WO2023207709A1 - 一种被用于无线通信的通信节点中的方法和装置 - Google Patents

一种被用于无线通信的通信节点中的方法和装置 Download PDF

Info

Publication number
WO2023207709A1
WO2023207709A1 PCT/CN2023/089215 CN2023089215W WO2023207709A1 WO 2023207709 A1 WO2023207709 A1 WO 2023207709A1 CN 2023089215 W CN2023089215 W CN 2023089215W WO 2023207709 A1 WO2023207709 A1 WO 2023207709A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
signaling
sub
domain
received
Prior art date
Application number
PCT/CN2023/089215
Other languages
English (en)
French (fr)
Inventor
于巧玲
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2023207709A1 publication Critical patent/WO2023207709A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure

Definitions

  • the present application relates to transmission methods and devices in wireless communication systems, and in particular to mobility transmission methods and devices.
  • the base station in the RRC (Radio Resource Control, Radio Resource Control) connection (RRC_CONNECTED) state, the base station is responsible for maintaining the timing for maintaining L1 (layer 1, layer one) synchronization Advance amount. Cells with the same timing advance and using the same timing reference are grouped into a TAG (Timing Advance Group). Each TAG includes at least one serving cell (Serving Cell) configured with an uplink. The RRC layer is responsible for Mapping of each serving cell to TAG. For PTAG (Primary TAG), SpCell (Special Cell, special cell) is the timing reference of the cell in the PTAG.
  • PTAG Primary TAG
  • SpCell Specific Cell, special cell
  • any activated SCell (Secondary Cell, secondary cell) in this STAG serves as The timing reference (Timing Reference Cell) of the cell in this STAG.
  • the scheduled advance update is notified to the UE by the base station through the MAC (Medium Access Control, Media Access Control) CE (Control Element, Control Element) command. If L1 is considered out of sync, UE (User Equipment) can only send MSG1 (Message 1, Message 1) or MSGA (Message A, Message A) on the uplink.
  • a timing reference cannot continue to be used as a timing reference in some situations, for example, when PCell (Primary Cell, primary cell) performs handover based on L3 (layer 3, layer three) signaling, or when PSCell (Primary SCG (Secondary Cell) Group, Secondary Cell Group) Cell, SCG Primary Cell)
  • PCell Primary Cell
  • PSCell Primary SCG (Secondary Cell) Group, Secondary Cell Group) Cell, SCG Primary Cell
  • the UE needs to change the timing reference.
  • the UE moves from the coverage area of one cell to the coverage area of another cell, it is necessary to perform a change of the serving cell.
  • the timing reference is predefined, or the timing reference is selected by the UE, and the base station cannot decide the selection of the timing reference.
  • the serving cell change is triggered by L3 measurement, and triggers the synchronous reconfiguration of PCell (Primary Cell, primary cell) and PSCell through RRC signaling, and triggers the release of SCell.
  • L2 layer 2 , Layer 2
  • L1 reset reset
  • Rel-18 mobility enhancement is a very important research direction of 3GPP.
  • the 3GPP RAN94e meeting decided to carry out the "NR (New Radio, New Radio) mobility further enhancement (Further NR mobility enhancements)" research project (Work Item, WI ).
  • L1/L2 mobility enhancement based on L1/L2 signaling or continuous CPC (Conditional PSCell Change) mechanism is an important research direction, which will lead to frequent changes of serving cells.
  • the timing reference will also change frequently, resulting in an impact on uplink transmission. Therefore, for scenarios where the serving cell changes quickly, how to determine the timing reference needs to be enhanced.
  • this application provides a solution for maintaining uplink synchronization for L1/L2 mobility.
  • the mobility scenario based on L1/L2 is used as an example; this application is also applicable to mobility scenarios based on L3, for example, and achieves similar technical effects in mobility based on L1/L2.
  • the original intention of this application is for the Uu air interface
  • this application can also be used for the PC5 interface.
  • the original intention of this application is for the terminal and base station scenario
  • this application is also applicable to the V2X (Vehicle-to-Everything, Internet of Vehicles) scenario, the communication scenario between the terminal and the relay, and the relay and the base station. , achieving similar technical effects in terminal and base station scenarios.
  • V2X Vehicle-to-Everything, Internet of Vehicles
  • the original intention of this application is for the terminal and base station scenario
  • this application is also applicable to the IAB (Integrated Access and Backhaul, integrated access and backhaul) communication scenario, and obtains similar technologies in the terminal and base station scenario. Effect.
  • the original intention of this application is for terrestrial network (Terrestrial Network, terrestrial network) scenarios
  • this application is also applicable to non-terrestrial network (Non-Terrestrial Network, NTN) communication scenarios, achieving similar TN scenarios. technical effects.
  • using a unified solution for different scenarios can also help reduce hardware complexity and cost.
  • This application discloses a method used in a first node of wireless communication, which is characterized by including:
  • the starting time of the first uplink frame is earlier than the starting time of the first downlink frame of the second cell by a first time interval;
  • the first field includes a first integer, at least the The first integer is used to determine the first time interval;
  • the second field is used to determine the second cell; the first cell and the second cell are for the same cell group.
  • the problems to be solved by this application include: how to determine the timing reference of the uplink transmission of the first cell.
  • the problems to be solved by this application include: how to determine the timing reference of the uplink frame of the first cell.
  • the problems to be solved by this application include: how to determine the sending timing of the uplink transmission of the first cell.
  • the problems to be solved by this application include: how to avoid uplink conflicts.
  • the problems to be solved by this application include: how to avoid the impact on uplink transmission.
  • the problems to be solved by this application include: how to shorten the transmission delay.
  • the characteristics of the above method include: the second signaling is a timing reference of the uplink frame of the first cell.
  • the characteristics of the above method include: the uplink transmission timing of the first cell is determined based on the downlink timing of the second cell.
  • the characteristics of the above method include: the second signaling indicates that the first cell is a timing reference of an uplink frame of the first cell.
  • the characteristics of the above method include: the second signaling displays a timing reference of an uplink frame indicating that the second cell is the first cell.
  • the benefits of the above method include: avoiding uplink conflicts.
  • the benefits of the above method include: avoiding impact on uplink transmission.
  • the benefits of the above method include: shortening transmission delay.
  • the starting time of the second uplink frame is advanced by a second time interval compared to the starting time of the second downlink frame of the third cell; the second time interval is related to the second advance value, At least one timing advance command is used to determine the second advance value; the second advance value is used to determine the first time interval.
  • the third cell and the second cell belong to the same TAG.
  • the third cell and the second cell are different.
  • the characteristics of the above method include: the timing references of the first uplink frame and the second uplink frame are different.
  • the third cell and the second cell are the same.
  • the characteristics of the above method include: the timing references of the first uplink frame and the second uplink frame are different.
  • the second signaling is generated at a protocol layer below the RRC layer, and the second signaling is used to indicate to stop performing the first set of operations for the third cell;
  • the first operation set includes monitoring PDCCH (Physical downlink control channel, physical downlink control channel) on the corresponding cell, monitoring the PDCCH used to schedule the corresponding cell, and sending UL-SCH (Uplink Shared) on the corresponding cell.
  • PDCCH Physical downlink control channel, physical downlink control channel
  • UL-SCH Uplink Shared
  • Channel uplink shared channel
  • Receive a first message the first message includes configuration information of a target cell, and the target cell is a candidate cell of the third cell; the second signaling is used to indicate performing the third target cell for the target cell.
  • a collection of operations the first message includes configuration information of a target cell, and the target cell is a candidate cell of the third cell; the second signaling is used to indicate performing the third target cell for the target cell.
  • the first signaling includes first sub-signaling and the second signaling; the first sub-signaling includes the first domain, and the second signaling Let include the second domain.
  • the first signaling includes a first sub-signaling and a second sub-signaling; the first sub-signaling includes the first domain, and the second sub-signaling The order includes the second domain; the first sub-signaling and the second sub-signaling do not belong to the same MAC sub-PDU.
  • a first timer is started or restarted, the operating status of the first timer being used to determine whether uplink transmissions for at least the first cell are aligned.
  • This application discloses a method used in a second node of wireless communication, which is characterized by including:
  • Send first signaling where the first signaling includes a first domain and a second domain;
  • the first wireless signal is sent by the recipient of the first signaling in the first uplink frame of the first cell; the first uplink frame The starting time is a first time interval earlier than the starting time of the first downlink frame of the second cell; the first field includes a first integer, at least the first integer is used to determine the first A time interval; the second domain is used to determine the second cell; the first cell and the second cell are for the same cell group.
  • the second wireless signal is transmitted by the receiver of the first signaling in the second uplink frame of the first cell. sending; the starting time of the second uplink frame is advanced by a second time interval compared to the starting time of the second downlink frame of the third cell; the second time interval is related to the second advance value, At least one timing advance command is used to determine the second advance value; the second advance value is used to determine the first time interval.
  • the third cell and the second cell belong to the same TAG.
  • the third cell and the second cell are the same.
  • the second signaling is generated at a protocol layer below the RRC layer, and the second signaling is used to indicate to stop performing the first set of operations for the third cell;
  • the first operation set includes at least one of monitoring PDCCH on the corresponding cell, monitoring PDCCH used to schedule the corresponding cell, and sending UL-SCH on the corresponding cell; the second signaling is received The time is earlier than the time when the first wireless signal is sent.
  • a first timer is started or restarted, and the running status of the first timer is used to determine whether at least the Whether the uplink transmission of the first cell is aligned.
  • This application discloses a first node used for wireless communication, which is characterized by including:
  • a first receiver receives first signaling, where the first signaling includes a first domain and a second domain;
  • a first transmitter after the first signaling is received, sends the first wireless signal in the first uplink frame of the first cell;
  • the starting time of the first uplink frame is earlier than the starting time of the first downlink frame of the second cell by a first time interval;
  • the first field includes a first integer, at least the The first integer is used to determine the first time interval;
  • the second field is used to determine the second cell; the first cell and the second cell are for the same cell group.
  • This application discloses a second node used for wireless communication, which is characterized in that it includes:
  • a second transmitter sends first signaling, where the first signaling includes a first domain and a second domain;
  • the first wireless signal is sent by the recipient of the first signaling in the first uplink frame of the first cell; the first uplink frame The starting time is a first time interval earlier than the starting time of the first downlink frame of the second cell; the first field includes a first integer, at least the first integer is used to determine the first A time interval; the second domain is used to determine the second cell; the first cell and the second cell are for the same cell group.
  • this application has the following advantages:
  • Figure 1 shows a flow chart of the transmission of a first signal, a second signal and a third signal according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Figure 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a wireless signal transmission flow chart according to an embodiment of the present application
  • Figure 6 shows a wireless signal transmission flow chart according to another embodiment of the present application.
  • Figure 7 shows a wireless signal transmission flow chart according to yet another embodiment of the present application.
  • Figure 8 shows a schematic diagram of the timing relationship between the first uplink frame and the first downlink frame according to an embodiment of the present application
  • Figure 9 shows a schematic diagram of the timing relationship between the second uplink frame and the second downlink frame according to an embodiment of the present application.
  • Figure 10 shows a schematic diagram of the structure of first signaling according to an embodiment of the present application.
  • Figure 11 shows a wireless signal transmission flow chart in which the first signaling includes first sub-signaling and second signaling according to an embodiment of the present application
  • Figure 12 shows a wireless signal transmission flow chart in which the first signaling includes first sub-signaling and second sub-signaling according to an embodiment of the present application
  • Figure 13 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present application
  • Figure 14 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present application
  • Figure 15 shows a wireless signal transmission flow chart according to yet another embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of the transmission of the first signal, the second signal and the third signal according to an embodiment of the present application, as shown in FIG. 1 .
  • each box represents a step. It should be particularly emphasized that the order of the boxes in the figure does not represent the temporal relationship between the steps represented.
  • the first node in this application receives the first signaling, which includes a first domain and a second domain; in step 102, the first signaling After being received, the first wireless signal is sent in the first uplink frame of the first cell; wherein the starting time of the first uplink frame is compared with the first downlink frame of the second cell.
  • the starting time is advanced by a first time interval; the first field includes a first integer, at least the first integer is used to determine the first time interval; the second field is used to determine the second cell;
  • the first cell and the second cell are for the same cell group.
  • the first signaling is used by the first node to determine or adjust or calculate the uplink transmission timing of the first cell.
  • the first signaling is used by the first node to determine or adjust or calculate the uplink transmission timing of each cell in the first TAG.
  • the first signaling is downlink (Downlink, DL) signaling.
  • the first signaling is Sidelink (SL) signaling.
  • the first signaling includes a signaling, and the signaling is transmitted through a DCCH (Dedicated Control Channel).
  • DCCH Dedicated Control Channel
  • the first signaling includes a signaling, and the signaling is transmitted through SCCH (Sidelink Control Channel).
  • SCCH Segment Control Channel
  • the first signaling is a timing advance command.
  • the first signaling includes at least a timing advance command.
  • the first signaling includes at least one signaling.
  • the first signaling includes one signaling.
  • the first signaling includes an RRC layer message.
  • the first signaling includes at least one RRC message.
  • the first signaling includes at least one IE (Information Element, information element) in the RRC message.
  • IE Information Element, information element
  • the first signaling includes at least one field (Field) in the RRC message.
  • the first signaling includes an RRCReconfiguration message.
  • the first signaling includes MAC layer signaling.
  • the first signaling includes at least one MAC PDU (Protocol Data Unit).
  • MAC PDU Protocol Data Unit
  • the first signaling includes at least one MAC sub-PDU (subPDU), and the LCID (Logical Channel Identification, Logical) included in the MAC sub-headers of any two MAC sub-PDUs in the at least one MAC sub-PDU.
  • Channel ID Logical Channel Identification
  • the first signaling includes at least one MAC subheader (subheader).
  • the first signaling includes at least one MAC CE.
  • the first signaling is MAC (Medium Access Control, media access control) layer signaling.
  • MAC Medium Access Control, media access control
  • the first signaling is a MAC sub-PDU.
  • the first signaling is a MAC CE.
  • the name of the first signaling includes at least one of reference or enhanced or Absolute or Timing or Advance or Command.
  • the first signaling includes Timing Advance Command MAC CE.
  • the first signaling includes Absolute Timing Advance Command MAC CE.
  • the first signaling includes physical layer signaling.
  • the first signaling includes a first random access response (Random Access Response, RAR).
  • RAR Random Access Response
  • the first random access response is received during a random access process.
  • the first random access response is received by monitoring the PDCCH scrambled by RA-RNTI (Random Access RNTI (Radio Network Temporary Identifier, Radio Network Temporary Identifier)).
  • RA-RNTI Random Access RNTI (Radio Network Temporary Identifier, Radio Network Temporary Identifier)
  • the first random access response is received by monitoring the PDCCH scrambled by MSGB-RNTI.
  • the first random access response is received by monitoring the PDCCH scrambled by C-RNTI (Cell RNTI).
  • C-RNTI Cell RNTI
  • the first random access response is a MAC RAR (Random Access Response, random access response).
  • the first random access response fallsbackRAR.
  • the first random access response is successRAR.
  • the first random access response is fallbackRAR MAC subPDU.
  • the first random access response is successRAR MAC subPDU.
  • the first random access response is Absolute Timing Advance Command MAC CE.
  • the first random access response is a DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • the first signaling is a MAC CE
  • the MAC CE includes the first domain and the second domain.
  • the first signaling is a DCI
  • the DCI includes the first domain and the second domain.
  • the first signaling is a MAC PDU
  • the one MAC PDU includes the first domain and the second domain.
  • the first domain and the second domain belong to two different MAC PDUs.
  • the first domain and the second domain are respectively one domain in the first signaling.
  • the first signaling includes first sub-signaling and second sub-signaling, the first sub-signaling includes the first domain, and the second sub-signaling includes the second area.
  • the format of the Timing Advance Command MAC CE refers to Section 6.1.3.4 of 3GPP TS 38.321.
  • the format of the AbsoluteTiming Advance Command MAC CE refers to Section 6.1.3.4a of 3GPP TS 38.321.
  • the format of fallbackRAR refers to Section 6.2.3a of 3GPP TS 38.321.
  • the format of the successRAR refers to Section 6.2.3a of 3GPP TS 38.321.
  • the format of the MAC RAR refers to Section 6.2.3 of 3GPP TS 38.321.
  • receiving the first signaling includes: receiving at least the last symbol of the first signaling.
  • receiving the first signaling includes: at least the first signaling is successfully decoded.
  • receiving the first signaling includes: receiving at least the last signaling in the first signaling.
  • receiving the first signaling includes: receiving at least the first sub-signaling.
  • receiving the first signaling includes: at least a timing advance command in the first signaling is received.
  • receiving the first signaling includes: at least the first domain and the second domain being received.
  • the act of sending the first wireless signal in the first uplink frame of the first cell includes: in the first uplink frame, sending the first wireless signal on the first cell. wireless signal.
  • the act of sending the first wireless signal in the first uplink frame of the first cell includes: in a given time slot in the first uplink frame, sending on the first cell the first wireless signal.
  • the first cell is the serving cell of the first node.
  • the first cell is not the serving cell of the first node.
  • the first cell is a serving cell of the first node.
  • the first cell is a candidate cell of a serving cell of the first node.
  • the first cell is a serving cell in the first cell group.
  • the first cell is a candidate cell of a serving cell in the first cell group.
  • the first cell belongs to a first cell group.
  • the first cell is for a first cell group.
  • the first cell is PCell, and the first cell group is MCG (Master Cell Group).
  • the first cell is PSCell, and the first cell group is SCG.
  • the first cell is SCell, and the first cell group is MCG.
  • the first cell is a SCell, and the first cell group is an SCG.
  • the first cell belongs to the first TAG.
  • the first cell is a serving cell in the first TAG, and each cell in the first TAG belongs to the first cell group.
  • the first uplink frame belongs to the first cell.
  • the first uplink frame is configured for the first cell.
  • the first uplink frame is used to determine the time domain location at which the uplink signal is sent in the first cell.
  • the first uplink frame is used to determine the time domain location at which the first wireless signal is sent in the first cell.
  • the first uplink frame is an uplink frame of the first cell.
  • the first uplink frame is used for the first cell.
  • the first uplink frame is the first uplink frame after the first signaling is received.
  • the first uplink frame is any uplink frame after the first signaling is received.
  • the first uplink frame is the Q1th uplink frame after the first signaling is received, and Q1 is a positive integer.
  • the first wireless signal occupies at least one time slot of the first uplink frame.
  • the first wireless signal occupies one time slot of the first uplink frame.
  • the time slot position of the first wireless signal in the first uplink frame is preconfigured.
  • the time slot position of the first wireless signal in the first uplink frame is predefined.
  • the time slot position of the first wireless signal in the first uplink frame is specified.
  • the time slot position of the first wireless signal in the first uplink frame is determined by the UE.
  • the first wireless signal is a physical layer signal.
  • the first wireless signal is PUCCH (Physical uplink control channel, physical uplink control channel).
  • the first wireless signal is SRS (Sounding reference signal, sounding reference signal).
  • the first wireless signal is PUSCH (Physical uplink shared channel).
  • the first wireless signal is any one of PUCCH, SRS or PUSCH.
  • the first wireless signal is transmitted through PUCCH.
  • the first wireless signal is transmitted through PUSCH.
  • the first wireless signal is transmitted through SRS resources.
  • the second cell is the serving cell of the first node.
  • the second cell is not the serving cell of the first node.
  • the second cell is the serving cell of the first node.
  • the second cell is not the serving cell of the first node.
  • the second cell being not the serving cell of the first node includes: the second cell being a candidate cell of the first node.
  • the second cell is not the serving cell of the first node, including: the first node does not monitor the PDCCH on the second cell, and/or does not monitor the PDCCH used to schedule the second cell. PDCCH, and/or not sending UL-SCH on the second cell.
  • the first downlink frame and the first uplink frame have the same frame number.
  • the first downlink frame is an uplink frame corresponding to the first uplink frame.
  • the first downlink frame is a timing reference frame of the first uplink frame.
  • the first downlink frame is a reference frame of the first uplink frame.
  • the first downlink frame is a timing reference frame of the first uplink frame
  • the second cell is a timing reference of the first cell
  • the first downlink frame is a downlink frame in the second cell.
  • the first downlink frame is configured for the second cell.
  • the downlink timing of the first downlink frame is determined by the second cell.
  • the first downlink frame is a downlink frame configured for the second cell.
  • the timing reference of the first downlink frame is the second cell.
  • the first domain and the second domain are used to determine that the starting time of the first uplink frame is earlier than the starting time of the first downlink frame of the second cell. the first time interval.
  • the reference point of the first node's initial transmission timing is the difference between the downlink timing of the second cell and the first time interval.
  • the downlink timing of the second cell is the time when the first path of the downlink frame of the second cell is received.
  • the timing of the first downlink frame is the time when the first path of the first downlink frame is received.
  • the first time interval is equal to a time interval in which the starting time of the first uplink frame is earlier than the starting time of the first downlink frame.
  • the first time interval is equal to a time interval in which the timing of the first uplink frame is earlier than the timing of the first downlink frame.
  • the first time interval is used to determine the uplink transmission timing of the second cell.
  • the first time interval includes a time interval.
  • the first time interval is configurable.
  • the first time interval includes a positive integer number of first time units.
  • the number of first time units included in the first time interval is configurable.
  • the first time unit is a time unit.
  • the first time unit is part of a subframe.
  • the first time unit includes a positive integer number of milliseconds.
  • the first time unit is configurable.
  • the first time unit is preconfigured.
  • the first time unit is related to subcarrier spacing.
  • the first time unit is a T c .
  • the T c T sf /( ⁇ f max N f /1000), and the definitions of the T sf , the ⁇ f max and the N f refer to TS 38.211 or TS 38.300.
  • the first signaling includes the first random access response, and the first random access response includes the first domain.
  • the name of the first domain includes at least one of Timing, Advance, TA, or Command.
  • the first domain is a Timing Advance Command domain.
  • the first domain is a TA Command domain.
  • the first field includes a positive integer number of bits.
  • the first field includes 5 bits.
  • the first field includes 6 bits.
  • the first field includes 11 bits.
  • the first field includes 12 bits.
  • the first field indicates the first integer.
  • the first field is set to the first integer.
  • the value of the first field is equal to the first integer.
  • the first integer is an index.
  • the first integer is a TA .
  • the first integer is used to determine a first advance value
  • the first advance value is used to determine the first time interval
  • the first integer is used to determine a first advance value
  • the first advance value and a first offset are used to determine the first time interval.
  • the first integer is used to determine the first advance value
  • the sum of the first advance value and the first offset is used to determine the first time interval
  • the first integer is used to determine the adjustment value of the first advance value with respect to the second advance value.
  • the first integer is an index of an adjustment value of the uplink transmission timing of the first cell.
  • the first integer is an index of the uplink transmission timing of the first cell.
  • the first integer is an index of the adjustment value of the uplink transmission timing of each cell in the first TAG.
  • the first integer is an index of the uplink transmission timing of each cell in the first TAG.
  • the first integer is a non-negative integer.
  • the first integer is a positive integer.
  • the first integer is not less than 0 and the first integer is not greater than M1, and M1 is a positive integer.
  • M1 is equal to 3846.
  • M1 is equal to 63.
  • a first offset is used to determine the first time interval.
  • the first time interval is related to a first offset.
  • the at least one timing advance command and the first offset are used to determine the first time interval.
  • the first offset includes at least one offset.
  • the first offset includes an offset configured by the network and an offset determined by the first node U01.
  • the first offset only includes the N TA,offset .
  • the first offset is configurable.
  • the first offset is preconfigured.
  • the first offset is of fixed size.
  • the first offset is an RRC configured offset.
  • the first offset is an offset estimated by the first node U01.
  • the first offset is a positive number or a negative number.
  • the first offset is equal to 0.
  • the first offset is not equal to 0.
  • the first offset includes N TA,offset , and the N TA,offset is a fixed offset.
  • the first offset includes a timing correction related to NTN.
  • the first offset includes described It is a timing correction for network control.
  • the first offset includes described is the timing correction determined by the first node U01.
  • the first offset has nothing to do with NTN.
  • the first offset does not include
  • the first offset does not include
  • N TA,offset refers to TS 38.211.
  • the For the definition refer to TS 38.211.
  • the For the definition refer to TS 38.211.
  • the first offset is configured.
  • the first offset is not configured.
  • the first timing advance and the first offset are used to determine the uplink transmission timing of the first resource group.
  • the first timing advance is used to determine the uplink transmission timing of the first resource group.
  • the first time interval (first advance value) ⁇ first time unit.
  • the first time interval (first advance value + first offset) ⁇ first time unit.
  • the first advance value is an N TA .
  • the first advance value is the initial N TA .
  • the first advance value is adjusted N TA .
  • the first advance value first integer ⁇ 16 ⁇ 64/2 ⁇ .
  • the first integer is received during a random access process.
  • the first advance value is the initial N TA .
  • M1 is equal to 3846.
  • the second advance value does not exist.
  • the first advance value the second advance value+(first integer-M2) ⁇ 16 ⁇ 64/2 ⁇ .
  • M2 31.
  • M2 (M1-1)/2.
  • M1 is equal to 63.
  • the first advance value the second advance value+the first integer ⁇ 16 ⁇ 64/2 ⁇
  • the first advance value the second advance value-the first integer ⁇ 16 ⁇ 64/ 2 ⁇ .
  • the second advance value is an N TA .
  • the second advance value is the initial N TA .
  • the second advance value is adjusted N TA .
  • the second advance value is N TA before the first integer is received.
  • the second advance value is the initial N TA
  • the first advance value is the adjusted N TA .
  • the second advance value is an adjusted N TA
  • the first advance value is an adjusted N TA
  • the ⁇ is related to the subcarrier spacing.
  • the ⁇ is related to the subcarrier spacing associated with the first cell.
  • the ⁇ is related to the subcarrier spacing associated with the second cell.
  • is a non-negative integer.
  • is an integer not less than 0 and not greater than 5.
  • the second field is used to indicate changing the third cell to the second cell.
  • the second field is used to indicate that the second cell is a target cell of the third cell.
  • the second field is used to indicate that the second cell is the target cell.
  • the second field is used to indicate that the second cell is a timing reference of the first cell.
  • the second field is used to indicate that the second cell is a timing reference.
  • the second domain is used to indicate that the second cell is a timing reference of the first TAG; the second cell belongs to the first TAG.
  • the second domain is used to determine that the second cell is a timing reference of the first cell.
  • the second domain is used to determine that the second cell is a timing reference of the first TAG; the second cell belongs to the first TAG.
  • the second domain is used to determine that the second cell is a timing reference of the first cell after at least one of the first domain or the second domain is received.
  • the second domain is used to determine that the second cell is the first cell after at least one of the first sub-signaling or the second sub-signaling is received. timing reference.
  • the second domain is used to determine that the second cell is a member of the first cell after at least one of the first sub-signaling or the second signaling is received. Timing reference.
  • the second domain is used to determine that the second cell is a timing reference of the first cell after the first signaling is received.
  • the second domain is used to determine that the second cell is a timing reference of the first TAG after at least one of the first domain or the second domain is received.
  • the second domain is used to determine that the second cell is the first TAG after at least one of the first sub-signaling or the second sub-signaling is received. timing reference.
  • the second domain is used to determine that the second cell is of the first TAG after at least one of the first sub-signaling or the second signaling is received. Timing reference.
  • the second domain is used to determine that the second cell is a timing reference of the first TAG after the first signaling is received.
  • the second cell is a timing reference of the first TAG that is used to determine that the first downlink frame comes from the second cell.
  • the second cell is a timing reference of the first cell that is used to determine that the first downlink frame is from the second cell.
  • the second domain indicates the second cell.
  • the second domain includes the cell identity of the second cell.
  • the second domain includes the serving cell identity of the second cell.
  • the second domain includes an index of the second cell.
  • the second domain includes an index of the second cell in the first candidate cell set.
  • the second field includes a positive integer number of bits.
  • the second field is set to true.
  • the second cell is a timing reference of the first cell.
  • the second cell in response to the first signaling being received, is used as a timing reference of the first cell.
  • the second cell in response to the second domain in the first signaling being received, the second cell is used as the first cell. Timing reference for the zone.
  • the second cell in response to the first domain in the first signaling being received and the second domain in the first signaling being received, the second cell is used as the third domain. Timing reference for a cell.
  • the second cell is used as the Timing reference for the first cell.
  • the second cell is a SCell
  • the first cell is a PCell
  • the second cell is a SCell
  • the first cell is a PCell
  • the second cell is a PCell
  • the first cell is a SCell
  • the second cell is PSCell
  • the first cell is SCell
  • the second cell is a SCell
  • the first cell is a SCell
  • the first cell and the second cell are configured with the identity of the same cell group.
  • the first cell and the second cell are respectively a serving cell in the same cell group.
  • the first cell is a serving cell in the same cell group and the second cell is a candidate cell of another serving cell in the same cell group.
  • the first cell is a candidate cell of a serving cell in the same cell group and the second cell is another serving cell in the same cell group.
  • the first cell is a candidate cell of the second cell and the second cell is a serving cell in the same cell group.
  • the first cell and the second cell belong to the same TAG.
  • the first cell is the target cell; the second cell is a serving cell of the first node.
  • the second cell is a timing reference in the first TAG.
  • the second cell is a timing reference in the first TAG.
  • the instructions in this application are explicit instructions.
  • the indication in this application is an implicit indication.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in Figure 2.
  • Figure 2 illustrates the network architecture 200 of the 5G NR (New Radio)/LTE (Long-Term Evolution)/LTE-A (Long-Term Evolution Advanced) system.
  • 5G NR/LTE The LTE-A network architecture 200 may be called 5GS (5G System)/EPS (Evolved Packet System) 200 or some other suitable term.
  • 5GS/EPS 200 includes UE (User Equipment, user equipment) 201, RAN (radio access network) 202, 5GC (5G Core Network, 5G core network)/EPC (Evolved Packet Core, evolved packet core) 210, HSS (Home At least one of Subscriber Server/UDM (Unified Data Management) 220 and Internet service 230.
  • 5GS/EPS can interconnect with other access networks, but these entities/interfaces are not shown for simplicity.
  • 5GS/EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks that provide circuit-switched services or other cellular networks.
  • the RAN includes node 203 and other nodes 204.
  • Node 203 provides user and control plane protocol termination towards UE 201.
  • Node 203 may connect to other nodes 204 via the Xn interface (eg, backhaul)/X2 interface.
  • Node 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmit Receive Node), or some other suitable terminology.
  • BSS Basic Service Set
  • ESS Extended Service Set
  • TRP Transmit Receive Node
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radio, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radio non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • Node 203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management field)/SMF (Session Management Function, session management function) 211, other MME/AMF/SMF 214, S-GW (Service Gateway, service gateway)/UPF (User Plane Function, user plane function) 212 and P-GW (Packet Date Network Gateway, packet data Network Gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210. Basically, MME/AMF/SMF211 provides bearer and connection management.
  • All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213.
  • P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • the Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, an intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching streaming services.
  • the UE201 corresponds to the first node in this application.
  • the UE201 is a user equipment (User Equipment, UE).
  • UE User Equipment
  • the node 203 corresponds to the second node in this application.
  • the node 203 is a base station equipment (BaseStation, BS).
  • BaseStation BaseStation, BS
  • the node 203 is a base transceiver station (Base Transceiver Station, BTS).
  • BTS Base Transceiver Station
  • the node 203 is a Node B (NodeB, NB).
  • the node 203 is a gNB.
  • the node 203 is an eNB.
  • the node 203 is an ng-eNB.
  • the node 203 is an en-gNB.
  • the node 203 is a CU (Centralized Unit).
  • the node 203 is a DU (Distributed Unit).
  • the node 203 is user equipment.
  • the node 203 is a relay.
  • the node 203 is a gateway.
  • the node 204 corresponds to the third node in this application.
  • the node 204 is a BS.
  • the node 204 is a BTS.
  • the node 204 is an NB.
  • the node 204 is a gNB.
  • the node 204 is an eNB.
  • the node 204 is an ng-eNB.
  • the node 204 is an en-gNB.
  • the node 204 is user equipment.
  • the node 204 is a relay.
  • the node 204 is a gateway.
  • the node 204 is a CU.
  • the node 204 is a DU.
  • the node 203 and the node 204 are connected through an ideal backhaul.
  • the node 203 and the node 204 are connected through a non-ideal backhaul.
  • the node 203 and the node 204 provide wireless resources for the UE 201 at the same time.
  • the node 203 and the node 204 do not provide radio resources for the UE 201 at the same time.
  • the node 203 and the node 204 are the same node.
  • the node 203 and the node 204 are two different nodes.
  • the user equipment supports transmission of a terrestrial network (Non-Terrestrial Network, NTN).
  • NTN Non-Terrestrial Network
  • the user equipment supports transmission of non-terrestrial network (Terrestrial Network, terrestrial network).
  • the user equipment supports transmission in a large delay difference network.
  • the user equipment supports dual connection (Dual Connection, DC) transmission.
  • Dual Connection DC
  • the user equipment includes an aircraft.
  • the user equipment includes a vehicle-mounted terminal.
  • the user equipment includes a ship.
  • the user equipment includes an Internet of Things terminal.
  • the user equipment includes a terminal of the Industrial Internet of Things.
  • the user equipment includes equipment that supports low-latency and high-reliability transmission.
  • the user equipment includes a test device.
  • the user equipment includes a signaling tester.
  • the base station equipment supports transmission in non-terrestrial networks.
  • the base station equipment supports transmission in a large delay difference network.
  • the base station equipment supports transmission of terrestrial networks.
  • the base station equipment includes a macro cellular (Marco Cellular) base station.
  • a macro cellular (Marco Cellular) base station includes a macro cellular (Marco Cellular) base station.
  • the base station equipment includes a micro cell (Micro Cell) base station.
  • Micro Cell Micro Cell
  • the base station equipment includes a Pico Cell base station.
  • the base station equipment includes a home base station (Femtocell).
  • Femtocell home base station
  • the base station equipment includes a base station equipment that supports a large delay difference.
  • the base station equipment includes a flight platform equipment.
  • the base station equipment includes satellite equipment.
  • the base station equipment includes a TRP (Transmitter Receiver Point, transmitting and receiving node).
  • TRP Transmitter Receiver Point, transmitting and receiving node
  • the base station equipment includes a CU (Centralized Unit).
  • CU Centralized Unit
  • the base station equipment includes a DU (Distributed Unit).
  • the base station equipment includes testing equipment.
  • the base station equipment includes a signaling tester.
  • the base station equipment includes an IAB (Integrated Access and Backhaul)-node.
  • IAB Integrated Access and Backhaul
  • the base station equipment includes an IAB-donor.
  • the base station equipment includes IAB-donor-CU.
  • the base station equipment includes IAB-donor-DU.
  • the base station equipment includes IAB-DU.
  • the base station equipment includes IAB-MT.
  • the relay includes relay.
  • the relay includes L3 relay.
  • the relay includes L2 relay.
  • the relay includes a router.
  • the relay includes a switch.
  • the relay includes user equipment.
  • the relay includes base station equipment.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300.
  • FIG. 3 shows the radio protocol architecture for the control plane 300 with three layers: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above PHY301, including MAC (Medium Access Control, media access control) sublayer 302, RLC (Radio Link Control, wireless link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence) Protocol (Packet Data Convergence Protocol) sublayer 304.
  • PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides cross-location support.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • MAC sublayer 302 provides multiplexing between logical and transport channels. MAC sublayer 302 is also responsible for allocating a cell Various radio resources (e.g., resource blocks) in . MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and configuring lower layers using RRC signaling.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer). The radio protocol architecture in the user plane 350 is for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, and the PDCP sublayer 354 in the L2 layer 355.
  • the RLC sublayer 353 and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides header compression for upper layer packets to reduce radio Transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the third node in this application.
  • the first signaling in this application is generated in the RRC306.
  • the first signaling in this application is generated by the MAC302 or MAC352.
  • the first signaling in this application is generated in the PHY301 or PHY351.
  • the second signaling in this application is generated in the RRC306.
  • the second signaling in this application is generated by the MAC302 or MAC352.
  • the second signaling in this application is generated from the PHY301 or PHY351.
  • the first wireless signal in this application is generated by the PHY301 or PHY351.
  • the second wireless signal in this application is generated from the PHY301 or PHY351.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in the access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and an antenna 420.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and radio resource allocation to the first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer). Transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 410, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M-phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for M-phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams. Transmit processor 416 then maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the first communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 uses a fast Fourier transform (FFT) to convert the baseband multi-carrier symbols after the analog precoding/beamforming operation into The stream is converted from the time domain to the frequency domain.
  • FFT fast Fourier transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial stream that is the destination. The symbols on each spatial stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover upper layer data and control signals transmitted by the second communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media.
  • the controller/processor 459 In transmission from the second communication device 410 to the second communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements headers based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 In transmission from the first communications device 450 to the second communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Using at least one processor together, the first communication device 450 at least: receives first signaling, where the first signaling includes a first domain and a second domain; after the first signaling is received, in the first The first wireless signal is sent in the first uplink frame of the cell; wherein the starting time of the first uplink frame is earlier than the starting time of the first downlink frame of the second cell. time interval; the first field includes a first integer, at least the first integer is used to determine the first time interval; the second field is used to determine the second cell; the first cell and the The second cell is for the same cell group.
  • the first communication device 450 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: receiving a first A signaling, the first signaling includes a first domain and a second domain; after the first signaling is received, a first wireless signal is sent in the first uplink frame of the first cell; wherein, the The starting time of the first uplink frame is earlier than the starting time of the first downlink frame of the second cell by a first time interval; the first field includes a first integer, at least the first The integer is used to determine the first time interval; the second field is used to determine the second cell; the first cell and the second cell are for the same cell group.
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the second communication device 410 at least: sends first signaling, the first signaling including a first domain and a second domain; wherein, after the first signaling is received, in the first cell of the first cell
  • the first wireless signal in the uplink frame is sent by the recipient of the first signaling; the starting time of the first uplink frame is compared with the starting time of the first downlink frame of the second cell.
  • the first time interval is advanced; the first field includes a first integer, at least the first integer is used to determine the first time interval; the second field is used to determine the second cell; the The first cell and the second cell are for the same cell group.
  • the second communication device 410 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: sending a first A signaling, the first signaling includes a first domain and a second domain; wherein, after the first signaling is received, the first wireless signal is received in the first uplink frame of the first cell.
  • the receiver of the first signaling sends; the starting time of the first uplink frame is earlier than the starting time of the first downlink frame of the second cell by a first time interval; the first The field includes a first integer, at least the first integer is used to determine the first time interval; the second field is used to determine the second cell; the first cell and the second cell are for the same Community group.
  • the antenna 452, the receiver 454, the receiving processor 456, and the controller/processor 459 are used to receive the first signaling.
  • At least one of the antenna 420, the transmitter 418, the transmission processor 416, and the controller/processor 475 is used to send the first signaling.
  • the antenna 452, the receiver 454, the receiving processor 456, and the controller/processor 459 are used to receive the second signaling.
  • At least one of the antenna 420, the transmitter 418, the transmission processor 416, and the controller/processor 475 is used to send the second signaling.
  • the antenna 452, the transmitter 454, the transmission processor 468, and the controller/processor 459 are used to transmit a first wireless signal.
  • At least one of the antenna 420, the receiver 418, the receiving processor 470, and the controller/processor 475 is used to receive the first wireless signal.
  • the antenna 452, the transmitter 454, the transmission processor 468, and the controller/processor 459 are used to transmit the second wireless signal.
  • At least one of the antenna 420, the receiver 418, the receiving processor 470, and the controller/processor 475 is used to receive the second wireless signal.
  • the antenna 452, the receiver 454, the receiving processor 456, and the controller/processor 459 are used to receive the first message.
  • At least one of the antenna 420, the transmitter 418, the transmit processor 416, and the controller/processor 475 is used to send the first message.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a user equipment.
  • the first communication device 450 is a user equipment that supports a large delay difference.
  • the first communication device 450 is a user equipment supporting NTN.
  • the first communication device 450 is an aircraft device.
  • the first communication device 450 has positioning capabilities.
  • the first communication device 450 does not have constant energy capability.
  • the first communication device 450 is a user equipment supporting TN.
  • the second communication device 410 is a base station device (gNB/eNB/ng-eNB).
  • the second communication device 410 is a base station device that supports a large delay difference.
  • the second communication device 410 is a base station device supporting NTN.
  • the second communication device 410 is a satellite device.
  • the second communication device 410 is a flight platform device.
  • the second communication device 410 is a base station device supporting TN.
  • Embodiment 5 illustrates a wireless signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 5 . It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S5101 before the first signaling is received, a second wireless signal is sent in the second uplink frame of the first cell; in step S5102, the first Signaling, the first signaling includes a first domain and a second domain; in step S5103, after the first signaling is received, the first wireless signal is sent in the first uplink frame of the first cell .
  • step S5201 the first signaling is sent.
  • step S5301 the second wireless signal is received; in step S5302, the first wireless signal is received.
  • the starting time of the first uplink frame is earlier than the starting time of the first downlink frame of the second cell by a first time interval;
  • the first domain includes a first Integer, at least the first integer is used to determine the first time interval;
  • the second domain is used to determine the second cell;
  • the first cell and the second cell are for the same cell group;
  • the starting time of the second uplink frame is advanced by a second time interval compared to the starting time of the second downlink frame of the third cell;
  • the second time interval is related to the second advance value, at least one timing An advance command is used to determine the second advance value;
  • the second advance value is used to determine the first time interval.
  • the first node U01 is user equipment.
  • the first node U01 is a base station device.
  • the first node U01 is a relay device.
  • the second node N02 is user equipment.
  • the second node N02 is a base station device.
  • the second node N02 is a relay device.
  • the second node N02 is the maintenance base station of the second cell.
  • the second node N02 is the maintenance base station of the sender of the first signaling.
  • the third node N03 is user equipment.
  • the third node N03 is a base station device.
  • the third node N03 is a relay device.
  • the third node N03 is the maintenance base station of the first cell.
  • the third node N03 is the maintenance base station of the receiver of the first wireless signal.
  • the third node N03 is the maintenance base station of the receiver of the second wireless signal.
  • the third node N03 and the second node N02 are the same.
  • the third node N03 and the second node N02 are different.
  • the sender of the first signaling is the maintenance base station of a serving cell of the first node U01.
  • the sender of the first signaling and the receiver of the first wireless signal are the same.
  • the sender of the first signaling and the receiver of the first wireless signal are different.
  • the sender of the second wireless signal and the receiver of the first wireless signal are the same.
  • the third cell is the timing reference of the first TAG.
  • the third cell is a timing reference of the first cell.
  • the third cell is a timing reference of the first cell.
  • the third cell is a timing reference of the first cell.
  • the third cell is the timing reference of the first cell.
  • the third cell is the timing reference of the first TAG.
  • the third cell is the timing reference of the first TAG.
  • the third cell is the timing reference of the first TAG.
  • the third cell is the timing reference of the first TAG.
  • the timing reference of the first TAG of the third cell is used to determine that the second downlink frame comes from the third cell.
  • the timing reference of the third cell being the first cell is used to determine that the second downlink frame is from the third cell.
  • the second uplink frame belongs to the first cell.
  • the second uplink frame is configured for the first cell.
  • the second uplink frame is used to determine the time domain location at which the uplink signal is sent in the first cell.
  • the second uplink frame is used to determine the time domain location at which the second wireless signal is sent in the first cell.
  • the second uplink frame is an uplink frame of the first cell.
  • the second uplink frame is used for the first cell.
  • the second uplink frame is the last uplink frame before the first signaling is received.
  • the second uplink frame is any uplink frame before the first signaling is received.
  • the second uplink frame is the Q2th uplink frame before the first signaling is received, and Q2 is a positive integer.
  • the second uplink frame is an uplink frame before the first uplink frame.
  • the second uplink frame is the first uplink frame.
  • the Q2 is smaller than the Q1.
  • Q2 and Q1 are equal.
  • the first wireless signal occupies at least one time slot of the first uplink frame.
  • the first wireless signal occupies one time slot of the first uplink frame.
  • the time slot position of the first wireless signal in the first uplink frame is preconfigured.
  • the time slot position of the first wireless signal in the first uplink frame is predefined.
  • the time slot position of the first wireless signal in the first uplink frame is specified.
  • the time slot position of the first wireless signal in the first uplink frame is determined by the UE.
  • the first wireless signal is a physical layer signal.
  • the first wireless signal is PUCCH.
  • the first wireless signal is SRS.
  • the first wireless signal is PUSCH.
  • the first wireless signal is any one of PUCCH, SRS or PUSCH.
  • the first wireless signal is transmitted through PUCCH.
  • the first wireless signal is transmitted through PUSCH.
  • the first wireless signal is transmitted through SRS resources.
  • the first wireless signal and the second wireless signal are of the same type.
  • the first wireless signal and the second wireless signal are of different types.
  • the first wireless signal and the second wireless signal occupy the same channel.
  • the first wireless signal and the second wireless signal occupy different channels.
  • the second downlink frame and the second uplink frame have the same frame number.
  • the second downlink frame is an uplink frame corresponding to the second uplink frame.
  • the second downlink frame is a timing reference frame of the second uplink frame.
  • the second downlink frame is a reference frame of the second uplink frame.
  • the second downlink frame is a timing reference frame of the second uplink frame
  • the third cell is a timing reference of the first cell
  • the second downlink frame is a downlink frame in the third cell.
  • the second downlink frame is configured for the third cell.
  • the downlink timing of the second downlink frame is determined by the third cell.
  • the second downlink frame is a downlink frame configured for the third cell.
  • the timing reference of the second downlink frame is the third cell.
  • the third cell and the second cell are different.
  • the third cell and the second cell are the same.
  • the third cell and the first cell belong to the same TAG.
  • the third cell and the second cell belonging to the same TAG are used to determine the second time interval and are used to determine the first time interval.
  • the third cell and the second cell are the same.
  • the third cell and the second cell are different.
  • the second time interval is used to determine the first time interval.
  • the second time interval is not used to determine the first time interval.
  • the third cell and the second cell are both used to determine the second time interval and are used to determine the first time interval; the first signaling is a MAC CE, so The second field indicates the second cell.
  • the second time interval is used to determine the first time interval.
  • the second time interval is not used to determine the first time interval.
  • the at least one timing advance command is received before the first signaling is received.
  • the first node U01 does not receive any Always give orders in advance.
  • the at least one timing advance command includes 1 or more than 1 timing advance command.
  • each timing advance command in the at least one timing advance command is a Timing Advance Command field.
  • each timing advance command in the at least one timing advance command indicates an integer.
  • each timing advance command in the at least one timing advance command indicates a non-negative integer.
  • each of the at least one timing advance command indicates a positive integer.
  • each of the at least one timing advance command indicates a TA
  • the TA is used to determine N TA .
  • the first received timing advance command among the at least one timing advance command is one of the fallbackRAR or the successRAR or the MAC RAR or the Absolute Timing Advance Command MAC CE.
  • a timing advance command other than the first received timing advance command among the at least one timing advance command is used to determine the updated N TA .
  • the timing advance command other than the first received timing advance command in the at least one timing advance command is a Timing Advance Command MAC CE.
  • the signaling format of one of the at least one timing advance command and the first signaling is the same.
  • the signaling format of the last timing advance command among the at least one timing advance command and the first signaling is the same.
  • the last timing advance command indicates the third cell.
  • the last timing advance command indicates the third cell.
  • each of the at least one timing advance command and the first signaling have the same signaling format.
  • the second time interval (second advance value) ⁇ second time unit.
  • the second time interval (second advance value + second offset) ⁇ second time unit.
  • the second advance value is used to determine the first advance value
  • the first advance value is used to determine the first time interval
  • the second advance value is related to the subcarrier spacing.
  • the second advance value is determined according to the at least one timing advance command.
  • the second advance value is determined according to the at least one timing advance command and the subcarrier spacing.
  • the second advance value is an N TA .
  • the at least one timing advance command includes at least 2 timing advance commands.
  • the second advance value N TA_old + ( TA -31) ⁇ 16 ⁇ 64/2 ⁇ .
  • the second advance value N TA_old + TA ⁇ 16 ⁇ 64/2 ⁇ .
  • the second advance value N TA_old -TA ⁇ 16 ⁇ 64/2 ⁇ .
  • the last timing advance command in the at least one timing advance command indicates the TA
  • the N TA_old is the last timing advance command in the at least one timing advance command. Receive the previous N TA .
  • the second time unit is a time unit.
  • the second time unit is part of a subframe.
  • the second time unit includes a positive integer number of milliseconds.
  • the second time unit is configurable.
  • the second time unit is preconfigured.
  • the second time unit is related to subcarrier spacing.
  • the second time unit is the same as the first time unit.
  • the second time unit is different from the first time unit.
  • the second offset includes at least one offset.
  • the second offset includes an offset configured by the network and an offset determined by the first node U01.
  • the second offset is configurable.
  • the second offset is preconfigured.
  • the second offset is of fixed size.
  • the second offset is an RRC configured offset.
  • the second offset is an offset estimated by the first node U01.
  • the second offset is a positive number or a negative number.
  • the second offset is equal to 0.
  • the second offset is not equal to 0.
  • the second offset is configured.
  • the second offset is not configured.
  • the second offset exists.
  • the second offset does not exist.
  • the second offset is equal to the first offset.
  • the second offset and the first offset are not equal.
  • the first time interval is related to the first advance value.
  • the first time interval is related to the first advance value
  • the first advance value is related to the second advance value and the first integer
  • the dashed box F5.1 is optional.
  • the dotted box F5.1 exists.
  • the second wireless signal is sent.
  • the dotted box F5.1 does not exist.
  • the second wireless signal is not sent.
  • Embodiment 6 illustrates a wireless signal transmission flow chart according to another embodiment of the present application, as shown in FIG. 6 . It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S6101 For the first node U01 , in step S6101, second signaling is received.
  • the second signaling is generated at the protocol layer below the RRC layer.
  • the second signaling is used to indicate to stop execution for the third cell.
  • the first set of operations in step S6102, receive the first signaling, which includes the first domain and the second domain; in step S6103, after the first signaling is received, in the first cell
  • the first wireless signal is sent in the first uplink frame.
  • step S6201 the first signaling is sent.
  • step S6301 the first wireless signal is received.
  • step S6401 the second signaling is sent.
  • the starting time of the first uplink frame is earlier than the starting time of the first downlink frame of the second cell by a first time interval;
  • the first domain includes a first Integer, at least the first integer is used to determine the first time interval;
  • the second domain is used to determine the second cell;
  • the first cell and the second cell are for the same cell group;
  • the The first operation set includes at least one of monitoring the PDCCH on the corresponding cell, monitoring the PDCCH used to schedule the corresponding cell, and sending the UL-SCH on the corresponding cell; the second signaling is received earlier. At the time when the first wireless signal is sent.
  • the fourth node N04 is user equipment.
  • the fourth node N04 is a base station device.
  • the fourth node N04 is a relay device.
  • the fourth node N04 is the maintenance base station of the sender of the second signaling.
  • the second node N02 and the fourth node N04 are the same.
  • the second node N02 and the fourth node N04 are different.
  • the third node N03 and the fourth node N04 are the same.
  • the third node N03 and the fourth node N04 are different.
  • the sender of the second signaling is the maintenance base station of a serving cell of the first node U01.
  • the sender of the second signaling and the receiver of the first wireless signal are the same.
  • the sender of the second signaling and the receiver of the first wireless signal are different.
  • the sender of the second signaling and the receiver of the first signaling are the same.
  • the sender of the second signaling and the receiver of the first signaling are different.
  • the second signaling is MAC layer signaling.
  • the second signaling is a MAC PDU.
  • the second signaling is a MAC sub-PDU.
  • the second signaling is a MAC CE.
  • the second signaling includes at least one MAC domain.
  • the second signaling includes a MAC CE.
  • the second signaling includes a MAC subheader.
  • the first signaling is downlink signaling.
  • the first signaling is a DCI.
  • the first signaling is used to schedule PDSCH.
  • the first signaling includes DCI format (format) 1_0.
  • the first signaling includes DCI format 1_1.
  • the first signaling includes DCI format 1_2.
  • the first signaling is used to schedule PUSCH.
  • the first signaling includes at least one DCI domain.
  • the first signaling is transmitted through PDCCH.
  • the second signaling is physical layer signaling.
  • the second signaling is an ACK.
  • the second signaling and the first signaling belong to the same MAC CE.
  • the second signaling and the first signaling do not belong to the same MAC CE.
  • the second signaling is used for cell change based on L1/L2 signaling.
  • the second signaling is used to trigger L1/L2 mobility based on L1/L2 signaling.
  • the second signaling is used to determine that L1/L2 mobility based on L1/L2 signaling is completed.
  • the second signaling is used to indicate changing the third cell to a target cell.
  • the second signaling is used to indicate that the third cell is changed to the target cell.
  • the second signaling indicates the target cell.
  • the second signaling includes an index of the target cell.
  • the second signaling includes the identity of the serving cell of the target cell.
  • the second signaling includes an index of the target cell in the first candidate cell set.
  • the second signaling and the second sub-signaling belong to the same MAC CE; the target cell is the second cell.
  • the third cell is a serving cell in the first cell group.
  • the third cell is a source serving cell in the first cell group.
  • the target cell is a candidate cell of the third cell
  • the third cell is a serving cell in the first cell group.
  • the target cell is the serving cell of the first node.
  • the target cell is the second cell.
  • the target cell is not the second cell.
  • the target cell is used for L1/L2 mobility based on L1/L2 signaling.
  • the target cell is a candidate cell in a first candidate cell set
  • the first candidate cell set includes at least one candidate cell
  • each candidate cell in the first candidate cell set is used Based on L1/L2 mobility based on L1/L2 signaling.
  • each candidate cell in the first candidate cell set is a candidate cell of the third cell.
  • the target cell is a candidate cell of the third cell.
  • the serving cell identities of the target cell and the third cell are the same.
  • the serving cell identities of the target cell and the third cell are different.
  • the PCI (physical cell identity) of the target cell is the same as the PCI of the third cell.
  • the PCI of the target cell and the PCI of the third cell are different.
  • the candidate cell means including a candidate cell.
  • the candidate cell means that the first node U01 does not use the PUSCH (Physical uplink shared channel) of the candidate cell before the configuration information of the candidate cell is applied. ) resources or at least one of PDSCH (Physical downlink shared channel, physical downlink shared channel) resources or PUCCH resources or SRS (Sounding Reference Signal, sounding reference signal) resources.
  • PUSCH Physical uplink shared channel
  • PDSCH Physical downlink shared channel, physical downlink shared channel
  • PUCCH Physical downlink shared channel
  • SRS Sounding Reference Signal
  • the corresponding cell includes only one cell.
  • the corresponding cell can include multiple cells.
  • the corresponding cell includes multiple cells.
  • the corresponding cell includes one or more cells.
  • the second signaling is used to indicate to stop performing a first set of operations for the third cell.
  • the first set of operations includes monitoring the PDCCH on the corresponding cell, monitoring the PDCCH used to schedule the corresponding cell, and At least one of the three UL-SCHs is sent on the corresponding cell.
  • the first operation set in response to the second signaling being received, the first operation set is stopped for the third cell, and the first operation set includes monitoring the PDCCH on the corresponding cell. At least one of: monitoring the PDCCH used for scheduling the corresponding cell, and transmitting the UL-SCH on the corresponding cell.
  • the corresponding cell is the third cell.
  • the corresponding cell is the third cell; the corresponding cell does not include any cell other than the third cell in the first cell group.
  • the corresponding cell is the third cell; the third cell is a SCell.
  • the corresponding cell is the third cell; the third cell is SpCell.
  • the corresponding cell is the third cell, and the third cell is SCell; the corresponding cell does not include the third cell in the first cell group. any neighborhood.
  • the corresponding cell is the third cell, and the third cell is SpCell; the corresponding cell does not include the third cell in the first cell group. any neighborhood.
  • the corresponding cell includes the third cell.
  • the corresponding cell includes the third cell and the SCell in the first cell group; the third cell is SpCell.
  • the corresponding cell includes the third cell and the SCell in the first TAG; the third cell is SpCell.
  • the PDCCH is monitored on at least one CORESET (Control resource set, control resource set) associated with the corresponding cell.
  • CORESET Control resource set, control resource set
  • the PDCCH is monitored on at least one search space associated with the corresponding cell.
  • the PDCCH is monitored on the corresponding cell through at least one of C-RNTI or MCS-C-RNTI ((Modulation and Coding Scheme C-RNTI)) or CS-RNTI (Configured Scheduling RNTI).
  • C-RNTI Modulation and Coding Scheme C-RNTI
  • MCS-C-RNTI Modulation and Coding Scheme C-RNTI
  • CS-RNTI Configured Scheduling RNTI
  • the PDCCH is monitored on the corresponding cell, and the PDCCH is sent by the corresponding cell.
  • a cell outside the corresponding cell monitors the PDCCH used for scheduling the corresponding cell.
  • the PDCCH used for scheduling the corresponding cell is monitored through at least one of C-RNTI or MCS-C-RNTI or CS-RNTI.
  • the PDCCH used for scheduling the corresponding cell is monitored, and the PDCCH is sent by a cell other than the corresponding cell.
  • the PDCCH used for scheduling the corresponding cell is monitored, and the PDCCH is used for scheduling the PUSCH of the corresponding cell.
  • the PDCCH used for scheduling the corresponding cell is monitored, and the PDCCH is used for scheduling the PDSCH of the corresponding cell.
  • monitoring the PDCCH refers to determining whether there is a DCI on the PDCCH.
  • monitoring the PDCCH means searching on the PDCCH.
  • monitoring the PDCCH means detecting whether there is a DCI.
  • the behavior of sending UL-SCH on the corresponding cell includes: sending PUSCH on the corresponding cell.
  • the act of sending the UL-SCH on the corresponding cell includes: performing a sending operation on the UL-SCH of the corresponding cell.
  • the behavior of sending UL-SCH on the corresponding cell includes: sending PUSCH on the UL-SCH of the corresponding cell.
  • the act of sending UL-SCH on the corresponding cell includes: sending uplink data on the UL-SCH of the corresponding cell.
  • the time when the second signaling is received is later than the time when the second wireless signal is sent.
  • step S6101 belongs to step S6102.
  • Embodiment 7 illustrates a wireless signal transmission flow chart according to yet another embodiment of the present application, as shown in FIG. 7 . It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S7101 the first signaling is received, and the first signaling includes the first domain and the second domain; in step S7102, as a response to the first signaling being received, start Or restarting a first timer, the running status of which is used to determine whether uplink transmissions for at least the first cell are aligned.
  • the first wireless signal is sent in the first uplink frame of the first cell; the starting time of the first uplink frame is compared with the first uplink frame.
  • the starting moment of the first downlink frame of the second cell is advanced by a first time interval; the first field includes a first integer, at least the first integer is used to determine the first time interval; the The second domain is used to determine the second cell; the first cell and the second cell are for the same cell group.
  • the first timer when the first wireless signal is sent, the first timer is running.
  • the behavior "starting or restarting the first timer in response to the first signaling being received” includes: starting or restarting the first timer in response to the first domain being received. device.
  • the behavior "starting or restarting the first timer as a response to the first signaling being received” includes: as a response to the first domain in the first signaling being received , starts or restarts the first timer.
  • the first timer is a MAC layer timer.
  • the first timer is a timeAlignmentTimer.
  • the first timer is a TAT.
  • the first timer is only for the first cell.
  • the first timer is for each cell in the first TAG.
  • the action of starting or restarting the first timer includes: if the first timer is not running, starting the first timer.
  • the action of starting or restarting the first timer includes: if the first timer is running, restarting the first timer.
  • the first timer is running to indicate uplink transmission alignment for the first cell.
  • the first timer is not running to indicate that uplink transmissions for the first cell are not aligned.
  • the first timer is running to indicate the uplink transmission alignment of each cell belonging to the first TAG.
  • the first timer is not running and is used to indicate that the uplink transmission of each cell belonging to the first TAG is not aligned.
  • the running status of the first timer is not used to indicate whether the uplink transmission of at least one cell in the first TAG is aligned.
  • the target action set is executed.
  • the target action set includes clearing all HARQ buffers associated with only the first cell, or notifying a higher layer to release all first-type resources associated with only the first cell, or, At least one of all second-type resources associated with only the first cell is deleted; the first cell is SpCell or the first cell is SCell.
  • the target action set includes clearing all HARQ buffers associated with each cell in the first TAG, or notifying a higher layer to release the associated All first-type resources of each cell in the first TAG, or delete at least one of all second-type resources associated with each cell in the first TAG; if the first cell is a SCell , the target action set includes clearing all HARQ buffers associated with only the first cell, or notifying a higher layer to release all first-type resources associated with only the first cell, or deleting all first-class resources associated with only the first cell. At least one of all second type resources of the first cell.
  • the first type of resources includes at least one of PUCCH or SRS; the second type of resources includes at least one of configured downlink allocation or configured uplink grant or PUSCH resources for semi-persistent CSI reporting. one.
  • Embodiment 8 illustrates a schematic diagram of the timing relationship between the first uplink frame and the first downlink frame according to an embodiment of the present application, as shown in FIG. 8 .
  • box 801 represents the first downlink frame
  • box 802 represents the first uplink frame
  • the horizontal axis represents time
  • the starting time of the first downlink frame is T2.
  • the starting time of the first uplink frame is T1.
  • the starting time of the first uplink frame is earlier than the starting time of the first downlink frame of the first cell by the first time interval.
  • the difference between T2 and T1 is equal to the first time interval.
  • T1 and T2 respectively correspond to one time slot.
  • T1 and T2 respectively correspond to a first time unit.
  • T1 and T2 respectively correspond to a time.
  • the time T1 is smaller than the T2.
  • the time T1 is not greater than the T2.
  • the starting time of the first uplink frame is earlier than the starting time of the first downlink frame.
  • the first wireless signal occupies at least one time slot in the first uplink frame.
  • Embodiment 9 illustrates a schematic diagram of the timing relationship between the second uplink frame and the second downlink frame according to an embodiment of the present application, as shown in FIG. 9 .
  • block 901 represents the second downlink frame
  • block 902 represents the second uplink frame
  • the horizontal axis represents time
  • the starting time of the second downlink frame is T4.
  • the starting time of the second uplink frame is T3.
  • the starting time of the second uplink frame is earlier than the starting time of the second downlink frame of the first cell by the second time interval.
  • the difference between T4 and T3 is equal to the first time interval.
  • T3 and T4 respectively correspond to one time slot.
  • T3 and T4 respectively correspond to one time unit.
  • T3 and T4 respectively correspond to a time.
  • the time T3 is smaller than the T4.
  • the time T3 is not greater than the T4.
  • the time T4 is smaller than the T2.
  • the starting time of the second uplink frame is earlier than the starting time of the second downlink frame.
  • the starting time of the second downlink frame is earlier than the starting time of the first downlink frame.
  • the second downlink frame and the first downlink frame are two different downlink frames of the first cell.
  • the second downlink frame and the first downlink frame are two consecutive downlink frames.
  • At least one downlink frame is included between the second downlink frame and the first downlink frame.
  • the second wireless signal in the second uplink frame before the first time, is sent on the second cell; in the second uplink frame after the first time In an uplink frame, the first wireless signal is sent on the second cell.
  • the second uplink frame is before the first time
  • the first uplink frame is after the first time
  • the second wireless signal occupies at least one time slot in the second uplink frame.
  • Embodiment 10 illustrates a schematic diagram of the structure of first signaling according to an embodiment of the present application, as shown in FIG. 10 .
  • Block 1001 represents the first domain
  • block 1002 represents the second domain
  • block 1003 represents the third domain
  • block 1004 represents the fourth domain.
  • the first signaling is a MAC CE; the first signaling consists of the first domain, or the second domain, or the third domain, or the The fourth domain consists of at least the first two.
  • the first signaling occupies a positive integer number of octets, and each octet includes 8 bits.
  • the first signaling occupies 2 octets.
  • the first signaling occupies 3 octets.
  • the first domain and the third domain occupy a first octet
  • the second domain and the reserved domain occupy a second octet
  • the first field occupies 6 bits
  • the second field occupies 5 bits
  • the third field occupies 2 bits
  • the fourth field occupies 3 bits.
  • the first field occupies 6 bits.
  • the first field occupies 5 bits.
  • the second domain indicates the identity of the serving cell of the second cell.
  • the second domain is the Serving Cell ID domain.
  • the second field occupies 5 bits.
  • the second field occupies 6 bits.
  • the third field indicates the identity of the first TAG.
  • the third domain indicates the identity of the TAG to which the first cell belongs.
  • the third domain is the TAG Identity (TAG ID) domain.
  • the second field occupies 2 bits.
  • the second field occupies 3 bits.
  • the third domain exists.
  • the third domain does not exist.
  • the fourth domain includes at least one domain.
  • the fourth field includes a reserved field (R Field).
  • the fourth field is a reserved field (R Field).
  • the fourth domain exists.
  • the fourth domain does not exist.
  • the reserved field is set to any value.
  • the reserved field is set to 0.
  • the accompanying drawing 10 is only an implementation form of the first signaling; the accompanying drawing 10 does not limit the domains included in the first signaling, and the accompanying drawing 10 The size of each field in the first signaling is not limited.
  • Embodiment 11 illustrates a schematic diagram in which the first signaling includes first sub-signaling and second signaling according to an embodiment of the present application.
  • the first signaling includes first sub-signaling and the second signaling; the first sub-signaling includes the first domain, and the second signaling includes the third Second domain.
  • the second cell before the first sub-signaling is received, the second cell is not the timing reference of the first cell; after the first sub-signaling is received, the second cell is the timing reference of the first cell. Timing reference for the first cell.
  • the second cell before the first sub-signaling is received, the second cell is not the timing reference of the first TAG; after the first sub-signaling is received, the second cell is the timing reference of the first TAG. Timing reference for the first TAG.
  • the second cell before the second signaling is received, the second cell is not the timing reference of the first cell; after the second signaling is received, the second cell is the timing reference of the first cell. Timing reference for the cell.
  • the second cell before the second signaling is received, the second cell is not the timing reference of the first TAG; after the second signaling is received, the second cell is the timing reference of the first TAG. Timing reference for TAG.
  • the second cell in response to the second signaling being received, is used as a timing reference of the first cell.
  • the second cell in response to the second signaling being received and the first sub-signaling being received, the second cell is used as a timing reference of the first cell.
  • the second cell in response to the second signaling being received, the second cell is used as the timing reference of the first TAG.
  • the second cell in response to the second signaling being received and the first sub-signaling being received, the second cell is used as the timing reference of the first TAG.
  • the second signaling is received and the first sub-signaling is received is used to determine the starting time of the first uplink frame compared with the first downlink of the second cell.
  • the starting time of the road frame is advanced by the first time interval.
  • the first receiver receives the first sub-signaling.
  • the third node in this application sends the first sub-signaling.
  • the sender of the first sub-signaling and the second signaling is the same.
  • the senders of the first sub-signaling and the second signaling are different.
  • the first sub-signaling and the second signaling do not belong to the same MAC sub-PDU.
  • the first sub-signaling and the second signaling do not belong to the same MAC CE.
  • the first sub-signaling is received; after the first sub-signaling is received, the first wireless signal is sent.
  • the first sub-signaling is a timing advance command.
  • the first sub-signaling includes a timing advance command.
  • the first sub-signaling is Timing Advance Command MAC CE.
  • the first sub-signaling is Absolute Timing Advance Command MAC CE.
  • the first sub-signaling is the first random access response.
  • the first sub-signaling is a timing advance command received after the second signaling is received.
  • the first sub-signaling is a first timing advance command received after the second signaling is received.
  • the receiving time of the first sub-signaling is later than the receiving time of the second signaling.
  • the first cell is not the target cell
  • the second cell is not the target cell
  • the second cell is the target cell in this application.
  • the second signaling is received and the first sub-signaling is received and is used to determine that the target cell is a timing reference of the first cell.
  • the second signaling is received and the first sub-signaling is received and is used to determine that the target cell is a timing reference of the first TAG.
  • the target cell is used as the timing reference of the first cell.
  • the target cell is not a timing reference of the first cell.
  • the target cell is The timing reference of the first cell.
  • the target cell is not used as the Describe the timing reference of the first cell.
  • the third cell and the first cell belong to the same TAG.
  • the third cell and the first cell do not belong to the same TAG.
  • the second cell and the first cell belong to the same TAG.
  • the third cell is the timing reference of the first cell; wherein, The second wireless signal is sent.
  • the third cell is the timing reference of the first cell; wherein the second wireless signal is sent.
  • the third cell is not the timing reference of the first cell; wherein, The second wireless signal is not sent.
  • the third cell is not the timing reference of the first cell; wherein the second wireless signal is not sent.
  • the third cell is PCell.
  • the third cell is PSCell.
  • the first cell is the target cell in this application.
  • the second wireless signal in this application is not sent.
  • the third cell is the serving cell of the first node.
  • the second cell is a timing reference in the first TAG.
  • the third cell and the second cell are both serving cells of the first node.
  • the identifier of the TAG configured in the target cell is the same as the identifier of the TAG to which the second cell belongs.
  • the second cell is a timing reference in the first TAG.
  • the identifier of the TAG configured in the second cell is the same as the identifier of the TAG to which the third cell belongs.
  • the third cell is a PCell, and the second cell is a SCell.
  • the third cell is PSCell, and the second cell is SCell.
  • the third cell is a SCell, and the second cell is a SCell.
  • the third cell is a SCell, and the second cell is a PCell.
  • the third cell is a SCell, and the second cell is a PSCell.
  • the third cell and the second cell belong to the same TAG.
  • the third cell and the second cell belong to different TAGs.
  • the phrase the second domain is used to determine the second cell means: the second signaling is used to determine the second cell.
  • the second cell in response to the second signaling being received, the second cell is used as a timing reference of the target cell.
  • the timing reference in the first TAG remains unchanged.
  • the second cell in response to the second signaling being received, if the second cell is a timing reference in the first TAG, the second cell is used as the target cell. timing reference.
  • the first message and the second signaling do not belong to the same MAC sub-PDU.
  • the first message is received before the second signaling.
  • the second wireless signal is sent.
  • the second wireless signal is not sent.
  • the first node receives first signaling, the first signaling includes first sub-signaling and the second signaling; the first sub-signaling includes the first domain, The second signaling includes the second domain; the second signaling is generated at a protocol layer below the RRC layer, and the second signaling is used to indicate to stop performing the first set of operations for the third cell. ; After the first signaling is received, the first wireless signal is sent in the first uplink frame of the first cell; the starting time of the first uplink frame is compared with the first downlink of the second cell.
  • the starting moment of the line link frame is advanced by a first time interval; the first field includes a first integer, at least the first integer is used to determine the first time interval; the second field is used to Determine the second cell; the first cell and the second cell are for the same cell group; the first operation set includes monitoring the PDCCH on the corresponding cell, monitoring the PDCCH used to schedule the corresponding cell, and monitoring the PDCCH on the corresponding cell. At least one of the three UL-SCH signals is sent; the second signaling is received earlier than the first wireless signal is sent.
  • the first node receives a first message, the first message includes configuration information of a target cell, and the target cell is a candidate cell of the third cell; receives first signaling, and the first signal The command includes first sub-signaling and the second signaling; the first sub-signaling includes the first domain, and the second signaling includes the second domain; the first signaling is received After that, the first wireless signal is sent in the first uplink frame of the first cell; wherein the starting time of the first uplink frame is compared with the starting time of the first downlink frame of the second cell.
  • the time is advanced by a first time interval; the first field includes a first integer, at least the first integer is used to determine the first time interval; the second field is used to determine the second cell; the The first cell and the second cell are for the same cell group; the second signaling is generated at the protocol layer below the RRC layer, and the second signaling is used to indicate to stop executing the first cell for the third cell.
  • An operation set, the second signaling is used to indicate performing the first operation set for the target cell; the first operation set includes monitoring the PDCCH on the corresponding cell, monitoring the PDCCH used to schedule the corresponding cell, and At least one of the three UL-SCH signals is sent on the corresponding cell; the second signaling is received earlier than the first wireless signal is sent.
  • Embodiment 12 illustrates a schematic diagram in which the first signaling includes first sub-signaling and second sub-signaling according to an embodiment of the present application.
  • the first signaling includes a first sub-signaling and a second sub-signaling; the first sub-signaling includes the first domain, and the second sub-signaling includes the third sub-signaling.
  • Second domain the first sub-signaling and the second sub-signaling do not belong to the same MAC sub-PDU.
  • the second cell in response to the second sub-signaling being received, the second cell is used as the timing reference of the first cell.
  • the second cell in response to the second sub-signaling being received and the first sub-signaling being received, the second cell is used as a timing reference of the first cell.
  • the second cell in response to the second sub-signaling being received, the second cell is used as the timing reference of the first TAG.
  • the second cell in response to the second sub-signaling being received and the first sub-signaling being received, the second cell is used as the timing reference of the first TAG.
  • the second sub-signaling indicates that when the configuration information of the second cell is applied, the second cell is the timing reference of the first TAG.
  • the second cell in response to the second sub-signaling being received, the second cell is used as the timing reference of the first TAG.
  • the second cell is used as the timing reference of the first TAG.
  • the second domain indicates that when the configuration information of the second cell is applied, the second cell is the timing reference of the first TAG; the second cell belongs to the first TAG .
  • the second field indicates that when the configuration information of the second cell is applied, the second cell is a timing reference of the first cell.
  • the sender of the first sub-signaling and the second sub-signaling is the same.
  • the senders of the first sub-signaling and the second sub-signaling are different.
  • the first receiver receives the second sub-signaling.
  • the first receiver receives the first sub-signaling.
  • the first sub-signaling is a timing advance command.
  • the first sub-signaling includes a timing advance command.
  • the first sub-signaling is Timing Advance Command MAC CE.
  • the first sub-signaling is Absolute Timing Advance Command MAC CE.
  • the first sub-signaling is the first random access response.
  • the second sub-signaling is an RRC message.
  • the second sub-signaling is MAC CE
  • the MAC sub-header of the first sub-signaling is different from the MAC sub-header of the second sub-signaling.
  • the second sub-signaling is a DCI.
  • the second sub-signaling and the first message do not belong to the same RRC message.
  • the second sub-signaling and the first message do not belong to the same MAC sub-PDU.
  • the first sub-signaling is received; after the first sub-signaling is received, the first wireless signal is sent.
  • the second signaling is received; after the second signaling is received, the first sub-signaling is received; after the first After the sub-signaling is received, the first wireless signal is sent.
  • the first sub-signaling is received; after the first sub-signaling is received, the second signaling is received; After a sub-signaling is received, the first wireless signal is sent.
  • the second sub-signaling and the first message belong to the same RRC message.
  • the second sub-signaling is the first message in this application, and the second field is a field in the first message.
  • the second sub-signaling belongs to the first message, and the second domain is used to indicate that when the configuration information of the target cell is applied, the target cell is The timing reference of the first TAG; the first message indicates that the target cell belongs to the first TAG; and the target cell is the second cell.
  • the first node receives first signaling, the first signaling includes first sub-signaling and second sub-signaling; the first sub-signaling includes the first domain, so The second sub-signaling includes the second domain; the first sub-signaling and the second sub-signaling do not belong to the same MAC sub-PDU; after the first signaling is received, in the first cell
  • the first wireless signal is sent in the first uplink frame of the second cell; wherein the starting time of the first uplink frame is advanced by a first time compared to the starting time of the first downlink frame of the second cell.
  • the first field includes a first integer, at least the first integer is used to determine the first time interval; the second field is used to determine the second cell; the first cell and the The second cell is for the same cell group.
  • the first node receives first signaling
  • the first signaling includes first sub-signaling and second sub-signaling
  • the first sub-signaling includes the first domain, so The second sub-signaling includes the second domain; the first sub-signaling and the second sub-signaling do not belong to the same MAC sub-PDU;
  • the second signaling is received in the RRC
  • the protocol layer below the layer is generated, and the second signaling is used to indicate to stop performing the first set of operations for the third cell; after the first signaling is received, the first uplink of the first cell
  • the first wireless signal is sent in the frame; wherein the starting time of the first uplink frame is earlier than the starting time of the first downlink frame of the second cell by a first time interval;
  • the first The field includes a first integer, at least the first integer is used to determine the first time interval;
  • the second field is used to determine the second cell;
  • the first cell and the second cell are for the same Cell group;
  • the first operation set includes at
  • the first node receives a first message, the first message includes configuration information of a target cell, and the target cell is a candidate cell of the third cell; receives the first signaling, and the third A signaling includes first sub-signaling and second sub-signaling; the first sub-signaling includes the first domain, the second sub-signaling includes the second domain; the first sub-signaling includes The command and the second sub-signaling do not belong to the same MAC sub-PDU; receiving the second signaling, the second signaling is generated at the protocol layer below the RRC layer, and the second signaling is used to indicate Stop executing the first set of operations for the third cell, and the second signaling is used to indicate executing the first set of operations for the target cell; after the first signaling is received, in the first cell Sending the first wireless signal in an uplink frame; wherein the starting time of the first uplink frame is earlier than the starting time of the first downlink frame of the second cell by a first time interval;
  • the first field includes a first integer
  • the second signaling in this application is received.
  • the second signaling in this application is not received.
  • Embodiment 13 illustrates a structural block diagram of a processing device used in a first node according to an embodiment of the present application; as shown in FIG. 13 .
  • the processing device 1300 in the first node includes a first receiver 1301 and a first transmitter 1302.
  • the first receiver 1301 receives first signaling, where the first signaling includes a first domain and a second domain;
  • the first transmitter 1302 after the first signaling is received, sends the first wireless signal in the first uplink frame of the first cell;
  • the starting time of the first uplink frame is earlier than the starting time of the first downlink frame of the second cell by a first time interval;
  • the first field includes a first integer , at least the first integer is used to determine the first time interval;
  • the second domain is used to determine the second cell; the first cell and the second cell are for the same cell group.
  • the first transmitter 1302 sends a second wireless signal in the second uplink frame of the first cell before the first signaling is received; wherein, the second The starting time of the uplink frame is advanced by a second time interval compared to the starting time of the second downlink frame of the third cell; the second time interval is related to the second advance value, and at least one timing advance command is used to determine the second advance value; the second advance value is used to determine the first time interval.
  • the third cell and the second cell belong to the same TAG.
  • the third cell and the second cell are different.
  • the third cell and the second cell are the same.
  • the first receiver 1301 receives second signaling.
  • the second signaling is generated at the protocol layer below the RRC layer.
  • the second signaling is used to indicate that the third cell is targeted. Stop executing the first set of operations;
  • the first operation set includes at least one of monitoring PDCCH on the corresponding cell, monitoring PDCCH used to schedule the corresponding cell, and sending UL-SCH on the corresponding cell; the second signaling is received The time is earlier than the time when the first wireless signal is sent.
  • the first receiver receives a first message, the first message includes configuration information of a target cell, and the target cell is a candidate cell of the third cell; the second signaling is Used to instruct execution of the first set of operations for the target cell.
  • the first signaling includes first sub-signaling and the second signaling; the first sub-signaling includes the first domain, and the second signaling includes the second area.
  • the first signaling includes first sub-signaling and second sub-signaling; the first sub-signaling includes the first domain, and the second sub-signaling includes the second domain; the first sub-signaling and the second sub-signaling do not belong to the same MAC sub-PDU.
  • the first receiver 1301 in response to receiving the first signaling, starts or restarts a first timer, and the running status of the first timer is used to determine whether at least the Whether the uplink transmission of the first cell is aligned.
  • the first receiver 1301 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data in Figure 4 of this application. Source 467.
  • the first receiver 1301 includes the antenna 452, the receiver 454, the multi-antenna receiving processor 458, and the receiving processor 456 in Figure 4 of this application.
  • the first receiver 1301 includes the antenna 452, the receiver 454, and the receiving processor 456 in Figure 4 of this application.
  • the first transmitter 1302 includes the antenna 452, transmitter 454, multi-antenna transmit processor 457, transmit processor 468, controller/processor 459, memory 460 and data in Figure 4 of this application.
  • Source 467 the antenna 452, transmitter 454, multi-antenna transmit processor 457, transmit processor 468, controller/processor 459, memory 460 and data in Figure 4 of this application.
  • Source 467 the antenna 452, transmitter 454, multi-antenna transmit processor 457, transmit processor 468, controller/processor 459, memory 460 and data in Figure 4 of this application.
  • Source 467 Source 467.
  • the first transmitter 1302 includes the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, and the transmission processor 468 in Figure 4 of this application.
  • the first transmitter 1302 includes the antenna 452, the transmitter 454, and the transmission processor 468 in Figure 4 of this application.
  • Embodiment 14 illustrates a structural block diagram of a processing device used in a second node according to an embodiment of the present application; as shown in FIG. 14 .
  • the processing device 1400 in the second node includes a second transmitter 1401 and a second receiver 1402.
  • the second transmitter 1401 sends first signaling, where the first signaling includes a first domain and a second domain;
  • the first wireless signal is sent by the recipient of the first signaling in the first uplink frame of the first cell; the first uplink The starting time of the road frame is earlier than the starting time of the first downlink frame of the second cell by a first time interval; the first field includes a first integer, at least the first integer is used to determine The first time interval; the second domain is used to determine a second cell; the first cell and the second cell are for the same cell group.
  • the second receiver 1402 receives the first wireless signal.
  • a second wireless signal is sent by the recipient of the first signaling in the second uplink frame of the first cell; the second The starting time of the uplink frame is advanced by a second time interval compared to the starting time of the second downlink frame of the third cell; the second time interval is related to the second advance value, and at least one timing advance command is used to determine the second advance value; the second advance value is used to determine the first time interval.
  • the second receiver 1402 receives the second wireless signal.
  • the third cell and the second cell belong to the same TAG.
  • the third cell and the second cell are different.
  • the third cell and the second cell are the same.
  • the second transmitter 1401 sends second signaling.
  • the second signaling is generated at the protocol layer below the RRC layer.
  • the second signaling is used to indicate that the third cell is targeted. Stop executing the first set of operations;
  • the first operation set includes at least one of monitoring PDCCH on the corresponding cell, monitoring PDCCH used to schedule the corresponding cell, and sending UL-SCH on the corresponding cell; the second signaling is received The time is earlier than the time when the first wireless signal is sent.
  • the second transmitter sends a first message, the first message includes configuration information of a target cell, and the target cell is a candidate cell of the third cell; the second signaling is Used to instruct execution of the first set of operations for the target cell.
  • the first signaling includes first sub-signaling and the second signaling; the first sub-signaling includes the first domain, and the second signaling includes the second area.
  • the first signaling includes first sub-signaling and second sub-signaling; the first sub-signaling includes the first domain, and the second sub-signaling includes the second domain; the first sub-signaling and the second sub-signaling do not belong to the same MAC sub-PDU.
  • the first timer in response to the first signaling being received, the first timer is started or restarted, and the running status of the first timer is used to determine the uplink for at least the first cell. Whether the link transmission is aligned.
  • the second transmitter 1401 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475, and the memory 476 in Figure 4 of this application.
  • the second transmitter 1401 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471 and the transmission processor 416 in Figure 4 of this application.
  • the second transmitter 1401 includes the antenna 420, the transmitter 418, and the transmission processor 416 in Figure 4 of this application.
  • the second receiver 1402 includes the antenna 420, receiver 418, multi-antenna receiving processor 472, receiving processor 470, controller/processor 475, and memory 476 in Figure 4 of this application.
  • the second receiver 1402 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, and the receiving processor 470 in Figure 4 of this application.
  • the second receiver 1402 includes the antenna 420, the receiver 418, and the receiving processor 470 in Figure 4 of this application.
  • Embodiment 15 illustrates a wireless signal transmission flow chart according to yet another embodiment of the present application, as shown in FIG. 15 . It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S15101 a first message is received, the first message includes the configuration information of the target cell, and the target cell is a candidate cell of the third cell; the second signaling is used Instructing to perform the first set of operations for the target cell.
  • step S15401 the first message is sent.
  • the first message is received before the second signaling in this application is received.
  • the sender of the first message is the maintenance base station of a serving cell of the first node U01.
  • the sender of the first message is the maintenance base station of a serving cell in the first cell group.
  • the first message includes configuration information of each candidate cell in the first candidate cell set, the first candidate cell set includes at least one candidate cell, and each candidate cell in the first candidate cell set A candidate cell is a candidate cell of the third cell, and the target cell is a candidate cell in the first candidate cell set.
  • the target cell is used for L1/L2 mobility based on L1/L2 signaling.
  • each candidate cell in the first candidate cell set is used for L1/L2 mobility based on L1/L2 signaling.
  • the first message includes a given condition, and when the given condition is met, it is used to determine to apply the configuration information of the target cell.
  • the first message includes a given condition, and when the given condition is met, it is used to determine to send the measurement report; in response to the measurement report being sent, the second signaling is received; as the In response to receiving the second signaling, the configuration information of the target cell is applied.
  • the second signaling is received and used to determine to apply the configuration information of the target cell.
  • the second signaling is used to instruct to perform the first operation set for the target cell.
  • the first operation set includes monitoring the PDCCH on the corresponding cell and monitoring the PDCCH used to schedule the corresponding cell. , and at least one of sending UL-SCH on the corresponding cell; the corresponding cell is the target cell.
  • the first set of operations is performed on the target cell.
  • the configuration information of the target cell is applied.
  • the configuration information of the target cell is applied.
  • the given condition is related to RSRP.
  • the given condition is related to the L1 measurement result, and the given condition is not related to the L3 measurement result.
  • the given condition is related to the L3 measurement result.
  • the given condition is related to the number of beams.
  • the given condition is related to the number of reference signal resources, and the reference signal resources include at least one of SSB or CSI-RS.
  • the given condition includes: the measurement result for the second cell is greater than a first threshold, and the measurement result for the third cell is less than the second threshold; the first threshold and the The second thresholds are all RSRP thresholds; the first message includes the first threshold and the second threshold.
  • the given condition includes: the measurement result for the second cell is greater than a first threshold; the first threshold is an RSRP threshold; and the first message includes the first threshold.
  • the given condition includes: the measurement result for the third cell is less than a second threshold; the second threshold is an RSRP threshold; and the first message includes the second threshold.
  • the given condition includes: the measurement result for the second cell is greater than the measurement result for the third cell.
  • the given condition includes: the number of reference signal resources that meet a threshold in the second cell is greater than the first threshold; the number of reference signal resources that meet a threshold in the third cell is less than a second threshold; the first message includes the first threshold and the second threshold.
  • the given condition includes: the number of reference signal resources in the second cell that meets a threshold is greater than a first threshold; and the first message includes the first threshold.
  • the given condition includes: the number of reference signal resources that meet a threshold in the third cell is less than a second threshold; and the first message includes the second threshold.
  • the given condition includes: the number of reference signal resources that satisfy a threshold in the second cell is greater than the number of reference signal resources that satisfy a threshold in the third cell.
  • User equipment, terminals and UEs in this application include but are not limited to drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC, enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost Cost-effective tablet computers and other wireless communication devices.
  • MTC Machine Type Communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, transmitting and receiving node) and other wireless communications equipment.
  • gNB NR Node B
  • TRP Transmitter Receiver Point

Abstract

本申请公开了一种被用于无线通信的通信节点中的方法和装置。通信节点接收第一信令,所述第一信令包括第一域和第二域;所述第一信令被接收之后,在第一小区的第一上行链路帧中发送第一无线信号;所述第一上行链路帧的起始时刻相比第二小区的第一下行链路帧的起始时刻提前了第一时间间隔;所述第一域包括第一整数,至少所述第一整数被用于确定所述第一时间间隔;所述第二域被用于确定第二小区;所述第一小区和所述第二小区针对同一个小区组。

Description

一种被用于无线通信的通信节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及移动性的传输方法和装置。
背景技术
对于3GPP(3rd GenerationPartner Project,第三代合作伙伴项目)系统,在RRC(Radio Resource Control,无线资源控制)连接(RRC_CONNECTED)态,基站负责维护用于维持L1(layer 1,层一)同步的定时提前量。具备相同定时提前量并且使用同一个定时参考的小区被分在一个TAG(Timing Advance Group,定时提前组),每个TAG包括至少一个被配置上行链路的服务小区(Serving Cell),RRC层负责每个服务小区到TAG的映射。对于PTAG(Primary TAG),SpCell(Special Cell,特殊小区)是PTAG中的小区的定时参考,对于一个STAG(Secondary TAG),这个STAG中的任一被激活的SCell(Secondary Cell,辅小区)作为这个STAG中的小区的定时参考(Timing Reference Cell)。定时提前更新通过MAC(Medium Access Control,媒体接入控制)CE(Control Element,控制元素)命令由基站通知UE。如果L1被认为不同步,UE(User Equipment,用户设备)只能在上行链路发送MSG1(Message 1,消息1)或者MSGA(Message A,消息A)。
发明内容
一个定时参考在某些情况不能继续作为定时参考,比如,当PCell(Primary Cell,主小区)执行基于L3(layer 3,层三)信令的切换时,或者,当PSCell(Primary SCG(Secondary Cell Group,辅小区组)Cell,SCG主小区)执行基于L3信令的PSCell更改时,或者,当作为定时参考的SCell被去激活时,UE需要更改定时参考。当UE从一个小区的覆盖区域移动到另一个小区的覆盖区域时,需要执行服务小区的更改,定时参考是预定义的,或者,定时参考是UE选择的,基站不能决定定时参考的选择。现有协议中,服务小区更改是被L3测量触发的,并且通过RRC信令触发PCell(Primary Cell,主小区)和PSCell的同步重配置,并且会触发释放SCell,这些操作会涉及L2(layer 2,层二)和L1重置(reset),导致更长的时延(Delay)、更大的开销(Overhead)和更长的中断时间(interruption time)。在Rel-18,针对移动性增强是3GPP很重要的研究方向,3GPP RAN94e次会议决定开展“NR(New Radio,新空口)移动性进一步增强(Further NR mobility enhancements)”研究项目(Work Item,WI)。其中,通过基于L1/L2信令的L1/L2移动性增强或者连续的CPC(Conditional PSCell Change)机制降低时延、开销和中断时间是一个重要的研究方向,会导致服务小区的频繁更改。当服务小区频繁更改时,定时参考也会频繁更改,从而导致从而对上行链路传输会产生影响。因此,针对服务小区变换较快的场景,如何确定定时参考需要进行增强。
针对上述问题,本申请提供了一种针对L1/L2的移动性维持上行链路同步的解决方案。针对上述问题描述中,采用基于L1/L2的移动性场景作为一个例子;本申请也同样适用于例如基于L3的移动性场景,取得类似基于L1/L2的移动性中的技术效果。进一步的,虽然本申请的初衷是针对Uu空口,但本申请也能被用于PC5口。进一步的,虽然本申请的初衷是针对终端与基站场景,但本申请也同样适用于V2X(Vehicle-to-Everything,车联网)场景,终端与中继,以及中继与基站之间的通信场景,取得类似的终端与基站场景中的技术效果。进一步的,虽然本申请的初衷是针对终端与基站场景,但本申请也同样适用于IAB(Integrated Access and Backhaul,集成接入和回传)的通信场景,取得类似的终端与基站场景中的技术效果。进一步的,虽然本申请的初衷是针对地面网络(Terrestrial Network,地面网络)场景,但本申请也同样适用于非地面网络(Non-Terrestrial Network,NTN)的通信场景,取得类似的TN场景中的技术效果。此外,不同场景采用统一解决方案还有助于降低硬件复杂度和成本。
作为一个实施例,对本申请中的术语(Terminology)的解释参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释参考IEEE(Institute of Electrical and Electronics  Engineers,电气和电子工程师协会)的规范协议的定义。
需要说明的是,在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信令,所述第一信令包括第一域和第二域;
所述第一信令被接收之后,在第一小区的第一上行链路帧中发送第一无线信号;
其中,所述第一上行链路帧的起始时刻相比第二小区的第一下行链路帧的起始时刻提前了第一时间间隔;所述第一域包括第一整数,至少所述第一整数被用于确定所述第一时间间隔;所述第二域被用于确定第二小区;所述第一小区和所述第二小区针对同一个小区组。
作为一个实施例,本申请要解决的问题包括:如何确定第一小区的上行链路传输的定时参考。
作为一个实施例,本申请要解决的问题包括:如何确定第一小区的上行链路帧的定时参考。
作为一个实施例,本申请要解决的问题包括:如何确定第一小区的上行链路传输的发送定时。
作为一个实施例,本申请要解决的问题包括:如何避免上行链路冲突。
作为一个实施例,本申请要解决的问题包括:如何避免对上行链路传输的影响。
作为一个实施例,本申请要解决的问题包括:如何缩短传输时延。
作为一个实施例,上述方法的特质包括:所述第二信令是所述第一小区的上行链路帧的定时参考。
作为一个实施例,上述方法的特质包括:所述第一小区的上行链路发送定时根据所述第二小区的下行链路定时确定。
作为一个实施例,上述方法的特质包括:所述第二信令指示所述第一小区是第一小区的上行链路帧的定时参考。
作为一个实施例,上述方法的特质包括:所述第二信令显示指示所述第二小区是第一小区的上行链路帧的定时参考。
作为一个实施例,上述方法的好处包括:避免上行链路冲突。
作为一个实施例,上述方法的好处包括:避免对上行链路传输的影响。
作为一个实施例,上述方法的好处包括:缩短传输时延。
根据本申请的一个方面,其特征在于,包括:
在所述第一信令被接收之前,在所述第一小区的第二上行链路帧中发送第二无线信号;
其中,所述第二上行链路帧的起始时刻相比第三小区的第二下行链路帧的起始时刻提前了第二时间间隔;所述第二时间间隔与第二提前值有关,至少一个定时提前命令被用于确定所述第二提前值;所述第二提前值被用于确定所述第一时间间隔。
根据本申请的一个方面,其特征在于,所述第三小区和所述第二小区属于同一个TAG。
根据本申请的一个方面,其特征在于,所述第三小区和所述第二小区不同。
作为一个实施例,上述方法的特质包括:所述第一上行链路帧和所述第二上行链路帧的定时参考不同。
根据本申请的一个方面,其特征在于,所述第三小区和所述第二小区相同。
作为一个实施例,上述方法的特质包括:所述第一上行链路帧和所述第二上行链路帧的定时参考不同。
根据本申请的一个方面,其特征在于,包括:
接收第二信令,所述第二信令在RRC层之下的协议层被生成,所述第二信令被用于指示针对第三小区停止执行第一操作集合;
其中,所述第一操作集合包括在相应小区上监听PDCCH(Physical downlink control channel,物理下行链路控制信道)、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH(Uplink Shared Channel,上行链路共享信道)三者中的至少之一;所述第二信令被接收的时刻早于所述第一无线信号被发送的时刻。
根据本申请的一个方面,其特征在于,包括:
接收第一消息,所述第一消息包括目标小区的配置信息,所述目标小区是所述第三小区的候选小区;所述第二信令被用于指示针对所述目标小区执行所述第一操作集合。
根据本申请的一个方面,其特征在于,所述第一信令包括第一子信令和所述第二信令;所述第一子信令包括所述第一域,所述第二信令包括所述第二域。
根据本申请的一个方面,其特征在于,所述第一信令包括第一子信令和第二子信令;所述第一子信令包括所述第一域,所述第二子信令包括所述第二域;所述第一子信令和所述第二子信令不属于同一个MAC子PDU。
根据本申请的一个方面,其特征在于,包括:
作为所述第一信令被接收的响应,启动或者重新启动第一计时器,所述第一计时器的运行状态被用于确定针对至少所述第一小区的上行链路传输是否对齐。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信令,所述第一信令包括第一域和第二域;
其中,在所述第一信令被接收之后,在第一小区的第一上行链路帧中第一无线信号被所述第一信令的接收者发送;所述第一上行链路帧的起始时刻相比第二小区的第一下行链路帧的起始时刻提前了第一时间间隔;所述第一域包括第一整数,至少所述第一整数被用于确定所述第一时间间隔;所述第二域被用于确定第二小区;所述第一小区和所述第二小区针对同一个小区组。
根据本申请的一个方面,其特征在于,在所述第一信令被接收之前,在所述第一小区的第二上行链路帧中第二无线信号被所述第一信令的接收者发送;所述第二上行链路帧的起始时刻相比第三小区的第二下行链路帧的起始时刻提前了第二时间间隔;所述第二时间间隔与第二提前值有关,至少一个定时提前命令被用于确定所述第二提前值;所述第二提前值被用于确定所述第一时间间隔。
根据本申请的一个方面,其特征在于,所述第三小区和所述第二小区属于同一个TAG。
根据本申请的一个方面,其特征在于,所述第三小区和所述第二小区相同。
根据本申请的一个方面,其特征在于,包括:
发送第二信令,所述第二信令在RRC层之下的协议层被生成,所述第二信令被用于指示针对第三小区停止执行第一操作集合;
其中,所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述第二信令被接收的时刻早于所述第一无线信号被发送的时刻。
根据本申请的一个方面,其特征在于,作为所述第一信令被接收的响应,第一计时器被启动或者被重新启动,所述第一计时器的运行状态被用于确定针对至少所述第一小区的上行链路传输是否对齐。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一接收机,接收第一信令,所述第一信令包括第一域和第二域;
第一发射机,所述第一信令被接收之后,在第一小区的第一上行链路帧中发送第一无线信号;
其中,所述第一上行链路帧的起始时刻相比第二小区的第一下行链路帧的起始时刻提前了第一时间间隔;所述第一域包括第一整数,至少所述第一整数被用于确定所述第一时间间隔;所述第二域被用于确定第二小区;所述第一小区和所述第二小区针对同一个小区组。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二发射机,发送第一信令,所述第一信令包括第一域和第二域;
其中,在所述第一信令被接收之后,在第一小区的第一上行链路帧中第一无线信号被所述第一信令的接收者发送;所述第一上行链路帧的起始时刻相比第二小区的第一下行链路帧的起始时刻提前了第一时间间隔;所述第一域包括第一整数,至少所述第一整数被用于确定所述第一时间间隔;所述第二域被用于确定第二小区;所述第一小区和所述第二小区针对同一个小区组。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.避免上行链路冲突;
-.避免上行链路冲突;
-.避免对上行链路传输的影响;
-.缩短传输时延。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信号、第二信号和第三信号的传输的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的另一个实施例的无线信号传输流程图;
图7示出了根据本申请的又一个实施例的无线信号传输流程图;
图8示出了根据本申请的一个实施例的第一上行链路帧和第一下行链路帧的定时关系的示意图;
图9示出了根据本申请的一个实施例的第二上行链路帧和第二下行链路帧的定时关系的示意图;
图10示出了根据本申请的一个实施例的第一信令的结构的示意图;
图11示出了根据本申请的一个实施例的第一信令包括第一子信令和第二信令的无线信号传输流程图;
图12示出了根据本申请的一个实施例的第一信令包括第一子信令和第二子信令的无线信号传输流程图;
图13示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;
图14示出了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;
图15示出了根据本申请的再一个实施例的无线信号传输流程图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信号、第二信号和第三信号的传输的流程图,如附图1所示。附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一节点在步骤101中,接收第一信令,所述第一信令包括第一域和第二域;在步骤102中,所述第一信令被接收之后,在第一小区的第一上行链路帧中发送第一无线信号;其中,所述第一上行链路帧的起始时刻相比第二小区的第一下行链路帧的起始时刻提前了第一时间间隔;所述第一域包括第一整数,至少所述第一整数被用于确定所述第一时间间隔;所述第二域被用于确定第二小区;所述第一小区和所述第二小区针对同一个小区组。
作为一个实施例,所述第一信令被所述第一节点用于确定或者调整或者计算所述第一小区的上行链路发送定时。
作为一个实施例,所述第一信令被所述第一节点用于确定或者调整或者计算所述第一TAG中的每个小区的上行链路发送定时。
作为一个实施例,所述第一信令是下行链路(Downlink,DL)信令。
作为一个实施例,所述第一信令是副链路(Sidelink,SL)信令。
作为一个实施例,所述第一信令包括一个信令,所述一个信令通过DCCH(Dedicated Control Channel,专用控制信道)传输。
作为一个实施例,所述第一信令包括一个信令,所述一个信令通过SCCH(Sidelink Control Channel,副链路控制信道)传输。
作为一个实施例,所述第一信令是定时提前命令。
作为一个实施例,所述第一信令包括至少定时提前命令。
作为一个实施例,所述第一信令包括至少一个信令。
作为一个实施例,所述第一信令包括一个信令。
作为一个实施例,所述第一信令包括RRC层消息。
作为一个实施例,所述第一信令包括至少一个RRC消息。
作为一个实施例,所述第一信令包括RRC消息中的至少一个IE(Information Element,信息元素)。
作为一个实施例,所述第一信令包括RRC消息中的至少一个域(Field)。
作为一个实施例,所述第一信令包括RRCReconfiguration消息。
作为一个实施例,所述第一信令包括MAC层信令。
作为一个实施例,所述第一信令包括至少一个MAC PDU(Protocol Data Unit,协议数据单元)。
作为一个实施例,所述第一信令包括至少一个MAC子PDU(subPDU),所述至少一个MAC子PDU中的任意两个MAC子PDU的MAC子头所包括的LCID(逻辑信道标识,Logical Channel ID)的值不同。
作为一个实施例,所述第一信令包括至少一个MAC子头(subheader)。
作为一个实施例,所述第一信令包括至少一个MAC CE。
作为一个实施例,所述第一信令是MAC(Medium Access Control,媒体接入控制)层信令。
作为一个实施例,所述第一信令是一个MAC子PDU。
作为一个实施例,所述第一信令是一个MAC CE。
作为一个实施例,所述第一信令的名字中包括reference或者enhanced或者Absolute或者Timing或者Advance或者Command中的至少之一。
作为一个实施例,所述第一信令包括Timing Advance Command MAC CE。
作为一个实施例,所述第一信令包括Absolute Timing Advance Command MAC CE。
作为一个实施例,所述第一信令包括物理层信令。
作为一个实施例,所述第一信令包括第一随机接入响应(Random Access Response,RAR)。
作为该实施例的一个子实施例,所述第一随机接入响应在随机接入过程中被接收。
作为该实施例的一个子实施例,所述第一随机接入响应通过监听被RA-RNTI(Random Access RNTI(Radio Network Temporary Identifier,无线网络临时标识))加扰的PDCCH接收。
作为该实施例的一个子实施例,所述第一随机接入响应通过监听被MSGB-RNTI加扰的PDCCH接收。
作为该实施例的一个子实施例,所述第一随机接入响应通过监听被C-RNTI(Cell RNTI)加扰的PDCCH接收。
作为该实施例的一个子实施例,所述第一随机接入响应是一个MAC RAR(Random Access Response,随机接入响应)。
作为该实施例的一个子实施例,所述第一随机接入响应fallbackRAR。
作为该实施例的一个子实施例,所述第一随机接入响应successRAR。
作为该实施例的一个子实施例,所述第一随机接入响应是fallbackRAR MAC subPDU。
作为该实施例的一个子实施例,所述第一随机接入响应是successRAR MAC subPDU。
作为该实施例的一个子实施例,所述第一随机接入响应是Absolute Timing Advance Command MAC CE。
作为该实施例的一个子实施例,所述第一随机接入响应是一个DCI(Downlink Control Information,下行链路控制信息)。
作为一个实施例,所述第一信令是一个MAC CE,所述一个MAC CE包括所述第一域和所述第二域。
作为一个实施例,所述第一信令是一个DCI,所述一个DCI包括所述第一域和所述第二域。
作为一个实施例,所述第一信令是一个MAC PDU,所述一个MAC PDU中包括所述第一域和所述第二域。
作为一个实施例,所述第一域和所述第二域属于两个不同的MAC PDU。
作为一个实施例,所述第一域和所述第二域分别是所述第一信令中的一个域。
作为一个实施例,所述第一信令包括第一子信令和第二子信令,所述第一子信令包括所述第一域,所述第二子信令包括所述第二域。
作为一个实施例,所述Timing Advance Command MAC CE的格式参考3GPP TS 38.321的6.1.3.4节。
作为一个实施例,所述AbsoluteTiming Advance Command MAC CE的格式参考3GPP TS 38.321的6.1.3.4a节。
作为一个实施例,所述fallbackRAR的格式参考3GPP TS 38.321的6.2.3a节。
作为一个实施例,所述successRAR的格式参考3GPP TS 38.321的6.2.3a节。
作为一个实施例,所述MAC RAR的格式参考3GPP TS 38.321的6.2.3节。
作为一个实施例,所述第一信令被接收包括:至少所述第一信令的最后一个符号被接收。
作为一个实施例,所述第一信令被接收包括:至少所述第一信令被成功译码。
作为一个实施例,所述第一信令被接收包括:至少所述第一信令中的最后一个信令被接收。
作为一个实施例,所述第一信令被接收包括:至少所述第一子信令被接收。
作为一个实施例,所述第一信令被接收包括:至少所述第一信令中的定时提前命令被接收。
作为一个实施例,所述第一信令被接收包括:至少所述第一域和所述第二域被接收。
作为一个实施例,所述行为在第一小区的第一上行链路帧中发送第一无线信号包括:在所述第一上行链路帧中,在所述第一小区上发送所述第一无线信号。
作为一个实施例,所述行为在第一小区的第一上行链路帧中发送第一无线信号包括:在所述第一上行链路帧中的给定时隙,在所述第一小区上发送所述第一无线信号。
作为一个实施例,所述第一信令被接收之前,所述第一小区是所述第一节点的服务小区。
作为一个实施例,所述第一信令被接收之前,所述第一小区不是所述第一节点的服务小区。
作为一个实施例,所述第一小区是所述第一节点的一个服务小区。
作为一个实施例,所述第一小区是所述第一节点的一个服务小区的候选小区。
作为一个实施例,所述第一小区是第一小区组中的一个服务小区。
作为一个实施例,所述第一小区是第一小区组中的一个服务小区的候选小区。
作为一个实施例,所述第一小区属于第一小区组。
作为一个实施例,所述第一小区针对第一小区组。
作为一个实施例,所述第一小区是PCell,所述第一小区组是MCG(Master Cell Group,主小区组)。
作为一个实施例,所述第一小区是PSCell,所述第一小区组是SCG。
作为一个实施例,所述第一小区是SCell,所述第一小区组是MCG。
作为一个实施例,所述第一小区是SCell,所述第一小区组是SCG。
作为一个实施例,所述第一小区属于第一TAG。
作为一个实施例,所述第一小区是第一TAG中的一个服务小区,所述第一TAG中的每个小区属于第一小区组。
作为一个实施例,所述第一上行链路帧属于所述第一小区。
作为一个实施例,所述第一上行链路帧针对所述第一小区配置。
作为一个实施例,所述第一上行链路帧被用于确定在所述第一小区发送上行链路信号的时域位置。
作为一个实施例,所述第一上行链路帧被用于确定在所述第一小区发送所述第一无线信号的时域位置。
作为一个实施例,所述第一上行链路帧是所述第一小区的一个上行链路帧。
作为一个实施例,所述第一上行链路帧被用于所述第一小区。
作为一个实施例,所述第一上行链路帧是所述第一信令被接收之后的第一个上行链路帧。
作为一个实施例,所述第一上行链路帧是所述第一信令被接收之后的任意一个上行链路帧。
作为一个实施例,所述第一上行链路帧是所述第一信令被接收之后的第Q1个上行链路帧,所述Q1是正整数。
作为一个实施例,所述第一无线信号占用所述第一上行链路帧的至少一个时隙。
作为一个实施例,所述第一无线信号占用所述第一上行链路帧的一个时隙。
作为一个实施例,所述第一无线信号在所述第一上行链路帧中的时隙位置是预配置的。
作为一个实施例,所述第一无线信号在所述第一上行链路帧中的时隙位置是预定义的。
作为一个实施例,所述第一无线信号在所述第一上行链路帧中的时隙位置是被指定的。
作为一个实施例,所述第一无线信号在所述第一上行链路帧中的时隙位置是UE确定的。
作为一个实施例,所述第一无线信号是物理层信号。
作为一个实施例,所述第一无线信号是PUCCH(Physical uplink control channel,物理上行链路控制信道)。
作为一个实施例,所述第一无线信号是SRS(Sounding reference signal,探测参考信号)。
作为一个实施例,所述第一无线信号是PUSCH(Physical uplink shared channel,物理上行链路共享信道)。
作为一个实施例,所述第一无线信号是PUCCH或者SRS或者PUSCH中的任意之一。
作为一个实施例,所述第一无线信号通过PUCCH传输。
作为一个实施例,所述第一无线信号通过PUSCH传输。
作为一个实施例,所述第一无线信号通过SRS资源传输。
作为一个实施例,所述第一信令被接收之前,所述第二小区是所述第一节点的服务小区。
作为一个实施例,所述第一信令被接收之前,所述第二小区不是所述第一节点的服务小区。
作为一个实施例,所述第一信令被接收之后,所述第二小区是所述第一节点的服务小区。
作为一个实施例,所述第一信令被接收之后,所述第二小区不是所述第一节点的服务小区。
作为一个实施例,所述第二小区不是所述第一节点的服务小区包括:所述第二小区是所述第一节点的候选小区。
作为一个实施例,所述第二小区不是所述第一节点的服务小区包括:所述第一节点不在所述第二小区上监听PDCCH、和/或者不监听用于调度所述第二小区的PDCCH、和/或者不在所述第二小区上发送UL-SCH。
作为一个实施例,所述第一下行链路帧和所述第一上行链路帧具有相同的帧号。
作为一个实施例,所述第一下行链路帧是所述第一上行链路帧对应的上行链路帧。
作为一个实施例,所述第一下行链路帧是所述第一上行链路帧的定时参考帧。
作为一个实施例,所述第一下行链路帧是所述第一上行链路帧的参考帧。
作为一个实施例,所述第一下行链路帧是所述第一上行链路帧的定时参考帧,所述第二小区是所述第一小区的定时参考。
作为一个实施例,所述第一下行链路帧是所述第二小区中的一个下行链路帧。
作为一个实施例,所述第一下行链路帧针对所述第二小区配置。
作为一个实施例,所述第一下行链路帧的下行链路定时被所述第二小区确定。
作为一个实施例,所述第一下行链路帧是配置给所述第二小区的下行链路帧。
作为一个实施例,所述第一下行链路帧的定时参考是所述第二小区。
作为一个实施例,所述第一域和所述第二域被用于确定所述第一上行链路帧的起始时刻相比第二小区的第一下行链路帧的起始时刻提前了第一时间间隔。
作为一个实施例,所述第一节点初始的发送定时的参考点是所述第二小区的下行链路定时与所述第一时间间隔的差。
作为一个实施例,所述第二小区的下行链路定时是所述第二小区的下行链路帧的第一个径(first path)被接收的时刻。
作为一个实施例,所述第一下行链路帧的定时是所述第一下行链路帧的第一个径(first path)被接收的时刻。
作为一个实施例,所述第一时间间隔和所述第一上行链路帧的起始时刻比所述第一下行链路帧的起始时刻提前的时间间隔相等。
作为一个实施例,所述第一时间间隔和所述第一上行链路帧的定时比所述第一下行链路帧的定时提前的时间间隔相等。
作为一个实施例,所述第一时间间隔被用于确定所述第二小区的上行链路发送定时。
作为一个实施例,所述第一时间间隔包括一个时间间隔。
作为一个实施例,所述第一时间间隔是可配置的。
作为一个实施例,所述第一时间间隔包括正整数个第一时间单元。
作为一个实施例,所述第一时间间隔所包括的第一时间单元的个数是可配置的。
作为一个实施例,所述第一时间单元是一个时间单元。
作为一个实施例,所述第一时间单元是一个子帧的一部分。
作为一个实施例,所述第一时间单元包括正整数个毫秒。
作为一个实施例,所述第一时间单元是可配置的。
作为一个实施例,所述第一时间单元是预配置的。
作为一个实施例,所述第一时间单元与子载波间隔有关。
作为一个实施例,所述第一时间单元是一个Tc
作为一个实施例,所述Tc=Tsf/(ΔfmaxNf/1000),所述Tsf、所述Δfmax和所述Nf的定义参考TS 38.211或者TS 38.300。
作为一个实施例,所述第一信令包括所述第一随机接入响应,所述第一随机接入响应包括所述第一域。
作为一个实施例,所述第一域的名字中包括Timing或者Advance或者TA或者Command中的至少之一。
作为一个实施例,所述第一域是一个Timing Advance Command域。
作为一个实施例,所述第一域是一个TA Command域。
作为一个实施例,所述第一域包括正整数个比特。
作为一个实施例,所述第一域包括5个比特。
作为一个实施例,所述第一域包括6个比特。
作为一个实施例,所述第一域包括11个比特。
作为一个实施例,所述第一域包括12个比特。
作为一个实施例,所述第一域指示所述第一整数。
作为一个实施例,所述第一域被设置为所述第一整数。
作为一个实施例,所述第一域的值等于所述第一整数。
作为一个实施例,所述第一整数是一个索引。
作为一个实施例,所述第一整数是一个TA
作为一个实施例,所述第一整数被用于确定第一提前值,所述第一提前值被用于确定所述第一时间间隔。
作为一个实施例,所述第一整数被用于确定第一提前值,所述第一提前值和第一偏移量被用于确定所述第一时间间隔。
作为一个实施例,所述第一整数被用于确定第一提前值,所述第一提前值和第一偏移量之和被用于确定所述第一时间间隔。
作为一个实施例,所述第一整数被用于确定所述第一提前值针对第二提前值的调整值。
作为一个实施例,所述第一整数是所述第一小区的上行链路发送定时的调整值的索引。
作为一个实施例,所述第一整数是所述第一小区的上行链路发送定时的索引。
作为一个实施例,所述第一整数是所述第一TAG中的每个小区的上行链路发送定时的调整值的索引。
作为一个实施例,所述第一整数是所述第一TAG中的每个小区的上行链路发送定时的索引。
作为一个实施例,所述第一整数是非负整数。
作为一个实施例,所述第一整数是正整数。
作为一个实施例,所述第一整数不小于0并且所述第一整数不大于M1,所述M1是正整数。
作为一个实施例,所述M1等于3846。
作为一个实施例,所述M1等于63。
作为一个实施例,第一偏移量被用于确定所述第一时间间隔。
作为一个实施例,所述第一时间间隔与第一偏移量有关。
作为一个实施例,所述至少一个定时提前命令和第一偏移量被用于确定所述第一时间间隔。
作为一个实施例,所述第一偏移量包括至少一个偏移量。
作为一个实施例,所述第一偏移量包括网络配置的偏移量和所述第一节点U01确定的偏移量。
作为一个实施例,所述第一偏移量仅包括所述NTA,offset
作为一个实施例,所述第一偏移量是可配置的。
作为一个实施例,所述第一偏移量是预配置的。
作为一个实施例,所述第一偏移量是固定大小的。
作为一个实施例,所述第一偏移量是RRC配置的偏移量。
作为一个实施例,所述第一偏移量是所述第一节点U01估计的偏移量。
作为一个实施例,所述第一偏移量是一个正数或者负数。
作为一个实施例,所述第一偏移量等于0。
作为一个实施例,所述第一偏移量不等于0。
作为一个实施例,所述第一偏移量包括NTA,offset,所述NTA,offset是固定的偏移量。
作为一个实施例,所述第一偏移量包括与NTN有关的定时修正。
作为一个实施例,所述第一偏移量包括所述是网络控制的定时修正。
作为一个实施例,所述第一偏移量包括所述是所述第一节点U01确定的定时修正。
作为一个实施例,所述第一偏移量与NTN无关。
作为一个实施例,所述第一偏移量不包括
作为一个实施例,所述第一偏移量不包括
作为一个实施例,所述NTA,offset的定义参考TS 38.211。
作为一个实施例,所述的定义参考TS 38.211。
作为一个实施例,所述的定义参考TS 38.211。
作为一个实施例,所述第一偏移量被配置。
作为一个实施例,所述第一偏移量未被配置。
作为一个实施例,如果所述第一偏移量被配置,所述第一定时提前量和所述第一偏移量被用于确定所述第一资源组的上行发送定时。
作为一个实施例,如果所述第一偏移量未被配置,所述第一定时提前量被用于确定所述第一资源组的上行发送定时。
作为一个实施例,所述第一时间间隔=(第一提前值)×第一时间单元。
作为一个实施例,所述第一时间间隔=(第一提前值+第一偏移量)×第一时间单元。
作为一个实施例,所述第一提前值是一个NTA
作为一个实施例,所述第一提前值是初始的NTA
作为一个实施例,所述第一提前值是调整的NTA
作为一个实施例,所述第一提前值=第一整数×16×64/2μ
作为该实施例的一个子实施例,所述第一整数在随机接入过程中被接收。
作为该实施例的一个子实施例,所述第一提前值是初始的NTA
作为该实施例的一个子实施例,所述M1等于3846。
作为该实施例的一个子实施例,不存在所述第二提前值。
作为一个实施例,所述第一提前值=第二提前值+(第一整数-M2)×16×64/2μ
作为该实施例的一个子实施例,所述M2=31。
作为该实施例的一个子实施例,所述M2=(M1-1)/2。
作为该实施例的一个子实施例,所述M1等于63。
作为一个实施例,所述第一提前值=第二提前值+第一整数×16×64/2μ,或者,所述第一提前值=第二提前值-第一整数×16×64/2μ
作为一个实施例,所述第二提前值是一个NTA
作为一个实施例,所述第二提前值是初始的NTA
作为一个实施例,所述第二提前值是调整的NTA
作为一个实施例,所述第二提前值是所述第一整数被接收之前的NTA
作为一个实施例,所述第二提前值是初始的NTA,所述第一提前值是调整的NTA
作为一个实施例,所述第二提前值是调整的NTA,所述第一提前值是调整的NTA
作为一个实施例,所述μ与子载波间隔有关。
作为一个实施例,所述μ与所述第一小区关联的子载波间隔有关。
作为一个实施例,所述μ与所述第二小区关联的子载波间隔有关。
作为一个实施例,所述μ是非负整数。
作为一个实施例,所述μ是不小于0并且不大于5的整数。
作为一个实施例,所述第二域被用于指示将所述第三小区更改为所述第二小区。
作为一个实施例,所述第二域被用于指示所述第二小区是所述第三小区的目标小区。
作为一个实施例,所述第二域被用于指示所述第二小区是所述目标小区。
作为一个实施例,所述第二域被用于指示所述第二小区是所述第一小区的定时参考。
作为一个实施例,所述第二域被用于指示所述第二小区是定时参考。
作为一个实施例,所述第二域被用于指示所述第二小区是所述第一TAG的定时参考;所述第二小区属于所述第一TAG。
作为一个实施例,所述第二域被用于确定所述第二小区是所述第一小区的定时参考。
作为一个实施例,所述第二域被用于确定所述第二小区是所述第一TAG的定时参考;所述第二小区属于所述第一TAG。
作为一个实施例,所述第二域被用于确定在所述第一域或者所述第二域中的至少之一被接收之后,所述第二小区是所述第一小区的定时参考。
作为一个实施例,所述第二域被用于确定在所述第一子信令或者所述第二子信令中的至少之一被接收之后,所述第二小区是所述第一小区的定时参考。
作为一个实施例,所述第二域被用于确定在所述第一子信令或者所述第二信令中的至少之一被接收之后,所述第二小区是所述第一小区的定时参考。
作为一个实施例,所述第二域被用于确定在所述第一信令被接收之后,所述第二小区是所述第一小区的定时参考。
作为一个实施例,所述第二域被用于确定在所述第一域或者所述第二域中的至少之一被接收之后,所述第二小区是所述第一TAG的定时参考。
作为一个实施例,所述第二域被用于确定在所述第一子信令或者所述第二子信令中的至少之一被接收之后,所述第二小区是所述第一TAG的定时参考。
作为一个实施例,所述第二域被用于确定在所述第一子信令或者所述第二信令中的至少之一被接收之后,所述第二小区是所述第一TAG的定时参考。
作为一个实施例,所述第二域被用于确定在所述第一信令被接收之后,所述第二小区是所述第一TAG的定时参考。
作为一个实施例,所述第二小区是所述第一TAG的定时参考被用于确定所述第一下行链路帧来自所述第二小区。
作为一个实施例,所述第二小区是所述第一小区的定时参考被用于确定所述第一下行链路帧来自所述第二小区。
作为一个实施例,所述第二域指示所述第二小区。
作为一个实施例,所述第二域包括所述第二小区的小区标识。
作为一个实施例,所述第二域包括所述第二小区的服务小区标识。
作为一个实施例,所述第二域包括所述第二小区的索引。
作为一个实施例,所述第二域包括所述第二小区在所述第一候选小区集合中的索引。
作为一个实施例,所述第二域包括正整数个比特。
作为一个实施例,所述第二域被设置为ture。
作为一个实施例,所述第二小区是所述第一小区的定时参考。
作为一个实施例,作为所述第一信令被接收的响应,将所述第二小区作为所述第一小区的定时参考。
作为一个实施例,作为所述第一信令中的所述第二域被接收的响应,将所述第二小区作为所述第一小 区的定时参考。
作为一个实施例,作为所述第一信令中的所述第一域被接收并且所述第一信令中的所述第二域被接收的响应,将所述第二小区作为所述第一小区的定时参考。
作为一个实施例,所述第一信令中的所述第二域被接收之后,作为所述第一信令中的所述第一域被接收的响应,将所述第二小区作为所述第一小区的定时参考。
作为一个实施例,所述第二小区是SCell,所述第一小区是PCell。
作为一个实施例,所述第二小区是SCell,所述第一小区是PCell。
作为一个实施例,所述第二小区是PCell,所述第一小区是SCell。
作为一个实施例,所述第二小区是PSCell,所述第一小区是SCell。
作为一个实施例,所述第二小区是SCell,所述第一小区是SCell。
作为一个实施例,所述第一小区和所述第二小区被配置所述同一个小区组的标识。
作为一个实施例,所述第一小区和所述第二小区分别是所述同一个小区组中的一个服务小区。
作为一个实施例,所述第一小区是所述同一个小区组中的一个服务小区和所述第二小区是所述同一个小区组中的另一个服务小区的候选小区。
作为一个实施例,所述第一小区是所述同一个小区组中的一个服务小区的候选小区和所述第二小区是所述同一个小区组中的另一个服务小区。
作为一个实施例,所述第二信令被接收之前,所述第一小区是所述第二小区的候选小区和所述第二小区是所述同一个小区组中的一个服务小区。
作为一个实施例,所述第一小区和所述第二小区属于同一个TAG。
作为一个实施例,所述第一小区是所述目标小区;所述第二小区是所述第一节点的一个服务小区。
作为一个实施例,所述第二小区是所述第一TAG中的定时参考。
作为一个实施例,所述第一信令被接收之前,所述第二小区是所述第一TAG中的定时参考。
作为一个实施例,本申请中的所述指示是显式指示。
作为一个实施例,本申请中的所述指示是隐式指示。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。附图2说明了5G NR(New Radio,新空口)/LTE(Long-Term Evolution,长期演进)/LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200。5G NR/LTE/LTE-A网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。5GS/EPS 200包括UE(User Equipment,用户设备)201,RAN(无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230中的至少之一。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。RAN包括节点203和其它节点204。节点203提供朝向UE201的用户和控制平面协议终止。节点203可经由Xn接口(例如,回程)/X2接口连接到其它节点204。节点203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。节点203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。节点203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session  Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201是一个用户设备(User Equipment,UE)。
作为一个实施例,所述节点203对应本申请中的所述第二节点。
作为一个实施例,所述节点203是一个基站设备(BaseStation,BS)。
作为一个实施例,所述节点203是一个基站收发台(Base Transceiver Station,BTS)。
作为一个实施例,所述节点203是一个节点B(NodeB,NB)。
作为一个实施例,所述节点203是一个gNB。
作为一个实施例,所述节点203是一个eNB。
作为一个实施例,所述节点203是一个ng-eNB。
作为一个实施例,所述节点203是一个en-gNB。
作为一个实施例,所述节点203是一个CU(Centralized Unit,集中单元)。
作为一个实施例,所述节点203是一个DU(Distributed Unit,分布单元)。
作为一个实施例,所述节点203是用户设备。
作为一个实施例,所述节点203是一个中继。
作为一个实施例,所述节点203是网关(Gateway)。
作为一个实施例,所述节点204对应本申请中的所述第三节点。
作为一个实施例,所述节点204是一个BS。
作为一个实施例,所述节点204是一个BTS。
作为一个实施例,所述节点204是一个NB。
作为一个实施例,所述节点204是一个gNB。
作为一个实施例,所述节点204是一个eNB。
作为一个实施例,所述节点204是一个ng-eNB。
作为一个实施例,所述节点204是一个en-gNB。
作为一个实施例,所述节点204是用户设备。
作为一个实施例,所述节点204是一个中继。
作为一个实施例,所述节点204是网关(Gateway)。
作为一个实施例,所述节点204是一个CU。
作为一个实施例,所述节点204是一个DU。
作为一个实施例,所述节点203和所述节点204之间通过理想回传连接。
作为一个实施例,所述节点203和所述节点204之间通过非理想回传连接。
作为一个实实例,所述节点203和所述节点204同时为所述UE201提供无线资源。
作为一个实实例,所述节点203和所述节点204不同时为所述UE201提供无线资源。
作为一个实施例,所述节点203和所述节点204是同一个节点。
作为一个实施例,所述节点203和所述节点204是两个不同的节点。
作为一个实施例,所述用户设备支持地面网络(Non-Terrestrial Network,NTN)的传输。
作为一个实施例,所述用户设备支持非地面网络(Terrestrial Network,地面网络)的传输。
作为一个实施例,所述用户设备支持大时延差网络中的传输。
作为一个实施例,所述用户设备支持双连接(Dual Connection,DC)传输。
作为一个实施例,所述用户设备包括飞行器。
作为一个实施例,所述用户设备包括车载终端。
作为一个实施例,所述用户设备包括船只。
作为一个实施例,所述用户设备包括物联网终端。
作为一个实施例,所述用户设备包括工业物联网的终端。
作为一个实施例,所述用户设备包括支持低时延高可靠传输的设备。
作为一个实施例,所述用户设备包括测试设备。
作为一个实施例,所述用户设备包括信令测试仪。
作为一个实施例,所述基站设备支持在非地面网络的传输。
作为一个实施例,所述基站设备支持在大时延差网络中的传输。
作为一个实施例,所述基站设备支持地面网络的传输。
作为一个实施例,所述基站设备包括宏蜂窝(Marco Cellular)基站。
作为一个实施例,所述基站设备包括微小区(Micro Cell)基站。
作为一个实施例,所述基站设备包括微微小区(Pico Cell)基站。
作为一个实施例,所述基站设备包括家庭基站(Femtocell)。
作为一个实施例,所述基站设备包括支持大时延差的基站设备。
作为一个实施例,所述基站设备包括飞行平台设备。
作为一个实施例,所述基站设备包括卫星设备。
作为一个实施例,所述基站设备包括TRP(Transmitter Receiver Point,发送接收节点)。
作为一个实施例,所述基站设备包括CU(Centralized Unit,集中单元)。
作为一个实施例,所述基站设备包括DU(Distributed Unit,分布单元)。
作为一个实施例,所述基站设备包括测试设备。
作为一个实施例,所述基站设备包括信令测试仪。
作为一个实施例,所述基站设备包括IAB(Integrated Access and Backhaul)-node。
作为一个实施例,所述基站设备包括IAB-donor。
作为一个实施例,所述基站设备包括IAB-donor-CU。
作为一个实施例,所述基站设备包括IAB-donor-DU。
作为一个实施例,所述基站设备包括IAB-DU。
作为一个实施例,所述基站设备包括IAB-MT。
作为一个实施例,所述中继包括relay。
作为一个实施例,所述中继包括L3 relay。
作为一个实施例,所述中继包括L2 relay。
作为一个实施例,所述中继包括路由器。
作为一个实施例,所述中继包括交换机。
作为一个实施例,所述中继包括用户设备。
作为一个实施例,所述中继包括基站设备。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责分配一个小区 中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第三节点。
作为一个实施例,本申请中的所述第一信令生成于所述RRC306。
作为一个实施例,本申请中的所述第一信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二信令生成于所述RRC306。
作为一个实施例,本申请中的所述第二信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第二信令生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二无线信号生成于所述PHY301或者PHY351。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号 流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450至少:接收第一信令,所述第一信令包括第一域和第二域;所述第一信令被接收之后,在第一小区的第一上行链路帧中发送第一无线信号;其中,所述第一上行链路帧的起始时刻相比第二小区的第一下行链路帧的起始时刻提前了第一时间间隔;所述第一域包括第一整数,至少所述第一整数被用于确定所述第一时间间隔;所述第二域被用于确定第二小区;所述第一小区和所述第二小区针对同一个小区组。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令,所述第一信令包括第一域和第二域;所述第一信令被接收之后,在第一小区的第一上行链路帧中发送第一无线信号;其中,所述第一上行链路帧的起始时刻相比第二小区的第一下行链路帧的起始时刻提前了第一时间间隔;所述第一域包括第一整数,至少所述第一整数被用于确定所述第一时间间隔;所述第二域被用于确定第二小区;所述第一小区和所述第二小区针对同一个小区组。
作为一个实施例,所述第二通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410至少:发送第一信令,所述第一信令包括第一域和第二域;其中,在所述第一信令被接收之后,在第一小区的第一上行链路帧中第一无线信号被所述第一信令的接收者发送;所述第一上行链路帧的起始时刻相比第二小区的第一下行链路帧的起始时刻提前了第一时间间隔;所述第一域包括第一整数,至少所述第一整数被用于确定所述第一时间间隔;所述第二域被用于确定第二小区;所 述第一小区和所述第二小区针对同一个小区组。
作为一个实施例,所述第二通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信令,所述第一信令包括第一域和第二域;其中,在所述第一信令被接收之后,在第一小区的第一上行链路帧中第一无线信号被所述第一信令的接收者发送;所述第一上行链路帧的起始时刻相比第二小区的第一下行链路帧的起始时刻提前了第一时间间隔;所述第一域包括第一整数,至少所述第一整数被用于确定所述第一时间间隔;所述第二域被用于确定第二小区;所述第一小区和所述第二小区针对同一个小区组。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459被用于接收第一信令。
作为一个实施例,所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第一信令。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459被用于接收第二信令。
作为一个实施例,所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第二信令。
作为一个实施例,所述天线452,所述发射器454,所述发射处理器468,所述控制器/处理器459被用于发送第一无线信号。
作为一个实施例,所述天线420,所述接收器418,所述接收处理器470,所述控制器/处理器475中的至少之一被用于接收第一无线信号。
作为一个实施例,所述天线452,所述发射器454,所述发射处理器468,所述控制器/处理器459被用于发送第二无线信号。
作为一个实施例,所述天线420,所述接收器418,所述接收处理器470,所述控制器/处理器475中的至少之一被用于接收第二无线信号。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459被用于接收第一消息。
作为一个实施例,所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第一消息。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个用户设备。
作为一个实施例,所述第一通信设备450是一个支持大时延差的用户设备。
作为一个实施例,所述第一通信设备450是一个支持NTN的用户设备。
作为一个实施例,所述第一通信设备450是一个飞行器设备。
作为一个实施例,所述第一通信设备450具备定位能力。
作为一个实施例,所述第一通信设备450不具备定能能力。
作为一个实施例,所述第一通信设备450是一个支持TN的用户设备。
作为一个实施例,所述第二通信设备410是一个基站设备(gNB/eNB/ng-eNB)。
作为一个实施例,所述第二通信设备410是一个支持大时延差的基站设备。
作为一个实施例,所述第二通信设备410是一个支持NTN的基站设备。
作为一个实施例,所述第二通信设备410是一个卫星设备。
作为一个实施例,所述第二通信设备410是一个飞行平台设备。
作为一个实施例,所述第二通信设备410是一个支持TN的基站设备。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S5101中,在所述第一信令被接收之前,在所述第一小区的第二上行链路帧中发送第二无线信号;在步骤S5102中,接收第一信令,所述第一信令包括第一域和第二域;在步骤S5103中,所述第一信令被接收之后,在第一小区的第一上行链路帧中发送第一无线信号。
对于第二节点N02,在步骤S5201中,发送所述第一信令。
对于第三节点N03,在步骤S5301中,接收所述第二无线信号;在步骤S5302中,接收所述第一无线信号。
在实施例5中,所述第一上行链路帧的起始时刻相比第二小区的第一下行链路帧的起始时刻提前了第一时间间隔;所述第一域包括第一整数,至少所述第一整数被用于确定所述第一时间间隔;所述第二域被用于确定第二小区;所述第一小区和所述第二小区针对同一个小区组;所述第二上行链路帧的起始时刻相比第三小区的第二下行链路帧的起始时刻提前了第二时间间隔;所述第二时间间隔与第二提前值有关,至少一个定时提前命令被用于确定所述第二提前值;所述第二提前值被用于确定所述第一时间间隔。
作为一个实施例,所述第一节点U01是用户设备。
作为一个实施例,所述第一节点U01是基站设备。
作为一个实施例,所述第一节点U01是中继设备。
作为一个实施例,所述第二节点N02是用户设备。
作为一个实施例,所述第二节点N02是基站设备。
作为一个实施例,所述第二节点N02是中继设备。
作为一个实施例,所述第二节点N02是所述第二小区的维持基站。
作为一个实施例,所述第二节点N02是所述第一信令的发送者的维持基站。
作为一个实施例,所述第三节点N03是用户设备。
作为一个实施例,所述第三节点N03是基站设备。
作为一个实施例,所述第三节点N03是中继设备。
作为一个实施例,所述第三节点N03是所述第一小区的维持基站。
作为一个实施例,所述第三节点N03是所述第一无线信号的接收者的维持基站。
作为一个实施例,所述第三节点N03是所述第二无线信号的接收者的维持基站。
作为一个实施例,所述第三节点N03和所述第二节点N02相同。
作为一个实施例,所述第三节点N03和所述第二节点N02不同。
作为一个实施例,所述第一信令的发送者是所述第一节点U01的一个服务小区的维持基站。
作为一个实施例,所述第一信令的发送者和所述第一无线信号的接收者相同。
作为一个实施例,所述第一信令的发送者和所述第一无线信号的接收者不同。
作为一个实施例,所述第二无线信号的发送者和所述第一无线信号的接收者相同。
作为一个实施例,在所述第一信令之前,所述第三小区是所述第一TAG的定时参考。
作为一个实施例,在所述第一域或者所述第二域中的至少之一被接收之前,所述第三小区是所述第一小区的定时参考。
作为一个实施例,在所述第一子信令或者所述第二子信令中的至少之一被接收之前,所述第三小区是所述第一小区的定时参考。
作为一个实施例,在所述第一子信令或者所述第二信令中的至少之一被接收之前,所述第三小区是所述第一小区的定时参考。
作为一个实施例,在所述第一信令被接收之前,所述第三小区是所述第一小区的定时参考。
作为一个实施例,在所述第一域或者所述第二域中的至少之一被接收之前,所述第三小区是所述第一TAG的定时参考。
作为一个实施例,在所述第一子信令或者所述第二子信令中的至少之一被接收之前,所述第三小区是所述第一TAG的定时参考。
作为一个实施例,在所述第一子信令或者所述第二信令中的至少之一被接收之前,所述第三小区是所述第一TAG的定时参考。
作为一个实施例,在所述第一信令被接收之前,所述第三小区是所述第一TAG的定时参考。
作为一个实施例,所述第三小区是所述第一TAG的定时参考被用于确定所述第二下行链路帧来自所述第三小区。
作为一个实施例,所述第三小区是所述第一小区的定时参考被用于确定所述第二下行链路帧来自所述第三小区。
作为一个实施例,所述第二上行链路帧属于所述第一小区。
作为一个实施例,所述第二上行链路帧针对所述第一小区配置。
作为一个实施例,所述第二上行链路帧被用于确定在所述第一小区发送上行链路信号的时域位置。
作为一个实施例,所述第二上行链路帧被用于确定在所述第一小区发送所述第二无线信号的时域位置。
作为一个实施例,所述第二上行链路帧是所述第一小区的一个上行链路帧。
作为一个实施例,所述第二上行链路帧被用于所述第一小区。
作为一个实施例,所述第二上行链路帧是所述第一信令被接收之前的最后一个上行链路帧。
作为一个实施例,所述第二上行链路帧是所述第一信令被接收之前的任意一个上行链路帧。
作为一个实施例,所述第二上行链路帧是所述第一信令被接收之前的第Q2个上行链路帧,所述Q2是正整数。
作为一个实施例,所述第二上行链路帧是所述第一上行链路帧之前的一个上行链路帧。
作为一个实施例,所述第二上行链路帧是所述第一上行链路帧。
作为一个实施例,所述Q2小于所述Q1。
作为一个实施例,所述Q2和所述Q1相等。
作为一个实施例,所述第一无线信号占用所述第一上行链路帧的至少一个时隙。
作为一个实施例,所述第一无线信号占用所述第一上行链路帧的一个时隙。
作为一个实施例,所述第一无线信号在所述第一上行链路帧中的时隙位置是预配置的。
作为一个实施例,所述第一无线信号在所述第一上行链路帧中的时隙位置是预定义的。
作为一个实施例,所述第一无线信号在所述第一上行链路帧中的时隙位置是被指定的。
作为一个实施例,所述第一无线信号在所述第一上行链路帧中的时隙位置是UE确定的。
作为一个实施例,所述第一无线信号是物理层信号。
作为一个实施例,所述第一无线信号是PUCCH。
作为一个实施例,所述第一无线信号是SRS。
作为一个实施例,所述第一无线信号是PUSCH。
作为一个实施例,所述第一无线信号是PUCCH或者SRS或者PUSCH中的任意之一。
作为一个实施例,所述第一无线信号通过PUCCH传输。
作为一个实施例,所述第一无线信号通过PUSCH传输。
作为一个实施例,所述第一无线信号通过SRS资源传输。
作为一个实施例,所述第一无线信号和所述第二无线信号的类型相同。
作为一个实施例,所述第一无线信号和所述第二无线信号的类型不同。
作为一个实施例,所述第一无线信号和所述第二无线信号占用的信道相同。
作为一个实施例,所述第一无线信号和所述第二无线信号占用的信道不同。
作为一个实施例,所述第二下行链路帧和所述第二上行链路帧具有相同的帧号。
作为一个实施例,所述第二下行链路帧是所述第二上行链路帧对应的上行链路帧。
作为一个实施例,所述第二下行链路帧是所述第二上行链路帧的定时参考帧。
作为一个实施例,所述第二下行链路帧是所述第二上行链路帧的参考帧。
作为一个实施例,所述第二下行链路帧是所述第二上行链路帧的定时参考帧,所述第三小区是所述第一小区的定时参考。
作为一个实施例,所述第二下行链路帧是所述第三小区中的一个下行链路帧。
作为一个实施例,所述第二下行链路帧针对所述第三小区配置。
作为一个实施例,所述第二下行链路帧的下行链路定时被所述第三小区确定。
作为一个实施例,所述第二下行链路帧是配置给所述第三小区的下行链路帧。
作为一个实施例,所述第二下行链路帧的定时参考是所述第三小区。
作为一个实施例,所述第三小区和所述第二小区不同。
作为一个实施例,所述第三小区和所述第二小区相同。
作为一个实施例,所述第三小区和所述第一小区属于同一个TAG。
作为一个实施例,所述第三小区和所述第二小区属于同一个TAG被用于确定所述第二时间间隔被用于确定所述第一时间间隔。
作为该实施例的一个子实施例,所述第三小区和所述第二小区相同。
作为该实施例的一个子实施例,所述第三小区和所述第二小区不同。
作为该实施例的一个子实施例,如果所述第三小区和所述第二小区属于同一个TAG,所述第二时间间隔被用于确定所述第一时间间隔。
作为该实施例的一个子实施例,如果所述第三小区和所述第二小区不属于同一个TAG,所述第二时间间隔不被用于确定所述第一时间间隔。
作为一个实施例,所述第三小区和所述第二小区相同被用于确定所述第二时间间隔被用于确定所述第一时间间隔;所述第一信令是一个MAC CE,所述第二域指示所述第二小区。
作为该实施例的一个子实施例,如果所述第三小区和所述第二小区相同,所述第二时间间隔被用于确定所述第一时间间隔。
作为该实施例的一个子实施例,如果所述第三小区和所述第二小区不同,所述第二时间间隔不被用于确定所述第一时间间隔。
作为一个实施例,所述第一信令被接收之前,接收所述至少一个定时提前命令。
作为一个实施例,所述至少一个定时提前命令中的最后一个定时提前命令被接收的时刻到所述第一信令被接收的时刻之间的时间间隔内,所述第一节点U01未接收任一定时提前命令。
作为一个实施例,所述至少一个定时提前命令包括1个或者大于1个定时提前命令。
作为一个实施例,所述至少一个定时提前命令中的每个定时提前命令是一个Timing Advance Command域。
作为一个实施例,所述至少一个定时提前命令中的每个定时提前命令指示一个整数。
作为一个实施例,所述至少一个定时提前命令中的每个定时提前命令指示一个非负整数。
作为一个实施例,所述至少一个定时提前命令中的每个定时提前命令指示一个正整数。
作为一个实施例,所述至少一个定时提前命令中的每个定时提前命令指示一个TA,所述TA被用于确定NTA
作为一个实施例,所述至少一个定时提前命令中的第一个被接收的定时提前命令是所述fallbackRAR或者所述successRAR或者所述MAC RAR或者Absolute Timing Advance Command MAC CE中的之一。
作为一个实施例,所述至少一个定时提前命令中的所述第一个被接收的定时提前命令之外的定时提前命令被用于确定更新的NTA
作为一个实施例,所述至少一个定时提前命令中的所述第一个被接收的定时提前命令之外的定时提前命令是Timing Advance Command MAC CE。
作为一个实施例,所述至少一个定时提前命令中的一个定时提前命令和所述第一信令的信令格式相同。
作为一个实施例,所述至少一个定时提前命令中的最后一个定时提前命令和所述第一信令的信令格式相同。
作为该实施例的一个子实施例,所述最后一个定时提前命令指示所述第三小区。
作为该实施例的一个子实施例,所述最后一个定时提前命令指示所述第三小区。
作为一个实施例,所述至少一个定时提前命令中的每个定时提前命令和所述第一信令的信令格式相同。
作为一个实施例,所述第二时间间隔=(第二提前值)×第二时间单元。
作为一个实施例,所述第二时间间隔=(第二提前值+第二偏移量)×第二时间单元。
作为一个实施例,所述第二提前值被用于确定所述第一提前值,所述第一提前值被用于确定所述第一时间间隔。
作为一个实施例,所述第二提前值与子载波间隔有关。
作为一个实施例,所述第二提前值根据所述至少一个定时提前命令确定。
作为一个实施例,所述第二提前值根据所述至少一个定时提前命令和子载波间隔确定。
作为一个实施例,所述第二提前值是一个NTA
作为一个实施例,所述至少一个定时提前命令仅包括一个定时提前命令,所述第二提前值=TA·16·64/2μ,所述一个定时提前命令指示所述TA,所述一个定时提前命令在随机接入过程中被接收。
作为一个实施例,所述至少一个定时提前命令包括至少2个定时提前命令。
作为该实施例的一个子实施例,所述第二提前值=NTA_old+(TA-31)·16·64/2μ
作为该实施例的一个子实施例,所述第二提前值=NTA_old+TA·16·64/2μ
作为该实施例的一个子实施例,所述第二提前值=NTA_old-TA·16·64/2μ
作为该实施例的一个子实施例,所述至少一个定时提前命令中的最后一个定时提前命令指示所述TA,所述NTA_old是所述至少一个定时提前命令中的最后一个定时提前命令被接收之前的NTA
作为一个实施例,所述第二时间单元是一个时间单元。
作为一个实施例,所述第二时间单元是一个子帧的一部分。
作为一个实施例,所述第二时间单元包括正整数个毫秒。
作为一个实施例,所述第二时间单元是可配置的。
作为一个实施例,所述第二时间单元是预配置的。
作为一个实施例,所述第二时间单元与子载波间隔有关。
作为一个实施例,所述第二时间单元与所述第一时间单元相同。
作为一个实施例,所述第二时间单元与所述第一时间单元不同。
作为一个实施例,所述第二偏移量包括至少一个偏移量。
作为一个实施例,所述第二偏移量包括网络配置的偏移量和所述第一节点U01确定的偏移量。
作为一个实施例,所述第二偏移量是可配置的。
作为一个实施例,所述第二偏移量是预配置的。
作为一个实施例,所述第二偏移量是固定大小的。
作为一个实施例,所述第二偏移量是RRC配置的偏移量。
作为一个实施例,所述第二偏移量是所述第一节点U01估计的偏移量。
作为一个实施例,所述第二偏移量是一个正数或者负数。
作为一个实施例,所述第二偏移量等于0。
作为一个实施例,所述第二偏移量不等于0。
作为一个实施例,所述第二偏移量被配置。
作为一个实施例,所述第二偏移量未被配置。
作为一个实施例,所述第二偏移量存在。
作为一个实施例,所述第二偏移量不存在。
作为一个实施例,所述第二偏移量和所述第一偏移量相等。
作为一个实施例,所述第二偏移量和所述第一偏移量不相等。
作为一个实施例,所述第一时间间隔与所述第一提前值有关。
作为一个实施例,所述第一时间间隔与所述第一提前值有关,所述第一提前值与所述第二提前值和所述第一整数有关。
作为一个实施例,所述第一时间间隔=(第一提前值+第一偏移量)×第一时间单元,其中,第一提前值=第二提前值+(第一整数-M2)×16×64/2μ
作为一个实施例,所述第一时间间隔=第一提前值×第一时间单元,其中,第一提前值=第二提前值+第一整数-M2)×16×64/2μ
作为一个实施例,虚线方框F5.1是可选的。
作为一个实施例,所述虚线方框F5.1存在。
作为一个实施例,所述第二无线信号被发送。
作为一个实施例,所述虚线方框F5.1不存在。
作为一个实施例,所述第二无线信号未被发送。
实施例6
实施例6示例了根据本申请的另一个实施例的无线信号传输流程图,如附图6所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S6101中,接收第二信令,所述第二信令在RRC层之下的协议层被生成,所述第二信令被用于指示针对第三小区停止执行第一操作集合;在步骤S6102中,接收第一信令,所述第一信令包括第一域和第二域;在步骤S6103中,所述第一信令被接收之后,在第一小区的第一上行链路帧中发送第一无线信号。
对于第二节点N02,在步骤S6201中,发送所述第一信令。
对于第三节点N03,在步骤S6301中,接收所述第一无线信号。
对于第四节点N04,在步骤S6401中,发送所述第二信令。
在实施例6中,所述第一上行链路帧的起始时刻相比第二小区的第一下行链路帧的起始时刻提前了第一时间间隔;所述第一域包括第一整数,至少所述第一整数被用于确定所述第一时间间隔;所述第二域被用于确定第二小区;所述第一小区和所述第二小区针对同一个小区组;所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述第二信令被接收的时刻早于所述第一无线信号被发送的时刻。
作为一个实施例,所述第四节点N04是用户设备。
作为一个实施例,所述第四节点N04是基站设备。
作为一个实施例,所述第四节点N04是中继设备。
作为一个实施例,所述第四节点N04是所述第二信令的发送者的维持基站。
作为一个实施例,所述第二节点N02和所述第四节点N04相同。
作为一个实施例,所述第二节点N02和所述第四节点N04不同。
作为一个实施例,所述第三节点N03和所述第四节点N04相同。
作为一个实施例,所述第三节点N03和所述第四节点N04不同。
作为一个实施例,所述第二信令的发送者是所述第一节点U01的一个服务小区的维持基站。
作为一个实施例,所述第二信令的发送者和所述第一无线信号的接收者相同。
作为一个实施例,所述第二信令的发送者和所述第一无线信号的接收者不同。
作为一个实施例,所述第二信令的发送者和所述第一信令的接收者相同。
作为一个实施例,所述第二信令的发送者和所述第一信令的接收者不同。
作为一个实施例,所述第二信令是MAC层信令。
作为一个实施例,所述第二信令是一个MAC PDU。
作为一个实施例,所述第二信令是一个MAC子PDU。
作为一个实施例,所述第二信令是一个MAC CE。
作为一个实施例,所述第二信令包括至少一个MAC域。
作为一个实施例,所述第二信令包括一个MAC CE。
作为一个实施例,所述第二信令包括一个MAC子头。
作为一个实施例,所述第一信令是下行链路信令。
作为一个实施例,所述第一信令是一个DCI。
作为一个实施例,所述第一信令被用于调度PDSCH。
作为一个实施例,所述第一信令包括DCI格式(format)1_0。
作为一个实施例,所述第一信令包括DCI格式1_1。
作为一个实施例,所述第一信令包括DCI格式1_2。
作为一个实施例,所述第一信令被用于调度PUSCH。
作为一个实施例,所述第一信令包括至少一个DCI域。
作为一个实施例,所述第一信令通过PDCCH传输。
作为一个实施例,所述第二信令是物理层信令。
作为一个实施例,所述第二信令是一个ACK。
作为一个实施例,所述第二信令和所述第一信令属于同一个MAC CE。
作为一个实施例,所述第二信令和所述第一信令不属于同一个MAC CE。
作为一个实施例,所述第二信令被用于基于L1/L2信令的小区更改。
作为一个实施例,所述第二信令被用于触发基于L1/L2信令的L1/L2移动性。
作为一个实施例,所述第二信令被用于确定基于L1/L2信令的L1/L2移动性被完成。
作为一个实施例,所述第二信令被用于指示将所述第三小区更改为目标小区。
作为一个实施例,所述第二信令被用于指示所述第三小区被更改为目标小区。
作为一个实施例,所述第二信令指示目标小区。
作为一个实施例,所述第二信令包括所述目标小区的索引。
作为一个实施例,所述第二信令包括所述目标小区的服务小区的标识。
作为一个实施例,所述第二信令包括所述目标小区在所述第一候选小区集合中的索引。
作为一个实施例,所述第二信令和所述第二子信令属于同一个MAC CE;所述目标小区是所述第二小区。
作为一个实施例,所述第三小区是所述第一小区组中的一个服务小区。
作为一个实施例,所述第三小区是所述第一小区组中的一个源服务小区。
作为一个实施例,所述第二信令被接收之前,所述目标小区是所述第三小区的候选小区,所述第三小区是所述第一小区组中的一个服务小区。
作为一个实施例,所述第二信令被接收之后,所述目标小区是所述第一节点的服务小区。
作为一个实施例,所述目标小区是所述第二小区。
作为一个实施例,所述目标小区不是所述第二小区。
作为一个实施例,所述目标小区被用于基于L1/L2信令的L1/L2移动性。
作为一个实施例,所述目标小区是第一候选小区集合中的一个候选小区,所述第一候选小区集合中包括至少一个候选小区,所述第一候选小区集合中的每个候选小区被用于基于L1/L2信令的L1/L2移动性。
作为一个实施例,所述第一候选小区集合中的每个候选小区是所述第三小区的候选小区。
作为一个实施例,所述目标小区是所述第三小区的候选小区。
作为一个实施例,所述目标小区和所述第三小区的服务小区标识相同。
作为一个实施例,所述目标小区和所述第三小区的服务小区标识不同。
作为一个实施例,所述目标小区的PCI(physical cell identity,物理小区标识)和所述第三小区的PCI相同。
作为一个实施例,所述目标小区的PCI和所述第三小区的PCI不同。
作为一个实施例,所述候选小区是意思包括备选小区。
作为一个实施例,所述候选小区是意思包括在所述候选小区的配置信息被应用之前,所述第一节点U01不使用所述候选小区的PUSCH(Physical uplink shared channel,物理上行链路共享信道)资源或者PDSCH(Physical downlink shared channel,物理下行链路共享信道)资源或者PUCCH资源或者SRS(Sounding Reference Signal,探测参考信号)资源中的至少之一。
作为一个实施例,所述相应小区仅包括一个小区。
作为一个实施例,所述相应小区能够包括多个小区。
作为一个实施例,所述相应小区包括多个小区。
作为一个实施例,所述相应小区包括一个或者多个小区。
作为一个实施例,所述第二信令被用于指示针对第三小区停止执行第一操作集合,所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一。
作为该实施例的一个子实施例,作为所述第二信令被接收的响应,针对所述第三小区停止执行所述第一操作集合,所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一。
作为该实施例的一个子实施例,所述相应小区是所述第三小区。
作为该实施例的一个子实施例,所述相应小区是所述第三小区;所述相应小区不包括所述第一小区组中的所述第三小区之外的任一小区。
作为该实施例的一个子实施例,所述相应小区是所述第三小区;所述第三小区是SCell。
作为该实施例的一个子实施例,所述相应小区是所述第三小区;所述第三小区是SpCell。
作为该实施例的一个子实施例,所述相应小区是所述第三小区,所述第三小区是SCell;所述相应小区不包括所述第一小区组中的所述第三小区之外的任一小区。
作为该实施例的一个子实施例,所述相应小区是所述第三小区,所述第三小区是SpCell;所述相应小区不包括所述第一小区组中的所述第三小区之外的任一小区。
作为该实施例的一个子实施例,所述相应小区包括所述第三小区。
作为该实施例的一个子实施例,所述相应小区包括所述第三小区和所述第一小区组中的SCell;所述第三小区是SpCell。
作为该实施例的一个子实施例,所述相应小区包括所述第三小区和所述第一TAG中的SCell;所述第三小区是SpCell。
作为一个实施例,在所述相应小区关联的至少一个CORESET(Control resource set,控制资源集合)上监听PDCCH。
作为一个实施例,在所述相应小区关联的至少一个搜索空间上监听PDCCH。
作为一个实施例,通过C-RNTI或者MCS-C-RNTI((Modulation and Coding Scheme C-RNTI))或者CS-RNTI(Configured Scheduling RNTI)中的至少之一在所述相应小区上监听PDCCH。
作为一个实施例,在所述相应小区上监听PDCCH,所述PDCCH被所述相应小区发送。
作为一个实施例,在所述相应小区之外的一个小区监听用于调度相应小区的PDCCH。
作为一个实施例,通过C-RNTI或者MCS-C-RNTI或者CS-RNTI中的至少之一监听用于调度相应小区的PDCCH。
作为一个实施例,监听用于调度所述相应小区的PDCCH,所述PDCCH被所述相应小区之外的一个小区发送。
作为一个实施例,监听用于调度所述相应小区的PDCCH,所述PDCCH被用于调度所述相应小区的PUSCH。
作为一个实施例,监听用于调度所述相应小区的PDCCH,所述PDCCH被用于调度所述相应小区的PDSCH。
作为一个实施例,所述监听PDCCH是指:在PDCCH上确定是否存在一个DCI。
作为一个实施例,所述监听PDCCH是指:在PDCCH上搜索。
作为一个实施例,所述监听PDCCH是指:检测是否存在一个DCI。
作为一个实施例,所述行为在相应小区上发送UL-SCH包括:在所述相应小区上发送PUSCH。
作为一个实施例,所述行为在相应小区上发送UL-SCH包括:在所述相应小区的UL-SCH上执行发送操作。
作为一个实施例,所述行为在相应小区上发送UL-SCH包括:在所述相应小区的UL-SCH上发送PUSCH。
作为一个实施例,所述行为在相应小区上发送UL-SCH包括:在所述相应小区的UL-SCH上发送上行链路数据。
作为一个实施例,所述第二信令被接收的时刻晚于所述第二无线信号被发送的时刻。
作为一个实施例,所述步骤S6101属于所述步骤S6102。
作为一个实施例,所述步骤S6101和所述步骤S6102。
实施例7
实施例7示例了根据本申请的又一个实施例的无线信号传输流程图,如附图7所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S7101中,接收第一信令,所述第一信令包括第一域和第二域;在步骤S7102中,作为所述第一信令被接收的响应,启动或者重新启动第一计时器,所述第一计时器的运行状态被用于确定针对至少所述第一小区的上行链路传输是否对齐。
在实施例7中,所述第一信令被接收之后,第一无线信号在第一小区的第一上行链路帧中被发送;所述第一上行链路帧的起始时刻相比第二小区的第一下行链路帧的起始时刻提前了第一时间间隔;所述第一域包括第一整数,至少所述第一整数被用于确定所述第一时间间隔;所述第二域被用于确定第二小区;所述第一小区和所述第二小区针对同一个小区组。
作为一个实施例,所述第一无线信号被发送时,所述第一计时器正在运行。
作为一个实施例,所述行为“作为所述第一信令被接收的响应,启动或者重新启动第一计时器”包括:作为所述第一域被接收的响应,启动或者重新启动第一计时器。
作为一个实施例,所述行为“作为所述第一信令被接收的响应,启动或者重新启动第一计时器”包括:作为所述第一信令中的所述第一域被接收的响应,启动或者重新启动第一计时器。
作为一个实施例,所述第一计时器是一个MAC层计时器。
作为一个实施例,所述第一计时器是一个timeAlignmentTimer。
作为一个实施例,所述第一计时器是一个TAT。
作为一个实施例,所述第一计时器仅针对所述第一小区。
作为一个实施例,所述第一计时器针对所述第一TAG中的每个小区。
作为一个实施例,所述行为启动或者重新启动第一计时器包括:如果所述第一计时器不在运行,启动所述第一计时器。
作为一个实施例,所述行为启动或者重新启动第一计时器包括:如果所述第一计时器正在运行,重新启动所述第一计时器。
作为一个实施例,所述第一计时器正在运行被用于指示针对所述第一小区的上行链路传输对齐。
作为一个实施例,所述第一计时器不在运行被用于指示针对所述第一小区的上行链路传输未对齐。
作为一个实施例,所述第一计时器正在运行被用于指示属于所述第一TAG的每个小区的上行链路传输对齐。
作为一个实施例,所述第一计时器不在运行被用于指示属于所述第一TAG的每个小区的上行链路传输未对齐。
作为一个实施例,所述第一计时器的运行状态不被用于指示所述第一TAG中的至少一个小区的上行链路传输是否对齐。
作为一个实施例,作为所述第一计时器过期的响应,执行所述目标动作集合。
作为一个实施例,所述目标动作集合包括清空被关联到仅所述第一小区的所有HARQ缓存器,或者,通知更上层释放关联到仅所述第一小区的所有第一类资源,或者,删除关联到仅所述第一小区的所有第二类资源中的至少之一;所述第一小区是SpCell或者所述第一小区是SCell。
作为一个实施例,如果所述第一小区是SpCell,所述目标动作集合包括清空被关联到所述第一TAG中的每个小区的所有HARQ缓存器,或者,通知更上层释放关联到所述第一TAG中的每个小区的所有第一类资源,或者,删除关联到所述第一TAG中的每个小区的所有第二类资源中的至少之一;如果所述第一小区是SCell,所述目标动作集合包括清空被关联到仅所述第一小区的所有HARQ缓存器,或者,通知更上层释放关联到仅所述第一小区的所有第一类资源,或者,删除关联到仅所述第一小区的所有第二类资源中的至少之一。
作为一个实施例,所述第一类资源包括PUCCH或者SRS的至少之一;所述第二类资源包括配置的下行链路分配或者配置的上行链路授予或者半持续CSI上报的PUSCH资源的至少之一。
实施例8
实施例8示例了根据本申请的一个实施例的第一上行链路帧和第一下行链路帧的定时关系的示意图,如附图8所示。在附图8中,方框801表示第一下行链路帧,方框802表示第一上行链路帧;横轴表示时间,所述第一下行链路帧的起始时刻是T2,所述第一上行链路帧的起始时刻是T1。
在实施例8中,所述第一上行链路帧的起始时刻相比所述第一小区的所述第一下行链路帧的起始时刻提前了所述第一时间间隔。
作为一个实施例,所述T2与所述T1的差值与所述第一时间间隔相等。
作为一个实施例,所述T1和所述T2分别对应一个时隙。
作为一个实施例,所述T1和所述T2分别对应一个第一时间单元。
作为一个实施例,所述T1和所述T2分别对应一个时刻。
作为一个实施例,所述时刻T1小于所述T2。
作为一个实施例,所述时刻T1不大于所述T2。
作为一个实施例,所述第一上行链路帧的起始时刻早于所述第一下行链路帧的起始时刻。
作为一个实施例,所述第一无线信号占用所述第一上行链路帧中的至少一个时隙。
实施例9
实施例9示例了根据本申请的一个实施例的第二上行链路帧和第二下行链路帧的定时关系的示意图,如附图9所示。在附图9中,方框901表示第二下行链路帧,方框902表示第二上行链路帧;横轴表示时间,所述第二下行链路帧的起始时刻是T4,所述第二上行链路帧的起始时刻是T3。
在实施例9中,所述第二上行链路帧的起始时刻相比所述第一小区的所述第二下行链路帧的起始时刻提前了所述第二时间间隔。
作为一个实施例,所述T4与所述T3的差值与所述第一时间间隔相等。
作为一个实施例,所述T3和所述T4分别对应一个时隙。
作为一个实施例,所述T3和所述T4分别对应一个时间单元。
作为一个实施例,所述T3和所述T4分别对应一个时刻。
作为一个实施例,所述时刻T3小于所述T4。
作为一个实施例,所述时刻T3不大于所述T4。
作为一个实施例,所述时刻T4小于所述T2。
作为一个实施例,所述第二上行链路帧的起始时刻早于所述第二下行链路帧的起始时刻。
作为一个实施例,所述第二下行链路帧的起始时刻早于所述第一下行链路帧的起始时刻。
作为一个实施例,所述第二下行链路帧和所述第一下行链路帧是所述第一小区的不同的两个下行链路帧。
作为一个实施例,所述第二下行链路帧和所述第一下行链路帧是两个连续的下行链路帧。
作为一个实施例,所述第二下行链路帧和所述第一下行链路帧之间包括至少一个下行链路帧。
作为一个实施例,在所述第一时间之前的所述第二上行链路帧中,所述第二无线信号在所述第二小区上被发送;在所述第一时间之后的所述第一上行链路帧中,所述第一无线信号在所述第二小区上被发送。
作为一个实施例,所述第二上行链路帧在所述第一时间之前,所述第一上行链路帧在所述第一时间之后。
作为一个实施例,所述第二无线信号占用所述第二上行链路帧中的至少一个时隙。
实施例10
实施例10示例了根据本申请的一个实施例的第一信令的结构的示意图,如附图10所示。方框1001表示所述第一域,方框1002表示所述第二域,方框1003表示所述第三域,方框1004表示所述第四域。
在实施例10中,所述第一信令是一个MAC CE;所述第一信令由所述第一域,或者,所述第二域,或者,所述第三域,或者,所述第四域中的至少前两者组成。
作为一个实施例,所述第一信令占用正整数个八位组,每个八位组包括8个比特。
作为一个实施例,所述第一信令占用2个八位组。
作为一个实施例,所述第一信令占用3个八位组。
作为一个实施例,所述第一域和所述第三域占用第一个八位组,所述第二域和所述预留域占用第二个八位组。
作为一个实施例,所述第一域占用6个比特,所述第二域占用5个比特,所述第三域占用2个比特,所述第四域占用3个比特。
作为一个实施例,所述第一域占用6个比特。
作为一个实施例,所述第一域占用5个比特。
作为一个实施例,所述第二域指示所述第二小区的服务小区的标识。
作为一个实施例,所述第二域是Serving Cell ID域。
作为一个实施例,所述第二域占用5个比特。
作为一个实施例,所述第二域占用6个比特。
作为一个实施例,所述第三域指示所述第一TAG的标识。
作为一个实施例,所述第三域指示所述第一小区所属的TAG的标识。
作为一个实施例,所述第三域是TAG Identity(TAG ID)域。
作为一个实施例,所述第二域占用2个比特。
作为一个实施例,所述第二域占用3个比特。
作为一个实施例,所述第三域存在。
作为一个实施例,所述第三域不存在。
作为一个实施例,所述第四域包括至少一个域。
作为一个实施例,所述第四域包括预留域(R Field)。
作为一个实施例,所述第四域是预留域(R Field)。
作为一个实施例,所述第四域存在。
作为一个实施例,所述第四域不存在。
作为一个实施例,所述预留域被设置为任意值。
作为一个实施例,所述预留域被设置为0。
作为一个实施例,所述附图10仅为所述第一信令的一种实现形式;所述附图10不限定所述第一信令中所包括的域,并且,所述附图10不限制所述第一信令中的每个域的尺寸。
实施例11
实施例11示例了根据本申请的一个实施例的第一信令包括第一子信令和第二信令的示意图。
在实施例11中,所述第一信令包括第一子信令和所述第二信令;所述第一子信令包括所述第一域,所述第二信令包括所述第二域。
作为一个实施例,所述第一子信令被接收之前,所述第二小区不是所述第一小区的定时参考;所述第一子信令被接收之后,所述第二小区是所述第一小区的定时参考。
作为一个实施例,所述第一子信令被接收之前,所述第二小区不是所述第一TAG的定时参考;所述第一子信令被接收之后,所述第二小区是所述第一TAG的定时参考。
作为一个实施例,所述第二信令被接收之前,所述第二小区不是所述第一小区的定时参考;所述第二信令被接收之后,所述第二小区是所述第一小区的定时参考。
作为一个实施例,所述第二信令被接收之前,所述第二小区不是所述第一TAG的定时参考;所述第二信令被接收之后,所述第二小区是所述第一TAG的定时参考。
作为一个实施例,作为所述第二信令被接收的响应,将所述第二小区作为所述第一小区的定时参考。
作为一个实施例,作为所述第二信令被接收并且所述第一子信令被接收的响应,将所述第二小区作为所述第一小区的定时参考。
作为一个实施例,作为所述第二信令被接收的响应,将所述第二小区作为所述第一TAG的定时参考。
作为一个实施例,作为所述第二信令被接收并且所述第一子信令被接收的响应,将所述第二小区作为所述第一TAG的定时参考。
作为一个实施例,所述第二信令被接收并且所述第一子信令被接收被用于确定所述第一上行链路帧的起始时刻相比第二小区的第一下行链路帧的起始时刻提前了第一时间间隔。
作为一个实施例,所述第一接收机接收所述第一子信令。
作为一个实施例,本申请中的所述第三节点发送所述第一子信令。
作为一个实施例,所述第一子信令和所述第二信令的发送者相同。
作为一个实施例,所述第一子信令和所述第二信令的发送者不同。
作为一个实施例,所述第一子信令和所述第二信令不属于同一个MAC子PDU。
作为一个实施例,所述第一子信令和所述第二信令不属于同一个MAC CE。
作为一个实施例,在所述第二信令被接收之后,接收所述第一子信令;在所述第一子信令被接收之后,发送所述第一无线信号。
作为一个实施例,所述第一子信令是定时提前命令。
作为一个实施例,所述第一子信令包括定时提前命令。
作为一个实施例,所述第一子信令是Timing Advance Command MAC CE。
作为一个实施例,所述第一子信令是Absolute Timing Advance Command MAC CE。
作为一个实施例,所述第一子信令是所述第一随机接入响应。
作为一个实施例,所述第一子信令是在所述第二信令被接收之后接收的一个定时提前命令。
作为一个实施例,所述第一子信令是在所述第二信令被接收之后接收的第一个定时提前命令。
作为一个实施例,所述第一子信令的接收时刻晚于所述第二信令的接收时刻。
作为一个实施例,所述第一小区不是所述目标小区,并且,所述第二小区不是所述目标小区。
作为一个实施例,所述第二小区是本申请中的所述目标小区。
作为该实施例的一个子实施例,所述第二信令被接收并且所述第一子信令被接收被用于确定所述目标小区是所述第一小区的定时参考。
作为该实施例的一个子实施例,所述第二信令被接收并且所述第一子信令被接收被用于确定所述目标小区是所述第一TAG的定时参考。
作为该实施例的一个子实施例,所述第二信令被接收之后,作为所述第一子信令被接收的响应,将所述目标小区作为所述第一小区的定时参考。
作为该实施例的一个子实施例,所述第二信令被接收之后,在所述第一子信令被接收之前,所述目标小区不是所述第一小区的定时参考。
作为该实施例的一个子实施例,所述第二信令被接收之后,根据所述第一子信令是否被接收确定是否将所述目标小区作为所述第一小区的定时参考。
作为该实施例的一个子实施例,所述第二信令被接收之后,作为所述第一子信令被接收的响应,如果所述第三小区是PCell或者PSCell,将所述目标小区作为所述第一小区的定时参考。
作为该实施例的一个子实施例,所述第二信令被接收之后,作为所述第一子信令被接收的响应,如果所述第三小区是SCell,不将所述目标小区作为所述第一小区的定时参考。
作为该实施例的一个子实施例,所述第三小区和所述第一小区属于同一个TAG。
作为该实施例的一个子实施例,所属第三小区和所述第一小区不属于同一个TAG。
作为该实施例的一个子实施例,所述第二小区和所述第一小区属于同一个TAG。
作为该实施例的一个子实施例,所述第二信令被接收之后,在所述第一子信令被接收之前,所述第三小区是所述第一小区的定时参考;其中,所述第二无线信号被发送。
作为该实施例的一个子实施例,所述第二信令被接收之前,所述第三小区是所述第一小区的定时参考;其中,所述第二无线信号被发送。
作为该实施例的一个子实施例,所述第二信令被接收之后,在所述第一子信令被接收之前,所述第三小区不是所述第一小区的定时参考;其中,所述第二无线信号未被发送。
作为该实施例的一个子实施例,所述第二信令被接收之前,所述第三小区不是所述第一小区的定时参考;其中,所述第二无线信号未被发送。
作为该实施例的一个子实施例,所述第三小区是PCell。
作为该实施例的一个子实施例,所述第三小区是PSCell。
作为一个实施例,所述第一小区是本申请中的所述目标小区。
作为该实施例的一个子实施例,本申请中的所述第二无线信号未被发送。
作为该实施例的一个子实施例,所述第一信令被接收之前,所述第三小区是所述第一节点的服务小区。
作为该实施例的一个子实施例,所述第一信令被接收之前,所述第二小区是所述第一TAG中的定时参考。
作为该实施例的一个子实施例,所述第一信令被接收之前,所述第三小区和所述第二小区都是所述第一节点的服务小区。
作为该实施例的一个子实施例,所述目标小区被配置的TAG的标识与所述第二小区所属的TAG的标识相同。
作为该实施例的一个子实施例,所述第二小区是所述第一TAG中的定时参考。
作为该实施例的一个子实施例,所述第二小区被配置的TAG的标识与所述第三小区所属的TAG的标识相同。
作为该实施例的一个子实施例,所述第三小区是PCell,所述第二小区是SCell。
作为该实施例的一个子实施例,所述第三小区是PSCell,所述第二小区是SCell。
作为该实施例的一个子实施例,所述第三小区是SCell,所述第二小区是SCell。
作为该实施例的一个子实施例,所述第三小区是SCell,所述第二小区是PCell。
作为该实施例的一个子实施例,所述第三小区是SCell,所述第二小区是PSCell。
作为该实施例的一个子实施例,所述第三小区和所述第二小区属于同一个TAG。
作为该实施例的一个子实施例,所述第三小区和所述第二小区属于不同TAG。
作为该实施例的一个子实施例,所述短语所述第二域被用于确定第二小区是指:所述第二信令被用于确定所述第二小区。
作为该实施例的一个子实施例,作为所述第二信令被接收的响应,将所述第二小区作为所述目标小区的定时参考。
作为该实施例的一个子实施例,作为所述第二信令被接收的响应,所述第一TAG中的定时参考保持不变。
作为该实施例的一个子实施例,作为所述第二信令被接收的响应,如果所述第二小区是所述第一TAG中的定时参考,将所述第二小区作为所述目标小区的定时参考。
作为一个实施例,所述第一消息和所述第二信令不属于同一个MAC子PDU。
作为一个实施例,所述第一消息在所述第二信令之前被接收。
作为一个实施例,所述第二无线信号被发送。
作为一个实施例,所述第二无线信号未被发送。
作为一个实施例,所述第一节点接收第一信令,所述第一信令包括第一子信令和所述第二信令;所述第一子信令包括所述第一域,所述第二信令包括所述第二域;所述第二信令在RRC层之下的协议层被生成,所述第二信令被用于指示针对第三小区停止执行第一操作集合;所述第一信令被接收之后,在第一小区的第一上行链路帧中发送第一无线信号;所述第一上行链路帧的起始时刻相比第二小区的第一下行链路帧的起始时刻提前了第一时间间隔;所述第一域包括第一整数,至少所述第一整数被用于确定所述第一时间间隔;所述第二域被用于确定第二小区;所述第一小区和所述第二小区针对同一个小区组;所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述第二信令被接收的时刻早于所述第一无线信号被发送的时刻。
作为一个实施例,所述第一节点接收第一消息,所述第一消息包括目标小区的配置信息,所述目标小区是第三小区的候选小区;接收第一信令,所述第一信令包括第一子信令和所述第二信令;所述第一子信令包括所述第一域,所述第二信令包括所述第二域;所述第一信令被接收之后,在第一小区的第一上行链路帧中发送第一无线信号;其中,所述第一上行链路帧的起始时刻相比第二小区的第一下行链路帧的起始时刻提前了第一时间间隔;所述第一域包括第一整数,至少所述第一整数被用于确定所述第一时间间隔;所述第二域被用于确定第二小区;所述第一小区和所述第二小区针对同一个小区组;所述第二信令在RRC层之下的协议层被生成,所述第二信令被用于指示针对第三小区停止执行第一操作集合,所述第二信令被用于指示针对所述目标小区执行所述第一操作集合;所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述第二信令被接收的时刻早于所述第一无线信号被发送的时刻。
实施例12
实施例12示例了根据本申请的一个实施例的第一信令包括第一子信令和第二子信令的示意图。
在实施例12中,所述第一信令包括第一子信令和第二子信令;所述第一子信令包括所述第一域,所述第二子信令包括所述第二域;所述第一子信令和所述第二子信令不属于同一个MAC子PDU。
作为一个实施例,作为所述第二子信令被接收的响应,将所述第二小区作为所述第一小区的定时参考。
作为一个实施例,作为所述第二子信令被接收并且所述第一子信令被接收的响应,将所述第二小区作为所述第一小区的定时参考。
作为一个实施例,作为所述第二子信令被接收的响应,将所述第二小区作为所述第一TAG的定时参考。
作为一个实施例,作为所述第二子信令被接收并且所述第一子信令被接收的响应,将所述第二小区作为所述第一TAG的定时参考。
作为一个实施例,所述第二子信令指示当所述第二小区的配置信息被应用时,所述第二小区是所述第一TAG的定时参考。
作为一个实施例,作为所述第二子信令被接收的响应,将所述第二小区作为所述第一TAG的定时参考。
作为一个实施例,所述第二子信令被接收之后,作为所述第一子信令被接收的响应,将所述第二小区作为所述第一TAG的定时参考。
作为一个实施例,所述第二域指示当所述第二小区的配置信息被应用时,所述第二小区是所述第一TAG的定时参考;所述第二小区属于所述第一TAG。
作为一个实施例,所述第二域指示当所述第二小区的配置信息被应用时,所述第二小区是所述第一小区的定时参考。
作为一个实施例,所述第一子信令和所述第二子信令的发送者相同。
作为一个实施例,所述第一子信令和所述第二子信令的发送者不同。
作为一个实施例,所述第一接收机接收所述第二子信令。
作为一个实施例,所述第一接收机接收所述第一子信令。
作为一个实施例,所述第一子信令是定时提前命令。
作为一个实施例,所述第一子信令包括定时提前命令。
作为一个实施例,所述第一子信令是Timing Advance Command MAC CE。
作为一个实施例,所述第一子信令是Absolute Timing Advance Command MAC CE。
作为一个实施例,所述第一子信令是所述第一随机接入响应。
作为一个实施例,所述第二子信令是RRC消息。
作为一个实施例,所述第二子信令是MAC CE,所述第一子信令的MAC子头和所述第二子信令的MAC子头不同。
作为一个实施例,所述第二子信令是一个DCI。
作为一个实施例,所述第二子信令和所述第一消息不属于同一个RRC消息。
作为一个实施例,所述第二子信令和所述第一消息不属于同一个MAC子PDU。
作为一个实施例,在所述第二子信令被接收之后,接收所述第一子信令;在所述第一子信令被接收之后,发送所述第一无线信号。
作为一个实施例,在所述第二子信令被接收之后,接收所述第二信令;在所述第二信令被接收之后,接收所述第一子信令;在所述第一子信令被接收之后,发送所述第一无线信号。
作为一个实施例,在所述第二子信令被接收之后,接收所述第一子信令;在所述第一子信令被接收之后,接收所述第二信令;在所述第一子信令被接收之后,发送所述第一无线信号。
作为一个实施例,所述第二子信令和所述第一消息属于同一个RRC消息。
作为该实施例的一个子实施例,所述第二子信令是本申请中的所述第一消息,所述第二域是所述第一消息中的一个域。
作为该实施例的一个子实施例,所述第二子信令属于所述第一消息,所述第二域被用于指示当所述目标小区的配置信息被应用时,所述目标小区是所述第一TAG的定时参考;所述第一消息指示所述目标小区属于所述第一TAG;所述目标小区是所述第二小区。
作为一个实施例,所述第一节点接收第一信令,所述第一信令包括第一子信令和第二子信令;所述第一子信令包括所述第一域,所述第二子信令包括所述第二域;所述第一子信令和所述第二子信令不属于同一个MAC子PDU;所述第一信令被接收之后,在第一小区的第一上行链路帧中发送第一无线信号;其中,所述第一上行链路帧的起始时刻相比第二小区的第一下行链路帧的起始时刻提前了第一时间间隔;所述第一域包括第一整数,至少所述第一整数被用于确定所述第一时间间隔;所述第二域被用于确定第二小区;所述第一小区和所述第二小区针对同一个小区组。
作为一个实施例,所述第一节点接收第一信令,所述第一信令包括第一子信令和第二子信令;所述第一子信令包括所述第一域,所述第二子信令包括所述第二域;所述第一子信令和所述第二子信令不属于同一个MAC子PDU;接收第二信令,所述第二信令在RRC层之下的协议层被生成,所述第二信令被用于指示针对第三小区停止执行第一操作集合;所述第一信令被接收之后,在第一小区的第一上行链路帧中发送第一无线信号;其中,所述第一上行链路帧的起始时刻相比第二小区的第一下行链路帧的起始时刻提前了第一时间间隔;所述第一域包括第一整数,至少所述第一整数被用于确定所述第一时间间隔;所述第二域被用于确定第二小区;所述第一小区和所述第二小区针对同一个小区组;所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述第二信令被接收的时刻早于所述第一无线信号被发送的时刻。
作为一个实施例,所述第一节点接收第一消息,所述第一消息包括目标小区的配置信息,所述目标小区是所述第三小区的候选小区;接收第一信令,所述第一信令包括第一子信令和第二子信令;所述第一子信令包括所述第一域,所述第二子信令包括所述第二域;所述第一子信令和所述第二子信令不属于同一个MAC子PDU;接收第二信令,所述第二信令在RRC层之下的协议层被生成,所述第二信令被用于指示针对第三小区停止执行第一操作集合,所述第二信令被用于指示针对所述目标小区执行所述第一操作集合;所述第一信令被接收之后,在第一小区的第一上行链路帧中发送第一无线信号;其中,所述第一上行链路帧的起始时刻相比第二小区的第一下行链路帧的起始时刻提前了第一时间间隔;所述第一域包括第一整数,至少所述第一整数被用于确定所述第一时间间隔;所述第二域被用于确定第二小区;所述第一小区和所述第二小区针对同一个小区组;所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述第二信令被接收的时刻早于所述第一无线信号被发送的时刻。
作为一个实施例,本申请中的所述第二信令被接收。
作为一个实施例,本申请中的所述第二信令未被接收。
实施例13
实施例13示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图13所示。在附图13中,第一节点中的处理装置1300包括第一接收机1301和第一发射机1302。
第一接收机1301,接收第一信令,所述第一信令包括第一域和第二域;
第一发射机1302,所述第一信令被接收之后,在第一小区的第一上行链路帧中发送第一无线信号;
实施例13中,所述第一上行链路帧的起始时刻相比第二小区的第一下行链路帧的起始时刻提前了第一时间间隔;所述第一域包括第一整数,至少所述第一整数被用于确定所述第一时间间隔;所述第二域被用于确定第二小区;所述第一小区和所述第二小区针对同一个小区组。
作为一个实施例,所述第一发射机1302,在所述第一信令被接收之前,在所述第一小区的第二上行链路帧中发送第二无线信号;其中,所述第二上行链路帧的起始时刻相比第三小区的第二下行链路帧的起始时刻提前了第二时间间隔;所述第二时间间隔与第二提前值有关,至少一个定时提前命令被用于确定所述第二提前值;所述第二提前值被用于确定所述第一时间间隔。
作为一个实施例,所述第三小区和所述第二小区属于同一个TAG。
作为一个实施例,所述第三小区和所述第二小区不同。
作为一个实施例,所述第三小区和所述第二小区相同。
作为一个实施例,所述第一接收机1301,接收第二信令,所述第二信令在RRC层之下的协议层被生成,所述第二信令被用于指示针对第三小区停止执行第一操作集合;
其中,所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述第二信令被接收的时刻早于所述第一无线信号被发送的时刻。
作为一个实施例,所述第一接收机,接收第一消息,所述第一消息包括目标小区的配置信息,所述目标小区是所述第三小区的候选小区;所述第二信令被用于指示针对所述目标小区执行所述第一操作集合。
作为一个实施例,所述第一信令包括第一子信令和所述第二信令;所述第一子信令包括所述第一域,所述第二信令包括所述第二域。
作为一个实施例,所述第一信令包括第一子信令和第二子信令;所述第一子信令包括所述第一域,所述第二子信令包括所述第二域;所述第一子信令和所述第二子信令不属于同一个MAC子PDU。
作为一个实施例,所述第一接收机1301,作为所述第一信令被接收的响应,启动或者重新启动第一计时器,所述第一计时器的运行状态被用于确定针对至少所述第一小区的上行链路传输是否对齐。
作为一个实施例,所述第一接收机1301包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467。
作为一个实施例,所述第一接收机1301包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456。
作为一个实施例,所述第一接收机1301包括本申请附图4中的天线452,接收器454,接收处理器456。
作为一个实施例,所述第一发射机1302包括本申请附图4中的天线452,发射器454,多天线发射处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467。
作为一个实施例,所述第一发射机1302包括本申请附图4中的天线452,发射器454,多天线发射处理器457,发射处理器468。
作为一个实施例,所述第一发射机1302包括本申请附图4中的天线452,发射器454,发射处理器468。
实施例14
实施例14示例了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;如附图14所示。在附图14中,第二节点中的处理装置1400包括第二发射机1401和第二接收机1402。
第二发射机1401,发送第一信令,所述第一信令包括第一域和第二域;
实施例14中,在所述第一信令被接收之后,在第一小区的第一上行链路帧中第一无线信号被所述第一信令的接收者发送;所述第一上行链路帧的起始时刻相比第二小区的第一下行链路帧的起始时刻提前了第一时间间隔;所述第一域包括第一整数,至少所述第一整数被用于确定所述第一时间间隔;所述第二域被用于确定第二小区;所述第一小区和所述第二小区针对同一个小区组。
作为一个实施例,所述第二接收机1402,接收所述第一无线信号。
作为一个实施例,在所述第一信令被接收之前,在所述第一小区的第二上行链路帧中第二无线信号被所述第一信令的接收者发送;所述第二上行链路帧的起始时刻相比第三小区的第二下行链路帧的起始时刻提前了第二时间间隔;所述第二时间间隔与第二提前值有关,至少一个定时提前命令被用于确定所述第二提前值;所述第二提前值被用于确定所述第一时间间隔。
作为一个实施例,所述第二接收机1402,接收所述第二无线信号。
作为一个实施例,所述第三小区和所述第二小区属于同一个TAG。
作为一个实施例,所述第三小区和所述第二小区不同。
作为一个实施例,所述第三小区和所述第二小区相同。
作为一个实施例,所述第二发射机1401,发送第二信令,所述第二信令在RRC层之下的协议层被生成,所述第二信令被用于指示针对第三小区停止执行第一操作集合;
其中,所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述第二信令被接收的时刻早于所述第一无线信号被发送的时刻。
作为一个实施例,所述第二发射机,发送第一消息,所述第一消息包括目标小区的配置信息,所述目标小区是所述第三小区的候选小区;所述第二信令被用于指示针对所述目标小区执行所述第一操作集合。
作为一个实施例,所述第一信令包括第一子信令和所述第二信令;所述第一子信令包括所述第一域,所述第二信令包括所述第二域。
作为一个实施例,所述第一信令包括第一子信令和第二子信令;所述第一子信令包括所述第一域,所述第二子信令包括所述第二域;所述第一子信令和所述第二子信令不属于同一个MAC子PDU。
作为一个实施例,作为所述第一信令被接收的响应,第一计时器被启动或者被重新启动,所述第一计时器的运行状态被用于确定针对至少所述第一小区的上行链路传输是否对齐。
作为一个实施例,所述第二发射机1401包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475,存储器476。
作为一个实施例,所述第二发射机1401包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416。
作为一个实施例,所述第二发射机1401包括本申请附图4中的天线420,发射器418,发射处理器416。
作为一个实施例,所述第二接收机1402包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475,存储器476。
作为一个实施例,所述第二接收机1402包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470。
作为一个实施例,所述第二接收机1402包括本申请附图4中的天线420,接收器418,接收处理器470。
实施例15
实施例15示例了根据本申请的再一个实施例的无线信号传输流程图,如附图15所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S15101中,接收第一消息,所述第一消息包括目标小区的配置信息,所述目标小区是所述第三小区的候选小区;所述第二信令被用于指示针对所述目标小区执行所述第一操作集合。
对于第四节点N04,在步骤S15401中,发送所述第一消息。
作为一个实施例,在本申请中的所述第二信令被接收之前,接收所述第一消息。
作为一个实施例,所述第一消息的发送者是所述第一节点U01的一个服务小区的维持基站。
作为一个实施例,所述第一消息的发送者是所述第一小区组中的一个服务小区的维持基站。
作为一个实施例,所述第一消息包括第一候选小区集合中的每个候选小区的配置信息,所述第一候选小区集合中包括至少一个候选小区,所述第一候选小区集合中的每个候选小区是所述第三小区的候选小区,所述目标小区是第一候选小区集合中的一个候选小区。
作为一个实施例,所述目标小区被用于基于L1/L2信令的L1/L2移动性。
作为一个实施例,所述第一候选小区集合中的每个候选小区被用于基于L1/L2信令的L1/L2移动性。
作为一个实施例,所述第一消息包括给定条件,所述给定条件被满足被用于确定应用所述目标小区的所述配置信息。
作为一个实施例,所述第一消息包括给定条件,所述给定条件被满足被用于确定发送测量报告;作为所述测量报告被发送的响应,接收所述第二信令;作为所述第二信令被接收的响应,应用所述目标小区的所述配置信息。
作为一个实施例,所述第二信令被接收被用于确定应用所述目标小区的所述配置信息。
作为一个实施例,所述第二信令被用于指示针对所述目标小区执行所述第一操作集合,所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述相应小区是所述目标小区。
作为一个实施例,作为所述第二信令被接收的响应,针对所述目标小区执行所述第一操作集合。
作为一个实施例,作为所述给定条件被满足的响应,应用所述目标小区的配置信息。
作为一个实施例,作为所述第二信令被接收的响应,应用所述目标小区的配置信息。
作为一个实施例,根据至少针对所述目标小区的测量或者针对所述第三小区的测量中的至少之一确定所述给定条件是否被满足。
作为一个实施例,所述给定条件与RSRP有关。
作为一个实施例,所述给定条件与L1测量结果有关,所述给定条件与L3测量结果无关。
作为一个实施例,所述给定条件与L3测量结果有关。
作为一个实施例,所述给定条件与波束的数量有关。
作为一个实施例,所述给定条件与参考信号资源的数量有关,所述参考信号资源包括SSB或者CSI-RS中的至少之一。
作为一个实施例,所述给定条件包括:针对所述第二小区的测量结果大于第一阈值,并且,针对所述第三小区的测量结果小于第二阈值;所述第一阈值和所述第二阈值都是RSRP阈值;所述第一消息包括所述第一阈值和所述第二阈值。
作为一个实施例,所述给定条件包括:针对所述第二小区的测量结果大于第一阈值;所述第一阈值是RSRP阈值;所述第一消息包括所述第一阈值。
作为一个实施例,所述给定条件包括:针对所述第三小区的测量结果小于第二阈值;所述第二阈值是RSRP阈值;所述第一消息包括所述第二阈值。
作为一个实施例,所述给定条件包括:针对所述第二小区的测量结果大于针对所述第三小区的测量结果。
作为一个实施例,所述给定条件包括:所述第二小区中的满足一个阈值的参考信号资源的数量大于第一阈值;所述第三小区中的满足一个阈值的参考信号资源的数量小于第二阈值;所述第一消息包括所述第一阈值和所述第二阈值。
作为一个实施例,所述给定条件包括:所述第二小区中的满足一个阈值的参考信号资源的数量大于第一阈值;所述第一消息包括所述第一阈值。
作为一个实施例,所述给定条件包括:所述第三小区中的满足一个阈值的参考信号资源的数量小于第二阈值;所述第一消息包括所述第二阈值。
作为一个实施例,所述给定条件包括:所述第二小区中的满足一个阈值的参考信号资源的数量大于所述第三小区中的满足一个阈值的参考信号资源的数量。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一接收机,接收第一信令,所述第一信令包括第一域和第二域;
    第一发射机,所述第一信令被接收之后,在第一小区的第一上行链路帧中发送第一无线信号;
    其中,所述第一上行链路帧的起始时刻相比第二小区的第一下行链路帧的起始时刻提前了第一时间间隔;所述第一域包括第一整数,至少所述第一整数被用于确定所述第一时间间隔;所述第二域被用于确定第二小区;所述第一小区和所述第二小区针对同一个小区组。
  2. 根据权利要求1所述的第一节点,其特征在于,包括:
    所述第一发射机,在所述第一信令被接收之前,在所述第一小区的第二上行链路帧中发送第二无线信号;
    其中,所述第二上行链路帧的起始时刻相比第三小区的第二下行链路帧的起始时刻提前了第二时间间隔;所述第二时间间隔与第二提前值有关,至少一个定时提前命令被用于确定所述第二提前值;所述第二提前值被用于确定所述第一时间间隔。
  3. 根据权利要求1或2所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第二信令,所述第二信令在RRC层之下的协议层被生成,所述第二信令被用于指示针对第三小区停止执行第一操作集合;
    其中,所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送UL-SCH三者中的至少之一;所述第二信令被接收的时刻早于所述第一无线信号被发送的时刻。
  4. 根据权利要求3所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第一消息,所述第一消息包括目标小区的配置信息,所述目标小区是所述第三小区的候选小区;所述第二信令被用于指示针对所述目标小区执行所述第一操作集合。
  5. 根据权利要求3或4所述的第一节点,其特征在于,所述第一信令包括第一子信令和所述第二信令;所述第一子信令包括所述第一域,所述第二信令包括所述第二域。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,所述第一信令包括第一子信令和第二子信令;所述第一子信令包括所述第一域,所述第二子信令包括所述第二域;所述第一子信令和所述第二子信令不属于同一个MAC子PDU。
  7. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一接收机,作为所述第一信令被接收的响应,启动或者重新启动第一计时器,所述第一计时器的运行状态被用于确定针对至少所述第一小区的上行链路传输是否对齐。
  8. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二发射机,发送第一信令,所述第一信令包括第一域和第二域;
    其中,在所述第一信令被接收之后,在第一小区的第一上行链路帧中第一无线信号被所述第一信令的接收者发送;所述第一上行链路帧的起始时刻相比第二小区的第一下行链路帧的起始时刻提前了第一时间间隔;所述第一域包括第一整数,至少所述第一整数被用于确定所述第一时间间隔;所述第二域被用于确定第二小区;所述第一小区和所述第二小区针对同一个小区组。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信令,所述第一信令包括第一域和第二域;
    所述第一信令被接收之后,在第一小区的第一上行链路帧中发送第一无线信号;
    其中,所述第一上行链路帧的起始时刻相比第二小区的第一下行链路帧的起始时刻提前了第一时间间隔;所述第一域包括第一整数,至少所述第一整数被用于确定所述第一时间间隔;所述第二域被用于确定第二小区;所述第一小区和所述第二小区针对同一个小区组。
  10. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信令,所述第一信令包括第一域和第二域;
    其中,在所述第一信令被接收之后,在第一小区的第一上行链路帧中第一无线信号被所述第一信令的接收者发送;所述第一上行链路帧的起始时刻相比第二小区的第一下行链路帧的起始时刻提前了第一时间间隔;所述第一域包括第一整数,至少所述第一整数被用于确定所述第一时间间隔;所述第二域被用于确定第二小区;所述第一小区和所述第二小区针对同一个小区组。
PCT/CN2023/089215 2022-04-29 2023-04-19 一种被用于无线通信的通信节点中的方法和装置 WO2023207709A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210474424.6 2022-04-29
CN202210474424.6A CN117040704A (zh) 2022-04-29 2022-04-29 一种被用于无线通信的通信节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2023207709A1 true WO2023207709A1 (zh) 2023-11-02

Family

ID=88517700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089215 WO2023207709A1 (zh) 2022-04-29 2023-04-19 一种被用于无线通信的通信节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN117040704A (zh)
WO (1) WO2023207709A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104094548A (zh) * 2012-02-07 2014-10-08 瑞典爱立信有限公司 用于传送定时调整的方法和装置
US20180084546A1 (en) * 2016-09-19 2018-03-22 Asustek Computer Inc. Method and apparatus for handling timing advance for uplink transmission in a wireless communication system
CN110089165A (zh) * 2016-11-04 2019-08-02 诺基亚技术有限公司 选择用于定时提前组中下行链路定时和定时提前的可靠小区
CN112867059A (zh) * 2018-06-01 2021-05-28 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
WO2021133879A1 (en) * 2019-12-23 2021-07-01 Qualcomm Incorporated Updating cell and timing advance (ta) and/or timing advance group identification (tag-id) per cell in l1/l2-based inter-cell mobility

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104094548A (zh) * 2012-02-07 2014-10-08 瑞典爱立信有限公司 用于传送定时调整的方法和装置
US20180084546A1 (en) * 2016-09-19 2018-03-22 Asustek Computer Inc. Method and apparatus for handling timing advance for uplink transmission in a wireless communication system
CN110089165A (zh) * 2016-11-04 2019-08-02 诺基亚技术有限公司 选择用于定时提前组中下行链路定时和定时提前的可靠小区
CN112867059A (zh) * 2018-06-01 2021-05-28 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
WO2021133879A1 (en) * 2019-12-23 2021-07-01 Qualcomm Incorporated Updating cell and timing advance (ta) and/or timing advance group identification (tag-id) per cell in l1/l2-based inter-cell mobility

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3 Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 16)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 36.213, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. V16.7.1, 25 October 2021 (2021-10-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 7, XP052082861 *

Also Published As

Publication number Publication date
CN117040704A (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
WO2022105910A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
US20220210771A1 (en) Method and device used in communication node for wireless communication
WO2023207709A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN116806028A (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023207604A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023213219A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023186164A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023138486A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024017078A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024032478A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024022238A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023160415A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023098548A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024007870A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024001938A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
US20230262817A1 (en) Method and device in communication node for wireless communication
WO2023280192A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023030425A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023226924A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
US20230146825A1 (en) Method and device used in communication node for wireless communication
WO2023179468A1 (zh) 一种被用于无线通信的方法和设备
WO2023174376A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023005964A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024027612A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024055917A1 (zh) 一种被用于无线通信的通信节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795142

Country of ref document: EP

Kind code of ref document: A1