first signaling; in step S6104, in the first uplink frame after the first time, send the first wireless signal on the second cell.
  • step S6201 the second wireless signal is received; in step S6202, the first wireless signal is received. Signal.
  • step S6301 the first signaling is sent; in step S6302, the first signaling is received.
  • the first signaling is generated at a protocol layer below the RRC layer, and the first signaling is used to indicate to stop executing the first set of operations for the first cell starting from the first time.
  • the first operation set includes at least one of monitoring the PDCCH on the corresponding cell, monitoring the PDCCH used to schedule the corresponding cell, and transmitting the UL-SCH on the corresponding cell; the first uplink frame
  • the starting time is earlier than the starting time of the first downlink frame by a first time interval; the first downlink frame belongs to the first cell; and the starting time of the second uplink frame is the same as that of the first downlink frame.
  • a second time interval is earlier than the starting time of the second downlink frame; the second downlink frame belongs to the first cell; the first cell and the second cell belong to the same cell group, The first cell and the second cell have different serving cell identities.
  • the second cell is not the target cell in this application.
  • the second uplink frame belongs to the second cell.
  • the second uplink frame is configured for the second cell.
  • the second uplink frame is used to determine the time domain location at which the uplink signal is sent in the second cell.
  • the second uplink frame is used to determine the time domain location at which the second wireless signal is sent in the second cell.
  • the second uplink frame is an uplink frame of the second cell.
  • the second uplink frame is used for the second cell.
  • the second uplink frame is the last uplink frame before the first time.
  • the second uplink frame is any uplink frame before the first time.
  • the second uplink frame is the Q1th uplink frame before the first time, and Q1 is a positive integer.
  • the second uplink frame is the uplink frame at the first time.
  • the second uplink frame is an uplink frame before the uplink frame at the first time.
  • the first time and the second uplink frame have an overlapping time.
  • the second wireless signal occupies at least one time slot of the second uplink frame.
  • the second wireless signal occupies one time slot of the second uplink frame.
  • the time slot position of the second wireless signal in the second uplink frame is preconfigured.
  • the time slot position of the second wireless signal in the second uplink frame is predefined.
  • the time slot position of the second wireless signal in the second uplink frame is specified.
  • the time slot position of the second wireless signal in the second uplink frame is determined by the UE.
  • the second wireless signal is a physical layer signal.
  • the second wireless signal is PUCCH.
  • the second wireless signal is SRS.
  • the second wireless signal is PUSCH.
  • the second wireless signal is any one of PUCCH, SRS or PUSCH.
  • the second wireless signal is transmitted through PUCCH.
  • the second wireless signal is transmitted through PUSCH.
  • the second wireless signal is transmitted through SRS resources.
  • the second time interval is equal to a time interval in which the starting time of the second uplink frame is earlier than the starting time of the second downlink frame.
  • the second time interval is equal to a time interval in which the timing of the second uplink frame is earlier than the timing of the second downlink frame.
  • the second time interval is used to determine the uplink transmission timing of the second cell.
  • the second time interval includes a time interval.
  • the second time interval includes a positive integer number of first time units.
  • the second time interval is configurable.
  • the number of first time units included in the second time interval is configurable.
  • the second time interval is equal to the first time interval.
  • the second time interval and the first time interval are not equal.
  • the first node U01 receives at least one timing advance command within a time interval between the time when the second wireless signal is sent and the time when the first wireless signal is sent.
  • the first node U01 does not receive any timing advance command.
  • the second uplink frame and the second downlink frame have the same frame number.
  • the second uplink frame is an uplink frame corresponding to the second downlink frame.
  • the second downlink frame is a timing reference frame of the second uplink frame.
  • the second downlink frame is a reference frame of the second uplink frame.
  • the second downlink frame is a timing reference frame of the second uplink frame
  • the first cell is a timing reference cell of the second cell
  • the second downlink frame is a downlink frame in the first cell.
  • the second downlink frame is configured for the first cell.
  • the downlink timing of the second downlink frame is determined by the first cell.
  • the second downlink frame is a downlink frame configured for the first cell.
  • the timing reference of the second downlink frame is the first cell.
  • the first message in this application includes a SCellConfig field and a SpCellConfig field; the one SCellConfig field indicates the first cell, the one SpCellConfig field indicates the second cell, and the one The SCellConfig domain and the one SpCellConfig domain are associated with the same CellGroupId; the first cell is SCell, and the second cell is SpCell.
  • the SpCellConfig field includes servCellIndex, and the second cell is PSCell.
  • the SpCellConfig field does not include servCellIndex, and the second cell is PCell.
  • the first message in this application includes a SpCellConfig field and a SCellConfig field; the one SpCellConfig field indicates the first cell, the one SCellConfig field indicates the second cell, and the one The SpCellConfig domain and the one SCellConfig domain are associated with the same CellGroupId; the first cell is SpCell, and the second cell is SCell.
  • the SpCellConfig field includes servCellIndex, and the first cell is PSCell.
  • the SpCellConfig field does not include servCellIndex, and the first cell is PCell.
  • the first message in this application includes one SCellConfig field and another SCellConfig field; the one SCellConfig field indicates the first cell, and the other SCellConfig field indicates the second cell, so The one SCellConfig domain and the other SCellConfig domain are associated with the same CellGroupId; the first cell is SCell, and the second cell is SCell.
  • the serving cell identifier of the first cell is not greater than a first integer
  • the serving cell identifier of the second cell is not greater than the first integer
  • the serving cell identifier of the first cell and the third The serving cell identifiers of the two cells are not equal.
  • the first integer is equal to 64.
  • the first integer is equal to 31.
  • the first integer is equal to 16.
  • the serving cell identity is configured through the servCellIndex field or the sCellIndex field.
  • the serving cell identity is implicitly configured.
  • the dashed box F6.1 is optional.
  • the dashed box F6.2 is optional.
  • one of the dotted box F6.1 and the dotted box F6.2 exists.
  • the dotted box F6.1 exists, and the dotted box F6.2 does not exist.
  • the dotted box F6.1 does not exist, and the dotted box F6.2 exists.
  • Embodiment 7 illustrates a wireless signal transmission flow chart according to yet another embodiment of the present application, as shown in FIG. 7 . It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S7101 receive second signaling, which includes the configuration information of the second cell; in step S7102, receive the first signaling; in step S7103, send First signaling; in step S7104, perform the first set of operations for the second cell; in step S7105, in the first uplink frame after the first time, on the second cell Send the first wireless signal.
  • step S7201 the first wireless signal is received.
  • step S7301 the first signaling is sent; in step S7302, the first signaling is received.
  • step S7501 the second signaling is sent.
  • the first signaling is generated at a protocol layer below the RRC layer, and the first signaling is used to indicate to stop executing the first set of operations for the first cell starting from the first time.
  • the first operation set includes at least one of monitoring the PDCCH on the corresponding cell, monitoring the PDCCH used to schedule the corresponding cell, and transmitting the UL-SCH on the corresponding cell;
  • the first uplink frame The starting time is a first time interval earlier than the starting time of the first downlink frame; the first downlink frame belongs to the first cell; the first signaling is used to indicate that the second The cell executes the first operation set; before stopping execution of the first operation set for the first cell, the first operation set is not executed for the second cell; the configuration of the second cell
  • the information includes at least the identity of the second cell.
  • the fifth node N05 is user equipment.
  • the fifth node N05 is a base station device.
  • the fifth node N05 is a relay device.
  • the fifth node N05 is the maintenance base station of the first cell.
  • the fifth node N05 is the maintenance base station of the sender of the second signaling.
  • the second cell is the target cell in this application.
  • the second signaling is received before the first signaling.
  • the second signaling includes the first message in this application.
  • the second signaling is the first message in this application.
  • the sender of the second signaling is the maintenance base station of a serving cell in the first cell group.
  • the sender of the second signaling is the same as the sender of the first signaling.
  • the sender of the second signaling is different from the sender of the first signaling.
  • the first signaling is used to indicate performing the first operation set for the second cell.
  • the first operation set includes monitoring the PDCCH on the corresponding cell, monitoring the PDCCH used to schedule the corresponding cell, and transmitting at least one of the three UL-SCH on the corresponding cell.
  • the corresponding cell is the second cell.
  • the corresponding cell includes the second cell.
  • the phrase before stopping execution of the first set of operations for the first cell includes: at least one time slot before stopping execution of the first set of operations for the first cell.
  • the phrase before stopping performing the first set of operations for the first cell includes: before the first signaling is received.
  • the phrase the first set of operations is not performed for the second cell includes: at least one operation in the first set of operations is not performed for the second cell.
  • the phrase the first set of operations is not performed for the second cell includes: each operation in the first set of operations is not performed for the second cell.
  • step S7104 is optional.
  • step S7104 exists.
  • step S7104 does not exist.
  • the dashed box F7.1 is optional.
  • the dashed box F7.2 is optional.
  • one of the dotted box F7.1 and the dotted box F7.2 exists.
  • the dotted box F7.1 exists, and the dotted box F7.2 does not exist.
  • the dotted box F7.1 does not exist, and the dotted box F7.2 exists.
  • Embodiment 8 illustrates a wireless signal transmission flow chart according to yet another embodiment of the present application, as shown in FIG. 8 .
  • step S8101 At least one timing advance command is received.
  • step S8601 the at least one timing advance command is sent.
  • the given node group N06 includes user equipment.
  • the given node group N06 includes at least one base station device.
  • the given node group N06 includes at least one relay device.
  • the given node group N06 includes at least one node.
  • the given node group N06 includes at least one of the third node, the fourth node, or the fifth node.
  • the given node group N06 includes the maintenance base station of at least one serving cell in the first cell group.
  • the first time interval is related to the at least one timing advance command.
  • the at least one timing advance command includes one timing advance command.
  • the at least one timing advance command includes more than 1 timing advance command.
  • the at least one timing advance command includes 1 or more than 1 timing advance command.
  • each timing advance command in the at least one timing advance command belongs to a MAC sub-PDU.
  • each timing advance command in the at least one timing advance command is a Timing Advance Command field.
  • each timing advance command in the at least one timing advance command indicates an integer.
  • each timing advance command in the at least one timing advance command indicates a non-negative integer.
  • each of the at least one timing advance command indicates a positive integer.
  • each of the at least one timing advance command indicates a TA
  • the TA is used to determine N TA .
  • a first received timing advance command among the at least one timing advance command is used to determine the initial N TA .
  • a first received timing advance command of the at least one timing advance command is used to determine the adjusted N TA .
  • the first received timing advance command among the at least one timing advance command is one of the fallbackRAR or the successRAR or the MAC RAR or the Absolute Timing Advance Command MAC CE.
  • the first received timing advance command among the at least one timing advance command occupies 12 bits.
  • a timing advance command other than the first received timing advance command among the at least one timing advance command is used to determine the updated N TA .
  • the timing advance command other than the first received timing advance command in the at least one timing advance command is a Timing Advance Command MAC CE.
  • the timing advance command other than the first received timing advance command among the at least one timing advance command occupies 6 bits.
  • any two timing advance commands in the at least one timing advance command do not belong to the same MAC sub-PDU.
  • any two timing advance commands in the at least one timing advance command do not belong to the same MAC PDU.
  • the number of bits occupied by the Timing Advance Command field corresponding to any two timing advance commands in the at least one timing advance command is equal.
  • the number of bits occupied by the Timing Advance Command field corresponding to any two timing advance commands in the at least one timing advance command is not equal.
  • the number of bits occupied by the Timing Advance Command field corresponding to any two timing advance commands in the at least one timing advance command is equal or unequal.
  • the number of bits occupied by the Timing Advance Command fields corresponding to at least two timing advance commands in the at least one timing advance command is not equal.
  • each timing advance command in the at least one timing advance command belongs to one of a MAC CE or a MAC RAR or a fallbackRAR or a successRAR.
  • one of the at least one timing advance command belongs to Timing Advance Command MAC CE.
  • the format of the Timing Advance Command MAC CE refers to 3GPP TS 38.321.
  • the Timing Advance Command MAC CE includes a Timing Advance Command domain.
  • one of the at least one timing advance command belongs to Absolute Timing Advance Command MAC CE.
  • the format of the Absolute Timing Advance Command MAC CE refers to 3GPP TS 38.321.
  • the Absolute Timing Advance Command MAC CE includes a Timing Advance Command domain.
  • one of the at least one timing advance command belongs to fallbackRAR.
  • the format of fallbackRAR refers to 3GPP TS 38.321.
  • the fallbackRAR includes a Timing Advance Command field.
  • one of the at least one timing advance command belongs to successRAR.
  • the format of successRAR refers to 3GPP TS 38.321.
  • the successRAR includes a Timing Advance Command field.
  • one of the at least one timing advance command belongs to MAC RAR.
  • the format of the MAC RAR refers to Section 6.2.3 of 3GPP TS 38.321.
  • the MAC RAR includes a Timing Advance Command field.
  • a first offset is used to determine the first time interval.
  • the first time interval is related to a first offset.
  • the at least one timing advance command and the first offset are used to determine the first time interval.
  • the first offset includes at least one offset.
  • the first offset includes an offset configured by the network and an offset determined by the first node U01.
  • the first offset only includes the N TA,offset .
  • the first offset is configurable.
  • the first offset is preconfigured.
  • the first offset is of fixed size.
  • the first offset is an RRC configured offset.
  • the first offset is an offset estimated by the first node U01.
  • the first offset is a positive number or a negative number.
  • the first offset is equal to 0.
  • the first offset includes N TA,offset , and the N TA,offset is a fixed offset.
  • the first offset includes a timing correction related to NTN.
  • the first offset includes described It is a timing correction for network control.
  • the first offset includes described is the timing correction determined by the first node U01.
  • the first offset has nothing to do with NTN.
  • the first offset does not include
  • the first offset does not include
  • N TA,offset refers to TS 38.211.
  • the For the definition refer to TS 38.211.
  • the For the definition refer to TS 38.211.
  • the first offset is configured.
  • the first offset is not configured.
  • the first timing advance and the first offset are used to determine the uplink transmission timing of the first resource group.
  • the first timing advance is used to determine the uplink transmission timing of the first resource group.
  • the one timing advance command is received during a random access process.
  • said one timing advance command indicates said TA .
  • the at least one timing advance command includes at least 2 timing advance commands.
  • the N TA_old is the N TA before the last timing advance command among the at least one timing advance command is received.
  • the last timing advance command among the at least one timing advance command indicates the TA .
  • the ⁇ is related to the subcarrier spacing.
  • the ⁇ is related to the subcarrier spacing associated with the first cell.
  • the ⁇ is related to the subcarrier spacing associated with the second cell.
  • is a non-negative integer.
  • is an integer not less than 0 and not greater than 5.
  • the at least one timing advance command is received before the first time.
  • the at least one timing advance command is received after the first time.
  • one of the at least one timing advance commands is received before the first time, and one of the at least one timing advance commands is received after the first time. take over.
  • Embodiment 9 illustrates a schematic diagram in which the second cell and the first cell belong to the same TAG according to an embodiment of the present application, as shown in Figure 9.
  • the second cell and the first cell belong to the same TAG.
  • the second cell and the first cell are configured with the same TAG identification (TAG ID).
  • both the second cell and the first cell are configured with the identity of the first TAG.
  • the first node has the same timing advance for the second cell and the first cell.
  • the first cell is a timing reference of cells in the same TAG.
  • the first cell is a timing reference of a cell in the first TAG.
  • the first cell is a timing reference of the second cell.
  • the TAG identifier configured in the second cell is equal to the TAG identifier of the first cell.
  • the first message is used to determine that the second cell and the first cell belong to the same TAG.
  • the first message configures the TAG to which the second cell belongs for the second cell.
  • the first message configures the identity of the first TAG for the second cell.
  • Embodiment 10 illustrates a schematic diagram of the timing relationship between the first uplink frame and the first downlink frame according to an embodiment of the present application, as shown in FIG. 10 .
  • block 1001 represents the first downlink frame
  • block 1002 represents the first uplink frame
  • the horizontal axis represents time
  • the starting time of the first downlink frame is T2
  • the starting time of the first uplink frame is T1.
  • the starting time of the first uplink frame is earlier than the starting time of the first downlink frame by the first time interval; the first downlink The timing reference of the frame is the first cell.
  • the difference between T2 and T1 is equal to the first time interval.
  • T1 and T2 respectively correspond to one time slot.
  • T1 and T2 respectively correspond to a first time unit.
  • T1 and T2 respectively correspond to a time.
  • the time T1 is smaller than the T2.
  • the time T1 is not greater than the T2.
  • the starting time of the first uplink frame is earlier than the starting time of the first downlink frame.
  • Embodiment 11 illustrates a schematic diagram of the time slot occupied by the first wireless signal according to an embodiment of the present application, as shown in FIG. 11 .
  • the thick solid line box represents the first uplink frame
  • the diagonally filled box represents the time slot occupied by the first wireless signal
  • the horizontal axis represents time
  • the start of the first uplink frame The starting time is T1.
  • the first uplink frame includes P1 time slots, and the first wireless signal occupies one of the P1 time slots.
  • the first uplink frame includes P1 time slots, and the first wireless signal occupies at least one time slot among the P1 time slots.
  • the first uplink frame includes P1 time slots, and the first wireless signal occupies one or more time slots in the P1 time slots.
  • P1 is a positive integer.
  • the time slot occupied by the first wireless signal is indicated by an RRC message.
  • the time slot occupied by the first wireless signal is indicated by DCI.
  • the time slot occupied by the first wireless signal is determined based on at least DCI.
  • the time slot occupied by the first wireless signal is determined based on at least an RRC message.
  • Embodiment 12 illustrates a structural block diagram of a processing device used in a first node according to an embodiment of the present application; as shown in FIG. 12 .
  • the processing device 1200 in the first node includes a first receiver 1201 and a first transmitter 1202.
  • the first receiver 1201 receives the first signaling, or the first transmitter 1202 sends the first signaling; the first signaling is generated at the protocol layer below the RRC layer, and the first signaling is Used to instruct to stop executing the first set of operations for the first cell starting from the first time;
  • the first transmitter 1202 sends the first wireless signal on the second cell in the first uplink frame after the first time;
  • the first operation set includes monitoring the PDCCH on the corresponding cell, monitoring the PDCCH used for scheduling the corresponding cell, and transmitting at least one of the three UL-SCH on the corresponding cell; the starting time of the first uplink frame is earlier than the starting time of the first downlink frame by a first time interval; so The first downlink frame belongs to the first cell.
  • the first receiver 1201 receives at least one timing advance command, and the at least one timing advance command is used to determine the first time interval.
  • the first signaling is used to indicate performing a second set of operations for the first cell; the second set of operations includes clearing all HARQ buffer pools associated with the first cell, or clearing associations Any PUSCH resources for semi-persistent CSI reporting to the first cell, or clear any configured downlink allocation and any configured uplink grant type 2 associated with the first cell, or clear the association At least one of any configured uplink grant type 1 to the first cell.
  • the first transmitter 1202 sends a second wireless signal on the second cell in the second uplink frame before the first time; wherein, the second uplink The starting time of the road frame is ahead of the starting time of the second downlink frame by a second time interval; the second downlink frame belongs to the first cell; the first cell and the second The cells belong to the same cell group, and the first cell and the second cell have different serving cell identities.
  • the first receiver 1201 receives second signaling before the first signaling, and the second signaling includes the configuration information of the second cell; wherein, the first The signaling is used to indicate that the first operation set is executed for the second cell; before the first operation set is stopped for the first cell, the first operation set for the second cell is not executed;
  • the configuration information of the second cell includes at least an identity of the second cell.
  • the first receiver 1201 receives third signaling before the first signaling, and the third signaling is used to determine that the first cell is the second cell. Timing reference; wherein the timing reference of the first cell being the second cell is used to determine that the first downlink frame belongs to the first cell.
  • the second cell and the first cell belong to the same TAG.
  • the first transmitter 1202 sends the first measurement report.
  • the first receiver 1201 receives the first message.
  • the first receiver 1201 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data shown in Figure 4 of this application. Source 467.
  • the first receiver 1201 includes the antenna 452, the receiver 454, the multi-antenna receiving processor 458, and the receiving processor 456 in Figure 4 of this application.
  • the first receiver 1201 includes the antenna 452, the receiver 454, and the receiving processor 456 in Figure 4 of this application.
  • the first transmitter 1202 includes the antenna 452, transmitter 454, multi-antenna transmit processor 457, transmit processor 468, controller/processor 459, memory 460 and data in Figure 4 of this application.
  • Source 467 the antenna 452, transmitter 454, multi-antenna transmit processor 457, transmit processor 468, controller/processor 459, memory 460 and data in Figure 4 of this application.
  • Source 467 the antenna 452, transmitter 454, multi-antenna transmit processor 457, transmit processor 468, controller/processor 459, memory 460 and data in Figure 4 of this application.
  • Source 467 Source 467.
  • the first transmitter 1202 includes the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, and the transmission processor 468 in Figure 4 of this application.
  • the first transmitter 1202 includes the antenna 452, the transmitter 454, and the transmission processor 468 in Figure 4 of this application.
  • Embodiment 13 illustrates a structural block diagram of a processing device used in a second node according to an embodiment of the present application; as shown in FIG. 13 .
  • the processing device 1300 in the second node includes a second transmitter 1301 and a second receiver 1302.
  • the second receiver 1302 receives the first wireless signal on the second cell in the first uplink frame after the first time;
  • the first signaling is sent, and the recipient of the first signaling is the sender of the first wireless signal, or the sender of the first signaling is the first wireless signal.
  • the sender; the first signaling is generated at the protocol layer below the RRC layer, and the first signaling is used to indicate to stop executing the first set of operations for the first cell starting from the first time;
  • the The first operation set includes at least one of monitoring the PDCCH on the corresponding cell, monitoring the PDCCH used to schedule the corresponding cell, and transmitting the UL-SCH on the corresponding cell; the start of the first uplink frame The time is advanced by a first time interval compared to the starting time of the first downlink frame; the first downlink frame belongs to the first cell.
  • the second transmitter 1301 sends the first signaling.
  • At least one timing advance command is sent, and the recipient of the at least one timing advance command is the sender of the first wireless signal; the at least one timing advance command is used to determine the first time interval.
  • the second transmitter 1301 sends one or more timing advance commands among the at least one timing advance command.
  • the first signaling is used to indicate performing a second set of operations for the first cell; the second set of operations includes clearing all HARQ buffer pools associated with the first cell, or clearing associations Any PUSCH resources for semi-persistent CSI reporting to the first cell, or clear any configured downlink allocation and any configured uplink grant type 2 associated with the first cell, or clear the association At least one of any configured uplink grant type 1 to the first cell.
  • the second receiver 1302 receives the second wireless signal on the second cell in the second uplink frame before the first time; wherein the second uplink The starting time of the road frame is ahead of the starting time of the second downlink frame by a second time interval; the second downlink frame belongs to the first cell; the first cell and the second The cells belong to the same cell group, and the first cell and the second cell have different serving cell identities.
  • the second signaling includes the Configuration information of the second cell; the first signaling is used to instruct execution of the first set of operations for the second cell; before stopping execution of the first set of operations for the first cell, for the second The first set of operations of the cell is not executed; the configuration information of the second cell includes at least the identity of the second cell.
  • the second transmitter 1301 sends the second signaling.
  • a third signaling is sent, and the recipient of the third signaling is the sender of the first wireless signal; the third signaling is used
  • the timing reference that determines that the first cell is the second cell; the timing reference that the first cell is the second cell is used to determine that the first downlink frame belongs to the first cell.
  • the second transmitter 1301 sends the third signaling.
  • the second cell and the first cell belong to the same TAG.
  • the second receiver 1302 receives the first measurement report.
  • the second transmitter 1301 sends the first message.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475, and the memory 476 in Figure 4 of this application.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471 and the transmission processor 416 in Figure 4 of this application.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, and the transmission processor 416 in Figure 4 of this application.
  • the second receiver 1302 includes the antenna 420, receiver 418, multi-antenna receiving processor 472, receiving processor 470, controller/processor 475, and memory 476 in Figure 4 of this application.
  • the second receiver 1302 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, and the receiving processor 470 in Figure 4 of this application.
  • the second receiver 1302 includes the antenna 420, the receiver 418, and the receiving processor 470 in Figure 4 of this application.
  • Embodiment 14 illustrates a schematic diagram in which the first condition is satisfied and used to trigger the first signaling according to an embodiment of the present application, as shown in FIG. 14 .
  • the first condition being satisfied is used to trigger the first signaling.
  • the target cell is a trigger cell.
  • the target cell is a selected cell.
  • the target cell satisfying the first condition is used to trigger the first signaling.
  • the first condition is associated with the target cell.
  • the first condition is an execution condition for the configuration information of the target cell to be applied.
  • the first condition is associated with the first candidate cell set.
  • the first condition is an execution condition for applying the configuration information of each candidate cell in the first candidate cell set.
  • the first condition is a triggering condition for a measurement report.
  • the first condition is used to trigger a first measurement report, and the first measurement report is used to trigger the first signaling.
  • the first measurement report indicates the target cell.
  • the first measurement report includes at least a serving cell identifier of the target cell.
  • the first measurement report includes at least an index of the target cell.
  • the first measurement report includes measurement results for the target cell.
  • the first measurement report indicates at least one candidate cell among the first candidate cells that satisfies the first condition.
  • the first measurement report includes measurement results of candidate cells that meet the first condition among the first candidate cells.
  • the first measurement report indicates the candidate cells among the first candidate cells that meet the first condition, and the candidate cells that meet the first condition are arranged in order from high to low according to the measurement results. Sorting, the first measurement report does not include measurement results.
  • the first signaling is sent in response to the first condition being met.
  • the configuration information for the target cell is applied; as a response that the behavior applies the configuration information of the target cell, the first signaling is sent.
  • a first measurement report is sent; as a response that the first measurement report is sent, the first signaling is received.
  • the recipient of the first measurement report is the maintenance base station of a serving cell in the first cell group.
  • the first condition is independent of the L3 measurement result.
  • the first condition is related to the L3 measurement result.
  • the first condition is related to the L1 measurement result, and the first condition is not related to the L3 measurement result.
  • the first condition being satisfied includes: the measurement result for the target cell is greater than a first threshold.
  • the first condition being satisfied includes: the sum of the measurement result for the target cell and an offset is greater than a first threshold.
  • the first condition being satisfied includes: the measurement result for the target cell is greater than a first threshold, and the measurement result for the first cell is less than a second threshold.
  • the first condition being met includes: the sum of the measurement result for the target cell and an offset is greater than a first threshold, and the sum of the measurement result for the first cell and another offset is greater than a first threshold. and is less than the second threshold.
  • the first condition being satisfied includes: the measurement result for the target cell is greater than the measurement result for the first cell.
  • the first condition being satisfied includes: the sum of the measurement result for the target cell and an offset is greater than the sum of the measurement result for the first cell and another offset.
  • the measurement result for the target cell is RSRP (Reference signal received power).
  • the measurement result for the target cell is an L1 measurement result.
  • the measurement result for the target cell is L1-RSRP.
  • the measurement results for the target cell are not L3 filtered.
  • the first threshold is configured for the target cell.
  • the first threshold is configured for the at least one candidate cell.
  • the second threshold is configured for the target cell.
  • the second threshold is configured for the at least one candidate cell.
  • Embodiment 15 illustrates a schematic diagram in which the first message includes the configuration information of the target cell according to an embodiment of the present application, as shown in FIG. 15 .
  • a first message is received, and the first message includes configuration information of the target cell.
  • the sender of the first message is the maintenance base station of a serving cell in the first cell group.
  • the first message is used to configure the first condition.
  • the first message includes configuration information of each candidate cell in the first candidate cell group.
  • the configuration information of the target cell includes at least an identifier of the target cell.
  • the identity of the target cell is a Physical Cell Identity (PCI).
  • PCI Physical Cell Identity
  • the identification of the target cell is an index of the target cell in the first candidate cell group.
  • the configuration information of the target cell includes at least an identity of each candidate cell in the first candidate cell group.
  • the identity of each candidate cell in the first candidate cell group is a physical cell identity.
  • the identifier of each candidate cell in the first candidate cell group is an index of each candidate cell in the first candidate cell group.
  • the first message is used to indicate the first threshold.
  • the first message is used to indicate the first threshold and the second threshold.
  • the first message is used to configure the first condition, and the first message indicates candidate cells included in the first candidate cell set, and the first message includes a Configuration information of each candidate cell in the first candidate cell set; the target cell is a candidate cell in the first candidate cell set.
  • the first message is an RRC message.
  • the first message is a downlink message.
  • the first message is a secondary link message.
  • the first message is transmitted through DCCH.
  • the first message is transmitted through SCCH.
  • the first message includes at least one IE in the RRC message.
  • the first message includes at least one field in the RRC message.
  • the first message includes a RRCReconfiguration message.
  • the first message is at least one IE in the RRCReconfiguration message.
  • the first message is at least one field in the RRCReconfiguration message.
  • the first message belongs to CellGroupConfig IE.
  • the first message includes the SCellConfig field.
  • the first message includes the SpCellConfig field.
  • the first message includes ServingCellConfig IE.
  • the name of the first message includes ServingCellConfig and r18.
  • the configuration information of the target cell includes the TAG to which the target cell belongs.
  • the first message includes the tag-Id field, and the tag-Id field indicates the TAG ID of the first TAG to which the target cell belongs.
  • the first message includes a SCellConfig field
  • the SCellConfig field includes an sCellIndex field
  • the sCellIndex field indicates the identity of the first cell
  • the first cell is an SCell
  • the SCellConfig field contains Includes configuration information of the target cell.
  • the SCellConfig field includes configuration information of each candidate cell in the first candidate cell group.
  • the first message includes a SpCellConfig field
  • the SpCellConfig field includes a servCellIndex
  • the servCellIndex field indicates that the first cell is a PSCell
  • the SpCellConfig field includes configuration information of the target cell.
  • the SpCellConfig field includes configuration information of each candidate cell in the first candidate cell group.
  • the first message includes the SpCellConfig field, the SpCellConfig field does not include the servCellIndex, the SpCellConfig field does not include the servCellIndex field to indicate that the first cell is a PCell, and the SpCellConfig field includes the Describe the configuration information of the target cell.
  • the SpCellConfig field includes configuration information of each candidate cell in the first candidate cell group.
  • the first message belongs to CellGroupConfig IE.
  • the CellGroupConfig IE includes a servCellIndex field or a sCellIndex field.
  • the servCellIndex field or sCellIndex field indicates the identity of the first cell.
  • the CellGroupConfig IE includes the target cell. configuration information.
  • the CellGroupConfig IE includes configuration information of each candidate cell in the first candidate cell group.
  • the first message includes a field indicating the configuration information of the first cell; the first message includes another field indicating the target cell.
  • Configuration information the name of one domain includes ServingCellConfig, and the name of the other domain includes ServingCellConfig.
  • the one domain and the other domain belong to the same SpCellConfig domain.
  • the one domain and the other domain belong to the same SCellConfig domain.
  • Embodiment 16 illustrates a schematic diagram of the timing relationship between the second uplink frame and the second downlink frame according to an embodiment of the present application, as shown in FIG. 16 .
  • block 1601 represents the second downlink frame
  • block 1602 represents the second uplink frame
  • the horizontal axis represents time
  • the starting time of the second downlink frame is T4.
  • the starting time of the second uplink frame is T3.
  • the starting time of the second uplink frame is earlier than the starting time of the second downlink frame by the second time interval; the starting time of the second downlink frame is The timing reference is the first cell.
  • the difference between T4 and T3 is equal to the first time interval.
  • T3 and T4 respectively correspond to one time slot.
  • T3 and T4 respectively correspond to one time unit.
  • T3 and T4 respectively correspond to a time.
  • the time T3 is smaller than the T4.
  • the time T3 is not greater than the T4.
  • the time T4 is smaller than the T2.
  • the starting time of the second uplink frame is earlier than the starting time of the second downlink frame.
  • the starting time of the second downlink frame is earlier than the starting time of the first downlink frame.
  • the second downlink frame and the first downlink frame are two different downlink frames of the first cell.
  • the second downlink frame and the first downlink frame are two consecutive downlink frames.
  • At least one downlink frame is included between the second downlink frame and the first downlink frame.
  • the second wireless signal in the second uplink frame before the first time, is sent on the second cell; in the second uplink frame after the first time In an uplink frame, the first wireless signal is sent on the second cell.
  • the second uplink frame is before the first time
  • the first uplink frame is after the first time
  • Embodiment 17 illustrates a schematic diagram of the time slot occupied by the second wireless signal according to an embodiment of the present application, as shown in FIG. 17 .
  • the thick dotted box represents the second uplink frame;
  • the cross-filled box represents the time slot occupied by the second wireless signal;
  • the horizontal axis table time the starting time of the second uplink frame is T3.
  • the second uplink frame includes P2 time slots, and the second wireless signal occupies one of the P2 time slots.
  • the second uplink frame includes P2 time slots, and the second wireless signal occupies at least one time slot among the P2 time slots.
  • the second uplink frame includes P2 time slots, and the second wireless signal occupies one or more time slots among the P2 time slots.
  • P2 is a positive integer.
  • the P2 and the P1 are equal.
  • the P2 and the P1 are not equal.
  • the time slot occupied by the second wireless signal is indicated by an RRC message.
  • the time slot occupied by the second wireless signal is indicated by DCI.
  • the time slot occupied by the second wireless signal is determined based on at least DCI.
  • the time slot occupied by the second wireless signal is determined based on at least an RRC message.
  • User equipment, terminals and UEs in this application include but are not limited to drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC, enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost Cost tablet computers and other wireless communication devices.
  • MTC Machine Type Communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, transmitting and receiving node) and other wireless communications equipment.
  • gNB NR Node B
  • TRP Transmitter Receiver Point

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的通信节点中的方法和装置。通信节点接收第一信令,所述第一信令在RRC层之下的协议层被生成,所述第一信令被用于指示从第一时间开始针对第一小区停止执行第一操作集合;在所述第一时间之后的第一上行链路帧中,在第二小区上发送第一无线信号;所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述第一上行链路帧的起始时刻相比第一下行链路帧的起始时刻提前了第一时间间隔;所述第一下行链路帧属于第一小区。

Description

一种被用于无线通信的通信节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及移动性的传输方法和装置。
背景技术
当UE(User Equipment,用户设备)从一个小区的覆盖区域移动到另一个小区的覆盖区域时,需要执行服务小区(Serving Cell)的更改。现有协议中,服务小区更改是被L3(layer 3,层三)测量触发的,并且通过RRC(Radio Resource Control,无线资源控制)信令触发PCell(Primary Cell,主小区)和PSCell(Primary SCG(Secondary Cell Group,辅小区组)Cell,SCG主小区)的同步重配置,并且会触发释放SCell(Secondary Cell,辅小区),这些操作会涉及L2(layer 2,层二)(和L1(layer1,层一))重置(reset),导致更长的时延(Delay)、更大的开销(Overhead)和更长的中断时间(interruption time)。在Rel-18,针对移动性增强是3GPP(3rd GenerationPartner Project,第三代合作伙伴项目)很重要的研究方向,3GPP RAN94e次会议决定开展“NR(New Radio,新空口)移动性进一步增强(Further NR mobility enhancements)”研究项目(Work Item,WI)。其中,通过基于L1/L2信令的L1/L2移动性增强降低时延、开销和中断时间是一个重要的研究方向。
发明内容
对于一个小区组中的多个服务小区,根据是否具备相同的定时提前量可以被配置不同的TAG(Timing Advance Group,定时提前组)。对于PTAG(Primary TAG),SpCell(Special Cell,特殊小区)是PTAG中的小区的定时参考小区,对于一个STAG(Secondary TAG),这个STAG中的任一被激活的SCell作为这个STAG中的小区的定时参考小区。当UE通过L3信令从源SpCell更换到目标SpCell时,UE会重置MAC(Medium Access Control,媒体接入控制)实体并且认为整个小区组中的SCell被去激活,从而导致整个小区组的上行链路失步,UE需要通过随机接入(Random Access)过程重新获取目标小区组的上行链路定时。由于L1/L2的移动性基于L1测量和上报,在小区间的移动会更加频繁,如何维持上行链路同步以保证上行链路传输需要进行增强。
针对上述问题,本申请提供了一种针对L1/L2的移动性维持上行链路同步的解决方案。针对上述问题描述中,采用基于L1/L2的移动性场景作为一个例子;本申请也同样适用于例如基于L3的移动性场景,取得类似基于L1/L2的移动性中的技术效果。进一步的,虽然本申请的初衷是针对Uu空口,但本申请也能被用于PC5口。进一步的,虽然本申请的初衷是针对终端与基站场景,但本申请也同样适用于V2X(Vehicle-to-Everything,车联网)场景,终端与中继,以及中继与基站之间的通信场景,取得类似的终端与基站场景中的技术效果。进一步的,虽然本申请的初衷是针对终端与基站场景,但本申请也同样适用于IAB(Integrated Access and Backhaul,集成接入和回传)的通信场景,取得类似的终端与基站场景中的技术效果。进一步的,虽然本申请的初衷是针对地面网络(Terrestrial Network,地面网络)场景,但本申请也同样适用于非地面网络(Non-Terrestrial Network,NTN)的通信场景,取得类似的TN场景中的技术效果。此外,不同场景采用统一解决方案还有助于降低硬件复杂度和成本。
作为一个实施例,对本申请中的术语(Terminology)的解释参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
需要说明的是,在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
发送第一信令,所述第一信令在RRC层之下的协议层被生成,所述第一信令被用于指示从第一时间开始针对第一小区停止执行第一操作集合;
在所述第一时间之后的第一上行链路帧中,在第二小区上发送第一无线信号;
其中,所述第一操作集合包括在相应小区上监听PDCCH(Physical downlink control channel,物理下行链路控制信道)、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH(Uplink Shared Channel,上行链路共享信道)三者中的至少之一;所述第一上行链路帧的起始时刻相比第一下行链路帧的起始时刻提前了第一时间间隔;所述第一下行链路帧属于第一小区。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信令,所述第一信令在RRC层之下的协议层被生成,所述第一信令被用于指示从第一时间开始针对第一小区停止执行第一操作集合;
在所述第一时间之后的第一上行链路帧中,在第二小区上发送第一无线信号;
其中,所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述第一上行链路帧的起始时刻相比第一下行链路帧的起始时刻提前了第一时间间隔;所述第一下行链路帧属于第一小区。
作为一个实施例,本申请要解决的问题包括:如何确定一个小区的定时参考。
作为一个实施例,本申请要解决的问题包括:对于一个上行链路帧,如何确定对应的上行链路帧。
作为一个实施例,本申请要解决的问题包括:如何缩短传输时延。
作为一个实施例,本申请要解决的问题包括:如何保证上行链路的发送定时。
作为一个实施例,本申请要解决的问题包括:如何避免上行链路失步。
作为一个实施例,本申请要解决的问题包括:如何维持一个小区的上行链路的定时提前量。
作为一个实施例,本申请要解决的问题包括:当UE基于L1/L2信令确定使用一个候选小区的资源时,如何确定源服务小区所属的TAG中的其他小区的上行链路的发送定时。
作为一个实施例,本申请要解决的问题包括:当UE基于L1/L2信令确定使用一个候选小区的资源时,如何确定这个候选小区的上行链路的发送定时。
作为一个实施例,上述方法的特质包括:所述第二小区是一个候选小区。
作为一个实施例,上述方法的特质包括:在所述第一时间之前的至少一个时隙,所述第二小区和所述第一小区都是所述第一节点的服务小区。
作为一个实施例,上述方法的特质包括:所述第二小区和所述第一小区使用相同的定时提前量。
作为一个实施例,上述方法的特质包括:在所述第一时间之后,所述第二小区的定时参考小区是所述第一小区。
作为一个实施例,上述方法的好处包括:不需要重新获取第二小区的定时提前量。
作为一个实施例,上述方法的好处包括:缩短传输时延。
作为一个实施例,上述方法的好处包括:避免上行链路失步。
作为一个实施例,上述方法的好处包括:保证上行链路的发送定时。
作为一个实施例,上述方法的好处包括:维持一个小区的上行链路的定时提前量。
作为一个实施例,上述方法的好处包括:当UE基于L1/L2信令确定使用一个候选小区的资源时,不需要重新获取第二小区的定时提前量。
根据本申请的一个方面,其特征在于,包括:
接收至少一个定时提前命令,所述至少一个定时提前命令被用于确定所述第一时间间隔。
根据本申请的一个方面,其特征在于,所述第一信令被用于指示针对第一小区执行第二操作集合;所述第二操作集合包括清空关联到所述第一小区的所有HARQ缓冲池,或者,清除关联到所述第一小区的针对半持续CSI上报的任意PUSCH资源,或者,清除关联到所述第一小区的任意配置的下行链路分配和任意配置的上行链路授予类型2,或者,清除关联到所述第一小区的任意配置的上行链路授予类型1中的至少之一。
根据本申请的一个方面,其特征在于,包括:
在所述第一时间之前的第二上行链路帧中,在所述第二小区上发送第二无线信号;
其中,所述第二上行链路帧的起始时刻相比第二下行链路帧的起始时刻提前了第二时间间隔;所述第二下行链路帧属于所述第一小区;所述第一小区和所述第二小区属于同一个小区组,所述第一小区和所述第二小区具有不同的服务小区标识。
作为一个实施例,上述方法的特质包括:当UE基于L1/L2信令确定使用一个候选小区的资源时,第二小区的定时参考不变。
作为一个实施例,上述方法的特质包括:在所述第一时间之前和所述第一时间之后,所述第二小区的定时参考都是所述第一小区。
作为一个实施例,上述方法的特质包括:在所述第一时间之前的至少一个时隙,所述第二小区和所述第一小区都是所述第一节点的服务小区。
作为一个实施例,上述方法的特质包括:所述第一信令不被用于确定认为所述第二小区被去激活。
作为一个实施例,上述方法的特质包括:所述第一信令不被用于改变所述第二小区的激活/去激活状态。
作为一个实施例,上述方法的好处包括:缩短传输时延。
作为一个实施例,上述方法的好处包括:保证上行链路传输。
根据本申请的一个方面,其特征在于,包括:
在所述第一信令之前,接收第二信令,所述第二信令包括所述第二小区的配置信息;
其中,所述第一信令被用于指示针对第二小区执行所述第一操作集合;针对所述第一小区停止执行所述第一操作集合之前,针对所述第二小区所述第一操作集合不被执行;所述第二小区的所述配置信息包括至少所述第二小区的标识。
作为一个实施例,上述方法的特质包括:所述第二小区是所述第一小区的候选小区。
作为一个实施例,上述方法的特质包括:当UE基于L1/L2信令确定使用一个候选小区的资源时,将所述第一小区作为定时参考。
作为一个实施例,上述方法的好处包括:避免初始同步过程。
作为一个实施例,上述方法的好处包括:缩短传输时延。
根据本申请的一个方面,其特征在于,包括:
在所述第一信令之前,接收第三信令,所述第三信令被用于确定所述第一小区是所述第二小区的定时参考;
其中,所述第一小区是所述第二小区的定时参考被用于确定所述第一下行链路帧属于所述第一小区。
根据本申请的一个方面,其特征在于,所述第二小区和所述第一小区属于同一个TAG。
根据本申请的一个方面,其特征在于,第一条件被满足被用于触发所述第一信令。
作为一个实施例,所述目标小区满足所述第一条件被用于触发所述第一信令。
根据本申请的一个方面,其特征在于,在所述第一信令之前,接收第一消息,所述第一消息包括所述目标小区的配置信息。
作为一个实施例,所述目标小区是所述第二小区。
作为一个实施例,所述目标小区不是所述第二小区。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
在第一时间之后的第一上行链路帧中,在第二小区上接收第一无线信号;
其中,第一信令被发送,所述第一信令的接收者是所述第一无线信号的发送者,或者,所述第一信令的发送者是所述第一无线信号的发送者;所述第一信令在RRC层之下的协议层被生成,所述第一信令被用于指示从所述第一时间开始针对第一小区停止执行第一操作集合;所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述第一上行链路帧的起始时刻相比第一下行链路帧的起始时刻提前了第一时间间隔;所述第一下行链路帧属于第一小区。
根据本申请的一个方面,其特征在于,至少一个定时提前命令被发送,所述至少一个定时提前命令的接收者是所述第一无线信号的发送者;所述至少一个定时提前命令被用于确定所述第一时间间隔。
根据本申请的一个方面,其特征在于,所述第一信令被用于指示针对第一小区执行第二操作集合;所述第二操作集合包括清空关联到所述第一小区的所有HARQ缓冲池,或者,清除关联到所述第一小区的针对半持续CSI上报的任意PUSCH资源,或者,清除关联到所述第一小区的任意配置的下行链路分配和任意配置的上行链路授予类型2,或者,清除关联到所述第一小区的任意配置的上行链路授予类型1中的 至少之一。
根据本申请的一个方面,其特征在于,包括:
在所述第一时间之前的第二上行链路帧中,在所述第二小区上接收第二无线信号;
其中,所述第二上行链路帧的起始时刻相比第二下行链路帧的起始时刻提前了第二时间间隔;所述第二下行链路帧属于所述第一小区;所述第一小区和所述第二小区属于同一个小区组,所述第一小区和所述第二小区具有不同的服务小区标识。
根据本申请的一个方面,其特征在于,在所述第一信令之前,第二信令被发送,所述第二信令的接收者是所述第一无线信号的发送者;所述第二信令包括所述第二小区的配置信息;所述第一信令被用于指示针对第二小区执行所述第一操作集合;针对所述第一小区停止执行所述第一操作集合之前,针对所述第二小区所述第一操作集合不被执行;所述第二小区的所述配置信息包括至少所述第二小区的标识。
根据本申请的一个方面,其特征在于,在所述第一信令之前,第三信令被发送,所述第三信令的接收者是所述第一无线信号的发送者;所述第三信令被用于确定所述第一小区是所述第二小区的定时参考;所述第一小区是所述第二小区的定时参考被用于确定所述第一下行链路帧属于所述第一小区。
根据本申请的一个方面,其特征在于,所述第二小区和所述第一小区属于同一个TAG。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一发射机,发送第一信令,所述第一信令在RRC层之下的协议层被生成,所述第一信令被用于指示从第一时间开始针对第一小区停止执行第一操作集合;
所述第一发射机,在所述第一时间之后的第一上行链路帧中,在第二小区上发送第一无线信号;
其中,所述第一操作集合包括在相应小区上监听PDCCH(Physical downlink control channel,物理下行链路控制信道)、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH(Uplink Shared Channel,上行链路共享信道)三者中的至少之一;所述第一上行链路帧的起始时刻相比第一下行链路帧的起始时刻提前了第一时间间隔;所述第一下行链路帧属于第一小区。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一接收机,接收第一信令,所述第一信令在RRC层之下的协议层被生成,所述第一信令被用于指示从第一时间开始针对第一小区停止执行第一操作集合;
第一发射机,在所述第一时间之后的第一上行链路帧中,在第二小区上发送第一无线信号;
其中,所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述第一上行链路帧的起始时刻相比第一下行链路帧的起始时刻提前了第一时间间隔;所述第一下行链路帧属于第一小区。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二接收机,在第一时间之后的第一上行链路帧中,在第二小区上接收第一无线信号;
其中,第一信令被发送,所述第一信令的接收者是所述第一无线信号的发送者,或者,所述第一信令的发送者是所述第一无线信号的发送者;所述第一信令在RRC层之下的协议层被生成,所述第一信令被用于指示从所述第一时间开始针对第一小区停止执行第一操作集合;所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述第一上行链路帧的起始时刻相比第一下行链路帧的起始时刻提前了第一时间间隔;所述第一下行链路帧属于第一小区。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.不需要重新获取第二小区的定时提前量;
-.缩短传输时延;
-.避免上行链路失步;
-.保证上行链路的发送定时;
-.维持一个小区的上行链路的定时提前量;
-.当UE基于L1/L2信令确定使用一个候选小区的资源时,不需要重新获取第二小区的定时提前量。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令和第一无线信号的传输的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的另一个实施例的无线信号传输流程图;
图7示出了根据本申请的再一个实施例的无线信号传输流程图;
图8示出了根据本申请的又一个实施例的无线信号传输流程图;
图9示出了根据本申请的一个实施例的第二小区和第一小区属于同一个TAG的示意图;
图10示出了根据本申请的一个实施例的第一上行链路帧和第一下行链路帧的定时关系的示意图;
图11示出了根据本申请的一个实施例的第一无线信号占用的时隙的示意图;
图12示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;
图14示出了根据本申请的一个实施例的第一条件被满足被用于触发第一信令的示意图;
图15示出了根据本申请的一个实施例的第一消息包括目标小区的配置信息的示意图;
图16示出了根据本申请的一个实施例的第二上行链路帧和第二下行链路帧的定时关系的示意图;
图17示出了根据本申请的一个实施例的第二无线信号占用的时隙的示意图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信令和第一无线信号的传输的流程图,如附图1所示。附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一节点在步骤101中,接收或者发送第一信令,所述第一信令在RRC层之下的协议层被生成,所述第一信令被用于指示从第一时间开始针对第一小区停止执行第一操作集合;在步骤102中,在所述第一时间之后的第一上行链路帧中,在第二小区上发送第一无线信号;其中,所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述第一上行链路帧的起始时刻相比第一下行链路帧的起始时刻提前了第一时间间隔;所述第一下行链路帧属于第一小区。
作为一个实施例,所述“所述第一信令被用于指示从第一时间开始针对第一小区停止执行第一操作集合”可替换为:作为所述第一信令被接收的响应,针对第一小区停止执行第一操作集合。
作为一个实施例,所述“所述第一信令被用于指示从第一时间开始针对第一小区停止执行第一操作集合”可替换为:作为所述第一信令被发送的响应,针对第一小区停止执行第一操作集合。
作为一个实施例,所述“所述第一信令被用于指示从第一时间开始针对第一小区停止执行第一操作集合”可替换为:针对第一小区停止执行第一操作集合并发送所述第一信令。
作为一个实施例,所述第一操作集合还包括在相应小区上发送SRS,或者,在相应小区上上报CSI,或者,在相应小区的RACH上发送,或者,在相应小区的PUCCH上发送中的至少之一。
作为一个实施例,所述第一操作集合不包括在相应小区上发送SRS,或者,在相应小区上上报CSI,或者,在相应小区的RACH上发送,或者,在相应小区的PUCCH上发送中的至少之一。
作为一个实施例,所述第一小区是所述第一节点的一个服务小区。
作为一个实施例,在所述第一时间之前,所述第一小区是所述第一节点的一个服务小区。
作为一个实施例,所述第一小区是所述第一节点的第一小区组中的一个服务小区。
作为该实施例的一个子实施例,所述第一小区组中的一个服务小区是SpCell或者SCell,所述SpCell是PCell或者PSCell。
作为该实施例的一个子实施例,所述第一小区组中仅包括SpCell。
作为该实施例的一个子实施例,所述第一小区组中包括SpCell和至少一个SCell。
作为该实施例的一个子实施例,所述第一小区组是MCG(Master Cell Group,主小区组)。
作为该子实施例的一个附属实施例,所述第一小区是PCell。
作为该子实施例的一个附属实施例,所述第一小区是SCell。
作为该子实施例的一个附属实施例,所述第一小区是SCell,所述第一小区处于激活状态。
作为该实施例的一个子实施例,所述第一小区组是SCG(Secondary Cell Group,辅小区组)。
作为该子实施例的一个附属实施例,所述第一小区组处于激活状态。
作为该子实施例的一个附属实施例,所述第一小区是PSCell。
作为该子实施例的一个附属实施例,所述第一小区是SCell。
作为该实施例的一个子实施例,所述第一小区是SCell,所述第一小区处于激活状态。
作为一个实施例,在所述第一时间之前,所述第一小区是第一TAG的定时参考;在所述第一时间之后,所述第一小区是所述第一TAG的定时参考;所述第一TAG中包括所述第一小区组中的至少一个服务小区,所述至少一个服务小区中包括所述第一小区。
作为一个实施例,所述第一信令被用于触发基于L1/L2信令的L1/L2移动性。
作为一个实施例,所述第一信令被用于确定基于L1/L2信令的L1/L2移动性被完成。
作为一个实施例,所述第一信令被用于指示将所述第一小区更改为目标小区。
作为一个实施例,所述第一信令被用于指示所述第一小区被更改为目标小区。
作为一个实施例,所述第一信令指示目标小区。
作为一个实施例,所述目标小区被用于基于L1/L2信令的L1/L2移动性。
作为一个实施例,所述目标小区是所述第一小区的候选小区。
作为一个实施例,所述目标小区是第一候选小区集合中的一个候选小区,所述第一候选小区集合中包括至少一个候选小区,所述第一候选小区集合中的每个候选小区被用于基于L1/L2信令的L1/L2移动性。
作为一个实施例,所述第一候选小区集合中的每个候选小区是所述第一小区的候选小区。
作为一个实施例,所述目标小区是所述第二小区。
作为一个实施例,所述目标小区不是所述第二小区。
作为一个实施例,所述目标小区和所述第一小区的服务小区标识相同。
作为一个实施例,所述目标小区和所述第一小区的服务小区标识不同。
作为一个实施例,所述目标小区的PCI(physical cell identity,物理小区标识)和所述第一小区的PCI相同。
作为一个实施例,所述目标小区的PCI和所述第一小区的PCI不同。
作为一个实施例,所述候选小区是意思包括备选小区。
作为一个实施例,所述候选小区是意思包括在所述候选小区的配置信息被应用之前,所述第一节点不使用所述候选小区的PUSCH(Physical uplink shared channel,物理上行链路共享信道)资源或者PDSCH(Physical downlink shared channel,物理下行链路共享信道)资源或者PUCCH资源或者SRS(Sounding Reference Signal,探测参考信号)资源中的至少之一。
作为一个实施例,所述第一信令的内容在所述RRC层之下的所述协议层被组装。
作为一个实施例,所述第一信令的内容在所述RRC层之下的所述协议层被设置。
作为一个实施例,所述RRC层之下的所述协议层不是RRC层。
作为一个实施例,所述RRC层之下的所述协议层是MAC层。
作为一个实施例,所述第一信令是MAC层信令。
作为一个实施例,所述第一信令是一个MAC PDU(Protocol Data Unit,协议数据单元)。
作为一个实施例,所述第一信令是一个MAC子PDU(subPDU)。
作为一个实施例,所述第一信令是一个MAC CE(Control Element,控制元素)。
作为一个实施例,所述第一信令包括至少一个MAC域(Field)。
作为一个实施例,所述第一信令包括一个MAC CE。
作为一个实施例,所述第一信令包括一个MAC子头(subheader)。
作为一个实施例,所述RRC层之下的所述协议层是物理层。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是一个ACK。
作为一个实施例,所述短语“接收或者发送第一信令”可替换为:接收第一信令。
作为该实施例的一个子实施例,所述第一信令被接收。
作为该实施例的一个子实施例,所述第一信令是下行链路信令。
作为该实施例的一个子实施例,所述第一信令被用于命令所述第一节点将所述第一小区更换为所述目标小区。
作为该实施例的一个子实施例,所述第一信令是一个DCI(Downlink Control Information,下行链路控制信息)。
作为该实施例的一个子实施例,所述第一信令被用于调度PDSCH。
作为该实施例的一个子实施例,所述第一信令包括DCI格式(format)1_0。
作为该实施例的一个子实施例,所述第一信令包括DCI格式1_1。
作为该实施例的一个子实施例,所述第一信令包括DCI格式1_2。
作为该实施例的一个子实施例,所述第一信令被用于调度PUSCH。
作为该实施例的一个子实施例,所述第一信令包括至少一个DCI域。
作为该实施例的一个子实施例,所述第一信令通过PDCCH传输。
作为一个实施例,所述短语“接收或者发送第一信令”可替换为:发送第一信令。
作为该实施例的一个子实施例,所述第一信令被发送。
作为该实施例的一个子实施例,所述第一信令是上行链路信令。
作为该实施例的一个子实施例,所述第一信令被用于确认从所述第一小区更换为所述目标小区被成功完成。
作为该实施例的一个子实施例,所述第一信令是一个UCI(Uplink Control Information,上行链路控制信息)。
作为该实施例的一个子实施例,所述第一信令包括HARQ-ACK。
作为该实施例的一个子实施例,所述第一信令包括至少一个UCI域。
作为该实施例的一个子实施例,所述第一信令通过PUCCH(Physical uplink control channel,物理上行链路控制信道)传输。
作为一个实施例,所述第一信令被用于指示将所述第一小区更改为所述目标小区。
作为一个实施例,所述第一信令被用于确定将所述第一小区更改为所述目标小区。
作为一个实施例,所述第一小区是所述第二小区的定时参考被用于确定所述第一下行链路帧属于所述第一小区。
作为一个实施例,所述第一小区是所述第一TAG的定时参考被用于确定所述第一下行链路帧属于所述第一小区。
作为一个实施例,在所述第一信令之前,所述第一小区是所述第二小区的定时参考被用于确定所述第一下行链路帧属于所述第一小区。
作为一个实施例,在所述第一信令之前,所述第一小区是所述第一TAG的定时参考被用于确定所述第一下行链路帧属于所述第一小区。
作为一个实施例,在所述第一时间之前的至少一个时隙,所述第一小区是所述第一节点的一个服务小区。
作为一个实施例,如果所述第一小区是所述第一节点的一个服务小区,所述第一节点针对所述第 一小区执行所述第一操作集合中的至少之一。
作为一个实施例,在所述第一时间之前,所述第一节点针对所述第一小区执行所述第一操作集合中的至少之一。
作为一个实施例,所述短语“所述第一信令被用于指示从第一时间开始针对第一小区停止执行第一操作集合”包括:所述第一信令被用于确定从所述第一时间开始针对所述第一小区停止执行所述第一操作集合。
作为一个实施例,所述短语“所述第一信令被用于指示从第一时间开始针对第一小区停止执行第一操作集合”包括:所述第一信令被发送被用于确定从所述第一时间开始针对所述第一小区停止执行所述第一操作集合。
作为一个实施例,所述短语“所述第一信令被用于指示从第一时间开始针对第一小区停止执行第一操作集合”包括:所述第一信令被接收被用于确定从所述第一时间开始针对所述第一小区停止执行所述第一操作集合。
作为一个实施例,所述第一时间是一个时刻。
作为一个实施例,所述第一时间是一个时隙。
作为一个实施例,所述第一时间是一个无线链路帧中的一个时隙。
作为一个实施例,所述第一时间是第一条件被满足的时刻。
作为一个实施例,所述第一时间是第一条件被满足之后的第K2个时隙。
作为一个实施例,所述第一时间是被第一条件确定的一个时刻。
作为一个实施例,所述第一时间是被所述第一信令确定的一个时刻。
作为一个实施例,所述第一时间是所述第一信令被发送的时刻。
作为一个实施例,所述第一时间是所述第一信令被接收的时刻。
作为一个实施例,所述第一时间是所述第一信令的结尾被发送后的第一个时隙。
作为一个实施例,所述第一时间是所述第一信令的结尾被接收后的第一个时隙。
作为一个实施例,所述结尾是指最后一个符号。
作为一个实施例,所述结尾是指最后一个时隙。
作为一个实施例,所述结尾是指时域的最后一个单位。
作为一个实施例,所述第一信令被用于确定所述第一时间。
作为一个实施例,至少所述第一信令被用于确定所述第一时间。
作为一个实施例,所述第一信令被发送的时刻被用于确定所述第一时间。
作为一个实施例,所述第一时间是所述第一信令被发送之后的一个时隙。
作为一个实施例,所述第一时间是所述第一信令被接收之后的一个时隙。
作为一个实施例,所述第一时间是所述第一信令的结束时隙。
作为一个实施例,所述第一时间是所述第一信令占用的时域资源的结束时隙。
作为一个实施例,所述第一信令在时隙n结束,所述第一时间是所述时隙n。
作为一个实施例,所述第一时间是n+K1。
作为一个实施例,所述第一时间是所述第一信令被发送结束之后的第K1个时隙,所述K1是正整数。
作为一个实施例,所述第一时间是所述第一信令被接收结束之后的第K1个时隙,所述K1是正整数。
作为一个实施例,所述第一时间是所述第一信令的最后一个符号被发送结束之后的第K1个时隙,所述K1是正整数。
作为一个实施例,所述第一时间是所述第一信令的最后一个符号被接收结束之后的第K1个时隙,所述K1是正整数。
作为一个实施例,所述K1等于1。
作为一个实施例,所述K1不大于4。
作为一个实施例,所述K1不大于8。
作为一个实施例,所述K1是固定的。
作为一个实施例,所述K1与子载波间隔(Subcarrier spacing,SCS)有关。
作为一个实施例,所述K1与一个子帧包括的时隙数量(number of slots per subframe)有关。
作为一个实施例,所述K1与有关,所述参考3GPP TS 38.213和3GPP TS 38.211,所述μ是。
作为一个实施例,所述第一上行链路帧属于所述第二小区。
作为一个实施例,所述第一上行链路帧针对所述第二小区配置。
作为一个实施例,所述第一上行链路帧被用于确定在所述第二小区发送上行链路信号的时域位置。
作为一个实施例,所述第一上行链路帧被用于确定在所述第二小区发送所述第一无线信号的时域位置。
作为一个实施例,所述第一上行链路帧是所述第二小区的一个上行链路帧。
作为一个实施例,所述第一上行链路帧被用于所述第二小区。
作为一个实施例,所述第一上行链路帧是所述第一时间之后的第一个上行链路帧。
作为一个实施例,所述第一上行链路帧是所述第一时间之后的任意一个上行链路帧。
作为一个实施例,所述第一上行链路帧是所述第一时间之后的第Q1个上行链路帧,所述Q1是正整数。
作为一个实施例,所述第一上行链路帧是所述第一时间所处的上行链路帧。
作为一个实施例,所述第一上行链路帧是所述第一时间所处的上行链路帧之后的一个上行链路帧。
作为一个实施例,所述第一时间与所述第一上行链路帧有重叠时间。
作为一个实施例,所述第一时间与所述第一上行链路帧没有重叠时间。
作为一个实施例,所述第二小区和所述第一小区是同一个小区组中的两个不同的服务小区。
作为一个实施例,所述第二小区是所述第一小区的候选小区。
作为一个实施例,所述第二小区是所述目标小区。
作为一个实施例,所述第二小区不是所述目标小区。
作为一个实施例,所述第二小区和所述第一小区具有不同的PCI。
作为一个实施例,所述第二小区和所述第一小区具有相同的TA。
作为一个实施例,所述第二小区和所述第一小区具有不同的TA。
作为一个实施例,所述第二小区和所述第一小区关联到同一个TAG。
作为一个实施例,所述第二小区被配置所述第一小区的服务小区标识。
作为一个实施例,所述第一无线信号占用所述第一上行链路帧的至少一个时隙。
作为一个实施例,所述第一无线信号占用所述第一上行链路帧的一个时隙。
作为一个实施例,所述第一无线信号在所述第一上行链路帧中的时隙位置是预配置的。
作为一个实施例,所述第一无线信号在所述第一上行链路帧中的时隙位置是预定义的。
作为一个实施例,所述第一无线信号在所述第一上行链路帧中的时隙位置是被指定的。
作为一个实施例,所述第一无线信号在所述第一上行链路帧中的时隙位置是UE确定的。
作为一个实施例,所述第一无线信号是物理层信号。
作为一个实施例,所述第一无线信号是PUCCH。
作为一个实施例,所述第一无线信号是SRS。
作为一个实施例,所述第一无线信号是PUSCH。
作为一个实施例,所述第一无线信号是PUCCH或者SRS或者PUSCH中的任意之一。
作为一个实施例,所述第一无线信号通过PUCCH传输。
作为一个实施例,所述第一无线信号通过PUSCH传输。
作为一个实施例,所述第一无线信号通过SRS资源传输。
作为一个实施例,所述相应小区仅包括一个小区。
作为一个实施例,所述相应小区能够包括多个小区。
作为一个实施例,所述相应小区包括多个小区。
作为一个实施例,所述相应小区包括一个或者多个小区。
作为一个实施例,所述第一信令被用于指示从第一时间开始针对第一小区停止执行第一操作集合,所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一。
作为该实施例的一个子实施例,在所述第一时间之前,针对所述第一小区执行所述第一操作集合,所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一。
作为该实施例的一个子实施例,所述相应小区是所述第一小区。
作为该实施例的一个子实施例,所述相应小区是所述第一小区;所述相应小区不包括所述第一小区所属的小区组中的所述第一小区之外的任一小区。
作为该实施例的一个子实施例,所述相应小区是所述第一小区;所述第一小区是SCell。
作为该实施例的一个子实施例,所述相应小区是所述第一小区;所述第一小区是SpCell。
作为该实施例的一个子实施例,所述相应小区是所述第一小区,所述第一小区是SCell;所述相应小区不包括所述第一小区所属的小区组中的所述第一小区之外的任一小区。
作为该实施例的一个子实施例,所述相应小区是所述第一小区,所述第一小区是SpCell;所述相应小区不包括所述第一小区所属的小区组中的所述第一小区之外的任一小区。
作为该实施例的一个子实施例,所述相应小区包括所述第一小区。
作为该实施例的一个子实施例,所述相应小区包括所述第一小区和所述第一小区所属的小区组中的SCell;所述第一小区是SpCell。
作为该实施例的一个子实施例,所述相应小区包括所述第一小区和所述第一小区所属的TAG中的SCell;所述第一小区是SpCell。
作为一个实施例,在所述相应小区关联的至少一个CORESET(Control resource set,控制资源集合)上监听PDCCH。
作为一个实施例,在所述相应小区关联的至少一个搜索空间上监听PDCCH。
作为一个实施例,通过C-RNTI(Cell RNTI)或者MCS-C-RNTI((Modulation and Coding Scheme C-RNTI))或者CS-RNTI(Configured Scheduling RNTI)中的至少之一在所述相应小区上监听PDCCH。
作为一个实施例,在所述相应小区上监听PDCCH,所述PDCCH被所述相应小区发送。
作为一个实施例,在所述相应小区之外的一个小区监听用于调度相应小区的PDCCH。
作为一个实施例,通过C-RNTI或者MCS-C-RNTI或者CS-RNTI中的至少之一监听用于调度相应小区的PDCCH。
作为一个实施例,监听用于调度所述相应小区的PDCCH,所述PDCCH被所述相应小区之外的一个小区发送。
作为一个实施例,监听用于调度所述相应小区的PDCCH,所述PDCCH被用于调度所述相应小区的PUSCH。
作为一个实施例,监听用于调度所述相应小区的PDCCH,所述PDCCH被用于调度所述相应小区的PDSCH。
作为一个实施例,所述监听PDCCH是指:在PDCCH上确定是否存在一个DCI。
作为一个实施例,所述监听PDCCH是指:在PDCCH上搜索。
作为一个实施例,所述监听PDCCH是指:检测是否存在一个DCI。
作为一个实施例,所述行为在相应小区上发送UL-SCH包括:在所述相应小区上发送PUSCH。
作为一个实施例,所述行为在相应小区上发送UL-SCH包括:在所述相应小区的UL-SCH上执行发送操作。
作为一个实施例,所述行为在相应小区上发送UL-SCH包括:在所述相应小区的UL-SCH上发送PUSCH。
作为一个实施例,所述行为在相应小区上发送UL-SCH包括:在所述相应小区的UL-SCH上发送上行链路数据。
作为一个实施例,所述第一时间间隔和所述第一上行链路帧的起始时刻比所述第一下行链路帧的起始时刻提前的时间间隔相等。
作为一个实施例,所述第一时间间隔和所述第一上行链路帧的定时比所述第一下行链路帧的定时提前的时间间隔相等。
作为一个实施例,所述第一时间间隔被用于确定所述第二小区的上行链路发送定时。
作为一个实施例,所述第一时间间隔包括一个时间间隔。
作为一个实施例,所述第一时间间隔是可配置的。
作为一个实施例,所述第一时间间隔包括正整数个第一时间单元。
作为一个实施例,所述第一时间间隔所包括的第一时间单元的个数是可配置的。
作为一个实施例,所述第一时间单元是一个时间单元。
作为一个实施例,所述第一时间单元是一个子帧的一部分。
作为一个实施例,所述第一时间单元是一个Tc
作为一个实施例,所述第一时间单元包括正整数个毫秒。
作为一个实施例,所述第一时间单元是可配置的。
作为一个实施例,所述第一时间单元是预配置的。
作为一个实施例,所述第一时间单元与子载波间隔有关。
作为一个实施例,所述Tc=Tsf/(ΔfmaxNf/1000),所述Tsf、所述Δfmax和所述Nf的定义参考TS 38.211或者TS 38.300。
作为一个实施例,所述第一上行链路帧和所述第一下行链路帧具有相同的帧号。
作为一个实施例,所述第一上行链路帧是所述第一下行链路帧对应的上行链路帧。
作为一个实施例,所述第一下行链路帧是所述第一上行链路帧的定时参考帧。
作为一个实施例,所述第一下行链路帧是所述第一上行链路帧的参考帧。
作为一个实施例,所述第一下行链路帧是所述第一上行链路帧的定时参考帧,所述第一小区是所述第二小区的定时参考小区。
作为一个实施例,所述第一下行链路帧是所述第一小区中的一个下行链路帧。
作为一个实施例,所述第一小区是一个定时参考小区。
作为一个实施例,所述第一小区中的下行链路帧是至少一个小区的上行链路帧的定时参考帧。
作为一个实施例,所述第一小区中的一个下行链路帧的下行链路定时被用于确定至少一个上行链路帧的上行链路发送定时。
作为一个实施例,所述第一下行链路帧针对所述第一小区配置。
作为一个实施例,所述第一下行链路帧的下行链路定时被所述第一小区确定。
作为一个实施例,所述第一下行链路帧是配置给所述第一小区的下行链路帧。
作为一个实施例,所述第一下行链路帧的定时参考是所述第一小区。
作为一个实施例,在所述第一时间之后,所述第一小区是所述第一节点的一个候选小区。
作为一个实施例,在所述第一时间之后,所述第一小区不是所述第一节点的一个服务小区。
作为一个实施例,在所述第一时间之后,所述第一小区的配置信息被释放。
作为一个实施例,在所述第一时间之后,所述第一小区的配置信息不被释放。
作为一个实施例,在所述第一时间之后,所述第一小区的配置信息中的至少部分不被释放。
作为一个实施例,在所述第一时间之后,所述目标小区是所述第一节点的一个服务小区。
作为一个实施例,在所述第一时间之后,将所述第一小区作为所述第二小区的定时参考。
作为一个实施例,在所述第一时间之后,在所述第一小区接收PBCH(Physical broadcast channel,物理广播信道)。
作为一个实施例,在所述第一时间之后,在所述第一小区接收SSB(SS(Synchronization Signal,同步信号)/PBCH block)。
作为一个实施例,在所述第一时间之后,在所述第一小区接收SSB(Synchronization Signal Block,同步信号块)
作为一个实施例,在所述第一时间之后,停止在所述第一小区接收PBCH。
作为一个实施例,在所述第一时间之后,停止在所述第一小区接收SSB。
作为一个实施例,在所述第一时间之后,将所述第一小区作为所述第二小区的定时参考。
作为一个实施例,在所述第一时间之后,从所述第一时间开始针对所述第一小区停止执行所述第一操作集合。
作为一个实施例,所述第一时间之前包括所述第一信令被接收之前的至少一个时隙。
作为一个实施例,所述第一时间之前包括所述第一信令被发送之前的至少一个时隙。
作为一个实施例,所述第一时间之后包括所述第一信令被接收之后的至少一个时隙。
作为一个实施例,所述第一时间之后包括所述第一信令被发送之后的至少一个时隙。
作为一个实施例,所述时隙是指一个slot。
作为一个实施例,所述时隙是指一段连续的时间间隔。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。附图2说明了5G NR(New Radio,新空口)/LTE(Long-Term Evolution,长期演进)/LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200。5G NR/LTE/LTE-A网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。5GS/EPS 200包括UE(User Equipment,用户设备)201,RAN(无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230中的至少之一。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。RAN包括节点203和其它节点204。节点203提供朝向UE201的用户和控制平面协议终止。节点203可经由Xn接口(例如,回程)/X2接口连接到其它节点204。节点203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。节点203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。节点203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201是一个用户设备(User Equipment,UE)。
作为一个实施例,所述节点203对应本申请中的所述第二节点。
作为一个实施例,所述节点203是一个基站设备(BaseStation,BS)。
作为一个实施例,所述节点203是一个基站收发台(Base Transceiver Station,BTS)。
作为一个实施例,所述节点203是一个节点B(NodeB,NB)。
作为一个实施例,所述节点203是一个gNB。
作为一个实施例,所述节点203是一个eNB。
作为一个实施例,所述节点203是一个ng-eNB。
作为一个实施例,所述节点203是一个en-gNB。
作为一个实施例,所述节点203是一个CU(Centralized Unit,集中单元)。
作为一个实施例,所述节点203是一个DU(Distributed Unit,分布单元)。
作为一个实施例,所述节点203是用户设备。
作为一个实施例,所述节点203是一个中继。
作为一个实施例,所述节点203是网关(Gateway)。
作为一个实施例,所述节点204对应本申请中的所述第三节点。
作为一个实施例,所述节点204是一个BS。
作为一个实施例,所述节点204是一个BTS。
作为一个实施例,所述节点204是一个NB。
作为一个实施例,所述节点204是一个gNB。
作为一个实施例,所述节点204是一个eNB。
作为一个实施例,所述节点204是一个ng-eNB。
作为一个实施例,所述节点204是一个en-gNB。
作为一个实施例,所述节点204是用户设备。
作为一个实施例,所述节点204是一个中继。
作为一个实施例,所述节点204是网关(Gateway)。
作为一个实施例,所述节点204是一个CU。
作为一个实施例,所述节点204是一个DU。
作为一个实施例,所述节点203和所述节点204之间通过理想回传连接。
作为一个实施例,所述节点203和所述节点204之间通过非理想回传连接。
作为一个实实例,所述节点203和所述节点204同时为所述UE201提供无线资源。
作为一个实实例,所述节点203和所述节点204不同时为所述UE201提供无线资源。
作为一个实施例,所述节点203和所述节点204是同一个节点。
作为一个实施例,所述节点203和所述节点204是两个不同的节点。
作为一个实施例,所述用户设备支持地面网络(Non-Terrestrial Network,NTN)的传输。
作为一个实施例,所述用户设备支持非地面网络(Terrestrial Network,地面网络)的传输。
作为一个实施例,所述用户设备支持大时延差网络中的传输。
作为一个实施例,所述用户设备支持双连接(Dual Connection,DC)传输。
作为一个实施例,所述用户设备包括飞行器。
作为一个实施例,所述用户设备包括车载终端。
作为一个实施例,所述用户设备包括船只。
作为一个实施例,所述用户设备包括物联网终端。
作为一个实施例,所述用户设备包括工业物联网的终端。
作为一个实施例,所述用户设备包括支持低时延高可靠传输的设备。
作为一个实施例,所述用户设备包括测试设备。
作为一个实施例,所述用户设备包括信令测试仪。
作为一个实施例,所述基站设备支持在非地面网络的传输。
作为一个实施例,所述基站设备支持在大时延差网络中的传输。
作为一个实施例,所述基站设备支持地面网络的传输。
作为一个实施例,所述基站设备包括宏蜂窝(Marco Cellular)基站。
作为一个实施例,所述基站设备包括微小区(Micro Cell)基站。
作为一个实施例,所述基站设备包括微微小区(Pico Cell)基站。
作为一个实施例,所述基站设备包括家庭基站(Femtocell)。
作为一个实施例,所述基站设备包括支持大时延差的基站设备。
作为一个实施例,所述基站设备包括飞行平台设备。
作为一个实施例,所述基站设备包括卫星设备。
作为一个实施例,所述基站设备包括TRP(Transmitter Receiver Point,发送接收节点)。
作为一个实施例,所述基站设备包括CU(Centralized Unit,集中单元)。
作为一个实施例,所述基站设备包括DU(Distributed Unit,分布单元)。
作为一个实施例,所述基站设备包括测试设备。
作为一个实施例,所述基站设备包括信令测试仪。
作为一个实施例,所述基站设备包括IAB(Integrated Access and Backhaul)-node。
作为一个实施例,所述基站设备包括IAB-donor。
作为一个实施例,所述基站设备包括IAB-donor-CU。
作为一个实施例,所述基站设备包括IAB-donor-DU。
作为一个实施例,所述基站设备包括IAB-DU。
作为一个实施例,所述基站设备包括IAB-MT。
作为一个实施例,所述中继包括relay。
作为一个实施例,所述中继包括L3relay。
作为一个实施例,所述中继包括L2relay。
作为一个实施例,所述中继包括路由器。
作为一个实施例,所述中继包括交换机。
作为一个实施例,所述中继包括用户设备。
作为一个实施例,所述中继包括基站设备。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一信令生成于所述RRC306。
作为一个实施例,本申请中的所述第一信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二信令生成于所述RRC306。
作为一个实施例,本申请中的所述第二信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第二信令生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第三信令生成于所述RRC306。
作为一个实施例,本申请中的所述第三信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第三信令生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一无线信号成于所述RRC306。
作为一个实施例,本申请中的所述第一无线信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二无线信号成于所述RRC306。
作为一个实施例,本申请中的所述第二无线信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第二无线信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述至少一个定时提前命令中的一个定时提前命令生成于所述RRC306。
作为一个实施例,本申请中的所述至少一个定时提前命令中的一个定时提前命令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述至少一个定时提前命令中的一个定时提前命令生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一消息生成于所述RRC306。
作为一个实施例,本申请中的所述第一消息生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一消息生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一测量报告生成于所述RRC306。
作为一个实施例,本申请中的所述第一测量报告生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一测量报告生成于所述PHY301或者PHY351。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流 转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450至少:接收第一信令,所述第一信令在RRC层之下的协议层被生成,所述第一信令被用于指示从第一时间开始针对第一小区停止执行第一操作集合;在所述第一时间之后的第一上行链路帧中,在第二小区上发送第一无线信号;其中,所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述第一上行链路帧的起始时刻相比第一下行链路帧的起始时刻提前了第一时间间隔;所述第一下行链路帧属于第一小区。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令,所述第一信令在RRC层之下的协议层被生成,所述第一信令被用于指示从第一时间开始针对第一小区停止执行第一操作集合;在所述第一时间之后的第一上行链路帧中,在第二小区上发送第一无线信号;其中,所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述第一上行链路帧的起始时刻相比第一下行链路帧的起始时刻提前了第一时间间隔; 所述第一下行链路帧属于第一小区。
作为一个实施例,所述第二通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410至少:在第一时间之后的第一上行链路帧中,在第二小区上接收第一无线信号;其中,第一信令被发送,所述第一信令的接收者是所述第一无线信号的发送者,或者,所述第一信令的发送者是所述第一无线信号的发送者;所述第一信令在RRC层之下的协议层被生成,所述第一信令被用于指示从所述第一时间开始针对第一小区停止执行第一操作集合;所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述第一上行链路帧的起始时刻相比第一下行链路帧的起始时刻提前了第一时间间隔;所述第一下行链路帧属于第一小区。
作为一个实施例,所述第二通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一时间之后的第一上行链路帧中,在第二小区上接收第一无线信号;其中,第一信令被发送,所述第一信令的接收者是所述第一无线信号的发送者,或者,所述第一信令的发送者是所述第一无线信号的发送者;所述第一信令在RRC层之下的协议层被生成,所述第一信令被用于指示从所述第一时间开始针对第一小区停止执行第一操作集合;所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述第一上行链路帧的起始时刻相比第一下行链路帧的起始时刻提前了第一时间间隔;所述第一下行链路帧属于第一小区。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459被用于接收第一信令。
作为一个实施例,所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第一信令。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459被用于接收第二信令。
作为一个实施例,所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第二信令。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459被用于接收第三信令。
作为一个实施例,所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第三信令。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459被用于接收至少一个定时提前命令。
作为一个实施例,所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送至少一个定时提前命令。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459被用于接收第一消息。
作为一个实施例,所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第一消息。
作为一个实施,所述天线452,所述发射器454,所述发射处理器468,所述控制器/处理器459被用于发送第一无线信号。
作为一个实施,所述天线420,所述接收器418,所述接收处理器470,所述控制器/处理器475中的至少之一被用于接收第一无线信号。
作为一个实施,所述天线452,所述发射器454,所述发射处理器468,所述控制器/处理器459被用于发送第二无线信号。
作为一个实施,所述天线420,所述接收器418,所述接收处理器470,所述控制器/处理器475中的至少之一被用于接收第二无线信号。
作为一个实施,所述天线452,所述发射器454,所述发射处理器468,所述控制器/处理器459被用于发送第一测量报告。
作为一个实施,所述天线420,所述接收器418,所述接收处理器470,所述控制器/处理器475中的至少之一被用于接收第一测量报告。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个用户设备。
作为一个实施例,所述第一通信设备450是一个支持大时延差的用户设备。
作为一个实施例,所述第一通信设备450是一个支持NTN的用户设备。
作为一个实施例,所述第一通信设备450是一个飞行器设备。
作为一个实施例,所述第一通信设备450具备定位能力。
作为一个实施例,所述第一通信设备450不具备定能能力。
作为一个实施例,所述第一通信设备450是一个支持TN的用户设备。
作为一个实施例,所述第二通信设备410是一个基站设备(gNB/eNB/ng-eNB)。
作为一个实施例,所述第二通信设备410是一个支持大时延差的基站设备。
作为一个实施例,所述第二通信设备410是一个支持NTN的基站设备。
作为一个实施例,所述第二通信设备410是一个卫星设备。
作为一个实施例,所述第二通信设备410是一个飞行平台设备。
作为一个实施例,所述第二通信设备410是一个支持TN的基站设备。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S5101中,接收第三信令,所述第三信令被用于确定所述第一小区是所述第二小区的定时参考;在步骤S5102中,接收第一信令;在步骤S5103中,发送第一信令;在步骤S5104中,从第一时间开始针对第一小区停止执行第一操作集合;在步骤S5105中,针对第一小区执行第二操作集合;在步骤S5106中,在所述第一时间之后的第一上行链路帧中,在第二小区上发送第一无线信号。
对于第二节点N02,在步骤S5201中,接收所述第一无线信号。
对于第三节点N03,在步骤S5301中,发送所述第一信令;在步骤S5302中,接收所述第一信令。
对于第四节点N04,在步骤S5401中,发送所述第三信令。
在实施例5中,所述第一信令在RRC层之下的协议层被生成,所述第一信令被用于指示从第一时间开始针对第一小区停止执行第一操作集合;所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述第一上行链路帧的起始时刻相比第一下行链路帧的起始时刻提前了第一时间间隔;所述第一下行链路帧属于第一小区;所述第一小区是所述第二小区的定时参考被用于确定所述第一下行链路帧属于所述第一小区;所述第一信令被用于指示针对第一小区执行第二操作集合;所述第二操作集合包括清空关联到所述第一小区的所有HARQ缓冲池,或者,清除关联到所述第一小区的针对半持续CSI上报的任意PUSCH资源,或者,清除关联到所述第一小区的任意配置的下行链路分配和任意配置的上行链路授予类型2,或者,清除关联到所述第一小区的任意配置的上行链路授予类型1中的至少之一。
作为一个实施例,所述第一节点U01是用户设备。
作为一个实施例,所述第一节点U01是基站设备。
作为一个实施例,所述第一节点U01是中继设备。
作为一个实施例,所述第二节点N02是用户设备。
作为一个实施例,所述第二节点N02是基站设备。
作为一个实施例,所述第二节点N02是中继设备。
作为一个实施例,所述第二节点N02是所述第二小区的维持基站。
作为一个实施例,所述第二节点N02是所述第一无线信号的接收者的维持基站。
作为一个实施例,所述第三节点N03是用户设备。
作为一个实施例,所述第三节点N03是基站设备。
作为一个实施例,所述第三节点N03是中继设备。
作为一个实施例,所述第三节点N03是所述第一小区的维持基站。
作为一个实施例,所述第三节点N03是所述第一信令的发送者的维持基站。
作为一个实施例,所述第四节点N04是用户设备。
作为一个实施例,所述第四节点N04是基站设备。
作为一个实施例,所述第四节点N04是中继设备。
作为一个实施例,所述第四节点N04是所述第一小区的维持基站。
作为一个实施例,所述第四节点N04是所述第三信令的发送者的维持基站。
作为一个实施例,所述第三节点N03和所述第二节点N02相同。
作为一个实施例,所述第三节点N03和所述第二节点N02不同。
作为一个实施例,所述第三节点N03和所述第四节点N04相同。
作为一个实施例,所述第三节点N03和所述第四节点N04不同。
作为一个实施例,所述第一信令的发送者是所述第一小区组中的一个服务小区的维持基站。
作为一个实施例,所述第三信令的发送者是所述第一小区组中的一个服务小区的维持基站。
作为一个实施例,所述第一信令的发送者和所述第三信令的发送者相同。
作为一个实施例,所述第一信令的发送者和所述第三信令的发送者不同。
作为一个实施例,所述第一信令被用于确定所述第一小区是所述第二小区的定时参考。
作为一个实施例,所述第一信令被接收时所述第二小区的定时参考是所述第一小区被用于确定所述第一小区是所述第二小区的定时参考。
作为一个实施例,所述第一信令被接收之前所述第二小区的定时参考是所述第一小区被用于确定所述第一小区是所述第二小区的定时参考。
作为一个实施例,所述第二小区是所述第一小区的候选小区被用于确定所述第一小区是所述第二小区的定时参考。
作为一个实施例,所述第二小区和所述第一小区属于同一个TAG被用于确定所述第一小区是所述第二小区的定时参考。
作为一个实施例,所述第二小区和所述第一小区属于所述第一TAG被用于确定所述第一小区是所述第二小区的定时参考。
作为一个实施例,在第一信令之前,所述第三信令被接收。
作为一个实施例,在第一信令之前,所述第三信令不被接收。
作为一个实施例,所述第三信令存在。
作为一个实施例,所述第三信令不存在。
作为一个实施例,所述第三信令是RRC消息。
作为一个实施例,所述第三信令是下行链路(Downlink,DL)消息。
作为一个实施例,所述第三信令是副链路(Sidelink,SL)消息。
作为一个实施例,所述第三信令通过DCCH(Dedicated Control Channel,专用控制信道)传输。
作为一个实施例,所述第三信令通过SCCH(Sidelink Control Channel,副链路控制信道)传输。
作为一个实施例,所述第三信令包括RRC消息中的至少一个IE。
作为一个实施例,所述第三信令包括RRC消息中的至少一个域。
作为一个实施例,所述第三信令包括RRCReconfiguration消息。
作为一个实施例,所述第三信令是RRCReconfiguration消息中的至少一个IE。
作为一个实施例,所述第三信令是RRCReconfiguration消息中的至少一个域。
作为一个实施例,所述第三信令包括CellGroupConfig IE,所述CellGroupConfig IE中的一个域被 用于确定所述第一小区是所述第二小区的定时参考。
作为一个实施例,所述第三信令包括SpCellConfig域或者SCellConfig域,所述SpCellConfig域或者所述SCellConfig域中的一个域被用于确定所述第一小区是所述第二小区的定时参考。
作为一个实施例,所述第三信令包括ServingCellConfig IE,所述ServingCellConfig IE中的一个域被用于确定所述第一小区是所述第二小区的定时参考。
作为一个实施例,所述第三信令指示所述第一小区是所述第二小区的定时参考。
作为一个实施例,所述第三信令显式指示所述第一小区是所述第二小区的定时参考。
作为一个实施例,所述第三信令隐式指示所述第一小区是所述第二小区的定时参考。
作为一个实施例,所述第三信令指示所述第一小区是锚点小区。
作为一个实施例,所述第三信令指示所述第一小区是所述第一TAG的定时参考。
作为一个实施例,所述第三信令被用于指示所述第一TAG的定时参考。
作为一个实施例,所述第三信令被配置被用于确定所述第一小区是所述第二小区的定时参考。
作为一个实施例,所述第三信令被设置为ture被用于确定所述第一小区是所述第二小区的定时参考。
作为一个实施例,所述第三信令被设置为所述第一小区的标识被用于确定所述第一小区是所述第二小区的定时参考。
作为一个实施例,所述第一小区是所述第一TAG的定时参考被用于确定所述第一小区是所述第二小区的定时参考。
作为一个实施例,所述第一小区的下行链路帧是所述第一TAG中的任一小区的上行链路帧的定时参考帧。
作为一个实施例,所述第一小区是所述第一TAG的定时参考小区。
作为一个实施例,所述第一TAG中包括至少所述第一小区。
作为一个实施例,所述第一TAG中包括所述第二小区。
作为一个实施例,所述第一TAG中包括所述第三小区。
作为一个实施例,作为所述第一信令被接收的响应,如果所述第三信令被接收,并且所述第三信令指示所述第一小区是所述第二小区的定时参考,将所述第一小区是所述第二小区的定时参考。
作为一个实施例,所述第二操作集合是针对所述第一小区的重置。
作为一个实施例,所述第二操作集合仅针对所述第一小区。
作为一个实施例,所述第二操作集合是针对所述第一小区的MAC重置。
作为一个实施例,所述第二操作集合是重置所述第一小区。
作为一个实施例,所述第二操作集合被所述第一信令触发。
作为一个实施例,所述第二操作集合被所述第一条件触发。
作为一个实施例,所述行为清空(flush)关联到所述第一小区的所有HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)缓冲池(buffer)包括:清空(flush)关联到所述第一小区的每个HARQ进程的HARQ缓冲池。
作为一个实施例,所述行为清除(clear)关联到所述第一小区的针对半持续CSI(Channel state information,信道状态信息)上报的任意PUSCH资源包括:如果所述第一节点U01被配置了关联到所述第一小区的针对半持续CSI上报的PUSCH资源,清除关联到所述第一小区的针对半持续CSI上报的PUSCH资源。
作为一个实施例,所述行为清除关联到所述第一小区的任意配置的下行链路分配(configured downlink assignment)和任意配置的上行链路授予类型2(configured uplink grant Type 2)包括:如果所述第一节点U01被配置了关联到所述第一小区的配置的下行链路分配,清除关联到所述第一小区的所述配置的下行链路分配;如果所述第一节点U01被配置了关联到所述第一小区的配置的上行链路授予类型2,清除关联到所述第一小区的所述配置的上行链路授予类型2。
作为一个实施例,所述配置的上行链路授予类型2是指通过RRC提供的上行链路授予。
作为一个实施例,所述行为清除关联到所述第一小区的任意配置的上行链路授予类型1(configured uplink grant Type 1)包括:如果所述第一节点U01被配置了关联到所述第一小区的任意配置的上行链 路授予类型1,清除关联到所述第一小区的任意配置的上行链路授予类型1。
作为一个实施例,所述配置的上行链路授予类型1是指通过PDCCH提供的上行链路授予。
作为一个实施例,所述配置的上行链路授予类型1基于L1信令指示配置的上行链路授予的激活(activation)或者去激活(deactivation)。
作为一个实施例,所述配置的上行链路授予类型1基于L1信令被存储或者被删除。
作为一个实施例,所述第一信令不被用于指示清空关联到第三小区的所有HARQ缓冲池,或者,清除关联到所述第三小区的针对半持续CSI上报的任意PUSCH资源,或者,清除关联到所述第三小区的任意配置的下行链路分配和任意配置的上行链路授予类型2,或者,清除关联到所述第三小区的任意配置的上行链路授予类型1中的至少之一。
作为该实施例的一个子实施例,所述第一小区是SCell。
作为该实施例的一个子实施例,所述第一小区是SpCell。
作为一个实施例,仅当所述第一小区是SCell,所述第一信令不被用于指示清空关联到第三小区的所有HARQ缓冲池,或者,清除关联到所述第三小区的针对半持续CSI上报的任意PUSCH资源,或者,清除关联到所述第三小区的任意配置的下行链路分配和任意配置的上行链路授予类型2,或者,清除关联到所述第三小区的任意配置的上行链路授予类型1中的至少之一;如果所述第一小区是SpCell,所述第一信令被用于指示清空关联到第三小区的所有HARQ缓冲池,或者,清除关联到所述第三小区的针对半持续CSI上报的任意PUSCH资源,或者,清除关联到所述第三小区的任意配置的下行链路分配和任意配置的上行链路授予类型2,或者,清除关联到所述第三小区的任意配置的上行链路授予类型1中的至少之一。
作为一个实施例,所述第三小区和所述第一小区属于同一个小区组。
作为一个实施例,所述第三小区是所述第一小区组中的所述第一小区之外的任一小区。
作为一个实施例,所述第三小区是所述第二小区。
作为一个实施例,所述第三小区不是所述第二小区。
作为一个实施例,在所述第一信令之前,所述第三小区被配置。
作为一个实施例,在所述第一信令之前,所述第三小区被激活。
作为一个实施例,在所述第一信令之前,所述第一节点U01针对所述第三小区执行所述第一操作集合,所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述相应小区是所述第三小区。
作为一个实施例,所述步骤S5105是可选的。
作为一个实施例,所述步骤S5105存在。
作为一个实施例,所述步骤S5105不存在。
作为一个实施例,虚线方框F5.1是可选的。
作为一个实施例,所述虚线方框F5.1存在。
作为一个实施例,所述虚线方框F5.1不存在。
作为一个实施例,虚线方框F5.2是可选的。
作为一个实施例,虚线方框F5.3是可选的。
作为一个实施例,所述虚线方框F5.2和所述虚线方框F5.3中的之一存在。
作为一个实施例,所述虚线方框F5.2存在,所述虚线方框F5.3不存在。
作为一个实施例,所述虚线方框F5.2不存在,所述虚线方框F5.3存在。
实施例6
实施例6示例了根据本申请的另一个实施例的无线信号传输流程图,如附图6所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S6101中,在第一时间之前的第二上行链路帧中,在第二小区上发送第二无线信号;在步骤S6102中,接收第一信令;在步骤S6103中,发送第一信令;在步骤S6104中,在所述第一时间之后的第一上行链路帧中,在第二小区上发送第一无线信号。
对于第二节点N02,在步骤S6201中,接收所述第二无线信号;在步骤S6202中,接收所述第一无线 信号。
对于第三节点N03,在步骤S6301中,发送所述第一信令;在步骤S6302中,接收所述第一信令。
在实施例6中,所述第一信令在RRC层之下的协议层被生成,所述第一信令被用于指示从所述第一时间开始针对第一小区停止执行第一操作集合;所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述第一上行链路帧的起始时刻相比第一下行链路帧的起始时刻提前了第一时间间隔;所述第一下行链路帧属于第一小区;所述第二上行链路帧的起始时刻相比第二下行链路帧的起始时刻提前了第二时间间隔;所述第二下行链路帧属于所述第一小区;所述第一小区和所述第二小区属于同一个小区组,所述第一小区和所述第二小区具有不同的服务小区标识。
作为一个实施例,所述第二小区不是本申请中的所述目标小区。
作为一个实施例,所述第二上行链路帧属于所述第二小区。
作为一个实施例,所述第二上行链路帧针对所述第二小区配置。
作为一个实施例,所述第二上行链路帧被用于确定在所述第二小区发送上行链路信号的时域位置。
作为一个实施例,所述第二上行链路帧被用于确定在所述第二小区发送所述第二无线信号的时域位置。
作为一个实施例,所述第二上行链路帧是所述第二小区的一个上行链路帧。
作为一个实施例,所述第二上行链路帧被用于所述第二小区。
作为一个实施例,所述第二上行链路帧是所述第一时间之前的最后一个上行链路帧。
作为一个实施例,所述第二上行链路帧是所述第一时间之前的任意一个上行链路帧。
作为一个实施例,所述第二上行链路帧是所述第一时间之前的第Q1个上行链路帧,所述Q1是正整数。
作为一个实施例,所述第二上行链路帧是所述第一时间所处的上行链路帧。
作为一个实施例,所述第二上行链路帧是所述第一时间所处的上行链路帧之前的一个上行链路帧。
作为一个实施例,所述第一时间与所述第二上行链路帧有重叠时间。
作为一个实施例,所述第一时间与所述第二上行链路帧没有重叠时间。
作为一个实施例,所述第二无线信号占用所述第二上行链路帧的至少一个时隙。
作为一个实施例,所述第二无线信号占用所述第二上行链路帧的一个时隙。
作为一个实施例,所述第二无线信号在所述第二上行链路帧中的时隙位置是预配置的。
作为一个实施例,所述第二无线信号在所述第二上行链路帧中的时隙位置是预定义的。
作为一个实施例,所述第二无线信号在所述第二上行链路帧中的时隙位置是被指定的。
作为一个实施例,所述第二无线信号在所述第二上行链路帧中的时隙位置是UE确定的。
作为一个实施例,所述第二无线信号是物理层信号。
作为一个实施例,所述第二无线信号是PUCCH。
作为一个实施例,所述第二无线信号是SRS。
作为一个实施例,所述第二无线信号是PUSCH。
作为一个实施例,所述第二无线信号是PUCCH或者SRS或者PUSCH中的任意之一。
作为一个实施例,所述第二无线信号通过PUCCH传输。
作为一个实施例,所述第二无线信号通过PUSCH传输。
作为一个实施例,所述第二无线信号通过SRS资源传输。
作为一个实施例,所述第二时间间隔和所述第二上行链路帧的起始时刻比所述第二下行链路帧的起始时刻提前的时间间隔相等。
作为一个实施例,所述第二时间间隔和所述第二上行链路帧的定时比所述第二下行链路帧的定时提前的时间间隔相等。
作为一个实施例,所述第二时间间隔被用于确定所述第二小区的上行链路发送定时。
作为一个实施例,所述第二时间间隔包括一个时间间隔。
作为一个实施例,所述第二时间间隔包括正整数个第一时间单元。
作为一个实施例,所述第二时间间隔是可配置的。
作为一个实施例,所述第二时间间隔所包括的第一时间单元的个数是可配置的。
作为一个实施例,所述第二时间间隔和所述第一时间间隔相等。
作为一个实施例,所述第二时间间隔和所述第一时间间隔不相等。
作为一个实施例,在所述第二无线信号被发送的时刻到所述第一无线信号被发送的时刻之间的时间间隔内,所述第一节点U01接收至少一个定时提前命令。
作为一个实施例,在所述第二无线信号被发送的时刻到所述第一无线信号被发送的时刻之间的时间间隔内,所述第一节点U01未接收任一定时提前命令。
作为一个实施例,所述第二上行链路帧和所述第二下行链路帧具有相同的帧号。
作为一个实施例,所述第二上行链路帧是所述第二下行链路帧对应的上行链路帧。
作为一个实施例,所述第二下行链路帧是所述第二上行链路帧的定时参考帧。
作为一个实施例,所述第二下行链路帧是所述第二上行链路帧的参考帧。
作为一个实施例,所述第二下行链路帧是所述第二上行链路帧的定时参考帧,所述第一小区是所述第二小区的定时参考小区。
作为一个实施例,所述第二下行链路帧是所述第一小区中的一个下行链路帧。
作为一个实施例,所述第二下行链路帧针对所述第一小区配置。
作为一个实施例,所述第二下行链路帧的下行链路定时被所述第一小区确定。
作为一个实施例,所述第二下行链路帧是配置给所述第一小区的下行链路帧。
作为一个实施例,所述第二下行链路帧的定时参考是所述第一小区。
作为一个实施例,本申请中的所述第一消息包括一个SCellConfig域和一个SpCellConfig域;所述一个SCellConfig域指示所述第一小区,所述一个SpCellConfig域指示所述第二小区,所述一个SCellConfig域和所述一个SpCellConfig域关联到同一个CellGroupId;所述第一小区是SCell,所述第二小区是SpCell。
作为该实施例的一个子实施例,所述SpCellConfig域包括servCellIndex,所述第二小区是PSCell。
作为该实施例的一个子实施例,所述SpCellConfig域不包括servCellIndex,所述第二小区是PCell。
作为一个实施例,本申请中的所述第一消息包括一个SpCellConfig域和一个SCellConfig域;所述一个SpCellConfig域指示所述第一小区,所述一个SCellConfig域指示所述第二小区,所述一个SpCellConfig域和所述一个SCellConfig域关联到同一个CellGroupId;所述第一小区是SpCell,所述第二小区是SCell。
作为该实施例的一个子实施例,所述SpCellConfig域包括servCellIndex,所述第一小区是PSCell。
作为该实施例的一个子实施例,所述SpCellConfig域不包括servCellIndex,所述第一小区是PCell。
作为一个实施例,本申请中的所述第一消息包括一个SCellConfig域和另一个SCellConfig域;所述一个SCellConfig域指示所述第一小区,所述另一个SCellConfig域指示所述第二小区,所述一个SCellConfig域和所述另一个SCellConfig域关联到同一个CellGroupId;所述第一小区是SCell,所述第二小区是SCell。
作为一个实施例,所述第一小区的服务小区标识不大于第一整数,所述第二小区的服务小区标识不大于所述第一整数,所述第一小区的服务小区标识和所述第二小区的服务小区标识不相等。
作为该实施例的一个子实施例,所述第一整数等于64。
作为该实施例的一个子实施例,所述第一整数等于31。
作为该实施例的一个子实施例,所述第一整数等于16。
作为一个实施例,所述服务小区标识通过servCellIndex域或者sCellIndex域配置。
作为一个实施例,所述服务小区标识被隐式配置。
作为一个实施例,虚线方框F6.1是可选的。
作为一个实施例,虚线方框F6.2是可选的。
作为一个实施例,所述虚线方框F6.1和所述虚线方框F6.2中的之一存在。
作为一个实施例,所述虚线方框F6.1存在,所述虚线方框F6.2不存在。
作为一个实施例,所述虚线方框F6.1不存在,所述虚线方框F6.2存在。
实施例7
实施例7示例了根据本申请的再一个实施例的无线信号传输流程图,如附图7所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S7101中,接收第二信令,所述第二信令包括所述第二小区的配置信息;在步骤S7102中,接收第一信令;在步骤S7103中,发送第一信令;在步骤S7104中,针对所述第二小区执行所述第一操作集合;在步骤S7105中,在所述第一时间之后的第一上行链路帧中,在第二小区上发送第一无线信号。
对于第二节点N02,在步骤S7201中,接收所述第一无线信号。
对于第三节点N03,在步骤S7301中,发送所述第一信令;在步骤S7302中,接收所述第一信令。
对于第五节点N05,在步骤S7501中,发送所述第二信令。
在实施例7中,所述第一信令在RRC层之下的协议层被生成,所述第一信令被用于指示从所述第一时间开始针对第一小区停止执行第一操作集合;所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述第一上行链路帧的起始时刻相比第一下行链路帧的起始时刻提前了第一时间间隔;所述第一下行链路帧属于第一小区;所述第一信令被用于指示针对第二小区执行所述第一操作集合;针对所述第一小区停止执行所述第一操作集合之前,针对所述第二小区所述第一操作集合不被执行;所述第二小区的所述配置信息包括至少所述第二小区的标识。
作为一个实施例,所述第五节点N05是用户设备。
作为一个实施例,所述第五节点N05是基站设备。
作为一个实施例,所述第五节点N05是中继设备。
作为一个实施例,所述第五节点N05是所述第一小区的维持基站。
作为一个实施例,所述第五节点N05是所述第二信令的发送者的维持基站。
作为一个实施例,所述第二小区是本申请中的所述目标小区。
作为一个实施例,在所述第一信令之前,接收第二信令。
作为一个实施例,所述第二信令包括本申请中的所述第一消息。
作为一个实施例,所述第二信令是本申请中的所述第一消息。
作为一个实施例,所述第二信令的发送者是所述第一小区组中的一个服务小区的维持基站。
作为一个实施例,所述第二信令的发送者和所述第一信令的发送者相同。
作为一个实施例,所述第二信令的发送者和所述第一信令的发送者不同。
作为一个实施例,所述第一信令被用于指示针对第二小区执行所述第一操作集合,所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一。
作为该实施例的一个子实施例,所述相应小区是所述第二小区。
作为该实施例的一个子实施例,所述相应小区包括所述第二小区。
作为一个实施例,所述短语针对所述第一小区停止执行所述第一操作集合之前包括:针对所述第一小区停止执行所述第一操作集合之前的至少一个时隙。
作为一个实施例,所述短语针对所述第一小区停止执行所述第一操作集合之前包括:所述第一信令被接收之前。
作为一个实施例,所述短语针对所述第二小区所述第一操作集合不被执行包括:针对所述第二小区所述第一操作集合中的至少一个操作不被执行。
作为一个实施例,所述短语针对所述第二小区所述第一操作集合不被执行包括:针对所述第二小区所述第一操作集合中的每个操作不被执行。
作为一个实施例,所述步骤S7104是可选的。
作为一个实施例,所述步骤S7104存在。
作为一个实施例,所述步骤S7104不存在。
作为一个实施例,虚线方框F7.1是可选的。
作为一个实施例,虚线方框F7.2是可选的。
作为一个实施例,所述虚线方框F7.1和所述虚线方框F7.2中的之一存在。
作为一个实施例,所述虚线方框F7.1存在,所述虚线方框F7.2不存在。
作为一个实施例,所述虚线方框F7.1不存在,所述虚线方框F7.2存在。
实施例8
实施例8示例了根据本申请的又一个实施例的无线信号传输流程图,如附图8所示。
对于第一节点U01,在步骤S8101中,接收至少一个定时提前命令。
对于给定节点组N06,在步骤S8601中,发送所述至少一个定时提前命令。
作为一个实施例,所述给定节点组N06包括用户设备。
作为一个实施例,所述给定节点组N06包括至少一个基站设备。
作为一个实施例,所述给定节点组N06包括至少一个中继设备。
作为一个实施例,所述给定节点组N06包括至少一个节点。
作为一个实施例,所述给定节点组N06包括所述第三节点或者所述第四节点或者所述第五节点中的至少之一。
作为一个实施例,所述给定节点组N06包括所述第一小区组中的至少一个服务小区的维持基站。
作为一个实施例,所述第一时间间隔与所述至少一个定时提前命令有关。
作为一个实施例,所述至少一个定时提前命令包括1个定时提前命令。
作为一个实施例,所述至少一个定时提前命令包括大于1个定时提前命令。
作为一个实施例,所述至少一个定时提前命令包括1个或者大于1个定时提前命令。
作为一个实施例,所述至少一个定时提前命令中的每个定时提前命令属于一个MAC子PDU。
作为一个实施例,所述至少一个定时提前命令中的每个定时提前命令是一个Timing Advance Command域。
作为一个实施例,所述至少一个定时提前命令中的每个定时提前命令指示一个整数。
作为一个实施例,所述至少一个定时提前命令中的每个定时提前命令指示一个非负整数。
作为一个实施例,所述至少一个定时提前命令中的每个定时提前命令指示一个正整数。
作为一个实施例,所述至少一个定时提前命令中的每个定时提前命令指示一个TA,所述TA被用于确定NTA
作为一个实施例,所述至少一个定时提前命令中的第一个被接收的定时提前命令被用于确定初始的NTA
作为一个实施例,所述至少一个定时提前命令中的第一个被接收的定时提前命令被用于确定调整的NTA
作为一个实施例,所述至少一个定时提前命令中的第一个被接收的定时提前命令是所述fallbackRAR或者所述successRAR或者所述MAC RAR或者Absolute Timing Advance Command MAC CE中的之一。
作为一个实施例,所述至少一个定时提前命令中的第一个被接收的定时提前命令占用12比特。
作为一个实施例,所述至少一个定时提前命令中的所述第一个被接收的定时提前命令之外的定时提前命令被用于确定更新的NTA
作为一个实施例,所述至少一个定时提前命令中的所述第一个被接收的定时提前命令之外的定时提前命令是Timing Advance Command MAC CE。
作为一个实施例,所述至少一个定时提前命令中的所述第一个被接收的定时提前命令之外的定时提前命令占用6比特。
作为一个实施例,所述至少一个定时提前命令中的任意两个定时提前命令不属于同一个MAC子PDU。
作为一个实施例,所述至少一个定时提前命令中的任意两个定时提前命令不属于同一个MAC PDU。
作为一个实施例,所述至少一个定时提前命令中的任意两个定时提前命令对应的Timing Advance Command域占用的比特数相等。
作为一个实施例,所述至少一个定时提前命令中的任意两个定时提前命令对应的Timing Advance Command域占用的比特数不相等。
作为一个实施例,所述至少一个定时提前命令中的任意两个定时提前命令对应的Timing Advance Command域占用的比特数相等或者不相等。
作为一个实施例,所述至少一个定时提前命令中的存在至少两个定时提前命令对应的Timing Advance Command域占用的比特数不相等。
作为一个实施例,所述至少一个定时提前命令中的每个定时提前命令属于一个MAC CE或者MAC RAR或者fallbackRAR或者successRAR中的之一。
作为一个实施例,所述至少一个定时提前命令中的一个定时提前命令属于Timing Advance Command MAC CE。
作为一个实施例,所述Timing Advance Command MAC CE的格式参考3GPP TS 38.321。
作为一个实施例,所述Timing Advance Command MAC CE包括Timing Advance Command域。
作为一个实施例,所述至少一个定时提前命令中的一个定时提前命令属于Absolute Timing Advance Command MAC CE。
作为一个实施例,所述Absolute Timing Advance Command MAC CE的格式参考3GPP TS 38.321。
作为一个实施例,所述Absolute Timing Advance Command MAC CE包括Timing Advance Command域。
作为一个实施例,所述至少一个定时提前命令中的一个定时提前命令属于fallbackRAR。
作为一个实施例,所述fallbackRAR的格式参考3GPP TS 38.321。
作为一个实施例,所述fallbackRAR包括Timing Advance Command域。
作为一个实施例,所述至少一个定时提前命令中的一个定时提前命令属于successRAR。
作为一个实施例,所述successRAR的格式参考3GPP TS 38.321。
作为一个实施例,所述successRAR包括Timing Advance Command域。
作为一个实施例,所述至少一个定时提前命令中的一个定时提前命令属于MAC RAR。
作为一个实施例,所述MAC RAR的格式参考3GPP TS 38.321的6.2.3节。
作为一个实施例,所述MAC RAR包括Timing Advance Command域。
作为一个实施例,第一偏移量被用于确定所述第一时间间隔。
作为一个实施例,所述第一时间间隔与第一偏移量有关。
作为一个实施例,所述至少一个定时提前命令和第一偏移量被用于确定所述第一时间间隔。
作为一个实施例,所述第一偏移量包括至少一个偏移量。
作为一个实施例,所述第一偏移量包括网络配置的偏移量和所述第一节点U01确定的偏移量。
作为一个实施例,所述第一偏移量仅包括所述NTA,offset
作为一个实施例,所述第一偏移量是可配置的。
作为一个实施例,所述第一偏移量是预配置的。
作为一个实施例,所述第一偏移量是固定大小的。
作为一个实施例,所述第一偏移量是RRC配置的偏移量。
作为一个实施例,所述第一偏移量是所述第一节点U01估计的偏移量。
作为一个实施例,所述第一偏移量是一个正数或者负数。
作为一个实施例,所述第一偏移量等于0。
作为一个实施例,所述第一偏移量包括NTA,offset,所述NTA,offset是固定的偏移量。
作为一个实施例,所述第一偏移量包括与NTN有关的定时修正。
作为一个实施例,所述第一偏移量包括所述是网络控制的定时修正。
作为一个实施例,所述第一偏移量包括所述是所述第一节点U01确定的定时修正。
作为一个实施例,所述第一偏移量与NTN无关。
作为一个实施例,所述第一偏移量不包括
作为一个实施例,所述第一偏移量不包括
作为一个实施例,所述NTA,offset的定义参考TS 38.211。
作为一个实施例,所述的定义参考TS 38.211。
作为一个实施例,所述的定义参考TS 38.211。
作为一个实施例,所述第一偏移量被配置。
作为一个实施例,所述第一偏移量未被配置。
作为一个实施例,如果所述第一偏移量被配置,所述第一定时提前量和所述第一偏移量被用于确定所述第一资源组的上行发送定时。
作为一个实施例,如果所述第一偏移量未被配置,所述第一定时提前量被用于确定所述第一资源组的上行发送定时。
作为一个实施例,所述第一时间间隔=(NTA+第一偏移量)·第一时间单元,其中,NTA=TA·16·64/2μ,所述至少一个定时提前命令仅包括一个定时提前命令。
作为该实施例的一个子实施例,所述一个定时提前命令在随机接入过程中被接收。
作为该实施例的一个子实施例,所述一个定时提前命令指示所述TA
作为一个实施例,所述第一时间间隔=(NTA_new+第一偏移量)·第一时间单元,其中,NTA_new=NTA_old+(TA-31)·16·64/2μ,所述至少一个定时提前命令包括至少2个定时提前命令。
作为该实施例的一个子实施例,所述NTA_old是所述至少一个定时提前命令中的最后一个定时提前命令被接收之前的NTA
作为该实施例的一个子实施例,所述至少一个定时提前命令中的最后一个定时提前命令指示所述TA
作为一个实施例,所述μ与子载波间隔有关。
作为一个实施例,所述μ与所述第一小区关联的子载波间隔有关。
作为一个实施例,所述μ与所述第二小区关联的子载波间隔有关。
作为一个实施例,所述μ是非负整数。
作为一个实施例,所述μ是不小于0并且不大于5的整数。
作为一个实施例,所述至少一个定时提前命令在所述第一时间之前被接收。
作为一个实施例,所述至少一个定时提前命令在所述第一时间之后被接收。
作为一个实施例,所述至少一个定时提前命令中存在一个定时提前命令在所述第一时间之前被接收,并且,所述至少一个定时提前命令存在一个定时提前命令在所述第一时间之后被接收。
实施例9
实施例9示例了根据本申请的一个实施例的第二小区和第一小区属于同一个TAG的示意图,如附图9所示。
在实施例9中,所述第二小区和所述第一小区属于同一个TAG。
作为一个实施例,所述第二小区和所述第一小区被配置相同的TAG标识(TAG ID)。
作为一个实施例,所述第二小区和所述第一小区都被配置所述第一TAG的标识。
作为一个实施例,所述第一节点针对所述第二小区和所述第一小区具有相同的定时提前量。
作为一个实施例,所述第一小区是所述同一个TAG中的小区的定时参考。
作为一个实施例,所述第一小区是所述第一TAG中的小区的定时参考。
作为一个实施例,所述第一小区是所述第二小区的定时参考。
作为一个实施例,所述第二小区被配置的TAG标识和所述第一小区的TAG标识相等。
作为一个实施例,所述第一消息被用于确定所述第二小区和所述第一小区属于同一个TAG。
作为一个实施例,所述第一消息针对所述第二小区配置所述第二小区所属的TAG。
作为一个实施例,所述第一消息针对所述第二小区配置所述第一TAG的标识。
实施例10
实施例10示例了根据本申请的一个实施例的第一上行链路帧和第一下行链路帧的定时关系的示意图,如附图10所示。在附图10中,方框1001表示第一下行链路帧,方框1002表示第一上行链路帧;横轴表示时间,所述第一下行链路帧的起始时刻是T2,所述第一上行链路帧的起始时刻是T1。
在实施例10中,所述第一上行链路帧的起始时刻相比所述第一下行链路帧的起始时刻提前了所述第一时间间隔;所述第一下行链路帧的定时参考是所述第一小区。
作为一个实施例,所述T2与所述T1的差值与所述第一时间间隔相等。
作为一个实施例,所述T1和所述T2分别对应一个时隙。
作为一个实施例,所述T1和所述T2分别对应一个第一时间单元。
作为一个实施例,所述T1和所述T2分别对应一个时刻。
作为一个实施例,所述时刻T1小于所述T2。
作为一个实施例,所述时刻T1不大于所述T2。
作为一个实施例,所述第一上行链路帧的起始时刻早于所述第一下行链路帧的起始时刻。
实施例11
实施例11示例了根据本申请的一个实施例的第一无线信号占用的时隙的示意图,如附图11所示。在附图11中,粗实线方框表示第一上行链路帧;斜线填充的方框表示第一无线信号占用的时隙;横轴表示时间,所述第一上行链路帧的起始时刻是T1。
作为一个实施例,所述第一上行链路帧包括P1个时隙,所述第一无线信号占用所述P1个时隙中的一个时隙。
作为一个实施例,所述第一上行链路帧包括P1个时隙,所述第一无线信号占用所述P1个时隙中的至少一个时隙。
作为一个实施例,所述第一上行链路帧包括P1个时隙,所述第一无线信号占用所述P1个时隙中的一个或者多个时隙。
作为一个实施例,所述P1是正整数。
作为一个实施例,所述第一无线信号所占用的时隙被RRC消息指示。
作为一个实施例,所述第一无线信号所占用的时隙被DCI指示。
作为一个实施例,所述第一无线信号所占用的时隙根据至少DCI确定。
作为一个实施例,所述第一无线信号所占用的时隙根据至少RRC消息确定。
实施例12
实施例12示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图12所示。在附图12中,第一节点中的处理装置1200包括第一接收机1201和第一发射机1202。
第一接收机1201,接收第一信令,或者,第一发射机1202,发送第一信令;所述第一信令在RRC层之下的协议层被生成,所述第一信令被用于指示从第一时间开始针对第一小区停止执行第一操作集合;
第一发射机1202,在所述第一时间之后的第一上行链路帧中,在第二小区上发送第一无线信号;
实施例12中,所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、 和在相应小区上发送UL-SCH三者中的至少之一;所述第一上行链路帧的起始时刻相比第一下行链路帧的起始时刻提前了第一时间间隔;所述第一下行链路帧属于第一小区。
作为一个实施例,所述第一接收机1201,接收至少一个定时提前命令,所述至少一个定时提前命令被用于确定所述第一时间间隔。
作为一个实施例,所述第一信令被用于指示针对第一小区执行第二操作集合;所述第二操作集合包括清空关联到所述第一小区的所有HARQ缓冲池,或者,清除关联到所述第一小区的针对半持续CSI上报的任意PUSCH资源,或者,清除关联到所述第一小区的任意配置的下行链路分配和任意配置的上行链路授予类型2,或者,清除关联到所述第一小区的任意配置的上行链路授予类型1中的至少之一。
作为一个实施例,所述第一发射机1202,在所述第一时间之前的第二上行链路帧中,在所述第二小区上发送第二无线信号;其中,所述第二上行链路帧的起始时刻相比第二下行链路帧的起始时刻提前了第二时间间隔;所述第二下行链路帧属于所述第一小区;所述第一小区和所述第二小区属于同一个小区组,所述第一小区和所述第二小区具有不同的服务小区标识。
作为一个实施例,所述第一接收机1201,在所述第一信令之前,接收第二信令,所述第二信令包括所述第二小区的配置信息;其中,所述第一信令被用于指示针对第二小区执行所述第一操作集合;针对所述第一小区停止执行所述第一操作集合之前,针对所述第二小区所述第一操作集合不被执行;所述第二小区的所述配置信息包括至少所述第二小区的标识。
作为一个实施例,所述第一接收机1201,在所述第一信令之前,接收第三信令,所述第三信令被用于确定所述第一小区是所述第二小区的定时参考;其中,所述第一小区是所述第二小区的定时参考被用于确定所述第一下行链路帧属于所述第一小区。
作为一个实施例,所述第二小区和所述第一小区属于同一个TAG。
作为一个实施例,所述第一发射机1202,发送所述第一测量报告。
作为一个实施例,所述第一接收机1201,接收所述第一消息。
作为一个实施例,所述第一接收机1201包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467。
作为一个实施例,所述第一接收机1201包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456。
作为一个实施例,所述第一接收机1201包括本申请附图4中的天线452,接收器454,接收处理器456。
作为一个实施例,所述第一发射机1202包括本申请附图4中的天线452,发射器454,多天线发射处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467。
作为一个实施例,所述第一发射机1202包括本申请附图4中的天线452,发射器454,多天线发射处理器457,发射处理器468。
作为一个实施例,所述第一发射机1202包括本申请附图4中的天线452,发射器454,发射处理器468。
实施例13
实施例13示例了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;如附图13所示。在附图13中,第二节点中的处理装置1300包括第二发射机1301和第二接收机1302。
第二接收机1302,在第一时间之后的第一上行链路帧中,在第二小区上接收第一无线信号;
实施例13中,第一信令被发送,所述第一信令的接收者是所述第一无线信号的发送者,或者,所述第一信令的发送者是所述第一无线信号的发送者;所述第一信令在RRC层之下的协议层被生成,所述第一信令被用于指示从所述第一时间开始针对第一小区停止执行第一操作集合;所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述第一上行链路帧的起始时刻相比第一下行链路帧的起始时刻提前了第一时间间隔;所述第一下行链路帧属于第一小区。
作为一个实施例,所述第二发射机1301,发送所述第一信令。
作为一个实施例,至少一个定时提前命令被发送,所述至少一个定时提前命令的接收者是所述第一无线信号的发送者;所述至少一个定时提前命令被用于确定所述第一时间间隔。
作为一个实施例,所述第二发射机1301,发送所述至少一个定时提前命令中的一个或者多个定时提前命令。
作为一个实施例,所述第一信令被用于指示针对第一小区执行第二操作集合;所述第二操作集合包括清空关联到所述第一小区的所有HARQ缓冲池,或者,清除关联到所述第一小区的针对半持续CSI上报的任意PUSCH资源,或者,清除关联到所述第一小区的任意配置的下行链路分配和任意配置的上行链路授予类型2,或者,清除关联到所述第一小区的任意配置的上行链路授予类型1中的至少之一。
作为一个实施例,所述第二接收机1302,在所述第一时间之前的第二上行链路帧中,在所述第二小区上接收第二无线信号;其中,所述第二上行链路帧的起始时刻相比第二下行链路帧的起始时刻提前了第二时间间隔;所述第二下行链路帧属于所述第一小区;所述第一小区和所述第二小区属于同一个小区组,所述第一小区和所述第二小区具有不同的服务小区标识。
作为一个实施例,在所述第一信令之前,第二信令被发送,所述第二信令的接收者是所述第一无线信号的发送者;所述第二信令包括所述第二小区的配置信息;所述第一信令被用于指示针对第二小区执行所述第一操作集合;针对所述第一小区停止执行所述第一操作集合之前,针对所述第二小区所述第一操作集合不被执行;所述第二小区的所述配置信息包括至少所述第二小区的标识。
作为一个实施例,所述第二发射机1301,发送所述第二信令。
作为一个实施例,在所述第一信令之前,第三信令被发送,所述第三信令的接收者是所述第一无线信号的发送者;所述第三信令被用于确定所述第一小区是所述第二小区的定时参考;所述第一小区是所述第二小区的定时参考被用于确定所述第一下行链路帧属于所述第一小区。
作为一个实施例,所述第二发射机1301,发送所述第三信令。
作为一个实施例,所述第二小区和所述第一小区属于同一个TAG。
作为一个实施例,所述第二接收机1302,接收所述第一测量报告。
作为一个实施例,所述第二发射机1301,发送所述第一消息。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475,存储器476。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,发射处理器416。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475,存储器476。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,接收处理器470。
实施例14
实施例14示例了根据本申请的一个实施例的第一条件被满足被用于触发第一信令的示意图,如附图14所示。
在实施例14中,第一条件被满足被用于触发所述第一信令。
作为一个实施例,所述目标小区是一个触发小区。
作为一个实施例,所述目标小区是一个被选择的小区。
作为一个实施例,所述目标小区满足所述第一条件被用于触发所述第一信令。
作为一个实施例,所述第一条件关联到所述目标小区。
作为一个实施例,所述第一条件是所述目标小区的配置信息被应用的执行条件。
作为一个实施例,所述第一条件关联到所述第一候选小区集合。
作为一个实施例,所述第一条件是所述第一候选小区集合中的每个候选小区的配置信息被应用的执行条件。
作为一个实施例,所述第一条件是测量报告的触发条件。
作为一个实施例,所述第一条件被用于触发第一测量报告,所述第一测量报告被用于触发所述第一信令。
作为一个实施例,所述第一测量报告指示所述目标小区。
作为一个实施例,所述第一测量报告包括至少所述目标小区的服务小区标识。
作为一个实施例,所述第一测量报告包括至少所述目标小区的索引。
作为一个实施例,所述第一测量报告包括针对所述目标小区的测量结果。
作为一个实施例,所述第一测量报告指示所述第一候选小区中的满足所述第一条件的至少一个候选小区。
作为一个实施例,所述第一测量报告包括所述第一候选小区中的满足所述第一条件的候选小区的测量结果。
作为一个实施例,所述第一测量报告指示所述第一候选小区中的满足所述第一条件的候选小区,所述满足所述第一条件的所述候选小区按照测量结果从高到低排序,所述第一测量报告不包括测量结果。
作为一个实施例,作为所述第一条件被满足的响应,发送所述第一信令。
作为一个实施例,作为所述第一条件被满足的响应,应用针对所述目标小区的配置信息;作为所述行为应用目标小区的配置信息的响应,发送所述第一信令。
作为一个实施例,作为所述第一条件被满足的响应,发送第一测量报告;作为所述第一测量报告被发送的响应,接收所述第一信令。
作为一个实施例,所述第一测量报告的接收者是所述第一小区组中的一个服务小区的维持基站。
作为一个实施例,所述第一条件与L3测量结果无关。
作为一个实施例,所述第一条件与L3测量结果有关。
作为一个实施例,所述第一条件与L1测量结果有关,并且,所述第一条件与L3测量结果无关。
作为一个实施例,所述第一条件被满足包括:针对所述目标小区的测量结果大于第一阈值。
作为一个实施例,所述第一条件被满足包括:针对所述目标小区的测量结果和一个偏置之和大于第一阈值。
作为一个实施例,所述第一条件被满足包括:针对所述目标小区的测量结果大于第一阈值,并且,针对所述第一小区的测量结果小于第二阈值。
作为一个实施例,所述第一条件被满足包括:针对所述目标小区的测量结果和一个偏置之和大于第一阈值,并且,针对所述第一小区的测量结果和另一个偏置之和小于第二阈值。
作为一个实施例,所述第一条件被满足包括:针对所述目标小区的测量结果大于针对所述第一小区的测量结果。
作为一个实施例,所述第一条件被满足包括:针对所述目标小区的测量结果和一个偏置之和大于针对所述第一小区的测量结果和另一个偏置之和。
作为一个实施例,针对所述目标小区的所述测量结果是RSRP(Reference signal received power,参考信号接收功率)。
作为一个实施例,针对所述目标小区的所述测量结果是L1测量结果。
作为一个实施例,针对所述目标小区的所述测量结果是L1-RSRP。
作为一个实施例,针对所述目标小区的所述测量结果未经L3滤波(filtering)。
作为一个实施例,所述第一阈值针对所述目标小区配置。
作为一个实施例,所述第一阈值针对所述至少一个候选小区配置。
作为一个实施例,所述第二阈值针对所述目标小区配置。
作为一个实施例,所述第二阈值针对所述至少一个候选小区配置。
实施例15
实施例15示例了根据本申请的一个实施例的第一消息包括目标小区的配置信息的示意图,如附图15所示。
在实施例15中,在所述第一信令之前,接收第一消息,所述第一消息包括所述目标小区的配置信息。
作为一个实施例,所述第一消息的发送者是所述第一小区组中的一个服务小区的维持基站。
作为一个实施例,所述第一消息被用于配置所述第一条件。
作为一个实施例,所述第一消息包括所述第一候选小区组中的每个候选小区的配置信息。
作为一个实施例,所述目标小区的所述配置信息包括至少所述目标小区的标识。
作为一个实施例,所述目标小区的所述标识是物理小区标识(Physical Cell Identity,PCI)。
作为一个实施例,所述目标小区的所述标识是所述目标小区在所述第一候选小区组中的索引。
作为一个实施例,所述目标小区的所述配置信息包括至少所述第一候选小区组中的每个候选小区的标识。
作为一个实施例,所述第一候选小区组中的每个候选小区的标识是物理小区标识。
作为一个实施例,所述第一候选小区组中的每个候选小区的标识是所述每个候选小区在所述第一候选小区组中的索引。
作为一个实施例,所述第一消息被用于指示所述第一阈值。
作为一个实施例,所述第一消息被用于指示所述第一阈值和所述第二阈值。
作为一个实施例,所述第一消息被用于配置所述第一条件,并且,所述第一消息指示所述第一候选小区集合所包括的候选小区,并且,所述第一消息包括针对所述第一候选小区集合中的每个候选小区的配置信息;所述目标小区是所述第一候选小区集合中的一个候选小区。
作为一个实施例,所述第一消息是RRC消息。
作为一个实施例,所述第一消息是下行链路消息。
作为一个实施例,所述第一消息是副链路消息。
作为一个实施例,所述第一消息通过DCCH传输。
作为一个实施例,所述第一消息通过SCCH传输。
作为一个实施例,所述第一消息包括RRC消息中的至少一个IE。
作为一个实施例,所述第一消息包括RRC消息中的至少一个域。
作为一个实施例,所述第一消息包括RRCReconfiguration消息。
作为一个实施例,所述第一消息是RRCReconfiguration消息中的至少一个IE。
作为一个实施例,所述第一消息是RRCReconfiguration消息中的至少一个域。
作为一个实施例,所述第一消息属于CellGroupConfig IE。
作为一个实施例,所述第一消息包括SCellConfig域。
作为一个实施例,所述第一消息包括SpCellConfig域。
作为一个实施例,所述第一消息包括ServingCellConfig IE。
作为一个实施例,所述第一消息的名字中包括ServingCellConfig和r18。
作为一个实施例,所述目标小区的配置信息包括所述目标小区所属的TAG。
作为一个实施例,所述第一消息包括所述tag-Id域,所述tag-Id域指示所述目标小区所属的所述第一TAG的TAG ID。
作为一个实施例,所述第一消息包括SCellConfig域,所述SCellConfig域中包括sCellIndex域,所述sCellIndex域指示所述第一小区的标识,所述第一小区是一个SCell,所述SCellConfig域中包括所述目标小区的配置信息。
作为该实施例的一个子实施例,所述SCellConfig域包括所述第一候选小区组中的每个候选小区的配置信息。
作为一个实施例,所述第一消息包括SpCellConfig域,所述SpCellConfig域中包括servCellIndex,所述servCellIndex域指示所述第一小区是PSCell,所述SpCellConfig域中包括所述目标小区的配置信息。
作为该实施例的一个子实施例,所述SpCellConfig域包括所述第一候选小区组中的每个候选小区的配置信息。
作为一个实施例,所述第一消息包括SpCellConfig域,所述SpCellConfig域中不包括servCellIndex,所述SpCellConfig域中不包括所述servCellIndex域指示所述第一小区是PCell,所述SpCellConfig域中包括所述目标小区的配置信息。
作为该实施例的一个子实施例,所述SpCellConfig域包括所述第一候选小区组中的每个候选小区的配置信息。
作为一个实施例,所述第一消息属于CellGroupConfig IE,所述CellGroupConfig IE中包括servCellIndex域或者sCellIndex域,servCellIndex域或者sCellIndex域指示所述第一小区的标识,所述CellGroupConfig IE中包括所述目标小区的配置信息。
作为该实施例的一个子实施例,所述CellGroupConfig IE中包括所述第一候选小区组中的每个候选小区的配置信息。
作为一个实施例,所述第一消息中包括一个域,所述一个域指示所述第一小区的配置信息;所述第一消息中包括另一个域,所述另一个域指示所述目标小区的配置信息;所述一个域的名字中包括ServingCellConfig,所述另一个域的名字中包括ServingCellConfig。
作为该实施例的一个子实施例,所述一个域和所述另一个域属于同一个SpCellConfig域。
作为该实施例的一个子实施例,所述一个域和所述另一个域属于同一个SCellConfig域。
实施例16
实施例16示例了根据本申请的一个实施例的第二上行链路帧和第二下行链路帧的定时关系的示意图,如附图16所示。在附图16中,方框1601表示第二下行链路帧,方框1602表示第二上行链路帧;横轴表示时间,所述第二下行链路帧的起始时刻是T4,所述第二上行链路帧的起始时刻是T3。
在实施例16中,所述第二上行链路帧的起始时刻相比所述第二下行链路帧的起始时刻提前了所述第二时间间隔;所述第二下行链路帧的定时参考是所述第一小区。
作为一个实施例,所述T4与所述T3的差值与所述第一时间间隔相等。
作为一个实施例,所述T3和所述T4分别对应一个时隙。
作为一个实施例,所述T3和所述T4分别对应一个时间单元。
作为一个实施例,所述T3和所述T4分别对应一个时刻。
作为一个实施例,所述时刻T3小于所述T4。
作为一个实施例,所述时刻T3不大于所述T4。
作为一个实施例,所述时刻T4小于所述T2。
作为一个实施例,所述第二上行链路帧的起始时刻早于所述第二下行链路帧的起始时刻。
作为一个实施例,所述第二下行链路帧的起始时刻早于所述第一下行链路帧的起始时刻。
作为一个实施例,所述第二下行链路帧和所述第一下行链路帧是所述第一小区的不同的两个下行链路帧。
作为一个实施例,所述第二下行链路帧和所述第一下行链路帧是两个连续的下行链路帧。
作为一个实施例,所述第二下行链路帧和所述第一下行链路帧之间包括至少一个下行链路帧。
作为一个实施例,在所述第一时间之前的所述第二上行链路帧中,所述第二无线信号在所述第二小区上被发送;在所述第一时间之后的所述第一上行链路帧中,所述第一无线信号在所述第二小区上被发送。
作为一个实施例,所述第二上行链路帧在所述第一时间之前,所述第一上行链路帧在所述第一时间之后。
实施例17
实施例17示例了根据本申请的一个实施例的第二无线信号占用的时隙的示意图,如附图17所示。在附图17中,粗虚线方框表示第二上行链路帧;十字填充的方框表示第二无线信号占用的时隙;横轴表 示时间,所述第二上行链路帧的起始时刻是T3。
作为一个实施例,所述第二上行链路帧包括P2个时隙,所述第二无线信号占用所述P2个时隙中的一个时隙。
作为一个实施例,所述第二上行链路帧包括P2个时隙,所述第二无线信号占用所述P2个时隙中的至少一个时隙。
作为一个实施例,所述第二上行链路帧包括P2个时隙,所述第二无线信号占用所述P2个时隙中的一个或者多个时隙。
作为一个实施例,所述P2是正整数。
作为一个实施例,所述P2和所述P1相等。
作为一个实施例,所述P2和所述P1不相等。
作为一个实施例,所述第二无线信号所占用的时隙被RRC消息指示。
作为一个实施例,所述第二无线信号所占用的时隙被DCI指示。
作为一个实施例,所述第二无线信号所占用的时隙根据至少DCI确定。
作为一个实施例,所述第二无线信号所占用的时隙根据至少RRC消息确定。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一接收机,接收第一信令,所述第一信令在RRC层之下的协议层被生成,所述第一信令被用于指示从第一时间开始针对第一小区停止执行第一操作集合;
    第一发射机,在所述第一时间之后的第一上行链路帧中,在第二小区上发送第一无线信号;
    其中,所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述第一上行链路帧的起始时刻相比第一下行链路帧的起始时刻提前了第一时间间隔;所述第一下行链路帧属于第一小区。
  2. 根据权利要求1所述的第一节点,其特征在于,包括:
    所述第一接收机,接收至少一个定时提前命令,所述至少一个定时提前命令被用于确定所述第一时间间隔。
  3. 根据权利要求1或2所述的第一节点,其特征在于,所述第一信令被用于指示针对第一小区执行第二操作集合;所述第二操作集合包括清空关联到所述第一小区的所有HARQ缓冲池,或者,清除关联到所述第一小区的针对半持续CSI上报的任意PUSCH资源,或者,清除关联到所述第一小区的任意配置的下行链路分配和任意配置的上行链路授予类型2,或者,清除关联到所述第一小区的任意配置的上行链路授予类型1中的至少之一。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一发射机,在所述第一时间之前的第二上行链路帧中,在所述第二小区上发送第二无线信号;
    其中,所述第二上行链路帧的起始时刻相比第二下行链路帧的起始时刻提前了第二时间间隔;所述第二下行链路帧属于所述第一小区;所述第一小区和所述第二小区属于同一个小区组,所述第一小区和所述第二小区具有不同的服务小区标识。
  5. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一接收机,在所述第一信令之前,接收第二信令,所述第二信令包括所述第二小区的配置信息;
    其中,所述第一信令被用于指示针对第二小区执行所述第一操作集合;针对所述第一小区停止执行所述第一操作集合之前,针对所述第二小区所述第一操作集合不被执行;所述第二小区的所述配置信息包括至少所述第二小区的标识。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一接收机,在所述第一信令之前,接收第三信令,所述第三信令被用于确定所述第一小区是所述第二小区的定时参考;
    其中,所述第一小区是所述第二小区的定时参考被用于确定所述第一下行链路帧属于所述第一小区。
  7. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于,所述第二小区和所述第一小区属于同一个TAG。
  8. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二接收机,在第一时间之后的第一上行链路帧中,在第二小区上接收第一无线信号;
    其中,第一信令被发送,所述第一信令的接收者是所述第一无线信号的发送者;所述第一信令在RRC层之下的协议层被生成,所述第一信令被用于指示从所述第一时间开始针对第一小区停止执行第一操作集合;所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述第一上行链路帧的起始时刻相比第一下行链路帧的起始时刻提前了第一时间间隔;所述第一下行链路帧属于第一小区。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信令,所述第一信令在RRC层之下的协议层被生成,所述第一信令被用于指示从第一时间开始针对第一小区停止执行第一操作集合;
    在所述第一时间之后的第一上行链路帧中,在第二小区上发送第一无线信号;
    其中,所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述第一上行链路帧的起始时刻相比第一下行链路帧的起始时刻提前了第一时间间隔;所述第一下行链路帧属于第一小区。
  10. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    在第一时间之后的第一上行链路帧中,在第二小区上接收第一无线信号;
    其中,第一信令被发送,所述第一信令的接收者是所述第一无线信号的发送者;所述第一信令在RRC层之下的协议层被生成,所述第一信令被用于指示从所述第一时间开始针对第一小区停止执行第一操作集合;所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述第一上行链路帧的起始时刻相比第一下行链路帧的起始时刻提前了第一时间间隔;所述第一下行链路帧属于第一小区。
PCT/CN2023/087949 2022-04-24 2023-04-13 一种被用于无线通信的通信节点中的方法和装置 WO2023207604A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210433655.2A CN116996183A (zh) 2022-04-24 2022-04-24 一种被用于无线通信的通信节点中的方法和装置
CN202210433655.2 2022-04-24

Publications (1)

Publication Number Publication Date
WO2023207604A1 true WO2023207604A1 (zh) 2023-11-02

Family

ID=88517333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087949 WO2023207604A1 (zh) 2022-04-24 2023-04-13 一种被用于无线通信的通信节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN116996183A (zh)
WO (1) WO2023207604A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104025649A (zh) * 2012-12-27 2014-09-03 华为技术有限公司 控制上行载波聚合的方法、用户设备和基站
US20170325225A1 (en) * 2016-05-06 2017-11-09 Ofinno Technologies, Llc Uplink signal starting position in a wireless device and wireless network
CN111212466A (zh) * 2016-12-20 2020-05-29 北京小米移动软件有限公司 信道监听控制方法、装置和用户终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104025649A (zh) * 2012-12-27 2014-09-03 华为技术有限公司 控制上行载波聚合的方法、用户设备和基站
US20170325225A1 (en) * 2016-05-06 2017-11-09 Ofinno Technologies, Llc Uplink signal starting position in a wireless device and wireless network
CN111212466A (zh) * 2016-12-20 2020-05-29 北京小米移动软件有限公司 信道监听控制方法、装置和用户终端

Also Published As

Publication number Publication date
CN116996183A (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
WO2023207604A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023207709A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN114698042A (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023213219A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023138486A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024017078A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023186164A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024104208A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024032478A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024027612A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023174376A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023179468A1 (zh) 一种被用于无线通信的方法和设备
WO2024046155A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024022238A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024007870A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN114158058B (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024046152A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN113498134B (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023160415A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024051626A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023226924A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023098548A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023174228A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
US20230262817A1 (en) Method and device in communication node for wireless communication
WO2023169322A1 (zh) 一种被用于无线通信的通信节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795037

Country of ref document: EP

Kind code of ref document: A1