WO2024104208A1 - 一种被用于无线通信的通信节点中的方法和装置 - Google Patents

一种被用于无线通信的通信节点中的方法和装置 Download PDF

Info

Publication number
WO2024104208A1
WO2024104208A1 PCT/CN2023/129822 CN2023129822W WO2024104208A1 WO 2024104208 A1 WO2024104208 A1 WO 2024104208A1 CN 2023129822 W CN2023129822 W CN 2023129822W WO 2024104208 A1 WO2024104208 A1 WO 2024104208A1
Authority
WO
WIPO (PCT)
Prior art keywords
candidate
signaling
cell
cells
configurations
Prior art date
Application number
PCT/CN2023/129822
Other languages
English (en)
French (fr)
Inventor
于巧玲
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024104208A1 publication Critical patent/WO2024104208A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, and in particular to a transmission method and device for mobility.
  • the mobility of user equipment is an important feature of wireless networks.
  • 3GPP (3rd Generation Partner Project) RAN (Radio Access Network) #94e meeting decided to launch the "Further NR mobility enhancements" research project (Work Item, WI).
  • L1 (Layer 1)/L2 (Layer 2) triggered mobility is an important research direction to reduce latency, overhead and interruption time.
  • LTM is based on L1/L2 signaling.
  • LTM Quality of Service
  • the present application provides a solution for mobility management.
  • the NR system is used as an example; the present application is also applicable to scenarios such as the LTE system; further, although the present application provides a specific implementation method for LTM, the present application can also be used in scenarios such as L3-triggered mobility to achieve technical effects similar to L1/L2-triggered mobility. Further, although the original intention of the present application is for the Uu air interface, the present application can also be used for the PC5 port.
  • the present application is also applicable to the V2X (Vehicle-to-Everything) scenario, the communication scenario between the terminal and the relay, and the relay and the base station, to achieve similar technical effects in the terminal and base station scenario.
  • the original intention of the present application is for the terminal and base station scenario
  • the present application is also applicable to the IAB (Integrated Access and Backhaul) communication scenario to achieve similar technical effects in the terminal and base station scenario.
  • the original intention of this application is for terrestrial network (terrestrial network) scenarios
  • this application is also applicable to non-terrestrial network (NTN) communication scenarios, achieving similar technical effects in TN scenarios.
  • NTN non-terrestrial network
  • the use of a unified solution for different scenarios can also help reduce hardware complexity and costs.
  • the present application discloses a method in a first node used for wireless communication, characterized by comprising:
  • the first signaling indicates K1 candidate cells, where the K1 candidate cells are configured for at least a first serving cell, and where K1 is an integer greater than 1;
  • the first signaling is used for mobility control; the K1 candidate configurations correspond to the K1 candidate cells respectively; each of the K1 candidate configurations includes the candidate cell identifier of one of the K1 candidate cells; the candidate cell identifiers of any two candidate cells among the K1 candidate cells are different; and the first signaling is used to trigger the behavior to apply at least one candidate configuration among the K1 candidate configurations.
  • the problem to be solved by the present application includes: how to enhance the robustness of UE mobility.
  • the problem to be solved by the present application includes: how to shorten the transmission delay.
  • the characteristics of the above method include: the K1 candidate cells are configured for the first serving cell.
  • the characteristics of the above method include: the K1 candidate cells are configured to multiple serving cells.
  • the characteristics of the above method include: the K1 candidate cells are configured to less than K1 serving cells.
  • the characteristics of the above method include: the K1 candidate cells are configured to K1 serving cells.
  • the characteristics of the above method include: applying one candidate configuration among K1 candidate configurations along with the first signaling.
  • the characteristics of the above method include: applying multiple candidate configurations among K1 candidate configurations along with the first signaling.
  • the characteristics of the above method include: along with the first signaling, applying less than K1 candidate configurations among K1 candidate configurations.
  • the characteristics of the above method include: applying K1 candidate configurations among K1 candidate configurations along with the first signaling.
  • the characteristics of the above method include: the first signaling indicates K1 candidate cells used for mobility.
  • the characteristics of the above method include: the first signaling is L2 signaling, and the first serving cell is SpCell.
  • the characteristics of the above method include: the first signaling is L2 signaling, and the first serving cell is SCell.
  • the characteristics of the above method include: the first signaling is L3 signaling, and the first serving cell is SpCell.
  • the benefits of the above method include: enhancing the robustness of UE mobility.
  • the benefits of the above method include: shortening the transmission delay.
  • a second signaling is received, where the second signaling is used to determine K2 candidate configurations
  • the second signaling is RRC sublayer signaling; each of the K1 candidate configurations is a candidate configuration of the K2 candidate configurations; and the K1 is not greater than the K2.
  • the third signaling is a signaling under the RRC sublayer; the third signaling is used to trigger the first signaling.
  • the K1 candidate configurations are respectively configured to K1 service cells, and the first service cell is one of the K1 service cells; the behavior of applying at least one candidate configuration among the K1 candidate configurations includes: applying each candidate configuration among the K1 candidate configurations.
  • At least a first condition is satisfied and is used to determine the first candidate cell among the K1 candidate cells; the first condition is independent of the measurement results of the K1 candidate cells; the behavior of applying at least one candidate configuration among the K1 candidate configurations includes: applying the first candidate configuration among the K1 candidate configurations; the K1 candidate configuration is configured to the first serving cell; the first candidate configuration is one of the K1 candidate configurations.
  • the first condition includes that the first candidate cell is configured without random access.
  • the first condition includes that a first timer is running; the first timer is used to determine whether the uplink of the first candidate cell is time-aligned.
  • the fourth signaling is used to indicate that at least one candidate configuration among the K1 candidate configurations is applied.
  • the present application discloses a method used in a second node of wireless communication, characterized by comprising:
  • At least one candidate configuration among K1 candidate configurations is applied; the first signaling is used for mobility control; the K1 candidate configurations correspond to the K1 candidate cells respectively; each candidate configuration among the K1 candidate configurations includes the candidate cell identifier of one of the K1 candidate cells; the candidate cell identifiers of any two candidate cells among the K1 candidate cells are different; the first signaling is used to trigger the behavior to apply at least one candidate configuration among the K1 candidate configurations.
  • a second signaling is sent, where the second signaling is used to determine K2 candidate configurations
  • the second signaling is RRC sublayer signaling; each of the K1 candidate configurations is a candidate configuration of the K2 candidate configurations; and the K1 is not greater than the K2.
  • the third signaling is a signaling under the RRC sublayer; the third signaling is used to trigger the first signaling.
  • the K1 candidate configurations are respectively configured to K1 service cells, and the first service cell is one of the K1 service cells; the behavior of applying at least one candidate configuration among the K1 candidate configurations includes: applying each candidate configuration among the K1 candidate configurations.
  • a first candidate cell is determined among the K1 candidate cells; at least a first condition is satisfied and is used to determine the first candidate cell among the K1 candidate cells; the first condition is independent of the measurement results of the K1 candidate cells; the behavior of applying at least one candidate configuration among the K1 candidate configurations includes: applying a first candidate configuration among the K1 candidate configurations; the K1 candidate configuration is configured to the first serving cell; the first candidate configuration is one of the K1 candidate configurations.
  • the first condition includes that the first candidate cell is configured without random access.
  • the first condition includes that a first timer is running; the first timer is used to determine whether the uplink of the first candidate cell is time-aligned.
  • the fourth signaling is sent as a response to applying the at least one candidate configuration among the K1 candidate configurations; and the fourth signaling is used to indicate that at least one candidate configuration among the K1 candidate configurations is applied.
  • the present application discloses a first node used for wireless communication, characterized in that it includes:
  • a first processor receives a first signaling, wherein the first signaling indicates K1 candidate cells, the K1 candidate cells are configured to at least a first serving cell, and K1 is an integer greater than 1; and applies at least one candidate configuration among the K1 candidate configurations along with the first signaling;
  • the first signaling is used for mobility control; the K1 candidate configurations correspond to the K1 candidate cells respectively; each of the K1 candidate configurations includes the candidate cell identifier of one of the K1 candidate cells; the candidate cell identifiers of any two candidate cells among the K1 candidate cells are different; and the first signaling is used to trigger the behavior to apply at least one candidate configuration among the K1 candidate configurations.
  • the present application discloses a second node used for wireless communication, characterized in that it includes:
  • the second processor sends a first signaling, where the first signaling indicates K1 candidate cells, where the K1 candidate cells are configured to at least the first serving cell, and K1 is an integer greater than 1;
  • At least one candidate configuration among K1 candidate configurations is applied; the first signaling is used for mobility control; the K1 candidate configurations correspond to the K1 candidate cells respectively; each candidate configuration among the K1 candidate configurations includes the candidate cell identifier of one of the K1 candidate cells; the candidate cell identifiers of any two candidate cells among the K1 candidate cells are different; the first signaling is used to trigger the behavior to apply at least one candidate configuration among the K1 candidate configurations.
  • this application has the following advantages:
  • FIG1 shows a flow chart of transmission of a first signaling according to an embodiment of the present application
  • FIG2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG3 is a schematic diagram showing an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • FIG4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG5 shows a wireless signal transmission flow chart according to an embodiment of the present application
  • FIG6 shows a wireless signal transmission flow chart according to another embodiment of the present application.
  • FIG7 shows a wireless signal transmission flow chart according to yet another embodiment of the present application.
  • FIG8 is a schematic diagram showing that the first condition includes that the first candidate cell is configured to be free of random access according to an embodiment of the present application
  • FIG9 is a schematic diagram showing that the first condition includes that the first timer is running according to an embodiment of the present application
  • FIG10 is a schematic diagram showing a whole or partial structure of a first signaling according to an embodiment of the present application.
  • FIG11 is a schematic diagram showing a whole or partial structure of a first signaling according to another embodiment of the present application.
  • FIG12 shows a wireless signal transmission flow chart according to yet another embodiment of the present application.
  • FIG13 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present application
  • FIG14 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of the transmission of the first signaling according to an embodiment of the present application, as shown in FIG1.
  • each box represents a step, and it should be emphasized that the order of the boxes in the figure does not represent the temporal sequence between the steps represented.
  • the first node in the present application receives a first signaling in step 101, wherein the first signaling indicates K1 candidate cells, and the K1 candidate cells are configured to at least a first service cell, and K1 is an integer greater than 1; in step 102, at least one of the K1 candidate configurations is applied along with the first signaling; wherein the first signaling is used for mobility control; the K1 candidate configurations correspond to the K1 candidate cells respectively; each of the K1 candidate configurations includes a candidate cell identifier of one of the K1 candidate cells; the candidate cell identifiers of any two candidate cells among the K1 candidate cells are different; and the first signaling is used to trigger the behavior to apply at least one of the K1 candidate configurations.
  • the first signaling is transmitted through PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the first signaling is transmitted through DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the first signaling is an RRC (Radio Resource Control) message.
  • RRC Radio Resource Control
  • the first signaling is MAC (Medium Access Control) sublayer signaling.
  • the first signaling is a MAC CE (Control Element).
  • the first signaling is a MAC CE
  • the first signaling belongs to a MAC subPDU
  • the MAC subPDU includes a MAC subheader
  • the MAC subheader includes a LCID (Logical Channel ID) field
  • the LCID field is set to 37 or 38 or 39 or 40 or 41 or 42.
  • the first signaling is a MAC CE
  • the first signaling belongs to a MAC subPDU
  • the MAC subPDU includes a MAC subheader
  • the MAC subheader includes an eLCID (extended LCID) field
  • the eLCID field is set to an integer not less than 0 and not greater than 228.
  • the first signaling is a MAC CE
  • the first signaling belongs to a MAC subPDU
  • the MAC subPDU includes a MAC subheader
  • the MAC subheader includes an eLCID domain
  • the eLCID domain is set to 228 or 227 or 226 or 225 or 224 or 223 or 222 or 221 or 220 or 219 or 218 or 217 or 216 or 215.
  • the first signaling is physical layer signaling.
  • the first signaling is a DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • the first signaling is transmitted via PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the first signaling includes the K1 candidate configurations.
  • the first signaling does not include the K1 candidate configurations.
  • the first signaling includes an identifier of the first serving cell.
  • the first signaling does not include an identifier of the first serving cell.
  • the first signaling indicates the candidate cell identifiers of the K1 candidate cells.
  • the first signaling indicates the candidate configuration identifiers of the K1 candidate configurations.
  • the first signaling indicates K1 candidate cell identifiers, and the K1 candidate cell identifiers indicate the K1 candidate cells.
  • the first signaling indicates K1 candidate configuration identifiers
  • the K1 candidate configuration identifiers indicate the K1 candidate cells.
  • the first signaling indicates one candidate configuration identifier
  • the one candidate configuration identifier indicates the K1 candidate cells.
  • the phrase that the first signaling indicates K1 candidate cells includes: the first signaling indicates a candidate cell identifier of each candidate cell in the K1 candidate cells.
  • the phrase that the first signaling indicates K1 candidate cells includes: the first signaling indicates a candidate cell group, and the candidate cell group includes the K1 candidate cells.
  • the candidate cell group is a candidate MCG (Master Cell Group).
  • the candidate cell group is a candidate SCG (Secondary Cell Group).
  • the first signaling indicates a candidate cell group
  • the K1 candidate cells are respectively the PCell (Primary Cell) and (K1-1) SCells (Secondary Cell) in the one candidate cell group.
  • the first signaling indicates a candidate cell group
  • the K1 candidate cells are respectively a PSCell (Primary SCG Cell) and (K1-1) SCells in the candidate cell group.
  • the first signaling includes the one candidate configuration identifier, and the one candidate configuration identifier indicates the one candidate cell group.
  • the first signaling includes a candidate cell identifier of each candidate cell among the K1 candidate cells.
  • the first signaling includes K1 candidate configuration identifiers, and the K1 candidate configuration identifiers respectively indicate the K1 candidate configurations.
  • the phrase “the first signaling indicates K1 candidate cells” includes: the first signaling includes K1 candidate configuration identifiers, and the K1 candidate configuration identifiers respectively indicate the K1 candidate cells.
  • the phrase that the first signaling indicates K1 candidate cells includes: the first signaling indicates K1 candidate cell groups, and each candidate cell group in the K1 candidate cell groups includes one candidate cell among the K1 candidate cells.
  • the first signaling indicates K1 candidate cell groups, and the K1 candidate cells are respectively SpCells in the K1 candidate cell groups.
  • the first signaling indicates K1 candidate cell groups, and the K1 candidate cells are respectively PCells in the K1 candidate cell groups.
  • the first signaling includes K1 candidate configuration identifiers, and the K1 candidate configuration identifiers respectively indicate the K1 candidate cell groups.
  • the candidate cell identifier of a candidate cell is not less than 0 and not greater than a threshold.
  • the candidate cell identifier of a candidate cell is a non-negative integer.
  • a candidate cell identifier of a candidate cell is configured.
  • the candidate cell identifier of a candidate cell includes the PCI (PhysCellId) of the candidate cell.
  • the candidate cell identifier of a candidate cell is the PCI of the candidate cell.
  • the candidate cell identifier of a candidate cell is an index of a TCI (Transmission Configuration Indicator).
  • the candidate cell identifier of a candidate cell is an index of a CORESET (control resource set).
  • the candidate cell identifier of a candidate cell is an index of a search space (SS).
  • the candidate cell identifier of a candidate cell includes the PCI and frequency information of the candidate cell.
  • the candidate cell identifier of a candidate cell is a serving cell identifier of the candidate cell.
  • the candidate cell identifier of a candidate cell is an index of the candidate cell.
  • the candidate cell identifier of a candidate cell is an index of the candidate cell in a candidate cell group.
  • the candidate cell identifier of a candidate cell is a candidate configuration index corresponding to the candidate cell.
  • a candidate configuration identifier is not less than 0 and not greater than a threshold.
  • a candidate configuration identifier is a non-negative integer.
  • a candidate configuration identifier is configured.
  • a candidate configuration identifier is configured for the one candidate configuration.
  • a candidate configuration identifier indicates a candidate cell.
  • a candidate configuration identifier indicates a candidate cell group.
  • a candidate configuration identifier indicates a candidate configuration.
  • a candidate configuration identifier indicates a candidate cell and the candidate configuration corresponding to the candidate cell.
  • a candidate configuration identifier uniquely indicates a candidate cell for a serving cell of the first node.
  • a candidate configuration identifier uniquely indicates a candidate cell for the first serving cell of the first node.
  • a candidate configuration identifier uniquely indicates a candidate cell of a cell group for the first node, the cell group is MCG or SCG, and the cell group includes the first serving cell.
  • each of the K1 candidate cells is configured for the first serving cell.
  • any candidate cell among the K1 candidate cells is not configured to any cell other than the first serving cell.
  • At least one of the K1 candidate cells is configured to a cell other than the first serving cell.
  • each candidate cell in the K1 candidate cells is a candidate cell in the same candidate cell group.
  • each of the K1 candidate cells is a candidate cell of the first serving cell.
  • each of the K1 candidate cells is a candidate cell in the cell group to which the first serving cell belongs.
  • each of the K1 candidate cells is a candidate PSCell.
  • each candidate cell among the K1 candidate cells is a candidate PCell.
  • the first service cell is a service cell of the first node.
  • the first serving cell is a serving cell in the MCG of the first node.
  • the first serving cell is a serving cell in the SCG of the first node.
  • the first serving cell is the PCell of the first node.
  • the first serving cell is a source PCell of the first node.
  • the first serving cell is the PSCell of the first node.
  • the first serving cell is a source PSCell of the first node.
  • the first serving cell is an SCell of the first node.
  • the first serving cell is a source SCell of the first node.
  • K1 is fixed.
  • K1 is variable.
  • K1 is not greater than a threshold, and the threshold is an integer greater than 2.
  • K1 is equal to 2.
  • K1 is greater than 2.
  • the phrase that the K1 candidate cells are configured for at least the first serving cell includes: the K1 candidate cells are configured for only the first serving cell.
  • any candidate cell among the K1 candidate cells is a candidate cell of the first serving cell.
  • any candidate cell among the K1 candidate cells is a candidate SpCell, and the first serving cell is a source SpCell.
  • any candidate cell among the K1 candidate cells is a candidate SCell, and the first serving cell is a source SCell.
  • the phrase that the K1 candidate cells are configured to at least a first serving cell includes: the K1 candidate cells are configured to a plurality of serving cells, and the first serving cell is one of the plurality of serving cells.
  • the K1 candidate cells are configured to the cell group to which the first serving cell belongs.
  • any candidate cell among the K1 candidate cells belongs to a candidate cell group of the cell group to which the first serving cell belongs.
  • the K1 candidate cells include at least a target SpCell, and the first serving cell is a source SpCell.
  • the K1 candidate cells include the target SpCell and at least one SCell.
  • the K1 candidate configurations are configured for at least two serving cells.
  • the K1 candidate configurations are configured for more than K1 serving cells.
  • one candidate cell among the K1 candidate cells is configured to at least two serving cells among the K1 serving cells.
  • one of the K1 candidate cells is a candidate cell of at least two serving cells among the K1 serving cells.
  • the K1 candidate configurations are respectively configured to K1 serving cells.
  • one candidate cell in the K1 candidate configurations is configured to only one serving cell in the K1 serving cells.
  • the K1 candidate cells are respectively candidate cells of the K1 serving cells.
  • one of the K1 candidate cells is a candidate cell of a serving cell among the K1 serving cells.
  • the K1 candidate cells correspond one-to-one to the K1 serving cells.
  • any candidate cell among the K1 candidate cells is a candidate cell of one of the K1 service cells, and any candidate cell is not a candidate cell of any service cell other than the one of the K1 service cells.
  • the behavior accompanying the first signaling includes: once the first signaling is.
  • the behavior accompanying the first signaling includes: when the first signaling is received.
  • the behavior accompanying the first signaling includes: if the first signaling is received.
  • the behavior applies at least one candidate configuration among the K1 candidate configurations regardless of channel measurement after the first signaling is received.
  • the behavior of applying at least one candidate configuration among K1 candidate configurations includes: applying all candidate configurations among the K1 candidate configurations.
  • the behavior of applying at least one candidate configuration among K1 candidate configurations includes: applying some candidate configurations among the K1 candidate configurations.
  • the behavior of applying at least one candidate configuration among K1 candidate configurations includes: applying each candidate configuration among the K1 candidate configurations.
  • the behavior of applying at least one candidate configuration among the K1 candidate configurations includes: applying only one candidate configuration among the K1 candidate configurations.
  • one candidate cell is determined among the K1 candidate cells, and the one candidate configuration is configured to the one candidate cell.
  • the behavior of applying at least one candidate configuration among K1 candidate configurations includes: applying at least 2 candidate configurations among the K1 candidate configurations.
  • At least two candidate cells are determined among the K1 candidate cells, and the at least two candidate configurations are respectively configured to the at least two candidate cells.
  • the at least 2 are no less than 2.
  • the at least 2 is 2.
  • the at least 2 are greater than 2.
  • the phrase that the first signaling is used for mobility control means that the first signaling is used for handover (HO).
  • the phrase that the first signaling is used for mobility control means that the first signaling is used for L3 (Layer 3) triggered mobility control.
  • the phrase that the first signaling is used for mobility control means that the first signaling is used for LTM.
  • the phrase that the first signaling is used for mobility control means that the first signaling is used for Cell Switch.
  • the phrase that the first signaling is used for mobility control means that the first signaling is used for Beam Management.
  • the K1 candidate configurations and the K1 candidate cells are in one-to-one correspondence.
  • the K1 candidate configurations respectively include configuration information of the K1 candidate cells.
  • the K1 candidate configurations are respectively configuration information of the K1 candidate cells.
  • each candidate configuration among the K1 candidate configurations is a candidate configuration of a candidate cell among the K1 candidate cells.
  • each candidate configuration of the K1 candidate configurations includes candidate information of one candidate cell of the K1 candidate cells.
  • a candidate configuration is configuration information of a candidate cell.
  • one candidate configuration corresponds to one candidate cell.
  • a candidate configuration is configured for a serving cell.
  • one candidate configuration is configured for multiple serving cells.
  • a candidate configuration is configured for at least one serving cell.
  • a candidate configuration includes configuration information of a candidate cell corresponding to the candidate configuration.
  • a candidate configuration includes a candidate cell identifier corresponding to the candidate configuration.
  • a candidate configuration includes a candidate configuration identifier.
  • a candidate configuration is indexed by a candidate configuration identifier.
  • a candidate configuration includes physical layer configuration information of the candidate cell corresponding to the candidate configuration.
  • a candidate configuration includes a downlink common configuration of the candidate cell corresponding to the candidate configuration.
  • a candidate configuration includes an uplink common configuration of the candidate cell corresponding to the candidate configuration.
  • a candidate configuration includes the SSB configuration of the candidate cell corresponding to the candidate configuration.
  • a candidate configuration includes configuration information of an initial downlink BWP (initial downlink BWP) of the candidate cell corresponding to the candidate configuration.
  • a candidate configuration includes configuration information of an initial uplink BWP (initial uplink BWP) of the candidate cell corresponding to the candidate configuration.
  • a candidate configuration includes PDCCH configuration information on an initial downlink BWP of the candidate cell corresponding to the candidate configuration.
  • a candidate configuration includes PDSCH configuration information on an initial downlink BWP of the candidate cell corresponding to the candidate configuration.
  • a candidate configuration includes PUCCH configuration information on an initial uplink BWP of the candidate cell corresponding to the candidate configuration.
  • a candidate configuration includes PRACH configuration information on an initial uplink BWP of the candidate cell corresponding to the candidate configuration.
  • a candidate configuration includes PUSCH configuration information on an initial uplink BWP of the candidate cell corresponding to the candidate configuration.
  • the first variable is used to store the candidate configuration.
  • the first variable is used to store the K1 candidate configurations.
  • the K1 candidate configurations are candidate configurations in the first variable.
  • the first variable when the first signaling is received, the first variable includes the K1 candidate configurations.
  • each of the K1 candidate configurations includes candidate information of one candidate cell among the K1 candidate cells.
  • any two candidate cells among the K1 candidate cells are two different candidate cells.
  • the first signaling is received and used to trigger the behavior to apply at least one candidate configuration among K1 candidate configurations.
  • the first signaling includes at least K1 candidate cell information blocks, and each of the K1 candidate cell information blocks indicates one candidate cell among the K1 candidate cells.
  • the first signaling is composed of the K1 candidate cell information blocks.
  • the first signaling includes at least one field outside the K1 candidate cell information blocks.
  • the first signaling consists of the K1 candidate cell information blocks and a serving cell identification field, and the serving cell identification field indicates the first serving cell.
  • the first signaling includes at least one field other than the K1 candidate cell information blocks and the one serving cell identification field.
  • the first signaling consists of the K1 candidate cell information blocks and the first bit map.
  • the first signaling includes at least one field other than the K1 candidate cell information blocks and the first bit map.
  • any two candidate cell information blocks among the K1 candidate cell information blocks have the same format.
  • the number of bits occupied by any two candidate cell information blocks among the K1 candidate cell information blocks is the same.
  • any two candidate cell information blocks among the K1 candidate cell information blocks include the same number of MAC fields.
  • one candidate cell information block corresponds to one candidate cell.
  • a candidate cell information block occupies a positive integer number of bits.
  • a candidate cell information block occupies a positive integer number of consecutive octets.
  • a candidate cell information block includes a MAC field indicating the C-RNTI of the first node in the corresponding candidate cell.
  • a candidate cell information block includes a MAC field indicating whether the corresponding candidate cell is configured with random access-free.
  • a candidate cell information block includes a MAC domain indicating the corresponding candidate cell CFRA (Contention Free Random Access) resources.
  • a candidate cell information block includes a MAC domain indicating the TAG (Timing Advance Group) to which the corresponding candidate cell belongs.
  • a candidate cell information block includes a configuration index of a candidate cell.
  • a candidate cell information block includes a configuration index of a candidate cell.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG2.
  • FIG2 illustrates a network architecture 200 of a 5G NR (New Radio)/LTE (Long-Term Evolution)/LTE-A (Long-Term Evolution Advanced) system.
  • the 5G NR/LTE/LTE-A network architecture 200 may be referred to as a 5GS (5G System)/EPS (Evolved Packet System) 200 or some other suitable term.
  • the 5GS/EPS 200 includes at least one of a UE (User Equipment) 201, a RAN (Radio Access Network) 202, a 5GC (5G Core Network)/EPC (Evolved Packet Core) 210, an HSS (Home Subscriber Server)/UDM (Unified Data Management) 220, and an Internet service 230.
  • the 5GS/EPS may be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in the figure, 5GS/EPS provides packet switching services, but technicians in the field will easily understand that throughout this application The various concepts presented may be extended to networks providing circuit switching services or other cellular networks.
  • RAN includes node 203 and other nodes 204.
  • Node 203 provides user and control plane protocol termination towards UE 201.
  • Node 203 may be connected to other nodes 204 via an Xn interface (e.g., backhaul)/X2 interface.
  • Node 203 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), a TRP (transmitting receiving node) or some other suitable term.
  • Node 203 provides an access point to 5GC/EPC 210 for UE 201.
  • Examples of UE 201 include cellular phones, smart phones, session initiation protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices, video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband Internet of Things devices, machine type communication devices, land vehicles, cars, wearable devices, or any other similar functional devices.
  • SIP session initiation protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, narrowband Internet of Things devices, machine type communication devices, land vehicles, cars, wearable devices, or any other similar functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable term.
  • Node 203 is connected to 5GC/EPC210 via an S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/SMF (Session Management Function) 211, other MME/AMF/SMF214, S-GW (Service Gateway)/UPF (User Plane Function) 212, and P-GW (Packet Data Network Gateway)/UPF213.
  • MME/AMF/SMF211 is a control node that handles signaling between UE201 and 5GC/EPC210.
  • MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocal) packets are transmitted through S-GW/UPF212, which itself is connected to P-GW/UPF213.
  • P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF213 is connected to Internet service 230.
  • Internet service 230 includes operator-corresponding Internet protocol services, which may specifically include Internet, Intranet, IMS (IP Multimedia Subsystem) and packet-switched streaming services.
  • the UE201 corresponds to the first node in the present application.
  • the UE201 is a user equipment (User Equipment, UE).
  • UE User Equipment
  • the node 203 corresponds to the second node in the present application.
  • the node 203 is a base station (BS).
  • BS base station
  • the node 203 is a base transceiver station (Base Transceiver Station, BTS).
  • BTS Base Transceiver Station
  • the node 203 is a Node B (NB).
  • NB Node B
  • the node 203 is a gNB.
  • the node 203 is an eNB.
  • the node 203 is an ng-eNB.
  • the node 203 is an en-gNB.
  • the node 203 is a CU (Centralized Unit).
  • the node 203 is a DU (Distributed Unit).
  • the node 203 is a user equipment.
  • the node 203 is a relay.
  • the node 203 is a gateway.
  • the node 204 corresponds to the third node in the present application.
  • the node 204 is a BS.
  • the node 204 is a BTS.
  • the node 204 is a NB.
  • the node 204 is a gNB.
  • the node 204 is an eNB.
  • the node 204 is an ng-eNB.
  • the node 204 is an en-gNB.
  • the node 204 is a user equipment.
  • the node 204 is a relay.
  • the node 204 is a gateway.
  • the node 204 is a CU.
  • the node 204 is a DU.
  • the node 203 and the node 204 are connected via an ideal backhaul.
  • the node 203 and the node 204 are connected via a non-ideal backhaul.
  • the node 203 and the node 204 provide wireless resources for the UE 201 at the same time.
  • the node 203 and the node 204 do not provide wireless resources for the UE 201 at the same time.
  • the node 203 and the node 204 are the same node.
  • the node 203 and the node 204 are two different nodes.
  • the node 203 and the node 204 belong to the same CU.
  • the node 203 and the node 204 belong to two different CUs.
  • the user equipment supports transmission of a terrestrial network (Non-Terrestrial Network, NTN).
  • NTN Non-Terrestrial Network
  • the user equipment supports transmission of a non-terrestrial network (Terrestrial Network).
  • Terrestrial Network a non-terrestrial network
  • the user equipment supports transmission in a network with a large delay difference.
  • the user equipment supports dual connection (DC) transmission.
  • DC dual connection
  • the user equipment includes an aircraft.
  • the user equipment includes a vehicle-mounted terminal.
  • the user equipment includes a vessel.
  • the user equipment includes an Internet of Things terminal.
  • the user equipment includes a terminal of the industrial Internet of Things.
  • the user equipment includes a device supporting low-latency and high-reliability transmission.
  • the user equipment includes a test device.
  • the user equipment includes a signaling tester.
  • the base station device supports transmission in a non-terrestrial network.
  • the base station device supports transmission in a network with a large delay difference.
  • the base station device supports transmission of a terrestrial network.
  • the base station device includes a macro cellular (Marco Cellular) base station.
  • a macro cellular (Marco Cellular) base station includes a macro cellular (Marco Cellular) base station.
  • the base station device includes a micro cell base station.
  • the base station device includes a pico cell (Pico Cell) base station.
  • the base station device includes a home base station (Femtocell).
  • Femtocell home base station
  • the base station device includes a base station device that supports a large delay difference.
  • the base station device includes a flying platform device.
  • the base station device includes a satellite device.
  • the base station device includes a TRP (Transmitter Receiver Point).
  • TRP Transmitter Receiver Point
  • the base station device includes a CU (Centralized Unit).
  • CU Centralized Unit
  • the base station device includes a DU (Distributed Unit).
  • the base station device includes a testing device.
  • the base station equipment includes a signaling tester.
  • the base station equipment includes an IAB (Integrated Access and Backhaul)-node.
  • IAB Integrated Access and Backhaul
  • the base station device includes an IAB-donor.
  • the base station device includes an IAB-donor-CU.
  • the base station device includes an IAB-donor-DU.
  • the base station device includes an IAB-DU.
  • the base station device includes IAB-MT.
  • the relay includes a relay.
  • the relay includes L3 relay.
  • the relay includes L2 relay.
  • the relay includes a router.
  • the relay includes a switch.
  • the relay includes a user equipment.
  • the relay includes a base station device.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture for a user plane and a control plane according to the present application, as shown in FIG3.
  • FIG3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300, and FIG3 shows the radio protocol architecture for the control plane 300 in three layers: layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above PHY301 and includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol) sublayer 304.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides inter-zone mobility support.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ (Hybrid Automatic Repeat Request).
  • HARQ Hybrid Automatic Repeat Request
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in a cell.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (i.e., radio bearers) and using RRC signaling to configure the lower layers.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture in the user plane 350 is substantially the same as the corresponding layers and sublayers in the control plane 300 for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355, but the PDCP sublayer 354 also provides header compression for upper layer data packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol) sublayer 356, which is responsible for mapping between QoS flows and data radio bearers (DRBs) to support the diversity of services.
  • SDAP Service Data Adaptation Protocol
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in the present application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in the present application.
  • the first signaling in the present application is generated in the RRC306.
  • the first signaling in the present application is generated by the MAC302 or MAC352.
  • the first signaling in the present application is generated in the PHY301 or PHY351.
  • the second signaling in the present application is generated in the RRC306.
  • the third signaling in the present application is generated by the MAC302 or MAC352.
  • the third signaling in the present application is generated in the PHY301 or PHY351.
  • the fourth signaling in the present application is generated in the RRC306.
  • the fourth signaling in the present application is generated by the MAC302 or MAC352.
  • the fourth signaling in the present application is generated in the PHY301 or PHY351.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in Figure 4.
  • Figure 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in an access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and an antenna 452.
  • the second communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • controller/processor 475 In transmission from the second communication device 410 to the first communication device 450, at the second communication device 410, upper layer data packets from the core network are provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 In transmission from the second communication device 410 to the first communication device 450, the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocation to the first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets and signaling to the first communication device 450.
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (i.e., the physical layer).
  • the transmit processor 416 implements encoding.
  • the code and interleave are used to facilitate forward error correction (FEC) at the second communication device 410, as well as mapping of signal constellations based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing on the coded and modulated symbols to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to a subcarrier, multiplexes it with a reference signal (e.g., a pilot) in the time domain and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate a physical channel carrying a time-domain multi-carrier symbol stream.
  • IFFT inverse fast Fourier transform
  • the multi-antenna transmit processor 471 then performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated onto the RF carrier and converts the RF stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receiving processor 458 performs a receiving analog precoding/beamforming operation on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a fast Fourier transform (FFT) to convert the baseband multi-carrier symbol stream after the receiving analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT fast Fourier transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458 to any spatial stream destined for the first communication device 450.
  • the symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the second communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides multiplexing between transport and logical channels, packet reassembly, decryption, header decompression, and control signal processing to recover the upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels based on radio resource allocation, and implements L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for the retransmission of lost packets and signaling to the second communication device 410.
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing. Then, the transmit processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is then provided to different antennas 452 via the transmitter 454 after analog precoding/beamforming operations in the multi-antenna transmit processor 457. Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the function at the second communication device 410 is similar to the reception function at the first communication device 450 described in the transmission from the second communication device 410 to the first communication device 450.
  • Each receiver 418 receives a radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the multi-antenna reception processor 472 and the reception processor 470.
  • the reception processor 470 and the multi-antenna reception processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements the L2 layer functions.
  • the controller/processor 475 can be associated with a memory 476 storing program codes and data.
  • the memory 476 can be referred to as a computer-readable medium.
  • the controller/processor 475 In the transmission from the first communication device 450 to the second communication device 410, the controller/processor 475 provides multiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover the upper layer data packets from the UE 450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be used together with the at least one processor, and the first communication device 450 at least: receives a first signaling, the first signaling indicates K1 candidate cells, the K1 candidate cells are configured to at least a first serving cell, and the K1 is an integer greater than 1; along with the first signaling, at least one candidate configuration of the K1 candidate configurations is applied; wherein the first signaling is used for mobility control; the K1 candidate configurations correspond to the K1 candidate cells respectively; each of the K1 candidate configurations includes a candidate cell identifier of one of the K1 candidate cells identification; the candidate cell identifiers of any two candidate cells among the K1 candidate cells are different; the first signaling is used to trigger the behavior to apply at least one candidate configuration among the K1 candidate configurations.
  • the first communication device 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, the action including: receiving a first signaling, the first signaling indicating K1 candidate cells, the K1 candidate cells being configured to at least a first service cell, the K1 being an integer greater than 1; applying at least one of the K1 candidate configurations along with the first signaling; wherein the first signaling is used for mobility control; the K1 candidate configurations correspond to the K1 candidate cells respectively; each of the K1 candidate configurations includes a candidate cell identifier of one of the K1 candidate cells; the candidate cell identifiers of any two of the K1 candidate cells are different; the first signaling is used to trigger the behavior to apply at least one of the K1 candidate configurations.
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be used together with the at least one processor.
  • the second communication device 410 at least: sends a first signaling, the first signaling indicates K1 candidate cells, the K1 candidate cells are configured to at least the first service cell, and K1 is an integer greater than 1; wherein, accompanying the first signaling, at least one candidate configuration of the K1 candidate configurations is applied; the first signaling is used for mobility control; the K1 candidate configurations correspond to the K1 candidate cells respectively; each candidate configuration of the K1 candidate configurations includes a candidate cell identifier of one of the K1 candidate cells; the candidate cell identifiers of any two candidate cells of the K1 candidate cells are different; the first signaling is used to trigger the behavior to apply at least one candidate configuration of the K1 candidate configurations.
  • the second communication device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, the action including: sending a first signaling, the first signaling indicating K1 candidate cells, the K1 candidate cells being configured to at least a first service cell, and the K1 being an integer greater than 1; wherein, along with the first signaling, at least one of the K1 candidate configurations is applied; the first signaling is used for mobility control; the K1 candidate configurations correspond to the K1 candidate cells respectively; each of the K1 candidate configurations includes a candidate cell identifier of one of the K1 candidate cells; the candidate cell identifiers of any two of the K1 candidate cells are different; the first signaling is used to trigger the behavior to apply at least one of the K1 candidate configurations.
  • At least one of the antenna 452, the receiver 454, the receiving processor 456, and the controller/processor 459 is used to receive the first signaling.
  • At least one of the antenna 420, the transmitter 418, the transmit processor 416, and the controller/processor 475 is used to send a first signaling.
  • At least one of the antenna 452, the receiver 454, the receiving processor 456, and the controller/processor 459 is used to receive the second signaling.
  • At least one of the antenna 420, the transmitter 418, the transmit processor 416, and the controller/processor 475 is used to send the second signaling.
  • At least one of the antenna 452, the transmitter 454, the transmit processor 468, and the controller/processor 459 is used to send a third signaling.
  • At least one of the antenna 420, the receiver 418, the receiving processor 470, and the controller/processor 475 is used to receive a third signaling.
  • At least one of the antenna 452, the transmitter 454, the transmit processor 468, and the controller/processor 459 is used to send a fourth signaling.
  • At least one of the antenna 420, the receiver 418, the receiving processor 470, and the controller/processor 475 is used to receive fourth signaling.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a user equipment.
  • the first communication device 450 is a base station device.
  • the first communication device 450 is a relay device.
  • the second communication device 410 is a user equipment.
  • the second communication device 410 is a base station device.
  • the second communication device 410 is a relay device.
  • Embodiment 5 illustrates a wireless signal transmission flow chart according to an embodiment of the present application, as shown in FIG5. It is particularly noted that the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in the present application.
  • step S5101 For the first node U01 , in step S5101, a second signaling is received, and the second signaling is used to determine K2 candidate configurations; in step S5102, a third signaling is sent, and the third signaling indicates the measurement results of at least the K1 candidate cells; in step S5103, a first signaling is received, and the first signaling indicates K1 candidate cells, and the K1 candidate cells are configured to at least the first service cell, and K1 is an integer greater than 1; in step S5104, along with the first signaling, at least one candidate configuration of the K1 candidate configurations is applied.
  • step S5201 the second signaling is sent; in step S5202, the third signaling is received; in step S5203, the first signaling is sent.
  • the first signaling is used for mobility control; the K1 candidate configurations correspond to the K1 candidate cells respectively; each of the K1 candidate configurations includes the candidate cell identifier of one of the K1 candidate cells; the candidate cell identifiers of any two of the K1 candidate cells are different; the first signaling is used to trigger the behavior to apply at least one of the K1 candidate configurations; the second signaling is RRC sublayer signaling; each of the K1 candidate configurations is a candidate configuration of the K2 candidate configurations; the K1 is not greater than the K2; the third signaling is signaling below the RRC sublayer; the third signaling is used to trigger the first signaling.
  • the first node U01 is a user equipment.
  • the first node U01 is a base station device.
  • the first node U01 is a relay device.
  • the second node N02 is a base station device.
  • the second node N02 is a user equipment.
  • the second node N02 is a relay device.
  • the first node U01 is a user equipment
  • the second node N02 is a base station device.
  • the first node U01 is a user equipment
  • the second node N02 is a relay device.
  • the first node U01 is a user equipment
  • the second node N02 is a user equipment
  • the first node U01 is a base station device
  • the second node N02 is a base station device.
  • the first node U01 is a relay device
  • the second node N02 is a base station device.
  • the second node N02 is a maintaining base station of the first service cell.
  • the second node N02 is a maintaining base station of any service cell of the first node U01.
  • the second signaling includes at least one RRC message, and each RRC message of the at least one RRC message indicates at least one candidate configuration of the K2 candidate configurations.
  • the second signaling is an RRC message
  • the one RRC message indicates the K2 candidate configurations.
  • the second signaling includes at least one RRC IE (Information Element).
  • the second signaling includes at least one RRC field.
  • the second signaling is transmitted via DCCH (Dedicated Control Channel).
  • DCCH Dedicated Control Channel
  • the second signaling is transmitted via SRB1 (Signalling radio bearer 1).
  • the second signaling is transmitted via SRB3 (Signalling radio bearer 3).
  • the second signaling includes an RRCReconfiguration message.
  • the second signaling includes an RRCResume message.
  • the second signaling includes an RRCReestablishment message.
  • the second signaling includes a CellGroupConfig field.
  • the second signaling includes a SpCellConfig field.
  • the second signaling includes a reconfigurationWithSync field.
  • the second signaling includes the spCellConfigCommon field.
  • the second signaling includes a ServingCellConfigCommon IE for each candidate cell.
  • the second signaling includes a DownlinkConfigCommon IE for each candidate cell.
  • the second signaling includes an UplinkConfigCommon IE for each candidate cell.
  • the second signaling includes a BWP-DownlinkCommon IE for each candidate cell.
  • the second signaling includes a BWP-UplinkCommon IE for each candidate cell.
  • the second signaling includes an ssb-PositionsInBurst field for each candidate cell.
  • the first signaling indicates the K1 candidate configurations among the K2 candidate configurations.
  • the sender of the second signaling is a base station maintaining a service cell of the first node U01.
  • the sender of the second signaling is the base station maintaining the first service cell.
  • the sender of the second signaling is a base station maintaining a service cell other than the first service cell of the first node U01.
  • the second signaling indicates the K2 candidate configurations.
  • the second signaling includes the K2 candidate configurations.
  • the K2 candidate configurations are determined through the second signaling.
  • At least one candidate configuration among the K2 candidate configurations is not configured for the first serving cell.
  • At least the K1 candidate configurations among the K2 candidate configurations are configured for the first serving cell.
  • only the K1 candidate configurations among the K2 candidate configurations are configured for the first serving cell.
  • any candidate configuration among the K2 candidate configurations is configured for the first serving cell.
  • At least one candidate configuration among the K2 candidate configurations is configured to the first service cell and a service cell other than the first service cell.
  • the K2 candidate configurations are configured to multiple service cells of the first node U01, and the first service cell is one of the multiple service cells.
  • the K2 candidate configurations are configured for only the first serving cell.
  • the K2 candidate configurations are configured for the first service cell, and any candidate configuration among the K2 candidate configurations is not configured for any service cell other than the first service cell.
  • the K2 candidate configurations belong to the same RRC message.
  • At least two candidate configurations among the K2 candidate configurations belong to different RRC messages.
  • K2 is not greater than a threshold, and the threshold is predefined.
  • K2 is not less than 2.
  • the second signaling and the first signaling belong to the same RRC message; the K2 is the K1.
  • step S5101 and step S5104 are the same step.
  • the K1 candidate configurations are the K2 candidate configurations.
  • the first signaling belongs to the second signaling.
  • the first signaling is the second signaling.
  • the second signaling includes at least one RRC message, and the first signaling is signaling below the RRC sublayer.
  • step S5101 is before step S5104.
  • the second signaling triggers the third signaling
  • the third signaling triggers the first signaling
  • the receiving time of the second signaling is earlier than the receiving time of the first signaling.
  • the first signaling is MAC CE.
  • the first signaling is DCI.
  • the second signaling includes at least one first-type sub-signaling, and the first-type sub-signaling is used to add or modify the candidate configuration.
  • the name of each first-category sub-signaling includes AddModList.
  • the name of each first-category sub-signaling includes AddModList-r18.
  • each first-category sub-signaling indicates at least one candidate configuration.
  • each candidate configuration indicated by the first type of sub-signaling is stored or updated in a first variable.
  • the second signaling includes at least one first-type sub-signaling and at least one second-type sub-signaling, the first-type sub-signaling is used to add or modify candidate configurations, and the second-type sub-signaling is used to remove candidate configurations.
  • the name of each second-category sub-signaling includes RemoveList.
  • the name of each second-category sub-signaling includes RemoveList-r18.
  • each second-type sub-signaling indicates at least one candidate configuration.
  • each candidate configuration indicated by the second type of sub-signaling is removed from the first variable.
  • the first variable is used to store the K2 candidate configurations.
  • the K1 candidate configurations are a subset of the K2 candidate configurations.
  • the K1 candidate configurations are the K2 candidate configurations.
  • the K1 is equal to the K2.
  • the K1 is smaller than the K2.
  • the K1 and the K2 are configurable.
  • any candidate cell among the K2 candidate cells is a candidate cell of at least one service cell of the first node U01.
  • any candidate cell among the K2 candidate cells is a candidate cell of the first service cell, and any candidate cell among the K2 candidate cells is not a candidate cell of any service cell other than the first service cell of the first node U01.
  • the dashed box F5.1 is optional.
  • the dashed box F5.1 exists.
  • the second signaling includes at least one RRC message
  • the first signaling is signaling below the RRC sublayer.
  • the first signaling is MAC CE.
  • the first signaling is DCI.
  • the third signaling is received after the first signaling is sent.
  • the third signaling is a MAC CE.
  • the third signaling is a UCI (Uplink Control Information).
  • the third signaling is transmitted through PUCCH (Physical Uplink Control Channel) resources.
  • PUCCH Physical Uplink Control Channel
  • the third signaling is transmitted through PUSCH (Physical Uplink Shared Channel) resources.
  • PUSCH Physical Uplink Shared Channel
  • the second node N02 in response to receiving the third signaling, the second node N02 sends the first signaling.
  • the second node N02 determines to send the first signaling according to the third signaling.
  • the third signaling includes a measurement report.
  • the third signaling includes an L1 measurement report.
  • the third signaling includes an L1 or L2 measurement report.
  • the third signaling is a measurement report.
  • the third signaling is used for measurement report of LTM.
  • the third signaling is a CSI (Channel State Information) report.
  • the third signaling is SP (Semi-Persistent) CSI report.
  • the third signaling includes measurement results of the K1 candidate cells.
  • the third signaling only indicates the measurement results of the K1 candidate cells.
  • the third signaling indicates the measurement results of the K1 candidate cells, and the third signaling indicates the measurement results of at least one candidate cell other than the K1 candidate cells.
  • the measurement result of a candidate cell is a measurement result of layer 1 (Layer 1, L1).
  • the measurement result of one candidate cell is a measurement result of at least one reference signal in the one candidate cell.
  • the at least one reference signal includes a reference signal.
  • the at least one reference signal includes multiple reference signals.
  • the at least one reference signal is a reference signal.
  • the at least one reference signal is multiple reference signals.
  • each of the at least one reference signal is a CSI-RS (Reference Signal).
  • each of the at least one reference signal is a SSB (Synchronization Signal Block).
  • SSB Synchronization Signal Block
  • each reference signal in the at least one reference signal is one of CSI-RS or SSB.
  • the measurement result of a candidate cell is RSRP (Reference Signal Received Power).
  • the RSRP is L1-RSRP.
  • the RSRP is CSI-RSRP.
  • the RSRP is SS-RSRP.
  • the measurement result of a candidate cell is RSRQ (Reference Signal Received Quality).
  • the measurement result of a candidate cell is BLER (Block Error Ratio).
  • the measurement result of a candidate cell is related to at least one of RSRP, RSRQ or BLER.
  • the dotted box F5.1 does not exist.
  • the second signaling and the first signaling belong to the same RRC message; the K2 is the K1.
  • At least one L3 measurement report is sent before the first signaling is received.
  • At least one L3 measurement report is used to trigger the first signaling.
  • an L3 measurement report is a MeasurementReport message.
  • the first signaling is an RRCReconfiguration message
  • the RRCReconfiguration message includes a domain whose name includes masterCellGroup
  • the domain whose name includes masterCellGroup includes K1 CellGroupConfig IEs
  • the K1 CellGroupConfig IEs are respectively used to indicate the K1 candidate cells.
  • the first serving cell is a source PCell.
  • the K1 candidate cells are K1 target PCells.
  • the K1 candidate cells are configured for the first serving cell.
  • each of the K1 CellGroupConfig IEs includes a SpCellConfig
  • each SpCellConfig includes a ReconfigurationWithSync
  • each ReconfigurationWithSync includes a ServingCellConfigCommon
  • each ServingCellConfigCommon includes a candidate configuration of a candidate cell
  • each ServingCellConfigCommon includes a PhysCellId
  • each PhysCellId is a candidate cell identifier of a candidate cell.
  • Embodiment 6 illustrates a wireless signal transmission flow chart according to another embodiment of the present application, as shown in FIG6. It is particularly noted that the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in the present application.
  • a first signaling is received, wherein the first signaling indicates K1 candidate cells, and the K1 candidate cells are configured to at least a first service cell, and K1 is an integer greater than 1; in step S6102, along with the first signaling, a first candidate cell is determined among the K1 candidate cells; in step S6103, along with the first signaling, a first candidate configuration among the K1 candidate configurations is applied; in step S6104, a fourth signaling is sent as a response to applying the at least one candidate configuration among the K1 candidate configurations.
  • step S6201 the first signaling is sent.
  • step S6301 the fourth signaling is received.
  • the first signaling is used for mobility control; the K1 candidate configurations correspond to the K1 candidate cells respectively; each of the K1 candidate configurations includes the candidate cell identifier of one of the K1 candidate cells; the candidate cell identifiers of any two of the K1 candidate cells are different; the first signaling is used to trigger the behavior to apply at least one of the K1 candidate configurations; at least the first condition is satisfied and is used to determine the first candidate cell among the K1 candidate cells; the first condition is independent of the measurement results of the K1 candidate cells; the K1 candidate configuration is configured to the first serving cell; the first candidate configuration is one of the K1 candidate configurations; and the fourth signaling is used to indicate that at least one of the K1 candidate configurations is applied.
  • the first node U01 is a user equipment
  • the second node N02 is a base station device
  • the third node N03 is a base station device.
  • the first node U01 is a user equipment
  • the second node N02 is a user equipment
  • the third node N03 is a user equipment.
  • the first node U01 is a user equipment
  • the second node N02 is a user equipment
  • the third node N03 is a base station device.
  • the first node U01 is a base station device
  • the second node N02 is a base station device
  • the third node N03 is a base station device.
  • the first node U01 is a user equipment
  • the second node N02 is a base station device
  • the third node N03 is a user equipment.
  • the third node N03 is a maintaining base station of the first candidate cell.
  • the third node N03 is a base station maintaining a candidate cell in the K1 candidate configurations.
  • the third node N03 is a base station maintaining a candidate cell in the K1 candidate configurations that has been applied.
  • the first candidate cell is determined among the K1 candidate cells.
  • the “determining a first candidate cell among the K1 candidate cells” includes: selecting the first candidate cell among the K1 candidate cells.
  • the “determining a first candidate cell among the K1 candidate cells” includes: finding the first candidate cell among the K1 candidate cells.
  • the “determining a first candidate cell among the K1 candidate cells” includes: taking the first candidate cell among the K1 candidate cells as a target cell of LTM.
  • the “determining a first candidate cell among the K1 candidate cells” includes: determining the first candidate configuration among the K1 candidate configurations.
  • the “determining a first candidate cell among the K1 candidate cells” includes: determining to apply the first candidate configuration among the K1 candidate configurations.
  • the first candidate cell is determined among the K1 candidate cells according to the first condition.
  • the first condition does not depend on the measurement results of the K1 candidate cells.
  • the first condition is related to the priority of the first candidate cell among the K1 candidate cells.
  • the first condition is related to the first signaling.
  • the first condition is related to the value of at least one field in the first signaling.
  • the first condition is related to whether the first candidate configuration includes a complete configuration.
  • the first condition is related to whether the first candidate configuration is valid.
  • the first condition is related to whether the first candidate cell is configured with random access-free.
  • the first condition is related to whether a first timer is configured; the first timer is used to determine whether the uplink of the first candidate cell is time-aligned.
  • the first condition is related to the operating state of a first timer; the first timer is used to determine whether the uplink of the first candidate cell is time-aligned.
  • the first condition includes that the first candidate cell is a candidate cell with the highest priority among the K1 candidate cells.
  • the first timer is configured to be used to determine that the first candidate cell is a candidate cell with the highest priority among the K1 candidate cells.
  • the first timer is running and is used to determine that the first candidate cell is the candidate cell with the highest priority among the K1 candidate cells.
  • the first candidate configuration includes a complete configuration used to determine that the first candidate cell is a candidate cell with the highest priority among the K1 candidate cells.
  • the first candidate cell is configured with random access-free to determine that the first candidate cell is a candidate cell with the highest priority among the K1 candidate cells.
  • the first candidate cell is a candidate cell with the highest order among the K1 candidate cells, and is used to determine that the first candidate cell is a candidate cell with the highest priority among the K1 candidate cells.
  • the first signaling indicates the order of the K1 candidate cells.
  • the first signaling implicitly indicates the order of the K1 candidate cells.
  • the first signaling indicates the order of the K1 candidate cells.
  • the position of the field used to indicate the K1 candidate cells in the first signaling is used to determine the order of the K1 candidate cells.
  • a field in the first signaling indicates that the first candidate cell is the candidate cell with the highest order among the K1 candidate cells.
  • the bit position of the field used to indicate the first candidate cell in the first signaling is higher than the bit position of the field used to indicate any candidate cell other than the first candidate cell in the first signaling, which is used to determine that the first candidate cell is the candidate cell with the highest order among the K1 candidate cells.
  • the bit position of the field used to indicate the first candidate cell in the first signaling is lower than the bit position of the field used to indicate any candidate cell other than the first candidate cell in the first signaling, which is used to determine that the first candidate cell is the candidate cell with the highest order among the K1 candidate cells.
  • the first condition is independent of the first timer.
  • the first timer when the first signaling is received, the first timer is running.
  • the first timer when the first signaling is received, the first timer is not running.
  • the first candidate configuration is a candidate configuration of the first candidate cell.
  • the first candidate configuration includes a candidate cell identifier of the first candidate cell.
  • the first candidate configuration includes configuration information of the first candidate cell.
  • the fourth signaling is an RRCReconfigurationComplete message; and the first signaling is an RRC message.
  • the fourth signaling is signaling below the RRC sublayer; the first signaling is signaling below the RRC sublayer.
  • the fourth signaling is a UCI.
  • the fourth signaling is a PUSCH.
  • the fourth signaling is a PUCCH.
  • the fourth signaling is an ACK (Acknowledgement).
  • the phrase as a response to applying at least one of the K1 candidate configurations refers to: as a response to applying one of the K1 candidate configurations.
  • the one candidate configuration among the K1 candidate configurations is any candidate configuration among the K1 candidate configurations.
  • the one candidate configuration among the K1 candidate configurations is the first candidate configuration among the K1 candidate configurations.
  • the phrase as a response to applying one of the K1 candidate configurations includes: as a response to the completion of application of one of the K1 candidate configurations.
  • At least one of the K1 candidate configurations when starting to apply at least one of the K1 candidate configurations, at least one of the K1 candidate configurations has not been applied.
  • At least one of the K1 candidate configurations begins to be applied, at least one of the K1 candidate configurations has not been completely applied.
  • the fourth signaling is sent after at least one candidate configuration among the K1 candidate configurations is applied.
  • the phrase that the fourth signaling is used to indicate that at least one candidate configuration among the K1 candidate configurations is applied means that: the fourth signaling is used to indicate that one candidate configuration among the K1 candidate configurations is applied.
  • the fourth signaling indicates a candidate configuration among the K1 candidate configurations that has been applied.
  • the fourth signaling indicates that the one candidate configuration among the K1 candidate configurations has been applied.
  • the fourth signaling indicates that the first candidate configuration among the K1 candidate configurations has been applied.
  • the recipient of the fourth signaling is a base station maintaining the first candidate cell and is used to indicate that the first candidate configuration is applied.
  • the fourth signaling includes a candidate configuration identifier of the first candidate configuration, which is used to indicate that the first candidate configuration is applied.
  • the fourth signaling includes a candidate cell identifier of the first candidate cell, which is used to indicate that the first candidate configuration is applied.
  • the dashed box F6.1 exists.
  • the fourth signaling is sent.
  • the first candidate configuration is applied before the fourth signaling is sent.
  • one of the K1 candidate configurations is applied and completed.
  • the fourth signaling is sent as a response to completion of application of the first candidate configuration.
  • the fourth signaling is sent as a response to the completion of application of one of the K1 candidate configurations.
  • the dotted box F6.1 does not exist.
  • the fourth signaling is not sent.
  • the first candidate configuration is not applied.
  • the first candidate configuration fails to be applied.
  • an indication is sent to an upper layer, or the first service cell is returned, or the first service cell continues to be applied, or a second candidate cell is determined among the K1 candidate cells.
  • being applied to completion means being successfully applied.
  • being applied to completion includes being successfully applied.
  • Embodiment 7 illustrates a wireless signal transmission flow chart according to another embodiment of the present application, as shown in FIG7. It is particularly noted that the sequence in this example does not limit the signal transmission sequence and implementation sequence in the present application.
  • a first signaling is received, wherein the first signaling indicates K1 candidate cells, wherein the K1 candidate cells are configured to at least the first service cell, and K1 is an integer greater than 1; in step S7102, each of the K1 candidate configurations is applied along with the first signaling; in step S7103, a fourth signaling is sent as a response to applying the at least one candidate configuration of the K1 candidate configurations.
  • step S7201 the first signaling is sent.
  • step S7301 the fourth signaling is received.
  • the first signaling is used for mobility control; the K1 candidate configurations correspond to the K1 candidate cells respectively; each of the K1 candidate configurations includes a candidate cell identifier of one of the K1 candidate cells; the candidate cell identifiers of any two candidate cells in the K1 candidate cells are different; the first signaling is used to trigger the behavior to apply at least one candidate configuration of the K1 candidate configurations;
  • the first node U01 is a user equipment
  • the second node N02 is a base station device
  • the third node N03 is a base station device.
  • the first node U01 is a user equipment
  • the second node N02 is a user equipment
  • the third node N03 is a user equipment.
  • the first node U01 is a user equipment
  • the second node N02 is a user equipment
  • the third node N03 is a base station device.
  • the first node U01 is a base station device
  • the second node N02 is a base station device
  • the third node N03 is a base station device.
  • the first node U01 is a user equipment
  • the second node N02 is a base station device
  • the third node N03 is a user equipment.
  • the third node N03 is a maintaining base station of the second candidate cell.
  • the first signaling indicates the K1 serving cells and the K1 candidate cells.
  • the first signaling includes identifiers of the K1 serving cells.
  • the first signaling includes the indexes of the K1 serving cells.
  • the first signaling includes the K1 candidate configuration indexes.
  • the first signaling includes an index of each candidate cell among the K1 candidate cells.
  • the first signaling includes identifiers of the K1 serving cells and candidate cell identifiers of the K1 candidate cells.
  • a candidate cell information block includes a candidate cell identifier of a candidate cell of the serving cell corresponding to the one bit.
  • a candidate cell information block includes an index of a candidate cell of the serving cell corresponding to the one bit.
  • a candidate cell information block includes a candidate configuration index of a candidate cell of the serving cell corresponding to the one bit.
  • each of the K2 candidate configurations includes a candidate cell identifier of one of the K2 candidate cells.
  • the phrase as a response to applying the at least one candidate configuration among the K1 candidate configurations includes: as a response to applying each candidate configuration among the K1 candidate configurations.
  • the phrase as a response to applying at least one of the K1 candidate configurations includes: as a response to applying one of the K1 candidate configurations.
  • the phrase as a response to applying the at least one candidate configuration among the K1 candidate configurations includes: as a response to applying the first candidate configuration among the K1 candidate configurations.
  • the phrase as a response to applying the at least one candidate configuration among the K1 candidate configurations includes: when it is determined to apply the at least one candidate configuration among the K1 candidate configurations.
  • the phrase as a response to applying the at least one candidate configuration among the K1 candidate configurations includes: when the at least one candidate configuration among the K1 candidate configurations is applied to completion.
  • the phrase as a response to applying the at least one candidate configuration among the K1 candidate configurations includes: when the at least one candidate configuration among the K1 candidate configurations is successfully applied.
  • the recipient of the fourth signaling is the base station maintaining the first candidate cell.
  • the recipients of the fourth signaling include multiple base station devices.
  • the recipient of the fourth signaling is a base station maintaining the candidate cell corresponding to the at least one candidate configuration applied among the K1 candidate configurations.
  • the fourth signaling includes at least one UCI.
  • the fourth signaling includes at least one PUSCH.
  • the fourth signaling includes at least one PUCCH.
  • the recipient of the fourth signaling includes a base station device.
  • the fourth signaling is a UCI.
  • the fourth signaling is a PUSCH.
  • the fourth signaling is a PUCCH.
  • the fourth signaling is an ACK.
  • the fourth signaling includes at least one ACK.
  • the fourth signaling indicates one or more candidate configurations among the K1 candidate configurations.
  • the fourth signaling indicates each candidate configuration among the K1 candidate configurations.
  • the fourth signaling indicates greater than 1 and less than K1 candidate configurations among the K1 candidate configurations.
  • the phrase that the fourth signaling is used to indicate that at least one candidate configuration among the K1 candidate configurations is applied includes: the fourth signaling is used to indicate that each candidate configuration among the K1 candidate configurations is applied.
  • the phrase that the fourth signaling is used to indicate that at least one of the K1 candidate configurations is applied includes: the fourth signaling is used to indicate that one or more of the K1 candidate configurations are applied.
  • the fourth signaling indicates an identifier of the at least one candidate configuration among the K1 candidate configurations.
  • the fourth signaling indicates the at least one candidate configuration among the K1 candidate configurations and the serving cell corresponding to the at least one candidate configuration.
  • the PUCCH resource used to carry the fourth signaling is used to indicate that one of the K1 candidate configurations is applied.
  • the fourth signaling indicates one candidate configuration among the at least one candidate configuration.
  • the dashed box F7.1 is optional.
  • the dashed box F7.1 exists.
  • the fourth signaling is sent.
  • At least one candidate configuration among the K1 candidate configurations is applied and completed.
  • At least the first candidate configuration among the K1 candidate configurations is applied.
  • the dotted box F7.1 does not exist.
  • the fourth signaling is not sent.
  • At least the first candidate configuration among the K1 candidate configurations has not been fully applied.
  • each candidate configuration among the K1 candidate configurations has not been applied to completion.
  • Embodiment 8 illustrates a schematic diagram in which the first condition according to an embodiment of the present application includes that the first candidate cell is configured with random access exemption.
  • the first condition includes that the first candidate cell is configured without random access.
  • At least the first candidate cell is configured with random access-free for determining the first candidate cell among the K1 candidate cells.
  • At least the first candidate cell is configured with random access-free mode to be used for preferentially selecting the first candidate cell among the K1 candidate cells.
  • the first candidate cell is configured with random access-free and the third candidate cell is not configured with random access-free, which is used to determine that the priority of the first candidate cell is higher than the priority of the third candidate cell; the third candidate cell is one of the K1 candidate cells.
  • the first candidate cell in response to the first signaling being received, if the first candidate cell is configured to be free of random access, the first candidate cell is determined from the K1 candidate cells.
  • the first candidate cell is determined among at least the first candidate cell and the third candidate cell.
  • the first candidate cell is configured to be free of random access and the The third candidate cell is not configured with random access exemption, and the first candidate cell is determined from at least the first candidate cell and the third candidate cell; and the third candidate cell is one of the K1 candidate cells.
  • At least one candidate cell among the K1 candidate cells is not configured with random access-free.
  • the random access process is not triggered; the first candidate cell is configured to be free of random access.
  • the phrase "the first candidate cell is configured with random access-free” includes: the second signaling indicates that the first candidate cell allows random access-free.
  • a field in the second signaling indicates that the first candidate cell allows random access-free access.
  • a candidate configuration in the second signaling indicates that the first candidate cell allows random access-free.
  • the first candidate configuration in the second signaling indicates that the first candidate cell allows random access-free.
  • a field in the first candidate configuration in the second signaling indicates that the first candidate cell allows random access-free.
  • the phrase that the first candidate cell is configured with random access-free includes: the first signaling indicates that the first candidate cell allows random access-free.
  • a field in the first signaling indicates that the first candidate cell allows random access-free access.
  • a candidate configuration information block in the first signaling indicates that the first candidate cell allows random access-free.
  • the candidate configuration information block corresponding to the first candidate cell in the first signaling indicates that the first candidate cell allows random access-free.
  • a field in a candidate configuration information block corresponding to the first candidate cell in the first signaling indicates that the first candidate cell allows random access-free.
  • the first candidate cell is a candidate cell among at least one candidate cell configured with random access exemption among the K1 candidate cells.
  • multiple candidate cells among the K1 candidate cells are configured without random access, and the first candidate cell is one of the multiple candidate cells.
  • the first candidate cell is any candidate cell among the multiple candidate cells.
  • the first candidate cell is any candidate cell among the multiple candidate cells determined by the first node.
  • the first candidate cell is a candidate cell among the multiple candidate cells that meets the first condition.
  • only one candidate cell among the K1 candidate cells is configured with random access-free, and the first candidate cell is the only one candidate cell.
  • the phrase that the first candidate cell is configured to be free of random access includes: the first candidate cell is indicated to be free of random access.
  • the phrase that the first candidate cell is configured with random access-free includes: the first candidate cell is allowed to perform mobility based on random access-free.
  • Embodiment 9 illustrates a schematic diagram in which the first condition according to an embodiment of the present application includes that the first timer is running, as shown in FIG9 .
  • the first condition includes that a first timer is running; the first timer is used to determine whether an uplink of the first candidate cell is time-aligned.
  • At least the first timer is running and is used to determine the first candidate cell among the K1 candidate cells.
  • At least the first timer is running and is used to preferentially select the first candidate cell from the K1 candidate cells. Select a neighborhood.
  • At least the first candidate cell is configured to be free of random access and the first timer is running and is used to determine the first candidate cell among the K1 candidate cells.
  • At least the first candidate cell is configured to be free of random access and the first timer is running to preferentially select the first candidate cell among the K1 candidate cells.
  • the random access process is not triggered; the first candidate cell is configured to be free of random access and the first timer is running.
  • the first timer when the first signaling is received, the first timer is running.
  • the first condition includes that at least the first timer is running.
  • the first condition is that the first timer is running.
  • the first condition includes that the first candidate cell is configured without random access and the first timer is running.
  • the first timer is a MAC sublayer timer.
  • the first timer is a timeAlignmentTimer.
  • the name of the first timer includes timeAlignmentTimer.
  • the first timer is associated with a first TAG, and the first candidate cell is configured to the first TAG.
  • the first timer is the timeAlignmentTimer associated with the first TAG, and the first candidate cell belongs to the first TAG.
  • the first candidate configuration indicates that the first candidate cell belongs to the first TAG.
  • the first candidate configuration includes an identifier of the first TAG, and the first candidate cell belongs to the first TAG.
  • the timer used to determine whether the uplink of a candidate cell is time aligned is a timeAlignmentTimer.
  • the name of the timer used to determine whether the uplink of a candidate cell is time aligned includes timeAlignmentTimer.
  • the timer used to determine whether the uplink of any cell in a TAG to which a candidate cell belongs is time aligned is a timeAlignmentTimer.
  • the name of the timer used to determine whether the uplink of any cell in a TAG to which a candidate cell belongs is time aligned includes timeAlignmentTimer.
  • At least one timer used to determine whether uplinks of at least one of the K1 candidate cells are time-aligned is not running.
  • a timer used to determine whether uplinks of any candidate cell other than the first candidate cell among the K1 candidate cells are time-aligned is not running.
  • At least one timer used to determine whether uplinks of any candidate cell other than the first candidate cell among the K1 candidate cells are time-aligned is not running.
  • the first timer is running and the second timer is not running and is used to determine that the priority of the first candidate cell is higher than the priority of the third candidate cell; the second timer is used to determine whether the uplink of the third candidate cell is time-aligned; and the third candidate cell is one of the K1 candidate cells.
  • the first candidate cell in response to receiving the first signaling, if at least the first timer is running, the first candidate cell is determined among the K1 candidate cells.
  • the first candidate cell is determined among at least the first candidate cell and the third candidate cell; the second timer is used to determine whether the uplink of the third candidate cell is time aligned; the third candidate cell is one of the K1 candidate cells.
  • the first candidate cell is determined among the K1 candidate cells; the second timer is used to determine whether the uplink of the third candidate cell is time aligned; the third candidate cell is one of the K1 candidate cells.
  • the running status of the first timer is used to determine whether the uplink of the first candidate cell is time-aligned.
  • the first timer if the first timer is running, it is considered that the uplink time of the first candidate cell is aligned; if the first timer is not running, it is considered that the uplink time of the first candidate cell is not aligned.
  • the first timer is used to determine whether the uplink of any cell belonging to the first TAG is time-aligned, and the first candidate cell belongs to the first TAG.
  • the first timer is used to determine whether the uplink of any cell belonging to the TAG to which the first candidate cell belongs is time-aligned.
  • any candidate cell among the K1 candidate cells is configured to a TAG.
  • any candidate cell among the K1 candidate cells is associated with a timeAlignmentTimer.
  • any candidate cell among the K1 candidate cells is associated with any timer whose name includes timeAlignmentTimer.
  • At least one candidate cell among the K1 candidate cells is not configured to any TAG.
  • At least one candidate cell among the K1 candidate cells is not associated with any timeAlignmentTimer.
  • At least one candidate cell among the K1 candidate cells is not associated with any timer whose name includes timeAlignmentTimer.
  • Embodiment 10 illustrates a schematic diagram of the entire or partial structure of the first signaling according to an embodiment of the present application, as shown in FIG10.
  • a dotted box 1001 represents a serving cell identification field
  • a box 1002 represents a candidate cell information block #1
  • a box 1003 represents a candidate cell information block #2
  • a dotted box 1004 represents other candidate cell information blocks in the first signaling.
  • the first signaling includes K1 candidate cell information blocks, each of the K1 candidate cell information blocks indicates one candidate cell among the K1 candidate cells; and the first signaling is a MAC CE.
  • the first signaling consists of the K1 candidate cell information blocks.
  • the first signaling consists of the K1 candidate cell information blocks and a serving cell identification field, and the serving cell identification field indicates the first serving cell.
  • the first signaling includes the K1 candidate cell information blocks and at least one MAC field other than the serving cell identification field; the first signaling includes the K1 candidate cell information blocks and the serving cell identification field.
  • the first signaling includes at least one MAC field outside the K1 candidate cell information blocks; the first signaling includes the K1 candidate cell information blocks, and the first signaling does not include the serving cell identification field.
  • the dotted box 1001 is optional.
  • the dotted box 1001 exists.
  • each candidate cell information block consists of a MAC domain.
  • each candidate cell information block consists of at least two MAC fields.
  • the first signaling includes a serving cell identifier of the first serving cell.
  • the first signaling includes a serving cell identification field, and the serving cell identification field indicates the first serving cell.
  • each candidate cell information block in the K1 candidate cell information blocks does not include a field indicating a serving cell identifier.
  • the dotted box 1001 does not exist.
  • each candidate cell information block consists of a MAC domain.
  • each candidate cell information block consists of two MAC fields.
  • each candidate cell information block consists of at least three MAC fields.
  • the first signaling does not include a serving cell identifier of any serving cell.
  • the first signaling does not include any serving cell identification field.
  • the first signaling includes K1 serving cell identification fields.
  • each candidate cell information block in the K1 candidate cell information blocks includes a serving cell identification field.
  • the K1 candidate configurations are respectively configured to K1 service cells, and the first service cell is one of the K1 service cells; the behavior of applying at least one of the K1 candidate configurations includes: applying each candidate configuration of the K1 candidate configurations; each service cell identification domain indicates one of the K1 service cells.
  • the dashed box 1004 is optional.
  • the dashed box 1004 exists.
  • the dashed box 1004 does not exist.
  • this example does not limit the number of each candidate cell information block in the present application.
  • this example does not limit the size of each candidate cell information block in the present application.
  • this example does not limit the position of each candidate cell information block in the first signaling in the present application.
  • Embodiment 11 illustrates a schematic diagram of the entire or partial structure of the first signaling according to another embodiment of the present application, as shown in FIG11.
  • a thick solid line box 1101 represents the first 8 bits of the first bitmap
  • a dotted line box 1102 represents the remaining bits of the first bitmap
  • a box 1103 represents a candidate cell information block #1
  • a box 1104 represents a candidate cell information block #2
  • a dotted line box 1105 represents other candidate cell information blocks in the first signaling.
  • the first signaling includes K1 candidate cell information blocks and the first bit map, each of the K1 candidate cell information blocks indicates one of the K1 candidate cells; the K1 candidate configurations are respectively configured to K1 service cells, and the first service cell is one of the K1 service cells; the behavior of applying at least one of the K1 candidate configurations includes: applying each of the K1 candidate configurations; the first bit map is used to indicate the K1 service cells, and each bit in the first bit map is used to indicate whether the first signaling includes the candidate cell information block of the service cell corresponding to each bit; the first signaling is a MAC CE.
  • the bit set to 1 in the first bitmap is used to indicate the K1 serving cells.
  • the service cell corresponding to the bit set to 1 in the first bitmap is one of the K1 service cells.
  • the K1 service cells include the service cell corresponding to any bit set to 1 in the first bitmap.
  • the phrase that a bit in the first bit map is used to indicate whether the first signaling includes the candidate cell information block of the service cell corresponding to the one bit includes: if a bit in the first bit map is set to 1, the first signaling includes the candidate cell information block of the service cell corresponding to the one bit; if a bit in the first bit map is set to 0, the first signaling does not include the candidate cell information block of the service cell corresponding to the one bit, and i is an integer not less than 0 and not greater than N1-1.
  • the first signaling includes the candidate cell information block of the service cell corresponding to Ci; if Ci in the first bit map is set to 0, the first signaling does not include the candidate cell information block of the service cell corresponding to Ci; and i is an integer not less than 0 and not greater than N1-1.
  • the first signaling includes a candidate cell information block of the service cell corresponding to C0 and a candidate cell information block of the service cell corresponding to C2, the candidate cell information block #1 is the candidate cell information block of the service cell corresponding to C0, and the candidate cell information block #2 is the candidate cell information block of the service cell corresponding to C2; wherein the first bit map consists of 1 eight-bit group.
  • the first signaling includes a candidate cell information block of the service cell corresponding to C2, a candidate cell information block of the service cell corresponding to C4, and a candidate cell information block of the service cell corresponding to C5, the candidate cell information block #1 is the candidate cell information block of the service cell corresponding to C2, the candidate cell information block #2 is the candidate cell information block of the service cell corresponding to C4, and the candidate cell information block in box 1105 is the candidate cell information block of the service cell corresponding to C5; wherein the first bit map consists of 1 eight-bit group.
  • the number of bits set to 1 in the first bitmap is equal to K1.
  • the size of the first bitmap is N1 bits, where N1 is a positive integer.
  • the size of the first bitmap is N1/8 octets.
  • N1 is a positive integer multiple of 8.
  • N1 is 8.
  • N1 is greater than 8.
  • N1 is 16.
  • N1 is 32.
  • the first bit map includes at least eight bits: C0, C1, C2, C3, C4, C5, C6, and C7.
  • the bit Ci in the first bitmap indicates the i-th service cell, where i is an integer not less than 0 and not greater than N1-1.
  • bit C0 in the first bitmap indicates SpCell
  • bits C1, C2, C3, C4, C5, C6, and C7 indicate SCell
  • the bit Ci in the first bitmap indicates a service cell whose ServCellIndex is equal to i, where i is an integer not less than 0 and not greater than N1-1.
  • the first signaling consists of the K1 candidate cell information blocks and the first bit map.
  • the first signaling includes the K1 candidate cell information blocks and at least one MAC field outside the first bit map.
  • the dashed box 1102 is optional.
  • the dashed box 1102 exists.
  • the dashed box 1102 does not exist.
  • the dotted box 1105 is optional.
  • the dashed box 1105 exists.
  • the dotted box 1105 does not exist.
  • this example does not limit the size of the first bitmap in the present application.
  • this example does not limit the number of bits set to 1 in the first bitmap in the present application.
  • this example does not limit the name of each field in the first bitmap in the present application.
  • this example does not limit the name of Ci in the first bitmap in this application.
  • this example does not limit the number of each candidate cell information block in the present application.
  • this example does not limit the size of each candidate cell information block in the present application.
  • this example does not limit the position of each candidate cell information block in the first signaling in the present application.
  • this example does not limit the position of the first bit map and the candidate cell information block in the first signaling in the present application.
  • Embodiment 12 illustrates a wireless signal transmission flow chart according to another embodiment of the present application, as shown in FIG12. It is particularly noted that the sequence in this example does not limit the signal transmission sequence and implementation sequence in the present application.
  • step S12101 the target condition is met; in step S12102, when the target condition is met, a second candidate cell is determined among the K1 candidate cells; in step S12103, a second candidate configuration among the K1 candidate configurations is applied; in step S12104, a fourth signaling is sent as a response to applying the at least one candidate configuration among the K1 candidate configurations.
  • step S12301 the fourth signaling is received.
  • the second candidate configuration is configured to the second candidate cell; and the target condition includes failure to apply the first candidate configuration.
  • the first processor when the target condition is met, determines a second candidate cell from the K1 candidate cells, and applies a second candidate configuration from the K1 candidate configurations; the second candidate configuration is configured to the second candidate cell; and the target condition includes failure to apply the first candidate configuration.
  • the target condition includes that the first signaling indicates a plurality of candidate cells, and the first signaling indicates a plurality of candidate cells which are used to determine that the second candidate configuration is executed after application of the first candidate configuration fails.
  • the target condition includes that the first signaling indication includes an indication, and the indication is used to determine that the second candidate configuration is executed after the first candidate configuration fails to be applied.
  • the target condition includes that the second signaling indication includes an indication, and the indication is used to determine that the second candidate configuration is executed after the first candidate configuration fails to be applied.
  • the target condition is related to whether the second candidate cell is configured with random access-free.
  • the target condition is independent of whether the second candidate cell is configured with random access-free.
  • the target condition is related to a timer used to determine whether an uplink of the second candidate cell is time-aligned.
  • the target condition is independent of a timer used to determine whether the uplink of the second candidate cell is time-aligned.
  • expiration of a timer is used to determine that the first candidate configuration fails to be applied.
  • the one timer is T304.
  • the one timer is T304-r18.
  • the one timer is a MAC sublayer timer.
  • the one timer is used for LTM.
  • the timer is configured for the first candidate cell.
  • a random access failure on the first candidate cell is used to determine that the first candidate configuration fails to be applied.
  • downlink synchronization failure on the first candidate cell is used to determine that the first candidate configuration fails to be applied.
  • the second candidate cell is a candidate cell with the second highest priority among the K1 candidate cells.
  • the second candidate cell is a candidate cell among the K1 candidate cells determined by the first node.
  • the MAC sublayer of the first node sends an indication to the RRC sublayer of the first node; the first node receives the indication at the RRC sublayer; as a response to the first node receiving the indication at the RRC sublayer, it is considered that a radio link failure (Radio Link Failure, RLF) occurs in the MCG.
  • RLF Radio Link Failure
  • K1 is equal to 2.
  • K1 is greater than 2.
  • expiration of another timer is used to determine that the second candidate configuration fails to be applied.
  • the other timer is T304.
  • the other timer is T304-r18.
  • the other timer is a MAC sublayer timer.
  • the other timer is used for the LTM.
  • the another timer is the one timer.
  • the other timer is configured for the second candidate cell.
  • the third node is a base station maintaining the second candidate cell.
  • the dashed box F12.1 is optional.
  • the dashed box F12.1 exists.
  • the fourth signaling is sent.
  • the second candidate configuration is applied before the fourth signaling is sent.
  • the fourth signaling is sent as a response to the completion of the application of the second candidate configuration.
  • the fourth signaling indicates that the second candidate configuration has been applied.
  • the recipient of the fourth signaling is a base station maintaining the second candidate cell and is used to indicate that the second candidate configuration is applied.
  • the fourth signaling includes a candidate configuration identifier of the second candidate configuration, which is used to indicate that the second candidate configuration is applied.
  • the fourth signaling includes a candidate cell identifier of the second candidate cell, which is used to indicate that the second candidate configuration is applied.
  • the dotted box F12.1 does not exist.
  • the fourth signaling is not sent.
  • the second candidate configuration is not applied.
  • the second candidate configuration fails to be applied.
  • Embodiment 13 illustrates a structural block diagram of a processing device in a first node according to an embodiment of the present application, as shown in FIG13.
  • a processing device 1300 in a first node includes a first processor 1301.
  • the first processor 1301 receives a first signaling, where the first signaling indicates K1 candidate cells, where the K1 candidate cells are configured to at least a first serving cell, and where K1 is an integer greater than 1; and applies at least one candidate configuration among the K1 candidate configurations along with the first signaling;
  • the first signaling is used for mobility control; the K1 candidate configurations correspond to the K1 candidate cells respectively; each of the K1 candidate configurations includes the candidate cell identifier of one of the K1 candidate cells; the candidate cell identifiers of any two candidate cells among the K1 candidate cells are different; and the first signaling is used to trigger the behavior to apply at least one candidate configuration among the K1 candidate configurations.
  • the first processor 1301 receives a second signaling, and the second signaling is used to determine K2 candidate configurations; wherein the second signaling is RRC sublayer signaling; each of the K1 candidate configurations is a candidate configuration of the K2 candidate configurations; and the K1 is not greater than the K2.
  • the first processor 1301 sends a third signaling, wherein the third signaling indicates the measurement results of at least the K1 candidate cells; wherein the third signaling is a signaling under the RRC sublayer; and the third signaling is used to trigger the first signaling.
  • the K1 candidate configurations are respectively configured to K1 service cells, and the first service cell is one of the K1 service cells; the behavior of applying at least one of the K1 candidate configurations includes: applying each of the K1 candidate configurations.
  • the first processor 1301 determines a first candidate cell among the K1 candidate cells; wherein at least a first condition is satisfied and is used to determine the first candidate cell among the K1 candidate cells; the first condition is independent of the measurement results of the K1 candidate cells; the behavior of applying at least one candidate configuration among the K1 candidate configurations includes: applying a first candidate configuration among the K1 candidate configurations; the K1 candidate configuration is configured to the first service cell; the first candidate configuration is one of the K1 candidate configurations.
  • the first condition includes that the first candidate cell is configured without random access.
  • the first condition includes that a first timer is running; the first timer is used to determine whether an uplink of the first candidate cell is time-aligned.
  • the first processor 1301 sends a fourth signaling in response to applying the at least one candidate configuration among the K1 candidate configurations; wherein the fourth signaling is used to indicate that at least one candidate configuration among the K1 candidate configurations is applied.
  • the first processor 1301 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data source 467 in FIG. 4 of the present application.
  • the first processor 1301 includes the antenna 452, the receiver 454, the multi-antenna receiving processor 458, and the receiving processor 456 in FIG. 4 of the present application.
  • the first processor 1301 includes the antenna 452, the receiver 454, and the receiving processor 456 in FIG. 4 of the present application.
  • the first processor 1301 includes the antenna 452, transmitter 454, multi-antenna transmission processor 457, transmission processor 468, controller/processor 459, memory 460 and data source 467 in FIG. 4 of the present application.
  • the first processor 1301 includes the antenna 452, transmitter 454, multi-antenna transmission processor 457, and transmission processor 468 in FIG. 4 of the present application.
  • the first processor 1301 includes the antenna 452, the transmitter 454, and the transmission processor 468 in FIG. 4 of the present application.
  • Embodiment 14 illustrates a structural block diagram of a processing device in a second node according to an embodiment of the present application, as shown in FIG14.
  • the processing device 1400 in the second node includes a second processor 1401.
  • the second processor 1401 sends a first signaling, where the first signaling indicates K1 candidate cells, where the K1 candidate cells are configured to at least a first serving cell, and K1 is an integer greater than 1;
  • Embodiment 14 along with the first signaling, at least one candidate configuration among K1 candidate configurations is applied; the first signaling is used for mobility control; the K1 candidate configurations correspond to the K1 candidate cells respectively; each of the K1 candidate configurations includes a candidate cell identifier of one of the K1 candidate cells; the candidate cell identifiers of any two candidate cells in the K1 candidate cells are different; the first signaling is used to trigger the behavior to apply at least one candidate configuration of the K1 candidate configurations.
  • the second processor 1401 sends a second signaling, and the second signaling is used to determine K2 candidate configurations; wherein the second signaling is RRC sublayer signaling; each of the K1 candidate configurations is a candidate configuration among the K2 candidate configurations; and the K1 is not greater than the K2.
  • the second processor 1401 receives a third signaling, wherein the third signaling indicates the measurement results of at least the K1 candidate cells; wherein the third signaling is a signaling under the RRC sublayer; and the third signaling is used to trigger the first signaling.
  • the K1 candidate configurations are respectively configured to K1 service cells, and the first service cell is one of the K1 service cells; the behavior of applying at least one of the K1 candidate configurations includes: applying each of the K1 candidate configurations.
  • a first candidate cell is determined among the K1 candidate cells; at least a first condition is satisfied and is used to determine the first candidate cell among the K1 candidate cells; the first condition is independent of the measurement results of the K1 candidate cells; the behavior of applying at least one candidate configuration among the K1 candidate configurations includes: applying a first candidate configuration among the K1 candidate configurations; the K1 candidate configuration is configured to the first service cell; the first candidate configuration is one of the K1 candidate configurations.
  • the first condition includes that the first candidate cell is configured without random access.
  • the first condition includes that a first timer is running; the first timer is used to determine whether an uplink of the first candidate cell is time-aligned.
  • the second processor 1401 receives a fourth signaling, wherein the fourth signaling is sent as a response to applying the at least one candidate configuration among the K1 candidate configurations; the fourth signaling is used to indicate that at least one candidate configuration among the K1 candidate configurations is applied.
  • the second processor 1401 includes the antenna 420, transmitter 418, multi-antenna transmission processor 471, transmission processor 416, controller/processor 475, and memory 476 in FIG. 4 of the present application.
  • the second processor 1401 includes the antenna 420, transmitter 418, multi-antenna transmit processor 471, and transmit processor 416 in FIG. 4 of the present application.
  • the second processor 1401 includes the antenna 420, the transmitter 418, and the transmission processor 416 in FIG. 4 of the present application.
  • the second processor 1401 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 in FIG. 4 of the present application.
  • the second processor 1401 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, and the receiving processor 470 in FIG. 4 of the present application.
  • the second processor 1401 includes the antenna 420, the receiver 418, and the receiving processor 470 in FIG. 4 of the present application.
  • each module unit in the above embodiment can be implemented in the form of hardware or in the form of a software function module, and the present application is not limited to any specific form of software and hardware combination.
  • the user equipment, terminal and UE in the present application include but are not limited to drones, communication modules on drones, remote-controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost tablet computers and other wireless communication devices.
  • drones communication modules on drones, remote-controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost tablet computers and other wireless communication devices.
  • MTC Machine Type Communication
  • the base stations or system equipment in this application include but are not limited to macro cellular base stations, micro cellular base stations, home base stations, relay base stations, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point) and other wireless communication equipment.
  • gNB NR Node B
  • TRP Transmitter Receiver Point

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的通信节点中的方法和装置。通信节点接收第一信令,所述第一信令指示K1个候选小区,所述K1个候选小区被配置给至少第一服务小区,所述K1是大于1的整数;伴随所述第一信令,应用K1个候选配置中的至少一个候选配置;所述第一信令被用于移动性控制;所述K1个候选配置分别对应所述K1个候选小区;所述K1个候选配置中的每个候选配置中包括所述K1个候选小区中的一个候选小区的候选小区标识;所述K1个候选小区中的任意两个候选小区的候选小区标识不同;所述第一信令被用于触发所述行为应用K1个候选配置中的至少一个候选配置。

Description

一种被用于无线通信的通信节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及移动性的传输方法和装置。
背景技术
用户设备(User Equipment,UE)的移动性(Mobility)是无线网络的一个重要特征,为进一步增强UE的移动性性能,3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#94e次会议决定开展“NR(New Radio,新空口)移动性进一步增强(Further NR mobility enhancements)”研究项目(Work Item,WI)。其中,L1(Layer 1,层一)/L2(Layer 2,层二)触发的移动性(L1/L2 Triggered Mobility,LTM)是降低时延、开销和中断时间是一个重要的研究方向,LTM基于L1/L2信令。
发明内容
一种实现LTM的方案是基于L1/L2信令的测量上报和基于L1/L2信令的切换命令。研究人员发现,当执行基于LTM时,会导致更为频繁的服务小区的更改和乒乓效应,并且,在目标小区上发起的随机接入过程会增加UE的传输时延,从而影响UE的QoS(Quality of Service,服务质量)。如何增强UE移动的鲁棒性或者缩短传输时延需要进一步进行研究。
针对上述问题,本申请提供了一种移动性管理的解决方案。针对上述问题描述中,采用NR系统作为一个例子;本申请也同样适用于例如LTE系统的场景;进一步的,虽然本申请针对LTM给出了具体的实施方式,但本申请也能被用于例如L3触发的移动性的场景,取得类似L1/L2触发的移动性的技术效果。进一步的,虽然本申请的初衷是针对Uu空口,但本申请也能被用于PC5口。进一步的,虽然本申请的初衷是针对终端与基站场景,但本申请也同样适用于V2X(Vehicle-to-Everything,车联网)场景,终端与中继,以及中继与基站之间的通信场景,取得类似的终端与基站场景中的技术效果。进一步的,虽然本申请的初衷是针对终端与基站场景,但本申请也同样适用于IAB(Integrated Access and Backhaul,集成接入和回传)的通信场景,取得类似的终端与基站场景中的技术效果。进一步的,虽然本申请的初衷是针对地面网络(Terrestrial Network,地面网络)场景,但本申请也同样适用于非地面网络(Non-Terrestrial Network,NTN)的通信场景,取得类似的TN场景中的技术效果。此外,不同场景采用统一解决方案还有助于降低硬件复杂度和成本。
作为一个实施例,对本申请中的术语(Terminology)的解释参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
需要说明的是,在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信令,所述第一信令指示K1个候选小区,所述K1个候选小区被配置给至少第一服务小区,所述K1是大于1的整数;
伴随所述第一信令,应用K1个候选配置中的至少一个候选配置;
其中,所述第一信令被用于移动性控制;所述K1个候选配置分别对应所述K1个候选小区;所述K1个候选配置中的每个候选配置中包括所述K1个候选小区中的一个候选小区的候选小区标识;所述K1个候选小区中的任意两个候选小区的候选小区标识不同;所述第一信令被用于触发所述行为应用K1个候选配置中的至少一个候选配置。
作为一个实施例,本申请要解决的问题包括:如何增强UE移动的鲁棒性。
作为一个实施例,本申请要解决的问题包括:如何缩短传输时延。
作为一个实施例,上述方法的特质包括:所述K1个候选小区被配置给第一服务小区。
作为一个实施例,上述方法的特质包括:所述K1个候选小区被配置给多个服务小区。
作为一个实施例,上述方法的特质包括:所述K1个候选小区被配置给小于K1个服务小区。
作为一个实施例,上述方法的特质包括:所述K1个候选小区被配置给K1个服务小区。
作为一个实施例,上述方法的特质包括:伴随所述第一信令,应用K1个候选配置中的一个候选配置。
作为一个实施例,上述方法的特质包括:伴随所述第一信令,应用K1个候选配置中的多个候选配置。
作为一个实施例,上述方法的特质包括:伴随所述第一信令,应用K1个候选配置中的小于K1个候选配置。
作为一个实施例,上述方法的特质包括:伴随所述第一信令,应用K1个候选配置中的K1个候选配置。
作为一个实施例,上述方法的特质包括:所述第一信令指示被用于移动性的K1个候选小区。
作为一个实施例,上述方法的特质包括:所述第一信令是L2信令,所述第一服务小区是SpCell。
作为一个实施例,上述方法的特质包括:所述第一信令是L2信令,所述第一服务小区是SCell。
作为一个实施例,上述方法的特质包括:所述第一信令是L3信令,所述第一服务小区是SpCell。
作为一个实施例,上述方法的好处包括:增强UE移动的鲁棒性。
作为一个实施例,上述方法的好处包括:缩短传输时延。
根据本申请的一个方面,其特征在于,接收第二信令,所述第二信令被用于确定K2个候选配置;
其中,所述第二信令是RRC子层信令;所述K1个候选配置中的每个候选配置是所述K2个候选配置中的一个候选配置;所述K1不大于所述K2。
根据本申请的一个方面,其特征在于,包括:
发送第三信令,所述第三信令指示至少所述K1个候选小区的测量结果;
其中,所述第三信令是RRC子层之下的信令;所述第三信令被用于触发所述第一信令。
根据本申请的一个方面,其特征在于,所述K1个候选配置分别被配置给K1个服务小区,所述第一服务小区是所述K1个服务小区中的一个服务小区;所述行为应用K1个候选配置中的至少一个候选配置包括:应用所述K1个候选配置中的每个候选配置。
根据本申请的一个方面,其特征在于,包括:
在所述K1个候选小区中确定第一候选小区;
其中,至少第一条件被满足被用于在所述K1个候选小区中确定所述第一候选小区;所述第一条件与所述K1个候选小区的测量结果无关;所述行为应用K1个候选配置中的至少一个候选配置包括:应用所述K1个候选配置中的第一候选配置;所述K1个候选配置被配置给所述第一服务小区;所述第一候选配置是所述K1个候选配置中的一个候选配置。
根据本申请的一个方面,其特征在于,所述第一条件包括所述第一候选小区被配置免随机接入。
根据本申请的一个方面,其特征在于,所述第一条件包括第一计时器正在运行;所述第一计时器被用于确定所述第一候选小区的上行链路是否时间对齐。
根据本申请的一个方面,其特征在于,包括:
作为应用所述K1个候选配置中的所述至少一个候选配置的响应,发送第四信令;
其中,所述第四信令被用于指示所述K1个候选配置中的至少一个候选配置被应用。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信令,所述第一信令指示K1个候选小区,所述K1个候选小区被配置给至少第一服务小区,所述K1是大于1的整数;
其中,伴随所述第一信令,K1个候选配置中的至少一个候选配置被应用;所述第一信令被用于移动性控制;所述K1个候选配置分别对应所述K1个候选小区;所述K1个候选配置中的每个候选配置中包括所述K1个候选小区中的一个候选小区的候选小区标识;所述K1个候选小区中的任意两个候选小区的候选小区标识不同;所述第一信令被用于触发所述行为应用K1个候选配置中的至少一个候选配置。
根据本申请的一个方面,其特征在于,发送第二信令,所述第二信令被用于确定K2个候选配置;
其中,所述第二信令是RRC子层信令;所述K1个候选配置中的每个候选配置是所述K2个候选配置中的一个候选配置;所述K1不大于所述K2。
根据本申请的一个方面,其特征在于,包括:
接收第三信令,所述第三信令指示至少所述K1个候选小区的测量结果;
其中,所述第三信令是RRC子层之下的信令;所述第三信令被用于触发所述第一信令。
根据本申请的一个方面,其特征在于,所述K1个候选配置分别被配置给K1个服务小区,所述第一服务小区是所述K1个服务小区中的一个服务小区;所述行为应用K1个候选配置中的至少一个候选配置包括:应用所述K1个候选配置中的每个候选配置。
根据本申请的一个方面,其特征在于,第一候选小区在所述K1个候选小区中被确定;至少第一条件被满足被用于在所述K1个候选小区中确定所述第一候选小区;所述第一条件与所述K1个候选小区的测量结果无关;所述行为应用K1个候选配置中的至少一个候选配置包括:应用所述K1个候选配置中的第一候选配置;所述K1个候选配置被配置给所述第一服务小区;所述第一候选配置是所述K1个候选配置中的一个候选配置。
根据本申请的一个方面,其特征在于,所述第一条件包括所述第一候选小区被配置免随机接入。
根据本申请的一个方面,其特征在于,所述第一条件包括第一计时器正在运行;所述第一计时器被用于确定所述第一候选小区的上行链路是否时间对齐。
根据本申请的一个方面,其特征在于,包括:
接收第四信令;
其中,作为应用所述K1个候选配置中的所述至少一个候选配置的响应,所述第四信令被发送;所述第四信令被用于指示所述K1个候选配置中的至少一个候选配置被应用。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一处理机,接收第一信令,所述第一信令指示K1个候选小区,所述K1个候选小区被配置给至少第一服务小区,所述K1是大于1的整数;伴随所述第一信令,应用K1个候选配置中的至少一个候选配置;
其中,所述第一信令被用于移动性控制;所述K1个候选配置分别对应所述K1个候选小区;所述K1个候选配置中的每个候选配置中包括所述K1个候选小区中的一个候选小区的候选小区标识;所述K1个候选小区中的任意两个候选小区的候选小区标识不同;所述第一信令被用于触发所述行为应用K1个候选配置中的至少一个候选配置。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二处理机,发送第一信令,所述第一信令指示K1个候选小区,所述K1个候选小区被配置给至少第一服务小区,所述K1是大于1的整数;
其中,伴随所述第一信令,K1个候选配置中的至少一个候选配置被应用;所述第一信令被用于移动性控制;所述K1个候选配置分别对应所述K1个候选小区;所述K1个候选配置中的每个候选配置中包括所述K1个候选小区中的一个候选小区的候选小区标识;所述K1个候选小区中的任意两个候选小区的候选小区标识不同;所述第一信令被用于触发所述行为应用K1个候选配置中的至少一个候选配置。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.增强UE移动的鲁棒性;
-.缩短传输时延。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令的传输的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的另一个实施例的无线信号传输流程图;
图7示出了根据本申请的又一个实施例的无线信号传输流程图;
图8示出了根据本申请的一个实施例的第一条件包括第一候选小区被配置免随机接入的示意图;
图9示出了根据本申请的一个实施例的第一条件包括第一计时器正在运行的示意图;
图10示出了根据本申请的一个实施例的第一信令的全部或者部分结构的示意图;
图11示出了根据本申请的另一个实施例的第一信令的全部或者部分结构的示意图;
图12示出了根据本申请的再一个实施例的无线信号传输流程图;
图13示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;
图14示出了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信令的传输的流程图,如附图1所示。附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一节点在步骤101中,接收第一信令,所述第一信令指示K1个候选小区,所述K1个候选小区被配置给至少第一服务小区,所述K1是大于1的整数;在步骤102中,伴随所述第一信令,应用K1个候选配置中的至少一个候选配置;其中,所述第一信令被用于移动性控制;所述K1个候选配置分别对应所述K1个候选小区;所述K1个候选配置中的每个候选配置中包括所述K1个候选小区中的一个候选小区的候选小区标识;所述K1个候选小区中的任意两个候选小区的候选小区标识不同;所述第一信令被用于触发所述行为应用K1个候选配置中的至少一个候选配置。
作为一个实施例,所述第一信令通过PDSCH(Physical Downlink Shared Channel,物理下行链路共享信道)传输。
作为一个实施例,所述第一信令通过DL-SCH(Downlink Shared Channel,下行链路共享信道)传输。
作为一个实施例,所述第一信令是一个RRC(Radio Resource Control,无线资源控制)消息(Message)。
作为一个实施例,所述第一信令是MAC(Medium Access Control,媒体接入控制)子层(sublayer)信令。
作为一个实施例,所述第一信令是一个MAC CE(Control Element,控制元素)。
作为一个实施例,所述第一信令是一个MAC CE,所述第一信令属于一个MAC subPDU,所述一个MAC subPDU包括一个MAC subheader,所述一个MAC subheader中包括一个LCID(Logical Channel ID,逻辑信道标识)域,所述一个LCID域被设置为37或者38或者39或者40或者41或者42。
作为一个实施例,所述第一信令是一个MAC CE,所述第一信令属于一个MAC subPDU,所述一个MAC subPDU包括一个MAC subheader,所述一个MAC subheader中包括一个eLCID(extended LCID)域,所述一个eLCID域被设置为一个不小于0并且不大于228的整数。
作为一个实施例,所述第一信令是一个MAC CE,所述第一信令属于一个MAC subPDU,所述一个MAC subPDU包括一个MAC subheader,所述一个MAC subheader中包括一个eLCID域,所述一个eLCID域被设置为228或者227或者226或者225或者224或者223或者222或者221或者220或者219或者218或者217或者216或者215。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是一个DCI(Downlink Control Information,下行链路控制信息)。
作为一个实施例,所述第一信令通过PDCCH(Physical Downlink Control Channel,物理下行链路控制信道)传输。
作为一个实施例,所述第一信令包括所述K1个候选配置。
作为一个实施例,所述第一信令不包括所述K1个候选配置。
作为一个实施例,所述第一信令包括所述第一服务小区的标识。
作为一个实施例,所述第一信令不包括所述第一服务小区的标识。
作为一个实施例,所述第一信令指示所述K1个候选小区的候选小区标识。
作为一个实施例,所述第一信令指示所述K1个候选配置的候选配置标识。
作为一个实施例,所述第一信令指示K1个候选小区标识,所述K1个候选小区标识指示所述K1个候选小区。
作为一个实施例,所述第一信令指示K1个候选配置标识,所述K1个候选配置标识指示所述K1个候选小区。
作为一个实施例,所述第一信令指示1个候选配置标识,所述1个候选配置标识指示所述K1个候选小区。
作为一个实施例,所述短语所述第一信令指示K1个候选小区包括:所述第一信令指示所述K1个候选小区中的每个候选小区的候选小区标识。
作为一个实施例,所述短语所述第一信令指示K1个候选小区包括:所述第一信令指示一个候选小区组,所述一个候选小区组中包括所述K1个候选小区。
作为该实施例的一个子实施例,所述一个候选小区组是候选MCG(Master Cell Group,小区组)。
作为该实施例的一个子实施例,所述一个候选小区组是候选SCG(Secondary Cell Group,辅小区组)。
作为该实施例的一个子实施例,所述第一信令指示一个候选小区组,所述K1个候选小区分别是所述一个候选小区组中的PCell(Primary Cell,主小区)和(K1-1)个SCell(Secondary Cell,辅小区)。
作为该实施例的一个子实施例,所述第一信令指示一个候选小区组,所述K1个候选小区分别是所述一个候选小区组中的PSCell(Primary SCG Cell,SCG主小区)和(K1-1)个SCell。
作为该实施例的一个子实施例,所述第一信令包括所述一个候选配置标识,所述一个候选配置标识指示所述一个候选小区组。
作为该实施例的一个子实施例,所述第一信令包括所述K1个候选小区中的每个候选小区的候选小区标识。
作为该实施例的一个子实施例,所述第一信令包括K1个候选配置标识,所述K1个候选配置标识分别指示所述K1个候选配置。
作为一个实施例,所述短语所述第一信令指示K1个候选小区包括:所述第一信令包括K1个候选配置标识,所述K1个候选配置标识分别指示所述K1个候选小区。
作为一个实施例,所述短语所述第一信令指示K1个候选小区包括:所述第一信令指示K1个候选小区组,所述K1个候选小区组中的每个候选小区组中分别包括所述K1个候选小区中的一个候选小区。
作为该实施例的一个子实施例,所述第一信令指示K1个候选小区组,所述K1个候选小区分别是K1个候选小区组中的SpCell。
作为该实施例的一个子实施例,所述第一信令指示K1个候选小区组,所述K1个候选小区分别是K1个候选小区组中的PCell。
作为该实施例的一个子实施例,所述第一信令包括K1个候选配置标识,所述K1个候选配置标识分别指示所述K1个候选小区组。
作为一个实施例,一个候选小区的候选小区标识不小于0并且不大于一个阈值。
作为一个实施例,一个候选小区的候选小区标识是一个非负整数。
作为一个实施例,一个候选小区的候选小区标识是被配置的。
作为一个实施例,一个候选小区的候选小区标识包括所述一个候选小区的PCI(PhysCellId)。
作为一个实施例,一个候选小区的候选小区标识是所述一个候选小区的PCI。
作为一个实施例,一个候选小区的候选小区标识是一个TCI(Transmission Configuration Indicator,发送配置指示)的索引。
作为一个实施例,一个候选小区的候选小区标识是一个CORESET(control resource set,控制资源集合)的索引。
作为一个实施例,一个候选小区的候选小区标识是一个搜索空间(Search Space,SS)的索引。
作为一个实施例,一个候选小区的候选小区标识包括所述一个候选小区的PCI和频率信息。
作为一个实施例,一个候选小区的候选小区标识是所述一个候选小区的服务小区标识。
作为一个实施例,一个候选小区的候选小区标识是所述一个候选小区的索引。
作为一个实施例,一个候选小区的候选小区标识是所述一个候选小区在一个候选小区组中的索引。
作为一个实施例,一个候选小区的候选小区标识是所述一个候选小区所对应的候选配置索引。
作为一个实施例,一个候选配置标识不小于0并且不大于一个阈值。
作为一个实施例,一个候选配置标识是一个非负整数。
作为一个实施例,一个候选配置标识是被配置的。
作为一个实施例,一个候选配置标识被配置给所述一个候选配置。
作为一个实施例,一个候选配置标识指示一个候选小区。
作为一个实施例,一个候选配置标识指示一个候选小区组。
作为一个实施例,一个候选配置标识指示一个候选配置。
作为一个实施例,一个候选配置标识指示一个候选小区以及所述一个候选小区所对应的候选配置。
作为一个实施例,一个候选配置标识唯一指示为了所述第一节点的一个服务小区的一个候选小区。
作为一个实施例,一个候选配置标识唯一指示为了所述第一节点的所述第一服务小区的一个候选小区。
作为一个实施例,一个候选配置标识唯一指示为了所述第一节点的一个小区组的一个候选小区,所述一个小区组是MCG或者SCG,所述一个小区组中包括所述第一服务小区。
作为一个实施例,所述K1个候选小区中的每个候选小区都被配置给所述第一服务小区。
作为一个实施例,所述K1个候选小区中的任一候选小区不被配置给所述第一服务小区之外的任一小区。
作为一个实施例,所述K1个候选小区中的至少一个候选小区被配置给所述第一服务小区之外的一个小区。
作为一个实施例,所述K1个候选小区中的每个候选小区是同一个候选小区组中的一个候选小区。
作为一个实施例,所述K1个候选小区中的每个候选小区是所述第一服务小区的一个候选小区。
作为一个实施例,所述K1个候选小区中的每个候选小区是所述第一服务小区所属的小区组中的一个候选小区。
作为一个实施例,所述K1个候选小区中的每个候选小区是一个候选PSCell。
作为一个实施例,所述K1个候选小区中的每个候选小区是一个候选PCell。
作为一个实施例,所述第一服务小区是所述第一节点的一个服务小区。
作为一个实施例,所述第一服务小区是所述第一节点的MCG中的一个服务小区。
作为一个实施例,所述第一服务小区是所述第一节点的SCG中的一个服务小区。
作为一个实施例,所述第一服务小区是所述第一节点的PCell。
作为一个实施例,所述第一服务小区是所述第一节点的源PCell。
作为一个实施例,所述第一服务小区是所述第一节点的PSCell。
作为一个实施例,所述第一服务小区是所述第一节点的源PSCell。
作为一个实施例,所述第一服务小区是所述第一节点的一个SCell。
作为一个实施例,所述第一服务小区是所述第一节点的一个源SCell。
作为一个实施例,所述K1是固定的。
作为一个实施例,所述K1是可变的。
作为一个实施例,所述K1不大于一个阈值,所述一个阈值是大于2的整数。
作为一个实施例,所述K1等于2。
作为一个实施例,所述K1大于2。
作为一个实施例,所述短语所述K1个候选小区被配置给至少第一服务小区包括:所述K1个候选小区被配置给仅所述第一服务小区。
作为该实施例的一个子实施例,所述K1个候选小区中的任一候选小区是所述第一服务小区的一个候选小区。
作为该实施例的一个子实施例,所述K1个候选小区中的任一候选小区是一个候选SpCell,所述第一服务小区是源SpCell。
作为该实施例的一个子实施例,所述K1个候选小区中的任一候选小区是一个候选SCell,所述第一服务小区是源SCell。
作为一个实施例,所述短语所述K1个候选小区被配置给至少第一服务小区包括:所述K1个候选小区被配置给多个服务小区,所述第一服务小区是所述多个服务小区中的一个服务小区。
作为该实施例的一个子实施例,所述K1个候选小区被配置给所述第一服务小区所属的小区组。
作为该实施例的一个子实施例,所述K1个候选小区中的任一候选小区属于所述第一服务小区所属的小区组的一个候选小区组。
作为该实施例的一个子实施例,所述K1个候选小区中包括至少目标SpCell,所述第一服务小区是源SpCell。
作为该实施例的一个子实施例,所述K1个候选小区中包括所述目标SpCell和至少一个SCell。
作为该实施例的一个子实施例,所述K1个候选配置被配置给至少两个服务小区。
作为该实施例的一个子实施例,所述K1个候选配置被配置给大于K1个服务小区。
作为该子实施例的一个附属实施例,所述K1个候选小区中的一个候选小区被配置给所述K1个服务小区中的至少两个服务小区。
作为该子实施例的一个附属实施例,所述K1个候选小区中的一个候选小区是所述K1个服务小区中的至少两个服务小区的候选小区。
作为该实施例的一个子实施例,所述K1个候选配置分别被配置给K1个服务小区。
作为该子实施例的一个附属实施例,所述K1个候选配置中的一个候选小区被配置给所述K1个服务小区中的仅一个服务小区。
作为该子实施例的一个附属实施例,所述K1个候选小区分别是所述K1个服务小区的候选小区。
作为该子实施例的一个附属实施例,所述K1个候选小区中的一个候选小区是所述K1个服务小区的中的一个服务小区的候选小区。
作为该子实施例的一个附属实施例,所述K1个候选小区与所述K1个服务小区一一对应。
作为该子实施例的一个附属实施例,所述K1个候选小区中的任一候选小区是所述K1个服务小区的中的一个服务小区的候选小区,并且,所述任一候选小区不是所述K1个服务小区的中的所述一个服务小区之外的任一服务小区的候选小区。
作为一个实施例,所述行为伴随所述第一信令包括:一旦所述第一信令被。
作为一个实施例,所述行为伴随所述第一信令包括:当所述第一信令被接收时。
作为一个实施例,所述行为伴随所述第一信令包括:如果所述第一信令被接收。
作为一个实施例,所述行为应用K1个候选配置中的至少一个候选配置与在所述第一信令被接收之后的信道测量无关。
作为一个实施例,所述行为应用K1个候选配置中的至少一个候选配置包括:应用所述K1个候选配置中的全部候选配置。
作为一个实施例,所述行为应用K1个候选配置中的至少一个候选配置包括:应用所述K1个候选配置中的部分候选配置。
作为一个实施例,所述行为应用K1个候选配置中的至少一个候选配置包括:应用所述K1个候选配置中的每个候选配置。
作为一个实施例,所述行为应用K1个候选配置中的至少一个候选配置包括:应用所述K1个候选配置中的仅一个候选配置。
作为该实施例的一个子实施例,在应用所述K1个候选配置中的所述一个候选配置之前,在所述K1个候选小区中确定一个候选小区,所述一个候选配置被配置给所述一个候选小区。
作为一个实施例,所述行为应用K1个候选配置中的至少一个候选配置包括:应用所述K1个候选配置中的至少2个候选配置。
作为该实施例的一个子实施例,在应用所述K1个候选配置中的所述至少2个候选配置之前,在所述K1个候选小区中确定至少2个候选小区,所述至少2个候选配置分别被配置给所述至少2个候选小区。
作为该实施例的一个子实施例,所述至少2个是不小于2个。
作为该实施例的一个子实施例,所述至少2个是2个。
作为该实施例的一个子实施例,所述至少2个是大于2个。
作为一个实施例,所述短语所述第一信令被用于移动性控制是指:所述第一信令被用于切换(Handover,HO)。
作为一个实施例,所述短语所述第一信令被用于移动性控制是指:所述第一信令被用于L3(Layer 3,层三)触发的移动性控制。
作为一个实施例,所述短语所述第一信令被用于移动性控制是指:所述第一信令被用于LTM。
作为一个实施例,所述短语所述第一信令被用于移动性控制是指:所述第一信令被用于Cell Switch。
作为一个实施例,所述短语所述第一信令被用于移动性控制是指:所述第一信令被用于Beam Management。
作为一个实施例,所述K1个候选配置和所述K1个候选小区是一一对应的。
作为一个实施例,所述K1个候选配置分别包括所述K1个候选小区的配置信息。
作为一个实施例,所述K1个候选配置分别是所述K1个候选小区的配置信息。
作为一个实施例,所述K1个候选配置中的每个候选配置是所述K1个候选小区的一个候选小区的候选配置。
作为一个实施例,所述K1个候选配置中的每个候选配置包括所述K1个候选小区的一个候选小区的候选信息。
作为一个实施例,一个候选配置是一个候选小区的配置信息。
作为一个实施例,一个候选配置对应一个候选小区。
作为一个实施例,一个候选配置被配置给一个服务小区。
作为一个实施例,一个候选配置被配置给多个服务小区。
作为一个实施例,一个候选配置被配置给至少一个服务小区。
作为一个实施例,一个候选配置包括所述一个候选配置所对应的候选小区的配置信息。
作为一个实施例,一个候选配置包括所述一个候选配置所对应的候选小区标识。
作为一个实施例,一个候选配置包括一个候选配置标识。
作为一个实施例,一个候选配置被一个候选配置标识索引。
作为一个实施例,一个候选配置包括所述一个候选配置所对应的候选小区的物理层的配置信息。
作为一个实施例,一个候选配置包括所述一个候选配置所对应的候选小区的下行链路公共配置。
作为一个实施例,一个候选配置包括所述一个候选配置所对应的候选小区的上行链路公共配置。
作为一个实施例,一个候选配置包括所述一个候选配置所对应的候选小区的SSB配置。
作为一个实施例,一个候选配置包括所述一个候选配置所对应的候选小区的初始下行链路BWP(initial downlink BWP)的配置信息。
作为一个实施例,一个候选配置包括所述一个候选配置所对应的候选小区的初始上行链路BWP(initial uplink BWP)的配置信息。
作为一个实施例,一个候选配置包括所述一个候选配置所对应的候选小区的初始下行链路BWP上的PDCCH配置信息。
作为一个实施例,一个候选配置包括所述一个候选配置所对应的候选小区的初始下行链路BWP上的PDSCH配置信息。
作为一个实施例,一个候选配置包括所述一个候选配置所对应的候选小区的初始上行链路BWP上的PUCCH配置信息。
作为一个实施例,一个候选配置包括所述一个候选配置所对应的候选小区的初始上行链路BWP上的PRACH配置信息。
作为一个实施例,一个候选配置包括所述一个候选配置所对应的候选小区的初始上行链路BWP上的PUSCH配置信息。
作为一个实施例,第一变量被用于存储候选配置。
作为一个实施例,所述第一变量被用于存储所述K1个候选配置。
作为一个实施例,所述K1个候选配置是所述第一变量中的候选配置。
作为一个实施例,所述第一信令被接收时,所述第一变量中包括所述K1个候选配置。
作为一个实施例,所述K1个候选配置中的每个候选配置中包括所述K1个候选小区中的一个候选小区的候选信息。
作为一个实施例,所述K1个候选小区中的任意两个候选小区是两个不同的候选小区。
作为一个实施例,所述第一信令被接收被用于触发所述行为应用K1个候选配置中的至少一个候选配置。
作为一个实施例,所述第一信令包括至少K1个候选小区信息块,所述K1个候选小区信息块中的每个候选小区信息块指示所述K1个候选小区中的一个候选小区。
作为该实施例的一个子实施例,所述第一信令由所述K1个候选小区信息块组成。
作为该实施例的一个子实施例,所述第一信令包括所述K1个候选小区信息块之外的至少一个域。
作为该实施例的一个子实施例,所述第一信令由所述K1个候选小区信息块和一个服务小区标识域组成,所述一个服务小区标识域指示所述第一服务小区。
作为该实施例的一个子实施例,所述第一信令包括所述K1个候选小区信息块和所述一个服务小区标识域之外的至少一个域。
作为该实施例的一个子实施例,所述第一信令由所述K1个候选小区信息块和所述第一比特位图组成。
作为该实施例的一个子实施例,所述第一信令包括所述K1个候选小区信息块和所述第一比特位图之外的至少一个域。
作为该实施例的一个子实施例,所述K1个候选小区信息块中的任意两个候选小区信息块具有相同的格式。
作为该实施例的一个子实施例,所述K1个候选小区信息块中的任意两个候选小区信息块所占用的比特数相同。
作为该实施例的一个子实施例,所述K1个候选小区信息块中的任意两个候选小区信息块所包括的MAC域的数量相同。
作为该实施例的一个子实施例,一个候选小区信息块对应一个候选小区。
作为该实施例的一个子实施例,一个候选小区信息块占用正整数个比特。
作为该实施例的一个子实施例,一个候选小区信息块占用正整数个连续的八位组。
作为该实施例的一个子实施例,一个候选小区信息块中包括一个指示所述第一节点在对应的候选小区中的C-RNTI的MAC域。
作为该实施例的一个子实施例,一个候选小区信息块中包括一个指示对应的候选小区是否被配置免随机接入的MAC域。
作为该实施例的一个子实施例,一个候选小区信息块中包括一个指示对应的候选小区CFRA(Contention Free Random Access,免竞争的随机接入)资源的MAC域。
作为该实施例的一个子实施例,一个候选小区信息块中包括一个指示对应的候选小区所属的TAG(Timing Advance Group,定时提前组)的MAC域。
作为该实施例的一个子实施例,一个候选小区信息块中包括一个候选小区的配置索引。
作为该实施例的一个子实施例,一个候选小区信息块中包括一个候选小区的配置索引。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。附图2说明了5G NR(New Radio,新空口)/LTE(Long-Term Evolution,长期演进)/LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200。5G NR/LTE/LTE-A网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。5GS/EPS 200包括UE(User Equipment,用户设备)201,RAN(无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230中的至少之一。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申 请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。RAN包括节点203和其它节点204。节点203提供朝向UE201的用户和控制平面协议终止。节点203可经由Xn接口(例如,回程)/X2接口连接到其它节点204。节点203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。节点203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。节点203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201是一个用户设备(User Equipment,UE)。
作为一个实施例,所述节点203对应本申请中的所述第二节点。
作为一个实施例,所述节点203是一个基站设备(BaseStation,BS)。
作为一个实施例,所述节点203是一个基站收发台(Base Transceiver Station,BTS)。
作为一个实施例,所述节点203是一个节点B(NodeB,NB)。
作为一个实施例,所述节点203是一个gNB。
作为一个实施例,所述节点203是一个eNB。
作为一个实施例,所述节点203是一个ng-eNB。
作为一个实施例,所述节点203是一个en-gNB。
作为一个实施例,所述节点203是一个CU(Centralized Unit,集中单元)。
作为一个实施例,所述节点203是一个DU(Distributed Unit,分布单元)。
作为一个实施例,所述节点203是用户设备。
作为一个实施例,所述节点203是一个中继。
作为一个实施例,所述节点203是网关(Gateway)。
作为一个实施例,所述节点204对应本申请中的所述第三节点。
作为一个实施例,所述节点204是一个BS。
作为一个实施例,所述节点204是一个BTS。
作为一个实施例,所述节点204是一个NB。
作为一个实施例,所述节点204是一个gNB。
作为一个实施例,所述节点204是一个eNB。
作为一个实施例,所述节点204是一个ng-eNB。
作为一个实施例,所述节点204是一个en-gNB。
作为一个实施例,所述节点204是用户设备。
作为一个实施例,所述节点204是一个中继。
作为一个实施例,所述节点204是网关(Gateway)。
作为一个实施例,所述节点204是一个CU。
作为一个实施例,所述节点204是一个DU。
作为一个实施例,所述节点203和所述节点204之间通过理想回传连接。
作为一个实施例,所述节点203和所述节点204之间通过非理想回传连接。
作为一个实实例,所述节点203和所述节点204同时为所述UE201提供无线资源。
作为一个实实例,所述节点203和所述节点204不同时为所述UE201提供无线资源。
作为一个实施例,所述节点203和所述节点204是同一个节点。
作为一个实施例,所述节点203和所述节点204是两个不同的节点。
作为一个实施例,所述节点203和所述节点204属于同一个CU。
作为一个实施例,所述节点203和所述节点204属于两个不同的CU。
作为一个实施例,所述用户设备支持地面网络(Non-Terrestrial Network,NTN)的传输。
作为一个实施例,所述用户设备支持非地面网络(Terrestrial Network,地面网络)的传输。
作为一个实施例,所述用户设备支持大时延差网络中的传输。
作为一个实施例,所述用户设备支持双连接(Dual Connection,DC)传输。
作为一个实施例,所述用户设备包括飞行器。
作为一个实施例,所述用户设备包括车载终端。
作为一个实施例,所述用户设备包括船只。
作为一个实施例,所述用户设备包括物联网终端。
作为一个实施例,所述用户设备包括工业物联网的终端。
作为一个实施例,所述用户设备包括支持低时延高可靠传输的设备。
作为一个实施例,所述用户设备包括测试设备。
作为一个实施例,所述用户设备包括信令测试仪。
作为一个实施例,所述基站设备支持在非地面网络的传输。
作为一个实施例,所述基站设备支持在大时延差网络中的传输。
作为一个实施例,所述基站设备支持地面网络的传输。
作为一个实施例,所述基站设备包括宏蜂窝(Marco Cellular)基站。
作为一个实施例,所述基站设备包括微小区(Micro Cell)基站。
作为一个实施例,所述基站设备包括微微小区(Pico Cell)基站。
作为一个实施例,所述基站设备包括家庭基站(Femtocell)。
作为一个实施例,所述基站设备包括支持大时延差的基站设备。
作为一个实施例,所述基站设备包括飞行平台设备。
作为一个实施例,所述基站设备包括卫星设备。
作为一个实施例,所述基站设备包括TRP(Transmitter Receiver Point,发送接收节点)。
作为一个实施例,所述基站设备包括CU(Centralized Unit,集中单元)。
作为一个实施例,所述基站设备包括DU(Distributed Unit,分布单元)。
作为一个实施例,所述基站设备包括测试设备。
作为一个实施例,所述基站设备包括信令测试仪。
作为一个实施例,所述基站设备包括IAB(Integrated Access and Backhaul)-node。
作为一个实施例,所述基站设备包括IAB-donor。
作为一个实施例,所述基站设备包括IAB-donor-CU。
作为一个实施例,所述基站设备包括IAB-donor-DU。
作为一个实施例,所述基站设备包括IAB-DU。
作为一个实施例,所述基站设备包括IAB-MT。
作为一个实施例,所述中继包括relay。
作为一个实施例,所述中继包括L3relay。
作为一个实施例,所述中继包括L2relay。
作为一个实施例,所述中继包括路由器。
作为一个实施例,所述中继包括交换机。
作为一个实施例,所述中继包括用户设备。
作为一个实施例,所述中继包括基站设备。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一信令生成于所述RRC306。
作为一个实施例,本申请中的所述第一信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二信令生成于所述RRC306。
作为一个实施例,本申请中的所述第三信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第三信令生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第四信令生成于所述RRC306。
作为一个实施例,本申请中的所述第四信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第四信令生成于所述PHY301或者PHY351。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编 码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450至少:接收第一信令,所述第一信令指示K1个候选小区,所述K1个候选小区被配置给至少第一服务小区,所述K1是大于1的整数;伴随所述第一信令,应用K1个候选配置中的至少一个候选配置;其中,所述第一信令被用于移动性控制;所述K1个候选配置分别对应所述K1个候选小区;所述K1个候选配置中的每个候选配置中包括所述K1个候选小区中的一个候选小区的候选小区标 识;所述K1个候选小区中的任意两个候选小区的候选小区标识不同;所述第一信令被用于触发所述行为应用K1个候选配置中的至少一个候选配置。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令,所述第一信令指示K1个候选小区,所述K1个候选小区被配置给至少第一服务小区,所述K1是大于1的整数;伴随所述第一信令,应用K1个候选配置中的至少一个候选配置;其中,所述第一信令被用于移动性控制;所述K1个候选配置分别对应所述K1个候选小区;所述K1个候选配置中的每个候选配置中包括所述K1个候选小区中的一个候选小区的候选小区标识;所述K1个候选小区中的任意两个候选小区的候选小区标识不同;所述第一信令被用于触发所述行为应用K1个候选配置中的至少一个候选配置。
作为一个实施例,所述第二通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410至少:发送第一信令,所述第一信令指示K1个候选小区,所述K1个候选小区被配置给至少第一服务小区,所述K1是大于1的整数;其中,伴随所述第一信令,K1个候选配置中的至少一个候选配置被应用;所述第一信令被用于移动性控制;所述K1个候选配置分别对应所述K1个候选小区;所述K1个候选配置中的每个候选配置中包括所述K1个候选小区中的一个候选小区的候选小区标识;所述K1个候选小区中的任意两个候选小区的候选小区标识不同;所述第一信令被用于触发所述行为应用K1个候选配置中的至少一个候选配置。
作为一个实施例,所述第二通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信令,所述第一信令指示K1个候选小区,所述K1个候选小区被配置给至少第一服务小区,所述K1是大于1的整数;其中,伴随所述第一信令,K1个候选配置中的至少一个候选配置被应用;所述第一信令被用于移动性控制;所述K1个候选配置分别对应所述K1个候选小区;所述K1个候选配置中的每个候选配置中包括所述K1个候选小区中的一个候选小区的候选小区标识;所述K1个候选小区中的任意两个候选小区的候选小区标识不同;所述第一信令被用于触发所述行为应用K1个候选配置中的至少一个候选配置。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收第一信令。
作为一个实施例,所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第一信令。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收第二信令。
作为一个实施例,所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第二信令。
作为一个实施例,所述天线452,所述发射器454,所述发射处理器468,所述控制器/处理器459中的至少之一被用于发送第三信令。
作为一个实施例,所述天线420,所述接收器418,所述接收处理器470,所述控制器/处理器475中的至少之一被用于接收第三信令。
作为一个实施例,所述天线452,所述发射器454,所述发射处理器468,所述控制器/处理器459中的至少之一被用于发送第四信令。
作为一个实施例,所述天线420,所述接收器418,所述接收处理器470,所述控制器/处理器475中的至少之一被用于接收第四信令。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个用户设备。
作为一个实施例,所述第一通信设备450是一个基站设备。
作为一个实施例,所述第一通信设备450是一个中继设备。
作为一个实施例,所述第二通信设备410是一个用户设备。
作为一个实施例,所述第二通信设备410是一个基站设备。
作为一个实施例,所述第二通信设备410是一个中继设备。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S5101中,接收第二信令,所述第二信令被用于确定K2个候选配置;在步骤S5102中,发送第三信令,所述第三信令指示至少所述K1个候选小区的测量结果;在步骤S5103中,接收第一信令,所述第一信令指示K1个候选小区,所述K1个候选小区被配置给至少第一服务小区,所述K1是大于1的整数;在步骤S5104中,伴随所述第一信令,应用K1个候选配置中的至少一个候选配置。
对于第二节点N02,在步骤S5201中,发送所述第二信令;在步骤S5202中,接收所述第三信令;在步骤S5203中,发送所述第一信令。
在实施例5中,所述第一信令被用于移动性控制;所述K1个候选配置分别对应所述K1个候选小区;所述K1个候选配置中的每个候选配置中包括所述K1个候选小区中的一个候选小区的候选小区标识;所述K1个候选小区中的任意两个候选小区的候选小区标识不同;所述第一信令被用于触发所述行为应用K1个候选配置中的至少一个候选配置;所述第二信令是RRC子层信令;所述K1个候选配置中的每个候选配置是所述K2个候选配置中的一个候选配置;所述K1不大于所述K2;所述第三信令是RRC子层之下的信令;所述第三信令被用于触发所述第一信令。
作为一个实施例,所述第一节点U01是一个用户设备。
作为一个实施例,所述第一节点U01是一个基站设备。
作为一个实施例,所述第一节点U01是一个中继设备。
作为一个实施例,所述第二节点N02是一个基站设备。
作为一个实施例,所述第二节点N02是一个用户设备。
作为一个实施例,所述第二节点N02是一个中继设备。
作为一个实施例,所述第一节点U01是一个用户设备,所述第二节点N02是一个基站设备。
作为一个实施例,所述第一节点U01是一个用户设备,所述第二节点N02是一个中继设备。
作为一个实施例,所述第一节点U01是一个用户设备,所述第二节点N02是一个用户设备。
作为一个实施例,所述第一节点U01是一个基站设备,所述第二节点N02是一个基站设备。
作为一个实施例,所述第一节点U01是一个中继设备,所述第二节点N02是一个基站设备。
作为一个实施例,所述第二节点N02是所述第一服务小区的维持基站。
作为一个实施例,所述第二节点N02是所述第一节点U01的任一服务小区的维持基站。
作为一个实施例,所述第二信令包括至少一个RRC消息,所述至少一个RRC消息中的每个RRC消息指示所述K2个候选配置中的至少一个候选配置。
作为一个实施例,所述第二信令是一个RRC消息,所述一个RRC消息指示所述K2个候选配置。
作为一个实施例,所述第二信令包括至少一个RRC IE(Information Element,信息元素)。
作为一个实施例,所述第二信令包括至少一个RRC域(Field)。
作为一个实施例,所述第二信令通过DCCH(Dedicated Control Channel,专用控制信道)传输。
作为一个实施例,所述第二信令通过SRB1(Signalling radio bearer 1,信令无线承载1)传输。
作为一个实施例,所述第二信令通过SRB3(Signalling radio bearer 3,信令无线承载3)传输。
作为一个实施例,所述第二信令包括RRCReconfiguration消息。
作为一个实施例,所述第二信令包括RRCResume消息。
作为一个实施例,所述第二信令包括RRCReestablishment消息。
作为一个实施例,所述第二信令包括CellGroupConfig域。
作为一个实施例,所述第二信令包括SpCellConfig域。
作为一个实施例,所述第二信令包括reconfigurationWithSync域。
作为一个实施例,所述第二信令包括spCellConfigCommon域。
作为一个实施例,所述第二信令包括针对每个候选小区的ServingCellConfigCommon IE。
作为一个实施例,所述第二信令包括针对每个候选小区的DownlinkConfigCommon IE。
作为一个实施例,所述第二信令包括针对每个候选小区的UplinkConfigCommon IE。
作为一个实施例,所述第二信令包括针对每个候选小区的BWP-DownlinkCommon IE。
作为一个实施例,所述第二信令包括针对每个候选小区的BWP-UplinkCommon IE。
作为一个实施例,所述第二信令包括针对每个候选小区的ssb-PositionsInBurst域。
作为一个实施例,所述第一信令在所述K2个候选配置中指示所述K1个候选配置。
作为一个实施例,所述第二信令的发送者是所述第一节点U01的一个服务小区的维持基站。
作为一个实施例,所述第二信令的发送者是所述第一服务小区的维持基站。
作为一个实施例,所述第二信令的发送者是所述第一节点U01的所述第一服务小区之外的一个服务小区的维持基站。
作为一个实施例,所述第二信令指示所述K2个候选配置。
作为一个实施例,所述第二信令包括所述K2个候选配置。
作为一个实施例,所述K2个候选配置是通过所述第二信令确定的。
作为一个实施例,所述K2个候选配置中的至少一个候选配置未被配置给所述第一服务小区。
作为一个实施例,所述K2个候选配置中的至少所述K1个候选配置被配置给所述第一服务小区。
作为一个实施例,所述K2个候选配置中的仅所述K1个候选配置被配置给所述第一服务小区。
作为一个实施例,所述K2个候选配置中的任一候选配置被配置给所述第一服务小区。
作为一个实施例,所述K2个候选配置中的至少一个候选配置被配置给所述第一服务小区和所述第一服务小区之外的一个服务小区。
作为一个实施例,所述K2个候选配置被配置给所述第一节点U01的多个服务小区,所述第一服务小区是所述多个服务小区中的一个服务小区。
作为一个实施例,所述K2个候选配置被配置给仅所述第一服务小区。
作为一个实施例,所述K2个候选配置被配置给所述第一服务小区,并且,所述K2个候选配置中的任一候选配置不被配置给所述第一服务小区之外的任一服务小区。
作为一个实施例,所述K2个候选配置属于同一个RRC消息。
作为一个实施例,所述K2个候选配置中的至少两个候选配置属于不同的RRC消息。
作为一个实施例,所述K2不大于一个阈值,所述一个阈值是预定义的。
作为一个实施例,所述K2不小于2。
作为一个实施例,所述第二信令和所述第一信令属于同一个RRC消息;所述K2是所述K1。
作为该实施例的一个子实施例,所述步骤S5101和所述步骤S5104是同一个步骤。
作为该实施例的一个子实施例,所述K1个候选配置是所述K2个候选配置。
作为该实施例的一个子实施例,所述第一信令属于所述第二信令。
作为该实施例的一个子实施例,所述第一信令是所述第二信令。
作为一个实施例,所述第二信令包括至少一个RRC消息,所述第一信令是RRC子层之下的信令。
作为该实施例的一个子实施例,所述步骤S5101在所述步骤S5104之前。
作为该实施例的一个子实施例,所述第二信令触发所述第三信令,所述第三信令触发所述第一信令。
作为该实施例的一个子实施例,所述第二信令的接收时刻早于所述第一信令的接收时刻。
作为该实施例的一个子实施例,所述第一信令是MAC CE。
作为该实施例的一个子实施例,所述第一信令是DCI。
作为该实施例的一个子实施例,所述第二信令包括至少一个第一类子信令,所述第一类子信令被用于添加或者修改候选配置。
作为该实施例的一个子实施例,每个第一类子信令的名字中包括AddModList。
作为该实施例的一个子实施例,每个第一类子信令的名字中包括AddModList-r18。
作为该实施例的一个子实施例,每个第一类子信令指示至少一个候选配置。
作为该实施例的一个子实施例,作为一个第一类子信令被接收的响应,在第一变量中存储或者更新被所述一个第一类子信令指示的每个候选配置。
作为该实施例的一个子实施例,所述第二信令包括至少一个第一类子信令和至少一个第二类子信令,所述第一类子信令被用于添加或者修改候选配置,所述第二类子信令被用于移除候选配置。
作为该实施例的一个子实施例,每个第二类子信令的名字中包括RemoveList。
作为该实施例的一个子实施例,每个第二类子信令的名字中包括RemoveList-r18。
作为该实施例的一个子实施例,每个第二类子信令指示至少一个候选配置。
作为该实施例的一个子实施例,作为一个第二类子信令被接收的响应,从第一变量中移除被所述一个第二类子信令指示的每个候选配置。
作为该实施例的一个子实施例,所述第一变量被用于存储所述K2个候选配置。
作为一个实施例,所述K1个候选配置是所述K2个候选配置的一个子集。
作为一个实施例,所述K1个候选配置是所述K2个候选配置。
作为一个实施例,所述K1等于所述K2。
作为一个实施例,所述K1小于所述K2。
作为一个实施例,所述K1和所述K2是可配置的。
作为一个实施例,所述K2个候选小区中的任一候选小区是所述第一节点U01的至少一个服务小区的候选小区。
作为一个实施例,所述K2个候选小区中的任一候选小区是所述第一服务小区的候选小区,并且,所述K2个候选小区中的任一候选小区不是所述第一节点U01的所述第一服务小区之外的任一服务小区的候选小区。
作为一个实施例,虚线方框F5.1是可选的。
作为一个实施例,所述虚线方框F5.1存在。
作为该实施例的一个子实施例,所述第二信令包括至少一个RRC消息,所述第一信令是RRC子层之下的信令。
作为该实施例的一个子实施例,所述第一信令是MAC CE。
作为该实施例的一个子实施例,所述第一信令是DCI。
作为该实施例的一个子实施例,所述第一信令被发送之后,所述第三信令被接收。
作为该实施例的一个子实施例,所述第三信令是一个MAC CE。
作为该实施例的一个子实施例,所述第三信令是一个UCI(Uplink Control Information,上行链路控制信息)。
作为该实施例的一个子实施例,所述第三信令通过PUCCH(Physical Uplink Control Channel,物理上行链路控制信息)资源传输。
作为该实施例的一个子实施例,所述第三信令通过PUSCH(Physical Uplink Shared Channel,物理上行链路共享信道)资源传输。
作为该实施例的一个子实施例,作为接收所述第三信令的响应,所述第二节点N02发送所述第一信令。
作为该实施例的一个子实施例,所述第二节点N02根据所述第三信令确定发送所述第一信令。
作为该实施例的一个子实施例,所述第三信令包括测量报告。
作为该实施例的一个子实施例,所述第三信令包括L1测量报告。
作为该实施例的一个子实施例,所述第三信令包括L1或者L2测量报告。
作为该实施例的一个子实施例,所述第三信令是测量报告。
作为该实施例的一个子实施例,所述第三信令是被用于LTM的测量报告。
作为该实施例的一个子实施例,所述第三信令是CSI(Channel State Information,信道状态信息)报告。
作为该实施例的一个子实施例,所述第三信令是SP(Semi-Persistent,半持续)CSI报告。
作为该实施例的一个子实施例,所述第三信令包括所述K1个候选小区的测量结果。
作为该实施例的一个子实施例,所述第三信令仅指示所述K1个候选小区的测量结果。
作为该实施例的一个子实施例,所述第三信令指示所述K1个候选小区的测量结果,并且,所述第三信令指示所述K1个候选小区之外的至少一个候选小区的测量结果。
作为该实施例的一个子实施例,一个候选小区的测量结果是层一(Layer 1,L1)的测量结果。
作为该实施例的一个子实施例,一个候选小区的测量结果是针对所述一个候选小区中的至少一个参考信号的测量结果。
作为该实施例的一个子实施例,至少一个参考信号包括一个参考信号。
作为该实施例的一个子实施例,至少一个参考信号包括多个参考信号。
作为该实施例的一个子实施例,至少一个参考信号是一个参考信号。
作为该实施例的一个子实施例,至少一个参考信号是多个参考信号。
作为该实施例的一个子实施例,至少一个参考信号中的每个参考信号是CSI-RS(Reference Signal)。
作为该实施例的一个子实施例,至少一个参考信号中的每个参考信号是SSB(Synchronization Signal Block,同步信号块)。
作为该实施例的一个子实施例,至少一个参考信号中的每个参考信号是CSI-RS或者SSB中的之一。
作为一个实施例,一个候选小区的测量结果是RSRP(Reference Signal Received Power,参考信号接收功率)。
作为该实施例的一个子实施例,所述RSRP是L1-RSRP。
作为该实施例的一个子实施例,所述RSRP是CSI-RSRP。
作为该实施例的一个子实施例,所述RSRP是SS-RSRP。
作为该实施例的一个子实施例,一个候选小区的测量结果是RSRQ(Reference Signal Received Quality,参考信号接收质量)。
作为该实施例的一个子实施例,一个候选小区的测量结果是BLER(Block Error Ratio,块误码率)。
作为该实施例的一个子实施例,一个候选小区的测量结果与RSRP或者RSRQ或者BLER中的至少之一有关。
作为一个实施例,所述虚线方框F5.1不存在。
作为该实施例的一个子实施例,所述第二信令和所述第一信令属于同一个RRC消息;所述K2是所述K1。
作为该实施例的一个子实施例,在所述第一信令被接收之前,至少一个L3测量报告被发送。
作为该实施例的一个子实施例,至少一个L3测量报告被用于触发所述第一信令。
作为该实施例的一个子实施例,一个L3测量报告是一个MeasurementReport消息。
作为该实施例的一个子实施例,所述第一信令是RRCReconfiguration消息,所述RRCReconfiguration消息中包括一个名字中包括masterCellGroup的域,所述一个名字中包括masterCellGroup的域中包括K1个CellGroupConfig IE,所述K1个CellGroupConfig IE分别被用于指示所述K1个候选小区。
作为该实施例的一个子实施例,所述第一服务小区是源PCell。
作为该实施例的一个子实施例,所述K1个候选小区是K1个目标PCell。
作为该实施例的一个子实施例,所述K1个候选小区被配置给所述第一服务小区。
作为该实施例的一个子实施例,所述K1个CellGroupConfig IE中的每个CellGroupConfig IE包括一个SpCellConfig,每个SpCellConfig包括一个ReconfigurationWithSync,每个ReconfigurationWithSync包括一个ServingCellConfigCommon,每个ServingCellConfigCommon包括一个候选小区的候选配置,每个ServingCellConfigCommon包括一个PhysCellId,每个PhysCellId是一个候选小区的候选小区标识。
实施例6
实施例6示例了根据本申请的另一个实施例的无线信号传输流程图,如附图6所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S6101中,接收第一信令,所述第一信令指示K1个候选小区,所述K1个候选小区被配置给至少第一服务小区,所述K1是大于1的整数;在步骤S6102中,伴随所述第一信令,在所述K1个候选小区中确定第一候选小区;在步骤S6103中,伴随所述第一信令,应用所述K1个候选配置中的第一候选配置;在步骤S6104中,作为应用所述K1个候选配置中的所述至少一个候选配置的响应,发送第四信令。
对于第二节点N02,在步骤S6201中,发送所述第一信令。
对于第三节点N03,在步骤S6301中,接收所述第四信令。
在实施例6中,所述第一信令被用于移动性控制;所述K1个候选配置分别对应所述K1个候选小区;所述K1个候选配置中的每个候选配置中包括所述K1个候选小区中的一个候选小区的候选小区标识;所述K1个候选小区中的任意两个候选小区的候选小区标识不同;所述第一信令被用于触发所述行为应用K1个候选配置中的至少一个候选配置;至少第一条件被满足被用于在所述K1个候选小区中确定所述第一候选小区;所述第一条件与所述K1个候选小区的测量结果无关;所述K1个候选配置被配置给所述第一服务小区;所述第一候选配置是所述K1个候选配置中的一个候选配置;所述第四信令被用于指示所述K1个候选配置中的至少一个候选配置被应用。
作为一个实施例,所述第一节点U01是一个用户设备,所述第二节点N02是一个基站设备,所述第三节点N03是一个基站设备。
作为一个实施例,所述第一节点U01是一个用户设备,所述第二节点N02是一个用户设备,所述第三节点N03是一个用户设备。
作为一个实施例,所述第一节点U01是一个用户设备,所述第二节点N02是一个用户设备,所述第三节点N03是一个基站设备。
作为一个实施例,所述第一节点U01是一个基站设备,所述第二节点N02是一个基站设备,所述第三节点N03是一个基站设备。
作为一个实施例,所述第一节点U01是一个用户设备,所述第二节点N02是一个基站设备,所述第三节点N03是一个用户设备。
作为一个实施例,所述第三节点N03是所述第一候选小区的维持基站。
作为一个实施例,所述第三节点N03是所述K1个候选配置中的一个候选小区的维持基站。
作为一个实施例,所述第三节点N03是所述K1个候选配置中的被应用完成的一个候选小区的维持基站。
作为一个实施例,在应用所述第一候选配置之前,在所述K1个候选小区中确定所述第一候选小区。
作为一个实施例,所述“在所述K1个候选小区中确定第一候选小区”包括:在所述K1个候选小区中选择所述第一候选小区。
作为一个实施例,所述“在所述K1个候选小区中确定第一候选小区”包括:在所述K1个候选小区中找到所述第一候选小区。
作为一个实施例,所述“在所述K1个候选小区中确定第一候选小区”包括:将所述K1个候选小区中的所述第一候选小区作为LTM的目标小区。
作为一个实施例,所述“在所述K1个候选小区中确定第一候选小区”包括:在所述K1个候选配置中确定所述第一候选配置。
作为一个实施例,所述“在所述K1个候选小区中确定第一候选小区”包括:确定应用所述K1个候选配置中的所述第一候选配置。
作为一个实施例,在所述K1个候选小区中根据所述第一条件确定所述第一候选小区。
作为一个实施例,所述第一条件不依赖所述K1个候选小区的测量结果。
作为一个实施例,所述第一条件与所述第一候选小区在所述K1个候选小区中的优先级有关。
作为一个实施例,所述第一条件与所述第一信令有关。
作为一个实施例,所述第一条件与所述第一信令中的至少一个域的值有关。
作为一个实施例,所述第一条件与所述第一候选配置是否包括完整配置有关。
作为一个实施例,所述第一条件与所述第一候选配置是否有效有关。
作为一个实施例,所述第一条件与所述第一候选小区是否被配置免随机接入有关。
作为一个实施例,所述第一条件与第一计时器是否被配置有关;所述第一计时器被用于确定所述第一候选小区的上行链路是否时间对齐。
作为一个实施例,所述第一条件与第一计时器的运行状态有关;所述第一计时器被用于确定所述第一候选小区的上行链路是否时间对齐。
作为一个实施例,所述第一条件包括所述第一候选小区是所述K1个候选小区中的优先级最高的一个候选小区。
作为该实施例的一个子实施例,所述第一计时器被配置被用于确定所述第一候选小区是所述K1个候选小区中的优先级最高的一个候选小区。
作为该实施例的一个子实施例,所述第一计时器正在运行被用于确定所述第一候选小区是所述K1个候选小区中的优先级最高的一个候选小区。
作为该实施例的一个子实施例,所述第一候选配置包括完整配置被用于确定所述第一候选小区是所述K1个候选小区中的优先级最高的一个候选小区。
作为该实施例的一个子实施例,所述第一候选小区被配置免随机接入被用于确定所述第一候选小区是所述K1个候选小区中的优先级最高的一个候选小区。
作为该实施例的一个子实施例,所述第一候选小区是在所述K1个候选小区中顺序最靠前的一个候选小区被用于确定所述第一候选小区是所述K1个候选小区中的优先级最高的一个候选小区。
作为该实施例的一个子实施例,所述第一信令指示所述K1个候选小区的顺序。
作为该实施例的一个子实施例,所述第一信令隐式指示所述K1个候选小区的顺序。
作为该实施例的一个子实施例,所述第一信令显示指示所述K1个候选小区的顺序。
作为该实施例的一个子实施例,被用于指示所述K1个候选小区的域在所述第一信令中的位置被用于确定所述K1个候选小区的顺序。
作为该实施例的一个子实施例,所述第一信令中的一个域指示所述第一候选小区是在所述K1个候选小区中顺序最靠前的一个候选小区。
作为该实施例的一个子实施例,被用于指示所述第一候选小区的域在所述第一信令中比特位高于被用于指示所述第一候选小区之外的任一候选小区的域在所述第一信令中比特位被用于确定所述第一候选小区是在所述K1个候选小区中顺序最靠前的一个候选小区。
作为该实施例的一个子实施例,被用于指示所述第一候选小区的域在所述第一信令中比特位低于被用于指示所述第一候选小区之外的任一候选小区的域在所述第一信令中比特位被用于确定所述第一候选小区是在所述K1个候选小区中顺序最靠前的一个候选小区。
作为一个实施例,所述第一条件与所述第一计时器无关。
作为一个实施例,所述第一信令被接收时,所述第一计时器正在运行。
作为一个实施例,所述第一信令被接收时,所述第一计时器不在运行。
作为一个实施例,所述第一候选配置是所述第一候选小区的候选配置。
作为一个实施例,所述第一候选配置包括所述第一候选小区的候选小区标识。
作为一个实施例,所述第一候选配置包括所述第一候选小区的配置信息。
作为一个实施例,所述第四信令是RRCReconfigurationComplete消息;所述第一信令是一个RRC消息。
作为一个实施例,所述第四信令是RRC子层之下的信令;所述第一信令是RRC子层之下的信令。
作为该实施例的一个子实施例,所述第四信令是一个UCI。
作为该实施例的一个子实施例,所述第四信令是一个PUSCH。
作为该实施例的一个子实施例,所述第四信令是一个PUCCH。
作为该实施例的一个子实施例,所述第四信令是一个ACK(Acknowledgement)。
作为一个实施例,所述短语作为应用所述K1个候选配置中的所述至少一个候选配置的响应是指:作为应用所述K1个候选配置中的一个候选配置的响应。
作为该实施例的一个子实施例,所述K1个候选配置中的所述一个候选配置是所述K1个候选配置中的任一候选配置。
作为该实施例的一个子实施例,所述K1个候选配置中的所述一个候选配置是所述K1个候选配置中的所述第一候选配置。
作为该实施例的一个子实施例,所述短语作为应用所述K1个候选配置中的一个候选配置的响应包括:作为所述K1个候选配置中的一个候选配置被应用完成的响应。
作为一个实施例,开始应用所述K1个候选配置中的至少一个候选配置时,所述K1个候选配置中的至少一个候选配置未被应用。
作为一个实施例,开始应用所述K1个候选配置中的至少一个候选配置时,所述K1个候选配置中的至少一个候选配置未被应用完成。
作为一个实施例,至少在所述K1个候选配置中的一个候选配置被应用完成之后,发送所述第四信令。
作为一个实施例,所述短语所述第四信令被用于指示所述K1个候选配置中的至少一个候选配置被应用是指:所述第四信令被用于指示所述K1个候选配置中的一个候选配置被应用。
作为该实施例的一个子实施例,所述第四信令指示所述K1个候选配置中的一个被应用完成的候选配置。
作为该实施例的一个子实施例,所述第四信令指示所述K1个候选配置中的所述一个候选配置被应用完成。
作为该实施例的一个子实施例,所述第四信令指示所述K1个候选配置中的所述第一候选配置被应用完成。
作为该实施例的一个子实施例,所述第四信令的接收者是所述第一候选小区的维持基站被用于指示所述第一候选配置被应用。
作为该实施例的一个子实施例,所述第四信令包括所述第一候选配置的候选配置标识被用于指示所述第一候选配置被应用。
作为该实施例的一个子实施例,所述第四信令包括所述第一候选小区的候选小区标识被用于指示所述第一候选配置被应用。
作为一个实施例,虚线方框F6.1是可选的。
作为一个实施例,所述虚线方框F6.1存在。
作为该实施例的一个子实施例,所述第四信令被发送。
作为该实施例的一个子实施例,所述第四信令被发送之前,所述第一候选配置被应用完成。
作为该实施例的一个子实施例,所述第四信令被发送之前,所述K1个候选配置中的一个候选配置被应用完成。
作为该实施例的一个子实施例,作为所述第一候选配置被应用完成的响应,发送所述第四信令。
作为该实施例的一个子实施例,作为所述K1个候选配置中的一个候选配置被应用完成的响应,发送所述第四信令。
作为一个实施例,所述虚线方框F6.1不存在。
作为该实施例的一个子实施例,所述第四信令未被发送。
作为该实施例的一个子实施例,所述第一候选配置未被应用。
作为该实施例的一个子实施例,所述第一候选配置被应用失败。
作为该实施例的一个子实施例,作为所述第一候选配置被应用失败的响应,给更上层发送一个指示,或者,返回所述第一服务小区,或者,继续应用所述第一服务小区,或者,在所述K1个候选小区中确定第二候选小区。
作为一个实施例,被应用完成是指被成功应用。
作为一个实施例,被应用完成包括被成功应用。
实施例7
实施例7示例了根据本申请的又一个实施例的无线信号传输流程图,如附图7所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S7101中,接收第一信令,所述第一信令指示K1个候选小区,所述K1个候选小区被配置给至少第一服务小区,所述K1是大于1的整数;在步骤S7102中,伴随所述第一信令,应用所述K1个候选配置中的每个候选配置;在步骤S7103中,作为应用所述K1个候选配置中的所述至少一个候选配置的响应,发送第四信令。
对于第二节点N02,在步骤S7201中,发送所述第一信令。
对于第三节点N03,在步骤S7301中,接收所述第四信令。
在实施例7中,所述第一信令被用于移动性控制;所述K1个候选配置分别对应所述K1个候选小区;所述K1个候选配置中的每个候选配置中包括所述K1个候选小区中的一个候选小区的候选小区标识;所述K1个候选小区中的任意两个候选小区的候选小区标识不同;所述第一信令被用于触发所述行为应用K1个候选配置中的至少一个候选配置;
作为一个实施例,所述第一节点U01是一个用户设备,所述第二节点N02是一个基站设备,所述第三节点N03是一个基站设备。
作为一个实施例,所述第一节点U01是一个用户设备,所述第二节点N02是一个用户设备,所述第三节点N03是一个用户设备。
作为一个实施例,所述第一节点U01是一个用户设备,所述第二节点N02是一个用户设备,所述第三节点N03是一个基站设备。
作为一个实施例,所述第一节点U01是一个基站设备,所述第二节点N02是一个基站设备,所述第三节点N03是一个基站设备。
作为一个实施例,所述第一节点U01是一个用户设备,所述第二节点N02是一个基站设备,所述第三节点N03是一个用户设备。
作为一个实施例,所述第三节点N03是所述第二候选小区的维持基站。
作为一个实施例,所述第一信令指示所述K1个服务小区和所述K1个候选小区。
作为一个实施例,所述第一信令包括所述K1个服务小区的标识。
作为一个实施例,所述第一信令包括所述K1个服务小区的索引。
作为一个实施例,所述第一信令包括所述K1个候选配置索引。
作为一个实施例,所述第一信令包括所述K1个候选小区中的每个候选小区索引。
作为一个实施例,所述第一信令包括所述K1个服务小区的标识和所述K1个候选小区的候选小区标识。
作为一个实施例,一个候选小区信息块中包括所述一个比特对应的服务小区的候选小区的候选小区标识。
作为一个实施例,一个候选小区信息块中包括所述一个比特对应的服务小区的候选小区的索引。
作为一个实施例,一个候选小区信息块中包括所述一个比特对应的服务小区的候选小区的候选配置索引。
作为一个实施例,所述K2个候选配置中的每个候选配置中包括所述K2个候选小区中的一个候选小区的候选小区标识。
作为一个实施例,所述短语作为应用所述K1个候选配置中的所述至少一个候选配置的响应包括:作为应用所述K1个候选配置中的每个候选配置的响应。
作为一个实施例,所述短语作为应用所述K1个候选配置中的所述至少一个候选配置的响应包括:作为应用所述K1个候选配置中的一个候选配置的响应。
作为一个实施例,所述短语作为应用所述K1个候选配置中的所述至少一个候选配置的响应包括:作为应用所述K1个候选配置中的所述第一候选配置的响应。
作为一个实施例,所述短语作为应用所述K1个候选配置中的所述至少一个候选配置的响应包括:当确定应用所述K1个候选配置中的所述至少一个候选配置时。
作为一个实施例,所述短语作为应用所述K1个候选配置中的所述至少一个候选配置的响应包括:当所述K1个候选配置中的所述至少一个候选配置被应用完成时。
作为一个实施例,所述短语作为应用所述K1个候选配置中的所述至少一个候选配置的响应包括:当所述K1个候选配置中的所述至少一个候选配置被成功应用时。
作为一个实施例,所述第四信令的接收者是所述第一候选小区的维持基站。
作为一个实施例,所述第四信令的接收者包括多个基站设备。
作为一个实施例,所述第四信令的接收者是所述K1个候选配置中的被应用的所述至少一个候选配置所对应的候选小区的维持基站。
作为一个实施例,所述第四信令包括至少一个UCI。
作为一个实施例,所述第四信令包括至少一个PUSCH。
作为一个实施例,所述第四信令包括至少一个PUCCH。
作为一个实施例,所述第四信令的接收者包括一个基站设备。
作为一个实施例,所述第四信令是一个UCI。
作为一个实施例,所述第四信令是一个PUSCH。
作为一个实施例,所述第四信令是一个PUCCH。
作为一个实施例,所述第四信令是一个ACK。
作为一个实施例,所述第四信令包括至少一个ACK。
作为一个实施例,所述第四信令指示所述K1个候选配置中的一个或者多个候选配置。
作为一个实施例,所述第四信令指示所述K1个候选配置中的每个候选配置。
作为一个实施例,所述第四信令指示所述K1个候选配置中的大于1个并且小于K1个候选配置。
作为一个实施例,所述短语所述第四信令被用于指示所述K1个候选配置中的至少一个候选配置被应用包括:所述第四信令被用于指示所述K1个候选配置中的每个候选配置被应用。
作为一个实施例,所述短语所述第四信令被用于指示所述K1个候选配置中的至少一个候选配置被应用包括:所述第四信令被用于指示所述K1个候选配置中的一个或者多个候选配置被应用。
作为一个实施例,所述第四信令指示所述K1个候选配置中的所述至少一个候选配置的标识。
作为一个实施例,所述第四信令指示所述K1个候选配置中的所述至少一个候选配置和所述至少一个候选配置所对应的服务小区。
作为一个实施例,被用于承载所述第四信令的PUCCH资源被用于指示所述K1个候选配置中的一个候选配置被应用。
作为一个实施例,所述第四信令指示所述至少一个候选配置中的一个候选配置。
作为一个实施例,虚线方框F7.1是可选的。
作为一个实施例,所述虚线方框F7.1存在。
作为该实施例的一个子实施例,所述第四信令被发送。
作为该实施例的一个子实施例,所述第四信令被发送之前,所述K1个候选配置中的至少一个候选配置被应用完成。
作为该实施例的一个子实施例,所述第四信令被发送之前,所述K1个候选配置中的至少所述第一候选配置被应用完成。
作为一个实施例,所述虚线方框F7.1不存在。
作为该实施例的一个子实施例,所述第四信令未被发送。
作为该实施例的一个子实施例,所述K1个候选配置中的至少所述第一候选配置未被应用完成。
作为该实施例的一个子实施例,所述K1个候选配置中的每个候选配置未被应用完成。
实施例8
实施例8示例了根据本申请的一个实施例的第一条件包括第一候选小区被配置免随机接入的示意图。
在实施例8中,所述第一条件包括所述第一候选小区被配置免随机接入。
作为一个实施例,至少所述第一候选小区被配置免随机接入被用于在所述K1个候选小区中确定所述第一候选小区。
作为一个实施例,至少所述第一候选小区被配置免随机接入被用于在所述K1个候选小区中优先选择所述第一候选小区。
作为一个实施例,所述第一候选小区被配置免随机接入并且所述第三候选小区未被配置免随机接入被用于确定所述第一候选小区的优先级高于第三候选小区的优先级;所述第三候选小区是所述K1个候选小区中的一个候选小区。
作为一个实施例,作为所述第一信令被接收的响应,如果所述第一候选小区被配置免随机接入,在所述K1个候选小区中确定所述第一候选小区。
作为一个实施例,作为所述第一信令被接收的响应,如果所述第一候选小区和第三候选小区被配置免随机接入,在至少所述第一候选小区和所述第三候选小区中确定所述第一候选小区。
作为一个实施例,作为所述第一信令被接收的响应,如果所述第一候选小区被配置免随机接入并且所 述第三候选小区未被配置免随机接入,在至少所述第一候选小区和所述第三候选小区中确定所述第一候选小区;所述第三候选小区是所述K1个候选小区中的一个候选小区。
作为一个实施例,所述K1个候选小区中的至少一个候选小区未被配置免随机接入。
作为一个实施例,所述第一候选配置被应用时,不触发随机接入过程;所述第一候选小区被配置免随机接入。
作为一个实施例,所述短语所述第一候选小区被配置免随机接入包括:所述第二信令指示所述第一候选小区允许免随机接入。
作为该实施例的一个子实施例,所述第二信令中的一个域指示所述第一候选小区允许免随机接入。
作为该实施例的一个子实施例,所述第二信令中的一个候选配置指示所述第一候选小区允许免随机接入。
作为该实施例的一个子实施例,所述第二信令中的所述第一候选配置指示所述第一候选小区允许免随机接入。
作为该实施例的一个子实施例,所述第二信令中的所述第一候选配置中的一个域指示所述第一候选小区允许免随机接入。
作为一个实施例,所述短语所述第一候选小区被配置免随机接入包括:所述第一信令指示所述第一候选小区允许免随机接入。
作为该实施例的一个子实施例,所述第一信令中的一个域指示所述第一候选小区允许免随机接入。
作为该实施例的一个子实施例,所述第一信令中的一个候选配置信息块指示所述第一候选小区允许免随机接入。
作为该实施例的一个子实施例,所述第一信令中的所述第一候选小区对应的候选配置信息块指示所述第一候选小区允许免随机接入。
作为该实施例的一个子实施例,所述第一信令中的所述第一候选小区对应的候选配置信息块中的一个域指示所述第一候选小区允许免随机接入。
作为一个实施例,所述第一候选小区是所述K1个候选小区中的被配置免随机接入的至少一个候选小区中的一个候选小区。
作为一个实施例,所述K1个候选小区中的多个候选小区被配置免随机接入,所述第一候选小区是所述多个候选小区中的一个候选小区。
作为该实施例的一个子实施例,所述第一候选小区是所述多个候选小区中的任一候选小区。
作为该实施例的一个子实施例,所述第一候选小区是所述多个候选小区中被所述第一节点确定的任一候选小区。
作为该实施例的一个子实施例,所述第一候选小区是所述多个候选小区中的满足所述第一条件的一个候选小区。
作为一个实施例,所述K1个候选小区中的仅一个候选小区被配置免随机接入,所述第一候选小区是所述仅一个候选小区。
作为一个实施例,所述短语所述第一候选小区被配置免随机接入包括:所述第一候选小区被指示免随机接入。
作为一个实施例,所述短语所述第一候选小区被配置免随机接入包括:所述第一候选小区被允许执行基于免随机接入的移动性。
实施例9
实施例9示例了根据本申请的一个实施例的第一条件包括第一计时器正在运行的示意图,如附图9所示。
在实施例9中,所述第一条件包括第一计时器正在运行;所述第一计时器被用于确定所述第一候选小区的上行链路是否时间对齐。
作为一个实施例,至少所述第一计时器正在运行被用于在所述K1个候选小区中确定所述第一候选小区。
作为一个实施例,至少所述第一计时器正在运行被用于在所述K1个候选小区中优先选择所述第一候 选小区。
作为一个实施例,至少所述第一候选小区被配置免随机接入并且所述第一计时器正在运行被用于在所述K1个候选小区中确定所述第一候选小区。
作为一个实施例,至少所述第一候选小区被配置免随机接入并且所述第一计时器正在运行在所述K1个候选小区中优先选择所述第一候选小区。
作为一个实施例,所述第一候选配置被应用时,不触发随机接入过程;所述第一候选小区被配置免随机接入并且所述第一计时器正在运行。
作为一个实施例,所述第一信令被接收时,所述第一计时器正在运行。
作为一个实施例,所述第一条件包括至少所述第一计时器正在运行。
作为一个实施例,所述第一条件是所述第一计时器正在运行。
作为一个实施例,所述第一条件包括所述第一候选小区被配置免随机接入并且所述第一计时器正在运行。
作为一个实施例,所述第一计时器是MAC子层计时器。
作为一个实施例,所述第一计时器是一个timeAlignmentTimer。
作为一个实施例,所述第一计时器的名字中包括timeAlignmentTimer。
作为一个实施例,所述第一计时器被关联到第一TAG,所述第一候选小区被配置给所述第一TAG。
作为一个实施例,所述第一计时器是所述第一TAG所关联的timeAlignmentTimer,所述第一候选小区属于所述第一TAG。
作为一个实施例,所述第一候选配置指示所述第一候选小区属于所述第一TAG。
作为一个实施例,所述第一候选配置包括所述第一TAG的标识,所述第一候选小区属于所述第一TAG。
作为一个实施例,被用于确定一个候选小区的上行链路是否时间对齐的计时器是一个timeAlignmentTimer。
作为一个实施例,被用于确定一个候选小区的上行链路是否时间对齐的计时器的名字中包括timeAlignmentTimer。
作为一个实施例,被用于确定一个候选小区所属的TAG中的任一小区的上行链路是否时间对齐的计时器是一个timeAlignmentTimer。
作为一个实施例,被用于确定一个候选小区所属的TAG中的任一小区的上行链路是否时间对齐的计时器的名字中包括timeAlignmentTimer。
作为一个实施例,被用于确定所述K1个候选小区中的至少一个候选小区的上行链路是否时间对齐的至少一个计时器不在运行。
作为一个实施例,被用于确定所述K1个候选小区中的所述第一候选小区之外的任一候选小区的上行链路是否时间对齐的计时器不在运行。
作为一个实施例,被用于确定所述K1个候选小区中的所述第一候选小区之外的任一候选小区的上行链路是否时间对齐的至少一个计时器不在运行。
作为一个实施例,所述第一计时器正在运行并且第二计时器不在运行被用于确定所述第一候选小区的优先级高于第三候选小区的优先级;所述第二计时器被用于确定所述第三候选小区的上行链路是否时间对齐;所述第三候选小区是所述K1个候选小区中的一个候选小区。
作为一个实施例,作为接收所述第一信令的响应,如果至少所述第一计时器正在运行,在所述K1个候选小区中确定所述第一候选小区。
作为一个实施例,作为接收所述第一信令的响应,如果至少所述第一计时器和第二计时器正在运行,在至少所述第一候选小区和所述第三候选小区中确定所述第一候选小区;所述第二计时器被用于确定所述第三候选小区的上行链路是否时间对齐;所述第三候选小区是所述K1个候选小区中的的一个候选小区。
作为一个实施例,作为接收所述第一信令的响应,如果所述第一候选小区被配置免随机接入并且所述第一计时器正在运行,并且,所述第三候选小区未被配置免随机接入或者所述第二计时器不在运行,在所述K1个候选小区中确定所述第一候选小区;所述第二计时器被用于确定所述第三候选小区的上行链路是否时间对齐;所述第三候选小区是所述K1个候选小区中的的一个候选小区。
作为一个实施例,所述第一计时器的运行状态被用于确定所述第一候选小区的上行链路是否时间对齐。
作为一个实施例,如果所述第一计时器正在运行,认为所述第一候选小区的上行链路时间对齐;如果所述第一计时器不在运行,认为所述第一候选小区的上行链路时间未对齐。
作为一个实施例,所述第一计时器被用于确定属于所述第一TAG中的任一小区的上行链路是否时间对齐,所述第一候选小区属于所述第一TAG。
作为一个实施例,所述第一计时器被用于确定属于所述第一候选小区所属的TAG的任一小区的上行链路是否时间对齐。
作为一个实施例,所述K1个候选小区中的任一候选小区被配置给一个TAG。
作为一个实施例,所述K1个候选小区中的任一候选小区被关联到一个timeAlignmentTimer。
作为一个实施例,所述K1个候选小区中的任一候选小区被关联到任一名字中包括timeAlignmentTimer的计时器。
作为一个实施例,所述K1个候选小区中的至少一个候选小区未被配置给任一TAG。
作为一个实施例,所述K1个候选小区中的至少一个候选小区未被关联到任一timeAlignmentTimer。
作为一个实施例,所述K1个候选小区中的至少一个候选小区未被关联到任一名字中包括timeAlignmentTimer的计时器。
实施例10
实施例10示例了根据本申请的一个实施例的第一信令的全部或者部分结构的示意图,如附图10所示。在附图10中,虚线方框1001表示服务小区标识域,方框1002表示候选小区信息块#1,方框1003表示候选小区信息块#2,虚线方框1004表示所述第一信令中的其他候选小区信息块。
在实施例10中,所述第一信令包括K1个候选小区信息块,所述K1个候选小区信息块中的每个候选小区信息块指示所述K1个候选小区中的一个候选小区;所述第一信令是一个MAC CE。
作为一个实施例,所述第一信令由所述K1个候选小区信息块组成。
作为一个实施例,所述第一信令由所述K1个候选小区信息块和一个服务小区标识域组成,所述一个服务小区标识域指示所述第一服务小区。
作为一个实施例,所述第一信令包括所述K1个候选小区信息块和所述服务小区标识域之外的至少一个MAC域;所述第一信令包括所述K1个候选小区信息块和所述服务小区标识域。
作为一个实施例,所述第一信令包括所述K1个候选小区信息块之外的至少一个MAC域;所述第一信令包括所述K1个候选小区信息块,并且,所述第一信令不包括所述服务小区标识域。
作为一个实施例,所述虚线方框1001是可选的。
作为一个实施例,所述虚线方框1001存在。
作为该实施例的一个子实施例,每个候选小区信息块由一个MAC域组成。
作为该实施例的一个子实施例,每个候选小区信息块由至少两个MAC域组成。
作为该实施例的一个子实施例,所述第一信令包括所述第一服务小区的服务小区标识。
作为该实施例的一个子实施例,所述第一信令包括一个服务小区标识域,所述一个服务小区标识域指示所述第一服务小区。
作为该实施例的一个子实施例,所述K1个候选小区信息块中的每个候选小区信息块不包括指示服务小区标识的域。
作为一个实施例,所述虚线方框1001不存在。
作为该实施例的一个子实施例,每个候选小区信息块由一个MAC域组成。
作为该实施例的一个子实施例,每个候选小区信息块由两个MAC域组成。
作为该实施例的一个子实施例,每个候选小区信息块由至少三个MAC域组成。
作为该实施例的一个子实施例,所述第一信令不包括任一服务小区的服务小区标识。
作为该实施例的一个子实施例,所述第一信令不包括任一服务小区标识域。
作为该实施例的一个子实施例,所述第一信令包括K1个服务小区标识域。
作为该实施例的一个子实施例,所述K1个候选小区信息块中的每个候选小区信息块包括一个服务小区标识域。
作为该子实施例的一个附属实施例,所述K1个候选配置分别被配置给K1个服务小区,所述第一服务小区是所述K1个服务小区中的一个服务小区;所述行为应用K1个候选配置中的至少一个候选配置包括:应用所述K1个候选配置中的每个候选配置;每个服务小区标识域指示所述K1个服务小区中的一个服务小区。
作为一个实施例,所述虚线方框1004是可选的。
作为一个实施例,所述虚线方框1004存在。
作为一个实施例,所述虚线方框1004不存在。
作为一个实施例,本示例不限制本申请中的每个候选小区信息块的数量。
作为一个实施例,本示例不限制本申请中的每个候选小区信息块的尺寸。
作为一个实施例,本示例不限制本申请中的每个候选小区信息块在所述第一信令中的位置。
实施例11
实施例11示例了根据本申请的另一个实施例的第一信令的全部或者部分结构的示意图,如附图11所示。在附图11中,粗实线方框1101表示第一比特位图的前8个比特,虚线方框1102表示所述第一比特位图的剩余比特,方框1103表示候选小区信息块#1,方框1104表示候选小区信息块#2,虚线方框1105表示所述第一信令中的其他候选小区信息块。
在实施例11中,所述第一信令包括K1个候选小区信息块和所述第一比特位图,所述K1个候选小区信息块中的每个候选小区信息块指示所述K1个候选小区中的一个候选小区;所述K1个候选配置分别被配置给K1个服务小区,所述第一服务小区是所述K1个服务小区中的一个服务小区;所述行为应用K1个候选配置中的至少一个候选配置包括:应用所述K1个候选配置中的每个候选配置;所述第一比特位图被用于指示所述K1个服务小区,所述第一比特位图中的每个比特被用于指示所述第一信令中是否包括所述每个比特对应的服务小区的候选小区信息块;所述第一信令是一个MAC CE。
作为一个实施例,所述第一比特位图中被设置为1的比特位被用于指示所述K1个服务小区。
作为一个实施例,所述第一比特位图中被设置为1的比特位对应的服务小区是所述K1个服务小区中的一个服务小区。
作为一个实施例,所述K1个服务小区中包括所述第一比特位图中被设置为1的任一比特位所对应的服务小区。
作为一个实施例,所述短语所述第一比特位图中一个比特被用于指示所述第一信令中是否包括所述一个比特对应的服务小区的候选小区信息块包括:如果所述第一比特位图中的一个比特位被设置为1,所述第一信令中包括所述的一个比特位对应的服务小区的候选小区信息块,如果所述第一比特位图中的一个比特位被设置为0,所述第一信令中不包括所述一个比特位对应的服务小区的候选小区信息块,所述i不小于0并且不大于N1-1的整数。
作为一个实施例,如果所述第一比特位图中的Ci被设置为1,所述第一信令中包括所述Ci对应的服务小区的候选小区信息块,如果所述第一比特位图中的Ci被设置为0,所述第一信令中不包括所述Ci对应的服务小区的候选小区信息块,所述i不小于0并且不大于N1-1的整数。
作为一个实施例,如果所述第一比特位图中的C0和C2被设置为1并且其余比特被设置为0,所述第一信令包括所述C0对应的服务小区的候选小区信息块和所述C2对应的服务小区的候选小区信息块,所述候选小区信息块#1是所述C0对应的服务小区的候选小区信息块,所述候选小区信息块#2是所述C2对应的服务小区的候选小区信息块;其中,所述第一比特位图由1个八位组组成。
作为一个实施例,如果所述第一比特位图中的C2、C4和C5被设置为1并且其余比特被设置为0,所述第一信令包括所述C2对应的服务小区的候选小区信息块、所述C4对应的服务小区的候选小区信息块和所述C5对应的服务小区的候选小区信息块,所述候选小区信息块#1是所述C2对应的服务小区的候选小区信息块,所述候选小区信息块#2是所述C4对应的服务小区的候选小区信息块,所述方框1105中的候选小区信息块是所述C5对应的服务小区的候选小区信息块;其中,所述第一比特位图由1个八位组组成。
作为一个实施例,所述第一比特位图中被设置为1的比特的数量和K1相等。
作为一个实施例,所述第一比特位图的尺寸是N1个比特,所述N1是正整数。
作为一个实施例,所述第一比特位图的尺寸是N1/8个八位组。
作为一个实施例,所述N1是8的正整数倍。
作为一个实施例,所述N1是8。
作为一个实施例,所述N1大于8。
作为一个实施例,所述N1是16。
作为一个实施例,所述N1是32。
作为一个实施例,所述第一比特位图包括至少C0、C1、C2、C3、C4、C5、C6、C7八个比特位。
作为一个实施例,所述第一比特位图中的比特位Ci指示第i个服务小区,所述i不小于0并且不大于N1-1的整数。
作为一个实施例,所述第一比特位图中的比特位C0指示SpCell,比特位C1、C2、C3、C4、C5、C6、C7指示SCell。
作为一个实施例,所述第一比特位图中的比特位Ci指示ServCellIndex等于i的服务小区,所述i不小于0并且不大于N1-1的整数。
作为一个实施例,所述第一信令由所述K1个候选小区信息块和所述第一比特位图组成。
作为一个实施例,所述第一信令包括所述K1个候选小区信息块和所述第一比特位图之外的至少一个MAC域。
作为一个实施例,所述虚线方框1102是可选的。
作为一个实施例,所述虚线方框1102存在。
作为一个实施例,所述虚线方框1102不存在。
作为一个实施例,所述虚线方框1105是可选的。
作为一个实施例,所述虚线方框1105存在。
作为一个实施例,所述虚线方框1105不存在。
作为一个实施例,本示例不限制本申请中的所述第一比特位图的尺寸。
作为一个实施例,本示例不限制本申请中的所述第一比特位图中被设置为1的比特的个数。
作为一个实施例,本示例不限制本申请中的所述第一比特位图中的每个域的名称。
作为一个实施例,本示例不限制本申请中的所述第一比特位图中的Ci的名称。
作为一个实施例,本示例不限制本申请中的每个候选小区信息块的数量。
作为一个实施例,本示例不限制本申请中的每个候选小区信息块的尺寸。
作为一个实施例,本示例不限制本申请中的每个候选小区信息块在所述第一信令中的位置。
作为一个实施例,本示例不限制本申请中的所述第一比特位图和候选小区信息块在所述第一信令中的位置。
实施例12
实施例12示例了根据本申请的再一个实施例的无线信号传输流程图,如附图12所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S12101中,目标条件被满足;在步骤S12102中,当目标条件被满足时,在所述K1个候选小区中确定第二候选小区;在步骤S12103中,应用所述K1个候选配置中的第二候选配置;在步骤S12104中,作为应用所述K1个候选配置中的所述至少一个候选配置的响应,发送第四信令。
对于第三节点N03,在步骤S12301中,接收所述第四信令。
在实施例12中,所述第二候选配置被配置给所述第二候选小区;所述目标条件包括所述第一候选配置被应用失败。
所述第一处理机,当目标条件被满足时,在所述K1个候选小区中确定第二候选小区,并且,应用所述K1个候选配置中的第二候选配置;所述第二候选配置被配置给所述第二候选小区;所述目标条件包括所述第一候选配置被应用失败。
作为一个实施例,所述目标条件包括所述第一信令指示多个候选小区,所述第一信令指示多个候选小区被用于确定所述第一候选配置被应用失败后执行所述第二候选配置。
作为一个实施例,所述目标条件包括所述第一信令指示包括一个指示,所述一个指示被用于确定所述第一候选配置被应用失败后执行所述第二候选配置。
作为一个实施例,所述目标条件包括所述第二信令指示包括一个指示,所述一个指示被用于确定所述第一候选配置被应用失败后执行所述第二候选配置。
作为一个实施例,所述目标条件与所述第二候选小区是否被配置免随机接入有关。
作为一个实施例,所述目标条件与所述第二候选小区是否被配置免随机接入无关。
作为一个实施例,所述目标条件与被用于确定所述第二候选小区的上行链路是否时间对齐的计时器有关。
作为一个实施例,所述目标条件与被用于确定所述第二候选小区的上行链路是否时间对齐的计时器无关。
作为一个实施例,一个计时器过期被用于确定所述第一候选配置被应用失败。
作为该实施例的一个子实施例,所述一个计时器是T304。
作为该实施例的一个子实施例,所述一个计时器是T304-r18。
作为该实施例的一个子实施例,所述一个计时器是MAC子层计时器。
作为该实施例的一个子实施例,所述一个计时器被用于LTM。
作为该实施例的一个子实施例,所述一个计时器被配置给所述第一候选小区。
作为一个实施例,在所述第一候选小区上的随机接入失败被用于确定所述第一候选配置被应用失败。
作为一个实施例,在所述第一候选小区上的下行链路同步失败被用于确定所述第一候选配置被应用失败。
作为一个实施例,所述第二候选小区是所述K1个候选小区中的优先级次高的候选小区。
作为一个实施例,所述第二候选小区是所述K1个候选小区中的被所述第一节点确定的一个候选小区。
作为一个实施例,作为所述第二候选配置被应用失败的响应,所述第一节点的MAC子层给所述第一节点的RRC子层发送一个指示;所述第一节点在RRC子层接收所述一个指示;作为所述第一节点在RRC子层接收所述一个指示的响应,认为MCG发生无线链路失败(Radio Link Failure,RLF)。
作为一个实施例,所述K1等于2。
作为一个实施例,所述K1大于2。
作为一个实施例,另一个计时器过期被用于确定所述第二候选配置被应用失败。
作为该实施例的一个子实施例,所述另一个计时器是T304。
作为该实施例的一个子实施例,所述另一个计时器是T304-r18。
作为该实施例的一个子实施例,所述另一个计时器是MAC子层计时器。
作为该实施例的一个子实施例,所述另一个计时器被用于LTM。
作为该实施例的一个子实施例,所述另一个计时器是所述一个计时器。
作为该实施例的一个子实施例,所述另一个计时器被配置给所述第二候选小区。
作为一个实施例,所述第三节点是所述第二候选小区的维持基站。
作为一个实施例,虚线方框F12.1是可选的。
作为一个实施例,所述虚线方框F12.1存在。
作为该实施例的一个子实施例,所述第四信令被发送。
作为该实施例的一个子实施例,所述第四信令被发送之前,所述第二候选配置被应用完成。
作为该实施例的一个子实施例,作为所述第二候选配置被应用完成的响应,发送所述第四信令。
作为该实施例的一个子实施例,所述第四信令指示所述第二候选配置被应用完成。
作为该实施例的一个子实施例,所述第四信令的接收者是所述第二候选小区的维持基站被用于指示所述第二候选配置被应用。
作为该实施例的一个子实施例,所述第四信令包括所述第二候选配置的候选配置标识被用于指示所述第二候选配置被应用。
作为该实施例的一个子实施例,所述第四信令包括所述第二候选小区的候选小区标识被用于指示所述第二候选配置被应用。
作为一个实施例,所述虚线方框F12.1不存在。
作为该实施例的一个子实施例,所述第四信令未被发送。
作为该实施例的一个子实施例,所述第二候选配置未被应用。
作为该实施例的一个子实施例,所述第二候选配置被应用失败。
实施例13
实施例13示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图13所示。在附图13中,第一节点中的处理装置1300包括第一处理机1301。
第一处理机1301,接收第一信令,所述第一信令指示K1个候选小区,所述K1个候选小区被配置给至少第一服务小区,所述K1是大于1的整数;伴随所述第一信令,应用K1个候选配置中的至少一个候选配置;
实施例13中,所述第一信令被用于移动性控制;所述K1个候选配置分别对应所述K1个候选小区;所述K1个候选配置中的每个候选配置中包括所述K1个候选小区中的一个候选小区的候选小区标识;所述K1个候选小区中的任意两个候选小区的候选小区标识不同;所述第一信令被用于触发所述行为应用K1个候选配置中的至少一个候选配置。
作为一个实施例,所述第一处理机1301,接收第二信令,所述第二信令被用于确定K2个候选配置;其中,所述第二信令是RRC子层信令;所述K1个候选配置中的每个候选配置是所述K2个候选配置中的一个候选配置;所述K1不大于所述K2。
作为一个实施例,所述第一处理机1301,发送第三信令,所述第三信令指示至少所述K1个候选小区的测量结果;其中,所述第三信令是RRC子层之下的信令;所述第三信令被用于触发所述第一信令。
作为一个实施例,所述K1个候选配置分别被配置给K1个服务小区,所述第一服务小区是所述K1个服务小区中的一个服务小区;所述行为应用K1个候选配置中的至少一个候选配置包括:应用所述K1个候选配置中的每个候选配置。
作为一个实施例,所述第一处理机1301,在所述K1个候选小区中确定第一候选小区;其中,至少第一条件被满足被用于在所述K1个候选小区中确定所述第一候选小区;所述第一条件与所述K1个候选小区的测量结果无关;所述行为应用K1个候选配置中的至少一个候选配置包括:应用所述K1个候选配置中的第一候选配置;所述K1个候选配置被配置给所述第一服务小区;所述第一候选配置是所述K1个候选配置中的一个候选配置。
作为一个实施例,所述第一条件包括所述第一候选小区被配置免随机接入。
作为一个实施例,所述第一条件包括第一计时器正在运行;所述第一计时器被用于确定所述第一候选小区的上行链路是否时间对齐。
作为一个实施例,所述第一处理机1301,作为应用所述K1个候选配置中的所述至少一个候选配置的响应,发送第四信令;其中,所述第四信令被用于指示所述K1个候选配置中的至少一个候选配置被应用。
作为一个实施例,所述第一处理机1301包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467。
作为一个实施例,所述第一处理机1301包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456。
作为一个实施例,所述第一处理机1301包括本申请附图4中的天线452,接收器454,接收处理器456。
作为一个实施例,所述第一处理机1301包括本申请附图4中的天线452,发射器454,多天线发射处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467。
作为一个实施例,所述第一处理机1301包括本申请附图4中的天线452,发射器454,多天线发射处理器457,发射处理器468。
作为一个实施例,所述第一处理机1301包括本申请附图4中的天线452,发射器454,发射处理器468。
实施例14
实施例14示例了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;如附图14所示。在附图14中,第二节点中的处理装置1400包括第二处理机1401。
第二处理机1401,发送第一信令,所述第一信令指示K1个候选小区,所述K1个候选小区被配置给至少第一服务小区,所述K1是大于1的整数;
实施例14中,伴随所述第一信令,K1个候选配置中的至少一个候选配置被应用;所述第一信令被用 于移动性控制;所述K1个候选配置分别对应所述K1个候选小区;所述K1个候选配置中的每个候选配置中包括所述K1个候选小区中的一个候选小区的候选小区标识;所述K1个候选小区中的任意两个候选小区的候选小区标识不同;所述第一信令被用于触发所述行为应用K1个候选配置中的至少一个候选配置。
作为一个实施例,所述第二处理机1401,发送第二信令,所述第二信令被用于确定K2个候选配置;其中,所述第二信令是RRC子层信令;所述K1个候选配置中的每个候选配置是所述K2个候选配置中的一个候选配置;所述K1不大于所述K2。
作为一个实施例,所述第二处理机1401,接收第三信令,所述第三信令指示至少所述K1个候选小区的测量结果;其中,所述第三信令是RRC子层之下的信令;所述第三信令被用于触发所述第一信令。
作为一个实施例,所述K1个候选配置分别被配置给K1个服务小区,所述第一服务小区是所述K1个服务小区中的一个服务小区;所述行为应用K1个候选配置中的至少一个候选配置包括:应用所述K1个候选配置中的每个候选配置。
作为一个实施例,第一候选小区在所述K1个候选小区中被确定;至少第一条件被满足被用于在所述K1个候选小区中确定所述第一候选小区;所述第一条件与所述K1个候选小区的测量结果无关;所述行为应用K1个候选配置中的至少一个候选配置包括:应用所述K1个候选配置中的第一候选配置;所述K1个候选配置被配置给所述第一服务小区;所述第一候选配置是所述K1个候选配置中的一个候选配置。
作为一个实施例,所述第一条件包括所述第一候选小区被配置免随机接入。
作为一个实施例,所述第一条件包括第一计时器正在运行;所述第一计时器被用于确定所述第一候选小区的上行链路是否时间对齐。
作为一个实施例,所述第二处理机1401,接收第四信令;其中,作为应用所述K1个候选配置中的所述至少一个候选配置的响应,所述第四信令被发送;所述第四信令被用于指示所述K1个候选配置中的至少一个候选配置被应用。
作为一个实施例,所述第二处理机1401包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475,存储器476。
作为一个实施例,所述第二处理机1401包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416。
作为一个实施例,所述第二处理机1401包括本申请附图4中的天线420,发射器418,发射处理器416。
作为一个实施例,所述第二处理机1401包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475,存储器476。
作为一个实施例,所述第二处理机1401包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470。
作为一个实施例,所述第二处理机1401包括本申请附图4中的天线420,接收器418,接收处理器470。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一处理机,接收第一信令,所述第一信令指示K1个候选小区,所述K1个候选小区被配置给至少第一服务小区,所述K1是大于1的整数;伴随所述第一信令,应用K1个候选配置中的至少一个候选配置;
    其中,所述第一信令被用于移动性控制;所述K1个候选配置分别对应所述K1个候选小区;所述K1个候选配置中的每个候选配置中包括所述K1个候选小区中的一个候选小区的候选小区标识;所述K1个候选小区中的任意两个候选小区的候选小区标识不同;所述第一信令被用于触发所述行为应用K1个候选配置中的至少一个候选配置。
  2. 根据权利要求1所述的第一节点,其特征在于,包括:
    所述第一处理机,接收第二信令,所述第二信令被用于确定K2个候选配置;
    其中,所述第二信令是RRC子层信令;所述K1个候选配置中的每个候选配置是所述K2个候选配置中的一个候选配置;所述K1不大于所述K2。
  3. 根据权利要求1或2所述的第一节点,其特征在于,包括:
    所述第一处理机,发送第三信令,所述第三信令指示至少所述K1个候选小区的测量结果;
    其中,所述第三信令是RRC子层之下的信令;所述第三信令被用于触发所述第一信令。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,所述K1个候选配置分别被配置给K1个服务小区,所述第一服务小区是所述K1个服务小区中的一个服务小区;所述行为应用K1个候选配置中的至少一个候选配置包括:应用所述K1个候选配置中的每个候选配置。
  5. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一处理机,在所述K1个候选小区中确定第一候选小区;
    其中,至少第一条件被满足被用于在所述K1个候选小区中确定所述第一候选小区;所述第一条件与所述K1个候选小区的测量结果无关;所述行为应用K1个候选配置中的至少一个候选配置包括:应用所述K1个候选配置中的第一候选配置;所述K1个候选配置被配置给所述第一服务小区;所述第一候选配置是所述K1个候选配置中的一个候选配置。
  6. 根据权利要求5所述的第一节点,其特征在于,所述第一条件包括所述第一候选小区被配置免随机接入。
  7. 根据权利要求5或6所述的第一节点,其特征在于,所述第一条件包括第一计时器正在运行;所述第一计时器被用于确定所述第一候选小区的上行链路是否时间对齐。
  8. 根据权利要求1至7中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一处理机,作为应用所述K1个候选配置中的所述至少一个候选配置的响应,发送第四信令;
    其中,所述第四信令被用于指示所述K1个候选配置中的至少一个候选配置被应用。
  9. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二处理机,发送第一信令,所述第一信令指示K1个候选小区,所述K1个候选小区被配置给至少第一服务小区,所述K1是大于1的整数;
    其中,伴随所述第一信令,K1个候选配置中的至少一个候选配置被应用;所述第一信令被用于移动性控制;所述K1个候选配置分别对应所述K1个候选小区;所述K1个候选配置中的每个候选配置中包括所述K1个候选小区中的一个候选小区的候选小区标识;所述K1个候选小区中的任意两个候选小区的候选小区标识不同;所述第一信令被用于触发所述行为应用K1个候选配置中的至少一个候选配置。
  10. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信令,所述第一信令指示K1个候选小区,所述K1个候选小区被配置给至少第一服务小区,所述K1是大于1的整数;
    伴随所述第一信令,应用K1个候选配置中的至少一个候选配置;
    其中,所述第一信令被用于移动性控制;所述K1个候选配置分别对应所述K1个候选小区;所述K1个候选配置中的每个候选配置中包括所述K1个候选小区中的一个候选小区的候选小区标识;所述K1个候选小区中的任意两个候选小区的候选小区标识不同;所述第一信令被用于触发所述行为应用K1个候选配置中的至少一个候选配置。
  11. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信令,所述第一信令指示K1个候选小区,所述K1个候选小区被配置给至少第一服务小区,所述K1是大于1的整数;
    其中,伴随所述第一信令,K1个候选配置中的至少一个候选配置被应用;所述第一信令被用于移动性控制;所述K1个候选配置分别对应所述K1个候选小区;所述K1个候选配置中的每个候选配置中包括所述K1个候选小区中的一个候选小区的候选小区标识;所述K1个候选小区中的任意两个候选小区的候选小区标识不同;所述第一信令被用于触发所述行为应用K1个候选配置中的至少一个候选配置。
PCT/CN2023/129822 2022-11-18 2023-11-04 一种被用于无线通信的通信节点中的方法和装置 WO2024104208A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211447101.4A CN118057895A (zh) 2022-11-18 2022-11-18 一种被用于无线通信的通信节点中的方法和装置
CN202211447101.4 2022-11-18

Publications (1)

Publication Number Publication Date
WO2024104208A1 true WO2024104208A1 (zh) 2024-05-23

Family

ID=91068767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/129822 WO2024104208A1 (zh) 2022-11-18 2023-11-04 一种被用于无线通信的通信节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN118057895A (zh)
WO (1) WO2024104208A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200413308A1 (en) * 2019-06-28 2020-12-31 Samsung Electronics Co., Ltd. Device and method for performing handover in wireless communication system
WO2021029819A1 (en) * 2019-08-15 2021-02-18 Telefonaktiebolaget Lm Ericsson (Publ) Conditional handover in handover command
CN113498133A (zh) * 2020-04-03 2021-10-12 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置
CN114158058A (zh) * 2020-09-04 2022-03-08 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置
CN115226222A (zh) * 2020-01-02 2022-10-21 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备
CN115244985A (zh) * 2020-04-09 2022-10-25 中兴通讯股份有限公司 用于移动性增强的系统和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200413308A1 (en) * 2019-06-28 2020-12-31 Samsung Electronics Co., Ltd. Device and method for performing handover in wireless communication system
WO2021029819A1 (en) * 2019-08-15 2021-02-18 Telefonaktiebolaget Lm Ericsson (Publ) Conditional handover in handover command
CN115226222A (zh) * 2020-01-02 2022-10-21 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备
CN113498133A (zh) * 2020-04-03 2021-10-12 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置
CN115244985A (zh) * 2020-04-09 2022-10-25 中兴通讯股份有限公司 用于移动性增强的系统和方法
CN114158058A (zh) * 2020-09-04 2022-03-08 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANTONINO ORSINO, ERICSSON: "Description of overall LTM procedure", 3GPP TSG-RAN WG2 #120, R2-2212437, 4 November 2022 (2022-11-04), XP052216509 *
SU YI, FUJITSU: "RRC aspects of L1/L2 triggered mobility", 3GPP TSG-RAN WG2 MEETING #120, R2-2211846, 4 November 2022 (2022-11-04), XP052215939 *
XUE LIN, OPPO: "Discussion on general pocedure for LTM", 3GPP TSG-RAN WG2 MEETING #120, R2-2211861, 4 November 2022 (2022-11-04), XP052215952 *

Also Published As

Publication number Publication date
CN118057895A (zh) 2024-05-21

Similar Documents

Publication Publication Date Title
WO2020020005A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018103444A1 (zh) 一种用于功率调整的用户设备、基站中的方法和装置
WO2020057362A1 (zh) 一种被用于无线通信节点中的方法和装置
US20240089058A1 (en) Method and device in nodes used for wireless communication
CN113395716B (zh) 一种被用于无线通信的通信节点中的方法和装置
US20230300936A1 (en) Method and device for wireless communication
WO2020038208A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2024104208A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023138486A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024125244A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024120191A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024067538A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024022238A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024120140A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023045864A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024120139A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023207604A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024067799A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023040922A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024114346A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023041080A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023207709A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024078434A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023226924A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024017078A1 (zh) 一种被用于无线通信的通信节点中的方法和装置