WO2022143481A1 - 一种被用于无线通信的方法和设备 - Google Patents

一种被用于无线通信的方法和设备 Download PDF

Info

Publication number
WO2022143481A1
WO2022143481A1 PCT/CN2021/141465 CN2021141465W WO2022143481A1 WO 2022143481 A1 WO2022143481 A1 WO 2022143481A1 CN 2021141465 W CN2021141465 W CN 2021141465W WO 2022143481 A1 WO2022143481 A1 WO 2022143481A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
timer
message
signaling
node
Prior art date
Application number
PCT/CN2021/141465
Other languages
English (en)
French (fr)
Inventor
陈宇
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2022143481A1 publication Critical patent/WO2022143481A1/zh
Priority to US18/209,498 priority Critical patent/US20230328700A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/183Processing at user equipment or user record carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • the present application relates to a transmission method and apparatus in a wireless communication system, and in particular, to a method for improving efficiency and reducing interruptions related to multiple network communications in wireless communication.
  • LTE Long Term Evolution
  • 5G NR 5th Generation NR
  • eMBB enhanced Mobile BroadBand, enhanced mobile broadband
  • URLLC Ultra Reliable Low Latency Communication, Ultra-reliable and low-latency communication
  • eMTC enhanced Machine Type Communication, enhanced machine type communication
  • the transmission methods of information are divided into broadcast multicast and unicast. These transmission methods are essential to the 5G system, because they are very helpful to meet the above requirements. .
  • the information can also be forwarded through relays.
  • the communication terminal can be equipped with a SIM (Subscriber Identity Module, registered identity module/user identity card) card or Multiple SIM cards, when multiple SIM cards are used and connected to multiple networks, the coordination of the transceiver module of the terminal between different networks becomes an important issue.
  • SIM Subscriber Identity Module, registered identity module/user identity card
  • a UE user equipment, terminal/mobile phone
  • multiple networks especially when multiple corresponding SIM cards are used
  • the problem of coordination between networks will be involved.
  • the hardware of the UE itself is not enough to communicate with two networks simultaneously, independently, without any influence, and in parallel, if it can be based on some degree of coordination assisted by the network or initiated by the UE, it is helpful to avoid the two networks.
  • the two networks affect each other, for example, when the UE needs to communicate with another network, but the current network also instructs the UE to send or receive data.
  • Some UEs may have two receivers, but only one transmitter, which means that these UEs may receive signals from two networks at the same time according to the situation, but can only send signals to one network; of course, some UEs can only receive signals from one network at a time. Signals from the network; however, for many UEs, it is not possible to send signals to both networks at the same time. Since the UE's two SIM cards or multiple SIMs may be of different operators, the coordination between the networks is very limited, it is difficult to rely on the coordination between the networks, and even due to privacy issues, it is necessary to prohibit the transfer of users between the networks Information.
  • Control and management include many aspects, such as in some cases ( For example, the timer expires) to trigger certain events, which may need to send some data or reports, but because the UE has temporarily left the current network and cannot send data and reports, this will cause contradictions. If handled improperly, it will easily cause the UE to drop Wire.
  • the present application solves the above problems by a new method for controlling the behavior of the UE during the away time.
  • the present application provides a solution.
  • any node of the present application and the features in the embodiments may be applied to any other node if there is no conflict.
  • the embodiments of the present application and features in the embodiments may be combined with each other arbitrarily, provided that there is no conflict.
  • this application is also applicable to scenarios such as UAV (Unmanned Aerial Vehicle), Internet of Things or Industrial Internet of Things, or in-vehicle network, NTN or TN network, or RedCap (Reduced Capability , reduce capability) UE communication, or wearable device communication scenarios to achieve similar technical effects.
  • UAV Unmanned Aerial Vehicle
  • Internet of Things or Industrial Internet of Things or in-vehicle network
  • NTN or TN network or RedCap (Reduced Capability , reduce capability) UE communication
  • wearable device communication scenarios to achieve similar technical effects.
  • using a unified solution for different scenarios can also help reduce hardware complexity and cost.
  • the present application discloses a method used in a first node of wireless communication, comprising:
  • the first configuration message is used to configure a first timer
  • the first message is used to determine a first set of time windows, the set of first time windows includes at least one time window;
  • the first message is used to request to stop wireless transmission for the sender of the first signaling in the first time window set; the first signaling is used to indicate that the first signaling is approved a request for a message; the length of time from the start of the first timer to a first moment exceeds the expiration value of the first timer, and the start of the first timer is before the first moment; the The first signaling is used to determine to abandon the execution of the first event in the second set of time windows, and the expiration of the first timer is used to trigger the first event based on the assumption that the first signaling is not received.
  • the second set of time windows includes time domain resources between a second time instant and the first time instant, the second time instant being between the start of the first timer and the first time instant and the length of time from the start of the first timer is not less than the expiration value of the first timer.
  • the problems to be solved in this application include: when a UE cannot send some wireless signals to two networks at the same time, it needs to request to leave the current network; it can communicate with the second network during the time of leaving, During the leaving period, if certain configurations of the original network trigger the UE to execute certain events, the communication between the UE and the second network will be affected.
  • the present application solves the above problems by specially managing timers for these events or controlling the behavior of the UE.
  • the advantages of the above method include: avoiding the conflict between the two networks, and simultaneously avoiding potential disconnection and extra delay.
  • it includes: receiving a second message, where the second message includes a first control timer, and the second message is used to indicate that when the first control timer is in a stopped state when the first node is allowed to send the first message.
  • the first configuration message indicates a second timer and a first threshold value, and the time length from the start of the second timer to the first moment exceeds the second the difference between the expiration value of the timer and the first threshold value, the start of the second timer is before the first moment; the first threshold value is a positive number;
  • the first signaling is used to determine to abandon execution of the second event in a third set of time windows, and the expiration of the second timer is used to trigger all events based on the assumption that the first signaling is not received.
  • the third time window set includes time domain resources between the first time and the third time; the third time is not earlier than the first time, and the third time is not later than the first expiration time; the first expiration time is the time determined by the expiration value of the second timer after the start of the second timer.
  • the first configuration message includes a third timer, and the third timer expires within the first set of time windows;
  • a first signal is sent for the sender of the first signaling within the first set of time windows.
  • the first event includes sending a second signal; the second signal is used to indicate a first measurement result;
  • the first measurement is used to generate the first measurement result
  • the act of giving up executing the first event in the second set of time windows includes giving up sending the second signal and discarding the first measurement result.
  • the method includes: receiving the first conditional reconfiguration
  • the evaluation of the execution condition of the first conditional reconfiguration is abandoned, or the execution of the first conditional reconfiguration is abandoned.
  • the act of giving up executing the first event in the second time window set includes adding the first event to a first waiting list
  • the first event in the first wait list is executed.
  • the first node is a UE (User Equipment).
  • the first node is an IoT terminal.
  • the first node is a relay.
  • the first node is a vehicle-mounted terminal.
  • the first node is an aircraft.
  • the present application discloses a method used in a second node for wireless communication, comprising:
  • the first configuration message is used to configure a first timer
  • the first message is used to determine a first set of time windows, the first set of time windows includes at least one time window;
  • the first message is used to request to stop wireless transmission for the sender of the first signaling in the first time window set; the first signaling is used to indicate that the first signaling is approved a request for a message; the length of time from the start of the first timer to a first moment exceeds the expiration value of the first timer, and the start of the first timer is before the first moment; the The first signaling is used to determine to abandon the execution of the first event in the second set of time windows, and the expiration of the first timer is used to trigger the first event based on the assumption that the first signaling is not received.
  • the second set of time windows includes time domain resources between a second time instant and the first time instant, the second time instant being between the start of the first timer and the first time instant and the length of time from the start of the first timer is not less than the expiration value of the first timer.
  • it includes: sending a second message, where the second message includes a first control timer, and the second message is used to indicate that when the first control timer is in a stopped state
  • the sender of the first message is allowed to send the first message.
  • the first configuration message indicates a second timer and a first threshold value, and the time length from the start of the second timer to the first moment exceeds the second the difference between the expiration value of the timer and the first threshold value, the start of the second timer is before the first moment; the first threshold value is a positive number;
  • the first signaling is used by the sender of the first message to determine to abandon execution of the second event in a third set of time windows, the second timing based on the assumption that the first signaling is not received
  • the expiration of the timer is used to trigger the second event, and the third time window set includes time domain resources between the first time and the third time; the third time is not earlier than the first time , and the third time is not later than the first expiry time; the first expiry time is the time determined by the expiry value of the second timer after the start of the second timer.
  • the first configuration message includes a third timer, and the third timer expires within the first set of time windows;
  • the sender of the first message sends a first signal to the second node within the first set of time windows.
  • the first event includes sending a second signal; the second signal is used to indicate a first measurement result;
  • the sender of the first message performs a first measurement; the first measurement is used to generate the first measurement result;
  • the act of aborting execution of the first event in the second set of time windows includes the sender of the first message aborting sending the second signal and discarding the first measurement result.
  • it includes: sending the first conditional reconfiguration
  • the sender of the first message gives up evaluating the execution condition of the first conditional reconfiguration within the first time window set, or gives up executing the first conditional reconfiguration.
  • the act of giving up executing the first event in the second time window set includes adding the first event to a first waiting list
  • the sender of the first message executes the first event in the first waiting list outside the second set of time windows.
  • the second node is a user equipment.
  • the second node is an IoT terminal.
  • the second node is a satellite.
  • the second node is a relay.
  • the second node is a vehicle-mounted terminal.
  • the second node is an aircraft.
  • the second node is a base station.
  • the second node is a cell or a group of cells.
  • the second node is a gateway.
  • the second node is an access point.
  • the application discloses a first node used for wireless communication, including:
  • a first receiver receiving a first configuration message and a first signaling; the first configuration message is used to configure a first timer;
  • a first transmitter sending a first message; the first message is used to determine a first set of time windows, and the set of first time windows includes at least one time window;
  • the first message is used to request to stop wireless transmission for the sender of the first signaling in the first time window set; the first signaling is used to indicate that the first signaling is approved a request for a message; the length of time from the start of the first timer to a first moment exceeds the expiration value of the first timer, and the start of the first timer is before the first moment; the The first signaling is used to determine to abandon the execution of the first event in the second set of time windows, and the expiration of the first timer is used to trigger the first event based on the assumption that the first signaling is not received.
  • the second set of time windows includes time domain resources between a second time instant and the first time instant, the second time instant being between the start of the first timer and the first time instant and the length of time from the start of the first timer is not less than the expiration value of the first timer.
  • the application discloses a second node used for wireless communication, comprising:
  • a second transmitter sending a first configuration message and a first signaling; the first configuration message is used to configure a first timer;
  • a second receiver receiving a first message; the first message is used to determine a first time window set, and the first time window set includes at least one time window;
  • the first message is used to request to stop wireless transmission for the sender of the first signaling in the first time window set; the first signaling is used to indicate that the first signaling is approved a request for a message; the length of time from the start of the first timer to a first moment exceeds the expiration value of the first timer, and the start of the first timer is before the first moment; the The first signaling is used to determine to abandon the execution of the first event in the second set of time windows, and the expiration of the first timer is used to trigger the first event based on the assumption that the first signaling is not received.
  • the second set of time windows includes time domain resources between a second time instant and the first time instant, the second time instant being between the start of the first timer and the first time instant and the length of time from the start of the first timer is not less than the expiration value of the first timer.
  • the present application has the following advantages:
  • the method proposed in this application can avoid that the behavior configured by another network of the UE in the scenario of connecting two networks affects the communication of the current network; at the same time, the connection between the UE and the original network is always maintained; when the UE returns to the original network The behavior of the original network configuration can be restored when it is in the network.
  • the method proposed in this application can be selected according to different network configurations or different events that should be triggered, and corresponding processing methods are adopted; including controlling the timer and controlling whether to execute the triggered event, and also including returning to the original state.
  • the control of the timer is because some events are triggered by the expiration of the timer, so controlling the timer is an effective means.
  • the present application also proposes to determine how to control the timer and how to execute/abandon the event according to the specific event type, which helps to ensure the service of the UE to the greatest extent.
  • the method proposed in this application can control the UE to leave the current network at an allowed time, avoid uncertainty caused by leaving in the middle of certain behaviors or procedures, and simplify the design of the protocol.
  • the method proposed in this application also fully considers the impact of the length of the timer on the processing of the event.
  • a certain timer expires in a short time after returning to the original network, it may still cause the UE to be too late to process. Therefore, only events that can be triggered by the timer that is expected to expire after returning to the original network for a period of time are considered.
  • the original network refers to the network configured with a certain timer mentioned above.
  • FIG. 1 shows a flowchart of receiving a first configuration message, sending a first message, and receiving a first signaling according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a radio protocol architecture for the user plane and the control plane according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG. 5 shows a flow chart of transmission of wireless signals according to an embodiment of the present application
  • FIG. 6 shows a schematic diagram of a first time window set according to an embodiment of the present application
  • FIG. 7 shows a schematic diagram of a first time window set according to an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of a second set of time windows according to an embodiment of the present application.
  • FIG. 9 shows a schematic diagram of a third time window set according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of the first message being used to determine the first time window set according to an embodiment of the present application
  • FIG. 11 shows a schematic diagram in which the first signaling is used to determine to abandon the execution of the first event in the second time window set according to an embodiment of the present application
  • FIG. 12 illustrates a schematic diagram of a processing apparatus used in a first node according to an embodiment of the present application
  • FIG. 13 illustrates a schematic diagram of a processing device used in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of receiving a first configuration message, sending a first message, and receiving a first signaling according to an embodiment of the present application, as shown in FIG. 1 .
  • each block represents a step, and it should be emphasized that the sequence of each block in the figure does not represent the temporal sequence relationship between the represented steps.
  • the first node in this application receives the first configuration message in step 101; sends the first message in step 102; and receives the first signaling in step 103;
  • the first configuration message is used to configure a first timer; the first message is used to determine a first time window set, and the first time window set includes at least one time window; the first message is for requesting to stop wireless transmission for the sender of the first signaling in the first set of time windows; the first signaling is used to indicate approval of the request for the first message; the first signaling the length of time from the start of the timer to the first moment exceeds the expiration value of the first timer, and the start of the first timer is before the first moment; the first signaling is used to determine Abandoning execution of the first event in a second set of time windows, the expiration of the first timer being used to trigger the first event based on the assumption that the first signaling is not received, the second time
  • the set of windows includes time domain resources between a second time instant and the first time instant, the second time instant being between the start of the first timer and the first time instant and from the first time instant The length of time of the start of the timer is not less than the expiration value
  • the first node is a UE.
  • the sender of the first signaling is the serving cell of the first node.
  • the sender of the first signaling is a PCell (primary cell) of the first node.
  • the sender of the first signaling is the SpCell of the first node.
  • the sender of the first signaling is the SCell of the first node.
  • the sender of the first signaling is the MCG of the first node.
  • the sender of the first signaling is the SCG of the first node.
  • the sender of the first signaling is a cell where the first node resides.
  • the sender of the first signaling is a network to which the first node is connected.
  • the first node possesses two SIM cards, one of which is for the sender of the first signaling; the other is for the second network, and the second network is the first A network other than the sender of the signaling.
  • the SIM card includes a USIM (Universal Subscriber Identity Module, global subscriber identity card) card.
  • USIM Universal Subscriber Identity Module, global subscriber identity card
  • the SIM card includes an eSIM (Electronic SIM) card.
  • eSIM Electronic SIM
  • the SIM card includes a UICC (Universal Integrated Circuit Card, Universal Integrated Circuit Card) card.
  • UICC Universal Integrated Circuit Card
  • the SIM cards include different sizes.
  • the SIM card targets ⁇ LTE network, NR network, 3G network, 4G network, 5G network, 6G network, TN network, NTN network, URLLC network, IoT network, in-vehicle network, industrial IoT network, broadcast network , at least one of a unicast network, a 3GPP network, and a non-3GPP network ⁇ .
  • the first node possesses a transmitter and a receiver.
  • the first node possesses one transmitter and two receivers.
  • an RRC link exists between the first node and the sender of the first signaling.
  • the first node is in an RRC connected state with respect to the sender of the first signaling.
  • the first node is in an RRC connected state with respect to the second network.
  • the first node is in an RRC idle state with respect to the second network.
  • the first node is in an RRC inactive state with respect to the second network.
  • the first configuration message includes an RRC message.
  • the first configuration message includes a NAS message.
  • the first configuration message includes a PC5-RRC message.
  • the first configuration message includes a PC5-S message.
  • the first configuration message includes SIB.
  • the first configuration message includes SIB.
  • the first configuration message includes RRCReconfiguration.
  • the first configuration message includes RRCReconfigurationSidelink.
  • the first configuration message includes RRCConnectionReconfiguration.
  • the first configuration message includes RRCConnectionReconfigurationSidelink.
  • the first configuration message includes SpCellConfig.
  • the first configuration message is sent by broadcasting.
  • the first configuration message is sent in a unicast manner.
  • the first timer is a timer.
  • the first timer includes ⁇ T304, T310, T312, T321, T322, T380, T316, sCellDeactivationTimer, beamFailureRecoveryTimer, searchSpaceSwitchTimer, bwp-InactivityTimer, periodicBSR-Timer, phr-PeriodicTimer, lbt-FailureDetectionTimer, trigger At least one of the timer for periodic CSI reporting, dataInactivityTimer, the timer for triggering L2 link identity update, the timer for triggering Keep Alive, the discardTimer of PDCP, and t-Reassembly ⁇ .
  • the first configuration message configures or indicates an expiration value of the first timer.
  • the expiration value of the first timer includes E units, where E is a positive number or a positive integer.
  • the E units include ⁇ milliseconds, seconds, OFDM symbols, time slots, mini-slots, subframes, frames, superframes, minutes, DRX (Discontinuous Reception, discontinuous at least one of a reception) period, a paging period, a modification period, a system message period, and the length of the time windows in the first set of time windows ⁇ .
  • the first signaling includes the configuration of the first timer.
  • the first set of time windows includes W time windows, where W is a positive integer.
  • the time windows included in the first time window set are of equal length.
  • the time windows included in the first time window set are of unequal length.
  • the time windows included in the first time window set are orthogonal in the time domain.
  • the time windows included in the first time window set are sequentially ordered in the time domain.
  • the time interval between any two time windows included in the first time window set is not less than the time occupied by one OFDM symbol.
  • the time intervals of any two adjacent time windows in the first time window set included in the first time window set are equal.
  • the time intervals of any two adjacent time windows in the first time window set included in the first time window set are unequal.
  • the first message is transmitted through a Uu interface.
  • the first message includes an RRC message.
  • the first message includes a UCI (Uplink Control Information) message.
  • UCI Uplink Control Information
  • the physical channel occupied by the first message includes PUSCH (Physical Uplink Shared Channel, physical uplink shared channel).
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • the logical channel occupied by the first message includes a DCCH (Dedicated Control Channel, dedicated control channel).
  • DCCH dedicated Control Channel, dedicated control channel
  • the first message is sent using SRB1 or SRB3.
  • the first message includes at least part of fields in UEAssistanceInformation.
  • the first message includes UELeavingRequest.
  • the first message includes UESwitchingRequest.
  • the first message includes UEShortLeavingRequest.
  • the first message includes UEAvailablilityIndication.
  • the first message includes UEInavailablilityIndication.
  • the first message includes RRCReconfigurationSidelink.
  • the first message includes MCGFailureInformation.
  • the first message includes SCGFailureInformation.
  • the first message includes ULInformationTransfer.
  • the first message is transmitted through the PC5 interface.
  • the first message includes a PC5-RRC message.
  • the first message includes a PC5-S message.
  • the sender of the first signaling is a base station.
  • the sender of the first signaling is a serving cell.
  • the sender of the first signaling is a cell group (CellGroup).
  • the cell group is an SCG (Secondary Cell Group, secondary cell group).
  • the cell group is an MCG (Master Cell Group, master cell group).
  • the first signaling includes an RRC message.
  • the first signaling includes a DCI (downlink control information, downlink control information) message.
  • DCI downlink control information, downlink control information
  • the first signaling includes a PC5-RRC message.
  • the first signaling includes a PC5-S message.
  • the first signaling includes a MAC CE (Control Element, control unit).
  • the physical channel occupied by the first signaling includes PDCCH (Physical downlink control channel, physical downlink control channel) or PDSCH (physical downlink shared channel, physical downlink shared channel).
  • PDCCH Physical downlink control channel, physical downlink control channel
  • PDSCH physical downlink shared channel, physical downlink shared channel
  • the first signaling includes RRCReconfiguration.
  • the first signaling includes RRCReconfigurationSidelink.
  • the first signaling includes RRCConnectionReconfiguration.
  • the first signaling includes RRCConnectionReconfigurationSidelink.
  • the first signaling indicates a request to accept/acknowledge the first message.
  • the first signaling indicates that the request of the first message to stop wireless transmission for the sender of the first signaling within the K1 time windows is granted.
  • the reception of the first signaling is considered to be the consent of the first message.
  • the first signaling indicates the first set of time windows.
  • the first signaling indicates that the first time window set is used to indicate that the request for the first message is granted.
  • the stopping of the wireless transmission for the sender of the first signaling in the sentence includes: the sender of the first signaling will not Nodes perform uplink and/or downlink scheduling.
  • the stop of the wireless transmission for the sender of the first signaling in the sentence includes: a scrambling code used by the wireless signal sent by the first node U01 within the K1 time windows It is allocated by a node other than the sender of the first signaling.
  • the sentence said to stop wireless transmission for the sender of the first signaling includes: the sender of the first signaling and the MCG and the MCG controlled by the sender of the first signaling. Neither SCG will perform uplink and/or downlink scheduling on the first node within the first time window set.
  • the stopping of the wireless transmission for the sender of the first signaling in the sentence includes: the first node will not be sent by the first signaling within the first time window set
  • the sender performs uplink and/or downlink scheduling.
  • the sentence said to stop wireless transmission for the sender of the first signaling includes: the first node is not capable or will not or cannot receive the first time window set within the first time window set.
  • the wireless signal sent by the sender of the first signaling includes: the first node is not capable or will not or cannot receive the first time window set within the first time window set.
  • the first message indicates that the first node can only receive the second type of target signal sent by the sender of the first signaling within the first time window set.
  • the second type of target signal includes a wireless signal carrying broadcast services.
  • the second type of target signal includes a wireless signal bearing a multicast service.
  • the second type of target signal includes a wireless signal carrying DCI.
  • the second type of target signal includes a wireless signal bearing part of the DCI format.
  • the second type of target signal includes paging messages.
  • the second type of target signal includes RRCRelease.
  • the second type of target signal includes RRCConnectionRelease.
  • the second type of target signal includes SIB.
  • the second type of target signal includes an ETWS (Earthquake and Tsunami Warning System, Earthquake and Tsunami Warning System) signal.
  • ETWS Earthquake and Tsunami Warning System, Earthquake and Tsunami Warning System
  • the second type of target signal includes any wireless signal sent by the sender of the first signaling.
  • the second type of target signal includes any wireless signal associated with a specific CSI-RS sent by the sender of the first signaling.
  • the first node determines the specific CSI-RS according to the candidate CSI-RS indicated by the sender of the first signaling.
  • the second type of target signal includes any wireless signal associated with a specific SSB sent by the sender of the first signaling.
  • the first node determines the specific SSB according to the candidate SSB indicated by the sender of the first signaling.
  • the first moment includes a time value.
  • the first moment is configurable.
  • the first moment is fixed.
  • the first moment takes the first time window set as a reference.
  • the first moment is the end moment of the first set of time windows.
  • the first time is a time before the end time of the first set of time windows.
  • the first moment is the start moment of the last time window of the first time window set.
  • the second set of time windows includes at least one time window.
  • the second time is the time of the start of the first timer.
  • the second time is a time after the start of the first timer and before the first time.
  • the second time is the x1 th millisecond or the x1 th subframe after the start of the first timer and the time before the first time, where x1 is a positive integer.
  • the second moment is before the first moment; the second moment is not equal to the first moment.
  • the second time is the start time of the i-th time window in the first time window set
  • the i-th time window is all the time after the start of the first timer. is the first time window in the first time window set.
  • the second moment is the x2th millisecond or the x2th subframe before the first moment, where x2 is a positive integer.
  • the sentence that the expiration of the first timer based on the assumption that the first signaling is not received is used to trigger the first event includes the following meaning: if the first If the node does not receive the first signaling, the expiration of the first timer will trigger the first node to execute the first event.
  • the sentence that the expiration of the first timer based on the assumption that the first signaling is not received is used to trigger the first event includes the following meaning: if the first If the node does not receive the first signaling and the first timer is started, the expiration of the first timer will trigger the first node to execute the first event.
  • the sentence that the expiration of the first timer based on the assumption that the first signaling is not received is used to trigger the first event includes the following meaning: if the first The node does not receive the first signaling, and the first timer is started, no matter whether the first timer expires within the first time window set, the expiration of the first timer will be triggering the first node to execute the first event.
  • the sentence that the expiration of the first timer based on the assumption that the first signaling is not received is used to trigger the first event includes the following meaning: if the first If the node does not send the first message, the expiration of the first timer will trigger the first node to execute the first event.
  • the sentence that the expiration of the first timer based on the assumption that the first signaling is not received is used to trigger the first event includes the following meaning: if the first Signaling is not received, and after the first timer is started, the expiration of the first timer will trigger the first node to execute the first event.
  • the sentence that the expiration of the first timer based on the assumption that the first signaling is not received is used to trigger the first event includes the following meaning: if the first Signaling is not received, the first timer may be started, and the first timer may expire.
  • the first event includes initiating a random access procedure.
  • the random access procedure includes sending a random access signal.
  • the random access procedure uses a contention based access manner.
  • the random access procedure uses a contention free-based access manner.
  • a non-contention access mode is used in the random access process, and the first signaling indicates time-frequency resources used by the non-contention access mode.
  • the first event includes sending a target signal.
  • the target signal includes a random access signal.
  • the target signal includes a MAC CE (Control Element, control unit).
  • the target signal includes an RRC message.
  • the target signal includes a NAS message.
  • the target signal includes at least one of ⁇ Preamble, msg1 (message 1), msgA (message A) ⁇ .
  • the target signal includes an SR (scheduling request, scheduling request).
  • the target signal includes BSR (Buffer Status Report, buffer status report).
  • the target signal includes UCI (Uplink Control Information, uplink control information).
  • UCI Uplink Control Information, uplink control information
  • the physical channel occupied by the target signal includes PRACH (Physical Random Access Channel, physical random access channel).
  • PRACH Physical Random Access Channel, physical random access channel
  • the physical channel occupied by the target signal includes PUCCH (Physical Uplink Control Channel, physical uplink control channel).
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • the physical channel occupied by the target signal includes PUSCH (Physical Uplink Shared Channel, physical uplink shared channel).
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • the target signal includes a registration update request.
  • the target signal includes a tracking area update.
  • the target signal includes Keep Alive Message.
  • the target signal includes HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request) feedback.
  • HARQ Hybrid Automatic Repeat reQuest, hybrid automatic repeat request
  • the target signal includes a link identity update request.
  • the target signal includes DIRECT LINK IDENTIFIER UPDATE REQUEST.
  • the target signal includes a sidelink-related discovery message.
  • the target signal includes location-related position information.
  • the target signal includes a paging response.
  • the target signal includes RRCReconfigurationComplete.
  • the target signal includes RRCConnectionReconfigurationComplete.
  • the first event includes radio link re-establishment caused by radio link failure.
  • the first event includes radio link reconfiguration caused by radio link failure.
  • the first event includes a handover caused by a radio link failure.
  • the first event includes performing a conditional reconfiguration.
  • the first event includes a primary serving cell group (MCG) failure.
  • MCG primary serving cell group
  • the primary serving cell group (MCG) failure is used to trigger the sending of MCGfailureInformation.
  • the first event includes a slave serving cell group (SCG) failure.
  • SCG slave serving cell group
  • the slave serving cell group (MCG) failure is used to trigger the sending of SCGfailureInformation.
  • the first event includes beam failure recovery.
  • the first event includes sending a first report.
  • the first report includes a measurement report.
  • the first event includes performing a first primary measurement.
  • the first main measurement includes measuring SSB (Synchronization Signal Block, synchronization signal block).
  • SSB Synchronization Signal Block, synchronization signal block
  • the first main measurement includes measuring CSI-RS (Channel State Information-Reference Signal, channel state information reference signal).
  • CSI-RS Channel State Information-Reference Signal, channel state information reference signal
  • the first main measurement includes idle state measurement.
  • the first main measurement includes CSI measurement.
  • the first signaling is used to indicate a signal measured by the first main measurement.
  • the first report includes a link failure report.
  • the first report includes a continuous LBT (Listen-Before-Talk) failure report.
  • the first event includes switching to an actual BWP (bandwidth part).
  • the first event includes applying a default search space.
  • the first event includes entering an RRC idle state or an RRC inactive state.
  • the first event includes a loss of synchronization.
  • the first event includes performing a conditional reconfiguration.
  • the first event includes receiving a second target signal.
  • the second target signal includes SSB and/or CSI-RS.
  • the second target signal includes a PRS (Positioning Reference Signal, positioning reference signal).
  • PRS Positioning Reference Signal, positioning reference signal
  • the second target signal includes a system message.
  • the second target signal includes a paging message.
  • the second target signal includes DCI (Downlink Control Information, downlink control information).
  • DCI Downlink Control Information, downlink control information
  • the second target signal includes SCI (Sidelink Control Information, side link control information).
  • the second target signal includes RAR (Random Access Response, random access response).
  • the second target signal includes an RRC message.
  • the second target signal includes a MAC CE.
  • the second target signal includes a system message.
  • the second target signal includes a NAS message.
  • the second target signal includes HARQ feedback.
  • the first event includes sending a second signal; the second signal is used to indicate a first measurement result; the first node performs the first measurement; the first measurement is used to generate The first measurement result; the behavior of giving up executing the first event in the second time window set includes, the first node giving up sending the second signal and discarding the first measurement result.
  • the first measurement includes measuring a signal sent by a sender of the first signaling.
  • the first measurement includes measuring signals sent by nodes other than the sender of the first signaling.
  • the first measurement includes a measurement reference signal.
  • the first measurement includes measuring SSB and/or CSI-RS.
  • the first measurement includes measuring channel quality and/or channel state.
  • the first measurement result includes RSRP (Reference Signal Receiving Power, reference signal received power).
  • RSRP Reference Signal Receiving Power, reference signal received power
  • the first measurement result includes RSRQ Reference Signal Receiving Quality, reference signal receiving quality).
  • the first measurement result includes RSSI (Received Signal Strength Indication).
  • the first measurement result includes SNR (SIGNAL NOISE RATIO, signal-to-noise ratio).
  • the second signal includes a measurement report.
  • the second signal includes the first measurement.
  • the sentence "the first node, abandons sending the second signal and abandoning the first measurement result” includes the following meanings:
  • the first node aborts sending the second signal
  • the first node discards the first measurement result
  • the first node does not retain or delete the first measurement result
  • the first node ignores the trigger condition of the second signal
  • the first node abstains from generating the second signal
  • the first node defers performing the first measurement.
  • the behavior of giving up executing the first event in the second time window set includes adding the first event to a first waiting list; the first node, at the second time Outside the window set, the first event in the first waiting list is executed.
  • the first waiting list is a pending list.
  • the first waiting list is stored by the first node as a state variable.
  • the first waiting list is for a first type of event
  • the first type of event includes ⁇ initiating random access, small data transmission, sending measurement report, performing condition reconfiguration, sending SR , at least one of sending a BSR, sending a keep alive signal, sending a discovery signal, sending a RAN notification area update, sending or initiating a registration update request, initiating a tracking area update request, responding to a paging, and sending UE assistance information ⁇ .
  • the first waiting list includes L sub-lists, and each of the L sub-lists corresponds to ⁇ initiating random access, small data transmission, sending measurement reports, and performing condition reconfiguration respectively , send SR, send BSR, send keep alive signal, send discovery signal, send RAN notification area update, send or initiate registration update request, initiate tracking area update request, respond to paging, send L events in UE auxiliary information ⁇ , where L is a positive integer.
  • the time outside the second time window set includes time after the first moment.
  • the time outside the second set of time windows includes the time after the end of the first set of time windows.
  • the time outside the second set of time windows includes time delta milliseconds after the end of the first set of time windows, where delta is a positive integer.
  • the time outside the second set of time windows includes the time after the first node returns to the network of the sender of the first signaling.
  • the first node at a time other than the second time window set, according to the sequence of events added to the first waiting list by the first event, from first to first After that, the first events in the first waiting list are sequentially executed.
  • the first node at a time other than the second time window set, according to the sequence of events added to the first waiting list by the first event, from back to back before executing the first events in the first waiting list in sequence.
  • the first node executes only the the last added event in the first waiting list, and the first event is the last added event in the first waiting list.
  • expiration of the first timer is used to trigger the first event.
  • the first timer is not restarted between the start of the first timer and the first time instant.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2 .
  • FIG. 2 illustrates a diagram of a network architecture 200 of a 5G NR, LTE (Long-Term Evolution, Long Term Evolution) and LTE-A (Long-Term Evolution Advanced, Enhanced Long Term Evolution) system.
  • the 5G NR or LTE network architecture 200 may be referred to as 5GS (5G System)/EPS (Evolved Packet System) 200 by some other suitable term.
  • 5GS 5G System
  • EPS Evolved Packet System
  • 5GS/EPS 200 may include one or more UE (User Equipment, user equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Server)/UDM (Unified Data Management, Unified Data Management) 220 and Internet Service 230.
  • 5GS/EPS can be interconnected with other access networks, but for simplicity Show these entities/interfaces. As shown, 5GS/EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks that provide circuit-switched services or other cellular networks.
  • the NG-RAN includes NR Node Bs (gNBs) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201 .
  • gNBs 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • gNB 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmit Receive Node) or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (eg, MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players eg, MP3 players
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access Terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management domain
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway, service gateway)/UPF (User Plane Function, user plane function) 212 and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • the MME/AMF/SMF 211 is the control node that handles signaling between the UE 201 and the 5GC/EPC 210 .
  • MME/AMF/SMF 211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through the S-GW/UPF212, and the S-GW/UPF212 itself is connected to the P-GW/UPF213.
  • the P-GW provides UE IP address allocation and other functions.
  • the P-GW/UPF 213 is connected to the Internet service 230 .
  • the Internet service 230 includes the Internet Protocol service corresponding to the operator, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and a packet-switched streaming service.
  • the UE 201 corresponds to the first node in this application.
  • the UE 201 supports transmission over a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • the UE 201 supports transmission in a network with a large delay difference.
  • the UE 201 supports V2X transmission.
  • the UE201 supports multiple SIM cards.
  • the UE 201 supports secondary link transmission.
  • the UE 201 supports MBS transmission.
  • the UE 201 supports MBMS transmission.
  • the gNB 203 corresponds to the second node in this application.
  • the gNB 203 supports transmission over a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • the gNB 203 supports transmission in a network with a large delay difference.
  • the gNB203 supports V2X transmission.
  • the gNB 203 supports secondary link transmission.
  • the gNB 203 supports MBS transmission.
  • the gNB 203 supports MBMS transmission.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300, showing three layers for a first node (UE, satellite or aircraft in a gNB or NTN) and a second Node (gNB, satellite or aircraft in UE or NTN), or radio protocol architecture of control plane 300 between two UEs: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY301.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first node and the second node and the two UEs through the PHY 301 .
  • L2 layer 305 includes MAC (Medium Access Control, Media Access Control) sublayer 302, RLC (Radio Link Control, Radio Link Layer Control Protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, Packet Data Convergence Protocol) sublayer 304, the sublayers terminate at the second node.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides for providing security by encrypting data packets, as well as providing handoff support for the first node between the second nodes.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer packets, retransmission of lost packets, and reordering of packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first nodes.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, Radio Resource Control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the RRC signaling between the second node and the first node. command to configure the lower layer.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the PDCP sublayer 354, the RLC sublayer 353 in the L2 layer 355 and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides for upper Header compression of layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer). , to support business diversity.
  • SDAP Service Data Adaptation Protocol
  • DRB Data Radio Bearer
  • the first node may have several upper layers above the L2 layer 355 . It also includes a network layer (eg, IP layer) terminating at the P-GW on the network side and an application layer terminating at the other end of the connection (eg, remote UE, server, etc.).
  • a network layer eg, IP layer
  • an application layer terminating at the other end of the connection (eg, remote UE, server, etc.).
  • the radio protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the radio protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the first configuration message in this application is generated in RRC 306 or Non-Access-Stratum (NAS, Non-Access-Stratum).
  • the first message in this application is generated in the PHY 301 or PHY 351 or MAC 302 or MAC 352 or RRC 306 or non-access stratum (NAS).
  • NAS non-access stratum
  • the first signaling in this application is generated in the PHY 301 or PHY 351 or MAC 302 or MAC 352 or RRC 306 or non-access stratum (NAS).
  • NAS non-access stratum
  • the second message in this application is generated in the MAC 302 or the MAC 352 or the RRC 306 or the non-access stratum (NAS).
  • NAS non-access stratum
  • the first signal in the present application is generated in the PHY 301 or PHY 351 or MAC 302 or MAC 352 or RRC 306 or non-access stratum (NAS).
  • NAS non-access stratum
  • the first conditional reconfiguration in this application is generated in the RRC 306 or a non-access stratum (NAS).
  • NAS non-access stratum
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • FIG. 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in an access network.
  • First communication device 450 includes controller/processor 459, memory 460, data source 467, transmit processor 468, receive processor 456, multiple antenna transmit processor 457, multiple antenna receive processor 458, transmitter/receiver 454 and antenna 452.
  • the second communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels multiplexing, and radio resource allocation to the first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communication device 450.
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, the physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 410, and based on various modulation schemes (eg, binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M-Phase Shift Keying (M-PSK), M-Quadrature Amplitude Modulation (M-QAM)).
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • Transmit processor 416 maps each spatial stream to subcarriers, multiplexes with reference signals (eg, pilots) in the time and/or frequency domains, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel that carries a multi-carrier symbol stream in the time domain. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time-domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives a signal through its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454 .
  • the receive processor 456 uses a Fast Fourier Transform (FFT) to convert the received analog precoding/beamforming operation of the baseband multicarrier symbol stream from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receive processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered by the multi-antenna receive processor 458 after multi-antenna detection Any spatial stream to which the first communication device 450 is the destination.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and de-interleaves the soft decisions to recover the upper layer data and control signals transmitted by the second communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459 .
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 In transmission from the second communication device 410 to the second communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , Control signal processing to recover upper layer data packets from the core network.
  • the upper layer packets are then provided to all protocol layers above the L2 layer.
  • Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459 .
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements the header based on the radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implement L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communication device 410.
  • Transmit processor 468 performs modulation mapping, channel coding processing, multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into a radio frequency symbol stream, which is then provided to the antenna 452 .
  • the function at the second communication device 410 is similar to that in the transmission from the second communication device 410 to the first communication device 450
  • the receive function at the first communication device 450 described in the transmission of .
  • Each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • Memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 In transmission from the first communication device 450 to the second communication device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , Control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to interact with all
  • the first communication device 450 means at least: receive a first configuration message; the first configuration message is used to configure a first timer; send a first message; the first message is used in determining a first set of time windows, the first set of time windows includes at least one time window; receiving a first signaling; wherein the first message is used to request to stop targeting all the time windows in the first set of time windows wireless transmission by the sender of the first signaling; the first signaling is used to indicate approval of the request for the first message; the time length from the start of the first timer to the first moment exceeds the first time an expiration value of a timer, the start of the first timer is before the first moment; the first signaling is used to determine to abandon the execution of the first event in the second set of time windows, based on the The
  • the first communication device 450 includes: a memory storing a program of computer-readable instructions, the program of computer-readable instructions generating actions when executed by at least one processor, the actions comprising: receiving a first a configuration message; the first configuration message is used to configure a first timer; a first message is sent; the first message is used to determine a first time window set, the first time window set includes at least one time window ; receive first signaling; wherein, the first message is used to request to stop wireless transmission for the sender of the first signaling in the first set of time windows; the first signaling is used to indicate approval of the request for the first message; the length of time from the start of the first timer to the first moment exceeds the expiration value of the first timer, and the start of the first timer is at the Before the first moment; the first signaling is used to determine to abandon the execution of the first event in the second set of time windows, and the expiration of the first timer based on the assumption that the first signaling is not received is used to trigger the first
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to interact with all used together with the at least one processor.
  • the second communication device 410 means at least: sending a first configuration message; the first configuration message is used to configure a first timer; receiving a first message; the first message is used to determine a first time window set, the first set of time windows includes at least one time window; sending first signaling; wherein the first message is used to request to stop the sender of the first signaling in the first set of time windows
  • the first signaling is used to indicate the request to agree to the first message; the time length from the start of the first timer to the first moment exceeds the expiration value of the first timer, so the start of the first timer is before the first moment; the first signaling is used to determine to abandon the execution of the first event in the second set of time windows, based on the first signaling not being received Under the assumption that the expiration of the first
  • the second communication device 410 includes: a memory for storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: sending a first configuration message; the first configuration message is used to configure a first timer; a first message is received; the first message is used to determine a first set of time windows, the first set of time windows includes at least one time window; sending first signaling; wherein the first message is used to request to stop wireless transmission for the sender of the first signaling in the first set of time windows; the first signaling is It is used to indicate that the request for the first message is approved; the time length from the start of the first timer to the first moment exceeds the expiration value of the first timer, and the start of the first timer is at the before the first time; the first signaling is used to determine to abandon the execution of the first event in the second time window set, and the first timer is based on the assumption that the first signaling is not received.
  • Expiration is used to trigger the first event
  • the second set of time windows includes time domain resources between a second time instant and the first time instant, the second time instant being at the time of the first timer
  • the length of time between the start and the first time instant and from the start of the first timer is not less than the expiration value of the first timer.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a UE.
  • the first communication device 450 is an in-vehicle terminal.
  • the second communication device 450 is a relay.
  • the second communication device 450 is a satellite.
  • the second communication device 450 is an aircraft.
  • the second communication device 410 is a base station.
  • the second communication device 410 is a relay.
  • the second communication device 410 is a UE.
  • the second communication device 410 is a satellite.
  • the second communication device 410 is an aircraft.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used in this application to receive the first configuration message.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used in this application to receive the first signaling.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used in this application to receive the second message.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used in this application to receive the first reconfiguration.
  • transmitter 456 (including antenna 460), transmit processor 455 and controller/processor 490 are used in this application to transmit the first message.
  • transmitter 456 (including antenna 460), transmit processor 455 and controller/processor 490 are used herein to transmit the first signal.
  • transmitter 416 (including antenna 420), transmit processor 412 and controller/processor 440 are used in this application to transmit the first signaling.
  • transmitter 416 (including antenna 420), transmit processor 412 and controller/processor 440 are used herein to transmit the second message.
  • transmitter 416 (including antenna 420), transmit processor 412 and controller/processor 440 are used in this application to transmit the first configuration message.
  • transmitter 416 (including antenna 420), transmit processor 412 and controller/processor 440 are used in this application to transmit the first conditional reconfiguration.
  • receiver 416 (including antenna 420), receive processor 412 and controller/processor 440 are used in this application to receive the first message.
  • receiver 416 (including antenna 420), receive processor 412 and controller/processor 440 are used in this application to receive the first signal.
  • Embodiment 5 illustrates a flowchart of wireless signal transmission according to an embodiment of the present application, as shown in FIG. 5 .
  • U01 corresponds to the first node of the present application
  • N02 corresponds to the second node of the present application. It is particularly noted that the order in this example does not limit the signal transmission order and the order of implementation in the present application, wherein F51 and F51 and Steps within F52 are optional.
  • step S5101 For the first node U01 , receive the first conditional reconfiguration in step S5101; receive the second message in step S5102; receive the first configuration message in step S5103; send the first message in step S5104; receive in step S5105 The first signaling; the first signal is sent in step S5106.
  • step S5201 For the second node N02 , send the first conditional reconfiguration in step S5201; send the second message in step S5202; send the first configuration message in step S5203; receive the first message in step S5204; send in step S5205 The first signaling; the first signal is received in step S5206.
  • the first configuration message is used to configure a first timer; the first message is used to determine a first set of time windows, the first set of time windows includes at least one time window; the a first message is used to request to stop wireless transmission for the sender of the first signaling in the first set of time windows; the first signaling is used to indicate that the request for the first message is granted; The time length from the start of the first timer to the first moment exceeds the expiration value of the first timer, and the start of the first timer is before the first moment; the first signaling is used to determine to abandon execution of the first event in the second set of time windows, the expiration of the first timer based on the assumption that the first signaling is not received is used to trigger the first event, so
  • the second set of time windows includes time-domain resources between a second time instant and the first time instant, the second time instant being between the start of the first timer and the first time instant and a distance from The time length of the start of the first timer is not less than the expiration value
  • the first node U01 is a UE.
  • the first node U01 is a relay.
  • the second node N02 is a UE.
  • the second node N02 is a base station.
  • the second node N02 is a satellite.
  • the second node N02 is an NTN.
  • the second node N02 is TN.
  • the second node N02 is a serving cell of the first node U01.
  • the second node N02 is a cell group of the first node U01.
  • the second node N02 is a primary serving cell (PCell) of the first node U01.
  • PCell primary serving cell
  • the second node N02 is a secondary serving cell (SCell) of the first node U01.
  • SCell secondary serving cell
  • the second node N02 is the MCG of the first node U01.
  • the second node N02 is the SCG of the first node U01.
  • the second node N02 is the SpCell of the first node U01.
  • the interface through which the second node N02 communicates with the first node U01 includes Uu.
  • the interface through which the second node N02 communicates with the first node U01 includes PC5.
  • the second node N02 is a source cell (Source Cell) or a target cell (Target Cell) of the first node U01.
  • the communication interface between the first node U01 and the second node N02 is a Uu interface.
  • the communication interface between the first node U01 and the second node N02 is a PC5 interface.
  • the first node U01 possesses two SIM cards, including a first SIM card and a second SIM card.
  • the first SIM card is a SIM card for the second node N02; the second SIM card is a SIM card for nodes and networks other than the second node N02.
  • the first SIM card is a SIM card of the second node N02 or a network of the second node N02; the second SIM card is a node other than the second node N02 or the A SIM card of a network other than the network of the second node N02.
  • the second node N02 is the sender of the first signaling.
  • an RRC link exists between the first node U01 and the N02.
  • the first node U01 maintains an RRC connection state with the second node N02 within the first time window set.
  • the second node N02 sends the first signaling through a PC5 interface.
  • the second node N02 sends the first signaling through a Uu interface.
  • the first conditional reconfiguration includes an RRC message.
  • the first conditional reconfiguration includes an RRCReconfiguration message.
  • the first conditional reconfiguration includes at least part of the fields in the RRCReconfiguration message.
  • the first conditional reconfiguration includes at least part of fields in the RRCConnectionReconfiguration message.
  • the first conditional reconfiguration includes at least part of fields in the RRCReconfigurationSidelink message.
  • the first conditional reconfiguration includes at least part of the fields in the RRCSetup.
  • the first conditional reconfiguration includes at least part of the fields in the RRCResume.
  • the first conditional reconfiguration includes at least part of the fields in the RRCConnectionSetup.
  • the first conditional reconfiguration includes at least part of the fields in the RRCConnectionResume.
  • the first conditional reconfiguration includes at least part of the fields in the RRCConnectionResume.
  • the first conditional reconfiguration includes at least part of the fields in the SIB.
  • the first conditional reconfiguration includes ConditionalReconfiguration.
  • the first conditional reconfiguration includes at least part of the fields in the ConditionalReconfiguration.
  • the first conditional reconfiguration includes at least part of the fields in condRRCReconfig.
  • the first node U01 within the first time window set, gives up evaluating the execution condition of the first conditional reconfiguration, or gives up executing the first conditional reconfiguration.
  • the first conditional reconfiguration is identified by the identity of the first conditional reconfiguration.
  • the first conditional reconfiguration includes an evaluation (Evaluate) condition of the first conditional reconfiguration.
  • the first conditional reconfiguration includes an execute condition of the first conditional reconfiguration.
  • the first condition reconfigures the execution condition condExecutionCond.
  • the act of giving up evaluating the execution condition of the first conditional reconfiguration includes deeming that the execution condition of the first conditional reconfiguration is not satisfied.
  • the act of giving up evaluating the execution condition of the first conditional reconfiguration includes not evaluating whether the execution condition of the first conditional reconfiguration is satisfied.
  • the act of aborting execution of the first conditional reconfiguration includes evaluating the execution condition of the first conditional reconfiguration, regardless of whether the execution condition of the first conditional reconfiguration is If satisfied, neither perform the first conditional reconfiguration.
  • the act of giving up the execution of the first conditional reconfiguration includes giving up initiating execution of the first conditional reconfiguration.
  • the execution condition of the first conditional reconfiguration includes whether the first measurement result satisfies a given value; the sender of the first signaling indicates the given value.
  • the second message includes a first control timer, and the second message is used to indicate that the first node U01 is allowed to send the first control timer when the first control timer is in a stopped state.
  • First news is used to indicate that the first node U01 is allowed to send the first control timer when the first control timer is in a stopped state.
  • the second message includes a first control timer, and the second message is used to indicate that the first node U01 is prohibited from sending the first control timer when the first control timer is in a running state.
  • First news is used to indicate that the first node U01 is prohibited from sending the first control timer when the first control timer is in a running state.
  • the first control timer includes at least one of ⁇ T304, T310, T312, T316, a timer for triggering L2 link identity update, and a timer for triggering Keep Alive ⁇ .
  • the first node U01 when the first node U01 is executing the third event, the first node U01 is prohibited from sending the first message.
  • the first node U01 is only allowed to send the first message when the first node U01 is not executing the third event.
  • the first node receives a third message
  • the third message indicates that when the first node U01 is executing the third event, the first node U01 is prohibited from sending the first message .
  • the third event includes receiving the first request message, and the first feedback message for feeding back the first request message has not been sent.
  • the first request message includes RRCReconfiguration
  • the first feedback message includes RRCReconfigurationComplete.
  • the first request message includes RRCConnectionReconfiguration
  • the first feedback message includes RRCConnectionReconfigurationComplete.
  • the first request message includes SecurityModeCommand
  • the first feedback message includes SecurityModeComplete.
  • the third event includes that a second request message is sent, and a second feedback message for feeding back the second request message has not been received.
  • the second request message includes RRCSetupRequest
  • the second feedback message includes RRCSetup
  • the second request message includes RRCResumeRequest
  • the second feedback message includes RRCResume
  • the second request message includes RRCReestablishmentRequest
  • the second feedback message includes RRCReestablishment
  • the second request message includes MCGFailureInformation
  • the second feedback message includes RRCReconfiguration
  • the second request message includes SCGFailureInformation
  • the second feedback message includes RRCReconfiguration
  • the second request message includes ULInformationTransfer
  • the second feedback message includes RRCReconfiguration
  • the second request message includes REGISTRATION REQUEST
  • the second feedback message includes REGISTRATION.
  • the second request message includes De-REGISTRATION REQUEST
  • the second feedback message includes De-REGISTRATION.
  • the third event includes the occurrence of a radio link failure.
  • the third event includes handover.
  • the third event includes the occurrence of MCG failure.
  • the third event includes HARQ retransmission being performed.
  • the third event includes beam switching being performed.
  • the third event includes the occurrence of a beam failure.
  • the third event includes that a BWP handover or change is being performed.
  • the third event is configurable, and the sender of the first signaling configures the third event.
  • the first configuration message includes SIB.
  • the first configuration message includes RRCReconfiguration.
  • the first message includes UEAssistanceInformation; the first signaling includes RRCReconfiguration.
  • the first node U01 sends an RRCReconfigurationComplete message to the second node N02 after the first time window set ends.
  • the first node U01 sends an RRCReconfigurationComplete message to the second node N02 before the first time window set has ended. Before sending the RRCReconfigurationComplete message, the first node U01 sends an RRCReconfigurationComplete message to the second node N02. The node initiates a random access procedure.
  • the first node U01 sends an RRCReconfigurationComplete message to the second node N02 before the first time window set has ended.
  • the first node U01 sends an RRCReconfigurationComplete message to the second node N02.
  • the node initiates a random access procedure, and the random access procedure uses the non-contention-based random access resource indicated by the first signaling.
  • the first node U01 sends an RRCReconfigurationComplete message to the second node N02 before the first time window set has ended. Before sending the RRCReconfigurationComplete message, the first node U01 sends an RRCReconfigurationComplete message to the second node N02 The node sends a first signal, the first signal including a random access signal.
  • the first configuration message includes a third timer that expires within the first set of time windows; in response to the expiration of the third timer, the first transmits The machine sends a first signal to the sender of the first signaling within the first time window set.
  • the third timer includes ⁇ T304, T310, T312, T321, T322, T380, T316, sCellDeactivationTimer, beamFailureRecoveryTimer, searchSpaceSwitchTimer, bwp-InactivityTimer, periodicBSR-Timer, phr-PeriodicTimer, lbt-FailureDetectionTimer, a timer that triggers periodic CSI reporting, dataInactivityTimer, a timer that triggers L2 link identity update, a timer that triggers Keep Alive, at least one of PDCP's discardTimer, and t-Reassembly ⁇ .
  • the third timer includes ⁇ T304, T310, T321, T322, T380, T316, periodicBSR-Timer, a timer for triggering periodic CSI reporting, dataInactivityTimer, which triggers L2 link identity
  • periodicBSR-Timer a timer for triggering periodic CSI reporting
  • dataInactivityTimer which triggers L2 link identity
  • the advantage of the above method is that, when the UE leaves one SIM card network to communicate with another network, if encountering an emergency situation related to the original network, the UE still returns to the original network for processing, avoiding There is an outage with the original network.
  • the first signal includes a random access signal.
  • the first signal includes a Preamble (preamble).
  • the first signal includes msg1 (message 1).
  • the first signal includes msgA (message A).
  • the first signal includes SR (Scheduling Request, scheduling request).
  • the first message indicates the capability of the first node U01, or the first node sends a message other than the first message to indicate the capability of the first node U01.
  • the first message includes at least part of the fields in UECapabilityInformation.
  • the first message indicates whether the first node U01 can receive the wireless signal of the second node N02 within the first time window set with the reported capability.
  • the reported capability includes content in UE-NR-Capability.
  • the reported capability means that the second node N02 may consider that the first node has the ability to continue to receive the second node within the first time window set The capability of the wireless signal sent by node N02.
  • the reported capability refers to that the second node N02 does not need to change the scheduling policy.
  • the reported capability means that the second node N02 does not need to allocate more time-frequency resources to the first node U01.
  • the first message indicates that the first node U01 can receive the wireless signal sent by the second node N02 within the first time window set with the previously reported capability.
  • the reported capabilities include the capabilities indicated by UECapabilityInformation.
  • the first message indicates whether the first node U01 can receive the second type of target signal sent by the second node N02 within the first time window set.
  • the first message indicates that the first node U01 has the same capabilities within the first set of time windows and outside the first set of time windows.
  • the first message indicates that the second node N02 may consider that the capabilities of the first node U01 within the first time window set are the same as the capabilities outside the first time window set.
  • the first message indicates the first capability set
  • the first capability set includes the wireless capabilities of the first node U01
  • the first capability set is where the first node U01 is located. describe the capabilities within the first set of time windows.
  • the capability of the first node U01 within the first time window set is different from the capability outside the first time window set.
  • the first capability set includes at least one wireless capability.
  • the first capability set includes at least a changed wireless capability relative to the previously reported radio capability.
  • the first capability set includes at least radio capabilities that are changed relative to the capabilities included in the UECapabilityInformation.
  • the first message indicates that the first node U01 is equivalent to a RedCap (Reduced Capability, reduced capability) UE within the first time window set.
  • RedCap Reduced Capability, reduced capability
  • the first message indicates that the first node U01 is equivalent to a certain RedCap (Reduced Capability, reduced capability) UE within the first time window set.
  • RedCap Reduced Capability, reduced capability
  • the second type of target signal includes a wireless signal carrying broadcast services.
  • the second type of target signal includes a wireless signal bearing a multicast service.
  • the second type of target signal includes a wireless signal carrying DCI.
  • the second type of target signal includes a wireless signal bearing part of the DCI format.
  • the second type of target signal includes paging messages.
  • the second type of target signal includes RRCRelease.
  • the second type of target signal includes RRCConnectionRelease.
  • the second type of target signal includes SIB.
  • the second type of target signal includes an ETWS (Earthquake and Tsunami Warning System, Earthquake and Tsunami Warning System) signal.
  • ETWS Earthquake and Tsunami Warning System, Earthquake and Tsunami Warning System
  • the second type of target signal includes any wireless signal sent by the second node N02.
  • the second type of target signal includes wireless signals sent by any second node N02 and associated with a specific CSI-RS.
  • the first node U01 determines the specific CSI-RS according to the candidate CSI-RS indicated by the second node N02.
  • the second type of target signal includes any wireless signal sent by the second node N02 associated with a specific SSB.
  • the first node U01 determines the specific SSB according to the candidate SSB indicated by the second node N02.
  • the first configuration message includes the second message.
  • the second message is an information element of the first configuration message.
  • the sentence sending the first signal with respect to the second node N02 includes: sending the first signal using the resource indicated by the second node N02.
  • the sentence sending the first signal with respect to the second node N02 includes: the first signal occupies resources of the second node N02.
  • the sentence sending the first signal with respect to the second node N02 includes: the first signal uses a random access sequence specified by the second node.
  • Embodiment 6 illustrates a schematic diagram of a first time window set according to an embodiment of the present invention, as shown in FIG. 6 .
  • the first time window set includes only the first time window; time t00 is the time before the start of the first time window; time t01 is the time when the first time window starts ; The t02th moment and the t05th moment are the moments from the start to the end of the first time window; the t03th moment is the end moment of the first time window; the t04th moment is the end of the first time window moment. It should be noted that the geometric distances between the time t00, the time t01, the time t02, the time t03, and the time t04 in Fig. 6 do not imply an exact time interval, for example, in Fig.
  • the sending moment of the first message is the t00th moment.
  • the sending moment of the first message is the t01th moment.
  • the receiving moment of the first signaling is the t00th moment.
  • the receiving moment of the first signaling is the t01th moment.
  • the first time window includes T time units, and the time units include ⁇ ms, seconds, OFDM symbols, time slots, mini-slots, subframes, frames, superframes, minutes, DRX (Discontinuous At least one of Reception, discontinuous reception) cycle, paging cycle, modification cycle, and system message cycle ⁇ .
  • T time units include ⁇ ms, seconds, OFDM symbols, time slots, mini-slots, subframes, frames, superframes, minutes, DRX (Discontinuous At least one of Reception, discontinuous reception) cycle, paging cycle, modification cycle, and system message cycle ⁇ .
  • the start of the first timer includes at least one of ⁇ the time t00, the time t01, the time t02, and the time t05 ⁇ .
  • the start of the first timer is one of ⁇ the time t00, the time t01, the time t02, the time t05 ⁇ .
  • the first time includes at least one of ⁇ the time t02, the time t05, the time t03, and the time t04 ⁇ .
  • the first time is one of ⁇ the t02th time, the t05th time, the t03th time, and the t04th time ⁇ .
  • the first time is one of ⁇ the t02th time, the t05th time, and the t03th time ⁇ .
  • the first timer starts at the t01th time
  • the first time is ⁇ the t02th time, the t05th time, the t03th time, the t03th time t04 time ⁇ one of.
  • the first time is one of ⁇ the t03th time and the t04th time ⁇ .
  • the first time is the t03th time
  • the time interval between the time t02 and the time t03 is greater than the expiration value of the first timer.
  • the first time is the t04th time
  • the time interval between the time t02 and the time t04 is greater than the expiration value of the first timer.
  • the time of expiration of the first timer after the start of the first timer is before the first time.
  • the expiration time of the first timer is before the first time.
  • the first timer starts at the time t02 and the first time is the time t03, assuming that the first timer is not interfered after starting, then the The expiration time of the first timer is between the time t02 and the time t03.
  • the expiration value time of the first timer after the start time of the first timer is the second time.
  • the first timer starts at the time t02 , and assuming that the first timer is not suspended or reset or an expiration value is modified after starting, the first timer expires
  • the time is the t02th time
  • the second time is the t05th time or a time after the t05th time and before the first time.
  • the first time is the t03th time
  • the second time is the t05th time or the time between the t05th time and the t03th time.
  • the advantage of the above method is that when the possible expiration time of the first timer is within the first time window set, the above method can prevent the first node from being in the first time window The set is affected by the expiration of the first timer.
  • Embodiment 7 illustrates a schematic diagram of a first time window set according to an embodiment of the present invention, as shown in FIG. 7 .
  • the first time window set includes K1 time windows, where K1 is a positive integer greater than 1; time t10 is the first time window and the K1 time windows in the K1 time windows The time between the second time windows in the window; the time t11 is the time in the second time window of the K1 time windows; the time t12 is the time of the K1 time window in the K1 time windows The starting time; the t13th time and the t14th time are the time in the K1th time window in the K1 time windows; the t15th time is the end time of the K1th time window in the K1 time window; Time t16 is the time after the end of the K1 th time window in the K1 time windows.
  • the K1 is infinite.
  • the K1 is limited.
  • the intervals between the K1 time windows are of equal length.
  • the interval between the K1 time windows is unequal.
  • the interval between the K1 time windows is not less than one time slot.
  • all the time windows in the K1 time windows have the same length.
  • At least the lengths of the time windows are not equal in the K1 time windows.
  • the interval between the K1 time windows is greater than the length of the shortest time window among the K1 time windows.
  • the unit of the length of the K1 time windows is time.
  • the length of the time windows of the K1 time windows is not less than one time slot.
  • the possible start times of the first timer include ⁇ the t10th time, the t11th time, the t12th time, the t13th time, and the t14th time ⁇ . At least one of ; the value of the first time includes ⁇ the t11th time, the t12th time, the t13th time, the t14th time, the t15th time, the t15th time at least one of ⁇ ; and the start time of the first timer is earlier than the first time.
  • the start time of the first timer is the t10th time.
  • the expected expiration time of the first timer is ⁇ the t11th time, so one of the t12th time, the t13th time, the t14th time ⁇
  • the second time is ⁇ the t11th time, the t12th time, the t13th time, the t14th time time ⁇
  • the first time is one of ⁇ the t12th time, the t13th time, the t14th time, the t15th time, the 16th time ⁇
  • the The second time is earlier than the first time, and the second time is not earlier than the expected expiration time of the first timer without intervention.
  • the expected expiration time of the first timer is the t13th time; the second time is the t14th time; and the first time is the 15th time.
  • the first time is the end time of the K1 time windows; the second time is the first timer after the start time of the first timer Expiration value time of .
  • the start time of the first timer is the t13th time
  • the time interval between the t13th time and the t14th time is the expiration value of the first timer
  • the second time is the t14th time
  • the first time is the t15th time.
  • the first signaling is used to indicate the start moment of the first time window in the K1 time windows.
  • the reception moment of the first signaling or the next subframe of the reception moment of the first signaling is the start moment of the first time window in the K1 time windows.
  • the first signaling is an interval between time windows in the K1 time windows.
  • the first signaling is the length of the time windows in the K1 time windows.
  • the first signaling indicates the K1.
  • the first message includes the K1.
  • Embodiment 8 illustrates a schematic diagram of a second time window set according to an embodiment of the present invention, as shown in FIG. 8 .
  • the second time window set includes at least one time window, and the length of the time windows included in the second time window set is equal to or greater than one time slot.
  • the second time window set at least includes time domain resources of one time slot.
  • the second set of time windows is a subset of the first set of time windows.
  • FIG. 8 is only used to illustrate the start time and end time of the second time window set.
  • the second set of time windows is equal to T1 time units, and the time units include ⁇ ms, seconds, OFDM symbols, time slots, mini-slots, subframes, frames, superframes, minutes, DRX cycles , one of paging cycle, modification cycle, system message cycle ⁇ .
  • the T1 is a positive real number.
  • the T1 is a positive integer.
  • the time t20 in FIG. 8 is the time before the second time window set starts; the second time in FIG. 8 is the start time of the second time window set; FIG. 8
  • the t21th time in Fig. 8 is a time in the second time window set; the first time in Fig. 8 is the end time of the second time window set; the t22th time in Fig. 8 is the second time window set. A moment after the end of the second time window set.
  • the start of the first timer is the time t20.
  • the start of the first timer is the t20th time; the time interval between the t20th time and the second time is the expiration value of the first timer.
  • the start of the first timer is the time t20; assuming there is no intervention, the expected expiration time of the first timer is the second time.
  • the end time of the first time window set is the first moment.
  • the end time of the first time window set is the t21th time.
  • the end time of the first time window set is the time t22.
  • Embodiment 9 illustrates a schematic diagram of a third time window set according to an embodiment of the present invention, as shown in FIG. 9 .
  • the third set of time windows includes at least one time window, and the length of the time windows included in the third set of time windows is at least greater than one time slot.
  • the third time window set includes time domain resources of at least one time slot.
  • the third set of time windows is a subset of the first set of time windows.
  • intersection complement of the third time window set and the first time window set is not empty.
  • the third set of time windows is orthogonal to the first set of time windows in the time domain.
  • the third set of time windows includes the second set of time windows.
  • the end time of the first time window is the start time of the third time window set.
  • FIG. 9 is only used to illustrate the start time and the end time of the third time window set.
  • the third set of time windows is equal to T2 time units, and the time units include ⁇ ms, seconds, OFDM symbols, time slots, mini-slots, subframes, frames, superframes, minutes, DRX cycles , one of paging cycle, modification cycle, system message cycle ⁇ .
  • the T2 is a positive real number.
  • the T2 is a positive integer.
  • the time t30 in FIG. 9 is the time before the third time window set starts; the first time in FIG. 9 is the start time of the third time window set; FIG. 9 The t31th time in Fig. 9 is a time in the third time window set; the third time in Fig. 9 is the end time of the third time window set; the t32th time in Fig. 9 is the third time window set. A moment after the end of the set of three time windows.
  • the first configuration message indicates a second timer and a first threshold value, and the time length from the start of the second timer to the first moment exceeds the expiration value of the second timer
  • the difference from the first threshold value, the start of the second timer is before the first moment; the first threshold value is a positive number.
  • the first signaling is used to determine to abandon execution of the second event in a third set of time windows, and the expiration of the second timer is used to trigger all events based on the assumption that the first signaling is not received.
  • the third time window set includes time domain resources between the first time and the third time; the third time is not earlier than the first time, and the third time is not later than the first expiration time; the first expiration time is the time determined by the expiration value of the second timer after the start of the second timer.
  • the second timer includes ⁇ T304, T310, T312, T321, T322, T380, T316, sCellDeactivationTimer, beamFailureRecoveryTimer, searchSpaceSwitchTimer, bwp-InactivityTimer, periodicBSR-Timer, phr-PeriodicTimer, lbt-FailureDetectionTimer, trigger At least one of the timer for periodic CSI reporting, dataInactivityTimer, the timer for triggering L2 link identity update, the timer for triggering Keep Alive, the discardTimer of PDCP, and t-Reassembly ⁇ .
  • the first threshold value includes T3 time units, and the time unit includes ⁇ ms, seconds, OFDM symbols, time slots, mini-slots, subframes, frames, superframes, minutes, DRX cycles , one of paging cycle, modification cycle, system message cycle ⁇ .
  • the T3 is a positive real number.
  • the T3 is a positive integer.
  • the sender of the first signaling configures an expiration value of the second timer.
  • the first signaling is used to configure an expiration value of the second timer.
  • the expiration value of the second timer is equal to the expiration value of the first timer.
  • the expiration value of the second timer is greater than the expiration value of the first timer.
  • the first expiry time of the sentence is the time determined by the expiry value of the second timer after the start of the second timer, including the following meanings: assuming that the second timer After being started without any intervention, the expiry time of the second timer is the first expiry time.
  • the first expiry time of the sentence is the time determined by the expiry value of the second timer after the start of the second timer, including the following meanings: assuming that the second timer After being activated, it is not reset, not suspended, and not extended, and the expiration time of the second timer is the first expiration time.
  • the first expiry time of the sentence is the time determined by the expiry value of the second timer after the start of the second timer includes the following meanings:
  • the time interval between the start time and the first expiration time is the expiration value of the second timer.
  • the first expiration time is the third time.
  • the first expiration time is the t32th time.
  • the end time of the first time window set is earlier than the third moment.
  • the end time of the first time window set is the first moment.
  • the first signaling explicitly indicates that the execution of the second event is abandoned in the third time window set.
  • the second event includes initiating a random access procedure.
  • the random access procedure includes sending a random access signal.
  • the random access procedure uses a contention based access manner.
  • the random access procedure uses a contention free-based access manner.
  • a non-contention access mode is used in the random access process, and the first signaling indicates time-frequency resources used by the non-contention access mode.
  • the second event includes sending a target signal.
  • the second event includes radio link re-establishment caused by radio link failure.
  • the second event includes radio link reconfiguration caused by radio link failure.
  • the second event includes a handover caused by a radio link failure.
  • the second event includes performing a conditional reconfiguration.
  • the second event includes a primary serving cell group (MCG) failure.
  • MCG primary serving cell group
  • the primary serving cell group (MCG) failure is used to trigger the sending of MCGfailureInformation.
  • the second event includes a slave serving cell group (SCG) failure.
  • SCG slave serving cell group
  • the slave serving cell group (MCG) failure is used to trigger the sending of SCGfailureInformation.
  • the second event includes beam failure recovery.
  • the second event includes sending a first report.
  • the first report includes a measurement report.
  • the second event includes performing a first primary measurement.
  • the first main measurement includes measuring SSB (Synchronization Signal Block, synchronization signal block).
  • SSB Synchronization Signal Block, synchronization signal block
  • the first main measurement includes measuring CSI-RS (Channel State Information-Reference Signal, channel state information reference signal).
  • CSI-RS Channel State Information-Reference Signal, channel state information reference signal
  • the first main measurement includes idle state measurement.
  • the first main measurement includes CSI measurement.
  • the first signaling is used to indicate a signal measured by the first main measurement.
  • the first report includes a link failure report.
  • the first report includes a continuous LBT (Listen-Before-Talk) failure report.
  • the second event includes switching to an actual BWP (bandwidth part).
  • the second event includes applying a default search space.
  • the second event includes entering an RRC idle state or an RRC inactive state.
  • the second event includes a loss of synchronization.
  • the second event includes performing a conditional reconfiguration.
  • the second event includes receiving a second target signal.
  • the expiration of the second timer will trigger the second event.
  • the first signaling is used to determine to abandon execution of the second event in the third set of time windows.
  • the first signaling indicates the first threshold value, and the length of time from the start of the second timer to the first moment exceeds the expiration value of the second timer and the The difference of the first threshold value, the first node gives up executing the second event in the third time window set.
  • the start time of the second timer is the t30th time
  • the time interval between the t30th time and the t32th time is the first threshold value
  • the The time interval between the time t30 and the third time is the expiration value of the second timer
  • the first node gives up executing the second event in the third time window set.
  • the act of giving up the execution of the second event includes: the first node terminating the execution of the second event.
  • the act of giving up the execution of the second event includes: the first node not initiating execution of the second event.
  • the act of giving up the execution of the second event includes: the first node stopping the second timer.
  • the act of giving up the execution of the second event includes: the first node suspends or suspends updating the second timer.
  • the act of giving up executing the second event includes: the first node resetting the second timer.
  • the act of giving up the execution of the second event includes: the first node restarting the second timer.
  • the act of aborting execution of the second event includes: the first node ignoring expiration of the second timer.
  • the act of giving up performing the second event includes: the first node extending the second timer.
  • the behavior of giving up executing the second event includes: the first node adding the second event to the first waiting list, and the third time window set within the third time window set. The second event is not executed.
  • Embodiment 10 illustrates a schematic diagram in which the first message is used to determine the first time window set according to an embodiment of the present invention, as shown in FIG. 10 .
  • the first set of time windows includes one time window.
  • the first set of time windows includes K1 time windows, where K1 is a positive integer greater than 1.
  • the first message includes the first set of time windows.
  • the first message indicates the K1.
  • the first message indicates the length of each time window included in the first set of time windows.
  • the first message indicates a time interval between time windows included in the first set of time windows.
  • the first message indicates the total length of the time windows included in the first time window set.
  • the first message indicates a minimum length of time windows included in the first set of time windows.
  • the first message indicates a proportional relationship between the lengths of the time windows included in the first time window set.
  • the first message indicates a relative motion trajectory of the first node, and the motion trajectory is used to determine the first time window set.
  • the first message indicates a minimum transmission delay
  • the minimum transmission delay is used to determine the length of the first time window set.
  • the first message indicates a maximum transmission delay
  • the minimum transmission delay is used to determine the length of the first time window set.
  • the first message indicates a reason for the request to stop wireless transmission to the sender of the first signaling in the first set of time windows, the reason being used For determining the desired execution event, the desired execution event is used to determine the first time window.
  • the first message indicates the start moment of the first set of time windows.
  • the first message triggers the first signaling, and the first signaling indicates the first time window set.
  • the first signaling indicates the K1.
  • the first signaling indicates the length of each time window included in the first time window set.
  • the first signaling indicates a time interval between time windows included in the first set of time windows.
  • the first signaling indicates the total length of the time windows included in the first time window set.
  • the first signaling indicates a minimum length of time windows included in the first time window set.
  • the first signaling indicates a proportional relationship between the lengths of the time windows included in the first time window set.
  • the first signaling indicates a relative motion trajectory of the first node, and the motion trajectory is used to determine the first time window set.
  • the first message indicates a minimum transmission delay
  • the minimum transmission delay is used to determine the length of the first time window set; the length of the first time window set satisfies the minimum transmission delay.
  • the first message indicates a maximum transmission delay
  • the minimum transmission delay is used to determine the length of the first time window set; the length of the first time window set satisfies the maximum transmission delay.
  • the first message indicates a reason for the request to stop wireless transmission to the sender of the first signaling in the first set of time windows, the reason being used For determining the desired execution event, the desired execution event is used to determine the first time window.
  • the first signaling indicates a start moment of the first time window set.
  • the first message and the first signaling are jointly used to determine the first set of time windows.
  • the first message indicates the length of the first time window set
  • the first signaling indicates the start moment of the first time window set
  • the first message indicates a reason for the request to stop wireless transmission for the sender of the first signaling in the first set of time windows, the first signaling Let denote the length of the first set of time windows.
  • the first message explicitly indicates the first set of time windows.
  • the first message triggers the first signaling, and the first signaling explicitly indicates the first time window set.
  • Embodiment 11 illustrates a schematic diagram in which the first signaling according to an embodiment of the present invention is used to determine to abandon the execution of the first event in the second time window set, as shown in FIG. 11 .
  • the first signaling explicitly indicates that the execution of the first event is abandoned in the second time window set.
  • the first signaling explicitly indicates a condition for abandoning the execution of the first event in the second time window set.
  • the first signaling indicates the updated expiration value of the first timer; when the time length from the start of the first timer to the first moment exceeds the expiration value of the first timer , but when the updated expiration value of the first timer is not exceeded, the first node abandons the execution of the first event in the second time window set.
  • the first signaling indicates the updated expiration value of the first timer; when the time length from the start of the first timer to the first moment exceeds the expiration value of the first timer , and when the updated expiration value of the first timer is exceeded at the same time, the first node aborts the execution of the first event in the second time window set.
  • the first signaling indicates the updated expiration value of the first timer; when the length of time between the start of the first timer and the first moment does not exceed the expiration of the first timer value, but when the updated expiration value of the first timer is exceeded, the first node aborts the execution of the first event in the second time window set.
  • the first signaling indicates the updated expiration value of the first timer; when the time length from the start of the first timer to the first moment exceeds the When the expired value is updated, the first node aborts the execution of the first event in the second time window set.
  • the first signaling indicates the second set of time windows.
  • the first signaling indicates a first moment.
  • the first signaling indicates the second moment.
  • the first signaling indicates that when the first timer belongs to the first type of timer set, when the time length from the start of the first timer to the first moment exceeds the first time an expiration value of a timer, and the start of the first timer is before the first time instant; the first signaling is used to determine to abandon execution of the first event in the second set of time windows.
  • the first type of timer set includes ⁇ T304, T310, T312, T321, T322, T380, T316, sCellDeactivationTimer, beamFailureRecoveryTimer, searchSpaceSwitchTimer, bwp-InactivityTimer, periodicBSR-Timer, phr- PeriodicTimer, lbt-FailureDetectionTimer, timer that triggers periodic CSI reporting, dataInactivityTimer, timer that triggers L2 link identity update, timer that triggers Keep Alive, at least one of PDCP's discardTimer, t-Reassembly ⁇ one.
  • the first type of timer set includes ⁇ T304, T310, T312, T316, a timer that triggers L2 link identity update, a timer that triggers Keep Alive ⁇ at least one of.
  • the first type of timer set only includes timers other than ⁇ phr-PeriodicTimer, discardTimer of PDCP, t-Reassembly ⁇ .
  • the first type of timer set only includes timers other than ⁇ beamFailureRecoveryTimer, searchSpaceSwitchTimer, lbt-FailureDetectionTimer ⁇ .
  • the first type of timer set only includes timers other than ⁇ sCellDeactivationTimer ⁇ .
  • the first type of timer set only includes timers other than ⁇ T321, T322, T380, periodicBSR-Timer ⁇ .
  • the first type of timer set only includes timers other than ⁇ searchSpaceSwitchTimer, bwp-InactivityTimer ⁇ .
  • the act of giving up the execution of the first event includes: the first node terminating the execution of the first event.
  • the behavior of abandoning the execution of the first event includes: the first node does not initiate execution of the first event.
  • the act of giving up the execution of the first event includes: the first node stopping the first timer.
  • the act of giving up the execution of the first event includes: the first node suspends or suspends updating the first timer.
  • the act of giving up the execution of the first event includes: the first node resetting the first timer.
  • the act of giving up the execution of the first event includes: the first node restarting the first timer.
  • the act of giving up executing the first event includes: the first node ignoring the expiration of the first timer.
  • the act of giving up the execution of the first event includes: the first node extending the first timer.
  • the behavior of giving up the execution of the first event includes: the first node adding the first event to the first waiting list, and the second time window set within the second time window set. The first event is not executed.
  • the behavior of giving up executing the first event includes: adding the first event to the first waiting list by the first node, and the first time window set within the first time window set. The first event is not executed.
  • the behavior of giving up the execution of the first event includes: adding the first event to the first waiting list by the first node, and at the first node in the second The first event in the first waiting list is executed only after the time window set ends.
  • the behavior of giving up executing the first event includes: adding the first event to the first waiting list by the first node, and at the first node in the first The first event in the first waiting list is executed only after the time window set ends.
  • Embodiment 12 illustrates a structural block diagram of a processing apparatus used in a first node according to an embodiment of the present application; as shown in FIG. 12 .
  • the processing apparatus 1200 in the first node includes a first receiver 1201 and a first transmitter 1202 .
  • Example 12
  • the first receiver 1201 receives a first configuration message and a first signaling; the first configuration message is used to configure a first timer;
  • a first transmitter 1202 sending a first message; the first message is used to determine a first time window set, and the first time window set includes at least one time window;
  • the first message is used to request to stop wireless transmission for the sender of the first signaling in the first time window set; the first signaling is used to indicate that the first signaling is approved a request for a message; the length of time from the start of the first timer to a first moment exceeds the expiration value of the first timer, and the start of the first timer is before the first moment; the The first signaling is used to determine to abandon the execution of the first event in the second set of time windows, and the expiration of the first timer is used to trigger the first event based on the assumption that the first signaling is not received.
  • the second set of time windows includes time domain resources between a second time instant and the first time instant, the second time instant being between the start of the first timer and the first time instant and the length of time from the start of the first timer is not less than the expiration value of the first timer.
  • the first receiver 1201 receives a second message, the second message includes a first control timer, and the second message is used to indicate that when the first control timer is stopped state when the first node is allowed to send the first message.
  • the first configuration message indicates a second timer and a first threshold value, and the time length from the start of the second timer to the first moment exceeds the expiration value of the second timer The difference from the first threshold value, the start of the second timer is before the first moment; the first threshold value is a positive number;
  • the first signaling is used to determine to abandon execution of the second event in a third set of time windows, and the expiration of the second timer is used to trigger all events based on the assumption that the first signaling is not received.
  • the third time window set includes time domain resources between the first time and the third time; the third time is not earlier than the first time, and the third time is not later than the first expiration time; the first expiration time is the time determined by the expiration value of the second timer after the start of the second timer.
  • the first configuration message includes a third timer that expires within the first set of time windows
  • a first signal is sent for the sender of the first signaling within the first set of time windows.
  • the first event includes sending a second signal; the second signal is used to indicate a first measurement result;
  • the first receiver 1201 performs a first measurement; the first measurement is used to generate the first measurement result;
  • the act of aborting execution of the first event in the second set of time windows includes, by the first receiver 1202, aborting sending the second signal and discarding the first measurement result.
  • the first receiver 1201 receives the first conditional reconfiguration
  • the first receiver 1201 within the first time window set, gives up evaluating the execution condition of the first conditional reconfiguration, or gives up executing the first conditional reconfiguration.
  • the behavior of giving up executing the first event in the second time window set includes adding the first event to a first waiting list
  • the first transmitter 1202 executes the first event in the first waiting list outside the second set of time windows.
  • the first node is a user equipment (UE).
  • UE user equipment
  • the first node is a terminal that supports a large delay difference.
  • the first node is a terminal supporting NTN.
  • the first node is an aircraft.
  • the first node is a vehicle-mounted terminal.
  • the first node is a relay.
  • the first node is a vessel.
  • the first node is an IoT terminal.
  • the first node is an industrial IoT terminal.
  • the first node is a device that supports low-latency and high-reliability transmission.
  • the first node is a node that supports multicast.
  • the first receiver 1201 includes the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, or the data source in the fourth embodiment At least one of 467.
  • the first transmitter 1202 includes the antenna 452, transmitter 454, transmit processor 468, multi-antenna transmit processor 457, controller/processor 459, memory 460, or data source in Embodiment 4 At least one of 467.
  • Embodiment 13 illustrates a structural block diagram of a processing apparatus used in a second node according to an embodiment of the present application; as shown in FIG. 13 .
  • the processing device 1300 in the second node includes two transmitters 1301 and a second receiver 1302 .
  • Example 13
  • the second transmitter 1301 sends a first configuration message and a first signaling; the first configuration message is used to configure a first timer;
  • the second receiver 1302 receives a first message; the first message is used to determine a first time window set, and the first time window set includes at least one time window;
  • the first message is used to request to stop wireless transmission to the two nodes 1300 in the first time window set;
  • the first signaling is used to indicate that the request for the first message is approved;
  • the time length from the start of the first timer to the first moment exceeds the expiration value of the first timer, and the start of the first timer is before the first moment;
  • the first signaling is used by the sender of the first message to determine to abandon the execution of the first event in the second set of time windows, and the expiration of the first timer based on the assumption that the first signaling is not received is used for triggering the first event
  • the second time window set includes time domain resources between a second time and the first time, the second time being between the start of the first timer and the The length of time between first instants and from the start of the first timer is not less than the expiration value of the first timer.
  • the second transmitter 1301 sends a second message, the second message includes a first control timer, and the second message is used to indicate that when the first control timer is stopped The sender of the first message is allowed to send the first message.
  • the first configuration message indicates a second timer and a first threshold value, and the time length from the start of the second timer to the first moment exceeds the expiration value of the second timer The difference from the first threshold value, the start of the second timer is before the first moment; the first threshold value is a positive number;
  • the first signaling is used by the sender of the first message to determine to abandon execution of the second event in a third set of time windows, the second timing based on the assumption that the first signaling is not received
  • the expiration of the timer is used to trigger the second event, and the third time window set includes time domain resources between the first time and the third time; the third time is not earlier than the first time , and the third time is not later than the first expiry time; the first expiry time is the time determined by the expiry value of the second timer after the start of the second timer.
  • the first configuration message includes a third timer that expires within the first set of time windows
  • the sender of the first message sends a first signal to the second node 1300 within the first set of time windows.
  • the first event includes sending a second signal; the second signal is used to indicate a first measurement result;
  • the sender of the first message performs a first measurement; the first measurement is used to generate the first measurement result;
  • the act of aborting execution of the first event in the second set of time windows includes the sender of the first message aborting sending the second signal and discarding the first measurement result.
  • the second transmitter 1301 sends the first conditional reconfiguration
  • the sender of the first message gives up evaluating the execution condition of the first conditional reconfiguration within the first time window set, or gives up executing the first conditional reconfiguration.
  • the behavior of giving up executing the first event in the second time window set includes adding the first event to a first waiting list
  • the sender of the first message executes the first event in the first waiting list outside the second set of time windows.
  • the second node is a satellite.
  • the second node is a UE (User Equipment).
  • the second node is an IoT node.
  • the second node is a wearable node.
  • the second node is a base station.
  • the second node is a relay.
  • the second node is an access point.
  • the second node is a multicast-enabled node.
  • the second node is a satellite.
  • the second transmitter 1301 includes at least one of the antenna 420, the transmitter 418, the transmission processor 416, the multi-antenna transmission processor 471, the controller/processor 475, and the memory 476 in Embodiment 4 one.
  • the second receiver 1302 includes at least one of the antenna 420, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, and the memory 476 in the fourth embodiment. one.
  • User equipment, terminals and UEs in this application include but are not limited to drones, communication modules on drones, remote-controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, in-vehicle communication equipment, wireless sensors, network cards, IoT terminal, RFID terminal, NB-IoT terminal, MTC (Machine Type Communication, machine type communication) terminal, eMTC (enhanced MTC, enhanced MTC) terminal, data card, network card, vehicle communication equipment, low-cost mobile phone, low Cost Tablet PC, Satellite Communication Equipment, Ship Communication Equipment, NTN User Equipment and other wireless communication equipment.
  • MTC Machine Type Communication, machine type communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, sending and receiving node), NTN base station , satellite equipment, wireless communication equipment such as flight platform equipment, eNB (LTE Node B), test equipment, such as transceiver devices that simulate some functions of the base station, signaling testers, etc.
  • gNB NR Node B
  • TRP Transmitter Receiver Point
  • NTN base station satellite equipment
  • wireless communication equipment such as flight platform equipment
  • eNB LTE Node B
  • test equipment such as transceiver devices that simulate some functions of the base station, signaling testers, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的方法和设备,包括接收第一配置消息;所述第一配置消息用于配置第一计时器;发送第一消息;所述第一消息被用于确定第一时间窗集合,所述第一时间窗集合包括至少一个时间窗;接收第一信令;其中,所述第一消息被用于请求在所述第一时间窗集合中停止针对所述第一信令的发送者的无线发送;所述第一信令被用于指示同意所述第一消息的请求;所述第一计时器的开始距离第一时刻的时间长度超过所述第一计时器的过期值,所述第一计时器的所述开始在所述第一时刻之前;所述第一信令被用于确定在第二时间窗集合中放弃执行第一事件。本申请有助于减少冲突。

Description

一种被用于无线通信的方法和设备 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中与多个网络通信有关的提高效率,减少中断的方法。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或Fifth Generation,5G)进行研究,在3GPP RAN#75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。
在通信中,无论是LTE(Long Term Evolution,长期演进)还是5G NR都会涉及到可靠的信息的准确接收,优化的能效比,信息有效性的确定,灵活的资源分配,可伸缩的系统结构,高效的非接入层信息处理,较低的业务中断和掉线率,对低功耗支持,这对基站和用户设备的正常通信,对资源的合理调度,对系统负载的均衡都有重要的意义,可以说是高吞吐率,满足各种业务的通信需求,提高频谱利用率,提高服务质量的基石,无论是eMBB(ehanced Mobile BroadBand,增强的移动宽带),URLLC(Ultra Reliable Low Latency Communication,超高可靠低时延通信)还是eMTC(enhanced Machine Type Communication,增强的机器类型通信)都不可或缺的。同时在IIoT(Industrial Internet of Things,工业领域的物联网中,在V2X(Vehicular to X,车载通信)中,在ProSe(Proximity Services,近场通信)中,在设备与设备之间通信(Device to Device),在非授权频谱的通信中,在用户通信质量监测,在网络规划优化,在NTN(Non Territerial Network,非地面网络通信)中,在TN(Territerial Network,地面网络通信)中,在双连接(Dual connectivity)系统中,在使用副链路(Sidelink)的系统中,在以上各种通信模式的混合中,在无线资源管理以及多天线的码本选择中,在信令设计,邻区管理,业务管理,在波束赋形中都存在广泛的需求,信息的发送方式分为广播多播和单播,这些发送方式都是5G系统必不可少的,因为它们对满足以上需求十分有帮助。为了增加网络的覆盖,提高系统的可靠性,信息还可以通过中继转发。随着通信终端能力的增强,通信终端可以配备一个SIM(Subscriber Identity Module,注册身份模块/用户识别卡)卡或多个SIM卡,当使用多个SIM卡并连接多个网络时,终端的收发模块在不同的网络之间协调成为一个重要的问题。
随着系统的场景和复杂性的不断增加,对降低中断率,降低时延,增强可靠性,增强系统的稳定性,对业务的灵活性,对功率的节省也提出了更高的要求,同时在系统设计的时候还需要考虑不同系统不同版本之间的兼容性。
发明内容
当一个UE(user equipment,终端/手机)需要与多个网络进行通信时,尤其是使用了多个相应的SIM卡时,会涉及到网络之间的协调问题。当这个UE本身的硬件不足以同时,独立的,不受任何影响的,并行与两个网络进行通信时,如果可以基于网络辅助的或UE主动发起的某种程度的协调,有助于避免两个网络相互影响,例如当UE需要和另一个网络通信时,但当前的网络也指示这个UE发送或接收数据就会造成影响。有些UE可能具有两个接收机,但是只有一个发射机,就是说这些UE根据情况,可能可以同时接收两个网络的信号,但是只能针对一个网络发送;当然也有一些UE同一时间只能接收一个网络的信号;不过无论如何,对很多UE来说,是无法同时向两个网络发送信号的。由于UE的两个SIM卡或多个SIM可能是不同的运营商的,因此网络之间的协调是非常有限的,难以依赖网络之间进行协调,甚至由于隐私问题,需要禁止网络之间传递用户的信息。当一个UE短时间的暂时的离开一个网络,去另一个网络接收或发送,对当前的网络的影响是可以接受的,例如去另一个网络更新服务区等等。由于UE与所离开的网络仍然具有连接,只是暂时不发送和/或接收数据了,与一个网络有连接,即受到这个网络的控制和管理,控制和管理包括很多方面,例如某些情况下(例如计时器过期)触发某些事件,这些事件可能需要发送一 些数据或报告,但是由于UE已经暂时离开了当前网络,无法发送数据和报告,这就会造成矛盾,如果处理不当容易引起UE的掉线。本申请通过新的控制UE在离开的时间里的行为的方法解决了以上问题。
针对上述问题,本申请提供了一种解决方案。
需要说明的是,在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。此外,需要说明的是,本申请也同样适用于例如UAV(Unmanned Aerial Vehicle,无人驾驶空中飞行器),物联网或工业物联网,或车载网络的场景,NTN或TN网络,或RedCap(Reduced Capability,降低能力)UE的通信,或可穿戴设备的通信场景中,以取得类似的技术效果。此外,不同场景采用统一解决方案还有助于降低硬件复杂度和成本。
本申请公开了一种被用于无线通信的第一节点中的方法,包括:
接收第一配置消息;所述第一配置消息用于配置第一计时器;
发送第一消息;所述第一消息被用于确定第一时间窗集合,所述第一时间窗集合包括至少一个时间窗;
接收第一信令;
其中,所述第一消息被用于请求在所述第一时间窗集合中停止针对所述第一信令的发送者的无线发送;所述第一信令被用于指示同意所述第一消息的请求;所述第一计时器的开始距离第一时刻的时间长度超过所述第一计时器的过期值,所述第一计时器的所述开始在所述第一时刻之前;所述第一信令被用于确定在第二时间窗集合中放弃执行第一事件,基于所述第一信令未被接收到的假设下所述第一计时器的过期被用于触发所述第一事件,所述第二时间窗集合包括第二时刻与所述第一时刻之间的时域资源,所述第二时刻在所述第一计时器的所述开始与所述第一时刻之间并且距离所述第一计时器的所述开始的时间长度不小于所述第一计时器的所述过期值。
作为一个实施例,本申请要解决的问题包括:当一个UE无法同时针对两个网络发送某些无线信号时,需要向当前网络请求离开;在离开的这段时间可以和第二网络进行通信,在离开期间,原网络的某些配置如果触发UE执行某些事件,会对UE与第二网络的通信造成影响。本申请通过特别的管理这些事件的计时器或控制UE的行为,解决了以上问题。
作为一个实施例,上述方法的好处包括:避免了两个网络的冲突,同时避免了潜在的掉线和额外的时延等问题。
具体的,根据本申请的一个方面,包括:接收第二消息,所述第二消息包括第一控制计时器,所述第二消息被用于指示,当所述第一控制计时器处于停止状态时所述第一节点被允许发送所述第一消息。
具体的,根据本申请的一个方面,所述第一配置消息指示第二计时器和第一门限值,所述第二计时器的开始距离所述第一时刻的时间长度超过所述第二计时器的过期值与所述第一门限值的差,所述第二计时器的所述开始在所述第一时刻之前;所述第一门限值为正数;
所述第一信令被用于确定在第三时间窗集合中放弃执行第二事件,基于所述第一信令未被接收到的假设下所述第二计时器的过期被用于触发所述第二事件,所述第三时间窗集合包括所述第一时刻与第三时刻之间的时域资源;所述第三时刻不早于所述第一时刻,且所述第三时刻不晚于第一过期时刻;所述第一过期时刻是所述第二计时器的起始后的所述第二计时器的过期值所确定的时刻。
具体的,根据本申请的一个方面,所述第一配置消息包括第三计时器,所述第三计时器在所述第一时间窗集合内过期;
作为所述第三计时器过期的响应,在所述第一时间窗集合内针对所述第一信令的发送者发送第一信号。
具体的,根据本申请的一个方面,所述第一事件包括发送第二信号;所述第二信号被用于指示第一测量结果;
执行第一测量;所述第一测量被用于生成所述第一测量结果;
所述行为在所述第二时间窗集合中放弃执行第一事件包括,放弃发送所述第二信号和丢弃所述第一测量结果。
具体的,根据本申请的一个方面,包括:接收第一条件重配置;
在所述第一时间窗集合内,放弃评估所述第一条件重配置的执行条件,或者,放弃执行所述第一条件重配置。
具体的,根据本申请的一个方面,所述行为在所述第二时间窗集合中放弃执行第一事件包括,将所述第一事件加入到第一等待列表中;
在所述第二时间窗集合以外的时间,执行所述第一等待列表中的所述第一事件。
具体的,根据本申请的一个方面,所述第一节点是UE(用户设备)。
具体的,根据本申请的一个方面,所述第一节点是物联网终端。
具体的,根据本申请的一个方面,所述第一节点是中继。
具体的,根据本申请的一个方面,所述第一节点是车载终端。
具体的,根据本申请的一个方面,所述第一节点是飞行器。
本申请公开了一种被用于无线通信的第二节点中的方法,包括:
发送第一配置消息;所述第一配置消息用于配置第一计时器;
接收第一消息;所述第一消息被用于确定第一时间窗集合,所述第一时间窗集合包括至少一个时间窗;
发送第一信令;
其中,所述第一消息被用于请求在所述第一时间窗集合中停止针对所述第一信令的发送者的无线发送;所述第一信令被用于指示同意所述第一消息的请求;所述第一计时器的开始距离第一时刻的时间长度超过所述第一计时器的过期值,所述第一计时器的所述开始在所述第一时刻之前;所述第一信令被用于确定在第二时间窗集合中放弃执行第一事件,基于所述第一信令未被接收到的假设下所述第一计时器的过期被用于触发所述第一事件,所述第二时间窗集合包括第二时刻与所述第一时刻之间的时域资源,所述第二时刻在所述第一计时器的所述开始与所述第一时刻之间并且距离所述第一计时器的所述开始的时间长度不小于所述第一计时器的所述过期值。
具体的,根据本申请的一个方面,包括:发送第二消息,所述第二消息包括第一控制计时器,所述第二消息被用于指示,当所述第一控制计时器处于停止状态时所述第一消息的发送者被允许发送所述第一消息。
具体的,根据本申请的一个方面,所述第一配置消息指示第二计时器和第一门限值,所述第二计时器的开始距离所述第一时刻的时间长度超过所述第二计时器的过期值与所述第一门限值的差,所述第二计时器的所述开始在所述第一时刻之前;所述第一门限值为正数;
所述第一信令被所述第一消息的发送者用于确定在第三时间窗集合中放弃执行第二事件,基于所述第一信令未被接收到的假设下所述第二计时器的过期被用于触发所述第二事件,所述第三时间窗集合包括所述第一时刻与第三时刻之间的时域资源;所述第三时刻不早于所述第一时刻,且所述第三时刻不晚于第一过期时刻;所述第一过期时刻是所述第二计时器的起始后的所述第二计时器的过期值所确定的时刻。
具体的,根据本申请的一个方面,所述第一配置消息包括第三计时器,所述第三计时器在所述第一时间窗集合内过期;
作为所述第三计时器过期的响应,所述第一消息的发送者在所述第一时间窗集合内针对所述第二节点发送第一信号。
具体的,根据本申请的一个方面,所述第一事件包括发送第二信号;所述第二信号被用于指示第一测量结果;
所述第一消息的发送者执行第一测量;所述第一测量被用于生成所述第一测量结果;
所述行为在所述第二时间窗集合中放弃执行第一事件包括,所述第一消息的发送者放弃发送所述第二信号和丢弃所述第一测量结果。
具体的,根据本申请的一个方面,包括:发送第一条件重配置;
所述第一消息的发送者在所述第一时间窗集合内,放弃评估所述第一条件重配置的执行条件,或者,放弃执行所述第一条件重配置。
具体的,根据本申请的一个方面,所述行为在所述第二时间窗集合中放弃执行第一事件包括,将所述第一事件加入到第一等待列表中;
所述第一消息的发送者,在所述第二时间窗集合以外的时间,执行所述第一等待列表中的所述第一事 件。
具体的,根据本申请的一个方面,所述第二节点是用户设备。
具体的,根据本申请的一个方面,所述第二节点是物联网终端。
具体的,根据本申请的一个方面,所述第二节点是卫星。
具体的,根据本申请的一个方面,所述第二节点是中继。
具体的,根据本申请的一个方面,所述第二节点是车载终端。
具体的,根据本申请的一个方面,所述第二节点是飞行器。
具体的,根据本申请的一个方面,所述第二节点是基站。
具体的,根据本申请的一个方面,所述第二节点是小区或小区组。
具体的,根据本申请的一个方面,所述第二节点是网关。
具体的,根据本申请的一个方面,所述第二节点是接入点。
申请公开了一种被用于无线通信的第一节点,包括:
第一接收机,接收第一配置消息和第一信令;所述第一配置消息用于配置第一计时器;
第一发射机,发送第一消息;所述第一消息被用于确定第一时间窗集合,所述第一时间窗集合包括至少一个时间窗;
其中,所述第一消息被用于请求在所述第一时间窗集合中停止针对所述第一信令的发送者的无线发送;所述第一信令被用于指示同意所述第一消息的请求;所述第一计时器的开始距离第一时刻的时间长度超过所述第一计时器的过期值,所述第一计时器的所述开始在所述第一时刻之前;所述第一信令被用于确定在第二时间窗集合中放弃执行第一事件,基于所述第一信令未被接收到的假设下所述第一计时器的过期被用于触发所述第一事件,所述第二时间窗集合包括第二时刻与所述第一时刻之间的时域资源,所述第二时刻在所述第一计时器的所述开始与所述第一时刻之间并且距离所述第一计时器的所述开始的时间长度不小于所述第一计时器的所述过期值。
申请公开了一种被用于无线通信的第二节点,包括:
第二发射机,发送第一配置消息和第一信令;所述第一配置消息用于配置第一计时器;
第二接收机,接收第一消息;所述第一消息被用于确定第一时间窗集合,所述第一时间窗集合包括至少一个时间窗;
其中,所述第一消息被用于请求在所述第一时间窗集合中停止针对所述第一信令的发送者的无线发送;所述第一信令被用于指示同意所述第一消息的请求;所述第一计时器的开始距离第一时刻的时间长度超过所述第一计时器的过期值,所述第一计时器的所述开始在所述第一时刻之前;所述第一信令被用于确定在第二时间窗集合中放弃执行第一事件,基于所述第一信令未被接收到的假设下所述第一计时器的过期被用于触发所述第一事件,所述第二时间窗集合包括第二时刻与所述第一时刻之间的时域资源,所述第二时刻在所述第一计时器的所述开始与所述第一时刻之间并且距离所述第一计时器的所述开始的时间长度不小于所述第一计时器的所述过期值。
作为一个实施例,和传统方案相比,本申请具备如下优势:
首先,本申请所提出的方法可以避免UE在连接两个网络的场景中另一个网络所配置的行为影响到当前网络的通信;同时UE与原来的网络的连接始终得以保持;当UE回到原来的网络中的时候可以恢复原来网络配置的那些行为。
再者,本申请所提出的方法可以根据网络配置的不同或所应该触发的事件的不同进行选择,采取相应的处理方式;包括控制计时器以及控制是否执行所触发的事件,也包括回到原来的网络后继续执行,对计时器的控制是因为有些事件是由计时器的过期所触发的,因此控制计时器是一种有效的手段。本申请还提出了根据具体的事件的类型确定如何控制计时器以及如何执行/放弃事件,有助于最大限度的保证UE的服务。
进一步的,本申请所提出的方法,可以控制UE在允许的时间离开当前网络,避免了在某些行为或流程中间离开而导致的不确定性,并且简化了协议的设计。
更进一步的,本申请所提出的方法还充分考虑了计时器的长度对事件的处理的影响,当回到原来的网络后很短的时间某个计时器就过期了,仍然可能导致UE来不及处理相关的事件,因此只有当回到原来的 网络一段时间以后再预计过期的计时器所能触发的事件才被考虑,这里原来的网络指的是配置前述某个计时器的网络。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的接收第一配置消息、发送第一消息和接收第一信令的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线信号的传输的流程图;
图6示出了根据本申请的一个实施例的第一时间窗集合的示意图;
图7示出了根据本申请的一个实施例的第一时间窗集合的示意图;
图8示出了根据本申请的一个实施例的第二时间窗集合的示意图;
图9示出了根据本申请的一个实施例的第三时间窗集合的示意图;
图10示出了根据本申请的一个实施例的第一消息被用于确定第一时间窗集合的示意图;
图11示出了根据本申请的一个实施例的第一信令被用于确定在第二时间窗集合中放弃执行第一事件的示意图;
图12示例了根据本申请的一个实施例的用于第一节点中的处理装置的示意图;
图13示例了根据本申请的一个实施例的用于第二节点中的处理装置的示意图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的接收第一配置消息、发送第一消息和接收第一信令的流程图,如附图1所示。附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一节点在步骤101中接收第一配置消息;在步骤102中发送第一消息;在步骤103中接收第一信令;
其中,所述第一配置消息用于配置第一计时器;所述第一消息被用于确定第一时间窗集合,所述第一时间窗集合包括至少一个时间窗;所述第一消息被用于请求在所述第一时间窗集合中停止针对所述第一信令的发送者的无线发送;所述第一信令被用于指示同意所述第一消息的请求;所述第一计时器的开始距离第一时刻的时间长度超过所述第一计时器的过期值,所述第一计时器的所述开始在所述第一时刻之前;所述第一信令被用于确定在第二时间窗集合中放弃执行第一事件,基于所述第一信令未被接收到的假设下所述第一计时器的过期被用于触发所述第一事件,所述第二时间窗集合包括第二时刻与所述第一时刻之间的时域资源,所述第二时刻在所述第一计时器的所述开始与所述第一时刻之间并且距离所述第一计时器的所述开始的时间长度不小于所述第一计时器的所述过期值。
作为一个实施例,所述第一节点是UE。
作为一个实施例,所述第一信令的发送者是所述第一节点的服务小区。
作为一个实施例,所述第一信令的发送者是所述第一节点的PCell(主小区)。
作为一个实施例,所述第一信令的发送者是所述第一节点的SpCell。
作为一个实施例,所述第一信令的发送者是所述第一节点的SCell。
作为一个实施例,所述第一信令的发送者是所述第一节点的MCG。
作为一个实施例,所述第一信令的发送者是所述第一节点的SCG。
作为一个实施例,所述第一信令的发送者是所述第一节点的驻留的小区。
作为一个实施例,所述第一信令的发送者是所述第一节点连接的一个网络。
作为一个实施例,所述第一节点拥有两个SIM卡,其中一个是针对所述第一信令的发送者的;另一个是针对第二网络的,所述第二网络是所述第一信令的发送者以外的网络。
作为一个实施例,所述SIM卡包括USIM(Universal Subscriber Identity Module,全球用户识别卡)卡。
作为一个实施例,所述SIM卡包括eSIM(电子SIM卡)卡。
作为一个实施例,所述SIM卡包括UICC(Universal Integrated Circuit Card,全球集成电路卡)卡。
作为一个实施例,所述SIM卡包括不同尺寸。
作为一个实施例,所述SIM卡针对{LTE网络,NR网络,3G网络,4G网络,5G网络,6G网络,TN网络,NTN网络,URLLC网络,IoT网络,车载网络,工业IoT网络,广播网络,单播网络,3GPP网络,非3GPP网络}中的至少之一。
作为一个实施例,所述第一节点拥有一个发射机和一个接收机。
作为一个实施例,所述第一节点拥有一个发射机和两个接收机。
作为一个实施例,所述第一节点与所述第一信令的发送者之间存在RRC链接。
作为一个实施例,所述第一节点相对于所述第一信令的发送者处于RRC连接态。
作为一个实施例,所述第一节点相对于所述第二网络处于RRC连接态。
作为一个实施例,所述第一节点相对于所述第二网络处于RRC空闲态。
作为一个实施例,所述第一节点相对于所述第二网络处于RRC非活跃态。
作为一个实施例,所述第一配置消息包括RRC消息。
作为一个实施例,所述第一配置消息包括NAS消息。
作为一个实施例,所述第一配置消息包括PC5-RRC消息。
作为一个实施例,所述第一配置消息包括PC5-S消息。
作为一个实施例,所述第一配置消息包括SIB。
作为一个实施例,所述第一配置消息包括SIB。
作为一个实施例,所述第一配置消息包括RRCReconfiguration。
作为一个实施例,所述第一配置消息包括RRCReconfigurationSidelink。
作为一个实施例,所述第一配置消息包括RRCConnectionReconfiguration。
作为一个实施例,所述第一配置消息包括RRCConnectionReconfigurationSidelink。
作为一个实施例,所述第一配置消息包括SpCellConfig。
作为一个实施例,所述第一配置消息通过广播的方式发送。
作为一个实施例,所述第一配置消息通过单播的方式发送。
作为一个实施例,所述第一计时器是一个timer。
作为一个实施例,所述第一计时器包括{T304,T310,T312,T321,T322,T380,T316,sCellDeactivationTimer,beamFailureRecoveryTimer,searchSpaceSwitchTimer,bwp-InactivityTimer,periodicBSR-Timer,phr-PeriodicTimer,lbt-FailureDetectionTimer,触发周期性CSI上报的计时器,dataInactivityTimer,触发L2链路身份更新的计时器,触发保持活跃(Keep Alive)的计时器,PDCP的discardTimer,t-Reassembly}中的至少之一。
作为一个实施例,所述第一配置消息配置或指示所述第一计时器的过期值。
作为一个实施例,所述第一计时器的过期值包括E个单位,其中E为正数或正整数。
作为以上实施例的一个子实施例,所述E个所述单位包括{毫秒,秒,OFDM符号,时隙,迷你时隙,子帧,帧,超帧,分钟,DRX(Discontinuous Reception,非连续接收)周期,寻呼周期,修改周期,系统消息周期,所述第一时间窗集合中的时间窗的长度}中的至少之一。
作为一个实施例,所述第一信令包括所述第一计时器的配置。
作为一个实施例,所述第一时间窗集合包括W个时间窗,其中W为正整数。
作为一个实施例,所述第一时间窗集合所包括的时间窗是等长的。
作为一个实施例,所述第一时间窗集合所包括的时间窗是不等长的。
作为一个实施例,所述第一时间窗集合所包括的时间窗在时域是正交的。
作为一个实施例,所述第一时间窗集合所包括的时间窗在时域依次排序。
作为一个实施例,所述第一时间窗集合所包括的任意两个时间窗的时间间隔不小于一个OFDM符号所占用的时间。
作为一个实施例,所述第一时间窗集合所包括的任意两个时域上相邻的时间窗的时间间隔是相等的。
作为一个实施例,所述第一时间窗集合所包括的任意两个时域上相邻的时间窗的时间间隔是不相等的。
作为一个实施例,所述第一消息通过Uu接口传输。
作为一个实施例,所述第一消息包括RRC消息。
作为一个实施例,所述第一消息包括UCI(Uplink Control Information)消息。
作为一个实施例,所述第一消息所占用的物理信道包括PUSCH(Physical Uplink Shared Channel,物理上行共享信道)。
作为一个实施例,所述第一消息所占用的逻辑信道包括DCCH(Dedicated Control Channel,专用控制信道)。
作为一个实施例,所述第一消息使用SRB1或SRB3发送。
作为一个实施例,所述第一消息包括UEAssistanceInformation中的至少部分域。
作为一个实施例,所述第一消息包括UELeavingRequest。
作为一个实施例,所述第一消息包括UESwitchingRequest。
作为一个实施例,所述第一消息包括UEShortLeavingRequest。
作为一个实施例,所述第一消息包括UEAvailablilityIndication。
作为一个实施例,所述第一消息包括UEInavailablilityIndication。
作为一个实施例,所述第一消息包括RRCReconfigurationSidelink。
作为一个实施例,所述第一消息包括MCGFailureInformation。
作为一个实施例,所述第一消息包括SCGFailureInformation。
作为一个实施例,所述第一消息包括ULInformationTransfer。
作为一个实施例,所述第一消息通过PC5接口传输。
作为一个实施例,所述第一消息包括PC5-RRC消息。
作为一个实施例,所述第一消息包括PC5-S消息。
作为一个实施例,所述第一信令的所述发送者是一个基站。
作为一个实施例,所述第一信令的所述发送者是一个服务小区。
作为一个实施例,所述第一信令的所述发送者是一个小区组(CellGroup)。
作为一个实施例,所述小区组是SCG(Secondary Cell Group,从小区组)。
作为一个实施例,所述小区组是MCG(Master Cell Group,主小区组)。
作为一个实施例,所述第一信令包括RRC消息。
作为一个实施例,所述第一信令包括DCI(downlink control information,下行控制信息)消息。
作为一个实施例,所述第一信令包括PC5-RRC消息。
作为一个实施例,所述第一信令包括PC5-S消息。
作为一个实施例,所述第一信令包括MAC CE(Control Element,控制单元)。
作为一个实施例,所述第一信令所占用的物理信道包括PDCCH(Physical downlink control channel,物理下行控制信道)或PDSCH(physical downlink shared channel,物理下行共享信道)。
作为一个实施例,所述第一信令包括RRCReconfiguration。
作为一个实施例,所述第一信令包括RRCReconfigurationSidelink。
作为一个实施例,所述第一信令包括RRCConnectionReconfiguration。
作为一个实施例,所述第一信令包括RRCConnectionReconfigurationSidelink。
作为一个实施例,所述第一信令指示同意(accept/acknowledge)所述第一消息的请求。
作为一个实施例,所述第一信令指示同意所述第一消息的在所述K1个时间窗中停止针对所述第一信令的发送者的无线发送的请求。
作为一个实施例,所述第一信令的接收被认为所述第一消息被同意。
作为一个实施例,所述第一信令指示所述第一时间窗集合。
作为一个实施例,所述第一信令指示所述第一时间窗集合用于指示所述第一消息的请求被同意。
作为一个实施例,所述句子所述停止针对所述第一信令的发送者的无线发送包括:所述第一信令的发送者不会在所述K1个时间窗内对所述第一节点进行上行和/或下行调度。
作为一个实施例,所述句子所述停止针对所述第一信令的发送者的无线发送包括:所述第一节点U01在所述K1个时间窗内所发送的无线信号所使用的扰码是所述第一信令的发送者以外的节点分配的。
作为一个实施例,所述句子所述停止针对所述第一信令的发送者的无线发送包括:所述第一信令的发送者和由所述第一信令的发送者控制的MCG和SCG都不会在所述第一时间窗集合内对所述第一节点进行上行和/或下行调度。
作为一个实施例,所述句子所述停止针对所述第一信令的发送者的无线发送包括:所述第一节点不会在所述第一时间窗集合内被所述第一信令的发送者进行上行和/或下行调度。
作为一个实施例,所述句子所述停止针对所述第一信令的发送者的无线发送包括:所述第一节点没有能力或不会或无法在所述第一时间窗集合内接收所述第一信令的发送者所发送的无线信号。
作为一个实施例,所述第一消息指示,所述第一节点在所述第一时间窗集合内只能接收所述第一信令的发送者所发送的第二类目标信号。
作为一个实施例,所述第二类目标信号包括承载广播业务的无线信号。
作为一个实施例,所述第二类目标信号包括承载组播业务的无线信号。
作为一个实施例,所述第二类目标信号包括承载DCI的无线信号。
作为一个实施例,所述第二类目标信号包括承载部分DCI格式的无线信号。
作为一个实施例,所述第二类目标信号包括寻呼消息。
作为一个实施例,所述第二类目标信号包括RRCRelease。
作为一个实施例,所述第二类目标信号包括RRCConnectionRelease。
作为一个实施例,所述第二类目标信号包括SIB。
作为一个实施例,所述第二类目标信号包括ETWS(Earthquake and Tsunami Warning System,地震海啸预警系统)信号。
作为一个实施例,所述第二类目标信号包括任何所述第一信令的发送者发送的无线信号。
作为一个实施例,所述第二类目标信号包括任何所述第一信令的发送者发送的与特定CSI-RS关联的无线信号。
作为一个实施例,所述第一节点根据所述第一信令的发送者所指示的候选CSI-RS确定所述特定的CSI-RS。
作为一个实施例,所述第二类目标信号包括任何所述第一信令的发送者发送的与特定SSB关联的无线信号。
作为一个实施例,所述第一节点根据所述第一信令的发送者所指示的候选SSB确定所述特定的SSB。
作为一个实施例,所述第一时刻包括一个时间值。
作为一个实施例,所述第一时刻是可配置的。
作为一个实施例,所述第一时刻是固定的。
作为一个实施例,所述第一时刻以所述第一时间窗集合为参考。
作为一个实施例,所述第一时刻是所述第一时间窗集合的结束时刻。
作为一个实施例,所述第一时刻是所述第一时间窗集合的结束时刻之前的时刻。
作为一个实施例,所述第一时刻是所述第一时间窗集合的最后一个时间窗的起始时刻。
作为一个实施例,所述第二时间窗集合包括至少一个时间窗。
作为一个实施例,所述第二时刻是所述第一计时器的起始时的时刻。
作为一个实施例,所述第二时刻是所述第一计时器的起始后且在所述第一时刻之前的时刻。
作为一个实施例,所述第二时刻是所述第一计时器的起始后的第x1毫秒或第x1子帧且在所述第一时刻之前的时刻,其中x1为正整数。
作为一个实施例,所述第二时刻在所述第一时刻之前;所述第二时刻不等于所述第一时刻。
作为一个实施例,所述第二时刻是所述第一时间窗集合中的第i个时间窗的起始时刻,所述第i个时间窗是所述第一计时器的起始后的所述第一时间窗集合中的第一个时间窗。
作为一个实施例,所述第二时刻是所述第一时刻之前的第x2毫秒或第x2子帧,其中x2为正整数。
作为一个实施例,所述句子所述基于所述第一信令未被接收到的假设下所述第一计时器的过期被用于触发所述第一事件包括以下含义:如果所述第一节点没有接收到所述第一信令,则所述第一计时器的过期会触发所述第一节点执行所述第一事件。
作为一个实施例,所述句子所述基于所述第一信令未被接收到的假设下所述第一计时器的过期被用于触发所述第一事件包括以下含义:如果所述第一节点没有接收到所述第一信令,且所述第一计时器被启动,则所述第一计时器的过期会触发所述第一节点执行所述第一事件。
作为一个实施例,所述句子所述基于所述第一信令未被接收到的假设下所述第一计时器的过期被用于触发所述第一事件包括以下含义:如果所述第一节点没有接收到所述第一信令,且所述第一计时器被启动,则无论所述第一计时器是否于所述第一时间窗集合内过期,所述第一计时器的过期都会触发所述第一节点执行所述第一事件。
作为一个实施例,所述句子所述基于所述第一信令未被接收到的假设下所述第一计时器的过期被用于触发所述第一事件包括以下含义:如果所述第一节点没有发送所述第一消息,则所述第一计时器的过期会触发所述第一节点执行所述第一事件。
作为一个实施例,所述句子所述基于所述第一信令未被接收到的假设下所述第一计时器的过期被用于触发所述第一事件包括以下含义:如果所述第一信令未被接收到,当所述第一计时器被启动后,所述第一计时器的过期会触发所述第一节点执行所述第一事件。
作为一个实施例,所述句子所述基于所述第一信令未被接收到的假设下所述第一计时器的过期被用于触发所述第一事件包括以下含义:如果所述第一信令未被接收到,所述第一计时器存在被启动的可能,所述第一计时器存在过期的可能。
作为一个实施例,所述第一事件包括发起随机接入过程。
作为以上实施例的一个子实施例,所述随机接入过程包括发送随机接入信号。
作为以上实施例的一个子实施例,所述随机接入过程使用基于竞争(contention based)的接入方式。
作为以上实施例的一个子实施例,所述随机接入过程使用基于非竞争(contention free)的接入方式。
作为以上实施例的一个子实施例,所述随机接入过程使用非竞争的接入方式,所述第一信令指示所述非竞争的接入方式所使用时频资源。
作为一个实施例,所述第一事件包括发送目标信号。
作为一个实施例,所述目标信号包括随机接入信号。
作为一个实施例,所述目标信号包括MAC CE(Control Element,控制单元)。
作为一个实施例,所述目标信号包括RRC消息。
作为一个实施例,所述目标信号包括NAS消息。
作为一个实施例,所述目标信号包括{Preamble,msg1(消息1),msgA(消息A)}中的至少之一。
作为一个实施例,所述目标信号包括SR(scheduling request,调度请求)。
作为一个实施例,所述目标信号包括BSR(Buffer Status Report,缓存状态报告)。
作为一个实施例,所述目标信号包括UCI(Uplink Control Information,上行控制信息)。
作为一个实施例,所述目标信号占用的物理信道包括PRACH(Physical Random Access Channel,物理随机接入信道)。
作为一个实施例,所述目标信号占用的物理信道包括PUCCH(Physical Uplink Control Channel,物理上行控制信道)。
作为一个实施例,所述目标信号占用的物理信道包括PUSCH(Physical Uplink Shared Channel,物 理上行共享信道)。
作为一个实施例,所述目标信号包括注册更新请求。
作为一个实施例,所述目标信号包括跟踪区域更新。
作为一个实施例,所述目标信号包括Keep Alive Message。
作为一个实施例,所述目标信号包括HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)反馈。
作为一个实施例,所述目标信号包括链路身份更新请求。
作为一个实施例,所述目标信号包括DIRECT LINK IDENTIFIER UPDATE REQUEST。
作为一个实施例,所述目标信号包括与Sidelink(副链路)有关的发现消息。
作为一个实施例,所述目标信号包括与定位有关位置信息。
作为一个实施例,所述目标信号包括寻呼响应。
作为一个实施例,所述目标信号包括RRCReconfigurationComplete。
作为一个实施例,所述目标信号包括RRCConnectionReconfigurationComplete。
作为一个实施例,所述第一事件包括无线链路失败所导致的无线链路重建。
作为一个实施例,所述第一事件包括无线链路失败所导致的无线链路重配置。
作为一个实施例,所述第一事件包括无线链路失败所导致的切换。
作为一个实施例,所述第一事件包括执行条件重配置。
作为一个实施例,所述第一事件包括主服务小区组(MCG)失败。
作为以上实施例的一个子实施例,所述主服务小区组(MCG)失败被用于触发发送MCGfailureInformation。
作为一个实施例,所述第一事件包括从服务小区组(SCG)失败。
作为以上实施例的一个子实施例,所述从服务小区组(MCG)失败被用于触发发送SCGfailureInformation。
作为一个实施例,所述第一事件包括波束失败恢复。
作为一个实施例,所述第一事件包括发送第一报告。
作为一个实施例,所述第一报告包括测量报告。
作为一个实施例,所述第一事件包括执行第一主测量。
作为一个实施例,所述第一主测量包括测量SSB(Synchronization Signal Block,同步信号块)。
作为一个实施例,所述第一主测量包括测量CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)。
作为一个实施例,所述第一主测量包括空闲态测量。
作为一个实施例,所述第一主测量包括CSI测量。
作为一个实施例,所述第一信令用于指示所述第一主测量所测量的信号。
作为一个实施例,所述第一报告包括链路失败报告。
作为一个实施例,所述第一报告包括持续的LBT(Listen-Before-Talk,听再说)失败报告。
作为一个实施例,所述第一事件包括切换到确实BWP(bandwidth part,带宽部分)。
作为一个实施例,所述第一事件包括应用缺省的搜索空间(search space)。
作为一个实施例,所述第一事件包括进入RRC空闲态或RRC非活跃态。
作为一个实施例,所述第一事件包括失步。
作为一个实施例,所述第一事件包括执行条件重配置。
作为一个实施例,所述第一事件包括接收第二目标信号。
作为一个实施例,所述第二目标信号包括SSB和/或CSI-RS。
作为一个实施例,所述第二目标信号包括PRS(Positioning Reference Signal,定位参考信号)。
作为一个实施例,所述第二目标信号包括系统消息。
作为一个实施例,所述第二目标信号包括寻呼消息。
作为一个实施例,所述第二目标信号包括DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第二目标信号包括SCI(Sidelink Control Information,副链路控制信息)。
作为一个实施例,所述第二目标信号包括RAR(Random Access Response,随机接入响应)。
作为一个实施例,所述第二目标信号包括RRC消息。
作为一个实施例,所述第二目标信号包括MAC CE。
作为一个实施例,所述第二目标信号包括系统消息。
作为一个实施例,所述第二目标信号包括NAS消息。
作为一个实施例,所述第二目标信号包括HARQ反馈。
作为一个实施例,所述第一事件包括发送第二信号;所述第二信号被用于指示第一测量结果;所述第一节点,执行第一测量;所述第一测量被用于生成所述第一测量结果;所述行为在所述第二时间窗集合中放弃执行第一事件包括,所述第一节点,放弃发送所述第二信号和丢弃所述第一测量结果。
作为一个实施例,所述第一测量包括测量所述第一信令的发送者所发送的信号。
作为一个实施例,所述第一测量包括测量所述第一信令的发送者以外的节点所发送的信号。
作为一个实施例,所述第一测量包括测量参考信号。
作为一个实施例,所述第一测量包括测量SSB和/或CSI-RS。
作为一个实施例,所述第一测量包括测量信道质量和/或信道状态。
作为一个实施例,所述第一测量结果包括RSRP(Reference Signal Receiving Power,参考信号接收功率)。
作为一个实施例,所述第一测量结果包括RSRQ Reference Signal Receiving Quality,参考信号接收质量)。
作为一个实施例,所述第一测量结果包括RSSI(Received Signal Strength Indication接收的信号强度指示)。
作为一个实施例,所述第一测量结果包括SNR(SIGNAL NOISE RATIO,信噪比)。
作为一个实施例,所述第二信号包括测量报告。
作为一个实施例,所述第二信号包括所述第一测量结果。
作为一个实施例,所述句子“所述第一节点,放弃发送所述第二信号和丢弃所述第一测量结果”包括以下含义:
作为一个实施例,所述第一节点放弃发送所述第二信号;
作为一个实施例,所述第一节点丢弃(discard)所述第一测量结果;
作为一个实施例,所述第一节点不保留或删除所述第一测量结果;
作为一个实施例,所述第一节点忽略所述第二信号的触发条件;
作为一个实施例,所述第一节点放弃生成所述第二信号;
作为一个实施例,所述第一节点推迟执行所述第一测量。
作为一个实施例,所述行为在所述第二时间窗集合中放弃执行第一事件包括,将所述第一事件加入到第一等待列表中;所述第一节点,在所述第二时间窗集合以外的时间,执行所述第一等待列表中的所述第一事件。
作为该实施例的一个子实施例,所述第一等待列表是一个pending的列表。
作为该实施例的一个子实施例,所述第一等待列表作为状态变量被所述第一节点保存。
作为该实施例的一个子实施例,所述第一等待列表针对第一类事件,所述第一类事件包括{发起随机接入,小数据传输,发送测量报告,执行条件重配置,发送SR,发送BSR,发送keep alive信号,发送发现信号,发送RAN通知区域更新,发送或发起注册更新请求,发起跟踪区域更新请求,响应寻呼,发送UE辅助信息}中的至少一个。
作为该实施例的一个子实施例,所述第一等待列表包括L个子列表,所述L个子列表中的每一个分别对应{发起随机接入,小数据传输,发送测量报告,执行条件重配置,发送SR,发送BSR,发送keep alive信号,发送发现信号,发送RAN通知区域更新,发送或发起注册更新请求,发起跟踪区域更新请求,响应寻呼,发送UE辅助信息}中的L个事件,其中L为正整数。
作为该实施例的一个子实施例,所述第二时间窗集合以外的时间包括所述第一时刻以后的时间。
作为该实施例的一个子实施例,所述第二时间窗集合以外的时间包括所述第一时间窗集合结束后的时间。
作为该实施例的一个子实施例,所述第二时间窗集合以外的时间包括所述第一时间窗集合结束后再过delta毫秒的时间,其中delta是正整数。
作为该实施例的一个子实施例,所述第二时间窗集合以外的时间包括所述第一节点回到所述第一信令的发送者的网络后的时间。
作为该实施例的一个子实施例,所述第一节点,在所述第二时间窗集合以外的时间,依据所述第一事件加入到所述第一等待列表的事件的先后,从先往后,依次执行所述第一等待列表中的所述第一事件。
作为该实施例的一个子实施例,所述第一节点,在所述第二时间窗集合以外的时间,依据所述第一事件加入到所述第一等待列表的事件的先后,从后往前,依次执行所述第一等待列表中的所述第一事件。
作为该实施例的一个子实施例,所述第一节点,在所述第二时间窗集合以外的时间,依据所述第一事件加入到所述第一等待列表的事件的先后,只执行所述第一等待列表中的最后加入的事件,所述第一事件是所述第一等待列表中最后加入的事件。
作为一个实施例,所述第一计时器的过期被用于触发所述第一事件。
作为一个实施例,在所述第一计时器的所述开始与所述第一时刻之间所述第一计时器没有重开始。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。
附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远端单元、移动装置、无线装置、无线通信装置、远端装置、移动订户台、接入终端、移动终端、无线终端、远端终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201支持在非地面网络(NTN)的传输。
作为一个实施例,所述UE201支持大时延差网络中的传输。
作为一个实施例,所述UE201支持V2X传输。
作为一个实施例,所述UE201支持多个SIM卡。
作为一个实施例,所述UE201支持副链路传输。
作为一个实施例,所述UE201支持MBS传输。
作为一个实施例,所述UE201支持MBMS传输。
作为一个实施例,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述gNB203支持在非地面网络(NTN)的传输。
作为一个实施例,所述gNB203支持在大时延差网络中的传输。
作为一个实施例,所述gNB203支持V2X传输。
作为一个实施例,所述gNB203支持副链路传输。
作为一个实施例,所述gNB203支持MBS传输。
作为一个实施例,所述gNB203支持MBMS传输。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一节点(UE,gNB或NTN中的卫星或飞行器)和第二节点(gNB,UE或NTN中的卫星或飞行器),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一节点与第二节点以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二节点之间的对第一节点的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一节点之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点与第一节点之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点和第二节点的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一节点可具有在L2层355之上的若干上部层。此外还包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一配置消息生成于RRC306或非接入层(NAS,Non-Access-Stratum)。
作为一个实施例,本申请中的所述第一消息生成于所述PHY301或PHY351或MAC302或MAC352或RRC306或非接入层(NAS)。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301或PHY351或MAC302或MAC352或RRC306或非接入层(NAS)。
作为一个实施例,本申请中的所述第二消息生成于所述MAC302或MAC352或RRC306或非接入层(NAS)。
作为一个实施例,本申请中的所述第一信号生成于所述PHY301或PHY351或MAC302或MAC352或RRC306或非接入层(NAS)。
作为一个实施例,本申请中的所述第一条件重配置生成于所述RRC306或非接入层(NAS)。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能, 控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:接收第一配置消息;所述第一配置消息用于配置第一计时器;发送第一消息;所述第一消息被用于确定第一时间窗集合,所述第一时间窗集合包括至少一个时间窗;接收第一信令;其中,所述第一消息被用于请求在所述第一时间窗集合中停止针对所述第一信令的发送者的无线发送;所述第一信令被用于指示同意所述第一消息的请求;所述第一计时器的开始距离第一时刻的时间长度超过所述第一计时器的过期值,所述第一计时器的所述开始在所述第一时刻之前;所述第一信令被用于确定在第二时间窗集合中放弃执行第一事件,基于所述第一信令未被接收到的假设下所述第一计时器的过期被用于触发所述第一事件,所述第二时间窗集合包括第二时刻与所述第一时刻之间的时域资源,所述第二时刻在所述第一计时器的所述开始与所述第一时刻之间并且距离所述第一计时器的所述开始的时间长度不小于所述第一计时器的所述过期值。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一配置消息;所述第一配置消息用于配置第一计时器;发送第一消息;所述第一消息被用于确定第一时间窗集合,所述第一时间窗集合包括至少一个时间窗;接收第一信令;其中,所述第一消息被用于请求在所述第一时间窗集合中停止针对所述第一信令的发送者的无线发送;所述第一信令被用于指示同意所述第一消息的请求;所述第一计时器的开始距离第一时刻的时间长度超过所述第一计时器的过期值,所述第一计时器的所述开始在所述第一时刻之前;所述第一信令被用于确定在第二时间窗集合中放弃执行第一事件,基于所述第一信令未被接收到的假设下所述第一计时器的过期被用于触发所述第一事件,所述第二时间窗集合包括第二时刻与所述第一时刻之间的时域资源,所述第二时刻在所述第一计时器的所述开始与所述第一时刻之间并且距离所述第一计时器的所述开始的时间长度不小于所述第一计时器的所述过期值。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:发送第一配置消息;所述第一配置消息用于配置第一计时器;接收第一消息;所述第一消息被用于确定第一时间窗集合,所述第一时间窗集合包括至少一个时间窗;发送第一信令;其中,所述第一消息被用于请求在所述第一时间窗集合中停止针对所述第一信令的发送者的无线发送;所述第一信令被用于指示同意所述第一消息的请求;所述第一计时器的开始距离第一时刻的时间长度超过所述第一计时器的过期值,所述第一计时器的所述开始在所述第一时刻之前;所述第一信令被用于确定在第二时间窗集合中放弃执行第一事件,基于所述第一信令未被接收到的假设下所述第一计时器的过期被用于触发所述第一事件,所述第二时间窗集合包括第二时刻与所述第一时刻之间的时域资源,所述第二时刻在所述第一计时器的所述开始与所述第一时刻之间并且距离所述第一计时器的所述开 始的时间长度不小于所述第一计时器的所述过期值。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一配置消息;所述第一配置消息用于配置第一计时器;接收第一消息;所述第一消息被用于确定第一时间窗集合,所述第一时间窗集合包括至少一个时间窗;发送第一信令;其中,所述第一消息被用于请求在所述第一时间窗集合中停止针对所述第一信令的发送者的无线发送;所述第一信令被用于指示同意所述第一消息的请求;所述第一计时器的开始距离第一时刻的时间长度超过所述第一计时器的过期值,所述第一计时器的所述开始在所述第一时刻之前;所述第一信令被用于确定在第二时间窗集合中放弃执行第一事件,基于所述第一信令未被接收到的假设下所述第一计时器的过期被用于触发所述第一事件,所述第二时间窗集合包括第二时刻与所述第一时刻之间的时域资源,所述第二时刻在所述第一计时器的所述开始与所述第一时刻之间并且距离所述第一计时器的所述开始的时间长度不小于所述第一计时器的所述过期值。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第一通信设备450是一个车载终端。
作为一个实施例,所述第二通信设备450是一个中继。
作为一个实施例,所述第二通信设备450是一个卫星。
作为一个实施例,所述第二通信设备450是一个飞行器。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,所述第二通信设备410是一个中继。
作为一个实施例,所述第二通信设备410是一个UE。
作为一个实施例,所述第二通信设备410是一个卫星。
作为一个实施例,所述第二通信设备410是一个飞行器。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一配置消息。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一信令。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第二消息。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一重配置。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送所述第一消息。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送所述第一信号。
作为一个实施例,发射器416(包括天线420),发射处理器412和控制器/处理器440被用于本申请中发送所述第一信令。
作为一个实施例,发射器416(包括天线420),发射处理器412和控制器/处理器440被用于本申请中发送所述第二消息。
作为一个实施例,发射器416(包括天线420),发射处理器412和控制器/处理器440被用于本申请中发送所述第一配置消息。
作为一个实施例,发射器416(包括天线420),发射处理器412和控制器/处理器440被用于本申请中发送所述第一条件重配置。
作为一个实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于本申请中接收所述第一消息。
作为一个实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于本申请 中接收所述第一信号。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。附图5中,U01对应本申请的第一节点,N02对应本申请的第二节点,特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序,其中F51和F52内的步骤是可选的。
对于 第一节点U01,在步骤S5101中接收第一条件重配置;在步骤S5102中接收第二消息;在步骤S5103中接收第一配置消息;在步骤S5104中发送第一消息;在步骤S5105中接收第一信令;在步骤S5106中发送第一信号。
对于 第二节点N02,在步骤S5201中发送第一条件重配置;在步骤S5202中发送第二消息;在步骤S5203中发送第一配置消息;在步骤S5204中接收第一消息;在步骤S5205中发送第一信令;在步骤S5206中接收第一信号。
在实施例5中,所述第一配置消息用于配置第一计时器;所述第一消息被用于确定第一时间窗集合,所述第一时间窗集合包括至少一个时间窗;所述第一消息被用于请求在所述第一时间窗集合中停止针对所述第一信令的发送者的无线发送;所述第一信令被用于指示同意所述第一消息的请求;所述第一计时器的开始距离第一时刻的时间长度超过所述第一计时器的过期值,所述第一计时器的所述开始在所述第一时刻之前;所述第一信令被用于确定在第二时间窗集合中放弃执行第一事件,基于所述第一信令未被接收到的假设下所述第一计时器的过期被用于触发所述第一事件,所述第二时间窗集合包括第二时刻与所述第一时刻之间的时域资源,所述第二时刻在所述第一计时器的所述开始与所述第一时刻之间并且距离所述第一计时器的所述开始的时间长度不小于所述第一计时器的所述过期值。
作为一个实施例,所述第一节点U01是一个UE。
作为一个实施例,所述第一节点U01是一个中继。
作为一个实施例,所述第二节点N02是一个UE。
作为一个实施例,所述第二节点N02是一个基站。
作为一个实施例,所述第二节点N02是一个卫星。
作为一个实施例,所述第二节点N02是NTN。
作为一个实施例,所述第二节点N02是TN。
作为一个实施例,所述第二节点N02是所述第一节点U01的服务小区。
作为一个实施例,所述第二节点N02是所述第一节点U01的小区组。
作为一个实施例,所述第二节点N02是所述第一节点U01的主服务小区(PCell)。
作为一个实施例,所述第二节点N02是所述第一节点U01的副服务小区(SCell)。
作为一个实施例,所述第二节点N02是所述第一节点U01的MCG。
作为一个实施例,所述第二节点N02是所述第一节点U01的SCG。
作为一个实施例,所述第二节点N02是所述第一节点U01的SpCell。
作为一个实施例,所述第二节点N02与所述第一节点U01通信的接口包括Uu。
作为一个实施例,所述第二节点N02与所述第一节点U01通信的接口包括PC5。
作为一个实施例,所述第二节点N02是所述第一节点U01的源小区(Source Cell)或目的小区(Target Cell)。
作为一个实施例,所述第一节点U01与所述第二节点N02之间的通信接口是Uu接口。
作为一个实施例,所述第一节点U01与所述第二节点N02之间的通信接口是PC5接口。
作为一个实施例,所述第一节点U01拥有两个SIM卡,包括第一SIM卡和第二SIM卡。
作为一个实施例,所述第一SIM卡是针对所述第二节点N02的SIM卡;所述第二SIM卡是针对所述第二节点N02以外的节点和网络的SIM卡。
作为一个实施例,所述第一SIM卡是所述第二节点N02或所述第二节点N02的网络的SIM卡;所述第二SIM卡是所述第二节点N02以外的节点或所述第二节点N02的网络的以外的网络的SIM卡。
作为一个实施例,所述第二节点N02是所述第一信令的发送者。
作为一个实施例,所述第一节点U01与所述N02之间存在RRC链接。
作为一个实施例,所述第一节点U01在所述第一时间窗集合内维持与所述第二节点N02之间的RRC连接态。
作为一个实施例,所述第二节点N02通过PC5接口发送所述第一信令。
作为一个实施例,所述第二节点N02通过Uu接口发送所述第一信令。
作为一个实施例,所述第一条件重配置包括RRC消息。
作为一个实施例,所述第一条件重配置包括RRCReconfiguration消息。
作为一个实施例,所述第一条件重配置包括RRCReconfiguration消息中的至少部分域。
作为一个实施例,所述第一条件重配置包括RRCConnectionReconfiguration消息中的至少部分域。
作为一个实施例,所述第一条件重配置包括RRCReconfigurationSidelink消息中的至少部分域。
作为一个实施例,所述第一条件重配置包括RRCSetup中的至少部分域。
作为一个实施例,所述第一条件重配置包括RRCResume中的至少部分域。
作为一个实施例,所述第一条件重配置包括RRCConnectionSetup中的至少部分域。
作为一个实施例,所述第一条件重配置包括RRCConnectionResume中的至少部分域。
作为一个实施例,所述第一条件重配置包括RRCConnectionResume中的至少部分域。
作为一个实施例,所述第一条件重配置包括SIB中的至少部分域。
作为一个实施例,所述第一条件重配置包括ConditionalReconfiguration。
作为一个实施例,所述第一条件重配置包括ConditionalReconfiguration中的至少部分域。
作为一个实施例,所述第一条件重配置包括condRRCReconfig中的至少部分域。
作为一个实施例,所述第一节点U01,在所述第一时间窗集合内,放弃评估所述第一条件重配置的执行条件,或者,放弃执行所述第一条件重配置。
作为该实施例的一个子实施例,所述第一条件重配置由所述第一条件重配置的身份标识。
作为该实施例的一个子实施例,所述第一条件重配置包括所述第一条件重配置的评估(Evaluate)条件。
作为该实施例的一个子实施例,所述第一条件重配置包括所述第一条件重配置的执行(execute)条件。
作为该实施例的一个子实施例,所述第一条件重配置的执行条件condExecutionCond。
作为该实施例的一个子实施例,所述行为放弃评估所述第一条件重配置的执行条件包括认为所述第一条件重配置的执行条件不被满足。
作为该实施例的一个子实施例,所述行为放弃评估所述第一条件重配置的执行条件包括不评估所述第一条件重配置的执行条件是否被满足。
作为该实施例的一个子实施例,所述行为放弃执行所述第一条件重配置包括,评估所述第一条件重配置的执行条件,但无论所述第一条件重配置的执行条件是否被满足,都不执行所述第一条件重配置。
作为该实施例的一个子实施例,所述行为放弃执行所述第一条件重配置包括,放弃发起所述第一条件重配置的执行。
作为该实施例的一个子实施例,所述第一条件重配置的执行条件包括所述第一测量结果是否满足给定值;所述第一信令的发送者指示所述给定值。
作为一个实施例,所述第二消息包括第一控制计时器,所述第二消息被用于指示,当所述第一控制计时器处于停止状态时所述第一节点U01被允许发送所述第一消息。
作为一个实施例,所述第二消息包括第一控制计时器,所述第二消息被用于指示,当所述第一控制计时器处于运行状态时所述第一节点U01被禁止发送所述第一消息。
作为一个实施例,所述第一控制计时器包括{T304,T310,T312,T316,触发L2链路身份更新的计时器,触发保持活跃(Keep Alive)的计时器}中的至少之一。
作为一个实施例,当所述第一节点U01正在执行第三事件时,所述第一节点U01被禁止发送所述第一消息。
作为一个实施例,当所述第一节点U01没有正在执行第三事件时,所述第一节点U01才被允许发送所 述第一消息。
作为一个实施例,所述第一节点接收第三消息,所述第三消息指示,当所述第一节点U01正在执行第三事件时,所述第一节点U01被禁止发送所述第一消息。
作为一个实施例,所述第三事件包括接收到第一请求消息,尚未发送用于反馈所述第一请求消息的第一反馈消息。
作为该实施例的一个子实施例,所述第一请求消息包括RRCReconfiguration,所述第一反馈消息包括RRCReconfigurationComplete。
作为该实施例的一个子实施例,所述第一请求消息包括RRCConnectionReconfiguration,所述第一反馈消息包括RRCConnectionReconfigurationComplete。
作为该实施例的一个子实施例,所述第一请求消息包括SecurityModeCommand,所述第一反馈消息包括SecurityModeComplete。
作为一个实施例,所述第三事件包括发送了第二请求消息,尚未接收到用于反馈所述第二请求消息的第二反馈消息。
作为该实施例的一个子实施例,所述第二请求消息包括RRCSetupRequest,所述第二反馈消息包括RRCSetup。
作为该实施例的一个子实施例,所述第二请求消息包括RRCResumeRequest,所述第二反馈消息包括RRCResume。
作为该实施例的一个子实施例,所述第二请求消息包括RRCReestablishmentRequest,所述第二反馈消息包括RRCReestablishment。
作为该实施例的一个子实施例,所述第二请求消息包括MCGFailureInformation,所述第二反馈消息包括RRCReconfiguration。
作为该实施例的一个子实施例,所述第二请求消息包括SCGFailureInformation,所述第二反馈消息包括RRCReconfiguration。
作为该实施例的一个子实施例,所述第二请求消息包括ULInformationTransfer,所述第二反馈消息包括RRCReconfiguration。
作为该实施例的一个子实施例,所述第二请求消息包括REGISTRATION REQUEST,所述第二反馈消息包括REGISTRATION。
作为该实施例的一个子实施例,所述第二请求消息包括De-REGISTRATION REQUEST,所述第二反馈消息包括De-REGISTRATION。
作为一个实施例,所述第三事件包括发生无线链路失败。
作为一个实施例,所述第三事件包括正在切换。
作为一个实施例,所述第三事件包括发生MCG失败。
作为一个实施例,所述第三事件包括正在执行HARQ重传。
作为一个实施例,所述第三事件包括正在执行波束切换。
作为一个实施例,所述第三事件包括发生波束失败。
作为一个实施例,所述第三事件包括正在执行BWP切换或改变。
作为一个实施例,所述第三事件是可配置的,所述第一信令的发送者配置所述第三事件。
作为一个实施例,所述第一配置消息包括SIB。
作为一个实施例,所述第一配置消息包括RRCReconfiguration。
作为一个实施例,所述第一消息包括UEAssistanceInformation;所述第一信令包括RRCReconfiguration。
作为该实施例的一个子实施例,所述第一节点U01在所述第一时间窗集合结束后针对所述第二节点N02发送RRCReconfigurationComplete消息。
作为该实施例的一个子实施例,所述第一节点U01在所述第一时间窗集合尚未结束时针对所述第二节点N02发送RRCReconfigurationComplete消息,在发送所述RRCReconfigurationComplete消息之前,所述第一节点发起随机接入过程。
作为该实施例的一个子实施例,所述第一节点U01在所述第一时间窗集合尚未结束时针对所述第二节点N02发送RRCReconfigurationComplete消息,在发送所述RRCReconfigurationComplete消息之前,所述第一节点发起随机接入过程,所述随机接入过程使用所述第一信令所指示的基于非竞争的随机接入资源。
作为该实施例的一个子实施例,所述第一节点U01在所述第一时间窗集合尚未结束时针对所述第二节点N02发送RRCReconfigurationComplete消息,在发送所述RRCReconfigurationComplete消息之前,所述第一节点发送第一信号,所述第一信号包括随机接入信号。
作为一个实施例,所述第一配置消息包括第三计时器,所述第三计时器在所述第一时间窗集合内过期;作为所述第三计时器过期的响应,所述第一发射机,在所述第一时间窗集合内针对所述第一信令的发送者发送第一信号。
作为该实施例的一个子实施例,所述第三计时器包括{T304,T310,T312,T321,T322,T380,T316,sCellDeactivationTimer,beamFailureRecoveryTimer,searchSpaceSwitchTimer,bwp-InactivityTimer,periodicBSR-Timer,phr-PeriodicTimer,lbt-FailureDetectionTimer,触发周期性CSI上报的计时器,dataInactivityTimer,触发L2链路身份更新的计时器,触发保持活跃(Keep Alive)的计时器,PDCP的discardTimer,t-Reassembly}中的至少之一。
作为该实施例的一个子实施例,所述第三计时器包括{T304,T310,T321,T322,T380,T316,periodicBSR-Timer,触发周期性CSI上报的计时器,dataInactivityTimer,触发L2链路身份更新的计时器,触发保持活跃(Keep Alive)的计时器}中的至少之一。
作为一个实施例,以上方法的好处在于,当UE从一个SIM卡的网络离开去另一个网络通信的过程中,如果遇到与原网络有关的紧迫情况,UE仍然回到原网络进行处理,避免了与原网络的中断。
作为一个实施例,所述第一信号包括随机接入信号。
作为一个实施例,所述第一信号包括Preamble(前导)。
作为一个实施例,所述第一信号包括msg1(消息1)。
作为一个实施例,所述第一信号包括msgA(消息A)。
作为一个实施例,所述第一信号包括SR(Scheduling Request,调度请求)。
作为一个实施例,所述第一消息指示所述第一节点U01的能力,或者所述第一节点发送第一消息以外的消息指示所述第一节点U01的能力。
作为一个实施例,所述第一消息包括UECapabilityInformation中的至少部分域。
作为一个实施例,所述第一消息指示所述第一节点U01是否可以以上报的能力在所述第一时间窗集合内接收所述第二节点N02的无线信号。
作为该实施例的一个子实施例,所述上报的所述能力,包括UE-NR-Capability中的内容。
作为该实施例的一个子实施例,所述上报的所述能力,指的是所述第二节点N02可以认为所述第一节点在所述第一时间窗集合内具有继续接收所述第二节点N02所发送的无线信号的能力。
作为该实施例的一个子实施例,所述上报的所述能力,指的是所述第二节点N02无需改变调度策略。
作为该实施例的一个子实施例,所述上报的所述能力,指的是所述第二节点N02无需分配更多的时频资源给所述第一节点U01。
作为一个实施例,所述第一消息指示所述第一节点U01可以以之前上报的能力在所述第一时间窗集合内接收所述第二节点N02所发送的无线信号。
作为该实施例的一个子实施例,所述上报的所述能力,包括UECapabilityInformation所指示的能力。
作为一个实施例,所述第一消息指示所述第一节点U01是否可以在所述第一时间窗集合内接收所述第二节点N02所发送的第二类目标信号。
作为一个实施例,所述第一消息指示所述第一节点U01在所述第一时间窗集合内和在所述第一时间窗集合外的能力相同。
作为一个实施例,所述第一消息指示所述第二节点N02可以认为所述第一节点U01在所述第一时间窗集合内的能力与在所述第一时间窗集合外的能力相同。
作为一个实施例,所述第一消息指示所述第一能力集合,所述第一能力集合包括所述第一节点U01的 无线能力,所述第一能力集合是所述第一节点U01在所述第一时间窗集合内的能力。
作为该实施例的一个子实施例,所述第一节点U01在所述第一时间窗集合内的能力与在所述第一时间窗集合外的能力不相同。
作为该实施例的一个子实施例,所述第一能力集合至少包括一项无线能力。
作为该实施例的一个子实施例,所述第一能力集合至少包括相对于之前上报的变化了的无线能力。
作为该实施例的一个子实施例,所述第一能力集合至少包括相对于UECapabilityInformation所包括的能力变化了的无线能力。
作为一个实施例,所述第一消息指示所述第一节点U01在所述第一时间窗集合内相当于一个RedCap(Reduced Capability,能力降低)UE。
作为一个实施例,所述第一消息指示所述第一节点U01在所述第一时间窗集合内相当于某一种RedCap(Reduced Capability,能力降低)UE。
作为一个实施例,所述第二类目标信号包括承载广播业务的无线信号。
作为一个实施例,所述第二类目标信号包括承载组播业务的无线信号。
作为一个实施例,所述第二类目标信号包括承载DCI的无线信号。
作为一个实施例,所述第二类目标信号包括承载部分DCI格式的无线信号。
作为一个实施例,所述第二类目标信号包括寻呼消息。
作为一个实施例,所述第二类目标信号包括RRCRelease。
作为一个实施例,所述第二类目标信号包括RRCConnectionRelease。
作为一个实施例,所述第二类目标信号包括SIB。
作为一个实施例,所述第二类目标信号包括ETWS(Earthquake and Tsunami Warning System,地震海啸预警系统)信号。
作为一个实施例,所述第二类目标信号包括所述第二节点N02发送的任何无线信号。
作为一个实施例,所述第二类目标信号包括任何第二节点N02发送的与特定CSI-RS关联的无线信号。
作为一个实施例,所述第一节点U01根据所述第二节点N02所指示的候选CSI-RS确定所述特定的CSI-RS。
作为一个实施例,所述第二类目标信号包括任何所述第二节点N02发送的与特定SSB关联的无线信号。
作为一个实施例,所述第一节点U01根据所述第二节点N02所指示的候选SSB确定所述特定的SSB。
作为一个实施例,所述第一配置消息包括所述第二消息。
作为一个实施例,所述第二消息是所述第一配置消息的信元。
作为一个实施例,所述句子针对所述第二节点N02发送第一信号包括:使用所述第二节点N02所指示的资源发送所述第一信号。
作为一个实施例,所述句子针对所述第二节点N02发送第一信号包括:所述第一信号占用所述第二节点N02的资源。
作为一个实施例,所述句子针对所述第二节点N02发送第一信号包括:所述第一信号使用所述第二节点指定的随机接入序列。
实施例6
实施例6示例了根据本发明的一个实施例的第一时间窗集合的示意图,如附图6所示。
在实施例6中,所述第一时间窗集合只包括第一时间窗;第t00时刻是所述第一时间窗起始以前的时刻;第t01时刻是所述第一时间窗起始的时刻;第t02时刻和第t05时刻是所述第一时间窗起始后到结束前的时刻;第t03时刻是所述第一时间窗的结束时刻;第t04时刻是所述第一时间窗结束后的时刻。需要注意的是,附图6中的第t00时刻,第t01时刻,第t02时刻,第t03时刻,第t04时刻之间的几何距离并不暗示确切的时间间隔,例如在附图6中,t03时刻和t04时刻之间的距离小于t02时刻和t03时刻之间的距离并不意味着t02时刻和t03时刻之间的时间间隔一定大于t03时刻和t04时刻之间的时间间隔。
作为一个实施例,所述第一消息的发送时刻是所述第t00时刻。
作为一个实施例,所述第一消息的发送时刻是所述第t01时刻。
作为一个实施例,所述第一信令的接收时刻是所述第t00时刻。
作为一个实施例,所述第一信令的接收时刻是所述第t01时刻。
作为一个实施例,所述第一时间窗包括T个时间单位,所述时间单位包括{毫秒,秒,OFDM符号,时隙,迷你时隙,子帧,帧,超帧,分钟,DRX(Discontinuous Reception,非连续接收)周期,寻呼周期,修改周期,系统消息周期}中的至少之一。
作为一个实施例,所述第一计时器的开始包括{所述t00时刻,所述t01时刻,所述t02时刻,所述t05时刻}中的至少之一。
作为一个实施例,所述第一计时器的开始是{所述t00时刻,所述t01时刻,所述t02时刻,所述t05时刻}中的一个。
作为一个实施例,所述第一时刻包括{所述第t02时刻,所述t05时刻,所述第t03时刻,所述第t04时刻}中的至少之一。
作为一个实施例,所述第一时刻是{所述第t02时刻,所述t05时刻,所述第t03时刻,所述第t04时刻}中的一个。
作为一个实施例,所述第一时刻是{所述第t02时刻,所述t05时刻,所述第t03时刻}中的一个。
作为一个实施例,如果所述第一计时器的起始于所述第t01时刻,则所述第一时刻是{所述第t02时刻,所述t05时刻,所述第t03时刻,所述第t04时刻}中的一个。
作为一个实施例,如果所述第一计时器的起始于所述第t02时刻,则所述第一时刻是{所述第t03时刻,所述第t04时刻}中的一个。
作为一个实施例,如果所述第一计时器的起始于所述第t02时刻,则所述第一时刻是所述第t03时刻,
作为该实施例的一个子实施例,所述第t02时刻与所述第t03时刻之间的时间间隔大于所述第一计时器的过期值。
作为一个实施例,如果所述第一计时器的起始于所述第t02时刻,则所述第一时刻是所述第t04时刻,
作为该实施例的一个子实施例,所述第t02时刻与所述第t04时刻之间的时间间隔大于所述第一计时器的过期值。
作为一个实施例,所述第一计时器的起始以后的所述第一计时器的过期值时刻在所述第一时刻之前。
作为一个实施例,基于假设所述第一计时器启动后不被干预,则所述第一计时器的过期时刻在所述第一时刻之前。
作为该实施例的一个子实施例,如果所述第一计时器起始于所述t02时刻且所述第一时刻为第t03时刻,假设所述第一计时器启动后不被干预,则所述第一计时器的过期时间在所述第t02时刻和所述第t03时刻之间。
作为一个实施例,所述第一计时器的起始时刻之后的所述第一计时器的过期值时刻是所述第二时刻。
作为一个实施例,所述第一计时器起始于所述第t02时刻,假设所述第一计时器起始后不被暂停或重置或修改过期值,则所述第一计时器的过期时刻是所述第t02时刻,所述第二时刻是所述第t05时刻或所述第t05时刻之后且在第一时刻之前的时刻。
作为该实施例的一个子实施例,所述第一时刻是所述第t03时刻,所述第二时刻是所述第t05时刻或所述第t05时刻与所述第t03时刻之间的时刻。
作为一个实施例,以上方法的好处在于,当所述第一计时器可能的过期时刻在所述第一时间窗集合内时,通过以上方法可以避免所述第一节点在所述第一时间窗集合内受到所述第一计时器过期所带来的影响。
实施例7
实施例7示例了根据本发明的一个实施例的第一时间窗集合的示意图,如附图7所示。
在实施例7中,所述第一时间窗集合包括K1个时间窗,其中K1为大于1的正整数;第t10时刻是所述K1个时间窗中的第一时间窗和所述K1个时间窗中的第二时间窗之间的时刻;第t11时刻是所述K1个时间窗中的第二时间窗内的时刻;第t12时刻是所述K1个时间窗中的第K1个时间窗的起始时刻;第t13时刻和第t14时刻是所述K1个时间窗中的第K1个时间窗内的时刻;第t15时刻是所述K1个时间窗中的 第K1个时间窗的结束时刻;第t16时刻是所述K1个时间窗中的第K1个时间窗结束后的时刻。需要注意的是,附图7中的第t10时刻,第t11时刻,第t12时刻,第t13时刻,第t14时刻,第t15时刻,第t16时刻之间的几何距离并不暗示确切的时间间隔。
作为一个实施例,所述K1是无穷大。
作为一个实施例,所述K1是有限的。
作为一个实施例,所述K1个时间窗之间的间隔是等长的。
作为一个实施例,所述K1个时间窗之间的间隔是不等长的。
作为一个实施例,所述K1个时间窗之间的间隔不小于一个时隙。
作为一个实施例,所述K1个时间窗中的所有时间窗的长度都相等。
作为一个实施例,所述K1个时间窗中存在至少时间窗的长度不相等。
作为一个实施例,所述K1个时间窗之间的间隔大于所述K1个时间窗中的最短的时间窗的长度。
作为一个实施例,所述K1个时间窗的长度的单位是时间。
作为一个实施例,所述K1个时间窗的时间窗的长度不小于一个时隙。
作为一个实施例,所述第一计时器的可能的起始时刻包括{所述第t10时刻,所述第t11时刻,所述第t12时刻,所述第t13时刻,所述第t14时刻}中的至少之一;所述第一时刻的取值包括{所述第t11时刻,所述第t12时刻,所述第t13时刻,所述第t14时刻,所述第t15时刻,所述第t15时刻}中的至少之一;且所述第一计时器的起始时刻早于所述第一时刻。
作为一个实施例,所述第一计时器的起始时刻是第t10时刻,假设所述第一计时器不被干预,所述第一计时器的预计过期时刻是{所述第t11时刻,所述第t12时刻,所述第t13时刻,所述第t14时刻}中的一个,所述第二时刻是{所述第t11时刻,所述第t12时刻,所述第t13时刻,所述第t14时刻}中的一个,所述第一时刻是{所述第t12时刻,所述第t13时刻,所述第t14时刻,所述第t15时刻,所述第16时刻}中的一个,且所述第二时刻早于所述第一时刻,且所述第二时刻不早于所述第一计时器在不被干预情况下的预计的过期时刻。
作为该实施例的一个子实施例,所述第一计时器的预计过期时刻是第t13时刻;所述第二时刻是第t14时刻;所述第一时刻是第15时刻。
作为该实施例的一个子实施例,所述第一时刻是所述K1个时间窗的结束时刻;所述第二时刻是所述第一计时器的起始时刻后的所述第一计时器的过期值时刻。
作为一个实施例,所述第一计时器的起始时刻是第t13时刻,所述第t13时刻与所述第t14时刻之间的时间间隔是所述第一计时器的过期值,所述第二时刻是所述第t14时刻,所述第一时刻是所述第t15时刻。
作为一个实施例,所述第一信令被用于指示所述K1个时间窗中的第一个时间窗的所述起始时刻。
作为一个实施例,所述第一信令的接收时刻或所述第一信令的接收时刻的下一子帧是所述K1个时间窗中的第一个时间窗的所述起始时刻。
作为一个实施例,所述第一信令所述K1个时间窗中的时间窗之间的间隔。
作为一个实施例,所述第一信令所述K1个时间窗中的时间窗的长度。
作为一个实施例,所述第一信令指示所述K1。
作为一个实施例,所述第一消息包括所述K1。
实施例8
实施例8示例了根据本发明的一个实施例的第二时间窗集合的示意图,如附图8所示。
作为一个实施例,所述第二时间窗集合至少包括一个时间窗,所述第二时间窗集合所包括的时间窗的长度等于或大于一个时隙。
作为一个实施例,所述第二时间窗集合至少包括一个时隙的时域资源。
作为一个实施例,所述第二时间窗集合是所述第一时间窗集合的子集。
作为一个实施例,附图8仅用于示出所述第二时间窗集合的起始时刻和结束时刻。
作为一个实施例,所述第二时间窗集合等于T1个时间单位,所述时间单位包括{毫秒,秒,OFDM符号, 时隙,迷你时隙,子帧,帧,超帧,分钟,DRX周期,寻呼周期,修改周期,系统消息周期}中的一个。
作为该实施例的一个子实施例,所述T1是正实数。
作为该实施例的一个子实施例,所述T1是正整数。
作为一个实施例,附图8中的第t20时刻是所述第二时间窗集合开始前的时刻;附图8中的第二时刻是所述第二时间窗集合的起始时刻;附图8中的第t21时刻是所述第二时间窗集合内的一个时刻;附图8中的第一时刻是所述第二时间窗集合的结束时刻;附图8中的第t22时刻是所述第二时间窗集合结束后的一个时刻。
作为一个实施例,所述第一计时器的起始是所述第t20时刻。
作为一个实施例,所述第一计时器的起始是所述第t20时刻;所述第t20时刻到所述第二时刻之间的时间间隔是所述第一计时器的过期值。
作为一个实施例,所述第一计时器的起始是所述第t20时刻;假设没有干预,所述第一计时器预计的过期时间是所述第二时刻。
作为一个实施例,所述第一时间窗集合的结束时间是所述第一时刻。
作为一个实施例,所述第一时间窗集合的结束时间是所述第t21时刻。
作为一个实施例,所述第一时间窗集合的结束时间是所述第t22时刻。
实施例9
实施例9示例了根据本发明的一个实施例的第三时间窗集合的示意图,如附图9所示。
作为一个实施例,所述第三时间窗集合至少包括一个时间窗,所述第三时间窗集合所包括的时间窗的长度至少大于一个时隙。
作为一个实施例,所述第三时间窗集合至少包括一个时隙的时域资源。
作为一个实施例,所述第三时间窗集合是所述第一时间窗集合的子集。
作为一个实施例,所述第三时间窗集合与所述第一时间窗集合的交集补集不为空。
作为一个实施例,所述第三时间窗集合与所述第一时间窗集合在时域上正交。
作为一个实施例,所述第三时间窗集合包括所述第二时间窗集合。
作为一个实施例,所述第一时间窗的结束时间是所述第三时间窗集合的起始时间。
作为一个实施例,附图9仅用于示出所述第三时间窗集合的起始时刻和结束时刻。
作为一个实施例,所述第三时间窗集合等于T2个时间单位,所述时间单位包括{毫秒,秒,OFDM符号,时隙,迷你时隙,子帧,帧,超帧,分钟,DRX周期,寻呼周期,修改周期,系统消息周期}中的一个。
作为该实施例的一个子实施例,所述T2是正实数。
作为该实施例的一个子实施例,所述T2是正整数。
作为一个实施例,附图9中的第t30时刻是所述第三时间窗集合开始前的时刻;附图9中的第一时刻是所述第三时间窗集合的起始时刻;附图9中的第t31时刻是所述第三时间窗集合内的一个时刻;附图9中的第三时刻是所述第三时间窗集合的结束时刻;附图9中的第t32时刻是所述第三时间窗集合结束后的一个时刻。
作为一个实施例,所述第一配置消息指示第二计时器和第一门限值,所述第二计时器的开始距离所述第一时刻的时间长度超过所述第二计时器的过期值与所述第一门限值的差,所述第二计时器的所述开始在所述第一时刻之前;所述第一门限值为正数。
所述第一信令被用于确定在第三时间窗集合中放弃执行第二事件,基于所述第一信令未被接收到的假设下所述第二计时器的过期被用于触发所述第二事件,所述第三时间窗集合包括所述第一时刻与第三时刻之间的时域资源;所述第三时刻不早于所述第一时刻,且所述第三时刻不晚于所述第一过期时刻;所述第一过期时刻是所述第二计时器的起始后的所述第二计时器的过期值所确定的时刻。
作为一个实施例,所述第二计时器包括{T304,T310,T312,T321,T322,T380,T316,sCellDeactivationTimer,beamFailureRecoveryTimer,searchSpaceSwitchTimer,bwp-InactivityTimer,periodicBSR-Timer,phr-PeriodicTimer,lbt-FailureDetectionTimer,触发周期性CSI上报的计时器,dataInactivityTimer,触发L2链路身份更新的计时器,触发保持活跃(Keep Alive)的计时器,PDCP的 discardTimer,t-Reassembly}中的至少之一。
作为一个实施例,所述第一门限值包括T3个时间单位,所述时间单位包括{毫秒,秒,OFDM符号,时隙,迷你时隙,子帧,帧,超帧,分钟,DRX周期,寻呼周期,修改周期,系统消息周期}中的一个。
作为该实施例的一个子实施例,所述T3是正实数。
作为该实施例的一个子实施例,所述T3是正整数。
作为一个实施例,所述第一信令的发送者配置所述第二计时器的过期值。
作为一个实施例,所述第一信令用于配置所述第二计时器的过期值。
作为一个实施例,所述第二计时器的过期值等于所述第一计时器的过期值。
作为一个实施例,所述第二计时器的过期值大于所述第一计时器的过期值。
作为一个实施例,所述句子所述第一过期时刻是所述第二计时器的起始后的所述第二计时器的过期值所确定的时刻包括以下含义:假设所述第二计时器启动后未受到任何干预,所述第二计时器的过期时刻是所述第一过期时刻。
作为一个实施例,所述句子所述第一过期时刻是所述第二计时器的起始后的所述第二计时器的过期值所确定的时刻包括以下含义:假设所述第二计时器启动后未被重置且未被暂停且未被延长,所述第二计时器的过期时刻是所述第一过期时刻。
作为一个实施例,所述句子所述第一过期时刻是所述第二计时器的起始后的所述第二计时器的过期值所确定的时刻包括以下含义:所述第二计时器的起始的时刻与所述第一过期时刻之间的时间间隔是所述第二计时器的过期值。
作为一个实施例,所述第一过期时刻是所述第三时刻。
作为一个实施例,所述第一过期时刻是所述第t32时刻。
作为一个实施例,所述第一时间窗集合的结束时间早于所述第三时刻。
作为一个实施例,所述第一时间窗集合的结束时间是所述第一时刻。
作为一个实施例,所述第一信令显式的指示在第三时间窗集合中放弃执行第二事件。
作为一个实施例,所述第二事件包括发起随机接入过程。
作为以上实施例的一个子实施例,所述随机接入过程包括发送随机接入信号。
作为以上实施例的一个子实施例,所述随机接入过程使用基于竞争(contention based)的接入方式。
作为以上实施例的一个子实施例,所述随机接入过程使用基于非竞争(contention free)的接入方式。
作为以上实施例的一个子实施例,所述随机接入过程使用非竞争的接入方式,所述第一信令指示所述非竞争的接入方式所使用时频资源。
作为一个实施例,所述第二事件包括发送目标信号。
作为一个实施例,所述第二事件包括无线链路失败所导致的无线链路重建。
作为一个实施例,所述第二事件包括无线链路失败所导致的无线链路重配置。
作为一个实施例,所述第二事件包括无线链路失败所导致的切换。
作为一个实施例,所述第二事件包括执行条件重配置。
作为一个实施例,所述第二事件包括主服务小区组(MCG)失败。
作为以上实施例的一个子实施例,所述主服务小区组(MCG)失败被用于触发发送MCGfailureInformation。
作为一个实施例,所述第二事件包括从服务小区组(SCG)失败。
作为以上实施例的一个子实施例,所述从服务小区组(MCG)失败被用于触发发送SCGfailureInformation。
作为一个实施例,所述第二事件包括波束失败恢复。
作为一个实施例,所述第二事件包括发送第一报告。
作为一个实施例,所述第一报告包括测量报告。
作为一个实施例,所述第二事件包括执行第一主测量。
作为一个实施例,所述第一主测量包括测量SSB(Synchronization Signal Block,同步信号块)。
作为一个实施例,所述第一主测量包括测量CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)。
作为一个实施例,所述第一主测量包括空闲态测量。
作为一个实施例,所述第一主测量包括CSI测量。
作为一个实施例,所述第一信令用于指示所述第一主测量所测量的信号。
作为一个实施例,所述第一报告包括链路失败报告。
作为一个实施例,所述第一报告包括持续的LBT(Listen-Before-Talk,听再说)失败报告。
作为一个实施例,所述第二事件包括切换到确实BWP(bandwidth part,带宽部分)。
作为一个实施例,所述第二事件包括应用缺省的搜索空间(search space)。
作为一个实施例,所述第二事件包括进入RRC空闲态或RRC非活跃态。
作为一个实施例,所述第二事件包括失步。
作为一个实施例,所述第二事件包括执行条件重配置。
作为一个实施例,所述第二事件包括接收第二目标信号。
作为一个实施例,假设所述第一信令未被接收到,所述第二计时器的过期将触发所述第二事件。
作为一个实施例,假设所述第一消息未被发送或未被所述第一信令的发送者接收到,所述第二计时器的过期将触发所述第二事件。
作为一个实施例,所述第一信令被用于确定在第三时间窗集合中放弃执行第二事件。
作为一个实施例,所述第一信令指示所述第一门限值,所述第二计时器的开始距离所述第一时刻的时间长度超过所述第二计时器的过期值与所述第一门限值的差,则所述第一节点在第三时间窗集合中放弃执行所述第二事件。
作为一个实施例,所述第二计时器的起始的时刻是所述第t30时刻,所述第t30时刻与所述第t32时刻之间的时间间隔是所述第一门限值;所述第t30时刻与所述第三时刻之间的时间间隔是所述第二计时器的过期值,则所述第一节点在第三时间窗集合中放弃执行所述第二事件。
作为一个实施例,所述行为放弃执行所述第二事件包括:所述第一节点终止所述第二事件的执行。
作为一个实施例,所述行为放弃执行所述第二事件包括:所述第一节点不启动所述第二事件的执行。
作为一个实施例,所述行为放弃执行所述第二事件包括:所述第一节点停止所述第二计时器。
作为一个实施例,所述行为放弃执行所述第二事件包括:所述第一节点暂停或暂停更新所述第二计时器。
作为一个实施例,所述行为放弃执行所述第二事件包括:所述第一节点重置所述第二计时器。
作为一个实施例,所述行为放弃执行所述第二事件包括:所述第一节点重启所述第二计时器。
作为一个实施例,所述行为放弃执行所述第二事件包括:所述第一节点忽略所述第二计时器的过期。
作为一个实施例,所述行为放弃执行所述第二事件包括:所述第一节点延长所述第二计时器。
作为一个实施例,所述行为放弃执行所述第二事件包括:所述第一节点将所述第二事件加入到所述第一等待列表中,且在所述第三时间窗集合内所述第二事件没有被执行。
实施例10
实施例10示例了根据本发明的一个实施例的第一消息被用于确定第一时间窗集合的示意图,如附图10所示。
作为一个实施例,所述第一时间窗集合包括一个时间窗。
作为一个实施例,所述第一时间窗集合包括K1个时间窗,其中K1为大于1的正整数。
作为一个实施例,所述第一消息包括所述第一时间窗集合。
作为该实施例的一个子实施例,所述第一消息指示所述K1。
作为该实施例的一个子实施例,所述第一消息指示所述第一时间窗集合中所包括的每个时间窗的长度。
作为该实施例的一个子实施例,所述第一消息指示所述第一时间窗集合中所包括的时间窗之间的时间间隔。
作为该实施例的一个子实施例,所述第一消息指示所述第一时间窗集合中所包括的时间窗的总的长度。
作为该实施例的一个子实施例,所述第一消息指示所述第一时间窗集合中所包括的时间窗的最小长度。
作为该实施例的一个子实施例,所述第一消息指示所述第一时间窗集合中所包括的时间窗之间的长度的比例关系。
作为该实施例的一个子实施例,所述第一消息指示所述第一节点相对的运动轨迹,所述运动轨迹用于确定所述第一时间窗集合。
作为该实施例的一个子实施例,所述第一消息指示最小传输时延,所述最小传输时延用于确定所述第一时间窗集合的长度。
作为该实施例的一个子实施例,所述第一消息指示最大传输时延,所述最小传输时延用于确定所述第一时间窗集合的长度。
作为该实施例的一个子实施例,所述第一消息指示所述请求在所述第一时间窗集合中停止针对所述第一信令的发送者的无线发送的原因,所述原因被用于确定所需的执行事件,所述所需的执行事件被用于确定所述第一时间窗。
作为该实施例的一个子实施例,所述第一消息指示所述第一时间窗集合的起始时刻。
作为一个实施例,所述第一消息触发所述第一信令,所述第一信令指示所述第一时间窗集合。
作为该实施例的一个子实施例,所述第一信令指示所述K1。
作为该实施例的一个子实施例,所述第一信令指示所述第一时间窗集合中所包括的每个时间窗的长度。
作为该实施例的一个子实施例,所述第一信令指示所述第一时间窗集合中所包括的时间窗之间的时间间隔。
作为该实施例的一个子实施例,所述第一信令指示所述第一时间窗集合中所包括的时间窗的总的长度。
作为该实施例的一个子实施例,所述第一信令指示所述第一时间窗集合中所包括的时间窗的最小长度。
作为该实施例的一个子实施例,所述第一信令指示所述第一时间窗集合中所包括的时间窗之间的长度的比例关系。
作为该实施例的一个子实施例,所述第一信令指示所述第一节点相对的运动轨迹,所述运动轨迹用于确定所述第一时间窗集合。
作为该实施例的一个子实施例,所述第一消息指示最小传输时延,所述最小传输时延用于确定所述第一时间窗集合的长度;所述第一时间窗集合的长度满足所述最小传输时延。
作为该实施例的一个子实施例,所述第一消息指示最大传输时延,所述最小传输时延用于确定所述第一时间窗集合的长度;所述第一时间窗集合的长度满足所述最大传输时延。
作为该实施例的一个子实施例,所述第一消息指示所述请求在所述第一时间窗集合中停止针对所述第一信令的发送者的无线发送的原因,所述原因被用于确定所需的执行事件,所述所需的执行事件被用于确定所述第一时间窗。
作为该实施例的一个子实施例,所述第一信令指示所述第一时间窗集合的起始时刻。
作为一个实施例,所述第一消息和所述第一信令共同被用于确定所述第一时间窗集合。
作为该实施例的一个子实施例,所述第一消息指示所述第一时间窗集合的长度,所述第一信令指示所述第一时间窗集合的起始时刻。
作为该实施例的一个子实施例,所述第一消息指示所述请求在所述第一时间窗集合中停止针对所述第一信令的发送者的无线发送的原因,所述第一信令指示所述第一时间窗集合的长度。
作为一个实施例,所述第一消息显式的指示所述第一时间窗集合。
作为一个实施例,所述第一消息触发所述第一信令,所述第一信令显式的指示所述第一时间窗集合。
实施例11
实施例11示例了根据本发明的一个实施例的第一信令被用于确定在第二时间窗集合中放弃执行第一事件的示意图,如附图11所示。
作为一个实施例,所述第一信令显式的指示在第二时间窗集合中放弃执行第一事件。
作为一个实施例,所述第一信令显式的指示在第二时间窗集合中放弃执行第一事件的条件。
作为一个实施例,所述第一信令指示所述第一计时器的更新的过期值;当所述第一计时器的开始距离第一时刻的时间长度超过所述第一计时器的过期值,但未超过所述第一计时器的所述更新的过期值时,所述第一节点,在第二时间窗集合中放弃执行第一事件。
作为一个实施例,所述第一信令指示所述第一计时器的更新的过期值;当所述第一计时器的开始距离第一时刻的时间长度超过所述第一计时器的过期值,同时超过所述第一计时器的所述更新的过期值时,所述第一节点,在第二时间窗集合中放弃执行第一事件。
作为一个实施例,所述第一信令指示所述第一计时器的更新的过期值;当所述第一计时器的开始距离第一时刻的时间长度未超过所述第一计时器的过期值,但超过所述第一计时器的所述更新的过期值时,所述第一节点,在第二时间窗集合中放弃执行第一事件。
作为一个实施例,所述第一信令指示所述第一计时器的更新的过期值;当所述第一计时器的开始距离第一时刻的时间长度超过所述第一计时器的所述更新的过期值时,所述第一节点,在第二时间窗集合中放弃执行第一事件。
作为一个实施例,所述第一信令指示所述第二时间窗集合。
作为一个实施例,所述第一信令指示第一时刻。
作为一个实施例,所述第一信令指示第二时刻。
作为一个实施例,所述第一信令指示当所述第一计时器属于第一类计时器集合时,则当所述第一计时器的开始距离第一时刻的时间长度超过所述第一计时器的过期值,且所述第一计时器的所述开始在所述第一时刻之前;所述第一信令被用于确定在第二时间窗集合中放弃执行第一事件。
作为该实施例的一个子实施例,所述第一类计时器集合包括{T304,T310,T312,T321,T322,T380,T316,sCellDeactivationTimer,beamFailureRecoveryTimer,searchSpaceSwitchTimer,bwp-InactivityTimer,periodicBSR-Timer,phr-PeriodicTimer,lbt-FailureDetectionTimer,触发周期性CSI上报的计时器,dataInactivityTimer,触发L2链路身份更新的计时器,触发保持活跃(Keep Alive)的计时器,PDCP的discardTimer,t-Reassembly}中的至少之一。
作为该实施例的一个子实施例,所述第一类计时器集合包括{T304,T310,T312,T316,触发L2链路身份更新的计时器,触发保持活跃(Keep Alive)的计时器}中的至少之一。
作为该实施例的一个子实施例,所述第一类计时器集合只包括{phr-PeriodicTimer,PDCP的discardTimer,t-Reassembly}以外的计时器。
作为该实施例的一个子实施例,所述第一类计时器集合只包括{beamFailureRecoveryTimer,searchSpaceSwitchTimer,lbt-FailureDetectionTimer}以外的计时器。
作为该实施例的一个子实施例,所述第一类计时器集合只包括{sCellDeactivationTimer}以外的计时器。
作为该实施例的一个子实施例,所述第一类计时器集合只包括{T321,T322,T380,periodicBSR-Timer}以外的计时器。
作为该实施例的一个子实施例,所述第一类计时器集合只包括{searchSpaceSwitchTimer,bwp-InactivityTimer}以外的计时器。
作为一个实施例,所述行为放弃执行所述第一事件包括:所述第一节点终止所述第一事件的执行。
作为一个实施例,所述行为放弃执行所述第一事件包括:所述第一节点不启动所述第一事件的执行。
作为一个实施例,所述行为放弃执行所述第一事件包括:所述第一节点停止所述第一计时器。
作为一个实施例,所述行为放弃执行所述第一事件包括:所述第一节点暂停或暂停更新所述第一计时器。
作为一个实施例,所述行为放弃执行所述第一事件包括:所述第一节点重置所述第一计时器。
作为一个实施例,所述行为放弃执行所述第一事件包括:所述第一节点重启所述第一计时器。
作为一个实施例,所述行为放弃执行所述第一事件包括:所述第一节点忽略所述第一计时器的过期。
作为一个实施例,所述行为放弃执行所述第一事件包括:所述第一节点延长所述第一计时器。
作为一个实施例,所述行为放弃执行所述第一事件包括:所述第一节点将所述第一事件加入到所述第一等待列表中,且在所述第二时间窗集合内所述第一事件没有被执行。
作为一个实施例,所述行为放弃执行所述第一事件包括:所述第一节点将所述第一事件加入到所述第一等待列表中,且在所述第一时间窗集合内所述第一事件没有被执行。
作为一个实施例,所述行为放弃执行所述第一事件包括:所述第一节点将所述第一事件加入到所述第一等待列表中,且在所述第一节点在所述第二时间窗集合结束以后的时间才执行所述第一等待列表中的所述第一事件。
作为一个实施例,所述行为放弃执行所述第一事件包括:所述第一节点将所述第一事件加入到所述第一等待列表中,且在所述第一节点在所述第一时间窗集合结束以后的时间才执行所述第一等待列表中的所述第一事件。
实施例12
实施例12示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图12所示。在附图12中,第一节点中的处理装置1200包括第一接收机1201和第一发射机1202。在实施例12中,
第一接收机1201,接收第一配置消息和第一信令;所述第一配置消息用于配置第一计时器;
第一发射机1202,发送第一消息;所述第一消息被用于确定第一时间窗集合,所述第一时间窗集合包括至少一个时间窗;
其中,所述第一消息被用于请求在所述第一时间窗集合中停止针对所述第一信令的发送者的无线发送;所述第一信令被用于指示同意所述第一消息的请求;所述第一计时器的开始距离第一时刻的时间长度超过所述第一计时器的过期值,所述第一计时器的所述开始在所述第一时刻之前;所述第一信令被用于确定在第二时间窗集合中放弃执行第一事件,基于所述第一信令未被接收到的假设下所述第一计时器的过期被用于触发所述第一事件,所述第二时间窗集合包括第二时刻与所述第一时刻之间的时域资源,所述第二时刻在所述第一计时器的所述开始与所述第一时刻之间并且距离所述第一计时器的所述开始的时间长度不小于所述第一计时器的所述过期值。
作为一个实施例,所述第一接收机1201,接收第二消息,所述第二消息包括第一控制计时器,所述第二消息被用于指示,当所述第一控制计时器处于停止状态时所述第一节点被允许发送所述第一消息。
作为一个实施例,所述第一配置消息指示第二计时器和第一门限值,所述第二计时器的开始距离所述第一时刻的时间长度超过所述第二计时器的过期值与所述第一门限值的差,所述第二计时器的所述开始在所述第一时刻之前;所述第一门限值为正数;
所述第一信令被用于确定在第三时间窗集合中放弃执行第二事件,基于所述第一信令未被接收到的假设下所述第二计时器的过期被用于触发所述第二事件,所述第三时间窗集合包括所述第一时刻与第三时刻之间的时域资源;所述第三时刻不早于所述第一时刻,且所述第三时刻不晚于第一过期时刻;所述第一过期时刻是所述第二计时器的起始后的所述第二计时器的过期值所确定的时刻。
作为一个实施例,所述第一配置消息包括第三计时器,所述第三计时器在所述第一时间窗集合内过期;
作为所述第三计时器过期的响应,在所述第一时间窗集合内针对所述第一信令的发送者发送第一信号。
作为一个实施例,所述第一事件包括发送第二信号;所述第二信号被用于指示第一测量结果;
所述第一接收机1201,执行第一测量;所述第一测量被用于生成所述第一测量结果;
所述行为在所述第二时间窗集合中放弃执行第一事件包括,所述第一接收机1202,放弃发送所述第二信号和丢弃所述第一测量结果。
作为一个实施例,所述第一接收机1201,接收第一条件重配置;
所述第一接收机1201,在所述第一时间窗集合内,放弃评估所述第一条件重配置的执行条件,或者, 放弃执行所述第一条件重配置。
作为一个实施例,所述行为在所述第二时间窗集合中放弃执行第一事件包括,将所述第一事件加入到第一等待列表中;
所述第一发射机1202,在所述第二时间窗集合以外的时间,执行所述第一等待列表中的所述第一事件。
作为一个实施例,所述第一节点是一个用户设备(UE)。
作为一个实施例,所述第一节点是一个支持大时延差的终端。
作为一个实施例,所述第一节点是一个支持NTN的终端。
作为一个实施例,所述第一节点是一个飞行器。
作为一个实施例,所述第一节点是一个车载终端。
作为一个实施例,所述第一节点是一个中继。
作为一个实施例,所述第一节点是一个船只。
作为一个实施例,所述第一节点是一个物联网终端。
作为一个实施例,所述第一节点是一个工业物联网的终端。
作为一个实施例,所述第一节点是一个支持低时延高可靠传输的设备。
作为一个实施例,所述第一节点是一个支持多播的节点。
作为一个实施例,所述第一接收机1201包括实施例4中的天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,或数据源467中的至少之一。
作为一个实施例,所述第一发射机1202包括实施例4中的天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,或数据源467中的至少之一。
实施例13
实施例13示例了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;如附图13所示。在附图13中,第二节点中的处理装置1300包括二发射机1301和第二接收机1302。在实施例13中,
第二发射机1301,发送第一配置消息和第一信令;所述第一配置消息用于配置第一计时器;
第二接收机1302,接收第一消息;所述第一消息被用于确定第一时间窗集合,所述第一时间窗集合包括至少一个时间窗;
其中,所述第一消息被用于请求在所述第一时间窗集合中停止针对所述二节点1300的无线发送;所述第一信令被用于指示同意所述第一消息的请求;所述第一计时器的开始距离第一时刻的时间长度超过所述第一计时器的过期值,所述第一计时器的所述开始在所述第一时刻之前;所述第一信令被所述第一消息的发送者用于确定在第二时间窗集合中放弃执行第一事件,基于所述第一信令未被接收到的假设下所述第一计时器的过期被用于触发所述第一事件,所述第二时间窗集合包括第二时刻与所述第一时刻之间的时域资源,所述第二时刻在所述第一计时器的所述开始与所述第一时刻之间并且距离所述第一计时器的所述开始的时间长度不小于所述第一计时器的所述过期值。
作为一个实施例,所述第二发射机1301,发送第二消息,所述第二消息包括第一控制计时器,所述第二消息被用于指示,当所述第一控制计时器处于停止状态时所述第一消息的发送者被允许发送所述第一消息。
作为一个实施例,所述第一配置消息指示第二计时器和第一门限值,所述第二计时器的开始距离所述第一时刻的时间长度超过所述第二计时器的过期值与所述第一门限值的差,所述第二计时器的所述开始在所述第一时刻之前;所述第一门限值为正数;
所述第一信令被所述第一消息的发送者用于确定在第三时间窗集合中放弃执行第二事件,基于所述第一信令未被接收到的假设下所述第二计时器的过期被用于触发所述第二事件,所述第三时间窗集合包括所述第一时刻与第三时刻之间的时域资源;所述第三时刻不早于所述第一时刻,且所述第三时刻不晚于第一过期时刻;所述第一过期时刻是所述第二计时器的起始后的所述第二计时器的过期值所确定的时刻。
作为一个实施例,所述第一配置消息包括第三计时器,所述第三计时器在所述第一时间窗集合内过期;
作为所述第三计时器过期的响应,所述第一消息的发送者在所述第一时间窗集合内针对所述第二节点1300发送第一信号。
作为一个实施例,所述第一事件包括发送第二信号;所述第二信号被用于指示第一测量结果;
所述第一消息的发送者执行第一测量;所述第一测量被用于生成所述第一测量结果;
所述行为在所述第二时间窗集合中放弃执行第一事件包括,所述第一消息的发送者放弃发送所述第二信号和丢弃所述第一测量结果。
作为一个实施例,所述第二发射机1301,发送第一条件重配置;
所述第一消息的发送者在所述第一时间窗集合内,放弃评估所述第一条件重配置的执行条件,或者,放弃执行所述第一条件重配置。
作为一个实施例,所述行为在所述第二时间窗集合中放弃执行第一事件包括,将所述第一事件加入到第一等待列表中;
所述第一消息的发送者,在所述第二时间窗集合以外的时间,执行所述第一等待列表中的所述第一事件。
作为一个实施例,所述第二节点是卫星。
作为一个实施例,所述第二节点是UE(用户设备)。
作为一个实施例,所述第二节点是IoT节点。
作为一个实施例,所述第二节点是可穿戴节点。
作为一个实施例,所述第二节点是基站。
作为一个实施例,所述第二节点是中继。
作为一个实施例,所述第二节点是接入点。
作为一个实施例,所述第二节点是支持多播的节点。
作为一个实施例,所述第二节点是卫星。
作为一个实施例,所述第二发射机1301包括实施例4中的天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476中的至少之一。
作为一个实施例,所述第二接收机1302包括实施例4中的天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IoT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑,卫星通信设备,船只通信设备,NTN用户设备等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点),NTN基站,卫星设备,飞行平台设备等无线通信设备,eNB(LTE节点B),测试设备,例如模拟基站部分功能的收发装置,信令测试仪等。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种被用于无线通信的第一节点,其中,包括:
    第一接收机,接收第一配置消息和第一信令;所述第一配置消息用于配置第一计时器;
    第一发射机,发送第一消息;所述第一消息被用于确定第一时间窗集合,所述第一时间窗集合包括至少一个时间窗;
    其中,所述第一消息被用于请求在所述第一时间窗集合中停止针对所述第一信令的发送者的无线发送;所述第一信令被用于指示同意所述第一消息的请求;所述第一计时器的开始距离第一时刻的时间长度超过所述第一计时器的过期值,所述第一计时器的所述开始在所述第一时刻之前;所述第一信令被用于确定在第二时间窗集合中放弃执行第一事件,基于所述第一信令未被接收到的假设下所述第一计时器的过期被用于触发所述第一事件,所述第二时间窗集合包括第二时刻与所述第一时刻之间的时域资源,所述第二时刻在所述第一计时器的所述开始与所述第一时刻之间并且距离所述第一计时器的所述开始的时间长度不小于所述第一计时器的所述过期值。
  2. 根据权利要求1所述的第一节点,其特征在于,
    在所述第一计时器的所述开始与所述第一时刻之间所述第一计时器没有重开始。
  3. 根据权利要求1或2所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第二消息,所述第二消息包括第一控制计时器,所述第二消息被用于指示,当所述第一控制计时器处于停止状态时所述第一发射机被允许发送所述第一消息。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,包括:
    当所述第一节点正在执行第三事件时,所述第一节点被禁止发送所述第一消息。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,
    所述第一事件包括主服务小区组(MCG)失败。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,
    作为一个实施例,所述第一事件包括波束失败恢复。
  7. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一事件包括发送第二信号;所述第二信号被用于指示第一测量结果;
    所述第一接收机,执行第一测量;所述第一测量被用于生成所述第一测量结果;
    所述行为在所述第二时间窗集合中放弃执行第一事件包括,所述第一发射机,放弃发送所述第二信号和丢弃所述第一测量结果。
  8. 根据权利要求1至7中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第一条件重配置;
    所述第一接收机,在所述第一时间窗集合内,放弃评估所述第一条件重配置的执行条件,或者,放弃执行所述第一条件重配置。
  9. 根据权利要求1至8中任一权利要求所述的第一节点,其特征在于,包括:
    所述行为在所述第二时间窗集合中放弃执行第一事件包括,将所述第一事件加入到第一等待列表中;
    所述第一发射机,在所述第二时间窗集合以外的时间,执行所述第一等待列表中的所述第一事件。
  10. 根据权利要求1至9中任一权利要求所述的第一节点,其特征在于:
    所述第一配置消息指示第二计时器和第一门限值,所述第二计时器的开始距离所述第一时刻的时间长度超过所述第二计时器的过期值与所述第一门限值的差,所述第二计时器的所述开始在所述第一时刻之前;所述第一门限值为正数;
    所述第一信令被用于确定在第三时间窗集合中放弃执行第二事件,基于所述第一信令未被接收到的假设下所述第二计时器的过期被用于触发所述第二事件,所述第三时间窗集合包括所述第一时刻与第三时刻之间的时域资源;所述第三时刻不早于所述第一时刻,且所述第三时刻不晚于第一过期时刻;所述第一过期时刻是所述第二计时器的起始后的所述第二计时器的过期值所确定的时刻。
  11. 根据权利要求1至10中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一配置消息包括第三计时器,所述第三计时器在所述第一时间窗集合内过期;
    作为所述第三计时器过期的响应,所述第一发射机,在所述第一时间窗集合内针对所述第一信令的发送者发送第一信号。
  12. 根据权利要求1至11中任一权利要求所述的第一节点,其特征在于,
    所述第一时间窗集合包括K1个时间窗,其中K1为大于1的正整数
  13. 一种被用于无线通信的第二节点,其中,包括:
    第二发射机,发送第一配置消息和第一信令;所述第一配置消息用于配置第一计时器;
    第二接收机,接收第一消息;所述第一消息被用于确定第一时间窗集合,所述第一时间窗集合包括至少一个时间窗;
    其中,所述第一消息被用于请求在所述第一时间窗集合中停止针对所述第二节点的无线发送;所述第一信令被用于指示同意所述第一消息的请求;所述第一计时器的开始距离第一时刻的时间长度超过所述第一计时器的过期值,所述第一计时器的所述开始在所述第一时刻之前;所述第一信令被所述第一消息的发送者用于确定在第二时间窗集合中放弃执行第一事件,基于所述第一信令未被接收到的假设下所述第一计时器的过期被用于触发所述第一事件,所述第二时间窗集合包括第二时刻与所述第一时刻之间的时域资源,所述第二时刻在所述第一计时器的所述开始与所述第一时刻之间并且距离所述第一计时器的所述开始的时间长度不小于所述第一计时器的所述过期值。
  14. 一种被用于无线通信的第一节点中的方法,其中,包括:
    接收第一配置消息;所述第一配置消息用于配置第一计时器;
    发送第一消息;所述第一消息被用于确定第一时间窗集合,所述第一时间窗集合包括至少一个时间窗;
    接收第一信令;
    其中,所述第一消息被用于请求在所述第一时间窗集合中停止针对所述第一信令的发送者的无线发送;所述第一信令被用于指示同意所述第一消息的请求;所述第一计时器的开始距离第一时刻的时间长度超过所述第一计时器的过期值,所述第一计时器的所述开始在所述第一时刻之前;所述第一信令被用于确定在第二时间窗集合中放弃执行第一事件,基于所述第一信令未被接收到的假设下所述第一计时器的过期被用于触发所述第一事件,所述第二时间窗集合包括第二时刻与所述第一时刻之间的时域资源,所述第二时刻在所述第一计时器的所述开始与所述第一时刻之间并且距离所述第一计时器的所述开始的时间长度不小于所述第一计时器的所述过期值。
  15. 一种被用于无线通信的第二节点中的方法,其中,包括:
    发送第一配置消息;所述第一配置消息用于配置第一计时器;
    接收第一消息;所述第一消息被用于确定第一时间窗集合,所述第一时间窗集合包括至少一个时间窗;
    发送第一信令;
    其中,所述第一消息被用于请求在所述第一时间窗集合中停止针对所述第一信令的发送者的无线发送;所述第一信令被用于指示同意所述第一消息的请求;所述第一计时器的开始距离第一时刻的时间长度超过所述第一计时器的过期值,所述第一计时器的所述开始在所述第一时刻之前;所述第一信令被用于确定在第二时间窗集合中放弃执行第一事件,基于所述第一信令未被接收到的假设下所述第一计时器的过期被用于触发所述第一事件,所述第二时间窗集合包括第二时刻与所述第一时刻之间的时域资源,所述第二时刻在所述第一计时器的所述开始与所述第一时刻之间并且距离所述第一计时器的所述开始的时间长度不小于所述第一计时器的所述过期值。
PCT/CN2021/141465 2020-12-29 2021-12-27 一种被用于无线通信的方法和设备 WO2022143481A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/209,498 US20230328700A1 (en) 2020-12-29 2023-06-14 Method and device for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011592580.X 2020-12-29
CN202011592580.XA CN114698053B (zh) 2020-12-29 2020-12-29 一种被用于无线通信的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/209,498 Continuation US20230328700A1 (en) 2020-12-29 2023-06-14 Method and device for wireless communication

Publications (1)

Publication Number Publication Date
WO2022143481A1 true WO2022143481A1 (zh) 2022-07-07

Family

ID=82132629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141465 WO2022143481A1 (zh) 2020-12-29 2021-12-27 一种被用于无线通信的方法和设备

Country Status (3)

Country Link
US (1) US20230328700A1 (zh)
CN (1) CN114698053B (zh)
WO (1) WO2022143481A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115695231B (zh) * 2022-10-31 2024-06-21 中国联合网络通信集团有限公司 网络能效确定方法、装置及存储介质
CN116754011A (zh) * 2023-06-12 2023-09-15 浙江一舟建设管理有限公司 一种施工区域环境安全状态监理检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130023275A1 (en) * 2011-06-20 2013-01-24 Qualcomm Incorporated Mobile device tune away periods
US20180049075A1 (en) * 2012-04-04 2018-02-15 Apple Inc. Assisted Management of Radio Resources across Dual Networks
CN109691219A (zh) * 2016-09-15 2019-04-26 高通股份有限公司 用于在多sim无线通信设备上执行适应性接入过程的系统和方法
CN112135270A (zh) * 2019-06-25 2020-12-25 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107690134B (zh) * 2016-08-05 2022-07-08 北京三星通信技术研究有限公司 用于双卡终端的寻呼冲突解决方法及双卡终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130023275A1 (en) * 2011-06-20 2013-01-24 Qualcomm Incorporated Mobile device tune away periods
US20180049075A1 (en) * 2012-04-04 2018-02-15 Apple Inc. Assisted Management of Radio Resources across Dual Networks
CN109691219A (zh) * 2016-09-15 2019-04-26 高通股份有限公司 用于在多sim无线通信设备上执行适应性接入过程的系统和方法
CN112135270A (zh) * 2019-06-25 2020-12-25 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN114698053A (zh) 2022-07-01
US20230328700A1 (en) 2023-10-12
CN114698053B (zh) 2024-07-09

Similar Documents

Publication Publication Date Title
US20230328700A1 (en) Method and device for wireless communication
CN114726490B (zh) 一种被用于无线通信的方法和设备
CN113747610A (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2022194113A1 (zh) 一种被用于无线通信的方法和设备
CN114916095A (zh) 一种被用于无线通信的方法和设备
CN114867131A (zh) 一种被用于无线通信的方法和设备
CN115379530A (zh) 一种被用于无线通信的方法和设备
CN115484691A (zh) 一种被用于无线通信的方法和设备
CN116015373A (zh) 一种被用于无线通信的节点中的方法和装置
WO2022135297A1 (zh) 一种被用于无线通信的方法和设备
WO2023061204A1 (zh) 一种被用于无线通信的方法和设备
WO2023179468A1 (zh) 一种被用于无线通信的方法和设备
CN113115446B (zh) 一种被用于无线通信的方法和设备
WO2024001938A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024032478A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
US20240284224A1 (en) Method and device for wireless communication
WO2023040811A1 (zh) 一种被用于无线通信的方法和设备
US20230413365A1 (en) Method and device for wireless communication
WO2023174376A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
CN117812645A (zh) 一种被用于无线通信的方法和设备
CN116233959A (zh) 一种被用于无线通信的方法和设备
CN117858277A (zh) 一种被用于无线通信的方法和设备
CN118283721A (zh) 一种被用于无线通信的方法和设备
CN115022987A (zh) 一种被用于无线通信的方法和设备
CN118488460A (zh) 一种被用于无线通信的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 15/11/2023 )

122 Ep: pct application non-entry in european phase

Ref document number: 21914218

Country of ref document: EP

Kind code of ref document: A1