WO2024032478A1 - 一种被用于无线通信的通信节点中的方法和装置 - Google Patents

一种被用于无线通信的通信节点中的方法和装置 Download PDF

Info

Publication number
WO2024032478A1
WO2024032478A1 PCT/CN2023/111141 CN2023111141W WO2024032478A1 WO 2024032478 A1 WO2024032478 A1 WO 2024032478A1 CN 2023111141 W CN2023111141 W CN 2023111141W WO 2024032478 A1 WO2024032478 A1 WO 2024032478A1
Authority
WO
WIPO (PCT)
Prior art keywords
condition
timer
pdcch
sdt
msga
Prior art date
Application number
PCT/CN2023/111141
Other languages
English (en)
French (fr)
Inventor
于巧玲
张晓博
Original Assignee
上海推络通信科技合伙企业(有限合伙)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210962200.XA external-priority patent/CN117580187A/zh
Application filed by 上海推络通信科技合伙企业(有限合伙) filed Critical 上海推络通信科技合伙企业(有限合伙)
Publication of WO2024032478A1 publication Critical patent/WO2024032478A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, and in particular to a transmission method and device in an RRC inactive state.
  • NR New Radio, new air interface
  • RRC Radio Resource Control, Radio Resource Control
  • RRC_INACTIVE Radio Resource Control inactive
  • 3GPP the 3rd Generation Partnership Project, the third generation partner project
  • Rel-17 launched the "NR Inactive Small Data Transmission (SDT)" work item (Work Item, WI) and formulated corresponding technical specifications for MO(UL(Uplink))-SDT, allowing it to be used in RRC Inactive state sends small packet transmission (small packet transmission) for uplink (UL-oriented) packets (packets), including CG-SDT (Configured Grant-based SDT, SDT based on configuration grant) and RA-SDT (Random Access-based SDT, SDT based on random access).
  • SDT Small Data Transmission
  • the current 3GPP protocol design for the CG-SDT process has many problems in random access performance, system complexity, and uplink transmission timing maintenance.
  • MSGA Message A
  • C Cell
  • RTI Radio Network Temporary Identifier
  • MAC Medium Access Control, media access control
  • CE Control Element, control element
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • this PDCCH transmission includes an uplink grant for a new transmission
  • timeAlignmentTimer associated with the PTAG Primary TAG (Timing Advance Group, Timing Advance Group), primary TAG) is running, it is considered that the random access response is received Success, and stop msgB-Response
  • this application provides a solution for maintaining uplink transmission timing.
  • the NR system is used as an example; this application is also applicable to scenarios such as LTE systems; further, although this application is aimed at MO-SDT in the inactive state of RRC (Radio Resource Control, Radio Resource Control) Specific implementation methods are not provided, but this application can also be used in scenarios such as MT-SDT (Small Packet Transmission, small data packet transmission) in RRC inactive state, to achieve technical effects similar to MO-SDT in RRC inactive state. .
  • MT-SDT Small Packet Transmission, small data packet transmission
  • the original intention of this application is for the terminal and base station scenario
  • this application is also applicable to the V2X (Vehicle-to-Everything, Internet of Vehicles) scenario, the communication scenario between the terminal and the relay, and the relay and the base station. , achieving similar technical effects in terminal and base station scenarios.
  • the original intention of this application is for the terminal and base station scenario
  • this application is also applicable to the IAB (Integrated Access and Backhaul, integrated access and backhaul) communication scenario, and obtains similar technologies in the terminal and base station scenario. Effect.
  • This application discloses a method used in a first node of wireless communication, which is characterized by including:
  • the first PDCCH is scrambled by the first C-RNTI, and the first PDCCH includes an uplink grant for new transmission;
  • the target condition set includes at least a first condition and a second condition, and the The first condition includes that the first TimeAlignmentTimer is running, the second condition includes that at least a second timer is running, and the second timer is used for the CG-SDT process;
  • the first action set includes determining a random access response At least one of being successfully received or stopping the first msgB-ResponseWindow or determining that the first random access procedure is successfully completed.
  • the problems to be solved by this application include: how to improve random access performance.
  • the problems to be solved by this application include: how to reduce system complexity.
  • the problems to be solved by this application include: how to maintain uplink transmission timing.
  • the problems to be solved by this application include: how to enhance the random access process for the CG-SDT process.
  • the problems to be solved by this application include: how to confirm that the random access process is successfully completed for the CG-SDT process.
  • the problems to be solved by this application include: how to avoid random access problems in the CG-SDT process.
  • the characteristics of the above method include: when the first condition or the second condition is satisfied, executing the first set of actions.
  • the characteristics of the above method include: the target condition set includes at least a first condition and a second condition.
  • the characteristics of the above method include: when each condition in the target condition set is not satisfied, the first action set is not executed.
  • the benefits of the above method include: avoiding random access problems.
  • the benefits of the above method include: timely confirmation that the random access process is successfully completed.
  • the present application is characterized in that when each condition in the target condition set is not satisfied, the first set of actions is not executed.
  • the second condition includes that the CG-SDT process is still being executed.
  • the problems to be solved by this application include: how to maintain the uplink transmission timing when performing a two-step random access process.
  • the problems to be solved by this application include: in the CG-SDT process, if a two-step random access process is performed, how to maintain the uplink transmission timing.
  • the characteristics of the above method include: as a response to the first Absolute Timing Advance Command MAC CE being received, starting or restarting the second timer instead of the first TimeAlignmentTimer.
  • the benefits of the above method include: during CG-SDT, avoiding triggering a random access process due to expiration of the first timeAlignmentTimer.
  • the benefits of the above method include: maintaining the second timer as much as possible during the CG-SDT period.
  • the second action set includes deleting any configured uplink grant or refreshing all HARQ (Hybrid Automatic Repeat Request, hybrid automatic repeat request) buffers (buffers) or maintaining the N TA of the first TAG. at least one of them.
  • HARQ Hybrid Automatic Repeat Request, hybrid automatic repeat request
  • the second timer is considered to have expired and the second action set is executed according to whether the second timer is running, and the MAC of the first node
  • the sublayer indicates to the higher layer of the first node that the conditions for initiating the SDT process are met;
  • the behavior of determining whether the second timer is considered to have expired based on whether the second timer is running and executing the second set of actions includes: when the second timer is running, considering that the first timer has expired. The second timer expires and the second set of actions is performed.
  • the benefits of the above method include: avoiding unnecessary operations.
  • the benefits of the above method include: avoiding repeated operations.
  • the second timer is considered to have expired and the second action set is executed, and the MAC of the first node
  • the sub-layer indicates to the higher layer of the first node that the conditions for initiating the SDT process are not met.
  • the benefits of the above method include: avoiding cross-layer operations.
  • the benefits of the above method include: reducing system complexity.
  • the benefits of the above method include: releasing CG resources in a timely manner and improving resource utilization.
  • the MAC sublayer of the first node When the conditions for initiating the RA-SDT process are met, the MAC sublayer of the first node indicates to the higher layer of the first node that the conditions for initiating the SDT process are met; the MAC sublayer of the first node indicates to the higher layer of the first node that the conditions for initiating the SDT process are met; After the higher layer of the first node indicates that the conditions for initiating the SDT process are met, the timer T319a is started, and the RRC sublayer of the first node instructs the MAC entity to stop the second timer.
  • the benefits of the above method include: trying to maintain CG resources, and when the access attempt is barred, there will be an opportunity to initiate the CG-SDT process later.
  • This application discloses a method used in a second node of wireless communication, which is characterized by including:
  • the sender of the first MSGA executes A first action set;
  • the first PDCCH is scrambled by the first C-RNTI, the first PDCCH includes an uplink grant for a new transmission;
  • the target condition set includes at least a first condition and a second condition , the first condition includes that the first TimeAlignmentTimer is running, the second condition includes that at least a second timer is running, and the second timer is used in the CG-SDT process;
  • the first action set includes determining a random At least one of an access response being successfully received or stopping the first msgB-ResponseWindow or determining that the first random access procedure is successfully completed.
  • the present application is characterized in that when each condition in the target condition set is not satisfied, the first set of actions is not executed.
  • the second condition includes that the CG-SDT process is still being executed.
  • the sender of the first MSGA starts or restarts the second timer; the first Absolute Timing Advance Command MAC CE is received by the sender of the first MSGA.
  • the Timing Advance Command MAC CE is received, the CG-SDT process is being executed.
  • the sender of the first MSGA executes a second set of actions; the second set of actions includes deleting any configured uplink.
  • the path grant either flushes all HARQ buffers or maintains at least one of the NTAs of the first TAG.
  • the sender of the first MSGA determines whether to consider the second timer based on whether the second timer is running. Expires and executes the second action set, and the MAC sublayer of the sender of the first MSGA indicates to the higher layer of the sender of the first MSGA that the conditions for initiating the SDT process are met; the behavior is based on the Determining whether the second timer is considered to have expired and executing the second action set whether the second timer is running includes: when the second timer is running, determining whether the second timer has expired and executing the set of actions Describe the second set of actions.
  • the sender of the first MSGA when the conditions for initiating the CG-SDT process are not met and the conditions for initiating the RA-SDT process are not met, the sender of the first MSGA considers that the second timer The second action set is expired and executed, and the MAC sublayer of the sender of the first MSGA indicates to the higher layer of the sender of the first MSGA that the conditions for initiating the SDT process are not met.
  • the MAC sublayer of the sender of the first MSGA instructs the higher layer of the sender of the first MSGA to initiate SDT.
  • the conditions for the process are met; after the MAC sublayer of the sender of the first MSGA instructs the higher layer of the sender of the first MSGA that the conditions for initiating the SDT process are met, the sender of the first MSGA
  • the sender starts timer T319a, and the RRC sublayer of the sender of the first MSGA instructs the MAC entity to stop the second timer.
  • This application discloses a first node used for wireless communication, which is characterized by including:
  • the first processor sends the first MSGA during the first random access process, and the first MSGA includes the first C-RNTI; as a response to sending the first MSGA, receives the first MSGA in the first msgB-ResponseWindow. PDCCH; As a response to the first PDCCH being received, when any condition in the target condition set is met, execute the first action set;
  • the first PDCCH is scrambled by the first C-RNTI, and the first PDCCH includes an uplink grant for new transmission;
  • the target condition set includes at least a first condition and a second condition, and the The first condition includes that the first TimeAlignmentTimer is running, the second condition includes that at least a second timer is running, and the second timer is used for the CG-SDT process;
  • the first action set includes determining a random access response At least one of being successfully received or stopping the first msgB-ResponseWindow or determining that the first random access procedure is successfully completed.
  • This application discloses a second node used for wireless communication, which is characterized in that it includes:
  • the second processor receives the first MSGA during the first random access process, and the first MSGA includes the first C-RNTI; in response to receiving the first MSGA, sends the first PDCCH;
  • the sender of the first MSGA executes A first action set;
  • the first PDCCH is scrambled by the first C-RNTI, the first PDCCH includes an uplink grant for a new transmission;
  • the target condition set includes at least a first condition and a second condition , the first condition includes that the first TimeAlignmentTimer is running, the second condition includes that at least a second timer is running, and the second timer is used in the CG-SDT process;
  • the first action set includes determining a random At least one of an access response being successfully received or stopping the first msgB-ResponseWindow or determining that the first random access procedure is successfully completed.
  • this application has the following advantages:
  • Figure 1 shows a flow chart of the transmission of the first MSGA and the first PDCCH according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Figure 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a wireless signal transmission flow chart according to an embodiment of the present application
  • Figure 6 shows a wireless signal transmission flow chart according to another embodiment of the present application.
  • Figure 7 shows a flowchart of a second action set triggered by the expiration of a second timer according to an embodiment of the present application
  • FIG. 8 shows a flowchart of determining whether the second timer is considered to have expired and executing a second action set according to whether the second timer is running, according to one embodiment of the present application
  • Figure 9 shows a flow chart that considers the second timer to have expired and executes the second set of actions when the SDT condition is not satisfied according to one embodiment of the present application
  • Figure 10 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present application
  • Figure 11 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present application
  • Figure 12 shows a flow chart in which the RRC sublayer of the first node instructs the MAC entity to stop the second timer according to an embodiment of the present application
  • Figure 13 shows a flowchart in which the conditions for initiating a CG-SDT process are not met according to one embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of the transmission of the first MSGA and the first PDCCH according to an embodiment of the present application, as shown in FIG. 1 .
  • each box represents a step. It should be particularly emphasized that the order of the boxes in the figure does not represent the temporal relationship between the steps represented.
  • the first node in this application sends the first MSGA in the first random access process, and the first MSGA includes the first C-RNTI; in step 102, as In response to the first MSGA, the first PDCCH is received in the first msgB-ResponseWindow; in step 103, as a response to the first PDCCH being received, when any condition in the target condition set is satisfied, execute A first action set; wherein the first PDCCH is scrambled by the first C-RNTI, the first PDCCH includes an uplink grant for a new transmission; the target condition set includes at least a first condition and a first Two conditions, the first condition includes that the first TimeAlignmentTimer is running, the second condition includes that at least a second timer is running, and the second timer is used in the CG-SDT process; the first action set includes At least one of determining that a random access response is successfully received or stopping the first msgB-ResponseWindow
  • the first random access procedure is initiated on the first cell.
  • the first cell is a serving cell of the first node.
  • the first cell is the SpCell (Special Cell) of the first node.
  • the first cell is the PCell (Primary Cell, primary cell) of the first node.
  • the first cell is the PCell of the first node when the RRCRelease message carrying suspendConfig is received.
  • the first cell is the PCell before the first node enters RRC_INACTIVE in the RRC_CONNECTED state.
  • RA_TYPE is set to 2-stepRA.
  • the first MSGA is used in a two-step random access process.
  • the first MSGA is a MsgA message.
  • the first MSGA includes PRACH (Physical random access channel, physical random access channel) transmission and PUSCH (Physical Uplink Shared Channel, physical uplink shared channel) transmission.
  • PRACH Physical random access channel, physical random access channel
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • the first MSGA includes a Preamble.
  • the PRACH resources of the first MSGA are used for a two-step random access process.
  • the first MSGA does not include CCCH (Common Control Channel) SDU (Service Data Unit).
  • CCCH Common Control Channel
  • SDU Service Data Unit
  • the PUSCH resources occupied by the first MSGA are associated with the Preamble of the first MSGA.
  • the PUSCH resources occupied by the first MSGA are configured through RRC messages.
  • the first MSGA includes a C-RNTI MAC CE
  • the C-RNTI MAC CE includes the first C-RNTI
  • the first C-RNTI occupies 16 bits.
  • the first C-RNTI is a C-RNTI.
  • the first C-RNTI is the C-RNTI of the first node in the first cell.
  • the format of the C-RNTI MAC CE refers to 3GPP TS 38.331.
  • the LCID field in the MAC subheader corresponding to the C-RNTI MAC CE is set to 58.
  • one MAC field in the C-RNTI MAC CE is set as the first C-RNTI, and the one MAC field occupies 16 bits.
  • the first msgB-ResponseWindow is a msgB-ResponseWindow
  • the msgB-ResponseWindow refers to 3GPP TS 38.321.
  • the random access response is monitored in the first msgB-ResponseWindow.
  • the random access response to the first MSGA is monitored in the first msgB-ResponseWindow.
  • a random access response to the Preamble in the first MSGA is monitored in the first msgB-ResponseWindow.
  • the PDCCH of the first cell identified by MSGB-RNTI is monitored in the first msgB-ResponseWindow; at least the PRACH timing of the Preamble of the MSGA is used to determine the MSGB-RNTI.
  • the PDCCH of the first cell identified by the first C-RNTI is monitored in the first msgB-ResponseWindow.
  • the deadline time at which the first MSGA is sent is used to determine the start time of the first msgB-ResponseWindow.
  • the first PDCCH is received during the operation of the first msgB-ResponseWindow.
  • the first PDCCH is a random access response to the first msgB-ResponseWindow.
  • the first PDCCH is addressed to the first C-RNTI.
  • the first PDCCH is identified by the first C-RNTI.
  • the CRC (Cyclic Redundancy Check) of the first PDCCH is scrambled by the first C-RNTI.
  • the first PDCCH is used to schedule PUSCH.
  • the first PDCCH is used to schedule uplink grants for new transmissions.
  • the newly transmitted uplink grant is associated to a HARQ process.
  • the HARQ process number of the HARQ process associated with the newly transmitted uplink grant is equal to 0.
  • the first PDCCH is received on the PDCCH.
  • the first PDCCH is a PDCCH transmission.
  • the first PDCCH is a PDCCH transmission of the first cell.
  • the first PDCCH is a DCI (Downlink Control Information).
  • the first PDCCH is a DCI
  • the first PDCCH includes a Frequency domain resource assignment field.
  • the first PDCCH is a DCI
  • the first PDCCH includes a Time domain resource assignment field.
  • the first PDCCH is a DCI
  • the first PDCCH includes a New data indicator field.
  • the first PDCCH is a DCI, and the value of the New data indicator field in the first PDCCH is toggled.
  • the first PDCCH is a DCI
  • the value of the New data indicator field in the first PDCCH is considered to be inverted.
  • the first PDCCH is a DCI
  • the format of the DCI is DCI format 0_0.
  • the first PDCCH is a DCI
  • the format of the DCI is DCI format 0_1.
  • the response as the first PDCCH is received includes: if the first PDCCH is received.
  • the response as the first PDCCH is received includes: when the first PDCCH is received.
  • the response as the first PDCCH is received includes: when the MAC sublayer of the first node receives a notification from a lower layer that the first PDCCH is received.
  • the first condition is included in the target condition set
  • the second condition is included in the target condition set
  • the target condition set only includes the first condition and the second condition.
  • the target condition set includes at least one condition other than the first condition and the second condition.
  • any condition in the target condition set is satisfied includes: the first condition is satisfied.
  • any condition in the target condition set is satisfied includes: the second condition is satisfied.
  • the "any condition in the target condition set is satisfied" includes: the first condition or the second condition is satisfied.
  • the "any condition in the target condition set is satisfied” includes: any one of the first condition or the second condition is satisfied.
  • any condition in the target condition set is satisfied includes: both the first condition and the second condition are satisfied.
  • any condition in the target condition set is met includes: as long as one condition in the target condition set is met.
  • the first action set is executed.
  • the first action set is executed.
  • the first action set is executed.
  • the first action set is executed.
  • the first action set is executed.
  • the first action set is executed.
  • the first action set is executed.
  • the first condition includes at least one condition other than that the first TimeAlignmentTimer is running.
  • the first condition only includes that the first TimeAlignmentTimer is running.
  • the first condition is that the first TimeAlignmentTimer is running.
  • the first condition is satisfied.
  • the first condition is not satisfied.
  • the second condition includes at least one condition other than that the second timer is running.
  • the second condition only includes that the second timer is running.
  • the second condition is that the second timer is running.
  • the second condition is satisfied when the second timer is running.
  • the second condition is not satisfied.
  • the first TimeAlignmentTimer is a timeAlignmentTimer.
  • the first TimeAlignmentTimer is directed to the first TAG.
  • the first TimeAlignmentTimer is used to determine the length of time that the MAC entity considers to be uplink time alignment for all serving cells in the first TAG.
  • the first TAG is PATG.
  • the TAG-Id of the first TAG is equal to 0.
  • the first TAG includes at least the first cell.
  • the second timer is a cg-SDT-TimeAlignmentTimer.
  • the second timer is used in the CG-SDT process.
  • the second timer is directed to the first TAG.
  • the second timer is directed to the first cell.
  • the second timer is used to determine the length of time that the MAC entity considers uplink time alignment for CG-SDT.
  • the first action set includes at least determining that the random access response is successfully received, and stopping the first msgB-ResponseWindow, and determine that the first random access process is successfully completed.
  • the first action set only includes determining that the random access response is successfully received, stopping the first msgB-ResponseWindow, and determining that the first random access process is successfully completed.
  • the first action set includes determining that the random access response is successfully received, then stopping the first msgB-ResponseWindow, and then determining that the first random access process is successfully completed.
  • determining that the random access response is successfully received includes: considering that the random access response is successfully received.
  • determining that the first random access process is successfully completed includes: considering that the first random access process is successfully completed.
  • the "when" includes: if....
  • the "when" includes: as long as...
  • the “when...” includes: if....
  • the "when" includes: once....
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in Figure 2.
  • Figure 2 illustrates the network architecture 200 of the 5G NR (New Radio)/LTE (Long-Term Evolution)/LTE-A (Long-Term Evolution Advanced) system.
  • 5G NR/LTE The LTE-A network architecture 200 may be called 5GS (5G System)/EPS (Evolved Packet System) 200 or some other suitable term.
  • 5GS/EPS 200 includes UE (User Equipment) 201, RAN (Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home At least one of Subscriber Server/UDM (Unified Data Management) 220 and Internet service 230.
  • 5GS/EPS can interconnect with other access networks, but these entities/interfaces are not shown for simplicity. As shown, 5GS/EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks that provide circuit-switched services or other cellular networks.
  • the RAN includes node 203 and other nodes 204.
  • Node 203 provides user and control plane protocol termination towards UE 201.
  • Node 203 may connect to other nodes 204 via the Xn interface (eg, backhaul)/X2 interface.
  • Node 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmit Receive Node), or some other suitable terminology.
  • BSS Basic Service Set
  • ESS Extended Service Set
  • TRP Transmit Receive Node
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radio, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radio non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • Node 203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management field)/SMF (Session Management Function, session management function )211, other MME/AMF/SMF214, S-GW (Service Gateway, service gateway)/UPF (User Plane Function, user plane function) 212 and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210. Basically, MME/AMF/SMF211 provides bearer and connection management.
  • All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213.
  • P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching streaming services.
  • the UE201 corresponds to the first node in this application.
  • the UE201 is a user equipment (User Equipment, UE).
  • UE User Equipment
  • the UE201 is a base station equipment (BaseStation, BS).
  • BaseStation BaseStation, BS
  • the UE201 is a relay device.
  • the node 203 corresponds to the second node in this application.
  • the node 203 is a base station device.
  • the node 203 is a user equipment.
  • the node 203 is a relay device.
  • the user equipment supports transmission of a non-terrestrial network (Non-Terrestrial Network, NTN).
  • NTN Non-Terrestrial Network
  • the user equipment supports transmission of a terrestrial network (Terrestrial Network, TN).
  • TN Terrestrial Network
  • the user equipment includes a mobile phone, or a terminal, or an aircraft, or a vehicle-mounted terminal, or a ship, or an Internet of Things terminal, or a terminal of the Industrial Internet of Things, or a test device, or, Signaling tester.
  • the base station equipment includes a base transceiver station (Base Transceiver Station, BTS).
  • BTS Base Transceiver Station
  • the base station equipment includes Node B (NodeB, NB), or gNB, or eNB, or ng-eNB, or en-gNB, or TRP (Transmitter Receiver Point, transmitting and receiving node) , or, CU (Centralized Unit, centralized unit), or DU (Distributed Unit, distributed unit).
  • Node B NodeB, NB
  • gNB Node B
  • eNB eNode B
  • ng-eNB ng-eNB
  • en-gNB or TRP (Transmitter Receiver Point, transmitting and receiving node)
  • TRP Transmitter Receiver Point, transmitting and receiving node
  • CU Centralized Unit, centralized unit
  • DU Distributed Unit, distributed unit
  • the base station equipment supports transmission in non-terrestrial networks.
  • the base station equipment supports transmission of terrestrial networks.
  • the base station equipment includes a macro cell (Marco Cellular) base station, or a micro cell (Micro Cell) base station, or a pico cell (Pico Cell) base station, or a home base station (Femtocell), or test equipment , or, signaling tester.
  • a macro cell Marco Cellular
  • Micro Cell Micro Cell
  • a pico cell Pico Cell
  • Femtocell home base station
  • test equipment or, signaling tester.
  • the base station equipment includes an IAB (Integrated Access and Backhaul)-node, or IAB-donor, or IAB-donor-CU, or IAB-donor-DU, or IAB-DU, or, IAB-MT.
  • IAB Integrated Access and Backhaul
  • the relay includes relay, or L3 relay, or L2 relay, or router, or switch, or user equipment, or base station equipment.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300.
  • FIG. 3 shows the radio protocol architecture for the control plane 300 with three layers: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above PHY301, including MAC (Medium Access Control, media access control) sub-layer 302, RLC (Radio Link Control, wireless link layer control protocol) sub-layer 303 and PDCP (Packet Data Convergence) Protocol (Packet Data Convergence Protocol) sublayer 304.
  • MAC Medium Access Control, media access control
  • RLC Radio Link Control, wireless link layer control protocol
  • PDCP Packet Data Convergence Protocol
  • PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides cross-location support.
  • RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ (Hybrid Automatic Repeat Request, Hybrid Automatic Repeat Request).
  • MAC sublayer 302 provides multiplexing between logical and transport channels. The MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell. MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and configuring lower layers using RRC signaling.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture in the user plane 350 is for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, and the PDCP sublayer 354 in the L2 layer 355.
  • the RLC sublayer 353 and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides header compression for upper layer packets to reduce radio Transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • DRB Data Radio Bearer
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the first MSGA in this application is generated from the RRC 306.
  • the first MSGA in this application is generated from the MAC302 or MAC352.
  • the first MSGA in this application is generated from the PHY301 or PHY351.
  • the first PDCCH in this application is generated in the PHY301 or PHY351.
  • the first Absolute Timing Advance Command MAC CE in this application is generated from the MAC302 or MAC352.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in the access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and an antenna 420.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and radio resource allocation to the first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer). Transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 410, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M-phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for M-phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams. Transmit processor 416 then maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the first communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial stream that is the destination. The symbols on each spatial stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover upper layer data and control signals transmitted by the second communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media.
  • the controller/processor 459 In transmission from the second communication device 410 to the second communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements headers based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 In transmission from the first communications device 450 to the second communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Using at least one processor together, the first communication device 450 at least: sends a first MSGA during a first random access process, the first MSGA includes a first C-RNTI; in response to sending the first MSGA , receiving the first PDCCH in the first msgB-ResponseWindow; as a response to the first PDCCH being received, when any condition in the target condition set is met, the first action set is executed; wherein, the first PDCCH Scrambled by the first C-RNTI, the first PDCCH includes an uplink grant for a new transmission; the target set of conditions includes at least a first condition and a second condition, the first condition including a first TimeAlignmentTimer is running, the second condition includes that at least a second timer is running, the second timer is used for the CG-S
  • the first communication device 450 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: in the first In a random access process, the first MSGA is sent, and the first MSGA includes the first C-RNTI; as a response to sending the first MSGA, the first PDCCH is received in the first msgB-ResponseWindow; as the first In response to the PDCCH being received, when any condition in the target condition set is satisfied, the first action set is executed; wherein the first PDCCH is scrambled by the first C-RNTI, and the first PDCCH includes: Uplink grant for new transmission; the target condition set includes at least a first condition and a second condition, the first condition includes that the first TimeAlignmentTimer is running, the second condition includes that at least the second timer is running, so The second timer is used for the CG-SDT process; the first action set includes determining that the random access response is successfully received or
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the At least one processor is used together.
  • the second communication device 410 at least: receives a first MSGA including a first C-RNTI in a first random access process; in response to receiving the first MSGA, sends a first PDCCH; wherein , as a response that the first PDCCH is received by the sender of the first MSGA in the first msgB-ResponseWindow, when any condition in the target condition set is satisfied, the sender of the first MSGA executes the an action set; the first PDCCH is scrambled by the first C-RNTI, the first PDCCH includes an uplink grant for a new transmission; the target condition set includes at least a first condition and a second condition, The first condition includes that a first TimeAlignmentTimer is running, the second condition includes that at least a second timer
  • the second communication device 410 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: in the first A first MSGA is received during a random access process, and the first MSGA includes a first C-RNTI; in response to receiving the first MSGA, a first PDCCH is sent; wherein, as the first PDCCH, the first PDCCH is received by the first C-RNTI.
  • the sender of an MSGA receives a response in the first msgB-ResponseWindow.
  • the sender of the first MSGA executes the first action set;
  • the first PDCCH is The first C-RNTI scrambling, the first PDCCH includes an uplink grant for a new transmission;
  • the target condition set includes at least a first condition and a second condition, the first condition includes a first TimeAlignmentTimer running , the second condition includes at least a second timer running, and the second timer is used for the CG-SDT process;
  • the first action set includes determining that the random access response is successfully received or stopping the first msgB-ResponseWindow or at least one of determining that the first random access procedure is successfully completed.
  • At least one of the antenna 452, the receiver 454, the receiving processor 456, and the controller/processor 459 is used to receive the first PDCCH.
  • At least one of the antenna 420, the transmitter 418, the transmission processor 416, and the controller/processor 475 is used to transmit the first PDCCH.
  • At least one of the antenna 452, the receiver 454, the receiving processor 456, and the controller/processor 459 is used to receive the first Absolute Timing Advance Command MAC CE.
  • At least one of the antenna 420, the transmitter 418, the transmit processor 416, and the controller/processor 475 is used to send the first Absolute Timing Advance Command MAC CE.
  • At least one of the antenna 452, the transmitter 454, the transmit processor 468, and the controller/processor 459 is used to transmit the first MSGA.
  • At least one of the antenna 420, the receiver 418, the receiving processor 470, and the controller/processor 475 is used to receive the first MSGA.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a user equipment.
  • the first communication device 450 is a terminal device.
  • the first communication device 450 is an IoT device.
  • the first communication device 450 is a relay device.
  • the first communication device 450 is a test device.
  • the second communication device 410 is a base station device.
  • the second communication device 410 is a relay device.
  • the second communication device 410 is a test device.
  • Embodiment 5 illustrates a wireless signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 5 . It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S5101 the first random access process is initiated; in step S5102, the first MSGA is sent in the first random access process, and the first MSGA includes the first C-RNTI. ; In step S5103, as a response to sending the first MSGA, receive the first PDCCH in the first msgB-ResponseWindow; in step S5104, as a response to the first PDCCH being received, determine the target condition set Whether any condition is satisfied. When any condition in the target condition set is satisfied, step S5105 is executed. When each condition in the target condition set is not satisfied, step S5105 is not executed; in step S5105, execute First action set.
  • step S5201 For the second node N02 , in step S5201, the first MSGA is received; in step S5202, the first PDCCH is sent.
  • the first PDCCH is scrambled by the first C-RNTI, and the first PDCCH includes an uplink grant for new transmission;
  • the target condition set includes at least a first condition and a second condition, the first condition includes that the first TimeAlignmentTimer is running, the second condition includes that at least a second timer is running, and the second timer is used for the CG-SDT process;
  • the first action set includes determining At least one of a random access response being successfully received or stopping the first msgB-ResponseWindow or determining that the first random access procedure is successfully completed.
  • not executing step S5105 means not executing the first set of actions.
  • the first action set is not executed.
  • the "each condition in the target condition set is not satisfied” includes: the first condition is not satisfied, and the second condition is not satisfied.
  • each condition in the target condition set is not satisfied means: the first condition is not satisfied, and the second condition is not satisfied.
  • the first action set in response to the first PDCCH being received, when each condition in the target condition set is not satisfied, the first action set is not executed.
  • each action in the first action set is not executed.
  • the random access response is not considered to be successfully received.
  • the first msgB-ResponseWindow is still running, the first msgB-ResponseWindow is not stopped. 1 msgB-ResponseWindow.
  • the first msgB-ResponseWindow continues to run.
  • the first random access procedure is not considered to be successfully completed.
  • the first PDCCH As an embodiment, as a response to the first PDCCH being received, when each condition in the target condition set is not satisfied, continue to monitor the first msgB-ResponseWindow identified by MSGB-RNTI.
  • the second condition includes that the second timer is running and the CG-SDT process is still executing.
  • the second condition includes at least one condition in which the second timer is running and the CG-SDT process is still being executed.
  • the second condition only includes that the second timer is running and the CG-SDT process is still executing.
  • the second condition is that the second timer is running and the CG-SDT process is still executing.
  • the second condition is satisfied.
  • the second condition is not satisfied.
  • the second condition is not satisfied.
  • the second condition is not satisfied.
  • the first condition is satisfied.
  • both the first condition and the second condition are satisfied.
  • the first condition is satisfied, and the second condition is not satisfied.
  • the second condition is satisfied.
  • both the first condition and the second condition are satisfied.
  • the second condition is satisfied, and the first condition is not satisfied.
  • the first MSGA is sent during the first random access process, and the first MSGA includes the first C-RNTI; as a response to sending the first MSGA, the first MSGA is received in the first msgB-ResponseWindow.
  • the first PDCCH in response to the first PDCCH being received and only the first condition in the target condition set being satisfied, executing the first set of actions; wherein the first PDCCH is scrambled by the first C-RNTI, so The first PDCCH includes an uplink grant for new transmission;
  • the target condition set includes at least a first condition and the second condition, the first condition includes that a first TimeAlignmentTimer is running, and the second condition includes at least The second timer is running, and the second timer is used for the CG-SDT process;
  • the first action set includes determining that the random access response is successfully received or stopping the first msgB-ResponseWindow or determining that the third At least one of the random access procedures is completed successfully.
  • the first MSGA is sent in the first random access process, and the first MSGA includes the first C-RNTI; as sending In response to the first MSGA, the first PDCCH is received in the first msgB-ResponseWindow; as a response that the first PDCCH is received and each condition in the target condition set is not satisfied, the first action set is not executed.
  • the first PDCCH is scrambled by the first C-RNTI, and the first PDCCH includes an uplink grant for new transmission
  • the target condition set includes at least a first condition and the second condition , the first condition includes that the first TimeAlignmentTimer is running, the second condition includes that at least a second timer is running, and the second timer is used in the CG-SDT process
  • the first action set includes determining a random At least one of an access response being successfully received or stopping the first msgB-ResponseWindow or determining that the first random access procedure is successfully completed.
  • the first MSGA is sent during the first random access process, and the first MSGA includes the first C-RNTI; as a response to sending the first MSGA, the first MSGA is received in the first msgB-ResponseWindow.
  • the PDCCH in response to the first PDCCH being received and the second condition in the target condition set being satisfied, performing a first set of actions; wherein the first PDCCH is scrambled by the first C-RNTI, and the The first PDCCH includes an uplink grant for a new transmission;
  • the target condition set includes at least a first condition and the second condition, the first condition includes a first TimeAlignmentTimer running, the second condition includes at least a Two timers are running, and the second timer is used for the CG-SDT process;
  • the first action set includes determining that the random access response is successfully received or stopping the first msgB-ResponseWindow or determining that the first At least one of the random access procedures was completed successfully.
  • both the first condition and the second condition are satisfied.
  • the second condition is satisfied, and the first condition is not satisfied.
  • the first random access procedure is initiated in the RRC_INACTIVE state.
  • a first RRCRelease message is received, the first RRCRelease message indicates that the first node enters the RRC_INACTIVE state, and the first RRCRelease message
  • a RRCRelease message includes the CG resources used for SDT.
  • the RRC sublayer of the first node in response to receiving the first RRCRelease message, the RRC sublayer of the first node sends a notification to the lower layer of the first node; as the notification is in the The response is received by the MAC sublayer of the first node, starting the second timer.
  • the first CG-SDT process in response to the conditions for initiating the CG-SDT process being met, the first CG-SDT process is initiated; in the first CG-SDT process, in the CG resources used for SDT A CCCH message is sent on the mobile phone, and the CCCH message includes a RRCResumeRequest message or a RRCResumeRequest1 message; the condition for initiating the CG-SDT process includes that at least the second timer is running.
  • the MAC sublayer of the first node indicates to the higher layer of the first node that the condition for initiating the SDT process is met.
  • the MAC sublayer of the first node indicates to the higher layer of the first node that the condition for initiating the CG-SDT process is satisfied. satisfy.
  • a second PDCCH is received; the second PDCCH is scrambled by the first C-RNTI.
  • the first CG-SDT process is being executed.
  • the first random access procedure is initiated.
  • the first random access procedure is initiated;
  • the second condition One condition in the set includes that the SS-RSRP of any SSB in the target SSB set associated with the target uplink grant is not higher than the first threshold;
  • the first RRCRelease message includes the target uplink grant and the target SSB set.
  • Embodiment 6 illustrates a wireless signal transmission flow chart according to another embodiment of the present application, as shown in FIG. 6 . It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S6101 For the first node U01 , in step S6101, the first random access process is initiated; in step S6102, the second random access process is initiated; in step S6103, the first random access process is received in the second random access process.
  • Absolute Timing Advance Command MAC CE In step S6104, in response to the first Absolute Timing Advance Command MAC CE being received, the second timer is started or restarted.
  • step S6201 the first Absolute Timing Advance Command MAC CE is sent.
  • Embodiment 6 when the first Absolute Timing Advance Command MAC CE is received, the CG-SDT process is In execution.
  • step S6101 is executed before the step S6102.
  • step S6101 is executed after the step S6102.
  • step S6101 and step S6102 are executed simultaneously.
  • the first Absolute Timing Advance Command MAC CE is received in the second random access process; as a response to the first Absolute Timing Advance Command MAC CE being received, if the CG-SDT process If the process is being executed, start or restart the second timer; if the CG-SDT process is not being executed, start or restart the first TimeAlignmentTimer.
  • the first Absolute Timing Advance Command MAC CE is received in the second random access process; as a response to the first Absolute Timing Advance Command MAC CE being received, if the CG-SDT process When no longer executing, start or restart the first TimeAlignmentTimer; otherwise, start or restart the second timer.
  • the first Absolute Timing Advance Command MAC CE is an Absolute Timing Advance Command MAC CE
  • the format of the Absolute Timing Advance Command MAC CE refers to Section 6.1.3.4a of 3GPP TS38.321.
  • the first Absolute Timing Advance Command MAC CE includes a timing advance command (Timing Advance Command) field.
  • the DCI used to schedule the first Absolute Timing Advance Command MAC CE is scrambled by the first C-RNTI.
  • the DCI used to schedule the first Absolute Timing Advance Command MAC CE is scrambled by the second C-RNTI, and the second C-RNTI is different from the first C-RNTI.
  • the second timer is not running.
  • the first TimeAlignmentTimer is running.
  • the first TimeAlignmentTimer is not running.
  • the timing advance command in the first Absolute Timing Advance Command MAC CE is applied, and the second timer is started or restarted. ;
  • the CG-SDT process is being executed.
  • the behavior processing the first Absolute Timing Advance Command MAC CE includes: starting or restarting the second timer; the first Absolute Timing Advance When the Command MAC CE is received, the CG-SDT process is being executed.
  • RA_TYPE is set to 2-stepRA.
  • the second random access process is the first random access process; when the first PDCCH is received, each condition in the target condition set is not satisfied.
  • the first Absolute Timing Advance Command MAC CE is received in the first msgB-ResponseWindow.
  • the first Absolute Timing Advance Command MAC CE is received in a msgB-ResponseWindow after the first msgB-ResponseWindow.
  • the second random access process is not the first random access process.
  • the first condition is satisfied.
  • the second condition is satisfied.
  • the first random access procedure is initiated after the second random access procedure is successfully completed.
  • the second random access procedure is initiated after the first random access procedure is successfully completed.
  • the first random access process and the second random access process are both directed to the first cell.
  • the first random access process and the second random access process are both targeted at different serving cells.
  • a CG-SDT process when the first random access process is initiated, a CG-SDT process is being executed; when the second random access process is initiated, a CG-SDT process is being executed. implement.
  • CG-SDT process when the first random access process is initiated, a CG-SDT process is being executed; when the second random access process is initiated, another CG-SDT process is being executed. ; The one CG-SDT process is different from the other CG-SDT process.
  • the CG-SDT process when the first random access process is initiated, the CG-SDT process is not being executed; when the second random access process is initiated, a CG-SDT process is being executed.
  • Embodiment 7 illustrates a flowchart of triggering a second action set when the second timer expires according to an embodiment of the present application, as shown in FIG. 7 .
  • step S7101 it is determined that the second timer has expired; in step S7102, in response to determining that the second timer has expired, a second action set is executed.
  • the second action set includes at least one of deleting any configured uplink grant or flushing all HARQ buffers or maintaining the NTA of the first TAG.
  • the second set of actions includes clearing any configured uplink grants.
  • the second action set includes flushing all HARQ buffers (flush all HARQ buffers).
  • the second set of actions includes maintaining N TA of the first TAG.
  • the second action set includes deleting any configured uplink grant, flushing all HARQ buffers, and maintaining the N TA of the first TAG.
  • the second action set is directed to the MAC entity associated with the first cell.
  • the second action set is directed to the MAC entity associated with the cell group to which the first cell belongs.
  • Embodiment 8 illustrates a flowchart of determining whether the second timer is considered to have expired and executing the second action set according to whether the second timer is running according to an embodiment of the present application, as shown in FIG. 8 . It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S8101 it is determined that the conditions for initiating the RA-SDT process are met; in step S8102, it is determined whether the second timer is running. When the second timer is running, execute Step S8103; otherwise, step S8103 is not executed; in step S8103, the second timer is considered to have expired and the second action set is executed; in step S8104, the MAC sublayer of the first node gives the The higher layer of the first node indicates that the conditions for initiating the SDT process are met.
  • Embodiment 8 when the conditions for initiating the RA-SDT process are met, it is determined whether the second timer is considered to have expired and the second action set is executed based on whether the second timer is running, and, The MAC sublayer of the first node indicates to the higher layer of the first node that the conditions for initiating the SDT process are met; the behavior determines whether the second timer is considered to have expired based on whether the second timer is running and Executing the second set of actions includes deeming the second timer to have expired while the second timer is running and executing the second set of actions.
  • step S8103 is executed before the step S8104; in the step S8102, the second timer is running.
  • step S8103 is executed after the step S8104; in the step S8102, the second timer is running.
  • step S8103 and the step S8104 are executed simultaneously; in the step S8102, the second calculation The timer is running.
  • the MAC sublayer of the first node indicates to a higher layer of the first node that the conditions for initiating the RA-SDT process are met.
  • condition for initiating the RA-SDT process is satisfied and is used to determine to initiate the first random access process.
  • the first random access process is initiated after the MAC sublayer of the first node indicates to the higher layer of the first node that the conditions for initiating the SDT process are met.
  • the first random access procedure is used for the RA-SDT; each condition in the target condition set is not satisfied.
  • condition for initiating the RA-SDT process is satisfied regardless of the first random access process.
  • the higher sublayer of the RRC sublayer of the first node U01 requests to restore the RRC connection.
  • the second timer when the conditions for initiating the RA-SDT process are met and the second timer is running, the second timer is considered to have expired and the second action set is executed.
  • the second timer is considered to have expired and the second action set is executed, and the first The MAC sublayer of the node indicates to the higher layer of the first node that the conditions for initiating the SDT process are met.
  • the second timer is considered to have expired and the second action set is executed. Then, the first The MAC sublayer of the node indicates to the higher layer of the first node that the conditions for initiating the SDT process are met.
  • the second action set is not executed.
  • the MAC sublayer of the first node instructs the higher layer of the first node to initiate the SDT process.
  • the condition is met.
  • the higher sublayer of the RRC sublayer of the first node U01 requests to restore the RRC connection.
  • the conditions for initiating the RA-SDT process are met including: the first node is configured with sdt-Config.
  • the conditions for initiating the RA-SDT process are met including: SIB1 of the first cell includes sdt-ConfigCommon.
  • the conditions for initiating the RA-SDT process to be met include: all pending uplink data is mapped to a radio bearer (Radio Bearer, RB) configured for SDT.
  • Radio Bearer Radio Bearer
  • the conditions for initiating the RA-SDT process to be met include: the data volume of pending uplink data for all radio bearers configured for SDT is less than or equal to sdt-DataVolumeThreshold (the data volume of the pending UL data across all RBs configured for SDT is less than or equal to sdt-DataVolumeThreshold).
  • the conditions for initiating the RA-SDT process are met including: the RSRP of the downlink path loss reference is higher than sdt-RSRP-Threshold (the RSRP of the downlink pathloss reference is higher than sdt-RSRP-Threshold), or , sdt-RSRP-Threshold is not configured.
  • the conditions for initiating the RA-SDT procedure to be met include: a set of Random Access resources for performing RA-SDT is selected on the selected uplink carrier. SDT are selected on the selected UL carrier).
  • the first node is configured with sdt-Config
  • the SIB1 of the first cell includes sdt-ConfigCommon
  • all pending uplink data are mapped to the wireless radio configured for SDT bearer
  • the data volume of pending uplink data for all radio bearers configured for SDT is less than or equal to sdt-DataVolumeThreshold
  • the RSRP of the downlink path loss reference is higher than sdt-RSRP-Threshold or sdt-RSRP-Threshold is not configured, and a set of random access resources for performing RA-SDT on the selected uplink carrier is selected, the conditions for initiating the RA-SDT process are met.
  • the conditions for initiating the RA-SDT process are met including: the first node is configured with sdt-Config, and the SIB1 of the first cell includes sdt-ConfigCommon, and all pending uplinks
  • the data is mapped to the radio bearers configured for SDT, and the data volume of the pending uplink data for all radio bearers configured for SDT is less than or equal to sdt-DataVolumeThreshold, and the RSRP of the downlink path loss reference is high
  • sdt-RSRP-Threshold or sdt-RSRP-Threshold is not configured, and a set of random access resources are selected to perform RA-SDT on the selected uplink carrier.
  • Embodiment 9 illustrates a flow chart in which the second timer is considered to have expired and the second action set is executed when the SDT condition is not satisfied according to an embodiment of the present application, as shown in FIG. 9 . It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S9101 it is determined that the conditions for initiating the CG-SDT process are not met and the conditions for initiating the RA-SDT process are not met; in step S9102, when the conditions for initiating the CG-SDT process are not met And when the conditions for initiating the RA-SDT process are not met, the second timer is considered to have expired and the second action set is executed; in step S9103, the MAC sublayer of the first node gives the first node The higher layer indicates that the conditions for initiating the SDT process are not met.
  • step S9102 is executed before the step S9103.
  • step S9102 is executed after the step S9103.
  • step S9102 and step S9103 are executed simultaneously.
  • the second timer is considered to have expired and the second action set is executed, and then, The MAC sublayer of the first node indicates to the higher layer of the first node that the conditions for initiating the SDT process are not met.
  • the first node starts the timer T319.
  • the higher sublayer of the RRC sublayer of the first node U01 requests to restore the RRC connection.
  • the Paging message indicates resumption of the RRC connection.
  • the higher sublayer of the RRC sublayer of the first node U01 requests to restore the RRC connection, it is determined whether the conditions for initiating the CG-SDT process or the conditions for initiating the RA-SDT process are met.
  • the conditions for initiating the CG-SDT process are not met.
  • the conditions for initiating the CG-SDT process are not met.
  • the conditions for initiating the CG-SDT process are not met.
  • the conditions for initiating the CG-SDT process are not satisfy.
  • CG-SDT is not configured on the selected uplink carrier (CG-SDT is not configured on the selected UL carrier)
  • the conditions for initiating the CG-SDT process are not met.
  • CG-SDT is configured on the selected uplink carrier, and TA of the configured grant Type 1 is invalid (CG-SDT is configured on the selected UL carrier, and TA of the configured grant Type 1 resource is not valid)
  • the conditions for initiating the CG-SDT process are not met.
  • the conditions for initiating the CG-SDT process are not met.
  • the current downlink path loss reference increases/decreases by more than cg-SDT-RSRP-ChangeThreshold(Compared to the stored downlink pathloss reference RSRP value) , the current RSRP value of the downlink pathloss reference has increased/decreased by more than cg-SDT-RSRP-ChangeThreshold), the conditions for initiating the CG-SDT process are not met.
  • Embodiment 10 illustrates a structural block diagram of a processing device used in a first node according to an embodiment of the present application; as shown in FIG. 10 .
  • the processing device 1000 in the first node includes a first processor 1001 .
  • the first processor 1001 sends the first MSGA during the first random access process, and the first MSGA includes the first C-RNTI; as a response to sending the first MSGA, receives the first msgB-ResponseWindow in the first msgB-ResponseWindow.
  • a PDCCH as a response to the first PDCCH being received, when any condition in the target condition set is met, execute the first action set;
  • the first PDCCH is scrambled by the first C-RNTI, and the first PDCCH includes an uplink grant for new transmission;
  • the target condition set includes at least a first condition and a second condition.
  • the first condition includes that the first TimeAlignmentTimer is running
  • the second condition includes that at least a second timer is running, and the second timer is used in the CG-SDT process;
  • the first action set includes determining a random At least one of an access response being successfully received or stopping the first msgB-ResponseWindow or determining that the first random access procedure is successfully completed.
  • the first action set is not executed.
  • the second condition includes that the CG-SDT process is still being executed.
  • the first processor 1001 receives the first Absolute Timing Advance Command MAC CE during the second random access process; as a response to the reception of the first Absolute Timing Advance Command MAC CE, it starts or restarts Start the second timer; wherein, when the first Absolute Timing Advance Command MAC CE is received, the CG-SDT process is being executed.
  • the first processor 1001 determines that the second timer has expired; in response to determining that the second timer has expired, executes a second action set; wherein the second action set includes delete Any configured uplink grant either flushes all HARQ buffers or maintains at least one of the NTAs of the first TAG.
  • the first processor 1001 determines whether the second timer is considered to have expired and executes the second timer based on whether the second timer is running.
  • Two action sets, and the MAC sublayer of the first node indicates to the higher layer of the first node that the conditions for initiating the SDT process are met; wherein the action determines whether the second timer is running based on whether Considering the second timer to have expired and executing the second set of actions includes: while the second timer is running, considering the second timer to have expired and executing the second set of actions.
  • the first processor 1001 when the conditions for initiating the CG-SDT process are not met and the conditions for initiating the RA-SDT process are not met, consider that the second timer has expired and execute the third timer. Two action sets, and the MAC sublayer of the first node indicates to the higher layer of the first node that the conditions for initiating the SDT process are not met.
  • the first processor 1001 when the conditions for initiating the RA-SDT process are met, the MAC sublayer of the first node indicates to the higher layer of the first node that the conditions for initiating the SDT process are met. Satisfied; after the MAC sublayer of the first node instructs the higher layer of the first node to initiate the SDT process, the timer T319a is started, and the RRC sublayer of the first node instructs the MAC entity to stop The second timer.
  • the first processor 1001 includes a first receiver and a first transmitter.
  • the first receiver includes an antenna 452, a receiver 454, a multi-antenna receiving processor 458, a receiving processor 456, a controller/processor 459, a memory 460 and a data source in Figure 4 of this application. 467.
  • the first receiver includes the antenna 452, the receiver 454, the multi-antenna receiving processor 458, and the receiving processor 456 in Figure 4 of this application.
  • the first receiver includes the antenna 452, the receiver 454, and the receiving processor 456 in Figure 4 of this application.
  • the first transmitter includes the antenna 452, transmitter 454, multi-antenna transmit processor 457, transmit processor 468, controller/processor 459, memory 460 and data source in Figure 4 of this application. 467.
  • the first transmitter includes the antenna 452, the transmitter 454, the multi-antenna transmission processor 457, and the transmission processor 468 in Figure 4 of this application.
  • the first transmitter includes the antenna 452, the transmitter 454, and the transmission processor 468 in Figure 4 of this application.
  • Embodiment 11 illustrates a structural block diagram of a processing device used in a second node according to an embodiment of the present application; as shown in FIG. 11 .
  • the processing device 1100 in the second node includes a second processor 1101 .
  • the second processor 1101 receives the first MSGA during the first random access process, and the first MSGA includes the first C-RNTI; in response to receiving the first MSGA, sends the first PDCCH;
  • the first MSGA performs a first action set; the first PDCCH is scrambled by the first C-RNTI, the first PDCCH includes an uplink grant for a new transmission; the target condition set includes at least a first condition and a second condition, the first condition includes that the first TimeAlignmentTimer is running, the second condition includes that at least a second timer is running, the second timer is used for the CG-SDT process; the first action set This includes at least one of determining that a random access response is successfully received or stopping the first msgB-ResponseWindow or determining that the first random access process is successfully completed.
  • the first action set is not executed.
  • the second condition includes that the CG-SDT process is still being executed.
  • the second processor 1101 sends the first Absolute Timing Advance Command MAC CE in the second random access process; wherein, as the first Absolute Timing Advance Command MAC CE, the first Absolute Timing Advance Command MAC CE is used by the first MSGA In response to the sender receiving the response, the sender of the first MSGA starts or restarts the second timer; when the first Absolute Timing Advance Command MAC CE is received, the CG-SDT process is being executed.
  • the sender of the first MSGA performs a second action set; the second action set includes deleting any configured uplink grant or refreshing all
  • the HARQ buffer maintains at least one of the N TAs of the first TAG.
  • the sender of the first MSGA determines whether the second timer is considered to have expired and executes the second timer based on whether the second timer is running.
  • the sender of the first MSGA when the conditions for initiating the CG-SDT process are not met and the conditions for initiating the RA-SDT process are not met, the sender of the first MSGA considers that the second timer has expired and executes the third timer. Two action sets, and the MAC sublayer of the sender of the first MSGA indicates to the higher layer of the sender of the first MSGA that the conditions for initiating the SDT process are not met.
  • the MAC sublayer of the sender of the first MSGA indicates to the higher layer of the sender of the first MSGA that the conditions for initiating the SDT process are met; After the MAC sublayer of the sender of the first MSGA instructs the higher layer of the sender of the first MSGA that the conditions for initiating the SDT process are met, the sender of the first MSGA starts the timer T319a, and, The RRC sublayer of the sender of the first MSGA instructs the MAC entity to stop the second timer.
  • the second processor 1101 includes a second receiver and a second transmitter.
  • the second transmitter includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475, and the memory 476 in Figure 4 of this application.
  • the second transmitter includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471 and the transmission processor 416 in Figure 4 of this application.
  • the second transmitter includes the antenna 420, the transmitter 418, and the transmission processor 416 in Figure 4 of this application.
  • the second receiver includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 in Figure 4 of this application.
  • the second receiver includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, and the receiving processor 470 in Figure 4 of this application.
  • the second receiver includes the antenna 420, the receiver 418, and the receiving processor 470 in Figure 4 of this application.
  • Embodiment 12 illustrates a flow chart in which the RRC sublayer of the first node instructs the MAC entity to stop the second timer according to an embodiment of the present application, as shown in FIG. 12 . It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S12101 it is determined that the conditions for initiating the RA-SDT process are met; in step S12102, when the conditions for initiating the RA-SDT process are met, the MAC sublayer of the first node The higher layer of the first node indicates that the conditions for initiating the SDT process are met; in step S12103, after the MAC sublayer of the first node instructs the higher layer of the first node that the conditions for initiating the SDT process are met, start Timer T319a; in step S12104, the RRC sublayer of the first node instructs the MAC entity to stop the second timer.
  • step S12103 is executed before step S12104.
  • step S12103 is executed after the step S12104.
  • step S12103 and step S12104 are executed simultaneously.
  • the RRC sublayer of the first node instructs the MAC entity to stop the second timer.
  • timer T319a is started in the RRC sublayer.
  • the MAC sublayer of the first node indicates to a higher layer of the first node that the conditions for initiating the RA-SDT process are met.
  • the second timer is running.
  • the MAC sublayer serving as the first node when the MAC sublayer serving as the first node receives an instruction from a higher layer to stop the second timer, it considers that the second timer has expired.
  • the MAC sublayer serving as the first node when the MAC sublayer serving as the first node receives an instruction from a higher layer to stop the second timer, it considers that the second timer has expired and executes the second action set.
  • Embodiment 13 illustrates a flow chart in which the conditions for initiating a CG-SDT process are not met according to an embodiment of the present application, as shown in FIG. 13 . It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S13101 it is determined that the condition for initiating the CG-SDT process is not met; in step S13102, when the condition for initiating the CG-SDT process is not met, if the second timer satisfies the condition , execute step S13103; otherwise, do not execute step S13103; in step S13103, the second timer is considered to have expired and the second action set is executed.
  • step S13102 exists.
  • step S13102 does not exist.
  • the second timer is considered to have expired and the second action set is executed.
  • the second timer is considered to have expired and the second action set is executed based on whether at least the second timer satisfies the condition.
  • the second timer meets the condition means: the second timer is configured.
  • the second timer does not satisfy the condition.
  • the second timer meets the condition means that the second timer is running.
  • the second timer does not satisfy the condition.
  • the second timer satisfies the condition means: the second timer is configured and The second timer is running.
  • the second timer does not satisfy the condition.
  • the second timer does not satisfy condition if the second timer is not configured, or if the second timer is configured and the second timer is not running, the second timer does not satisfy condition.
  • the second timer when the conditions for initiating the CG-SDT process are not met, if the second timer meets the conditions, the second timer is considered to have expired and the second action set is executed; If the second timer does not meet the condition, the action "consider the second timer to have expired and execute the second set of actions" is not executed.
  • the MAC sublayer of the first node gives the The higher layer of the first node indicates that the conditions for initiating the SDT process are met.
  • the MAC sublayer of the first node A higher layer of the first node indicates that the conditions for initiating the SDT process are not met.
  • the behavior "Considering that the second timer has expired and executing the second action set"
  • the behavior "The first node After the MAC sublayer indicates to the higher layer of the first node that the conditions for initiating the SDT process are not met, the first node starts timer T319, and, "The RRC sublayer of the first node indicates that the MAC entity stops The second timer" is not executed.
  • User equipment, terminals and UEs in this application include but are not limited to drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC, enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost Cost-effective tablet computers and other wireless communication devices.
  • MTC Machine Type Communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, transmitting and receiving node) and other wireless communications equipment.
  • gNB NR Node B
  • TRP Transmitter Receiver Point

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的通信节点中的方法和装置。通信节点在第一随机接入过程中发送第一MSGA,所述第一MSGA包括第一C-RNTI;作为发送所述第一MSGA的响应,在第一msgB-ResponseWindow中接收第一PDCCH;作为所述第一PDCCH被接收的响应,当目标条件集合中的任一条件被满足时,执行第一动作集合;所述第一PDCCH被所述第一C-RNTI加扰,所述第一PDCCH包括为了新传输的上行链路授予;所述目标条件集合包括至少第一条件和第二条件,所述第一条件包括第一TimeAlignmentTimer正在运行,所述第二条件包括至少第二计时器正在运行,所述第二计时器被用于CG-SDT过程;所述第一动作集合包括确定随机接入响应被成功接收或者停止所述第一msgB-ResponseWindow或者确定所述第一随机接入过程被成功完成中的至少之一。

Description

一种被用于无线通信的通信节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及RRC不活跃状态的传输方法和装置。
背景技术
NR(New Radio,新空口)支持RRC(Radio Resource Control,无线资源控制)不活跃(RRC_INACTIVE)RRC状态,直到3GPP(the 3rd Generation Partnership Project,第三代合作伙伴项目)Rel-16版本,不支持在RRC不活跃状态发送或者接收数据。Rel-17开展了“NR不活跃状态小数据传输(Small Data Transmission,SDT)”工作项目(Work Item,WI),针对MO(UL(Uplink))-SDT制定了相应的技术规范,允许在RRC不活跃状态发送面向上行链路(UL-oriented)数据包(packets)的小数据包传输(small packet transmission),包括CG-SDT(Configured Grant-based SDT,基于配置授予的SDT)和RA-SDT(Random Access-based SDT,基于随机接入的SDT)。
发明内容
当前3GPP协议针对CG-SDT过程的设计在随机接入性能、系统复杂度、上行链路发送定时维护存在较多问题。例如,现有协议中,UE(User Equipment,用户设备)执行两步随机接入过程时,如果MSGA(Message A,消息A)中包括一个C(Cell)-RNTI(Radio Network Temporary Identifier,无线网络临时标识)MAC(Medium Access Control,媒体接入控制)CE(Control Element,控制元素),当在msgB-ResponseWindow运行期间接收到被C-RNTI加扰的PDCCH(Physical Downlink Control Channel,物理下行控制信道)传输,并且,这个PDCCH传输包括为了新传输的上行链路授予时,如果关联到PTAG(Primary TAG(Timing Advance Group,定时提前组),主TAG)的timeAlignmentTimer正在运行,认为随机接入响应接收成功,并且,停止msgB-ResponseWindow,并且,认为随机接入过程被成功完成;由于在CG-SDT期间timeAlignmentTimer不一定在运行,如果UE在CG-SDT期间发起了两步随机接入过程,不能及时确定随机接入完成,可能会导致msgB-ResponseWindow过期甚至随机接入问题,从而对系统性能带来较大影响。因此,针对CG-SDT过程,随机接入过程需要进行增强。
针对上述问题,本申请提供了一种维护上行链路发送定时的解决方案。针对上述问题描述中,采用NR系统作为一个例子;本申请也同样适用于例如LTE系统的场景;进一步的,虽然本申请针对RRC(Radio Resource Control,无线资源控制)不活跃状态的MO-SDT给出了具体的实施方式,但本申请也能被用于例如RRC不活跃状态的MT-SDT(Small Packet Transmission,小数据包传输)的场景,取得类似RRC不活跃状态的MO-SDT的技术效果。进一步的,虽然本申请的初衷是针对Uu空口,但本申请也能被用于PC5口。进一步的,虽然本申请的初衷是针对终端与基站场景,但本申请也同样适用于V2X(Vehicle-to-Everything,车联网)场景,终端与中继,以及中继与基站之间的通信场景,取得类似的终端与基站场景中的技术效果。进一步的,虽然本申请的初衷是针对终端与基站场景,但本申请也同样适用于IAB(Integrated Access and Backhaul,集成接入和回传)的通信场景,取得类似的终端与基站场景中的技术效果。进一步的,虽然本申请的初衷是针对地面网络(Terrestrial Network,地面网络)场景,但本申请也同样适用于非地面网络(Non-Terrestrial Network,NTN)的通信场景,取得类似的TN场景中的技术效果。此外,不同场景采用统一解决方案还有助于降低硬件复杂度和成本。
作为一个实施例,对本申请中的术语(Terminology)的解释参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
需要说明的是,在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
在第一随机接入过程中发送第一MSGA,所述第一MSGA包括第一C-RNTI;作为发送所述第一MSGA的响应,在第一msgB-ResponseWindow中接收第一PDCCH;作为所述第一PDCCH被接收的响应,当目标条件集合中的任一条件被满足时,执行第一动作集合;
其中,所述第一PDCCH被所述第一C-RNTI加扰,所述第一PDCCH包括为了新传输的上行链路授予;所述目标条件集合包括至少第一条件和第二条件,所述第一条件包括第一TimeAlignmentTimer正在运行,所述第二条件包括至少第二计时器正在运行,所述第二计时器被用于CG-SDT过程;所述第一动作集合包括确定随机接入响应被成功接收或者停止所述第一msgB-ResponseWindow或者确定所述第一随机接入过程被成功完成中的至少之一。
作为一个实施例,本申请要解决的问题包括:如何提高随机接入性能。
作为一个实施例,本申请要解决的问题包括:如何降低系统复杂度。
作为一个实施例,本申请要解决的问题包括:如何维护上行链路发送定时。
作为一个实施例,本申请要解决的问题包括:针对CG-SDT过程,如何增强随机接入过程。
作为一个实施例,本申请要解决的问题包括:针对CG-SDT过程,如何确认随机接入过程被成功完成。
作为一个实施例,本申请要解决的问题包括:针对CG-SDT过程,如何避免发生随机接入问题。
作为一个实施例,上述方法的特质包括:当第一条件或者第二条件被满足时,执行第一动作集合。
作为一个实施例,上述方法的特质包括:所述目标条件集合包括至少第一条件和第二条件。
作为一个实施例,上述方法的特质包括:当目标条件集合中的每个条件都不被满足时,才不执行第一动作集合。
作为一个实施例,上述方法的好处包括:避免发生随机接入问题。
作为一个实施例,上述方法的好处包括:及时确认随机接入过程被成功完成。
根据本申请的一个方面,其特征在于,当目标条件集合中的每个条件都不被满足时,不执行所述第一动作集合。
根据本申请的一个方面,其特征在于,所述第二条件包括所述CG-SDT过程还在执行。
根据本申请的一个方面,其特征在于,包括:
在第二随机接入过程中接收第一Absolute Timing Advance Command MAC CE;作为所述第一Absolute Timing Advance Command MAC CE被接收的响应,启动或者重新启动所述第二计时器;
其中,所述第一Absolute Timing Advance Command MAC CE被接收时,所述CG-SDT过程正在执行。
作为一个实施例,本申请要解决的问题包括:当执行两步随机接入过程时,如何维护上行链路发送定时。
作为一个实施例,本申请要解决的问题包括:在CG-SDT过程中,如果执行两步随机接入过程,如何维护上行链路发送定时。
作为一个实施例,上述方法的特质包括:作为所述第一Absolute Timing Advance Command MAC CE被接收的响应,启动或者重新启动所述第二计时器,而不是所述第一TimeAlignmentTimer。
作为一个实施例,上述方法的好处包括:在CG-SDT期间,避免因所述第一timeAlignmentTimer过期触发随机接入过程。
作为一个实施例,上述方法的好处包括:在CG-SDT期间,尽量维持所述第二计时器。
根据本申请的一个方面,其特征在于,包括:
确定所述第二计时器过期;作为确定所述第二计时器过期的响应,执行第二动作集合;
其中,所述第二动作集合包括删除任意的配置的上行链路授予或者刷新所有的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)缓冲器(buffer)或者维持所述第一TAG的NTA中的至少之一。
根据本申请的一个方面,其特征在于,包括:
当发起RA-SDT过程的条件被满足时,根据所述第二计时器是否正在运行确定是否认为所述第二计时器过期并且执行所述第二动作集合,并且,所述第一节点的MAC子层(sublayer)给所述第一节点的更高层指示发起SDT过程的条件被满足;
其中,所述行为根据所述第二计时器是否正在运行确定是否认为所述第二计时器过期并且执行所述第二动作集合包括:当所述第二计时器正在运行时,认为所述第二计时器过期并且执行所述第二动作集合。
作为一个实施例,上述方法的好处包括:避免不必要的操作。
作为一个实施例,上述方法的好处包括:避免重复操作。
根据本申请的一个方面,其特征在于,包括:
当发起CG-SDT过程的条件不被满足并且发起RA-SDT过程的条件不被满足时,认为所述第二计时器过期并且执行所述第二动作集合,并且,所述第一节点的MAC子层给所述第一节点的更高层指示发起SDT过程的条件不被满足。
作为一个实施例,上述方法的好处包括:避免跨层操作。
作为一个实施例,上述方法的好处包括:降低系统复杂度。
作为一个实施例,上述方法的好处包括:及时释放CG资源,提高资源利用率。
根据本申请的一个方面,其特征在于,包括:
当发起RA-SDT过程的条件被满足时,所述第一节点的MAC子层给所述第一节点的更高层指示发起SDT过程的条件被满足;所述第一节点的MAC子层给所述第一节点的更高层指示发起SDT过程的条件被满足之后,启动计时器T319a,并且,所述第一节点的RRC子层指示MAC实体停止所述第二计时器。
作为一个实施例,上述方法的好处包括:尽量维持CG资源,当接入尝试被禁止(access attempt is barred)时,后续还能够有机会发起CG-SDT过程。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
在第一随机接入过程中接收第一MSGA,所述第一MSGA包括第一C-RNTI;作为接收所述第一MSGA的响应,发送第一PDCCH;
其中,作为所述第一PDCCH被所述第一MSGA的发送者在第一msgB-ResponseWindow中接收的响应,当目标条件集合中的任一条件被满足时,所述第一MSGA的发送者执行第一动作集合;所述第一PDCCH被所述第一C-RNTI加扰,所述第一PDCCH包括为了新传输的上行链路授予;所述目标条件集合包括至少第一条件和第二条件,所述第一条件包括第一TimeAlignmentTimer正在运行,所述第二条件包括至少第二计时器正在运行,所述第二计时器被用于CG-SDT过程;所述第一动作集合包括确定随机接入响应被成功接收或者停止所述第一msgB-ResponseWindow或者确定所述第一随机接入过程被成功完成中的至少之一。
根据本申请的一个方面,其特征在于,当目标条件集合中的每个条件都不被满足时,不执行所述第一动作集合。
根据本申请的一个方面,其特征在于,所述第二条件包括所述CG-SDT过程还在执行。
根据本申请的一个方面,其特征在于,包括:
在第二随机接入过程中发送第一Absolute Timing Advance Command MAC CE;
其中,作为所述第一Absolute Timing Advance Command MAC CE被所述第一MSGA的发送者接收的响应,所述第一MSGA的发送者启动或者重新启动所述第二计时器;所述第一Absolute Timing Advance Command MAC CE被接收时,所述CG-SDT过程正在执行。
根据本申请的一个方面,其特征在于,作为所述第二计时器过期的响应,所述第一MSGA的发送者执行第二动作集合;所述第二动作集合包括删除任意的配置的上行链路授予或者刷新所有的HARQ缓冲器或者维持所述第一TAG的NTA中的至少之一。
根据本申请的一个方面,其特征在于,当发起RA-SDT过程的条件被满足时,所述第一MSGA的发送者根据所述第二计时器是否正在运行确定是否认为所述第二计时器过期并且执行所述第二动作集合,并且,所述第一MSGA的发送者的MAC子层给所述第一MSGA的发送者的更高层指示发起SDT过程的条件被满足;所述行为根据所述第二计时器是否正在运行确定是否认为所述第二计时器过期并且执行所述第二动作集合包括:当所述第二计时器正在运行时,认为所述第二计时器过期并且执行所述第二动作集合。
根据本申请的一个方面,其特征在于,当发起CG-SDT过程的条件不被满足并且发起RA-SDT过程的条件不被满足时,所述第一MSGA的发送者认为所述第二计时器过期并且执行所述第二动作集合,并且,所述第一MSGA的发送者的MAC子层给所述第一MSGA的发送者的更高层指示发起SDT过程的条件不被满足。
根据本申请的一个方面,其特征在于,当发起RA-SDT过程的条件被满足时,所述第一MSGA的发送者的MAC子层给所述第一MSGA的发送者的更高层指示发起SDT过程的条件被满足;所述第一MSGA的发送者的MAC子层给所述第一MSGA的发送者的更高层指示发起SDT过程的条件被满足之后,所述第一MSGA的发 送者启动计时器T319a,并且,所述第一MSGA的发送者的RRC子层指示MAC实体停止所述第二计时器。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一处理机,在第一随机接入过程中发送第一MSGA,所述第一MSGA包括第一C-RNTI;作为发送所述第一MSGA的响应,在第一msgB-ResponseWindow中接收第一PDCCH;作为所述第一PDCCH被接收的响应,当目标条件集合中的任一条件被满足时,执行第一动作集合;
其中,所述第一PDCCH被所述第一C-RNTI加扰,所述第一PDCCH包括为了新传输的上行链路授予;所述目标条件集合包括至少第一条件和第二条件,所述第一条件包括第一TimeAlignmentTimer正在运行,所述第二条件包括至少第二计时器正在运行,所述第二计时器被用于CG-SDT过程;所述第一动作集合包括确定随机接入响应被成功接收或者停止所述第一msgB-ResponseWindow或者确定所述第一随机接入过程被成功完成中的至少之一。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二处理机,在第一随机接入过程中接收第一MSGA,所述第一MSGA包括第一C-RNTI;作为接收所述第一MSGA的响应,发送第一PDCCH;
其中,作为所述第一PDCCH被所述第一MSGA的发送者在第一msgB-ResponseWindow中接收的响应,当目标条件集合中的任一条件被满足时,所述第一MSGA的发送者执行第一动作集合;所述第一PDCCH被所述第一C-RNTI加扰,所述第一PDCCH包括为了新传输的上行链路授予;所述目标条件集合包括至少第一条件和第二条件,所述第一条件包括第一TimeAlignmentTimer正在运行,所述第二条件包括至少第二计时器正在运行,所述第二计时器被用于CG-SDT过程;所述第一动作集合包括确定随机接入响应被成功接收或者停止所述第一msgB-ResponseWindow或者确定所述第一随机接入过程被成功完成中的至少之一。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.避免发生随机接入问题;
-.及时确认随机接入过程被成功完成;
-.在CG-SDT期间,避免因所述第一timeAlignmentTimer过期触发随机接入过程;
-.在CG-SDT期间,尽量维持所述第二计时器;
-.避免不必要的操作;
-.避免重复操作;
-.避免跨层操作;
-.提高资源利用率。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一MSGA和第一PDCCH的传输的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的另一个实施例的无线信号传输流程图
图7示出了根据本申请的一个实施例的第二计时器过期触发第二动作集合的流程图;
图8示出了根据本申请的一个实施例的根据第二计时器是否正在运行确定是否认为第二计时器过期并且执行第二动作集合的流程图;
图9示出了根据本申请的一个实施例的当SDT条件不被满足时认为第二计时器过期并且执行第二动作集合的流程图;
图10示出了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;
图11示出了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;
图12示出了根据本申请的一个实施例的第一节点的RRC子层指示MAC实体停止第二计时器的流程图;
图13示出了根据本申请的一个实施例的发起CG-SDT过程的条件不被满足的流程图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一MSGA和第一PDCCH的传输的流程图,如附图1所示。附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一节点在步骤101中,在第一随机接入过程中发送第一MSGA,所述第一MSGA包括第一C-RNTI;在步骤102中,作为发送所述第一MSGA的响应,在第一msgB-ResponseWindow中接收第一PDCCH;在步骤103中,作为所述第一PDCCH被接收的响应,当目标条件集合中的任一条件被满足时,执行第一动作集合;其中,所述第一PDCCH被所述第一C-RNTI加扰,所述第一PDCCH包括为了新传输的上行链路授予;所述目标条件集合包括至少第一条件和第二条件,所述第一条件包括第一TimeAlignmentTimer正在运行,所述第二条件包括至少第二计时器正在运行,所述第二计时器被用于CG-SDT过程;所述第一动作集合包括确定随机接入响应被成功接收或者停止所述第一msgB-ResponseWindow或者确定所述第一随机接入过程被成功完成中的至少之一。
作为一个实施例,所述第一随机接入过程在第一小区上被发起。
作为一个实施例,所述第一小区是所述第一节点的服务小区。
作为一个实施例,所述第一小区是所述第一节点的SpCell(Special Cell,特殊小区)。
作为一个实施例,所述第一小区是所述第一节点的PCell(Primary Cell,主小区)。
作为一个实施例,所述第一小区是携带suspendConfig的RRCRelease消息被接收时的所述第一节点的PCell。
作为一个实施例,所述第一小区是所述第一节点在RRC_CONNECTED状态进入RRC_INACTIVE之前的PCell。
作为一个实施例,在所述第一随机接入过程中,RA_TYPE被设置为2-stepRA。
作为一个实施例,所述第一MSGA被用于两步随机接入过程。
作为一个实施例,所述第一MSGA是一个MsgA消息。
作为一个实施例,所述第一MSGA包括PRACH(Physical random access channel,物理随机接入信道)传输和PUSCH(Physical Uplink Shared Channel,物理上行共享信道)传输。
作为一个实施例,所述第一MSGA包括一个Preamble。
作为一个实施例,所述第一MSGA的PRACH资源被用于两步随机接入过程。
作为一个实施例,所述第一MSGA不包括CCCH(Common Control Channel,公共控制信道)SDU(Service Data Unit,服务数据单元)。
作为一个实施例,所述第一MSGA所占用的PUSCH资源被关联到所述第一MSGA的Preamble。
作为一个实施例,所述第一MSGA所占用的PUSCH资源通过RRC消息配置。
作为一个实施例,所述第一MSGA包括一个C-RNTI MAC CE,所述一个C-RNTI MAC CE包括所述第一C-RNTI。
作为一个实施例,所述第一C-RNTI占用16比特。
作为一个实施例,所述第一C-RNTI是一个C-RNTI。
作为一个实施例,所述第一C-RNTI是所述第一节点在所述第一小区中的C-RNTI。
作为一个实施例,所述C-RNTI MAC CE的格式参考3GPP TS 38.331。
作为一个实施例,所述C-RNTI MAC CE对应的MAC子头中的LCID域被设置为58。
作为一个实施例,所述C-RNTI MAC CE中的一个MAC域被设置为所述第一C-RNTI,所述一个MAC域占用16比特。
作为一个实施例,所述第一msgB-ResponseWindow是一个msgB-ResponseWindow,所述 msgB-ResponseWindow参考3GPP TS 38.321。
作为一个实施例,在所述第一msgB-ResponseWindow中监听随机接入响应。
作为一个实施例,在所述第一msgB-ResponseWindow中监听针对所述第一MSGA的随机接入响应。
作为一个实施例,在所述第一msgB-ResponseWindow中监听针对所述第一MSGA中的Preamble的随机接入响应。
作为一个实施例,在所述第一msgB-ResponseWindow中监听被MSGB-RNTI标识的所述第一小区的PDCCH;至少所述MSGA的Preamble的PRACH时机被用于确定所述MSGB-RNTI。
作为一个实施例,在所述第一msgB-ResponseWindow中监听被所述第一C-RNTI标识的所述第一小区的PDCCH。
作为一个实施例,所述第一MSGA被发送的截止时刻被用于确定所述第一msgB-ResponseWindow的开始时刻。
作为一个实施例,所述第一msgB-ResponseWindow运行期间所述第一PDCCH被接收。
作为一个实施例,所述第一PDCCH是针对所述第一msgB-ResponseWindow的一个随机接入响应。
作为一个实施例,所述第一PDCCH被寻址到所述第一C-RNTI。
作为一个实施例,所述第一PDCCH被所述第一C-RNTI标识。
作为一个实施例,所述第一PDCCH的CRC(Cyclic Redundancy Check,循环冗余校验)被所述第一C-RNTI加扰。
作为一个实施例,所述第一PDCCH被用于调度PUSCH。
作为一个实施例,所述第一PDCCH被用于调度为了新传输的上行链路授予。
作为一个实施例,所述新传输的上行链路授予被关联到一个HARQ进程。
作为一个实施例,所述新传输的上行链路授予所关联的HARQ进程的HARQ进程号等于0。
作为一个实施例,所述第一PDCCH在PDCCH上被接收。
作为一个实施例,所述第一PDCCH是一个PDCCH传输(transmission)。
作为一个实施例,所述第一PDCCH是所述第一小区的一个PDCCH传输。
作为一个实施例,所述第一PDCCH是一个DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第一PDCCH是一个DCI,所述第一PDCCH中包括Frequency domain resource assignment域。
作为一个实施例,所述第一PDCCH是一个DCI,所述第一PDCCH中包括Time domain resource assignment域。
作为一个实施例,所述第一PDCCH是一个DCI,所述第一PDCCH中包括New data indicator域。
作为一个实施例,所述第一PDCCH是一个DCI,所述第一PDCCH中的New data indicator域的值被翻转(toggled)。
作为一个实施例,所述第一PDCCH是一个DCI,所述第一PDCCH中的New data indicator域的值被认为翻转。
作为一个实施例,所述第一PDCCH是一个DCI,所述一个DCI的格式是DCI format 0_0。
作为一个实施例,所述第一PDCCH是一个DCI,所述一个DCI的格式是DCI format 0_1。
作为一个实施例,所述作为所述第一PDCCH被接收的响应包括:如果所述第一PDCCH被接收。
作为一个实施例,所述作为所述第一PDCCH被接收的响应包括:当所述第一PDCCH被接收时。
作为一个实施例,所述作为所述第一PDCCH被接收的响应包括:当所述第一节点的MAC子层接收到来自更下层的所述第一PDCCH被接收的通知(notification)时。
作为一个实施例,所述目标条件集合中包括所述第一条件,并且,所述目标条件集合中包括所述第二条件。
作为一个实施例,所述目标条件集合中仅包括所述第一条件和所述第二条件。
作为一个实施例,所述目标条件集合中包括所述第一条件和所述第二条件之外的至少一个条件。
作为一个实施例,所述“目标条件集合中的任一条件被满足”包括:所述第一条件被满足。
作为一个实施例,所述“目标条件集合中的任一条件被满足”包括:所述第二条件被满足。
作为一个实施例,所述“目标条件集合中的任一条件被满足”包括:所述第一条件或者所述第二条件被满足。
作为一个实施例,所述“目标条件集合中的任一条件被满足”包括:所述第一条件或者所述第二条件中的任意之一被满足。
作为一个实施例,所述“目标条件集合中的任一条件被满足”包括:所述第一条件和所述第二条件都被满足。
作为一个实施例,所述“目标条件集合中的任一条件被满足”包括:只要所述目标条件集合中的一个条件被满足。
作为一个实施例,作为所述第一PDCCH被接收的响应,当所述第一条件被满足时,执行所述第一动作集合。
作为一个实施例,作为所述第一PDCCH被接收的响应,当所述第二条件被满足时,执行所述第一动作集合。
作为一个实施例,作为所述第一PDCCH被接收的响应,当所述第一条件或者所述第二条件被满足时,执行所述第一动作集合。
作为一个实施例,作为所述第一PDCCH被接收的响应,当所述第一条件或者所述第二条件中的任意之一被满足时,执行所述第一动作集合。
作为一个实施例,作为所述第一PDCCH被接收的响应,当所述第一条件和所述第二条件都被满足时,执行所述第一动作集合。
作为一个实施例,作为所述第一PDCCH被接收的响应,当目标条件集合中的任一条件被满足时,执行所述第一动作集合。
作为一个实施例,作为所述第一PDCCH被接收的响应,只要所述目标条件集合中的一个条件被满足,执行所述第一动作集合。
作为一个实施例,所述第一条件包括所述第一TimeAlignmentTimer正在运行之外的至少一个条件。
作为一个实施例,所述第一条件仅包括所述第一TimeAlignmentTimer正在运行。
作为一个实施例,所述第一条件是所述第一TimeAlignmentTimer正在运行。
作为一个实施例,当所述第一TimeAlignmentTimer正在运行时,所述第一条件被满足。
作为一个实施例,当所述第一TimeAlignmentTimer不在运行时,所述第一条件不被满足。
作为一个实施例,所述第二条件包括所述第二计时器正在运行之外的至少一个条件。
作为一个实施例,所述第二条件仅包括所述第二计时器正在运行。
作为一个实施例,所述第二条件是所述第二计时器正在运行。
作为一个实施例,当所述第二计时器正在运行时,所述第二条件被满足。
作为一个实施例,当所述第二计时器不在运行时,所述第二条件不被满足。
作为一个实施例,所述第一TimeAlignmentTimer是一个timeAlignmentTimer。
作为一个实施例,所述第一TimeAlignmentTimer针对第一TAG。
作为一个实施例,所述第一TimeAlignmentTimer被用于确定MAC实体认为针对第一TAG中的所有服务小区的上行链路时间对齐的时间长度。
作为一个实施例,所述第一TAG是PATG。
作为一个实施例,所述第一TAG的TAG-Id等于0。
作为一个实施例,所述第一TAG中包括至少所述第一小区。
作为一个实施例,所述第二计时器一个cg-SDT-TimeAlignmentTimer。
作为一个实施例,所述第二计时器被用于CG-SDT过程。
作为一个实施例,所述第二计时器针对所述第一TAG。
作为一个实施例,所述第二计时器针对所述第一小区。
作为一个实施例,所述第二计时器被用于确定MAC实体认为针对CG-SDT的上行链路时间对齐的时间长度。
作为一个实施例,所述第一动作集合包括至少确定随机接入响应被成功接收,并且,停止所述第一 msgB-ResponseWindow,并且,确定所述第一随机接入过程被成功完成。
作为一个实施例,所述第一动作集合仅包括确定随机接入响应被成功接收,并且,停止所述第一msgB-ResponseWindow,并且,确定所述第一随机接入过程被成功完成。
作为一个实施例,所述第一动作集合包括确定随机接入响应被成功接收,然后,停止所述第一msgB-ResponseWindow,然后,确定所述第一随机接入过程被成功完成。
作为一个实施例,所述“确定随机接入响应被成功接收”包括:认为随机接入响应被成功接收。
作为一个实施例,所述“确定所述第一随机接入过程被成功完成”包括:认为所述第一随机接入过程被成功完成。
作为一个实施例,所述“当……时”的包括:如果……。
作为一个实施例,所述“当……时”的包括:只要……。
作为一个实施例,所述“当……时”的包括:假如……。
作为一个实施例,所述“当……时”的包括:一旦……。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。附图2说明了5G NR(New Radio,新空口)/LTE(Long-Term Evolution,长期演进)/LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200。5G NR/LTE/LTE-A网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。5GS/EPS 200包括UE(User Equipment,用户设备)201,RAN(无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230中的至少之一。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。RAN包括节点203和其它节点204。节点203提供朝向UE201的用户和控制平面协议终止。节点203可经由Xn接口(例如,回程)/X2接口连接到其它节点204。节点203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。节点203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。节点203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201是一个用户设备(User Equipment,UE)。
作为一个实施例,所述UE201是一个基站设备(BaseStation,BS)。
作为一个实施例,所述UE201是一个中继设备。
作为一个实施例,所述节点203对应本申请中的所述第二节点。
作为一个实施例,所述节点203是一个基站设备。
作为一个实施例,所述节点203是一个用户设备。
作为一个实施例,所述节点203是一个中继设备。
作为一个实施例,所述用户设备支持非地面网络(Non-Terrestrial Network,NTN)的传输。
作为一个实施例,所述用户设备支持地面网络(Terrestrial Network,TN)的传输。
作为一个实施例,所述用户设备包括手机,或者,终端,或者,飞行器,或者,车载终端,或者,船只,或者,物联网终端,或者,工业物联网的终端,或者,测试设备,或者,信令测试仪。
作为一个实施例,所述基站设备包括基站收发台(Base Transceiver Station,BTS)。
作为一个实施例,所述基站设备包括节点B(NodeB,NB),或者,gNB,或者,eNB,或者,ng-eNB,或者,en-gNB,或者,TRP(Transmitter Receiver Point,发送接收节点),或者,CU(Centralized Unit,集中单元),或者,DU(Distributed Unit,分布单元)。
作为一个实施例,所述基站设备支持在非地面网络的传输。
作为一个实施例,所述基站设备支持地面网络的传输。
作为一个实施例,所述基站设备包括宏蜂窝(Marco Cellular)基站,或者,微小区(Micro Cell)基站,或者,微微小区(Pico Cell)基站,或者,家庭基站(Femtocell),或者,测试设备,或者,信令测试仪。
作为一个实施例,所述基站设备包括IAB(Integrated Access and Backhaul)-node,或者,IAB-donor,或者,IAB-donor-CU,或者,IAB-donor-DU,或者,IAB-DU,或者,IAB-MT。
作为一个实施例,所述中继包括relay,或者,L3 relay,或者,L2 relay,或者,路由器,或者,交换机,或者,用户设备,或者,基站设备。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一MSGA生成于所述RRC306。
作为一个实施例,本申请中的所述第一MSGA生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一MSGA生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一PDCCH生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一Absolute Timing Advance Command MAC CE生成于所述MAC302或者MAC352。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似 于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450至少:在第一随机接入过程中发送第一MSGA,所述第一MSGA包括第一C-RNTI;作为发送所述第一MSGA的响应,在第一msgB-ResponseWindow中接收第一PDCCH;作为所述第一PDCCH被接收的响应,当目标条件集合中的任一条件被满足时,执行第一动作集合;其中,所述第一PDCCH被所述第一C-RNTI加扰,所述第一PDCCH包括为了新传输的上行链路授予;所述目标条件集合包括至少第一条件和第二条件,所述第一条件包括第一TimeAlignmentTimer正在运行,所述第二条件包括至少第二计时器正在运行,所述第二计时器被用于CG-SDT过程;所述第一动作集合包括确定随机接入响应被成功接收或者停止所述第一msgB-ResponseWindow或者确定所述第一随机接入过程被成功完成中的至少之一。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一随机接入过程中发送第一MSGA,所述第一MSGA包括第一C-RNTI;作为发送所述第一MSGA的响应,在第一msgB-ResponseWindow中接收第一PDCCH;作为所述第一PDCCH被接收的响应,当目标条件集合中的任一条件被满足时,执行第一动作集合;其中,所述第一PDCCH被所述第一C-RNTI加扰,所述第一PDCCH包括为了新传输的上行链路授予;所述目标条件集合包括至少第一条件和第二条件,所述第一条件包括第一TimeAlignmentTimer正在运行,所述第二条件包括至少第二计时器正在运行,所述第二计时器被用于CG-SDT过程;所述第一动作集合包括确定随机接入响应被成功接收或者停止所述第一msgB-ResponseWindow或者确定所述第一随机接入过程被成功完成中的至少之一。
作为一个实施例,所述第二通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410至少:在第一随机接入过程中接收第一MSGA,所述第一MSGA包括第一C-RNTI;作为接收所述第一MSGA的响应,发送第一PDCCH;其中,作为所述第一PDCCH被所述第一MSGA的发送者在第一msgB-ResponseWindow中接收的响应,当目标条件集合中的任一条件被满足时,所述第一MSGA的发送者执行第一动作集合;所述第一PDCCH被所述第一C-RNTI加扰,所述第一PDCCH包括为了新传输的上行链路授予;所述目标条件集合包括至少第一条件和第二条件,所述第一条件包括第一TimeAlignmentTimer正在运行,所述第二条件包括至少第二计时器正在运行,所述第二计时器被用于CG-SDT过程;所述第一动作集合包括确定随机接入响应被成功接收或者停止所述第一msgB-ResponseWindow或者确定所述第一随机接入过程被成功完成中的至少之一。
作为一个实施例,所述第二通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一随机接入过程中接收第一MSGA,所述第一MSGA包括第一C-RNTI;作为接收所述第一MSGA的响应,发送第一PDCCH;其中,作为所述第一PDCCH被所述第一MSGA的发送者在第一msgB-ResponseWindow中接收的响应,当目标条件集合中的任一条件被满足时,所述第一MSGA的发送者执行第一动作集合;所述第一PDCCH被所述第一C-RNTI加扰,所述第一PDCCH包括为了新传输的上行链路授予;所述目标条件集合包括至少第一条件和第二条件,所述第一条件包括第一TimeAlignmentTimer正在运行,所述第二条件包括至少第二计时器正在运行,所述第二计时器被用于CG-SDT过程;所述第一动作集合包括确定随机接入响应被成功接收或者停止所述第一msgB-ResponseWindow或者确定所述第一随机接入过程被成功完成中的至少之一。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收第一PDCCH。
作为一个实施例,所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第一PDCCH。
作为一个实施例,所述天线452,所述接收器454,所述接收处理器456,所述控制器/处理器459中的至少之一被用于接收第一Absolute Timing Advance Command MAC CE。
作为一个实施例,所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475中的至少之一被用于发送第一Absolute Timing Advance Command MAC CE。
作为一个实施例,所述天线452,所述发射器454,所述发射处理器468,所述控制器/处理器459中的至少之一被用于发送第一MSGA。
作为一个实施例,所述天线420,所述接收器418,所述接收处理器470,所述控制器/处理器475中的至少之一被用于接收第一MSGA。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个用户设备。
作为一个实施例,所述第一通信设备450是一个终端设备。
作为一个实施例,所述第一通信设备450是一个IoT设备。
作为一个实施例,所述第一通信设备450是一个中继设备。
作为一个实施例,所述第一通信设备450是一个测试设备。
作为一个实施例,所述第二通信设备410是一个基站设备。
作为一个实施例,所述第二通信设备410是一个中继设备。
作为一个实施例,所述第二通信设备410是一个测试设备。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S5101中,发起第一随机接入过程;在步骤S5102中,在所述第一随机接入过程中发送第一MSGA,所述第一MSGA包括第一C-RNTI;在步骤S5103中,作为发送所述第一MSGA的响应,在第一msgB-ResponseWindow中接收第一PDCCH;在步骤S5104中,作为所述第一PDCCH被接收的响应,判断目标条件集合中的任一条件是否被满足,当目标条件集合中的任一条件被满足时,执行步骤S5105,当目标条件集合中的每个条件都不被满足时,不执行步骤S5105;在步骤S5105中,执行第一动作集合。
对于第二节点N02,在步骤S5201中,接收所述第一MSGA;在步骤S5202中,发送所述第一PDCCH。
在实施例5中,所述第一PDCCH被所述第一C-RNTI加扰,所述第一PDCCH包括为了新传输的上行链路授予;所述目标条件集合包括至少第一条件和第二条件,所述第一条件包括第一TimeAlignmentTimer正在运行,所述第二条件包括至少第二计时器正在运行,所述第二计时器被用于CG-SDT过程;所述第一动作集合包括确定随机接入响应被成功接收或者停止所述第一msgB-ResponseWindow或者确定所述第一随机接入过程被成功完成中的至少之一。
作为一个实施例,不执行步骤S5105是指:不执行所述第一动作集合。
作为一个实施例,当目标条件集合中的每个条件都不被满足时,不执行所述第一动作集合。
作为一个实施例,所述“目标条件集合中的每个条件都不被满足”包括:所述第一条件不被满足,并且,所述第二条件不被满足。
作为一个实施例,所述“目标条件集合中的每个条件都不被满足”是指:所述第一条件不被满足,并且,所述第二条件不被满足。
作为一个实施例,作为所述第一PDCCH被接收的响应,当所述目标条件集合中的每个条件都不被满足时,所述第一动作集合不被执行。
作为一个实施例,作为所述第一PDCCH被接收的响应,当所述目标条件集合中的每个条件都不被满足时,所述第一动作集合中的至少一个动作不被执行。
作为一个实施例,作为所述第一PDCCH被接收的响应,当所述目标条件集合中的每个条件都不被满足 时,所述第一动作集合中的每个动作不被执行。
作为一个实施例,作为所述第一PDCCH被接收的响应,当所述目标条件集合中的每个条件都不被满足时,不认为随机接入响应被成功接收。
作为一个实施例,作为所述第一PDCCH被接收的响应,当所述目标条件集合中的每个条件都不被满足时,如果所述第一msgB-ResponseWindow还在运行,不停止所述第一msgB-ResponseWindow。
作为一个实施例,作为所述第一PDCCH被接收的响应,当所述目标条件集合中的每个条件都不被满足时,所述第一msgB-ResponseWindow继续运行。
作为一个实施例,作为所述第一PDCCH被接收的响应,当所述目标条件集合中的每个条件都不被满足时,不认为所述第一随机接入过程被成功完成。
作为一个实施例,作为所述第一PDCCH被接收的响应,当所述目标条件集合中的每个条件都不被满足时,继续在所述第一msgB-ResponseWindow中监听针对所述第一MSGA的随机接入响应。
作为一个实施例,作为所述第一PDCCH被接收的响应,当所述目标条件集合中的每个条件都不被满足时,继续在所述第一msgB-ResponseWindow中监听针对所述第一MSGA中的Preamble的随机接入响应。
作为一个实施例,作为所述第一PDCCH被接收的响应,当所述目标条件集合中的每个条件都不被满足时,继续在所述第一msgB-ResponseWindow中监听被MSGB-RNTI标识的所述第一小区的PDCCH;至少所述MSGA的Preamble的PRACH时机被用于确定所述MSGB-RNTI。
作为一个实施例,作为所述第一PDCCH被接收的响应,当所述目标条件集合中的每个条件都不被满足时,继续在所述第一msgB-ResponseWindow中监听被所述第一C-RNTI标识的所述第一小区的PDCCH。
作为一个实施例,所述第二条件包括所述第二计时器正在运行并且所述CG-SDT过程还在执行。
作为一个实施例,所述第二条件包括所述第二计时器正在运行并且所述CG-SDT过程还在执行之外的至少一个条件。
作为一个实施例,所述第二条件仅包括所述第二计时器正在运行并且所述CG-SDT过程还在执行。
作为一个实施例,所述第二条件是所述第二计时器正在运行并且所述CG-SDT过程还在执行。
作为一个实施例,当所述第二计时器正在运行,并且,所述CG-SDT过程还在执行时,所述第二条件被满足。
作为一个实施例,当所述第二计时器正在运行,并且,所述CG-SDT过程不在执行时,所述第二条件不被满足。
作为一个实施例,当所述第二计时器不在运行,并且,所述CG-SDT过程还在执行时,所述第二条件不被满足。
作为一个实施例,当所述第二计时器不在运行,或者,所述CG-SDT过程不在执行时,所述第二条件不被满足。
作为一个实施例,所述第一PDCCH被接收时,所述第一条件被满足。
作为该实施例的一个子实施例,所述第一条件和所述第二条件都被满足。
作为该实施例的一个子实施例,所述第一条件被满足,并且,所述第二条件不被满足。
作为一个实施例,所述第一PDCCH被接收时,所述第二条件被满足。
作为该实施例的一个子实施例,所述第一条件和所述第二条件都被满足。
作为该实施例的一个子实施例,所述第二条件被满足,并且,所述第一条件不被满足。
作为一个实施例,所述第一PDCCH被接收时,所述第一条件和所述第二条件都不被满足。
作为一个实施例,在第一随机接入过程中发送第一MSGA,所述第一MSGA包括第一C-RNTI;作为发送所述第一MSGA的响应,在第一msgB-ResponseWindow中接收第一PDCCH;作为所述第一PDCCH被接收并且目标条件集合中的仅第一条件被满足的响应,执行第一动作集合;其中,所述第一PDCCH被所述第一C-RNTI加扰,所述第一PDCCH包括为了新传输的上行链路授予;所述目标条件集合包括至少第一条件和所述第二条件,所述第一条件包括第一TimeAlignmentTimer正在运行,所述第二条件包括至少第二计时器正在运行,所述第二计时器被用于CG-SDT过程;所述第一动作集合包括确定随机接入响应被成功接收或者停止所述第一msgB-ResponseWindow或者确定所述第一随机接入过程被成功完成中的至少之一。
作为一个实施例,在第一随机接入过程中发送第一MSGA,所述第一MSGA包括第一C-RNTI;作为发送 所述第一MSGA的响应,在第一msgB-ResponseWindow中接收第一PDCCH;作为所述第一PDCCH被接收并且目标条件集合中的每个条件都不被满足的响应,不执行第一动作集合;其中,所述第一PDCCH被所述第一C-RNTI加扰,所述第一PDCCH包括为了新传输的上行链路授予;所述目标条件集合包括至少第一条件和所述第二条件,所述第一条件包括第一TimeAlignmentTimer正在运行,所述第二条件包括至少第二计时器正在运行,所述第二计时器被用于CG-SDT过程;所述第一动作集合包括确定随机接入响应被成功接收或者停止所述第一msgB-ResponseWindow或者确定所述第一随机接入过程被成功完成中的至少之一。
作为一个实施例,在第一随机接入过程中发送第一MSGA,所述第一MSGA包括第一C-RNTI;作为发送所述第一MSGA的响应,在第一msgB-ResponseWindow中接收第一PDCCH;作为所述第一PDCCH被接收并且目标条件集合中的第二条件被满足的响应,执行第一动作集合;其中,所述第一PDCCH被所述第一C-RNTI加扰,所述第一PDCCH包括为了新传输的上行链路授予;所述目标条件集合包括至少第一条件和所述第二条件,所述第一条件包括第一TimeAlignmentTimer正在运行,所述第二条件包括至少第二计时器正在运行,所述第二计时器被用于CG-SDT过程;所述第一动作集合包括确定随机接入响应被成功接收或者停止所述第一msgB-ResponseWindow或者确定所述第一随机接入过程被成功完成中的至少之一。
作为该实施例的一个子实施例,所述第一条件和所述第二条件都被满足。
作为该实施例的一个子实施例,所述第二条件被满足,并且,所述第一条件不被满足。
作为该实施例的一个子实施例,所述第一随机接入过程在RRC_INACTIVE状态被发起。
作为该实施例的一个子实施例,在所述第一随机接入过程被发起之前,接收第一RRCRelease消息,所述第一RRCRelease消息指示所述第一节点进入RRC_INACTIVE状态,并且,所述第一RRCRelease消息包括被用于SDT的CG资源。
作为该实施例的一个子实施例,作为第一RRCRelease消息被接收的响应,所述第一节点的RRC子层给所述第一节点的更低层发送一个通知;作为所述一个通知在所述第一节点的MAC子层被接收的响应,开始所述第二计时器。
作为该实施例的一个子实施例,作为发起CG-SDT过程的条件被满足的响应,发起第一CG-SDT过程;在所述第一CG-SDT过程中,在被用于SDT的CG资源上发送CCCH消息,所述CCCH消息包括RRCResumeRequest消息或者RRCResumeRequest1消息;所述发起CG-SDT过程的条件包括至少所述第二计时器正在运行。
作为该实施例的一个子实施例,作为发起CG-SDT过程的条件被满足的响应,所述第一节点的MAC子层给所述第一节点的更高层指示发起SDT过程的条件被满足。
作为该实施例的一个子实施例,作为发起CG-SDT过程的条件被满足的响应,所述第一节点的MAC子层给所述第一节点的更高层指示发起CG-SDT过程的条件被满足。
作为该实施例的一个子实施例,作为所述CCCH消息被发送的响应,接收第二PDCCH;所述第二PDCCH被所述第一C-RNTI加扰。
作为该实施例的一个子实施例,所述第一随机接入过程被发起时,所述第一CG-SDT过程正在执行。
作为该实施例的一个子实施例,在所述第二PDCCH被接收之后,所述第一随机接入过程被发起。
作为该实施例的一个子实施例,在所述第二PDCCH被接收之后,作为第二条件集合中的任一条件被满足的响应,发起所述第一随机接入过程;所述第二条件集合中的一个条件包括目标上行链路授予所关联的目标SSB集合中的任一SSB的SS-RSRP不高于第一阈值;所述第一RRCRelease消息包括目标上行链路授予和目标SSB集合。
实施例6
实施例6示例了根据本申请的另一个实施例的无线信号传输流程图,如附图6所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S6101中,发起第一随机接入过程;在步骤S6102中,发起第二随机接入过程;在步骤S6103中,在所述第二随机接入过程中接收第一Absolute Timing Advance Command MAC CE;在步骤S6104中,作为所述第一Absolute Timing Advance Command MAC CE被接收的响应,启动或者重新启动所述第二计时器。
对于第二节点N02,在步骤S6201中,发送所述第一Absolute Timing Advance Command MAC CE。
在实施例6中,所述第一Absolute Timing Advance Command MAC CE被接收时,所述CG-SDT过程正 在执行。
作为一个实施例,所述步骤S6101在所述步骤S6102之前被执行。
作为一个实施例,所述步骤S6101在所述步骤S6102之后被执行。
作为一个实施例,所述步骤S6101和所述步骤S6102同时被执行。
作为一个实施例,在所述第二随机接入过程中接收所述第一Absolute Timing Advance Command MAC CE;作为所述第一Absolute Timing Advance Command MAC CE被接收的响应,如果所述CG-SDT过程正在执行,启动或者重新启动所述第二计时器;如果所述CG-SDT过程不在执行,启动或者重新启动所述第一TimeAlignmentTimer。
作为一个实施例,在所述第二随机接入过程中接收所述第一Absolute Timing Advance Command MAC CE;作为所述第一Absolute Timing Advance Command MAC CE被接收的响应,如果所述CG-SDT过程不在执行,启动或者重新启动所述第一TimeAlignmentTimer;否则,启动或者重新启动所述第二计时器。
作为一个实施例,所述第一Absolute Timing Advance Command MAC CE是一个Absolute Timing Advance Command MAC CE,所述Absolute Timing Advance Command MAC CE的格式参考3GPP TS38.321的6.1.3.4a节。
作为一个实施例,所述第一Absolute Timing Advance Command MAC CE中包括一个定时提前命令(Timing Advance Command)域。
作为一个实施例,被用于调度所述第一Absolute Timing Advance Command MAC CE的DCI被所述第一C-RNTI加扰。
作为一个实施例,被用于调度所述第一Absolute Timing Advance Command MAC CE的DCI被所述第二C-RNTI加扰,所述第二C-RNTI和所述第一C-RNTI不同。
作为一个实施例,所述第一Absolute Timing Advance Command MAC CE被接收时,所述第二计时器不在运行。
作为一个实施例,所述第一Absolute Timing Advance Command MAC CE被接收时,所述第一TimeAlignmentTimer正在运行。
作为一个实施例,所述第一Absolute Timing Advance Command MAC CE被接收时,所述第一TimeAlignmentTimer不在运行。
作为一个实施例,所述第一Absolute Timing Advance Command MAC CE被接收时,所述第一TimeAlignmentTimer和所述第二计时器都不在运行。
作为一个实施例,作为所述第一Absolute Timing Advance Command MAC CE被接收的响应,应用所述第一Absolute Timing Advance Command MAC CE中的定时提前命令,并且,启动或者重新启动所述第二计时器;所述第一Absolute Timing Advance Command MAC CE被接收时,所述CG-SDT过程正在执行。
作为一个实施例,作为所述第一Absolute Timing Advance Command MAC CE被接收的响应,处理所述第一Absolute Timing Advance Command MAC CE,并且,认为随机接入响应被成功接收,并且,停止msgB-ResponseWindow,并且,认为所述第二随机接入过程被成功完成;所述行为处理所述第一Absolute Timing Advance Command MAC CE包括:启动或者重新启动所述第二计时器;所述第一Absolute Timing Advance Command MAC CE被接收时,所述CG-SDT过程正在执行。
作为一个实施例,在所述第二随机接入过程中,RA_TYPE被设置为2-stepRA。
作为一个实施例,所述第二随机接入过程是所述第一随机接入过程;所述第一PDCCH被接收时,所述目标条件集合中的每个条件都不被满足。
作为该实施例的一个子实施例,所述第一Absolute Timing Advance Command MAC CE在所述第一msgB-ResponseWindow中被接收。
作为该实施例的一个子实施例,所述第一Absolute Timing Advance Command MAC CE在所述第一msgB-ResponseWindow之后的一个msgB-ResponseWindow中被接收。
作为一个实施例,所述第二随机接入过程不是所述第一随机接入过程。
作为该实施例的一个子实施例,所述第一PDCCH被接收时,所述第一条件被满足。
作为该实施例的一个子实施例,所述第一PDCCH被接收时,所述第二条件被满足。
作为该实施例的一个子实施例,所述第一随机接入过程在所述第二随机接入过程被成功完成之后被发起。
作为该实施例的一个子实施例,所述第二随机接入过程在所述第一随机接入过程被成功完成之后被发起。
作为该实施例的一个子实施例,所述第一随机接入过程和所述第二随机接入过程都针对所述第一小区。
作为该实施例的一个子实施例,所述第一随机接入过程和所述第二随机接入过程都针对不同服务小区。
作为该实施例的一个子实施例,所述第一随机接入过程被发起时,一个CG-SDT过程正在执行;所述第二随机接入过程被发起时,所述一个CG-SDT过程正在执行。
作为该实施例的一个子实施例,所述第一随机接入过程被发起时,一个CG-SDT过程正在执行;所述第二随机接入过程被发起时,另一个CG-SDT过程正在执行;所述一个CG-SDT过程和所述另一个CG-SDT过程不同。
作为该实施例的一个子实施例,所述第一随机接入过程被发起时,CG-SDT过程不在执行;所述第二随机接入过程被发起时,一个CG-SDT过程正在执行。
实施例7
实施例7示例了根据本申请的一个实施例的第二计时器过期触发第二动作集合的流程图,如附图7所示。
对于第一节点U01,在步骤S7101中,确定所述第二计时器过期;在步骤S7102中,作为确定所述第二计时器过期的响应,执行第二动作集合。
在实施例7中,所述第二动作集合包括删除任意的配置的上行链路授予或者刷新所有的HARQ缓冲器或者维持所述第一TAG的NTA中的至少之一。
作为一个实施例,所述第二动作集合包括删除任意的配置的上行链路授予(clear any configured uplink grants)。
作为一个实施例,所述第二动作集合包括刷新所有的HARQ缓冲器(flush all HARQ buffers)。
作为一个实施例,所述第二动作集合包括维持(maintain)所述第一TAG的NTA
作为一个实施例,所述第二动作集合包括删除任意的配置的上行链路授予,并且,刷新所有的HARQ缓冲器,并且,维持所述第一TAG的NTA
作为一个实施例,所述第二动作集合针对所述第一小区关联的MAC实体。
作为一个实施例,所述第二动作集合针对所述第一小区所属的小区组所关联的MAC实体。
实施例8
实施例8示例了根据本申请的一个实施例的根据第二计时器是否正在运行确定是否认为第二计时器过期并且执行第二动作集合的流程图,如附图8所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S8101中,确定发起RA-SDT过程的条件被满足;在步骤S8102中,判断所述第二计时器是否正在运行,当所述第二计时器正在运行时,执行步骤S8103;否则,不执行所述步骤S8103;在步骤S8103中,认为所述第二计时器过期并且执行所述第二动作集合;在步骤S8104中,所述第一节点的MAC子层给所述第一节点的更高层指示发起SDT过程的条件被满足。
在实施例8中,当发起RA-SDT过程的条件被满足时,根据所述第二计时器是否正在运行确定是否认为所述第二计时器过期并且执行所述第二动作集合,并且,所述第一节点的MAC子层给所述第一节点的更高层指示发起SDT过程的条件被满足;所述行为根据所述第二计时器是否正在运行确定是否认为所述第二计时器过期并且执行所述第二动作集合包括:当所述第二计时器正在运行时,认为所述第二计时器过期并且执行所述第二动作集合。
作为一个实施例,所述步骤S8103在所述步骤S8104之前被执行;在所述步骤S8102中,所述第二计时器正在运行。
作为一个实施例,所述步骤S8103在所述步骤S8104之后被执行;在所述步骤S8102中,所述第二计时器正在运行。
作为一个实施例,所述步骤S8103和所述步骤S8104同时被执行;在所述步骤S8102中,所述第二计 时器正在运行。
作为一个实施例,所述第一节点的MAC子层给所述第一节点的更高层指示发起RA-SDT过程的条件被满足。
作为一个实施例,发起RA-SDT过程的条件被满足被用于确定发起所述第一随机接入过程。
作为该实施例的一个子实施例,所述第一节点的MAC子层给所述第一节点的更高层指示发起SDT过程的条件被满足之后,发起所述第一随机接入过程。
作为该实施例的一个子实施例,所述第一随机接入过程被用于所述RA-SDT;所述目标条件集合中的每个条件都不被满足。
作为一个实施例,发起RA-SDT过程的条件被满足与所述第一随机接入过程无关。
作为一个实施例,所述第一随机接入过程已经被成功完成之后,所述第一节点U01的所述RRC子层的所述更高子层请求恢复RRC连接。
作为一个实施例,当发起RA-SDT过程的条件被满足,并且所述第二计时器正在运行时,认为所述第二计时器过期并且执行所述第二动作集合。
作为一个实施例,当发起RA-SDT过程的条件被满足,并且所述第二计时器正在运行时,认为所述第二计时器过期并且执行所述第二动作集合,并且,所述第一节点的MAC子层给所述第一节点的更高层指示发起SDT过程的条件被满足。
作为一个实施例,当发起RA-SDT过程的条件被满足,并且所述第二计时器正在运行时,认为所述第二计时器过期并且执行所述第二动作集合,然后,所述第一节点的MAC子层给所述第一节点的更高层指示发起SDT过程的条件被满足。
作为一个实施例,当发起RA-SDT过程的条件被满足,并且所述第二计时器不在运行时,不执行所述第二动作集合。
作为一个实施例,当发起RA-SDT过程的条件被满足,并且所述第二计时器不在运行时,不执行“认为所述第二计时器过期”的动作。
作为一个实施例,当发起RA-SDT过程的条件被满足,并且所述第二计时器不在运行时,不针对所述第二计时器进行操作。
作为一个实施例,当发起RA-SDT过程的条件被满足,并且所述第二计时器不在运行时,所述第一节点的MAC子层给所述第一节点的更高层指示发起SDT过程的条件被满足。
作为一个实施例,所述第一节点U01的所述RRC子层的所述更高子层请求恢复RRC连接。
作为一个实施例,所述第一节点U01的所述RRC子层的所述更高子层请求恢复RRC连接时,判断发起RA-SDT过程的条件是否被满足。
作为一个实施例,发起RA-SDT过程的条件被满足包括:所述第一节点被配置sdt-Config。
作为一个实施例,发起RA-SDT过程的条件被满足包括:所述第一小区的SIB1包括sdt-ConfigCommon。
作为一个实施例,发起RA-SDT过程的条件被满足包括:所有待处理的上行链路数据都被映射到针对SDT配置的无线承载(Radio Bearer,RB)。
作为一个实施例,发起RA-SDT过程的条件被满足包括:针对SDT配置的所有无线承载的待处理的上行链路数据的数据量小于或者等于sdt-DataVolumeThreshold(the data volume of the pending UL data across all RBs configured for SDT is less than or equal to sdt-DataVolumeThreshold)。
作为一个实施例,发起RA-SDT过程的条件被满足包括:下行链路路径损耗参考的RSRP高于sdt-RSRP-Threshold(the RSRP of the downlink pathloss reference is higher than sdt-RSRP-Threshold),或者,sdt-RSRP-Threshold未被配置。
作为一个实施例,发起RA-SDT过程的条件被满足包括:在被选择的上行链路载波上执行RA-SDT的随机接入资源的一个集合被选择(a set of Random Access resources for performing RA-SDT are selected on the selected UL carrier)。
作为一个实施例,如果所述第一节点被配置sdt-Config,并且,所述第一小区的SIB1包括sdt-ConfigCommon,并且,所有待处理的上行链路数据都被映射到针对SDT配置的无线承载,并且,针对SDT配置的所有无线承载的待处理的上行链路数据的数据量小于或者等于sdt-DataVolumeThreshold,并 且,下行链路路径损耗参考的RSRP高于sdt-RSRP-Threshold或者sdt-RSRP-Threshold未被配置,并且,在被选择的上行链路载波上执行RA-SDT的随机接入资源的一个集合被选择,发起RA-SDT过程的条件被满足。
作为一个实施例,发起RA-SDT过程的条件被满足包括:所述第一节点被配置sdt-Config,并且,所述第一小区的SIB1包括sdt-ConfigCommon,并且,所有待处理的上行链路数据都被映射到针对SDT配置的无线承载,并且,针对SDT配置的所有无线承载的待处理的上行链路数据的数据量小于或者等于sdt-DataVolumeThreshold,并且,下行链路路径损耗参考的RSRP高于sdt-RSRP-Threshold或者sdt-RSRP-Threshold未被配置,并且,在被选择的上行链路载波上执行RA-SDT的随机接入资源的一个集合被选择。
实施例9
实施例9示例了根据本申请的一个实施例的当SDT条件不被满足时认为第二计时器过期并且执行第二动作集合的流程图,如附图9所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S9101中,确定发起CG-SDT过程的条件不被满足并且发起RA-SDT过程的条件不被满足;在步骤S9102中,当发起CG-SDT过程的条件不被满足并且发起RA-SDT过程的条件不被满足时,认为所述第二计时器过期并且执行所述第二动作集合;在步骤S9103中,所述第一节点的MAC子层给所述第一节点的更高层指示发起SDT过程的条件不被满足。
作为一个实施例,所述步骤S9102在所述步骤S9103之前被执行。
作为一个实施例,所述步骤S9102在所述步骤S9103之后被执行。
作为一个实施例,所述步骤S9102和所述步骤S9103同时被执行。
作为一个实施例,当发起CG-SDT过程的条件不被满足并且发起RA-SDT过程的条件不被满足时,认为所述第二计时器过期并且执行所述第二动作集合,然后,所述第一节点的MAC子层给所述第一节点的更高层指示发起SDT过程的条件不被满足。
作为一个实施例,所述第一节点的MAC子层给所述第一节点的更高层指示发起SDT过程的条件不被满足之后,所述第一节点启动计时器T319。
作为一个实施例,所述第一节点U01的所述RRC子层的所述更高子层请求恢复RRC连接。
作为一个实施例,Paging消息指示恢复RRC连接。
作为一个实施例,所述第一节点U01的所述RRC子层的所述更高子层请求恢复RRC连接时,判断发起CG-SDT过程的条件或者发起RA-SDT过程的条件是否被满足。
作为一个实施例,如果所述第一节点未被配置sdt-Config,发起CG-SDT过程的条件不被满足。
作为一个实施例,如果所述第一小区的SIB1不包括sdt-ConfigCommon,发起CG-SDT过程的条件不被满足。
作为一个实施例,如果所有待处理的上行链路数据没有全部被映射到针对SDT配置的无线承载,发起CG-SDT过程的条件不被满足。
作为一个实施例,如果针对SDT配置的所有无线承载的待处理的上行链路数据的数据量大于sdt-DataVolumeThreshold(the data volume of the pending UL data across all RBs configured for SDT is more than sdt-DataVolumeThreshold),发起CG-SDT过程的条件不被满足。
作为一个实施例,如果下行链路路径损耗参考的RSRP不高于sdt-RSRP-Threshold(the RSRP of the downlink pathloss reference is not higher than sdt-RSRP-Threshold),发起CG-SDT过程的条件不被满足。
作为一个实施例,如果被选择的上行链路载波上未被配置CG-SDT(CG-SDT is not configured on the selected UL carrier),发起CG-SDT过程的条件不被满足。
作为一个实施例,如果被选择的上行链路载波上被配置CG-SDT,并且,配置授权类型1资源的TA无效(CG-SDT is configured on the selected UL carrier,and TA of the configured grant Type 1 resource is not valid),发起CG-SDT过程的条件不被满足。
作为一个实施例,如果没有针对CG-SDT配置的SS-RSRP高于cg-SDT-RSRP-ThresholdSSB的一个SSB 是有效的(no SSB configured for CG-SDT with SS-RSRP above cg-SDT-RSRP-ThresholdSSB is available)。
作为一个实施例,如果所述第二计时器不在运行,发起CG-SDT过程的条件不被满足。
作为一个实施例,如果存储的下行链路路径损耗参考的RSRP值和当前的下行链路路径损耗参考不是有效的(The RSRP values for the stored downlink pathloss reference and the current downlink pathloss reference are not valid),发起CG-SDT过程的条件不被满足。
作为一个实施例,如果与存储的下行链路路径损耗参考的RSRP值相比,当前的下行链路路径损耗参考增加/减少超过cg-SDT-RSRP-ChangeThreshold(Compared to the stored downlink pathloss reference RSRP value,the current RSRP value of the downlink pathloss reference has increased/decreased by more than cg-SDT-RSRP-ChangeThreshold),发起CG-SDT过程的条件不被满足。
实施例10
实施例10示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图10所示。在附图10中,第一节点中的处理装置1000包括第一处理机1001。
第一处理机1001,在第一随机接入过程中发送第一MSGA,所述第一MSGA包括第一C-RNTI;作为发送所述第一MSGA的响应,在第一msgB-ResponseWindow中接收第一PDCCH;作为所述第一PDCCH被接收的响应,当目标条件集合中的任一条件被满足时,执行第一动作集合;
实施例10中,所述第一PDCCH被所述第一C-RNTI加扰,所述第一PDCCH包括为了新传输的上行链路授予;所述目标条件集合包括至少第一条件和第二条件,所述第一条件包括第一TimeAlignmentTimer正在运行,所述第二条件包括至少第二计时器正在运行,所述第二计时器被用于CG-SDT过程;所述第一动作集合包括确定随机接入响应被成功接收或者停止所述第一msgB-ResponseWindow或者确定所述第一随机接入过程被成功完成中的至少之一。
作为一个实施例,当目标条件集合中的每个条件都不被满足时,不执行所述第一动作集合。
作为一个实施例,所述第二条件包括所述CG-SDT过程还在执行。
作为一个实施例,所述第一处理机1001,在第二随机接入过程中接收第一Absolute Timing Advance Command MAC CE;作为所述第一Absolute Timing Advance Command MAC CE被接收的响应,启动或者重新启动所述第二计时器;其中,所述第一Absolute Timing Advance Command MAC CE被接收时,所述CG-SDT过程正在执行。
作为一个实施例,所述第一处理机1001,确定所述第二计时器过期;作为确定所述第二计时器过期的响应,执行第二动作集合;其中,所述第二动作集合包括删除任意的配置的上行链路授予或者刷新所有的HARQ缓冲器或者维持所述第一TAG的NTA中的至少之一。
作为一个实施例,所述第一处理机1001,当发起RA-SDT过程的条件被满足时,根据所述第二计时器是否正在运行确定是否认为所述第二计时器过期并且执行所述第二动作集合,并且,所述第一节点的MAC子层给所述第一节点的更高层指示发起SDT过程的条件被满足;其中,所述行为根据所述第二计时器是否正在运行确定是否认为所述第二计时器过期并且执行所述第二动作集合包括:当所述第二计时器正在运行时,认为所述第二计时器过期并且执行所述第二动作集合。
作为一个实施例,所述第一处理机1001,当发起CG-SDT过程的条件不被满足并且发起RA-SDT过程的条件不被满足时,认为所述第二计时器过期并且执行所述第二动作集合,并且,所述第一节点的MAC子层给所述第一节点的更高层指示发起SDT过程的条件不被满足。
作为一个实施例,所述第一处理机1001,当发起RA-SDT过程的条件被满足时,所述第一节点的MAC子层给所述第一节点的更高层指示发起SDT过程的条件被满足;所述第一节点的MAC子层给所述第一节点的更高层指示发起SDT过程的条件被满足之后,启动计时器T319a,并且,所述第一节点的RRC子层指示MAC实体停止所述第二计时器。
作为一个实施例,所述第一处理机1001包括第一接收机和第一发射机。
作为一个实施例,所述第一接收机包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467。
作为一个实施例,所述第一接收机包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456。
作为一个实施例,所述第一接收机包括本申请附图4中的天线452,接收器454,接收处理器456。
作为一个实施例,所述第一发射机包括本申请附图4中的天线452,发射器454,多天线发射处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467。
作为一个实施例,所述第一发射机包括本申请附图4中的天线452,发射器454,多天线发射处理器457,发射处理器468。
作为一个实施例,所述第一发射机包括本申请附图4中的天线452,发射器454,发射处理器468。
实施例11
实施例11示例了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;如附图11所示。在附图11中,第二节点中的处理装置1100包括第二处理机1101。
第二处理机1101,在第一随机接入过程中接收第一MSGA,所述第一MSGA包括第一C-RNTI;作为接收所述第一MSGA的响应,发送第一PDCCH;
实施例11中,作为所述第一PDCCH被所述第一MSGA的发送者在第一msgB-ResponseWindow中接收的响应,当目标条件集合中的任一条件被满足时,所述第一MSGA的发送者执行第一动作集合;所述第一PDCCH被所述第一C-RNTI加扰,所述第一PDCCH包括为了新传输的上行链路授予;所述目标条件集合包括至少第一条件和第二条件,所述第一条件包括第一TimeAlignmentTimer正在运行,所述第二条件包括至少第二计时器正在运行,所述第二计时器被用于CG-SDT过程;所述第一动作集合包括确定随机接入响应被成功接收或者停止所述第一msgB-ResponseWindow或者确定所述第一随机接入过程被成功完成中的至少之一。
作为一个实施例,当目标条件集合中的每个条件都不被满足时,不执行所述第一动作集合。
作为一个实施例,所述第二条件包括所述CG-SDT过程还在执行。
作为一个实施例,所述第二处理机1101,在第二随机接入过程中发送第一Absolute Timing Advance Command MAC CE;其中,作为所述第一Absolute Timing Advance Command MAC CE被所述第一MSGA的发送者接收的响应,所述第一MSGA的发送者启动或者重新启动所述第二计时器;所述第一Absolute Timing Advance Command MAC CE被接收时,所述CG-SDT过程正在执行。
作为一个实施例,作为所述第二计时器过期的响应,所述第一MSGA的发送者执行第二动作集合;所述第二动作集合包括删除任意的配置的上行链路授予或者刷新所有的HARQ缓冲器或者维持所述第一TAG的NTA中的至少之一。
作为一个实施例,当发起RA-SDT过程的条件被满足时,所述第一MSGA的发送者根据所述第二计时器是否正在运行确定是否认为所述第二计时器过期并且执行所述第二动作集合,并且,所述第一MSGA的发送者的MAC子层给所述第一MSGA的发送者的更高层指示发起SDT过程的条件被满足;所述行为根据所述第二计时器是否正在运行确定是否认为所述第二计时器过期并且执行所述第二动作集合包括:当所述第二计时器正在运行时,认为所述第二计时器过期并且执行所述第二动作集合。
作为一个实施例,当发起CG-SDT过程的条件不被满足并且发起RA-SDT过程的条件不被满足时,所述第一MSGA的发送者认为所述第二计时器过期并且执行所述第二动作集合,并且,所述第一MSGA的发送者的MAC子层给所述第一MSGA的发送者的更高层指示发起SDT过程的条件不被满足。
作为一个实施例,当发起RA-SDT过程的条件被满足时,所述第一MSGA的发送者的MAC子层给所述第一MSGA的发送者的更高层指示发起SDT过程的条件被满足;所述第一MSGA的发送者的MAC子层给所述第一MSGA的发送者的更高层指示发起SDT过程的条件被满足之后,所述第一MSGA的发送者启动计时器T319a,并且,所述第一MSGA的发送者的RRC子层指示MAC实体停止所述第二计时器。
作为一个实施例,所述第二处理机1101包括第二接收机和第二发射机。
作为一个实施例,所述第二发射机包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475,存储器476。
作为一个实施例,所述第二发射机包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416。
作为一个实施例,所述第二发射机包括本申请附图4中的天线420,发射器418,发射处理器416。
作为一个实施例,所述第二接收机包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475,存储器476。
作为一个实施例,所述第二接收机包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470。
作为一个实施例,所述第二接收机包括本申请附图4中的天线420,接收器418,接收处理器470。
实施例12
实施例12示例了根据本申请的一个实施例的第一节点的RRC子层指示MAC实体停止第二计时器的流程图,如附图12所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S12101中,确定发起RA-SDT过程的条件被满足;在步骤S12102中,当发起RA-SDT过程的条件被满足时,所述第一节点的MAC子层给所述第一节点的更高层指示发起SDT过程的条件被满足;在步骤S12103中,所述第一节点的MAC子层给所述第一节点的更高层指示发起SDT过程的条件被满足之后,启动计时器T319a;在步骤S12104中,所述第一节点的RRC子层指示MAC实体停止所述第二计时器。
作为一个实施例,所述步骤S12103在所述步骤S12104之前被执行。
作为一个实施例,所述步骤S12103在所述步骤S12104之后被执行。
作为一个实施例,所述步骤S12103和所述步骤S12104同时被执行。
作为一个实施例,在确定发起RA-SDT过程的条件被满足之前,确定发起CG-SDT过程的条件不被满足。
作为一个实施例,所述第一节点的MAC子层给所述第一节点的更高层指示发起SDT过程的条件被满足之后,当发起CG-SDT过程的条件不被满足并且发起RA-SDT过程的条件被满足时,所述第一节点的RRC子层指示MAC实体停止所述第二计时器。
作为一个实施例,在RRC子层启动计时器T319a。
作为一个实施例,所述第一节点的MAC子层给所述第一节点的更高层指示发起RA-SDT过程的条件被满足。
作为一个实施例,确定发起RA-SDT过程的条件被满足时,所述第二计时器正在运行。
作为一个实施例,作为所述第一节点的MAC子层接收到来自更高层的停止所述第二计时器的指示时,认为所述第二计时器过期。
作为一个实施例,作为所述第一节点的MAC子层接收到来自更高层的停止所述第二计时器的指示时,认为所述第二计时器过期并且执行所述第二动作集合。
实施例13
实施例13示例了根据本申请的一个实施例的发起CG-SDT过程的条件不被满足的流程图,如附图13所示。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点U01,在步骤S13101中,确定发起CG-SDT过程的条件不被满足;在步骤S13102中,当发起CG-SDT过程的条件不被满足时,如果所述第二计时器满足条件,执行步骤S13103;否则,不执行所述步骤S13103;在步骤S13103中,认为所述第二计时器过期并且执行所述第二动作集合。
作为一个实施例,所述步骤S13102存在。
作为一个实施例,所述步骤S13102不存在。
作为一个实施例,当发起CG-SDT过程的条件不被满足时,认为所述第二计时器过期并且执行所述第二动作集合。
作为一个实施例,当发起CG-SDT过程的条件不被满足时,不管所述第二计时器是否正在运行,“认为所述第二计时器过期并且执行所述第二动作集合”被执行。
作为一个实施例,当发起CG-SDT过程的条件不被满足时,根据至少所述第二计时器是否满足条件确定是否认为所述第二计时器过期并且执行所述第二动作集合。
作为该实施例的一个子实施例,所述“所述第二计时器满足条件”是指:所述第二计时器被配置。
作为该子实施例的一个附属实施例,如果所述第二计时器未被配置,所述第二计时器不满足条件。
作为该实施例的一个子实施例,所述“所述第二计时器满足条件”是指:所述第二计时器正在运行。
作为该子实施例的一个附属实施例,如果所述第二计时器不在运行,所述第二计时器不满足条件。
作为该子实施例的一个附属实施例,如果所述第二计时器未被配置,所述第二计时器不满足条件。
作为该实施例的一个子实施例,所述“所述第二计时器满足条件”是指:所述第二计时器被配置并且 所述第二计时器正在运行。
作为该子实施例的一个附属实施例,如果所述第二计时器未被配置,所述第二计时器不满足条件。
作为该子实施例的一个附属实施例,如果所述第二计时器不在运行,所述第二计时器不满足条件。
作为该子实施例的一个附属实施例,如果所述第二计时器未被配置,或者,所述第二计时器被配置并且所述第二计时器不在运行,所述第二计时器不满足条件。
作为该实施例的一个子实施例,当发起CG-SDT过程的条件不被满足时,如果所述第二计时器满足条件,认为所述第二计时器过期并且执行所述第二动作集合;否则,所述行为“认为所述第二计时器过期并且执行所述第二动作集合”不被执行。
作为该实施例的一个子实施例,当发起CG-SDT过程的条件不被满足时,如果所述第二计时器满足条件,认为所述第二计时器过期并且执行所述第二动作集合;如果所述第二计时器不满足条件,所述行为“认为所述第二计时器过期并且执行所述第二动作集合”不被执行。
作为该实施例的一个子实施例,当发起CG-SDT过程的条件不被满足时,仅当所述第二计时器满足条件时,认为所述第二计时器过期并且执行所述第二动作集合。
作为该实施例的一个子实施例,当发起CG-SDT过程的条件不被满足时,如果所述第二计时器不满足条件,所述行为“认为所述第二计时器过期并且执行所述第二动作集合”不被执行。
作为一个实施例,所述行为“认为所述第二计时器过期并且执行所述第二动作集合”之后,判断发起RA-SDT过程的条件是否被满足。
作为一个实施例,所述行为“认为所述第二计时器过期并且执行所述第二动作集合”之后,如果发起RA-SDT过程的条件被满足,所述第一节点的MAC子层给所述第一节点的更高层指示发起SDT过程的条件被满足。
作为一个实施例,所述行为“认为所述第二计时器过期并且执行所述第二动作集合”之后,如果发起RA-SDT过程的条件被满足,所述行为“认为所述第二计时器过期并且执行所述第二动作集合”不被执行。
作为一个实施例,所述行为“认为所述第二计时器过期并且执行所述第二动作集合”之后,如果发起RA-SDT过程的条件不被满足,所述第一节点的MAC子层给所述第一节点的更高层指示发起SDT过程的条件不被满足。
作为一个实施例,所述行为“认为所述第二计时器过期并且执行所述第二动作集合”之后,如果发起RA-SDT过程的条件不被满足,所述行为“所述第一节点的MAC子层给所述第一节点的更高层指示发起SDT过程的条件不被满足”之后,所述第一节点启动计时器T319,并且,“所述第一节点的RRC子层指示MAC实体停止所述第二计时器”不被执行。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一处理机,在第一随机接入过程中发送第一MSGA,所述第一MSGA包括第一C-RNTI;作为发送所述第一MSGA的响应,在第一msgB-ResponseWindow中接收第一PDCCH;作为所述第一PDCCH被接收的响应,当目标条件集合中的任一条件被满足时,执行第一动作集合;
    其中,所述第一PDCCH被所述第一C-RNTI加扰,所述第一PDCCH包括为了新传输的上行链路授予;所述目标条件集合包括至少第一条件和第二条件,所述第一条件包括第一TimeAlignmentTimer正在运行,所述第二条件包括至少第二计时器正在运行,所述第二计时器被用于CG-SDT过程;所述第一动作集合包括确定随机接入响应被成功接收或者停止所述第一msgB-ResponseWindow或者确定所述第一随机接入过程被成功完成中的至少之一。
  2. 根据权利要求1所述的第一节点,其特征在于,当目标条件集合中的每个条件都不被满足时,不执行所述第一动作集合。
  3. 根据权利要求1或2所述的第一节点,其特征在于,所述第二条件包括所述CG-SDT过程还在执行。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一处理机,在第二随机接入过程中接收第一Absolute Timing Advance Command MAC CE;作为所述第一Absolute Timing Advance Command MAC CE被接收的响应,启动或者重新启动所述第二计时器;
    其中,所述第一Absolute Timing Advance Command MAC CE被接收时,所述CG-SDT过程正在执行。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一处理机,确定所述第二计时器过期;作为确定所述第二计时器过期的响应,执行第二动作集合;
    其中,所述第二动作集合包括删除任意的配置的上行链路授予或者刷新所有的HARQ缓冲器或者维持所述第一TAG的NTA中的至少之一。
  6. 根据权利要求5所述的第一节点,其特征在于,包括:
    所述第一处理机,当发起RA-SDT过程的条件被满足时,根据所述第二计时器是否正在运行确定是否认为所述第二计时器过期并且执行所述第二动作集合,并且,所述第一节点的MAC子层给所述第一节点的更高层指示发起SDT过程的条件被满足;
    其中,所述行为根据所述第二计时器是否正在运行确定是否认为所述第二计时器过期并且执行所述第二动作集合包括:当所述第二计时器正在运行时,认为所述第二计时器过期并且执行所述第二动作集合。
  7. 根据权利要求5或6所述的第一节点,其特征在于,包括:
    所述第一处理机,当发起CG-SDT过程的条件不被满足并且发起RA-SDT过程的条件不被满足时,认为所述第二计时器过期并且执行所述第二动作集合,并且,所述第一节点的MAC子层给所述第一节点的更高层指示发起SDT过程的条件不被满足。
  8. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二处理机,在第一随机接入过程中接收第一MSGA,所述第一MSGA包括第一C-RNTI;作为接收所述第一MSGA的响应,发送第一PDCCH;
    其中,作为所述第一PDCCH被所述第一MSGA的发送者在第一msgB-ResponseWindow中接收的响应,当目标条件集合中的任一条件被满足时,所述第一MSGA的发送者执行第一动作集合;所述第一PDCCH被所述第一C-RNTI加扰,所述第一PDCCH包括为了新传输的上行链路授予;所述目标条件集合包括至少第一条件和第二条件,所述第一条件包括第一TimeAlignmentTimer正在运行,所述第二条件包括至少第二计时器正在运行,所述第二计时器被用于CG-SDT过程;所述第一动作集合包括确定随机接入响应被成功接收或者停止所述第一msgB-ResponseWindow或者确定所述第一随机接入过程被成功完成中的至少之一。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    在第一随机接入过程中发送第一MSGA,所述第一MSGA包括第一C-RNTI;作为发送所述第一MSGA的响应,在第一msgB-ResponseWindow中接收第一PDCCH;作为所述第一PDCCH被接收的响应,当目标条件集合中的任一条件被满足时,执行第一动作集合;
    其中,所述第一PDCCH被所述第一C-RNTI加扰,所述第一PDCCH包括为了新传输的上行链路授予;所述目标条件集合包括至少第一条件和第二条件,所述第一条件包括第一TimeAlignmentTimer正在运行, 所述第二条件包括至少第二计时器正在运行,所述第二计时器被用于CG-SDT过程;所述第一动作集合包括确定随机接入响应被成功接收或者停止所述第一msgB-ResponseWindow或者确定所述第一随机接入过程被成功完成中的至少之一。
  10. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    在第一随机接入过程中接收第一MSGA,所述第一MSGA包括第一C-RNTI;作为接收所述第一MSGA的响应,发送第一PDCCH;
    其中,作为所述第一PDCCH被所述第一MSGA的发送者在第一msgB-ResponseWindow中接收的响应,当目标条件集合中的任一条件被满足时,所述第一MSGA的发送者执行第一动作集合;所述第一PDCCH被所述第一C-RNTI加扰,所述第一PDCCH包括为了新传输的上行链路授予;所述目标条件集合包括至少第一条件和第二条件,所述第一条件包括第一TimeAlignmentTimer正在运行,所述第二条件包括至少第二计时器正在运行,所述第二计时器被用于CG-SDT过程;所述第一动作集合包括确定随机接入响应被成功接收或者停止所述第一msgB-ResponseWindow或者确定所述第一随机接入过程被成功完成中的至少之一。
PCT/CN2023/111141 2022-08-07 2023-08-04 一种被用于无线通信的通信节点中的方法和装置 WO2024032478A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210940846.8 2022-08-07
CN202210940846 2022-08-07
CN202210962200.X 2022-08-11
CN202210962200.XA CN117580187A (zh) 2022-08-07 2022-08-11 一种被用于无线通信的通信节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2024032478A1 true WO2024032478A1 (zh) 2024-02-15

Family

ID=89850908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111141 WO2024032478A1 (zh) 2022-08-07 2023-08-04 一种被用于无线通信的通信节点中的方法和装置

Country Status (1)

Country Link
WO (1) WO2024032478A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220210860A1 (en) * 2020-12-29 2022-06-30 FG Innovation Company Limited Methods for data transmission and user equipment using the same
WO2022156724A1 (zh) * 2021-01-20 2022-07-28 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220210860A1 (en) * 2020-12-29 2022-06-30 FG Innovation Company Limited Methods for data transmission and user equipment using the same
WO2022156724A1 (zh) * 2021-01-20 2022-07-28 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置
CN114867126A (zh) * 2021-01-20 2022-08-05 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ASIA PACIFIC TELECOM, FGI: "PDCCH monitoring in RA-based SDT procedure", 3GPP DRAFT; R2-2104965, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20210519 - 20210527, 10 May 2021 (2021-05-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052003752 *

Similar Documents

Publication Publication Date Title
WO2022143481A1 (zh) 一种被用于无线通信的方法和设备
CN114641092A (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024032478A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN115484691A (zh) 一种被用于无线通信的方法和设备
CN115379530A (zh) 一种被用于无线通信的方法和设备
CN116015373A (zh) 一种被用于无线通信的节点中的方法和装置
CN114158058A (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024001938A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024007870A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024183747A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023216895A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024208073A1 (zh) 被用于无线通信的方法和装置
WO2023174376A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023186164A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023207604A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023226924A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023207709A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024156283A1 (zh) 一种被用于无线通信的方法和设备
WO2024017078A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024179376A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024152941A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024208251A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023179468A1 (zh) 一种被用于无线通信的方法和设备
WO2023246671A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024140675A1 (zh) 一种被用于无线通信的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851699

Country of ref document: EP

Kind code of ref document: A1