WO2024027612A1 - 一种被用于无线通信的通信节点中的方法和装置 - Google Patents

一种被用于无线通信的通信节点中的方法和装置 Download PDF

Info

Publication number
WO2024027612A1
WO2024027612A1 PCT/CN2023/110084 CN2023110084W WO2024027612A1 WO 2024027612 A1 WO2024027612 A1 WO 2024027612A1 CN 2023110084 W CN2023110084 W CN 2023110084W WO 2024027612 A1 WO2024027612 A1 WO 2024027612A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
physical layer
layer channel
dci
domain resources
Prior art date
Application number
PCT/CN2023/110084
Other languages
English (en)
French (fr)
Inventor
于巧玲
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024027612A1 publication Critical patent/WO2024027612A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows

Definitions

  • the present application relates to transmission methods and devices in wireless communication systems, and in particular to full-duplex (Duplex) transmission methods and devices.
  • TDD Time Division Duplexing, Time Division Duplex
  • the time domain resources of TDD are divided into downlink (Downlink, DL) and uplink (Uplink, UL). Allocating a limited time interval to the uplink (UL) in TDD will lead to reduced coverage, increased latency and reduced capacity.
  • 3GPP 3rd Generation Partner Project
  • Configuration flexibility study the feasibility of simultaneous downlink and uplink, that is, full duplex, more specifically, subband non-overlapping full duplex in the gNB terminal within the traditional TDD frequency band ,SBFD).
  • the base station dynamically schedules PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Downlink Shared Channel) to UE (User Equipment) through different DCI (Downlink Control Information) formats (Format).
  • FDRA Frequency Domain Resource Assignment
  • this application provides a full-duplex solution.
  • the NR system is used as an example; this application is also applicable to scenarios such as LTE systems; further, although this application provides specific implementation methods for unicast, this application can also be used
  • multicast MBS Multicast/Broadcast Service, multicast/broadcast service
  • technical effects similar to MT-SDT in RRC inactive state can be achieved.
  • the original intention of this application is for the Uu air interface, this application can also be used for the PC5 interface.
  • the original intention of this application is for the terminal and base station scenario
  • this application is also applicable to the V2X (Vehicle-to-Everything, Internet of Vehicles) scenario, the communication scenario between the terminal and the relay, and the relay and the base station. , achieving similar technical effects in terminal and base station scenarios.
  • the original intention of this application is for the terminal and base station scenario
  • this application is also applicable to the IAB (Integrated Access and Backhaul, integrated access and backhaul) communication scenario, and obtains similar technologies in the terminal and base station scenario. Effect.
  • This application discloses a method used in a first node of wireless communication, which is characterized by including:
  • the first domain of the first DCI is used to determine the frequency domain resources occupied by the first physical layer channel and the frequency domain resources occupied by the second physical layer channel.
  • the first DCI includes a second domain
  • the second domain of the first DCI is used for Determine the time domain resources occupied by the first physical layer channel and the time domain resources occupied by the second physical layer channel.
  • This application discloses a method used in a first node of wireless communication, which is characterized by including:
  • the second domain of the first DCI is used to determine the time domain resources occupied by the first physical layer channel and the time domain resources occupied by the second physical layer channel.
  • the first DCI includes a first domain; the first domain of the first DCI is used to determine the frequency domain resources occupied by the first physical layer channel; The frequency domain resources occupied by the second physical layer channel.
  • the problems to be solved by this application include: how to improve scheduling flexibility.
  • the problems to be solved by this application include: how to improve scheduling efficiency.
  • the problems to be solved by this application include: how to avoid resource waste.
  • the problems to be solved by this application include: how to schedule PDSCH and PUSCH simultaneously.
  • the problems to be solved by this application include: how to shorten the scheduling delay.
  • the characteristics of the above method include: the first domain of the first DCI is used to determine the frequency domain resources occupied by the first physical layer channel and the frequency domain resources occupied by the second physical layer channel. Frequency domain resources.
  • the characteristics of the above method include: performing wireless reception on a first physical layer channel and performing wireless transmission on a second physical layer channel according to frequency domain resources indicated by the first domain of the first DCI. .
  • the characteristics of the above method include: the second domain of the first DCI is used to determine the time domain resources occupied by the first physical layer channel and the time domain resources occupied by the second physical layer channel. time domain resources.
  • the characteristics of the above method include: performing wireless reception on the first physical layer channel and performing wireless transmission on the second physical layer channel according to the time domain resources indicated by the second domain of the first DCI. .
  • the benefits of the above method include: improving scheduling flexibility.
  • the benefits of the above method include: improving scheduling efficiency.
  • the benefits of the above method include: avoiding resource waste.
  • the benefits of the above method include: scheduling uplink transmission and downlink transmission simultaneously.
  • the benefits of the above method include: shortening the scheduling delay.
  • the first DCI includes a first candidate domain and a second candidate domain; the first candidate domain indicates the MCS (Modulation and coding scheme) for the first physical layer channel.
  • Modulation and encoding method or NDI (New Data Indicator, new data indication) or RV (Redundancy version, redundancy version) or HARQ (Hybrid Automatic Repeat Request, hybrid automatic repeat request) at least one of the process number (Process Number) ;
  • the second candidate field indicates at least one of MCS or NDI or RV or HARQ process number for the second physical layer channel.
  • the characteristics of the above method include: the first DCI indication is directed to at least one of the MCS or NDI or RV or HARQ process number of the first physical layer channel, and the first DCI indication is directed to At least one of the MCS, NDI, RV, or HARQ process number of the second physical layer channel.
  • the characteristics of the above method include: independently configuring the HARQ processes of PDSCH and PUSCH.
  • the benefits of the above method include: uplink transmission and downlink transmission can be configured independently, increasing system scheduling flexibility.
  • a first message is received, the first message being used to determine a payload size of the first domain of the first DCI.
  • the first message is used to determine a first frequency domain resource pool; the frequency domain resources occupied by the first physical layer channel or the second physical layer channel At least one of the occupied frequency domain resources belongs to the first frequency domain resource pool.
  • the frequency domain resources occupied by the first physical layer channel belong to the first frequency domain resource pool.
  • the frequency domain resources occupied by the second physical layer channel belong to the first frequency domain resource pool.
  • the frequency domain resources occupied by the first physical layer channel and the frequency domain resources occupied by the second physical layer channel belong to the first frequency domain resource pool.
  • the characteristics of the above method include: simultaneously configuring the first physical layer channel and the second physical layer channel in the first frequency domain resource pool.
  • the benefits of the above method include: reducing scheduling complexity.
  • the benefits of the above method include: improving the flexibility of duplex communication.
  • the benefits of the above method include: improving resource utilization.
  • the frequency domain resources occupied by the first physical layer channel belong to the first frequency domain resource pool; the frequency domain resources occupied by the second physical layer channel belong to the second frequency domain resources. Pool.
  • the characteristics of the above method include: configuring the first physical layer channel and the second physical layer channel in the first frequency domain resource pool and the second frequency domain resource pool respectively.
  • the benefits of the above method include: improving the flexibility of resource configuration.
  • the first message is used to determine a first frequency domain resource subset, and the first frequency domain resource subset belongs to the first frequency domain resource pool; the third frequency domain resource subset belongs to the first frequency domain resource pool; The frequency domain resources occupied by a physical layer channel belong to the first frequency domain resource pool, and the frequency domain resources occupied by the second physical layer channel belong to the first frequency domain resource subset; or, The frequency domain resources occupied by the first physical layer channel belong to the first frequency domain resource subset, and the frequency domain resources occupied by the second physical layer channel belong to the first frequency domain resource pool.
  • This application discloses a method used in a second node of wireless communication, which is characterized by including:
  • the first domain of the first DCI is used to determine the frequency domain resources occupied by the first physical layer channel and the frequency domain resources occupied by the second physical layer channel.
  • the first DCI includes a second domain
  • the second domain of the first DCI is used to determine the time domain resources occupied by the first physical layer channel and The time domain resources occupied by the second physical layer channel.
  • This application discloses a method used in a second node of wireless communication, which is characterized by including:
  • the second domain of the first DCI is used to determine the time domain resources occupied by the first physical layer channel and the time domain resources occupied by the second physical layer channel.
  • the first DCI includes a first domain, and the first domain of the first DCI is used to determine the frequency domain resources occupied by the first physical layer channel; The frequency domain resources occupied by the second physical layer channel.
  • the first DCI includes a first candidate domain and a second candidate domain; the first candidate domain indicates MCS or NDI or RV or HARQ for the first physical layer channel At least one of the process numbers; the second candidate field indicates at least one of the MCS or NDI or RV or HARQ process number for the second physical layer channel.
  • a first message is sent, the first message being used to determine a payload size of the first domain of the first DCI.
  • the first message is used to determine a first frequency domain resource pool; the frequency domain resources occupied by the first physical layer channel or the second physical layer channel At least one of the occupied frequency domain resources belongs to the first frequency domain resource pool.
  • the frequency domain resources occupied by the first physical layer channel belong to the first frequency domain resource pool; the frequency domain resources occupied by the second physical layer channel belong to the second frequency domain resources. Pool.
  • the first message is used to determine a first frequency domain resource subset, and the first frequency domain resource subset belongs to the first frequency domain resource pool; the third frequency domain resource subset belongs to the first frequency domain resource pool; The frequency domain resources occupied by a physical layer channel belong to the first frequency domain resource pool, and the frequency domain resources occupied by the second physical layer channel belong to the first frequency domain resource subset; or, The first physical layer channel occupies The frequency domain resources used belong to the first frequency domain resource subset, and the frequency domain resources occupied by the second physical layer channel belong to the first frequency domain resource pool.
  • This application discloses a first node used for wireless communication, which is characterized by including:
  • a first receiver receives first DCI, where the first DCI includes a first domain
  • the first processor performs wireless reception on the first physical layer channel and performs wireless transmission on the second physical layer channel;
  • the first domain of the first DCI is used to determine the frequency domain resources occupied by the first physical layer channel and the frequency domain resources occupied by the second physical layer channel.
  • This application discloses a first node used for wireless communication, which is characterized by including:
  • a first receiver receives first DCI, where the first DCI includes a second domain
  • the first processor performs wireless reception on the first physical layer channel and performs wireless transmission on the second physical layer channel;
  • the second domain of the first DCI is used to determine the time domain resources occupied by the first physical layer channel and the time domain resources occupied by the second physical layer channel.
  • This application discloses a second node used for wireless communication, which is characterized in that it includes:
  • a second transmitter transmitting a first DCI, where the first DCI includes a first domain
  • the second processor performs wireless transmission on the first physical layer channel and performs wireless reception on the second physical layer channel;
  • the first domain of the first DCI is used to determine the frequency domain resources occupied by the first physical layer channel and the frequency domain resources occupied by the second physical layer channel.
  • This application discloses a second node used for wireless communication, which is characterized in that it includes:
  • a second transmitter transmitting a first DCI, where the first DCI includes a second domain
  • the second processor performs wireless transmission on the first physical layer channel and performs wireless reception on the second physical layer channel;
  • the second domain of the first DCI is used to determine the time domain resources occupied by the first physical layer channel and the time domain resources occupied by the second physical layer channel.
  • this application has the following advantages:
  • Figure 1 shows a flow chart of the transmission of the first DCI according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Figure 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a wireless signal transmission flow chart according to an embodiment of the present application
  • Figure 6 shows a wireless signal transmission flow chart according to another embodiment of the present application.
  • Figure 7 shows a schematic diagram of a first DCI including a second domain according to an embodiment of the present application
  • Figure 8 shows a schematic diagram of a first frequency domain resource pool according to an embodiment of the present application.
  • Figure 9 shows a schematic diagram of a first frequency domain resource pool and a second frequency domain resource pool according to an embodiment of the present application.
  • Figure 10 shows a schematic diagram of frequency domain resources occupied by the first physical layer channel and the second physical layer channel according to an embodiment of the present application. picture
  • Figure 11 shows a schematic diagram of frequency domain resources occupied by the first physical layer channel and the second physical layer channel according to another embodiment of the present application
  • Figure 12 shows a schematic diagram of time domain resources occupied by the first physical layer channel and the second physical layer channel according to an embodiment of the present application
  • Figure 13 shows a schematic diagram of time domain resources occupied by the first physical layer channel and the second physical layer channel according to another embodiment of the present application
  • Figure 14 shows a schematic diagram of time domain resources and frequency domain resources occupied by the first physical layer channel and the second physical layer channel according to an embodiment of the present application
  • Figure 15 shows a schematic diagram of a first DCI including a first candidate domain and a second candidate domain according to an embodiment of the present application
  • Figure 16 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present application
  • Figure 17 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of the transmission of the first DCI according to an embodiment of the present application, as shown in FIG. 1 .
  • each box represents a step. It should be particularly emphasized that the order of the boxes in the figure does not represent the temporal relationship between the steps represented.
  • the first node in this application receives the first DCI, and the first DCI includes the first domain; in step 102, performs wireless reception on the first physical layer channel, and in Wireless transmission is performed on the second physical layer channel; wherein the first domain of the first DCI is used to determine the frequency domain resources occupied by the first physical layer channel and the frequency domain resources occupied by the second physical layer channel. frequency domain resources.
  • the sender of the first DCI is a user equipment.
  • the sender of the first DCI is a base station device.
  • the sender of the first DCI is a TRP (Transmission Reception Point).
  • the sender of the first DCI is the maintenance base station of the first cell.
  • the first DCI is received on the first cell.
  • the first cell is a serving cell (Serving Cell) of the first node.
  • serving Cell Serving Cell
  • the first cell is the SpCell (Special Cell) of the first node.
  • the first cell is a PCell (Primary Cell, primary cell) of the first node.
  • PCell Primary Cell, primary cell
  • the first cell is a PSCell (Primary SCG (Secondary Cell Group) Cell, SCG primary cell) of the first node.
  • PSCell Primary SCG (Secondary Cell Group) Cell, SCG primary cell
  • the first cell is an activated SCell (Secondary Cell) of the first node.
  • the first cell is a scheduling cell.
  • the first node monitors PDCCH (Physical Downlink Control Channel) on the first cell.
  • PDCCH Physical Downlink Control Channel
  • the first DCI is transmitted on PDCCH.
  • the first DCI is transmitted on a physical layer channel.
  • the first DCI is physical layer signaling.
  • the first DCI is Layer 1 (Layer 1, L1) signaling.
  • the first DCI is control signaling.
  • the first DCI is a DCI.
  • the first DCI is received on a Common Search Space (CSS).
  • CSS Common Search Space
  • the first DCI is configured in a user equipment-specific search space (USS, UE-Specific Search Space). take over.
  • USS user equipment-specific search space
  • the first DCI is received on a CSS set (Set).
  • the first DCI is received on a USS set.
  • the format of the first DCI is Format 0_0.
  • the format of the first DCI is Format 1_0.
  • the format of the first DCI is Format 2_0.
  • the format of the first DCI is not any one of Format 0_0 or Format 1_0 or Format 2_0.
  • the format of the first DCI is full-duplex specific.
  • the first domain of the first DCI is a frequency domain resource allocation (Frequency Domain Resource Assignment, FDRA) domain.
  • FDRA Frequency Domain Resource Assignment
  • the first domain of the first DCI is a Frequency domain resource assignment domain.
  • the payload size of the first domain of the first DCI is equal to a positive integer number of bits.
  • the payload size of the first domain of the first DCI is variable.
  • the payload size of the first domain of the first DCI is fixed.
  • the load size of the first domain of the first DCI refers to the number of bits occupied by the first domain of the first DCI.
  • the load size of the first domain of the first DCI is related to a first BWP (Bandwidth Part, bandwidth part).
  • the load of the first domain of the first DCI occupies a positive integer number of bits.
  • the positive integer number of bits occupied by the load of the first domain of the first DCI is continuous.
  • the first domain of the first DCI is used for frequency domain resource allocation.
  • the first domain of the first DCI is used to determine frequency domain resources.
  • the frequency domain resource allocation includes the location of the frequency domain resource.
  • the frequency domain resource allocation includes the size of the frequency domain resource.
  • the frequency domain resource allocation includes the number of frequency domain resource blocks and the index of the frequency domain resource block.
  • the frequency domain resource allocation includes the location of the frequency domain resource and the size of the frequency domain resource.
  • the frequency domain resource indicated by the first domain of the first DCI includes a continuous frequency resource.
  • the frequency domain resources indicated by the first domain of the first DCI include a section of non-continuous frequency resources.
  • the frequency domain resource allocation type of the frequency domain resource indicated by the first domain of the first DCI is resource allocation type 0 (resource allocation type 0).
  • the frequency domain resource allocation type of the frequency domain resource indicated by the first domain of the first DCI is resource allocation type 1 (resource allocation type 1).
  • the frequency domain resources indicated by the first domain of the first DCI include K0 frequency domain resource blocks; the frequency domain resources occupied by the first physical layer channel include K1 frequency domain resource blocks. , the frequency domain resources occupied by the second physical layer channel include K2 frequency domain resource blocks; the K0, the K1 and the K2 are respectively positive integers; the sum of the K1 and the K2 is not greater than the K0.
  • the sum of K1 and K2 is smaller than K0.
  • the sum of K1 and K2 is equal to K0.
  • the frequency domain resources indicated by the first domain of the first DCI include K0 frequency domain resource block groups; the frequency domain resources occupied by the first physical layer channel include K1 frequency domain resources. block group, the frequency domain resources occupied by the second physical layer channel include K2 frequency domain resource block groups; the K0, the K1 and the K2 are respectively positive integers; the sum of the K1 and the K2 is not greater than the K0.
  • the sum of K1 and K2 is smaller than K0.
  • the sum of K1 and K2 is equal to K0.
  • the frequency domain resource block in this application refers to a PRB (Physical Resource Block, physical resource block).
  • PRB Physical Resource Block, physical resource block
  • the frequency domain resource block in this application refers to CRB (Common Resource Block, common resource block).
  • the frequency domain resource block in this application refers to VRB (Virtual Resource Block).
  • the frequency domain resource block group in this application includes a positive integer number of frequency domain resource blocks.
  • the frequency domain resource block group in this application is an RBG (Resource Block Group).
  • the frequency domain resource block group in this application is a PRG (Precoding Resource Block Group).
  • the frequency domain resources indicated by the first domain of the first DCI are determined according to Section 5.1.2.2 of 3GPP TS38.214.
  • wireless reception is performed on the first physical layer channel according to the first DCI.
  • wireless reception is performed on the first physical layer channel according to the scheduling information of the first DCI.
  • wireless reception is performed on the first physical layer channel according to at least the first domain of the first DCI.
  • wireless transmission is performed on the second physical layer channel according to the first DCI.
  • wireless transmission is performed on the second physical layer channel according to the scheduling information of the first DCI.
  • wireless transmission is performed on the second physical layer channel according to at least the first domain of the first DCI.
  • the "performing wireless reception” includes: performing reception of wireless signals.
  • the "performing wireless reception” includes: receiving at least one wireless signal.
  • the "performing wireless reception” includes: receiving at least one downlink wireless signal.
  • the "performing wireless reception” includes: receiving at least one side link (Sidelink, SL) wireless signal.
  • Sidelink Sidelink
  • the "performing wireless reception” includes: receiving at least one air interface wireless signal.
  • performing wireless reception includes: detecting at least one wireless signal.
  • the "performing wireless reception” includes: detecting at least one downlink wireless signal.
  • the "performing wireless reception” includes: detecting at least one air interface wireless signal.
  • performing wireless reception includes: decoding at least one wireless signal.
  • the "performing wireless reception” includes: decoding at least one downlink wireless signal.
  • the "performing wireless reception” includes: decoding at least one air interface wireless signal.
  • performing wireless transmission includes: performing transmission of wireless signals.
  • performing wireless transmission includes: sending at least one wireless signal.
  • the "performing wireless transmission” includes: sending at least one uplink wireless signal.
  • the "performing wireless transmission” includes: transmitting at least one secondary link wireless signal.
  • the "performing wireless transmission” includes: sending at least one air interface wireless signal.
  • the at least one uplink wireless signal includes PUSCH.
  • the at least one uplink wireless signal includes SRS (Sounding reference signal, sounding reference signal).
  • the at least one uplink wireless signal includes DM (Demodulation)-RS.
  • the at least one uplink wireless signal includes PT (Phase-tracking)-RS.
  • the at least one downlink wireless signal includes PDSCH.
  • the at least one downlink wireless signal includes CSI (Channel-state information)-RS.
  • the at least one downlink wireless signal includes DM-RS.
  • the at least one downlink wireless signal includes PT-RS.
  • the at least one downlink wireless signal includes P (Positioning)-RS.
  • the at least one downlink wireless signal includes PSS (Primary synchronization signal).
  • the at least one downlink wireless signal includes SSS (Secondary synchronization signal).
  • the at least one secondary link wireless signal includes PSSCH.
  • the at least one secondary link wireless signal includes PSCCH.
  • the at least one secondary link wireless signal includes DM-RS.
  • the at least one secondary link wireless signal includes CSI-RS.
  • the at least one secondary link wireless signal includes PT-RS.
  • the at least one side link wireless signal includes S (Sidelink)-PSS.
  • the at least one secondary link wireless signal includes S-SSS.
  • the first physical layer channel belongs to the first cell
  • the second physical layer channel belongs to the first cell
  • the first DCI is only used for scheduling the first cell.
  • the sender of the first DCI is the maintenance base station of the first cell.
  • the sender of the first DCI is not the maintenance base station of the first cell.
  • the first physical layer channel belongs to the first cell
  • the second physical layer channel belongs to the second cell
  • the first DCI is used to schedule at least the first cell and the second cell.
  • the first DCI is only used for scheduling the first cell and the second cell.
  • the sender of the first DCI is the maintenance base station of the first cell.
  • the sender of the first DCI is the maintenance base station of the second cell.
  • the sender of the first DCI is not the maintenance base station of the first cell, and the sender of the first DCI is not the maintenance base station of the second cell.
  • the first cell and the second cell belong to the same cell group.
  • the PCI of the first cell and the PCI of the second cell are different.
  • the serving cell identity of the first cell and the serving cell identity of the second cell are different.
  • the first cell and the second cell are both serving cells of the first node.
  • both the first cell and the second cell provide wireless resources for the first node.
  • the second cell is configured for the first cell.
  • the first physical layer channel is a physical layer channel.
  • the first physical layer channel is PDSCH.
  • the first physical layer channel is PDCCH.
  • the first physical layer channel is PSSCH (Physical sidelink shared channel, physical downlink shared channel).
  • the first physical layer channel is PSCCH (Physical sidelink control channel, physical downlink control channel).
  • the first physical layer channel is used for downlink transmission.
  • the first physical layer channel is used for secondary link transmission.
  • the second physical layer channel is a physical layer channel.
  • the second physical layer channel is PUSCH.
  • the second physical layer channel is PUCCH (Physical uplink control channel, physical uplink control channel).
  • the second physical layer channel is PRACH (Physical random access channel, physical random access channel).
  • the second physical layer channel is PSSCH.
  • the second physical layer channel is PSCCH.
  • the second physical layer channel is used for uplink transmission.
  • the second physical layer channel is used for secondary link transmission.
  • the first physical layer channel and the second physical layer channel are different.
  • the first physical layer channel is PDSCH
  • the second physical layer channel is at least one of PUSCH or PUCCH or PRACH or PSSCH.
  • the first physical layer channel is at least one of PDSCH or PDCCH or PSSCH
  • the second physical layer channel is PUSCH
  • the first physical layer channel is PDSCH
  • the second physical layer channel is PUSCH
  • the first physical layer channel is PDSCH
  • the second physical layer channel is PUCCH
  • the first physical layer channel is PDSCH
  • the second physical layer channel is PSSCH
  • the first physical layer channel is PSSCH
  • the second physical layer channel is PUSCH
  • the first physical layer channel includes time-frequency resources used to receive CSI-RS.
  • the second physical layer channel includes time-frequency resources used to transmit SRS.
  • the first node determines the frequency domain resources occupied by the first physical layer channel and the frequency domain resources occupied by the second physical layer channel according to the first domain of the first DCI. .
  • the first domain of the first DCI indicates frequency domain resource allocation of the first physical layer channel and frequency domain resource allocation of the second physical layer channel.
  • the first domain of the first DCI is used to determine the frequency domain resources occupied by the first physical layer channel, and the first domain of the first DCI is used to Determine the frequency domain resources occupied by the second physical layer channel.
  • At least the first domain of the first DCI is used to determine the frequency domain resources occupied by the first physical layer channel and the frequency domain resources occupied by the second physical layer channel.
  • frequency domain resources indicated by the first domain of the first DCI are used for the first physical layer channel and the second physical layer channel.
  • the frequency domain resources occupied by the first physical layer channel include all frequency domain resources indicated by the first domain of the first DCI, and the frequency domain resources occupied by the second physical layer channel
  • the frequency domain resources include all frequency domain resources indicated by the first domain of the first DCI.
  • the frequency domain resources occupied by the first physical layer channel include all frequency domain resources indicated by the first domain of the first DCI, and the frequency domain resources occupied by the second physical layer channel
  • the frequency domain resources include part of the frequency domain resources indicated by the first domain of the first DCI.
  • the frequency domain resources occupied by the first physical layer channel include part of the frequency domain resources indicated by the first domain of the first DCI, and the frequency domain resources occupied by the second physical layer channel
  • the frequency domain resources include all frequency domain resources indicated by the first domain of the first DCI.
  • the frequency domain resources occupied by the first physical layer channel include part of the frequency domain resources indicated by the first domain of the first DCI, and the frequency domain resources occupied by the second physical layer channel
  • the frequency domain resources include part of the frequency domain resources indicated by the first domain of the first DCI.
  • all frequency domain resources indicated by the first domain of the first DCI are used to determine the first physical layer channel and the second physical layer channel.
  • part of the frequency domain resources indicated by the first domain of the first DCI is used to determine the first physical layer channel and the second physical layer channel.
  • At least part of the frequency domain resources indicated by the first domain of the first DCI are not used for the first physical layer channel and the second physical layer channel.
  • At least part of the frequency domain resources indicated by the first domain of the first DCI is used for rate matching (Rate matching).
  • At least part of the frequency domain resources indicated by the first domain of the first DCI are punctured.
  • the first DCI includes two domains, and the names of the two domains are the same.
  • the first DCI includes two domains, the two domains have the same role, one of the two domains is directed to the first physical layer channel, and the other of the two domains One domain is for the second physical layer channel.
  • At least the first DCI received on the USS is used to determine the first domain of the first DCI is used to determine the frequency domain resources occupied by the first physical layer channel and the The frequency domain resources occupied by the second physical layer channel.
  • the frequency domain position includes a center frequency
  • the frequency domain position is used to determine the center frequency.
  • the first DCI includes two FDRA domains, and the first domain is one FDRA domain among the two FDRA domains; the first DCI only includes one TDRA domain, and all the fields in this application
  • the second domain is the one TDRA domain.
  • the first DCI only includes one FDRA domain, and the first domain is the one FDRA domain; the first DCI It includes two TDRA domains, and the second domain in this application is one TDRA domain among the two TDRA domains.
  • the first DCI only includes one FDRA domain, and the first domain is the one FDRA domain; the first DCI only includes one TDRA domain, and the second domain in this application is the Describe a TDRA domain.
  • the first DCI includes two FDRA domains, the first domain is one FDRA domain among the two FDRA domains; the other FDRA domain among the two FDRA domains is reserved.
  • the first DCI includes two TDRA domains
  • the second domain is one TDRA domain among the two TDRA domains
  • the other FDRA domain among the two TDRA domains is reserved.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in Figure 2.
  • Figure 2 illustrates the network architecture 200 of the 5G NR (New Radio)/LTE (Long-Term Evolution)/LTE-A (Long-Term Evolution Advanced) system.
  • 5G NR/LTE The LTE-A network architecture 200 may be called 5GS (5G System)/EPS (Evolved Packet System) 200 or some other suitable term.
  • 5GS/EPS 200 includes UE (User Equipment) 201, RAN (Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home At least one of Subscriber Server/UDM (Unified Data Management) 220 and Internet service 230.
  • 5GS/EPS can interconnect with other access networks, but these entities/interfaces are not shown for simplicity. As shown, 5GS/EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks that provide circuit-switched services or other cellular networks.
  • the RAN includes node 203 and other nodes 204.
  • Node 203 provides user and control plane protocol termination towards UE 201.
  • Node 203 may connect to other nodes 204 via the Xn interface (eg, backhaul)/X2 interface.
  • Node 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmit Receive Node), or some other suitable terminology.
  • BSS Basic Service Set
  • ESS Extended Service Set
  • TRP Transmit Receive Node
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radio, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radio non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • Node 203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management field)/SMF (Session Management Function, session management function )211, other MME/AMF/SMF214, S-GW (Service Gateway, service gateway)/UPF (User Plane Function, user plane function) 212 and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210. Basically, MME/AMF/SMF211 provides bearer and connection management.
  • All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213.
  • P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching streaming services.
  • the UE201 corresponds to the first node in this application.
  • the UE201 is a user equipment (User Equipment, UE).
  • UE User Equipment
  • the UE201 is a base station equipment (BaseStation, BS).
  • BaseStation BaseStation, BS
  • the UE201 is a relay.
  • the node 203 corresponds to the second node in this application.
  • the node 203 is a base station device.
  • the node 203 is a user equipment.
  • the node 203 is a relay.
  • the user equipment supports transmission of a non-terrestrial network (Non-Terrestrial Network, NTN).
  • NTN Non-Terrestrial Network
  • the user equipment supports transmission of a terrestrial network (Terrestrial Network, TN).
  • TN Terrestrial Network
  • the user equipment includes a mobile phone, a terminal, an aircraft, a vehicle-mounted terminal, or a ship Only, either, IoT terminals, or, Industrial IoT terminals, or, test equipment, or, signaling testers.
  • the base station equipment includes a base transceiver station (Base Transceiver Station, BTS).
  • BTS Base Transceiver Station
  • the base station equipment includes Node B (NodeB, NB), or gNB, or eNB, or ng-eNB, or en-gNB, or TRP (Transmitter Receiver Point, transmitting and receiving node) , or, CU (Centralized Unit, centralized unit), or DU (Distributed Unit, distributed unit).
  • Node B NodeB, NB
  • gNB Node B
  • eNB eNode B
  • ng-eNB ng-eNB
  • en-gNB or TRP (Transmitter Receiver Point, transmitting and receiving node)
  • TRP Transmitter Receiver Point, transmitting and receiving node
  • CU Centralized Unit, centralized unit
  • DU Distributed Unit, distributed unit
  • the base station equipment supports transmission in non-terrestrial networks.
  • the base station equipment supports transmission of terrestrial networks.
  • the base station equipment includes a macro cell (Marco Cellular) base station, or a micro cell (Micro Cell) base station, or a pico cell (Pico Cell) base station, or a home base station (Femtocell), or test equipment , or, signaling tester.
  • a macro cell Marco Cellular
  • Micro Cell Micro Cell
  • a pico cell Pico Cell
  • Femtocell home base station
  • test equipment or, signaling tester.
  • the base station equipment includes an IAB (Integrated Access and Backhaul)-node, or IAB-donor, or IAB-donor-CU, or IAB-donor-DU, or IAB-DU, or, IAB-MT.
  • IAB Integrated Access and Backhaul
  • the relay includes relay, or L3 relay, or L2 relay, or router, or switch, or user equipment, or base station equipment.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300.
  • FIG. 3 shows the radio protocol architecture for the control plane 300 with three layers: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above PHY301, including MAC (Medium Access Control, media access control) sub-layer 302, RLC (Radio Link Control, wireless link layer control protocol) sub-layer 303 and PDCP (Packet Data Convergence) Protocol (Packet Data Convergence Protocol) sublayer 304.
  • MAC Medium Access Control, media access control
  • RLC Radio Link Control, wireless link layer control protocol
  • PDCP Packet Data Convergence Protocol
  • PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides cross-location support.
  • RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ (Hybrid Automatic Repeat Request, Hybrid Automatic Repeat Request).
  • MAC sublayer 302 provides multiplexing between logical and transport channels. The MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell. MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and configuring lower layers using RRC signaling.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture in the user plane 350 is for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, and the PDCP sublayer 354 in the L2 layer 355.
  • the RLC sublayer 353 and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides header compression for upper layer packets to reduce radio Transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • DRB Data Radio Bearer
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the first signal in this application is generated from the PHY301 or PHY351.
  • the second signal in this application is generated from the PHY301 or PHY351.
  • the third signal in this application is generated from the RRC306.
  • the third signal in this application is generated by the MAC302 or MAC352.
  • the third signal in this application is generated from the PHY301 or PHY351.
  • the fourth signal in this application is generated from the RRC306.
  • the fourth signal in this application is generated by the MAC302 or MAC352.
  • the fourth signal in this application is generated from the PHY301 or PHY351.
  • the fifth signal in this application is generated from the RRC306.
  • the fifth signal in this application is generated by the MAC302 or MAC352.
  • the fifth signal in this application is generated from the PHY301 or PHY351.
  • the first signaling in this application is generated in the RRC306.
  • the first signaling in this application is generated by the MAC302 or MAC352.
  • the first signaling in this application is generated in the PHY301 or PHY351.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in the access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and an antenna 420.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and radio resource allocation to the first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer). Transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 410, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M-phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for M-phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams. Transmit processor 416 then maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the first communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial stream that is the destination. The symbols on each spatial stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover upper layer data and control signals transmitted by the second communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media.
  • the controller/processor 459 In transmission from the second communication device 410 to the second communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements headers based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is simulated precoded/wavelength in the multi-antenna transmit processor 457
  • the beam shaping operation is then provided to different antennas 452 via the transmitter 454 .
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 In transmission from the first communications device 450 to the second communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Using at least one processor together, the first communication device 450 at least: receives a first DCI, the first DCI includes a first domain; performs wireless reception on a first physical layer channel and performs wireless reception on a second physical layer channel. Wireless transmission; wherein the first domain of the first DCI is used to determine the frequency domain resources occupied by the first physical layer channel and the frequency domain resources occupied by the second physical layer channel.
  • the first communication device 450 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: receiving a first A DCI, the first DCI includes a first domain; wireless reception is performed on a first physical layer channel, and wireless transmission is performed on a second physical layer channel; wherein the first domain of the first DCI is used Determining the frequency domain resources occupied by the first physical layer channel and the frequency domain resources occupied by the second physical layer channel.
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the second communication device 410 at least: sends a first DCI, the first DCI includes a first domain; performs wireless transmission on a first physical layer channel, and performs wireless reception on a second physical layer channel; wherein, the The first domain of the first DCI is used to determine the frequency domain resources occupied by the first physical layer channel and the frequency domain resources occupied by the second physical layer channel.
  • the second communication device 410 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: sending a first A DCI, the first DCI includes a first domain; wireless transmission is performed on a first physical layer channel, and wireless reception is performed on a second physical layer channel; wherein the first domain of the first DCI is used Determining the frequency domain resources occupied by the first physical layer channel and the frequency domain resources occupied by the second physical layer channel.
  • At least one of the antenna 452, the receiver 454, the receiving processor 456, and the controller/processor 459 is used to receive the first DCI.
  • At least one of the antenna 420, the transmitter 418, the transmit processor 416, and the controller/processor 475 is used to transmit the first DCI.
  • At least one of the antenna 452, the receiver 454, the receiving processor 456, and the controller/processor 459 is used to receive the first message.
  • At least one of the antenna 420, the transmitter 418, the transmit processor 416, and the controller/processor 475 is used to send the first message.
  • At least one of the antenna 452, the receiver 454, the receiving processor 456, and the controller/processor 459 is used to receive the second message.
  • At least one of the antenna 420, the transmitter 418, the transmission processor 416, and the controller/processor 475 is used to send the second message.
  • At least one of the antenna 452, the receiver 454, the reception processor 456, and the controller/processor 459 is used to perform wireless reception on the first physical layer channel.
  • At least one of the antenna 420, the transmitter 418, the transmission processor 416, and the controller/processor 475 is used to perform wireless transmission on the first physical layer channel.
  • At least one of the antenna 452, the transmitter 454, the transmission processor 468, and the controller/processor 459 is used to perform wireless transmission on the second physical layer channel.
  • At least one of the antenna 420, the receiver 418, the reception processor 470, and the controller/processor 475 is used to perform wireless reception on the second physical layer channel.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a user equipment.
  • the first communication device 450 is a user equipment that supports a large delay difference.
  • the first communication device 450 is a user equipment supporting NTN.
  • the first communication device 450 is an aircraft device.
  • the first communication device 450 has positioning capabilities.
  • the first communication device 450 does not have constant energy capability.
  • the first communication device 450 is a user equipment supporting TN.
  • the second communication device 410 is a base station device (gNB/eNB/ng-eNB).
  • the second communication device 410 is a base station device that supports a large delay difference.
  • the second communication device 410 is a base station device supporting NTN.
  • the second communication device 410 is a satellite device.
  • the second communication device 410 is a flight platform device.
  • the second communication device 410 is a base station device supporting TN.
  • Embodiment 5 illustrates a wireless signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 5 . It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S5101 the first DCI is received, and the first DCI includes the first domain; in step S5102, wireless reception is performed on the first physical layer channel; in step S5103, on the second Wireless transmission is performed on the physical layer channel.
  • step S5201 the first DCI is sent.
  • step S5301 wireless transmission is performed on the first physical layer channel.
  • step S5401 wireless reception is performed on the second physical layer channel.
  • the first domain of the first DCI is used to determine frequency domain resources occupied by the first physical layer channel and frequency domain resources occupied by the second physical layer channel.
  • the first node U01 is a user equipment.
  • the first node U01 is a base station device.
  • the second node N02 is a TRP.
  • the second node N02 is a base station device.
  • the second node N02 is the maintenance base station of a serving cell of the first node U01.
  • the second node N02 is a user equipment.
  • the third node N03 is a TRP.
  • the third node N03 is a base station device.
  • the third node N03 is the maintenance base station of a serving cell of the first node U01.
  • the third node N03 is a user equipment.
  • the fourth node N04 is a TRP.
  • the fourth node N04 is a base station device.
  • the fourth node N04 is the maintenance base station of a serving cell of the first node U01.
  • the fourth node N04 is a user equipment.
  • the third node N03 and the second node N02 are the same.
  • the third node N03 and the second node N02 are different.
  • the fourth node N04 and the second node N02 are the same.
  • the fourth node N04 and the second node N02 are different.
  • the third node N03 and the fourth node N04 are the same.
  • the third node N03 and the fourth node N04 are different.
  • step S5101 precedes step S5102 and step S5103.
  • step S5102 precedes step S5103.
  • step S5102 follows step S5103.
  • step S5102 and step S5103 is not limited.
  • the first DCI is used to determine to perform wireless reception on a first physical layer channel and to perform wireless transmission on a second physical layer channel.
  • wireless reception is performed on a first physical layer channel and wireless transmission is performed on a second physical layer channel.
  • wireless reception is performed on the first physical layer channel and wireless transmission is performed on the second physical layer channel.
  • Embodiment 6 illustrates a wireless signal transmission flow chart according to another embodiment of the present application, as shown in FIG. 6 . It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S6101 For the first node U01 , in step S6101, the first message is received; in step S6102, the second message is received, and in step S6103, the first DCI is received.
  • step S6501 the first information is sent; in step S6502, the second message is sent.
  • the first message is used to determine the load size of the first domain of the first DCI; the first message is used to determine the first frequency domain resource pool; the first At least one of the frequency domain resources occupied by the physical layer channel or the frequency domain resources occupied by the second physical layer channel belongs to the first frequency domain resource pool; the first DCI includes a first domain; the first domain of the first DCI is used to determine the frequency domain resources occupied by the first physical layer channel and the frequency domain resources occupied by the second physical layer channel.
  • the fifth node N05 is a base station device.
  • the fifth node N05 is the maintenance base station of a serving cell of the first node U01.
  • the fifth node N05 and the second node N02 are the same.
  • the fifth node N05 and the second node N02 are different.
  • the dashed box F6.1 is optional.
  • the dotted box F6.1 exists.
  • the second message is received.
  • the dotted box F6.1 does not exist.
  • the second message is not received.
  • the first message includes at least one RRC (Radio Resource Control) message.
  • RRC Radio Resource Control
  • the first message includes at least one RRC IE (Information Element).
  • the first message includes at least one RRC field (Field).
  • the first message is system information (System Information Block, SIB).
  • SIB System Information Block
  • the first message is a broadcast message.
  • the first message is a dedicated message.
  • the first message is used to indicate the size of the resource block group.
  • the first message is used to indicate whether to interleave.
  • the first message is used to indicate the resource allocation type.
  • the first message is configured to a serving cell.
  • the first message is configured to the first frequency domain resource pool.
  • the first message is configured to a BWP.
  • the first message is configured to the first BWP.
  • the first message is used to determine the first BWP.
  • the first message includes an index of the first BWP.
  • the first message includes the BWP-Id of the first BWP.
  • the first message includes the size of the first BWP.
  • the first message includes a type of frequency domain resource allocation for the first BWP.
  • the first message is used to determine the frequency domain location (Frequency domain location) of the first BWP and the bandwidth (bandwidth) of the first BWP.
  • the first message indicates the frequency domain location of the first BWP and the Resource Indicator Value (RIV) of the bandwidth of the first BWP.
  • RIV Resource Indicator Value
  • the first message indicates the frequency domain position of the first BWP and the index of the bandwidth of the first BWP.
  • the first message is used to indicate the frequency domain location of the first BWP and the bandwidth of the first BWP.
  • the first message includes an RRC field, and the one RRC field of the first message is used to determine the frequency domain position of the first BWP and the bandwidth of the first BWP.
  • the name of the one RRC domain in the first message includes locationAndBandwidth.
  • the one RRC field of the first message is the locationAndBandwidth field.
  • the value of the locationAndBandwidth field refers to the Resource Indicator Value (RIV) of 3GPPTS38.214.
  • the first message includes the subcarrier spacing (Subcarrier Spacing, SCS) of the first BWP.
  • SCS Subcarrier Spacing
  • the first message includes bwp-Id.
  • the first message includes bwp-Common.
  • the first message includes bwp-Dedicated.
  • the first message includes subcarrierSpacing.
  • the first message includes locationAndBandwidth.
  • the first message includes cyclicPrefix.
  • the first message includes PUCCH-Config.
  • the first message includes PUSCH-Config.
  • the first message includes PDCCH-Config.
  • the first message includes PDSCH-Config.
  • the first message includes resourceAllocationDCI.
  • the first message includes resourceAllocation.
  • the first message includes a resourceAllocation field or a resourceAllocationDCI field, and the resourceAllocation field or resourceAllocationDCI field is set to any one of resourceAllocationType0, resourceAllocationType1, or dynamicSwitch.
  • the first message includes a resourceAllocation field or a resourceAllocationDCI field, and the resourceAllocation field or resourceAllocationDCI field is set to any one of resourceAllocationType0 or resourceAllocationType1.
  • the first message includes a resourceAllocation field or a resourceAllocationDCI field, and the resourceAllocation field or resourceAllocationDCI field is set to resourceAllocationType0 or resourceAllocationType1.
  • the first message includes rbg-Size.
  • the first message includes vrb-ToPRB-Interleaver.
  • the first message includes vrb-ToPRB-InterleaverDCI-1-2-r16.
  • the first message includes BWPIE.
  • the first message includes pushch-PowerControl.
  • the first message includes mcs-Table.
  • the first message includes configuration information of the first physical layer channel, and the first message includes configuration information of the second physical layer channel.
  • the name of the first message includes BWP or Full or Duplex or Fullduplex or Subband Or at least one of Common or Dedicated.
  • the first message includes configuration information of the first physical layer channel and configuration information of the second physical layer channel for the first frequency domain resource pool.
  • the first message includes PUSCH-Config, and the PUSCH-Config includes the configuration information of the second physical layer channel; the first message includes PDSCH-Config, and the PDSCH-Config includes the Configuration information of the first physical layer channel.
  • the first message includes PUSCH-ConfigCommon, and the PUSCH-ConfigCommon includes the configuration information of the second physical layer channel; the first message includes PDSCH-ConfigCommon, and the PDSCH-ConfigCommon includes the Configuration information of the first physical layer channel.
  • the first message includes only one BWPIE.
  • the first message includes a BWP-DownlinkCommon IE
  • the BWP-DownlinkCommon IE includes at least one of PDSCH-ConfigCommon or PDCCH-ConfigCommon
  • the BWP-DownlinkCommon IE includes PUSCH-ConfigCommon.
  • at least one of PUCCH-ConfigCommon or RACH-ConfigCommon or MsgA-ConfigCommon or AdditionalRACH-ConfigList is included in the BWP-DownlinkCommon IE.
  • the first message includes a BWP-Downlink IE
  • the BWP-Downlink IE includes at least one of PDSCH-Config or PDCCH-Config
  • the BWP-Downlink IE includes PUSCH-Config Or at least one of PUCCH-Config or RACH-ConfigDedicated or ConfiguredGrantConfig or SRS-Config or BeamFailureRecoveryConfig.
  • the first message includes a BWP-UplinkCommon IE
  • the BWP-UplinkCommon IE includes at least one of PUSCH-ConfigCommon or PUCCH-ConfigCommon or RACH-ConfigCommon or MsgA-ConfigCommon or AdditionalRACH-ConfigList
  • the BWP-UplinkCommonIE includes at least one of PDSCH-ConfigCommon or PDCCH-ConfigCommon.
  • the first message includes a BWP-Uplink IE
  • the BWP-Uplink IE includes at least one of PUSCH-Config or PUCCH-Config or RACH-ConfigDedicated or ConfiguredGrantConfig or SRS-Config or BeamFailureRecoveryConfig
  • the BWP-Uplink IE includes at least one of PDSCH-Config or PDCCH-Config.
  • the first message is used to determine frequency domain resources corresponding to the first frequency domain resource pool.
  • the first message indicates the first frequency domain resource pool.
  • the first message includes configuration information of the first frequency domain resource pool.
  • the first message is used to determine each PRB in the first frequency domain resource pool.
  • the first message includes an index of the first frequency domain resource pool.
  • the index of the first frequency domain resource pool is indicated by BWP-Id.
  • the index of the first frequency domain resource pool is a non-negative integer.
  • the index of the first frequency domain resource pool is an integer that is not less than 0 and not greater than maxNrofBWPs, and the maxNrofBWPs is a positive integer.
  • the first message includes a bwp-Id field, and the bwp-Id field indicates the index of the first frequency domain resource pool.
  • the first message indicates the first frequency domain resource pool in the first BWP.
  • the first message is used to determine the index of each PRB in the first frequency domain resource pool in the first BWP.
  • the first message is used to determine a first subset of frequency domain resources.
  • the first message is used to configure a first subset of frequency domain resources.
  • the first message is used to configure frequency domain resources of the first frequency domain resource subset.
  • the first message is used to configure the PRB occupied by the first frequency domain resource subset.
  • the first message is used to configure the frequency domain location of the first frequency domain resource subset.
  • the first message is used to configure the bandwidth of the first frequency domain resource subset.
  • the first message is used to configure the first frequency domain resource subset in the first frequency domain resource pool.
  • the first message is used to calculate the payload size of the first domain of the first DCI.
  • the first message indicates a payload size of the first domain of the first DCI.
  • the configuration information in the first message is used to determine the load size of the first domain of the first DCI.
  • locationAndBandwidth in the first message is used to calculate the payload size of the first domain of the first DCI.
  • the size of the first BWP indicated by the first message is used to determine the payload size of the first domain of the first DCI.
  • the type of frequency domain resource allocation for the first BWP indicated by the first message and the size of the first BWP indicated by the first message are used to determine the first Payload size of the first domain of DCI.
  • the type of frequency domain resource allocation for the first BWP indicated by the first message is used to determine the load size of the first domain of the first DCI.
  • the size of the first BWP indicated by the first message is used to determine the payload size of the first domain of the first DCI.
  • the type of frequency domain resource allocation for the first BWP indicated by the first message and the size of the first BWP indicated by the first message are used to determine the first Payload size of the first domain of DCI.
  • the first BWP is a BWP.
  • the first BWP is a UL BWP.
  • the first BWP is a DL BWP.
  • the first BWP is a SL BWP.
  • the first BWP is an initial BWP.
  • the first BWP is a Default BWP.
  • the first BWP is an active BWP.
  • the first BWP is not the initial BWP.
  • the first BWP is directed to the first cell.
  • the first BWP is directed to the main carrier of the first cell.
  • the first BWP is directed to the secondary carrier of the first cell.
  • the first BWP is for an uplink carrier.
  • the first BWP is for a downlink carrier.
  • the first BWP is for a full-duplex dedicated carrier.
  • the first BWP is configured for downlink transmission.
  • the first BWP is configured for uplink transmission.
  • the first BWP is configured for uplink transmission and downlink transmission.
  • the first BWP includes Q1 frequency domain resource blocks, and Q1 is a positive integer.
  • the first BWP includes Q1 frequency domain resource block groups, and Q1 is a positive integer.
  • the Q1 is N
  • the Q1 is N
  • the first BWP is a UL BWP, is used to determine the load size of the first domain of the first DCI, the is the size of the first BWP.
  • the first BWP is a UL BWP
  • the payload size of the first domain of the first DCI is equal to bits
  • the first BWP is a UL BWP
  • the payload size of the first domain of the first DCI is equal to bits
  • the first BWP is a UL BWP
  • the payload size of the first domain of the first DCI is equal to N RBG bits.
  • the first BWP is a DL BWP, is used to determine the load size of the first domain of the first DCI, the is the size of the first BWP.
  • CORESET Control resource set, control resource set
  • the first BWP is a DL BWP, is used to determine the load size of the first domain of the first DCI, the is the size of CORESET0; the CORESET0 is configured in the first cell.
  • the first BWP is a DL BWP
  • the payload size of the first domain of the first DCI is equal to bits
  • the first BWP is a DL BWP
  • the payload size of the first domain of the first DCI is equal to bits
  • the first BWP is a DL BWP
  • the payload size of the first domain of the first DCI is equal to N RBG bits.
  • the NRBG refers to Section 6.1.2.2.1 of 3GPP TS 38.214.
  • the NRBG is directed to the first BWP.
  • the size of the first BWP refers to the number of frequency domain resource blocks occupied by the first BWP.
  • the size of the first BWP refers to the number of frequency domain resource block groups occupied by the first BWP.
  • the size of the first BWP refers to the bandwidth of the first BWP.
  • the bandwidth of the first BWP is used to determine the size of the first BWP.
  • the first frequency domain resource pool includes one frequency band.
  • the first frequency domain resource pool includes a subband.
  • the first frequency domain resource pool includes a frequency range.
  • the first frequency domain resource pool includes a frequency range determined by a frequency domain location and a bandwidth.
  • the first frequency domain resource pool includes a period of continuous frequency resources.
  • the first frequency domain resource pool includes a section of non-continuous frequency resources.
  • the first frequency domain resource pool includes P1 frequency domain resource blocks, and P1 is a positive integer.
  • the first frequency domain resource pool includes P1 frequency domain resource block groups, and P1 is a positive integer.
  • the first frequency domain resource pool includes at least one BWP.
  • the first frequency domain resource pool belongs to the first BWP.
  • the first frequency domain resource pool is a BWP.
  • the first frequency domain resource pool is the first BWP.
  • the "first frequency domain resource pool" may be replaced by: the first BWP.
  • the first frequency domain resource pool is all or part of the frequency domain resources in the first BWP.
  • the number of PRBs occupied by the first frequency domain resource pool is equal to the number of PRBs occupied by the first BWP.
  • the number of PRBs occupied by the first frequency domain resource pool is not greater than the number of PRBs occupied by the first BWP.
  • the number of PRBs occupied by the first frequency domain resource pool is smaller than the number of PRBs occupied by the first BWP.
  • the PRB occupied by the first frequency domain resource pool in the first BWP is configurable.
  • the first frequency domain resource pool is configured for downlink transmission.
  • the first frequency domain resource pool is configured for uplink transmission.
  • the first frequency domain resource pool is configured for uplink transmission and downlink transmission.
  • the frequency domain resources occupied by the first physical layer channel belong to the first frequency domain resource pool.
  • the frequency domain resources occupied by the second physical layer channel belong to the first frequency domain resource pool.
  • the frequency domain resources occupied by the first physical layer channel belong to the first frequency domain resource pool, and the frequency domain resources occupied by the second physical layer channel belong to the The first frequency domain resource pool.
  • the overlapping portion of the frequency domain resources indicated by the first domain of the first DCI and the first frequency domain resource pool is used to determine all the resources occupied by the first physical layer channel. Describe frequency domain resources.
  • the overlapping portion of the frequency domain resources indicated by the first domain of the first DCI and the first frequency domain resource pool is occupied by the first physical layer channel of the frequency domain resources.
  • the frequency domain resources occupied by the first physical layer channel belong to the frequency domain resources indicated by the first domain of the first DCI and the first frequency domain Overlapping portions of resource pools.
  • the frequency domain resources occupied by the first physical layer channel include frequency domain resources indicated by the first domain of the first DCI and the first frequency domain All frequency domain resources in the overlapping portion of the resource pool.
  • the frequency domain resources occupied by the first physical layer channel include frequency domain resources indicated by the first domain of the first DCI and the first frequency domain Some frequency domain resources in the overlapping portion of the resource pool.
  • the overlapping portion of the frequency domain resources indicated by the first domain of the first DCI and the first frequency domain resource pool is used to determine all occupied by the second physical layer channel. Describe frequency domain resources.
  • the overlapping portion of the frequency domain resources indicated by the first domain of the first DCI and the first frequency domain resource pool is occupied by the second physical layer channel of the frequency domain resources.
  • the frequency domain resources occupied by the second physical layer channel belong to the frequency domain resources indicated by the first domain of the first DCI and the first frequency domain Overlapping portions of resource pools.
  • the frequency domain resources occupied by the second physical layer channel include frequency domain resources indicated by the first domain of the first DCI and the first frequency domain All frequency domain resources in the overlapping portion of the resource pool.
  • the frequency domain resources occupied by the second physical layer channel include frequency domain resources indicated by the first domain of the first DCI and the first frequency domain Some frequency domain resources in the overlapping portion of the resource pool.
  • the overlapping portion of the frequency domain resources indicated by the first domain of the first DCI and the first frequency domain resource pool is used to determine all occupied by the first physical layer channel.
  • the overlapping portion of the frequency domain resources indicated by the first domain of the first DCI and the first frequency domain resource pool is occupied by the first physical layer channel
  • the frequency domain resources occupied by the first physical layer channel and the frequency domain resources occupied by the second physical layer channel both belong to the first DCI.
  • the frequency domain resources occupied by the first physical layer channel include frequency domain resources indicated by the first domain of the first DCI and the first frequency domain All frequency domain resources or part of the frequency domain resources in the overlapping portion of the resource pool;
  • the frequency domain resources occupied by the second physical layer channel include the frequency domain indicated by the first domain of the first DCI All frequency domain resources or part of the frequency domain resources in the overlapping portion of the resource and the first frequency domain resource pool.
  • the overlapping portion of the frequency domain resource indicated by the first domain of the first DCI and the first BWP is used to determine the frequency domain occupied by the first physical layer channel. resource.
  • the overlapping portion of the frequency domain resource indicated by the first domain of the first DCI and the first BWP is the frequency domain resource occupied by the first physical layer channel. Frequency domain resources.
  • the frequency domain resources occupied by the first physical layer channel belong to the frequency domain resources indicated by the first domain of the first DCI and the frequency domain resources of the first BWP. Overlapping parts.
  • the frequency domain resources occupied by the first physical layer channel include the first DCI All frequency domain resources in the overlapping portion of the frequency domain resources indicated by the first domain and the first BWP.
  • the frequency domain resources occupied by the first physical layer channel include frequency domain resources indicated by the first domain of the first DCI and the frequency domain resources of the first BWP. Some frequency domain resources in the overlapping part.
  • the overlapping portion of the frequency domain resource indicated by the first domain of the first DCI and the first BWP is used to determine the frequency domain occupied by the second physical layer channel. resource.
  • the overlapping portion of the frequency domain resource indicated by the first domain of the first DCI and the first BWP is the frequency domain resource occupied by the second physical layer channel. Frequency domain resources.
  • the frequency domain resources occupied by the second physical layer channel belong to the frequency domain resources indicated by the first domain of the first DCI and the first BWP. Overlapping parts.
  • the frequency domain resources occupied by the second physical layer channel include frequency domain resources indicated by the first domain of the first DCI and the frequency domain resources of the first BWP. All frequency domain resources in the overlapped part.
  • the frequency domain resources occupied by the second physical layer channel include frequency domain resources indicated by the first domain of the first DCI and the frequency domain resources of the first BWP. Some frequency domain resources in the overlapping part.
  • the overlapping portion of the frequency domain resource indicated by the first domain of the first DCI and the first BWP is used to determine the frequency domain occupied by the first physical layer channel. resources and the frequency domain resources occupied by the second physical layer channel.
  • the overlapping portion of the frequency domain resource indicated by the first domain of the first DCI and the first BWP is the frequency domain resource occupied by the first physical layer channel.
  • Frequency domain resources and the frequency domain resources occupied by the second physical layer channel are the frequency domain resources occupied by the first physical layer channel.
  • the frequency domain resources occupied by the first physical layer channel and the frequency domain resources occupied by the second physical layer channel both belong to the first DCI.
  • the frequency domain resources occupied by the first physical layer channel include frequency domain resources indicated by the first domain of the first DCI and the frequency domain resources of the first BWP. All frequency domain resources or part of the frequency domain resources in the overlapping part; the frequency domain resources occupied by the second physical layer channel include the frequency domain resources indicated by the first domain of the first DCI and the All frequency domain resources or part of the frequency domain resources in the overlapping part of the first BWP.
  • the overlapping portion of the frequency domain resources indicated by the first domain of the first DCI and the first frequency domain resource pool is used to determine all the resources occupied by the first physical layer channel.
  • the frequency domain resource; the overlapping portion of the frequency domain resource indicated by the first domain of the first DCI and the first BWP is the frequency domain resource occupied by the second physical layer channel.
  • the overlapping portion of the frequency domain resources indicated by the first domain of the first DCI and the first frequency domain resource pool is used to determine all occupied by the second physical layer channel.
  • the frequency domain resource; the overlapping portion of the frequency domain resource indicated by the first domain of the first DCI and the first BWP is the frequency domain resource occupied by the first physical layer channel.
  • the overlapping portion of the frequency domain resources indicated by the first domain of the first DCI and the first frequency domain resource pool is used to determine all the resources occupied by the first physical layer channel.
  • the frequency domain resources; the overlapping portion of the frequency domain resources indicated by the first domain of the first DCI and the first frequency domain resource pool is used to determine all occupied by the second physical layer channel. Describe frequency domain resources.
  • the overlapping portion of the frequency domain resource indicated by the first domain of the first DCI and the first BWP is used to determine the frequency domain occupied by the second physical layer channel.
  • Resources; the overlapping portion of the frequency domain resource indicated by the first domain of the first DCI and the first BWP is the frequency domain resource occupied by the first physical layer channel.
  • the overlapping portion of the frequency domain resources indicated by the first domain of the first DCI and the first frequency domain resource pool is used to determine all occupied by the first physical layer channel.
  • the frequency domain resource; the overlapping portion of the frequency domain resource indicated by the first domain of the first DCI and the first frequency domain resource pool is the frequency domain occupied by the second physical layer channel resource.
  • the overlapping portion of the frequency domain resources indicated by the first domain of the first DCI and the first frequency domain resource pool is used to determine all occupied by the second physical layer channel.
  • the frequency domain resource; the overlapping portion of the frequency domain resource indicated by the first domain of the first DCI and the first frequency domain resource pool is the frequency domain occupied by the first physical layer channel resource.
  • the first frequency domain resource pool is used for at least the first physical layer channel and the second physical layer channel.
  • the first message is configured to the first BWP.
  • the first message is configured to the first frequency domain resource pool.
  • the first frequency domain resource pool is used for uplink transmission and downlink transmission.
  • the first frequency domain resource pool is used for uplink transmission and secondary link transmission.
  • the first frequency domain resource pool is used for downlink transmission and secondary link transmission.
  • the first frequency domain resource pool is used for full duplex.
  • the first frequency domain resource pool is used for subband non-overlapping full duplex.
  • the first frequency domain resource pool is used for subband overlapping full duplex.
  • the first frequency domain resource subset includes P3 frequency domain resource blocks, and P3 is a positive integer not greater than P1.
  • the first frequency domain resource subset includes P3 frequency domain resource block groups, and the P3 is a positive integer not greater than the P1.
  • the first frequency domain resource subset belongs to the first frequency domain resource pool.
  • the first frequency domain resource subset belongs to the first BWP.
  • the first subset of frequency domain resources is part of the frequency domain resources in the first BWP.
  • the first subset of frequency domain resources is all frequency domain resources in the first BWP.
  • the first frequency domain resource subset is a proper subset of the first BWP.
  • the first frequency domain resource subset is a subset of the first BWP.
  • the first frequency domain resource subset is configured as uplink transmission, and frequency bands in the first frequency domain resource pool other than the first frequency domain resource subset are configured as downlink transmission. transmission.
  • the first frequency domain resource subset is configured as downlink transmission, and frequency bands in the first frequency domain resource pool other than the first frequency domain resource subset are configured as uplink transmission. transmission.
  • the first frequency domain resource subset is configured for uplink transmission
  • the first frequency domain resource pool is configured for downlink transmission.
  • the first frequency domain resource subset is configured for downlink transmission
  • the first frequency domain resource pool is configured for uplink transmission
  • the frequency domain resources occupied by the first physical layer channel belong to the first frequency domain resource subset.
  • the frequency domain resources occupied by the second physical layer channel belong to the first frequency domain resource subset.
  • the frequency domain resources occupied by the first physical layer channel belong to the first frequency domain resource pool, and the frequency domain resources occupied by the second physical layer channel belong to the first Frequency domain resource subset.
  • the frequency domain resources occupied by the first physical layer channel belong to the first frequency domain resource subset, and the frequency domain resources occupied by the second physical layer channel belong to the third frequency domain resource subset.
  • a frequency domain resource pool As an embodiment, the frequency domain resources occupied by the first physical layer channel belong to the first frequency domain resource subset, and the frequency domain resources occupied by the second physical layer channel belong to the third frequency domain resource subset.
  • the overlapping portion of the frequency domain resources indicated by the first domain of the first DCI and the first frequency domain resource subset is used to determine the frequency domain occupied by the second physical layer channel.
  • the frequency domain resources are used to determine the frequency domain occupied by the second physical layer channel.
  • the overlapping portion of the frequency domain resources indicated by the first domain of the first DCI and the first frequency domain resource subset is the second physical layer channel.
  • the frequency domain resources occupied by the second physical layer channel belong to the frequency domain resources indicated by the first domain of the first DCI and the first frequency domain Overlapping portions of resource subsets.
  • the frequency domain resources occupied by the second physical layer channel include frequency domain resources indicated by the first domain of the first DCI and the first frequency domain All frequency domain resources in the overlapping portion of the resource subset.
  • the frequency domain resources occupied by the second physical layer channel include frequency domain resources indicated by the first domain of the first DCI and the first frequency domain Part of the frequency domain resources in the overlapping portion of the resource subset.
  • the overlapping portion of the frequency domain resources indicated by the first domain of the first DCI and the first frequency domain resource subset is used to determine the frequency domain occupied by the first physical layer channel.
  • the frequency domain resources are used to determine the frequency domain occupied by the first physical layer channel.
  • the overlapping portion of the frequency domain resources indicated by the first domain of the first DCI and the first frequency domain resource subset is the first physical layer channel.
  • the frequency domain resources occupied by the first physical layer channel belong to the frequency domain resources indicated by the first domain of the first DCI and the first frequency domain Overlapping portions of resource subsets.
  • the frequency domain resources occupied by the first physical layer channel include frequency domain resources indicated by the first domain of the first DCI and the first frequency domain All frequency domain resources in the overlapping portion of the resource subset.
  • the frequency domain resources occupied by the first physical layer channel include the first DCI The frequency domain resources indicated by the first domain and part of the frequency domain resources in the overlapping portion of the first frequency domain resource subset.
  • the overlapping portion of the frequency domain resources indicated by the first domain of the first DCI and the first frequency domain resource subset is used to determine the frequency domain occupied by the first physical layer channel.
  • the frequency domain resource; the frequency domain resource indicated by the first domain of the first DCI and the overlapping portion of the first frequency domain resource pool indicated by the first domain of the first DCI The frequency domain resources and the portion outside the overlapping portion of the first frequency domain resource subset are used to determine the frequency domain resources occupied by the first physical layer channel.
  • the overlapping portion of the frequency domain resources indicated by the first domain of the first DCI and the first frequency domain resource subset is used to determine the frequency domain occupied by the second physical layer channel.
  • the frequency domain resource; the frequency domain resource indicated by the first domain of the first DCI and the overlapping portion of the first frequency domain resource pool indicated by the first domain of the first DCI The frequency domain resources and the portion outside the overlapping portion of the first frequency domain resource subset are used to determine the frequency domain resources occupied by the second physical layer channel.
  • the second message includes at least one RRC message.
  • the second message includes at least one RRC IE.
  • the second message includes at least one RRC field.
  • the second message is a system message.
  • the second message is a broadcast message.
  • the second message is a dedicated message.
  • the second message is used to indicate the size of the resource block group.
  • the second message is used to indicate whether to interleave.
  • the second message is used to indicate the resource allocation type.
  • the second message is configured to a serving cell.
  • the second message is configured to a BWP.
  • the second message is configured to the first BWP.
  • the second message is configured to the second BWP.
  • the second message is used to determine the second BWP.
  • the second message includes an index of the second BWP.
  • the second message includes the BWP-Id of the second BWP.
  • the second message is used to determine the frequency domain location (Frequency domain location) of the second BWP and the bandwidth (bandwidth) of the first BWP.
  • the second message includes a locationAndBandwidth field, and the locationAndBandwidth field of the second message is used to determine the frequency domain location of the second BWP and the bandwidth of the second BWP.
  • the second message is configured to a second frequency domain resource pool.
  • the second message includes bwp-Id.
  • the second message includes bwp-Common.
  • the second message includes bwp-Dedicated.
  • the second message includes the subcarrier spacing of the second BWP.
  • the second message includes subcarrierSpacing.
  • the second message includes locationAndBandwidth.
  • the second message includes cyclicPrefix.
  • the second message includes PUCCH-Config.
  • the second message includes PUSCH-Config.
  • the second message includes PDCCH-Config.
  • the second message includes PDSCH-Config.
  • the second message includes resourceAllocationDCI.
  • the second message includes resourceAllocation.
  • the second message includes a resourceAllocation field or a resourceAllocationDCI field, and the resourceAllocation field or resourceAllocationDCI field is set to any one of resourceAllocationType0, resourceAllocationType1, or dynamicSwitch.
  • the second message includes rbg-Size.
  • the second message includes vrb-ToPRB-Interleaver.
  • the second message includes vrb-ToPRB-InterleaverDCI-1-2-r16.
  • the second message includes pushch-PowerControl.
  • the second message includes mcs-Table.
  • the second message is used to determine the second frequency domain resource pool.
  • the second message is used to determine frequency domain resources of the second frequency domain resource pool.
  • the second message indicates the second frequency domain resource pool.
  • the second message includes configuration information of the second frequency domain resource pool.
  • the second message is used to determine each PRB in the second frequency domain resource pool.
  • the second message includes an index of the second frequency domain resource pool.
  • the index of the second frequency domain resource pool is indicated by BWP-Id.
  • the index of the second frequency domain resource pool is a non-negative integer.
  • the index of the second frequency domain resource pool is an integer that is not less than 0 and not greater than maxNrofBWPs, and the maxNrofBWPs is a positive integer.
  • the second message includes a bwp-Id field, and the bwp-Id field indicates the index of the second frequency domain resource pool.
  • the second message indicates the second frequency domain resource pool in the first BWP.
  • the second message indicates the second frequency domain resource pool in the second BWP.
  • the second message is used to determine the index of each PRB in the second frequency domain resource pool in the first BWP.
  • the second message is used to determine the index of each PRB in the second frequency domain resource pool in the second BWP.
  • the second message and the first message belong to the same RRC message.
  • the second message and the first message belong to the same RRC IE.
  • the second message and the first message are configured to the same BWP.
  • the second message and the first message are respectively configured to two different BWPs.
  • the second message and the first message are configured to the same serving cell.
  • the second message and the first message are respectively configured to two different serving cells.
  • the first message includes configuration information of the first physical layer channel
  • the second message includes configuration information of the second physical layer channel
  • the first message includes configuration information of the second physical layer channel
  • the second message includes configuration information of the first physical layer channel
  • the first message includes PDSCH-Config, and the PDSCH-Config includes the configuration information of the first physical layer channel; the second message includes PUSCH-Config, and the PUSCH-Config includes the Configuration information of the second physical layer channel.
  • the first message includes PDSCH-ConfigCommon, and the PDSCH-ConfigCommon includes the configuration information of the first physical layer channel;
  • the second message includes PUSCH-ConfigCommon, and the PUSCH-ConfigCommon includes the Configuration information of the second physical layer channel.
  • the first message includes a BWP-DownlinkCommon IE
  • the BWP-DownlinkCommon IE includes at least one of PDSCH-ConfigCommon or PDCCH-ConfigCommon
  • the second message includes a BWP-UplinkCommon IE
  • the BWP-UplinkCommon IE includes at least one of PUSCH-ConfigCommon or PUCCH-ConfigCommon or RACH-ConfigCommon or MsgA-ConfigCommon or AdditionalRACH-ConfigList.
  • the first message includes BWP-Downlink IE, and the BWP-Downlink IE includes at least one of PDSCH-Config or PDCCH-Config;
  • the second message includes BWP-Uplink IE, and the BWP-Uplink IE includes at least one of PUSCH-Config or PUCCH-Config or RACH-ConfigDedicated or ConfiguredGrantConfig or SRS-Config or BeamFailureRecoveryConfig.
  • the second message includes PDSCH-Config, and the PDSCH-Config includes the configuration information of the first physical layer channel; the first message includes PUSCH-Config, and the PUSCH-Config includes the Configuration information of the second physical layer channel.
  • the second message includes PDSCH-ConfigCommon, and the PDSCH-ConfigCommon includes the configuration information of the first physical layer channel; the first message includes PUSCH-ConfigCommon, and the PUSCH-ConfigCommon includes the Configuration information of the second physical layer channel.
  • the second message includes BWP-DownlinkCommon IE, and the BWP-DownlinkCommon IE includes at least one of PDSCH-ConfigCommon or PDCCH-ConfigCommon; the first message includes BWP-UplinkCommon IE, and the BWP-UplinkCommon IE includes at least one of PUSCH-ConfigCommon or PUCCH-ConfigCommon or RACH-ConfigCommon or MsgA-ConfigCommon or AdditionalRACH-ConfigList.
  • the second message includes a BWP-Downlink IE, and the BWP-Downlink IE includes at least one of PDSCH-Config or PDCCH-Config;
  • the first message includes a BWP-Uplink IE, and the BWP-Uplink IE includes at least one of PUSCH-Config or PUCCH-Config or RACH-ConfigDedicated or ConfiguredGrantConfig or SRS-Config or BeamFailureRecoveryConfig.
  • the second frequency domain resource pool includes one frequency band.
  • the second frequency domain resource pool includes a subband.
  • the second frequency domain resource pool includes a frequency range.
  • the second frequency domain resource pool includes a frequency range determined by a frequency domain position and a bandwidth.
  • the second frequency domain resource pool includes a period of continuous frequency resources.
  • the second frequency domain resource pool includes a section of non-continuous frequency resources.
  • the second frequency domain resource pool includes P2 frequency domain resource blocks, and P2 is a positive integer.
  • the second frequency domain resource pool includes P2 frequency domain resource block groups, and P2 is a positive integer.
  • the second frequency domain resource pool includes at least one BWP.
  • the second frequency domain resource pool is a BWP.
  • the second frequency domain resource pool belongs to the first BWP.
  • the second frequency domain resource pool is all or part of the frequency domain resources in the first BWP.
  • the number of PRBs occupied by the second frequency domain resource pool is equal to the number of PRBs occupied by the first BWP.
  • the number of PRBs occupied by the second frequency domain resource pool is not greater than the number of PRBs occupied by the first BWP.
  • the number of PRBs occupied by the second frequency domain resource pool is smaller than the number of PRBs occupied by the first BWP.
  • the PRB occupied by the second frequency domain resource pool in the first BWP is configurable.
  • both the second frequency domain resource pool and the first frequency domain resource pool belong to the first BWP.
  • the first frequency domain resource pool is the first BWP, and the first frequency domain resource subset belongs to the first frequency domain resource pool.
  • the second frequency domain resource pool belongs to the second BWP.
  • the second frequency domain resource pool is a second BWP.
  • the "second frequency domain resource pool" may be replaced by: a second BWP.
  • the second frequency domain resource pool is all or part of the frequency domain resources in the second BWP.
  • the number of PRBs occupied by the second frequency domain resource pool is equal to the number of PRBs occupied by the second BWP.
  • the number of PRBs occupied by the second frequency domain resource pool is not greater than the number of PRBs occupied by the second BWP.
  • the number of PRBs occupied by the second frequency domain resource pool is smaller than the number of PRBs occupied by the second BWP.
  • the PRB occupied by the second frequency domain resource pool in the second BWP is configurable.
  • the second frequency domain resource pool is the second BWP
  • the first frequency domain resource pool is the first BWP
  • the second frequency domain resource pool belongs to the second BWP
  • the first frequency domain resource pool belongs to the first BWP
  • the second frequency domain resource pool and the first frequency domain resource pool do not overlap.
  • the second frequency domain resource pool and the first frequency domain resource pool partially overlap.
  • the second frequency domain resource pool and the first frequency domain resource pool completely overlap.
  • the second frequency domain resource pool is configured for downlink transmission
  • the first frequency domain resource pool is configured for uplink transmission
  • the second frequency domain resource pool is configured for uplink transmission
  • the first frequency domain resource pool is configured for downlink transmission
  • the second BWP is configured.
  • the second BWP is not configured.
  • the second BWP is a BWP.
  • the second BWP is a UL BWP
  • the first BWP is a DL BWP
  • the second BWP is a DL BWP
  • the first BWP is a UL BWP
  • the second BWP is a SL BWP.
  • the second BWP is the initial BWP.
  • the second BWP is a default BWP.
  • the second BWP is an active BWP.
  • the second BWP is not the initial BWP.
  • the second BWP is directed to the first cell.
  • the second BWP is directed to the main carrier of the first cell.
  • the second BWP is directed to the secondary carrier of the first cell.
  • the second BWP includes Q2 frequency domain resource blocks, and Q2 is a positive integer.
  • the second BWP includes Q2 frequency domain resource block groups, and Q2 is a positive integer.
  • the index of the second BWP is the same as the index of the first BWP.
  • the index of the second BWP is different from the index of the first BWP.
  • the bandwidth of the second BWP is not greater than the bandwidth of the first BWP.
  • the bandwidth of the second BWP is smaller than the bandwidth of the first BWP.
  • the bandwidth of the second BWP is equal to the bandwidth of the first BWP.
  • the second BWP and the first BWP do not overlap.
  • the second BWP and the first BWP partially overlap.
  • the second BWP and the first BWP completely overlap.
  • the frequency domain position of the second BWP is the same as the frequency domain position of the first BWP, and the bandwidth of the second BWP is the same as the bandwidth of the first BWP.
  • the frequency domain position of the second BWP is the same as the frequency domain position of the first BWP, and the bandwidth of the second BWP is different from the bandwidth of the first BWP.
  • the frequency domain position of the second BWP is different from the frequency domain position of the first BWP, or the bandwidth of the second BWP is different from the bandwidth of the first BWP.
  • the first BWP is configured for downlink transmission
  • the second BWP is configured for uplink transmission
  • the first BWP is configured for uplink transmission
  • the second BWP is configured for downlink transmission
  • the first frequency domain resource pool is used for the first physical layer channel
  • the second frequency domain resource pool is used for the second physical layer channel
  • the first message is configured to the first BWP
  • the second message is configured to the second BWP.
  • the first message is configured to the first frequency domain resource pool
  • the second message is configured to the The second frequency domain resource pool.
  • the first frequency domain resource pool is used for uplink transmission
  • the second frequency domain resource pool is used for downlink transmission.
  • the first frequency domain resource pool is used for uplink transmission
  • the second frequency domain resource pool is used for secondary link transmission.
  • the first frequency domain resource pool is used for downlink transmission
  • the second frequency domain resource pool is used for secondary link transmission.
  • the first message includes configuration information for the first physical layer channel of the first frequency domain resource pool
  • the second message includes configuration information for the second frequency domain resource pool. Configuration information of the second physical layer channel of the resource pool.
  • the second message includes PUSCH-Config, and the PUSCH-Config includes configuration information of the second physical layer channel; the first message includes PDSCH-Config, and the PDSCH -Config includes configuration information of the first physical layer channel.
  • the second message includes PUSCH-ConfigCommon, and the PUSCH-ConfigCommon includes configuration information of the second physical layer channel;
  • the first message includes PDSCH-ConfigCommon, and the PDSCH -ConfigCommon includes configuration information of the first physical layer channel.
  • the first message includes a BWP IE
  • the second message includes a BWP IE
  • the first message includes BWP-DownlinkCommon IE
  • the BWP-DownlinkCommon IE includes at least one of PDSCH-ConfigCommon or PDCCH-ConfigCommon
  • the second message includes BWP- UplinkCommon IE
  • the BWP-UplinkCommon IE includes at least one of PUSCH-ConfigCommon or PUCCH-ConfigCommon or RACH-ConfigCommon or MsgA-ConfigCommon or AdditionalRACH-ConfigList.
  • the first message includes a BWP-Downlink IE
  • the BWP-Downlink IE includes at least one of PDSCH-Config or PDCCH-Config
  • the second message includes a BWP-Downlink IE.
  • Uplink IE, the BWP-Uplink IE includes at least one of PUSCH-Config or PUCCH-Config or RACH-ConfigDedicated or ConfiguredGrantConfig or SRS-Config or BeamFailureRecoveryConfig.
  • the frequency domain resources occupied by the first physical layer channel belong to the first frequency domain resource pool
  • the frequency domain resources occupied by the second physical layer channel belong to the second Frequency domain resource pool
  • the overlapping portion of the frequency domain resources indicated by the first domain of the first DCI and the second frequency domain resource pool is used to determine all occupied areas of the second physical layer channel. Describe frequency domain resources.
  • the overlapping portion of the frequency domain resources indicated by the first domain of the first DCI and the second frequency domain resource pool is occupied by the second physical layer channel of the frequency domain resources.
  • the frequency domain resources occupied by the second physical layer channel belong to the frequency domain resources indicated by the first domain of the first DCI and the second frequency domain Overlapping portions of resource pools.
  • the frequency domain resources occupied by the second physical layer channel include frequency domain resources indicated by the first domain of the first DCI and the second frequency domain All frequency domain resources in the overlapping portion of the resource pool.
  • the frequency domain resources occupied by the second physical layer channel include frequency domain resources indicated by the first domain of the first DCI and the second frequency domain Some frequency domain resources in the overlapping portion of the resource pool.
  • the indication of the first domain of the first DCI relies on the first message.
  • the indication of the first domain of the first DCI depends on the first BWP.
  • the indication of the first domain of the first DCI does not depend on the second BWP.
  • the indication of the first domain of the first DCI is independent of the second BWP.
  • the first domain of the first DCI is interpreted according to the first message.
  • the first domain of the first DCI is interpreted according to the configuration of the first BWP.
  • the first domain of the first DCI is interpreted only according to the configuration of the first BWP.
  • the first node U01 determines the frequency domain resource indicated by the first domain of the first DCI according to the first message.
  • the first node U01 determines, according to the configuration of the first BWP, what the first domain of the first DCI indicates. frequency domain resources.
  • the first DCI is used to determine to perform wireless reception on the first physical layer channel and to perform wireless transmission on the second physical layer channel.
  • Embodiment 7 illustrates a schematic diagram of the first DCI including the second domain according to an embodiment of the present application, as shown in FIG. 7 .
  • the first DCI includes a second domain, and the second domain of the first DCI is used to determine the time domain resources occupied by the first physical layer channel and the second physical layer channel.
  • the time domain resources occupied by the layer channel are used to determine the time domain resources occupied by the layer channel.
  • the first domain and the second domain of the first DCI are used to determine the time-frequency resources of the first physical channel and the time-frequency resources of the second physical channel.
  • the second domain of the first DCI is a Time Domain Resource Assignment (TDRA) domain.
  • TDRA Time Domain Resource Assignment
  • the second domain of the first DCI is a Time domain resource assignment domain.
  • the payload size of the second domain of the first DCI is equal to a positive integer number of bits.
  • the payload size of the second domain of the first DCI is variable.
  • the payload size of the second domain of the first DCI is fixed.
  • the payload size of the second domain of the first DCI refers to the number of bits occupied by the second domain of the first DCI.
  • the payload size of the second field of the first DCI is 4 bits.
  • the load of the second domain of the first DCI occupies a positive integer number of bits.
  • the positive integer number of bits occupied by the load of the second domain of the first DCI is continuous.
  • the second domain of the first DCI is used for time domain resource allocation.
  • the second domain of the first DCI is used to determine time domain resources.
  • the time domain resource allocation includes the location of the time domain resource.
  • the time domain resource allocation includes the length of the time domain resource.
  • the time domain resource allocation includes the start and end times of the time domain resources.
  • the time domain resource allocation includes the start time and end time of the time domain resource.
  • the time domain resource indicated by the second domain of the first DCI includes a continuous time resource.
  • the time domain resources indicated by the second domain of the first DCI include a period of non-continuous time resources.
  • the time domain resource indicated by the second domain of the first DCI includes a positive integer number of time slots.
  • the time domain resource indicated by the second domain of the first DCI includes a positive integer number of symbols.
  • the second field of the first DCI is an index.
  • the time domain resource indicated by the second domain of the first DCI is determined according to Section 5.1.2.1 of 3GPP TS38.214; the second domain of the first DCI is 3GPP TS38.214 The value of m in Section 5.1.2.1.
  • the first node determines the time domain resources occupied by the first physical layer channel and the time domain resources occupied by the second physical layer channel according to the second domain of the first DCI. .
  • the second domain of the first DCI indicates time domain resource allocation of the first physical layer channel and time domain resource allocation of the second physical layer channel.
  • the second domain of the first DCI is used to determine the time domain resources occupied by the first physical layer channel, and the second domain of the first DCI is used to Determine the time domain resources occupied by the second physical layer channel.
  • At least the second domain of the first DCI is used to determine the time domain resources occupied by the first physical layer channel and the time domain resources occupied by the second physical layer channel.
  • time domain resources indicated by the second domain of the first DCI are used for the first physical layer channel and the second physical layer channel.
  • the time domain resources occupied by the first physical layer channel include the time domain resources indicated by the second domain of the first DCI. All time domain resources, and the time domain resources occupied by the second physical layer channel include all time domain resources indicated by the second domain of the first DCI.
  • the time domain resources occupied by the first physical layer channel include all time domain resources indicated by the second domain of the first DCI, and the time domain resources occupied by the second physical layer channel
  • the time domain resources include part of the time domain resources indicated by the second domain of the first DCI.
  • the time domain resources occupied by the first physical layer channel include part of the time domain resources indicated by the second domain of the first DCI, and the time domain resources occupied by the second physical layer channel
  • the time domain resources include all time domain resources indicated by the second domain of the first DCI.
  • the time domain resources occupied by the first physical layer channel include part of the time domain resources indicated by the second domain of the first DCI, and the time domain resources occupied by the second physical layer channel
  • the time domain resources include part of the time domain resources indicated by the second domain of the first DCI.
  • the second domain and the first time of the first DCI are used to determine the time domain resources occupied by the first physical layer channel and the time domain occupied by the second physical layer channel. resource.
  • the time domain resources before the first moment are occupied by the first physical layer channel Time domain resources; among the time domain resources indicated by the second domain of the first DCI, the time domain resources after the first moment are the time domain resources occupied by the second physical layer channel.
  • Time domain resources among the time domain resources indicated by the second domain of the first DCI, the time domain resources before the first moment are occupied by the second physical layer channel.
  • the first time is a time in the time domain resource indicated by the second domain of the first DCI.
  • the first moment is a transition point between the uplink transmission time interval and the downlink transmission time interval.
  • the first moment is an uplink-downlink conversion point.
  • the first moment is a transition point between the first BWP and the second BWP.
  • the first moment is preconfigured.
  • the first moment is dynamically configured.
  • the first time is a time between two time slots.
  • the first moment is the moment between two symbols.
  • the first time is preceded by an uplink time slot, and the time after the first time is followed by a downlink time slot.
  • the first time is preceded by a downlink time slot, and the time after the first time is an uplink time slot.
  • the second domain and the first parameter of the first DCI are used to determine the time domain resources occupied by the first physical layer channel and the time domain occupied by the second physical layer channel. resource.
  • the first parameter is a value greater than 0 and less than 1.
  • the first parameter is used to determine the length of the time domain resource occupied by the first physical layer channel and the length of the time domain resource occupied by the second physical layer channel.
  • the length of the time domain resource occupied by the first physical layer channel is related to the length of the time domain resource indicated by the second domain of the first DCI and the first parameter.
  • the products are equal; the length of the time domain resource occupied by the second physical layer channel is equal to the product of the time domain resource indicated by the second domain of the first DCI and (1-the first parameter).
  • the length of the time domain resource occupied by the second physical layer channel is related to the length of the time domain resource indicated by the second domain of the first DCI and the first parameter.
  • the products are equal; the length of the time domain resource occupied by the first physical layer channel is equal to the product of the time domain resource indicated by the second domain of the first DCI and (1-the first parameter).
  • the first time is a time when the starting time of the time domain resource indicated by the second domain of the first DCI passes the first time interval.
  • the first time interval is a moment of the length of the time domain resource occupied by the first physical layer channel.
  • the first time interval is a moment of the length of the time domain resource occupied by the second physical layer channel.
  • the first message is used to determine the second domain of the first DCI and is used to determine the time domain resources occupied by the first physical layer channel and the second physical layer channel.
  • the time domain resources occupied are used to determine the time domain resources occupied by the first physical layer channel and the second physical layer channel.
  • the second domain of the first DCI is used to determine the time domain resources occupied by the first physical layer channel and The time domain resources occupied by the second physical layer channel.
  • the indication of the second domain of the first DCI relies on the first message.
  • the second domain of the first DCI is interpreted according to the first message.
  • the first node determines the time domain resource indicated by the second domain of the first DCI according to the first message.
  • Embodiment 8 illustrates a schematic diagram of a first frequency domain resource pool according to an embodiment of the present application, as shown in FIG. 8 .
  • the vertical axis represents frequency; in said Figure 8, the vertical axis represents frequency.
  • the solid line box 801(a) represents the first frequency domain resource pool.
  • the solid line box 801(b) represents the first frequency domain resource pool; the slashed part in the solid line box 801(b) represents the third A subset of frequency domain resources.
  • the frequency domain resources occupied by the first physical layer channel belong to the first frequency domain resource pool, and the second physical layer channel The occupied frequency domain resources belong to the first frequency domain resource pool.
  • the frequency domain resources occupied by the first physical layer channel belong to the first frequency domain resource pool, and the frequency domain resources occupied by the second physical layer channel The frequency domain resources belong to the first frequency domain resource subset.
  • the frequency domain resources occupied by the first physical layer channel belong to the first frequency domain resource subset, and the frequency domain resources occupied by the second physical layer channel The frequency domain resources belong to the first frequency domain resource pool.
  • the first frequency domain resource subset belongs to the first frequency domain resource pool.
  • the FIG. 8 does not limit the location and size of the frequency domain resources of the first frequency domain resource pool in this application.
  • the FIG. 8 does not limit the location and size of the frequency domain resources of the first frequency domain resource subset in this application.
  • the accompanying drawing 8 does not limit whether the frequency domain resources of the first frequency domain resource subset in this application are continuous.
  • the accompanying drawing 8 does not limit whether the frequency domain resources of the first frequency domain resource pool in this application are continuous.
  • Embodiment 9 illustrates a schematic diagram of the first frequency domain resource pool and the second frequency domain resource pool according to an embodiment of the present application, as shown in FIG. 9 .
  • the vertical axis represents frequency.
  • the solid line box 901(a) represents the first frequency domain resource pool
  • the solid line box 902(a) represents the second frequency domain resource pool
  • the solid line box 901(b) represents the first frequency domain resource pool
  • the solid line box 902(b) represents the second frequency domain resource pool
  • the diamond-filled portion represents the overlapping portion of the first frequency domain resource pool and the second frequency domain resource pool.
  • the FIG. 9 does not limit the location and size of the frequency domain resources of the first frequency domain resource pool in this application.
  • the FIG. 9 does not limit the location and size of the frequency domain resources of the second frequency domain resource pool in this application.
  • the accompanying drawing 9 does not limit whether the frequency domain resources of the first frequency domain resource pool in this application are continuous.
  • the accompanying drawing 9 does not limit whether the frequency domain resources of the second frequency domain resource pool in this application are continuous.
  • Embodiment 10 illustrates a schematic diagram of frequency domain resources occupied by the first physical layer channel and the second physical layer channel according to an embodiment of the present application, as shown in Figure 10.
  • the vertical axis represents frequency.
  • the solid line box 1001(a) represents the first frequency domain resource pool
  • the dotted line box 1002(a) represents the first domain of the first DCI The indicated frequency domain resource.
  • the dotted box 1003(a) represents the frequency domain resources occupied by the first physical layer channel.
  • the dotted box 1004(a) represents the frequency domain resources occupied by the second physical layer channel.
  • the dotted line box 1003(a) is a combination of the solid line box 1001(a) and the dotted line box 1002(a). the overlapping part.
  • the dotted line box 1004(a) is an overlapping part of the solid line box 1001(a) and the dotted line box 1002(a).
  • the solid line box 1001(b) represents the first frequency domain resource pool, and the slashed part in the solid line box 1001(b) represents the third A subset of frequency domain resources, the dotted box 1002(b) represents the frequency domain resources indicated by the first domain of the first DCI.
  • the dotted box 1003(b) represents the frequency domain resources occupied by the first physical layer channel
  • the dotted box 1004(b) represents the frequency domain resources occupied by the second physical layer channel. Frequency domain resources.
  • the dotted box 1003(b) represents the frequency domain resources occupied by the second physical layer channel
  • the dotted box 1004(b) represents the frequency domain resources occupied by the first physical layer channel. Frequency domain resources occupied.
  • the dotted line box 1003(b) is an overlapping part of the solid line box 1001(b) and the dotted line box 1002(b).
  • the dotted box 1004(b) is the overlapping portion of the diagonal portions in the solid box 1002(b) and the solid box 1001(b). .
  • the accompanying drawing 10 does not limit the location and size of the frequency domain resources of the first frequency domain resource pool in this application.
  • the FIG. 10 does not limit the location and size of the frequency domain resources of the first frequency domain resource subset in this application.
  • the accompanying drawing 10 does not limit whether the frequency domain resources of the first frequency domain resource subset in this application are continuous.
  • the accompanying drawing 10 does not limit whether the frequency domain resources of the first frequency domain resource pool in this application are continuous.
  • the accompanying drawing 10 does not limit the location and size of the frequency domain resources indicated by the first domain of the first DCI in this application.
  • Embodiment 11 illustrates a schematic diagram of frequency domain resources occupied by the first physical layer channel and the second physical layer channel according to another embodiment of the present application, as shown in FIG. 11 .
  • the vertical axis represents frequency.
  • the solid line box 1101(a) represents the first frequency domain resource pool
  • the solid line box 1102(a) represents the second frequency domain resource pool
  • the dotted line box 1102(a) represents the second frequency domain resource pool.
  • Block 1103(a) represents the frequency domain resources indicated by the first domain of the first DCI; there is no overlap between the first frequency domain resource pool and the second frequency domain resource pool.
  • the boxes filled with vertical lines represent the frequency domain resources occupied by the first physical layer channel; the boxes filled with horizontal lines represent the frequency domain resources occupied by the second physical layer channel.
  • the frequency domain resources represent the frequency domain resources occupied by the first physical layer channel; the boxes filled with horizontal lines represent the frequency domain resources occupied by the second physical layer channel.
  • the boxes filled with vertical lines represent the frequency domain resources occupied by the second physical layer channel; the boxes filled with horizontal lines represent the frequency domain resources occupied by the first physical layer channel.
  • the frequency domain resources represent the frequency domain resources occupied by the second physical layer channel.
  • the vertical line-filled box is the overlapping portion of the solid line box 1101(a) and the dotted line box 1103(a).
  • the box filled with horizontal lines is the overlapping portion of the solid line box 1102(a) and the dotted line box 1103(a).
  • the solid line box 1101(b) represents the first frequency domain resource pool
  • the solid line box 1102(b) represents the second frequency domain resource pool
  • the dotted line box 1102(b) represents the second frequency domain resource pool.
  • Block 1103(b) represents the frequency domain resources indicated by the first domain of the first DCI; there is overlap between the first frequency domain resource pool and the second frequency domain resource pool.
  • the boxes filled with vertical lines represent the frequency domain resources occupied by the first physical layer channel; the boxes filled with horizontal lines represent the frequency domain resources occupied by the second physical layer channel.
  • the frequency domain resources represent the frequency domain resources occupied by the first physical layer channel; the boxes filled with horizontal lines represent the frequency domain resources occupied by the second physical layer channel.
  • the boxes filled with vertical lines represent the frequency domain resources occupied by the second physical layer channel; the boxes filled with horizontal lines represent the frequency domain resources occupied by the first physical layer channel.
  • the frequency domain resources represent the frequency domain resources occupied by the second physical layer channel.
  • the diamond-filled box is the overlapping portion of the solid line box 1101(b) and the solid line box 1102(b).
  • the vertical line-filled box is all or part of the overlapping portion of the solid line box 1101(b) and the dotted line box 1103(b).
  • the boxes filled with horizontal lines are the solid line box 1102(b) and the dotted line box 1103(b) All or part of the overlapping portion.
  • the box filled with vertical lines is the overlapping part of the solid line box 1101(b) and the dotted box 1103(b); the box filled with horizontal lines It is the overlapping portion of the solid line box 1102(b) and the dotted line box 1103(b).
  • the box filled with vertical lines is the overlapping part of the solid line box 1101(b) and the dotted box 1103(b);
  • the box filled with horizontal lines is the overlap of the solid line box 1101(b) and the solid line box 1102(b) in the overlapping portion of the solid line box 1102(b) and the dotted line box 1103(b) part outside the part.
  • the vertical line-filled box is the solid line box in the overlapping portion of the solid line box 1101(b) and the dotted line box 1103(b).
  • the box filled with the horizontal line is the solid line box 1102(b) and the dotted line box 1103 The overlapping part of (b).
  • the vertical line-filled box is the solid line box in the overlapping portion of the solid line box 1101(b) and the dotted line box 1103(b).
  • the box filled with the horizontal line is the solid line box 1102(b) and the dotted line box 1103
  • the accompanying drawing 11 does not limit the location and size of the frequency domain resources of the first frequency domain resource pool in this application.
  • the accompanying drawing 11 does not limit the location and size of the frequency domain resources of the second frequency domain resource pool in this application.
  • the accompanying drawing 11 does not limit whether the frequency domain resources of the first frequency domain resource pool in this application are continuous.
  • the accompanying drawing 11 does not limit whether the frequency domain resources of the second frequency domain resource pool in this application are continuous.
  • the accompanying drawing 11 does not limit the location and size of the frequency domain resources indicated by the first domain of the first DCI in this application.
  • Embodiment 12 illustrates a schematic diagram of time domain resources occupied by the first physical layer channel and the second physical layer channel according to an embodiment of the present application, as shown in Figure 12.
  • the horizontal axis represents time.
  • the solid line box 1201 represents the uplink transmission time interval; the solid line box 1202 represents the downlink transmission time interval; and the dotted line box 1203 represents the time domain resource indicated by the second domain of the first DCI.
  • the solid line box 1201 represents the downlink transmission time interval; the solid line box 1202 represents the uplink transmission time interval; and the dotted line box 1203 represents the time domain resource indicated by the second domain of the first DCI.
  • the overlapping portion of the dotted box 1203 and the implementation block 1201 is the time domain resource occupied by the first physical layer channel; the dotted box 1203 and the implementation block 1202 The overlapping part is the time domain resource occupied by the second physical layer channel.
  • the overlapping portion of the dotted box 1203 and the implementation block 1201 is the time domain resource occupied by the second physical layer channel; the dotted box 1203 and the implementation block 1202 The overlapping part is the time domain resource occupied by the first physical layer channel.
  • Figure 12 does not limit the location and length of time domain resources used for uplink transmission in this application.
  • the Figure 12 does not limit the location and length of the time domain resources used for downlink transmission in this application.
  • the accompanying drawing 12 does not limit the location and length of the time domain resource indicated by the second domain of the first DCI in this application.
  • Embodiment 13 illustrates a schematic diagram of time domain resources occupied by the first physical layer channel and the second physical layer channel according to another embodiment of the present application, as shown in FIG. 13 .
  • the horizontal axis represents time.
  • the dotted box 1303 represents the time domain resource indicated by the second domain of the first DCI.
  • the solid line box 1301 represents the uplink transmission time interval; the solid line box 1302 represents the downlink transmission time interval; the solid line box 1304 represents the uplink transmission time interval.
  • the solid line box 1301 represents the downlink transmission time interval; the solid line box 1302 represents the uplink transmission time interval; the solid line box 1304 represents the downlink transmission time interval.
  • the overlapping portion of the dotted box 1303 and the implementation box 1302 represents the time domain resources occupied by the second physical layer channel; the vertical filled portion of the solid box 1304 represents The time domain resources occupied by the first physical layer channel.
  • the overlapping portion of the dotted box 1303 and the implementation box 1302 represents the time domain resources occupied by the first physical layer channel; the vertical filled portion of the solid box 1304 represents The time domain resources occupied by the second physical layer channel.
  • the uplink transmission time interval represented by the solid line box 1304 is an uplink transmission time interval after the uplink transmission time interval represented by the solid line box 1301.
  • Figure 13 does not limit the location and length of time domain resources used for uplink transmission in this application.
  • Figure 13 does not limit the location and length of time domain resources used for downlink transmission in this application.
  • the accompanying drawing 13 does not limit the location and length of the time domain resource indicated by the second domain of the first DCI in this application.
  • Embodiment 14 illustrates a schematic diagram of time domain resources and frequency domain resources occupied by the first physical layer channel and the second physical layer channel according to an embodiment of the present application, as shown in Figure 14.
  • the horizontal axis represents time and the vertical axis represents frequency.
  • the solid line box 1401 represents the time-frequency resources used for uplink transmission
  • the solid line box 1402 represents the time-frequency resources used for downlink transmission.
  • the solid line box 1401 represents the time-frequency resources used for downlink transmission
  • the solid line box 1402 represents the time-frequency resources used for uplink transmission.
  • the time-frequency resources include time domain resources and frequency domain resources.
  • the dotted box 1403 represents the frequency domain resources indicated by the first domain of the first DCI and the time domain resources indicated by the second domain of the first DCI.
  • the boxes filled with vertical lines represent the frequency domain resources occupied by the first physical layer channel; the boxes filled with horizontal lines represent the frequency domain resources occupied by the second physical layer channel. .
  • the boxes filled with vertical lines represent the frequency domain resources occupied by the second physical layer channel; the boxes filled with horizontal lines represent the frequency domain resources occupied by the first physical layer channel. .
  • the vertical line-filled box is the overlapping portion of the solid line box 1401 and the dotted line box 1403 .
  • the box filled with horizontal lines is the overlapping portion of the solid line box 1402 and the dotted line box 1403 .
  • the accompanying drawing 14 does not limit the location and length of the time domain resources and the location and size of the frequency domain resources used for uplink transmission in this application.
  • the accompanying drawing 14 does not limit the location and length of the time domain resources and the location and size of the frequency domain resources used for downlink transmission in this application.
  • the accompanying drawing 14 does not limit the location and size of the frequency domain resources indicated by the first domain of the first DCI in this application.
  • the accompanying drawing 14 does not limit the location and length of the time domain resource indicated by the second domain of the first DCI in this application.
  • Embodiment 15 illustrates a schematic diagram in which the first DCI includes a first candidate domain and a second candidate domain according to an embodiment of the present application.
  • the first DCI includes a first candidate domain and a second candidate domain; the first candidate domain indicates at least one of the MCS or NDI or RV or HARQ process number for the first physical layer channel.
  • the second candidate field indicates at least one of MCS or NDI or RV or HARQ process number for the second physical layer channel.
  • the first candidate domain and the second candidate domain have the same name.
  • the names of the first candidate domain and the second candidate domain both include Modulation and coding scheme.
  • the names of the first candidate domain and the second candidate domain both include New data indicator.
  • the names of the first candidate domain and the second candidate domain both include Redundancy version.
  • the names of the first candidate domain and the second candidate domain both include HARQ process number.
  • the first candidate domain is a Modulation and coding scheme domain
  • the first candidate domain indicates the MCS for the first physical layer channel.
  • the first candidate field is a New data indicator field
  • the first candidate field indicates the NDI for the first physical layer channel.
  • the first candidate field is a Redundancy version field
  • the first candidate field indicates the RV for the first physical layer channel.
  • the first candidate field is a HARQ process number field, and the first candidate field indicates the HARQ process number for the first physical layer channel.
  • the second candidate domain is a Modulation and coding scheme domain
  • the second candidate domain indicates the MCS for the second physical layer channel.
  • the second candidate field is a New data indicator field
  • the second candidate field indicates the NDI for the second physical layer channel.
  • the second candidate field is a Redundancy version field
  • the second candidate field indicates the RV for the second physical layer channel.
  • the second candidate field is a HARQ process number field, and the second candidate field indicates the HARQ process number for the second physical layer channel.
  • the first candidate domain is before the second candidate domain; the first candidate channel is PDSCH, and the second candidate channel is PUSCH.
  • the first candidate domain is before the second candidate domain; the first candidate channel is PUSCH, and the second candidate channel is PDSCH.
  • the first DCI includes at least one candidate field indicating at least one of MCS or NDI or RV or HARQ process number for the first time-frequency resource sub-block; the first candidate field is the one of the at least one candidate domain.
  • the at least one candidate domain includes at least one of the Modulation and coding scheme domain or the New data indicator domain or the Redundancy version domain or the HARQ process number domain.
  • the first DCI includes at least one candidate field indicating at least one of MCS or NDI or RV or HARQ process number for the second time-frequency resource sub-block; the second candidate field is the one of the at least one candidate domain.
  • the at least one candidate domain includes at least one of the Modulation and coding scheme domain or the New data indicator domain or the Redundancy version domain or the HARQ process number domain.
  • the at least one candidate field used to indicate at least one of the MCS or NDI or RV or HARQ process number for the first time-frequency resource sub-block is located in the Before the at least one candidate field of at least one of the MCS, NDI, RV or HARQ process number of the two time-frequency resource sub-blocks; the first candidate channel is PDSCH, and the second candidate channel is PUSCH.
  • the at least one candidate field used to indicate at least one of the MCS or NDI or RV or HARQ process number for the first time-frequency resource sub-block is located in the Before the at least one candidate field of at least one of the MCS, NDI, RV or HARQ process number of the two time-frequency resource sub-blocks; the first candidate channel is PUSCH, and the second candidate channel is PDSCH.
  • Embodiment 16 illustrates a structural block diagram of a processing device used in a first node according to an embodiment of the present application; as shown in FIG. 16 .
  • the processing device 1600 in the first node includes a first receiver 1601 and a first processor 1602.
  • the first receiver 1601 receives the first DCI, where the first DCI includes the first domain;
  • the first processor 1602 performs wireless reception on the first physical layer channel and wireless transmission on the second physical layer channel;
  • the first domain of the first DCI is used to determine frequency domain resources occupied by the first physical layer channel and frequency domain resources occupied by the second physical layer channel.
  • the first DCI includes a second domain
  • the second domain of the first DCI is used to determine the time domain resources occupied by the first physical layer channel and the second physical layer The time domain resources occupied by the channel.
  • the first DCI includes a first candidate domain and a second candidate domain; the first candidate domain indicates at least one of the MCS or NDI or RV or HARQ process number for the first physical layer channel. 1.
  • the second candidate field indicates at least one of MCS or NDI or RV or HARQ process number for the second physical layer channel.
  • the first receiver 1601 receives a first message, and the first message is used to determine the payload size of the first domain of the first DCI.
  • the first message is used to determine a first frequency domain resource pool; the frequency domain resources occupied by the first physical layer channel or the frequency domain resources occupied by the second physical layer channel. At least one of the domain resources belongs to the first frequency domain resource pool.
  • the first receiver 1601 receives a second message, and the second message is used to determine a second frequency domain resource pool; wherein, the frequency domain occupied by the first physical layer channel The resources belong to the first frequency domain resource pool; the frequency domain resources occupied by the second physical layer channel belong to the second frequency domain resource pool.
  • the first message is used to determine a first frequency domain resource subset, which belongs to the first frequency domain resource pool; the first physical layer channel occupies The frequency domain resources belong to the first frequency domain resource pool, and the frequency domain resources occupied by the second physical layer channel belong to the first frequency domain resource subset; or, the first physical layer The frequency domain resources occupied by the channel belong to the first frequency domain resource subset, and the frequency domain resources occupied by the second physical layer channel belong to the first frequency domain resource pool.
  • the first receiver 1601 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data in Figure 4 of this application. Source 467.
  • the first receiver 1601 includes the antenna 452, the receiver 454, the multi-antenna receiving processor 458, and the receiving processor 456 in Figure 4 of this application.
  • the first receiver 1601 includes the antenna 452, the receiver 454, and the receiving processor 456 in Figure 4 of this application.
  • the first processor 1602 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data shown in Figure 4 of this application. Source 467.
  • the first processor 1602 includes the antenna 452, the receiver 454, the multi-antenna receiving processor 458, and the receiving processor 456 in Figure 4 of this application.
  • the first processor 1602 includes the antenna 452, the receiver 454, and the receiving processor 456 in Figure 4 of this application.
  • the first processor 1602 includes the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, the transmission processor 468, the controller/processor 459, the memory 460 and the data shown in Figure 4 of this application. Source 467.
  • the first processor 1602 includes the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, and the transmission processor 468 in Figure 4 of this application.
  • the first processor 1602 includes the antenna 452, the transmitter 454, and the transmission processor 468 in Figure 4 of this application.
  • Embodiment 17 illustrates a structural block diagram of a processing device used in a second node according to an embodiment of the present application; as shown in FIG. 17 .
  • the processing device 1700 in the second node includes a second transmitter 1701 and a second processor 1702.
  • the second transmitter 1701 sends the first DCI, where the first DCI includes the first domain;
  • the second processor 1702 performs wireless transmission on the first physical layer channel and performs wireless reception on the second physical layer channel;
  • the first domain of the first DCI is used to determine the frequency domain resources occupied by the first physical layer channel and the frequency domain resources occupied by the second physical layer channel.
  • the first DCI includes a second domain
  • the second domain of the first DCI is used to determine the time domain resources occupied by the first physical layer channel and the second physical layer The time domain resources occupied by the channel.
  • the first DCI includes a first candidate domain and a second candidate domain; the first candidate domain indicates at least one of the MCS or NDI or RV or HARQ process number for the first physical layer channel. 1.
  • the second candidate field indicates at least one of MCS or NDI or RV or HARQ process number for the second physical layer channel.
  • the second transmitter 1701 sends a first message, and the first message is used to determine the payload size of the first domain of the first DCI.
  • the first message is used to determine a first frequency domain resource pool; the frequency domain resources occupied by the first physical layer channel or the frequency domain resources occupied by the second physical layer channel. At least one of the domain resources belongs to the first frequency domain resource pool.
  • the second transmitter 1701 sends a second message, and the second message is used to determine the second frequency domain resource pool; Wherein, the frequency domain resources occupied by the first physical layer channel belong to the first frequency domain resource pool; the frequency domain resources occupied by the second physical layer channel belong to the second frequency domain resources. Pool.
  • the first message is used to determine a first frequency domain resource subset, which belongs to the first frequency domain resource pool; the first physical layer channel occupies The frequency domain resources belong to the first frequency domain resource pool, and the frequency domain resources occupied by the second physical layer channel belong to the first frequency domain resource subset; or, the first physical layer The frequency domain resources occupied by the channel belong to the first frequency domain resource subset, and the frequency domain resources occupied by the second physical layer channel belong to the first frequency domain resource pool.
  • the second transmitter 1701 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475, and the memory 476 in Figure 4 of this application.
  • the second transmitter 1701 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471 and the transmission processor 416 in Figure 4 of this application.
  • the second transmitter 1701 includes the antenna 420, the transmitter 418, and the transmission processor 416 in Figure 4 of this application.
  • the second processor 1702 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475, and the memory 476 in Figure 4 of this application.
  • the second processor 1702 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, and the transmission processor 416 in Figure 4 of this application.
  • the second processor 1702 includes the antenna 420, the transmitter 418, and the transmission processor 416 in Figure 4 of this application.
  • the second processor 1702 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 in Figure 4 of this application.
  • the second processor 1702 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, and the receiving processor 470 in Figure 4 of this application.
  • the second processor 1702 includes the antenna 420, the receiver 418, and the receiving processor 470 in Figure 4 of this application.
  • User equipment, terminals and UEs in this application include but are not limited to drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC, enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost Cost-effective tablet computers and other wireless communication devices.
  • MTC Machine Type Communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, transmitting and receiving node) and other wireless communications equipment.
  • gNB NR Node B
  • TRP Transmitter Receiver Point

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的通信节点中的方法和装置。通信节点接收第一DCI,所述第一DCI包括第一域;在第一物理层信道上执行无线接收,在第二物理层信道上执行无线发送;所述第一DCI的所述第一域被用于确定所述第一物理层信道所占用的频域资源以及所述第二物理层信道所占用的频域资源。本申请针对全双工操作,提出了一种新的资源分配方案,通过一个DCI域调度被用于上行链路传输和下行链路传输的时域或者频域资源,本申请提出的方案能够提高资源调度的灵活性和资源利用率。

Description

一种被用于无线通信的通信节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及全双工(Duplex)的传输方法和装置。
背景技术
TDD(Time Division Duplexing,时分双工)广泛应用于商业NR(NR,New Radio)部署,TDD的时域资源分为下行链路(Downlink,DL)和上行链路(Uplink,UL)。在TDD中给上行链路(Uplink,UL)分配有限的时间间隔将导致覆盖范围缩小、时延增加和容量降低,为解决这一问题,3GPP(3rd Generation Partner Project,第三代合作伙伴项目)在RAN#94次会议决定开展“Study on Evolution of NR Duplex Operation”研究组(Study Item,SI),针对如何增强上行链路覆盖、减少时延、提高系统容量、改善非配对频谱中NR TDD操作的配置灵活性,研究同时存在下行链路和上行链路的可行性,即全双工,更具体地,在传统TDD频段内的gNB端子带不交叠全双工(subband non-overlapping full duplex,SBFD)。
发明内容
现有技术中,基站通过不同的DCI(Downlink Control Information,下行控制信息)格式(Format)给UE(User Equipment,用户设备)动态调度PDSCH(Physical Downlink Shared Channel,物理下行共享信道)和PUSCH(Physical Uplink Shared Channel,物理上行共享信道),针对全双工操作,尤其是子带不交叠全双工,如果上下行非常不对称,根据现有的调度机制,通过DCI域的频域资源分配(Frequency Domain Resource Assignment,FDRA)域仅能够调度较小的一个频带,难以满足通信需求,如何提高调度性能需要进行增强。
针对上述问题,本申请提供了一种全双工的解决方案。针对上述问题描述中,采用NR系统作为一个例子;本申请也同样适用于例如LTE系统的场景;进一步的,虽然本申请针对单播给出了具体的实施方式,但本申请也能被用于例如多播MBS(Multicast/Broadcast Service,多播/广播服务)的场景,取得类似RRC不活跃状态的MT-SDT的技术效果。进一步的,虽然本申请的初衷是针对Uu空口,但本申请也能被用于PC5口。进一步的,虽然本申请的初衷是针对终端与基站场景,但本申请也同样适用于V2X(Vehicle-to-Everything,车联网)场景,终端与中继,以及中继与基站之间的通信场景,取得类似的终端与基站场景中的技术效果。进一步的,虽然本申请的初衷是针对终端与基站场景,但本申请也同样适用于IAB(Integrated Access and Backhaul,集成接入和回传)的通信场景,取得类似的终端与基站场景中的技术效果。进一步的,虽然本申请的初衷是针对地面网络(Terrestrial Network,地面网络)场景,但本申请也同样适用于非地面网络(Non-Terrestrial Network,NTN)的通信场景,取得类似的TN场景中的技术效果。此外,不同场景采用统一解决方案还有助于降低硬件复杂度和成本。
作为一个实施例,对本申请中的术语(Terminology)的解释参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
需要说明的是,在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一DCI,所述第一DCI包括第一域;
在第一物理层信道上执行无线接收,在第二物理层信道上执行无线发送;
其中,所述第一DCI的所述第一域被用于确定所述第一物理层信道所占用的频域资源以及所述第二物理层信道所占用的频域资源。
根据本申请的一个方面,其特征在于,所述第一DCI包括第二域,所述第一DCI的所述第二域被用于 确定所述第一物理层信道所占用的时域资源以及所述第二物理层信道所占用的时域资源。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一DCI,所述第一DCI包括第二域;
在第一物理层信道上执行无线接收,在第二物理层信道上执行无线发送;
其中,所述第一DCI的所述第二域被用于确定所述第一物理层信道所占用的时域资源以及所述第二物理层信道所占用的时域资源。
根据本申请的一个方面,其特征在于,所述第一DCI包括第一域;所述第一DCI的所述第一域被用于确定所述第一物理层信道所占用的频域资源以及所述第二物理层信道所占用的频域资源。
作为一个实施例,本申请要解决的问题包括:如何提高调度灵活性。
作为一个实施例,本申请要解决的问题包括:如何提高调度效率。
作为一个实施例,本申请要解决的问题包括:如何避免资源浪费。
作为一个实施例,本申请要解决的问题包括:如何同时调度PDSCH和PUSCH。
作为一个实施例,本申请要解决的问题包括:如何缩短调度时延。
作为一个实施例,上述方法的特质包括:所述第一DCI的所述第一域被用于确定所述第一物理层信道所占用的频域资源以及所述第二物理层信道所占用的频域资源。
作为一个实施例,上述方法的特质包括:根据所述第一DCI的所述第一域所指示的频域资源在第一物理层信道上执行无线接收并且在第二物理层信道上执行无线发送。
作为一个实施例,上述方法的特质包括:所述第一DCI的所述第二域被用于确定所述第一物理层信道所占用的时域资源以及所述第二物理层信道所占用的时域资源。
作为一个实施例,上述方法的特质包括:根据所述第一DCI的所述第二域所指示的时域资源在第一物理层信道上执行无线接收并且在第二物理层信道上执行无线发送。
作为一个实施例,上述方法的好处包括:提高调度灵活性。
作为一个实施例,上述方法的好处包括:提高调度效率。
作为一个实施例,上述方法的好处包括:避免资源浪费。
作为一个实施例,上述方法的好处包括:同时调度上行链路传输和下行链路传输。
作为一个实施例,上述方法的好处包括:缩短调度时延。
根据本申请的一个方面,其特征在于,所述第一DCI包括第一候选域和第二候选域;所述第一候选域指示针对所述第一物理层信道的MCS(Modulation and coding scheme,调制编码方式)或者NDI(New Data Indicator,新数据指示)或者RV(Redundancy version,冗余版本)或者HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程号(Process Number)中的至少之一;所述第二候选域指示针对所述第二物理层信道的MCS或者NDI或者RV或者HARQ进程号中的至少之一。
作为一个实施例,上述方法的特质包括:所述第一DCI指示针对所述第一物理层信道的MCS或者NDI或者RV或者HARQ进程号中的至少之一,并且,所述第一DCI指示针对所述第二物理层信道的MCS或者NDI或者RV或者HARQ进程号中的至少之一。
作为一个实施例,上述方法的特质包括:独立配置PDSCH和PUSCH的HARQ进程。
作为一个实施例,上述方法的好处包括:上行链路传输和下行链路传输能够独立配置,增加系统调度灵活性。
根据本申请的一个方面,其特征在于,包括:
接收第一消息,所述第一消息被用于确定所述第一DCI的所述第一域的负载尺寸。
根据本申请的一个方面,其特征在于,所述第一消息被用于确定第一频域资源池;所述第一物理层信道所占用的所述频域资源或者所述第二物理层信道所占用的所述频域资源中的至少之一属于所述第一频域资源池。
作为一个实施例,所述第一物理层信道所占用的所述频域资源属于所述第一频域资源池。
作为一个实施例,所述第二物理层信道所占用的所述频域资源属于所述第一频域资源池。
作为一个实施例,所述第一物理层信道所占用的所述频域资源和所述第二物理层信道所占用的所述频域资源都属于所述第一频域资源池。
作为一个实施例,上述方法的特质包括:在所述第一频域资源池中同时配置所述第一物理层信道和所述第二物理层信道。
作为一个实施例,上述方法的好处包括:减少调度复杂度。
作为一个实施例,上述方法的好处包括:提高双工通信的灵活性。
作为一个实施例,上述方法的好处包括:提高资源的利用率。
根据本申请的一个方面,其特征在于,包括:
接收第二消息,所述第二消息被用于确定第二频域资源池;
其中,所述第一物理层信道所占用的所述频域资源属于所述第一频域资源池;所述第二物理层信道所占用的所述频域资源属于所述第二频域资源池。
作为一个实施例,上述方法的特质包括:分别在所述第一频域资源池和所述第二频域资源池中配置所述第一物理层信道和所述第二物理层信道。
作为一个实施例,上述方法的好处包括:提高资源配置的灵活性。
根据本申请的一个方面,其特征在于,所述第一消息被用于确定第一频域资源子集,所述第一频域资源子集属于所述第一频域资源池;所述第一物理层信道所占用的所述频域资源属于所述第一频域资源池,所述第二物理层信道所占用的所述频域资源属于所述第一频域资源子集;或者,所述第一物理层信道所占用的所述频域资源属于所述第一频域资源子集,所述第二物理层信道所占用的所述频域资源属于所述第一频域资源池。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一DCI,所述第一DCI包括第一域;
在第一物理层信道上执行无线发送,在第二物理层信道上执行无线接收;
其中,所述第一DCI的所述第一域被用于确定所述第一物理层信道所占用的频域资源以及所述第二物理层信道所占用的频域资源。
根据本申请的一个方面,其特征在于,所述第一DCI包括第二域,所述第一DCI的所述第二域被用于确定所述第一物理层信道所占用的时域资源以及所述第二物理层信道所占用的时域资源。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一DCI,所述第一DCI包括第二域;
在第一物理层信道上执行无线发送,在第二物理层信道上执行无线接收;
其中,所述第一DCI的所述第二域被用于确定所述第一物理层信道所占用的时域资源以及所述第二物理层信道所占用的时域资源。
根据本申请的一个方面,其特征在于,所述第一DCI包括第一域,所述第一DCI的所述第一域被用于确定所述第一物理层信道所占用的频域资源以及所述第二物理层信道所占用的频域资源。
根据本申请的一个方面,其特征在于,所述第一DCI包括第一候选域和第二候选域;所述第一候选域指示针对所述第一物理层信道的MCS或者NDI或者RV或者HARQ进程号中的至少之一;所述第二候选域指示针对所述第二物理层信道的MCS或者NDI或者RV或者HARQ进程号中的至少之一。
根据本申请的一个方面,其特征在于,包括:
发送第一消息,所述第一消息被用于确定所述第一DCI的所述第一域的负载尺寸。
根据本申请的一个方面,其特征在于,所述第一消息被用于确定第一频域资源池;所述第一物理层信道所占用的所述频域资源或者所述第二物理层信道所占用的所述频域资源中的至少之一属于所述第一频域资源池。
根据本申请的一个方面,其特征在于,包括:
发送第二消息,所述第二消息被用于确定第二频域资源池;
其中,所述第一物理层信道所占用的所述频域资源属于所述第一频域资源池;所述第二物理层信道所占用的所述频域资源属于所述第二频域资源池。
根据本申请的一个方面,其特征在于,所述第一消息被用于确定第一频域资源子集,所述第一频域资源子集属于所述第一频域资源池;所述第一物理层信道所占用的所述频域资源属于所述第一频域资源池,所述第二物理层信道所占用的所述频域资源属于所述第一频域资源子集;或者,所述第一物理层信道所占 用的所述频域资源属于所述第一频域资源子集,所述第二物理层信道所占用的所述频域资源属于所述第一频域资源池。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一接收机,接收第一DCI,所述第一DCI包括第一域;
第一处理机,在第一物理层信道上执行无线接收,在第二物理层信道上执行无线发送;
其中,所述第一DCI的所述第一域被用于确定所述第一物理层信道所占用的频域资源以及所述第二物理层信道所占用的频域资源。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一接收机,接收第一DCI,所述第一DCI包括第二域;
第一处理机,在第一物理层信道上执行无线接收,在第二物理层信道上执行无线发送;
其中,所述第一DCI的所述第二域被用于确定所述第一物理层信道所占用的时域资源以及所述第二物理层信道所占用的时域资源。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二发射机,发送第一DCI,所述第一DCI包括第一域;
第二处理机,在第一物理层信道上执行无线发送,在第二物理层信道上执行无线接收;
其中,所述第一DCI的所述第一域被用于确定所述第一物理层信道所占用的频域资源以及所述第二物理层信道所占用的频域资源。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二发射机,发送第一DCI,所述第一DCI包括第二域;
第二处理机,在第一物理层信道上执行无线发送,在第二物理层信道上执行无线接收;
其中,所述第一DCI的所述第二域被用于确定所述第一物理层信道所占用的时域资源以及所述第二物理层信道所占用的时域资源。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.同时调度上行链路传输和下行链路传输;
-.节省DCI的信令开销;
-.提高调度灵活性;
-.提高调度效率;
-.避免资源浪费;
-.缩短调度时延;
-.降低调度复杂度;
-.提高资源的利用率;
-.提高资源配置的灵活性。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一DCI的传输的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的另一个实施例的无线信号传输流程图;
图7示出了根据本申请的一个实施例的第一DCI包括第二域的示意图;
图8示出了根据本申请的一个实施例的第一频域资源池的示意图;
图9示出了根据本申请的一个实施例的第一频域资源池和第二频域资源池的示意图;
图10示出了根据本申请的一个实施例的第一物理层信道和第二物理层信道所占用的频域资源的示意 图;
图11示出了根据本申请的另一个实施例的第一物理层信道和第二物理层信道所占用的频域资源的示意图;
图12示出了根据本申请的一个实施例的第一物理层信道和第二物理层信道所占用的时域资源的示意图;
图13示出了根据本申请的另一个实施例的第一物理层信道和第二物理层信道所占用的时域资源的示意图;
图14示出了根据本申请的一个实施例的第一物理层信道和第二物理层信道所占用的时域资源和频域资源的示意图;
图15示出了根据本申请的一个实施例的第一DCI包括第一候选域和第二候选域的示意图;
图16示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;
图17示出了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一DCI的传输的流程图,如附图1所示。附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一节点在步骤101中,接收第一DCI,所述第一DCI包括第一域;在步骤102中,在第一物理层信道上执行无线接收,在第二物理层信道上执行无线发送;其中,所述第一DCI的所述第一域被用于确定所述第一物理层信道所占用的频域资源以及所述第二物理层信道所占用的频域资源。
作为一个实施例,所述第一DCI的发送者是一个用户设备。
作为一个实施例,所述第一DCI的发送者是一个基站设备。
作为一个实施例,所述第一DCI的发送者是一个TRP(发送接收点)。
作为一个实施例,所述第一DCI的发送者是第一小区的维持基站。
作为一个实施例,所述第一DCI在第一小区上被接收。
作为一个实施例,所述第一小区是所述第一节点的一个服务小区(Serving Cell)。
作为一个实施例,所述第一小区是所述第一节点的SpCell(Special Cell,特殊小区)。
作为一个实施例,所述第一小区是所述第一节点的一个PCell(Primary Cell,主小区)。
作为一个实施例,所述第一小区是所述第一节点的一个PSCell(Primary SCG(Secondary Cell Group,辅小区组)Cell,SCG主小区)。
作为一个实施例,所述第一小区是所述第一节点的一个被激活的SCell(Secondary Cell,辅小区)。
作为一个实施例,所述第一小区是一个调度小区。
作为一个实施例,所述第一节点在所述第一小区上监听PDCCH(Physical Downlink Control Channel,物理下行控制信道)。
作为一个实施例,所述第一DCI在PDCCH上传输。
作为一个实施例,所述第一DCI在物理层信道上传输。
作为一个实施例,所述第一DCI是物理层信令。
作为一个实施例,所述第一DCI是层一(Layer 1,L1)信令。
作为一个实施例,所述第一DCI是控制信令。
作为一个实施例,所述第一DCI是一个DCI。
作为一个实施例,所述第一DCI在公共搜索空间(CSS,Common Search Space)上被接收。
作为一个实施例,所述第一DCI在用户设备特有搜索空间(USS,UE-Specific Search Space)上被 接收。
作为一个实施例,所述第一DCI在CSS集合(Set)上被接收。
作为一个实施例,所述第一DCI在USS集合上被接收。
作为一个实施例,所述第一DCI的格式是Format 0_0。
作为一个实施例,所述第一DCI的格式是Format 1_0。
作为一个实施例,所述第一DCI的格式是Format 2_0。
作为一个实施例,所述第一DCI的格式不是Format 0_0或者Format 1_0或者Format 2_0中的任意之一。
作为一个实施例,所述第一DCI的格式是全双工专用的。
作为一个实施例,所述第一DCI的所述第一域是频域资源分配(Frequency Domain Resource Assignment,FDRA)域。
作为一个实施例,所述第一DCI的所述第一域是Frequency domain resource assignment域。
作为一个实施例,所述第一DCI的所述第一域的负载尺寸等于正整数个比特。
作为一个实施例,所述第一DCI的所述第一域的负载尺寸是可变的。
作为一个实施例,所述第一DCI的所述第一域的负载尺寸是固定的。
作为一个实施例,所述第一DCI的所述第一域的负载尺寸是指所述第一DCI的所述第一域占用的比特数(number of bits)。
作为一个实施例,所述第一DCI的所述第一域的负载尺寸与第一BWP(Bandwidth Part,带宽部分)有关。
作为一个实施例,所述第一DCI的所述第一域的负载占用正整数个比特。
作为一个实施例,所述第一DCI的所述第一域的负载所占用的正整数个比特是连续的。
作为一个实施例,所述第一DCI的所述第一域的负载所占用的正整数个比特中的任意两个比特之间不存在所述第一域之外的任一比特。
作为一个实施例,所述第一DCI的所述第一域被用于频域资源分配。
作为该实施例的一个子实施例,所述第一DCI的所述第一域被用于确定频域资源。
作为该实施例的一个子实施例,所述频域资源分配包括频域资源的位置。
作为该实施例的一个子实施例,所述频域资源分配包括频域资源的尺寸。
作为该实施例的一个子实施例,所述频域资源分配包括频域资源块的数量和频域资源块的索引。
作为该实施例的一个子实施例,所述频域资源分配包括频域资源的位置和频域资源的尺寸。
作为一个实施例,所述第一DCI的所述第一域所指示的频域资源包括一段连续的频率资源。
作为一个实施例,所述第一DCI的所述第一域所指示的频域资源包括一段非连续的频率资源。
作为一个实施例,所述第一DCI的所述第一域所指示的频域资源的频域资源分配类型是资源分配类型0(resource allocation type 0)。
作为一个实施例,所述第一DCI的所述第一域所指示的频域资源的频域资源分配类型是资源分配类型1(resource allocation type 1)。
作为一个实施例,所述第一DCI的所述第一域所指示的频域资源包括K0个频域资源块;所述第一物理层信道所占用的频域资源包括K1个频域资源块,所述第二物理层信道所占用的频域资源包括K2个频域资源块;所述K0、所述K1和所述K2分别是正整数;所述K1与所述K2之和不大于所述K0。
作为该实施例的一个子实施例,所述K1与所述K2之和小于所述K0。
作为该实施例的一个子实施例,所述K1与所述K2之和等于所述K0。
作为一个实施例,所述第一DCI的所述第一域所指示的频域资源包括K0个频域资源块组;所述第一物理层信道所占用的频域资源包括K1个频域资源块组,所述第二物理层信道所占用的频域资源包括K2个频域资源块组;所述K0、所述K1和所述K2分别是正整数;所述K1与所述K2之和不大于所述K0。
作为该实施例的一个子实施例,所述K1与所述K2之和小于所述K0。
作为该实施例的一个子实施例,所述K1与所述K2之和等于所述K0。
作为一个实施例,本申请中的所述频域资源块是指PRB(Physical Resource Block,物理资源块)。
作为一个实施例,本申请中的所述频域资源块是指CRB(Common Resource Block,公共资源块)。
作为一个实施例,本申请中的所述频域资源块是指VRB(Virtual Resource Block,虚拟资源块)。
作为一个实施例,本申请中的所述频域资源块组包括正整数个频域资源块。
作为一个实施例,本申请中的所述频域资源块组是一个RBG(Resource Block Group,资源块组)。
作为一个实施例,本申请中的所述频域资源块组是一个PRG(Precoding Resource Block Group,预编码资源块组)。
作为一个实施例,根据3GPP TS38.214的5.1.2.2节确定所述第一DCI的所述第一域所指示的频域资源。
作为一个实施例,根据所述第一DCI在所述第一物理层信道上执行无线接收。
作为一个实施例,根据所述第一DCI的调度信息在所述第一物理层信道上执行无线接收。
作为一个实施例,根据所述第一DCI的至少所述第一域在所述第一物理层信道上执行无线接收。
作为一个实施例,根据所述第一DCI在所述第二物理层信道上执行无线发送。
作为一个实施例,根据所述第一DCI的调度信息在所述第二物理层信道上执行无线发送。
作为一个实施例,根据所述第一DCI的至少所述第一域在所述第二物理层信道上执行无线发送。
作为一个实施例,所述“执行无线接收”包括:执行针对无线信号的接收。
作为一个实施例,所述“执行无线接收”包括:接收至少一个无线信号。
作为一个实施例,所述“执行无线接收”包括:接收至少一个下行链路无线信号。
作为一个实施例,所述“执行无线接收”包括:接收至少一个副链路(Sidelink,SL)无线信号。
作为一个实施例,所述“执行无线接收”包括:接收至少一个空口无线信号。
作为一个实施例,所述“执行无线接收”包括:检测至少一个无线信号。
作为一个实施例,所述“执行无线接收”包括:检测至少一个下行链路无线信号。
作为一个实施例,所述“执行无线接收”包括:检测至少一个空口无线信号。
作为一个实施例,所述“执行无线接收”包括:译码至少一个无线信号。
作为一个实施例,所述“执行无线接收”包括:译码至少一个下行链路无线信号。
作为一个实施例,所述“执行无线接收”包括:译码至少一个空口无线信号。
作为一个实施例,所述“执行无线发送”包括:执行针对无线信号的发送。
作为一个实施例,所述“执行无线发送”包括:发送至少一个无线信号。
作为一个实施例,所述“执行无线发送”包括:发送至少一个上行链路无线信号。
作为一个实施例,所述“执行无线发送”包括:发送至少一个副链路无线信号。
作为一个实施例,所述“执行无线发送”包括:发送至少一个空口无线信号。
作为一个实施例,所述至少一个上行链路无线信号包括PUSCH。
作为一个实施例,所述至少一个上行链路无线信号包括SRS(Sounding reference signal,探测参考信号)。
作为一个实施例,所述至少一个上行链路无线信号包括DM(Demodulation)-RS。
作为一个实施例,所述至少一个上行链路无线信号包括PT(Phase-tracking)-RS。
作为一个实施例,所述至少一个下行链路无线信号包括PDSCH。
作为一个实施例,所述至少一个下行链路无线信号包括CSI(Channel-state information)-RS。
作为一个实施例,所述至少一个下行链路无线信号包括DM-RS。
作为一个实施例,所述至少一个下行链路无线信号包括PT-RS。
作为一个实施例,所述至少一个下行链路无线信号包括P(Positioning)-RS。
作为一个实施例,所述至少一个下行链路无线信号包括PSS(Primary synchronization signal)。
作为一个实施例,所述至少一个下行链路无线信号包括SSS(Secondary synchronization signal)。
作为一个实施例,所述至少一个副链路无线信号包括PSSCH。
作为一个实施例,所述至少一个副链路无线信号包括PSCCH。
作为一个实施例,所述至少一个副链路无线信号包括DM-RS。
作为一个实施例,所述至少一个副链路无线信号包括CSI-RS。
作为一个实施例,所述至少一个副链路无线信号包括PT-RS。
作为一个实施例,所述至少一个副链路无线信号包括S(Sidelink)-PSS。
作为一个实施例,所述至少一个副链路无线信号包括S-SSS。
作为一个实施例,所述第一物理层信道属于所述第一小区,所述第二物理层信道属于所述第一小区。
作为该实施例的一个子实施例,所述第一DCI仅被用于调度所述第一小区。
作为该实施例的一个子实施例,所述第一DCI的发送者是所述第一小区的维持基站。
作为该实施例的一个子实施例,所述第一DCI的发送者不是所述第一小区的维持基站。
作为一个实施例,所述第一物理层信道属于所述第一小区,所述第二物理层信道属于所述第二小区。
作为该实施例的一个子实施例,所述第一DCI被用于调度至少所述第一小区和所述第二小区。
作为该实施例的一个子实施例,所述第一DCI仅被用于调度所述第一小区和所述第二小区。
作为该实施例的一个子实施例,所述第一DCI的发送者是所述第一小区的维持基站。
作为该实施例的一个子实施例,所述第一DCI的发送者是所述第二小区的维持基站。
作为该实施例的一个子实施例,所述第一DCI的发送者不是所述第一小区的维持基站,并且,所述第一DCI的发送者不是所述第二小区的维持基站。
作为该实施例的一个子实施例,所述第一小区和所述第二小区属于同一个小区组。
作为该实施例的一个子实施例,所述第一小区的PCI和所述第二小区的PCI不同。
作为该实施例的一个子实施例,所述第一小区的服务小区标识和所述第二小区的服务小区标识不同。
作为该实施例的一个子实施例,所述第一小区和所述第二小区都是所述第一节点的服务小区。
作为该实施例的一个子实施例,所述第一小区和所述第二小区都为所述第一节点提供无线资源。
作为该实施例的一个子实施例,所述第二小区是针对所述第一小区配置的。
作为一个实施例,所述第一物理层信道是一个物理层信道。
作为一个实施例,所述第一物理层信道是PDSCH。
作为一个实施例,所述第一物理层信道是PDCCH。
作为一个实施例,所述第一物理层信道是PSSCH(Physical sidelink shared channel,物理下行链路共享信道)。
作为一个实施例,所述第一物理层信道是PSCCH(Physical sidelink control channel,物理下行链路控制信道)。
作为一个实施例,所述第一物理层信道被用于下行链路传输。
作为一个实施例,所述第一物理层信道被用于副链路传输。
作为一个实施例,所述第二物理层信道是一个物理层信道。
作为一个实施例,所述第二物理层信道是PUSCH。
作为一个实施例,所述第二物理层信道是PUCCH(Physical uplink control channel,物理上行链路控制信道)。
作为一个实施例,所述第二物理层信道是PRACH(Physical random access channel,物理随机接入信道)。
作为一个实施例,所述第二物理层信道是PSSCH。
作为一个实施例,所述第二物理层信道是PSCCH。
作为一个实施例,所述第二物理层信道被用于上行链路传输。
作为一个实施例,所述第二物理层信道被用于副链路传输。
作为一个实施例,所述第一物理层信道和所述第二物理层信道不同。
作为一个实施例,所述第一物理层信道是PDSCH,所述第二物理层信道是PUSCH或者PUCCH或者PRACH或者PSSCH中的至少之一。
作为一个实施例,所述第一物理层信道是PDSCH或者PDCCH或者PSSCH中的至少之一,所述第二物理层信道是PUSCH。
作为一个实施例,所述第一物理层信道是PDSCH,所述第二物理层信道是PUSCH。
作为一个实施例,所述第一物理层信道是PDSCH,所述第二物理层信道是PUCCH。
作为一个实施例,所述第一物理层信道是PDSCH,所述第二物理层信道是PSSCH。
作为一个实施例,所述第一物理层信道是PSSCH,所述第二物理层信道是PUSCH。
作为一个实施例,所述第一物理层信道包括被用于接收CSI-RS的时频资源。
作为一个实施例,所述第二物理层信道包括被用于发送SRS的时频资源。
作为一个实施例,所述第一节点根据所述第一DCI的所述第一域确定所述第一物理层信道所占用的频域资源以及所述第二物理层信道所占用的频域资源。
作为一个实施例,所述第一DCI的所述第一域指示所述第一物理层信道的频域资源分配和所述第二物理层信道的频域资源分配。
作为一个实施例,所述第一DCI的所述第一域被用于确定所述第一物理层信道所占用的频域资源,并且,所述第一DCI的所述第一域被用于确定所述第二物理层信道所占用的频域资源。
作为一个实施例,至少所述第一DCI的所述第一域被用于确定所述第一物理层信道所占用的频域资源以及所述第二物理层信道所占用的频域资源。
作为一个实施例,被所述第一DCI的所述第一域所指示的频域资源被用于所述第一物理层信道和所述第二物理层信道。
作为一个实施例,所述第一物理层信道所占用的频域资源包括被所述第一DCI的所述第一域所指示的全部频域资源,并且,所述第二物理层信道所占用的频域资源包括被所述第一DCI的所述第一域所指示的全部频域资源。
作为一个实施例,所述第一物理层信道所占用的频域资源包括被所述第一DCI的所述第一域所指示的全部频域资源,并且,所述第二物理层信道所占用的频域资源包括被所述第一DCI的所述第一域所指示的部分频域资源。
作为一个实施例,所述第一物理层信道所占用的频域资源包括被所述第一DCI的所述第一域所指示的部分频域资源,并且,所述第二物理层信道所占用的频域资源包括被所述第一DCI的所述第一域所指示的全部频域资源。
作为一个实施例,所述第一物理层信道所占用的频域资源包括被所述第一DCI的所述第一域所指示的部分频域资源,并且,所述第二物理层信道所占用的频域资源包括被所述第一DCI的所述第一域所指示的部分频域资源。
作为一个实施例,所述第一DCI的所述第一域所指示的全部频域资源被用于确定所述第一物理层信道和所述第二物理层信道。
作为一个实施例,所述第一DCI的所述第一域所指示的部分频域资源被用于确定所述第一物理层信道和所述第二物理层信道。
作为一个实施例,所述第一DCI的所述第一域所指示的频域资源中的至少部分频域资源不被用于所述第一物理层信道以及所述第二物理层信道。
作为一个实施例,所述第一DCI的所述第一域所指示的频域资源中的至少部分频域资源被用于速率匹配(Rate matching)。
作为一个实施例,所述第一DCI的所述第一域所指示的频域资源中的至少部分频域资源被打孔(punctured)。
作为一个实施例,所述第一DCI包括两个域,所述两个域的名字相同。
作为一个实施例,所述第一DCI包括两个域,所述两个域的作用相同,所述两个域中的一个域针对所述第一物理层信道,所述两个域中的另一个域针对所述第二物理层信道。
作为一个实施例,至少所述第一DCI在USS上被接收被用于确定所述第一DCI的所述第一域被用于确定所述第一物理层信道所占用的频域资源以及所述第二物理层信道所占用的频域资源。
作为一个实施例,所述频域位置包括中心频率。
作为一个实施例,所述频域位置被用于确定中心频率。
作为一个实施例,所述第一DCI包括两个FDRA域,所述第一域是所述两个FDRA域中的一个FDRA域;所述第一DCI仅包括一个TDRA域,本申请中的所述第二域是所述一个TDRA域。
作为一个实施例,所述第一DCI仅包括一个FDRA域,所述第一域是所述一个FDRA域;所述第一DCI 包括两个TDRA域,本申请中的所述第二域是所述两个TDRA域中的一个TDRA域。
作为一个实施例,所述第一DCI仅包括一个FDRA域,所述第一域是所述一个FDRA域;所述第一DCI仅包括一个TDRA域,本申请中的所述第二域是所述一个TDRA域。
作为一个实施例,所述第一DCI包括两个FDRA域,所述第一域是所述两个FDRA域中的一个FDRA域;所述两个FDRA域中的另一个FDRA域被预留。
作为一个实施例,所述第一DCI包括两个TDRA域,所述第二域是所述两个TDRA域中的一个TDRA域;所述两个TDRA域中的另一个FDRA域被预留。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。附图2说明了5G NR(New Radio,新空口)/LTE(Long-Term Evolution,长期演进)/LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200。5G NR/LTE/LTE-A网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。5GS/EPS 200包括UE(User Equipment,用户设备)201,RAN(无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230中的至少之一。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。RAN包括节点203和其它节点204。节点203提供朝向UE201的用户和控制平面协议终止。节点203可经由Xn接口(例如,回程)/X2接口连接到其它节点204。节点203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。节点203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。节点203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201是一个用户设备(User Equipment,UE)。
作为一个实施例,所述UE201是一个基站设备(BaseStation,BS)。
作为一个实施例,所述UE201是一个中继。
作为一个实施例,所述节点203对应本申请中的所述第二节点。
作为一个实施例,所述节点203是一个基站设备。
作为一个实施例,所述节点203是一个用户设备。
作为一个实施例,所述节点203是一个中继。
作为一个实施例,所述用户设备支持非地面网络(Non-Terrestrial Network,NTN)的传输。
作为一个实施例,所述用户设备支持地面网络(Terrestrial Network,TN)的传输。
作为一个实施例,所述用户设备包括手机,或者,终端,或者,飞行器,或者,车载终端,或者,船 只,或者,物联网终端,或者,工业物联网的终端,或者,测试设备,或者,信令测试仪。
作为一个实施例,所述基站设备包括基站收发台(Base Transceiver Station,BTS)。
作为一个实施例,所述基站设备包括节点B(NodeB,NB),或者,gNB,或者,eNB,或者,ng-eNB,或者,en-gNB,或者,TRP(Transmitter Receiver Point,发送接收节点),或者,CU(Centralized Unit,集中单元),或者,DU(Distributed Unit,分布单元)。
作为一个实施例,所述基站设备支持在非地面网络的传输。
作为一个实施例,所述基站设备支持地面网络的传输。
作为一个实施例,所述基站设备包括宏蜂窝(Marco Cellular)基站,或者,微小区(Micro Cell)基站,或者,微微小区(Pico Cell)基站,或者,家庭基站(Femtocell),或者,测试设备,或者,信令测试仪。
作为一个实施例,所述基站设备包括IAB(Integrated Access and Backhaul)-node,或者,IAB-donor,或者,IAB-donor-CU,或者,IAB-donor-DU,或者,IAB-DU,或者,IAB-MT。
作为一个实施例,所述中继包括relay,或者,L3 relay,或者,L2 relay,或者,路由器,或者,交换机,或者,用户设备,或者,基站设备。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第三信号生成于所述RRC306。
作为一个实施例,本申请中的所述第三信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第三信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第四信号生成于所述RRC306。
作为一个实施例,本申请中的所述第四信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第四信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第五信号生成于所述RRC306。
作为一个实施例,本申请中的所述第五信号生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第五信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一信令生成于所述RRC306。
作为一个实施例,本申请中的所述第一信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301或者PHY351。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波 束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450至少:接收第一DCI,所述第一DCI包括第一域;在第一物理层信道上执行无线接收,在第二物理层信道上执行无线发送;其中,所述第一DCI的所述第一域被用于确定所述第一物理层信道所占用的频域资源以及所述第二物理层信道所占用的频域资源。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一DCI,所述第一DCI包括第一域;在第一物理层信道上执行无线接收,在第二物理层信道上执行无线发送;其中,所述第一DCI的所述第一域被用于确定所述第一物理层信道所占用的频域资源以及所述第二物理层信道所占用的频域资源。
作为一个实施例,所述第二通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410至少:发送第一DCI,所述第一DCI包括第一域;在第一物理层信道上执行无线发送,在第二物理层信道上执行无线接收;其中,所述第一DCI的所述第一域被用于确定所述第一物理层信道所占用的频域资源以及所述第二物理层信道所占用的频域资源。
作为一个实施例,所述第二通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一DCI,所述第一DCI包括第一域;在第一物理层信道上执行无线发送,在第二物理层信道上执行无线接收;其中,所述第一DCI的所述第一域被用于确定所述第一物理层信道所占用的频域资源以及所述第二物理层信道所占用的频域资源。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收第一DCI。
作为一个实施例,所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第一DCI。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收第一消息。
作为一个实施例,所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第一消息。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收第二消息。
作为一个实施例,所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第二消息。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459中的至少之一被用于在第一物理层信道上执行无线接收。
作为一个实施例,所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475中的至少之一被用于在第一物理层信道上执行无线发送。
作为一个实施例,所述天线452,所述发射器454,所述发射处理器468,所述控制器/处理器459中的至少之一被用于在第二物理层信道上执行无线发送。
作为一个实施例,所述天线420,所述接收器418,所述接收处理器470,所述控制器/处理器475中的至少之一被用于在第二物理层信道上执行无线接收。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个用户设备。
作为一个实施例,所述第一通信设备450是一个支持大时延差的用户设备。
作为一个实施例,所述第一通信设备450是一个支持NTN的用户设备。
作为一个实施例,所述第一通信设备450是一个飞行器设备。
作为一个实施例,所述第一通信设备450具备定位能力。
作为一个实施例,所述第一通信设备450不具备定能能力。
作为一个实施例,所述第一通信设备450是一个支持TN的用户设备。
作为一个实施例,所述第二通信设备410是一个基站设备(gNB/eNB/ng-eNB)。
作为一个实施例,所述第二通信设备410是一个支持大时延差的基站设备。
作为一个实施例,所述第二通信设备410是一个支持NTN的基站设备。
作为一个实施例,所述第二通信设备410是一个卫星设备。
作为一个实施例,所述第二通信设备410是一个飞行平台设备。
作为一个实施例,所述第二通信设备410是一个支持TN的基站设备。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S5101中,接收第一DCI,所述第一DCI包括第一域;在步骤S5102中,在第一物理层信道上执行无线接收;在步骤S5103中,在第二物理层信道上执行无线发送。
对于第二节点N02,在步骤S5201中,发送所述第一DCI。
对于第三节点N03,在步骤S5301中,在第一物理层信道上执行无线发送。
对于第四节点N04,在步骤S5401中,在第二物理层信道上执行无线接收。
在实施例5中,所述第一DCI的所述第一域被用于确定所述第一物理层信道所占用的频域资源以及所述第二物理层信道所占用的频域资源。
作为一个实施例,所述第一节点U01是一个用户设备。
作为一个实施例,所述第一节点U01是一个基站设备。
作为一个实施例,所述第二节点N02是一个TRP。
作为一个实施例,所述第二节点N02是一个基站设备。
作为一个实施例,所述第二节点N02是所述第一节点U01的一个服务小区的维持基站。
作为一个实施例,所述第二节点N02是一个用户设备。
作为一个实施例,所述第三节点N03是一个TRP。
作为一个实施例,所述第三节点N03是一个基站设备。
作为一个实施例,所述第三节点N03是所述第一节点U01的一个服务小区的维持基站。
作为一个实施例,所述第三节点N03是一个用户设备。
作为一个实施例,所述第四节点N04是一个TRP。
作为一个实施例,所述第四节点N04是一个基站设备。
作为一个实施例,所述第四节点N04是所述第一节点U01的一个服务小区的维持基站。
作为一个实施例,所述第四节点N04是一个用户设备。
作为一个实施例,所述第三节点N03和所述第二节点N02相同。
作为一个实施例,所述第三节点N03和所述第二节点N02不同。
作为一个实施例,所述第四节点N04和所述第二节点N02相同。
作为一个实施例,所述第四节点N04和所述第二节点N02不同。
作为一个实施例,所述第三节点N03和所述第四节点N04相同。
作为一个实施例,所述第三节点N03和所述第四节点N04不同。
作为一个实施例,所述步骤S5101在所述步骤S5102和所述步骤S5103之前。
作为一个实施例,所述步骤S5102在所述步骤S5103之前。
作为一个实施例,所述步骤S5102在所述步骤S5103之后。
作为一个实施例,所述步骤S5102和所述步骤S5103的前后顺序不受限制。
作为一个实施例,所述第一DCI被用于确定在第一物理层信道上执行无线接收并且在第二物理层信道上执行无线发送。
作为一个实施例,作为所述第一DCI被接收的响应,在第一物理层信道上执行无线接收并且在第二物理层信道上执行无线发送。
作为一个实施例,在所述第一DCI被接收之后,在第一物理层信道上执行无线接收并且在第二物理层信道上执行无线发送。
实施例6
实施例6示例了根据本申请的另一个实施例的无线信号传输流程图,如附图6所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S6101中,接收第一消息;在步骤S6102中,接收第二消息,在步骤S6103中,接收第一DCI。
对于第五节点N05,在步骤S6501中,发送所述第一信息;在步骤S6502中,发送所述第二消息。
在实施例6中,所述第一消息被用于确定所述第一DCI的所述第一域的负载尺寸;所述第一消息被用于确定第一频域资源池;所述第一物理层信道所占用的所述频域资源或者所述第二物理层信道所占用的所述频域资源中的至少之一属于所述第一频域资源池;所述第一DCI包括第一域;所述第一DCI的所述第一域被用于确定第一物理层信道所占用的频域资源以及第二物理层信道所占用的频域资源。
作为一个实施例,所述第五节点N05是一个基站设备。
作为一个实施例,所述第五节点N05是所述第一节点U01的一个服务小区的维持基站。
作为一个实施例,所述第五节点N05和所述第二节点N02相同。
作为一个实施例,所述第五节点N05和所述第二节点N02不同。
作为一个实施例,虚线方框F6.1是可选的。
作为一个实施例,所述虚线方框F6.1存在。
作为该实施例的一个子实施例,所述第二消息被接收。
作为一个实施例,所述虚线方框F6.1不存在。
作为该实施例的一个子实施例,所述第二消息未被接收。
作为一个实施例,所述第一消息包括至少一个RRC(Radio Resource Control,无线电资源控制)消息。
作为一个实施例,所述第一消息包括至少一个RRC IE(Information Element,信息元素)。
作为一个实施例,所述第一消息包括至少一个RRC域(Field)。
作为一个实施例,所述第一消息是系统信息(System Information Block,SIB)。
作为一个实施例,所述第一消息是广播消息。
作为一个实施例,所述第一消息是专用消息。
作为一个实施例,所述第一消息被用于指示资源块组的尺寸。
作为一个实施例,所述第一消息被用于指示是否交织。
作为一个实施例,所述第一消息被用于指示资源分配类型。
作为一个实施例,所述第一消息被配置给一个服务小区。
作为一个实施例,所述第一消息被配置给所述第一频域资源池。
作为一个实施例,所述第一消息被配置给一个BWP。
作为一个实施例,所述第一消息被配置给第一BWP。
作为一个实施例,所述第一消息被用于确定第一BWP。
作为一个实施例,所述第一消息包括所述第一BWP的索引。
作为一个实施例,所述第一消息包括所述第一BWP的BWP-Id。
作为一个实施例,所述第一消息包括所述第一BWP的尺寸。
作为一个实施例,所述第一消息包括针对所述第一BWP的频域资源分配的类型。
作为一个实施例,所述第一消息被用于确定所述第一BWP的频域位置(Frequency domain location)和所述第一BWP的带宽(bandwidth)。
作为一个实施例,所述第一消息指示所述第一BWP的频域位置和所述第一BWP的带宽的资源指示值(Resource Indicator Value,RIV)。
作为一个实施例,所述第一消息指示所述第一BWP的频域位置和所述第一BWP的带宽的索引。
作为一个实施例,所述第一消息被用于指示所述第一BWP的频域位置和所述第一BWP的带宽。
作为一个实施例,所述第一消息包括一个RRC域,所述第一消息的所述一个RRC域被用于确定所述第一BWP的频域位置和所述第一BWP的带宽。
作为该实施例的一个子实施例,所述第一消息的所述一个RRC域的名字中包括locationAndBandwidth。
作为该实施例的一个子实施例,所述第一消息的所述一个RRC域是locationAndBandwidth域。
作为该实施例的一个子实施例,所述一个locationAndBandwidth域的值参考3GPPTS38.214的资源指示值(Resource Indicator Value,RIV)。
作为一个实施例,所述第一消息包括所述第一BWP的子载波间隔(Subcarrier Spacing,SCS)。
作为一个实施例,所述第一消息包括bwp-Id。
作为一个实施例,所述第一消息包括bwp-Common。
作为一个实施例,所述第一消息包括bwp-Dedicated。
作为一个实施例,所述第一消息包括subcarrierSpacing。
作为一个实施例,所述第一消息包括locationAndBandwidth。
作为一个实施例,所述第一消息包括cyclicPrefix。
作为一个实施例,所述第一消息包括PUCCH-Config。
作为一个实施例,所述第一消息包括PUSCH-Config。
作为一个实施例,所述第一消息包括PDCCH-Config。
作为一个实施例,所述第一消息包括PDSCH-Config。
作为一个实施例,所述第一消息包括resourceAllocationDCI。
作为一个实施例,所述第一消息包括resourceAllocation。
作为一个实施例,所述第一消息包括resourceAllocation域或者resourceAllocationDCI域,所述resourceAllocation域或者resourceAllocationDCI域被设置为resourceAllocationType0或者resourceAllocationType1或者dynamicSwitch中的任意之一。
作为一个实施例,所述第一消息包括resourceAllocation域或者resourceAllocationDCI域,所述resourceAllocation域或者resourceAllocationDCI域被设置为resourceAllocationType0或者resourceAllocationType1中的任意之一。
作为一个实施例,所述第一消息包括resourceAllocation域或者resourceAllocationDCI域,所述resourceAllocation域或者resourceAllocationDCI域被设置为resourceAllocationType0或者resourceAllocationType1。
作为一个实施例,所述第一消息包括rbg-Size。
作为一个实施例,所述第一消息包括vrb-ToPRB-Interleaver。
作为一个实施例,所述第一消息包括vrb-ToPRB-InterleaverDCI-1-2-r16。
作为一个实施例,所述第一消息包括BWPIE。
作为一个实施例,所述第一消息包括pusch-PowerControl。
作为一个实施例,所述第一消息包括mcs-Table。
作为一个实施例,所述第一消息包括所述第一物理层信道的配置信息,并且,所述第一消息包括所述第二物理层信道的配置信息。
作为一个实施例,所述第一消息的名字中包括BWP或者Full或者Duplex或者Fullduplex或者Subband 或者Common或者Dedicated中的至少之一。
作为一个实施例,所述第一消息包括针对所述第一频域资源池的所述第一物理层信道的配置信息和所述第二物理层信道的配置信息。
作为一个实施例,所述第一消息包括PUSCH-Config,所述PUSCH-Config包括所述第二物理层信道的配置信息;所述第一消息包括PDSCH-Config,所述PDSCH-Config包括所述第一物理层信道的配置信息。
作为一个实施例,所述第一消息包括PUSCH-ConfigCommon,所述PUSCH-ConfigCommon包括所述第二物理层信道的配置信息;所述第一消息包括PDSCH-ConfigCommon,所述PDSCH-ConfigCommon包括所述第一物理层信道的配置信息。
作为一个实施例,所述第一消息仅包括一个BWPIE。
作为一个实施例,所述第一消息包括BWP-DownlinkCommon IE,所述BWP-DownlinkCommon IE中包括PDSCH-ConfigCommon或者PDCCH-ConfigCommon中的至少之一,并且,所述BWP-DownlinkCommon IE中包括PUSCH-ConfigCommon或者PUCCH-ConfigCommon或者RACH-ConfigCommon或者MsgA-ConfigCommon或者AdditionalRACH-ConfigList中的至少之一。
作为一个实施例,所述第一消息包括BWP-Downlink IE,所述BWP-Downlink IE中包括PDSCH-Config或者PDCCH-Config中的至少之一,并且,所述BWP-Downlink IE中包括PUSCH-Config或者PUCCH-Config或者RACH-ConfigDedicated或者ConfiguredGrantConfig或者SRS-Config或者BeamFailureRecoveryConfig中的至少之一。
作为一个实施例,所述第一消息包括BWP-UplinkCommon IE,所述BWP-UplinkCommon IE中包括PUSCH-ConfigCommon或者PUCCH-ConfigCommon或者RACH-ConfigCommon或者MsgA-ConfigCommon或者AdditionalRACH-ConfigList中的至少之一,并且,所述BWP-UplinkCommonIE中包括PDSCH-ConfigCommon或者PDCCH-ConfigCommon中的至少之一。
作为一个实施例,所述第一消息包括BWP-Uplink IE,所述BWP-Uplink IE中包括PUSCH-Config或者PUCCH-Config或者RACH-ConfigDedicated或者ConfiguredGrantConfig或者SRS-Config或者BeamFailureRecoveryConfig中的至少之一,并且,所述BWP-Uplink IE中包括PDSCH-Config或者PDCCH-Config中的至少之一。
作为一个实施例,所述第一消息被用于确定所述第一频域资源池所对应的频域资源。
作为一个实施例,所述第一消息指示所述第一频域资源池。
作为一个实施例,所述第一消息包括所述第一频域资源池的配置信息。
作为一个实施例,所述第一消息被用于确定所述第一频域资源池的中的每个PRB。
作为一个实施例,所述第一消息包括所述第一频域资源池的索引。
作为该实施例的一个子实施例,所述第一频域资源池的索引被BWP-Id指示。
作为该实施例的一个子实施例,所述第一频域资源池的索引是一个非负整数。
作为该实施例的一个子实施例,所述第一频域资源池的索引是一个不小于0并且不大于maxNrofBWPs的整数,所述maxNrofBWPs是正整数。
作为该实施例的一个子实施例,所述第一消息包括一个bwp-Id域,所述一个bwp-Id域指示所述第一频域资源池的索引。
作为一个实施例,所述第一消息在所述第一BWP中指示所述第一频域资源池。
作为一个实施例,所述第一消息被用于确定所述第一频域资源池的中的每个PRB在所述第一BWP中的索引。
作为一个实施例,所述第一消息被用于确定第一频域资源子集。
作为一个实施例,所述第一消息被用于配置第一频域资源子集。
作为一个实施例,所述第一消息被用于配置所述第一频域资源子集的频域资源。
作为一个实施例,所述第一消息被用于配置所述第一频域资源子集占用的PRB。
作为一个实施例,所述第一消息被用于配置所述第一频域资源子集的频域位置。
作为一个实施例,所述第一消息被用于配置所述第一频域资源子集的带宽。
作为一个实施例,所述第一消息被用于在所述第一频域资源池中配置所述第一频域资源子集。
作为一个实施例,所述第一消息被用于计算所述第一DCI的所述第一域的负载尺寸。
作为一个实施例,所述第一消息指示所述第一DCI的所述第一域的负载尺寸。
作为一个实施例,所述第一消息中的配置信息被用于确定所述第一DCI的所述第一域的负载尺寸。
作为一个实施例,所述第一消息中的locationAndBandwidth被用于计算所述第一DCI的所述第一域的负载尺寸。
作为一个实施例,所述第一消息所指示所述第一BWP的尺寸被用于确定所述第一DCI的所述第一域的负载尺寸。
作为一个实施例,所述第一消息所指示的针对所述第一BWP的频域资源分配的类型和所述第一消息所指示的所述第一BWP的尺寸被用于确定所述第一DCI的所述第一域的负载尺寸。
作为一个实施例,所述第一消息所指示的针对所述第一BWP的频域资源分配的类型被用于确定所述第一DCI的所述第一域的负载尺寸。
作为一个实施例,所述第一消息所指示的所述第一BWP的尺寸被用于确定所述第一DCI的所述第一域的负载尺寸。
作为一个实施例,所述第一消息所指示的针对所述第一BWP的频域资源分配的类型和所述第一消息所指示的所述第一BWP的尺寸被用于确定所述第一DCI的所述第一域的负载尺寸。
作为一个实施例,所述第一BWP是一个BWP。
作为一个实施例,所述第一BWP是一个UL BWP。
作为一个实施例,所述第一BWP是一个DL BWP。
作为一个实施例,所述第一BWP是一个SL BWP。
作为一个实施例,所述第一BWP是初始(initial)BWP。
作为一个实施例,所述第一BWP是默认(Default)BWP。
作为一个实施例,所述第一BWP是活跃(active)BWP。
作为一个实施例,所述第一BWP不是初始BWP。
作为一个实施例,所述第一BWP针对所述第一小区。
作为一个实施例,所述第一BWP针对所述第一小区的主载波。
作为一个实施例,所述第一BWP针对所述第一小区的辅载波。
作为一个实施例,所述第一BWP针对上行链路载波。
作为一个实施例,所述第一BWP针对下行链路载波。
作为一个实施例,所述第一BWP针对全双工专用的载波。
作为一个实施例,所述第一BWP被配置为下行链路传输。
作为一个实施例,所述第一BWP被配置为上行链路传输。
作为一个实施例,所述第一BWP被配置为上行链路传输和下行链路传输。
作为一个实施例,所述第一BWP包括Q1个频域资源块,所述Q1是正整数。
作为一个实施例,所述第一BWP包括Q1个频域资源块组,所述Q1是正整数。
作为一个实施例,所述Q1是
作为一个实施例,所述Q1是
作为一个实施例,所述第一BWP是一个UL BWP,被用于确定所述第一DCI的所述第一域的负载尺寸,所述是所述第一BWP的尺寸。
作为一个实施例,所述第一BWP是一个UL BWP,所述第一DCI的所述第一域的负载尺寸等于比特。
作为一个实施例,所述第一BWP是一个UL BWP,所述第一DCI的所述第一域的负载尺寸等于 比特。
作为一个实施例,所述第一BWP是一个UL BWP,所述第一DCI的所述第一域的负载尺寸等于NRBG比特。
作为一个实施例,所述第一BWP是一个DL BWP,被用于确定所述第一DCI的所述第一域的负载尺寸,所述是所述第一BWP的尺寸。
作为一个实施例,仅当CORESET(Control resource set,控制资源集合)0在所述第一小区未被配置时,所述是所述第一BWP的尺寸。
作为一个实施例,所述第一BWP是一个DL BWP,被用于确定所述第一DCI的所述第一域的负载尺寸,所述是CORESET0的尺寸;所述CORESET0在所述第一小区被配置。
作为一个实施例,所述第一BWP是一个DL BWP,所述第一DCI的所述第一域的负载尺寸等于比特。
作为一个实施例,所述第一BWP是一个DL BWP,所述第一DCI的所述第一域的负载尺寸等于比特。
作为一个实施例,所述第一BWP是一个DL BWP,所述第一DCI的所述第一域的负载尺寸等于NRBG比特。
作为一个实施例,所述NRBG参考3GPP TS 38.214的6.1.2.2.1节。
作为一个实施例,所述NRBG针对所述第一BWP。
作为一个实施例,所述第一BWP的尺寸是指所述第一BWP所占用的频域资源块的数量。
作为一个实施例,所述第一BWP的尺寸是指所述第一BWP所占用的频域资源块组的数量。
作为一个实施例,所述第一BWP的尺寸是指所述第一BWP的带宽。
作为一个实施例,所述第一BWP的带宽被用于确定所述第一BWP的尺寸。
作为一个实施例,所述第一频域资源池包括一个频带。
作为一个实施例,所述第一频域资源池包括一个子带(subband)。
作为一个实施例,所述第一频域资源池包括一个频率范围。
作为一个实施例,所述第一频域资源池包括以一个频域位置和一个带宽确定的频率范围。
作为一个实施例,所述第一频域资源池包括一段连续的频率资源。
作为一个实施例,所述第一频域资源池包括一段非连续的频率资源。
作为一个实施例,所述第一频域资源池包括P1个频域资源块,所述P1是正整数。
作为一个实施例,所述第一频域资源池包括P1个频域资源块组,所述P1是正整数。
作为一个实施例,所述第一频域资源池包括至少一个BWP。
作为一个实施例,所述第一频域资源池属于第一BWP。
作为一个实施例,所述第一频域资源池是一个BWP。
作为一个实施例,所述第一频域资源池是所述第一BWP。
作为该实施例的一个子实施例,所述“第一频域资源池”可替换为:第一BWP。
作为一个实施例,所述第一频域资源池是所述第一BWP中的全部或者部分频域资源。
作为一个实施例,所述第一频域资源池所占用的PRB的数量等于所述第一BWP所占用的PRB的数量。
作为一个实施例,所述第一频域资源池所占用的PRB的数量不大于所述第一BWP所占用的PRB的数量。
作为一个实施例,所述第一频域资源池所占用的PRB的数量小于所述第一BWP所占用的PRB的数量。
作为一个实施例,所述第一频域资源池在所述第一BWP中所占用的PRB是可配置的。
作为一个实施例,所述第一频域资源池被配置为下行链路传输。
作为一个实施例,所述第一频域资源池被配置为上行链路传输。
作为一个实施例,所述第一频域资源池被配置为上行链路传输和下行链路传输。
作为一个实施例,所述第一物理层信道所占用的所述频域资源属于所述第一频域资源池。
作为一个实施例,所述第二物理层信道所占用的所述频域资源属于所述第一频域资源池。
作为一个实施例,所述第一物理层信道所占用的所述频域资源属于所述第一频域资源池,并且,所述第二物理层信道所占用的所述频域资源属于所述第一频域资源池。
作为一个实施例,所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源池的交叠部分被用于确定所述第一物理层信道所占用的所述频域资源。
作为该实施例的一个子实施例,所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源池的交叠部分是所述第一物理层信道所占用的所述频域资源。
作为该实施例的一个子实施例,所述第一物理层信道所占用的所述频域资源属于所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源池的交叠部分。
作为该实施例的一个子实施例,所述第一物理层信道所占用的所述频域资源包括所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源池的交叠部分中的全部频域资源。
作为该实施例的一个子实施例,所述第一物理层信道所占用的所述频域资源包括所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源池的交叠部分中的部分频域资源。
作为一个实施例,所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源池的交叠部分被用于确定所述第二物理层信道所占用的所述频域资源。
作为该实施例的一个子实施例,所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源池的交叠部分是所述第二物理层信道所占用的所述频域资源。
作为该实施例的一个子实施例,所述第二物理层信道所占用的所述频域资源属于所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源池的交叠部分。
作为该实施例的一个子实施例,所述第二物理层信道所占用的所述频域资源包括所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源池的交叠部分中的全部频域资源。
作为该实施例的一个子实施例,所述第二物理层信道所占用的所述频域资源包括所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源池的交叠部分中的部分频域资源。
作为一个实施例,所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源池的交叠部分被用于确定所述第一物理层信道所占用的所述频域资源和所述第二物理层信道所占用的所述频域资源。
作为该实施例的一个子实施例,所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源池的交叠部分是所述第一物理层信道所占用的所述频域资源和所述第二物理层信道所占用的所述频域资源。
作为该实施例的一个子实施例,所述第一物理层信道所占用的所述频域资源和所述第二物理层信道所占用的所述频域资源都属于所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源池的交叠部分。
作为该实施例的一个子实施例,所述第一物理层信道所占用的所述频域资源包括所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源池的交叠部分中的全部频域资源或者部分频域资源;所述第二物理层信道所占用的所述频域资源包括所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源池的交叠部分中的全部频域资源或者部分频域资源。
作为一个实施例,所述第一DCI的所述第一域所指示的频域资源和所述第一BWP的交叠部分被用于确定所述第一物理层信道所占用的所述频域资源。
作为该实施例的一个子实施例,所述第一DCI的所述第一域所指示的频域资源和所述第一BWP的交叠部分是所述第一物理层信道所占用的所述频域资源。
作为该实施例的一个子实施例,所述第一物理层信道所占用的所述频域资源属于所述第一DCI的所述第一域所指示的频域资源和所述第一BWP的交叠部分。
作为该实施例的一个子实施例,所述第一物理层信道所占用的所述频域资源包括所述第一DCI的所述 第一域所指示的频域资源和所述第一BWP的交叠部分中的全部频域资源。
作为该实施例的一个子实施例,所述第一物理层信道所占用的所述频域资源包括所述第一DCI的所述第一域所指示的频域资源和所述第一BWP的交叠部分中的部分频域资源。
作为一个实施例,所述第一DCI的所述第一域所指示的频域资源和所述第一BWP的交叠部分被用于确定所述第二物理层信道所占用的所述频域资源。
作为该实施例的一个子实施例,所述第一DCI的所述第一域所指示的频域资源和所述第一BWP的交叠部分是所述第二物理层信道所占用的所述频域资源。
作为该实施例的一个子实施例,所述第二物理层信道所占用的所述频域资源属于所述第一DCI的所述第一域所指示的频域资源和所述第一BWP的交叠部分。
作为该实施例的一个子实施例,所述第二物理层信道所占用的所述频域资源包括所述第一DCI的所述第一域所指示的频域资源和所述第一BWP的交叠部分中的全部频域资源。
作为该实施例的一个子实施例,所述第二物理层信道所占用的所述频域资源包括所述第一DCI的所述第一域所指示的频域资源和所述第一BWP的交叠部分中的部分频域资源。
作为一个实施例,所述第一DCI的所述第一域所指示的频域资源和所述第一BWP的交叠部分被用于确定所述第一物理层信道所占用的所述频域资源和所述第二物理层信道所占用的所述频域资源。
作为该实施例的一个子实施例,所述第一DCI的所述第一域所指示的频域资源和所述第一BWP的交叠部分是所述第一物理层信道所占用的所述频域资源和所述第二物理层信道所占用的所述频域资源。
作为该实施例的一个子实施例,所述第一物理层信道所占用的所述频域资源和所述第二物理层信道所占用的所述频域资源都属于所述第一DCI的所述第一域所指示的频域资源和所述第一BWP的交叠部分。
作为该实施例的一个子实施例,所述第一物理层信道所占用的所述频域资源包括所述第一DCI的所述第一域所指示的频域资源和所述第一BWP的交叠部分中的全部频域资源或者部分频域资源;所述第二物理层信道所占用的所述频域资源包括所述第一DCI的所述第一域所指示的频域资源和所述第一BWP的交叠部分中的全部频域资源或者部分频域资源。
作为一个实施例,所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源池的交叠部分被用于确定所述第一物理层信道所占用的所述频域资源;所述第一DCI的所述第一域所指示的频域资源和所述第一BWP的交叠部分是所述第二物理层信道所占用的所述频域资源。
作为一个实施例,所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源池的交叠部分被用于确定所述第二物理层信道所占用的所述频域资源;所述第一DCI的所述第一域所指示的频域资源和所述第一BWP的交叠部分是所述第一物理层信道所占用的所述频域资源。
作为一个实施例,所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源池的交叠部分被用于确定所述第一物理层信道所占用的所述频域资源;所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源池的交叠部分被用于确定所述第二物理层信道所占用的所述频域资源。
作为一个实施例,所述第一DCI的所述第一域所指示的频域资源和所述第一BWP的交叠部分被用于确定所述第二物理层信道所占用的所述频域资源;所述第一DCI的所述第一域所指示的频域资源和所述第一BWP的交叠部分是所述第一物理层信道所占用的所述频域资源。
作为一个实施例,所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源池的交叠部分被用于确定所述第一物理层信道所占用的所述频域资源;所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源池的交叠部分是所述第二物理层信道所占用的所述频域资源。
作为一个实施例,所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源池的交叠部分被用于确定所述第二物理层信道所占用的所述频域资源;所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源池的交叠部分是所述第一物理层信道所占用的所述频域资源。
作为一个实施例,所述第一频域资源池被用于至少所述第一物理层信道和所述第二物理层信道。
作为该实施例的一个子实施例,所述第一消息配置给所述第一BWP。
作为该实施例的一个子实施例,所述第一消息配置给所述第一频域资源池。
作为该实施例的一个子实施例,所述第一频域资源池被用于上行链路传输和下行链路传输。
作为该实施例的一个子实施例,所述第一频域资源池被用于上行链路传输和副链路传输。
作为该实施例的一个子实施例,所述第一频域资源池被用于下行链路传输和副链路传输。
作为该实施例的一个子实施例,所述第一频域资源池被用于全双工。
作为该实施例的一个子实施例,所述第一频域资源池被用于子带不交叠全双工。
作为该实施例的一个子实施例,所述第一频域资源池被用于子带交叠全双工。
作为一个实施例,所述第一频域资源子集包括P3个频域资源块,所述P3是不大于所述P1的正整数。
作为一个实施例,所述第一频域资源子集包括P3个频域资源块组,所述P3是不大于所述P1的正整数。
作为一个实施例,所述第一频域资源子集属于所述第一频域资源池。
作为一个实施例,所述第一频域资源子集属于所述第一BWP。
作为一个实施例,所述第一频域资源子集是所述第一BWP中的部分频域资源。
作为一个实施例,所述第一频域资源子集是所述第一BWP中的全部频域资源。
作为一个实施例,所述第一频域资源子集是所述第一BWP的一个真子集。
作为一个实施例,所述第一频域资源子集是所述第一BWP的一个子集。
作为一个实施例,所述第一频域资源子集被配置为上行链路传输,所述第一频域资源池中所述第一频域资源子集之外的频带被配置为下行链路传输。
作为一个实施例,所述第一频域资源子集被配置为下行链路传输,所述第一频域资源池中所述第一频域资源子集之外的频带被配置为上行链路传输。
作为一个实施例,所述第一频域资源子集被配置为上行链路传输,所述第一频域资源池被配置为下行链路传输。
作为一个实施例,所述第一频域资源子集被配置为下行链路传输,所述第一频域资源池被配置为上行链路传输。
作为一个实施例,所述第一物理层信道所占用的所述频域资源属于所述第一频域资源子集。
作为一个实施例,所述第二物理层信道所占用的所述频域资源属于所述第一频域资源子集。
作为一个实施例,所述第一物理层信道所占用的所述频域资源属于所述第一频域资源池,所述第二物理层信道所占用的所述频域资源属于所述第一频域资源子集。
作为一个实施例,所述第一物理层信道所占用的所述频域资源属于所述第一频域资源子集,所述第二物理层信道所占用的所述频域资源属于所述第一频域资源池。
作为一个实施例,所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源子集的交叠部分被用于确定所述第二物理层信道所占用的所述频域资源。
作为该实施例的一个子实施例,所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源子集的交叠部分是所述第二物理层信道所占用的所述频域资源。
作为该实施例的一个子实施例,所述第二物理层信道所占用的所述频域资源属于所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源子集的交叠部分。
作为该实施例的一个子实施例,所述第二物理层信道所占用的所述频域资源包括所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源子集的交叠部分中的全部频域资源。
作为该实施例的一个子实施例,所述第二物理层信道所占用的所述频域资源包括所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源子集的交叠部分中的部分频域资源。
作为一个实施例,所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源子集的交叠部分被用于确定所述第一物理层信道所占用的所述频域资源。
作为该实施例的一个子实施例,所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源子集的交叠部分是所述第一物理层信道所占用的所述频域资源。
作为该实施例的一个子实施例,所述第一物理层信道所占用的所述频域资源属于所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源子集的交叠部分。
作为该实施例的一个子实施例,所述第一物理层信道所占用的所述频域资源包括所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源子集的交叠部分中的全部频域资源。
作为该实施例的一个子实施例,所述第一物理层信道所占用的所述频域资源包括所述第一DCI的所述 第一域所指示的频域资源和所述第一频域资源子集的交叠部分中的部分频域资源。
作为一个实施例,所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源子集的交叠部分被用于确定所述第一物理层信道所占用的所述频域资源;所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源池的交叠部分中所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源子集的交叠部分之外的部分被用于确定所述第一物理层信道所占用的所述频域资源。
作为一个实施例,所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源子集的交叠部分被用于确定所述第二物理层信道所占用的所述频域资源;所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源池的交叠部分中所述第一DCI的所述第一域所指示的频域资源和所述第一频域资源子集的交叠部分之外的部分被用于确定所述第二物理层信道所占用的所述频域资源。
作为一个实施例,所述第二消息包括至少一个RRC消息。
作为一个实施例,所述第二消息包括至少一个RRC IE。
作为一个实施例,所述第二消息包括至少一个RRC域。
作为一个实施例,所述第二消息是系统消息。
作为一个实施例,所述第二消息是广播消息。
作为一个实施例,所述第二消息是专用消息。
作为一个实施例,所述第二消息被用于指示资源块组的尺寸。
作为一个实施例,所述第二消息被用于指示是否交织。
作为一个实施例,所述第二消息被用于指示资源分配类型。
作为一个实施例,所述第二消息被配置给一个服务小区。
作为一个实施例,所述第二消息被配置给一个BWP。
作为一个实施例,所述第二消息被配置给所述第一BWP。
作为一个实施例,所述第二消息被配置给第二BWP。
作为一个实施例,所述第二消息被用于确定第二BWP。
作为一个实施例,所述第二消息包括所述第二BWP的索引。
作为一个实施例,所述第二消息包括所述第二BWP的BWP-Id。
作为一个实施例,所述第二消息被用于确定所述第二BWP的频域位置(Frequency domain location)和所述第一BWP的带宽(bandwidth)。
作为一个实施例,所述第二消息包括一个locationAndBandwidth域,所述第二消息的所述一个locationAndBandwidth域被用于确定所述第二BWP的频域位置和所述第二BWP的带宽。
作为一个实施例,所述第二消息被配置给第二频域资源池。
作为一个实施例,所述第二消息包括bwp-Id。
作为一个实施例,所述第二消息包括bwp-Common。
作为一个实施例,所述第二消息包括bwp-Dedicated。
作为一个实施例,所述第二消息包括所述第二BWP的子载波间隔。
作为一个实施例,所述第二消息包括subcarrierSpacing。
作为一个实施例,所述第二消息包括locationAndBandwidth。
作为一个实施例,所述第二消息包括cyclicPrefix。
作为一个实施例,所述第二消息包括PUCCH-Config。
作为一个实施例,所述第二消息包括PUSCH-Config。
作为一个实施例,所述第二消息包括PDCCH-Config。
作为一个实施例,所述第二消息包括PDSCH-Config。
作为一个实施例,所述第二消息包括resourceAllocationDCI。
作为一个实施例,所述第二消息包括resourceAllocation。
作为一个实施例,所述第二消息包括resourceAllocation域或者resourceAllocationDCI域,所述resourceAllocation域或者resourceAllocationDCI域被设置为resourceAllocationType0或者resourceAllocationType1或者dynamicSwitch中的任意之一。
作为一个实施例,所述第二消息包括rbg-Size。
作为一个实施例,所述第二消息包括vrb-ToPRB-Interleaver。
作为一个实施例,所述第二消息包括vrb-ToPRB-InterleaverDCI-1-2-r16。
作为一个实施例,所述第二消息包括pusch-PowerControl。
作为一个实施例,所述第二消息包括mcs-Table。
作为一个实施例,所述第二消息被用于确定第二频域资源池。
作为一个实施例,所述第二消息被用于确定所述第二频域资源池的频域资源。
作为一个实施例,所述第二消息指示所述第二频域资源池。
作为一个实施例,所述第二消息包括所述第二频域资源池的配置信息。
作为一个实施例,所述第二消息被用于确定所述第二频域资源池的中的每个PRB。
作为一个实施例,所述第二消息包括所述第二频域资源池的索引。
作为该实施例的一个子实施例,所述第二频域资源池的索引被BWP-Id指示。
作为该实施例的一个子实施例,所述第二频域资源池的索引是一个非负整数。
作为该实施例的一个子实施例,所述第二频域资源池的索引是一个不小于0并且不大于maxNrofBWPs的整数,所述maxNrofBWPs是正整数。
作为该实施例的一个子实施例,所述第二消息包括一个bwp-Id域,所述一个bwp-Id域指示所述第二频域资源池的索引。
作为一个实施例,所述第二消息在所述第一BWP中指示所述第二频域资源池。
作为一个实施例,所述第二消息在所述第二BWP中指示所述第二频域资源池。
作为一个实施例,所述第二消息被用于确定所述第二频域资源池的中的每个PRB在所述第一BWP中的索引。
作为一个实施例,所述第二消息被用于确定所述第二频域资源池的中的每个PRB在所述第二BWP中的索引。
作为一个实施例,所述第二消息和所述第一消息属于同一个RRC消息。
作为一个实施例,所述第二消息和所述第一消息属于同一个RRC IE。
作为一个实施例,所述第二消息和所述第一消息被配置给同一个BWP。
作为一个实施例,所述第二消息和所述第一消息分别被配置给两个不同的BWP。
作为一个实施例,所述第二消息和所述第一消息被配置给同一个服务小区。
作为一个实施例,所述第二消息和所述第一消息分别被配置给两个不同的服务小区。
作为一个实施例,所述第一消息包括所述第一物理层信道的配置信息,所述第二消息包括所述第二物理层信道的配置信息。
作为一个实施例,所述第一消息包括所述第二物理层信道的配置信息,所述第二消息包括所述第一物理层信道的配置信息。
作为一个实施例,所述第一消息包括PDSCH-Config,所述PDSCH-Config包括所述第一物理层信道的配置信息;所述第二消息包括PUSCH-Config,所述PUSCH-Config包括所述第二物理层信道的配置信息。
作为一个实施例,所述第一消息包括PDSCH-ConfigCommon,所述PDSCH-ConfigCommon包括所述第一物理层信道的配置信息;所述第二消息包括PUSCH-ConfigCommon,所述PUSCH-ConfigCommon包括所述第二物理层信道的配置信息。
作为一个实施例,所述第一消息包括BWP-DownlinkCommon IE,所述BWP-DownlinkCommon IE中包括PDSCH-ConfigCommon或者PDCCH-ConfigCommon中的至少之一;所述第二消息包括BWP-UplinkCommon IE,所述BWP-UplinkCommon IE中包括PUSCH-ConfigCommon或者PUCCH-ConfigCommon或者RACH-ConfigCommon或者MsgA-ConfigCommon或者AdditionalRACH-ConfigList中的至少之一。
作为一个实施例,所述第一消息包括BWP-Downlink IE,所述BWP-Downlink IE中包括PDSCH-Config或者PDCCH-Config中的至少之一;所述第二消息包括BWP-Uplink IE,所述BWP-Uplink IE中包括PUSCH-Config或者PUCCH-Config或者RACH-ConfigDedicated或者ConfiguredGrantConfig或者SRS-Config或者BeamFailureRecoveryConfig中的至少之一。
作为一个实施例,所述第二消息包括PDSCH-Config,所述PDSCH-Config包括所述第一物理层信道的配置信息;所述第一消息包括PUSCH-Config,所述PUSCH-Config包括所述第二物理层信道的配置信息。
作为一个实施例,所述第二消息包括PDSCH-ConfigCommon,所述PDSCH-ConfigCommon包括所述第一物理层信道的配置信息;所述第一消息包括PUSCH-ConfigCommon,所述PUSCH-ConfigCommon包括所述第二物理层信道的配置信息。
作为一个实施例,所述第二消息包括BWP-DownlinkCommon IE,所述BWP-DownlinkCommon IE中包括PDSCH-ConfigCommon或者PDCCH-ConfigCommon中的至少之一;所述第一消息包括BWP-UplinkCommon IE,所述BWP-UplinkCommon IE中包括PUSCH-ConfigCommon或者PUCCH-ConfigCommon或者RACH-ConfigCommon或者MsgA-ConfigCommon或者AdditionalRACH-ConfigList中的至少之一。
作为一个实施例,所述第二消息包括BWP-Downlink IE,所述BWP-Downlink IE中包括PDSCH-Config或者PDCCH-Config中的至少之一;所述第一消息包括BWP-Uplink IE,所述BWP-Uplink IE中包括PUSCH-Config或者PUCCH-Config或者RACH-ConfigDedicated或者ConfiguredGrantConfig或者SRS-Config或者BeamFailureRecoveryConfig中的至少之一。
作为一个实施例,所述第二频域资源池包括一个频带。
作为一个实施例,所述第二频域资源池包括一个子带(subband)。
作为一个实施例,所述第二频域资源池包括一个频率范围。
作为一个实施例,所述第二频域资源池包括以一个频域位置和一个带宽确定的频率范围。
作为一个实施例,所述第二频域资源池包括一段连续的频率资源。
作为一个实施例,所述第二频域资源池包括一段非连续的频率资源。
作为一个实施例,所述第二频域资源池包括P2个频域资源块,所述P2是正整数。
作为一个实施例,所述第二频域资源池包括P2个频域资源块组,所述P2是正整数。
作为一个实施例,所述第二频域资源池包括至少一个BWP。
作为一个实施例,所述第二频域资源池是一个BWP。
作为一个实施例,所述第二频域资源池属于第一BWP。
作为该实施例的一个子实施例,所述第二频域资源池是所述第一BWP中的全部或者部分频域资源。
作为该实施例的一个子实施例,所述第二频域资源池所占用的PRB的数量等于所述第一BWP所占用的PRB的数量。
作为该实施例的一个子实施例所述第二频域资源池所占用的PRB的数量不大于所述第一BWP所占用的PRB的数量。
作为该实施例的一个子实施例,所述第二频域资源池所占用的PRB的数量小于所述第一BWP所占用的PRB的数量。
作为该实施例的一个子实施例,所述第二频域资源池在所述第一BWP中所占用的PRB是可配置的。
作为该实施例的一个子实施例,所述第二频域资源池和所述第一频域资源池都属于所述第一BWP。
作为该实施例的一个子实施例,所述第一频域资源池是所述第一BWP,所述第一频域资源子集属于所述第一频域资源池。
作为一个实施例,所述第二频域资源池属于第二BWP。
作为该实施例的一个子实施例,所述第二频域资源池是第二BWP。
作为该实施例的一个子实施例,所述“第二频域资源池”可替换为:第二BWP。
作为该实施例的一个子实施例,所述第二频域资源池是所述第二BWP中的全部或者部分频域资源。
作为该实施例的一个子实施例,所述第二频域资源池所占用的PRB的数量等于所述第二BWP所占用的PRB的数量。
作为该实施例的一个子实施例,所述第二频域资源池所占用的PRB的数量不大于所述第二BWP所占用的PRB的数量。
作为该实施例的一个子实施例,所述第二频域资源池所占用的PRB的数量小于所述第二BWP所占用的PRB的数量。
作为该实施例的一个子实施例,所述第二频域资源池在所述第二BWP中所占用的PRB是可配置的。
作为该实施例的一个子实施例,所述第二频域资源池是所述第二BWP,所述第一频域资源池是所述第一BWP。
作为该实施例的一个子实施例,所述第二频域资源池属于所述第二BWP,所述第一频域资源池属于所述第一BWP。
作为一个实施例,所述第二频域资源池和所述第一频域资源池不交叠。
作为一个实施例,所述第二频域资源池和所述第一频域资源池部分交叠。
作为一个实施例,所述第二频域资源池和所述第一频域资源池完全交叠。
作为一个实施例,所述第二频域资源池被配置为下行链路传输,并且,所述第一频域资源池被配置为上行链路传输。
作为一个实施例,所述第二频域资源池被配置为上行链路传输,并且,所述第一频域资源池被配置为下行链路传输。
作为一个实施例,所述第二BWP被配置。
作为一个实施例,所述第二BWP不被配置。
作为一个实施例,所述第二BWP是一个BWP。
作为一个实施例,所述第二BWP是一个UL BWP,所述第一BWP是一个DL BWP。
作为一个实施例,所述第二BWP是一个DL BWP,所述第一BWP是一个UL BWP。
作为一个实施例,所述第二BWP是一个SL BWP。
作为一个实施例,所述第二BWP是初始BWP。
作为一个实施例,所述第二BWP是默认BWP。
作为一个实施例,所述第二BWP是活跃BWP。
作为一个实施例,所述第二BWP不是初始BWP。
作为一个实施例,所述第二BWP针对所述第一小区。
作为一个实施例,所述第二BWP针对所述第一小区的主载波。
作为一个实施例,所述第二BWP针对所述第一小区的辅载波。
作为一个实施例,所述第二BWP包括Q2个频域资源块,所述Q2是正整数。
作为一个实施例,所述第二BWP包括Q2个频域资源块组,所述Q2是正整数。
作为一个实施例,所述第二BWP的索引和所述第一BWP的索引相同。
作为一个实施例,所述第二BWP的索引和所述第一BWP的索引不同。
作为一个实施例,所述第二BWP的带宽不大于所述第一BWP的带宽。
作为一个实施例,所述第二BWP的带宽小于所述第一BWP的带宽。
作为一个实施例,所述第二BWP的带宽等于所述第一BWP的带宽。
作为一个实施例,所述第二BWP和所述第一BWP不交叠。
作为一个实施例,所述第二BWP和所述第一BWP部分交叠。
作为一个实施例,所述第二BWP和所述第一BWP完全交叠。
作为一个实施例,所述第二BWP的频域位置和所述第一BWP的频域位置相同,并且,所述第二BWP的带宽和所述第一BWP的带宽相同。
作为一个实施例,所述第二BWP的频域位置和所述第一BWP的频域位置相同,并且,所述第二BWP的带宽和所述第一BWP的带宽不同。
作为一个实施例,所述第二BWP的频域位置和所述第一BWP的频域位置不同,或者,所述第二BWP的带宽和所述第一BWP的带宽不同。
作为一个实施例,所述第一BWP被配置为下行链路传输,并且,所述第二BWP被配置为上行链路传输。
作为一个实施例,所述第一BWP被配置为上行链路传输,并且,所述第二BWP被配置为下行链路传输。
作为一个实施例,所述第一频域资源池被用于所述第一物理层信道,所述第二频域资源池被用于所述第二物理层信道。
作为该实施例的一个子实施例,所述第一消息配置给所述第一BWP,所述第二消息配置给所述第二BWP。
作为该实施例的一个子实施例,所述第一消息配置给所述第一频域资源池,所述第二消息配置给所述 第二频域资源池。
作为该实施例的一个子实施例,所述第一频域资源池被用于上行链路传输,所述第二频域资源池被用于下行链路传输。
作为该实施例的一个子实施例,所述第一频域资源池被用于上行链路传输,所述第二频域资源池被用于副链路传输。
作为该实施例的一个子实施例,所述第一频域资源池被用于下行链路传输,所述第二频域资源池被用于副链路传输。
作为该实施例的一个子实施例,所述第一消息包括针对所述第一频域资源池的所述第一物理层信道的配置信息,所述第二消息包括针对所述第二频域资源池的所述第二物理层信道的配置信息。
作为该实施例的一个子实施例,所述第二消息包括PUSCH-Config,所述PUSCH-Config包括所述第二物理层信道的配置信息;所述第一消息包括PDSCH-Config,所述PDSCH-Config包括所述第一物理层信道的配置信息。
作为该实施例的一个子实施例,所述第二消息包括PUSCH-ConfigCommon,所述PUSCH-ConfigCommon包括所述第二物理层信道的配置信息;所述第一消息包括PDSCH-ConfigCommon,所述PDSCH-ConfigCommon包括所述第一物理层信道的配置信息。
作为该实施例的一个子实施例,所述第一消息包括一个BWP IE,所述第二消息包括一个BWP IE。
作为该实施例的一个子实施例,所述第一消息包括BWP-DownlinkCommon IE,所述BWP-DownlinkCommon IE中包括PDSCH-ConfigCommon或者PDCCH-ConfigCommon中的至少之一;所述第二消息包括BWP-UplinkCommon IE,所述BWP-UplinkCommon IE中包括PUSCH-ConfigCommon或者PUCCH-ConfigCommon或者RACH-ConfigCommon或者MsgA-ConfigCommon或者AdditionalRACH-ConfigList中的至少之一。
作为该实施例的一个子实施例,所述第一消息包括BWP-Downlink IE,所述BWP-Downlink IE中包括PDSCH-Config或者PDCCH-Config中的至少之一;所述第二消息包括BWP-Uplink IE,所述BWP-Uplink IE中中包括PUSCH-Config或者PUCCH-Config或者RACH-ConfigDedicated或者ConfiguredGrantConfig或者SRS-Config或者BeamFailureRecoveryConfig中的至少之一。
作为一个实施例,所述第一物理层信道所占用的所述频域资源属于所述第一频域资源池,所述第二物理层信道所占用的所述频域资源属于所述第二频域资源池。
作为一个实施例,所述第一DCI的所述第一域所指示的频域资源和所述第二频域资源池的交叠部分被用于确定所述第二物理层信道所占用的所述频域资源。
作为该实施例的一个子实施例,所述第一DCI的所述第一域所指示的频域资源和所述第二频域资源池的交叠部分是所述第二物理层信道所占用的所述频域资源。
作为该实施例的一个子实施例,所述第二物理层信道所占用的所述频域资源属于所述第一DCI的所述第一域所指示的频域资源和所述第二频域资源池的交叠部分。
作为该实施例的一个子实施例,所述第二物理层信道所占用的所述频域资源包括所述第一DCI的所述第一域所指示的频域资源和所述第二频域资源池的交叠部分中的全部频域资源。
作为该实施例的一个子实施例,所述第二物理层信道所占用的所述频域资源包括所述第一DCI的所述第一域所指示的频域资源和所述第二频域资源池的交叠部分中的部分频域资源。
作为一个实施例,所述第一DCI的所述第一域的指示依赖所述第一消息。
作为一个实施例,所述第一DCI的所述第一域的指示依赖所述第一BWP。
作为一个实施例,所述第一DCI的所述第一域的指示不依赖所述第二BWP。
作为一个实施例,所述第一DCI的所述第一域的指示与所述第二BWP无关。
作为一个实施例,根据所述第一消息解读所述第一DCI的所述第一域。
作为一个实施例,根据所述第一BWP的配置解读所述第一DCI的所述第一域。
作为一个实施例,仅根据所述第一BWP的配置解读所述第一DCI的所述第一域。
作为一个实施例,所述第一节点U01根据所述第一消息确定所述第一DCI的所述第一域所指示的频域资源。
作为一个实施例,所述第一节点U01根据所述第一BWP的配置确定所述第一DCI的所述第一域所指示 的频域资源。
作为一个实施例,所述第一DCI被用于确定在所述第一物理层信道上执行无线接收并且在所述第二物理层信道上执行无线发送。
实施例7
实施例7示例了根据本申请的一个实施例的第一DCI包括第二域的示意图,如附图7所示。
在实施例7中,所述第一DCI包括第二域,所述第一DCI的所述第二域被用于确定所述第一物理层信道所占用的时域资源以及所述第二物理层信道所占用的时域资源。
作为一个实施例,所述第一DCI的所述第一域和所述第二域被用于确定所述第一物理信道的时频资源和第二物理信道的时频资源。
作为一个实施例,所述第一DCI的所述第二域是时域资源分配(Time Domain Resource Assignment,TDRA)域。
作为一个实施例,所述第一DCI的所述第二域是Time domain resource assignment域。
作为一个实施例,所述第一DCI的所述第二域的负载尺寸等于正整数个比特。
作为一个实施例,所述第一DCI的所述第二域的负载尺寸是可变的。
作为一个实施例,所述第一DCI的所述第二域的负载尺寸是固定的。
作为一个实施例,所述第一DCI的所述第二域的负载尺寸是指所述第一DCI的所述第二域占用的比特数(number of bits)。
作为一个实施例,所述第一DCI的所述第二域的负载尺寸是4比特。
作为一个实施例,所述第一DCI的所述第二域的负载占用正整数个比特。
作为一个实施例,所述第一DCI的所述第二域的负载所占用的正整数个比特是连续的。
作为一个实施例,所述第一DCI的所述第二域的负载所占用的正整数个比特中的任意两个比特之间不存在所述第二域之外的任一比特。
作为一个实施例,所述第一DCI的所述第二域被用于时域资源分配。
作为该实施例的一个子实施例,所述第一DCI的所述第二域被用于确定时域资源。
作为该实施例的一个子实施例,所述时域资源分配包括时域资源的位置。
作为该实施例的一个子实施例,所述时域资源分配包括时域资源的长度。
作为该实施例的一个子实施例,所述时域资源分配包括时域资源的起止时间。
作为该实施例的一个子实施例,所述时域资源分配包括时域资源的开始时刻和截止时刻。
作为一个实施例,所述第一DCI的所述第二域所指示的时域资源包括一段连续的时间资源。
作为一个实施例,所述第一DCI的所述第二域所指示的时域资源包括一段非连续的时间资源。
作为一个实施例,所述第一DCI的所述第二域所指示的时域资源包括正整数个时隙。
作为一个实施例,所述第一DCI的所述第二域所指示的时域资源包括正整数个符号。
作为一个实施例,所述第一DCI的所述第二域是一个索引。
作为一个实施例,根据3GPP TS38.214的5.1.2.1节确定所述第一DCI的所述第二域所指示的时域资源;所述第一DCI的所述第二域是3GPP TS38.214的5.1.2.1节中的m值(value)。
作为一个实施例,所述第一节点根据所述第一DCI的所述第二域确定所述第一物理层信道所占用的时域资源以及所述第二物理层信道所占用的时域资源。
作为一个实施例,所述第一DCI的所述第二域指示所述第一物理层信道的时域资源分配和所述第二物理层信道的时域资源分配。
作为一个实施例,所述第一DCI的所述第二域被用于确定所述第一物理层信道所占用的时域资源,并且,所述第一DCI的所述第二域被用于确定所述第二物理层信道所占用的时域资源。
作为一个实施例,至少所述第一DCI的所述第二域被用于确定所述第一物理层信道所占用的时域资源以及所述第二物理层信道所占用的时域资源。
作为一个实施例,被所述第一DCI的所述第二域所指示的时域资源被用于所述第一物理层信道和所述第二物理层信道。
作为一个实施例,所述第一物理层信道所占用的时域资源包括被所述第一DCI的所述第二域所指示的 全部时域资源,并且,所述第二物理层信道所占用的时域资源包括被所述第一DCI的所述第二域所指示的全部时域资源。
作为一个实施例,所述第一物理层信道所占用的时域资源包括被所述第一DCI的所述第二域所指示的全部时域资源,并且,所述第二物理层信道所占用的时域资源包括被所述第一DCI的所述第二域所指示的部分时域资源。
作为一个实施例,所述第一物理层信道所占用的时域资源包括被所述第一DCI的所述第二域所指示的部分时域资源,并且,所述第二物理层信道所占用的时域资源包括被所述第一DCI的所述第二域所指示的全部时域资源。
作为一个实施例,所述第一物理层信道所占用的时域资源包括被所述第一DCI的所述第二域所指示的部分时域资源,并且,所述第二物理层信道所占用的时域资源包括被所述第一DCI的所述第二域所指示的部分时域资源。
作为一个实施例,所述第一DCI的所述第二域和第一时刻被用于确定所述第一物理层信道所占用的时域资源以及所述第二物理层信道所占用的时域资源。
作为该实施例的一个子实施例,所述第一DCI的所述第二域所指示的时域资源中在所述第一时刻之前的时域资源是所述第一物理层信道所占用的时域资源;所述第一DCI的所述第二域所指示的时域资源中在所述第一时刻之后的时域资源是所述第二物理层信道所占用的时域资源。
作为该实施例的一个子实施例,所述第一DCI的所述第二域所指示的时域资源中在所述第一时刻之前的时域资源是所述第二物理层信道所占用的时域资源;所述第一DCI的所述第二域所指示的时域资源中在所述第一时刻之后的时域资源是所述第一物理层信道所占用的时域资源。
作为该实施例的一个子实施例,所述第一时刻是所述第一DCI的所述第二域所指示的时域资源中的一个时刻。
作为该实施例的一个子实施例,所述第一时刻是所述上行传输时间间隔和所述下行传输时间间隔的转换点。
作为该实施例的一个子实施例,所述第一时刻是一个上下行转换点。
作为该实施例的一个子实施例,所述第一时刻是所述第一BWP和所述第二BWP的转换点。
作为该实施例的一个子实施例,所述第一时刻是预配置的。
作为该实施例的一个子实施例,所述第一时刻是动态配置的。
作为该实施例的一个子实施例,所述第一时刻是两个时隙之间的时刻。
作为该实施例的一个子实施例,所述第一时刻是两个符号之间的时刻。
作为该实施例的一个子实施例,所述第一时刻之前是上行时隙,所述第一时刻之后是下行时隙。
作为该实施例的一个子实施例,所述第一时刻之前是下行时隙,所述第一时刻之后是上行时隙。
作为一个实施例,所述第一DCI的所述第二域和第一参数被用于确定所述第一物理层信道所占用的时域资源以及所述第二物理层信道所占用的时域资源。
作为该实施例的一个子实施例,所述第一参数是大于0并且小于1的数值。
作为该实施例的一个子实施例,所述第一参数被用于确定所述第一物理层信道所占用的时域资源的长度和所述第二物理层信道所占用的时域资源的长度。
作为该实施例的一个子实施例,所述第一物理层信道所占用的时域资源的长度与所述第一DCI的所述第二域所指示的时域资源与所述第一参数的乘积相等;所述第二物理层信道所占用的时域资源的长度与所述第一DCI的所述第二域所指示的时域资源与(1-所述第一参数)的乘积相等。
作为该实施例的一个子实施例,所述第二物理层信道所占用的时域资源的长度与所述第一DCI的所述第二域所指示的时域资源与所述第一参数的乘积相等;所述第一物理层信道所占用的时域资源的长度与所述第一DCI的所述第二域所指示的时域资源与(1-所述第一参数)的乘积相等。
作为该实施例的一个子实施例,所述第一时刻是所述第一DCI的所述第二域所指示的时域资源的起始时刻经过第一时间间隔的时刻。
作为该实施例的一个子实施例,所述第一时间间隔是所述第一物理层信道所占用的时域资源的长度的时刻。
作为该实施例的一个子实施例,所述第一时间间隔是所述第二物理层信道所占用的时域资源的长度的时刻。
作为一个实施例,所述第一消息被用于确定所述第一DCI的所述第二域被用于确定所述第一物理层信道所占用的时域资源以及所述第二物理层信道所占用的时域资源。
作为一个实施例,仅当被所述第一消息显示指示或者隐式指示时,所述第一DCI的所述第二域被用于确定所述第一物理层信道所占用的时域资源以及所述第二物理层信道所占用的时域资源。
作为一个实施例,所述第一DCI的所述第二域的指示依赖所述第一消息。
作为一个实施例,根据所述第一消息解读所述第一DCI的所述第二域。
作为一个实施例,所述第一节点根据所述第一消息确定所述第一DCI的所述第二域所指示的时域资源。
实施例8
实施例8示例了根据本申请的一个实施例的第一频域资源池的示意图,如附图8所示。在附图8中,纵轴表示频率;在所述附图8中,纵轴表示频率。
作为一个实施例,在附图(8a)中,实线方框801(a)表示所述第一频域资源池。
作为一个实施例,在附图(8b)中,实线方框801(b)表示所述第一频域资源池;所述实线方框801(b)中的斜线部分表示所述第一频域资源子集。
作为一个实施例,在所述附图(8a)中,所述第一物理层信道所占用的所述频域资源属于所述第一频域资源池,并且,所述第二物理层信道所占用的所述频域资源属于所述第一频域资源池。
作为一个实施例,在所述附图(8b)中,所述第一物理层信道所占用的所述频域资源属于所述第一频域资源池,所述第二物理层信道所占用的所述频域资源属于所述第一频域资源子集。
作为一个实施例,在所述附图(8b)中,所述第一物理层信道所占用的所述频域资源属于所述第一频域资源子集,所述第二物理层信道所占用的所述频域资源属于所述第一频域资源池。
作为一个实施例,在所述附图(8b)中,所述第一频域资源子集属于所述第一频域资源池。
作为一个实施例,所述附图8不限制本申请中的所述第一频域资源池的频域资源的位置和尺寸。
作为一个实施例,所述附图8不限制本申请中的所述第一频域资源子集的频域资源的位置和尺寸。
作为一个实施例,所述附图8不限制本申请中的所述第一频域资源子集的频域资源是否连续。
作为一个实施例,所述附图8不限制本申请中的所述第一频域资源池的频域资源是否连续。
实施例9
实施例9示例了根据本申请的一个实施例的第一频域资源池和第二频域资源池的示意图,如附图9所示。在所述附图9中,纵轴表示频率。
作为一个实施例,在附图(9a)中,实线方框901(a)表示所述第一频域资源池,实线方框902(a)表示所述第二频域资源池;所述第一频域资源池和所述第二频域资源池之间没有交叠。
作为一个实施例,在附图(9b)中,实线方框901(b)表示所述第一频域资源池,实线方框902(b)表示所述第二频域资源池;所述第一频域资源池和所述第二频域资源池之间有交叠;菱形填充的部分表示所述第一频域资源池和所述第二频域资源池的交叠部分。
作为一个实施例,所述附图9不限制本申请中的所述第一频域资源池的频域资源的位置和尺寸。
作为一个实施例,所述附图9不限制本申请中的所述第二频域资源池的频域资源的位置和尺寸。
作为一个实施例,所述附图9不限制本申请中的所述第一频域资源池的频域资源是否连续。
作为一个实施例,所述附图9不限制本申请中的所述第二频域资源池的频域资源是否连续。
实施例10
实施例10示例了根据本申请的一个实施例的第一物理层信道和第二物理层信道所占用的频域资源的示意图,如附图10所示。在附图10中,纵轴表示频率。
作为一个实施例,在附图(10a)中,实线方框1001(a)表示所述第一频域资源池,虚线方框1002(a)表示所述第一DCI的所述第一域所指示的频域资源。
作为该实施例的一个子实施例,虚线方框1003(a)表示所述第一物理层信道所占用的频域资源。
作为该实施例的一个子实施例,虚线方框1004(a)表示所述第二物理层信道所占用的频域资源。
作为该实施例的一个子实施例,所述虚线方框1003(a)是所述实线方框1001(a)和所述虚线方框1002(a) 的交叠部分。
作为该实施例的一个子实施例,所述虚线方框1004(a)是所述实线方框1001(a)和所述虚线方框1002(a)的交叠部分。
作为一个实施例,在附图(10b)中,实线方框1001(b)表示所述第一频域资源池,所述实线方框1001(b)中的斜线部分表示所述第一频域资源子集,虚线方框1002(b)表示所述第一DCI的所述第一域所指示的频域资源。
作为该实施例的一个子实施例,虚线方框1003(b)表示所述第一物理层信道所占用的频域资源,虚线方框1004(b)表示所述第二物理层信道所占用的频域资源。
作为该实施例的一个子实施例,所述虚线方框1003(b)表示所述第二物理层信道所占用的频域资源,虚线方框1004(b)表示所述第一物理层信道所占用的频域资源。
作为该实施例的一个子实施例,所述虚线方框1003(b)是所述实线方框1001(b)和所述虚线方框1002(b)的交叠部分。
作为该实施例的一个子实施例,所述虚线方框1004(b)是所述实线方框1002(b)和所述实线方框1001(b)中的斜线部分的交叠部分。
作为一个实施例,所述附图10不限制本申请中的所述第一频域资源池的频域资源的位置和尺寸。
作为一个实施例,所述附图10不限制本申请中的所述第一频域资源子集的频域资源的位置和尺寸。
作为一个实施例,所述附图10不限制本申请中的所述第一频域资源子集的频域资源是否连续。
作为一个实施例,所述附图10不限制本申请中的所述第一频域资源池的频域资源是否连续。
作为一个实施例,所述附图10不限制本申请中的所述第一DCI的所述第一域所指示的频域资源的位置和尺寸。
实施例11
实施例11示例了根据本申请的另一个实施例的第一物理层信道和第二物理层信道所占用的频域资源的示意图,如附图11所示。在所述附图11中,纵轴表示频率。
作为一个实施例,在附图(11a)中,实线方框1101(a)表示所述第一频域资源池,实线方框1102(a)表示所述第二频域资源池,虚线方框1103(a)表示所述第一DCI的所述第一域所指示的频域资源;所述第一频域资源池和所述第二频域资源池之间没有交叠。
作为该实施例的一个子实施例,竖线填充的方框表示所述第一物理层信道所占用的所述频域资源;横线填充的方框表示所述第二物理层信道所占用的所述频域资源。
作为该实施例的一个子实施例,竖线填充的方框表示所述第二物理层信道所占用的所述频域资源;横线填充的方框表示所述第一物理层信道所占用的所述频域资源。
作为该实施例的一个子实施例,所述竖线填充的方框是所述实线方框1101(a)和所述虚线方框1103(a)的交叠部分。
作为该实施例的一个子实施例,所述横线填充的方框是所述实线方框1102(a)和所述虚线方框1103(a)的交叠部分。
作为一个实施例,在附图(11b)中,实线方框1101(b)表示所述第一频域资源池,实线方框1102(b)表示所述第二频域资源池,虚线方框1103(b)表示所述第一DCI的所述第一域所指示的频域资源;所述第一频域资源池和所述第二频域资源池之间有交叠。
作为该实施例的一个子实施例,竖线填充的方框表示所述第一物理层信道所占用的所述频域资源;横线填充的方框表示所述第二物理层信道所占用的所述频域资源。
作为该实施例的一个子实施例,竖线填充的方框表示所述第二物理层信道所占用的所述频域资源;横线填充的方框表示所述第一物理层信道所占用的所述频域资源。
作为该实施例的一个子实施例,菱形填充的方框是所述实线方框1101(b)和所述实线方框1102(b)的交叠部分。
作为该实施例的一个子实施例,竖线填充的方框是所述实线方框1101(b)和所述虚线方框1103(b)的交叠部分的全部或者部分。
作为该实施例的一个子实施例,所述横线填充的方框是所述实线方框1102(b)和所述虚线方框1103(b) 的交叠部分的全部或者部分。
作为该实施例的一个子实施例,所述竖线填充的方框是所述实线方框1101(b)和所述虚线方框1103(b)的交叠部分;横线填充的方框是实线方框1102(b)和虚线方框1103(b)的交叠部分。
作为该实施例的一个子实施例,所述竖线填充的方框是所述实线方框1101(b)和所述虚线方框1103(b)的交叠部分;横线填充的方框是所述实线方框1102(b)和所述虚线方框1103(b)的交叠部分中所述实线方框1101(b)和所述实线方框1102(b)的交叠部分之外的部分。
作为该实施例的一个子实施例,所述竖线填充的方框是所述实线方框1101(b)和所述虚线方框1103(b)的交叠部分中所述实线方框1101(b)和所述实线方框1102(b)的交叠部分之外的部分;所述横线填充的方框是所述实线方框1102(b)和所述虚线方框1103(b)的交叠部分。
作为该实施例的一个子实施例,所述竖线填充的方框是所述实线方框1101(b)和所述虚线方框1103(b)的交叠部分中所述实线方框1101(b)和所述实线方框1102(b)的交叠部分之外的部分;所述横线填充的方框是所述实线方框1102(b)和所述虚线方框1103(b)的交叠部分中所述实线方框1101(b)和所述实线方框1102(b)的交叠部分之外的部分。
作为一个实施例,所述附图11不限制本申请中的所述第一频域资源池的频域资源的位置和尺寸。
作为一个实施例,所述附图11不限制本申请中的所述第二频域资源池的频域资源的位置和尺寸。
作为一个实施例,所述附图11不限制本申请中的所述第一频域资源池的频域资源是否连续。
作为一个实施例,所述附图11不限制本申请中的所述第二频域资源池的频域资源是否连续。
作为一个实施例,所述附图11不限制本申请中的所述第一DCI的所述第一域所指示的频域资源的位置和尺寸。
实施例12
实施例12示例了根据本申请的一个实施例的第一物理层信道和第二物理层信道所占用的时域资源的示意图,如附图12所示。在附图12中,横轴表示时间。
作为一个实施例,实线方框1201表示上行传输时间间隔;实线方框1202表示下行传输时间间隔;虚线方框1203表示所述第一DCI的所述第二域所指示的时域资源。
作为一个实施例,实线方框1201表示下行传输时间间隔;实线方框1202表示上行传输时间间隔;虚线方框1203表示所述第一DCI的所述第二域所指示的时域资源。
作为一个实施例,所述虚线方框1203和所述实现方框1201的交叠部分是所述第一物理层信道所占用的时域资源;所述虚线方框1203和所述实现方框1202的交叠部分是所述第二物理层信道所占用的时域资源。
作为一个实施例,所述虚线方框1203和所述实现方框1201的交叠部分是所述第二物理层信道所占用的时域资源;所述虚线方框1203和所述实现方框1202的交叠部分是所述第一物理层信道所占用的时域资源。
作为一个实施例,所述附图12不限制本申请中的被用于上行链路传输的时域资源的位置和长度。
作为一个实施例,所述附图12不限制本申请中的被用于下行链路传输的时域资源的位置和长度。
作为一个实施例,所述附图12不限制本申请中的所述第一DCI的所述第二域所指示的时域资源的位置和长度。
实施例13
实施例13示例了根据本申请的另一个实施例的第一物理层信道和第二物理层信道所占用的时域资源的示意图,如附图13所示。在所述附图13中,横轴表示时间。
作为一个实施例,虚线方框1303表示所述第一DCI的所述第二域所指示的时域资源。
作为一个实施例,实线方框1301表示上行传输时间间隔;实线方框1302表示下行传输时间间隔;实线方框1304表示上行传输时间间隔。
作为一个实施例,实线方框1301表示下行传输时间间隔;实线方框1302表示上行传输时间间隔;实线方框1304表示下行传输时间间隔。
作为一个实施例,所述虚线方框1303和所述实现方框1302的交叠部分表示所述第二物理层信道所占用的时域资源;实线方框1304中的竖线填充的部分表示所述第一物理层信道所占用的时域资源。
作为一个实施例,所述虚线方框1303和所述实现方框1302的交叠部分表示所述第一物理层信道所占用的时域资源;实线方框1304中的竖线填充的部分表示所述第二物理层信道所占用的时域资源。
作为一个实施例,实线方框1304所表示的上行传输时间间隔是所述实线方框1301所表示的上行传输时间间隔之后的一个上行传输时间间隔。
作为一个实施例,所述实线方框1304和所述实线方框1301之间存在至少一个上行传输时间间隔。
作为一个实施例,所述实线方框1304和所述实线方框1301之间不存在任一上行传输时间间隔。
作为一个实施例,所述附图13不限制本申请中的被用于上行链路传输的时域资源的位置和长度。
作为一个实施例,所述附图13不限制本申请中的被用于下行链路传输的时域资源的位置和长度。
作为一个实施例,所述附图13不限制本申请中的所述第一DCI的所述第二域所指示的时域资源的位置和长度。
实施例14
实施例14示例了根据本申请的一个实施例的第一物理层信道和第二物理层信道所占用的时域资源和频域资源的示意图,如附图14所示。在所述附图14中,横轴表示时间,纵轴表示频率。
作为一个实施例,实线方框1401表示被用于上行链路传输的时频资源,实线方框1402表示被用于下行链路传输的时频资源。
作为一个实施例,实线方框1401表示被用于下行链路传输的时频资源,实线方框1402表示被用于上行链路传输的时频资源。
作为一个实施例,所述时频资源包括时域资源和频域资源。
作为一个实施例,虚线方框1403表示所述第一DCI的所述第一域所指示的频域资源和所述第一DCI的所述第二域所指示的时域资源。
作为一个实施例,竖线填充的方框表示所述第一物理层信道所占用的所述频域资源;横线填充的方框表示所述第二物理层信道所占用的所述频域资源。
作为一个实施例,竖线填充的方框表示所述第二物理层信道所占用的所述频域资源;横线填充的方框表示所述第一物理层信道所占用的所述频域资源。
作为一个实施例,所述竖线填充的方框是所述实线方框1401和所述虚线方框1403的交叠部分。
作为一个实施例,所述横线填充的方框是所述实线方框1402和所述虚线方框1403的交叠部分。
作为一个实施例,所述附图14不限制本申请中的被用于上行链路传输的时频资源的时域资源的位置和长度以及频域资源的位置和尺寸。
作为一个实施例,所述附图14不限制本申请中的被用于下行链路传输的时频资源的时域资源的位置和长度以及频域资源的位置和尺寸。
作为一个实施例,所述附图14不限制本申请中的所述第一DCI的所述第一域所指示的频域资源的位置和尺寸。
作为一个实施例,所述附图14不限制本申请中的所述第一DCI的所述第二域所指示的时域资源的位置和长度。
实施例15
实施例15示例了根据本申请的一个实施例的第一DCI包括第一候选域和第二候选域的示意图。
在实施例15中,所述第一DCI包括第一候选域和第二候选域;所述第一候选域指示针对所述第一物理层信道的MCS或者NDI或者RV或者HARQ进程号中的至少之一;所述第二候选域指示针对所述第二物理层信道的MCS或者NDI或者RV或者HARQ进程号中的至少之一。
作为一个实施例,所述第一候选域和所述第二候选域的名字相同。
作为一个实施例,所述第一候选域和所述第二候选域的名字中都包括Modulation and coding scheme。
作为一个实施例,所述第一候选域和所述第二候选域的名字中都包括New data indicator。
作为一个实施例,所述第一候选域和所述第二候选域的名字中都包括Redundancy version。
作为一个实施例,所述第一候选域和所述第二候选域的名字中都包括HARQ process number。
作为一个实施例,所述第一候选域是Modulation and coding scheme域,所述第一候选域指示针对所述第一物理层信道的MCS。
作为一个实施例,所述第一候选域是New data indicator域,所述第一候选域指示针对所述第一物理层信道的NDI。
作为一个实施例,所述第一候选域是Redundancy version域,所述第一候选域指示针对所述第一物理层信道的RV。
作为一个实施例,所述第一候选域是HARQ process number域,所述第一候选域指示针对所述第一物理层信道的HARQ进程号。
作为一个实施例,所述第二候选域是Modulation and coding scheme域,所述第二候选域指示针对所述第二物理层信道的MCS。
作为一个实施例,所述第二候选域是New data indicator域,所述第二候选域指示针对所述第二物理层信道的NDI。
作为一个实施例,所述第二候选域是Redundancy version域,所述第二候选域指示针对所述第二物理层信道的RV。
作为一个实施例,所述第二候选域是HARQ process number域,所述第二候选域指示针对所述第二物理层信道的HARQ进程号。
作为一个实施例,所述第一候选域在所述第二候选域之前;所述第一候选信道是PDSCH,所述第二候选信道是PUSCH。
作为一个实施例,所述第一候选域在所述第二候选域之前;所述第一候选信道是PUSCH,所述第二候选信道是PDSCH。
作为一个实施例,所述第一DCI中的Modulation and coding scheme域、New data indicator域、Redundancy version域和HARQ process number域中存在至少一个域,所述至少一个域中的每个域的数量大于1。
作为一个实施例,所述第一DCI包括至少一个候选域指示针对所述第一时频资源子块的MCS或者NDI或者RV或者HARQ进程号中的至少之一;所述第一候选域是所述至少一个候选域中的一个候选域。
作为该实施例的一个子实施例,所述至少一个候选域包括Modulation and coding scheme域或者New data indicator域或者Redundancy version域或者HARQ process number域中的至少之一。
作为一个实施例,所述第一DCI包括至少一个候选域指示针对所述第二时频资源子块的MCS或者NDI或者RV或者HARQ进程号中的至少之一;所述第二候选域是所述至少一个候选域中的一个候选域。
作为该实施例的一个子实施例,所述至少一个候选域包括Modulation and coding scheme域或者New data indicator域或者Redundancy version域或者HARQ process number域中的至少之一。
作为一个实施例,被用于指示针对所述第一时频资源子块的MCS或者NDI或者RV或者HARQ进程号中的至少之一的所述至少一个候选域位于被用于指示针对所述第二时频资源子块的MCS或者NDI或者RV或者HARQ进程号中的至少之一的所述至少一个候选域之前;所述第一候选信道是PDSCH,所述第二候选信道是PUSCH。
作为一个实施例,被用于指示针对所述第一时频资源子块的MCS或者NDI或者RV或者HARQ进程号中的至少之一的所述至少一个候选域位于被用于指示针对所述第二时频资源子块的MCS或者NDI或者RV或者HARQ进程号中的至少之一的所述至少一个候选域之前;所述第一候选信道是PUSCH,所述第二候选信道是PDSCH。
实施例16
实施例16示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图16所示。在附图16中,第一节点中的处理装置1600包括第一接收机1601和第一处理机1602。
第一接收机1601,接收第一DCI,所述第一DCI包括第一域;
第一处理机1602,在第一物理层信道上执行无线接收,在第二物理层信道上执行无线发送;
实施例16中,所述第一DCI的所述第一域被用于确定所述第一物理层信道所占用的频域资源以及所述第二物理层信道所占用的频域资源。
作为一个实施例,所述第一DCI包括第二域,所述第一DCI的所述第二域被用于确定所述第一物理层信道所占用的时域资源以及所述第二物理层信道所占用的时域资源。
作为一个实施例,所述第一DCI包括第一候选域和第二候选域;所述第一候选域指示针对所述第一物理层信道的MCS或者NDI或者RV或者HARQ进程号中的至少之一;所述第二候选域指示针对所述第二物理层信道的MCS或者NDI或者RV或者HARQ进程号中的至少之一。
作为一个实施例,所述第一接收机1601,接收第一消息,所述第一消息被用于确定所述第一DCI的所述第一域的负载尺寸。
作为一个实施例,所述第一消息被用于确定第一频域资源池;所述第一物理层信道所占用的所述频域资源或者所述第二物理层信道所占用的所述频域资源中的至少之一属于所述第一频域资源池。
作为一个实施例,所述第一接收机1601,接收第二消息,所述第二消息被用于确定第二频域资源池;其中,所述第一物理层信道所占用的所述频域资源属于所述第一频域资源池;所述第二物理层信道所占用的所述频域资源属于所述第二频域资源池。
作为一个实施例,所述第一消息被用于确定第一频域资源子集,所述第一频域资源子集属于所述第一频域资源池;所述第一物理层信道所占用的所述频域资源属于所述第一频域资源池,所述第二物理层信道所占用的所述频域资源属于所述第一频域资源子集;或者,所述第一物理层信道所占用的所述频域资源属于所述第一频域资源子集,所述第二物理层信道所占用的所述频域资源属于所述第一频域资源池。
作为一个实施例,所述第一接收机1601包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467。
作为一个实施例,所述第一接收机1601包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456。
作为一个实施例,所述第一接收机1601包括本申请附图4中的天线452,接收器454,接收处理器456。
作为一个实施例,所述第一处理机1602包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467。
作为一个实施例,所述第一处理机1602包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456。
作为一个实施例,所述第一处理机1602包括本申请附图4中的天线452,接收器454,接收处理器456。
作为一个实施例,所述第一处理机1602包括本申请附图4中的天线452,发射器454,多天线发射处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467。
作为一个实施例,所述第一处理机1602包括本申请附图4中的天线452,发射器454,多天线发射处理器457,发射处理器468。
作为一个实施例,所述第一处理机1602包括本申请附图4中的天线452,发射器454,发射处理器468。
实施例17
实施例17示例了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;如附图17所示。在附图17中,第二节点中的处理装置1700包括第二发射机1701和第二处理机1702。
第二发射机1701,发送第一DCI,所述第一DCI包括第一域;
第二处理机1702,在第一物理层信道上执行无线发送,在第二物理层信道上执行无线接收;
实施例17中,所述第一DCI的所述第一域被用于确定所述第一物理层信道所占用的频域资源以及所述第二物理层信道所占用的频域资源。
作为一个实施例,所述第一DCI包括第二域,所述第一DCI的所述第二域被用于确定所述第一物理层信道所占用的时域资源以及所述第二物理层信道所占用的时域资源。
作为一个实施例,所述第一DCI包括第一候选域和第二候选域;所述第一候选域指示针对所述第一物理层信道的MCS或者NDI或者RV或者HARQ进程号中的至少之一;所述第二候选域指示针对所述第二物理层信道的MCS或者NDI或者RV或者HARQ进程号中的至少之一。
作为一个实施例,所述第二发射机1701,发送第一消息,所述第一消息被用于确定所述第一DCI的所述第一域的负载尺寸。
作为一个实施例,所述第一消息被用于确定第一频域资源池;所述第一物理层信道所占用的所述频域资源或者所述第二物理层信道所占用的所述频域资源中的至少之一属于所述第一频域资源池。
作为一个实施例,所述第二发射机1701,发送第二消息,所述第二消息被用于确定第二频域资源池; 其中,所述第一物理层信道所占用的所述频域资源属于所述第一频域资源池;所述第二物理层信道所占用的所述频域资源属于所述第二频域资源池。
作为一个实施例,所述第一消息被用于确定第一频域资源子集,所述第一频域资源子集属于所述第一频域资源池;所述第一物理层信道所占用的所述频域资源属于所述第一频域资源池,所述第二物理层信道所占用的所述频域资源属于所述第一频域资源子集;或者,所述第一物理层信道所占用的所述频域资源属于所述第一频域资源子集,所述第二物理层信道所占用的所述频域资源属于所述第一频域资源池。
作为一个实施例,所述第二发射机1701包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475,存储器476。
作为一个实施例,所述第二发射机1701包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416。
作为一个实施例,所述第二发射机1701包括本申请附图4中的天线420,发射器418,发射处理器416。
作为一个实施例,所述第二处理机1702包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475,存储器476。
作为一个实施例,所述第二处理机1702包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416。
作为一个实施例,所述第二处理机1702包括本申请附图4中的天线420,发射器418,发射处理器416。
作为一个实施例,所述第二处理机1702包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475,存储器476。
作为一个实施例,所述第二处理机1702包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470。
作为一个实施例,所述第二处理机1702包括本申请附图4中的天线420,接收器418,接收处理器470。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一接收机,接收第一DCI,所述第一DCI包括第一域;
    第一处理机,在第一物理层信道上执行无线接收,在第二物理层信道上执行无线发送;
    其中,所述第一DCI的所述第一域被用于确定所述第一物理层信道所占用的频域资源以及所述第二物理层信道所占用的频域资源。
  2. 根据权利要求1所述的第一节点,其特征在于,所述第一DCI包括第二域,所述第一DCI的所述第二域被用于确定所述第一物理层信道所占用的时域资源以及所述第二物理层信道所占用的时域资源。
  3. 根据权利要求1或2所述的第一节点,其特征在于,所述第一DCI包括第一候选域和第二候选域;所述第一候选域指示针对所述第一物理层信道的MCS或者NDI或者RV或者HARQ进程号中的至少之一;所述第二候选域指示针对所述第二物理层信道的MCS或者NDI或者RV或者HARQ进程号中的至少之一。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第一消息,所述第一消息被用于确定所述第一DCI的所述第一域的负载尺寸。
  5. 根据权利要求4所述的第一节点,其特征在于,所述第一消息被用于确定第一频域资源池;所述第一物理层信道所占用的所述频域资源或者所述第二物理层信道所占用的所述频域资源中的至少之一属于所述第一频域资源池。
  6. 根据权利要求5所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第二消息,所述第二消息被用于确定第二频域资源池;
    其中,所述第一物理层信道所占用的所述频域资源属于所述第一频域资源池;所述第二物理层信道所占用的所述频域资源属于所述第二频域资源池。
  7. 根据权利要求5所述的第一节点,其特征在于,所述第一消息被用于确定第一频域资源子集,所述第一频域资源子集属于所述第一频域资源池;所述第一物理层信道所占用的所述频域资源属于所述第一频域资源池,所述第二物理层信道所占用的所述频域资源属于所述第一频域资源子集;或者,所述第一物理层信道所占用的所述频域资源属于所述第一频域资源子集,所述第二物理层信道所占用的所述频域资源属于所述第一频域资源池。
  8. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二发射机,发送第一DCI,所述第一DCI包括第一域;
    第二处理机,在第一物理层信道上执行无线发送,在第二物理层信道上执行无线接收;
    其中,所述第一DCI的所述第一域被用于确定所述第一物理层信道所占用的频域资源以及所述第二物理层信道所占用的频域资源。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一DCI,所述第一DCI包括第一域;
    在第一物理层信道上执行无线接收,在第二物理层信道上执行无线发送;
    其中,所述第一DCI的所述第一域被用于确定所述第一物理层信道所占用的频域资源以及所述第二物理层信道所占用的频域资源。
  10. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一DCI,所述第一DCI包括第一域;
    在第一物理层信道上执行无线发送,在第二物理层信道上执行无线接收;
    其中,所述第一DCI的所述第一域被用于确定所述第一物理层信道所占用的频域资源以及所述第二物理层信道所占用的频域资源。
PCT/CN2023/110084 2022-08-02 2023-07-31 一种被用于无线通信的通信节点中的方法和装置 WO2024027612A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210921102.1A CN117560123A (zh) 2022-08-02 2022-08-02 一种被用于无线通信的通信节点中的方法和装置
CN202210921102.1 2022-08-02

Publications (1)

Publication Number Publication Date
WO2024027612A1 true WO2024027612A1 (zh) 2024-02-08

Family

ID=89821001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110084 WO2024027612A1 (zh) 2022-08-02 2023-07-31 一种被用于无线通信的通信节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN117560123A (zh)
WO (1) WO2024027612A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106455095A (zh) * 2015-08-13 2017-02-22 电信科学技术研究院 一种数据传输方法及装置
CN110351783A (zh) * 2018-04-04 2019-10-18 展讯通信(上海)有限公司 未授权频段上的频域资源分配方法、装置及基站
KR20200105406A (ko) * 2019-02-28 2020-09-07 한국전자통신연구원 비면허 대역을 지원하는 통신 시스템에서 제어 정보의 송수신 방법 및 장치
CN111836378A (zh) * 2019-08-15 2020-10-27 维沃移动通信有限公司 一种频域资源分配方法、网络侧设备及终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106455095A (zh) * 2015-08-13 2017-02-22 电信科学技术研究院 一种数据传输方法及装置
CN110351783A (zh) * 2018-04-04 2019-10-18 展讯通信(上海)有限公司 未授权频段上的频域资源分配方法、装置及基站
KR20200105406A (ko) * 2019-02-28 2020-09-07 한국전자통신연구원 비면허 대역을 지원하는 통신 시스템에서 제어 정보의 송수신 방법 및 장치
CN111836378A (zh) * 2019-08-15 2020-10-27 维沃移动通信有限公司 一种频域资源分配方法、网络侧设备及终端

Also Published As

Publication number Publication date
CN117560123A (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
WO2019170057A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018103444A1 (zh) 一种用于功率调整的用户设备、基站中的方法和装置
WO2020078272A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020034848A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020057362A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2020052446A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2018192350A1 (zh) 一种用于多天线传输的用户设备、基站中的方法和装置
WO2018099293A1 (zh) 一种被用于多天线传输的用户设备、基站中的方法和装置
CN116437315A (zh) 一种被用于无线通信的节点中的方法和装置
WO2020001228A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019228145A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021036790A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019213891A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023072136A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021031901A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019006717A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2024027612A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN117394957A (zh) 一种被用于无线通信的节点中的方法和装置
CN115396822B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023185521A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024051561A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024022239A1 (zh) 一种用于无线通信的方法和装置
WO2023083236A1 (zh) 用于无线通信的方法和装置
WO2024032520A1 (zh) 一种用于无线通信的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849320

Country of ref document: EP

Kind code of ref document: A1