WO2024022238A1 - 一种被用于无线通信的通信节点中的方法和装置 - Google Patents

一种被用于无线通信的通信节点中的方法和装置 Download PDF

Info

Publication number
WO2024022238A1
WO2024022238A1 PCT/CN2023/108574 CN2023108574W WO2024022238A1 WO 2024022238 A1 WO2024022238 A1 WO 2024022238A1 CN 2023108574 W CN2023108574 W CN 2023108574W WO 2024022238 A1 WO2024022238 A1 WO 2024022238A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resources
preamble
counter
sent
Prior art date
Application number
PCT/CN2023/108574
Other languages
English (en)
French (fr)
Inventor
于巧玲
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024022238A1 publication Critical patent/WO2024022238A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present application relates to transmission methods and devices in wireless communication systems, and in particular to random access transmission methods and devices.
  • the increment of the transmission power of the Preamble is determined based on a counter and a power step size.
  • a feasible way is PRACH duplication.
  • the existing mechanism for determining the increment of the transmission power of the Preamble cannot meet the requirement of repeatedly transmitting the Preamble through the PRACH, and it is difficult to ensure random access performance. Therefore, after the Preamble is repeatedly sent through the PRACH, when the Preamble is repeatedly sent through the PRACH again, how to determine the increment of the transmit power needs to be enhanced, especially how to update a counter, or how to determine a power step size.
  • this application provides a random access solution.
  • the NR system is used as an example; this application is also applicable to scenarios such as LTE systems; further, although the original intention of this application is for the Uu air interface, this application can also be used for the PC5 interface. Furthermore, although the original intention of this application is for the terminal and base station scenario, this application is also applicable to the V2X (Vehicle-to-Everything, Internet of Vehicles) scenario, the communication scenario between the terminal and the relay, and the relay and the base station. , achieving similar technical effects in terminal and base station scenarios.
  • V2X Vehicle-to-Everything, Internet of Vehicles
  • the original intention of this application is for the terminal and base station scenario
  • this application is also applicable to the IAB (Integrated Access and Backhaul, integrated access and backhaul) communication scenario, and obtains similar technologies in the terminal and base station scenario. Effect.
  • the original intention of this application is for terrestrial network (Terrestrial Network, terrestrial network) scenarios
  • this application is also applicable to non-terrestrial network (Non-Terrestrial Network, NTN) communication scenarios, achieving similar TN scenarios. technical effects.
  • using a unified solution for different scenarios can also help reduce hardware complexity and cost.
  • This application discloses a method used in a first node of wireless communication, which is characterized by including:
  • K1 is a positive integer greater than 1
  • update the first counter according to K1 use the first target power value to send Preamble in K2 time-frequency resources, and K2 is a positive integer
  • At least 2 time-frequency resources among the K1 time-frequency resources do not overlap in the time domain; at least 2 time-frequency resources among the K2 time-frequency resources do not overlap in the time domain, and the K2 time-frequency resources follow the K1 time-frequency resources; the Preamble sent in the K1 time-frequency resources and the Preamble sent in the K2 time-frequency resources belong to the first random access process; the at least 2 For any two of the Preambles, within the time interval when the K1 time-frequency resources are sent, the first counter is not updated; the first target The power value is related to the product of the first counter and the first step length.
  • the "at least 2 time-frequency resources among the K1 time-frequency resources do not overlap in the time domain” includes: any 2 time-frequency resources among the K1 time-frequency resources are in the time domain. There is no overlap in domains.
  • the "at least 2 time-frequency resources among the K2 time-frequency resources do not overlap in the time domain” includes: any 2 time-frequency resources among the K2 time-frequency resources are in the time domain. There is no overlap in domains.
  • the problems to be solved by this application include: how to improve random access performance after K1 time-frequency resources send at least 2 Preambles.
  • the problems to be solved by this application include: how to optimize the transmission power of the random access preamble after K1 time-frequency resources transmit at least 2 Preambles.
  • the problem to be solved by this application includes: how to determine the first target power value after K1 time-frequency resources send at least 2 Preambles.
  • the problem to be solved by this application includes: how to update the first counter after K1 time-frequency resources send at least 2 Preambles.
  • the problems to be solved by this application include: how to determine the first step length after K1 time-frequency resources send at least 2 Preambles.
  • the characteristics of the above method include: updating the first counter according to K1.
  • the characteristics of the above method include: the first counter is not updated during the time interval during which the K1 time-frequency resources are sent for any two of the at least two Preambles.
  • the characteristics of the above method include: the behavior sends at least two Preambles in K1 time-frequency resources to the time interval during which the behavior uses the first target power value to send Preambles in K2 time-frequency resources.
  • the first counter is updated only once.
  • the benefits of the above method include: reducing protocol changes.
  • the benefits of the above method include: compatibility with existing systems.
  • the benefits of the above method include: improving random access performance.
  • the benefits of the above method include: optimizing the transmission power of the random access preamble.
  • the behavior of updating the first counter according to the K1 includes: updating the first counter according to the number of Preambles sent in the K1 time-frequency resources.
  • the problem to be solved by this application includes: how to update the first counter according to K1 after K1 time-frequency resources send at least 2 Preambles.
  • the characteristics of the above method include: the number of actually sent Preambles is used to update the first counter.
  • the benefits of the above method include: reducing unnecessary power boost.
  • the K3 time-frequency resources do not overlap in the time domain, and the K3 time-frequency resources are after the K2 time-frequency resources;
  • the second target power value is The maximum output power of the first node;
  • the first counter updated according to the K2 reaches a first integer; the first integer is configurable.
  • the "at least 2 time-frequency resources among the K3 time-frequency resources do not overlap in the time domain” includes: any 2 time-frequency resources among the K3 time-frequency resources are in the time domain. There is no overlap in domains.
  • the problems to be solved by this application include: how to improve the success probability of random access.
  • the problem to be solved by this application includes: how to determine the second target power value after K2 time-frequency resources send the Preamble.
  • the characteristics of the above method include: the updated first counter reaching the first integer according to the K2 is used to determine that the second target power value is the maximum output power of the first node.
  • the benefits of the above method include: enhanced coverage.
  • the benefits of the above method include: improving the probability of random access success.
  • the first target power value is related to a first power offset
  • the first power offset The amount of displacement is related to the K2.
  • the K1 time-frequency resources are associated with the first downlink RS (Reference Signal, reference signal) resource
  • the K2 time-frequency resources are associated with the second downlink RS resource.
  • the first downlink RS resource and the second downlink RS resource are different.
  • the problems to be solved by this application include: how to improve the success probability of random access.
  • the characteristics of the above method include: when the first downlink RS resource and the second downlink RS resource are different, the first counter is updated.
  • the benefits of the above method include: enhanced coverage.
  • the benefits of the above method include: improving the probability of random access success.
  • the first step length is related to the candidate step size, and the first step length is related to at least one of the K1 or the K2.
  • the behavior is to update the second counter according to K1 after sending at least two Preambles on K1 time-frequency resources;
  • the second counter is used to count the number of times Preamble is sent.
  • This application discloses a method used in a second node of wireless communication, which is characterized by including:
  • the first counter is updated according to the K1; the K1 is a positive integer greater than 1; the K2 is a positive integer; at least 2 Preambles are sent in the K1 time-frequency resources; the Preamble is sent in the K2 time-frequency resources.
  • the frequency resources are transmitted using the first target power value; at least 2 of the K1 time-frequency resources do not overlap in the time domain; at least 2 of the K2 time-frequency resources are in There is no overlap in the time domain, and the K2 time-frequency resources are after the K1 time-frequency resources; the Preamble sent in the K1 time-frequency resources and the Preamble sent in the K2 time-frequency resources belong to the first Random access process; for any two of the at least two Preambles, within the time interval when the K1 time-frequency resources are sent, the first counter is not updated; the first target power value is consistent with the The first counter is related to the product of the first step length.
  • the "at least 2 time-frequency resources among the K1 time-frequency resources do not overlap in the time domain” includes: any 2 time-frequency resources among the K1 time-frequency resources are in the time domain. There is no overlap in domains.
  • the "at least 2 time-frequency resources among the K2 time-frequency resources do not overlap in the time domain” includes: any 2 time-frequency resources among the K2 time-frequency resources are in the time domain. There is no overlap in domains.
  • the phrase is updated according to the K1 first counter including: the first counter is updated according to the number of Preambles sent in the K1 time-frequency resources.
  • the first counter is updated after the K2 time-frequency resources are sent for the Preamble; the Preamble is sent using the second target power value for the K3 time-frequency resources; the K3 time-frequency resources are At least 2 time-frequency resources do not overlap in the time domain, and the K3 time-frequency resources are after the K2 time-frequency resources; the second target power value is the maximum of the sender of the at least 2 Preambles.
  • Output power; the first counter updated according to K2 reaches a first integer; the first integer is configurable.
  • the "at least 2 time-frequency resources among the K3 time-frequency resources do not overlap in the time domain” includes: any 2 time-frequency resources among the K3 time-frequency resources are in the time domain. There is no overlap in domains.
  • the first target power value is related to a first power offset
  • the first power offset is related to K2.
  • the K1 time-frequency resources are associated with the first downlink RS resource, and the K2 time-frequency resources are associated with the second downlink RS resource; the first downlink RS resource is associated with the K2 time-frequency resources.
  • the RS resource is different from the second downlink RS resource.
  • First signaling is sent, the first signaling indicates the first step.
  • the first step length is related to the candidate step size, and the first step length is related to at least one of the K1 or the K2.
  • the K1 second counter is updated according to the K1 time-frequency resources; the second counter is used to count the number of times the Preamble is sent.
  • This application discloses a first node used for wireless communication, which is characterized by including:
  • the first transmitter sends at least 2 Preambles in K1 time-frequency resources, where K1 is a positive integer greater than 1; updates the first counter according to K1; and uses the first target power value to send Preambles in K2 time-frequency resources.
  • K1 is a positive integer greater than 1
  • K2 is a positive integer
  • At least 2 time-frequency resources among the K1 time-frequency resources do not overlap in the time domain; at least 2 time-frequency resources among the K2 time-frequency resources do not overlap in the time domain, and the K2 time-frequency resources follow the K1 time-frequency resources; the Preamble sent in the K1 time-frequency resources and the Preamble sent in the K2 time-frequency resources belong to the first random access process; the at least 2 For any two of the Preambles, within the time interval when the K1 time-frequency resources are sent, the first counter is not updated; the first target power value is consistent with the first counter and the first step length. related to the product of .
  • the "at least 2 time-frequency resources among the K1 time-frequency resources do not overlap in the time domain” includes: any 2 time-frequency resources among the K1 time-frequency resources are in the time domain. There is no overlap in domains.
  • the "at least 2 time-frequency resources among the K2 time-frequency resources do not overlap in the time domain” includes: any 2 time-frequency resources among the K2 time-frequency resources are in the time domain. There is no overlap in domains.
  • This application discloses a second node used for wireless communication, which is characterized in that it includes:
  • the second receiver receives the Preamble sent in K1 time-frequency resources, or receives the Preamble sent in K2 time-frequency resources;
  • the first counter is updated according to the K1; the K1 is a positive integer greater than 1; the K2 is a positive integer; at least 2 Preambles are sent in the K1 time-frequency resources; the Preamble is sent in the K2 time-frequency resources.
  • the frequency resources are transmitted using the first target power value; at least 2 of the K1 time-frequency resources do not overlap in the time domain; at least 2 of the K2 time-frequency resources are in There is no overlap in the time domain, and the K2 time-frequency resources are after the K1 time-frequency resources; the Preamble sent in the K1 time-frequency resources and the Preamble sent in the K2 time-frequency resources belong to the first Random access process; for any two of the at least two Preambles, within the time interval when the K1 time-frequency resources are sent, the first counter is not updated; the first target power value is consistent with the The first counter is related to the product of the first step length.
  • the "at least 2 time-frequency resources among the K1 time-frequency resources do not overlap in the time domain” includes: any 2 time-frequency resources among the K1 time-frequency resources are in the time domain. There is no overlap in domains.
  • the "at least 2 time-frequency resources among the K2 time-frequency resources do not overlap in the time domain” includes: any 2 time-frequency resources among the K2 time-frequency resources are in the time domain. There is no overlap in domains.
  • This application also discloses a method used in a first node of wireless communication, which is characterized by including:
  • K1 is a positive integer greater than 1; the behavior is after sending at least two Preambles in K1 time-frequency resources, the first counter increases by 1; use the first target
  • the power value is used to send Preamble in K2 time-frequency resources, and K2 is a positive integer;
  • At least 2 time-frequency resources among the K1 time-frequency resources do not overlap in the time domain; at least 2 time-frequency resources among the K2 time-frequency resources do not overlap in the time domain, and the K2 time-frequency resources follow the K1 time-frequency resources; the Preamble sent in the K1 time-frequency resources and the Preamble sent in the K2 time-frequency resources belong to the first random access process; the at least 2 For any two of the Preambles, within the time interval when the K1 time-frequency resources are sent, the first counter is not updated; the first target power value is consistent with the first counter and the first step length. is related to the product of; the first step length is related to at least one of the K1 or the K2.
  • This application also discloses a first node used for wireless communication, which is characterized in that it includes:
  • the first transmitter sends at least 2 Preambles in K1 time-frequency resources, and K1 is a positive integer greater than 1; the behavior is to increase the first counter by 1 after sending at least two Preambles in K1 time-frequency resources. ;Use the first target power value to send Preamble in K2 time-frequency resources, where K2 is a positive integer;
  • At least 2 of the K1 time-frequency resources do not overlap in the time domain; at least 2 of the K2 time-frequency resources The time-frequency resources do not overlap in the time domain, and the K2 time-frequency resources are after the K1 time-frequency resources; the Preamble sent in the K1 time-frequency resources and the Preamble sent in the K2 time-frequency resources are Preamble belongs to the first random access process; for any two of the at least two Preambles, within the time interval when the K1 time-frequency resources are sent, the first counter has not been updated; the first target The power value is related to the product of the first counter and the first step length; the first step length is related to at least one of the K1 or the K2.
  • This application also discloses a method used in a first node of wireless communication, which is characterized by including:
  • At least 2 time-frequency resources among the K1 time-frequency resources do not overlap in the time domain; at least 2 time-frequency resources among the K2 time-frequency resources do not overlap in the time domain, and the K2 time-frequency resources follow the K1 time-frequency resources; the Preamble sent in the K1 time-frequency resources and the Preamble sent in the K2 time-frequency resources belong to the first random access process; the at least 2 For any two of the Preambles, within the time interval when the K1 time-frequency resources are sent, the first counter is not updated; the first target power value is consistent with the first counter and the first step length. related to the product; the second counter is used to count the number of times Preamble is sent.
  • updating the first counter includes: increasing the first counter by 1.
  • updating the first counter includes: updating the first counter according to K1.
  • This application also discloses a first node used for wireless communication, which is characterized in that it includes:
  • the first transmitter sends at least 2 Preambles in K1 time-frequency resources, and K1 is a positive integer greater than 1; the behavior is to update the second Preamble according to K1 after sending at least two Preambles in K1 time-frequency resources. counter, and update the first counter; use the first target power value to send Preamble on K2 time-frequency resources, where K2 is a positive integer;
  • At least 2 time-frequency resources among the K1 time-frequency resources do not overlap in the time domain; at least 2 time-frequency resources among the K2 time-frequency resources do not overlap in the time domain, and the K2 time-frequency resources follow the K1 time-frequency resources; the Preamble sent in the K1 time-frequency resources and the Preamble sent in the K2 time-frequency resources belong to the first random access process; the at least 2 For any two of the Preambles, within the time interval when the K1 time-frequency resources are sent, the first counter is not updated; the first target power value is consistent with the first counter and the first step length. related to the product; the second counter is used to count the number of times Preamble is sent.
  • updating the first counter includes: increasing the first counter by 1.
  • updating the first counter includes: updating the first counter according to K1.
  • this application has the following advantages:
  • Figure 1 shows a flow chart of Preamble transmission according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Figure 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a wireless signal transmission flow chart according to an embodiment of the present application
  • Figure 6 shows a wireless signal transmission flow chart according to another embodiment of the present application.
  • Figure 7 shows a wireless signal transmission flow chart according to yet another embodiment of the present application.
  • Figure 8 shows updating the first counter according to the number of Preambles sent in K1 time-frequency resources according to an embodiment of the present application.
  • Figure 9 shows a schematic diagram illustrating a first target power value related to a first power offset according to an embodiment of the present application
  • Figure 10 shows a schematic diagram in which K1 time-frequency resources and K2 time-frequency resources are respectively associated with the first downlink RS resource and the second downlink RS resource according to an embodiment of the present application;
  • Figure 11 shows a schematic diagram of a time-frequency resource set according to an embodiment of the present application.
  • Figure 12 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present application
  • Figure 13 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of Preamble transmission according to an embodiment of the present application, as shown in Figure 1.
  • each box represents a step. It should be particularly emphasized that the order of the boxes in the figure does not represent the temporal relationship between the steps represented.
  • the first node in this application sends at least 2 Preambles in K1 time-frequency resources, where K1 is a positive integer greater than 1; in step 102, it updates according to K1 The first counter; in step 103, use the first target power value to send the Preamble in K2 time-frequency resources, where K2 is a positive integer; wherein at least 2 of the K1 time-frequency resources are in the time domain do not overlap in the time domain; at least 2 of the K2 time-frequency resources do not overlap in the time domain, and the K2 time-frequency resources are behind the K1 time-frequency resources; after the K1 time-frequency resources
  • the Preamble sent by time-frequency resources and the Preamble sent by the K2 time-frequency resources belong to the first random access process; any two Preambles among the at least two Preambles are sent at the time when the K1 time-frequency resources are sent.
  • the first counter is not updated; the first target power value is related to the product of the first counter
  • sending Preamble in the K1 time-frequency resources is used to determine to monitor the PDCCH (Physical downlink control channel) scrambled by RA-RNTI (Radio Network Temporary Identifier, Radio Network Temporary Identifier) in ra-ResponseWindow. Physical downlink control channel).
  • PDCCH Physical downlink control channel
  • RA-RNTI Radio Network Temporary Identifier, Radio Network Temporary Identifier
  • the start time of the ra-ResponseWindow is related to the end time of one of the K1 time-frequency resources.
  • the start time of the ra-ResponseWindow is related to the end time of the last time-frequency resource among the K1 time-frequency resources.
  • the RA-RNTI is related according to at least one time-frequency resource among the K1 time-frequency resources.
  • the RA-RNTI is related to each time-frequency resource among the K1 time-frequency resources.
  • the RA-RNTI is related according to the first time-frequency resource among the K1 time-frequency resources.
  • each time-frequency resource in this application is used to send Preamble.
  • each time-frequency resource in this application includes time domain resources and frequency domain resources.
  • the duration of each time-frequency resource in this application includes at least one symbol.
  • each time-frequency resource in this application includes at least one symbol in the time domain.
  • each time-frequency resource in this application is a PRACH opportunity in the time domain.
  • each time-frequency resource in this application is an uplink carrier (Carrier) in the frequency domain.
  • Carrier uplink carrier
  • the frequency domain resources occupied by each time-frequency resource in this application refer to uplink carriers.
  • the uplink carrier refers to a NUL (Normal Uplink) carrier.
  • the uplink carrier refers to a SUL (Supplementary Uplink) carrier.
  • the frequency domain resource occupied by each time-frequency resource in this application includes a center frequency.
  • the frequency domain resources occupied by each time-frequency resource in this application include frequency and bandwidth.
  • the time domain position of a time-frequency resource in this application includes the start time of the one time-frequency resource.
  • the time domain position of a time-frequency resource in this application includes the cut-off time of the time-frequency resource.
  • the time domain location of a time-frequency resource in this application includes the start time and end time of the time-frequency resource.
  • the time domain location of a time-frequency resource in this application includes the start time and duration of the time-frequency resource.
  • the time domain location of a time-frequency resource in this application is a PRACH opportunity.
  • the starting time of a time-frequency resource in this application is the starting time of sending a Preamble.
  • the starting moment of a time-frequency resource in this application refers to the first symbol used to send Preamble in the time-frequency resource.
  • the starting moment of a time-frequency resource in this application refers to the first time slot used to send Preamble in the time-frequency resource.
  • the start time of a time-frequency resource in this application is the start time of a PRACH repetition.
  • the deadline for a time-frequency resource in this application is the deadline for sending a Preamble.
  • the cut-off time of a time-frequency resource in this application refers to the last symbol used to send Preamble in each time-frequency resource.
  • the deadline of a time-frequency resource in this application refers to the last time slot used to send Preamble in each time-frequency resource.
  • the deadline of a time-frequency resource in this application is the deadline of a PRACH repetition.
  • the duration of a time-frequency resource in the time domain in this application refers to the time interval between the start time of the one time-frequency resource in the time domain and the end time of the one time-frequency resource. .
  • the duration of a time-frequency resource in this application in the time domain includes at least one symbol.
  • the duration of a time-frequency resource in the time domain in this application includes at least one time slot.
  • a downlink RS resource in this application is an SSB (Synchronization Signal Block).
  • SSB Synchronization Signal Block
  • a downlink RS resource in this application is a CSI (Channel State Information)-RS.
  • a downlink RS resource in this application is either an SSB or a CSI-RS.
  • each Preamble in the first random access process is a Random Access Preamble.
  • each Preamble in the first random access process is a sequence.
  • each Preamble in the first random access process is a ZC sequence.
  • each Preamble in the first random access process is identified by ra-PreambleIndex.
  • each Preamble in the first random access process is for Msg1 (Message 1, Message 1).
  • each Preamble in the first random access process indicates coverage enhancement.
  • each Preamble in the first random access process is dedicated to coverage enhancement.
  • each Preamble in the first random access process is dedicated to NR coverage enhancement.
  • each Preamble in the first random access process does not indicate coverage enhancement.
  • the first random access process is a contention-based random access process (Contention Based Random Access, CBRA).
  • CBRA Contention Based Random Access
  • the first random access procedure is performed on the first cell.
  • the first cell is SpCell (Special Cell).
  • the first cell is PCell (Primary Cell).
  • the first cell is PSCell (Primary SCG (Secondary Cell Group) Cell, SCG primary cell).
  • PSCell Primary SCG (Secondary Cell Group) Cell, SCG primary cell.
  • each time-frequency resource in the first random access process belongs to the same uplink carrier in the frequency domain.
  • the first Preamble sent in the K1 time-frequency resources is the first Preamble sent in the first random access process.
  • the first Preamble sent in the K1 time-frequency resources is any Preamble sent in the first random access process.
  • the first Preamble sent in the K1 time-frequency resources is not sent in the first random access process.
  • the last Preamble sent in the K2 time-frequency resources is the last Preamble sent in the first random access process.
  • the last Preamble sent in the K2 time-frequency resources is not the last Preamble sent in the first random access process.
  • the first node did not receive the LBT (Listen Before Talk, listen before talking) failure indication (LBT failure indication was) from the lower layer. not received from lower layers).
  • LBT Listen Before Talk, listen before talking
  • the first node does not receive the notification of suspending power ramping counter from lower layers (the notification of suspending power ramping counter has not been received from lower layers).
  • the second counter in this application is increased by 1 after at least two Preambles are sent on K1 time-frequency resources.
  • the behavior is to update the second counter in this application according to K1 after K1 time-frequency resources send at least two Preambles.
  • the first counter in this application includes the value of the first counter.
  • the first counter in this application includes at least one of the first counter or the value of the first counter.
  • the second counter in this application includes the value of the second counter.
  • the second counter in this application includes at least one of the second counter or the value of the second counter.
  • the K1 is determined at least before the K1 time-frequency resources send the first Preamble.
  • the K1 is determined based on at least channel quality.
  • the K1 is determined based on at least channel quality and at least one offset.
  • the K1 is determined based on at least RSRP (Reference signal received power).
  • the K1 is determined based on at least RSRP measurement results and an RSRP threshold.
  • the K1 is determined based on at least an RSRP measurement result, at least one offset, and an RSRP threshold.
  • the K1 is determined according to a random access response.
  • the K1 is determined based on at least RRC (Radio Resource Control) messages.
  • RRC Radio Resource Control
  • the K1 is determined based on at least RRC messages and channel quality.
  • the K1 is related to at least channel quality.
  • the K1 is preconfigured.
  • the K1 is configurable.
  • K1 is variable.
  • K1 is countable.
  • the maximum value of K1 does not exceed a positive integer.
  • the K1 is determined among Q1 candidate integers; the Q1 candidate integers are configured through RRC messages.
  • the K1 is determined among the Q1 candidate integers according to at least channel quality.
  • the K1 is determined among the Q1 candidate integers based on at least channel quality and at least one offset.
  • the RSRP measurement result is an RSRP measurement result for at least one downlink reference signal.
  • the RSRP measurement result is an RSRP measurement result for a downlink path loss reference (downlink pathloss reference).
  • Preamble is sent in each of the K1 time-frequency resources.
  • Preamble is sent in at least 2 time-frequency resources among the K1 time-frequency resources.
  • Preamble is not sent in at least one time-frequency resource among the K1 time-frequency resources.
  • the Preamble sent in any two time-frequency resources among the K1 time-frequency resources is the same.
  • the Preambles sent in any two time-frequency resources among the K1 time-frequency resources are different.
  • the Preamble sent in the time-frequency resource among the K1 time-frequency resources is selected by the UE.
  • the action "updating the first counter” includes: increasing the first counter.
  • the action "updating the first counter” includes: modifying the first counter.
  • the action "updating the first counter” includes: adjusting the first counter.
  • the action "updating the first counter” includes: changing the first counter.
  • the value of the first counter after the update is not equal to the value of the first counter before the update.
  • the first counter is used to determine the adjustment value of the transmission power of the Preamble compared to the transmission power of the previous Preamble.
  • the first counter is related to the number of times Preamble is sent.
  • the first counter is related to the number of times the transmission power of the Preamble is adjusted.
  • the first counter is related to the number of times the transmission power of the Preamble is ramped.
  • the first counter is PREAMBLE_POWER_RAMPING_COUNTER.
  • the name of the first counter includes PREAMBLE_POWER_RAMPING_COUNTER.
  • the name of the first counter includes at least one of PREAMBLE_POWER_RAMPING_COUNTER or CE or COVERAGE or ENHANCEMENT or REPETITION.
  • the "updating the first counter according to the K1" includes: the first counter increases the K1.
  • the "updating the first counter according to the K1" includes: the first counter increments P1, where the P1 is a positive integer not greater than the K1.
  • the P1 is related to the number of Preambles sent in the K1 time-frequency resources.
  • the P1 is related to the downlink RS resources associated with the K1 time-frequency resources.
  • the P1 is related to the downlink RS resources associated with the K2 time-frequency resources.
  • the P1 is related to the downlink RS resources associated with the K1 time-frequency resources, and the P1 is related to the downlink RS resources associated with the K2 time-frequency resources.
  • the P1 is related to the number of the same downlink RS resources among the downlink RS resources associated with the K1 time-frequency resources and the downlink RS resources associated with the K2 time-frequency resources.
  • the number of the same downlink RS resources among the downlink RS resources associated with P1 and the K1 time-frequency resources and the downlink RS resources associated with the K2 time-frequency resources is equal.
  • the difference between P1 and K1 and 1 is equal to 1.
  • the P1 the K1-1.
  • the P1 is related to whether the downlink RS resources associated with the K1 time-frequency resources and the downlink RS resources associated with the K2 time-frequency resources are the same.
  • the P1 is equal to the K1+1.
  • the P1 is equal to the K1.
  • the downlink RS resource associated with P1 and the last time-frequency resource among the K1 time-frequency resources and the downlink RS associated with the first time-frequency resource among the K2 time-frequency resources are Whether the resources are the same.
  • the downlink RS resource associated with the last time-frequency resource among the K1 time-frequency resources and the first time-frequency resource among the K2 time-frequency resources are associated with The downlink RS resources are the same, and the P1 is equal to the K1+1.
  • the downlink RS resource associated with the last time-frequency resource among the K1 time-frequency resources and the first time-frequency resource among the K2 time-frequency resources are associated with The downlink RS resources are different, and the P1 is equal to the K1.
  • the P1 is related to the number of time-frequency resource groups that are associated with two different downlink RS resources among the K1 time-frequency resources; one time-frequency resource group includes the K1 time-frequency resources. Two adjacent time-frequency resources in .
  • the P1 and K1 time-frequency resources are associated with two different downlink RS resources.
  • the number of time-frequency resource groups is equal.
  • the P1 is equal to (the number of time-frequency resource groups associated with two different downlink RS resources among the K1 time-frequency resources + 1).
  • the P1 is related to the number of time-frequency resource groups that are associated with two different downlink RS resources among the K1 time-frequency resources, and the P1 is related to the It depends on whether the downlink RS resource associated with the last time-frequency resource among the K1 time-frequency resources and the downlink RS resource associated with the first time-frequency resource among the K2 time-frequency resources are the same.
  • the downlink RS resource associated with the last time-frequency resource among the K1 time-frequency resources is associated with the first time-frequency resource among the K2 time-frequency resources
  • the downlink RS resources are the same, and the P1 is equal to (the number of time-frequency resource groups associated with two different downlink RS resources among the K1 time-frequency resources + 1).
  • the downlink RS resource associated with the last time-frequency resource among the K1 time-frequency resources is associated with the first time-frequency resource among the K2 time-frequency resources
  • the downlink RS resources are different, and the number of time-frequency resource groups associated with two different downlink RS resources among the P1 and K1 time-frequency resources is equal to that of the K1 time-frequency resources.
  • the downlink RS resource associated with the reference time-frequency resource among the K1 time-frequency resources is associated with the reference time-frequency resource among the K2 time-frequency resources,
  • the downlink RS resources are the same, and the P1 is equal to the K1+1.
  • the downlink RS resource associated with the reference time-frequency resource among the K1 time-frequency resources is associated with the reference time-frequency resource among the K2 time-frequency resources,
  • the downlink RS resources are different, and the P1 is equal to the K1.
  • the reference time-frequency resource among the K1 time-frequency resources is the first time-frequency resource among the K1 time-frequency resources; among the K2 time-frequency resources The reference time-frequency resource is the first time-frequency resource among the K2 time-frequency resources.
  • the reference time-frequency resource among the K1 time-frequency resources is one time-frequency resource among the K1 time-frequency resources; all of the K2 time-frequency resources are The reference time-frequency resource is one of the K2 time-frequency resources.
  • the RRC message is used to determine the reference time-frequency resource among the K1 time-frequency resources; the RRC message is used to determine the reference time-frequency resource among the K2 time-frequency resources. Time and frequency resources.
  • two adjacent time-frequency resources among the K1 time-frequency resources are associated with the same downlink RS resource, and the power used to transmit the Preamble in the two adjacent time-frequency resources is the same.
  • two adjacent time-frequency resources among the K1 time-frequency resources are associated with the same downlink RS resource, and the power used to transmit the Preamble in the two adjacent time-frequency resources is different.
  • the transmission of data between the two adjacent time-frequency resources is the same.
  • the transmission of data between the two adjacent time-frequency resources is different.
  • a Preamble is sent on the two adjacent time-frequency resources.
  • the power used varies.
  • a Preamble is sent on the two adjacent time-frequency resources.
  • the power used is the same.
  • the first downlink RS resource is used to determine at least one time-frequency resource among the K1 time-frequency resources.
  • the first downlink RS resource is used to determine each time-frequency resource among the K1 time-frequency resources.
  • the first downlink RS resource is used to determine only one time-frequency source among the K1 time-frequency resources.
  • the first downlink RS resource is used to determine the first time-frequency resource among the K1 time-frequency resources.
  • K1 downlink RS resources are respectively used to determine one time-frequency resource among the K1 time-frequency resources; the first downlink RS resource is one downlink RS among the K1 downlink RS resources. resource.
  • the second downlink RS resource is used to determine at least one time-frequency resource among the K2 time-frequency resources.
  • the second downlink RS resource is used to determine each time-frequency resource in the K2 time-frequency resources.
  • the second downlink RS resource is used to determine only one time-frequency source among the K2 time-frequency resources.
  • the second downlink RS resource is used to determine the first time-frequency resource among the K2 time-frequency resources.
  • K2 downlink RS resources are respectively used to determine one time-frequency resource among the K2 time-frequency resources; the second downlink RS resource is one downlink RS resource among the K2 downlink RS resources. .
  • the K1 time-frequency resources are associated with only one downlink RS resource, and the K2 time-frequency resources are associated with only one downlink RS resource; the K1 time-frequency resources are associated with the downlink
  • the RS resources are the same as the downlink RS resources associated with the K2 time-frequency resources.
  • the K1 time-frequency resources are associated with only one downlink RS resource, and the K2 time-frequency resources are associated with only one downlink RS resource; the K1 time-frequency resources are associated with the downlink The RS resources are different from the downlink RS resources associated with the K2 time-frequency resources.
  • the K1 time-frequency resources are associated with at least one downlink RS resource
  • the K2 time-frequency resources are associated with at least one downlink RS resource.
  • the K1 time-frequency resources are associated with multiple downlink RS resources, and the K2 time-frequency resources are associated with multiple downlink RS resources.
  • the number of downlink RS resources associated with the K1 time-frequency resources is equal to the number of downlink RS resources associated with the K2 time-frequency resources.
  • the number of downlink RS resources associated with the K1 time-frequency resources is not equal to the number of downlink RS resources associated with the K2 time-frequency resources.
  • the downlink RS resources associated with the K1 time-frequency resources are different from the downlink RS resources associated with the K2 time-frequency resources.
  • the behavior of updating the first counter according to the K1 includes: at least one downlink RS resource associated with the K1 time-frequency resources and at least one downlink RS resource associated with the K2 time-frequency resources.
  • the first counter is updated with the number of the same downlink RS resources in; wherein, the K1 time-frequency resources are associated with at least one downlink RS resource, and the K2 time-frequency resources are associated with at least one downlink RS resource.
  • the first counter is equal to 1.
  • the first counter is greater than 1.
  • the first counter updated according to K1 does not reach the first integer.
  • the first counter is updated according to the K1.
  • the first integer is configured.
  • the first integer is not configured.
  • the first integer is configurable.
  • the first integer is preconfigured.
  • the first integer is configured through an RRC message.
  • the first integer is not greater than preambleTransMax.
  • the first integer is smaller than preambleTransMax.
  • the "using the first target power value to send the Preamble in K2 time-frequency resources” includes: using the first target power value to send the Preamble in the K2 time-frequency resources.
  • the "using the first target power value to send the Preamble in K2 time-frequency resources” includes: using the first time-frequency resource in the K2 time-frequency resources to send the Preamble using the first target power value. Preamble.
  • the "using the first target power value to send the Preamble in K2 time-frequency resources" includes: using the first target power value to send the Preamble in each of the K2 time-frequency resources. .
  • the "using the first target power value to send the Preamble in K2 time-frequency resources" includes: using the first target power value to send the Preamble in at least one time-frequency resource among the K2 time-frequency resources. .
  • the "using the first target power value to send the Preamble in K2 time-frequency resources” includes: using the first The target power value sends Preamble in the first time-frequency resource among the K2 time-frequency resources.
  • the "using the first target power value to send the Preamble in K2 time-frequency resources" includes: using the first target power value to send the Preamble in each of the K2 time-frequency resources. .
  • the "using the first target power value to send the Preamble in K2 time-frequency resources" includes: using the first target power value to send the Preamble in at least one of the K2 time-frequency resources. .
  • the power used to transmit the Preamble in any two time-frequency resources among the K2 time-frequency resources is equal.
  • the power used to transmit the Preamble in any two time-frequency resources among the K2 time-frequency resources is not equal.
  • the power used to transmit the Preamble in at least two of the K2 time-frequency resources is equal.
  • the power used to transmit the Preamble in at least two of the K2 time-frequency resources is not equal.
  • the first time-frequency resource among the K2 time-frequency resources uses the first target power value to send the Preamble; the j-th time-frequency resource among the K2 time-frequency resources The Preamble is sent using (the first target power value + the first step length ⁇ (j-1)); the j is an integer not less than 2 and not greater than the K2.
  • the first time-frequency resource among the K2 time-frequency resources uses the first target power value to send the Preamble; according to the association of the j-th time-frequency resource among the K2 time-frequency resources Whether the downlink RS resource associated with the j-1th time-frequency resource among the K2 time-frequency resources is the same determines whether the j-th time-frequency resource among the K2 time-frequency resources is transmitted Whether the power of the Preamble is the same as the power of transmitting the Preamble in the j-1th time-frequency resource among the K2 time-frequency resources.
  • the downlink RS resource associated with the jth time-frequency resource among the K2 time-frequency resources and the j-1th time-frequency resource among the K2 time-frequency resources are the same.
  • the j-th time-frequency resource among the K2 time-frequency resources sends the Preamble power and the j-1th time-frequency among the K2 time-frequency resources. Resources send Preamble with different powers.
  • the downlink RS resource associated with the jth time-frequency resource among the K2 time-frequency resources and the j-1th time-frequency resource among the K2 time-frequency resources are different.
  • the j-th time-frequency resource among the K2 time-frequency resources sends the Preamble power and the j-1th time-frequency among the K2 time-frequency resources.
  • the resource sends the Preamble with the same power.
  • the K2 is determined at least before the K2 time-frequency resources send the first Preamble.
  • the K2 is determined according to the K1.
  • the K2 is determined based on at least channel quality.
  • the K2 is determined based on at least channel quality and at least one offset.
  • the K2 is determined based on at least RSRP.
  • the K2 is determined based on at least RSRP measurement results and an RSRP threshold.
  • the K2 is determined based on at least an RSRP measurement result, at least one offset, and an RSRP threshold.
  • the K2 is determined according to a random access response.
  • the K2 is determined based on at least RRC (Radio Resource Control) messages.
  • RRC Radio Resource Control
  • the K2 is determined based on at least RRC messages and channel quality.
  • the K2 is related to at least channel quality.
  • the K2 is preconfigured.
  • the K2 is configurable.
  • the K2 is variable.
  • the K2 is countable.
  • the maximum value of K2 does not exceed a positive integer.
  • K2 is equal to 1.
  • the K2 is greater than 1.
  • the K2 and the K1 are equal.
  • the K2 and the K1 are not equal.
  • the K2 and the K1 are determined independently.
  • the K2 is the K1.
  • the K2 is determined among Q1 candidate integers; the Q1 candidate integers are configured through RRC messages.
  • the K2 is determined among the Q1 candidate integers according to at least channel quality.
  • the K2 is determined among the Q1 candidate integers based on at least channel quality and at least one offset.
  • the first symbol after the cut-off time of one of the K1 time-frequency resources is the start time of another of the K1 time-frequency resources.
  • one symbol after the end time of one of the K1 time-frequency resources is the start time of another of the K1 time-frequency resources.
  • any two time-frequency resources among the K1 time-frequency resources do not overlap in the time domain.
  • any two time-frequency resources among the K1 time-frequency resources are not continuous in the time domain.
  • any two time-frequency resources among the K1 time-frequency resources are continuous in the time domain.
  • At least two time-frequency resources among the K1 time-frequency resources do not overlap in the time domain.
  • any two time-frequency resources among the K1 time-frequency resources have the same duration length in the time domain.
  • the duration lengths of any two of the K1 time-frequency resources in the time domain are not equal.
  • At least 2 of the K1 time-frequency resources have the same duration length in the time domain.
  • At least two of the K1 time-frequency resources have unequal duration lengths in the time domain.
  • any two time-frequency resources among the K1 time-frequency resources overlap in the frequency domain.
  • any two time-frequency resources among the K1 time-frequency resources do not overlap in the frequency domain.
  • At least 2 of the K1 time-frequency resources do not overlap in the frequency domain.
  • any two time-frequency resources among the K1 time-frequency resources occupy the same frequency domain resources.
  • any two time-frequency resources among the K1 time-frequency resources occupy different frequency domain resources.
  • At least 2 of the K1 time-frequency resources occupy the same frequency domain resources.
  • At least two time-frequency resources occupy different frequency domain resources.
  • the first symbol after the cut-off time of one of the K2 time-frequency resources is the start time of another of the K2 time-frequency resources.
  • one symbol after the end time of one of the K2 time-frequency resources is the start time of another of the K2 time-frequency resources.
  • any two time-frequency resources among the K2 time-frequency resources do not overlap in the time domain.
  • any two time-frequency resources among the K2 time-frequency resources are not continuous in the time domain.
  • any two time-frequency resources among the K2 time-frequency resources are continuous in the time domain.
  • At least two time-frequency resources among the K2 time-frequency resources do not overlap in the time domain.
  • any two time-frequency resources among the K2 time-frequency resources have the same duration length in the time domain.
  • the duration lengths of any two of the K2 time-frequency resources in the time domain are not equal.
  • At least two time-frequency resources among the K2 time-frequency resources have the same duration length in the time domain.
  • At least two of the K2 time-frequency resources have unequal duration lengths in the time domain.
  • any two time-frequency resources among the K2 time-frequency resources overlap in the frequency domain.
  • any two time-frequency resources among the K2 time-frequency resources do not overlap in the frequency domain.
  • At least 2 of the K2 time-frequency resources do not overlap in the frequency domain.
  • any two time-frequency resources among the K2 time-frequency resources occupy the same frequency domain resources.
  • any two time-frequency resources among the K2 time-frequency resources occupy different frequency domain resources.
  • At least 2 of the K2 time-frequency resources occupy the same frequency domain resources.
  • At least two time-frequency resources occupy different frequency domain resources.
  • the "the K2 time-frequency resources are after the K1 time-frequency resources" includes: the first time-frequency resource among the K2 time-frequency resources is after the K1 time-frequency resources. after the last time-frequency resource in .
  • the K2 time-frequency resources are after the K1 time-frequency resources includes: the starting time of the first time-frequency resource among the K2 time-frequency resources is after the K1 time-frequency resources. After the deadline of the last time-frequency resource in the time-frequency resource.
  • the K2 time-frequency resources are after the K1 time-frequency resources includes: the K2 time-frequency resources are later than the K1 time-frequency resources in the time domain.
  • the "the K2 time-frequency resources are after the K1 time-frequency resources" includes: the first time-frequency resource among the K2 time-frequency resources is after the K1 time-frequency resources. after the first time-frequency resource in .
  • the first random access process is not terminated, and the first random access process is not terminated.
  • the access process was not considered successfully completed.
  • the Preamble sent in the K1 time-frequency resources and the Preamble sent in the K2 time-frequency resources belong to the same random access process.
  • the Preamble sent in the K1 time-frequency resources and the Preamble sent in the K2 time-frequency resources are for the first random access process.
  • the first counter is not initialized during the time interval from when the Preamble is sent on the K1 time-frequency resources to when the Preamble is sent on the K2 time-frequency resources.
  • the second counter is not initialized during the time interval from when the Preamble is sent on the K1 time-frequency resources to when the Preamble is sent on the K2 time-frequency resources.
  • the first counter is not initialized and is used to determine whether the K1 time-frequency resources are used.
  • the Preamble sent by the resource and the Preamble sent by the K2 time-frequency resources are for the first random access process.
  • the second counter is not initialized and is used to determine whether the K1 time-frequency resources are used.
  • the Preamble sent by the resource and the Preamble sent by the K2 time-frequency resources are for the first random access process.
  • the fact that the first counter is not initialized means that the first counter is not set to 1.
  • the fact that the second counter is not initialized means that the second counter is not set to 1.
  • the fact that the first counter is not initialized means that the first counter is not set to the initial value of the first counter.
  • the fact that the second counter is not initialized means that the second counter is not set to the initial value of the second counter.
  • two time-frequency resources among the K1 time-frequency resources are used to send any two of the at least two Preambles.
  • two time-frequency resources among the K1 time-frequency resources are used to send any two of the at least two Preambles.
  • the first counter is not updated during the time interval when the K1 time-frequency resources are sent.
  • the time interval during which any two of the at least two Preambles are sent in the K1 time-frequency resources includes: sending a Preamble in any two of the K1 time-frequency resources. time interval.
  • the time interval during which any two of the at least two Preambles are sent in the K1 time-frequency resources includes: the expiration time of the first Preamble among the any two Preambles to the The time interval between the start time of the second Preamble of any two Preambles.
  • the time interval during which any two of the at least two Preambles are sent in the K1 time-frequency resources includes: the start time of the first Preamble of the any two Preambles to the The time interval between the start time of the second Preamble of any two Preambles.
  • the time interval during which any two of the at least two Preambles are sent in the K1 time-frequency resources includes: the expiration time of the first Preamble among the any two Preambles to the The time interval between the deadline of the second Preamble of any two Preambles.
  • the first Preamble among the any two Preambles is earlier than the any two Preambles in the time domain.
  • the second Preamble in the Preamble is earlier than the any two Preambles in the time domain.
  • the first Preamble among the any two Preambles is earlier than the second Preamble among the any two Preambles in the time domain.
  • the first Preamble among any two Preambles includes the first Preamble sent in the K1 time-frequency resources.
  • the second Preamble among any two Preambles includes the last Preamble sent in the K1 time-frequency resources.
  • the first counter has not been updated means that the first counter has not changed.
  • the fact that the first counter is not updated means that the first counter is not increased.
  • the first node does not "consider that the random access response has not been received.” the Random Access Response reception not successful)".
  • the first node does not consider the Contention Resolution not successful. successful).
  • the first node does not consider that the first random access process is successfully completed for any two of the at least two Preambles within the time interval when the K1 time-frequency resources are sent. (consider this Random Access procedure successfully completed).
  • the behavior sends at least two Preambles in K1 time-frequency resources.
  • the behavior uses the first target power value.
  • the first counter is only updated. once.
  • the behavior sends at least two Preambles in K1 time-frequency resources.
  • the behavior uses the first target power value and within the time interval of sending Preambles in K2 time-frequency resources, the first node "considers random" The access response was not received only once.
  • the behavior sends at least two Preambles in K1 time-frequency resources.
  • the behavior uses the first target power value.
  • the first node Within the time interval of sending Preambles in K2 time-frequency resources, the first node "considers competition.” Resolved Unsuccessfully" only once.
  • the behavior sends at least two Preambles in K1 time-frequency resources.
  • the behavior uses the first target power value to send Preambles in K2 time-frequency resources within the time interval of the first node.
  • a node does not consider the first random access procedure to be completed successfully.
  • the first counter is used to calculate the first power value.
  • the first counter is used to determine the first power value.
  • the product of the first counter and the first step length is used to determine the first target power value.
  • the product of the first counter and the first step length is used to determine the first power value.
  • the first power value is related to the first initial power, the first counter, and the first step length.
  • the first power value is related to the first initial power, the first adjusted power, the first counter, and the first step length.
  • the first target power value is not greater than the maximum output power of the first node.
  • the first target power value is less than the maximum output power of the first node.
  • the maximum output power of the first node is preconfigured.
  • the maximum output power of the first node is configured through an RRC message.
  • the maximum output power of the first node is related to the subcarrier spacing.
  • the maximum output power of the first node is related to the serving cell c.
  • the maximum output power of the first node is related to the carrier f.
  • the maximum output power of the first node is related to the sending opportunity i.
  • the maximum output power of the first node is related to the serving cell c, the carrier f and the transmission opportunity i.
  • the maximum output power of the first node is equal to P CMAX,f,c (i).
  • the maximum output power of the first node is PCMAX,f,c (i).
  • the maximum output power of the first node is the carrier f configured by the first node for the serving cell c.
  • the serving cell c is the first cell.
  • the carrier f is the uplink carrier of the first cell associated with the first random access process.
  • the activated uplink BWP b is an initial BWP (Bandwidth Part, bandwidth part).
  • the sending opportunity i is related to at least one time-frequency resource among the K2 time-frequency resources.
  • the sending opportunity i is related to only one time-frequency resource among the K2 time-frequency resources.
  • the sending opportunity i is related to the first time-frequency resource among the K2 time-frequency resources.
  • the sending opportunity i is related to each time-frequency resource in the K2 time-frequency resources.
  • the PCMAX,f,c (i) refers to 3GPP TS 38.213.
  • the PCMAX,f,c (i) refers to 3GPP TS 38.101.
  • the first target power value is equal to (the sum of the first power value and the first path loss value).
  • the first target power value the first power value+the first path loss value.
  • the first power value is related to the serving cell c.
  • the first power value is related to the carrier f.
  • the first power value is related to the activated uplink BWP (active UL BWP)b.
  • the first power value is related to the serving cell c, the carrier f and the activated uplink BWP b.
  • the first power value is P PRACH,target,f,c .
  • the first power value is related to the product of the first counter and the first step length.
  • the first power value is related to the product of the first counter and the first step length.
  • the first power value is linearly related to the product of the first counter and the first step length.
  • the first power value is the value of PREAMBLE_RECEIVED_TARGET_POWER.
  • the first power value first initial power + (first counter – 1) ⁇ first step length.
  • the first power value first initial power + first adjusted power + (first counter – 1) ⁇ first step length.
  • the first initial power is the value of preambleReceivedTargetPower.
  • the first initial power is configured through an RRC message.
  • an RRC domain in the RACH-ConfigGeneric IE is used to configure the first initial power.
  • an RRC domain is used to configure the first initial power, and the name of the RRC domain is preambleReceivedTargetPower.
  • an RRC domain is used to configure the first initial power, and the name of the RRC domain includes at least one of preambleReceivedTargetPower or CE or Coverage or Enhancement or Repetition.
  • the first adjustment power is related to the Preamble format.
  • the first adjustment power is related to whether the Preamble is in a long Preamble format or a short Preamble format.
  • the first adjustment power is related to the subcarrier spacing ⁇ .
  • the first adjustment power is determined by looking up a table.
  • the first adjusted power is determined by searching the table in Section 7.3 of 3GPP TS 38.321.
  • the first adjustment power is the value of DELTA_PREAMBLE.
  • the first path loss value is a path loss (pathloss).
  • the first path loss value is related to the serving cell c.
  • the first path loss value is related to the carrier f.
  • the first path loss value is related to the activated uplink BWP b.
  • the first path loss value is related to the serving cell c, the carrier f and the activated uplink BWP b.
  • the first path loss value is equal to PL b,f,c .
  • the first path loss value is PL b,f,c .
  • the PL b, f, c refers to Section 7.4 of 3GPP TS 38.213.
  • the unit of the first path loss value is dB.
  • the unit of the first path loss value is dBm.
  • the first step is preconfigured.
  • the first step length is determined by the UE.
  • the first step length is fixed.
  • the first step length is variable.
  • the first step is configured for the serving cell c.
  • the first step is configured for the carrier f.
  • the first step is configured for the activated uplink BWP b.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in Figure 2.
  • Figure 2 illustrates the network architecture 200 of the 5G NR (New Radio)/LTE (Long-Term Evolution)/LTE-A (Long-Term Evolution Advanced) system.
  • 5G NR/LTE The LTE-A network architecture 200 may be called 5GS (5G System)/EPS (Evolved Packet System) 200 or some other suitable term.
  • 5GS/EPS 200 includes UE (User Equipment) 201, RAN (Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home At least one of Subscriber Server/UDM (Unified Data Management) 220 and Internet service 230.
  • 5GS/EPS can interconnect with other access networks, but these entities/interfaces are not shown for simplicity. As shown, 5GS/EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks that provide circuit-switched services or other cellular networks.
  • the RAN includes node 203 and other nodes 204.
  • Node 203 provides user and control plane protocol termination towards UE 201.
  • Node 203 may connect to other nodes 204 via the Xn interface (eg, backhaul)/X2 interface.
  • Node 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmit Receive Node), or some other suitable terminology.
  • BSS Basic Service Set
  • ESS Extended Service Set
  • TRP Transmit Receive Node
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radio, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radio non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • Node 203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management field)/SMF (Session Management Function, session management function )211, other MME/AMF/SMF214, S-GW (Service Gateway, service gateway)/UPF (User Plane Function, user plane function) 212 and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210. Basically, MME/AMF/SMF211 provides bearer and connection management.
  • All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213.
  • P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching streaming services.
  • the UE201 corresponds to the first node in this application.
  • the UE201 is a user equipment (User Equipment, UE).
  • UE User Equipment
  • the UE201 is a base station equipment (BaseStation, BS).
  • BaseStation BaseStation, BS
  • the UE201 is a relay device.
  • the node 203 corresponds to the second node in this application.
  • the node 203 is a base station device.
  • the node 203 is a user equipment.
  • the node 203 is a relay device.
  • the node 203 is a gateway.
  • the UE 201 is a user equipment
  • the node 203 is a base station equipment.
  • the user equipment supports transmission of a terrestrial network (Non-Terrestrial Network, NTN).
  • NTN Non-Terrestrial Network
  • the user equipment supports transmission of non-terrestrial network (Terrestrial Network, terrestrial network).
  • the user equipment supports transmission in a large delay difference network.
  • the user equipment supports dual connection (Dual Connection, DC) transmission.
  • Dual Connection DC
  • the user equipment includes an aircraft.
  • the user equipment includes a vehicle-mounted terminal.
  • the user equipment includes a ship.
  • the user equipment includes an Internet of Things terminal.
  • the user equipment includes a terminal of the Industrial Internet of Things.
  • the user equipment includes equipment that supports low-latency and high-reliability transmission.
  • the user equipment includes a test device.
  • the user equipment includes a signaling tester.
  • the base station equipment includes a base transceiver station (Base Transceiver Station, BTS).
  • BTS Base Transceiver Station
  • the base station equipment includes a Node B (NodeB, NB).
  • NodeB NodeB, NB
  • the base station equipment includes a gNB.
  • the base station equipment includes an eNB.
  • the base station equipment includes ng-eNB.
  • the base station equipment includes en-gNB.
  • the base station equipment supports transmission in non-terrestrial networks.
  • the base station equipment supports transmission in a large delay difference network.
  • the base station equipment supports transmission of terrestrial networks.
  • the base station equipment includes a macro cellular (Marco Cellular) base station.
  • a macro cellular (Marco Cellular) base station includes a macro cellular (Marco Cellular) base station.
  • the base station equipment includes a micro cell (Micro Cell) base station.
  • Micro Cell Micro Cell
  • the base station equipment includes a Pico Cell base station.
  • the base station equipment includes a home base station (Femtocell).
  • Femtocell home base station
  • the base station equipment includes a base station equipment that supports a large delay difference.
  • the base station equipment includes a flying platform equipment.
  • the base station equipment includes satellite equipment.
  • the base station equipment includes a TRP (Transmitter Receiver Point, transmitting and receiving node).
  • TRP Transmitter Receiver Point, transmitting and receiving node
  • the base station equipment includes a CU (Centralized Unit).
  • CU Centralized Unit
  • the base station equipment includes a DU (Distributed Unit).
  • the base station equipment includes testing equipment.
  • the base station equipment includes a signaling tester.
  • the base station equipment includes an IAB (Integrated Access and Backhaul)-node.
  • IAB Integrated Access and Backhaul
  • the base station equipment includes an IAB-donor.
  • the base station equipment includes IAB-donor-CU.
  • the base station equipment includes IAB-donor-DU.
  • the base station equipment includes IAB-DU.
  • the base station equipment includes IAB-MT.
  • the relay device includes relay.
  • the relay device includes L3relay.
  • the relay device includes L2relay.
  • the relay device includes a router.
  • the relay device includes a switch.
  • the relay device includes user equipment.
  • the relay device includes a base station device.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300.
  • FIG. 3 shows the radio protocol architecture for the control plane 300 with three layers: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above PHY301, including MAC (Medium Access Control, media access control) sub-layer 302, RLC (Radio Link Control, wireless link layer control protocol) sub-layer 303 and PDCP (Packet Data Convergence) Protocol (Packet Data Convergence Protocol) sublayer 304.
  • MAC Medium Access Control, media access control
  • RLC Radio Link Control, wireless link layer control protocol
  • PDCP Packet Data Convergence Protocol
  • PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides cross-location support.
  • RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ (Hybrid Automatic Repeat Request, Hybrid Automatic Repeat Request).
  • MAC sublayer 302 provides multiplexing between logical and transport channels. The MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell. MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and configuring lower layers using RRC signaling.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture in the user plane 350 is for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, and the PDCP sublayer 354 in the L2 layer 355.
  • the RLC sublayer 353 and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides header compression for upper layer packets to reduce radio Transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • DRB Data Radio Bearer
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the Preamble in this application is generated from the PHY301 or PHY351.
  • the first signaling in this application is generated in the RRC306.
  • the first signaling in this application is generated by the MAC302 or MAC352.
  • the first signaling in this application is generated in the PHY301 or PHY351.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in the access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and an antenna 420.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and radio resource allocation to the first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer). Transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 410, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M-phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for M-phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams. Transmit processor 416 then maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the first communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial stream that is the destination. The symbols on each spatial stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover upper layer data and control signals transmitted by the second communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media.
  • the controller/processor 459 In transmission from the second communication device 410 to the second communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements headers based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 In transmission from the first communications device 450 to the second communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Using at least one processor together, the first communication device 450 at least: sends at least 2 Preambles in K1 time-frequency resources, where K1 is a positive integer greater than 1; updates the first counter according to K1; uses the first The target power value sends the Preamble in K2 time-frequency resources, and the K2 is a positive integer; wherein any two time-frequency resources among the K1 time-frequency resources do not overlap in the time domain; the K2 time-frequency resources Any two time-frequency resources in the time-frequency resources do not overlap in the time domain, and the K2 time-frequency resources are after the K1 time-frequency resources; the Preamble sent in the K1 time-frequency resources and the K2 time-frequency resources are The Preamble sent by time-frequency resources belongs to the first random access process; any two Preambles among the at least two Preambles
  • the first communication device 450 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: at K1 Send at least 2 Preambles on K2 time-frequency resources, and K1 is a positive integer greater than 1; update the first counter according to K1; use the first target power value to send Preamble on K2 time-frequency resources, and K2 is a positive integer; Wherein, any two time-frequency resources among the K1 time-frequency resources do not overlap in the time domain; any two time-frequency resources among the K2 time-frequency resources do not overlap in the time domain, and the K2 time-frequency resources are among the K1 time-frequency resources.
  • the Preamble sent in the K1 time-frequency resources and the Preamble sent in the K2 time-frequency resources belong to the first random access process; any 2 Preambles among the at least 2 Preambles are in the K1 time-frequency resources.
  • the first counter is not updated; the first target power value is related to the product of the first counter and the first step length.
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the second communication device 410 at least: receives a Preamble sent in K1 time-frequency resources, or receives a Preamble sent in K2 time-frequency resources; wherein the first counter is updated according to the K1; the K1 is a positive integer greater than 1; the K2 is a positive integer; at least 2 Preambles are sent in the K1 time-frequency resources; the Preamble is sent in the K2 time-frequency resources using the first target power value; the K1 Any two time-frequency resources among the time-frequency resources do not overlap in the time domain; any two time-frequency resources among the K2 time-frequency resources do not overlap in the time domain, and the K2 time-frequency resources do not overlap in the time domain.
  • the Preamble sent in the K1 time-frequency resources and the Preamble sent in the K2 time-frequency resources belong to the first random access process; any 2 of the at least 2 Preambles Within the time interval during which the K1 time-frequency resources are sent, the first counter is not updated; the first target power value is related to the product of the first counter and the first step length.
  • the second communication device 410 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: receiving The Preamble sent in K1 time-frequency resources, or the Preamble sent in K2 time-frequency resources is received; wherein, the first counter is updated according to the K1; the K1 is a positive integer greater than 1; the K2 is a positive Integer; at least 2 Preambles are sent in the K1 time-frequency resources; Preamble is sent in the K2 time-frequency resources using the first target power value; any 2 time-frequency resources in the K1 time-frequency resources There is no overlap in the time domain; any two time-frequency resources among the K2 time-frequency resources do not overlap in the time domain, and the K2 time-frequency resources are after the K1 time-frequency resources; after all The Preamble sent in the K1 time-frequency resources and the Preamble sent in the K2 time-frequency resources belong to the first random access process; any 2 Preamble
  • the antenna 452, the receiver 454, the receiving processor 456, and the controller/processor 459 are used to receive the first signaling.
  • At least one of the antenna 420, the transmitter 418, the transmission processor 416, and the controller/processor 475 is used to send the first signaling.
  • the antenna 452, the transmitter 454, the transmission processor 468, and the controller/processor 459 are used to transmit at least 2 Preambles in K1 time-frequency resources.
  • At least one of the antenna 420, the receiver 418, the receiving processor 470, and the controller/processor 475 is used to receive at least one signal transmitted in K1 time-frequency resources. 1 Preamble.
  • the antenna 452, the transmitter 454, the transmission processor 468, and the controller/processor 459 are used to transmit Preamble in K2 time-frequency resources.
  • At least one of the antenna 420, the receiver 418, the receiving processor 470, and the controller/processor 475 is used to receive at least one transmitted in K2 time-frequency resources. 1 Preamble.
  • the antenna 452, the transmitter 454, the transmission processor 468, and the controller/processor 459 are used to transmit Preamble in K3 time-frequency resources.
  • At least one of the antenna 420, the receiver 418, the receiving processor 470, and the controller/processor 475 is used to receive at least one signal transmitted in K3 time-frequency resources. 1 Preamble.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a user equipment.
  • the first communication device 450 is a user equipment that supports a large delay difference.
  • the first communication device 450 is a user equipment supporting NTN.
  • the first communication device 450 is an aircraft device.
  • the first communication device 450 has positioning capabilities.
  • the first communication device 450 does not have constant energy capability.
  • the first communication device 450 is a user equipment supporting TN.
  • the second communication device 410 is a base station device (gNB/eNB/ng-eNB).
  • the second communication device 410 is a base station device that supports a large delay difference.
  • the second communication device 410 is a base station device supporting NTN.
  • the second communication device 410 is a satellite device.
  • the second communication device 410 is a flight platform device.
  • the second communication device 410 is a base station device supporting TN.
  • Embodiment 5 illustrates a wireless signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 5 . It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S5101 receive the first signaling; in step S5102, send at least 2 Preambles in K1 time-frequency resources, where K1 is a positive integer greater than 1; in step S5103, according to The K1 updates the first counter; in step S5104, the first target power value is used to send the Preamble in K2 time-frequency resources, and the K2 is a positive integer.
  • step S5201 the first signaling is sent; in step S5202, a Preamble is received; in step S5203, a Preamble is received.
  • At least 2 of the K1 time-frequency resources do not overlap in the time domain; at least 2 of the K2 time-frequency resources do not overlap in the time domain. Stacked, the K2 time-frequency resources are after the K1 time-frequency resources; the Preamble sent in the K1 time-frequency resources and the Preamble sent in the K2 time-frequency resources belong to the first random access process; In any two of the at least two Preambles, within the time interval when the K1 time-frequency resources are sent, the first counter is not updated; the sum of the first target power value and the first counter The first step is related to the product of length.
  • the "at least 2 time-frequency resources among the K1 time-frequency resources do not overlap in the time domain” includes: any 2 time-frequency resources among the K1 time-frequency resources are in the time domain. There is no overlap in domains.
  • the "at least 2 time-frequency resources among the K2 time-frequency resources do not overlap in the time domain” includes: any 2 time-frequency resources among the K2 time-frequency resources are in the time domain. There is no overlap in domains.
  • the first node U01 is a user equipment.
  • the first node U01 is a base station device.
  • the first node U01 is a relay device.
  • the second node N02 is a base station device.
  • the second node N02 is a user equipment.
  • the second node N02 is a relay device.
  • the first node U01 is a user equipment
  • the second node N02 is a base station equipment.
  • the first node U01 is a user equipment
  • the second node N02 is a relay device.
  • the first node U01 is a user equipment
  • the second node N02 is a user equipment
  • the first node U01 is a base station equipment
  • the second node N02 is a base station equipment
  • the first node U01 is a relay device
  • the second node N02 is a base station device.
  • the first node U01 and the second node N02 are connected through a uu port.
  • the first node U01 and the second node N02 are connected through an Xn port.
  • the first node U01 and the second node N02 are connected through an X2 port.
  • the first node U01 and the second node N02 are connected through a PC5 port.
  • the first node U01 and the second node N02 are connected through an air interface.
  • the first signaling indicates the first step.
  • the first signaling includes the first step.
  • the first signaling is used to determine the first step length.
  • the first signaling is used to configure the first step.
  • the first signaling is an RRC message.
  • the first signaling is an RRC IE (Information Element) in an RRC message.
  • the first signaling is an RRC field in an RRC message.
  • the first signaling is a MAC CE (Control Element).
  • the first signaling includes RA-Prioritization IE, and an RRC field in the RA-Prioritization IE indicates the first step.
  • the first signaling includes RACH-ConfigCommon IE, and an RRC field in the RACH-ConfigCommon IE indicates the first step.
  • the first signaling includes an RRC field
  • the RRC field indicates the first step
  • the name of the RRC field includes powerRampingStep.
  • the name of the one RRC domain includes at least one of power or Ramping or Step or CE or Coverage or Enhancement or Repetition.
  • the name of the one RRC domain includes at least one of power or Ramping or Step or High or Priority or CE or Coverage or Enhancement or Repetition.
  • the name of the one RRC domain includes the powerRampingStep domain.
  • the name of the RRC domain is the powerRampingStep domain.
  • the name of the one RRC domain includes the powerRampingStepHighPriority domain.
  • the name of the RRC domain is the powerRampingStepHighPriority domain.
  • the first step is a power ramping step.
  • the first step is a power increasing step for a prioritized random access procedure.
  • the first step is a power boosting step dedicated to PRACH coverage enhancement.
  • the first step is a power boosting step dedicated to NR PRACH coverage enhancement.
  • the first signaling indicates a candidate step size; the first step size is related to the candidate step size, and the first step size is related to at least one of the K1 or the K2 One related.
  • the first signaling indicates the candidate step size.
  • the first signaling includes the candidate step size.
  • the first signaling is used to determine the candidate step size.
  • the first signaling is used to configure the candidate step size.
  • the first signaling includes RA-Prioritization IE, and an RRC field in the RA-Prioritization IE indicates the candidate step size.
  • the first signaling includes RACH-ConfigCommon IE, and an RRC field in the RACH-ConfigCommon IE indicates the candidate step size.
  • the first signaling includes an RRC field, and the RRC field indicates the candidate step size.
  • the name of the one RRC domain includes at least one of power or Ramping or Step or CE or Coverage or Enhancement or Repetition.
  • the name of the one RRC domain includes at least one of power or Ramping or Step or High or Priority or CE or Coverage or Enhancement or Repetition.
  • the name of the one RRC domain includes the powerRampingStep domain.
  • the name of the RRC domain is the powerRampingStep domain.
  • the name of the one RRC domain includes the powerRampingStepHighPriority domain.
  • the name of the RRC domain is the powerRampingStepHighPriority domain.
  • the candidate step size is used to determine the first step size.
  • the candidate step size is used to calculate the first step size.
  • At least one of K1 or K2 and the candidate step size are jointly used to determine the first step size.
  • the K1 and the candidate step size are jointly used to determine the first step size.
  • the K2 and the candidate step size are jointly used to determine the first step size.
  • the first offset is an offset for the candidate step size.
  • the first offset is preconfigured.
  • the first offset is configured through an RRC message.
  • the first offset is a backoff value.
  • the first offset, at least one of the K1 or the K2 and the candidate step size are jointly used to determine the first step size.
  • the first offset, the K1 and the candidate step size are jointly used to determine the first step size.
  • the first offset, the K2 and the candidate step size are jointly used to determine the first step size.
  • the first step length is related to the candidate step size, and the first step length is related to the K1.
  • the first step length is linearly related to (the product of K1 and the candidate step length).
  • the first step length is equal to (the product of K1 and the candidate step length).
  • the first step length is related to the candidate step size, and the first step length is related to the K2.
  • the first step length is linearly related to (the product of K2 and the candidate step length).
  • the first step length is equal to (the product of K2 and the candidate step length).
  • the first step length is related to the K1, and the first step length is related to the K2.
  • the first step length is related to (the difference between K2 and K1).
  • the first step length sum (the difference between K2 and K1) is linearly related.
  • the first step length is related to the candidate step size, and the first step length is related to the K1, and the first step length is related to the K2.
  • the first step length is related to (the product of (the difference between K2 and K1) and the candidate step length).
  • the first step length is linearly related to (the product of (the difference between K2 and K1) and the candidate step length).
  • the first step length is equal to (the product of (the difference between K2 and K1) and the candidate step length).
  • the first step length is related to the candidate step size, and the first step length is related to the first offset.
  • the first step length is related to the sum of the candidate step length and the first offset.
  • the sum of the first steps (the sum of the candidate steps and the first offset) is linearly related.
  • the first step size the first offset + the candidate step size.
  • the first offset is related to the difference between K1 and K2.
  • the first offset is equal to 0.
  • the first offset is not equal to 0.
  • the first step length is related to the candidate step size, and the first step length is related to at least one of the K1 or the K2, and the first step length Related to the first offset.
  • the first step length is related to (the sum of (the product of the first offset and the K1) and the candidate step length).
  • the first step length is equal to (the sum of (the product of the first offset and the K1) and the candidate step length).
  • the first step length is related to (the sum of (the product of the first offset and the K2) and the candidate step length).
  • the first step length is equal to (the sum of (the product of the first offset and the K2) and the candidate step length).
  • the first step length is related to ((the product of the first offset and (the difference between the K2 and the K1)) and the sum of the candidate step lengths).
  • the first step length is equal to ((the product of the first offset and (the difference between the K2 and the K1)) and the sum of the candidate step lengths).
  • the first step size (the first offset ⁇ the K1) + the candidate step size.
  • the first step size (the first offset ⁇ the K2) + the candidate step size.
  • the first step size (the first offset ⁇ (the K2 - the K1)) + the candidate step size.
  • the second node receives at least one Preamble sent in the K1 time-frequency resources in step S5202.
  • step S5203 is optional.
  • step S5203 exists.
  • the second node receives at least one Preamble sent in the K2 time-frequency resources in step S5203.
  • step S5203 does not exist.
  • the second node does not receive any Preamble sent in the K2 time-frequency resources in step S5203.
  • Embodiment 6 illustrates a wireless signal transmission flow chart according to another embodiment of the present application, as shown in FIG. 6 . It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S6101 For the first node U01 , in step S6101, at least two Preambles are sent in K1 time-frequency resources; in step S6102, after at least two Preambles are sent in K1 time-frequency resources, the behavior is updated according to the K1 Two counters.
  • the second counter is used to count the number of times Preamble is sent.
  • the second counter is PREAMBLE_TRANSMISSION_COUNTER.
  • the name of the second counter includes PREAMBLE_TRANSMISSION_COUNTER.
  • the name of the second counter includes at least one of PREAMBLE or TRANSMISSION or COUNTER or CE or COVERAGE or ENHANCEMENT or REPETITION.
  • the "after the action sends Preamble in K2 time-frequency resources" includes: after sending Preamble in the last time-frequency resource of K2 time-frequency resources.
  • the "after the action sends Preamble in K2 time-frequency resources" includes: after sending Preamble in each of the K2 time-frequency resources.
  • the "after the action sends Preamble in K2 time-frequency resources" includes: after the deadline of the last time-frequency resource of the K2 time-frequency resources.
  • the "updating the second counter according to the K1" includes: the second counter increases the K1.
  • the "updating the second counter according to the K1" includes: the second counter is incremented by M1, where the M1 is a positive integer not greater than the K1.
  • the M1 is the number of different Preambles sent in the K1 time-frequency resources.
  • the M1 is the number of Preambles sent in the K1 time-frequency resources.
  • the first node sends Preamble in each of the K1 time-frequency resources.
  • the first node does not send Preamble in at least one latest time-frequency resource among the K1 time-frequency resources.
  • the second counter is used to count the number of times Preamble is sent in a random access process.
  • the second counter is equal to 1.
  • the second counter is greater than 1.
  • the second counter updated according to K1 reaches the sum of the maximum value of the second counter and 1.
  • the second counter updated according to K1 does not reach the sum of the maximum value of the second counter and 1.
  • the maximum value of the second counter is preambleTransMax.
  • the MAC layer of the first node indicates a random access to the higher layer of the first node.
  • Problem Random Access problem
  • the action updates the second counter according to K1 before the action updates the first counter.
  • Embodiment 7 illustrates a wireless signal transmission flow chart according to yet another embodiment of the present application, as shown in FIG. 7 . It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S7101 the first target power value is used to send the Preamble in K2 time-frequency resources; in step S7102, after the Preamble is sent in the K2 time-frequency resources, the first counter is updated ; In step S7103, use the second target power value to send the Preamble in K3 time-frequency resources.
  • step S7201 the Preamble is received.
  • At least 2 of the K3 time-frequency resources do not overlap in the time domain, and the K3 time-frequency resources are after the K2 time-frequency resources; the second The target power value is the maximum output power of the first node.
  • the Preamble sent in the K3 time-frequency resources belongs to the first random access process.
  • the first random access process is not terminated, and the first random access process is not terminated.
  • the access process was not considered successfully completed.
  • the first counter is not initialized during the time interval from when the Preamble is sent on the K2 time-frequency resources to when the Preamble is sent on the K3 time-frequency resources.
  • the second counter is not initialized during the time interval from when the Preamble is sent on the K2 time-frequency resources to when the Preamble is sent on the K3 time-frequency resources.
  • the first counter is updated according to K2.
  • "updating the first counter” includes: increasing the first counter by K2.
  • "updating the first counter” includes: increasing the first counter by P2, where P2 is a positive integer not greater than K2.
  • "updating the first counter” includes: increasing the first counter by 1.
  • the "Preamble is sent after the K2 time-frequency resources are sent” means that the behavior uses the first target power value after the Preamble is sent by the K2 time-frequency resources.
  • the "Preamble is sent after the K2 time-frequency resources are sent” includes: the Preamble is sent after the K2 time-frequency resources are sent, and before the Preamble is sent by the K3 time-frequency resources.
  • the "Preamble is sent after the K2 time-frequency resources" includes: considering that the random access response for the Preamble sent in the K2 time-frequency resources has not been successfully received, and executing After random access resource selection; wherein the random access resource selection is used to determine the K2 time-frequency resources.
  • the "Preamble is sent after the K2 time-frequency resources" includes: considering that the contention resolution for the Preamble sent in the K2 time-frequency resources is unsuccessful, and performing random access resources After selection; wherein the random access resource selection is used to determine the K2 time-frequency resources.
  • the "Preamble after the K2 time-frequency resources are sent" includes: Preamble after the K2 time-frequency resources are sent and the random access resource selection is performed; wherein, the random access Resource selection is used to determine the K2 time-frequency resources.
  • the "using the second target power value to send the Preamble in K3 time-frequency resources” includes: using the second target power value to send the Preamble in the K3 time-frequency resources.
  • the "using the second target power value to send the Preamble in K3 time-frequency resources” includes: using the second target power value to send the Preamble in the first time-frequency resource among the K3 time-frequency resources. Preamble.
  • the "using the second target power value to send the Preamble in K3 time-frequency resources" includes: using the second target power value to send the Preamble in each of the K3 time-frequency resources. .
  • the "using the second target power value to send the Preamble in K3 time-frequency resources" includes: using the second target power value to send the Preamble in at least one time-frequency resource among the K3 time-frequency resources. .
  • the power used to transmit the Preamble in any two time-frequency resources among the K3 time-frequency resources is equal.
  • the power used to transmit the Preamble in any two time-frequency resources among the K3 time-frequency resources is not equal.
  • the power used to transmit the Preamble in at least two of the K3 time-frequency resources is equal.
  • the power used to transmit the Preamble in at least two of the K3 time-frequency resources is not equal.
  • the first symbol after the cut-off time of one of the K3 time-frequency resources is the start time of another of the K3 time-frequency resources.
  • one symbol after the end time of one of the K3 time-frequency resources is the start time of another of the K3 time-frequency resources.
  • any two time-frequency resources among the K3 time-frequency resources do not overlap in the time domain.
  • any two time-frequency resources among the K3 time-frequency resources are not continuous in the time domain.
  • any two time-frequency resources among the K3 time-frequency resources are continuous in the time domain.
  • At least 2 of the K3 time-frequency resources do not overlap in the time domain.
  • any two time-frequency resources among the K3 time-frequency resources have the same duration length in the time domain.
  • the duration lengths of any two of the K3 time-frequency resources in the time domain are not equal.
  • At least 2 of the K3 time-frequency resources have the same duration length in the time domain.
  • At least 2 of the K3 time-frequency resources have unequal duration lengths in the time domain.
  • any two time-frequency resources among the K3 time-frequency resources overlap in the frequency domain.
  • any two time-frequency resources among the K3 time-frequency resources do not overlap in the frequency domain.
  • At least 2 of the K3 time-frequency resources do not overlap in the frequency domain.
  • any two time-frequency resources among the K3 time-frequency resources occupy the same frequency domain resources.
  • any two time-frequency resources among the K3 time-frequency resources occupy different frequency domain resources.
  • At least 2 of the K3 time-frequency resources occupy the same frequency domain resources.
  • At least 2 time-frequency resources occupy different frequency domain resources.
  • the "the K3 time-frequency resources are after the K2 time-frequency resources" includes: the first time-frequency resource among the K3 time-frequency resources is after the K2 time-frequency resources. after the last time-frequency resource in .
  • the "the K3 time-frequency resources are after the K2 time-frequency resources" includes: the starting time of the first time-frequency resource among the K3 time-frequency resources is after the K1 time-frequency resources. After the deadline of the last time-frequency resource in the time-frequency resource.
  • the K3 time-frequency resources are after the K2 time-frequency resources includes: the K3 time-frequency resources are later than the K2 time-frequency resources in the time domain.
  • the "the K3 time-frequency resources are after the K2 time-frequency resources" includes: the first time-frequency resource among the K3 time-frequency resources is after the K2 time-frequency resources. after the first time-frequency resource in .
  • the first counter Only updated once.
  • the first counter Be updated at least once.
  • the first counter is not updated during the time interval during which the K2 time-frequency resources are sent for any two Preambles.
  • the second target power value is equal to the maximum output power of the first node.
  • whether the updated first counter reaches the first integer is used to determine whether to use the maximum output power of the first node to send a Preamble.
  • a Preamble is sent using the maximum output power of the first node.
  • the first target power value is related to the product of the first counter and the first step length.
  • whether the power calculated according to the updated first counter is greater than the maximum output power of the first node is used to determine whether to use the maximum output power of the first node to send a Preamble.
  • the Preamble is sent using the maximum output power of the first node.
  • the power calculated according to the updated first counter is not greater than the maximum output power of the first node, use the power calculated according to the updated first counter. Send Preamble.
  • the maximum output power of the first node ⁇ is used to send the Preamble.
  • the power calculated by the first counter that is updated after the K2 time-frequency resources are sent according to the Preamble is greater than the maximum output power of the first node and is used to determine the second target power value. is the maximum output power of the first node.
  • the power calculated by the first counter that is updated after the K2 time-frequency resources are sent according to the Preamble is not less than the maximum output power of the first node and is used to determine the second target power.
  • the value is the maximum output power of the first node.
  • P PRACH, target, f, c + PL b, f, c calculated by the first counter updated after the K2 time-frequency resources are sent according to the Preamble is greater than that of the first node.
  • the maximum output power is used to determine that the second target power value is the maximum output power of the first node.
  • P PRACH, target, f, c + PL b, f, c calculated by the first counter updated after the K2 time-frequency resources are sent according to the Preamble is not less than the first node
  • the maximum output power is used to determine that the second target power value is the maximum output power of the first node.
  • the first counter updated according to K2 reaches a first integer; the first integer is configurable.
  • the updated first counter reaching the first integer according to the K2 is used to determine that the second target power value is the maximum output power of the first node.
  • the second target power value is calculated according to the first counter that is updated after the K2 time-frequency resources are sent according to the Preamble.
  • the first counter when the first counter reaches the first integer, it is used to determine to use the second target power value to send the Preamble in K3 time-frequency resources, and the second target power value is The maximum output power of the first node.
  • the first counter reaching the first integer includes: the first counter being greater than the first integer.
  • the first counter reaching the first integer includes: the first counter is not less than the first integer.
  • the first counter updated according to K1 does not reach the first integer.
  • the updated first counter of K1 does not reach the first integer, it is used to determine to use the first target power value to send the Preamble in K2 time-frequency resources, Furthermore, the first target power value is related to the product of the first counter and the first step length.
  • the sending timing i and the At least one time-frequency resource among the K3 time-frequency resources is related.
  • the sending opportunity i is related to only one time-frequency resource among the K3 time-frequency resources.
  • the sending opportunity i is related to the first time-frequency resource among the K3 time-frequency resources.
  • the sending opportunity i is related to each time-frequency resource in the K3 time-frequency resources.
  • step S7201 is optional.
  • step S7201 exists.
  • the second node receives at least one Preamble sent in the K3 time-frequency resources in step S7201.
  • step S7201 does not exist.
  • the second node does not receive any Preamble sent in the K3 time-frequency resources in step S7201.
  • Embodiment 8 illustrates a schematic diagram of updating the first counter according to the number of Preambles sent in K1 time-frequency resources according to an embodiment of the present application.
  • the behavior of updating the first counter according to the K1 includes: according to the Preamble sent in the K1 time-frequency resources. The number updates the first counter.
  • the number of Preambles sent in K1 time-frequency resources is not greater than K1.
  • the number of Preambles sent in K1 time-frequency resources is related to the monitoring of PDCCH scrambled by RA-RNTI in ra-ResponseWindow.
  • the number of Preambles sent in K1 time-frequency resources is related to the random access response received in ra-ResponseWindow.
  • the start time of the ra-ResponseWindow is related to the end time of at least the earliest time-frequency resource among the K1 time-frequency resources.
  • the "updating the first counter according to the number of Preambles sent in the K1 time-frequency resources” includes: the increased value of the first counter and the value of the first node in the K1 The number of Preambles sent by each time-frequency resource is equal.
  • K1 is equal to 2
  • the number of Preambles sent in the K1 time-frequency resources is equal to 1, and the first counter is increased by 1.
  • K1 is equal to 2
  • the number of Preambles sent in the K1 time-frequency resources is equal to 2
  • the first counter is increased by 2.
  • K1 is equal to 3
  • the number of Preambles sent in the K1 time-frequency resources is equal to 2
  • the first counter is increased by 2.
  • K1 is equal to 3
  • the number of Preambles sent in the K1 time-frequency resources is equal to 3
  • the first counter is increased by 3.
  • Embodiment 9 illustrates a schematic diagram related to the first target power value and the first power offset according to an embodiment of the present application, as shown in FIG. 9 .
  • the first target power value is related to the first power offset.
  • the first target power value is linearly related to the first power offset.
  • the first power offset is used to determine the first target power value.
  • the first power offset is used to determine the first power value.
  • the first power value is related to the first power offset.
  • the first power value is related to the first power offset.
  • the first power value is linearly related to the first power offset.
  • the first power value and the first power offset are logarithmically related.
  • the first power value is related to the first initial power, the first counter, the first step length and the first power offset.
  • the first power value is related to the first initial power, the first adjusted power, the first counter, the first step length and the first power offset.
  • the first power value is linearly related to (the product of ((the difference between the first counter and 1) and the first step length) and the sum of the first power offset).
  • the first power value first initial power + (first counter – 1) ⁇ first step length + the first power offset.
  • the first power value first initial power + first adjusted power + (first counter – 1) ⁇ first step length + the first power offset.
  • the first power offset is a fixed value.
  • the first power offset is variable.
  • the first power offset is configurable.
  • an RRC message is used to configure the first power offset.
  • an RRC IE is used to configure the first power offset.
  • an RRC domain is used to configure the first power offset.
  • an RRC domain in the RACH-ConfigCommon IE is used to configure the first power offset.
  • an RRC domain in the RACH-ConfigGeneric IE is used to configure the first power offset.
  • the first power offset is related to K2.
  • the K2 is used to determine the first power offset.
  • the first power offset is a function of the K2.
  • the first power offset is linearly related to the K2.
  • the first power offset is logarithmically related to the K2.
  • the first power offset is linearly related to (-10*log10(K2)).
  • the first power offset is equal to (-10*log10(K2)).
  • the first power offset -10*log10(K2).
  • the first power offset -10*log10(K2/2).
  • the first power offset is independent of the K2.
  • Embodiment 10 illustrates a schematic diagram in which K1 time-frequency resources and K2 time-frequency resources are respectively associated with the first downlink RS resource and the second downlink RS resource according to an embodiment of the present application, as shown in FIG. 10 .
  • the K1 time-frequency resources are associated with the first downlink RS resource, and the K2 time-frequency resources are associated with the second downlink RS resource; the first downlink RS resource and the The second downlink RS resources are different.
  • the first downlink RS resource is not the second downlink RS resource.
  • the first downlink RS resource and the second downlink RS resource have different indexes.
  • the first downlink RS resource and the second downlink RS resource are of different types.
  • At least one of the type or index of the first downlink RS resource and the second downlink RS resource is different.
  • the K1 time-frequency resources are only associated with the first downlink RS resource, and the K2 time-frequency resources are only associated with the second downlink RS resource.
  • the K1 time-frequency resources are not associated with multiple downlink RS resources, and the K2 time-frequency resources are not associated with multiple downlink RS resources.
  • the first downlink RS resource is a downlink RS resource.
  • the first downlink RS resource is determined.
  • the first node determines the first downlink RS resource according to RSRP.
  • the first node randomly selects the first downlink RS resource.
  • the L1-RRSP measurement result for the first downlink RS resource is not less than a threshold.
  • the K1 time-frequency resources are associated with the first downlink RS resource includes: the time domain positions of the K1 time-frequency resources are associated with the first downlink RS resource.
  • the K1 time-frequency resources are associated with the first downlink RS resource includes: the first downlink RS resource is used to determine each of the K1 time-frequency resources. The time domain location of time-frequency resources.
  • the K1 time-frequency resources are associated with the first downlink RS resource includes: the K1 time-frequency resources are associated with the first downlink RS resource in the time domain.
  • the first node determines the time domain position of each time-frequency resource in the K1 time-frequency resources according to the first downlink RS resource.
  • the first node determines the time domain position of the first time-frequency resource among the K1 time-frequency resources according to the first downlink RS resource, and all the time-frequency resources among the K1 time-frequency resources are The time domain position of the first time-frequency resource is used to determine the time domain position of time-frequency resources other than the first time-frequency resource among the K1 time-frequency resources.
  • the second downlink RS resource is a downlink RS resource.
  • the second downlink RS resource is determined before the action uses the first target power value to send Preamble on K2 time-frequency resources.
  • the first node determines the second downlink RS resource according to RSRP.
  • the first node randomly selects the second downlink RS resource.
  • the L1-RRSP measurement result for the second downlink RS resource is not less than a threshold.
  • the K2 time-frequency resources are associated with the second downlink RS resource includes: the time domain positions of the K2 time-frequency resources are associated with the second downlink RS resource.
  • the K2 time-frequency resources are associated with the second downlink RS resource includes: the second downlink RS resource is used to determine each time-frequency in the K2 time-frequency resources. The time domain location of the resource.
  • the K2 time-frequency resources are associated with the second downlink RS resource includes: the K2 time-frequency resources are associated with the second downlink RS resource in the time domain.
  • the first node determines the time domain position of each time-frequency resource in the K2 time-frequency resources according to the second downlink RS resource.
  • the first node determines the time domain position of the first time-frequency resource among the K2 time-frequency resources according to the second downlink RS resource, and the first time-frequency resource among the K2 time-frequency resources is The time domain position of the first time-frequency resource is used to determine the time domain position of time-frequency resources other than the first time-frequency resource among the K2 time-frequency resources.
  • Embodiment 11 illustrates a schematic diagram of a time-frequency resource set according to an embodiment of the present application, as shown in Figure 11.
  • the horizontal axis represents the time domain
  • the vertical axis represents the frequency domain
  • the box 1101 and the box 1102 respectively represent a time-frequency resource in the one time-frequency resource set
  • the ellipses represent the one time-frequency resource set. other time-frequency resources. It is particularly noted that this example does not limit whether any two time-frequency resources in the one time-frequency resource set in this application overlap in the frequency domain, and does not limit the one time-frequency resource set in this application. Whether any two time-frequency resources overlap in the time domain.
  • the time-frequency resource and the time-frequency resource represented by the block 1102 respectively transmit the Preamble.
  • each ellipsis in Figure 11 is optional.
  • At least one ellipsis in Figure 11 does not exist.
  • At least one ellipsis exists in Figure 11 .
  • the time-frequency resource represented by the block 1101 and the time-frequency resource represented by the block 1102 are adjacent time-frequency resources.
  • the time-frequency resource represented by the block 1101 and the time-frequency resource represented by the block 1102 are not adjacent time-frequency resources.
  • At least one time-frequency resource in the one time-frequency resource set exists between the T11.2 time and the T11.3 time.
  • the T11.2 time and the T11.3 time are continuous in the time domain.
  • the T11.2 time and the T11.3 time are not continuous in the time domain.
  • the T11.2 time is before the T11.3 time.
  • the T11.2 time is after the T11.3 time.
  • the one time-frequency resource set is the K1 time-frequency resources.
  • the one time-frequency resource set is the K2 time-frequency resources.
  • the one time-frequency resource set is the K3 time-frequency resources.
  • Embodiment 12 illustrates a structural block diagram of a processing device used in a first node according to an embodiment of the present application; as shown in FIG. 12 .
  • the processing device 1200 in the first node includes a first receiver 1201 and a first transmitter 1202.
  • the first transmitter 1202 transmits at least 2 Preambles in K1 time-frequency resources, where K1 is a positive integer greater than 1; updates the first counter according to K1; and uses the first target power value to transmit in K2 time-frequency resources.
  • K1 is a positive integer greater than 1
  • K2 is a positive integer
  • At least 2 of the K1 time-frequency resources do not overlap in the time domain; at least 2 of the K2 time-frequency resources do not overlap in the time domain.
  • the K2 time-frequency resources are after the K1 time-frequency resources; the Preamble sent in the K1 time-frequency resources and the Preamble sent in the K2 time-frequency resources belong to the first random access process; In any two of the at least two Preambles, within the time interval when the K1 time-frequency resources are sent, the first counter is not updated; the first target power value is consistent with the first counter and the first related to the product of one step length.
  • the behavior of updating the first counter according to the K1 includes: updating the first counter according to the number of Preambles sent in the K1 time-frequency resources.
  • the first transmitter 1202 updates the first counter after the Preamble is sent on the K2 time-frequency resources; and uses the second target power value to send the Preamble on the K3 time-frequency resources; wherein, At least 2 of the K3 time-frequency resources do not overlap in the time domain, and the K3 time-frequency resources are after the K2 time-frequency resources; the second target power value is the The maximum output power of the first node; the first counter updated according to K2 reaches a first integer; the first integer is configurable.
  • the first target power value is related to a first power offset, and the first power offset is related to K2.
  • the K1 time-frequency resources are associated with the first downlink RS resource, and the K2 time-frequency resources are associated with the second downlink RS resource; the first downlink RS resource and the third downlink RS resource are The two downlink RS resources are different.
  • the first receiver 1201 receives first signaling, where the first signaling indicates the first step.
  • the first receiver 1201 receives a first signaling indicating a candidate step size; wherein the first step size is related to the candidate step size, and the first step size is related to the candidate step size.
  • the step size is related to at least one of K1 or K2.
  • the first transmitter 1202 updates a second counter according to K1 after sending at least two Preambles in K1 time-frequency resources; wherein, the second counter is used to count Preambles. number of sendings.
  • the K1 time-frequency resources are associated with at least one downlink RS resource
  • the K2 time-frequency resources are associated with at least one downlink RS resource
  • the behavior of updating the first counter according to the K1 includes: The first counter is updated according to the number of identical downlink RS resources among the at least one downlink RS resource associated with the K1 time-frequency resources and the at least one downlink RS resource associated with the K2 time-frequency resources.
  • the first receiver 1201 includes the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data shown in Figure 4 of this application. Source 467.
  • the first receiver 1201 includes the antenna 452, the receiver 454, the multi-antenna receiving processor 458, and the receiving processor 456 in Figure 4 of this application.
  • the first receiver 1201 includes the antenna 452, the receiver 454, and the receiving processor 456 in Figure 4 of this application.
  • the first transmitter 1202 includes the antenna 452, transmitter 454, multi-antenna transmit processor 457, transmit processor 468, controller/processor 459, memory 460 and data in Figure 4 of this application.
  • Source 467 the antenna 452, transmitter 454, multi-antenna transmit processor 457, transmit processor 468, controller/processor 459, memory 460 and data in Figure 4 of this application.
  • Source 467 the antenna 452, transmitter 454, multi-antenna transmit processor 457, transmit processor 468, controller/processor 459, memory 460 and data in Figure 4 of this application.
  • Source 467 Source 467.
  • the first transmitter 1202 includes the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, and the transmission processor 468 in Figure 4 of this application.
  • the first transmitter 1202 includes the antenna 452, the transmitter 454, and the transmission processor 468 in Figure 4 of this application.
  • Embodiment 13 illustrates a structural block diagram of a processing device used in a second node according to an embodiment of the present application; as shown in FIG. 13 .
  • the processing device 1300 in the second node includes a second transmitter 1301 and a second receiver 1302.
  • the second receiver 1302 receives the Preamble sent in K1 time-frequency resources, or receives the Preamble sent in K2 time-frequency resources;
  • the first counter is updated according to the K1; the K1 is a positive integer greater than 1; the K2 is a positive integer; at least 2 Preambles are sent in the K1 time-frequency resources; the Preamble is in the K2 time-frequency resources are transmitted using the first target power value; at least 2 of the K1 time-frequency resources do not overlap in the time domain; at least 2 of the K2 time-frequency resources The frequency resources do not overlap in the time domain, and the K2 time-frequency resources are after the K1 time-frequency resources; the Preamble sent in the K1 time-frequency resources and the Preamble sent in the K2 time-frequency resources Belongs to the first random access process; any 2 of the at least 2 Preambles Preamble During the time interval when the K1 time-frequency resources are sent, the first counter is not updated; the first target power value is related to the product of the first counter and the first step length.
  • updating the phrase according to the K1 first counter includes: updating the first counter according to the number of Preambles sent in the K1 time-frequency resources.
  • the second receiver 1302 receives the Preamble that is sent in K3 time-frequency resources; wherein, after the Preamble is sent in the K2 time-frequency resources, the first counter is updated; the Preamble is sent in The K3 time-frequency resources are transmitted using the second target power value; at least 2 of the K3 time-frequency resources do not overlap in the time domain, and the K3 time-frequency resources are in the K2 After time-frequency resources; the second target power value is the maximum output power of the sender of the at least 2 Preambles; the first counter updated according to the K2 reaches a first integer; the first integer is configurable.
  • the first target power value is related to a first power offset, and the first power offset is related to K2.
  • the K1 time-frequency resources are associated with the first downlink RS resource, and the K2 time-frequency resources are associated with the second downlink RS resource; the first downlink RS resource and the third downlink RS resource are The two downlink RS resources are different.
  • the second transmitter 1301 sends first signaling, where the first signaling indicates the first step.
  • the second transmitter 1301 sends a first signaling indicating a candidate step size; wherein the first step size is related to the candidate step size, and the first step size is related to the candidate step size.
  • the step size is related to at least one of K1 or K2.
  • At least two Preambles are updated according to the K1 second counter after the K1 time-frequency resources are sent; the second counter is used to count the number of times Preambles are sent.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475, and the memory 476 in Figure 4 of this application.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471 and the transmission processor 416 in Figure 4 of this application.
  • the second transmitter 1301 includes the antenna 420, the transmitter 418, and the transmission processor 416 in Figure 4 of this application.
  • the second receiver 1302 includes the antenna 420, receiver 418, multi-antenna receiving processor 472, receiving processor 470, controller/processor 475, and memory 476 in Figure 4 of this application.
  • the second receiver 1302 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, and the receiving processor 470 in Figure 4 of this application.
  • the second receiver 1302 includes the antenna 420, the receiver 418, and the receiving processor 470 in Figure 4 of this application.
  • User equipment, terminals and UEs in this application include but are not limited to drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC, enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost Cost-effective tablet computers and other wireless communication devices.
  • MTC Machine Type Communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, transmitting and receiving node) and other wireless communications equipment.
  • gNB NR Node B
  • TRP Transmitter Receiver Point

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的通信节点中的方法和装置。通信节点在K1个时频资源发送至少2个Preamble,所述K1是大于1的正整数;根据所述K1更新第一计数器;使用第一目标功率值在K2个时频资源发送Preamble,所述K2是正整数;所述K1个时频资源中的任意2个时频资源在时域上不交叠;所述K2个时频资源中的任意2个时频资源在时域上不交叠,所述K2个时频资源在所述K1个时频资源之后;在所述K1个时频资源发送的Preamble和在所述K2个时频资源发送的Preamble属于第一随机接入过程;所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔内,所述第一计数器未被更新;所述第一目标功率值与所述第一计数器和第一步长的乘积有关。

Description

一种被用于无线通信的通信节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及随机接入的传输方法和装置。
背景技术
覆盖(Coverage)是运营商在进行蜂窝通信网络商业化时考虑的关键因素之一,因为它直接影响服务质量(service quality)以及资本支出(CAPEX)和运营成本(OPEX)。在实际部署的大多数场景中,上行链路(Uplink,UL)性能可能是瓶颈,而在一些新兴的垂直用例中,上行链路流量很大,例如视频上传。在Rel-17“NR(New Radio,新空口)覆盖增强”工作项目(work item,WI)中,针对PUSCH(Physical uplink shared channel,物理上行链路共享信道)、PUCCH(Physical uplink control channel,物理上行链路控制信道)和Msg3(Message 3,消息3)的NR覆盖率进行了扩展增强。然而,PRACH(Physical random access channel,物理随机接入信道)覆盖的提高尚未得到解决。由于PRACH传输在许多过程中都是非常重要的,如初始接入和波束失败恢复,Rel-18成立了“NR覆盖的进一步增强(Further NR coverage enhancements)”工作项目,进一步增强PRACH的上行覆盖。
发明内容
为提高随机接入成功概率,在一次发送Preamble之后,再次发送Preamble时,根据一个计数器和一个功率步长确定Preamble的发送功率的增量。针对Rel-18PRACH增强,一种可行的方式是PRACH重复。当UE通过PRACH重复发送Preamble时。确定Preamble的发送功率的增量的现有机制不能满足通过PRACH重复发送Preamble的需求,难以保证随机接入性能。因此,在通过PRACH重复发送一次Preamble之后,再次通过PRACH重复发送Preamble时,如何确定发送功率的增量需要进行增强,尤其是如何更新一个计数器,或者,如何确定一个功率步长。
针对上述问题,本申请提供了一种随机接入的解决方案。针对上述问题描述中,采用NR系统作为一个例子;本申请也同样适用于例如LTE系统的场景;进一步的,虽然本申请的初衷是针对Uu空口,但本申请也能被用于PC5口。进一步的,虽然本申请的初衷是针对终端与基站场景,但本申请也同样适用于V2X(Vehicle-to-Everything,车联网)场景,终端与中继,以及中继与基站之间的通信场景,取得类似的终端与基站场景中的技术效果。进一步的,虽然本申请的初衷是针对终端与基站场景,但本申请也同样适用于IAB(Integrated Access and Backhaul,集成接入和回传)的通信场景,取得类似的终端与基站场景中的技术效果。进一步的,虽然本申请的初衷是针对地面网络(Terrestrial Network,地面网络)场景,但本申请也同样适用于非地面网络(Non-Terrestrial Network,NTN)的通信场景,取得类似的TN场景中的技术效果。此外,不同场景采用统一解决方案还有助于降低硬件复杂度和成本。
作为一个实施例,对本申请中的术语(Terminology)的解释参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
需要说明的是,在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
在K1个时频资源发送至少2个Preamble,所述K1是大于1的正整数;根据所述K1更新第一计数器;使用第一目标功率值在K2个时频资源发送Preamble,所述K2是正整数;
其中,所述K1个时频资源中的至少2个时频资源在时域上不交叠;所述K2个时频资源中的至少2个时频资源在时域上不交叠,所述K2个时频资源在所述K1个时频资源之后;在所述K1个时频资源发送的Preamble和在所述K2个时频资源发送的Preamble属于第一随机接入过程;所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔内,所述第一计数器未被更新;所述第一目标 功率值与所述第一计数器和第一步长的乘积有关。
作为一个实施例,所述“所述K1个时频资源中的至少2个时频资源在时域上不交叠”包括:所述K1个时频资源中的任意2个时频资源在时域上不交叠。
作为一个实施例,所述“所述K2个时频资源中的至少2个时频资源在时域上不交叠”包括:所述K2个时频资源中的任意2个时频资源在时域上不交叠。
作为一个实施例,本申请要解决的问题包括:在K1个时频资源发送至少2个Preamble之后,如何提高随机接入性能。
作为一个实施例,本申请要解决的问题包括:在K1个时频资源发送至少2个Preamble之后,如何优化随机接入前导的发送功率。
作为一个实施例,本申请要解决的问题包括:在K1个时频资源发送至少2个Preamble之后,如何确定第一目标功率值。
作为一个实施例,本申请要解决的问题包括:在K1个时频资源发送至少2个Preamble之后,如何更新第一计数器。
作为一个实施例,本申请要解决的问题包括:在K1个时频资源发送至少2个Preamble之后,如何确定第一步长。
作为一个实施例,上述方法的特质包括:根据所述K1更新第一计数器。
作为一个实施例,上述方法的特质包括:所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔内,所述第一计数器未被更新。
作为一个实施例,上述方法的特质包括:所述行为在K1个时频资源发送至少两个Preamble到所述行为使用第一目标功率值在K2个时频资源发送Preamble的时间间隔内,所述第一计数器仅被更新一次。
作为一个实施例,上述方法的好处包括:减少协议改动。
作为一个实施例,上述方法的好处包括:兼容现有系统。
作为一个实施例,上述方法的好处包括:提高随机接入性能。
作为一个实施例,上述方法的好处包括:优化随机接入前导的发送功率。
根据本申请的一个方面,其特征在于,所述行为根据所述K1更新第一计数器包括:根据在所述K1个时频资源发送的Preamble的数量更新所述第一计数器。
作为一个实施例,本申请要解决的问题包括:在K1个时频资源发送至少2个Preamble之后,如何根据所述K1更新第一计数器。
作为一个实施例,上述方法的特质包括:实际被发送的Preamble的数量被用于更新所述第一计数器。
作为一个实施例,上述方法的好处包括:减少不必要的功率抬升。
根据本申请的一个方面,其特征在于,包括:
Preamble在所述K2个时频资源被发送之后,更新所述第一计数器;使用第二目标功率值在K3个时频资源发送Preamble;
其中,所述K3个时频资源中的至少2个时频资源在时域上不交叠,所述K3个时频资源在所述K2个时频资源之后;所述第二目标功率值是所述第一节点的最大输出功率;根据所述K2更新后的所述第一计数器达到第一整数;所述第一整数是可配置的。
作为一个实施例,所述“所述K3个时频资源中的至少2个时频资源在时域上不交叠”包括:所述K3个时频资源中的任意2个时频资源在时域上不交叠。
作为一个实施例,本申请要解决的问题包括:如何提高随机接入成功概率。
作为一个实施例,本申请要解决的问题包括:在K2个时频资源发送Preamble之后,如何确定第二目标功率值。
作为一个实施例,上述方法的特质包括:根据所述K2更新后的所述第一计数器达到第一整数被用于确定所述第二目标功率值是所述第一节点的最大输出功率。
作为一个实施例,上述方法的好处包括:增强覆盖。
作为一个实施例,上述方法的好处包括:提高随机接入成功概率。
根据本申请的一个方面,其特征在于,所述第一目标功率值与第一功率偏移量有关,所述第一功率偏 移量与所述K2有关。
根据本申请的一个方面,其特征在于,所述K1个时频资源被关联到第一下行RS(Reference Signal,参考信号)资源,所述K2个时频资源被关联到第二下行RS资源;所述第一下行RS资源和所述第二下行RS资源不同。
作为一个实施例,本申请要解决的问题包括:如何提高随机接入成功概率。
作为一个实施例,上述方法的特质包括:所述第一下行RS资源和所述第二下行RS资源不同时,所述第一计数器被更新。
作为一个实施例,上述方法的好处包括:增强覆盖。
作为一个实施例,上述方法的好处包括:提高随机接入成功概率。
根据本申请的一个方面,其特征在于,包括:
接收第一信令,所述第一信令指示所述第一步长。
根据本申请的一个方面,其特征在于,包括:
接收第一信令,所述第一信令指示候选步长;
其中,所述第一步长和所述候选步长有关,并且,所述第一步长和所述K1或者所述K2中的至少之一有关。
根据本申请的一个方面,其特征在于,包括:
所述行为在K1个时频资源发送至少两个Preamble之后,根据所述K1更新第二计数器;
其中,所述第二计数器被用于统计Preamble的发送次数。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
接收在K1个时频资源被发送的Preamble,或者,接收在K2个时频资源被发送的Preamble;
其中,根据所述K1第一计数器被更新;所述K1是大于1的正整数;所述K2是正整数;至少2个Preamble在所述K1个时频资源被发送;Preamble在所述K2个时频资源使用第一目标功率值被发送;所述K1个时频资源中的至少2个时频资源在时域上不交叠;所述K2个时频资源中的至少2个时频资源在时域上不交叠,所述K2个时频资源在所述K1个时频资源之后;在所述K1个时频资源发送的Preamble和在所述K2个时频资源发送的Preamble属于第一随机接入过程;所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔内,所述第一计数器未被更新;所述第一目标功率值与所述第一计数器和第一步长的乘积有关。
作为一个实施例,所述“所述K1个时频资源中的至少2个时频资源在时域上不交叠”包括:所述K1个时频资源中的任意2个时频资源在时域上不交叠。
作为一个实施例,所述“所述K2个时频资源中的至少2个时频资源在时域上不交叠”包括:所述K2个时频资源中的任意2个时频资源在时域上不交叠。
根据本申请的一个方面,其特征在于,所述短语根据所述K1第一计数器被更新包括:根据在所述K1个时频资源发送的Preamble的数量所述第一计数器被更新。
根据本申请的一个方面,其特征在于,包括:
接收在K3个时频资源被发送的Preamble;
其中,Preamble在所述K2个时频资源被发送之后,所述第一计数器被更新;Preamble在所述K3个时频资源使用第二目标功率值被发送;所述K3个时频资源中的至少2个时频资源在时域上不交叠,所述K3个时频资源在所述K2个时频资源之后;所述第二目标功率值是所述至少2个Preamble的发送者的最大输出功率;根据所述K2更新后的所述第一计数器达到第一整数;所述第一整数是可配置的。
作为一个实施例,所述“所述K3个时频资源中的至少2个时频资源在时域上不交叠”包括:所述K3个时频资源中的任意2个时频资源在时域上不交叠。
根据本申请的一个方面,其特征在于,所述第一目标功率值与第一功率偏移量有关,所述第一功率偏移量与所述K2有关。
根据本申请的一个方面,其特征在于,所述K1个时频资源被关联到第一下行RS资源,所述K2个时频资源被关联到第二下行RS资源;所述第一下行RS资源和所述第二下行RS资源不同。
根据本申请的一个方面,其特征在于,包括:
发送第一信令,所述第一信令指示所述第一步长。
根据本申请的一个方面,其特征在于,包括:
发送第一信令,所述第一信令指示候选步长;
其中,所述第一步长和所述候选步长有关,并且,所述第一步长和所述K1或者所述K2中的至少之一有关。
根据本申请的一个方面,其特征在于,至少两个Preamble在所述K1个时频资源被发送之后,根据所述K1第二计数器被更新;所述第二计数器被用于统计Preamble的发送次数。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一发射机,在K1个时频资源发送至少2个Preamble,所述K1是大于1的正整数;根据所述K1更新第一计数器;使用第一目标功率值在K2个时频资源发送Preamble,所述K2是正整数;
其中,所述K1个时频资源中的至少2个时频资源在时域上不交叠;所述K2个时频资源中的至少2个时频资源在时域上不交叠,所述K2个时频资源在所述K1个时频资源之后;在所述K1个时频资源发送的Preamble和在所述K2个时频资源发送的Preamble属于第一随机接入过程;所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔内,所述第一计数器未被更新;所述第一目标功率值与所述第一计数器和第一步长的乘积有关。
作为一个实施例,所述“所述K1个时频资源中的至少2个时频资源在时域上不交叠”包括:所述K1个时频资源中的任意2个时频资源在时域上不交叠。
作为一个实施例,所述“所述K2个时频资源中的至少2个时频资源在时域上不交叠”包括:所述K2个时频资源中的任意2个时频资源在时域上不交叠。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二接收机,接收在K1个时频资源被发送的Preamble,或者,接收在K2个时频资源被发送的Preamble;
其中,根据所述K1第一计数器被更新;所述K1是大于1的正整数;所述K2是正整数;至少2个Preamble在所述K1个时频资源被发送;Preamble在所述K2个时频资源使用第一目标功率值被发送;所述K1个时频资源中的至少2个时频资源在时域上不交叠;所述K2个时频资源中的至少2个时频资源在时域上不交叠,所述K2个时频资源在所述K1个时频资源之后;在所述K1个时频资源发送的Preamble和在所述K2个时频资源发送的Preamble属于第一随机接入过程;所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔内,所述第一计数器未被更新;所述第一目标功率值与所述第一计数器和第一步长的乘积有关。
作为一个实施例,所述“所述K1个时频资源中的至少2个时频资源在时域上不交叠”包括:所述K1个时频资源中的任意2个时频资源在时域上不交叠。
作为一个实施例,所述“所述K2个时频资源中的至少2个时频资源在时域上不交叠”包括:所述K2个时频资源中的任意2个时频资源在时域上不交叠。
本申请还公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
在K1个时频资源发送至少2个Preamble,所述K1是大于1的正整数;所述行为在K1个时频资源发送至少两个Preamble之后,所述第一计数器增加1;使用第一目标功率值在K2个时频资源发送Preamble,所述K2是正整数;
其中,所述K1个时频资源中的至少2个时频资源在时域上不交叠;所述K2个时频资源中的至少2个时频资源在时域上不交叠,所述K2个时频资源在所述K1个时频资源之后;在所述K1个时频资源发送的Preamble和在所述K2个时频资源发送的Preamble属于第一随机接入过程;所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔内,所述第一计数器未被更新;所述第一目标功率值与所述第一计数器和第一步长的乘积有关;所述第一步长和所述K1或者所述K2中的至少之一有关。
本申请还公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一发射机,在K1个时频资源发送至少2个Preamble,所述K1是大于1的正整数;所述行为在K1个时频资源发送至少两个Preamble之后,所述第一计数器增加1;使用第一目标功率值在K2个时频资源发送Preamble,所述K2是正整数;
其中,所述K1个时频资源中的至少2个时频资源在时域上不交叠;所述K2个时频资源中的至少2个 时频资源在时域上不交叠,所述K2个时频资源在所述K1个时频资源之后;在所述K1个时频资源发送的Preamble和在所述K2个时频资源发送的Preamble属于第一随机接入过程;所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔内,所述第一计数器未被更新;所述第一目标功率值与所述第一计数器和第一步长的乘积有关;所述第一步长和所述K1或者所述K2中的至少之一有关。
本申请还公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
在K1个时频资源发送至少2个Preamble,所述K1是大于1的正整数;所述行为在K1个时频资源发送至少两个Preamble之后,根据所述K1更新第二计数器,并且,更新第一计数器;使用第一目标功率值在K2个时频资源发送Preamble,所述K2是正整数;
其中,所述K1个时频资源中的至少2个时频资源在时域上不交叠;所述K2个时频资源中的至少2个时频资源在时域上不交叠,所述K2个时频资源在所述K1个时频资源之后;在所述K1个时频资源发送的Preamble和在所述K2个时频资源发送的Preamble属于第一随机接入过程;所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔内,所述第一计数器未被更新;所述第一目标功率值与所述第一计数器和第一步长的乘积有关;所述第二计数器被用于统计Preamble的发送次数。
作为一个实施例,所述更新第一计数器包括:所述第一计数器增加1。
作为一个实施例,所述更新第一计数器包括:根据所述K1更新第一计数器。
本申请还公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一发射机,在K1个时频资源发送至少2个Preamble,所述K1是大于1的正整数;所述行为在K1个时频资源发送至少两个Preamble之后,根据所述K1更新第二计数器,并且,更新第一计数器;使用第一目标功率值在K2个时频资源发送Preamble,所述K2是正整数;
其中,所述K1个时频资源中的至少2个时频资源在时域上不交叠;所述K2个时频资源中的至少2个时频资源在时域上不交叠,所述K2个时频资源在所述K1个时频资源之后;在所述K1个时频资源发送的Preamble和在所述K2个时频资源发送的Preamble属于第一随机接入过程;所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔内,所述第一计数器未被更新;所述第一目标功率值与所述第一计数器和第一步长的乘积有关;所述第二计数器被用于统计Preamble的发送次数。
作为一个实施例,所述更新第一计数器包括:所述第一计数器增加1。
作为一个实施例,所述更新第一计数器包括:根据所述K1更新第一计数器。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.减少协议改动;
-.兼容现有系统;
-.提高随机接入性能;
-.优化随机接入前导的发送功率;
-.减少不必要的功率抬升;
-.增强覆盖;
-.提高随机接入成功概率。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的Preamble的传输的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的另一个实施例的无线信号传输流程图;
图7示出了根据本申请的又一个实施例的无线信号传输流程图;
图8示出了根据本申请的一个实施例的根据在K1个时频资源发送的Preamble的数量更新第一计数器 的示意图;
图9示出了根据本申请的一个实施例的第一目标功率值与第一功率偏移量有关的示意图;
图10示出了根据本申请的一个实施例的K1个时频资源和K2个时频资源分别被关联到第一下行RS资源和第二下行RS资源的示意图;
图11示出了根据本申请的一个实施例的一个时频资源集合的示意图;
图12示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的Preamble的传输的流程图,如附图1所示。附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一节点在步骤101中,在K1个时频资源发送至少2个Preamble,所述K1是大于1的正整数;在步骤102中,根据所述K1更新第一计数器;在步骤103中,使用第一目标功率值在K2个时频资源发送Preamble,所述K2是正整数;其中,所述K1个时频资源中的至少2个时频资源在时域上不交叠;所述K2个时频资源中的至少2个时频资源在时域上不交叠,所述K2个时频资源在所述K1个时频资源之后;在所述K1个时频资源发送的Preamble和在所述K2个时频资源发送的Preamble属于第一随机接入过程;所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔内,所述第一计数器未被更新;所述第一目标功率值与所述第一计数器和第一步长的乘积有关。
作为一个实施例,在所述K1个时频资源发送Preamble被用于确定在ra-ResponseWindow中监听被RA-RNTI(Radio Network Temporary Identifier,无线网络临时标识)加扰的PDCCH(Physical downlink control channel,物理下行链路控制信道)。
作为一个实施例,所述ra-ResponseWindow的开始时刻与所述K1个时频资源中的一个时频资源的截止时刻有关。
作为一个实施例,所述ra-ResponseWindow的开始时刻与所述K1个时频资源中最后一个时频资源的截止时刻有关。
作为一个实施例,所述RA-RNTI根据所述K1个时频资源中的至少一个时频资源有关。
作为一个实施例,所述RA-RNTI根据所述K1个时频资源中的每个时频资源有关。
作为一个实施例,所述RA-RNTI根据所述K1个时频资源中的第一个时频资源有关。
作为一个实施例,本申请中的每个时频资源被用于发送Preamble。
作为一个实施例,本申请中的每个时频资源包括时域资源和频域资源。
作为一个实施例,本申请中的每个时频资源的持续时间包括至少一个符号。
作为一个实施例,本申请中的每个时频资源在时域上包括至少一个符号。
作为一个实施例,本申请中的每个时频资源在时域上是一个PRACH时机(occasion)。
作为一个实施例,本申请中的每个时频资源在频域上是一个上行链路载波(Carrier)。
作为一个实施例,本申请中的每个时频资源占用的频域资源是指上行链路载波。
作为该实施例的一个子实施例,所述上行链路载波是指NUL(Normal Uplink,常规上行链路)载波。
作为该实施例的一个子实施例,所述上行链路载波是指SUL(Supplementary Uplink,补充上行链路)载波。
作为一个实施例,本申请中的每个时频资源占用的频域资源包括中心频率。
作为一个实施例,本申请中的每个时频资源占用的频域资源包括频率和带宽。
作为一个实施例,本申请中的一个时频资源的时域位置包括所述一个时频资源的开始时刻。
作为一个实施例,本申请中的一个时频资源的时域位置包括所述一个时频资源的截止时刻。
作为一个实施例,本申请中的一个时频资源的时域位置包括所述一个时频资源的开始时刻和截止时刻。
作为一个实施例,本申请中的一个时频资源的时域位置包括所述一个时频资源的开始时刻和持续时间。
作为一个实施例,本申请中的一个时频资源的时域位置是一个PRACH时机。
作为一个实施例,本申请中的一个时频资源的开始时刻是发送一个Preamble的开始时刻。
作为一个实施例,本申请中的一个时频资源的开始时刻是指被用于在所述一个时频资源发送Preamble的第一个符号。
作为一个实施例,本申请中的一个时频资源的开始时刻是指被用于在所述一个时频资源发送Preamble的第一个时隙。
作为一个实施例,本申请中的一个时频资源的开始时刻是一个PRACH repetition的开始时刻。
作为一个实施例,本申请中的一个时频资源的截止时刻是发送一个Preamble的截止时刻。
作为一个实施例,本申请中的一个时频资源的截止时刻是指被用于在所述每个时频资源发送Preamble的最后一个符号。
作为一个实施例,本申请中的一个时频资源的截止时刻是指被用于在所述每个时频资源发送Preamble的最后一个时隙。
作为一个实施例,本申请中的一个时频资源的截止时刻是一个PRACH repetition的截止时刻。
作为一个实施例,本申请中的一个时频资源在时域上的持续时间是指所述一个时频资源在时域上的开始时刻到所述一个时频资源的截止时刻之间的时间间隔。
作为一个实施例,本申请中的一个时频资源在时域上的持续时间包括至少一个符号。
作为一个实施例,本申请中的一个时频资源在时域上的持续时间包括至少一个时隙。
作为一个实施例,本申请中的一个下行RS资源是一个SSB(Synchronization Signal Block,同步信号块)。
作为一个实施例,本申请中的一个下行RS资源是一个CSI(Channel State Information,信道状态信息)-RS。
作为一个实施例,本申请中的一个下行RS资源是一个SSB或者一个CSI-RS中的任意之一。
作为一个实施例,所述第一随机接入过程中的每个Preamble是一个Random Access Preamble。
作为一个实施例,所述第一随机接入过程中的每个Preamble是一个序列。
作为一个实施例,所述第一随机接入过程中的每个Preamble是一个ZC序列。
作为一个实施例,所述第一随机接入过程中的每个Preamble被ra-PreambleIndex标识。
作为一个实施例,所述第一随机接入过程中的每个Preamble针对Msg1(Message 1,消息1)。
作为一个实施例,所述第一随机接入过程中的每个Preamble指示覆盖增强。
作为该实施例的一个子实施例,所述第一随机接入过程中的每个Preamble是覆盖增强专用的。
作为该实施例的一个子实施例,所述第一随机接入过程中的每个Preamble是NR覆盖增强专用的。
作为一个实施例,所述第一随机接入过程中的每个Preamble不指示覆盖增强。
作为一个实施例,所述第一随机接入过程是基于竞争的随机接入过程(Contention Based Random Access,CBRA)。
作为一个实施例,所述第一随机接入过程在第一小区上被执行。
作为该实施例的一个子实施例,所述第一小区是SpCell(Special Cell,特殊小区)。
作为该实施例的一个子实施例,所述第一小区是PCell(Primary Cell,主小区)。
作为该实施例的一个子实施例,所述第一小区是PSCell(Primary SCG(Secondary Cell Group,辅小区组)Cell,SCG主小区)。
作为一个实施例,所述第一随机接入过程中的每个时频资源在频域上属于同一个上行链路载波。
作为一个实施例,在所述K1个时频资源被发送的第一个Preamble是所述第一随机接入过程中被发送的第一个Preamble。
作为一个实施例,在所述K1个时频资源被发送的第一个Preamble是所述第一随机接入过程中被发送的任一Preamble。
作为一个实施例,在所述K1个时频资源被发送的第一个Preamble不是所述第一随机接入过程中被发 送的第一个Preamble。
作为一个实施例,在所述K2个时频资源被发送的最后一个Preamble是所述第一随机接入过程中被发送的最后一个Preamble。
作为一个实施例,在所述K2个时频资源被发送的最后一个Preamble不是所述第一随机接入过程中被发送的最后一个Preamble。
作为一个实施例,针对在所述K1个时频资源被发送的每个Preamble,所述第一节点未接收来自更低层的LBT(Listen Before Talk,先听后说)失败指示(LBT failure indication was not received from lower layers)。
作为一个实施例,所述第一节点未接收来自更低层的暂停功率抬升计数器的通知(the notification of suspending power ramping counter has not been received from lower layers)。
作为一个实施例,所述行为在K1个时频资源发送至少两个Preamble之后,本申请中的所述第二计数器增加1。
作为一个实施例,所述行为在K1个时频资源发送至少两个Preamble之后,根据所述K1更新本申请中的所述第二计数器。
作为一个实施例,本申请中的所述第一计数器包括所述第一计数器的值。
作为一个实施例,本申请中的所述第一计数器包括所述第一计数器或者所述第一计数器的值中的至少之一。
作为一个实施例,本申请中的所述第二计数器包括所述第二计数器的值。
作为一个实施例,本申请中的所述第二计数器包括所述第二计数器或者所述第二计数器的值中的至少之一。
作为一个实施例,至少在所述K1个时频资源发送第一个Preamble之前,确定所述K1。
作为一个实施例,根据至少信道质量确定所述K1。
作为一个实施例,根据至少信道质量和至少一个偏移量确定所述K1。
作为一个实施例,根据至少RSRP(Reference signal received power,参考信号接收功率)确定所述K1。
作为一个实施例,根据至少RSRP测量结果和一个RSRP阈值确定所述K1。
作为一个实施例,根据至少RSRP测量结果、至少一个偏移量和一个RSRP阈值确定所述K1。
作为一个实施例,根据一个随机接入响应确定所述K1。
作为一个实施例,根据至少RRC(Radio Resource Control,无线资源控制)消息确定所述K1。
作为一个实施例,根据至少RRC消息和信道质量确定所述K1。
作为一个实施例,所述K1与至少信道质量有关。
作为一个实施例,所述K1是预配置的。
作为一个实施例,所述K1是可配置的。
作为一个实施例,所述K1是可变的。
作为一个实施例,所述K1是可数的。
作为一个实施例,所述K1的最大值不超过一个正整数。
作为一个实施例,在Q1个候选整数中确定所述K1;所述Q1个候选整数是通过RRC消息配置的。
作为该实施例的一个子实施例,根据至少信道质量在所述Q1个候选整数中确定所述K1。
作为该实施例的一个子实施例,根据至少信道质量和至少一个偏移量在所述Q1个候选整数中确定所述K1。
作为一个实施例,所述RSRP测量结果是针对至少一个下行链路参考信号的RSRP测量结果。
作为一个实施例,所述RSRP测量结果是针对下行链路路径损耗参考(downlink pathloss reference)的RSRP测量结果。
作为一个实施例,在所述K1个时频资源中的每个时频资源发送Preamble。
作为一个实施例,在所述K1个时频资源中的至少2个时频资源发送Preamble。
作为一个实施例,在所述K1个时频资源中的至少1个时频资源不发送Preamble。
作为一个实施例,在所述K1个时频资源中的任意2个时频资源发送的Preamble相同。
作为一个实施例,在所述K1个时频资源中的任意2个时频资源发送的Preamble不同。
作为一个实施例,在所述K1个时频资源中的时频资源发送的Preamble是由UE选择的。
作为一个实施例,所述行为“更新第一计数器”包括:增加所述第一计数器。
作为一个实施例,所述行为“更新第一计数器”包括:修改所述第一计数器。
作为一个实施例,所述行为“更新第一计数器”包括:调整所述第一计数器。
作为一个实施例,所述行为“更新第一计数器”包括:改变所述第一计数器。
作为一个实施例,所述第一计数器被更新后的值和所述第一计数器被更新之前的值不相等。
作为一个实施例,所述第一计数器被用于确定Preamble的发射功率相比前一次Preamble的发射功率的调整值。
作为一个实施例,所述第一计数器与Preamble被发送的次数有关。
作为一个实施例,所述第一计数器与Preamble的发射功率被调整的次数有关。
作为一个实施例,所述第一计数器与Preamble的发射功率被抬升(ramping)的次数有关。
作为一个实施例,所述第一计数器是PREAMBLE_POWER_RAMPING_COUNTER。
作为一个实施例,所述第一计数器的名字中包括PREAMBLE_POWER_RAMPING_COUNTER。
作为一个实施例,所述第一计数器的名字中包括PREAMBLE_POWER_RAMPING_COUNTER或者CE或者COVERAGE或者ENHANCEMENT或者REPETITION中的至少之一。
作为一个实施例,所述“根据所述K1更新第一计数器”包括:所述第一计数器增加所述K1。
作为一个实施例,所述“根据所述K1更新第一计数器”包括:所述第一计数器增加P1,所述P1是不大于所述K1的正整数。
作为一个实施例,所述P1与在所述K1个时频资源发送的Preamble的数量有关。
作为一个实施例,所述P1与所述K1个时频资源所关联的下行RS资源有关。
作为一个实施例,所述P1与所述K2个时频资源所关联的下行RS资源有关。
作为一个实施例,所述P1与所述K1个时频资源所关联的下行RS资源有关,并且,所述P1与所述K2个时频资源所关联的下行RS资源有关。
作为一个实施例,所述P1与所述K1个时频资源所关联的下行RS资源和所述K2个时频资源所关联的下行RS资源中的相同的下行RS资源的数量有关。
作为该实施例的一个子实施例,所述P1与所述K1个时频资源所关联的下行RS资源和所述K2个时频资源所关联的下行RS资源中的相同的下行RS资源的数量相等。
作为该实施例的一个子实施例,所述P1和所述K1与1的差相等。
作为该实施例的一个子实施例,所述P1=所述K1-1。
作为一个实施例,所述P1与所述K1个时频资源所关联的下行RS资源和所述K2个时频资源所关联的下行RS资源是否相同有关。
作为该实施例的一个子实施例,如果所述K1个时频资源所关联的下行RS资源和所述K2个时频资源所关联的下行RS资源相同,所述P1等于所述K1+1。
作为该实施例的一个子实施例,如果所述K1个时频资源所关联的下行RS资源和所述K2个时频资源所关联的下行RS资源不同,所述P1等于所述K1。
作为一个实施例,所述P1与所述K1个时频资源中的最后一个时频资源所关联的下行RS资源和所述K2个时频资源中的第一个时频资源所关联的下行RS资源是否相同有关。
作为该实施例的一个子实施例,如果所述K1个时频资源中的最后一个时频资源所关联的下行RS资源和所述K2个时频资源中的第一个时频资源所关联的下行RS资源相同,所述P1等于所述K1+1。
作为该实施例的一个子实施例,如果所述K1个时频资源中的最后一个时频资源所关联的下行RS资源和所述K2个时频资源中的第一个时频资源所关联的下行RS资源不同,所述P1等于所述K1。
作为一个实施例,所述P1与所述K1个时频资源中的被关联到两个不同的下行RS资源的时频资源组的数量有关;一个时频资源组包括所述K1个时频资源中的两个相邻的时频资源。
作为该实施例的一个子实施例,所述P1与所述K1个时频资源中的被关联到两个不同的下行RS资源 的时频资源组的数量相等。
作为该实施例的一个子实施例,所述P1与(所述K1个时频资源中的被关联到两个不同的下行RS资源的时频资源组的数量+1)相等。
作为该实施例的一个子实施例,所述P1与所述K1个时频资源中的被关联到两个不同的下行RS资源的时频资源组的数量有关,并且,所述P1与所述K1个时频资源中的最后一个时频资源所关联的下行RS资源和所述K2个时频资源中的第一个时频资源所关联的下行RS资源是否相同有关。
作为该子实施例的一个附属实施例,如果所述K1个时频资源中的最后一个时频资源所关联的下行RS资源和所述K2个时频资源中的第一个时频资源所关联的下行RS资源相同,所述P1与(所述K1个时频资源中的被关联到两个不同的下行RS资源的时频资源组的数量+1)相等。
作为该子实施例的一个附属实施例,如果所述K1个时频资源中的最后一个时频资源所关联的下行RS资源和所述K2个时频资源中的第一个时频资源所关联的下行RS资源不同,所述P1与所述K1个时频资源中的被关联到两个不同的下行RS资源的时频资源组的数量相等。
作为一个实施例,所述P1与所述K1个时频资源中的参考时频资源所关联的下行RS资源和所述K2个时频资源中的参考时频资源所关联的下行RS资源是否相同有关。
作为该实施例的一个子实施例,如果所述K1个时频资源中的所述参考时频资源所关联的下行RS资源和所述K2个时频资源中的所述参考时频资源所关联的下行RS资源相同,所述P1等于所述K1+1。
作为该实施例的一个子实施例,如果所述K1个时频资源中的所述参考时频资源所关联的下行RS资源和所述K2个时频资源中的所述参考时频资源所关联的下行RS资源不同,所述P1等于所述K1。
作为该实施例的一个子实施例,所述K1个时频资源中的所述参考时频资源是所述K1个时频资源中的第一个时频资源;所述K2个时频资源中的所述参考时频资源是所述K2个时频资源中的第一个时频资源。
作为该实施例的一个子实施例,所述K1个时频资源中的所述参考时频资源是所述K1个时频资源中的一个时频资源;所述K2个时频资源中的所述参考时频资源是所述K2个时频资源中的一个时频资源。
作为该实施例的一个子实施例,RRC消息被用于确定所述K1个时频资源中的所述参考时频资源;RRC消息被用于确定所述K2个时频资源中的所述参考时频资源。
作为一个实施例,所述K1个时频资源中的两个相邻的时频资源被关联到同一个下行RS资源,在所述两个相邻的时频资源发送Preamble所使用的功率相同。
作为一个实施例,所述K1个时频资源中的两个相邻的时频资源被关联到同一个下行RS资源,在所述两个相邻的时频资源发送Preamble所使用的功率不同。
作为一个实施例,不管所述K1个时频资源中的两个相邻的时频资源被关联到同一个下行RS资源还是不同的下行RS资源,在所述两个相邻的时频资源发送Preamble所使用的功率相同。
作为一个实施例,不管所述K1个时频资源中的两个相邻的时频资源被关联到同一个下行RS资源还是不同的下行RS资源,在所述两个相邻的时频资源发送Preamble所使用的功率不同。
作为一个实施例,在所述K1个时频资源中的两个相邻的时频资源发送Preamble所使用的功率是否相同与所述两个相邻的时频资源是否被关联到同一个下行RS资源有关。
作为该实施例的一个子实施例,如果所述K1个时频资源中的两个相邻的时频资源被关联到同一个下行RS资源,在所述两个相邻的时频资源发送Preamble所使用的功率不同。
作为该实施例的一个子实施例,如果所述K1个时频资源中的两个相邻的时频资源被关联到不同的下行RS资源,在所述两个相邻的时频资源发送Preamble所使用的功率相同。
作为一个实施例,所述第一下行RS资源被用于确定所述K1个时频资源中的至少一个时频资源。
作为一个实施例,所述第一下行RS资源被用于确定所述K1个时频资源中的每个时频资源。
作为一个实施例,所述第一下行RS资源被用于确定所述K1个时频资资源中的仅一个时频源。
作为一个实施例,所述第一下行RS资源被用于确定所述K1个时频资源中的第一个时频资源。
作为一个实施例,K1个下行RS资源分别被用于确定所述K1个时频资源中的一个时频资源;所述第一下行RS资源是所述K1个下行RS资源中的一个下行RS资源。
作为一个实施例,所述第二下行RS资源被用于确定所述K2个时频资源中的至少一个时频资源。
作为一个实施例,所述第二下行RS资源被用于确定所述K2个时频资源中的每个时频资源。
作为一个实施例,所述第二下行RS资源被用于确定所述K2个时频资资源中的仅一个时频源。
作为一个实施例,所述第二下行RS资源被用于确定所述K2个时频资源中的第一个时频资源。
作为一个实施例,K2个下行RS资源分别被用于确定所述K2个时频资源中的一个时频资源;所述第二下行RS资源是所述K2个下行RS资源中的一个下行RS资源。
作为一个实施例,所述K1个时频资源被关联到仅一个下行RS资源,并且,所述K2个时频资源被关联到仅一个下行RS资源;所述K1个时频资源所关联的下行RS资源和所述K2个时频资源所关联的下行RS资源相同。
作为一个实施例,所述K1个时频资源被关联到仅一个下行RS资源,并且,所述K2个时频资源被关联到仅一个下行RS资源;所述K1个时频资源所关联的下行RS资源和所述K2个时频资源所关联的下行RS资源不同。
作为一个实施例,所述K1个时频资源被关联到至少一个下行RS资源,所述K2个时频资源被关联到至少一个下行RS资源。
作为一个实施例,所述K1个时频资源被关联到多个下行RS资源,所述K2个时频资源被关联到多个下行RS资源。
作为一个实施例,所述K1个时频资源所关联的下行RS资源和所述K2个时频资源所关联的下行RS资源中存在至少一个相同的下行RS资源。
作为一个实施例,所述K1个时频资源所关联的下行RS资源的数量和所述K2个时频资源所关联的下行RS资源的数量相等。
作为一个实施例,所述K1个时频资源所关联的下行RS资源的数量和所述K2个时频资源所关联的下行RS资源的数量不相等。
作为一个实施例,所述K1个时频资源所关联的下行RS资源和所述K2个时频资源所关联的下行RS资源不同。
作为一个实施例,所述行为根据所述K1更新第一计数器包括:根据所述K1个时频资源所关联的至少一个下行RS资源和所述K2个时频资源所关联的至少一个下行RS资源中的相同的下行RS资源的数量更新所述第一计数器;其中,所述K1个时频资源被关联到至少一个下行RS资源,所述K2个时频资源被关联到至少一个下行RS资源。
作为一个实施例,在所述K1个时频资源中发送第一个Preamble时,所述第一计数器等于1。
作为一个实施例,在所述K1个时频资源中发送第一个Preamble时,所述第一计数器大于1。
作为一个实施例,根据所述K1更新后的所述第一计数器未达到所述第一整数。
作为一个实施例,仅当所述第一计数器未达到所述第一整数时,根据所述K1更新第一计数器。
作为一个实施例,所述第一整数被配置。
作为一个实施例,所述第一整数不被配置。
作为一个实施例,所述第一整数是可配置的。
作为一个实施例,所述第一整数是预配置的。
作为一个实施例,所述第一整数是通过RRC消息配置。
作为一个实施例,所述第一整数不大于preambleTransMax。
作为一个实施例,所述第一整数小于preambleTransMax。
作为一个实施例,所述“使用第一目标功率值在K2个时频资源发送Preamble”包括:在所述K2个时频资源使用所述第一目标功率值发送Preamble。
作为一个实施例,所述“使用第一目标功率值在K2个时频资源发送Preamble”包括:在所述K2个时频资源中的第一个时频资源使用所述第一目标功率值发送Preamble。
作为一个实施例,所述“使用第一目标功率值在K2个时频资源发送Preamble”包括:在所述K2个时频资源中的每个时频资源使用所述第一目标功率值发送Preamble。
作为一个实施例,所述“使用第一目标功率值在K2个时频资源发送Preamble”包括:在所述K2个时频资源中的至少一个时频资源使用所述第一目标功率值发送Preamble。
作为一个实施例,所述“使用第一目标功率值在K2个时频资源发送Preamble”包括:使用所述第一 目标功率值在所述K2个时频资源中的第一个时频资源发送Preamble。
作为一个实施例,所述“使用第一目标功率值在K2个时频资源发送Preamble”包括:使用所述第一目标功率值在所述K2个时频资源中的每个时频资源发送Preamble。
作为一个实施例,所述“使用第一目标功率值在K2个时频资源发送Preamble”包括:使用所述第一目标功率值在所述K2个时频资源中的至少一个时频资源发送Preamble。
作为一个实施例,在所述K2个时频资源中的任意两个时频资源发送Preamble所使用的功率相等。
作为一个实施例,在所述K2个时频资源中的任意两个时频资源发送Preamble所使用的功率不相等。
作为一个实施例,在所述K2个时频资源中的至少两个时频资源发送Preamble所使用的功率相等。
作为一个实施例,在所述K2个时频资源中的至少两个时频资源发送Preamble所使用的功率不相等。
作为一个实施例,在所述K2个时频资源中的第1个时频资源使用所述第一目标功率值发送Preamble;在所述K2个时频资源中的所述第j个时频资源使用(所述第一目标功率值+所述第一步长×(j-1))发送Preamble;所述j是不小于2并且不大于所述K2的整数。
作为一个实施例,在所述K2个时频资源中的第1个时频资源使用所述第一目标功率值发送Preamble;根据所述K2个时频资源中的第j个时频资源所关联的下行RS资源和所述K2个时频资源中的第j-1个时频资源所关联的下行RS资源是否相同确定在所述K2个时频资源中的所述第j个时频资源发送Preamble的功率和在所述K2个时频资源中的所述第j-1个时频资源发送Preamble的功率是否相同。
作为该实施例的一个子实施例,如果所述K2个时频资源中的第j个时频资源所关联的下行RS资源和所述K2个时频资源中的第j-1个时频资源所关联的下行RS资源相同,在所述K2个时频资源中的所述第j个时频资源发送Preamble的功率和在所述K2个时频资源中的所述第j-1个时频资源发送Preamble的功率不同。
作为该实施例的一个子实施例,如果所述K2个时频资源中的第j个时频资源所关联的下行RS资源和所述K2个时频资源中的第j-1个时频资源所关联的下行RS资源不同,在所述K2个时频资源中的所述第j个时频资源发送Preamble的功率和在所述K2个时频资源中的所述第j-1个时频资源发送Preamble的功率相同。
作为一个实施例,至少在所述K2个时频资源发送第一个Preamble之前,确定所述K2。
作为一个实施例,根据所述K1确定所述K2。
作为一个实施例,根据至少信道质量确定所述K2。
作为一个实施例,根据至少信道质量和至少一个偏移量确定所述K2。
作为一个实施例,根据至少RSRP确定所述K2。
作为一个实施例,根据至少RSRP测量结果和一个RSRP阈值确定所述K2。
作为一个实施例,根据至少RSRP测量结果、至少一个偏移量和一个RSRP阈值确定所述K2。
作为一个实施例,根据一个随机接入响应确定所述K2。
作为一个实施例,根据至少RRC(Radio Resource Control,无线资源控制)消息确定所述K2。
作为一个实施例,根据至少RRC消息和信道质量确定所述K2。
作为一个实施例,所述K2与至少信道质量有关。
作为一个实施例,所述K2是预配置的。
作为一个实施例,所述K2是可配置的。
作为一个实施例,所述K2是可变的。
作为一个实施例,所述K2是可数的。
作为一个实施例,所述K2的最大值不超过一个正整数。
作为一个实施例,所述K2等于1。
作为一个实施例,所述K2大于1。
作为一个实施例,所述K2和所述K1相等。
作为一个实施例,所述K2和所述K1不相等。
作为一个实施例,所述K2和所述K1是独立被确定的。
作为一个实施例,所述K2是所述K1。
作为一个实施例,在Q1个候选整数中确定所述K2;所述Q1个候选整数是通过RRC消息配置的。
作为该实施例的一个子实施例,根据至少信道质量在所述Q1个候选整数中确定所述K2。
作为该实施例的一个子实施例,根据至少信道质量和至少一个偏移量在所述Q1个候选整数中确定所述K2。
作为一个实施例,所述K1个时频资源中的一个时频资源的截止时刻之后的第一个符号是所述K1个时频资源中的另一个时频资源的开始时刻。
作为一个实施例,所述K1个时频资源中的一个时频资源的截止时刻之后的一个符号是所述K1个时频资源中的另一个时频资源的开始时刻。
作为一个实施例,所述K1个时频资源中的任意2个时频资源在时域上不交叠。
作为一个实施例,所述K1个时频资源中的任意2个时频资源在时域上不是连续的。
作为一个实施例,所述K1个时频资源中的任意2个时频资源在时域上是连续的。
作为一个实施例,所述K1个时频资源中存在至少2个时频资源在时域上不交叠。
作为一个实施例,所述K1个时频资源中的任意2个时频资源在时域上的持续时间长度相等。
作为一个实施例,所述K1个时频资源中的任意2个时频资源在时域上的持续时间长度不相等。
作为一个实施例,所述K1个时频资源中存在至少2个时频资源在时域上的持续时间长度相等。
作为一个实施例,所述K1个时频资源中存在至少2个时频资源在时域上的持续时间长度不相等。
作为一个实施例,所述K1个时频资源中的任意2个时频资源在频域上交叠。
作为一个实施例,所述K1个时频资源中的任意2个时频资源在频域上不交叠。
作为一个实施例,所述K1个时频资源存在至少2个时频资源在频域上交叠。
作为一个实施例,所述K1个时频资源存在至少2个时频资源在频域上不交叠。
作为一个实施例,所述K1个时频资源中的任意2个时频资源占用的频域资源相同。
作为一个实施例,所述K1个时频资源中的任意2个时频资源占用的频域资源不同。
作为一个实施例,所述K1个时频资源存在至少2个时频资源占用的频域资源相同。
作为一个实施例,所述K1个时频资源存在至少2个时频资源占用的频域资源不同。
作为一个实施例,所述K2个时频资源中的一个时频资源的截止时刻之后的第一个符号是所述K2个时频资源中的另一个时频资源的开始时刻。
作为一个实施例,所述K2个时频资源中的一个时频资源的截止时刻之后的一个符号是所述K2个时频资源中的另一个时频资源的开始时刻。
作为一个实施例,所述K2个时频资源中的任意2个时频资源在时域上不交叠。
作为一个实施例,所述K2个时频资源中的任意2个时频资源在时域上不是连续的。
作为一个实施例,所述K2个时频资源中的任意2个时频资源在时域上是连续的。
作为一个实施例,所述K2个时频资源中存在至少2个时频资源在时域上不交叠。
作为一个实施例,所述K2个时频资源中的任意2个时频资源在时域上的持续时间长度相等。
作为一个实施例,所述K2个时频资源中的任意2个时频资源在时域上的持续时间长度不相等。
作为一个实施例,所述K2个时频资源中存在至少2个时频资源在时域上的持续时间长度相等。
作为一个实施例,所述K2个时频资源中存在至少2个时频资源在时域上的持续时间长度不相等。
作为一个实施例,所述K2个时频资源中的任意2个时频资源在频域上交叠。
作为一个实施例,所述K2个时频资源中的任意2个时频资源在频域上不交叠。
作为一个实施例,所述K2个时频资源存在至少2个时频资源在频域上交叠。
作为一个实施例,所述K2个时频资源存在至少2个时频资源在频域上不交叠。
作为一个实施例,所述K2个时频资源中的任意2个时频资源占用的频域资源相同。
作为一个实施例,所述K2个时频资源中的任意2个时频资源占用的频域资源不同。
作为一个实施例,所述K2个时频资源存在至少2个时频资源占用的频域资源相同。
作为一个实施例,所述K2个时频资源存在至少2个时频资源占用的频域资源不同。
作为一个实施例,所述“所述K2个时频资源在所述K1个时频资源之后”包括:所述K2个时频资源中的第一个时频资源在所述K1个时频资源中的最后一个时频资源之后。
作为一个实施例,所述“所述K2个时频资源在所述K1个时频资源之后”包括:所述K2个时频资源中的第一个时频资源的开始时刻在所述K1个时频资源中的最后一个时频资源的截止时刻之后。
作为一个实施例,所述“所述K2个时频资源在所述K1个时频资源之后”包括:所述K2个时频资源在时域上晚于所述K1个时频资源。
作为一个实施例,所述“所述K2个时频资源在所述K1个时频资源之后”包括:所述K2个时频资源中的第一个时频资源在所述K1个时频资源中的第一个时频资源之后。
作为一个实施例,在所述K1个时频资源发送Preamble到在所述K2个时频资源发送Preamble的时间间隔内,所述第一随机接入过程未被终止,并且,所述第一随机接入过程未被认为成功完成。
作为一个实施例,在所述K1个时频资源发送的Preamble和在所述K2个时频资源发送的Preamble属于同一个随机接入过程。
作为一个实施例,在所述K1个时频资源发送的Preamble和在所述K2个时频资源发送的Preamble针对所述第一随机接入过程。
作为一个实施例,在所述K1个时频资源发送Preamble到在所述K2个时频资源发送Preamble的时间间隔内,所述第一计数器未被初始化。
作为一个实施例,在所述K1个时频资源发送Preamble到在所述K2个时频资源发送Preamble的时间间隔内,所述第二计数器未被初始化。
作为一个实施例,在所述K1个时频资源发送Preamble到在所述K2个时频资源发送Preamble的时间间隔内,所述第一计数器未被初始化被用于确定在所述K1个时频资源发送的Preamble和在所述K2个时频资源发送的Preamble针对所述第一随机接入过程。
作为一个实施例,在所述K1个时频资源发送Preamble到在所述K2个时频资源发送Preamble的时间间隔内,所述第二计数器未被初始化被用于确定在所述K1个时频资源发送的Preamble和在所述K2个时频资源发送的Preamble针对所述第一随机接入过程。
作为一个实施例,所述第一计数器未被初始化是指:所述第一计数器未被设置为1。
作为一个实施例,所述第二计数器未被初始化是指:所述第二计数器未被设置为1。
作为一个实施例,所述第一计数器未被初始化是指:所述第一计数器未被设置为所述第一计数器的初始值。
作为一个实施例,所述第二计数器未被初始化是指:所述第二计数器未被设置为所述第二计数器的初始值。
作为一个实施例,所述K1个时频资源中的两个时频资源被用于发送所述至少2个Preamble中的所述任意2个Preamble。
作为一个实施例,所述K1个时频资源中的两个时频资源被用于发送所述至少2个Preamble中的所述任意2个Preamble。
作为一个实施例,所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔内,所述第一计数器未被更新。
作为一个实施例,所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔包括:在所述K1个时频资源中的任意两个时频资源发送Preamble的时间间隔。
作为一个实施例,所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔包括:所述任意2个Preamble中的第一个Preamble的截止时刻到所述任意2个Preamble中的第二个Preamble的开始时刻之间的时间间隔。
作为一个实施例,所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔包括:所述任意2个Preamble中的第一个Preamble的开始时刻到所述任意2个Preamble中的第二个Preamble的开始时刻之间的时间间隔。
作为一个实施例,所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔包括:所述任意2个Preamble中的第一个Preamble的截止时刻到所述任意2个Preamble中的第二个Preamble的截止时刻之间的时间间隔。
作为一个实施例,所述任意2个Preamble中的所述第一个Preamble在时域上早于所述任意2个 Preamble中的所述第二个Preamble。
作为一个实施例,所述任意2个Preamble中的所述第一个Preamble在时域上早于所述任意2个Preamble中的所述第二个Preamble。
作为一个实施例,所述任意2个Preamble中的所述第一个Preamble包括在所述K1个时频资源发送的第一个Preamble。
作为一个实施例,所述任意2个Preamble中的所述第二个Preamble包括在所述K1个时频资源发送的最后一个Preamble。
作为一个实施例,所述第一计数器未被更新是指:所述第一计数器未改变。
作为一个实施例,所述第一计数器未被更新是指:所述第一计数器未被增加。
作为一个实施例,所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔内,所述第一节点没有“认为随机接入响应未被成接收(consider the Random Access Response reception not successful)”。
作为一个实施例,所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔内,所述第一节点没有“认为竞争解决不成功(consider the Contention Resolution not successful)”。
作为一个实施例,所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔内,所述第一节点没有认为所述第一随机接入过程被成功完成(consider this Random Access procedure successfully completed)。
作为一个实施例,所述行为在K1个时频资源发送至少两个Preamble到所述行为使用第一目标功率值在K2个时频资源发送Preamble的时间间隔内,所述第一计数器仅被更新一次。
作为一个实施例,所述行为在K1个时频资源发送至少两个Preamble到所述行为使用第一目标功率值在K2个时频资源发送Preamble的时间间隔内,所述第一节点“认为随机接入响应未被成接收”仅一次。
作为一个实施例,所述行为在K1个时频资源发送至少两个Preamble到所述行为使用第一目标功率值在K2个时频资源发送Preamble的时间间隔内,所述第一节点“认为竞争解决不成功”仅一次。
作为一个实施例,所述行为在K1个时频资源发送至少两个Preamble到所述行为使用第一目标功率值在K2个时频资源发送Preamble的时间间隔内,所述第一节点所述第一节点没有认为所述第一随机接入过程被成功完成。
作为一个实施例,所述第一计数器被用于计算所述第一功率值。
作为一个实施例,所述第一计数器被用于确定所述第一功率值。
作为一个实施例,所述第一计数器和所述第一步长的乘积被用于确定所述第一目标功率值。
作为一个实施例,所述第一计数器和所述第一步长的乘积被用于确定所述第一功率值。
作为一个实施例,所述第一功率值与所述第一初始功率、所述第一计数器、所述第一步长都有关。
作为一个实施例,所述第一功率值与所述第一初始功率、所述第一调整功率、所述第一计数器、所述第一步长都有关。
作为一个实施例,所述第一目标功率值不大于所述第一节点的最大输出功率。
作为一个实施例,所述第一目标功率值小于所述第一节点的最大输出功率。
作为一个实施例,所述第一节点的最大输出功率是预配置的。
作为一个实施例,所述第一节点的最大输出功率通过RRC消息配置。
作为一个实施例,所述第一节点的最大输出功率与子载波间隔有关。
作为一个实施例,所述第一节点的最大输出功率与服务小区c有关。
作为一个实施例,所述第一节点的最大输出功率与载波f有关。
作为一个实施例,所述第一节点的最大输出功率与发送时机i有关。
作为一个实施例,所述第一节点的最大输出功率与服务小区c、载波f和发送时机i有关。
作为一个实施例,所述第一节点的最大输出功率等于PCMAX,f,c(i)。
作为一个实施例,所述第一节点的最大输出功率是PCMAX,f,c(i)。
作为一个实施例,所述第一节点的最大输出功率是所述第一节点被配置的针对服务小区c的载波f在 发送时机i的最大输出功率。
作为一个实施例,所述服务小区c是所述第一小区。
作为一个实施例,所述载波f是所述第一随机接入过程所关联的所述第一小区的上行链路载波。
作为一个实施例,所述激活的上行链路BWP b是初始BWP(Bandwidth Part,带宽部分)。
作为一个实施例,根据所述K1更新所述第一计数器之后计算PCMAX,f,c(i)时,所述发送时机i与所述K2个时频资源中的至少一个时频资源有关。
作为该实施例的一个子实施例,所述发送时机i与所述K2个时频资源中的仅一个时频资源有关。
作为该实施例的一个子实施例,所述发送时机i与所述K2个时频资源中的第一个时频资源有关。
作为该实施例的一个子实施例,所述发送时机i与所述K2个时频资源中的每个时频资源有关。
作为一个实施例,所述PCMAX,f,c(i)参考3GPP TS 38.213。
作为一个实施例,所述PCMAX,f,c(i)参考3GPP TS 38.101。
作为一个实施例,所述第一目标功率值与(第一功率值与第一路径损耗值之和)相等。
作为一个实施例,所述第一目标功率值=所述第一功率值+所述第一路径损耗值。
作为一个实施例,所述第一功率值与服务小区c有关。
作为一个实施例,所述第一功率值与载波f有关。
作为一个实施例,所述第一功率值与激活的上行链路BWP(active UL BWP)b有关。
作为一个实施例,所述第一功率值与服务小区c、载波f和激活的上行链路BWP b有关。
作为一个实施例,所述第一功率值是PPRACH,target,f,c
作为一个实施例,所述第一功率值与所述第一计数器和所述第一步长的乘积有关。
作为一个实施例,所述第一功率值与所述第一计数器和所述第一步长的乘积是相关的。
作为一个实施例,所述第一功率值与所述第一计数器和所述第一步长的乘积是线性相关的。
作为一个实施例,所述第一功率值是PREAMBLE_RECEIVED_TARGET_POWER的值。
作为一个实施例,所述第一功率值=第一初始功率+(第一计数器–1)×第一步长。
作为一个实施例,所述第一功率值=第一初始功率+第一调整功率+(第一计数器–1)×第一步长。
作为一个实施例,所述第一初始功率是preambleReceivedTargetPower的值。
作为一个实施例,所述第一初始功率通过RRC消息配置。
作为一个实施例,RACH-ConfigGeneric IE中的一个RRC域被用于配置所述第一初始功率。
作为一个实施例,一个RRC域被用于配置所述第一初始功率,所述一个RRC域的名字是preambleReceivedTargetPower。
作为一个实施例,一个RRC域被用于配置所述第一初始功率,所述一个RRC域的名字中包括preambleReceivedTargetPower或者CE或者Coverage或者Enhancement或者Repetition中的至少之一。
作为一个实施例,所述第一调整功率与Preamble格式有关。
作为一个实施例,所述第一调整功率与Preamble是长Preamble格式还是短Preamble格式有关。
作为一个实施例,所述第一调整功率与子载波间隔μ有关。
作为一个实施例,所述第一调整功率通过查表确定。
作为一个实施例,所述第一调整功率通过查找3GPP TS 38.321的7.3节的表格确定。
作为一个实施例,所述第一调整功率是DELTA_PREAMBLE的值。
作为一个实施例,所述第一路径损耗值是一个路径损耗(pathloss)。
作为一个实施例,所述第一路径损耗值与服务小区c有关。
作为一个实施例,所述第一路径损耗值与载波f有关。
作为一个实施例,所述第一路径损耗值与激活的上行链路BWP b有关。
作为一个实施例,所述第一路径损耗值与服务小区c、载波f和激活的上行链路BWP b有关。
作为一个实施例,所述第一路径损耗值等于PLb,f,c
作为一个实施例,所述第一路径损耗值是PLb,f,c
作为一个实施例,所述PLb,f,c参考3GPP TS 38.213的7.4节。
作为一个实施例,所述第一路径损耗值的单位是dB。
作为一个实施例,所述第一路径损耗值的单位是dBm。
作为一个实施例,所述第一步长是预配置的。
作为一个实施例,所述第一步长是被UE确定的。
作为一个实施例,在所述第一随机接入过程中,所述第一步长是固定的。
作为一个实施例,在所述第一随机接入过程中,所述第一步长是可变的。
作为一个实施例,所述第一步长是针对所述服务小区c配置的。
作为一个实施例,所述第一步长是针对所述载波f配置的。
作为一个实施例,所述第一步长是针对激活的上行链路BWP b配置的。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。附图2说明了5G NR(New Radio,新空口)/LTE(Long-Term Evolution,长期演进)/LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200。5G NR/LTE/LTE-A网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。5GS/EPS 200包括UE(User Equipment,用户设备)201,RAN(无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230中的至少之一。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。RAN包括节点203和其它节点204。节点203提供朝向UE201的用户和控制平面协议终止。节点203可经由Xn接口(例如,回程)/X2接口连接到其它节点204。节点203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。节点203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。节点203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201是一个用户设备(User Equipment,UE)。
作为一个实施例,所述UE201是一个基站设备(BaseStation,BS)。
作为一个实施例,所述UE201是一个中继设备。
作为一个实施例,所述节点203对应本申请中的所述第二节点。
作为一个实施例,所述节点203是一个基站设备。
作为一个实施例,所述节点203是一个用户设备。
作为一个实施例,所述节点203是一个中继设备。
作为一个实施例,所述节点203是网关(Gateway)。
典型的,所述UE201是一个用户设备,所述节点203是一个基站设备。
作为一个实施例,所述用户设备支持地面网络(Non-Terrestrial Network,NTN)的传输。
作为一个实施例,所述用户设备支持非地面网络(Terrestrial Network,地面网络)的传输。
作为一个实施例,所述用户设备支持大时延差网络中的传输。
作为一个实施例,所述用户设备支持双连接(Dual Connection,DC)传输。
作为一个实施例,所述用户设备包括飞行器。
作为一个实施例,所述用户设备包括车载终端。
作为一个实施例,所述用户设备包括船只。
作为一个实施例,所述用户设备包括物联网终端。
作为一个实施例,所述用户设备包括工业物联网的终端。
作为一个实施例,所述用户设备包括支持低时延高可靠传输的设备。
作为一个实施例,所述用户设备包括测试设备。
作为一个实施例,所述用户设备包括信令测试仪。
作为一个实施例,所述基站设备包括基站收发台(Base Transceiver Station,BTS)。
作为一个实施例,所述基站设备包括节点B(NodeB,NB)。
作为一个实施例,所述基站设备包括gNB。
作为一个实施例,所述基站设备包括eNB。
作为一个实施例,所述基站设备包括ng-eNB。
作为一个实施例,所述基站设备包括en-gNB。
作为一个实施例,所述基站设备支持在非地面网络的传输。
作为一个实施例,所述基站设备支持在大时延差网络中的传输。
作为一个实施例,所述基站设备支持地面网络的传输。
作为一个实施例,所述基站设备包括宏蜂窝(Marco Cellular)基站。
作为一个实施例,所述基站设备包括微小区(Micro Cell)基站。
作为一个实施例,所述基站设备包括微微小区(Pico Cell)基站。
作为一个实施例,所述基站设备包括家庭基站(Femtocell)。
作为一个实施例,所述基站设备包括支持大时延差的基站设备。
作为一个实施例,所述基站设备包括飞行平台设备。
作为一个实施例,所述基站设备包括卫星设备。
作为一个实施例,所述基站设备包括TRP(Transmitter Receiver Point,发送接收节点)。
作为一个实施例,所述基站设备包括CU(Centralized Unit,集中单元)。
作为一个实施例,所述基站设备包括DU(Distributed Unit,分布单元)。
作为一个实施例,所述基站设备包括测试设备。
作为一个实施例,所述基站设备包括信令测试仪。
作为一个实施例,所述基站设备包括IAB(Integrated Access and Backhaul)-node。
作为一个实施例,所述基站设备包括IAB-donor。
作为一个实施例,所述基站设备包括IAB-donor-CU。
作为一个实施例,所述基站设备包括IAB-donor-DU。
作为一个实施例,所述基站设备包括IAB-DU。
作为一个实施例,所述基站设备包括IAB-MT。
作为一个实施例,所述中继设备包括relay。
作为一个实施例,所述中继设备包括L3relay。
作为一个实施例,所述中继设备包括L2relay。
作为一个实施例,所述中继设备包括路由器。
作为一个实施例,所述中继设备包括交换机。
作为一个实施例,所述中继设备包括用户设备。
作为一个实施例,所述中继设备包括基站设备。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述Preamble生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一信令生成于所述RRC306。
作为一个实施例,本申请中的所述第一信令生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301或者PHY351。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450至少:在K1个时频资源发送至少2个Preamble,所述K1是大于1的正整数;根据所述K1更新第一计数器;使用第一目标功率值在K2个时频资源发送Preamble,所述K2是正整数;其中,所述K1个时频资源中的任意2个时频资源在时域上不交叠;所述K2个时频资源中的任意2个时频资源在时域上不交叠,所述K2个时频资源在所述K1个时频资源之后;在所述K1个时频资源发送的Preamble和在所述K2个时频资源发送的Preamble属于第一随机接入过程;所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔内,所述第一计数器未被更新;所述第一目标功率值与所述第一计数器和第一步长的乘积有关。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在K1个时频资源发送至少2个Preamble,所述K1是大于1的正整数;根据所述K1更新第一计数器;使用第一目标功率值在K2个时频资源发送Preamble,所述K2是正整数;其中,所述K1个时频资源中的任意2个时频资源在时域上不交叠;所述K2个时频资源中的任意2个时频资源在时域上不交叠,所述K2个时频资源在所述K1个时频资源之 后;在所述K1个时频资源发送的Preamble和在所述K2个时频资源发送的Preamble属于第一随机接入过程;所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔内,所述第一计数器未被更新;所述第一目标功率值与所述第一计数器和第一步长的乘积有关。
作为一个实施例,所述第二通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410至少:接收在K1个时频资源被发送的Preamble,或者,接收在K2个时频资源被发送的Preamble;其中,根据所述K1第一计数器被更新;所述K1是大于1的正整数;所述K2是正整数;至少2个Preamble在所述K1个时频资源被发送;Preamble在所述K2个时频资源使用第一目标功率值被发送;所述K1个时频资源中的任意2个时频资源在时域上不交叠;所述K2个时频资源中的任意2个时频资源在时域上不交叠,所述K2个时频资源在所述K1个时频资源之后;在所述K1个时频资源发送的Preamble和在所述K2个时频资源发送的Preamble属于第一随机接入过程;所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔内,所述第一计数器未被更新;所述第一目标功率值与所述第一计数器和第一步长的乘积有关。
作为一个实施例,所述第二通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收在K1个时频资源被发送的Preamble,或者,接收在K2个时频资源被发送的Preamble;其中,根据所述K1第一计数器被更新;所述K1是大于1的正整数;所述K2是正整数;至少2个Preamble在所述K1个时频资源被发送;Preamble在所述K2个时频资源使用第一目标功率值被发送;所述K1个时频资源中的任意2个时频资源在时域上不交叠;所述K2个时频资源中的任意2个时频资源在时域上不交叠,所述K2个时频资源在所述K1个时频资源之后;在所述K1个时频资源发送的Preamble和在所述K2个时频资源发送的Preamble属于第一随机接入过程;所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔内,所述第一计数器未被更新;所述第一目标功率值与所述第一计数器和第一步长的乘积有关。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459被用于接收第一信令。
作为一个实施例,所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第一信令。
作为一个实施例,所述天线452,所述发射器454,所述发射处理器468,所述控制器/处理器459被用于在K1个时频资源发送至少2个Preamble。
作为一个实施例,所述天线420,所述接收器418,所述接收处理器470,所述控制器/处理器475中的至少之一被用于接收在K1个时频资源被发送的至少1个Preamble。
作为一个实施例,所述天线452,所述发射器454,所述发射处理器468,所述控制器/处理器459被用于在K2个时频资源发送Preamble。
作为一个实施例,所述天线420,所述接收器418,所述接收处理器470,所述控制器/处理器475中的至少之一被用于接收在K2个时频资源被发送的至少1个Preamble。
作为一个实施例,所述天线452,所述发射器454,所述发射处理器468,所述控制器/处理器459被用于在K3个时频资源发送Preamble。
作为一个实施例,所述天线420,所述接收器418,所述接收处理器470,所述控制器/处理器475中的至少之一被用于接收在K3个时频资源被发送的至少1个Preamble。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个用户设备。
作为一个实施例,所述第一通信设备450是一个支持大时延差的用户设备。
作为一个实施例,所述第一通信设备450是一个支持NTN的用户设备。
作为一个实施例,所述第一通信设备450是一个飞行器设备。
作为一个实施例,所述第一通信设备450具备定位能力。
作为一个实施例,所述第一通信设备450不具备定能能力。
作为一个实施例,所述第一通信设备450是一个支持TN的用户设备。
作为一个实施例,所述第二通信设备410是一个基站设备(gNB/eNB/ng-eNB)。
作为一个实施例,所述第二通信设备410是一个支持大时延差的基站设备。
作为一个实施例,所述第二通信设备410是一个支持NTN的基站设备。
作为一个实施例,所述第二通信设备410是一个卫星设备。
作为一个实施例,所述第二通信设备410是一个飞行平台设备。
作为一个实施例,所述第二通信设备410是一个支持TN的基站设备。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S5101中,接收第一信令;在步骤S5102中,在K1个时频资源发送至少2个Preamble,所述K1是大于1的正整数;在步骤S5103中,根据所述K1更新第一计数器;在步骤S5104中,使用第一目标功率值在K2个时频资源发送Preamble,所述K2是正整数。
对于第二节点N02,在步骤S5201中,发送所述第一信令;在步骤S5202中,接收Preamble;在步骤S5203中,接收Preamble。
在实施例5中,所述K1个时频资源中的至少2个时频资源在时域上不交叠;所述K2个时频资源中的至少2个时频资源在时域上不交叠,所述K2个时频资源在所述K1个时频资源之后;在所述K1个时频资源发送的Preamble和在所述K2个时频资源发送的Preamble属于第一随机接入过程;所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔内,所述第一计数器未被更新;所述第一目标功率值与所述第一计数器和第一步长的乘积有关。
作为一个实施例,所述“所述K1个时频资源中的至少2个时频资源在时域上不交叠”包括:所述K1个时频资源中的任意2个时频资源在时域上不交叠。
作为一个实施例,所述“所述K2个时频资源中的至少2个时频资源在时域上不交叠”包括:所述K2个时频资源中的任意2个时频资源在时域上不交叠。
作为一个实施例,所述第一节点U01是一个用户设备。
作为一个实施例,所述第一节点U01是一个基站设备。
作为一个实施例,所述第一节点U01是一个中继设备。
作为一个实施例,所述第二节点N02是一个基站设备。
作为一个实施例,所述第二节点N02是一个用户设备。
作为一个实施例,所述第二节点N02是一个中继设备。
作为一个实施例,所述第一节点U01是一个用户设备,所述第二节点N02是一个基站设备。
作为一个实施例,所述第一节点U01是一个用户设备,所述第二节点N02是一个中继设备。
作为一个实施例,所述第一节点U01是一个用户设备,所述第二节点N02是一个用户设备。
作为一个实施例,所述第一节点U01是一个基站设备,所述第二节点N02是一个基站设备。
作为一个实施例,所述第一节点U01是一个中继设备,所述第二节点N02是一个基站设备。
作为一个实施例,所述第一节点U01和所述第二节点N02之间通过uu口连接。
作为一个实施例,所述第一节点U01和所述第二节点N02之间通过Xn口连接。
作为一个实施例,所述第一节点U01和所述第二节点N02之间通过X2口连接。
作为一个实施例,所述第一节点U01和所述第二节点N02之间通过PC5口连接。
作为一个实施例,所述第一节点U01和所述第二节点N02之间通过空口连接。
作为一个实施例,所述第一信令指示所述第一步长。
作为一个实施例,所述第一信令包括所述第一步长。
作为一个实施例,所述第一信令被用于确定所述第一步长。
作为一个实施例,所述第一信令被用于配置所述第一步长。
作为一个实施例,所述第一信令是一个RRC消息。
作为一个实施例,所述第一信令是一个RRC消息中的一个RRC IE(Information Element,信息元素)。
作为一个实施例,所述第一信令是一个RRC消息中的一个RRC域(field)。
作为一个实施例,所述第一信令是一个MAC CE(Control Element,控制元素)。
作为一个实施例,所述第一信令包括RA-Prioritization IE,所述RA-Prioritization IE中的一个RRC域指示所述第一步长。
作为一个实施例,所述第一信令包括RACH-ConfigCommon IE,所述RACH-ConfigCommon IE中的一个RRC域指示所述第一步长。
作为一个实施例,所述第一信令包括一个RRC域,所述一个RRC域指示所述第一步长,所述一个RRC域的名字中包括powerRampingStep。
作为该实施例的一个子实施例,所述一个RRC域的名字中包括power或者Ramping或者Step或者CE或者Coverage或者Enhancement或者Repetition中的至少之一。
作为该实施例的一个子实施例,所述一个RRC域的名字中包括power或者Ramping或者Step或者High或者Priority或者CE或者Coverage或者Enhancement或者Repetition中的至少之一。
作为该实施例的一个子实施例,所述一个RRC域的名字包括powerRampingStep域。
作为该实施例的一个子实施例,所述一个RRC域的名字是powerRampingStep域。
作为该实施例的一个子实施例,所述一个RRC域的名字包括powerRampingStepHighPriority域。
作为该实施例的一个子实施例,所述一个RRC域的名字是powerRampingStepHighPriority域。
作为一个实施例,所述第一步长是功率抬升步长(Power ramping step)。
作为一个实施例,所述第一步长是针对被优先的随机接入过程(prioritized random access procedure)的功率抬升步长。
作为一个实施例,所述第一步长是PRACH覆盖增强专用的功率抬升步长。
作为一个实施例,所述第一步长是NR PRACH覆盖增强专用的功率抬升步长。
作为一个实施例,所述第一信令指示候选步长;所述第一步长和所述候选步长有关,并且,所述第一步长和所述K1或者所述K2中的至少之一有关。
作为一个实施例,所述第一信令指示候选步长。
作为一个实施例,所述第一信令包括所述候选步长。
作为一个实施例,所述第一信令被用于确定所述候选步长。
作为一个实施例,所述第一信令被用于配置所述候选步长。
作为一个实施例,所述第一信令包括RA-Prioritization IE,所述RA-Prioritization IE中的一个RRC域指示所述候选步长。
作为一个实施例,所述第一信令包括RACH-ConfigCommon IE,所述RACH-ConfigCommon IE中的一个RRC域指示所述候选步长。
作为一个实施例,所述第一信令包括一个RRC域,所述一个RRC域指示所述候选步长。
作为该实施例的一个子实施例,所述一个RRC域的名字中包括power或者Ramping或者Step或者CE或者Coverage或者Enhancement或者Repetition中的至少之一。
作为该实施例的一个子实施例,所述一个RRC域的名字中包括power或者Ramping或者Step或者High或者Priority或者CE或者Coverage或者Enhancement或者Repetition中的至少之一。
作为该实施例的一个子实施例,所述一个RRC域的名字包括powerRampingStep域。
作为该实施例的一个子实施例,所述一个RRC域的名字是powerRampingStep域。
作为该实施例的一个子实施例,所述一个RRC域的名字包括powerRampingStepHighPriority域。
作为该实施例的一个子实施例,所述一个RRC域的名字是powerRampingStepHighPriority域。
作为一个实施例,所述候选步长被用于确定所述第一步长。
作为一个实施例,所述候选步长被用于计算所述第一步长。
作为一个实施例,所述K1或者所述K2中的至少之一和所述候选步长共同被用于确定所述第一步长。
作为一个实施例,所述K1和所述候选步长共同被用于确定所述第一步长。
作为一个实施例,所述K2和所述候选步长共同被用于确定所述第一步长。
作为一个实施例,所述第一偏移量是针对所述候选步长的偏移量。
作为一个实施例,所述第一偏移量是预配置的。
作为一个实施例,所述第一偏移量通过RRC消息配置。
作为一个实施例,所述第一偏移量是一个回退值。
作为一个实施例,所述第一偏移量、所述K1或者所述K2中的至少之一和所述候选步长共同被用于确定所述第一步长。
作为一个实施例,所述第一偏移量、所述K1和所述候选步长共同被用于确定所述第一步长。
作为一个实施例,所述第一偏移量、所述K2和所述候选步长共同被用于确定所述第一步长。
作为一个实施例,所述第一步长和所述候选步长有关,并且,所述第一步长和所述K1有关。
作为一个实施例,所述第一步长与(所述K1与所述候选步长的乘积)线性相关。
作为一个实施例,所述第一步长与(所述K1与所述候选步长的乘积)相等。
作为一个实施例,所述第一步长和所述候选步长有关,并且,所述第一步长和所述K2有关。
作为一个实施例,所述第一步长与(所述K2与所述候选步长的乘积)线性相关。
作为一个实施例,所述第一步长与(所述K2与所述候选步长的乘积)相等。
作为一个实施例,所述第一步长和所述K1有关,并且,所述第一步长和所述K2有关。
作为一个实施例,所述第一步长和(所述K2与所述K1的差)有关。
作为一个实施例,所述第一步长和(所述K2与所述K1的差)线性相关。
作为一个实施例,所述第一步长和所述候选步长有关,并且,所述第一步长和所述K1有关,并且,所述第一步长和所述K2有关。
作为一个实施例,所述第一步长与((所述K2与所述K1的差)与所述候选步长的乘积)有关。
作为一个实施例,所述第一步长与((所述K2与所述K1的差)与所述候选步长的乘积)线性相关。
作为一个实施例,所述第一步长与((所述K2与所述K1的差)与所述候选步长的乘积)相等。
作为一个实施例,所述第一步长和所述候选步长有关,并且,所述第一步长和第一偏移量有关。
作为一个实施例,所述第一步长和(所述候选步长与所述第一偏移量之和)有关。
作为一个实施例,所述第一步长和(所述候选步长与所述第一偏移量之和)线性相关。
作为一个实施例,所述第一步长=所述第一偏移量+所述候选步长。
作为一个实施例,所述第一偏移量与所述K1和所述K2的差有关。
作为该实施例的一个子实施例,如果所述K1和所述K2相等,所述第一偏移量等于0。
作为该实施例的一个子实施例,如果所述K1和所述K2不相等,所述第一偏移量不等于0。
作为一个实施例,所述第一步长和所述候选步长有关,并且,所述第一步长和所述K1或者所述K2中的至少之一有关,并且,所述第一步长和第一偏移量有关。
作为一个实施例,所述第一步长与((所述第一偏移量与所述K1的乘积)与所述候选步长之和)有关。
作为一个实施例,所述第一步长与((所述第一偏移量与所述K1的乘积)与所述候选步长之和)相等。
作为一个实施例,所述第一步长与((所述第一偏移量与所述K2的乘积)与所述候选步长之和)有关。
作为一个实施例,所述第一步长与((所述第一偏移量与所述K2的乘积)与所述候选步长之和)相等。
作为一个实施例,所述第一步长与((所述第一偏移量与(所述K2与所述K1之差)的乘积)与所述候选步长之和)有关。
作为一个实施例,所述第一步长与((所述第一偏移量与(所述K2与所述K1之差)的乘积)与所述候选步长之和)相等。
作为一个实施例,所述第一步长=(所述第一偏移量×所述K1)+所述候选步长。
作为一个实施例,所述第一步长=(所述第一偏移量×所述K2)+所述候选步长。
作为一个实施例,所述第一步长=(所述第一偏移量×(所述K2-所述K1))+所述候选步长。
作为一个实施例,所述第二节点在所述步骤S5202中接收在所述K1个时频资源发送的至少一个Preamble。
作为一个实施例,所述步骤S5203是可选的。
作为一个实施例,所述步骤S5203存在。
作为该实施例的一个子实施例,所述第二节点在所述步骤S5203中接收在所述K2个时频资源发送的至少一个Preamble。
作为一个实施例,所述步骤S5203不存在。
作为该实施例的一个子实施例,所述第二节点在所述步骤S5203中未接收在所述K2个时频资源发送的任一Preamble。
实施例6
实施例6示例了根据本申请的另一个实施例的无线信号传输流程图,如附图6所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S6101中,在K1个时频资源发送至少两个Preamble;在步骤S6102中,所述行为在K1个时频资源发送至少两个Preamble之后,根据所述K1更新第二计数器。
在实施例6中,所述第二计数器被用于统计Preamble的发送次数。
作为一个实施例,所述第二计数器是PREAMBLE_TRANSMISSION_COUNTER。
作为一个实施例,所述第二计数器的名字中包括PREAMBLE_TRANSMISSION_COUNTER。
作为一个实施例,所述第二计数器的名字中包括PREAMBLE或者TRANSMISSION或者COUNTER或者CE或者COVERAGE或者ENHANCEMENT或者REPETITION中的至少之一。
作为一个实施例,所述“在所述行为在K2个时频资源发送Preamble之后”包括:在所述K2个时频资源的最后一个时频资源发送Preamble之后。
作为一个实施例,所述“在所述行为在K2个时频资源发送Preamble之后”包括:在所述K2个时频资源的每个时频资源发送Preamble之后。
作为一个实施例,所述“在所述行为在K2个时频资源发送Preamble之后”包括:在所述K2个时频资源的最后一个时频资源的截止时刻之后。
作为一个实施例,所述“根据所述K1更新第二计数器”包括:所述第二计数器增加所述K1。
作为一个实施例,所述“根据所述K1更新第二计数器”包括:所述第二计数器增加M1,所述M1是不大于所述K1的正整数。
作为一个实施例,所述M1是在所述K1个时频资源被发送的不同的Preamble的数量。
作为一个实施例,所述M1是在所述K1个时频资源被发送的Preamble的数量。
作为一个实施例,所述第一节点在所述K1个时频资源中的每个时频资源都发送Preamble。
作为一个实施例,所述第一节点在所述K1个时频资源中的最晚的至少一个时频资源未发送Preamble。
作为一个实施例,所述第二计数器被用于统计在一个随机接入过程中的Preamble的发送次数。
作为一个实施例,在所述K1个时频资源中发送第一个Preamble时,所述第二计数器等于1。
作为一个实施例,在所述K1个时频资源中发送第一个Preamble时,所述第二计数器大于1。
作为一个实施例,根据所述K1更新后的所述第二计数器达到所述第二计数器的最大值与1之和。
作为一个实施例,根据所述K1更新后的所述第二计数器未达到所述第二计数器的最大值与1之和。
作为一个实施例,所述第二计数器的最大值是preambleTransMax。
作为一个实施例,根据所述K1更新后的所述第二计数器达到所述第二计数器的最大值是指:PREAMBLE_TRANSMISSION_COUNTER=preambleTransMax+1。
作为一个实施例,如果根据所述K1更新后的所述第二计数器达到所述第二计数器的最大值,所述第一节点的MAC层给所述第一节点的更高层指示一个随机接入问题(Random Access problem)。
作为一个实施例,所述行为根据所述K1更新第二计数器在所述行为更新第一计数器之前。
实施例7
实施例7示例了根据本申请的又一个实施例的无线信号传输流程图,如附图7所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S7101中,使用第一目标功率值在K2个时频资源发送Preamble;在步骤S7102中,Preamble在所述K2个时频资源被发送之后,更新所述第一计数器;在步骤S7103中,使用第二目标功率值在K3个时频资源发送Preamble。
对于第二节点N02,在步骤S7201中,接收Preamble。
在实施例7中,所述K3个时频资源中的至少2个时频资源在时域上不交叠,所述K3个时频资源在所述K2个时频资源之后;所述第二目标功率值是所述第一节点的最大输出功率。
作为一个实施例,在所述K3个时频资源发送的Preamble属于所述第一随机接入过程。
作为一个实施例,在所述K2个时频资源发送Preamble到在所述K3个时频资源发送Preamble的时间间隔内,所述第一随机接入过程未被终止,并且,所述第一随机接入过程未被认为成功完成。
作为一个实施例,在所述K2个时频资源发送Preamble到在所述K3个时频资源发送Preamble的时间间隔内,所述第一计数器未被初始化。
作为一个实施例,在所述K2个时频资源发送Preamble到在所述K3个时频资源发送Preamble的时间间隔内,所述第二计数器未被初始化。
作为一个实施例,根据所述K2更新所述第一计数器。
作为一个实施例,所述“更新所述第一计数器”包括:所述第一计数器增加所述K2。
作为一个实施例,所述“更新所述第一计数器”包括:所述第一计数器增加P2,所述P2是不大于所述K2的正整数。
作为一个实施例,所述“更新所述第一计数器”包括:所述第一计数器增加1。
作为一个实施例,所述“Preamble在所述K2个时频资源被发送之后”是指:所述行为使用第一目标功率值在K2个时频资源发送Preamble之后。
作为一个实施例,所述“Preamble在所述K2个时频资源被发送之后”包括:Preamble在所述K2个时频资源被发送之后,并且,在K3个时频资源发送Preamble之前。
作为一个实施例,所述“Preamble在所述K2个时频资源被发送之后”包括:认为针对在所述K2个时频资源被发送的Preamble的随机接入响应未被成功接收,并且,执行随机接入资源选择之后;其中,所述随机接入资源选择被用于确定所述K2个时频资源。
作为一个实施例,所述“Preamble在所述K2个时频资源被发送之后”包括:认为针对在所述K2个时频资源被发送的Preamble的竞争解决不成功,并且,执行随机接入资源选择之后;其中,所述随机接入资源选择被用于确定所述K2个时频资源。
作为一个实施例,所述“Preamble在所述K2个时频资源被发送之后”包括:Preamble在所述K2个时频资源被发送之后执行随机接入资源选择之后;其中,所述随机接入资源选择被用于确定所述K2个时频资源。
作为一个实施例,所述“使用第二目标功率值在K3个时频资源发送Preamble”包括:在所述K3个时频资源使用所述第二目标功率值发送Preamble。
作为一个实施例,所述“使用第二目标功率值在K3个时频资源发送Preamble”包括:在所述K3个时频资源中的第一个时频资源使用所述第二目标功率值发送Preamble。
作为一个实施例,所述“使用第二目标功率值在K3个时频资源发送Preamble”包括:在所述K3个时频资源中的每个时频资源使用所述第二目标功率值发送Preamble。
作为一个实施例,所述“使用第二目标功率值在K3个时频资源发送Preamble”包括:在所述K3个时频资源中的至少一个时频资源使用所述第二目标功率值发送Preamble。
作为一个实施例,在所述K3个时频资源中的任意两个时频资源发送Preamble所使用的功率相等。
作为一个实施例,在所述K3个时频资源中的任意两个时频资源发送Preamble所使用的功率不相等。
作为一个实施例,在所述K3个时频资源中的至少两个时频资源发送Preamble所使用的功率相等。
作为一个实施例,在所述K3个时频资源中的至少两个时频资源发送Preamble所使用的功率不相等。
作为一个实施例,所述K3个时频资源中的一个时频资源的截止时刻之后的第一个符号是所述K3个时频资源中的另一个时频资源的开始时刻。
作为一个实施例,所述K3个时频资源中的一个时频资源的截止时刻之后的一个符号是所述K3个时频资源中的另一个时频资源的开始时刻。
作为一个实施例,所述K3个时频资源中的任意2个时频资源在时域上不交叠。
作为一个实施例,所述K3个时频资源中的任意2个时频资源在时域上不是连续的。
作为一个实施例,所述K3个时频资源中的任意2个时频资源在时域上是连续的。
作为一个实施例,所述K3个时频资源中存在至少2个时频资源在时域上不交叠。
作为一个实施例,所述K3个时频资源中的任意2个时频资源在时域上的持续时间长度相等。
作为一个实施例,所述K3个时频资源中的任意2个时频资源在时域上的持续时间长度不相等。
作为一个实施例,所述K3个时频资源中存在至少2个时频资源在时域上的持续时间长度相等。
作为一个实施例,所述K3个时频资源中存在至少2个时频资源在时域上的持续时间长度不相等。
作为一个实施例,所述K3个时频资源中的任意2个时频资源在频域上交叠。
作为一个实施例,所述K3个时频资源中的任意2个时频资源在频域上不交叠。
作为一个实施例,所述K3个时频资源存在至少2个时频资源在频域上交叠。
作为一个实施例,所述K3个时频资源存在至少2个时频资源在频域上不交叠。
作为一个实施例,所述K3个时频资源中的任意2个时频资源占用的频域资源相同。
作为一个实施例,所述K3个时频资源中的任意2个时频资源占用的频域资源不同。
作为一个实施例,所述K3个时频资源存在至少2个时频资源占用的频域资源相同。
作为一个实施例,所述K3个时频资源存在至少2个时频资源占用的频域资源不同。
作为一个实施例,所述“所述K3个时频资源在所述K2个时频资源之后”包括:所述K3个时频资源中的第一个时频资源在所述K2个时频资源中的最后一个时频资源之后。
作为一个实施例,所述“所述K3个时频资源在所述K2个时频资源之后”包括:所述K3个时频资源中的第一个时频资源的开始时刻在所述K1个时频资源中的最后一个时频资源的截止时刻之后。
作为一个实施例,所述“所述K3个时频资源在所述K2个时频资源之后”包括:所述K3个时频资源在时域上晚于所述K2个时频资源。
作为一个实施例,所述“所述K3个时频资源在所述K2个时频资源之后”包括:所述K3个时频资源中的第一个时频资源在所述K2个时频资源中的第一个时频资源之后。
作为一个实施例,所述行为使用第一目标功率值在K2个时频资源发送Preamble到所述行为使用第二目标功率值在K3个时频资源发送Preamble的时间间隔内,所述第一计数器仅被更新一次。
作为一个实施例,所述行为使用第一目标功率值在K2个时频资源发送Preamble到所述行为使用第二目标功率值在K3个时频资源发送Preamble的时间间隔内,所述第一计数器被更新至少一次。
作为一个实施例,任意2个Preamble在所述K2个时频资源被发送的时间间隔内,所述第一计数器未被更新。
作为一个实施例,所述第二目标功率值和所述第一节点的最大输出功率相等。
作为一个实施例,被更新后的所述第一计数器是否达到所述第一整数被用于确定是否使用所述第一节点的最大输出功率发送Preamble。
作为该实施例的一个子实施例,如果被更新后的所述第一计数器达到所述第一整数,使用所述第一节点的最大输出功率发送Preamble。
作为该实施例的一个子实施例,如果被更新后的所述第一计数器未达到所述第一整数,所述第一目标功率值与所述第一计数器和第一步长的乘积有关。
作为一个实施例,根据被更新后的所述第一计数器计算的功率是否大于所述第一节点的最大输出功率被用于确定是否使用所述第一节点的最大输出功率发送Preamble。
作为该实施例的一个子实施例,如果根据被更新后的所述第一计数器计算的功率大于所述第一节点的最大输出功率,使用所述第一节点的最大输出功率发送Preamble。
作为该实施例的一个子实施例,如果根据被更新后的所述第一计数器计算的功率不大于所述第一节点的最大输出功率,使用根据被更新后的所述第一计数器计算的功率发送Preamble。
作为该实施例的一个子实施例,所述第一计数器被更新后,使用min{根据被更新后的所述第一计数器计算的功率,所述第一节点的最大输出功率}发送Preamble。
作为一个实施例,根据被更新后的所述第一计数器计算的PPRACH,target,f,c+PLb,f,c是否大于所述第一节点的最大输出功率被用于确定是否使用所述第一节点的最大输出功率发送Preamble。
作为该实施例的一个子实施例,如果根据被更新后的所述第一计数器计算的PPRACH,target,f,c+PLb,f,c大于所述第一节点的最大输出功率,使用所述第一节点的最大输出功率发送Preamble。
作为该实施例的一个子实施例,如果根据被更新后的所述第一计数器计算的PPRACH,target,f,c+PLb,f,c不大于所述第一节点的最大输出功率,使用PPRACH,target,f,c+PLb,f,c发送Preamble。
作为该实施例的一个子实施例,所述第一计数器被更新后,使用min{PPRACH,target,f,c+PLb,f,c,所述第一节点的最大输出功率}发送Preamble。
作为一个实施例,根据Preamble在所述K2个时频资源被发送之后被更新的所述第一计数器计算的功率大于所述第一节点的最大输出功率被用于确定所述第二目标功率值是所述第一节点的最大输出功率。
作为一个实施例,根据Preamble在所述K2个时频资源被发送之后被更新的所述第一计数器计算的功率不小于所述第一节点的最大输出功率被用于确定所述第二目标功率值是所述第一节点的最大输出功率。
作为一个实施例,根据Preamble在所述K2个时频资源被发送之后被更新的所述第一计数器计算的PPRACH,target,f,c+PLb,f,c大于所述第一节点的最大输出功率被用于确定所述第二目标功率值是所述第一节点的最大输出功率。
作为一个实施例,根据Preamble在所述K2个时频资源被发送之后被更新的所述第一计数器计算的PPRACH,target,f,c+PLb,f,c不小于所述第一节点的最大输出功率被用于确定所述第二目标功率值是所述第一节点的最大输出功率。
作为一个实施例,根据所述K2更新后的所述第一计数器达到第一整数;所述第一整数是可配置的。
作为该实施例的一个子实施例,根据所述K2更新后的所述第一计数器达到所述第一整数被用于确定所述第二目标功率值是所述第一节点的最大输出功率。
作为该实施例的一个子实施例,所述第二目标功率值与根据Preamble在所述K2个时频资源被发送之后被更新的所述第一计数器计算的PPRACH,target,f,c+PLb,f,c是否大于所述第一节点的最大输出功率无关。
作为该实施例的一个子实施例,所述第一计数器达到所述第一整数被用于确定使用第二目标功率值在K3个时频资源发送Preamble,并且,所述第二目标功率值是所述第一节点的最大输出功率。
作为该实施例的一个子实施例,所述第一计数器达到所述第一整数包括:所述第一计数器大于所述第一整数。
作为该实施例的一个子实施例,所述第一计数器达到所述第一整数包括:所述第一计数器不小于所述第一整数。
作为该实施例的一个子实施例,根据所述K1更新后的所述第一计数器未达到所述第一整数。
作为该实施例的一个子实施例,根据所述K1更新后的所述第一计数器未达到所述第一整数被用于确定使用所述第一目标功率值在K2个时频资源发送Preamble,并且,所述第一目标功率值与所述第一计数器和第一步长的乘积有关。
作为一个实施例,所述第一计数器在Preamble在所述K2个时频资源被发送之后更新所述第一计数器之后计算PCMAX,f,c(i)时,所述发送时机i与所述K3个时频资源中的至少一个时频资源有关。
作为该实施例的一个子实施例,所述发送时机i与所述K3个时频资源中的仅一个时频资源有关。
作为该实施例的一个子实施例,所述发送时机i与所述K3个时频资源中的第一个时频资源有关。
作为该实施例的一个子实施例,所述发送时机i与所述K3个时频资源中的每个时频资源有关。
作为一个实施例,所述步骤S7201是可选的。
作为一个实施例,所述步骤S7201存在。
作为该实施例的一个子实施例,所述第二节点在所述步骤S7201中接收在所述K3个时频资源发送的至少一个Preamble。
作为一个实施例,所述步骤S7201不存在。
作为该实施例的一个子实施例,所述第二节点在所述步骤S7201中未接收在所述K3个时频资源发送的任一Preamble。
实施例8
实施例8示例了根据本申请的一个实施例的根据在K1个时频资源发送的Preamble的数量更新第一计数器的示意图。
在实施例8中,所述行为根据所述K1更新第一计数器包括:根据在所述K1个时频资源发送的Preamble 的数量更新所述第一计数器。
作为一个实施例,在K1个时频资源发送的Preamble的数量不大于所述K1。
作为一个实施例,在K1个时频资源发送的Preamble的数量与在ra-ResponseWindow中针对被RA-RNTI加扰的PDCCH的监听有关。
作为一个实施例,在K1个时频资源发送的Preamble的数量与在ra-ResponseWindow中接收到的随机接入响应有关。
作为一个实施例,所述ra-ResponseWindow的开始时刻与至少所述K1个时频资源中最早的一个时频资源的截止时刻有关。
作为一个实施例,如果接收到包括RAPID域的一个随机接入响应,并且,并且所述RAPID域中的Random Access Preamble identifier和在K1个时频资源中的至少一个时频资源发送的Preamble的标识匹配,在所述K1个时频资源中的开始时刻在所述一个随机接入响应之后的时频资源不发送Preamble。
作为一个实施例,所述“根据在所述K1个时频资源发送的Preamble的数量更新所述第一计数器”包括:所述第一计数器被增加的值和所述第一节点在所述K1个时频资源发送的Preamble的数量相等。
作为一个实施例,如果所述K1等于2,在所述K1个时频资源发送的Preamble的数量等于1,所述第一计数器增加1。
作为一个实施例,如果所述K1等于2,在所述K1个时频资源发送的Preamble的数量等于2,所述第一计数器增加2。
作为一个实施例,如果所述K1等于3,在所述K1个时频资源发送的Preamble的数量等于2,所述第一计数器增加2。
作为一个实施例,如果所述K1等于3,在所述K1个时频资源发送的Preamble的数量等于3,所述第一计数器增加3。
实施例9
实施例9示例了根据本申请的一个实施例的第一目标功率值与第一功率偏移量有关的示意图,如附图9所示。
在实施例9中,所述第一目标功率值与第一功率偏移量有关。
作为一个实施例,所述第一目标功率值与所述第一功率偏移量线性相关。
作为一个实施例,所述第一功率偏移量被用于确定所述第一目标功率值。
作为一个实施例,所述第一功率偏移量被用于确定所述第一功率值。
作为一个实施例,所述第一功率值与所述第一功率偏移量有关。
作为一个实施例,所述第一功率值与所述第一功率偏移量是相关的。
作为一个实施例,所述第一功率值与所述第一功率偏移量是线性相关的。
作为一个实施例,所述第一功率值与所述第一功率偏移量是对数相关的。
作为一个实施例,所述第一功率值与所述第一初始功率、所述第一计数器、所述第一步长和所述第一功率偏移量都有关。
作为一个实施例,所述第一功率值与所述第一初始功率、所述第一调整功率、所述第一计数器、所述第一步长和所述第一功率偏移量都有关。
作为一个实施例,所述第一功率值与(((所述第一计数器与1之差)与所述第一步长的乘积)与所述第一功率偏移量之和)线性相关。
作为一个实施例,所述第一功率值=第一初始功率+(第一计数器–1)×第一步长+所述第一功率偏移量。
作为一个实施例,所述第一功率值=第一初始功率+第一调整功率+(第一计数器–1)×第一步长+所述第一功率偏移量。
作为一个实施例,所述第一功率偏移量是固定值。
作为一个实施例,所述第一功率偏移量是可变的。
作为一个实施例,所述第一功率偏移量是可配置的。
作为该实施例的一个子实施例,一个RRC消息被用于配置所述第一功率偏移量。
作为该实施例的一个子实施例,一个RRC IE被用于配置所述第一功率偏移量。
作为该实施例的一个子实施例,一个RRC域被用于配置所述第一功率偏移量。
作为该实施例的一个子实施例,RACH-ConfigCommon IE中的一个RRC域被用于配置所述第一功率偏移量。
作为该实施例的一个子实施例,RACH-ConfigGeneric IE中的一个RRC域被用于配置所述第一功率偏移量。
作为一个实施例,所述第一功率偏移量与所述K2有关。
作为该实施例的一个子实施例,所述K2被用于确定所述第一功率偏移量。
作为该实施例的一个子实施例,所述第一功率偏移量与所述K2的函数。
作为该实施例的一个子实施例,所述第一功率偏移量与所述K2线性相关。
作为该实施例的一个子实施例,所述第一功率偏移量与所述K2对数相关。
作为该实施例的一个子实施例,所述第一功率偏移量和(-10*log10(K2))线性相关。
作为该实施例的一个子实施例,所述第一功率偏移量和(-10*log10(K2))相等。
作为该实施例的一个子实施例,所述第一功率偏移量=-10*log10(K2)。
作为该实施例的一个子实施例,所述第一功率偏移量=-10*log10(K2/2)。
作为该实施例的一个子实施例,所述第一功率偏移量与所述K2无关。
实施例10
实施例10示例了根据本申请的一个实施例的K1个时频资源和K2个时频资源分别被关联到第一下行RS资源和第二下行RS资源的示意图,如附图10所示。
在实施例10中,所述K1个时频资源被关联到第一下行RS资源,所述K2个时频资源被关联到第二下行RS资源;所述第一下行RS资源和所述第二下行RS资源不同。
作为一个实施例,所述第一下行RS资源不是所述第二下行RS资源。
作为一个实施例,所述第一下行RS资源和所述第二下行RS资源的索引不同。
作为一个实施例,所述第一下行RS资源和所述第二下行RS资源的类型不同。
作为一个实施例,所述第一下行RS资源和所述第二下行RS资源的类型或者索引中的至少之一不同。
作为一个实施例,所述K1个时频资源仅被关联到所述第一下行RS资源,所述K2个时频资源仅被关联到所述第二下行RS资源。
作为一个实施例,所述K1个时频资源不被关联到多个下行RS资源,并且,所述K2个时频资源不被关联到多个下行RS资源。
作为一个实施例,所述第一下行RS资源是一个下行RS资源。
作为一个实施例,在所述行为在K1个时频资源发送至少2个Preamble之前,确定所述第一下行RS资源。
作为该实施例的一个子实施例,所述第一节点根据RSRP确定所述第一下行RS资源。
作为该实施例的一个子实施例,所述第一节点随机选择所述第一下行RS资源。
作为该实施例的一个子实施例,针对所述第一下行RS资源的L1-RRSP测量结果不小于一个阈值。
作为一个实施例,所述“所述K1个时频资源被关联到第一下行RS资源”包括:所述K1个时频资源的时域位置被关联到第一下行RS资源。
作为一个实施例,所述“所述K1个时频资源被关联到第一下行RS资源”包括:所述第一下行RS资源被用于确定所述K1个时频资源中的每个时频资源的时域位置。
作为一个实施例,所述“所述K1个时频资源被关联到第一下行RS资源”包括:所述K1个时频资源在时域上被关联到所述第一下行RS资源。
作为一个实施例,所述第一节点根据所述第一下行RS资源确定所述K1个时频资源中的每个时频资源的时域位置。
作为一个实施例,所述第一节点根据所述第一下行RS资源确定所述K1个时频资源中的第一个时频资源的时域位置,所述K1个时频资源中的所述第一个时频资源的时域位置被用于确定所述K1个时频资源中的所述第一个时频资源之外的时频资源的时域位置。
作为一个实施例,所述第二下行RS资源是一个下行RS资源。
作为一个实施例,在所述行为使用第一目标功率值在K2个时频资源发送Preamble之前,确定所述第二下行RS资源。
作为该实施例的一个子实施例,所述第一节点根据RSRP确定所述第二下行RS资源。
作为该实施例的一个子实施例,所述第一节点随机选择所述第二下行RS资源。
作为该实施例的一个子实施例,针对所述第二下行RS资源的L1-RRSP测量结果不小于一个阈值。
作为一个实施例,所述“所述K2个时频资源被关联到第二下行RS资源”包括:所述K2个时频资源的时域位置被关联到所述第二下行RS资源。
作为一个实施例,所述“所述K2个时频资源被关联到第二下行RS资源”包括:所述第二下行RS资源被用于确定所述K2个时频资源中的每个时频资源的时域位置。
作为一个实施例,所述“所述K2个时频资源被关联到第二下行RS资源”包括:所述K2个时频资源在时域上被关联到第二下行RS资源。
作为一个实施例,所述第一节点根据所述第二下行RS资源确定所述K2个时频资源中的每个时频资源的时域位置。
作为一个实施例,所述第一节点根据所述第二下行RS资源确定所述K2个时频资源中的第一个时频资源的时域位置,所述K2个时频资源中的所述第一个时频资源的时域位置被用于确定所述K2个时频资源中的所述第一个时频资源之外的时频资源的时域位置。
实施例11
实施例11示例了根据本申请的一个实施例的一个时频资源集合的示意图,如附图11所示。在附图11中,横轴表示时域,纵轴表示频域;方框1101和方框1102分别表示所述一个时频资源集合中的一个时频资源;省略号表示所述一个时频资源集合中的其他的时频资源。特别说明的是本示例不限制本申请中的所述一个时频资源集合中的任意2个时频资源在频域上是否交叠,并且,不限制本申请中的所述一个时频资源集合中的任意2个时频资源在时域上是否交叠。
在实施例11中,T11.1时刻是所述方框1101所表示的时频资源的开始时刻;T11.2时刻是所述方框1101所表示的时频资源的截止时刻;T11.3时刻是所述方框1102所表示的时频资源的开始时刻;T11.2时刻是所述方框1102所表示的时频资源的截止时刻;所述第一节点在所述方框1101所表示的时频资源和所述方框1102所表示的时频资源分别发送Preamble。
作为一个实施例,所述附图11中的每个省略号是可选的。
作为一个实施例,所述附图11中的至少一个省略号不存在。
作为一个实施例,所述附图11中的至少一个省略号存在。
作为一个实施例,所述方框1101所表示的时频资源和所述方框1102所表示的时频资源是相邻的时频资源。
作为一个实施例,所述方框1101所表示的时频资源和所述方框1102所表示的时频资源不是相邻的时频资源。
作为一个实施例,所述T11.2时刻和所述T11.3时刻之间存在所述一个时频资源集合中的至少一个时频资源。
作为一个实施例,所述T11.2时刻和所述T11.3时刻之间不存在所述一个时频资源集合中的任一时频资源。
作为一个实施例,所述T11.2时刻和所述T11.3时刻在时域上是连续的。
作为一个实施例,所述T11.2时刻和所述T11.3时刻在时域上不是连续的。
作为一个实施例,所述T11.2时刻在所述T11.3时刻之前。
作为一个实施例,所述T11.2时刻在所述T11.3时刻之后。
作为一个实施例,所述一个时频资源集合是所述K1个时频资源。
作为一个实施例,所述一个时频资源集合是所述K2个时频资源。
作为一个实施例,所述一个时频资源集合是所述K3个时频资源。
实施例12
实施例12示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图12所示。 在附图12中,第一节点中的处理装置1200包括第一接收机1201和第一发射机1202。
第一发射机1202,在K1个时频资源发送至少2个Preamble,所述K1是大于1的正整数;根据所述K1更新第一计数器;使用第一目标功率值在K2个时频资源发送Preamble,所述K2是正整数;
实施例12中,所述K1个时频资源中的至少2个时频资源在时域上不交叠;所述K2个时频资源中的至少2个时频资源在时域上不交叠,所述K2个时频资源在所述K1个时频资源之后;在所述K1个时频资源发送的Preamble和在所述K2个时频资源发送的Preamble属于第一随机接入过程;所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔内,所述第一计数器未被更新;所述第一目标功率值与所述第一计数器和第一步长的乘积有关。
作为一个实施例,所述行为根据所述K1更新第一计数器包括:根据在所述K1个时频资源发送的Preamble的数量更新所述第一计数器。
作为一个实施例,所述第一发射机1202,Preamble在所述K2个时频资源被发送之后,更新所述第一计数器;使用第二目标功率值在K3个时频资源发送Preamble;其中,所述K3个时频资源中的至少2个时频资源在时域上不交叠,所述K3个时频资源在所述K2个时频资源之后;所述第二目标功率值是所述第一节点的最大输出功率;根据所述K2更新后的所述第一计数器达到第一整数;所述第一整数是可配置的。
作为一个实施例,所述第一目标功率值与第一功率偏移量有关,所述第一功率偏移量与所述K2有关。
作为一个实施例,所述K1个时频资源被关联到第一下行RS资源,所述K2个时频资源被关联到第二下行RS资源;所述第一下行RS资源和所述第二下行RS资源不同。
作为一个实施例,第一接收机1201,接收第一信令,所述第一信令指示所述第一步长。
作为一个实施例,第一接收机1201,接收第一信令,所述第一信令指示候选步长;其中,所述第一步长和所述候选步长有关,并且,所述第一步长和所述K1或者所述K2中的至少之一有关。
作为一个实施例,所述第一发射机1202,所述行为在K1个时频资源发送至少两个Preamble之后,根据所述K1更新第二计数器;其中,所述第二计数器被用于统计Preamble的发送次数。
作为一个实施例,所述K1个时频资源被关联到至少一个下行RS资源,所述K2个时频资源被关联到至少一个下行RS资源;所述行为根据所述K1更新第一计数器包括:根据所述K1个时频资源所关联的至少一个下行RS资源和所述K2个时频资源所关联的至少一个下行RS资源中的相同的下行RS资源的数量更新所述第一计数器。
作为一个实施例,所述第一接收机1201包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467。
作为一个实施例,所述第一接收机1201包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456。
作为一个实施例,所述第一接收机1201包括本申请附图4中的天线452,接收器454,接收处理器456。
作为一个实施例,所述第一发射机1202包括本申请附图4中的天线452,发射器454,多天线发射处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467。
作为一个实施例,所述第一发射机1202包括本申请附图4中的天线452,发射器454,多天线发射处理器457,发射处理器468。
作为一个实施例,所述第一发射机1202包括本申请附图4中的天线452,发射器454,发射处理器468。
实施例13
实施例13示例了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;如附图13所示。在附图13中,第二节点中的处理装置1300包括第二发射机1301和第二接收机1302。
第二接收机1302,接收在K1个时频资源被发送的Preamble,或者,接收在K2个时频资源被发送的Preamble;
实施例13中,根据所述K1第一计数器被更新;所述K1是大于1的正整数;所述K2是正整数;至少2个Preamble在所述K1个时频资源被发送;Preamble在所述K2个时频资源使用第一目标功率值被发送;所述K1个时频资源中的至少2个时频资源在时域上不交叠;所述K2个时频资源中的至少2个时频资源在时域上不交叠,所述K2个时频资源在所述K1个时频资源之后;在所述K1个时频资源发送的Preamble和在所述K2个时频资源发送的Preamble属于第一随机接入过程;所述至少2个Preamble中的任意2个 Preamble在所述K1个时频资源被发送的时间间隔内,所述第一计数器未被更新;所述第一目标功率值与所述第一计数器和第一步长的乘积有关。
作为一个实施例,所述短语根据所述K1第一计数器被更新包括:根据在所述K1个时频资源发送的Preamble的数量所述第一计数器被更新。
作为一个实施例,所述第二接收机1302,接收在K3个时频资源被发送的Preamble;其中,Preamble在所述K2个时频资源被发送之后,所述第一计数器被更新;Preamble在所述K3个时频资源使用第二目标功率值被发送;所述K3个时频资源中的至少2个时频资源在时域上不交叠,所述K3个时频资源在所述K2个时频资源之后;所述第二目标功率值是所述至少2个Preamble的发送者的最大输出功率;根据所述K2更新后的所述第一计数器达到第一整数;所述第一整数是可配置的。
作为一个实施例,所述第一目标功率值与第一功率偏移量有关,所述第一功率偏移量与所述K2有关。
作为一个实施例,所述K1个时频资源被关联到第一下行RS资源,所述K2个时频资源被关联到第二下行RS资源;所述第一下行RS资源和所述第二下行RS资源不同。
作为一个实施例,第二发射机1301,发送第一信令,所述第一信令指示所述第一步长。
作为一个实施例,第二发射机1301,发送第一信令,所述第一信令指示候选步长;其中,所述第一步长和所述候选步长有关,并且,所述第一步长和所述K1或者所述K2中的至少之一有关。
作为一个实施例,至少两个Preamble在所述K1个时频资源被发送之后,根据所述K1第二计数器被更新;所述第二计数器被用于统计Preamble的发送次数。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475,存储器476。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,发射处理器416。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475,存储器476。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,接收处理器470。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一发射机,在K1个时频资源发送至少2个Preamble,所述K1是大于1的正整数;根据所述K1更新第一计数器;使用第一目标功率值在K2个时频资源发送Preamble,所述K2是正整数;
    其中,所述K1个时频资源中的任意2个时频资源在时域上不交叠;所述K2个时频资源中的任意2个时频资源在时域上不交叠,所述K2个时频资源在所述K1个时频资源之后;在所述K1个时频资源发送的Preamble和在所述K2个时频资源发送的Preamble属于第一随机接入过程;所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔内,所述第一计数器未被更新;所述第一目标功率值与所述第一计数器和第一步长的乘积有关。
  2. 根据权利要求1所述的第一节点,其特征在于,所述行为根据所述K1更新第一计数器包括:根据在所述K1个时频资源发送的Preamble的数量更新所述第一计数器。
  3. 根据权利要求1或2所述的第一节点,其特征在于,包括:
    所述第一发射机,Preamble在所述K2个时频资源被发送之后,更新所述第一计数器;使用第二目标功率值在K3个时频资源发送Preamble;
    其中,所述K3个时频资源中的任意2个时频资源在时域上不交叠,所述K3个时频资源在所述K2个时频资源之后;所述第二目标功率值是所述第一节点的最大输出功率;根据所述K2更新后的所述第一计数器达到第一整数;所述第一整数是可配置的。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,所述第一目标功率值与第一功率偏移量有关,所述第一功率偏移量与所述K2有关。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,所述K1个时频资源被关联到第一下行RS资源,所述K2个时频资源被关联到第二下行RS资源;所述第一下行RS资源和所述第二下行RS资源不同。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,包括:
    第一接收机,接收第一信令,所述第一信令指示所述第一步长。
  7. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,包括:
    第一接收机,接收第一信令,所述第一信令指示候选步长;
    其中,所述第一步长和所述候选步长有关,并且,所述第一步长和所述K1或者所述K2中的至少之一有关。
  8. 根据权利要求1至7中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一发射机,所述行为在K1个时频资源发送至少两个Preamble之后,根据所述K1更新第二计数器;
    其中,所述第二计数器被用于统计Preamble的发送次数。
  9. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二接收机,接收在K1个时频资源被发送的Preamble,或者,接收在K2个时频资源被发送的Preamble;
    其中,根据所述K1第一计数器被更新;所述K1是大于1的正整数;所述K2是正整数;至少2个Preamble在所述K1个时频资源被发送;Preamble在所述K2个时频资源使用第一目标功率值被发送;所述K1个时频资源中的任意2个时频资源在时域上不交叠;所述K2个时频资源中的任意2个时频资源在时域上不交叠,所述K2个时频资源在所述K1个时频资源之后;在所述K1个时频资源发送的Preamble和在所述K2个时频资源发送的Preamble属于第一随机接入过程;所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔内,所述第一计数器未被更新;所述第一目标功率值与所述第一计数器和第一步长的乘积有关。
  10. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    在K1个时频资源发送至少2个Preamble,所述K1是大于1的正整数;根据所述K1更新第一计数器;使用第一目标功率值在K2个时频资源发送Preamble,所述K2是正整数;
    其中,所述K1个时频资源中的任意2个时频资源在时域上不交叠;所述K2个时频资源中的任意2个时频资源在时域上不交叠,所述K2个时频资源在所述K1个时频资源之后;在所述K1个时频资源发送的Preamble和在所述K2个时频资源发送的Preamble属于第一随机接入过程;所述至少2个Preamble中的 任意2个Preamble在所述K1个时频资源被发送的时间间隔内,所述第一计数器未被更新;所述第一目标功率值与所述第一计数器和第一步长的乘积有关。
  11. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    接收在K1个时频资源被发送的Preamble,或者,接收在K2个时频资源被发送的Preamble;
    其中,根据所述K1第一计数器被更新;所述K1是大于1的正整数;所述K2是正整数;至少2个Preamble在所述K1个时频资源被发送;Preamble在所述K2个时频资源使用第一目标功率值被发送;所述K1个时频资源中的任意2个时频资源在时域上不交叠;所述K2个时频资源中的任意2个时频资源在时域上不交叠,所述K2个时频资源在所述K1个时频资源之后;在所述K1个时频资源发送的Preamble和在所述K2个时频资源发送的Preamble属于第一随机接入过程;所述至少2个Preamble中的任意2个Preamble在所述K1个时频资源被发送的时间间隔内,所述第一计数器未被更新;所述第一目标功率值与所述第一计数器和第一步长的乘积有关。
PCT/CN2023/108574 2022-07-26 2023-07-21 一种被用于无线通信的通信节点中的方法和装置 WO2024022238A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210881093.8 2022-07-26
CN202210881093.8A CN117528822A (zh) 2022-07-26 2022-07-26 一种被用于无线通信的通信节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2024022238A1 true WO2024022238A1 (zh) 2024-02-01

Family

ID=89705412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108574 WO2024022238A1 (zh) 2022-07-26 2023-07-21 一种被用于无线通信的通信节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN117528822A (zh)
WO (1) WO2024022238A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886808A (zh) * 2016-02-05 2018-11-23 瑞典爱立信有限公司 随机接入覆盖增强级别斜升过程
CN109151980A (zh) * 2017-06-16 2019-01-04 维沃移动通信有限公司 一种随机接入过程前导码发送功率的控制方法及终端
US20190394805A1 (en) * 2017-03-07 2019-12-26 Lg Electronics Inc. Method and user equipment for transmitting random access preamble
CN114268971A (zh) * 2020-09-16 2022-04-01 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886808A (zh) * 2016-02-05 2018-11-23 瑞典爱立信有限公司 随机接入覆盖增强级别斜升过程
US20190394805A1 (en) * 2017-03-07 2019-12-26 Lg Electronics Inc. Method and user equipment for transmitting random access preamble
CN109151980A (zh) * 2017-06-16 2019-01-04 维沃移动通信有限公司 一种随机接入过程前导码发送功率的控制方法及终端
CN114268971A (zh) * 2020-09-16 2022-04-01 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on 2step RACH Procedure", 3GPP TSG RAN WG1 MEETING #96BIS R1-1904197, 30 March 2019 (2019-03-30), XP051691338 *

Also Published As

Publication number Publication date
CN117528822A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
WO2022063145A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN112910615B (zh) 一种被用于无线通信的节点中的方法和装置
CN114258073A (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024022238A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN115603873A (zh) 一种被用于无线通信的通信节点中的方法和装置
CN114389770A (zh) 一种被用于无线通信的通信节点中的方法和装置
CN116015373A (zh) 一种被用于无线通信的节点中的方法和装置
WO2024051559A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024017078A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024051626A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024051560A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023138486A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024046155A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023213219A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024120191A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024104208A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024046152A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023030425A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024179376A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024007870A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024078434A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023226924A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023186164A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024125244A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023174228A1 (zh) 一种被用于无线通信的通信节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845448

Country of ref document: EP

Kind code of ref document: A1