WO2024114346A1 - 一种被用于无线通信的通信节点中的方法和装置 - Google Patents

一种被用于无线通信的通信节点中的方法和装置 Download PDF

Info

Publication number
WO2024114346A1
WO2024114346A1 PCT/CN2023/131166 CN2023131166W WO2024114346A1 WO 2024114346 A1 WO2024114346 A1 WO 2024114346A1 CN 2023131166 W CN2023131166 W CN 2023131166W WO 2024114346 A1 WO2024114346 A1 WO 2024114346A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
signaling
resource block
resource blocks
Prior art date
Application number
PCT/CN2023/131166
Other languages
English (en)
French (fr)
Inventor
于巧玲
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024114346A1 publication Critical patent/WO2024114346A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, and in particular to a transmission method and device for random access.
  • each time a UE (User Equipment) sends a Preamble it calculates a RA (Random Access)-RNTI (Radio Network Temporary Identifier) based on the PRACH timing used to send the Preamble, and monitors the PDCCH (Physical downlink control channel) scrambled by this RA-RNTI for the random access response (Random Access Response, RAR) in the ra-ResponseWindow.
  • RA Random Access
  • RAR Random Access Response
  • the present application provides a random access solution.
  • the NR system is used as an example; the present application is also applicable to scenarios such as the LTE system; further, although the original intention of the present application is for the Uu air interface, the present application can also be used for the PC5 port. Further, although the original intention of the present application is for the terminal and base station scenario, the present application is also applicable to the V2X (Vehicle-to-Everything) scenario, the communication scenario between the terminal and the relay, and the relay and the base station, to achieve similar technical effects in the terminal and base station scenario.
  • V2X Vehicle-to-Everything
  • the present application is also applicable to the IAB (Integrated Access and Backhaul) communication scenario, to achieve similar technical effects in the terminal and base station scenario.
  • the original intention of the present application is for the terrestrial network (Terrestrial Network) scenario
  • the present application is also applicable to the non-terrestrial network (Non-Terrestrial Network, NTN) communication scenario, to achieve similar technical effects in the TN scenario.
  • using a unified solution for different scenarios can also help reduce hardware complexity and costs.
  • the present application discloses a method in a first node used for wireless communication, characterized by comprising:
  • K1 is an integer greater than 1
  • K1 is an integer greater than 1
  • Each of the K1 time-frequency resource blocks is configured for a Preamble; the K1 time-frequency resource blocks are associated with Q1 RS (Reference Signal) resources, and the Q1 RS resources include at least one RS resource; and Q1 is a positive integer not greater than K1.
  • Q1 RS Reference Signal
  • the number of the at least one candidate RNTI used to monitor the first signaling is related to the Q1.
  • the number of the at least one candidate RNTI used to monitor the first signaling is equal to the number of time-frequency resource block groups; the K1 time-frequency resource blocks are composed of at least one time-frequency resource block group, and each time-frequency resource block group in the at least one time-frequency resource block group includes at least one time-frequency resource block among the K1 time-frequency resource blocks.
  • the problem to be solved by the present application includes: how to improve random access performance.
  • the problem to be solved by the present application includes: how to monitor the first signaling.
  • the problem to be solved by the present application includes: how to determine the RNTI used to monitor the first signaling.
  • the characteristics of the above method include: using at least one candidate RNTI to monitor the first signaling, and the number of the at least one candidate RNTI used to monitor the first signaling is related to the Q1.
  • the characteristics of the above method include: the number of the at least one candidate RNTI used to monitor the first signaling depends on the Q1.
  • the characteristics of the above method include: the number of the at least one candidate RNTI used to monitor the first signaling is related to the Q1 RS resources.
  • the characteristics of the above method include: the Q1 RS resources are used to determine the number of candidate RNTIs used to monitor the first signaling.
  • the benefits of the above method include: reducing UE power consumption.
  • the relationship between the number of the at least one candidate RNTI used for monitoring the first signaling and the Q1 includes: the number of the at least one candidate RNTI used for monitoring the first signaling is equal to 1 and the Q1 is equal to 1, or the number of the at least one candidate RNTI used for monitoring the first signaling is greater than 1 and the Q1 is greater than 1.
  • the relationship between the number of the at least one candidate RNTI used by the phrase to monitor the first signaling and the Q1 includes: the number of the at least one candidate RNTI used to monitor the first signaling is equal to the Q1.
  • the at least one candidate RNTI used for monitoring the first signaling includes at least a first candidate RNTI and a second candidate RNTI; a first time-frequency resource block group is used to determine the first candidate RNTI, the first time-frequency resource block group includes at least one time-frequency resource block among the K1 time-frequency resource blocks, and the first time-frequency resource block group is associated with a first RS resource; a second time-frequency resource block group is used to determine a second candidate RNTI, the second time-frequency resource block group includes at least one time-frequency resource block among the K1 time-frequency resource blocks, and the second time-frequency resource block group is associated with a second RS resource; the first RS resource and the second RS resource are respectively one RS resource among the Q1 RS resources; and Q1 is greater than 1.
  • the characteristics of the above method include: a first time-frequency resource block group is used to determine the first candidate RNTI, and a second time-frequency resource block group is used to determine the second candidate RNTI.
  • the characteristics of the above method include: a time-frequency resource block group is used to determine a candidate RNTI.
  • the first time subwindow is used to monitor the first signaling by adopting the first candidate RNTI; and the second time subwindow is used to monitor the first signaling by adopting the second candidate RNTI.
  • the characteristics of the above method include: starting a time subwindow along with a Preamble sent by a time-frequency resource block in a time-frequency resource block group.
  • the present application is characterized in that at least the expiration of the first time subwindow and the expiration of the second time subwindow are used to trigger a first action set, and the first action set includes at least considering that the random access response reception is unsuccessful.
  • the characteristics of the above method include: each time sub-window expires and is used to trigger the first action set.
  • the characteristics of the above method include: as long as a time sub-window has not expired, the first action set is not triggered.
  • the characteristics of the above method include: as long as a time sub-window is running, the first action set is not triggered.
  • the benefits of the above method include: avoiding prematurely considering that the random access response reception is unsuccessful.
  • the expiration of the first time window is used to trigger a first action set, and the first action set includes at least considering that the random access response reception is unsuccessful.
  • the characteristics of the above method include: during the operation of the first time window, at least one time sub-window is activated.
  • the characteristics of the above method include: during the execution of the first time window, any time sub-window is not activated.
  • the characteristics of the above method include: expiration of the first time window is used to trigger a first set of actions.
  • the characteristics of the above method include: as long as the first time window is running, the first action set is not triggered.
  • the benefits of the above method include: avoiding prematurely considering that the random access response reception is unsuccessful.
  • a first RRC (Radio Resource Control) message is received, and the first RRC message is used to determine that the K1 time-frequency resource blocks are associated with the Q1 RS resources.
  • the present application discloses a method used in a second node of wireless communication, characterized by comprising:
  • K1 is an integer greater than 1
  • the first signaling is monitored by at least one candidate RNTI; each of the K1 time-frequency resource blocks is configured for the Preamble; the K1 time-frequency resource blocks are associated with Q1 RS resources, and the Q1 RS resources include at least one RS resource; Q1 is a positive integer not greater than K1.
  • the number of the at least one candidate RNTI used to monitor the first signaling is related to the Q1.
  • the number of the at least one candidate RNTI used to monitor the first signaling is equal to the number of time-frequency resource block groups; the K1 time-frequency resource blocks are composed of at least one time-frequency resource block group, and each time-frequency resource block group in the at least one time-frequency resource block group includes at least one time-frequency resource block among the K1 time-frequency resource blocks.
  • the relationship between the number of the at least one candidate RNTI used for monitoring the first signaling and the Q1 includes: the number of the at least one candidate RNTI used for monitoring the first signaling is equal to 1 and the Q1 is equal to 1, or the number of the at least one candidate RNTI used for monitoring the first signaling is greater than 1 and the Q1 is greater than 1.
  • the relationship between the number of the at least one candidate RNTI used by the phrase to monitor the first signaling and the Q1 includes: the number of the at least one candidate RNTI used to monitor the first signaling is equal to the Q1.
  • the at least one candidate RNTI used for monitoring the first signaling includes at least a first candidate RNTI and a second candidate RNTI; a first time-frequency resource block group is used to determine the first candidate RNTI, the first time-frequency resource block group includes at least one time-frequency resource block among the K1 time-frequency resource blocks, and the first time-frequency resource block group is associated with a first RS resource; a second time-frequency resource block group is used to determine a second candidate RNTI, the second time-frequency resource block group includes at least one time-frequency resource block among the K1 time-frequency resource blocks, and the second time-frequency resource block group is associated with a second RS resource; the first RS resource and the second RS resource are respectively one RS resource among the Q1 RS resources; and Q1 is greater than 1.
  • the first time subwindow is activated; accompanying the Preamble sent by a time-frequency resource block in the second time-frequency resource block group, the second time subwindow is activated; the first time subwindow is used to use the first candidate RNTI to monitor the first signaling; the second time subwindow is used to use the second candidate RNTI to monitor the first signaling.
  • the present application is characterized in that at least the expiration of the first time subwindow and the expiration of the second time subwindow are used to trigger a first action set, and the first action set includes at least considering that the random access response reception is unsuccessful.
  • a first time window is activated; the expiration of the first time window is used to trigger a first action set, and the first action set includes at least considering that the random access response reception is unsuccessful.
  • a first RRC message is sent, where the first RRC message is used to determine that the K1 time-frequency resource blocks are associated with the Q1 RS resources.
  • the present application discloses a first node used for wireless communication, characterized in that it includes:
  • the first processor sends a Preamble in K1 time-frequency resource blocks, where K1 is an integer greater than 1; After a time-frequency resource block in , at least one candidate RNTI is used to monitor a first signaling, where the first signaling is used to schedule a random access response;
  • Each of the K1 time-frequency resource blocks is configured for the Preamble; the K1 time-frequency resource blocks are associated with Q1 RS resources, and the Q1 RS resources include at least one RS resource; and Q1 is a positive integer not greater than K1.
  • the number of the at least one candidate RNTI used to monitor the first signaling is related to the Q1.
  • the number of the at least one candidate RNTI used to monitor the first signaling is equal to the number of time-frequency resource block groups; the K1 time-frequency resource blocks are composed of at least one time-frequency resource block group, and each time-frequency resource block group in the at least one time-frequency resource block group includes at least one time-frequency resource block among the K1 time-frequency resource blocks.
  • the present application discloses a second node used for wireless communication, characterized in that it includes:
  • a second receiver receives a Preamble sent in K1 time-frequency resource blocks, where K1 is an integer greater than 1;
  • a second transmitter sends a first signaling, where the first signaling is used to schedule a random access response
  • the first signaling is monitored by at least one candidate RNTI; each of the K1 time-frequency resource blocks is configured for the Preamble; the K1 time-frequency resource blocks are associated with Q1 RS resources, and the Q1 RS resources include at least one RS resource; Q1 is a positive integer not greater than K1.
  • the number of the at least one candidate RNTI used to monitor the first signaling is related to the Q1.
  • the number of the at least one candidate RNTI used to monitor the first signaling is equal to the number of time-frequency resource block groups; the K1 time-frequency resource blocks are composed of at least one time-frequency resource block group, and each time-frequency resource block group in the at least one time-frequency resource block group includes at least one time-frequency resource block among the K1 time-frequency resource blocks.
  • this application has the following advantages:
  • FIG1 shows a flow chart of transmission of a Preamble and a first signaling according to an embodiment of the present application
  • FIG2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG3 is a schematic diagram showing an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • FIG4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG5 shows a wireless signal transmission flow chart according to an embodiment of the present application
  • FIG6 is a schematic diagram showing the relationship between the number of at least one candidate RNTI used to monitor the first signaling and Q1 according to an embodiment of the present application;
  • FIG7 is a schematic diagram showing the relationship between the number of at least one candidate RNTI used for monitoring the first signaling and Q1 according to another embodiment of the present application;
  • FIG8 is a schematic diagram showing the relationship between candidate RNTIs, time-frequency resource block groups and RS resources according to an embodiment of the present application
  • FIG9 shows a flowchart of operations of the first time sub-window and the second time sub-window according to an embodiment of the present application
  • FIG10 shows a flow chart showing that the expiration of the first time sub-window and the expiration of the second time sub-window are used to trigger the first action set according to an embodiment of the present application
  • FIG11 shows a first time window operation flow chart according to an embodiment of the present application
  • FIG12 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present application
  • FIG13 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present application
  • FIG14 shows a schematic diagram of a first time sub-window and a second time sub-window according to an embodiment of the present application
  • FIG15 shows a schematic diagram of a first time window according to an embodiment of the present application.
  • FIG16 shows a schematic diagram of a first time window according to another embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of the transmission of the Preamble and the first signaling according to an embodiment of the present application, as shown in FIG1.
  • each box represents a step, and it should be emphasized that the order of the boxes in the figure does not represent the temporal sequence between the steps represented.
  • the first node in the present application sends a Preamble in K1 time-frequency resource blocks in step 101, where K1 is an integer greater than 1; in step 102, after one of the K1 time-frequency resource blocks, at least one candidate RNTI is used to monitor a first signaling, and the first signaling is used to schedule a random access response; wherein each of the K1 time-frequency resource blocks is configured for a Preamble; the K1 time-frequency resource blocks are associated with Q1 RS resources, and the Q1 RS resources include at least one RS resource; the number of the at least one candidate RNTI used to monitor the first signaling is related to Q1; and Q1 is a positive integer not greater than K1.
  • the K1 time-frequency resource blocks are used for one PRACH repetition.
  • the K1 time-frequency resource blocks are configured for one PRACH repetition.
  • the PRACH repetition includes: Msg1 (Message 1, message 1) repetition.
  • the PRACH repetition includes: RACH repetition.
  • the PRACH repetition includes: sending multiple PRACHs in one random access attempt.
  • the PRACH repetition includes: sending multiple PRACHs between two PREAMBLE_TRANSMISSION_COUNTER updates.
  • the PRACH repetition includes: sending multiple PRACHs between two PREAMBLE_POWER_RAMPING_COUNTER updates.
  • the PRACH repetition includes: multiple consecutive PRACHs.
  • the K1 time-frequency resource blocks are K1 PRACH occasions (Occasions).
  • the K1 time-frequency resource blocks correspond to K1 PRACH opportunities.
  • any two time-frequency resource blocks among the K1 time-frequency resource blocks do not overlap in the time domain.
  • any two time-frequency resource blocks among the K1 time-frequency resource blocks overlap in the time domain.
  • whether two time-frequency resource blocks among the K1 time-frequency resource blocks overlap in the time domain is configurable.
  • each of the K1 time-frequency resource blocks is a PRACH opportunity.
  • the Preamble is sent on each time-frequency resource block of K1 time-frequency resource blocks.
  • the Preamble is sent on at least the first time-frequency resource block of K1 time-frequency resource blocks.
  • the Preamble is not sent on at least the last time-frequency resource block of the K1 time-frequency resource blocks.
  • any two Preambles sent in the K1 time-frequency resource blocks are the same Preamble.
  • the Preambles sent by any two time-frequency resource blocks in the K1 time-frequency resource blocks are the same.
  • the Preambles sent in the two time-frequency resource blocks are different.
  • one time-frequency resource block is allocated to one uplink carrier.
  • a time-frequency resource block is configured to a UL (Uplink) BWP (Bandwidth Part).
  • one time-frequency resource block occupies one PRACH opportunity in the time domain.
  • a time-frequency resource block occupies multiple REs (Resource Element) in the time-frequency domain.
  • a time-frequency resource block includes time domain resources and frequency domain resources.
  • a time-frequency resource block includes time domain resources, frequency domain resources and code domain resources.
  • a time-frequency resource block includes time domain resources, frequency domain resources, space domain resources and code domain resources.
  • the PREAMBLE_POWER_RAMPING_COUNTER for the first random access process is not increased.
  • the PREAMBLE_TRANSMISSION_COUNTER for the first random access process is not increased.
  • the random access resource selection process is not performed within the time interval between any two Preambles sent by the K1 time-frequency resource blocks.
  • no random access type is set.
  • the maximum value of K1 is predefined.
  • the maximum value of K1 is configurable.
  • K1 is equal to 2.
  • K1 is equal to 4.
  • K1 is equal to 8.
  • the K1 time-frequency resource blocks are used to send a maximum of K1 preambles.
  • the K1 time-frequency resource blocks are used to determine the sending timing of at most K1 preambles.
  • the K1 time-frequency resource blocks are used to send K1 preambles.
  • the K1 time-frequency resource blocks are used to determine the sending timing of K1 preambles.
  • each time-frequency resource block in the K1 time-frequency resource blocks is reserved for Preamble.
  • each time-frequency resource block in the K1 time-frequency resource blocks is used to send a Preamble.
  • each time-frequency resource block in the K1 time-frequency resource blocks can be used to send a Preamble.
  • each of the K1 time-frequency resource blocks is configured for Preamble transmission.
  • each of the K1 time-frequency resource blocks is configured for at least one Preamble.
  • each of the K1 time-frequency resource blocks is reserved for one transmission of a Preamble.
  • each of the K1 time-frequency resource blocks includes a time domain resource used for a Preamble.
  • each of the K1 time-frequency resource blocks includes frequency domain resources used for a Preamble.
  • each of the K1 time-frequency resource blocks includes spatial domain resources used for a Preamble.
  • each of the K1 time-frequency resource blocks includes a Preamble.
  • each time-frequency resource block in the K1 time-frequency resource blocks is used for the same Preamble.
  • each time-frequency resource block in the K1 time-frequency resource blocks is used for at least two different preambles.
  • the Preamble sent in the K1 time-frequency resource blocks is configured for four-step random access.
  • the Preamble sent in the K1 time-frequency resource blocks is configured for two-step random access.
  • any two Preambles sent in the K1 time-frequency resource blocks are generated according to the same sequence.
  • the root sequences of any two Preambles sent in the K1 time-frequency resource blocks are the same.
  • the indexes of any two Preambles sent in the K1 time-frequency resource blocks are the same.
  • the Preambles sent in the two time-frequency resource blocks are generated according to different sequences.
  • any two time-frequency resource blocks among the K1 time-frequency resource blocks are configured to the same serving cell.
  • any two time-frequency resource blocks among the K1 time-frequency resource blocks are configured to a cell identified by the same PCI (Physical cell identifier).
  • time-frequency resource blocks among the K1 time-frequency resource blocks, which are configured for cells identified by different PCIs.
  • any time-frequency resource block among the K1 time-frequency resource blocks is configured to the same UL BWP.
  • any time-frequency resource block among the K1 time-frequency resource blocks is configured to the same uplink carrier.
  • the phrase after one time-frequency resource block among the K1 time-frequency resource blocks includes: after a given time-frequency resource block among the K1 time-frequency resource blocks.
  • the given time-frequency resource block is a reference time-frequency resource block among the K1 time-frequency resource blocks.
  • the given time-frequency resource block is any reference time-frequency resource block among the K1 time-frequency resource blocks.
  • the given time-frequency resource block is any time-frequency resource block among the K1 time-frequency resource blocks.
  • the given time-frequency resource block is the earliest time-frequency resource block in the time domain among the K1 time-frequency resource blocks.
  • the given time-frequency resource block is the latest time-frequency resource block in the time domain among the K1 time-frequency resource blocks.
  • the phrase after one of the K1 time-frequency resource blocks includes: after the one of the K1 time-frequency resource blocks sends a Preamble.
  • the phrase after one of the K1 time-frequency resource blocks includes: the first PDCCH opportunity after the one of the K1 time-frequency resource blocks sends the Preamble.
  • the phrase after one of the K1 time-frequency resource blocks includes: after a time domain cutoff time of the one of the K1 time-frequency resource blocks.
  • the phrase includes after one time-frequency resource block among the K1 time-frequency resource blocks: after a time domain cutoff moment.
  • At least one candidate RNTI is used to monitor the first signaling.
  • the behavior of "adopting at least one candidate RNTI to monitor the first signaling" includes: monitoring the first signaling according to the at least one candidate RNTI.
  • the behavior of "adopting at least one candidate RNTI to monitor the first signaling" includes: monitoring the first signaling for the at least one candidate RNTI.
  • the behavior of "adopting at least one candidate RNTI to monitor the first signaling" includes: monitoring the first signaling, the first signaling being scrambled by any candidate RNTI among the at least one candidate RNTI.
  • the behavior of "adopting at least one candidate RNTI to monitor the first signaling" includes: monitoring the first signaling, the first signaling being scrambled by any candidate RNTI among the at least one candidate RNTI.
  • the candidate RNTI used for monitoring the first signaling does not include C-RNTI (Cell Radio Network Temporary Identifier).
  • a second signaling is monitored, wherein the second signaling is used to schedule uplink grant for new transmission, and the second signaling is encrypted by C-RNTI; the Preamble sent in the K1 time-frequency resource blocks is configured for two-step random access.
  • a second signaling is monitored, where the second signaling is used to schedule Absolute Timing Advance Command MAC CE (Control Element), and the second signaling is scrambled by C-RNTI; the Preamble sent in the K1 time-frequency resource blocks is configured for two-step random access.
  • the second signaling is not required to be monitored, the second signaling is used to schedule link grant for new transmission, and the second signaling is encrypted by C-RNTI; the Preamble sent in the K1 time-frequency resource blocks is configured for four-step random access.
  • the second signaling is not required to be monitored, the second signaling is used to schedule Absolute Timing Advance Command MAC CE, and the second signaling is scrambled by C-RNTI; the Preamble sent in the K1 time-frequency resource blocks is configured for four-step random access.
  • any candidate RNTI used to monitor the first signaling is a RA-RNTI;
  • the preamble sent by the block is configured for four-step random access.
  • any candidate RNTI used to monitor the first signaling is a MSGB-RNTI; and the Preamble sent in the K1 time-frequency resource blocks is configured for two-step random access.
  • the monitoring refers to monitor.
  • the monitoring includes detection.
  • the listening includes monitoring.
  • the monitoring includes searching.
  • the "monitoring the first signaling” includes: determining whether the first signaling exists through a CRC (Cyclic Redundancy Check) check.
  • CRC Cyclic Redundancy Check
  • the "monitoring the first signaling” includes: searching for the first signaling on the PDCCH.
  • the first signaling is transmitted via PDCCH.
  • the first signaling is physical layer signaling.
  • the first signaling is a DCI.
  • the first signaling is a DCI scrambled by a candidate RNTI.
  • the first signaling is addressed to the one candidate RNTI.
  • the first signaling is identified by a candidate RNTI.
  • the CRC of the first signaling is scrambled by a candidate RNTI.
  • the first signaling is a DCI scrambled by any candidate RNTI among the at least one candidate RNTI.
  • the first signaling is addressed to any candidate RNTI among the at least one candidate RNTI.
  • the first signaling is identified by any candidate RNTI among at least one candidate RNTI.
  • the CRC of the first signaling is scrambled by any candidate RNTI of at least one candidate RNTI.
  • any candidate RNTI among the at least one candidate RNTI is a RA-RNTI.
  • any candidate RNTI among the at least one candidate RNTI is used for monitoring of random access response.
  • any candidate RNTI among the at least one candidate RNTI is a non-negative integer.
  • any candidate RNTI among the at least one candidate RNTI is a positive integer.
  • the format of the first signaling is DCI format 1_0.
  • the format of the first signaling is DCI format 1_1.
  • the format of the first signaling is DCI format 1_2.
  • the random access response is a MAC layer signaling.
  • the first signaling indicates the PDSCH (Physical downlink shared channel) resources occupied by the random access response.
  • PDSCH Physical downlink shared channel
  • the first signaling is used to indicate scheduling information of a PDSCH
  • the PDSCH is used to carry at least the random access response.
  • the random access response scheduled by the first signaling is a RAR; and the Preamble sent in the K1 time-frequency resource blocks is configured for four-step random access.
  • the random access response scheduled by the first signaling is a fallbackRAR; the Preamble sent in the K1 time-frequency resource blocks is configured for two-step random access.
  • the random access response scheduled by the first signaling is a successkRAR; and the Preamble sent in the K1 time-frequency resource blocks is configured for two-step random access.
  • the random access response scheduled by the first signaling includes a RAPID (Random Access Preamble IDentifier).
  • RAPID Random Access Preamble IDentifier
  • the random access response scheduled by the first signaling includes a BI (Backoff Indicator).
  • the random access response scheduled by the first signaling includes a MAC subPDU.
  • the random access response scheduled by the first signaling includes a MAC subPDU
  • the MAC subPDU consists of a MAC CE and a MAC subheader.
  • the random access response scheduled by the first signaling includes a MAC subPDU, wherein the MAC subPDU Consists of only a MAC subheader.
  • the random access response scheduled by the first signaling is a RAR.
  • the “K1 time-frequency resource blocks are associated with Q1 RS resources” includes: any RS resource among the Q1 RS resources is configured to one time-frequency resource block among the K1 time-frequency resource blocks.
  • the “K1 time-frequency resource blocks are associated with Q1 RS resources” includes: any RS resource among the Q1 RS resources is configured to one or more time-frequency resource blocks among the K1 time-frequency resource blocks.
  • the “the K1 time-frequency resource blocks are associated with Q1 RS resources” includes: any time-frequency resource block among the K1 time-frequency resource blocks is associated with one RS resource among the Q1 RS resources.
  • the “the K1 time-frequency resource blocks are associated with Q1 RS resources” includes: any time-frequency resource block among the K1 time-frequency resource blocks is configured to one RS resource among the Q1 RS resources.
  • the “the K1 time-frequency resource blocks are associated with Q1 RS resources” includes: any one of the K1 time-frequency resource blocks is configured to one of the Q1 RS resources, and any one of the Q1 RS resources is configured to one of the K1 time-frequency resource blocks.
  • the RRC message is used to determine that the K1 time-frequency resource blocks are associated with the Q1 RS resources.
  • the first RRC message is used to determine that the K1 time-frequency resource blocks are associated with Q1 RS resources.
  • any two of the Q1 RS resource blocks are different; and Q1 is greater than 1.
  • the Q1 RS resources are respectively associated with Q1 TRPs.
  • the two RS resources are respectively associated with two TRPs.
  • the Q1 RS resources are respectively associated with Q1 cells, and at least one of the Q1 cells is a service cell of the first node.
  • the PCIs of any two cells among the Q1 cells are different.
  • At least one of the Q1 cells is configured with ServCellIndex, and the PCIs of other cells in the Q1 cells are indicated by an RRC domain including additionalPCI in its name.
  • the two RS resources are respectively associated with two cells, and one of the two cells is a service cell of the first node.
  • the PCIs of the two cells are different.
  • the other cell of the two cells is configured for the one cell.
  • any one of the Q1 RS resources is a downlink RS resource.
  • any one of the Q1 RS resources is an uplink RS resource.
  • any one of the Q1 RS resources is a secondary link RS resource.
  • the number of RS resources included in the Q1 RS resources is configurable.
  • the number of RS resources included in the Q1 RS resources is preconfigured.
  • any RS resource included in the Q1 RS resources is a CSI (Channel State Information)-RS (Reference Signal) resource.
  • any RS resource included in the Q1 RS resources is an SSB (Synchronization Signal Block) resource.
  • SSB Synchronization Signal Block
  • any RS resource included in the Q1 RS resources is a CSI-RS resource or a SSB resource.
  • the Q1 RS resources are used to determine Q1 reference time-frequency resource blocks.
  • the Q1 RS resources are used to determine Q1 reference time-frequency resource blocks among the K1 time-frequency resource blocks.
  • the Q1 RS resources are used to determine Q1 time-frequency resource block groups in the K1 time-frequency resource blocks, and each time-frequency resource block group in the Q1 time-frequency resource block groups includes a reference time-frequency resource block.
  • the “the number of the at least one candidate RNTI used to monitor the first signaling is related to the Q1” includes: the at least one candidate RNTI used to monitor the first signaling is related to the Q1 RS resources.
  • the “the number of the at least one candidate RNTI used to monitor the first signaling is related to the Q1” includes: the number of the at least one candidate RNTI used to monitor the first signaling is related to the Q1.
  • the number of the at least one candidate RNTI used to monitor the first signaling is " ⁇ " includes: Q1 is used to determine the number of the at least one candidate RNTI used to monitor the first signaling.
  • the “there is a relationship between the number of the at least one candidate RNTI used to monitor the first signaling and the Q1” includes: the number of the at least one candidate RNTI used to monitor the first signaling depends on at least the Q1.
  • the “there is a relationship between the number of the at least one candidate RNTI used to monitor the first signaling and the Q1” includes: the number of the at least one candidate RNTI used to monitor the first signaling depends on at least the Q1.
  • the “the number of the at least one candidate RNTI used to monitor the first signaling is related to the Q1” includes: the number of the at least one candidate RNTI used to monitor the first signaling is related to the Q1.
  • the “number of the at least one candidate RNTI used to monitor the first signaling is related to the Q1” includes: the number of the at least one candidate RNTI used to monitor the first signaling is equal to the Q1.
  • the “number of the at least one candidate RNTI used to monitor the first signaling is related to the Q1” includes: the number of the at least one candidate RNTI used to monitor the first signaling is not greater than the Q1.
  • the "relationship between the number of at least one candidate RNTI used to monitor the first signaling and the Q1" includes: the number of at least one candidate RNTI used to monitor the first signaling is equal to 1 and the Q1 is equal to 1, or, the number of at least one candidate RNTI used to monitor the first signaling is greater than 1 and the Q1 is greater than 1.
  • the "relationship between the number of at least one candidate RNTI used to monitor the first signaling and the Q1" includes: the number of at least one candidate RNTI used to monitor the first signaling is equal to 1 and the Q1 is equal to 1, or, the number of at least one candidate RNTI used to monitor the first signaling is not less than 1 and the Q1 is greater than 1.
  • the number of the at least one candidate RNTI used to monitor the first signaling is not less than 1.
  • the number of the at least one candidate RNTI used to monitor the first signaling is not less than 1.
  • the Q1 being greater than 1 is used to determine that the number of the at least one candidate RNTI used to monitor the first signaling is not less than 1.
  • At least one candidate RNTI is used to monitor the first signaling.
  • the “there is a relationship between the number of the at least one candidate RNTI used to monitor the first signaling and the Q1” includes: the Q1 is used to determine the number of the at least one candidate RNTI used to monitor the first signaling.
  • any candidate RNTI among the at least one candidate RNTI used to monitor the first signaling is determined according to at least one time-frequency resource block among the K1 time-frequency resource blocks.
  • any candidate RNTI among the at least one candidate RNTI used to monitor the first signaling is determined according to one time-frequency resource block among the K1 time-frequency resource blocks.
  • any candidate RNTI among the at least one candidate RNTI used to monitor the first signaling is determined according to multiple time-frequency resource blocks among the K1 time-frequency resource blocks.
  • any candidate RNTI among the at least one candidate RNTI used to monitor the first signaling is determined according to one or more time-frequency resource blocks among the K1 time-frequency resource blocks.
  • the maximum value of Q1 is K1.
  • the maximum value of Q1 is smaller than K1.
  • the Q1 is the number of RS resources associated with the K1 time-frequency resource blocks.
  • the Q1 is used to determine the number of RS resources of the K1 time-frequency resource blocks.
  • the first signaling scrambled by any candidate RNTI in the first candidate RNTI set is monitored in a first search space.
  • the first search space is a search space (Search Space).
  • the first search space is configured by ra-SearchSpace.
  • the name of the RRC domain used to configure the first search space includes ra-SearchSpace.
  • the first signaling scrambled by the first candidate RNTI is monitored in a first sub-search space; the first signaling scrambled by the second candidate RNTI is monitored in a second sub-search space; the first sub-search space and the second sub-search space are two different search spaces.
  • the first sub-search space and the second sub-search space are orthogonal.
  • the first sub-search space and the second sub-search space are respectively a subset of ra-SearchSpace.
  • the name of the RRC domain used to configure the first search space includes ra-SearchSpace
  • the name of the RRC domain used to configure the second search space includes ra-SearchSpace
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG2.
  • FIG2 illustrates a network architecture 200 of a 5G NR (New Radio)/LTE (Long-Term Evolution)/LTE-A (Long-Term Evolution Advanced) system.
  • the 5G NR/LTE/LTE-A network architecture 200 may be referred to as 5GS (5G System)/EPS (Evolved Packet System) 200 or some other appropriate term.
  • 5GS/EPS 200 includes at least one of UE (User Equipment) 201, RAN (Radio Access Network) 202, 5GC (5G Core Network)/EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server)/UDM (Unified Data Management) 220, and Internet Service 230.
  • 5GS/EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown, 5GS/EPS provides packet switching services, but technicians in the field will readily understand that the various concepts presented throughout this application can be extended to networks that provide circuit switching services or other cellular networks.
  • RAN includes node 203 and other nodes 204. Node 203 provides user and control plane protocol termination towards UE 201.
  • Node 203 can be connected to other nodes 204 via Xn interface (e.g., backhaul)/X2 interface.
  • Node 203 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), a TRP (transmit receive node), or some other suitable term.
  • Node 203 provides an access point to 5GC/EPC 210 for UE 201.
  • Examples of UE 201 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop computer, a personal digital assistant (PDA), a satellite radio, a non-terrestrial base station communication, a satellite mobile communication, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., an MP3 player), a camera, a game console, a drone, an aircraft, a narrowband Internet of Things device, a machine type communication device, a land vehicle, a car, a wearable device, or any other similar functional device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the UE 201 may also be referred to as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable term by a person skilled in the art.
  • the node 203 is connected to the 5GC/EPC 210 via an S1/NG interface.
  • the 5GC/EPC 210 includes an MME (Mobility Management Entity)/AMF (Authentication Management Field)/SMF (Session Management Function) 211, other MME/AMF/SMF 214, an S-GW (Service Gateway)/UPF (User Plane Function) 212, and a P-GW (Packet Date Network Gateway)/UPF 213.
  • MME/AMF/SMF211 is the control node that handles the signaling between UE201 and 5GC/EPC210.
  • MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, which itself is connected to P-GW/UPF213.
  • P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF213 is connected to Internet service 230.
  • Internet service 230 includes operator-corresponding Internet protocol services, which may specifically include Internet, intranet, IMS (IP Multimedia Subsystem) and packet switching streaming services.
  • the UE201 corresponds to the first node in the present application.
  • the UE201 is a user equipment (User Equipment, UE).
  • UE User Equipment
  • the UE201 is a base station device (BaseStation, BS).
  • BaseStation BaseStation, BS
  • the UE 201 is a relay device.
  • the node 203 corresponds to the second node in the present application.
  • the node 203 is a base station device.
  • the node 203 is a user equipment.
  • the node 203 is a relay device.
  • the node 203 is a gateway.
  • the UE 201 is a user equipment
  • the node 203 is a base station device.
  • the user equipment supports transmission of a terrestrial network (Non-Terrestrial Network, NTN).
  • NTN Non-Terrestrial Network
  • the user equipment supports transmission of a non-terrestrial network (Terrestrial Network).
  • Terrestrial Network a non-terrestrial network
  • the user equipment supports transmission in a network with a large delay difference.
  • the user equipment supports dual connection (DC) transmission.
  • DC dual connection
  • the user equipment includes an aircraft.
  • the user equipment includes a vehicle-mounted terminal.
  • the user equipment includes a vessel.
  • the user equipment includes an Internet of Things terminal.
  • the user equipment includes a terminal of the industrial Internet of Things.
  • the user equipment includes a device supporting low-latency and high-reliability transmission.
  • the user equipment includes a test device.
  • the user equipment includes a signaling tester.
  • the base station equipment includes a base transceiver station (Base Transceiver Station, BTS).
  • BTS Base Transceiver Station
  • the base station device includes a Node B (NodeB, NB).
  • NodeB NodeB, NB
  • the base station device includes a gNB.
  • the base station device includes an eNB.
  • the base station device includes ng-eNB.
  • the base station device includes en-gNB.
  • the base station device supports transmission in a non-terrestrial network.
  • the base station device supports transmission in a network with a large delay difference.
  • the base station device supports transmission of a terrestrial network.
  • the base station device includes a macro cellular (Marco Cellular) base station.
  • a macro cellular (Marco Cellular) base station includes a macro cellular (Marco Cellular) base station.
  • the base station device includes a micro cell base station.
  • the base station device includes a pico cell (Pico Cell) base station.
  • the base station device includes a home base station (Femtocell).
  • Femtocell home base station
  • the base station device includes a base station device that supports a large delay difference.
  • the base station device includes a flying platform device.
  • the base station device includes a satellite device.
  • the base station device includes a TRP (Transmitter Receiver Point).
  • TRP Transmitter Receiver Point
  • the base station device includes a CU (Centralized Unit).
  • CU Centralized Unit
  • the base station device includes a DU (Distributed Unit).
  • the base station device includes a testing device.
  • the base station equipment includes a signaling tester.
  • the base station equipment includes an IAB (Integrated Access and Backhaul)-node.
  • IAB Integrated Access and Backhaul
  • the base station device includes an IAB-donor.
  • the base station device includes an IAB-donor-CU.
  • the base station device includes an IAB-donor-DU.
  • the base station device includes an IAB-DU.
  • the base station device includes IAB-MT.
  • the relay device includes a relay.
  • the relay device includes L3 relay.
  • the relay device includes L2 relay.
  • the relay device includes a router.
  • the relay device includes a switch.
  • the relay device includes user equipment.
  • the relay device includes a base station device.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture for a user plane and a control plane according to the present application, as shown in FIG3.
  • FIG3 is a schematic diagram of an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
  • FIG3 uses three layers
  • the radio protocol architecture for the control plane 300 is shown: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY 301 herein.
  • Layer 2 (L2 layer) 305 is above PHY 301 and includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol) sublayer 304.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides inter-zone mobility support.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ (Hybrid Automatic Repeat Request).
  • HARQ Hybrid Automatic Repeat Request
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in a cell.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (i.e., radio bearers) and using RRC signaling to configure the lower layers.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture is substantially the same as the corresponding layers and sublayers in the control plane 300 for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355, but the PDCP sublayer 354 also provides header compression for upper layer data packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol) sublayer 356, which is responsible for mapping between QoS flows and data radio bearers (DRBs) to support service diversity.
  • SDAP Service Data Adaptation Protocol
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in the present application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in the present application.
  • each Preamble in the present application is generated in the PHY301 or PHY351.
  • the first signaling in the present application is generated in the PHY301 or PHY351.
  • the random access response in the present application is generated in the RRC306.
  • the random access response in the present application is generated by the MAC302 or MAC352.
  • the random access response in the present application is generated in the PHY301 or PHY351.
  • the first RRC message in the present application is generated in the RRC306.
  • the first RRC message in the present application is generated by the MAC302 or MAC352.
  • the first RRC message in the present application is generated in the PHY301 or PHY351.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in Figure 4.
  • Figure 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in an access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and an antenna 452.
  • the second communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • controller/processor 475 In transmission from the second communication device 410 to the first communication device 450, at the second communication device 410, upper layer data packets from the core network are provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 In transmission from the second communication device 410 to the first communication device 450, the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocation to the first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets and signaling to the first communication device 450.
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (i.e., the physical layer).
  • the transmit processor 416 implements coding and interleaving to facilitate forward error correction (FEC) at the second communication device 410, as well as mapping of signal constellations based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing on the coded and modulated symbols to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to a subcarrier, multiplexes with a reference signal (e.g., a pilot) in the time domain and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate a physical channel carrying a time-domain multi-carrier symbol stream.
  • IFFT inverse fast Fourier transform
  • the multi-antenna transmit processor 471 then performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream. It is then provided to a different antenna 420 .
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated onto the RF carrier and converts the RF stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receiving processor 458 performs a receiving analog precoding/beamforming operation on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a fast Fourier transform (FFT) to convert the baseband multi-carrier symbol stream after the receiving analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT fast Fourier transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458 to any spatial stream destined for the first communication device 450.
  • the symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the second communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides multiplexing between transport and logical channels, packet reassembly, decryption, header decompression, and control signal processing to recover the upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels based on radio resource allocation, and implements L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for the retransmission of lost packets and signaling to the second communication device 410.
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing. Then, the transmit processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is then provided to different antennas 452 via the transmitter 454 after analog precoding/beamforming operations in the multi-antenna transmit processor 457. Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the function at the second communication device 410 is similar to the reception function at the first communication device 450 described in the transmission from the second communication device 410 to the first communication device 450.
  • Each receiver 418 receives a radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the multi-antenna reception processor 472 and the reception processor 470.
  • the reception processor 470 and the multi-antenna reception processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements the L2 layer functions.
  • the controller/processor 475 can be associated with a memory 476 storing program codes and data.
  • the memory 476 can be referred to as a computer-readable medium.
  • the controller/processor 475 In the transmission from the first communication device 450 to the second communication device 410, the controller/processor 475 provides multiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover the upper layer data packets from the UE 450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be used together with the at least one processor, and the first communication device 450 at least: sends a Preamble in K1 time-frequency resource blocks, wherein K1 is an integer greater than 1; after one of the K1 time-frequency resource blocks, uses at least one candidate RNTI to monitor a first signaling, and the first signaling is used to schedule a random access response; wherein each of the K1 time-frequency resource blocks is configured for a Preamble; the K1 time-frequency resource blocks are associated with Q1 RS resources, wherein the Q1 RS resources include at least one RS resource; the number of the at least one candidate RNTI used to monitor the first signaling is related to Q1; and Q1 is a positive integer not greater than K1.
  • the first communication device 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, the action including: sending a Preamble in K1 time-frequency resource blocks, wherein K1 is an integer greater than 1; after one of the K1 time-frequency resource blocks, using at least one candidate RNTI to monitor a first signaling, wherein the first signaling is used to schedule a random access response; wherein each of the K1 time-frequency resource blocks is configured for the Preamble; the K1 time-frequency resource blocks are associated with Q1 RS resources, wherein the Q1 RS resources include at least one RS resource; the number of the at least one candidate RNTI used to monitor the first signaling is related to the Q1; the Q1 is not greater than
  • the K1 is a positive integer.
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be used together with the at least one processor.
  • the second communication device 410 at least: receives a Preamble sent in K1 time-frequency resource blocks, wherein K1 is an integer greater than 1; sends a first signaling, wherein the first signaling is used to schedule a random access response; wherein, after one of the K1 time-frequency resource blocks, the first signaling is monitored using at least one candidate RNTI; each of the K1 time-frequency resource blocks is configured for the Preamble; the K1 time-frequency resource blocks are associated with Q1 RS resources, wherein the Q1 RS resources include at least one RS resource; the number of the at least one candidate RNTI used to monitor the first signaling is related to Q1; and Q1 is a positive integer not greater than K1.
  • the second communication device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, the actions including: receiving a Preamble sent in K1 time-frequency resource blocks, wherein K1 is an integer greater than 1; sending a first signaling, wherein the first signaling is used to schedule a random access response; wherein, after one of the K1 time-frequency resource blocks, the first signaling is monitored using at least one candidate RNTI; each of the K1 time-frequency resource blocks is configured for the Preamble; the K1 time-frequency resource blocks are associated with Q1 RS resources, wherein the Q1 RS resources include at least one RS resource; the number of the at least one candidate RNTI used to monitor the first signaling is related to Q1; and Q1 is a positive integer not greater than K1.
  • At least one of the antenna 452, the receiver 454, the receiving processor 456, and the controller/processor 459 is used to monitor the first signaling.
  • At least one of the antenna 452, the receiver 454, the receiving processor 456, and the controller/processor 459 is used to receive the first signaling.
  • At least one of the antenna 420, the transmitter 418, the transmit processor 416, and the controller/processor 475 is used to send a first signaling.
  • At least one of the antenna 452, the transmitter 454, the transmit processor 468, and the controller/processor 459 is used to send a Preamble in K1 time-frequency resource blocks.
  • At least one of the antenna 420, the receiver 418, the receiving processor 470, and the controller/processor 475 is used to receive the Preamble sent in K1 time-frequency resource blocks.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a user equipment.
  • the first communication device 450 is a base station device.
  • the first communication device 450 is a relay device.
  • the second communication device 410 is a user equipment.
  • the second communication device 410 is a base station device.
  • the second communication device 410 is a relay device.
  • Embodiment 5 illustrates a wireless signal transmission flow chart according to an embodiment of the present application, as shown in FIG5. It is particularly noted that the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in the present application.
  • a first RRC message is received, and the first RRC message is used to determine that the K1 time-frequency resource blocks are associated with Q1 RS resources;
  • a Preamble is sent in K1 time-frequency resource blocks, and K1 is an integer greater than 1;
  • step S5103 after one time-frequency resource block among the K1 time-frequency resource blocks, at least one candidate RNTI is used to monitor a first signaling, and the first signaling is used to schedule a random access response; in step S5104, the first signaling is received.
  • step S5201 the first RRC message is sent; in step S5202, the Preamble sent in K1 time-frequency resource blocks is received; in step S5203, the first signaling is sent.
  • each of the K1 time-frequency resource blocks is configured for a Preamble; the K1 time-frequency resource blocks are associated with Q1 RS resources, and the Q1 RS resources include at least one RS resource; the number of the at least one candidate RNTI used to monitor the first signaling is related to the Q1; and the Q1 is a positive integer not greater than the K1.
  • the first node U01 is a user equipment.
  • the first node U01 is a base station device.
  • the first node U01 is a relay device.
  • the second node N02 is a base station device.
  • the second node N02 is a user equipment.
  • the second node N02 is a relay device.
  • the second node N02 includes a TRP.
  • the second node N02 includes two TRPs.
  • the second node N02 includes at least two TRPs.
  • the first node U01 is a user equipment
  • the second node N02 is a base station device.
  • the first node U01 is a user equipment
  • the second node N02 is a relay device.
  • the first node U01 is a user equipment
  • the second node N02 is a user equipment
  • the first node U01 is a base station device
  • the second node N02 is a base station device.
  • the first node U01 is a relay device
  • the second node N02 is a base station device.
  • the second node N02 receives a response to a Preamble sent in K1 time-frequency resource blocks and sends the first signaling.
  • the second node N02 receives a response to at least one Preamble sent in K1 time-frequency resource blocks and sends the first signaling.
  • the second node N02 receives a response to each Preamble sent in K1 time-frequency resource blocks and sends the first signaling.
  • the receivers of the Preamble sent in the K1 time-frequency resource blocks are all the second node N02.
  • the second node N02 is a TRP.
  • the second node N02 is a base station device.
  • the second node N02 is a base station maintaining a service cell of the first node U01.
  • the second node N02 is a base station maintaining the PCell of the first node U01.
  • the second node N02 is a base station maintaining the PSCell of the first node U01.
  • the receivers of the Preamble sent in the K1 time-frequency resource blocks include multiple nodes, and the second node N02 is one of the multiple nodes.
  • any one of the multiple nodes is a TRP.
  • any one of the multiple nodes is a base station device.
  • one of the multiple nodes is a base station maintaining a service cell of the first node U01.
  • one of the multiple nodes is a base station maintaining the PCell of the first node U01.
  • one of the multiple nodes is a base station maintaining the PSCell of the first node U01.
  • the first RRC message includes at least one RRC message.
  • the first RRC message includes at least one RRC IE (Information Element).
  • the first RRC message includes at least one RRC domain.
  • the first RRC message includes broadcast signaling.
  • the first RRC message includes unicast signaling.
  • the first RRC message is transmitted via BCCH (Broadcast Control Channel).
  • BCCH Broadcast Control Channel
  • the first RRC message includes a SIB1 (System Information Block 1) message.
  • SIB1 System Information Block 1
  • the first RRC message belongs to a ServingCellConfigCommonSIB IE.
  • the first RRC message belongs to an UplinkConfigCommonSIB IE.
  • the first RRC message belongs to a BWP-UplinkCommon IE.
  • the first RRC message belongs to a RACH-ConfigCommon IE.
  • the first RRC message is transmitted via DCCH (Dedicated Control Channel).
  • DCCH Dedicated Control Channel
  • the first RRC message includes an RRCReconfiguration message.
  • the first RRC message belongs to an RRCResume message.
  • the first RRC message belongs to an RRCSetup message.
  • the first RRC message belongs to a CellGroupConfig IE.
  • the first RRC message belongs to a ReconfigurationWithSync domain.
  • the first RRC message belongs to a ServingCellConfigCommon IE.
  • the first RRC message belongs to an UplinkConfigCommon IE.
  • the first RRC message belongs to a BWP-UplinkCommon IE.
  • the first RRC message belongs to a ServingCellConfig IE.
  • the first RRC message belongs to a BWP-Uplink IE.
  • the first RRC message belongs to a RACH-ConfigCommon IE.
  • the first RRC message includes at least one RRC domain, each of the at least one RRC domain is used to determine at least one time-frequency resource block among the K1 time-frequency resource blocks, and each of the at least one RRC domain includes an index of at least one RS resource among the Q1 RS resources.
  • the at least one RRC domain is K1 RRC domains, each of the K1 RRC domains is used to determine one time-frequency resource block among the K1 time-frequency resource blocks, and each of the K1 RRC domains includes an index of at least one RS resource among the Q1 RS resources.
  • the at least one RRC domain is Q1 RRC domains
  • each of the Q1 RRC domains is used to determine at least one time-frequency resource block among the K1 time-frequency resource blocks
  • each of the Q1 RRC domains includes an index of an RS resource among the Q1 RS resources.
  • the at least one RRC domain is used for configuration for one PRACH repetition.
  • the at least one RRC domain is used for configuration of PRACH repetition for a given number of PRACH repetitions.
  • the first RRC message includes an RRC field indicating a given PRACH repetition number.
  • the first RRC message indicates a given number of PRACH repetitions.
  • the given PRACH repetition number is the K1.
  • the given PRACH repetition number is not less than the K1.
  • the dashed box F5.1 is optional.
  • the dashed box F5.1 exists.
  • the dotted box F5.1 does not exist.
  • the dashed box F5.2 is optional.
  • the dashed box F5.2 exists.
  • the first signaling is scrambled by a candidate RNTI.
  • the first signaling is scrambled by one candidate RNTI among the at least one candidate RNTI.
  • the first signaling is scrambled by the first candidate RNTI.
  • the first signaling is scrambled by the second candidate RNTI.
  • the first signaling is received.
  • the first signaling is received by the first processor.
  • the random access response scheduled by the first signaling is received.
  • the random access response scheduled by the first signaling is a target random access response.
  • the random access response scheduled by the first signaling is not a target random access response.
  • the random access response scheduled by the first signaling is a target random access response, it is considered that the random access response is received successfully.
  • the random access response scheduled by the first signaling is not a target random access response, the random access response is not considered to be successfully received.
  • the first signaling in response to the first signaling being received, if the random access response scheduled by the first signaling is not a target random access response, the first signaling continues to be monitored.
  • the dotted box F5.2 does not exist.
  • the first signaling is not received.
  • the target random access response includes a first RAPID (Random Access Preamble IDentifier) field
  • the first RAPID field includes a random access preamble identifier (Random Access Preamble identifier); the random access preamble identifier in the first RAPID field matches the identifier of the Preamble sent in the K1 time-frequency resource blocks.
  • the random access preamble identifier in the first RAPID domain and the identifier of the Preamble sent in the K1 time-frequency resource blocks match, which means that the random access preamble identifier in the first RAPID domain and the identifier of the Preamble sent in any time-frequency resource block in the K1 time-frequency resource blocks match.
  • the random access preamble identifier in the first RAPID domain and the identifier of the Preamble sent in the K1 time-frequency resource blocks match, which means that the random access preamble identifier in the first RAPID domain and the identifier of the Preamble sent in one time-frequency resource block in the K1 time-frequency resource blocks match.
  • the random access preamble identifier in the first RAPID domain and the identifier of the Preamble sent in the K1 time-frequency resource blocks match, which means that the random access preamble identifier in the first RAPID domain and the identifier of the Preamble sent in a time-frequency resource block in a time-frequency resource block group match.
  • the random access preamble identifier in the first RAPID domain and the identifier of the Preamble sent in the K1 time-frequency resource blocks match, which means that: the random access preamble identifier in the first RAPID domain and the identifier of the Preamble sent in a time-frequency resource block in a time-frequency resource block group match; and the first signaling is scrambled by the candidate RNTI determined according to the time-frequency resource block group.
  • the random access preamble identifier in the first RAPID domain and the identifier of the Preamble sent in the K1 time-frequency resource blocks match, which means that the random access preamble identifier in the first RAPID domain and the identifier of the Preamble sent in a time-frequency resource block in the first time-frequency resource block group match; and the first signaling is scrambled by the first candidate RNTI.
  • the random access preamble identifier in the first RAPID domain and the identifier of the Preamble sent in the K1 time-frequency resource blocks match, which means that the random access preamble identifier in the first RAPID domain and the identifier of the Preamble sent in a time-frequency resource block in the second time-frequency resource block group match; and the first signaling is scrambled by the second candidate RNTI.
  • this example does not limit the order of implementing the step S5102 and the step S5103.
  • Embodiment 6 illustrates a schematic diagram showing the relationship between the number of at least one candidate RNTI used to monitor the first signaling and Q1 according to an embodiment of the present application.
  • Example 6 the relationship between the phrase monitoring the number of the at least one candidate RNTI used for the first signaling and the Q1 includes: the number of the at least one candidate RNTI used for monitoring the first signaling is equal to 1 and the Q1 is equal to 1, or the number of the at least one candidate RNTI used for monitoring the first signaling is greater than 1 and the Q1 is greater than 1.
  • a Preamble is sent in K1 time-frequency resource blocks, where K1 is an integer greater than 1; after one of the K1 time-frequency resource blocks, at least one candidate RNTI is used to monitor a first signaling, and the first signaling is used to schedule a random access response; wherein each of the K1 time-frequency resource blocks is configured for a Preamble; the K1 time-frequency resource blocks are associated with Q1 RS resources, and the Q1 RS resources include at least one RS resource; the number of the at least one candidate RNTI used to monitor the first signaling is equal to 1 and Q1 is equal to 1, or the number of the at least one candidate RNTI used to monitor the first signaling is greater than 1 and Q1 is greater than 1; and Q1 is a positive integer not greater than K1.
  • a Preamble is sent in K1 time-frequency resource blocks, where K1 is an integer greater than 1; the K1 time-frequency resource blocks are associated with Q1 RS resources, and the Q1 RS resources include at least one RS resource; after one of the K1 time-frequency resource blocks, if Q1 is equal to 1, one candidate RNTI is used to monitor the first signaling, and if Q1 is greater than 1, more than one candidate RNTI is used to monitor the first signaling; the first signaling is used to schedule a random access response; wherein each of the K1 time-frequency resource blocks is configured for the Preamble; the number of the at least one candidate RNTI used to monitor the first signaling is equal to 1 and Q1 is equal to 1, or the number of the at least one candidate RNTI used to monitor the first signaling is greater than 1 and Q1 is greater than 1; and Q1 is a positive integer not greater than K1.
  • the number of the at least one candidate RNTI used to monitor the first signaling is equal to 1; as long as the Q1 is greater than 1, the number of the at least one candidate RNTI used to monitor the first signaling is greater than 1.
  • the Q1 is equal to 1, the number of the at least one candidate RNTI used to monitor the first signaling is equal to 1; if the Q1 is greater than 1, the number of the at least one candidate RNTI used to monitor the first signaling is greater than 1.
  • the Q1 equal to 1 is used to determine that the number of the at least one candidate RNTI used to monitor the first signaling is equal to 1; the Q1 greater than 1 is used to determine that the number of the at least one candidate RNTI used to monitor the first signaling is greater than 1.
  • the Q1 is equal to 1, one candidate RNTI is used to monitor the first signaling; if the Q1 is greater than 1, more than one candidate RNTI is used to monitor the first signaling.
  • Embodiment 7 illustrates a schematic diagram of the relationship between the number of at least one candidate RNTI used to monitor the first signaling and Q1 according to another embodiment of the present application.
  • the phrase "the number of the at least one candidate RNTI used to monitor the first signaling is related to the Q1" includes: the number of the at least one candidate RNTI used to monitor the first signaling is equal to the Q1.
  • a Preamble is sent in K1 time-frequency resource blocks, where K1 is an integer greater than 1; after one of the K1 time-frequency resource blocks, at least one candidate RNTI is used to monitor a first signaling, and the first signaling is used to schedule a random access response; wherein each of the K1 time-frequency resource blocks is configured for the Preamble; the K1 time-frequency resource blocks are associated with Q1 RS resources, and the Q1 RS resources include at least one RS resource; the number of the at least one candidate RNTI used to monitor the first signaling is equal to the Q1; and the Q1 is a positive integer not greater than the K1.
  • a Preamble is sent in K1 time-frequency resource blocks, where K1 is an integer greater than 1; after one of the K1 time-frequency resource blocks, Q1 candidate RNTIs are used to monitor a first signaling, and the first signaling is used to schedule a random access response; wherein each of the K1 time-frequency resource blocks is configured for a Preamble; the K1 time-frequency resource blocks are associated with Q1 RS resources, and the Q1 RS resources include at least one RS resource; and Q1 is a positive integer not greater than K1.
  • the number of the at least one candidate RNTI used to monitor the first signaling is equal to the number of RS resources associated with the K1 time-frequency resource blocks.
  • Q1 candidate RNTIs are used to monitor the first signaling.
  • the K1 time-frequency resource blocks are composed of Q1 time-frequency resource block groups, each time-frequency resource block group in the Q1 time-frequency resource block groups is used to determine a candidate RNTI, and each time-frequency resource block group in the Q1 time-frequency resource block groups includes at least one time-frequency resource block among the K1 time-frequency resource blocks.
  • Embodiment 8 illustrates a schematic diagram of the relationship between candidate RNTIs, time-frequency resource block groups, and RS resources according to an embodiment of the present application.
  • a dotted ellipse 801 represents Q1 RS resources associated with the K1 time-frequency resource blocks, the Q1 RS resources include at least a first RS resource and a second RS resource, and the ellipsis in the dotted ellipse 801 represents other RS resources;
  • a dotted ellipse 802 represents K1 time-frequency resource blocks, the K1 time-frequency resource blocks include at least a first time-frequency resource block group and a second time-frequency resource block group, and the ellipsis in the dotted ellipse 802 represents other time-frequency resource block groups;
  • a dotted ellipse 803 represents the at least one candidate RNTI used to monitor the first signaling, and the ellipsis in the dotted ellipse 803 represents other candidate RNTIs.
  • the at least one candidate RNTI used for monitoring the first signaling includes at least a first candidate RNTI and a second candidate RNTI; a first time-frequency resource block group is used to determine the first candidate RNTI, the first time-frequency resource block group includes at least one time-frequency resource block among the K1 time-frequency resource blocks, and the first time-frequency resource block group is associated with a first RS resource; a second time-frequency resource block group is used to determine a second candidate RNTI, the second time-frequency resource block group includes at least one time-frequency resource block among the K1 time-frequency resource blocks, and the second time-frequency resource block group is associated with a second RS resource; the first RS resource and the second RS resource are respectively one RS resource among the Q1 RS resources; and Q1 is greater than 1.
  • the ellipsis in the dotted ellipse 801 exists.
  • the ellipsis in the dotted ellipse 801 does not exist.
  • the ellipsis in the dashed ellipse 802 exists.
  • the ellipsis in the dashed ellipse 802 does not exist.
  • the ellipsis in the dotted ellipse 803 exists.
  • the ellipsis in the dotted ellipse 803 does not exist.
  • Q1 is equal to 2.
  • Q1 is greater than 2.
  • the Preamble sent by each time-frequency resource block in the first time-frequency resource block group is the same.
  • the Preambles sent by at least two time-frequency resource blocks in the first time-frequency resource block group are different.
  • the Preamble sent by each time-frequency resource block in the second time-frequency resource block group is the same.
  • the Preambles sent by at least two time-frequency resource blocks in the second time-frequency resource block group are different.
  • any Preamble sent by the time-frequency resource blocks in the first time-frequency resource block group is different from any Preamble sent by the time-frequency resource blocks in the second time-frequency resource block group.
  • any Preamble sent by the time-frequency resource blocks in the first time-frequency resource block group is the same as any Preamble sent by the time-frequency resource blocks in the second time-frequency resource block group.
  • the at least one candidate RNTI used to monitor the first signaling includes only the first candidate RNTI and the second candidate RNTI.
  • the at least one candidate RNTI used to monitor the first signaling includes at least one candidate RNTI other than the first candidate RNTI and the second candidate RNTI.
  • the first time-frequency resource block group is used to determine a candidate RNTI.
  • each time-frequency resource block in the first time-frequency resource block group is used to determine the first candidate RNTI.
  • At least one time-frequency resource block in the first time-frequency resource block group is used to determine the first candidate RNTI.
  • only one time-frequency resource block in the first time-frequency resource block group is used to determine the first candidate RNTI.
  • only the reference time-frequency resource block in the first time-frequency resource block group is used to determine the first candidate RNTI.
  • the first time-frequency resource block group is used to determine a candidate RNTI.
  • each time-frequency resource block in the first time-frequency resource block group is used to determine the first candidate RNTI.
  • At least one time-frequency resource block in the first time-frequency resource block group is used to determine the first candidate RNTI.
  • only one time-frequency resource block in the first time-frequency resource block group is used to determine the first candidate RNTI.
  • only the reference time-frequency resource block in the first time-frequency resource block group is used to determine the first candidate RNTI.
  • a time-frequency resource block is used to determine the first candidate RNTI, including: at least one of the time domain position or frequency domain position or uplink carrier occupied by the time-frequency resource block is used to determine the first candidate RNTI.
  • a time-frequency resource block is used to determine the first candidate RNTI, including: the index of the first OFDM symbol of the time-frequency resource block or the index of the first time slot of the time-frequency resource block in a system frame or the index of the time-frequency resource block in the frequency domain or at least one of the uplink carriers of the time-frequency resource block is used to determine the first candidate RNTI.
  • the one time-frequency resource block group is the first time-frequency resource block group
  • the one candidate RNTI is the first candidate RNTI
  • the one time-frequency resource block group is the second time-frequency resource block group
  • the one candidate RNTI is the second candidate RNTI
  • the s_id is related to the OFDM symbol occupied by the reference time-frequency resource block in the time-frequency resource block group used to determine the one candidate RNTI.
  • the s_id is an index of the first OFDM symbol of a reference time-frequency resource block in the time-frequency resource block group used to determine the one candidate RNTI.
  • the t_id is related to a position in a system frame of a reference time-frequency resource block in a time-frequency resource block group used to determine the one candidate RNTI.
  • the t_id is an index in a system frame of the first time slot of a reference time-frequency resource block in the time-frequency resource block group used to determine the candidate RNTI.
  • the f_id is an index in the frequency domain of a reference time-frequency resource block in the time-frequency resource block group used to determine the one candidate RNTI.
  • the ul_carrier_id indicates an uplink carrier used for a reference time-frequency resource block in a time-frequency resource block group used to determine the one candidate RNTI.
  • the uplink carrier used for the reference time-frequency resource block in the time-frequency resource block group used to determine the one candidate RNTI is a NUL carrier; if the ul_carrier_id_1 is equal to 1, the uplink carrier used for the reference time-frequency resource block in the time-frequency resource block group used to determine the one candidate RNTI is a SUL carrier.
  • the first time-frequency resource block group is configured to the first RS resource.
  • the first time-frequency resource block group is configured with the index of the first RS resource.
  • each time-frequency resource block in the first time-frequency resource block group is configured with an index of the first RS resource.
  • each time-frequency resource block in the first time-frequency resource block group is configured with an index of the first RS resource.
  • the second time-frequency resource block group is configured to the second RS resource.
  • the second time-frequency resource block group is configured with the index of the second RS resource.
  • each time-frequency resource block in the second time-frequency resource block group is configured with an index of the second RS resource.
  • each time-frequency resource block in the second time-frequency resource block group is configured with an index of the second RS resource.
  • the number of time-frequency resource blocks included in the first time-frequency resource block group is equal to the number of time-frequency resource blocks included in the second time-frequency resource block group.
  • the number of time-frequency resource blocks included in the first time-frequency resource block group is not equal to the number of time-frequency resource blocks included in the second time-frequency resource block group.
  • any time-frequency resource block in the first time-frequency resource block group is different from any time-frequency resource block in the second time-frequency resource block group.
  • At least one time-frequency resource block in the first time-frequency resource block group is different from any time-frequency resource block in the second time-frequency resource block group.
  • each time-frequency resource block in the first time-frequency resource block group is different from any time-frequency resource block in the second time-frequency resource block group.
  • the first RS resource and the second RS resource are different.
  • the index of the first RS resource is different from the index of the second RS resource.
  • the first RS resource and the second RS resource are not QCL (Quasi-colocation).
  • the Q1 RS resources are used to determine Q1 time-frequency resource block groups, and the Q1 time-frequency resource block groups are used to determine that the number of the at least one candidate RNTI used to monitor the first signaling is equal to the Q1.
  • the “the K1 time-frequency resource blocks are associated with the Q1 RS resources” includes: determining the K1 time-frequency resource blocks according to the Q1 RS resources.
  • the “K1 time-frequency resource blocks are associated with Q1 RS resources” includes: the Q1 RS resources are used to determine Q1 time-frequency resource block groups, and the K1 time-frequency resource blocks are composed of the Q1 time-frequency resource block groups.
  • the K1 time-frequency resource blocks are composed of at least 2 time-frequency resource block groups, each of the at least 2 time-frequency resource block groups is used to determine a candidate RNTI, and each of the at least 2 time-frequency resource block groups includes at least one time-frequency resource block among the K1 time-frequency resource blocks; the first time-frequency resource block group and the second time-frequency resource block group are respectively one time-frequency resource block group among the at least 2 time-frequency resource block groups.
  • each time-frequency resource block in each time-frequency resource block group of the at least two time-frequency resource block groups is used to determine a candidate RNTI.
  • At least one time-frequency resource block in each of the at least two time-frequency resource block groups is used to determine a candidate RNTI.
  • only one time-frequency resource block in each of the at least two time-frequency resource block groups is used to determine a candidate RNTI.
  • only the reference time-frequency resource block in each of the at least two time-frequency resource block groups is used to determine Determine a candidate RNTI.
  • the first time-frequency resource block group is the earliest time-frequency resource block group in the time domain among the at least two time-frequency resource block groups.
  • the first time-frequency resource block group and the second time-frequency resource block group are any two time-frequency resource block groups among the at least two time-frequency resource block groups.
  • the first time-frequency resource block group and the second time-frequency resource block group are any two time-frequency resource block groups among the at least two time-frequency resource block groups, and the first time-frequency resource block group is earlier than the second time-frequency resource block group in the time domain.
  • the number of the at least one candidate RNTI used to monitor the first signaling is equal to the number of time-frequency resource block groups in the K1 time-frequency resource blocks.
  • the number of time-frequency resource block groups in the K1 time-frequency resource blocks is equal to that of Q1.
  • the number of time-frequency resource block groups in the K1 time-frequency resource blocks is not equal to that in the Q1.
  • the K1 time-frequency resource blocks are composed of Q1 time-frequency resource block groups.
  • Embodiment 9 illustrates an operation flow chart of the first time sub-window and the second time sub-window according to an embodiment of the present application, as shown in FIG9. It is particularly noted that the order in this embodiment does not limit the signal transmission order and implementation order in the present application.
  • a Preamble is sent in one time-frequency resource block in the first time-frequency resource block group; in step S902, a first time subwindow is started along with the Preamble sent by the one time-frequency resource block in the first time-frequency resource block group; in step S903, a Preamble is sent in one time-frequency resource block in the second time-frequency resource block group; in step S5104, a second time subwindow is started along with the Preamble sent by the one time-frequency resource block in the second time-frequency resource block group.
  • At least one candidate RNTI is used to monitor the first signaling.
  • At least one candidate RNTI is used to monitor the first signaling.
  • At least one candidate RNTI is used to monitor the first signaling.
  • a time subwindow is started along with a Preamble sent by a time-frequency resource block in each time-frequency resource block group in the K1 time-frequency resource blocks.
  • a time subwindow is started along with the Preamble sent by the reference time-frequency resource block in each time-frequency resource block group in the K1 time-frequency resource blocks.
  • a time subwindow is started with the first PDCCH opportunity after the reference time-frequency resource block in each time-frequency resource block group in the K1 time-frequency resource blocks sends the Preamble.
  • the first time window does not exist.
  • the first time sub-window is a time window.
  • the length of the first time subwindow is configurable.
  • the length of the first time subwindow is preconfigured.
  • the first time sub-window is a ra-ResponseWindow.
  • the name of the first time sub-window includes ra-ResponseWindow.
  • the phrase that is sent along with a Preamble of a time-frequency resource block in the first time-frequency resource block group includes: a Preamble that is sent along with a reference time-frequency resource block in the first time-frequency resource block group.
  • the phrase accompanying a Preamble sent in a time-frequency resource block in the first time-frequency resource block group includes: the first PDCCH opportunity after the Preamble is sent in the reference time-frequency resource block in the first time-frequency resource block group.
  • the phrase accompanying a Preamble sent by a time-frequency resource block in the first time-frequency resource block group includes: the first PDCCH opportunity after the earliest time-frequency resource block in the time domain in the first time-frequency resource block group sends the Preamble.
  • the second time sub-window is a time window.
  • the length of the second time subwindow is configurable.
  • the length of the second time subwindow is preconfigured.
  • the second time sub-window is a ra-ResponseWindow.
  • the name of the second time sub-window includes ra-ResponseWindow.
  • the phrase that is sent along with a Preamble in a time-frequency resource block in the second time-frequency resource block group includes: a Preamble that is sent along with the latest time-frequency resource block in the time domain in the second time-frequency resource block group.
  • the phrase that is sent along with a Preamble in a time-frequency resource block in the second time-frequency resource block group includes: a Preamble that is sent along with the earliest time-frequency resource block in the time domain in the second time-frequency resource block group.
  • the phrase accompanying the Preamble sent by a time-frequency resource block in the second time-frequency resource block group includes: the first PDCCH opportunity after the latest time-frequency resource block in the time domain in the second time-frequency resource block group sends the Preamble.
  • the phrase accompanying the Preamble sent by a time-frequency resource block in the second time-frequency resource block group includes: the first PDCCH opportunity after the earliest time-frequency resource block in the time domain in the second time-frequency resource block group sends the Preamble.
  • the first node U01 uses the first candidate RNTI to monitor the first signaling.
  • the first node U01 uses the first candidate RNTI to monitor the first signaling.
  • the first node U01 if the first time subwindow is not running, the first node U01 does not use the first candidate RNTI to monitor the first signaling.
  • the first node U01 is not required to use the first candidate RNTI to monitor the first signaling.
  • the first node U01 uses the second candidate RNTI to monitor the first signaling.
  • the first node U01 uses the second candidate RNTI to monitor the first signaling.
  • the first node U01 if the second time subwindow is not running, the first node U01 does not use the second candidate RNTI to monitor the first signaling.
  • the first node U01 is not required to use the second candidate RNTI to monitor the first signaling.
  • the first time sub-window and the second time sub-window overlap in the time domain.
  • the first time sub-window and the second time sub-window do not overlap in the time domain.
  • the time interval between the start time of the first time subwindow and the start time of the second time subwindow includes at least one time subwindow.
  • the time interval between the start time of the first time subwindow and the start time of the second time subwindow does not include any time subwindow.
  • Embodiment 10 illustrates a flowchart in which the first time subwindow expiration and the second time subwindow expiration are used to trigger the first action set according to an embodiment of the present application, as shown in FIG10. It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in the present application.
  • step S1001 For the first node U01 , in step S1001, monitor the first signaling; in step S1002, receive the first signaling; in step S1003, the first time subwindow expires and the second time subwindow expires; in step S1004, execute the first action set.
  • step S1002 is optional.
  • step S1002 exists.
  • the first signaling is received during the operation of the first time sub-window.
  • the first time subwindow is stopped.
  • the first time subwindow is not stopped and at least one candidate RNTI is continued to be used to monitor the DCI used to schedule the random access response.
  • the first signaling is received during the operation of the second time sub-window.
  • the second time subwindow is stopped.
  • the second time subwindow is not stopped and at least one candidate RNTI is continued to be used to monitor the DCI used to schedule the random access response.
  • step S1002 does not exist.
  • the dashed box F10.1 is optional.
  • the dashed box F10.1 exists.
  • the dotted box F10.1 does not exist.
  • the "at least the expiration of the first time subwindow and the expiration of the second time subwindow are used to trigger a first set of actions" includes: when at least the first time subwindow and the second time subwindow are both expired, executing the first set of actions.
  • the "at least the first time subwindow expires and the second time subwindow expires and is used to trigger a first set of actions" includes: when the first time subwindow expires, if the second time subwindow has not expired, the first set of actions is not executed.
  • the "at least the first time subwindow expires and the second time subwindow expires and is used to trigger a first set of actions" includes: when the first time subwindow expires, if the second time subwindow is running, the first set of actions is not executed.
  • the "at least the first time subwindow expires and the second time subwindow expires and is used to trigger a first set of actions" includes: when the first time subwindow expires, if the second time subwindow is not started, the first set of actions is not executed.
  • the "at least the first time subwindow expires and the second time subwindow expires and is used to trigger a first set of actions” includes: when the time subwindows started by the Preamble sent by a time-frequency resource block in each time-frequency resource block group in the K1 time-frequency resource blocks expire, executing the first set of actions.
  • the first action set includes increasing PREAMBLE_TRANSMISSION_COUNTER.
  • the behavior of increasing PREAMBLE_TRANSMISSION_COUNTER includes: increasing PREAMBLE_TRANSMISSION_COUNTER by 1.
  • the behavior of increasing PREAMBLE_TRANSMISSION_COUNTER includes: PREAMBLE_TRANSMISSION_COUNTER is increased by at least 1.
  • the behavior of increasing PREAMBLE_TRANSMISSION_COUNTER includes: PREAMBLE_TRANSMISSION_COUNTER increases K1.
  • the first action set includes determining whether to indicate a random access problem to a higher layer based on whether PREAMBLE_TRANSMISSION_COUNTER reaches a first threshold; the first threshold is a positive integer.
  • the first action set includes determining whether the random access process is considered to be unsuccessfully completed based on whether PREAMBLE_TRANSMISSION_COUNTER reaches a first threshold; the first threshold is a positive integer.
  • the first threshold is preambleTransMax+1.
  • the first threshold is configurable.
  • Embodiment 11 illustrates a first time window according to an embodiment of the present application, which is an operation flow chart, as shown in FIG11. It is particularly noted that the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in the present application.
  • a Preamble is sent in one of the K1 time-frequency resource blocks; in step S1102, a first time window is started along with the Preamble sent in the one of the K1 time-frequency resource blocks; in step S1103, a first signaling is monitored; in step S1104, the first signaling is received; in step S1105, the first time window expires; in step S1106, a first set of actions is executed.
  • step S1104 is optional.
  • step S1104 exists.
  • the first signaling is received during the operation of the first time window.
  • the first time window is stopped.
  • the first time window is not stopped and at least one candidate RNTI is continued to be used to monitor the DCI used to schedule the random access response.
  • step S1104 does not exist.
  • the dashed box F11.1 is optional.
  • the dashed box F11.1 exists.
  • the dotted box F11.1 does not exist.
  • the meaning of the Preamble sent along with a time-frequency resource block includes: when the Preamble is sent in the time-frequency resource block.
  • the meaning of the Preamble sent along with a time-frequency resource block includes: after the Preamble is sent in the time-frequency resource block.
  • the meaning of the Preamble sent along with a time-frequency resource block includes: the first PDCCH opportunity after the Preamble is sent in the time-frequency resource block.
  • the moment when the first time window is activated is related to a Preamble sent in one of the K1 time-frequency resource blocks.
  • the time when the first time window is activated is related to the cutoff time for sending the Preamble in one of the K1 time-frequency resource blocks.
  • the moment when the first time window is activated is related to the configuration of the PDCCH timing.
  • the time when each time subwindow is activated is related to the Preamble sent by one of the K1 time-frequency resource blocks.
  • the time when each time sub-window is activated is related to the deadline for sending the Preamble in one of the K1 time-frequency resource blocks.
  • the time when each time subwindow is activated is related to the configuration of the PDCCH opportunity.
  • the first time window is a time window.
  • the length of the first time window is configurable.
  • the length of the first time window is preconfigured.
  • the first time window is a ra-ResponseWindow.
  • the name of the first time window includes ra-ResponseWindow.
  • the first signaling is monitored during the operation of the first time window.
  • the first time window is used to monitor the first signaling.
  • the behavior of "starting the first time window along with a Preamble sent by one of the K1 time-frequency resource blocks" includes: starting or restarting the first time window along with a Preamble sent by each of the K1 time-frequency resource blocks.
  • the first time window is started.
  • the first time window is restarted.
  • the behavior of "starting the first time window along with a Preamble sent by one of the K1 time-frequency resource blocks" includes: starting the first time window along with a Preamble sent by a reference time-frequency resource block in the K1 time-frequency resource blocks.
  • the behavior of "starting the first time window along with a Preamble sent by one of the K1 time-frequency resource blocks" includes: starting the first time window along with a Preamble sent by one of the first time-frequency resource blocks in the first time-frequency resource block group.
  • the Preamble sent along with the reference time-frequency resource block in the first time-frequency resource block group is started.
  • sending the Preamble in the reference time-frequency resource block in the second time-frequency resource block group does not affect the operating state of the first time window.
  • the first time window is not restarted along with the Preamble sent by the reference time-frequency resource block in the second time-frequency resource block group.
  • the first time window is started or restarted along with a Preamble sent by a reference time-frequency resource block in the first time-frequency resource block group.
  • the first time window is restarted along with a Preamble sent by a reference time-frequency resource block in the second time-frequency resource block group.
  • the reference time-frequency resource block among the K1 time-frequency resource blocks is the earliest time-frequency resource block in the time domain among the K1 time-frequency resource blocks.
  • the reference time-frequency resource block among the K1 time-frequency resource blocks is the latest time-frequency resource block in the time domain among the K1 time-frequency resource blocks.
  • the reference time-frequency resource block in a time-frequency resource block group is the earliest time-frequency resource block in the time domain in the time-frequency resource block group.
  • the reference time-frequency resource block in a time-frequency resource block group is the latest time-frequency resource block in the time domain in the time-frequency resource block group.
  • the reference time-frequency resource block in a time-frequency resource block group is a time-frequency resource block with the earliest cutoff time in the time-frequency resource block group.
  • the reference time-frequency resource block in a time-frequency resource block group is a time-frequency resource block with the latest cutoff time in the time-frequency resource block group.
  • the reference time-frequency resource block in the first time-frequency resource block group is earlier than the reference time-frequency resource block in the second time-frequency resource block group in the time domain.
  • the cut-off time of the reference time-frequency resource block in the first time-frequency resource block group is earlier than the cut-off time of the reference time-frequency resource block in the second time-frequency resource block group.
  • a first time window is started with a Preamble sent by one of the K1 time-frequency resource blocks; and a first time subwindow is started with a Preamble sent by one of the first time-frequency resource blocks; and a second time subwindow is started with a Preamble sent by one of the second time-frequency resource blocks.
  • the first time sub-window and the second time sub-window exist, and the first time window exists.
  • expiration of any time sub-window is not used to trigger the first set of actions.
  • the first action set is triggered regardless of whether any time sub-window is running.
  • any time sub-window is not activated along with the Preamble sent by any time-frequency resource block among the K1 time-frequency resource blocks.
  • any time sub-window is not activated.
  • any time sub-window is not configured.
  • the first time sub-window and the second time sub-window do not exist, and the first time window exists.
  • the first candidate RNTI is used to monitor the first signaling
  • the second candidate RNTI is used to monitor the first signaling
  • the first candidate RNTI is used to monitor the first signaling until the first time window expires.
  • the first candidate RNTI is used to monitor the first signaling until starting to use the second candidate RNTI to monitor the first signaling.
  • the second candidate RNTI is used to monitor the first signaling until the first time window expires.
  • the expiration of the first time window and the reception of the target random access response are used to trigger the first set of actions.
  • the first time window expires and a Preamble is sent in each of the K1 time-frequency resource blocks to trigger the first set of actions.
  • the first time window expires and a Preamble is sent in each of the K1 time-frequency resource blocks and the target random access response is received and used to trigger the first set of actions.
  • the first set of actions is executed.
  • the first set of actions is performed.
  • the first action set is not triggered.
  • the first set of actions is performed.
  • the first set of actions is performed.
  • the first action set is not triggered.
  • the first action set is triggered at least when the first time window expires or after the first time window expires.
  • Embodiment 12 illustrates a structural block diagram of a processing device in a first node according to an embodiment of the present application, as shown in FIG12.
  • the processing device 1200 in the first node includes a first processor 1201.
  • the first processor sends a Preamble in K1 time-frequency resource blocks, where K1 is an integer greater than 1; and uses at least one candidate RNTI to monitor a first signaling after one time-frequency resource block in the K1 time-frequency resource blocks, where the first signaling is used to schedule a random access response.
  • each of the K1 time-frequency resource blocks is configured for a Preamble; the K1 time-frequency resource blocks are associated with Q1 RS resources, and the Q1 RS resources include at least one RS resource; the number of the at least one candidate RNTI used to monitor the first signaling is related to the Q1; and the Q1 is a positive integer not greater than the K1.
  • the relationship between the phrase monitoring the number of at least one candidate RNTI adopted for the first signaling and the Q1 includes: the number of at least one candidate RNTI adopted for monitoring the first signaling is equal to 1 and the Q1 is equal to 1, or, the number of at least one candidate RNTI adopted for monitoring the first signaling is greater than 1 and the Q1 is greater than 1.
  • the phrase "the relationship between the number of the at least one candidate RNTI used to monitor the first signaling and the Q1" includes: the number of the at least one candidate RNTI used to monitor the first signaling is equal to the Q1.
  • the at least one candidate RNTI used to monitor the first signaling includes at least a first candidate RNTI and a second candidate RNTI; a first time-frequency resource block group is used to determine the first candidate RNTI, the first time-frequency resource block group includes at least one time-frequency resource block among the K1 time-frequency resource blocks, and the first time-frequency resource block group is associated with a first RS resource; a second time-frequency resource block group is used to determine a second candidate RNTI, the second time-frequency resource block group includes at least one time-frequency resource block among the K1 time-frequency resource blocks, and the second time-frequency resource block group is associated with a second RS resource; the first RS resource and the second RS resource are respectively one RS resource among the Q1 RS resources; and Q1 is greater than 1.
  • the first processor 1201 starts the first time subwindow along with a Preamble sent by a time-frequency resource block in the first time-frequency resource block group; starts the first time subwindow along with a Preamble sent by a time-frequency resource block in the second time-frequency resource block group.
  • a second time subwindow wherein the first time subwindow is used to monitor the first signaling using the first candidate RNTI; and the second time subwindow is used to monitor the first signaling using the second candidate RNTI.
  • At least the expiration of the first time subwindow and the expiration of the second time subwindow are used to trigger a first action set, and the first action set includes at least considering that the random access response reception is unsuccessful.
  • the first processor 1201 accompanied by a Preamble sent in one of the K1 time-frequency resource blocks, starts a first time window; wherein, expiration of the first time window is used to trigger a first action set, and the first action set includes at least considering that the random access response reception is unsuccessful.
  • the first processor 1201 receives a first RRC message, where the first RRC message is used to determine that the K1 time-frequency resource blocks are associated with the Q1 RS resources.
  • the first processor 1201 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data source 467 in FIG. 4 of the present application.
  • the first processor 1201 includes the antenna 452, the receiver 454, the multi-antenna receiving processor 458, and the receiving processor 456 in FIG. 4 of the present application.
  • the first processor 1201 includes the antenna 452, the receiver 454, and the receiving processor 456 in FIG. 4 of the present application.
  • the first processor 1201 includes the antenna 452, transmitter 454, multi-antenna transmission processor 457, transmission processor 468, controller/processor 459, memory 460 and data source 467 in FIG. 4 of the present application.
  • the first processor 1201 includes the antenna 452, transmitter 454, multi-antenna transmission processor 457, and transmission processor 468 in FIG. 4 of the present application.
  • the first processor 1201 includes the antenna 452, the transmitter 454, and the transmission processor 468 in FIG. 4 of the present application.
  • Embodiment 13 illustrates a structural block diagram of a processing device in a second node according to an embodiment of the present application, as shown in FIG13.
  • the processing device 1300 in the second node includes a second transmitter 1301 and a second receiver 1302.
  • a second receiver 1302 receives a Preamble sent in K1 time-frequency resource blocks, where K1 is an integer greater than 1;
  • the second transmitter 1301 sends a first signaling, where the first signaling is used to schedule a random access response.
  • Example 13 after one of the K1 time-frequency resource blocks, the first signaling is monitored using at least one candidate RNTI; each of the K1 time-frequency resource blocks is configured for a Preamble; the K1 time-frequency resource blocks are associated with Q1 RS resources, and the Q1 RS resources include at least one RS resource; the number of the at least one candidate RNTI used to monitor the first signaling is related to Q1; and Q1 is a positive integer not greater than K1.
  • the relationship between the phrase monitoring the number of at least one candidate RNTI adopted for the first signaling and the Q1 includes: the number of at least one candidate RNTI adopted for monitoring the first signaling is equal to 1 and the Q1 is equal to 1, or, the number of at least one candidate RNTI adopted for monitoring the first signaling is greater than 1 and the Q1 is greater than 1.
  • the phrase "the relationship between the number of the at least one candidate RNTI used to monitor the first signaling and the Q1" includes: the number of the at least one candidate RNTI used to monitor the first signaling is equal to the Q1.
  • the at least one candidate RNTI used to monitor the first signaling includes at least a first candidate RNTI and a second candidate RNTI; a first time-frequency resource block group is used to determine the first candidate RNTI, the first time-frequency resource block group includes at least one time-frequency resource block among the K1 time-frequency resource blocks, and the first time-frequency resource block group is associated with a first RS resource; a second time-frequency resource block group is used to determine a second candidate RNTI, the second time-frequency resource block group includes at least one time-frequency resource block among the K1 time-frequency resource blocks, and the second time-frequency resource block group is associated with a second RS resource; the first RS resource and the second RS resource are respectively one RS resource among the Q1 RS resources; and Q1 is greater than 1.
  • a first time subwindow is activated along with a Preamble sent by a time-frequency resource block in the first time-frequency resource block group; a second time subwindow is activated along with a Preamble sent by a time-frequency resource block in the second time-frequency resource block group; the first time subwindow is used to monitor the first signaling using the first candidate RNTI; and the second time subwindow is used to monitor the first signaling using the second candidate RNTI.
  • At least the expiration of the first time subwindow and the expiration of the second time subwindow are used to trigger a first action set, and the first action set includes at least considering that the random access response reception is unsuccessful.
  • the first time window is transmitted along with a Preamble sent in one of the K1 time-frequency resource blocks. Start; the expiration of the first time window is used to trigger a first set of actions, wherein the first set of actions includes at least considering that the random access response reception is unsuccessful.
  • the second transmitter 1301 sends a first RRC message, and the first RRC message is used to determine that the K1 time-frequency resource blocks are associated with the Q1 RS resources.
  • the second transmitter 1301 includes the antenna 420, transmitter 418, multi-antenna transmission processor 471, transmission processor 416, controller/processor 475, and memory 476 in FIG. 4 of the present application.
  • the second transmitter 1301 includes the antenna 420, transmitter 418, multi-antenna transmission processor 471, and transmission processor 416 in FIG. 4 of the present application.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, and the transmission processor 416 in FIG. 4 of the present application.
  • the second receiver 1302 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 in FIG. 4 of the present application.
  • the second receiver 1302 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, and the receiving processor 470 in FIG. 4 of the present application.
  • the second receiver 1302 includes the antenna 420, the receiver 418, and the receiving processor 470 in FIG. 4 of the present application.
  • Embodiment 14 illustrates a schematic diagram of the first time subwindow and the second time subwindow according to an embodiment of the present application, as shown in Figure 14.
  • the horizontal axis represents time
  • the vertical axis represents frequency
  • the boxes filled with slashes represent three time-frequency resource blocks belonging to the first time-frequency resource block group
  • the boxes filled with crosses represent two time-frequency resource blocks belonging to the second time-frequency resource block group
  • the first time subwindow is activated along with the Preamble sent by the reference time-frequency resource block in the first time-frequency resource block group; the second time subwindow is activated along with the Preamble sent by the reference time-frequency resource block in the second time-frequency resource block group.
  • this example does not limit the number of time-frequency resource blocks included in each time-frequency resource block group.
  • this example does not limit whether the number of time-frequency resource blocks included in any two time-frequency resource block groups is the same.
  • this example does not limit whether two time-frequency resource blocks in each time-frequency resource block group overlap.
  • this example does not limit whether two time-frequency resource blocks in each time-frequency resource block group overlap.
  • this example does not limit the time length of each time sub-window.
  • this example does not limit whether there is a time interval between the start time of each time subwindow and the end time of the reference time-frequency resource block.
  • this example does not limit whether two time sub-windows overlap in the time domain.
  • this example does not limit the reference time-frequency resource block in each time-frequency resource block group to be the earliest time-frequency resource block in the time domain in each time-frequency resource block group.
  • Embodiment 15 illustrates a schematic diagram of a first time window according to an embodiment of the present application, as shown in FIG15.
  • the horizontal axis represents time
  • the vertical axis represents frequency
  • the boxes filled with oblique lines represent three time-frequency resource blocks belonging to the first time-frequency resource block group
  • the boxes filled with crosses represent two time-frequency resource blocks belonging to the second time-frequency resource block group
  • the first time window is started or restarted; accompanying the Preamble sent by the reference time-frequency resource block in the second time-frequency resource block group, the first time window is restarted.
  • this example does not limit the number of time-frequency resource blocks included in each time-frequency resource block group.
  • this example does not limit whether the number of time-frequency resource blocks included in any two time-frequency resource block groups is the same.
  • this example does not limit whether two time-frequency resource blocks in each time-frequency resource block group overlap.
  • this example does not limit whether two time-frequency resource blocks in each time-frequency resource block group overlap.
  • this example does not limit the time length of each time sub-window.
  • this example does not limit whether there is a time interval between the start time of each time sub-window and the end time of the reference time-frequency resource block. time interval.
  • this example does not limit whether two time sub-windows overlap in the time domain.
  • this example does not limit the reference time-frequency resource block in each time-frequency resource block group to be the earliest time-frequency resource block in the time domain in each time-frequency resource block group.
  • Embodiment 16 illustrates a schematic diagram of a first time window according to another embodiment of the present application, as shown in FIG16.
  • the horizontal axis represents time
  • the vertical axis represents frequency
  • the boxes filled with oblique lines represent three time-frequency resource blocks belonging to the first time-frequency resource block group
  • the boxes filled with crosses represent two time-frequency resource blocks belonging to the second time-frequency resource block group
  • the first time window is activated along with the Preamble sent by the reference time-frequency resource block in the first time-frequency resource block group.
  • the Preamble sent by the reference time-frequency resource block in the second time-frequency resource block group does not change the operating state of the first time window.
  • this example does not limit the number of time-frequency resource blocks included in each time-frequency resource block group.
  • this example does not limit whether the number of time-frequency resource blocks included in any two time-frequency resource block groups is the same.
  • this example does not limit whether two time-frequency resource blocks in each time-frequency resource block group overlap.
  • this example does not limit whether two time-frequency resource blocks in each time-frequency resource block group overlap.
  • this example does not limit the time length of each time sub-window.
  • this example does not limit whether there is a time interval between the start time of each time subwindow and the end time of the reference time-frequency resource block.
  • this example does not limit whether two time sub-windows overlap in the time domain.
  • this example does not limit the reference time-frequency resource block in each time-frequency resource block group to be the earliest time-frequency resource block in the time domain in each time-frequency resource block group.
  • each module unit in the above embodiment can be implemented in the form of hardware or in the form of a software function module, and the present application is not limited to any specific form of software and hardware combination.
  • the user equipment, terminal and UE in the present application include but are not limited to drones, communication modules on drones, remote-controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost tablet computers and other wireless communication devices.
  • drones communication modules on drones, remote-controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost tablet computers and other wireless communication devices.
  • MTC Machine Type Communication
  • the base stations or system equipment in this application include but are not limited to macro cellular base stations, micro cellular base stations, home base stations, relay base stations, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point) and other wireless communication equipment.
  • gNB NR Node B
  • TRP Transmitter Receiver Point

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的通信节点中的方法和装置。通信节点在K1个时频资源块发送Preamble,所述K1是大于1的整数;在所述K1个时频资源块中的一个时频资源块之后,采用至少1个候选RNTI监听第一信令,所述第一信令被用于调度随机接入响应;其中,所述K1个时频资源块中的每个时频资源块被配置给Preamble;所述K1个时频资源块和Q1个RS资源相关联,所述Q1个RS资源中包括至少一个RS资源;监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关;所述Q1是不大于所述K1的正整数。本申请提出的方案能够提高随机接入性能。

Description

一种被用于无线通信的通信节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及随机接入的传输方法和装置。
背景技术
覆盖(Coverage)是运营商在进行蜂窝通信网络商业化时考虑的关键因素之一,因为它直接影响服务质量(service quality)以及资本支出(CAPEX)和运营成本(OPEX)。在实际部署的大多数场景中,上行链路(Uplink,UL)性能可能是瓶颈,而在一些新兴的垂直用例中,上行链路流量很大,例如视频上传。在Rel-17“NR(New Radio,新空口)覆盖增强”工作项目(work item,WI)中,针对PUSCH(Physical uplink shared channel,物理上行链路共享信道)、PUCCH(Physical uplink control channel,物理上行链路控制信道)和Msg3(Message 3,消息3)的NR覆盖率进行了扩展增强。然而,PRACH(Physical random access channel,物理随机接入信道)覆盖的提高尚未得到解决。由于PRACH传输在许多过程中都是非常重要的,如初始接入和波束失效恢复,Rel-18成立了“NR覆盖的进一步增强(Further NR coverage enhancements)”工作项目,进一步增强PRACH的上行覆盖。
发明内容
在NR中,UE(User Equipment,用户设备)每发送一个Preamble,根据被用于发送这个Preamble的PRACH时机计算一个RA(Random Access,随机接入)-RNTI(Radio Network Temporary Identifier,无线网络临时标识),并在ra-ResponseWindow中监听为了随机接入响应(Random Access Response,RAR)的被这个RA-RNTI加扰的PDCCH(Physical downlink control channel,物理下行链路控制信道)传输。由于现有协议不支持PRACH重复(Repetition),根据现有协议监听为了随机接入响应的PDCCH会降低UE的随机接入性能。因此,针对PRACH重复,如何监听为了随机接入响应的PDCCH传输需要进行增强。
针对上述问题,本申请提供了一种随机接入的解决方案。针对上述问题描述中,采用NR系统作为一个例子;本申请也同样适用于例如LTE系统的场景;进一步的,虽然本申请的初衷是针对Uu空口,但本申请也能被用于PC5口。进一步的,虽然本申请的初衷是针对终端与基站场景,但本申请也同样适用于V2X(Vehicle-to-Everything,车联网)场景,终端与中继,以及中继与基站之间的通信场景,取得类似的终端与基站场景中的技术效果。进一步的,虽然本申请的初衷是针对终端与基站场景,但本申请也同样适用于IAB(Integrated Access and Backhaul,集成接入和回传)的通信场景,取得类似的终端与基站场景中的技术效果。进一步的,虽然本申请的初衷是针对地面网络(Terrestrial Network,地面网络)场景,但本申请也同样适用于非地面网络(Non-Terrestrial Network,NTN)的通信场景,取得类似的TN场景中的技术效果。此外,不同场景采用统一解决方案还有助于降低硬件复杂度和成本。
作为一个实施例,对本申请中的术语(Terminology)的解释参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
需要说明的是,在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
在K1个时频资源块发送Preamble,所述K1是大于1的整数;在所述K1个时频资源块中的一个时频资源块之后,采用至少1个候选RNTI监听第一信令,所述第一信令被用于调度随机接入响应;
其中,所述K1个时频资源块中的每个时频资源块被配置给Preamble;所述K1个时频资源块和Q1个RS(Reference Signal,参考信号)资源相关联,所述Q1个RS资源中包括至少一个RS资源;所述Q1是不大于所述K1的正整数。
作为一个实施例,监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关。
作为一个实施例,监听所述第一信令所采用的所述至少1个候选RNTI的数量和时频资源块组的数量相等;所述K1个时频资源块由至少一个时频资源块组组成,所述至少一个时频资源块组中的每个时频资源块组包括所述K1个时频资源块中的至少一个时频资源块。
作为一个实施例,本申请要解决的问题包括:如何提高随机接入性能。
作为一个实施例,本申请要解决的问题包括:如何监听所述第一信令。
作为一个实施例,本申请要解决的问题包括:如何确定监听所述第一信令所采用的RNTI。
作为一个实施例,上述方法的特质包括:采用至少1个候选RNTI监听第一信令,并且,监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关。
作为一个实施例,上述方法的特质包括:监听所述第一信令所采用的所述至少1个候选RNTI的数量依赖所述Q1。
作为一个实施例,上述方法的特质包括:监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1个RS资源之间有关。
作为一个实施例,上述方法的特质包括:所述Q1个RS资源被用于确定监听所述第一信令所采用的候选RNTI的数量。
作为一个实施例,上述方法的好处包括:降低复杂度。
作为一个实施例,上述方法的好处包括:兼容现有协议。
作为一个实施例,上述方法的好处包括:降低UE功耗。
根据本申请的一个方面,其特征在于,所述短语监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关包括:监听所述第一信令所采用的所述至少1个候选RNTI的数量等于1并且所述Q1等于1,或者,监听所述第一信令所采用的所述至少1个候选RNTI的数量大于1并且所述Q1大于1。
根据本申请的一个方面,其特征在于,所述短语监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关包括:监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1相等。
根据本申请的一个方面,其特征在于,监听所述第一信令所采用的所述至少1个候选RNTI包括至少第一候选RNTI和第二候选RNTI;第一时频资源块组被用于确定所述第一候选RNTI,所述第一时频资源块组包括所述K1个时频资源块中的至少一个时频资源块,所述第一时频资源块组与第一RS资源相关联;第二时频资源块组被用于确定第二候选RNTI,所述第二时频资源块组包括所述K1个时频资源块中的至少一个时频资源块,所述第二时频资源块组与第二RS资源相关联;所述第一RS资源和所述第二RS资源分别是所述Q1个RS资源中的一个RS资源;所述Q1大于1。
作为一个实施例,上述方法的特质包括:第一时频资源块组被用于确定所述第一候选RNTI,第二时频资源块组被用于确定第二候选RNTI。
作为一个实施例,上述方法的特质包括:一个时频资源块组被用于确定一个候选RNTI。
根据本申请的一个方面,其特征在于,包括:
伴随在所述第一时频资源块组中的一个时频资源块发送的Preamble,启动第一时间子窗;伴随在所述第二时频资源块组中的一个时频资源块发送的Preamble,启动第二时间子窗;
其中,所述第一时间子窗被用于采用所述第一候选RNTI监听所述第一信令;所述第二时间子窗被用于采用所述第二候选RNTI监听所述第一信令。
作为一个实施例,上述方法的特质包括:伴随在一个时频资源块组中的一个时频资源块发送的Preamble,启动一个时间子窗。
根据本申请的一个方面,其特征在于,至少所述第一时间子窗过期并且所述第二时间子窗过期被用于触发第一动作集合,所述第一动作集合包括至少认为随机接入响应接收不成功。
作为一个实施例,上述方法的特质包括:每个时间子窗都过期被用于触发第一动作集合。
作为一个实施例,上述方法的特质包括:只要一个时间子窗未过期,第一动作集合不被触发。
作为一个实施例,上述方法的特质包括:只要一个时间子窗正在运行,第一动作集合不被触发。
作为一个实施例,上述方法的好处包括:避免过早认为随机接入响应接收不成功。
根据本申请的一个方面,其特征在于,包括:
伴随在所述K1个时频资源块中的一个时频资源块发送的Preamble,启动第一时间窗;
其中,所述第一时间窗过期被用于触发第一动作集合,所述第一动作集合包括至少认为随机接入响应接收不成功。
作为一个实施例,上述方法的特质包括:所述第一时间窗运行期间,至少一个时间子窗被启动。
作为一个实施例,上述方法的特质包括:所述第一时间窗运行期间,任一时间子窗不被启动。
作为一个实施例,上述方法的特质包括:所述第一时间窗过期被用于触发第一动作集合。
作为一个实施例,上述方法的特质包括:只要所述第一时间窗正在运行,第一动作集合不被触发。
作为一个实施例,上述方法的好处包括:避免过早认为随机接入响应接收不成功。
根据本申请的一个方面,其特征在于,包括:
接收第一RRC(Radio Resource Control,无线电资源控制)消息,所述第一RRC消息被用于确定所述K1个时频资源块和Q1个RS资源相关联。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
接收在K1个时频资源块中被发送的Preamble,所述K1是大于1的整数;
发送第一信令,所述第一信令被用于调度随机接入响应;
其中,在所述K1个时频资源块中的一个时频资源块之后,第一信令被采用至少1个候选RNTI监听;所述K1个时频资源块中的每个时频资源块被配置给Preamble;所述K1个时频资源块和Q1个RS资源相关联,所述Q1个RS资源中包括至少一个RS资源;所述Q1是不大于所述K1的正整数。
作为一个实施例,监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关。
作为一个实施例,监听所述第一信令所采用的所述至少1个候选RNTI的数量和时频资源块组的数量相等;所述K1个时频资源块由至少一个时频资源块组组成,所述至少一个时频资源块组中的每个时频资源块组包括所述K1个时频资源块中的至少一个时频资源块。
根据本申请的一个方面,其特征在于,所述短语监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关包括:监听所述第一信令所采用的所述至少1个候选RNTI的数量等于1并且所述Q1等于1,或者,监听所述第一信令所采用的所述至少1个候选RNTI的数量大于1并且所述Q1大于1。
根据本申请的一个方面,其特征在于,所述短语监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关包括:监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1相等。
根据本申请的一个方面,其特征在于,监听所述第一信令所采用的所述至少1个候选RNTI包括至少第一候选RNTI和第二候选RNTI;第一时频资源块组被用于确定所述第一候选RNTI,所述第一时频资源块组包括所述K1个时频资源块中的至少一个时频资源块,所述第一时频资源块组与第一RS资源相关联;第二时频资源块组被用于确定第二候选RNTI,所述第二时频资源块组包括所述K1个时频资源块中的至少一个时频资源块,所述第二时频资源块组与第二RS资源相关联;所述第一RS资源和所述第二RS资源分别是所述Q1个RS资源中的一个RS资源;所述Q1大于1。
根据本申请的一个方面,其特征在于,伴随在所述第一时频资源块组中的一个时频资源块发送的Preamble,第一时间子窗被启动;伴随在所述第二时频资源块组中的一个时频资源块发送的Preamble,第二时间子窗被启动;所述第一时间子窗被用于采用所述第一候选RNTI监听所述第一信令;所述第二时间子窗被用于采用所述第二候选RNTI监听所述第一信令。
根据本申请的一个方面,其特征在于,至少所述第一时间子窗过期并且所述第二时间子窗过期被用于触发第一动作集合,所述第一动作集合包括至少认为随机接入响应接收不成功。
根据本申请的一个方面,其特征在于,伴随在所述K1个时频资源块中的一个时频资源块发送的Preamble,第一时间窗被启动;所述第一时间窗过期被用于触发第一动作集合,所述第一动作集合包括至少认为随机接入响应接收不成功。
根据本申请的一个方面,其特征在于,包括:
发送第一RRC消息,所述第一RRC消息被用于确定所述K1个时频资源块和Q1个RS资源相关联。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一处理机,在K1个时频资源块发送Preamble,所述K1是大于1的整数;在所述K1个时频资源块 中的一个时频资源块之后,采用至少1个候选RNTI监听第一信令,所述第一信令被用于调度随机接入响应;
其中,所述K1个时频资源块中的每个时频资源块被配置给Preamble;所述K1个时频资源块和Q1个RS资源相关联,所述Q1个RS资源中包括至少一个RS资源;所述Q1是不大于所述K1的正整数。
作为一个实施例,监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关。
作为一个实施例,监听所述第一信令所采用的所述至少1个候选RNTI的数量和时频资源块组的数量相等;所述K1个时频资源块由至少一个时频资源块组组成,所述至少一个时频资源块组中的每个时频资源块组包括所述K1个时频资源块中的至少一个时频资源块。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二接收机,接收在K1个时频资源块中被发送的Preamble,所述K1是大于1的整数;
第二发射机,发送第一信令,所述第一信令被用于调度随机接入响应;
其中,在所述K1个时频资源块中的一个时频资源块之后,第一信令被采用至少1个候选RNTI监听;所述K1个时频资源块中的每个时频资源块被配置给Preamble;所述K1个时频资源块和Q1个RS资源相关联,所述Q1个RS资源中包括至少一个RS资源;所述Q1是不大于所述K1的正整数。
作为一个实施例,监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关。
作为一个实施例,监听所述第一信令所采用的所述至少1个候选RNTI的数量和时频资源块组的数量相等;所述K1个时频资源块由至少一个时频资源块组组成,所述至少一个时频资源块组中的每个时频资源块组包括所述K1个时频资源块中的至少一个时频资源块。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.降低复杂度;
-.兼容现有协议;
-.降低UE功耗;
-.避免过早认为随机接入响应接收不成功;
-.提高随机接入性能。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的Preamble和第一信令的传输的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的一个实施例的监听第一信令所采用的至少1个候选RNTI的数量和Q1之间有关的示意图;
图7示出了根据本申请的另一个实施例的监听第一信令所采用的至少1个候选RNTI的数量和Q1之间有关的示意图;
图8示出了根据本申请的一个实施例的候选RNTI、时频资源块组和RS资源之间的关系的示意图;
图9示出了根据本申请的一个实施例的第一时间子窗和第二时间子窗的操作流程图;
图10示出了根据本申请的一个实施例的第一时间子窗过期并且第二时间子窗过期被用于触发第一动作集合的流程图;
图11示出了根据本申请的一个实施例的第一时间窗是操作流程图;
图12示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;
图14示出了根据本申请的一个实施例的第一时间子窗和第二时间子窗的示意图;
图15示出了根据本申请的一个实施例的第一时间窗的示意图;
图16示出了根据本申请的另一个实施例的第一时间窗的示意图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的Preamble和第一信令的传输的流程图,如附图1所示。附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一节点在步骤101中,在K1个时频资源块发送Preamble,所述K1是大于1的整数;在步骤102中,在所述K1个时频资源块中的一个时频资源块之后,采用至少1个候选RNTI监听第一信令,所述第一信令被用于调度随机接入响应;其中,所述K1个时频资源块中的每个时频资源块被配置给Preamble;所述K1个时频资源块和Q1个RS资源相关联,所述Q1个RS资源中包括至少一个RS资源;监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关;所述Q1是不大于所述K1的正整数。
作为一个实施例,所述K1个时频资源块被用于一个PRACH重复。
作为一个实施例,所述K1个时频资源块被配置给一个PRACH重复。
作为一个实施例,所述PRACH重复包括:Msg1(Message 1,消息1)重复。
作为一个实施例,所述PRACH重复包括:RACH重复。
作为一个实施例,所述PRACH重复包括:在一次随机接入尝试中发送多个PRACH。
作为一个实施例,所述PRACH重复包括:在两次PREAMBLE_TRANSMISSION_COUNTER更新之间,发送多个PRACH。
作为一个实施例,所述PRACH重复包括:在两次PREAMBLE_POWER_RAMPING_COUNTER更新之间,发送多个PRACH。
作为一个实施例,所述PRACH重复包括:多个连续的PRACH。
作为一个实施例,所述K1个时频资源块是K1个PRACH时机(Occasion)。
作为一个实施例,所述K1个时频资源块对应K1个PRACH时机。
作为一个实施例,所述K1个时频资源块中的任意两个时频资源块在时域上不交叠。
作为一个实施例,所述K1个时频资源块中的任意两个时频资源块在时域上交叠。
作为一个实施例,所述K1个时频资源块中存在至少两个时频资源块在时域上交叠。
作为一个实施例,所述K1个时频资源块中的两个时频资源块在时域上是否交叠是可配置的。
作为一个实施例,所述K1个时频资源块中的每个时频资源块是一个PRACH时机。
作为一个实施例,在K1个时频资源块的每个时频资源块上发送Preamble。
作为一个实施例,在K1个时频资源块的至少第一个时频资源块上发送Preamble。
作为一个实施例,在K1个时频资源块的至少最后一个时频资源块上未发送Preamble。
作为一个实施例,在所述K1个时频资源块发送的任意两个Preamble是同一个Preamble。
作为一个实施例,在所述K1个时频资源块中的任意两个时频资源块发送的Preamble相同。
作为一个实施例,所述K1个时频资源块中存在两个时频资源块,在所述两个时频资源块发送的Preamble不同。
作为一个实施例,一个时频资源块被配置给一个上行链路载波。
作为一个实施例,一个时频资源块被配置给一个UL(Uplink,上行链路)BWP(Bandwidth Part,带宽部分)。
作为一个实施例,一个时频资源块占用时域上的一个PRACH时机。
作为一个实施例,一个时频资源块占用时频域上的多个RE(Resource Element,资源元素)。
作为一个实施例,一个时频资源块包括时域资源和频域资源。
作为一个实施例,一个时频资源块包括时域资源、频域资源和码域资源。
作为一个实施例,一个时频资源块包括时域资源、频域资源、空域资源和码域资源。
作为一个实施例,在所述K1个时频资源块发送任意两个Preamble之间的时间间隔内,为了所述第一随机接入过程的PREAMBLE_POWER_RAMPING_COUNTER不被增加。
作为一个实施例,在所述K1个时频资源块发送任意两个Preamble之间的时间间隔内,为了所述第一随机接入过程的PREAMBLE_TRANSMISSION_COUNTER不被增加。
作为一个实施例,在所述K1个时频资源块发送任意两个Preamble之间的时间间隔内,未执行随机接入资源选择过程。
作为一个实施例,在所述K1个时频资源块发送任意两个Preamble之间的时间间隔内,未设置随机接入类型。
作为一个实施例,所述K1的最大值是预定义的。
作为一个实施例,所述K1的最大值是可配置的。
作为一个实施例,所述K1等于2。
作为一个实施例,所述K1等于4。
作为一个实施例,所述K1等于8。
作为一个实施例,所述K1个时频资源块被用于发送最多K1个Preamble。
作为一个实施例,所述K1个时频资源块被用于确定最多K1个Preamble的发送时机。
作为一个实施例,所述K1个时频资源块被用于发送K1个Preamble。
作为一个实施例,所述K1个时频资源块被用于确定K1个Preamble的发送时机。
作为一个实施例,所述K1个时频资源块中的每个时频资源块被预留给Preamble。
作为一个实施例,所述K1个时频资源块中的每个时频资源块被用于发送Preamble。
作为一个实施例,所述K1个时频资源块中的每个时频资源块能够被用于发送Preamble。
作为一个实施例,所述K1个时频资源块中的每个时频资源块被配置给Preamble传输。
作为一个实施例,所述K1个时频资源块中的每个时频资源块被配置给至少一个Preamble。
作为一个实施例,所述K1个时频资源块中的每个时频资源块被预留给一个Preamble的一次发送。
作为一个实施例,所述K1个时频资源块中的每个时频资源块包括被用于一个Preamble的时域资源。
作为一个实施例,所述K1个时频资源块中的每个时频资源块包括被用于一个Preamble的频域资源。
作为一个实施例,所述K1个时频资源块中的每个时频资源块包括被用于一个Preamble的空域资源。
作为一个实施例,所述K1个时频资源块中的每个时频资源块包括一个Preamble。
作为一个实施例,所述K1个时频资源块中的每个时频资源块被用于同一个Preamble。
作为一个实施例,所述K1个时频资源块中的每个时频资源块被用于至少两个不同的Preamble。
作为一个实施例,在所述K1个时频资源块发送的Preamble被配置给四步随机接入。
作为一个实施例,在所述K1个时频资源块发送的Preamble被配置给两步随机接入。
作为一个实施例,在所述K1个时频资源块发送的任意两个Preamble根据同一个序列生成。
作为一个实施例,在所述K1个时频资源块发送的任意两个Preamble的根序列相同。
作为一个实施例,在所述K1个时频资源块发送的任意两个Preamble的索引(index)相同。
作为一个实施例,所述K1个时频资源块中存在两个时频资源块,在所述两个时频资源块发送的Preamble根据不同序列生成。
作为一个实施例,所述K1个时频资源块中存在两个时频资源块,在所述两个时频资源块发送的Preamble的根序列不同。
作为一个实施例,所述K1个时频资源块中存在两个时频资源块,在所述两个时频资源块发送的Preamble的索引不同。
作为一个实施例,所述K1个时频资源块中的任意两个时频资源块被配置给同一个服务小区。
作为一个实施例,所述K1个时频资源块中的任意两个时频资源块被配置给被同一PCI(Physical cell identifier,物理小区标识)标识的小区。
作为一个实施例,所述K1个时频资源块中存在两个时频资源块被配置给不同的服务小区。
作为一个实施例,所述K1个时频资源块中存在两个时频资源块被配置给被不同PCI标识的小区。
作为一个实施例,所述K1个时频资源块中的任意时频资源块被配置给同一个UL BWP。
作为一个实施例,所述K1个时频资源块中的任意时频资源块被配置给同一个上行链路载波。
作为一个实施例,所述短语在所述K1个时频资源块中的一个时频资源块之后包括:在所述K1个时频资源块中的给定时频资源块之后。
作为该实施例的一个子实施例,所述给定时频资源块是所述K1个时频资源块中的一个参考时频资源块。
作为该实施例的一个子实施例,所述给定时频资源块是所述K1个时频资源块中的任一参考时频资源块。
作为该实施例的一个子实施例,所述给定时频资源块是所述K1个时频资源块中的任一时频资源块。
作为该实施例的一个子实施例,所述给定时频资源块是所述K1个时频资源块中的时域上最早的一个时频资源块。
作为该实施例的一个子实施例,所述给定时频资源块是所述K1个时频资源块中的时域上最晚的一个时频资源块。
作为一个实施例,所述短语在所述K1个时频资源块中的一个时频资源块之后包括:在所述K1个时频资源块中的所述一个时频资源块发送Preamble之后。
作为一个实施例,所述短语在所述K1个时频资源块中的一个时频资源块之后包括:在所述K1个时频资源块中的所述一个时频资源块发送Preamble之后的第一个PDCCH时机。
作为一个实施例,所述短语在所述K1个时频资源块中的一个时频资源块之后包括:在所述K1个时频资源块中的所述一个时频资源块的时域截止时刻之后。
作为一个实施例,所述短语在所述K1个时频资源块中的一个时频资源块之后包括:在的时域截止时刻之后。
作为一个实施例,在所述K1个时频资源块中的所述一个时频资源块之后的一段时间间隔内,采用至少1个候选RNTI监听所述第一信令。
作为一个实施例,所述行为“采用至少1个候选RNTI监听第一信令”包括:根据所述至少1个候选RNTI监听所述第一信令。
作为一个实施例,所述行为“采用至少1个候选RNTI监听第一信令”包括:针对所述至少1个候选RNTI监听所述第一信令。
作为一个实施例,所述行为“采用至少1个候选RNTI监听第一信令”包括:监听所述第一信令,所述第一信令被所述至少1个候选RNTI中的任一候选RNTI加扰。
作为一个实施例,所述行为“采用至少1个候选RNTI监听第一信令”包括:监听所述第一信令,所述第一信令被所述至少1个候选RNTI中的任一候选RNTI加扰。
作为一个实施例,监听所述第一信令所采用的候选RNTI不包括C-RNTI(Cell Radio Network Temporary Identifier,小区无线网络临时标识)。
作为一个实施例,在所述K1个时频资源块中的一个时频资源块之后,监听第二信令,所述第二信令被用于调度为了新传输的上行链路授予,所述第二信令被C-RNTI加扰;在所述K1个时频资源块发送的Preamble被配置给两步随机接入。
作为一个实施例,在所述K1个时频资源块中的一个时频资源块之后,监听第二信令,所述第二信令被用于调度Absolute Timing Advance Command MAC CE(Control Element,控制元素),所述第二信令被C-RNTI加扰;在所述K1个时频资源块发送的Preamble被配置给两步随机接入。
作为一个实施例,在所述K1个时频资源块中的一个时频资源块之后,第二信令不被要求监听,所述第二信令被用于调度为了新传输的链路授予,所述第二信令被C-RNTI加扰;在所述K1个时频资源块发送的Preamble被配置给四步随机接入。
作为一个实施例,在所述K1个时频资源块中的一个时频资源块之后,第二信令不被要求监听,所述第二信令被用于调度Absolute Timing Advance Command MAC CE,所述第二信令被C-RNTI加扰;在所述K1个时频资源块发送的Preamble被配置给四步随机接入。
作为一个实施例,监听所述第一信令所采用的任一候选RNTI是一个RA-RNTI;在所述K1个时频资源 块发送的Preamble被配置给四步随机接入。
作为一个实施例,监听所述第一信令所采用的任一候选RNTI是一个MSGB-RNTI;在所述K1个时频资源块发送的Preamble被配置给两步随机接入。
作为一个实施例,所述监听是指monitor。
作为一个实施例,所述监听包括检测。
作为一个实施例,所述监听包括监测。
作为一个实施例,所述监听包括搜索。
作为一个实施例,所述“监听第一信令”包括:通过CRC(Cyclic Redundancy Check,循环冗余校验)校验确定是否存在所述第一信令。
作为一个实施例,所述“监听第一信令”包括:在PDCCH上搜索所述第一信令。
作为一个实施例,所述第一信令通过PDCCH传输。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是一个DCI。
作为一个实施例,所述第一信令是被一个候选RNTI加扰的一个DCI。
作为一个实施例,所述第一信令被寻址到所述一个候选RNTI。
作为一个实施例,所述第一信令被一个候选RNTI标识。
作为一个实施例,所述第一信令的CRC被一个候选RNTI加扰。
作为一个实施例,所述第一信令是被所述至少1个候选RNTI中的任一候选RNTI加扰的一个DCI。
作为一个实施例,所述第一信令被寻址到所述至少1个候选RNTI中的任一候选RNTI。
作为一个实施例,所述第一信令被至少1个候选RNTI中的任一候选RNTI标识。
作为一个实施例,所述第一信令的CRC被至少1个候选RNTI中的任一候选RNTI加扰。
作为一个实施例,所述至少1个候选RNTI中的任一候选RNTI是一个RA-RNTI。
作为一个实施例,所述至少1个候选RNTI中的任一候选RNTI被用于随机接入响应的监听。
作为一个实施例,所述至少1个候选RNTI中的任一候选RNTI是一个非负整数。
作为一个实施例,所述至少1个候选RNTI中的任一候选RNTI是一个正整数。
作为一个实施例,所述第一信令的格式是DCI format 1_0。
作为一个实施例,所述第一信令的格式是DCI format 1_1。
作为一个实施例,所述第一信令的格式是DCI format 1_2。
作为一个实施例,所述随机接入响应是一个MAC层信令。
作为一个实施例,所述第一信令指示所述随机接入响应所占用的PDSCH(Physical downlink shared channel,物理下行链路共享信道)资源。
作为一个实施例,所述第一信令被用于指示PDSCH的调度信息,所述PDSCH被用于承载至少所述随机接入响应。
作为一个实施例,被所述第一信令调度的所述随机接入响应是一个RAR;在所述K1个时频资源块发送的Preamble被配置给四步随机接入。
作为一个实施例,被所述第一信令调度的所述随机接入响应是一个fallbackRAR;在所述K1个时频资源块发送的Preamble被配置给两步随机接入。
作为一个实施例,被所述第一信令调度的所述随机接入响应是一个successkRAR;在所述K1个时频资源块发送的Preamble被配置给两步随机接入。
作为一个实施例,被所述第一信令调度的所述随机接入响应包括一个RAPID(Random Access Preamble IDentifier)。
作为一个实施例,被所述第一信令调度的所述随机接入响应包括一个BI(Backoff Indicator)。
作为一个实施例,被所述第一信令调度的所述随机接入响应包括一个MAC subPDU。
作为一个实施例,被所述第一信令调度的所述随机接入响应包括一个MAC subPDU,所述一个MAC subPDU由一个MAC CE和一个MAC subheader组成。
作为一个实施例,被所述第一信令调度的所述随机接入响应包括一个MAC subPDU,所述一个MAC subPDU 由仅一个MAC subheader组成。
作为一个实施例,被所述第一信令调度的所述随机接入响应是一个RAR。
作为一个实施例,所述“所述K1个时频资源块和Q1个RS资源相关联”包括:所述Q1个RS资源中的任一RS资源被配置给所述K1个时频资源块中的一个时频资源块。
作为一个实施例,所述“所述K1个时频资源块和Q1个RS资源相关联”包括:所述Q1个RS资源中的任一RS资源被配置给所述K1个时频资源块中的一个或者多个时频资源块。
作为一个实施例,所述“所述K1个时频资源块和Q1个RS资源相关联”包括:所述K1个时频资源块中的任一时频资源块被关联到所述Q1个RS资源中的一个RS资源。
作为一个实施例,所述“所述K1个时频资源块和Q1个RS资源相关联”包括:所述K1个时频资源块中的任一时频资源块被配置给所述Q1个RS资源中的一个RS资源。
作为一个实施例,所述“所述K1个时频资源块和Q1个RS资源相关联”包括:所述K1个时频资源块中的任一时频资源块被配置给所述Q1个RS资源中的一个RS资源,并且,所述Q1个RS资源中的任一RS资源被配置了所述K1个时频资源块中的一个时频资源块。
作为一个实施例,RRC消息被用于确定所述K1个时频资源块和Q1个RS资源相关联。
作为一个实施例,所述第一RRC消息被用于确定所述K1个时频资源块和Q1个RS资源相关联。
作为一个实施例,所述Q1个RS资源块中的任意两个资源块不相同;所述Q1大于1。
作为一个实施例,所述Q1个RS资源分别关联到Q1个TRP。
作为一个实施例,所述Q1个RS资源中存在两个RS资源,所述两个RS资源分别关联到两个TRP。
作为一个实施例,所述Q1个RS资源分别关联到Q1个小区,所述Q1个小区中的至少一个小区是所述第一节点的服务小区。
作为该实施例的一个子实施例,所述Q1个小区中的任意两个小区的PCI不同。
作为该实施例的一个子实施例,所述Q1个小区中的所述至少一个小区被配置ServCellIndex,所述Q1个小区中的其他小区的PCI被名字中包括additionalPCI的RRC域指示。
作为一个实施例,所述Q1个RS资源中存在两个RS资源,所述两个RS资源分别关联到两个小区,所述两个小区中的一个小区是所述第一节点的服务小区。
作为该实施例的一个子实施例,所述两个小区的PCI不同。
作为该实施例的一个子实施例,所述两个小区中的另一个小区被配置给所述一个小区。
作为一个实施例,所述Q1个RS资源中的任一RS资源是下行链路RS资源。
作为一个实施例,所述Q1个RS资源中的任一RS资源是上行链路RS资源。
作为一个实施例,所述Q1个RS资源中的任一RS资源是副链路RS资源。
作为一个实施例,所述Q1个RS资源所包括的RS资源的数量是可配置的。
作为一个实施例,所述Q1个RS资源所包括的RS资源的数量是预配置的。
作为一个实施例,所述Q1个RS资源所包括的任一RS资源是一个CSI(Channel State Information,信道状态信息)-RS(Reference Signal,参考信号)资源。
作为一个实施例,所述Q1个RS资源所包括的任一RS资源是一个SSB(Synchronization Signal Block,同步信号块)资源。
作为一个实施例,所述Q1个RS资源所包括的任一RS资源是一个CSI-RS资源或者一个SSB资源。
作为一个实施例,所述Q1个RS资源被用于确定的Q1个参考时频资源块。
作为一个实施例,所述Q1个RS资源被用于在所述K1个时频资源块中确定Q1个参考时频资源块。
作为一个实施例,所述Q1个RS资源被用于在所述K1个时频资源块中确定Q1个时频资源块组,所述Q1个时频资源块组中的每个时频资源块组中包括一个参考时频资源块。
作为一个实施例,所述“监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关”包括:监听所述第一信令所采用的所述至少1个候选RNTI与所述Q1个RS资源有关。
作为一个实施例,所述“监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关”包括:监听所述第一信令所采用的所述至少1个候选RNTI的数量与所述Q1有关。
作为一个实施例,所述“监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有 关”包括:所述Q1被用于确定监听所述第一信令所采用的所述至少1个候选RNTI的数量。
作为一个实施例,所述“监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关”包括:监听所述第一信令所采用的所述至少1个候选RNTI的数量依赖至少所述Q1。
作为一个实施例,所述“监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关”包括:监听所述第一信令所采用的所述至少1个候选RNTI的数量依赖至少所述Q1。
作为一个实施例,所述“监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关”包括:监听所述第一信令所采用的所述至少1个候选RNTI的数量与所述Q1有关。
作为一个实施例,所述“监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关”包括:监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1相等。
作为一个实施例,所述“监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关”包括:监听所述第一信令所采用的所述至少1个候选RNTI的数量不大于所述Q1。
作为一个实施例,所述“监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关”包括:监听所述第一信令所采用的所述至少1个候选RNTI的数量等于1并且所述Q1等于1,或者,监听所述第一信令所采用的所述至少1个候选RNTI的数量大于1并且所述Q1大于1。
作为一个实施例,所述“监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关”包括:监听所述第一信令所采用的所述至少1个候选RNTI的数量等于1并且所述Q1等于1,或者,监听所述第一信令所采用的所述至少1个候选RNTI的数量不小于1并且所述Q1大于1。
作为该实施例的一个子实施例,只要所述Q1大于1,监听所述第一信令所采用的所述至少1个候选RNTI的数量不小于1。
作为该实施例的一个子实施例,如果所述Q1大于1,监听所述第一信令所采用的所述至少1个候选RNTI的数量不小于1。
作为该实施例的一个子实施例,所述Q1大于1被用于确定监听所述第一信令所采用的所述至少1个候选RNTI的数量不小于1。
作为该实施例的一个子实施例,如果所述Q1大于1,至少1个候选RNTI被用于监听所述第一信令。
作为一个实施例,所述“监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关”包括:所述Q1被用于确定监听所述第一信令所采用的所述至少1个候选RNTI的数量。
作为一个实施例,监听所述第一信令所采用的所述至少1个候选RNTI中的任一候选RNTI根据所述K1个时频资源块中的至少一个时频资源块确定。
作为一个实施例,监听所述第一信令所采用的所述至少1个候选RNTI中的任一候选RNTI根据所述K1个时频资源块中的一个时频资源块确定。
作为一个实施例,监听所述第一信令所采用的所述至少1个候选RNTI中的任一候选RNTI根据所述K1个时频资源块中的多个时频资源块确定。
作为一个实施例,监听所述第一信令所采用的所述至少1个候选RNTI中的任一候选RNTI根据所述K1个时频资源块中的一个或者多个时频资源块确定。
作为一个实施例,所述Q1的最大值是所述K1。
作为一个实施例,所述Q1的最大值小于所述K1。
作为一个实施例,所述Q1是所述K1个时频资源块所关联的RS资源的数量。
作为一个实施例,所述Q1是被用于确定所述K1个时频资源块的RS资源的数量。
作为一个实施例,在第一搜索空间监听被所述第一候选RNTI集合中的任一候选RNTI加扰的所述第一信令。
作为该实施例的一个子实施例,所述第一搜索空间是一个搜索空间(Search Space)。
作为该实施例的一个子实施例,所述第一搜索空间被ra-SearchSpace配置。
作为该实施例的一个子实施例,被用于配置所述第一搜索空间的RRC域的名字中包括ra-SearchSpace。
作为一个实施例,在第一子搜索空间监听被所述第一候选RNTI加扰的所述第一信令;在第二子搜索空间监听被所述第二候选RNTI加扰的所述第一信令;所述第一子搜索空间和所述第二子搜索空间是两个不同的搜索空间。
作为该实施例的一个子实施例,所述第一子搜索空间和所述第二子搜索空间是正交的。
作为该实施例的一个子实施例,所述第一子搜索空间和所述第二子搜索空间分别是ra-SearchSpace的一个子集。
作为该实施例的一个子实施例,被用于配置所述第一搜索空间的RRC域的名字中包括ra-SearchSpace,并且,被用于配置所述第二搜索空间的RRC域的名字中包括ra-SearchSpace。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。附图2说明了5G NR(New Radio,新空口)/LTE(Long-Term Evolution,长期演进)/LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200。5G NR/LTE/LTE-A网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。5GS/EPS 200包括UE(User Equipment,用户设备)201,RAN(无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230中的至少之一。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。RAN包括节点203和其它节点204。节点203提供朝向UE201的用户和控制平面协议终止。节点203可经由Xn接口(例如,回程)/X2接口连接到其它节点204。节点203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。节点203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。节点203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201是一个用户设备(User Equipment,UE)。
作为一个实施例,所述UE201是一个基站设备(BaseStation,BS)。
作为一个实施例,所述UE201是一个中继设备。
作为一个实施例,所述节点203对应本申请中的所述第二节点。
作为一个实施例,所述节点203是一个基站设备。
作为一个实施例,所述节点203是一个用户设备。
作为一个实施例,所述节点203是一个中继设备。
作为一个实施例,所述节点203是网关(Gateway)。
典型的,所述UE201是一个用户设备,所述节点203是一个基站设备。
作为一个实施例,所述用户设备支持地面网络(Non-Terrestrial Network,NTN)的传输。
作为一个实施例,所述用户设备支持非地面网络(Terrestrial Network,地面网络)的传输。
作为一个实施例,所述用户设备支持大时延差网络中的传输。
作为一个实施例,所述用户设备支持双连接(Dual Connection,DC)传输。
作为一个实施例,所述用户设备包括飞行器。
作为一个实施例,所述用户设备包括车载终端。
作为一个实施例,所述用户设备包括船只。
作为一个实施例,所述用户设备包括物联网终端。
作为一个实施例,所述用户设备包括工业物联网的终端。
作为一个实施例,所述用户设备包括支持低时延高可靠传输的设备。
作为一个实施例,所述用户设备包括测试设备。
作为一个实施例,所述用户设备包括信令测试仪。
作为一个实施例,所述基站设备包括基站收发台(Base Transceiver Station,BTS)。
作为一个实施例,所述基站设备包括节点B(NodeB,NB)。
作为一个实施例,所述基站设备包括gNB。
作为一个实施例,所述基站设备包括eNB。
作为一个实施例,所述基站设备包括ng-eNB。
作为一个实施例,所述基站设备包括en-gNB。
作为一个实施例,所述基站设备支持在非地面网络的传输。
作为一个实施例,所述基站设备支持在大时延差网络中的传输。
作为一个实施例,所述基站设备支持地面网络的传输。
作为一个实施例,所述基站设备包括宏蜂窝(Marco Cellular)基站。
作为一个实施例,所述基站设备包括微小区(Micro Cell)基站。
作为一个实施例,所述基站设备包括微微小区(Pico Cell)基站。
作为一个实施例,所述基站设备包括家庭基站(Femtocell)。
作为一个实施例,所述基站设备包括支持大时延差的基站设备。
作为一个实施例,所述基站设备包括飞行平台设备。
作为一个实施例,所述基站设备包括卫星设备。
作为一个实施例,所述基站设备包括TRP(Transmitter Receiver Point,发送接收节点)。
作为一个实施例,所述基站设备包括CU(Centralized Unit,集中单元)。
作为一个实施例,所述基站设备包括DU(Distributed Unit,分布单元)。
作为一个实施例,所述基站设备包括测试设备。
作为一个实施例,所述基站设备包括信令测试仪。
作为一个实施例,所述基站设备包括IAB(Integrated Access and Backhaul)-node。
作为一个实施例,所述基站设备包括IAB-donor。
作为一个实施例,所述基站设备包括IAB-donor-CU。
作为一个实施例,所述基站设备包括IAB-donor-DU。
作为一个实施例,所述基站设备包括IAB-DU。
作为一个实施例,所述基站设备包括IAB-MT。
作为一个实施例,所述中继设备包括relay。
作为一个实施例,所述中继设备包括L3relay。
作为一个实施例,所述中继设备包括L2relay。
作为一个实施例,所述中继设备包括路由器。
作为一个实施例,所述中继设备包括交换机。
作为一个实施例,所述中继设备包括用户设备。
作为一个实施例,所述中继设备包括基站设备。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层 展示用于控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的每个Preamble生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述随机接入响应生成于所述RRC306。
作为一个实施例,本申请中的所述随机接入响应生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述随机接入响应生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一RRC消息生成于所述RRC306。
作为一个实施例,本申请中的所述第一RRC消息生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一RRC消息生成于所述PHY301或者PHY351。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流, 随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450至少:在K1个时频资源块发送Preamble,所述K1是大于1的整数;在所述K1个时频资源块中的一个时频资源块之后,采用至少1个候选RNTI监听第一信令,所述第一信令被用于调度随机接入响应;其中,所述K1个时频资源块中的每个时频资源块被配置给Preamble;所述K1个时频资源块和Q1个RS资源相关联,所述Q1个RS资源中包括至少一个RS资源;监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关;所述Q1是不大于所述K1的正整数。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在K1个时频资源块发送Preamble,所述K1是大于1的整数;在所述K1个时频资源块中的一个时频资源块之后,采用至少1个候选RNTI监听第一信令,所述第一信令被用于调度随机接入响应;其中,所述K1个时频资源块中的每个时频资源块被配置给Preamble;所述K1个时频资源块和Q1个RS资源相关联,所述Q1个RS资源中包括至少一个RS资源;监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关;所述Q1是不大于 所述K1的正整数。
作为一个实施例,所述第二通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410至少:接收在K1个时频资源块中被发送的Preamble,所述K1是大于1的整数;发送第一信令,所述第一信令被用于调度随机接入响应;其中,在所述K1个时频资源块中的一个时频资源块之后,第一信令被采用至少1个候选RNTI监听;所述K1个时频资源块中的每个时频资源块被配置给Preamble;所述K1个时频资源块和Q1个RS资源相关联,所述Q1个RS资源中包括至少一个RS资源;监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关;所述Q1是不大于所述K1的正整数。
作为一个实施例,所述第二通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收在K1个时频资源块中被发送的Preamble,所述K1是大于1的整数;发送第一信令,所述第一信令被用于调度随机接入响应;其中,在所述K1个时频资源块中的一个时频资源块之后,第一信令被采用至少1个候选RNTI监听;所述K1个时频资源块中的每个时频资源块被配置给Preamble;所述K1个时频资源块和Q1个RS资源相关联,所述Q1个RS资源中包括至少一个RS资源;监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关;所述Q1是不大于所述K1的正整数。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459中的至少之一被用于监听第一信令。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收第一信令。
作为一个实施例,所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第一信令。
作为一个实施例,所述天线452,所述发射器454,所述发射处理器468,所述控制器/处理器459中的至少之一被用于在K1个时频资源块发送Preamble。
作为一个实施例,所述天线420,所述接收器418,所述接收处理器470,所述控制器/处理器475中的至少之一被用于接收在K1个时频资源块中被发送的Preamble。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个用户设备。
作为一个实施例,所述第一通信设备450是一个基站设备。
作为一个实施例,所述第一通信设备450是一个中继设备。
作为一个实施例,所述第二通信设备410是一个用户设备。
作为一个实施例,所述第二通信设备410是一个基站设备。
作为一个实施例,所述第二通信设备410是一个中继设备。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S5101中,接收第一RRC消息,所述第一RRC消息被用于确定所述K1个时频资源块和Q1个RS资源相关联;在步骤S5102中,在K1个时频资源块发送Preamble,所述K1是大于1的整数;在步骤S5103中,在所述K1个时频资源块中的一个时频资源块之后,采用至少1个候选RNTI监听第一信令,所述第一信令被用于调度随机接入响应;在步骤S5104中,接收所述第一信令。
对于第二节点N02,在步骤S5201中,发送所述第一RRC消息;在步骤S5202中,接收在K1个时频资源块中被发送的Preamble;在步骤S5203中,发送所述第一信令。
在实施例5中,所述K1个时频资源块中的每个时频资源块被配置给Preamble;所述K1个时频资源块和Q1个RS资源相关联,所述Q1个RS资源中包括至少一个RS资源;监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关;所述Q1是不大于所述K1的正整数。
作为一个实施例,所述第一节点U01是一个用户设备。
作为一个实施例,所述第一节点U01是一个基站设备。
作为一个实施例,所述第一节点U01是一个中继设备。
作为一个实施例,所述第二节点N02是一个基站设备。
作为一个实施例,所述第二节点N02是一个用户设备。
作为一个实施例,所述第二节点N02是一个中继设备。
作为一个实施例,所述第二节点N02包括一个TRP。
作为一个实施例,所述第二节点N02包括两个TRP。
作为一个实施例,所述第二节点N02包括至少两个TRP。
作为一个实施例,所述第一节点U01是一个用户设备,所述第二节点N02是一个基站设备。
作为一个实施例,所述第一节点U01是一个用户设备,所述第二节点N02是一个中继设备。
作为一个实施例,所述第一节点U01是一个用户设备,所述第二节点N02是一个用户设备。
作为一个实施例,所述第一节点U01是一个基站设备,所述第二节点N02是一个基站设备。
作为一个实施例,所述第一节点U01是一个中继设备,所述第二节点N02是一个基站设备。
作为一个实施例,作为所述第二节点N02接收在K1个时频资源块中被发送的一个Preamble的响应,发送所述第一信令。
作为一个实施例,作为所述第二节点N02接收在K1个时频资源块中被发送的至少一个Preamble的响应,发送所述第一信令。
作为一个实施例,作为所述第二节点N02接收在K1个时频资源块中被发送的每个Preamble的响应,发送所述第一信令。
作为一个实施例,在所述K1个时频资源块中发送的Preamble的接收者都是所述第二节点N02。
作为该实施例的一个子实施例,所述第二节点N02是一个TRP。
作为该实施例的一个子实施例,所述第二节点N02是一个基站设备。
作为该实施例的一个子实施例,所述第二节点N02是所述第一节点U01的一个服务小区的维持基站。
作为该实施例的一个子实施例,所述第二节点N02是所述第一节点U01的PCell的维持基站。
作为该实施例的一个子实施例,所述第二节点N02是所述第一节点U01的PSCell的维持基站。
作为一个实施例,在所述K1个时频资源块中发送的Preamble的接收者包括多个节点,所述第二节点N02是所述多个节点中的一个节点。
作为该实施例的一个子实施例,所述多个节点中的任一节点是一个TRP。
作为该实施例的一个子实施例,所述多个节点中的任一节点是一个基站设备。
作为该实施例的一个子实施例,所述多个节点中的一个节点是所述第一节点U01的一个服务小区的维持基站。
作为该实施例的一个子实施例,所述多个节点中的一个节点是所述第一节点U01的PCell的维持基站。
作为该实施例的一个子实施例,所述多个节点中的一个节点是所述第一节点U01的PSCell的维持基站。
作为一个实施例,所述第一RRC消息包括至少一个RRC消息。
作为一个实施例,所述第一RRC消息包括至少一个RRC IE(Information Element,信息元素)。
作为一个实施例,所述第一RRC消息包括至少一个RRC域。
作为一个实施例,所述第一RRC消息包括广播信令。
作为一个实施例,所述第一RRC消息包括单播信令。
作为一个实施例,所述第一RRC消息通过BCCH(广播控制信道,Broadcast Control Channel)传输。
作为一个实施例,所述第一RRC消息包括SIB1(System Information Block 1,系统信息块1)消息。
作为一个实施例,所述第一RRC消息属于一个ServingCellConfigCommonSIB IE。
作为一个实施例,所述第一RRC消息属于一个UplinkConfigCommonSIB IE。
作为一个实施例,所述第一RRC消息属于一个BWP-UplinkCommon IE。
作为一个实施例,所述第一RRC消息属于一个RACH-ConfigCommon IE。
作为一个实施例,所述第一RRC消息通过DCCH(Dedicated Control Channel,专用控制信道)传输。
作为一个实施例,所述第一RRC消息包括RRCReconfiguration消息。
作为一个实施例,所述第一RRC消息属于一个RRCResume消息。
作为一个实施例,所述第一RRC消息属于一个RRCSetup消息。
作为一个实施例,所述第一RRC消息属于一个CellGroupConfig IE。
作为一个实施例,所述第一RRC消息属于一个ReconfigurationWithSync域。
作为一个实施例,所述第一RRC消息属于一个ServingCellConfigCommon IE。
作为一个实施例,所述第一RRC消息属于一个UplinkConfigCommon IE。
作为一个实施例,所述第一RRC消息属于一个BWP-UplinkCommon IE。
作为一个实施例,所述第一RRC消息属于一个ServingCellConfig IE。
作为一个实施例,所述第一RRC消息属于一个BWP-Uplink IE。
作为一个实施例,所述第一RRC消息属于一个RACH-ConfigCommon IE。
作为一个实施例,所述第一RRC消息包括至少一个RRC域,所述至少一个RRC域中的每个RRC域被用于确定所述K1个时频资源块中的至少一个时频资源块,并且,所述至少一个RRC域中的每个RRC域包括所述Q1个RS资源中的至少一个RS资源的索引。
作为该实施例的一个子实施例,所述至少一个RRC域是K1个RRC域,所述K1个RRC域中的每个RRC域被用于确定所述K1个时频资源块中的一个时频资源块,并且,所述K1个RRC域中的每个RRC域包括所述Q1个RS资源中的至少一个RS资源的索引。
作为该实施例的一个子实施例,所述至少一个RRC域是Q1个RRC域,所述Q1个RRC域中的每个RRC域被用于确定所述K1个时频资源块中的至少一个时频资源块,并且,所述Q1个RRC域中的每个RRC域包括所述Q1个RS资源中的一个RS资源的索引。
作为该实施例的一个子实施例,所述至少一个RRC域被用于针对一个PRACH重复的配置。
作为该实施例的一个子实施例,所述至少一个RRC域被用于针对给定PRACH重复次数的PRACH重复的配置。
作为一个实施例,所述第一RRC消息包括一个指示给定PRACH重复次数的RRC域。
作为一个实施例,所述第一RRC消息指示给定PRACH重复次数。
作为一个实施例,所述给定PRACH重复次数是所述K1。
作为一个实施例,所述给定PRACH重复次数不小于所述K1。
作为一个实施例,虚线方框F5.1是可选的。
作为一个实施例,所述虚线方框F5.1存在。
作为一个实施例,所述虚线方框F5.1不存在。
作为一个实施例,虚线方框F5.2是可选的。
作为一个实施例,所述虚线方框F5.2存在。
作为该实施例的一个子实施例,所述第一信令被一个候选RNTI加扰。
作为该实施例的一个子实施例,所述第一信令被所述至少1个候选RNTI中的一个候选RNTI加扰。
作为该实施例的一个子实施例,所述第一信令被所述第一候选RNTI加扰。
作为该实施例的一个子实施例,所述第一信令被所述第二候选RNTI加扰。
作为该实施例的一个子实施例,所述第一信令被接收。
作为该实施例的一个子实施例,所述第一信令被所述第一处理机接收。
作为该实施例的一个子实施例,被所述第一信令调度的所述随机接入响应被接收。
作为该实施例的一个子实施例,被所述第一信令调度的所述随机接入响应是目标随机接入响应。
作为该实施例的一个子实施例,被所述第一信令调度的所述随机接入响应不是目标随机接入响应。
作为该实施例的一个子实施例,作为所述第一信令被接收的响应,如果被所述第一信令调度的所述随机接入响应是目标随机接入响应,认为所述随机接入响应接收成功。
作为该实施例的一个子实施例,作为所述第一信令被接收的响应,如果被所述第一信令调度的所述随机接入响应不是目标随机接入响应,所述随机接入响应不被认为接收成功。
作为该实施例的一个子实施例,作为所述第一信令被接收的响应,如果被所述第一信令调度的所述随机接入响应不是目标随机接入响应,继续监听所述第一信令。
作为一个实施例,所述虚线方框F5.2不存在。
作为该实施例的一个子实施例,所述第一信令未被接收。
作为一个实施例,所述目标随机接入响应包括第一RAPID(Random Access Preamble IDentifier)域,所述第一RAPID域包括一个随机接入前导标识(Random Access Preamble identifier);所述第一RAPID域中的随机接入前导标识和在所述K1个时频资源块发送的Preamble的标识匹配(match)。
作为该实施例的一个子实施例,所述第一RAPID域中的随机接入前导标识和在所述K1个时频资源块发送的Preamble的标识匹配是指:所述第一RAPID域中的随机接入前导标识和在所述K1个时频资源块中的任一时频资源块发送的Preamble的标识匹配。
作为该实施例的一个子实施例,所述第一RAPID域中的随机接入前导标识和在所述K1个时频资源块发送的Preamble的标识匹配是指:所述第一RAPID域中的随机接入前导标识和在所述K1个时频资源块中的一个时频资源块发送的Preamble的标识匹配。
作为该实施例的一个子实施例,所述第一RAPID域中的随机接入前导标识和在所述K1个时频资源块发送的Preamble的标识匹配是指:所述第一RAPID域中的随机接入前导标识和在一个时频资源块组中的一个时频资源块发送的Preamble的标识匹配。
作为该实施例的一个子实施例,所述第一RAPID域中的随机接入前导标识和在所述K1个时频资源块发送的Preamble的标识匹配是指:所述第一RAPID域中的随机接入前导标识和在一个时频资源块组中的一个时频资源块发送的Preamble的标识匹配;所述第一信令被根据所述一个时频资源块组确定的候选RNTI加扰。
作为该实施例的一个子实施例,所述第一RAPID域中的随机接入前导标识和在所述K1个时频资源块发送的Preamble的标识匹配是指:所述第一RAPID域中的随机接入前导标识和在所述第一时频资源块组中的一个时频资源块发送的Preamble的标识匹配;所述第一信令被所述第一候选RNTI加扰。
作为该实施例的一个子实施例,所述第一RAPID域中的随机接入前导标识和在所述K1个时频资源块发送的Preamble的标识匹配是指:所述第一RAPID域中的随机接入前导标识和在所述第二时频资源块组中的一个时频资源块发送的Preamble的标识匹配;所述第一信令被所述第二候选RNTI加扰。
作为一个实施例,本示例不限制所述步骤S5102和所述步骤S5103的实施顺序。
实施例6
实施例6示例了根据本申请的一个实施例的监听第一信令所采用的至少1个候选RNTI的数量和Q1之间有关的示意图。
在实施例6中,所述短语监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关包括:监听所述第一信令所采用的所述至少1个候选RNTI的数量等于1并且所述Q1等于1,或者,监听所述第一信令所采用的所述至少1个候选RNTI的数量大于1并且所述Q1大于1。
作为一个实施例,在K1个时频资源块发送Preamble,所述K1是大于1的整数;在所述K1个时频资源块中的一个时频资源块之后,采用至少1个候选RNTI监听第一信令,所述第一信令被用于调度随机接入响应;其中,所述K1个时频资源块中的每个时频资源块被配置给Preamble;所述K1个时频资源块和Q1个RS资源相关联,所述Q1个RS资源中包括至少一个RS资源;监听所述第一信令所采用的所述至少1个候选RNTI的数量等于1并且所述Q1等于1,或者,监听所述第一信令所采用的所述至少1个候选RNTI的数量大于1并且所述Q1大于1;所述Q1是不大于所述K1的正整数。
作为一个实施例,在K1个时频资源块发送Preamble,所述K1是大于1的整数;所述K1个时频资源块和Q1个RS资源相关联,所述Q1个RS资源中包括至少一个RS资源;在所述K1个时频资源块中的一个时频资源块之后,如果所述Q1等于1,采用1个候选RNTI监听第一信令,如果所述Q1大于1,采用大于1个候选RNTI监听第一信令;所述第一信令被用于调度随机接入响应;其中,所述K1个时频资源块中的每个时频资源块被配置给Preamble;监听所述第一信令所采用的所述至少1个候选RNTI的数量等于1并且所述Q1等于1,或者,监听所述第一信令所采用的所述至少1个候选RNTI的数量大于1并且所述Q1大于1;所述Q1是不大于所述K1的正整数。
作为一个实施例,只要所述Q1等于1,监听所述第一信令所采用的所述至少1个候选RNTI的数量等于1;只要所述Q1大于1,监听所述第一信令所采用的所述至少1个候选RNTI的数量大于1。
作为一个实施例,如果所述Q1等于1,监听所述第一信令所采用的所述至少1个候选RNTI的数量等于1;如果所述Q1大于1,监听所述第一信令所采用的所述至少1个候选RNTI的数量大于1。
作为一个实施例,所述Q1等于1被用于确定监听所述第一信令所采用的所述至少1个候选RNTI的数量等于1;所述Q1大于1被用于确定监听所述第一信令所采用的所述至少1个候选RNTI的数量大于1。
作为一个实施例,如果所述Q1等于1,采用1个候选RNTI监听所述第一信令;如果所述Q1大于1,采用大于1个候选RNTI监听所述第一信令。
实施例7
实施例7示例了根据本申请的另一个实施例的监听第一信令所采用的至少1个候选RNTI的数量和Q1之间有关的示意图。
在实施例7中,所述短语监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关包括:监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1相等。
作为一个实施例,在K1个时频资源块发送Preamble,所述K1是大于1的整数;在所述K1个时频资源块中的一个时频资源块之后,采用至少1个候选RNTI监听第一信令,所述第一信令被用于调度随机接入响应;其中,所述K1个时频资源块中的每个时频资源块被配置给Preamble;所述K1个时频资源块和Q1个RS资源相关联,所述Q1个RS资源中包括至少一个RS资源;监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1相等;所述Q1是不大于所述K1的正整数。
作为一个实施例,在K1个时频资源块发送Preamble,所述K1是大于1的整数;在所述K1个时频资源块中的一个时频资源块之后,采用Q1个候选RNTI监听第一信令,所述第一信令被用于调度随机接入响应;其中,所述K1个时频资源块中的每个时频资源块被配置给Preamble;所述K1个时频资源块和Q1个RS资源相关联,所述Q1个RS资源中包括至少一个RS资源;所述Q1是不大于所述K1的正整数。
作为一个实施例,监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述K1个时频资源块所关联的RS资源的数量相等。
作为一个实施例,采用Q1个候选RNTI监听所述第一信令。
作为一个实施例,所述K1个时频资源块由Q1个时频资源块组组成,所述Q1个时频资源块组中的每个时频资源块组被用于确定一个候选RNTI,所述Q1个时频资源块组中的每个时频资源块组包括所述K1个时频资源块中的至少一个时频资源块。
实施例8
实施例8示例了根据本申请的一个实施例的候选RNTI、时频资源块组和RS资源之间的关系的示意图。在附图8中,虚线椭圆801表示与所述K1个时频资源块相关联的Q1个RS资源,所述Q1个RS资源中包括至少第一RS资源和第二RS资源,所述虚线椭圆801中的省略号表示其他RS资源;虚线椭圆802表示K1个时频资源块,所述K1个时频资源块中包括至少第一时频资源块组和第二时频资源块组,所述虚线椭圆802中的省略号表示其他时频资源块组;虚线椭圆803表示监听所述第一信令所采用的所述至少1个候选RNTI,所述虚线椭圆803中的省略号表示其他候选RNTI。
在实施例8中,监听所述第一信令所采用的所述至少1个候选RNTI包括至少第一候选RNTI和第二候选RNTI;第一时频资源块组被用于确定所述第一候选RNTI,所述第一时频资源块组包括所述K1个时频资源块中的至少一个时频资源块,所述第一时频资源块组与第一RS资源相关联;第二时频资源块组被用于确定第二候选RNTI,所述第二时频资源块组包括所述K1个时频资源块中的至少一个时频资源块,所述第二时频资源块组与第二RS资源相关联;所述第一RS资源和所述第二RS资源分别是所述Q1个RS资源中的一个RS资源;所述Q1大于1。
作为一个实施例,所述虚线椭圆801中的省略号存在。
作为一个实施例,所述虚线椭圆801中的省略号不存在。
作为一个实施例,所述虚线椭圆802中的省略号存在。
作为一个实施例,所述虚线椭圆802中的省略号不存在。
作为一个实施例,所述虚线椭圆803中的省略号存在。
作为一个实施例,所述虚线椭圆803中的省略号不存在。
作为一个实施例,所述Q1等于2。
作为一个实施例,所述Q1大于2。
作为一个实施例,在所述第一时频资源块组中的每个时频资源块发送的Preamble都相同。
作为一个实施例,在所述第一时频资源块组中的至少两个时频资源块发送的Preamble不同。
作为一个实施例,在所述第二时频资源块组中的每个时频资源块发送的Preamble都相同。
作为一个实施例,在所述第二时频资源块组中的至少两个时频资源块发送的Preamble不同。
作为一个实施例,在所述第一时频资源块组中的时频资源块发送的任一Preamble和在所述第二时频资源块组中的时频资源块发送的任一Preamble不同。
作为一个实施例,在所述第一时频资源块组中的时频资源块发送的任一Preamble和在所述第二时频资源块组中的时频资源块发送的任一Preamble相同。
作为一个实施例,监听所述第一信令所采用的所述至少1个候选RNTI包括仅所述第一候选RNTI和所述第二候选RNTI。
作为一个实施例,监听所述第一信令所采用的所述至少1个候选RNTI包括所述第一候选RNTI和所述第二候选RNTI之外的至少一个候选RNTI。
作为一个实施例,所述第一时频资源块组被用于确定一个候选RNTI。
作为一个实施例,所述第一时频资源块组中的每个时频资源块被用于确定所述第一候选RNTI。
作为一个实施例,所述第一时频资源块组中的至少一个时频资源块被用于确定所述第一候选RNTI。
作为一个实施例,所述第一时频资源块组中的仅一个时频资源块被用于确定所述第一候选RNTI。
作为一个实施例,所述第一时频资源块组中的仅参考时频资源块被用于确定所述第一候选RNTI。
作为一个实施例,所述第一时频资源块组被用于确定一个候选RNTI。
作为一个实施例,所述第一时频资源块组中的每个时频资源块被用于确定所述第一候选RNTI。
作为一个实施例,所述第一时频资源块组中的至少一个时频资源块被用于确定所述第一候选RNTI。
作为一个实施例,所述第一时频资源块组中的仅一个时频资源块被用于确定所述第一候选RNTI。
作为一个实施例,所述第一时频资源块组中的仅参考时频资源块被用于确定所述第一候选RNTI。
作为一个实施例,一个时频资源块被用于确定所述第一候选RNTI包括:所述一个时频资源块所占用的时域位置或者频域位置或者上行链路载波中的至少之一被用于确定所述第一候选RNTI。
作为一个实施例,一个时频资源块被用于确定所述第一候选RNTI包括:所述一个时频资源块的第一个OFDM符号的索引或者所述一个时频资源块的第一个时隙在一个系统帧中的索引或者所述一个时频资源块在频域上的索引或者所述一个时频资源块的上行链路载波中的至少之一被用于确定所述第一候选RNTI。
作为一个实施例,一个时频资源块组中的参考时频资源块被用于确定一个候选RNTI,所述一个候选RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id。
作为该实施例的一个子实施例,所述一个时频资源块组是所述第一时频资源块组,所述一个候选RNTI是所述第一候选RNTI。
作为该实施例的一个子实施例,所述一个时频资源块组是所述第二时频资源块组,所述一个候选RNTI是所述第二候选RNTI。
作为该实施例的一个子实施例,所述s_id与被用于确定所述一个候选RNTI的时频资源块组中的参考时频资源块所占用的OFDM符号有关。
作为该实施例的一个子实施例,所述s_id是被用于确定所述一个候选RNTI的时频资源块组中的参考时频资源块的第一个OFDM符号的索引。
作为该实施例的一个子实施例,所述t_id与被用于确定所述一个候选RNTI的时频资源块组中的参考时频资源块在一个系统帧中的位置有关。
作为该实施例的一个子实施例,所述t_id是被用于确定所述一个候选RNTI的时频资源块组中的参考时频资源块的第一个时隙在一个系统帧中的索引。
作为该实施例的一个子实施例,对于μ={0,1,2,3},被用于确定所述t_id的子载波间隔基于TS38.211的5.3.2节的μ的值;对于μ={5,6},所述t_id是包括被用于确定所述一个候选RNTI的时频 资源块组中的参考时频资源块的120kHz时隙在一个系统帧中的索引。
作为该实施例的一个子实施例,所述f_id是被用于确定所述一个候选RNTI的时频资源块组中的参考时频资源块在频域上的索引。
作为该实施例的一个子实施例,所述ul_carrier_id指示用于在被用于确定所述一个候选RNTI的时频资源块组中的参考时频资源块的上行链路载波。
作为该实施例的一个子实施例,如果所述ul_carrier_id等于0,用于在被用于确定所述一个候选RNTI的时频资源块组中的参考时频资源块的上行链路载波是NUL载波;如果所述ul_carrier_id_1等于1,用于在被用于确定所述一个候选RNTI的时频资源块组中的参考时频资源块的上行链路载波是SUL载波。
作为一个实施例,所述第一时频资源块组被配置给所述第一RS资源。
作为一个实施例,所述第一时频资源块组被配置所述第一RS资源的索引。
作为一个实施例,所述第一时频资源块组中的每个时频资源块被配置所述第一RS资源的索引。
作为一个实施例,所述第一时频资源块组中的每个时频资源块被配置所述第一RS资源的索引。
作为一个实施例,所述第二时频资源块组被配置给所述第二RS资源。
作为一个实施例,所述第二时频资源块组被配置所述第二RS资源的索引。
作为一个实施例,所述第二时频资源块组中的每个时频资源块被配置所述第二RS资源的索引。
作为一个实施例,所述第二时频资源块组中的每个时频资源块被配置所述第二RS资源的索引。
作为一个实施例,所述第一时频资源块组所包括的时频资源块的数量和所述第二时频资源块组所包括的时频资源块的数量相等。
作为一个实施例,所述第一时频资源块组所包括的时频资源块的数量和所述第二时频资源块组所包括的时频资源块的数量不相等。
作为一个实施例,所述第一时频资源块组中的任一时频资源块和所述第二时频资源块组中的任一时频资源块不同。
作为一个实施例,所述第一时频资源块组中的至少一个时频资源块和所述第二时频资源块组中的任一时频资源块不同。
作为一个实施例,所述第一时频资源块组中的每个时频资源块和所述第二时频资源块组中的任一时频资源块不同。
作为一个实施例,所述第一RS资源和所述第二RS资源不同。
作为一个实施例,所述第一RS资源的索引和所述第二RS资源的索引不同。
作为一个实施例,所述第一RS资源和所述第二RS资源不是QCL(Quasi-colocation,准共址)的。
作为一个实施例,所述Q1个RS资源被用于确定Q1个时频资源块组,所述Q1个时频资源块组被用于确定监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1相等。
作为一个实施例,所述“所述K1个时频资源块和Q1个RS资源相关联”包括:根据所述Q1个RS资源确定所述K1个时频资源块。
作为一个实施例,所述“所述K1个时频资源块和Q1个RS资源相关联”包括:所述Q1个RS资源被用于确定Q1个时频资源块组,所述K1个时频资源块由所述Q1个时频资源块组组成。
作为一个实施例,所述K1个时频资源块由至少2个时频资源块组组成,所述至少2个时频资源块组中的每个时频资源块组被用于确定一个候选RNTI,所述至少2个时频资源块组中的每个时频资源块组包括所述K1个时频资源块中的至少一个时频资源块;所述第一时频资源块组和所述第二时频资源块组分别是所述至少2个时频资源块组中的一个时频资源块组。
作为一个实施例,所述至少2个时频资源块组中的每个时频资源块组中的每个时频资源块被用于确定一个候选RNTI。
作为一个实施例,所述至少2个时频资源块组中的每个时频资源块组中的至少一个时频资源块被用于确定一个候选RNTI。
作为一个实施例,所述至少2个时频资源块组中的每个时频资源块组中的仅一个时频资源块被用于确定一个候选RNTI。
作为一个实施例,所述至少2个时频资源块组中的每个时频资源块组中的仅参考时频资源块被用于确 定一个候选RNTI。
作为一个实施例,所述第一时频资源块组是所述至少2个时频资源块组中的时域上最早的一个时频资源块组。
作为一个实施例,所述第一时频资源块组和所述第二时频资源块组是所述至少2个时频资源块组中的任意2个时频资源块组。
作为一个实施例,所述第一时频资源块组和所述第二时频资源块组是所述至少2个时频资源块组中的任意2个时频资源块组,并且,所述第一时频资源块组在时域上早于所述第二时频资源块组。
作为一个实施例,监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述K1个时频资源块中的时频资源块组的数量相等。
作为一个实施例,所述K1个时频资源块中的时频资源块组的数量与所述Q1相等。
作为一个实施例,所述K1个时频资源块中的时频资源块组的数量与所述Q1不相等。
作为一个实施例,所述K1个时频资源块由Q1个时频资源块组组成。
实施例9
实施例9示例了根据本申请的一个实施例的第一时间子窗和第二时间子窗的操作流程图,如附图9所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S901中,在所述第一时频资源块组中的一个时频资源块发送Preamble;在步骤S902中,伴随在所述第一时频资源块组中的所述一个时频资源块发送的所述Preamble,启动第一时间子窗;在步骤S903中,在所述第二时频资源块组中的一个时频资源块发送Preamble;在步骤S5104中,伴随在所述第二时频资源块组中的所述一个时频资源块发送的所述Preamble,启动第二时间子窗。
作为一个实施例,在所述K1个时频资源块中的所述一个时频资源块之后,并且,当所述第一时间子窗正在运行时,采用至少1个候选RNTI监听所述第一信令。
作为一个实施例,在所述K1个时频资源块中的所述一个时频资源块之后,并且,当所述第二时间子窗正在运行时,采用至少1个候选RNTI监听所述第一信令。
作为一个实施例,在所述K1个时频资源块中的所述一个时频资源块之后,并且,当一个时间子窗正在运行时,采用至少1个候选RNTI监听所述第一信令。
作为一个实施例,伴随在所述K1个时频资源块中的每个时频资源块组中的一个时频资源块发送的Preamble,启动一个时间子窗。
作为一个实施例,伴随在所述K1个时频资源块中的每个时频资源块组中的参考时频资源块发送的Preamble,启动一个时间子窗。
作为一个实施例,伴随在所述K1个时频资源块中的每个时频资源块组中的参考时频资源块发送Preamble之后的第一个PDCCH时机,启动一个时间子窗。
作为一个实施例,所述第一时间窗不存在。
作为一个实施例,所述第一时间子窗是一个时间窗。
作为一个实施例,所述第一时间子窗的长度是可配置的。
作为一个实施例,所述第一时间子窗的长度是预配置的。
作为一个实施例,所述第一时间子窗是一个ra-ResponseWindow。
作为一个实施例,所述第一时间子窗的名字中包括ra-ResponseWindow。
作为一个实施例,所述短语伴随在所述第一时频资源块组中的一个时频资源块发送的Preamble包括:伴随在所述第一时频资源块组中的参考时频资源块发送的Preamble。
作为一个实施例,所述短语伴随在所述第一时频资源块组中的一个时频资源块发送的Preamble包括:在所述第一时频资源块组中的参考时频资源块发送Preamble之后的第一个PDCCH时机。
作为一个实施例,所述短语伴随在所述第一时频资源块组中的一个时频资源块发送的Preamble包括:在所述第一时频资源块组中的时域上最早的一个时频资源块发送Preamble之后的第一个PDCCH时机。
作为一个实施例,所述第二时间子窗是一个时间窗。
作为一个实施例,所述第二时间子窗的长度是可配置的。
作为一个实施例,所述第二时间子窗的长度是预配置的。
作为一个实施例,所述第二时间子窗是一个ra-ResponseWindow。
作为一个实施例,所述第二时间子窗的名字中包括ra-ResponseWindow。
作为一个实施例,所述短语伴随在所述第二时频资源块组中的一个时频资源块发送的Preamble包括:伴随在所述第二时频资源块组中的时域上最晚的一个时频资源块发送的Preamble。
作为一个实施例,所述短语伴随在所述第二时频资源块组中的一个时频资源块发送的Preamble包括:伴随在所述第二时频资源块组中的时域上最早的一个时频资源块发送的Preamble。
作为一个实施例,所述短语伴随在所述第二时频资源块组中的一个时频资源块发送的Preamble包括:在所述第二时频资源块组中的时域上最晚的一个时频资源块发送Preamble之后的第一个PDCCH时机。
作为一个实施例,所述短语伴随在所述第二时频资源块组中的一个时频资源块发送的Preamble包括:在所述第二时频资源块组中的时域上最早的一个时频资源块发送Preamble之后的第一个PDCCH时机。
作为一个实施例,在所述第一时间子窗运行期间,所述第一节点U01采用所述第一候选RNTI监听所述第一信令。
作为一个实施例,仅在所述第一时间子窗运行期间,所述第一节点U01采用所述第一候选RNTI监听所述第一信令。
作为一个实施例,如果所述第一时间子窗不在运行,所述第一节点U01不采用所述第一候选RNTI监听所述第一信令。
作为一个实施例,如果所述第一时间子窗不在运行,所述第一节点U01不被要求采用所述第一候选RNTI监听所述第一信令。
作为一个实施例,在所述第二时间子窗运行期间,所述第一节点U01采用所述第二候选RNTI监听所述第一信令。
作为一个实施例,仅在所述第二时间子窗运行期间,所述第一节点U01采用所述第二候选RNTI监听所述第一信令。
作为一个实施例,如果所述第二时间子窗不在运行,所述第一节点U01不采用所述第二候选RNTI监听所述第一信令。
作为一个实施例,如果所述第二时间子窗不在运行,所述第一节点U01不被要求采用所述第二候选RNTI监听所述第一信令。
作为一个实施例,所述第一时间子窗和所述第二时间子窗在时域上交叠。
作为一个实施例,所述第一时间子窗和所述第二时间子窗在时域上不交叠。
作为一个实施例,所述第一时间子窗的起始时刻和所述第二时间子窗的起始时刻之间的时间间隔内,包括至少一个时间子窗。
作为一个实施例,所述第一时间子窗的起始时刻和所述第二时间子窗的起始时刻之间的时间间隔内,不包括任一时间子窗。
实施例10
实施例10示例了根据本申请的一个实施例的第一时间子窗过期并且第二时间子窗过期被用于触发第一动作集合的流程图,如附图10所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S1001中,监听第一信令;在步骤S1002中,接收所述第一信令;在步骤S1003中,所述第一时间子窗过期并且所述第二时间子窗过期;在步骤S1004中,执行第一动作集合。
作为一个实施例,所述步骤S1002是可选的。
作为一个实施例,所述步骤S1002存在。
作为该实施例的一个子实施例,所述第一信令在所述第一时间子窗运行期间被接收。
作为该子实施例的一个附属实施例,作为所述第一信令被接收的响应,如果被所述第一信令调度的所述随机接入响应是目标随机接入响应,停止所述第一时间子窗。
作为该子实施例的一个附属实施例,作为所述第一信令被接收的响应,如果被所述第一信令调度的所述随机接入响应是目标随机接入响应,不停止所述第一时间子窗并继续采用至少1个候选RNTI监听被用于调度随机接入响应的DCI。
作为该实施例的一个子实施例,所述第一信令在所述第二时间子窗运行期间被接收。
作为该子实施例的一个附属实施例,作为所述第一信令被接收的响应,如果被所述第一信令调度的所述随机接入响应是目标随机接入响应,停止所述第二时间子窗。
作为该子实施例的一个附属实施例,作为所述第一信令被接收的响应,如果被所述第一信令调度的所述随机接入响应是目标随机接入响应,不停止所述第二时间子窗并继续采用至少1个候选RNTI监听被用于调度随机接入响应的DCI。
作为一个实施例,所述步骤S1002不存在。
作为一个实施例,虚线方框F10.1是可选的。
作为一个实施例,所述虚线方框F10.1存在。
作为一个实施例,所述虚线方框F10.1不存在。
作为一个实施例,至少所述第一时间子窗过期并且所述第二时间子窗过期并且目标随机接入响应未被接收被用于触发所述第一动作集合。
作为一个实施例,所述“至少所述第一时间子窗过期并且所述第二时间子窗过期被用于触发第一动作集合”包括:当至少所述第一时间子窗和所述第二时间子窗都过期时,执行所述第一动作集合。
作为一个实施例,所述“至少所述第一时间子窗过期并且所述第二时间子窗过期被用于触发第一动作集合”包括:当所述第一时间子窗过期时,如果所述第二时间子窗未过期,所述第一动作集合不被执行。
作为一个实施例,所述“至少所述第一时间子窗过期并且所述第二时间子窗过期被用于触发第一动作集合”包括:当所述第一时间子窗过期时,如果所述第二时间子窗正在运行,所述第一动作集合不被执行。
作为一个实施例,所述“至少所述第一时间子窗过期并且所述第二时间子窗过期被用于触发第一动作集合”包括:当所述第一时间子窗过期时,如果所述第二时间子窗未被开始,所述第一动作集合不被执行。
作为一个实施例,所述“至少所述第一时间子窗过期并且所述第二时间子窗过期被用于触发第一动作集合”包括:当伴随在所述K1个时频资源块中的每个时频资源块组中的一个时频资源块发送的Preamble启动的时间子窗都过期时,执行所述第一动作集合。
作为一个实施例,所述第一动作集合包括增加PREAMBLE_TRANSMISSION_COUNTER。
作为一个实施例,所述行为增加PREAMBLE_TRANSMISSION_COUNTER包括:PREAMBLE_TRANSMISSION_COUNTER增加1。
作为一个实施例,所述行为增加PREAMBLE_TRANSMISSION_COUNTER包括:PREAMBLE_TRANSMISSION_COUNTER增加至少1。
作为一个实施例,所述行为增加PREAMBLE_TRANSMISSION_COUNTER包括:PREAMBLE_TRANSMISSION_COUNTER增加所述K1。
作为一个实施例,所述第一动作集合包括根据PREAMBLE_TRANSMISSION_COUNTER是否达到第一阈值确定是否给更上层指示随机接入问题;所述第一阈值是正整数。
作为一个实施例,所述第一动作集合包括根据PREAMBLE_TRANSMISSION_COUNTER是否达到第一阈值确定是否认为随机接入过程未被成功完成;所述第一阈值是正整数。
作为一个实施例,所述第一阈值是preambleTransMax+1。
作为一个实施例,所述第一阈值是可配置的。
实施例11
实施例11示例了根据本申请的一个实施例的第一时间窗是操作流程图,如附图11所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S1101中,在所述K1个时频资源块中的一个时频资源块发送Preamble;在步骤S1102中,伴随在所述K1个时频资源块中的所述一个时频资源块发送的所述Preamble,启动第一时间窗;在步骤S1103中,监听第一信令;在步骤S1104中,接收所述第一信令;在步骤S1105中,所述第一时间窗过期;在步骤S1106中,执行第一动作集合。
作为一个实施例,所述步骤S1104是可选的。
作为一个实施例,所述步骤S1104存在。
作为该实施例的一个子实施例,所述第一信令在所述第一时间窗运行期间被接收。
作为该实施例的一个子实施例,作为所述第一信令被接收的响应,如果被所述第一信令调度的所述随机接入响应是目标随机接入响应,停止所述第一时间窗。
作为该实施例的一个子实施例,作为所述第一信令被接收的响应,如果被所述第一信令调度的所述随机接入响应是目标随机接入响应,不停止所述第一时间窗并继续采用至少1个候选RNTI监听被用于调度随机接入响应的DCI。
作为一个实施例,所述步骤S1104不存在。
作为一个实施例,虚线方框F11.1是可选的。
作为一个实施例,所述虚线方框F11.1存在。
作为一个实施例,所述虚线方框F11.1不存在。
作为一个实施例,伴随在一个时频资源块发送的Preamble的意思包括:在所述一个时频资源块发送Preamble时。
作为一个实施例,伴随在一个时频资源块发送的Preamble的意思包括:在所述一个时频资源块发送Preamble之后。
作为一个实施例,伴随在一个时频资源块发送的Preamble的意思包括:在所述一个时频资源块发送Preamble结束之后的第一个PDCCH时机。
作为一个实施例,所述第一时间窗被启动的时刻与在所述K1个时频资源块中的一个时频资源块发送的Preamble有关。
作为一个实施例,所述第一时间窗被启动的时刻与在所述K1个时频资源块中的一个时频资源块发送Preamble的截止时刻有关。
作为一个实施例,所述第一时间窗被启动的时刻与PDCCH时机的配置有关。
作为一个实施例,每个时间子窗被启动的时刻与在所述K1个时频资源块中的一个时频资源块发送的Preamble有关。
作为一个实施例,每个时间子窗被启动的时刻与在所述K1个时频资源块中的一个时频资源块发送Preamble的截止时刻有关。
作为一个实施例,每个时间子窗被启动的时刻与PDCCH时机的配置有关。
作为一个实施例,所述第一时间窗是一个时间窗。
作为一个实施例,所述第一时间窗的长度是可配置的。
作为一个实施例,所述第一时间窗的长度是预配置的。
作为一个实施例,所述第一时间窗是一个ra-ResponseWindow。
作为一个实施例,所述第一时间窗的名字中包括ra-ResponseWindow。
作为一个实施例,所述第一时间窗运行期间,监听所述第一信令。
作为一个实施例,所述第一时间窗被用于监听所述第一信令。
作为一个实施例,所述行为“伴随在所述K1个时频资源块中的一个时频资源块发送的Preamble,启动第一时间窗”包括:伴随在所述K1个时频资源块中的每个时频资源块发送的Preamble,启动或者重新启动所述第一时间窗。
作为该实施例的一个子实施例,伴随在所述K1个时频资源块中的每个时频资源块发送的Preamble,如果所述第一时间窗不在运行,启动所述第一时间窗。
作为该实施例的一个子实施例,伴随在所述K1个时频资源块中的每个时频资源块发送的Preamble,如果所述第一时间窗正在运行,重新启动所述第一时间窗。
作为一个实施例,所述行为“伴随在所述K1个时频资源块中的一个时频资源块发送的Preamble,启动第一时间窗”包括:伴随在所述K1个时频资源块中的参考时频资源块发送的Preamble,启动所述第一时间窗。
作为一个实施例,所述行为“伴随在所述K1个时频资源块中的一个时频资源块发送的Preamble,启动第一时间窗”包括:伴随在所述第一时频资源块组中的一个时频资源块发送的Preamble,启动所述第一时间窗。
作为该实施例的一个子实施例,伴随在所述第一时频资源块组中的参考时频资源块发送的Preamble, 启动所述第一时间窗。
作为该实施例的一个子实施例,在所述第二时频资源块组中的参考时频资源块发送Preamble不影响所述第一时间窗的运行状态。
作为该实施例的一个子实施例,伴随在所述第二时频资源块组中的参考时频资源块发送的Preamble,所述第一时间窗不被重新启动。
作为该实施例的一个子实施例,伴随在所述第一时频资源块组中的参考时频资源块发送的Preamble,启动或者重新启动所述第一时间窗。
作为该实施例的一个子实施例,伴随在所述第二时频资源块组中的参考时频资源块发送的Preamble,重新启动所述第一时间窗。
作为一个实施例,所述K1个时频资源块中的参考时频资源块是所述K1个时频资源块中的时域上最早的一个时频资源块。
作为一个实施例,所述K1个时频资源块中的参考时频资源块是所述K1个时频资源块中的时域上最晚的一个时频资源块。
作为一个实施例,一个时频资源块组中的参考时频资源块是所述一个时频资源块组中的时域上最早的一个时频资源块。
作为一个实施例,一个时频资源块组中的参考时频资源块是所述一个时频资源块组中的时域上最晚的一个时频资源块。
作为一个实施例,一个时频资源块组中的参考时频资源块是所述一个时频资源块组中的截止时刻最早的一个时频资源块。
作为一个实施例,一个时频资源块组中的参考时频资源块是所述一个时频资源块组中的截止时刻最晚的一个时频资源块。
作为一个实施例,所述第一时频资源块组中的参考时频资源块的在时域上早于所述第二时频资源块组中的参考时频资源块。
作为一个实施例,所述第一时频资源块组中的参考时频资源块的截止时刻早于所述第二时频资源块组中的参考时频资源块的截止时刻。
作为一个实施例,伴随在所述K1个时频资源块中的一个时频资源块发送的Preamble,启动第一时间窗;并且,伴随在所述第一时频资源块组中的一个时频资源块发送的Preamble,启动第一时间子窗;伴随在所述第二时频资源块组中的一个时频资源块发送的Preamble,启动第二时间子窗。
作为该实施例的一个子实施例,所述第一时间子窗、所述第二时间子窗存在,并且,所述第一时间窗存在。
作为该实施例的一个子实施例,任一时间子窗过期不被用于触发所述第一动作集合。
作为该实施例的一个子实施例,当所有时间子窗都过期时,如果所述第一时间窗正在运行,所述第一动作集合不被触发。
作为该实施例的一个子实施例,当所述第一时间窗过期时,不管任一时间子窗是否正在运行,触发所述第一动作集合。
作为一个实施例,伴随在所述K1个时频资源块中的一个时频资源块发送的Preamble,启动仅第一时间窗。
作为该实施例的一个子实施例,伴随在所述K1个时频资源块中的任一时频资源块发送的Preamble,任一时间子窗不被启动。
作为该实施例的一个子实施例,所述第一时间窗运行期间,任一时间子窗未被启动。
作为该实施例的一个子实施例,任一时间子窗未被配置。
作为该实施例的一个子实施例,所述第一时间子窗、所述第二时间子窗不存在,并且,所述第一时间窗存在。
作为该实施例的一个子实施例,伴随在所述第一时频资源块组中的一个时频资源块发送的Preamble,开始采用所述第一候选RNTI监听所述第一信令;伴随在所述第二时频资源块组中的一个时频资源块发送的Preamble,开始采用所述第二候选RNTI监听所述第一信令。
作为该实施例的一个子实施例,开始采用所述第一候选RNTI监听所述第一信令之后,采用所述第一候选RNTI监听所述第一信令直到所述第一时间窗过期。
作为该实施例的一个子实施例,开始采用所述第一候选RNTI监听所述第一信令之后,采用所述第一候选RNTI监听所述第一信令直到开始采用所述第二候选RNTI监听所述第一信令。
作为该实施例的一个子实施例,开始采用所述第二候选RNTI监听所述第一信令之后,采用所述第二候选RNTI监听所述第一信令直到所述第一时间窗过期。
作为一个实施例,所述第一时间窗过期并且所述目标随机接入响应被接收被用于触发所述第一动作集合。
作为一个实施例,所述第一时间窗过期并且在所述K1个时频资源块中的每个时频资源块发送了Preamble被用于触发所述第一动作集合。
作为一个实施例,所述第一时间窗过期并且在所述K1个时频资源块中的每个时频资源块发送了Preamble并且所述目标随机接入响应被接收被用于触发所述第一动作集合。
作为一个实施例,当所述第一时间窗过期时,执行所述第一动作集合。
作为一个实施例,当所述第一时间窗过期并且在所述K1个时频资源块中的每个时频资源块发送了Preamble时,执行所述第一动作集合。
作为一个实施例,当所述第一时间窗过期时,如果在所述K1个时频资源块中的至少一个时频资源块还未发送Preamble,所述第一动作集合不被触发。
作为一个实施例,当所述第一时间窗过期并且所述目标随机接入响应未被接收时,执行所述第一动作集合。
作为一个实施例,当所述第一时间窗过期并且在所述K1个时频资源块中的每个时频资源块发送了Preamble并且所述目标随机接入响应被接收时,执行所述第一动作集合。
作为一个实施例,至少在所述第一时间窗运行期间,所述第一动作集合不被触发。
作为一个实施例,至少在所述第一时间窗过期时或者所述第一时间窗过期之后,所述第一动作集合被触发。
实施例12
实施例12示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图12所示。在附图12中,第一节点中的处理装置1200包括第一处理机1201。
第一处理机,在K1个时频资源块发送Preamble,所述K1是大于1的整数;在所述K1个时频资源块中的一个时频资源块之后,采用至少1个候选RNTI监听第一信令,所述第一信令被用于调度随机接入响应。
实施例12中,所述K1个时频资源块中的每个时频资源块被配置给Preamble;所述K1个时频资源块和Q1个RS资源相关联,所述Q1个RS资源中包括至少一个RS资源;监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关;所述Q1是不大于所述K1的正整数。
作为一个实施例,所述短语监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关包括:监听所述第一信令所采用的所述至少1个候选RNTI的数量等于1并且所述Q1等于1,或者,监听所述第一信令所采用的所述至少1个候选RNTI的数量大于1并且所述Q1大于1。
作为一个实施例,所述短语监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关包括:监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1相等。
作为一个实施例,监听所述第一信令所采用的所述至少1个候选RNTI包括至少第一候选RNTI和第二候选RNTI;第一时频资源块组被用于确定所述第一候选RNTI,所述第一时频资源块组包括所述K1个时频资源块中的至少一个时频资源块,所述第一时频资源块组与第一RS资源相关联;第二时频资源块组被用于确定第二候选RNTI,所述第二时频资源块组包括所述K1个时频资源块中的至少一个时频资源块,所述第二时频资源块组与第二RS资源相关联;所述第一RS资源和所述第二RS资源分别是所述Q1个RS资源中的一个RS资源;所述Q1大于1。
作为一个实施例,所述第一处理机1201,伴随在所述第一时频资源块组中的一个时频资源块发送的Preamble,启动第一时间子窗;伴随在所述第二时频资源块组中的一个时频资源块发送的Preamble,启动 第二时间子窗;其中,所述第一时间子窗被用于采用所述第一候选RNTI监听所述第一信令;所述第二时间子窗被用于采用所述第二候选RNTI监听所述第一信令。
作为一个实施例,至少所述第一时间子窗过期并且所述第二时间子窗过期被用于触发第一动作集合,所述第一动作集合包括至少认为随机接入响应接收不成功。
作为一个实施例,所述第一处理机1201,伴随在所述K1个时频资源块中的一个时频资源块发送的Preamble,启动第一时间窗;其中,所述第一时间窗过期被用于触发第一动作集合,所述第一动作集合包括至少认为随机接入响应接收不成功。
作为一个实施例,所述第一处理机1201,接收第一RRC消息,所述第一RRC消息被用于确定所述K1个时频资源块和Q1个RS资源相关联。
作为一个实施例,所述第一处理机1201包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467。
作为一个实施例,所述第一处理机1201包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456。
作为一个实施例,所述第一处理机1201包括本申请附图4中的天线452,接收器454,接收处理器456。
作为一个实施例,所述第一处理机1201包括本申请附图4中的天线452,发射器454,多天线发射处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467。
作为一个实施例,所述第一处理机1201包括本申请附图4中的天线452,发射器454,多天线发射处理器457,发射处理器468。
作为一个实施例,所述第一处理机1201包括本申请附图4中的天线452,发射器454,发射处理器468。
实施例13
实施例13示例了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;如附图13所示。在附图13中,第二节点中的处理装置1300包括第二发射机1301和第二接收机1302。
第二接收机1302,接收在K1个时频资源块中被发送的Preamble,所述K1是大于1的整数;
第二发射机1301,发送第一信令,所述第一信令被用于调度随机接入响应。
实施例13中,在所述K1个时频资源块中的一个时频资源块之后,第一信令被采用至少1个候选RNTI监听;所述K1个时频资源块中的每个时频资源块被配置给Preamble;所述K1个时频资源块和Q1个RS资源相关联,所述Q1个RS资源中包括至少一个RS资源;监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关;所述Q1是不大于所述K1的正整数。
作为一个实施例,所述短语监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关包括:监听所述第一信令所采用的所述至少1个候选RNTI的数量等于1并且所述Q1等于1,或者,监听所述第一信令所采用的所述至少1个候选RNTI的数量大于1并且所述Q1大于1。
作为一个实施例,所述短语监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关包括:监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1相等。
作为一个实施例,监听所述第一信令所采用的所述至少1个候选RNTI包括至少第一候选RNTI和第二候选RNTI;第一时频资源块组被用于确定所述第一候选RNTI,所述第一时频资源块组包括所述K1个时频资源块中的至少一个时频资源块,所述第一时频资源块组与第一RS资源相关联;第二时频资源块组被用于确定第二候选RNTI,所述第二时频资源块组包括所述K1个时频资源块中的至少一个时频资源块,所述第二时频资源块组与第二RS资源相关联;所述第一RS资源和所述第二RS资源分别是所述Q1个RS资源中的一个RS资源;所述Q1大于1。
作为一个实施例,伴随在所述第一时频资源块组中的一个时频资源块发送的Preamble,第一时间子窗被启动;伴随在所述第二时频资源块组中的一个时频资源块发送的Preamble,第二时间子窗被启动;所述第一时间子窗被用于采用所述第一候选RNTI监听所述第一信令;所述第二时间子窗被用于采用所述第二候选RNTI监听所述第一信令。
作为一个实施例,至少所述第一时间子窗过期并且所述第二时间子窗过期被用于触发第一动作集合,所述第一动作集合包括至少认为随机接入响应接收不成功。
作为一个实施例,伴随在所述K1个时频资源块中的一个时频资源块发送的Preamble,第一时间窗被 启动;所述第一时间窗过期被用于触发第一动作集合,所述第一动作集合包括至少认为随机接入响应接收不成功。
作为一个实施例,所述第二发射机1301,发送第一RRC消息,所述第一RRC消息被用于确定所述K1个时频资源块和Q1个RS资源相关联。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475,存储器476。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,发射处理器416。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475,存储器476。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,接收处理器470。
实施例14
实施例14示例了根据本申请的一个实施例的第一时间子窗和第二时间子窗的示意图,如附图14所示。在附图14中,横轴表示时间,纵轴表示频率;斜线填充的方框表示属于第一时频资源块组的三个时频资源块;十字填充的方框表示属于第二时频资源块组的两个时频资源块;方框1401的第一时频资源块组中的参考时频资源块;方框1402的第二时频资源块组中的参考时频资源块。
作为一个实施例,伴随在所述第一时频资源块组中的所述参考时频资源块发送的Preamble,所述第一时间子窗被启动;伴随在所述第二时频资源块组中的所述参考时频资源块发送的Preamble,所述第二时间子窗被启动。
作为一个实施例,本示例不限制每个时频资源块组中所包括的时频资源块的数量。
作为一个实施例,本示例不限制任意两个时频资源块组中所包括的时频资源块的数量是否相同。
作为一个实施例,本示例不限制每个时频资源块组中的两个时频资源块是否交叠。
作为一个实施例,本示例不限制每个时频资源块组中的两个时频资源块是否交叠。
作为一个实施例,本示例不限制每个时间子窗的时间长度。
作为一个实施例,本示例不限制每个时间子窗的起始时刻与参考时频资源块的截止时刻之间是否存在时间间隔。
作为一个实施例,本示例不限制两个时间子窗在时域上是否交叠。
作为一个实施例,本示例不限制每个时频资源块组中的参考时频资源块是每个时频资源块组中的时域上最早的一个时频资源块。
实施例15
实施例15示例了根据本申请的一个实施例的第一时间窗的示意图,如附图15所示。在附图15中,横轴表示时间,纵轴表示频率;斜线填充的方框表示属于第一时频资源块组的三个时频资源块;十字填充的方框表示属于第二时频资源块组的两个时频资源块;方框1501的第一时频资源块组中的参考时频资源块;方框1502的第二时频资源块组中的参考时频资源块。
作为一个实施例,伴随在所述第一时频资源块组中的所述参考时频资源块发送的Preamble,所述第一时间窗被启动或者被重新启动;伴随在所述第二时频资源块组中的所述参考时频资源块发送的Preamble,所述第一时间窗被重新启动。
作为一个实施例,本示例不限制每个时频资源块组中所包括的时频资源块的数量。
作为一个实施例,本示例不限制任意两个时频资源块组中所包括的时频资源块的数量是否相同。
作为一个实施例,本示例不限制每个时频资源块组中的两个时频资源块是否交叠。
作为一个实施例,本示例不限制每个时频资源块组中的两个时频资源块是否交叠。
作为一个实施例,本示例不限制每个时间子窗的时间长度。
作为一个实施例,本示例不限制每个时间子窗的起始时刻与参考时频资源块的截止时刻之间是否存在 时间间隔。
作为一个实施例,本示例不限制两个时间子窗在时域上是否交叠。
作为一个实施例,本示例不限制每个时频资源块组中的参考时频资源块是每个时频资源块组中的时域上最早的一个时频资源块。
实施例16
实施例16示例了根据本申请的另一个实施例的第一时间窗的示意图,如附图16所示。在附图16中,横轴表示时间,纵轴表示频率;斜线填充的方框表示属于第一时频资源块组的三个时频资源块;十字填充的方框表示属于第二时频资源块组的两个时频资源块;方框1601的第一时频资源块组中的参考时频资源块;方框1602的第二时频资源块组中的参考时频资源块。
作为一个实施例,伴随在所述第一时频资源块组中的所述参考时频资源块发送的Preamble,所述第一时间窗被启动。
作为一个实施例,在所述第二时频资源块组中的所述参考时频资源块发送的Preamble不改变所述第一时间窗的运行状态。
作为一个实施例,本示例不限制每个时频资源块组中所包括的时频资源块的数量。
作为一个实施例,本示例不限制任意两个时频资源块组中所包括的时频资源块的数量是否相同。
作为一个实施例,本示例不限制每个时频资源块组中的两个时频资源块是否交叠。
作为一个实施例,本示例不限制每个时频资源块组中的两个时频资源块是否交叠。
作为一个实施例,本示例不限制每个时间子窗的时间长度。
作为一个实施例,本示例不限制每个时间子窗的起始时刻与参考时频资源块的截止时刻之间是否存在时间间隔。
作为一个实施例,本示例不限制两个时间子窗在时域上是否交叠。
作为一个实施例,本示例不限制每个时频资源块组中的参考时频资源块是每个时频资源块组中的时域上最早的一个时频资源块。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一处理机,在K1个时频资源块发送Preamble,所述K1是大于1的整数;在所述K1个时频资源块中的一个时频资源块之后,采用至少1个候选RNTI监听第一信令,所述第一信令被用于调度随机接入响应;
    其中,所述K1个时频资源块中的每个时频资源块被配置给Preamble;所述K1个时频资源块和Q1个RS资源相关联,所述Q1个RS资源中包括至少一个RS资源;监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关;所述Q1是不大于所述K1的正整数。
  2. 根据权利要求1所述的第一节点,其特征在于,所述短语监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关包括:监听所述第一信令所采用的所述至少1个候选RNTI的数量等于1并且所述Q1等于1,或者,监听所述第一信令所采用的所述至少1个候选RNTI的数量大于1并且所述Q1大于1。
  3. 根据权利要求1或2所述的第一节点,其特征在于,所述短语监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关包括:监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1相等。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,监听所述第一信令所采用的所述至少1个候选RNTI包括至少第一候选RNTI和第二候选RNTI;第一时频资源块组被用于确定所述第一候选RNTI,所述第一时频资源块组包括所述K1个时频资源块中的至少一个时频资源块,所述第一时频资源块组与第一RS资源相关联;第二时频资源块组被用于确定第二候选RNTI,所述第二时频资源块组包括所述K1个时频资源块中的至少一个时频资源块,所述第二时频资源块组与第二RS资源相关联;所述第一RS资源和所述第二RS资源分别是所述Q1个RS资源中的一个RS资源;所述Q1大于1。
  5. 根据权利要求4所述的第一节点,其特征在于,包括:
    所述第一处理机,伴随在所述第一时频资源块组中的一个时频资源块发送的Preamble,启动第一时间子窗;伴随在所述第二时频资源块组中的一个时频资源块发送的Preamble,启动第二时间子窗;
    其中,所述第一时间子窗被用于采用所述第一候选RNTI监听所述第一信令;所述第二时间子窗被用于采用所述第二候选RNTI监听所述第一信令。
  6. 根据权利要求5所述的第一节点,其特征在于,至少所述第一时间子窗过期并且所述第二时间子窗过期被用于触发第一动作集合,所述第一动作集合包括至少认为随机接入响应接收不成功。
  7. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一处理机,伴随在所述K1个时频资源块中的一个时频资源块发送的Preamble,启动第一时间窗;
    其中,所述第一时间窗过期被用于触发第一动作集合,所述第一动作集合包括至少认为随机接入响应接收不成功。
  8. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二接收机,接收在K1个时频资源块中被发送的Preamble,所述K1是大于1的整数;
    第二发射机,发送第一信令,所述第一信令被用于调度随机接入响应;
    其中,在所述K1个时频资源块中的一个时频资源块之后,第一信令被采用至少1个候选RNTI监听;所述K1个时频资源块中的每个时频资源块被配置给Preamble;所述K1个时频资源块和Q1个RS资源相关联,所述Q1个RS资源中包括至少一个RS资源;监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关;所述Q1是不大于所述K1的正整数。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    在K1个时频资源块发送Preamble,所述K1是大于1的整数;在所述K1个时频资源块中的一个时频资源块之后,采用至少1个候选RNTI监听第一信令,所述第一信令被用于调度随机接入响应;
    其中,所述K1个时频资源块中的每个时频资源块被配置给Preamble;所述K1个时频资源块和Q1个RS资源相关联,所述Q1个RS资源中包括至少一个RS资源;监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关;所述Q1是不大于所述K1的正整数。
  10. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    接收在K1个时频资源块中被发送的Preamble,所述K1是大于1的整数;
    发送第一信令,所述第一信令被用于调度随机接入响应;
    其中,在所述K1个时频资源块中的一个时频资源块之后,第一信令被采用至少1个候选RNTI监听;所述K1个时频资源块中的每个时频资源块被配置给Preamble;所述K1个时频资源块和Q1个RS资源相关联,所述Q1个RS资源中包括至少一个RS资源;监听所述第一信令所采用的所述至少1个候选RNTI的数量和所述Q1之间有关;所述Q1是不大于所述K1的正整数。
PCT/CN2023/131166 2022-11-28 2023-11-13 一种被用于无线通信的通信节点中的方法和装置 WO2024114346A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211534218.6 2022-11-28
CN202211534218.6A CN118119031A (zh) 2022-11-28 2022-11-28 一种被用于无线通信的通信节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2024114346A1 true WO2024114346A1 (zh) 2024-06-06

Family

ID=91215919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/131166 WO2024114346A1 (zh) 2022-11-28 2023-11-13 一种被用于无线通信的通信节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN118119031A (zh)
WO (1) WO2024114346A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180279268A1 (en) * 2015-09-25 2018-09-27 Lg Electronics Inc. Method and user equipment for receiving downlink control information, and method and base station for transmitting downlink control information
CN111787615A (zh) * 2019-04-04 2020-10-16 北京三星通信技术研究有限公司 竞争性上行数据传输的方法、ue、基站、设备及介质
CN114222295A (zh) * 2017-11-06 2022-03-22 华为技术有限公司 通信方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180279268A1 (en) * 2015-09-25 2018-09-27 Lg Electronics Inc. Method and user equipment for receiving downlink control information, and method and base station for transmitting downlink control information
CN114222295A (zh) * 2017-11-06 2022-03-22 华为技术有限公司 通信方法及装置
CN111787615A (zh) * 2019-04-04 2020-10-16 北京三星通信技术研究有限公司 竞争性上行数据传输的方法、ue、基站、设备及介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "NR-RACH preamble format details for capacity enhancement and beam management", 3GPP TSG RAN WG1 MEETING #90, R1-1714041, 20 August 2017 (2017-08-20), XP051316833 *

Also Published As

Publication number Publication date
CN118119031A (zh) 2024-05-31

Similar Documents

Publication Publication Date Title
CN113543239B (zh) 一种被用于无线通信的方法和设备
CN114641092A (zh) 一种被用于无线通信的通信节点中的方法和装置
CN115603873A (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024114346A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN115119330A (zh) 一种被用于无线通信的通信节点中的方法和装置
CN114389770A (zh) 一种被用于无线通信的通信节点中的方法和装置
CN116015373A (zh) 一种被用于无线通信的节点中的方法和装置
WO2024078434A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024179376A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024017078A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024007870A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024046155A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024051626A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024051560A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023160415A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024152941A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024160228A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024051559A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024046152A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023174228A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024104208A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024140675A1 (zh) 一种被用于无线通信的方法和设备
WO2024153034A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN114285533B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024022238A1 (zh) 一种被用于无线通信的通信节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23896498

Country of ref document: EP

Kind code of ref document: A1