WO2023061204A1 - 一种被用于无线通信的方法和设备 - Google Patents

一种被用于无线通信的方法和设备 Download PDF

Info

Publication number
WO2023061204A1
WO2023061204A1 PCT/CN2022/121558 CN2022121558W WO2023061204A1 WO 2023061204 A1 WO2023061204 A1 WO 2023061204A1 CN 2022121558 W CN2022121558 W CN 2022121558W WO 2023061204 A1 WO2023061204 A1 WO 2023061204A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
scheduling request
message
sent
node
Prior art date
Application number
PCT/CN2022/121558
Other languages
English (en)
French (fr)
Inventor
陈宇
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2023061204A1 publication Critical patent/WO2023061204A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, in particular to a method and device for saving power in a non-terrestrial network in wireless communication.
  • NR new air interface technology
  • WI Work Item, work item
  • LTE Long Term Evolution, long-term evolution
  • 5G NR 5th Generation NR
  • eMBB enhanced Mobile BroadBand, enhanced mobile broadband
  • URLLC Ultra Reliable Low Latency Communication, Ultra-reliable and low-latency communication
  • eMTC enhanced Machine Type Communication, enhanced machine type communication
  • IIoT Industrial Internet of Things, the Internet of Things in the industrial field, in V2X (Vehicular to X, vehicle communication), in the communication between devices (Device to Device), in the communication of unlicensed spectrum, in User communication quality monitoring, network planning optimization, in NTN (Non Territerial Network, non-terrestrial network communication), in TN (Territerial Network, terrestrial network communication), in dual connectivity (Dual connectivity) system, in wireless resource management As well as multi-antenna codebook selection, there are extensive requirements in signaling design, neighbor cell management, service management, and beamforming. Information transmission methods are divided into broadcast and unicast, both of which are 5G Systems are essential because they are very helpful in meeting the above requirements.
  • the UE can connect to the network either directly or through a relay.
  • the 3GPP standardization organization has done relevant standardization work for 5G, and formed a series of standards including 38.304, 38.211, 38.213, etc.
  • the content of the standard can be referred to:
  • the monitoring of PDCCH involves blind detection, that is, the UE receives and tries to decode the information on possible time-frequency resources, because the UE does not know in advance whether there are signaling transmissions for it on these time-frequency resources, so these attempts to decode
  • useful information may be decoded, that is, it has passed the cyclic redundancy check (CRC) check, or it may not be able to obtain useful information because it cannot pass the CRC check.
  • CRC cyclic redundancy check
  • the approximate range of the time-frequency resources for monitoring (monitoring) PDCCH is configured by the system, for example, through search space and control resource set (CORESET) configuration, and each monitoring may involve dozens of blind detections and these dozens In sub-blind detection, most of the attempts may not be able to solve useful information, but it consumes a lot of power.
  • CORESET search space and control resource set
  • the propagation delay is very huge. After the UE sends the scheduling request, the signal needs to be transmitted for a long time before reaching the base station.
  • Monitoring PDCCH is pointless. Monitoring the PDCCH is mainly controlled by the active time. During the active time, the UE needs to monitor the PDCCH. Therefore, on the one hand, how to reduce the monitoring of PDCCH after sending a scheduling request in NTN is the problem to be solved in this application;
  • the present application provides a solution to the above-mentioned problems.
  • the present application discloses a method used in a first node of wireless communication, comprising:
  • the first message is used to indicate that the active time includes the time after the first scheduling request is sent on the PUCCH and is in a pending state or includes after the first time length is delayed after the first scheduling request is sent And the time when the first scheduling request is in a pending state;
  • the PDCCH is monitored during the active time.
  • the problem to be solved in this application includes: in NTN, how to control the monitoring of PDCCH after the scheduling request is sent, so as to save power and ensure the flexibility of scheduling.
  • the advantages of the above method include: the monitoring of the PDCCH after sending the scheduling request is reduced, and at the same time, information that may be sent by the PDCCH will not be missed, thereby reducing power consumption and ensuring communication performance.
  • the first counter is increased by 1;
  • the first message is used to indicate that the active time includes the time when the first scheduling request is sent on the PUCCH and is in the pending state or includes the time from the The first scheduling request is sent and then delayed for a time after the first length of time and when the first scheduling request is in a pending state.
  • the first counter is increased by 1;
  • the first message is used to indicate that the active time includes the time when the first scheduling request is sent on the PUCCH and is in a pending state or includes the delay after the first scheduling request is sent.
  • the time after the first length of time and when the first scheduling request is pending is independent of the first counter.
  • a first system information block is received; the first system information block is used to indicate a first parameter, and the unit of the first parameter is a time slot;
  • the sum of the timing advance maintained by the first node and the first parameter is used to determine the first time length; the first message is used to indicate that the active time includes starting from the first A time after the scheduling request is sent and delayed after the first length of time and the first scheduling request is in a pending state.
  • a first system information block and a first MAC CE are received, the first MAC CE indicates a second parameter; the unit of the second parameter is a time slot; the first system information a block indicates a third parameter, the unit of which is a time slot;
  • the first transmitter with the sending of the first scheduling request, increases a first counter by 1; as a response that the first counter is equal to or greater than a first threshold, initiates a first random access procedure; the behavior Initiating the first random access procedure includes sending a second message on the time-frequency resource indicated by the random access response for the first random access procedure; the second message occupies the first PUSCH;
  • the second parameter and the third parameter are jointly used to determine the uplink transmission time of the first node; at least one of the second parameter and the third parameter is used to determine the The transmission timing of the first PUSCH.
  • a first timer is started with the sending of the first scheduling request
  • the first scheduling request is only sent when the first timer is not running, and the expiration value of the first timer is equal to the first time length; the first message is used to indicate the
  • the live time includes the time after the first scheduling request is delayed after the first length of time since the first scheduling request was sent and the first scheduling request is in a pending state.
  • generate a second MAC CE trigger the first scheduling request as a response to generating at least the second MAC CE; send a first MAC PDU group; accompany the first MAC PDU The sending of the group cancels the first scheduling request; the first MAC PDU group includes at least one MAC PDU;
  • the behavior of monitoring the PDCCH during the active time includes receiving first signaling; the first MAC PDU group occupies the time-frequency resources indicated by the first signaling.
  • a first scheduling request configuration is received, and the scheduling request configuration corresponding to the first scheduling request is the first scheduling request configuration;
  • the first message is used to indicate that the active time includes the time when the first scheduling request is sent on the PUCCH and is in the pending state or includes the time from the The first scheduling request is sent and then delayed for a time after the first length of time and when the first scheduling request is in a pending state.
  • a first scheduling request configuration is received, and the scheduling request configuration corresponding to the first scheduling request is the first scheduling request configuration;
  • the first message is used to indicate that the active time includes the time when the first scheduling request is sent on the PUCCH and is in a pending state or includes the delay after the first scheduling request is sent.
  • the time after the first length of time and when the first scheduling request is pending is independent of the first counter.
  • the first node is a user equipment.
  • the first node is an Internet of Things terminal.
  • the first node is a relay.
  • the first node is a vehicle-mounted terminal.
  • the first node is an aircraft.
  • a method used in a second node for wireless communication comprising:
  • the first message is used to indicate that the active time includes the time when the first scheduling request is sent on the PUCCH and is in a pending state or includes after the first scheduling request is sent and then delayed for a first length of time And the time when the first scheduling request is in a pending state;
  • the sender of the first scheduling request monitors the PDCCH during the active time.
  • the first counter is increased by 1;
  • the first message is used to indicate that the active time includes the time when the first scheduling request is sent on the PUCCH and is in the pending state or includes the time from the The first scheduling request is sent and then delayed for a time after the first length of time and when the first scheduling request is in a pending state.
  • the first counter is increased by 1;
  • the first message is used to indicate that the active time includes the time when the first scheduling request is sent on the PUCCH and is in a pending state or includes the delay after the first scheduling request is sent.
  • the time after the first length of time and when the first scheduling request is pending is independent of the first counter.
  • a first system information block is sent; the first system information block is used to indicate a first parameter, and the unit of the first parameter is a time slot;
  • the sum of the timing advance maintained by the sender of the first scheduling request and the first parameter is used to determine the first time length; the first message is used to indicate that the active time includes from A time after the first scheduling request is delayed after the first length of time is sent and the first scheduling request is in a pending state.
  • a first system information block and a first MAC CE are sent, and the first MAC CE indicates a second parameter; the unit of the second parameter is a time slot; the first system information a block indicates a third parameter, the unit of which is a time slot;
  • the first counter is increased by 1; the first counter is equal to or greater than the first threshold and is used to trigger the first random access procedure;
  • the second message occupies a first PUSCH
  • the second parameter and the third parameter are jointly used to determine the timing advance maintained by the sender of the first scheduling request; at least one of the second parameter and the third parameter is used by It is used to determine the sending timing of the first PUSCH.
  • the first timer is started
  • the first scheduling request is only sent when the first timer is not running, and the expiration value of the first timer is equal to the first time length; the first message is used to indicate the
  • the live time includes the time after the first scheduling request is delayed after the first length of time since the first scheduling request was sent and the first scheduling request is in a pending state.
  • the first signaling is sent on the PDCCH; the first MAC PDU group is received; the second MAC CE is used to trigger the first scheduling request; accompanied by the first The sending of the MAC PDU group, the first scheduling request is canceled; the first MAC PDU group includes at least one MAC PDU;
  • the first MAC PDU group occupies the time-frequency resource indicated by the first signaling.
  • a first scheduling request configuration is sent, and the scheduling request configuration corresponding to the first scheduling request is the first scheduling request configuration
  • the first counter is incremented by 1;
  • the first message is used to indicate that the active time includes the time when the first scheduling request is sent on the PUCCH and is in the pending state or includes the time from the The first scheduling request is sent and then delayed for a time after the first length of time and when the first scheduling request is in a pending state.
  • a first scheduling request configuration is sent, and the scheduling request configuration corresponding to the first scheduling request is the first scheduling request configuration
  • the first counter is incremented by 1;
  • the first message is used to indicate that the active time includes the time when the first scheduling request is sent on the PUCCH and is in a pending state or includes the delay after the first scheduling request is sent.
  • the time after the first length of time and when the first scheduling request is pending is independent of the first counter.
  • the second node is a base station.
  • the second node is a relay.
  • the second node is an aircraft.
  • the second node is a satellite.
  • the second node is an access point device.
  • This application discloses a first node used for wireless communication, including:
  • the first receiver receives the first message; the first message is used to indicate whether the active time includes the time after the first scheduling request is sent on the PUCCH and is in a pending state or includes a delay after the first scheduling request is sent a time after a first length of time and when the first scheduling request is pending;
  • the first transmitter sends the first scheduling request on the first PUCCH resource
  • the first receiver monitors the PDCCH during the active time.
  • the present application discloses a second node used for wireless communication, including:
  • the second transmitter sends a first message; the first message is used to indicate whether the active time includes the time after the first scheduling request is sent on the PUCCH and is in a pending state or includes a delay after the first scheduling request is sent a time after a first length of time and when the first scheduling request is pending;
  • the second receiver receives the first scheduling request on the first PUCCH resource
  • the sender of the first scheduling request monitors the PDCCH during the active time.
  • this application has the following advantages:
  • the time to monitor the PDCCH after sending the scheduling request can be reduced to save power.
  • the flexibility of scheduling can be guaranteed, especially for scheduling requests for retransmission, the base station can schedule at any time.
  • the active time can be reasonably determined according to different networks, TN and NTN.
  • the start of the active time can be reasonably determined according to the characteristics of the NTN, such as the different time delays caused by different satellite orbits.
  • FIG. 1 shows a flow chart of receiving a first message, sending a first scheduling request, and monitoring a PDCCH according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG. 5 shows a flow chart of wireless signal transmission according to an embodiment of the present application
  • FIG. 6 shows a flowchart of wireless signal transmission according to an embodiment of the present application
  • Fig. 7 shows a schematic diagram of active time according to an embodiment of the present application.
  • Fig. 8 shows that the first message according to an embodiment of the present application is used to determine whether the active time includes the time after the first scheduling request is sent on the PUCCH and is in the pending state or includes the time after the first scheduling request is sent a schematic diagram of a time when the first scheduling request is pending after a delay of a first length of time;
  • Fig. 9 shows a schematic diagram in which the sum of the timing advance maintained by the first node and the first parameter is used to determine the first time length according to an embodiment of the present application.
  • FIG. 10 illustrates a schematic diagram in which the second parameter and the third parameter are jointly used to determine the uplink transmission time of the first node according to an embodiment of the present application
  • FIG. 11 illustrates a schematic diagram in which at least one of the second parameter and the third parameter is used to determine the first PUSCH transmission timing according to an embodiment of the present application
  • Fig. 12 illustrates a schematic diagram of a processing device used in a first node according to an embodiment of the present application
  • Fig. 13 illustrates a schematic diagram of a processing device used in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of receiving a first message, sending a first scheduling request, and monitoring a PDCCH according to an embodiment of the present application, as shown in FIG. 1 .
  • each block represents a step, and it should be emphasized that the order of the blocks in the figure does not represent the temporal sequence of the steps represented.
  • the first node in this application receives the first message in step 101; sends the first scheduling request in step 102; monitors the PDCCH in step 103;
  • the first message is used to indicate whether the active time includes the time when the first scheduling request is sent on the PUCCH and is in a pending state or includes after the first scheduling request is sent and then delayed for a first length of time and the The time when the first scheduling request is in the pending state; the first scheduling request is sent on the first PUCCH resource; the first node monitors the PDCCH during the active time.
  • the first node is UE (User Equipment, user equipment).
  • the serving cell refers to a cell where the UE camps.
  • Performing the cell search includes that the UE searches for a suitable (suitable) cell of the selected PLMN (Public Land Mobile Network, Public Land Mobile Network) or SNPN (Stand-alone Non-Public Network, independent non-public network), and selects the A suitable cell provides available services, and monitors the control channel of the suitable cell.
  • PLMN Public Land Mobile Network, Public Land Mobile Network
  • SNPN Seand-alone Non-Public Network, independent non-public network
  • the advantages of staying in a cell in the RRC idle state or RRC inactive state are as follows: enabling the UE to receive system messages from the PLMN or SNPN; after registration, if the UE wishes to establish an RRC connection or continue a suspended RRC connection, The UE can achieve this by performing initial access on the control channel of the resident cell; the network can page the UE; so that the UE can receive ETWS (Earthquake and Tsunami Warning System, Earthquake and Tsunami Warning System) and CMAS (Commercial Mobile Alert System, Commercial Mobile Alarm System) Notifications.
  • ETWS Earthquake and Tsunami Warning System, Earthquake and Tsunami Warning System
  • CMAS Common Mobile Alert System, Commercial Mobile Alarm System
  • the serving cell is used to indicate a cell set including a special cell (SpCell, Special Cell) and all secondary cells.
  • the primary cell is an MCG (Master Cell Group) cell, which works on the primary frequency. The UE performs the initial connection establishment process or initiates connection reestablishment on the primary cell.
  • the special cell refers to the PCell (Primary Cell, primary cell) of the MCG or the PSCell (Primary SCG Cell, primary SCG cell) of the SCG (Secondary Cell Group); if it is not a dual connection operation, the special cell refers to the PCell.
  • the frequency at which the SCell (Secondary Cell, secondary cell) works is a secondary frequency.
  • MR-DC Multi-Radio Dual Connectivity, multi-radio dual connectivity refers to dual connectivity between E-UTRA and NR nodes, or dual connectivity between two NR nodes.
  • the radio access node providing the control plane connection to the core network is a master node
  • the master node may be a master eNB, a master ng-eNB, or a master gNB.
  • the MCG refers to a group of serving cells associated with the master node in the MR-DC, including an SpCell, and may also, optionally, include one or more SCells.
  • the PCell is the SpCell of the MCG.
  • the PSCell is the SpCell of the SCG.
  • the control plane connection to the core network is not provided, and the wireless access node that provides additional resources to the UE is a slave node.
  • the slave node can be en-gNB, slave ng-eNB or slave gNB.
  • a set of serving cells associated with the secondary node is an SCG (secondary cell group, secondary cell group), including an SpCell and, optionally, one or more SCells.
  • SCG secondary cell group, secondary cell group
  • the first PUCCH resource belongs to the PUCCH resource of NTN.
  • the first message is used to indicate NTN communication.
  • the first message explicitly indicates NTN communication.
  • the first message is an explicit non-TN communication.
  • the first message indicates NTN communication by indicating ephemeris.
  • the first message indicates NTN communication by indicating orbit parameters.
  • the first message indicates NTN communication by indicating the PLMN.
  • the first message indicates NTN communication by indicating a timing advance exceeding 2 ms.
  • the first message indicates NTN communication by indicating a parameter only for NTN.
  • the first message is or includes an RRC message.
  • the first message is or includes a MAC CE message.
  • the first message is or includes a higher layer message.
  • the first message is or includes a system message.
  • the first message is or includes a system information block (system information block, SIB).
  • SIB system information block
  • the first message is or includes SIB1.
  • the first message is or includes an SIB for NTN.
  • the first message is or includes an MIB.
  • the first message is or includes RRCReconfiguration.
  • the first message is or includes RRCConnectionReconfiguration.
  • the first message includes rach-config.
  • the first message includes rach-configdedicated.
  • the active time specifically refers to Active Time.
  • the active time is for the first DRX group.
  • the active time is for serving cells in the first DRX group.
  • the active time includes the running time of rx-onDurationTimer for the first DRX group.
  • the active time includes running time of drx-InactivityTimer for the first DRX group.
  • the active time includes running time of drx-RetransmissionTimerDL of any serving cell in the first DRX group.
  • the active time includes running time of drx-RetransmissionTimerUL of any serving cell in the first DRX group.
  • the active time includes the running time of ra-ContentionResolutionTimer.
  • the active time includes the running time of msgB-ResponseWindow.
  • the active time includes The time after receiving a PDCCH indicating a new transmission for the C-RNTI is not received.
  • the C-RNTI is of the MAC entity of the first node.
  • the new transmission indicated by the one PDCCH is for the MAC entity of the first node.
  • the active time is for the first RNTI (Radio Network Temporary Identity).
  • RNTI Radio Network Temporary Identity
  • the first RNTI is a G-RNTI.
  • the active time includes the running time of rx-onDurationTimerPTM for the first RNTI.
  • the active time includes running time of drx-InactivityTimerPTM for the first RNTI.
  • the active time includes running time of drx-RetransmissionTimerDLPTM of the first RNTI.
  • the active time includes running time of drx-RetransmissionTimerULPTM of the first RNTI.
  • the first node monitors a PDCCH (physical downlink control channel, physical downlink control channel) during the active time.
  • PDCCH physical downlink control channel, physical downlink control channel
  • the behavior monitoring PDCCH includes blind detection of the PDCCH.
  • the behavior monitoring of the PDCCH includes demodulating the PDCCH.
  • the behavior monitoring of the PDCCH includes performing trial reception or blind detection of the PDCCH in a given search space.
  • the behavior monitoring of the PDCCH includes performing trial reception or blind detection of the PDCCH on a given CORSET.
  • the behavior monitoring of the PDCCH includes trying to decode the received bits of the PDCCH.
  • the behavior monitoring of the PDCCH includes trying to decode the received bits of the PDCCH, and performing a CRC check on the decoded output.
  • the behavior monitoring of the PDCCH includes performing measurement or channel estimation on the PDCCH.
  • the behavior monitoring the PDCCH includes receiving the PDCCH.
  • the behavior monitoring of the PDCCH includes receiving signaling transmitted on the PDCCH.
  • the behavior monitoring of the PDCCH includes receiving the PDCCH with an activated TCI state.
  • the pending state refers to pending.
  • the first scheduling request is a scheduling request (scheduling request, SR).
  • the first PUCCH resource is a PUCCH resource of an SR transmission occasion (occassion).
  • the first PUCCH resource is a PUCCH resource.
  • the first PUCCH resource is a resource in a PUCCH resource set.
  • the first PUCCH resource is configured by the first message.
  • the first PUCCH resource is configured by PUCCH-Config.
  • the first scheduling request is for a BSR (buffer status report, buffer status report).
  • the first scheduling request is for BFR (beam failure recovery, beam failure recovery).
  • the first scheduling request is for LBT (listen before talk, listen before talk) failure recovery.
  • the active time when the first message is used to indicate that the active time includes the time after the scheduling request is sent on the PUCCH and is in the pending state, the active time includes after the first PUCCH resource and the second A time when a scheduling request is in a pending state; when the first message is used to indicate that the active time includes a time after a delay of a first length of time since the scheduling request was sent and the first scheduling request is in a pending state, the active The time includes a time when the first scheduling request is pending after being delayed from the first PUCCH resource by the first length of time.
  • the first time length is greater than 0 milliseconds.
  • the first message is used to indicate a first time length.
  • the first time length is not less than 1 time slot.
  • the active time is for the first DRX group, and the PDCCH is transmitted on the serving cell of the first DRX group; the first node does not monitor the PDCCH outside the active time.
  • the first node monitors the PDCCH only during the active time.
  • the first node is only required to monitor the PDCCH during the active time.
  • the active time when the first message is used to indicate that the active time includes delaying the first length of time after the first scheduling request is sent and the first scheduling request is in a pending state time, if no other conditions that can be used to determine the active time are met, the active time does not include the time from the first time length after the first scheduling request is sent.
  • the active time when the first message is used to indicate that the active time includes delaying the first length of time after the first scheduling request is sent and the first scheduling request is in a pending state time, if no other timers that can be used to determine the active time are running, the active time does not include the time of the first length of time since the first scheduling request is sent.
  • the first node does not perform random access.
  • the following conditions are not satisfied: the random access response is successfully received, but the random access preamble targeted by the random access response is not the random access preamble selected by the MAC entity of the first node
  • the preamble is accessed and a PDCCH is received indicating that a new transmission for the first C-RNTI was not received.
  • the active time does not include the time of the first length of time after the first scheduling request is sent, and the active time is for the first DRX group, and for the first DRX group rx-onDurationTimer is not running; and the drx-InactivityTimer for the first DRX group is not running; and the drx-RetransmissionTimerDL of any serving cell in the first DRX group is not running; and any serving cell in the first DRX group drx-RetransmissionTimerUL is not running; ra-ContentionResolutionTimer is running; msgB-ResponseWindow is running; and the first receiving condition is not satisfied.
  • the first receiving condition is: the random access response is successfully received, but the random access preamble targeted by the random access response is not selected by the MAC entity of the first node and a PDCCH indicating that a new transmission for the first C-RNTI was not received.
  • the first C-RNTI is the C-RNTI of the first node.
  • the first C-RNTI is of the MAC entity of the first node.
  • the new transmission for the first C-RNTI is for the MAC entity of the first node.
  • the drx-onDurationTimerPTM for any G-RNTI is not running.
  • the drx-InactivityTimerPTM for any G-RNTI is not running.
  • the drx-RetransmissionTimerDLPTM for any G-RNTI is not running.
  • the drx-RetransmissionTimerULPTM for any G-RNTI is not running.
  • the first node increases the first counter by 1;
  • the first message is used to indicate that the active time includes the time when the first scheduling request is sent on the PUCCH and is in the pending state or includes the time from the The first scheduling request is sent and then delayed for a time after the first length of time and when the first scheduling request is in a pending state.
  • the first counter is only incremented when the first scheduling request is sent.
  • the first node does not use or is not configured with LBT.
  • the first node does not use or is not configured to share frequency spectrum.
  • the first node does not receive an LBT failure indication from a lower layer.
  • the first node increases the first counter by 1 only when no LBT failure indication is received from a lower layer.
  • the first counter is for the first scheduling request.
  • the first counter is configured for the SR corresponding to the first scheduling request.
  • the first counter is SR_COUNTER.
  • the possible value of the first counter is an integer.
  • the value of the first counter may be greater than 0.
  • the first counter is set is 0.
  • the first message is used to indicate that the active time includes after the first scheduling request is sent on the PUCCH and in The time in the pending state also includes the time after the first time length is delayed after the first scheduling request is sent and the first scheduling request is in the pending state means: when the first counter is equal to 1 , the first message is used to indicate that the active time includes the time when the first scheduling request is sent on the PUCCH and is in a pending state or includes delaying the first scheduling request after the first scheduling request is sent.
  • the first message is not used to indicate that the active time includes the time when the first scheduling request is in The time after being sent on the PUCCH and being in the pending state also includes the time when the first scheduling request is in the pending state after being delayed for the first length of time after the first scheduling request is sent.
  • the first message is used to indicate that the active time includes after the first scheduling request is sent on the PUCCH and in The time in the pending state also includes the time after the first time length is delayed after the first scheduling request is sent and the first scheduling request is in the pending state means: when the first counter is equal to 1 , the first message is used to indicate that the live time includes the time after the first scheduling request is sent and then delayed for the first length of time and the first scheduling request is in a pending state; when the When the first counter is not equal to 1, the active time includes the time when the first scheduling request is in a pending state after being sent on the PUCCH.
  • the first message is used to indicate that the active time includes after the first scheduling request is sent on the PUCCH and in The time in the pending state also includes the time after the first time length is delayed after the first scheduling request is sent and the first scheduling request is in the pending state means: when the first counter is equal to 1 , the active time includes the time after the first time length is delayed after the first scheduling request is sent and the first scheduling request is in a pending state; when the first counter is not equal to 1, the The active time includes a time when the first scheduling request is in a pending state after being sent on the PUCCH.
  • the first message is used to indicate that the active time includes after the first scheduling request is sent on the PUCCH and in The time in the pending state also includes the time after the first time length is delayed after the first scheduling request is sent and the first scheduling request is in the pending state means: when the first counter is equal to 1 , the active time includes the time after the first time length is delayed after the first scheduling request is sent and the first scheduling request is in a pending state; when the first counter is not equal to 1, the The active time includes a time when the first scheduling request is in a pending state after being sent on the PUCCH; the first message is used to indicate the first time length.
  • the advantage of the above method is that after the scheduling request is sent for the first time, after the base station receives the scheduling request, the base station can flexibly perform scheduling, such as scheduling at any time; the scheduling request is retransmitted (including After other SRs configured by a scheduling request), the base station can also send scheduling signaling for the first scheduling request, and the retransmitted scheduling request (including other SRs configured by the same scheduling request) may also receive
  • the base station is directed to the scheduling signaling of the previous scheduling request, so there is less restriction on the scheduling of the base station, which ensures the flexibility of scheduling.
  • the first node increases the first counter by 1;
  • the first message is used to indicate that the active time includes the time when the first scheduling request is sent on the PUCCH and is in a pending state or includes delaying the time after the first scheduling request is sent.
  • the time after the first length of time and when the first scheduling request is pending is independent of the first counter.
  • the first counter is only incremented when the first scheduling request is sent.
  • the first node does not use or is not configured with LBT.
  • the first node does not use or is not configured to share frequency spectrum.
  • the first node does not receive an LBT failure indication from a lower layer.
  • the first node increases the first counter by 1 only when no LBT failure indication is received from a lower layer.
  • the first counter is for the first scheduling request.
  • the first counter is configured for the SR corresponding to the first scheduling request.
  • the first counter is SR_COUNTER.
  • the possible value of the first counter is an integer.
  • the value of the first counter may be greater than 0.
  • the first counter is set is 0.
  • the first message in the sentence is used to indicate that the active time includes the time when the first scheduling request is sent on the PUCCH and is in the pending state or includes the time from the After the first scheduling request is sent and then delayed for the first length of time and the time during which the first scheduling request is in the pending state has nothing to do with the first counter means that no matter what value the first counter takes, the The first message is used to indicate that the active time includes the time when the first scheduling request is sent on the PUCCH and is in a pending state or includes delaying the first scheduling request after the first scheduling request is sent. The amount of time after which the first scheduling request is pending.
  • the first message in the sentence is used to indicate that the active time includes the time when the first scheduling request is sent on the PUCCH and is in the pending state or includes the time from the After the first scheduling request is sent and then delayed for the first length of time and the time during which the first scheduling request is in the pending state has nothing to do with the first counter, it means that no matter what value the first counter takes , the first message is used to indicate that the active time includes the time after the first scheduling request is sent on the PUCCH and is in a pending state or includes the delay after the first scheduling request is sent A time after a first length of time and when the first scheduling request is pending.
  • the advantage of the above method is that, after each scheduling request is sent, there may be a period of time that may not be an active time, which will save more power.
  • the first node With the sending of the first scheduling request, the first node starts a first timer
  • the first scheduling request is only sent when the first timer is not running, and the expiration value of the first timer is equal to the first time length; the first message is used to indicate the
  • the live time includes the time after the first scheduling request is delayed after the first length of time since the first scheduling request was sent and the first scheduling request is in a pending state.
  • the first timer is only started when the first scheduling request is sent.
  • the first node does not use or is not configured with LBT.
  • the first node does not use or is not configured to share frequency spectrum.
  • the first node does not receive an LBT failure indication from a lower layer.
  • the first node increases the first timer by 1 only when no LBT failure indication is received from a lower layer.
  • the first timer is for the first scheduling request.
  • the first timer is configured for the SR corresponding to the first scheduling request.
  • the first timer is sr-ProhibitTimer.
  • a possible value of the first timer is an integer.
  • the first counter is set is 0.
  • the first timer is stopped.
  • the first timer corresponds to the same SR configuration as the first scheduling request.
  • the first node will not send the first scheduling request.
  • the expiration value of the first timer is used to determine the first time length.
  • the first message indicates an expiration value of the first timer.
  • the sum of the expiration value of the first timer and an offset is equal to the first time length.
  • the first PUCCH resource is a valid PUCCH resource.
  • the first PUCCH resource belongs to an active BWP.
  • the first scheduling request is a priority scheduling request.
  • a scheduling request is triggered, it is in a pending state until it is canceled.
  • the one scheduling request includes the first scheduling request.
  • the method proposed in this application is only applicable to NTN.
  • the first message indicates that the current network is NTN.
  • the first system information block indicates that the current network is NTN.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG. 2 .
  • Attached Figure 2 illustrates the V2X communication architecture under the system architecture of 5G NR (New Radio, new air interface), LTE (Long-Term Evolution, long-term evolution) and LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution).
  • the 5G NR or LTE network architecture may be referred to as 5GS (5G System)/EPS (Evolved Packet System, Evolved Packet System) or some other suitable term.
  • the V2X communication architecture of Embodiment 2 includes UE (User Equipment, user equipment) 201, UE 241, NG-RAN (next generation radio access network) 202, 5GC (5G Core Network, 5G core network)/EPC (Evolved Packet Core, Evolved packet core) 210, HSS (Home Subscriber Server, home subscriber server)/UDM (Unified Data Management, unified data management) 220, ProSe function 250 and ProSe application server 230.
  • the V2X communication architecture can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204 .
  • the gNB 203 provides user and control plane protocol termination towards the UE 201 .
  • a gNB 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • a gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmitting Receiver Node) or some other suitable terminology.
  • the gNB203 provides an access point to the 5GC/EPC210 for the UE201.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management domain
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF 214 S-GW (Service Gateway, service gateway)/UPF (UserPlane Function, user plane function) 212, and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF 213.
  • MME/AMF/SMF211 is a control node that handles signaling between UE201 and 5GC/EPC210. In general, the MME/AMF/SMF 211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 connects to Internet service 230 .
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and specifically may include the Internet, the intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet-switched streaming services.
  • the ProSe function 250 is a logical function for network-related behaviors required by Proximity-based Service (ProSe, Proximity-based Service); including DPF (Direct Provisioning Function, direct supply function), direct discovery name management function (Direct Discovery Name Management Function), EPC-level Discovery ProSe Function (EPC-level Discovery ProSe Function), etc.
  • the ProSe application server 230 has functions such as storing EPC ProSe user IDs, mapping between application layer user IDs and EPC ProSe user IDs, and distributing ProSe-restricted code suffix pools.
  • the UE201 and the UE241 are connected through a PC5 reference point (Reference Point).
  • PC5 reference point Reference Point
  • the ProSe function 250 is respectively connected to the UE 201 and the UE 241 through a PC3 reference point.
  • the ProSe function 250 is connected to the ProSe application server 230 through the PC2 reference point.
  • the ProSe application server 230 is respectively connected to the ProSe application of the UE 201 and the ProSe application of the UE 241 through the PC1 reference point.
  • the first node in this application is UE201.
  • the second node in this application is gNB203.
  • the radio link from the UE 201 to the NR Node B is an uplink.
  • the wireless link from NR Node B to UE 201 is downlink.
  • the UE 201 supports relay transmission.
  • the UE 201 is a vehicle including a car.
  • the gNB203 is a macrocell (MarcoCellular) base station.
  • the gNB203 is a flight platform device.
  • the gNB203 is a satellite device.
  • the gNB203 is an NTN device.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300.
  • FIG. 3 shows three layers for the first node (UE, gNB or satellite or aircraft in NTN) and the second Radio protocol architecture of a node (gNB, UE or satellite or aircraft in NTN), or control plane 300 between two UEs: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301 .
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first node and the second node and the two UEs through the PHY 301 .
  • L2 layer 305 includes MAC (Medium Access Control, Media Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers terminate at the second node.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides handoff support to a first node between a second node.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer packets, retransmission of lost packets, and reordering of packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg resource blocks) in a cell among the first nodes.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in the layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (that is, radio bearers) and using the RRC signal between the second node and the first node command to configure the lower layer.
  • the PC5-S (PC5 Signaling Protocol, PC5 signaling protocol) sublayer 307 is responsible for the processing of the signaling protocol of the PC5 interface.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer), the radio protocol architecture for the first node and the second node in the user plane 350 is for the physical layer 351, the L2 layer 355
  • the PDCP sublayer 354, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides for upper Layer packet header compression to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer) , to support business diversity.
  • the first node may have several upper layers above the L2 layer 355 . It also includes a network layer (eg IP layer) terminated at the P-GW on the network side and an application layer terminated at the other end of the connection (eg remote UE, server, etc.).
  • the wireless protocol architecture in Fig. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Fig. 3 is applicable to the second node in this application.
  • the first message in this application is generated by RRC306 or MAC302.
  • the second message in this application is generated by RRC306 or MAC302.
  • the first scheduling request in this application is generated in MAC302 or PHY301.
  • the first signaling in this application is generated by PHY301.
  • the first system information block in this application is generated by RRC306.
  • the first MAC CE in this application is formed in MAC302.
  • the second MAC CE in this application is formed in MAC302.
  • the first MAC PDU in this application is composed of MAC302.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application, as shown in FIG. 4 .
  • Fig. 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in an access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452 .
  • the second communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels. Multiplexing, and allocation of radio resources to said first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communication device 450 .
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 410, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)).
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes with a reference signal (e.g., pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel that carries a time-domain multi-carrier symbol stream. Then the multi-antenna transmit processor 471 performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into an RF stream, which is then provided to a different antenna 420 .
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives a signal via its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto an RF carrier and converts the RF stream to a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • Receive processor 456 and multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454 .
  • Receive processor 456 converts the baseband multi-carrier symbol stream after the receive analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered in the multi-antenna detection in the multi-antenna receiving processor 458.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456 and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the second communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 can be associated with memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium.
  • controller/processor 459 In transmission from said second communication device 410 to said second communication device 450, controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459 .
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements a header based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implementing L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communication device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is provided to different antennas 452 via the transmitter 454 after undergoing analog precoding/beamforming operations in the multi-antenna transmit processor 457 .
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into an RF symbol stream, and then provides it to the antenna 452 .
  • each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 can be associated with memory 476 that stores program codes and data.
  • Memory 476 may be referred to as a computer-readable medium.
  • controller/processor 475 In transmission from said first communication device 450 to said second communication device 410, controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression . Control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be compatible with the The at least one processor is used together, and the first communication device 450 means at least: receiving a first message; the first message is used to indicate that the active time includes the time when the first scheduling request is sent on the PUCCH and is in a pending state The time also includes the time when the first scheduling request is delayed for a first length of time after the first scheduling request is sent and the first scheduling request is in a pending state; the first scheduling request is sent on the first PUCCH resource; at the active time monitor the PDCCH.
  • the first communication device 450 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving a first A message; the first message is used to indicate that the active time includes the time after the first scheduling request is sent on the PUCCH and is in a pending state or includes after the first scheduling request is sent and then delayed for a first length of time and the The time when the first scheduling request is in the pending state; sending the first scheduling request on the first PUCCH resource; monitoring the PDCCH during the active time.
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be compatible with the at least one of the processors described above.
  • the second communication device 410 means at least: sending a first message; the first message is used to indicate whether the active time includes the time when the first scheduling request is sent on the PUCCH and is in a pending state or includes the time from the first scheduling request After being sent and then delayed for a first length of time and the first scheduling request is in a pending state; receiving the first scheduling request on the first PUCCH resource; wherein, the sender of the first scheduling request is in the The PDCCH is monitored during the above active time.
  • the second communication device 410 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending The first message; the first message is used to indicate that the active time includes the time when the first scheduling request is sent on the PUCCH and is in a pending state or includes after the first scheduling request is sent and then delayed for a first length of time and The time when the first scheduling request is in the pending state; the first scheduling request is received on the first PUCCH resource; wherein, the sender of the first scheduling request monitors the PDCCH during the active time.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a UE.
  • the first communication device 450 is a vehicle-mounted terminal.
  • the first communication device 450 is a relay.
  • the second communication device 410 is a base station.
  • the second communication device 410 is a satellite platform.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used herein to receive the first message.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used in this application to receive the first signaling.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used in this application to receive the first system information block.
  • the receiver 456 (including the antenna 460), the receiving processor 452 and the controller/processor 490 are used for receiving the first MAC CE in this application.
  • the transmitter 456 (including the antenna 460), the transmit processor 455 and the controller/processor 490 are used in this application to send the first scheduling request.
  • transmitter 456 (including antenna 460), transmit processor 455 and controller/processor 490 are used in this application to transmit the second message.
  • the transmitter 456 (including the antenna 460), the transmitting processor 455 and the controller/processor 490 are used to transmit the second MAC CE in this application.
  • the transmitter 456 (including the antenna 460), the transmit processor 455 and the controller/processor 490 are used to transmit the first MAC PDU group in this application.
  • the transmitter 416 (including the antenna 420), the transmit processor 412 and the controller/processor 440 are used in this application to transmit the first message.
  • the transmitter 416 (including the antenna 420), the transmitting processor 412 and the controller/processor 440 are used in this application to send the first signaling.
  • the transmitter 416 (including the antenna 420), the transmit processor 412 and the controller/processor 440 are used for transmitting the first system information block in this application.
  • the transmitter 416 (including the antenna 420), the transmitting processor 412 and the controller/processor 440 are used to transmit the first MAC CE in this application.
  • receiver 416 (including antenna 420), receive processor 412 and controller/processor 440 are used herein to receive the second message.
  • the receiver 416 (including the antenna 420), the receiving processor 412 and the controller/processor 440 are used to receive the second MAC CE in this application.
  • receiver 416 (including antenna 420), receive processor 412 and controller/processor 440 are used in this application to receive the first set of MAC PDUs.
  • receiver 416 (including antenna 420), receive processor 412 and controller/processor 440 are used in this application to receive the first scheduling request.
  • Embodiment 5 illustrates a flow chart of wireless signal transmission according to an embodiment of the present application, as shown in FIG. 5 .
  • U01 corresponds to the first node of this application
  • N02 corresponds to the second node of this application.
  • the order in this example does not limit the order of signal transmission and implementation in this application.
  • F51, The steps within F52 are optional.
  • the first system information block is received in step S5101; the first MAC CE is received in step S5102; the first message is received in step S5103; the first scheduling request is sent in step S5104; Receive the first signaling; send the first MAC PDU group in step S5106.
  • the first message is used to indicate whether the active time includes the time when the first scheduling request is sent on the PUCCH and is in a pending state or includes the first time length after the first scheduling request is sent After that and when the first scheduling request is in the pending state; the first node U01 sends the first scheduling request on the first PUCCH resource; and monitors the PDCCH during the active time.
  • the first system information block is an SIB.
  • the first system information block includes a MIB (master information block).
  • the first system information block includes SIB1.
  • the first system information block includes SIBx, where SIBx refers to SIB1 and/or SIB2 and/or SIB3...and so on.
  • the first system message block is broadcast.
  • the first system message block is unicast.
  • the first message includes the first system information block.
  • the first system information block is used to indicate a first parameter, and a unit of the first parameter is a time slot.
  • the first parameter is k mac .
  • the first parameter is k_ mac .
  • the name of the first parameter includes k and/or mac.
  • the first system information block explicitly indicates the first parameter.
  • the sum of the first parameter and a timing advance (Timing Advance, TA) maintained by the first node is used to determine the round-trip time of the wireless signal.
  • TA Timing Advance
  • the sum of the first parameter and a timing advance (Timing Advance, TA) maintained by the first node is equal to the round-trip time of the wireless signal.
  • the sum of the timing advance maintained by the first node and the first parameter is used to determine the first time length.
  • the first time length is equal to the sum of the timing advance maintained by the first node and the first parameter.
  • the first time length is equal to a sum of the timing advance maintained by the first node, the first parameter, and a given offset.
  • the first MAC CE is a MAC CE (control element, control unit).
  • the first MAC CE is or includes a RAR (random access response, random access response).
  • the first MAC CE is or includes a MAC CE related to the TA.
  • the first MAC CE is or includes a Timing Advance Command MAC CE.
  • the first MAC CE is or includes an Absolute Timing Advance Command MAC CE.
  • the first MAC CE indicates a second parameter; the unit of the second parameter is a time slot.
  • the second parameter is TAC (timing advance command, timing advance command).
  • the second parameter is used to determine or adjust the timing advance of the first node.
  • the first node U01 generates a second MAC CE; as a response to generating at least the second MAC CE, triggers the first scheduling request; sends the first MAC PDU group in step S5106; with The sending of the first MAC PDU group cancels the first scheduling request;
  • the behavior of monitoring PDCCH (physical downlink control channel, physical downlink control channel) in the active time includes receiving first signaling; the first MAC PDU group occupies the time frequency indicated by the first signaling resource.
  • the second MAC CE is a BSR MAC CE.
  • the second MAC CE is generated according to the amount of uplink data to be transmitted; the second The MAC CE is a Buffer Status Report MAC CE, and the first node U01 does not have enough uplink resources to transmit the second MAC CE; then the first scheduling request is triggered.
  • the uplink resource indicated by the first signaling is sufficient to transmit the uplink data to be transmitted.
  • the first scheduling request is canceled as the first signaling indicates sufficient time-frequency resources for transmitting the uplink data to be transmitted.
  • the second MAC CE is canceled along with the first signaling indicating sufficient time-frequency resources for transmitting the uplink data to be transmitted.
  • the sending of the first MAC PDU group is accompanied by the first signaling indicating sufficient time-frequency resources for transmitting the uplink data to be transmitted.
  • the first MAC PDU group includes the uplink data to be transmitted.
  • the first signaling is DCI (downlink control information).
  • the first signaling is DCI with a format of 0_0.
  • the first signaling is configured grant (configuration grant).
  • the behavior monitoring of the PDCCH includes trying to receive the PDCCH, and during the trying to receive, the first signaling is received.
  • the behavior monitoring of the PDCCH includes performing blind detection on the PDCCH, and in the blind detection, the first signaling is received.
  • the first MAC PDU group includes only one MAC PDU.
  • the first node U01 generates a second MAC CE; as a response to generating at least the second MAC CE, triggers the first scheduling request; sends the first MAC PDU group in step S5106; with The sending of the first MAC PDU group cancels the first scheduling request;
  • the behavior of monitoring the PDCCH during the active time includes receiving first signaling; the first MAC PDU group occupies the time-frequency resource indicated by the first signaling.
  • the second MAC CE is a BSR MAC CE.
  • the first signaling is DCI (downlink control information).
  • the first signaling is DCI with a format of 0_0.
  • the first signaling is configured grant (configuration grant).
  • the behavior monitoring of the PDCCH includes trying to receive the PDCCH, and during the trying to receive, the first signaling is received.
  • the behavior monitoring of the PDCCH includes performing blind detection on the PDCCH, and in the blind detection, the first signaling is received.
  • the first MAC PDU group includes only one MAC PDU.
  • the second MAC CE is or includes a BSR MAC CE.
  • the second MAC CE is or includes a BFR MAC CE.
  • the second MAC CE is or includes an LBT failure MAC CE.
  • the second MAC CE is or includes a MAC CE related to BFR.
  • the second MAC CE is or includes a TRP-related BFR MAC CE.
  • the second MAC CE is or includes a MAC CE related to the BFR of the TRP.
  • the first scheduling request is triggered.
  • the second MAC CE is generated, and the UL-SCH does not have enough resources to transmit the MAC PDU including the second MAC CE, then the first scheduling request is triggered.
  • the uplink resource indicated by the first signaling is sufficient to transmit the second MAC CE or a MAC PDU including the second MAC CE.
  • the first MAC PDU group includes the second MAC CE.
  • the first scheduling request is canceled.
  • Embodiment 6 illustrates a flow chart of wireless signal transmission according to an embodiment of the present application, as shown in FIG. 6 .
  • U11 corresponds to the first node of this application
  • N12 corresponds to the second node of this application.
  • the order in this example does not limit the order of signal transmission and implementation in this application.
  • F61 The steps in F62 are optional.
  • Embodiment 6 is based on Embodiment 5. The content required but not described in Embodiment 6 can refer to Embodiment 5.
  • the first system information block is received in step S6101; the first MAC CE is received in step S6102; the first message is received in step S6103; the first scheduling request is sent in step S6104; Check the first counter; send the first signal in step S6106; receive the random access response for the first random access procedure in step S6107; send the second message in step S6108.
  • step S6201 For the second node N12 , send the first system information block in step S6201; send the first MAC CE in step S6202; send the first message in step S6203; receive the first scheduling request in step S6204; Receive the first signal; send a random access response for the first random access procedure in step S6206; receive the second message in step S6207.
  • step S6204 is optional, which means that the second node N12 may receive the first scheduling request sent by the first node U11 in step S6104, or may not receive the First dispatch request.
  • the first node U11 receives a first system information block and a first MAC CE, and the first MAC CE indicates a second parameter; the unit of the second parameter is a time slot; the first The system information block indicates a third parameter, where the unit of the third parameter is a time slot;
  • the first node with the sending of the first scheduling request, increases the first counter by 1; as a response that the first counter is equal to the first threshold, initiates a first random access procedure; the behavior initiates the first
  • the random access process includes sending a second message on the time-frequency resource indicated by the random access response for the first random access process; the second message occupies the first PUSCH (physical uplink shared channel, physical uplink shared channel) channel),
  • the second parameter and the third parameter are jointly used to determine the uplink transmission time of the first node; at least one of the second parameter and the third parameter is used to determine the The transmission timing of the first PUSCH.
  • the first counter is increased by 1; as a response that the first counter is equal to the first threshold, a first random access procedure is initiated; the behavior initiates a first random access procedure
  • the access process includes: sending a first signal, receiving a random access response for the first random access process, and at the time and frequency indicated by the random access response for the first random access process Send the second message on the resource.
  • the first scheduling request may be sent and/or received multiple times.
  • the first counter is incremented by 1.
  • the first counter is SR_COUNTER.
  • the first counter is incremented by 1.
  • the first counter is SR_COUNTER.
  • the first counter is incremented by 1 each time any scheduling request of the SR configuration corresponding to the first scheduling request is sent.
  • the first counter is SR_COUNTER.
  • the behavior of checking the first counter in step S6105 refers to checking whether the value of the first counter is less than sr-TransMax; the first counter is not less than the first threshold to trigger the first Node U11 initiates the first random access procedure.
  • the first node U11 sends the first scheduling request on the second PUCCH resource.
  • the first node U11 sends any one of the SR configurations corresponding to the first scheduling request on the second PUCCH resource. Scheduling requests.
  • the result of checking the first timer in step S6105 is that the value of the first counter is greater than or equal to sr-TransMax.
  • the first node U11 initiates the first random access procedure; the first threshold is sr-TransMax.
  • the first random access procedure includes sending the first signal.
  • the first signal is or includes a random access preamble.
  • the first signal is or includes msgA (message A).
  • the random access response for the first random access procedure is a random access response for the first signal.
  • the random access response for the first random access procedure includes signaling for C-RNTI received on the PDCCH.
  • the C-RNTI is the C-RNTI of the first node U11.
  • the random access response for the first random access procedure includes a RAR (Random Access Response) for the first signal.
  • RAR Random Access Response
  • the random access response for the first random access procedure indicates the time-frequency resource of the first PUSCH, and the first PUSCH is used to transmit the second message.
  • the second message is msg3.
  • the second message is msgB.
  • the second message includes a second MAC CE, where the second MAC CE is the MAC CE that triggers the first scheduling request.
  • the fact that the first counter is not less than the first threshold means that SR failure occurs.
  • the first MAC CE is a MAC CE (control element, control unit).
  • the first MAC CE is or includes a RAR (random access response, random access response).
  • the first MAC CE is or includes a MAC CE related to the TA.
  • the first MAC CE is or includes a Timing Advance Command MAC CE.
  • the first MAC CE is or includes an Absolute Timing Advance Command MAC CE.
  • the first MAC CE indicates a second parameter; the unit of the second parameter is a time slot.
  • the second parameter is TAC (timing advance command, timing advance command).
  • the second parameter is used to determine or adjust the timing advance of the first node.
  • the first system information block indicates a third parameter, and a unit of the third parameter is a time slot.
  • the third parameter is k offset . or K offset , or K_offset.
  • the third parameter is k_offset .
  • the third parameter is k_offset(1) .
  • the third parameter is k_offset ,1 .
  • the third parameter is k_offset , UE .
  • the name of the third parameter includes k and/or offset and/or ue.
  • the third parameter is N TA, UE-specific .
  • the third parameter is N TA, specific .
  • the third parameter is N TA,common .
  • the first node U01 increases the first counter by 1.
  • the first counter is incremented by 1 each time the first scheduling request is sent.
  • the first scheduling request must be sent.
  • the scheduling request belonging to the SR configuration of the first scheduling request must be sent.
  • a scheduling request belonging to the SR configuration of the first scheduling request must be sent, and only when the first type of failure indication is not received, the first counter is incremented by 1 .
  • the scheduling request belonging to the SR configuration of the first scheduling request must be sent, and only if the first type of failure indication is not received, and the first counter is smaller than the first threshold, the first counter is incremented by one.
  • the first scheduling request when the first scheduling request must be sent, and only when the first type of failure indication is not received, and the first counter is smaller than the first threshold, then The first counter is incremented by one.
  • the first type of failure indication is an LBT failure indication.
  • the first threshold is sr-TransMax.
  • Embodiment 7 illustrates a schematic diagram of active time according to an embodiment of the present application, as shown in FIG. 7 .
  • the first time length is greater than zero.
  • the first time length is longer than 1 time slot.
  • the first time length is longer than 1 OFDM symbol.
  • the first time length is longer than 1 millisecond.
  • the first time length is longer than 1 subframe.
  • the first time length is longer than 1 frame.
  • the first message includes and/or indicates the first time length.
  • the first system information block includes the first time length.
  • the first message includes a parameter for determining the first time length.
  • the first message indicates a first parameter
  • the first parameter is used to determine the first time length
  • the sum of the first parameter and the maintained timing advance of the first node is used to determine the first time length.
  • the sum of the first parameter and the maintained timing advance of the first node is determined as the first time length.
  • the first parameter is Kmac.
  • the first node sends the first scheduling request at time t0.
  • the time t0 is the time when the first scheduling request is sent.
  • the time t0 is the time when the first scheduling request starts to be sent.
  • the time t0 is the time when the sending of the first scheduling request is completed.
  • the time t0 is the time when the time-frequency resource occupied by the first scheduling request starts.
  • the time t0 is the time when the time-frequency resources occupied by the first scheduling request end.
  • the time t0 is the time of the first OFDM symbol occupied by the first scheduling request.
  • the time t0 is the time of the last OFDM symbol occupied by the first scheduling request.
  • the time t0 is the start or end time of the first OFDM symbol occupied by the first scheduling request.
  • the time t0 is the start or end time of the last OFDM symbol occupied by the first scheduling request.
  • the active time starts after the time t0 is delayed by the first length of time.
  • the active time is later than a first time length after the time t0.
  • the start of the active time is later than the time t0 by the first length of time.
  • the time interval between the time t1 in FIG. 7 and the time t0 is equal to the first time length, and the active time starts at the time t1.
  • the active time starts due to factors other than sending the first scheduling request during the delay of the first time length from the time t0 to the time t0.
  • no factor other than the first scheduling request causes the active time to start between the time t0 and the time t1.
  • the first scheduling request is in a pending state after the time t0.
  • the first scheduling request is in a pending state after the time t0, and is still in a pending state after the time t1.
  • the first scheduling request is always in a pending state between the time t0 and a time later than the time t1.
  • any condition in the first condition set is not satisfied.
  • the active time is for a specific DRX group.
  • the first set of conditions includes: the drx-onDurationTimer for the specific DRX group is not running between time t0 and time t1.
  • the first set of conditions includes: the drx-onInactivityTimer for the specific DRX group is not running between time t0 and time t1.
  • the first set of conditions includes: drx-RetransmissionTimerDL for any serving cell of the specific DRX group is not running between time t0 and time t1.
  • the first set of conditions includes: drx-RetransmissionTimerUL for any serving cell of the specific DRX group is not running between time t0 and time t1.
  • the first set of conditions includes: ra-ContentionResolutionTimer is not running between time t0 and time t1.
  • the first set of conditions includes: msgB-ResponseWindow is not running between time t0 and time t1.
  • the first set of conditions includes: the first scheduling request is transmitted for the nth time at the time t0, and n is greater than 1.
  • the first set of conditions includes: the second scheduling request is transmitted within a first time period before time t0.
  • the first set of conditions includes: the second scheduling request is transmitted within the first time period before time t0; the second scheduling request corresponds to the same as the first scheduling request SR configuration.
  • the first set of conditions includes: after receiving a random access response to a random access preamble that is not a contention-based random access preamble selected by the first node, A PDCCH indication indicating a new transmission is received for a C-RNTI; the C-RNTI being the C-RNTI of the first node.
  • the active time does not include the time after the certain time at the time t1.
  • Embodiment 8 illustrates that the first message according to an embodiment of the present application is used to determine whether the active time includes the time after the first scheduling request is sent on the PUCCH and is in the pending state or includes the time after the first scheduling request is sent.
  • a schematic diagram of a time when the first scheduling request is in a pending state after being delayed for a first length of time is shown in FIG. 8 .
  • the first message explicitly indicates that the active time includes the time after the first scheduling request is sent on the PUCCH and is in the pending state or includes after the first time length is delayed after the first scheduling request is sent And the time when the first scheduling request is in a pending state.
  • the active time when the first message indicates to use the first time length, the active time includes the time after the first scheduling request is sent and then delayed by the first time length and the first scheduling request is in the pending state Time: when the first message does not indicate to use the first time length, the active time includes the time after the first scheduling request is sent on the PUCCH and is in a pending state.
  • the active time when the first message indicates the first length of time, includes the time when the first scheduling request is in the pending state after being delayed for the first length of time after the first scheduling request is sent ;
  • the active time includes the time after the first scheduling request is sent on the PUCCH and is in a pending state.
  • the active time when the first message indicates that the first time length is greater than a certain value, the active time includes after the first scheduling request is sent and then delayed by the first time length and the first scheduling request Time in the pending state; when the first time length indicated by the first message is not greater than the certain value, the active time includes the first scheduling request being sent on the PUCCH and in the pending state time.
  • the active time when the first message indicates the first length of time, includes the time when the first scheduling request is in the pending state after being delayed for the first length of time after the first scheduling request is sent ;
  • the active time includes the time after the first scheduling request is sent on the PUCCH and is in a pending state.
  • the active time when the first message indicates the first parameter, the active time includes the first time after the first scheduling request is sent and the first scheduling request is in the pending state.
  • Time when the first message does not indicate the first parameter, the active time includes the time after the first scheduling request is sent on the PUCCH and is in a pending state.
  • the first parameter is Kmac or K_mac or K mac .
  • the first time length may be obtained through the first parameter, and the first time length is greater than zero.
  • the active time when the first message indicates that the first parameter is greater than the first parameter threshold, the active time includes after the first scheduling request is sent and then delayed for a first length of time and the first scheduling request The time when the request is in the pending state; when the first message does not indicate that the first parameter is greater than the first parameter threshold, the active time includes the time after the first scheduling request is sent on the PUCCH and is in the pending state.
  • the first parameter is Kmac or K_mac or K mac .
  • the first time length may be obtained through the first parameter, and the first time length is greater than zero.
  • the sentence that the first message does not indicate that the first parameter is greater than the first parameter threshold includes that the first message does not indicate the first parameter.
  • the sentence that the first message does not indicate that the first parameter is greater than the first parameter threshold includes that the first message indicates that the first parameter is not greater than the first parameter The first parameter threshold.
  • the first parameter threshold is a real number.
  • the unit of the first parameter threshold is millisecond or time slot or subframe or frame.
  • the first node when the first parameter exceeds the first parameter threshold, the first node may consider that it is communicating with the NTN.
  • the active time when the first message indicates that the first time length can be calculated, the active time includes after the first scheduling request is sent and then delayed by the first time length and the first scheduling request is pending The time of the state; when the first time length cannot be determined, the active time includes the time after the first scheduling request is sent on the PUCCH and is in the pending state; the first time length is greater than 0.
  • the active time when the first message indicates non-TN, includes the time when the first scheduling request is delayed for a first length of time after the first scheduling request is sent and the first scheduling request is in a pending state; when When the first message does not indicate TN, the active time includes a time when the first scheduling request is sent on the PUCCH and is in a pending state.
  • the active time when the first message indicates NTN, includes the time when the first scheduling request is delayed for a first length of time after the first scheduling request is sent; when the first scheduling request is in a pending state; When the first message does not indicate NTN, the active time includes the time after the first scheduling request is sent on the PUCCH and is in a pending state.
  • the active time when the first message indicates that the current network is NTN, the active time includes the time when the first scheduling request is delayed for a first length of time after the first scheduling request is sent and the first scheduling request is in a pending state ;
  • the active time includes the time after the first scheduling request is sent on the PUCCH and is in a pending state.
  • the active time when the first message indicates at least one of ephemeris or altitude or orbital parameters or perigee parameters, the active time includes after the first scheduling request is sent and then delayed for a first length of time and the The time when the first scheduling request is in the pending state; when the first message does not indicate any one of the ephemeris or orbit parameters or altitude or perigee parameters, the active time includes after the first scheduling request is sent on the PUCCH and is pending.
  • the active time when the first message indicates parameters related to satellite communication, the active time includes after the first scheduling request is sent and then delayed for a first length of time and the first scheduling request is in a pending state time; when the first message does not indicate parameters related to satellite communication, the active time includes the time after the first scheduling request is sent on the PUCCH and is in a pending state.
  • the active time when the first message indicates a specific PLMN, the active time includes a time when the first scheduling request is delayed for a first length of time after the first scheduling request is sent and the first scheduling request is in a pending state; when When the first message does not indicate a specific PLMN, the active time includes the time after the first scheduling request is sent on the PUCCH and is in a pending state.
  • the specific PLMN is related to NTN.
  • the active time when the first message indicates the third parameter, includes a time when the first scheduling request is in a pending state after being delayed for a first length of time after the first scheduling request is sent;
  • the active time includes the time after the first scheduling request is sent on the PUCCH and is in a pending state.
  • the third parameter is Koffset.
  • the third parameter is used to determine a timing advance, and the timing advance determined according to the third parameter is greater than 2ms.
  • the third parameter is used to determine a timing advance, and the timing advance determined according to the third parameter is greater than a maximum delay caused by ground communication.
  • the active time when the first message indicates the first parameter, includes the time after the first scheduling request is sent and then delayed for a first length of time and the first scheduling request is in a pending state;
  • the active time includes the time after the first scheduling request is sent on the PUCCH and is in a pending state.
  • the first parameter is Kmac or K_mac.
  • the first parameter indicates a first time difference between the DCI and the PUSCH that allocates time-frequency resources through the DCI; the first time difference is greater than a first value, and the first value Including k1 time units, the time unit is one of ⁇ milliseconds, seconds, OFDM symbols, time slots, subframes, frames, 2ms, chip length ⁇ ; k1 is a positive integer, in particular, k1 time units is the time greater than 4 OFDM symbols.
  • Embodiment 9 illustrates a schematic diagram in which the sum of the timing advance maintained by the first node and the first parameter is used to determine the first time length according to an embodiment of the present application, as shown in FIG. 9 .
  • the first time length is equal to a sum of a timing advance (TA) maintained by the first node and the first parameter.
  • TA timing advance
  • the first time length is equal to a sum of a timing advance (TA) maintained by the first node and the first parameter plus a first time offset.
  • TA timing advance
  • the first parameter is Kmac or K_mac.
  • the first time offset is indicated by a serving cell of the first node.
  • the first time offset is fixed.
  • the first time length is equal to x1 times the sum of the timing advance (TA) maintained by the first node and the first parameter plus the first time offset.
  • the x1 is a real number.
  • said x1 is equal to 0.5.
  • said x1 is equal to 2.
  • the first time offset is indicated by a serving cell of the first node.
  • the first time offset is fixed.
  • the first time length is equal to a sum of a timing advance (TA) maintained by the first node and x2 times the first parameter plus a first time offset.
  • TA timing advance
  • the x2 is a real number.
  • said x2 is equal to 2.
  • said x2 is equal to 0.5.
  • the first time offset is indicated by a serving cell of the first node.
  • the first time offset is fixed.
  • the first parameter is used to determine the processing delay of the MAC layer.
  • the first parameter is used to determine the round trip time of the MAC layer.
  • the first parameter is used to determine the round-trip time of the wireless signal.
  • Embodiment 10 illustrates a schematic diagram in which the second parameter and the third parameter are jointly used to determine the uplink sending time of the first node according to an embodiment of the present application, as shown in FIG. 10 .
  • T TA the timing advance maintained by the first node
  • T TA (N TA +N TA, UE-specific +N TA, common +N TA, offset ) ⁇ T c
  • N TA , N TA, UE-specific , N TA, common , N TA, offset are fixed or default or indicated by the system or determined by the first node itself
  • Tc is the basic time unit of the NR system, For the specific definition of Tc, refer to section 4.1 of the 3GPP standard TS 38.211.
  • the N TA,offset timing advance offset is indicated by the system.
  • N TA is a non-negative integer and can be indicated by a timing advance MAC CE.
  • N TA can be calculated according to the subcarrier spacing.
  • N TA is equal to 0.
  • N TA,UE-specific is an offset from the timing advance for a specific UE.
  • N TA,common is an offset from the timing advance for the entire cell or a beam area.
  • the second parameter is used to determine the timing advance maintained by the first node.
  • the next valid PRACH opportunity is a time after the sum of n and the third parameter.
  • the phrase time is n means that the current time is one of the nth ⁇ time slot, symbol, subframe ⁇ .
  • n is an integer or a non-negative integer or a positive integer.
  • the uplink sending time of the first node is determined by the third parameter of the current time delay and the timing advance determined by the second parameter.
  • the uplink sending includes sending the first PUSCH.
  • the uplink transmission time of the first PUSCH is equal to the time determined by the timing advance determined by the second parameter.
  • Embodiment 11 illustrates a schematic diagram in which at least one of the second parameter and the third parameter is used to determine the first PUSCH transmission timing according to an embodiment of the present application, as shown in FIG. 11 .
  • the second parameter is used to determine the sending timing of the first PUSCH.
  • the third parameter has nothing to do with the sending timing of the first PUSCH.
  • the second parameter is TAC.
  • the second parameter is used to determine the uplink timing advance maintained by the first node.
  • the sending time of the first PUSCH is equal to the time ahead of the uplink timing maintained by the first node before the corresponding nth downlink time slot; the first PUSCH and The nth downlink time slot is associated.
  • the sending moment of the first PUSCH is equal to the uplink timing advance moment maintained by the first node before the corresponding nth downlink subframe; the first PUSCH and The nth downlink subframe is associated.
  • the sending time of the first PUSCH is equal to the time when the uplink timing maintained by the first node before the corresponding nth downlink frame is advanced; the first PUSCH and the associated with the nth downlink frame.
  • the sending time of the first PUSCH is equal to twice the uplink timing advance maintained by the first node before the corresponding nth downlink time slot; the first The PUSCH is associated with the nth downlink time slot.
  • the sending time of the first PUSCH is equal to twice the uplink timing advance maintained by the first node before the corresponding nth downlink subframe; the first The PUSCH is associated with the nth downlink subframe.
  • the sending time of the first PUSCH is equal to twice the uplink timing advance maintained by the first node before the corresponding nth downlink frame; the first PUSCH associated with the nth downlink frame.
  • any of the corresponding nth downlink ⁇ subframe, time slot, frame ⁇ is fixed or indicated by the serving cell of the first node or determined according to the third parameter .
  • the third parameter is used to determine the sending timing of the first PUSCH.
  • the sum of the third parameter and the first candidate n is n, and the first candidate n is fixed or indicated by the serving cell of the first node; the first PUSCH is associated with said n;
  • the first PUSCH is associated with the nth downlink subframe.
  • the first PUSCH is associated with the nth downlink time slot.
  • the first PUSCH is associated with the nth downlink frame.
  • the first PUSCH is associated with one of the first n ⁇ subframe, time slot, frame ⁇ candidates.
  • the third parameter is K_offset or Koffset.
  • the second parameter and the third parameter are jointly used to determine the sending time of the first PUSCH.
  • the meaning of the first PUSCH being associated with the nth downlink time slot is that, assuming that the timing advance is not used, or the timing advance is equal to 0, the time occupied by the first PUSCH belongs to the nth downlink time slots, or are included in the nth downlink time slot, or overlap with the nth downlink time slot.
  • the meaning that the first PUSCH is associated with the nth downlink subframe is that, assuming that the timing advance is not used, or the timing advance is equal to 0, the time occupied by the first PUSCH belongs to the nth
  • the downlink subframe is either included in the nth downlink subframe, or overlaps with the nth downlink subframe.
  • the meaning that the first PUSCH is associated with the nth downlink frame is that, assuming that the timing advance is not used, or the timing advance is equal to 0, the time occupied by the first PUSCH belongs to the nth downlink frame
  • the downlink frame is either included in the nth downlink frame, or overlaps with the nth downlink frame.
  • Embodiment 12 illustrates a structural block diagram of a processing device used in a first node according to an embodiment of the present application; as shown in FIG. 12 .
  • the processing device 1200 in the first node includes a first receiver 1201 and a first transmitter 1202 .
  • Example 12
  • the first receiver 1201 receives the first message; the first message is used to indicate whether the active time includes the time after the first scheduling request is sent on the PUCCH and is in the pending state or includes the time after the first scheduling request is sent the time after delaying for a first length of time and the first dispatch request is pending;
  • the first transmitter 1202 sends the first scheduling request on the first PUCCH resource
  • the first receiver 1201 monitors the PDCCH during the active time.
  • the first transmitter 1202 increases the first counter by 1 with the sending of the first scheduling request
  • the first message is used to indicate that the active time includes the time when the first scheduling request is sent on the PUCCH and is in the pending state or includes the time from the The first scheduling request is sent and then delayed for a time after the first length of time and when the first scheduling request is in a pending state.
  • the first transmitter 1202 increases the first counter by 1 with the sending of the first scheduling request
  • the first message is used to indicate that the active time includes the time when the first scheduling request is sent on the PUCCH and is in a pending state or includes the delay after the first scheduling request is sent.
  • the time after the first length of time and when the first scheduling request is pending is independent of the first counter.
  • the first receiver 1201 receives a first system information block; the first system information block is used to indicate a first parameter, and the unit of the first parameter is a time slot;
  • the sum of the timing advance maintained by the first node 1200 and the first parameter is used to determine the first time length; the first message is used to indicate that the active time includes A time when a scheduling request is sent and delayed after the first length of time and the first scheduling request is in a pending state.
  • the first receiver 1201 receives a first system information block and a first MAC CE, and the first MAC CE indicates a second parameter; the unit of the second parameter is a time slot; the second A system information block indicates a third parameter, where the unit of the third parameter is a time slot;
  • the first transmitter 1202 with the sending of the first scheduling request, increases the first counter by 1; as a response that the first counter is equal to the first threshold, initiates a first random access procedure; the action initiates
  • the first random access procedure includes sending a second message on the time-frequency resource indicated by the random access response for the first random access procedure; the second message occupies the first PUSCH;
  • the second parameter and the third parameter are jointly used to determine the uplink transmission time of the first node 1200; at least one of the second parameter and the third parameter is used to determine the The transmission timing of the first PUSCH is described above.
  • the first transmitter 1202 starts a first timer along with sending the first scheduling request
  • the first scheduling request is only sent when the first timer is not running, and the expiration value of the first timer is equal to the first time length; the first message is used to indicate the
  • the live time includes the time after the first scheduling request is delayed after the first length of time since the first scheduling request was sent and the first scheduling request is in a pending state.
  • the first transmitter 1202 generates a second MAC CE; as a response to at least generating the second MAC CE, triggers the first scheduling request; sends a first MAC PDU group; accompanying the first MAC PDU The sending of a MAC PDU group cancels the first scheduling request; the first MAC PDU group includes at least one MAC PDU;
  • the behavior of monitoring the PDCCH during the active time includes receiving first signaling; the first MAC PDU group occupies the time-frequency resources indicated by the first signaling.
  • the first transmitter 1202 increases the first counter by 1 when sending any scheduling request corresponding to the first scheduling request configuration
  • the first message is used to indicate that the active time includes the time when the first scheduling request is sent on the PUCCH and is in the pending state or includes the time from the The first scheduling request is sent and then delayed for a time after the first length of time and when the first scheduling request is in a pending state.
  • the first receiver 1201 receives a first scheduling request configuration, and the scheduling request configuration corresponding to the first scheduling request is the first scheduling request configuration;
  • the first transmitter 1202 increases the first counter by 1 with the sending of any scheduling request corresponding to the first scheduling request configuration
  • the first message is used to indicate that the active time includes the time when the first scheduling request is sent on the PUCCH and is in a pending state or includes the delay after the first scheduling request is sent.
  • the time after the first length of time and when the first scheduling request is pending is independent of the first counter.
  • the first scheduling request configuration is an SR configuration.
  • the first node is a user equipment (UE).
  • UE user equipment
  • the first node is a terminal supporting a large delay difference.
  • the first node is a terminal supporting NTN.
  • the first node is an aircraft.
  • the first node is a vehicle-mounted terminal.
  • the first node is a relay.
  • the first node is a ship.
  • the first node is an Internet of Things terminal.
  • the first node is a terminal of the Industrial Internet of Things.
  • the first node is a device supporting low-latency high-reliability transmission.
  • the first node is a secondary link communication node.
  • the first receiver 1201 includes the antenna 452 in Embodiment 4, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, or the data source At least one of 467.
  • the first transmitter 1202 includes the antenna 452 in Embodiment 4, the transmitter 454, the transmission processor 468, the multi-antenna transmission processor 457, the controller/processor 459, the memory 460, or the data source At least one of 467.
  • Embodiment 13 illustrates a structural block diagram of a processing device used in a second node according to an embodiment of the present application; as shown in FIG. 13 .
  • the processing device 1300 in the second node includes a second transmitter 1301 and a second receiver 1302 .
  • Example 13
  • the second transmitter 1301 sends a first message; the first message is used to indicate whether the active time includes the time after the first scheduling request is sent on the PUCCH and is in the pending state or includes the time after the first scheduling request is sent the time after delaying for a first length of time and the first dispatch request is pending;
  • the second receiver 1302 receives the first scheduling request on the first PUCCH resource
  • the sender of the first scheduling request monitors the PDCCH during the active time.
  • the first counter is increased by 1;
  • the first message is used to indicate that the active time includes the time when the first scheduling request is sent on the PUCCH and is in the pending state or includes the time from the The first scheduling request is sent and then delayed for a time after the first length of time and when the first scheduling request is in a pending state.
  • the first counter is increased by 1;
  • the first message is used to indicate that the active time includes the time when the first scheduling request is sent on the PUCCH and is in a pending state or includes the delay after the first scheduling request is sent.
  • the time after the first length of time and when the first scheduling request is pending is independent of the first counter.
  • the second transmitter 1301 sends a first system information block;
  • the first system information block is used to indicate a first parameter, and the unit of the first parameter is a time slot;
  • the sum of the timing advance maintained by the sender of the first scheduling request and the first parameter is used to determine the first time length; the first message is used to indicate that the active time includes from A time after the first scheduling request is delayed after the first length of time is sent and the first scheduling request is in a pending state.
  • the second transmitter 1301 sends a first system information block and a first MAC CE, and the first MAC CE indicates a second parameter; the unit of the second parameter is a time slot; the first MAC CE A system information block indicates a third parameter, where the unit of the third parameter is a time slot;
  • the first counter is increased by 1; the first counter is equal to or greater than the first threshold and is used to trigger the first random access procedure;
  • the second transmitter 1301 sends a random access response for the first random access procedure
  • the second receiver 1302 receives a second message on the indicated time-frequency resource of the random access response for the first random access procedure; the second message occupies the first PUSCH;
  • the second parameter and the third parameter are jointly used to determine the timing advance maintained by the sender of the first scheduling request; at least one of the second parameter and the third parameter is used by It is used to determine the sending timing of the first PUSCH.
  • a first timer is started
  • the first scheduling request is only sent when the first timer is not running, and the expiration value of the first timer is equal to the first time length; the first message is used to indicate the
  • the live time includes the time after the first scheduling request is delayed after the first length of time since the first scheduling request was sent and the first scheduling request is in a pending state.
  • the second transmitter 1301 sends the first signaling on the PDCCH; the second receiver 1302 receives the first MAC PDU group; the second MAC CE is used to trigger the The first scheduling request; accompanying the sending of the first MAC PDU group, the first scheduling request is canceled; the first MAC PDU group includes at least one MAC PDU;
  • the first MAC PDU group occupies the time-frequency resource indicated by the first signaling.
  • the second transmitter 1301 sends a first scheduling request configuration, and the scheduling request configuration corresponding to the first scheduling request is the first scheduling request configuration;
  • the first counter is incremented by 1;
  • the first message is used to indicate that the active time includes the time when the first scheduling request is sent on the PUCCH and is in the pending state or includes the time from the The first scheduling request is sent and then delayed for a time after the first length of time and when the first scheduling request is in a pending state.
  • the second transmitter 1301 sends a first scheduling request configuration, and the scheduling request configuration corresponding to the first scheduling request is the first scheduling request configuration;
  • the first counter is incremented by 1;
  • the first message is used to indicate that the active time includes the time when the first scheduling request is sent on the PUCCH and is in a pending state or includes the delay after the first scheduling request is sent.
  • the time after the first length of time and when the first scheduling request is pending is independent of the first counter.
  • the second node is a satellite.
  • the second node is an IoT node.
  • the second node is a relay.
  • the second node is an access point.
  • the second node is a base station.
  • the second transmitter 1301 includes at least one of the antenna 420 in Embodiment 4, the transmitter 418, the transmission processor 416, the multi-antenna transmission processor 471, the controller/processor 475, and the memory 476 one.
  • the second receiver 1302 includes at least one of the antenna 420 in Embodiment 4, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, and the memory 476 one.
  • the user equipment, terminal and UE in this application include but are not limited to drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, vehicle communication equipment, wireless sensors, network cards, Internet of things terminal, RFID terminal, NB-IoT terminal, MTC (Machine Type Communication, machine type communication) terminal, eMTC (enhanced MTC, enhanced MTC) terminal, data card, network card, vehicle communication equipment, low-cost mobile phone, low-cost Cost Tablet PC, satellite communication equipment, ship communication equipment, NTN user equipment and other wireless communication equipment.
  • MTC Machine Type Communication, machine type communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes but not limited to macrocell base station, microcell base station, home base station, relay base station, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, sending and receiving node), NTN base station , satellite equipment, flight platform equipment and other wireless communication equipment.
  • gNB NR Node B
  • TRP Transmitter Receiver Point

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的方法和设备,包括接收第一消息;所述第一消息被用于指示活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;在第一PUCCH资源上发送所述第一调度请求;在所述活跃时间中监测PDCCH。本申请通过接收第一消息和确定活跃时间,可以节省功率。

Description

一种被用于无线通信的方法和设备 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中非地面网络中节省功率方面的方法和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或Fifth Generation,5G)进行研究,在3GPP RAN#75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。
在通信中,无论是LTE(Long Term Evolution,长期演进)还是5G NR都会涉及到可靠的信息的准确接收,优化的能效比,信息有效性的确定,灵活的资源分配,可伸缩的系统结构,高效的非接入层信息处理,较低的业务中断和掉线率,对低功耗支持,这对基站和用户设备的正常通信,对资源的合理调度,对系统负载的均衡都有重要的意义,可以说是高吞吐率,满足各种业务的通信需求,提高频谱利用率,提高服务质量的基石,无论是eMBB(ehanced Mobile BroadBand,增强的移动宽带),URLLC(Ultra Reliable Low Latency Communication,超高可靠低时延通信)还是eMTC(enhanced Machine Type Communication,增强的机器类型通信)都不可或缺的。同时在IIoT(Industrial Internet of Things,工业领域的物联网中,在V2X(Vehicular to X,车载通信)中,在设备与设备之间通信(Device to Device),在非授权频谱的通信中,在用户通信质量监测,在网络规划优化,在NTN(Non Territerial Network,非地面网络通信)中,在TN(Territerial Network,地面网络通信)中,在双连接(Dual connectivity)系统中,在无线资源管理以及多天线的码本选择中,在信令设计,邻区管理,业务管理,在波束赋形中都存在广泛的需求,信息的发送方式分为广播和单播,两种发送方式都是5G系统必不可少的,因为它们对满足以上需求十分有帮助。UE与网络连接的方式可以是直接连接也可以通过中继连接。
随着系统的场景和复杂性的不断增加,对降低中断率,降低时延,增强可靠性,增强系统的稳定性,对业务的灵活性,对功率的节省也提出了更高的要求,同时在系统设计的时候还需要考虑不同系统不同版本之间的兼容性。
3GPP标准化组织针对5G做了相关标准化工作,形成了包括38.304,38.211,38.213等一系列标准,标准内容可参考:
https://www.3gpp.org/ftp/Specs/archive/38_series/38.304/38304-g40.zip
https://www.3gpp.org/ftp/Specs/archive/38_series/38.211/38211-g50.zip
https://www.3gpp.org/ftp/Specs/archive/38_series/38.213/38213-g50.zip
https://www.3gpp.org/ftp/Specs/archive/38_series/38.321/38321-g50.zip
发明内容
在多种通信场景中,尤其涉及NTN的时候,由于通信距离十分遥远,因此节省功率的需求十分突出。减少监测PDCCH有利于减少功率的消耗。PDCCH的监测涉及盲检测,即UE对可能的时频资源上的信息进行接收并尝试解码,因为UE并不能事先知道这些时频资源上是否确切的有针对其的信令传输,因此这些尝试解码也叫做盲解码或盲检测,可能解出有用的信息,也就是通过了循环冗余校验(CRC)的校验,也可能由于无法通过CRC校验而无法得到有用的信息。监测(monitoring)PDCCH的时频资源的大致的区间由系统进行配置,例如通过搜索空间和控制资源集合(control resource set,CORESET)配置,而每次监测可能涉及数十次盲检测而这数十次盲检测中,可能绝大部分尝试都没有能够解出有用的信息,但却消耗了大量的功率。对TN网络而言,为了更灵活的调度,可能需要在发出调度请求后立即监测PDCCH,因为基站会在极短的时间内收到调度请求并可以随时对UE进行调度。对于NTN,传播时延十分巨大,当UE发送了调度请求之后,信号需要经历较长时间的传输才能够到达基站,因此UE不可能立即接收到调度信令,因 此在调度请求发出的一段时间内监测PDCCH是没有意义的。监测PDCCH主要收到活跃时间控制,在活跃时间内,UE需要监测PDCCH。因此,一方面在NTN中发送调度请求后如何减少对PDCCH的监测是本申请要解决的问题,另一方面如何恰当的控制监测PDCCH的行为,同时保证调度的灵活性也是本申请考虑的范围。
以上所述问题,本申请提供了一种解决方案。
需要说明的是,在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,包括:
接收第一消息;所述第一消息被用于指示活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;
在第一PUCCH资源上发送所述第一调度请求;
在所述活跃时间中监测PDCCH。
作为一个实施例,本申请要解决的问题包括:在NTN中,当调度请求被发送后,如何控制PDCCH的监测,做到既节省电力,又可以保证调度的灵活性。
作为一个实施例,上述方法的好处包括:减少了发送调度请求之后对PDCCH的监测,同时也不会错过PDCCH可能发送的信息,从而减少了功率消耗并保证了通信性能。
具体的,根据本申请的一个方面,伴随所述第一调度请求的发送,将第一计数器增加1;
其中,仅当所述第一计数器等于1时,所述第一消息被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间。
具体的,根据本申请的一个方面,伴随所述第一调度请求的发送,将第一计数器增加1;
其中,所述第一消息被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间与所述第一计数器无关。
具体的,根据本申请的一个方面,接收第一系统信息块;所述第一系统信息块被用于指示第一参数,所述第一参数的单位是时隙;
其中,所述第一节点所维护的定时提前与所述第一参数的和被用于确定所述第一时间长度;所述第一消息被用于指示所述活跃时间包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间。
具体的,根据本申请的一个方面,接收第一系统信息块和第一MAC CE,所述第一MAC CE指示第二参数;所述第二参数的单位是时隙;所述第一系统信息块指示第三参数,所述第三参数的单位是时隙;
所述第一发射机,伴随所述第一调度请求的发送,将第一计数器增加1;作为所述第一计数器等于或大于第一阈值的响应,发起第一随机接入过程;所述行为发起第一随机接入过程包括在针对所述第一随机接入过程的随机接入响应所指示的时频资源上发送第二消息;所述第二消息占用第一PUSCH;
其中,所述第二参数和所述第三参数共同被用于确定所述第一节点的上行发送时刻;所述第二参数和所述第三参数中的至少之一被用于确定所述第一PUSCH的发送定时。
具体的,根据本申请的一个方面,伴随所述第一调度请求的发送,开始第一计时器;
其中,所述第一调度请求仅在所述第一计时器未运行时被发送,所述第一计时器的过期值等于所述第一时间长度;所述第一消息被用于指示所述活跃时间包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间。
具体的,根据本申请的一个方面,生成第二MAC CE;作为至少生成所述第二MAC CE的响应,触发所述第一调度请求;发送第一MAC PDU组;伴随所述第一MAC PDU组的发送,取消所述第一调度请求;所述第一MAC PDU组包括至少一个MAC PDU;
其中,所述行为在所述活跃时间中监测PDCCH包括接收第一信令;所述第一MAC PDU组占用所述第一信令所指示的时频资源。
具体的,根据本申请的一个方面,接收第一调度请求配置,所述第一调度请求对应的调度请求配置是 所述第一调度请求配置;
伴随与所述第一调度请求配置对应的任一调度请求的发送,将第一计数器增加1;
其中,仅当所述第一计数器等于1时,所述第一消息被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间。
具体的,根据本申请的一个方面,接收第一调度请求配置,所述第一调度请求对应的调度请求配置是所述第一调度请求配置;
伴随与所述第一调度请求配置对应的任一调度请求的发送,将第一计数器增加1;
其中,所述第一消息被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间与所述第一计数器无关。
具体的,根据本申请的一个方面,所述第一节点是用户设备。
具体的,根据本申请的一个方面,所述第一节点是物联网终端。
具体的,根据本申请的一个方面,所述第一节点是中继。
具体的,根据本申请的一个方面,所述第一节点是车载终端。
具体的,根据本申请的一个方面,所述第一节点是飞行器。
一种被用于无线通信的第二节点中的方法,其中,包括:
发送第一消息;所述第一消息被用于指示活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;
在第一PUCCH资源上接收所述第一调度请求;
其中,所述第一调度请求的发送者在所述活跃时间中监测PDCCH。
具体的,根据本申请的一个方面,伴随所述第一调度请求的发送,第一计数器被增加1;
其中,仅当所述第一计数器等于1时,所述第一消息被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间。
具体的,根据本申请的一个方面,伴随所述第一调度请求的发送,第一计数器被增加1;
其中,所述第一消息被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间与所述第一计数器无关。
具体的,根据本申请的一个方面,发送第一系统信息块;所述第一系统信息块被用于指示第一参数,所述第一参数的单位是时隙;
其中,所述第一调度请求的发送者所维护的定时提前与所述第一参数的和被用于确定所述第一时间长度;所述第一消息被用于指示所述活跃时间包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间。
具体的,根据本申请的一个方面,发送第一系统信息块和第一MAC CE,所述第一MAC CE指示第二参数;所述第二参数的单位是时隙;所述第一系统信息块指示第三参数,所述第三参数的单位是时隙;
伴随所述第一调度请求的发送,第一计数器被增加1;所述第一计数器等于或大于第一阈值被用于触发第一随机接入过程;
发送针对所述第一随机接入过程的随机接入响应;
在针对所述第一随机接入过程的所述随机接入响应所述所指示的时频资源上接收第二消息;所述第二消息占用第一PUSCH;
其中,所述第二参数和所述第三参数共同被用于确定所述第一调度请求的发送者所维护的定时提前;所述第二参数和所述第三参数中的至少之一被用于确定所述第一PUSCH的发送定时。
具体的,根据本申请的一个方面,伴随所述第一调度请求的发送,第一计时器被开始;
其中,所述第一调度请求仅在所述第一计时器未运行时被发送,所述第一计时器的过期值等于所述第 一时间长度;所述第一消息被用于指示所述活跃时间包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间。
具体的,根据本申请的一个方面,在所述PDCCH上发送第一信令;接收第一MAC PDU组;所述第二MAC CE被用于触发所述第一调度请求;伴随所述第一MAC PDU组的发送,所述第一调度请求被取消;所述第一MAC PDU组包括至少一个MAC PDU;
其中,所述第一MAC PDU组占用所述第一信令所指示的时频资源。
具体的,根据本申请的一个方面,发送第一调度请求配置,所述第一调度请求对应的调度请求配置是所述第一调度请求配置;
伴随与所述第一调度请求配置对应的任一调度请求的发送,第一计数器被增加1;
其中,仅当所述第一计数器等于1时,所述第一消息被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间。
具体的,根据本申请的一个方面,发送第一调度请求配置,所述第一调度请求对应的调度请求配置是所述第一调度请求配置;
伴随与所述第一调度请求配置对应的任一调度请求的发送,第一计数器被增加1;
其中,所述第一消息被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间与所述第一计数器无关。
具体的,根据本申请的一个方面,所述第二节点是基站。
具体的,根据本申请的一个方面,所述第二节点是中继。
具体的,根据本申请的一个方面,所述第二节点是飞行器。
具体的,根据本申请的一个方面,所述第二节点是卫星。
具体的,根据本申请的一个方面,所述第二节点是接入点设备。
本申请公开了一种被用于无线通信的第一节点,包括:
第一接收机,接收第一消息;所述第一消息被用于指示活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;
第一发射机,在第一PUCCH资源上发送所述第一调度请求;
所述第一接收机,在所述活跃时间中监测PDCCH。
本申请公开了一种被用于无线通信的第二节点,包括:
第二发射机,发送第一消息;所述第一消息被用于指示活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;
第二接收机,在第一PUCCH资源上接收所述第一调度请求;
其中,所述第一调度请求的发送者在所述活跃时间中监测PDCCH。
作为一个实施例,和传统方案相比,本申请具备如下优势:
可以在发送调度请求后减少监测PDCCH的时间从而节省功率。
可以保证调度的灵活性,尤其是针对重传的调度请求,基站可以随时进行调度。
可以根据不同的网络,TN和NTN,合理的确定活跃时间。
可以根据NTN的特性,例如不同卫星轨道所带来的不同的时延,合理的确定活跃时间的开始。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的接收第一消息,发送第一调度请求,监测PDCCH的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输的流程图;
图6示出了根据本申请的一个实施例的无线信号传输的流程图;
图7示出了根据本申请的一个实施例的活跃时间的示意图;
图8示出了根据本申请的一个实施例的第一消息被用于确定活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间的示意图;
图9示出了根据本申请的一个实施例的第一节点所维护的定时提前与第一参数的和被用于确定第一时间长度的示意图。
图10示例了根据本申请的一个实施例的第二参数和第三参数共同被用于确定第一节点的上行发送时刻的示意图;
图11示例了根据本申请的一个实施例的第二参数和第三参数中的至少之一被用于确定第一PUSCH发送定时的示意图;
图12示例了根据本申请的一个实施例的用于第一节点中的处理装置的示意图;
图13示例了根据本申请的一个实施例的用于第二节点中的处理装置的示意图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的接收第一消息,发送第一调度请求,监测PDCCH的流程图,如附图1所示。附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一节点在步骤101中接收第一消息;在步骤102中发送第一调度请求;在步骤103中监测PDCCH;
其中,所述第一消息被用于指示活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;所述第一调度请求在第一PUCCH资源上被发送;所述第一节点在所述活跃时间中监测PDCCH。
作为一个实施例,所述第一节点是UE(User Equipment,用户设备)。
作为一个实施例,服务小区指的是UE驻留的小区。执行小区搜索包括,UE搜索所选择的PLMN(公共陆地移动网,Public Land Mobile Network)或SNPN(Stand-alone Non-Public Network,独立非公共网络)的一个合适的(suitable)小区,选择所述一个合适的小区提供可用的业务,监测所述一个合适的小区的控制信道,这一过程被定义为驻留在小区上;也就是说,一个被驻留的小区,相对于这个UE,是这个UE的服务小区。在RRC空闲态或RRC非活跃态驻留在一个小区上有如下好处:使得UE可以从PLMN或SNPN接收系统消息;当注册后,如果UE希望建立RRC连接或继续一个被挂起的RRC连接,UE可以通过在驻留小区的控制信道上执行初始接入来实现;网络可以寻呼到UE;使得UE可以接收ETWS(Earthquake and Tsunami Warning System,地震海啸预警系统)和CMAS(Commercial Mobile Alert System,商业移动报警系统)通知。
作为一个实施例,对于没有配置CA/DC(carrier aggregation/dual connectivity,载波聚合/双连接)的处于RRC连接态的UE,只有一个服务小区包括主小区。对于配置了CA/DC(carrier aggregation/dual connectivity,载波聚合/双连接)的处于RRC连接态的UE,服务小区用于指示包括特殊小区(SpCell,Special Cell)和所有从小区的小区集合。主小区(Primary Cell)是MCG(Master Cell Group)小区,工作在主频率上,UE在主小区上执行初始连接建立过程或发起连接重建。对于双连接操作,特殊小区指的是MCG的PCell(Primary Cell,主小区)或SCG(Secondary Cell Group)的PSCell(Primary SCG Cell,主SCG小区);如果不是双连接操作,特殊小区指的是PCell。
作为一个实施例,SCell(Secondary Cell,从小区)工作的频率是从频率。
作为一个实施例,信息元素的单独的内容被称为域。
作为一个实施例,MR-DC(Multi-Radio Dual Connectivity,多无线双连接)指的是E-UTRA和NR节点的双连接,或两个NR节点之间的双连接。
作为一个实施例,在MR-DC中,提供到核心网的控制面连接的无线接入节点是主节点,主节点可以是主eNB,主ng-eNB,或主gNB。
作为一个实施例,MCG指的是,在MR-DC中,与主节点相关联的一组服务小区,包括SpCell,还可以,可选的,包括一个或多个SCell。
作为一个实施例,PCell是MCG的SpCell。
作为一个实施例,PSCell是SCG的SpCell。
作为一个实施例,在MR-DC中,不提供到核心网的控制面连接,给UE提供额外资源的无线接入节点是从节点。从节点可以是en-gNB,从ng-eNB或从gNB。
作为一个实施例,在MR-DC中,与从节点相关联的一组服务小区是SCG(secondary cell group,从小区组),包括SpCell和,可选的,一个或多个SCell。
作为一个实施例,所述第一PUCCH资源属于NTN的PUCCH资源。
作为一个实施例,所述第一消息被用于指示NTN通信。
作为一个实施例,所述第一消息显式的指示NTN通信。
作为一个实施例,所述第一消息显式的非TN通信。
作为一个实施例,所述第一消息通过指示星历来指示NTN通信。
作为一个实施例,所述第一消息通过指示轨道参数来指示NTN通信。
作为一个实施例,所述第一消息通过指示PLMN来指示NTN通信。
作为一个实施例,所述第一消息通过指示超过2ms的定时提前来指示NTN通信。
作为一个实施例,所述第一消息通过指示仅用于NTN的参数来指示NTN通信。
作为一个实施例,所述第一消息是或包括RRC消息。
作为一个实施例,所述第一消息是或包括MAC CE消息。
作为一个实施例,所述第一消息是或包括更高层消息。
作为一个实施例,所述第一消息是或包括系统消息。
作为一个实施例,所述第一消息是或包括系统信息块(system information block,SIB)。
作为一个实施例,所述第一消息是或包括SIB1。
作为一个实施例,所述第一消息是或包括针对NTN的SIB。
作为一个实施例,所述第一消息是或包括MIB。
作为一个实施例,所述第一消息是或包括RRCReconfiguration。
作为一个实施例,所述第一消息是或包括RRCConnectionReconfiguration。
作为一个实施例,所述第一消息包括rach-config。
作为一个实施例,所述第一消息包括rach-configdedicated。
作为一个实施例,所述活跃时间特指Active Time。
作为一个实施例,所述活跃时间是针对第一DRX组的。
作为一个实施例,所述活跃时间是针对第一DRX组内的服务小区的。
作为一个实施例,所述活跃时间包括针对所述第一DRX组的rx-onDurationTimer运行的时间。
作为一个实施例,所述活跃时间包括针对所述第一DRX组的drx-InactivityTimer运行的时间。
作为一个实施例,所述活跃时间包括所述第一DRX组中任意服务小区的drx-RetransmissionTimerDL的运行的时间。
作为一个实施例,所述活跃时间包所述第一DRX组中任意服务小区的drx-RetransmissionTimerUL的运行的时间。
作为一个实施例,所述活跃时间包括ra-ContentionResolutionTimer正在运行的时间。
作为一个实施例,所述活跃时间包括msgB-ResponseWindow正在运行的时间。
作为一个实施例,当成功接收到随机接入响应,但这个随机接入响应所针对的随机接入前导并不是被第一节点的MAC实体所选择的随机接入前导时,所述活跃时间包括接收到一个PDCCH以后的时间,所述一 个PDCCH指示了一个针对C-RNTI新的传输未被接收到。
作为该实施例的一个子实施例,所述C-RNTI是所述第一节点的所述MAC实体的。
作为该实施例的一个子实施例,所述一个PDCCH所指示的所述新的传输是针对所述第一节点的所述MAC实体的。
作为一个实施例,所述活跃时间是针对第一RNTI(Radio Network Temporary Identity)的。
作为该实施例的一个子实施例,所述第一RNTI是G-RNTI。
作为一个实施例,所述活跃时间包括针对所述第一RNTI的rx-onDurationTimerPTM运行的时间。
作为一个实施例,所述活跃时间包括针对所述第一RNTI的drx-InactivityTimerPTM运行的时间。
作为一个实施例,所述活跃时间包括所述第一RNTI的drx-RetransmissionTimerDLPTM的运行的时间。
作为一个实施例,所述活跃时间包对所述第一RNTI的drx-RetransmissionTimerULPTM的运行的时间。
作为一个实施例,所述第一节点在所述活跃时间中监测PDCCH(physical downlink control channel,物理下行控制信道)。
作为以上实施例的一个子实施例,所述行为监测PDCCH包括盲检测PDCCH。
作为以上实施例的一个子实施例,所述行为监测PDCCH包括解调PDCCH。
作为以上实施例的一个子实施例,所述行为监测PDCCH包括在给定的搜索空间上对PDCCH进行尝试接收或盲检测。
作为以上实施例的一个子实施例,所述行为监测PDCCH包括在给定的CORSET上对PDCCH进行尝试接收或盲检测。
作为以上实施例的一个子实施例,所述行为监测PDCCH包括对PDCCH接收到的比特尝试解码。
作为以上实施例的一个子实施例,所述行为监测PDCCH包括对PDCCH接收到的比特尝试解码,并对解码的输出进行CRC校验。
作为以上实施例的一个子实施例,所述行为监测PDCCH包括对PDCCH进行测量或信道估计。
作为以上实施例的一个子实施例,所述行为监测PDCCH包括接收PDCCH。
作为以上实施例的一个子实施例,所述行为监测PDCCH包括接收PDCCH上传输的信令。
作为以上实施例的一个子实施例,所述行为监测PDCCH包括使用激活的TCI状态接收PDCCH。
作为一个实施例,所述待定状态指的是pending。
作为一个实施例,所述第一调度请求是调度请求(scheduling request,SR)。
作为一个实施例,所述第一PUCCH资源是SR传输时机(occassion)的PUCCH资源。
作为一个实施例,所述第一PUCCH资源是PUCCH的资源。
作为一个实施例,所述第一PUCCH资源是PUCCH资源集合中的资源。
作为一个实施例,所述第一PUCCH资源由所述第一消息所配置。
作为一个实施例,所述第一PUCCH资源由PUCCH-Config配置。
作为一个实施例,所述第一调度请求是针对BSR(buffer status report,缓存状态报告)的。
作为一个实施例,所述第一调度请求是针对BFR(beam failure recovery,波束失败恢复)的。
作为一个实施例,所述第一调度请求是针对LBT(listen before talk,先听后说)failure recovery的。
作为一个实施例,当所述第一消息被用于指示活跃时间包括调度请求在PUCCH上被发送后且处于待定状态的时间时,所述活跃时间包括所述第一PUCCH资源之后且所述第一调度请求处于待定状态的时间;当所述第一消息被用于指示活跃时间包括从调度请求被发送延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间时,所述活跃时间包括从所述第一PUCCH资源延迟所述第一时间长度之后且所述第一调度请求处于待定状态的时间。
作为一个实施例,所述第一时间长度大于0毫秒。
作为一个实施例,所述第一消息被用于指示第一时间长度。
作为一个实施例,所述第一时间长度不小于1个时隙。
作为一个实施例,所述活跃时间针对第一DRX组,所述PDCCH在所述第一DRX组的服务小区上传输;所述第一节点在所述活跃时间之外不监测所述PDCCH。
作为一个实施例,所述第一节点仅在所述活跃时间之中监测所述PDCCH。
作为一个实施例,所述第一节点仅被要求在所述活跃时间之中监测所述PDCCH。
作为一个实施例,当所述第一消息被用于指示所述活跃时间包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间时,如果没有其它可用于确定活跃时间的条件被满足,则所述活跃时间不包括所述从第一调度请求被发送后到的第一时间长度的时间。
作为一个实施例,当所述第一消息被用于指示所述活跃时间包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间时,如果没有其它可用于确定为活跃时间的计时器在运行,则所述活跃时间不包括所述从第一调度请求被发送后到的第一时间长度的时间。
作为该实施例的一个子实施例,所述第一节点未执行随机接入。
作为该实施例的一个子实施例,以下条件不被满足:成功接收到随机接入响应,但这个随机接入响应所针对的随机接入前导并不是被第一节点的MAC实体所选择的随机接入前导,且接收到一个指示了一个针对第一C-RNTI新的传输未被接收到的PDCCH。
作为一个实施例,当所述第一消息被用于指示所述活跃时间包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间时,所述活跃时间不包括所述从第一调度请求被发送后到的第一时间长度的时间,且所述活跃时间是针对第一DRX组的,且针对所述第一DRX组的rx-onDurationTimer未运行;且针对所述第一DRX组的drx-InactivityTimer未运行;且所述第一DRX组中任意服务小区的drx-RetransmissionTimerDL未运行;且所述第一DRX组中任意服务小区的drx-RetransmissionTimerUL未运行;且ra-ContentionResolutionTimer为运行;且msgB-ResponseWindow为运行;且第一接收条件不成立。
作为该实施例的一个子实施例,所述第一接收条件是:成功接收到随机接入响应,但这个随机接入响应所针对的随机接入前导并不是被第一节点的MAC实体所选择的随机接入前导,且接收到一个指示了一个针对第一C-RNTI新的传输未被接收到的PDCCH。
作为该实施例的一个子实施例,所述第一C-RNTI是所述第一节点的C-RNTI。
作为该实施例的一个子实施例,所述第一C-RNTI是所述第一节点的MAC实体的。
作为该实施例的一个子实施例,所述一个针对第一C-RNTI所述新的传输是针对所述第一节点的MAC实体的。
作为该实施例的一个子实施例,针对任一G-RNTI的drx-onDurationTimerPTM未运行。
作为该实施例的一个子实施例,针对任一G-RNTI的drx-InactivityTimerPTM未运行。
作为该实施例的一个子实施例,针对任一G-RNTI的drx-RetransmissionTimerDLPTM未运行。
作为该实施例的一个子实施例,针对任一G-RNTI的drx-RetransmissionTimerULPTM未运行。
作为一个实施例,伴随所述第一调度请求的发送,所述第一节点将第一计数器增加1;
其中,仅当所述第一计数器等于1时,所述第一消息被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间。
作为该实施例的一个子实施例,所述第一计数器只在所述第一调度请求被发送时被增加。
作为该实施例的一个子实施例,所述第一节点未使用或未被配置LBT。
作为该实施例的一个子实施例,所述第一节点未使用或未被配置共享频谱。
作为该实施例的一个子实施例,所述第一节点未从更低层接收到LBT失败指示。
作为该实施例的一个子实施例,所述第一节点仅在未从更低层接收到LBT失败指示时,将所述第一计数器增加1。
作为该实施例的一个子实施例,所述第一计数器是针对所述第一调度请求的。
作为该实施例的一个子实施例,所述第一计数器是针对所述第一调度请求所对应的SR配置的。
作为该实施例的一个子实施例,所述第一计数器是SR_COUNTER。
作为该实施例的一个子实施例,所述第一计数器可能的取值是整数。
作为该实施例的一个子实施例,当所述第一调度请求被发送后,所述第一计数器可能的取值大于0。
作为该实施例的一个子实施例,当所述第一调度请求被触发后,且与所述第一调度请求相对应的SR 配置没有其它正处于待定状态的SR,所述第一计数器被设置为0。
作为该实施例的一个子实施例,句子仅当所述第一计数器等于1时,所述第一消息被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间的含义是:当所述第一计数器等于1时,所述第一消息被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间;当所述第一计数器不等于1时,所述第一消息不被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间。
作为该实施例的一个子实施例,句子仅当所述第一计数器等于1时,所述第一消息被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间的含义是:当所述第一计数器等于1时,所述第一消息被用于指示所述活跃时间包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间;当所述第一计数器不等于1时,所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间。
作为该实施例的一个子实施例,句子仅当所述第一计数器等于1时,所述第一消息被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间的含义是:当所述第一计数器等于1时,所述活跃时间包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间;当所述第一计数器不等于1时,所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间。
作为该实施例的一个子实施例,句子仅当所述第一计数器等于1时,所述第一消息被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间的含义是:当所述第一计数器等于1时,所述活跃时间包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间;当所述第一计数器不等于1时,所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间;所述第一消息用于指示所述第一时间长度。
作为一个实施例,以上方法的好处在于,当调度请求第一次被发送以后,基站接收到这个调度请求后,基站可以灵活的进行调度,例如在任何时间调度;调度请求被重传(包括同一个调度请求配置的其它SR)后,基站也可以发送针对第一次的调度请求的调度信令,重传的调度请求(包括同一个调度请求配置的其它SR)刚刚发送后,也可能接收到基站针对之前的调度请求的调度信令,因此对基站调度的限制较小,保证了调度的灵活性。
作为一个实施例,伴随所述第一调度请求的发送,所述第一节点将第一计数器增加1;
其中,所述第一消息被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间与所述第一计数器无关。
作为该实施例的一个子实施例,所述第一计数器只在所述第一调度请求被发送时被增加。
作为该实施例的一个子实施例,所述第一节点未使用或未被配置LBT。
作为该实施例的一个子实施例,所述第一节点未使用或未被配置共享频谱。
作为该实施例的一个子实施例,所述第一节点未从更低层接收到LBT失败指示。
作为该实施例的一个子实施例,所述第一节点仅在未从更低层接收到LBT失败指示时,将所述第一计数器增加1。
作为该实施例的一个子实施例,所述第一计数器是针对所述第一调度请求的。
作为该实施例的一个子实施例,所述第一计数器是针对所述第一调度请求所对应的SR配置的。
作为该实施例的一个子实施例,所述第一计数器是SR_COUNTER。
作为该实施例的一个子实施例,所述第一计数器可能的取值是整数。
作为该实施例的一个子实施例,当所述第一调度请求被发送后,所述第一计数器可能的取值大于0。
作为该实施例的一个子实施例,当所述第一调度请求被触发后,且与所述第一调度请求相对应的SR配置没有其它正处于待定状态的SR,所述第一计数器被设置为0。
作为该实施例的一个子实施例,所述句子所述第一消息被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间与所述第一计数器无关的含义是:所述第一计数器无论取任何值,所述第一消息都被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间。
作为该实施例的一个子实施例,所述句子所述第一消息被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间与所述第一计数器无关的含义是:所述第一计数器无论取任何可取的值,所述第一消息都被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间。
作为一个实施例,以上方法的好处在于,每次发送调度请求之后都有一段时间可能不属于活跃时间,会更加省电。
作为一个实施例,伴随所述第一调度请求的发送,所述第一节点开始第一计时器;
其中,所述第一调度请求仅在所述第一计时器未运行时被发送,所述第一计时器的过期值等于所述第一时间长度;所述第一消息被用于指示所述活跃时间包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间。
作为该实施例的一个子实施例,所述第一计时器只在所述第一调度请求被发送时被开始。
作为该实施例的一个子实施例,所述第一节点未使用或未被配置LBT。
作为该实施例的一个子实施例,所述第一节点未使用或未被配置共享频谱。
作为该实施例的一个子实施例,所述第一节点未从更低层接收到LBT失败指示。
作为该实施例的一个子实施例,所述第一节点仅在未从更低层接收到LBT失败指示时,将所述第一计时器增加1。
作为该实施例的一个子实施例,所述第一计时器是针对所述第一调度请求的。
作为该实施例的一个子实施例,所述第一计时器是针对所述第一调度请求所对应的SR配置的。
作为该实施例的一个子实施例,所述第一计时器是sr-ProhibitTimer。
作为该实施例的一个子实施例,所述第一计时器可能的取值是整数。
作为该实施例的一个子实施例,当所述第一调度请求被触发后,且与所述第一调度请求相对应的SR配置没有其它正处于待定状态的SR,所述第一计数器被设置为0。
作为该实施例的一个子实施例,当所述第一调度请求被取消时,所述第一计时器被停止。
作为该实施例的一个子实施例,所述第一计时器与所述第一调度请求对应相同的SR配置。
作为该实施例的一个子实施例,所述第一计时器运行期间,所述第一节点不会发送所述第一调度请求。
作为一个实施例,所述第一计时器的过期值被用于确定所述第一时间长度。
作为一个实施例,所述第一消息指示所述第一计时器的过期值。
作为一个实施例,所述第一计时器的过期值与一个偏移量的和等于所述第一时间长度。
作为一个实施例,所述第一PUCCH资源是有效的PUCCH资源。
作为一个实施例,所述第一PUCCH资源属于活跃的BWP。
作为一个实施例,所述第一调度请求是优先的调度请求。
作为一个实施例,一个调度请求被触发后,直到被取消之前都处于待定状态。
作为该实施例的一个子实施例,所述一个调度请求包括所述第一调度请求。
作为一个实施例,本申请所提出的方法仅适用于NTN。
作为该实施例的一个子实施例,所述第一消息指示当前网络为NTN。
作为该实施例的一个子实施例,所述第一系统信息块指示当前网络为NTN。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。附图2说明了5G NR(NewRadio,新空口),LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统架构下的V2X通信架构。5G NR或LTE网络架构可称为5GS(5GSystem)/EPS(Evolved Packet System,演进分组系统)某种其它合适术语。
实施例2的V2X通信架构包括UE(User Equipment,用户设备)201,UE241,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220,ProSe功能250和ProSe应用服务器230。所述V2X通信架构可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,所述V2X通信架构提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(UserPlaneFunction,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。所述ProSe功能250是用于适地服务(ProSe,Proximity-based Service)所需的网络相关行为的逻辑功能;包括DPF(Direct Provisioning Function,直接供应功能),直接发现名称管理功能(Direct Discovery Name Management Function),EPC水平发现ProSe功能(EPC-level Discovery ProSe Function)等。所述ProSe应用服务器230具备存储EPC ProSe用户标识,在应用层用户标识和EPC ProSe用户标识之间映射,分配ProSe限制的码后缀池等功能。
作为一个实施例,所述UE201和所述UE241之间通过PC5参考点(Reference Point)连接。
作为一个实施例,所述ProSe功能250分别通过PC3参考点与所述UE201和所述UE241连接。
作为一个实施例,所述ProSe功能250通过PC2参考点与所述ProSe应用服务器230连接。
作为一个实施例,所述ProSe应用服务器230连接分别通过PC1参考点与所述UE201的ProSe应用和所述UE241的ProSe应用连接。
作为一个实施例,本申请中的第一节点是UE201。
作为一个实施例,本申请中的第二节点是gNB203。
作为一个实施例,从所述UE201到NR节点B的无线链路是上行链路。
作为一个实施例,从NR节点B到UE201的无线链路是下行链路。
作为一个实施例,所述UE201支持中继传输。
作为一个实施例,所述UE201是包括汽车在内的交通工具。
作为一个实施例,所述gNB203是宏蜂窝(MarcoCellular)基站。
作为一个实施例,所述gNB203是一个飞行平台设备。
作为一个实施例,所述gNB203是卫星设备。
作为一个实施例,所述gNB203是NTN设备。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一节点(UE,gNB或NTN中的卫星或飞行器)和第二节点(gNB,UE或NTN中的卫星或飞行器),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一节点与第二节点以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二节点之间的对第一节点的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一节点之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点与第一节点之间的RRC信令来配置下部层。PC5-S(PC5Signaling Protocol,PC5信令协议)子层307负责PC5接口的信令协议的处理。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点和第二节点的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一节点可具有在L2层355之上的若干上部层。此外还包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一消息生成于RRC306或MAC302。
作为一个实施例,本申请中的所述第二消息生成于RRC306或MAC302。
作为一个实施例,本申请中的所述第一调度请求成于MAC302或PHY301。
作为一个实施例,本申请中的所述第一信令生成于PHY301。
作为一个实施例,本申请中的所述第一系统信息块生成于RRC306。
作为一个实施例,本申请中的所述第一MAC CE成于MAC302。
作为一个实施例,本申请中的所述第二MAC CE成于MAC302。
作为一个实施例,本申请中的所述第一MAC PDU组成于MAC302。
实施例4
实施例4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线 接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控 制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:接收第一消息;所述第一消息被用于指示活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;在第一PUCCH资源上发送所述第一调度请求;在所述活跃时间中监测PDCCH。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一消息;所述第一消息被用于指示活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;在第一PUCCH资源上发送所述第一调度请求;在所述活跃时间中监测PDCCH。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:发送第一消息;所述第一消息被用于指示活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;在第一PUCCH资源上接收所述第一调度请求;其中,所述第一调度请求的发送者在所述活跃时间中监测PDCCH。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一消息;所述第一消息被用于指示活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;在第一PUCCH资源上接收所述第一调度请求;其中,所述第一调度请求的发送者在所述活跃时间中监测PDCCH。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第一通信设备450是一个车载终端。
作为一个实施例,所述第一通信设备450是一个中继。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,所述第二通信设备410是一个卫星平台。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一消息。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一信令。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一系统信息块。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一MAC CE。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送所述第一调度请求。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送所述第二消息。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送所述第二MAC CE。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送所述第一MAC PDU组。
作为一个实施例,发射器416(包括天线420),发射处理器412和控制器/处理器440被用于本申请中发送所述第一消息。
作为一个实施例,发射器416(包括天线420),发射处理器412和控制器/处理器440被用于本申请中发送所述第一信令。
作为一个实施例,发射器416(包括天线420),发射处理器412和控制器/处理器440被用于本申请中发送所述第一系统信息块。
作为一个实施例,发射器416(包括天线420),发射处理器412和控制器/处理器440被用于本申请中发送所述第一MAC CE。
作为一个实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于本申请中接收所述第二消息。
作为一个实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于本申请中接收所述第二MAC CE。
作为一个实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于本申请中接收所述第一MAC PDU组。
作为一个实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于本申请中接收所述第一调度请求。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。附图5中,U01对应本申请的第一节点,N02对应本申请的第二节点,特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序,其中F51、F52内的步骤是可选的。
对于 第一节点U01,在步骤S5101中接收第一系统信息块;在步骤S5102中接收第一MAC CE;在步骤S5103中接收第一消息;在步骤S5104中发送第一调度请求;在步骤S5105中接收第一信令;在步骤S5106中发送第一MAC PDU组。
对于 第二节点N02,在步骤S5201中发送第一系统信息块;在步骤S5202中发送第一MAC CE;在步骤S5203中发送第一消息;在步骤S5204中接收第一调度请求;在步骤S5205中发送第一信令;在步骤S5206中接收第一MAC PDU组。
在实施例5中,所述第一消息被用于指示活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;所述第一节点U01,在第一PUCCH资源上发送所述第一调度请求;在所述活跃时间中监测PDCCH。
作为一个实施例,所述第一系统信息块是SIB。
作为一个实施例,所述第一系统信息块包括MIB(master information block)。
作为一个实施例,所述第一系统信息块包括SIB1。
作为一个实施例,所述第一系统信息块包括SIBx,其中SIBx指的是SIB1和/或SIB2和/或SIB3…以此类推。
作为一个实施例,所述第一系统消息块是广播的。
作为一个实施例,所述第一系统消息块是单播的。
作为一个实施例,所述第一消息包括所述第一系统信息块。
作为一个实施例,所述第一系统消息块被用于指示第一参数,所述第一参数的单位是时隙。
作为该实施例的一个子实施例,所述第一参数是k mac
作为该实施例的一个子实施例,所述第一参数是k_ mac
作为该实施例的一个子实施例,所述第一参数的名子包括k和/或mac。
作为该实施例的一个子实施例,所述第一系统信息块显式的指示所述第一参数。
作为该实施例的一个子实施例,所述第一参数与所述第一节点所维护的定时提前(Timing Advance,TA)的和被用于确定无线信号的往返时间。
作为该实施例的一个子实施例,所述第一参数与所述第一节点所维护的定时提前(Timing Advance, TA)的和等于无线信号的往返时间。
作为该实施例的一个子实施例,所述第一节点所维护的定时提前与所述第一参数的和被用于确定所述第一时间长度。
作为该实施例的一个子实施例,所述第一时间长度等于所述第一节点所维护的定时提前与所述第一参数的和。
作为该实施例的一个子实施例,所述第一时间长度等于所述第一节点所维护的定时提前与所述第一参数与一个给定偏移量的和。
作为一个实施例,所述第一MAC CE是MAC CE(control element,控制单元)。
作为一个实施例,所述第一MAC CE是或包括RAR(random access response,随机接入响应)。
作为一个实施例,所述第一MAC CE是或包括与TA有关的MAC CE。
作为一个实施例,所述第一MAC CE是或包括Timing Advance Command MAC CE。
作为一个实施例,所述第一MAC CE是或包括Absolute Timing Advance Command MAC CE。
作为一个实施例,所述第一MAC CE指示第二参数;所述第二参数的单位是时隙。
作为该实施例的一个子实施例,所述第二参数是TAC(timing advance command,定时提前命令)。
作为该实施例的一个子实施例,所述第二参数用于确定或调整所述第一节点的定时提前。
作为一个实施例,所述第一节点U01,生成第二MAC CE;作为至少生成所述第二MAC CE的响应,触发所述第一调度请求;在步骤S5106中发送第一MAC PDU组;伴随所述第一MAC PDU组的发送,取消所述第一调度请求;
其中,所述行为在所述活跃时间中监测PDCCH(physical downlink control channel,物理下行控制信道)包括接收第一信令;所述第一MAC PDU组占用所述第一信令所指示的时频资源。
作为该实施例的一个子实施例,所述第二MAC CE是BSR MAC CE。
作为该实施例的一个子实施例,所述第一节点U01的MAC实体有有效的上行数据待传输,则根据所述待传输的上行数据的量生成所述第二MAC CE;所述第二MAC CE是Buffer Status Report MAC CE,所述第一节点U01没有足够的上行资源传输所述第二MAC CE;则所述第一调度请求被触发。
作为该实施例的一个子实施例,所述第一信令所指示的上行资源足够传输所述待传输的上行数据。
作为该实施例的一个子实施例,伴随所述第一信令指示足够传输所述待传输的上行数据的时频资源,所述第一调度请求被取消。
作为该实施例的一个子实施例,伴随所述第一信令指示足够传输所述待传输的上行数据的时频资源,所述第二MAC CE被取消。
作为该实施例的一个子实施例,伴随所述第一MAC PDU组的发送即是伴随所述第一信令指示足够传输所述待传输的上行数据的时频资源。
作为该实施例的一个子实施例,所述第一MAC PDU组包括所述待传输的上行数据。
作为该实施例的一个子实施例,所述第一信令是DCI(downlink control information)。
作为该实施例的一个子实施例,所述第一信令是格式为0_0的DCI。
作为该实施例的一个子实施例,所述第一信令是configured grant(配置授予)。
作为该实施例的一个子实施例,所述行为监测PDCCH包括对PDCCH进行尝试接收,在所述尝试接收中,接收到了所述第一信令。
作为该实施例的一个子实施例,所述行为监测PDCCH包括对PDCCH进行盲检测,在所述盲检测中,接收到了所述第一信令。
作为该实施例的一个子实施例,所述第一MAC PDU组仅包括一个MAC PDU。
作为一个实施例,所述第一节点U01,生成第二MAC CE;作为至少生成所述第二MAC CE的响应,触发所述第一调度请求;在步骤S5106中发送第一MAC PDU组;伴随所述第一MAC PDU组的发送,取消所述第一调度请求;
其中,所述行为在所述活跃时间中监测PDCCH包括接收第一信令;所述第一MAC PDU组占用所述第一信令所指示的时频资源。
作为该实施例的一个子实施例,所述第二MAC CE是BSR MAC CE。
作为该实施例的一个子实施例,所述第一信令是DCI(downlink control information)。
作为该实施例的一个子实施例,所述第一信令是格式为0_0的DCI。
作为该实施例的一个子实施例,所述第一信令是configured grant(配置授予)。
作为该实施例的一个子实施例,所述行为监测PDCCH包括对PDCCH进行尝试接收,在所述尝试接收中,接收到了所述第一信令。
作为该实施例的一个子实施例,所述行为监测PDCCH包括对PDCCH进行盲检测,在所述盲检测中,接收到了所述第一信令。
作为该实施例的一个子实施例,所述第一MAC PDU组仅包括一个MAC PDU。
作为该实施例的一个子实施例,所述第二MAC CE是或包括BSR MAC CE。
作为该实施例的一个子实施例,所述第二MAC CE是或包括BFR MAC CE。
作为该实施例的一个子实施例,所述第二MAC CE是或包括LBT failure MAC CE。
作为该实施例的一个子实施例,所述第二MAC CE是或包括与BFR有关的MAC CE。
作为该实施例的一个子实施例,所述第二MAC CE是或包括与TRP有关的BFR MAC CE。
作为该实施例的一个子实施例,所述第二MAC CE是或包括与TRP的BFR有关的MAC CE。
作为该实施例的一个子实施例,所述第二MAC CE被生成,且UL-SCH没有足够传输所述第二MAC CE的资源,则触发所述第一调度请求。
作为该实施例的一个子实施例,所述第二MAC CE被生成,且UL-SCH没有足够传输包括所述第二MAC CE的MAC PDU资源,则所述第一调度请求被触发。
作为该实施例的一个子实施例,所述第一信令指示的上行资源足够传输所述第二MAC CE或足够传输包括所述第二MAC CE的MAC PDU。
作为该实施例的一个子实施例,所述第一MAC PDU组包括所述第二MAC CE。
作为该实施例的一个子实施例,伴随所述第一MAC PDU组的发送,所述第一调度请求被取消。
实施例6
实施例6示例了根据本申请的一个实施例的无线信号传输流程图,如附图6所示。附图6中,U11对应本申请的第一节点,N12对应本申请的第二节点,特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序,其中F61、F62内的步骤是可选的,实施例6基于实施例5,实施例6中需要但未说明的内容可参考实施例5。
对于 第一节点N11,在步骤S6101中接收第一系统信息块;在步骤S6102中接收第一MAC CE;在步骤S6103中接收第一消息;在步骤S6104中发送第一调度请求;在步骤S6105中检查第一计数器;在步骤S6106中发送第一信号;在步骤S6107中接收针对第一随机接入过程的随机接入响应;在步骤S6108中发送第二消息。
对于 第二节点N12,在步骤S6201中发送第一系统信息块;在步骤S6202中发送第一MAC CE;在步骤S6203中发送第一消息;在步骤S6204中接收第一调度请求;在步骤S6205中接收第一信号;在步骤S6206中发送针对第一随机接入过程的随机接入响应;在步骤S6207中接收第二消息。
在实施例6中,步骤S6204是可选的,意味着所述第二节点N12可能接收到步骤S6104中所述第一节点U11所发送的所述第一调度请求,也可能没有接收到所述第一调度请求。
作为一个实施例,所述第一节点U11,接收第一系统信息块和第一MAC CE,所述第一MAC CE指示第二参数;所述第二参数的单位是时隙;所述第一系统信息块指示第三参数,所述第三参数的单位是时隙;
所述第一节点,伴随所述第一调度请求的发送,将第一计数器增加1;作为所述第一计数器等于第一阈值的响应,发起第一随机接入过程;所述行为发起第一随机接入过程包括在针对所述第一随机接入过程的随机接入响应所指示的时频资源上发送第二消息;所述第二消息占用第一PUSCH(physical uplink shared channel,物理上行共享信道),
其中,所述第二参数和所述第三参数共同被用于确定所述第一节点的上行发送时刻;所述第二参数和所述第三参数中的至少之一被用于确定所述第一PUSCH的发送定时。
作为一个实施例,伴随所述第一调度请求的发送,将第一计数器增加1;作为所述第一计数器等于第一阈值的响应,发起第一随机接入过程;所述行为发起第一随机接入过程包括:发送第一信号,接收针对 所述第一随机接入过程的随机接入响应,在所述针对所述第一随机接入过程的所述随机接入响应所指示的时频资源上发送第二消息。
作为一个实施例,所述第一调度请求可以被发送多次和/或接收多次。
作为一个实施例,伴随所述第一调度请求的发送,第一计数器被增加1。
作为该实施例的一个子实施例,所述第一计数器是SR_COUNTER。
作为一个实施例,伴随所述第一调度请求的每次发送,第一计数器被增加1。
作为该实施例的一个子实施例,所述第一计数器是SR_COUNTER。
作为一个实施例,伴随所述第一调度请求所对应的SR配置的任一调度请求的每次发送,第一计数器被增加1。
作为该实施例的一个子实施例,所述第一计数器是SR_COUNTER。
作为一个实施例,在步骤S6105中的行为检查第一计数器指的是,检查所述第一计数器的值是否小于sr-TransMax;所述第一计数器不小于所述第一阈值触发所述第一节点U11发起所述第一随机接入过程。
作为该实施例的一个子实施例,所述第一计数器小于所述第一阈值,则所述第一节点U11在第二PUCCH资源上发送所述第一调度请求。
作为该实施例的一个子实施例,所述第一计数器小于所述第一阈值,则所述第一节点U11在第二PUCCH资源上发送所述第一调度请求的SR配置所对应的任一调度请求。
作为一个实施例,在步骤S6105中的检查第一计时器的检查结果是,所述第一计数器的值大于或等于sr-TransMax。
作为该实施例的一个子实施例,作为所述第一计数器等于第一阈值的响应,所述第一节点U11,发起所述第一随机接入过程;所述第一阈值是sr-TransMax。
作为一个实施例,所述第一随机接入过程包括发送所述第一信号。
作为一个实施例,所述第一信号是或包括随机接入前导。
作为一个实施例,所述第一信号是或包括msgA(消息A)。
作为一个实施例,所述针对所述第一随机接入过程的所述随机接入响应是针对所述第一信号的随机接入响应。
作为一个实施例,所述针对所述第一随机接入过程的所述随机接入响应包括在PDCCH上接收到的针对C-RNTI的信令。
作为该实施例的一个子实施例,所述C-RNTI是所述第一节点U11的C-RNTI。
作为一个实施例,所述针对所述第一随机接入过程的所述随机接入响应包括针对所述第一信号的RAR(随机接入响应)。
作为一个实施例,所述针对所述第一随机接入过程的所述随机接入响应指示所述第一PUSCH的时频资源,所述第一PUSCH用于传输所述第二消息。
作为一个实施例,第二消息是msg3。
作为一个实施例,第二消息是msgB。
作为一个实施例,第二消息包括第二MAC CE,所述第二MAC CE是触发所述第一调度请求的MAC CE。
作为一个实施例,所述第一计数器不小于所述第一阈值意味着发生了SR失败。
作为一个实施例,所述第一MAC CE是MAC CE(control element,控制单元)。
作为一个实施例,所述第一MAC CE是或包括RAR(random access response,随机接入响应)。
作为一个实施例,所述第一MAC CE是或包括与TA有关的MAC CE。
作为一个实施例,所述第一MAC CE是或包括Timing Advance Command MAC CE。
作为一个实施例,所述第一MAC CE是或包括Absolute Timing Advance Command MAC CE。
作为一个实施例,所述第一MAC CE指示第二参数;所述第二参数的单位是时隙。
作为该实施例的一个子实施例,所述第二参数是TAC(timing advance command,定时提前命令)。
作为该实施例的一个子实施例,所述第二参数用于确定或调整所述第一节点的定时提前。
作为一个实施例,所述第一系统信息块指示第三参数,所述第三参数的单位是时隙。
作为该实施例的一个子实施例,所述第三参数是k offset.或K offset,或K_offset。
作为该实施例的一个子实施例,所述第三参数是k_ offset
作为该实施例的一个子实施例,所述第三参数是k_ offset(1)
作为该实施例的一个子实施例,所述第三参数是k_ offset,1
作为该实施例的一个子实施例,所述第三参数是k_ offset,UE
作为该实施例的一个子实施例,所述第三参数的名字包括k和/或offset和/或ue。
作为该实施例的一个子实施例,所述第三参数是N TA,UE-specific
作为该实施例的一个子实施例,所述第三参数是N TA,specific
作为该实施例的一个子实施例,所述第三参数是N TA,common
作为一个实施例,伴随所述第一调度请求的发送,所述第一节点U01,将第一计数器增加1。
作为该实施例的一个子实施例,每次所述第一调度请求被发送时,所述第一计数器被增加1。
作为该实施例的一个子实施例,所述第一计数器被增加1,则所述第一调度请求一定被发送。
作为该实施例的一个子实施例,所述第一计数器被增加1,则属于所述第一调度请求的SR配置的调度请求一定被发送。
作为该实施例的一个子实施例,属于所述第一调度请求的SR配置的调度请求一定被发送,且仅当未接收到所述第一类失败指示,则所述第一计数器被增加1。
作为该实施例的一个子实施例,属于所述第一调度请求的SR配置的调度请求一定被发送,且仅当未接收到所述第一类失败指示,且所述第一计数器小于所述第一阈值,则所述第一计数器被增加1。
作为该实施例的一个子实施例,当所述第一调度请求一定被发送,且仅当未接收到所述第一类失败指示,且所述第一计数器小于所述第一阈值时,则所述第一计数器被增加1。
作为该实施例的一个子实施例,所述第一类失败指示时LBT失败指示。
作为该实施例的一个子实施例,所述第一阈值是sr-TransMax。
实施例7
实施例7示例了根据本申请的一个实施例的活跃时间的示意图,如附图7所示。
作为一个实施例,所述第一时间长度大于0。
作为一个实施例,所述第一时间长度长于1个时隙。
作为一个实施例,所述第一时间长度长于1个OFDM符号。
作为一个实施例,所述第一时间长度长于1毫秒。
作为一个实施例,所述第一时间长度长于1个子帧。
作为一个实施例,所述第一时间长度长于1个帧。
作为一个实施例,所述第一消息包括和/或指示所述第一时间长度。
作为一个实施例,所述第一系统信息块包括所述第一时间长度。
作为一个实施例,所述第一消息包括用于确定所述第一时间长度的参数。
作为一个实施例,所述第一消息指示第一参数,所述第一参数被用于确定所述第一时间长度。
作为该实施例的一个子实施例,所述第一参数和所述第一节点的所维护的定时提前的和,被用于确定所述第一时间长度。
作为该实施例的一个子实施例,所述第一参数和所述第一节点的所维护的定时提前的和,被确定为所述第一时间长度。
作为该实施例的一个子实施例,所述第一参数是Kmac。
作为一个实施例,所述第一节点在t0时刻发送所述第一调度请求。
作为该实施例的一个子实施例,所述t0时刻是所述第一调度请求被发送的时刻。
作为该实施例的一个子实施例,所述t0时刻是所述第一调度请求开始发送的时刻。
作为该实施例的一个子实施例,所述t0时刻是所述第一调度请求完成发送的时刻。
作为该实施例的一个子实施例,所述t0时刻是所述第一调度请求所占用的时频资源开始的时刻。
作为该实施例的一个子实施例,所述t0时刻是所述第一调度请求所占用的时频资源结束的时刻。
作为该实施例的一个子实施例,所述t0时刻是所述第一调度请求所占用的第一个OFDM符号的时刻。
作为该实施例的一个子实施例,所述t0时刻是所述第一调度请求所占用的最后一个OFDM符号的时刻。
作为该实施例的一个子实施例,所述t0时刻是所述第一调度请求所占用的第一个OFDM符号的开始或结束时刻。
作为该实施例的一个子实施例,所述t0时刻是所述第一调度请求所占用的最后一个OFDM符号的开始或结束时刻。
作为一个实施例,所述活跃时间在所述t0时刻的延迟所述第一时间长度后开始。
作为一个实施例,所述活跃时间晚于所述t0时刻后的第一时间长度。
作为一个实施例,所述活跃时间的开始较所述t0时刻晚所述第一时间长度。
作为一个实施例,附图7中的t1时刻与所述t0时刻的时间间隔等于所述第一时间长度,所述活跃时间开始于所述t1时刻。
作为一个实施例,在所述t0时刻到t0时刻延迟所述第一时间长度的时间内发送第一调度请求以外的因素导致所述活跃时间开始。
作为一个实施例,在所述t0时刻到t1时刻之间没有第一调度请求以外的因素导致所述活跃时间开始。
作为一个实施例,所述第一调度请求在所述t0时刻后处于待定状态。
作为一个实施例,所述第一调度请求在所述t0时刻后处于待定状态,且在所述t1时刻后仍处于待定状态。
作为一个实施例,所述第一调度请求在所述t0时刻到晚于t1时刻的某个时刻之间始终处于待定状态。
作为一个实施例,在所述t0时刻到t1时刻之间,第一条件集合内的任一条件都不被满足。
作为该实施例的一个子实施例,所述活跃时间是针对一个特定的DRX组的。
作为该实施例的一个子实施例,所述第一条件集合包括:针对所述一个特定的DRX组的drx-onDurationTimer在t0时刻与t1时刻之间未运行。
作为该实施例的一个子实施例,所述第一条件集合包括:针对所述一个特定的DRX组的drx-onInactivityTimer在t0时刻与t1时刻之间未运行。
作为该实施例的一个子实施例,所述第一条件集合包括:针对所述一个特定的DRX组的任意服务小区的drx-RetransmissionTimerDL在t0时刻与t1时刻之间未运行。
作为该实施例的一个子实施例,所述第一条件集合包括:针对所述一个特定的DRX组的任意服务小区的drx-RetransmissionTimerUL在t0时刻与t1时刻之间未运行。
作为该实施例的一个子实施例,所述第一条件集合包括:ra-ContentionResolutionTimer在t0时刻与t1时刻之间未运行。
作为该实施例的一个子实施例,所述第一条件集合包括:msgB-ResponseWindow在t0时刻与t1时刻之间未运行。
作为该实施例的一个子实施例,所述第一条件集合包括:所述第一调度请求在所述t0时刻是第n次被传输,n大于1。
作为该实施例的一个子实施例,所述第一条件集合包括:在t0时刻之前的第一时间长度内传输了第二调度请求。
作为该实施例的一个子实施例,所述第一条件集合包括:在t0时刻之前的第一时间长度内传输了第二调度请求;所述第二调度请求与所述第一调度请求对应相同的SR配置。
作为该实施例的一个子实施例,所述第一条件集合包括:在接收到了针对不是所述第一节点所选择的基于竞争的随机接入前导的随机接入前导的随机接入响应后,接收到针对C-RNTI的用于指示新传输的PDCCH指示;所述C-RNTI是所述第一节点的C-RNTI。
作为一个实施例,所述第一调度请求在t1时刻之后的某个时刻被取消,则所述活跃时间不包括所述t1时刻时候的所述某个时刻以后的时间。
实施例8
实施例8示例了根据本申请的一个实施例的第一消息被用于确定活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间的示意图,如附图8所示。
作为一个实施例,所述第一消息显式的指示活跃时间包括第一调度请求在PUCCH上被发送后且处于待 定状态的时间还是包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间。
作为一个实施例,当所述第一消息指示使用第一时间长度时,所述活跃时间包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;当所述第一消息未指示使用第一时间长度时,所述活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间。
作为一个实施例,当所述第一消息指示第一时间长度时,所述活跃时间包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;当所述第一消息未指示第一时间长度时,所述活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间。
作为一个实施例,当所述第一消息指示第一时间长度大于某个特定值时,所述活跃时间包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;当所述第一消息所指示的所述第一时间长度未大于所述某个特定值时,所述活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间。
作为一个实施例,当所述第一消息指示第一时间长度时,所述活跃时间包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;当所述第一消息未指示第一时间长度时,所述活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间。
作为一个实施例,当所述第一消息指示所述第一参数时,所述活跃时间包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;当所述第一消息未指示所述第一参数时,所述活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间。
作为该实施例的一个子实施例,所述第一参数是Kmac或K_mac或K mac
作为该实施例的一个子实施例,所述第一时间长度可以通过所述第一参数得到,所述第一时间长度大于0。
作为一个实施例,当所述第一消息指示所述第一参数大于第一参数阈值时,所述活跃时间包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;当所述第一消息未指示所述第一参数大于第一参数阈值时,所述活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间。
作为该实施例的一个子实施例,所述第一参数是Kmac或K_mac或K mac
作为该实施例的一个子实施例,所述第一时间长度可以通过所述第一参数得到,所述第一时间长度大于0。
作为该实施例的一个子实施例,句子所述第一消息未指示所述第一参数大于第一参数阈值包括所述第一消息未指示所述第一参数。
作为该实施例的一个子实施例,句子所述第一消息未指示所述第一参数大于第一参数阈值包括所述第一消息指示所述第一参数,但所述第一参数不大于所述第一参数阈值。
作为该实施例的一个子实施例,所述第一参数阈值是实数。
作为该实施例的一个子实施例,所述第一参数阈值的单位是毫秒或时隙或子帧或帧。
作为该实施例的一个子实施例,当所述第一参数超过所述第一参数阈值时,所述第一节点可以认为在与NTN进行通信。
作为一个实施例,当所述第一消息指示第一时间长度可以被计算时,所述活跃时间包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;第一时间长度无法被确定时,所述活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间;所述第一时间长度大于0。
作为一个实施例,当所述第一消息指示非TN时,所述活跃时间包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;当所述第一消息未指示TN时,所述活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间。
作为一个实施例,当所述第一消息指示NTN时,所述活跃时间包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;当所述第一消息未指示NTN时,所述活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间。
作为一个实施例,当所述第一消息指示当前网络为NTN时,所述活跃时间包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;当所述第一消息未指示当前网络为NTN时或指示当前网络为TN时,所述活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间。
作为一个实施例,当所述第一消息指示星历或高度或轨道参数或近地点参数中的至少之一时,所述活跃时间包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;当所述第一消息未指示星历或轨道参数或高度或近地点参数中的任何一个时,所述活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间。
作为一个实施例,当所述第一消息指示与卫星通信有关的参数时,所述活跃时间包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;当所述第一消息未指示与卫星通信有关的参数时,所述活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间。
作为一个实施例,当所述第一消息指示特定PLMN时,所述活跃时间包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;当所述第一消息未指示特定PLMN时,所述活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间。
作为该实施例的一个子实施例,所述特定PLMN与NTN有关。
作为一个实施例,当所述第一消息指示第三参数时,所述活跃时间包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;当所述第一消息未指示第三参数时,所述活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间。
作为该实施例的一个子实施例,所述第三参数是Koffset。
作为该实施例的一个子实施例,所述第三参数被用于确定定时提前,根据所述第三参数所确定的所述定时提前大于2ms。
作为该实施例的一个子实施例,所述第三参数被用于确定定时提前,根据所述第三参数所确定的所述定时提前大于地面通信所带来的最大时延。
作为一个实施例,当所述第一消息指示第一参数时,所述活跃时间包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;当所述第一消息未指示第一参数时,所述活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间。
作为该实施例的一个子实施例,所述第一参数是Kmac或K_mac。
作为该实施例的一个子实施例,所述第一参数指示DCI到通过所述DCI分配时频资源的PUSCH之间的第一时间差;所述第一时间差大于第一数值,所述第一数值包括k1个时间单位,所述时间单位是{毫秒,秒,OFDM符号,时隙,子帧,帧,2ms,码片长度}中的之一;k1为正整数,特别的,k1个时间单位是大于4个OFDM符号的时间。
实施例9
实施例9示例了根据本申请的一个实施例的第一节点所维护的定时提前与第一参数的和被用于确定第一时间长度的示意图,如附图9所示。
作为一个实施例,所述第一时间长度等于所述第一节点所维护的定时提前(TA)与所述第一参数的和。
作为一个实施例,所述第一时间长度等于所述第一节点所维护的定时提前(TA)与所述第一参数的和再加上第一时间偏移量。
作为一个实施例,所述第一参数是Kmac或K_mac。
作为该实施例的一个子实施例,所述第一时间偏移量由所述第一节点的服务小区指示。
作为该实施例的一个子实施例,所述第一时间偏移量是固定的。
作为一个实施例,所述第一时间长度等于所述第一节点所维护的定时提前(TA)与所述第一参数的和的x1倍再加上第一时间偏移量。
作为该实施例的一个子实施例,所述x1是实数。
作为该实施例的一个子实施例,所述x1等于0.5。
作为该实施例的一个子实施例,所述x1等于2。
作为该实施例的一个子实施例,所述第一时间偏移量由所述第一节点的服务小区指示。
作为该实施例的一个子实施例,所述第一时间偏移量是固定的。
作为一个实施例,所述第一时间长度等于所述第一节点所维护的定时提前(TA)与所述第一参数的x2倍的和再加上第一时间偏移量。
作为该实施例的一个子实施例,所述x2是实数。
作为该实施例的一个子实施例,所述x2等于2。
作为该实施例的一个子实施例,所述x2等于0.5。
作为该实施例的一个子实施例,所述第一时间偏移量由所述第一节点的服务小区指示。
作为该实施例的一个子实施例,所述第一时间偏移量是固定的。
作为一个实施例,所述第一参数被用于确定MAC层的处理时延。
作为一个实施例,所述第一参数被用于确定MAC层的往返时间。
作为一个实施例,所述第一参数被用于确定无线信号的往返时间。
实施例10
实施例10示例了根据本申请的一个实施例的第二参数和第三参数共同被用于确定第一节点的上行发送时刻的示意图,如附图10所示。
作为一个实施例,所述第一节点所维护的定时提前,T TA等于:
T TA=(N TA+N TA,UE-specific+N TA,common+N TA,offset)×T c
其中,N TA,N TA,UE-specific,N TA,common,N TA,offset:是固定的或缺省的或由系统指示或由第一节点自行确定,Tc是NR系统的基本时间单位,Tc的具体定义可参考3GPP标准TS 38.211的4.1章节。
作为一个实施例,N TA,offset定时提前偏移量由系统指示。
作为一个实施例,N TA是非负整数,可由定时提前MAC CE指示。N TA可根据子载波间隔进行计算。
作为一个实施例,PDCCH指示的PRACH(physical random channel,物理随机接入信道)的定时提前和RAR窗口与msgB-ResponseWindow的延迟时间的计算中,N TA等于0。
作为一个实施例,N TA,UE-specific是与针对特定UE的定时提前偏移量。
作为一个实施例,N TA,common是与针对整个小区或一个波束区域的定时提前偏移量。
作为一个实施例,所述第二参数被用于确定所述第一节点所维护的定时提前。
作为一个实施例,如果当前时间是n,则下一个有效的PRACH时机在n与所述第三参数的和之后的时间。
作为该实施例的一个子实施例,所述短语时间是n的意思是,当前时间是第n个{时隙,符号,子帧}中的一个。
作为该实施例的一个子实施例,所述n为整数或非负整数或正整数。
作为一个实施例,所述第一节点的上行发送时刻是当前时间延迟第三参数再根据所述第二参数所确定的定时提前所确定。
作为该实施例的一个子实施例,所述上行发送包括所述第一PUSCH的发送。
作为一个实施例,所述第一PUSCH的上行发送的时刻等于所述第二参数所确定的定时提前所确定的时刻。
实施例11
实施例11示例了根据本申请的一个实施例的第二参数和第三参数中的至少之一被用于确定第一PUSCH发送定时的示意图,如附图11所示。
作为一个实施例,所述第二参数被用于确定所述第一PUSCH的发送定时。
作为该实施例的一个子实施例,所述第三参数与所述第一PUSCH的发送定时无关。
作为该实施例的一个子实施例,所述第二参数是TAC。
作为该实施例的一个子实施例,所述第二参数被用于确定所述第一节点所维护的上行定时提前。
作为该实施例的一个子实施例,所述第一PUSCH的发送时刻,等于对应的第n个下行时隙之前的所述第一节点所维护的上行定时提前的时刻;所述第一PUSCH与所述第n个下行时隙相关联。
作为该实施例的一个子实施例,所述第一PUSCH的发送时刻,等于对应的第n个下行子帧之前的所述第一节点所维护的上行定时提前的时刻;所述第一PUSCH与所述第n个下行子帧相关联。
作为该实施例的一个子实施例,所述第一PUSCH的发送时刻,等于对应的第n个下行帧之前的所述第一节点所维护的上行定时提前的时刻;所述第一PUSCH与所述第n个下行帧相关联。
作为该实施例的一个子实施例,所述第一PUSCH的发送时刻,等于对应的第n个下行时隙之前的所述第一节点所维护的上行定时提前的两倍时刻;所述第一PUSCH与所述第n个下行时隙相关联。
作为该实施例的一个子实施例,所述第一PUSCH的发送时刻,等于对应的第n个下行子帧之前的所述第一节点所维护的上行定时提前的两倍时刻;所述第一PUSCH与所述第n个下行子帧相关联。
作为该实施例的一个子实施例,所述第一PUSCH的发送时刻,等于对应的第n个下行帧之前的所述第一节点所维护的上行定时提前的两倍时刻;所述第一PUSCH与所述第n个下行帧相关联。
作为一个实施例,所述对应的所述第n个下行{子帧,时隙,帧}中的任一是固定的或由所述第一节点的服务小区指示或根据所述第三参数确定。
作为一个实施例,所述第三参数被用于确定所述第一PUSCH的发送定时。
作为该实施例的一个子实施例,所述第三参数与第一候选n的和是n,所述第一候选n是固定的或由所述第一节点的服务小区指示;所述第一PUSCH与所述n相关联;
作为该实施例的一个子实施例,所述第一PUSCH与所述第n个下行子帧相关联。
作为该实施例的一个子实施例,所述第一PUSCH与所述第n个下行时隙相关联。
作为该实施例的一个子实施例,所述第一PUSCH与所述第n个下行帧相关联。
作为该实施例的一个子实施例,假设所述第三参数未被指示,所述第一PUSCH与所述第一候选n{子帧,时隙,帧}中的之一相关联。
作为该实施例的一个子实施例,所述第三参数是K_offset或Koffset。
作为一个实施例,所述第二参数与所述第三参数共同被用于确定所述第一PUSCH的发送时刻。
作为一个实施例,所述第一PUSCH与第n个下行时隙相关联的含义是,假设不是用定时提前,或定时提前等于0,则所述第一PUSCH所占用的时间属于所述第n个下行时隙,或被所述第n个下行时隙所包括,或与所述第n个下行时隙重叠。
作为一个实施例,所述第一PUSCH与第n个下行子帧相关联的含义是,假设不是用定时提前,或定时提前等于0,则所述第一PUSCH所占用的时间属于所述第n个下行子帧,或被所述第n个下行子帧所包括,或与所述第n个下行子帧重叠。
作为一个实施例,所述第一PUSCH与第n个下行帧相关联的含义是,假设不是用定时提前,或定时提前等于0,则所述第一PUSCH所占用的时间属于所述第n个下行帧,或被所述第n个下行帧所包括,或与所述第n个下行帧重叠。
实施例12
实施例12示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图12所示。在附图12中,第一节点中的处理装置1200包括第一接收机1201和第一发射机1202。在实施例12中,
第一接收机1201,接收第一消息;所述第一消息被用于指示活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;
第一发射机1202,在第一PUCCH资源上发送所述第一调度请求;
所述第一接收机1201,在所述活跃时间中监测PDCCH。
作为一个实施例,所述第一发射机1202,伴随所述第一调度请求的发送,将第一计数器增加1;
其中,仅当所述第一计数器等于1时,所述第一消息被用于指示所述活跃时间包括所述第一调度请求 在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间。
作为一个实施例,所述第一发射机1202,伴随所述第一调度请求的发送,将第一计数器增加1;
其中,所述第一消息被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间与所述第一计数器无关。
作为一个实施例,所述第一接收机1201,接收第一系统信息块;所述第一系统信息块被用于指示第一参数,所述第一参数的单位是时隙;
其中,所述第一节点1200所维护的定时提前与所述第一参数的和被用于确定所述第一时间长度;所述第一消息被用于指示所述活跃时间包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间。
作为一个实施例,所述第一接收机1201,接收第一系统信息块和第一MAC CE,所述第一MAC CE指示第二参数;所述第二参数的单位是时隙;所述第一系统信息块指示第三参数,所述第三参数的单位是时隙;
所述第一发射机1202,伴随所述第一调度请求的发送,将第一计数器增加1;作为所述第一计数器等于第一阈值的响应,发起第一随机接入过程;所述行为发起第一随机接入过程包括在针对所述第一随机接入过程的随机接入响应所指示的时频资源上发送第二消息;所述第二消息占用第一PUSCH;
其中,所述第二参数和所述第三参数共同被用于确定所述第一节点1200的上行发送时刻;所述第二参数和所述第三参数中的至少之一被用于确定所述第一PUSCH的发送定时。
作为一个实施例,所述第一发射机1202,伴随所述第一调度请求的发送,开始第一计时器;
其中,所述第一调度请求仅在所述第一计时器未运行时被发送,所述第一计时器的过期值等于所述第一时间长度;所述第一消息被用于指示所述活跃时间包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间。
作为一个实施例,所述第一发射机1202,生成第二MAC CE;作为至少生成所述第二MAC CE的响应,触发所述第一调度请求;发送第一MAC PDU组;伴随所述第一MAC PDU组的发送,取消所述第一调度请求;所述第一MAC PDU组包括至少一个MAC PDU;
其中,所述行为在所述活跃时间中监测PDCCH包括接收第一信令;所述第一MAC PDU组占用所述第一信令所指示的时频资源。
作为一个实施例,所述第一发射机1202,伴随与所述第一调度请求配置对应的任一调度请求的发送,将第一计数器增加1;
其中,仅当所述第一计数器等于1时,所述第一消息被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间。
作为一个实施例,所述第一接收机1201,接收第一调度请求配置,所述第一调度请求对应的调度请求配置是所述第一调度请求配置;
所述第一发射机1202,伴随与所述第一调度请求配置对应的任一调度请求的发送,将第一计数器增加1;
其中,所述第一消息被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间与所述第一计数器无关。
作为一个实施例,所述第一调度请求配置是SR配置。
作为一个实施例,所述第一节点是一个用户设备(UE)。
作为一个实施例,所述第一节点是一个支持大时延差的终端。
作为一个实施例,所述第一节点是一个支持NTN的终端。
作为一个实施例,所述第一节点是一个飞行器。
作为一个实施例,所述第一节点是一个车载终端。
作为一个实施例,所述第一节点是一个中继。
作为一个实施例,所述第一节点是一个船只。
作为一个实施例,所述第一节点是一个物联网终端。
作为一个实施例,所述第一节点是一个工业物联网的终端。
作为一个实施例,所述第一节点是一个支持低时延高可靠传输的设备。
作为一个实施例,所述第一节点是副链路通信节点。
作为一个实施例,所述第一接收机1201包括实施例4中的天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,或数据源467中的至少之一。
作为一个实施例,所述第一发射机1202包括实施例4中的天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,或数据源467中的至少之一。
实施例13
实施例13示例了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;如附图13所示。在附图13中,第二节点中的处理装置1300包括第二发射机1301和第二接收机1302。在实施例13中,
第二发射机1301,发送第一消息;所述第一消息被用于指示活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;
第二接收机1302,在第一PUCCH资源上接收所述第一调度请求;
其中,所述第一调度请求的发送者在所述活跃时间中监测PDCCH。
作为一个实施例,伴随所述第一调度请求的发送,第一计数器被增加1;
其中,仅当所述第一计数器等于1时,所述第一消息被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间。
作为一个实施例,伴随所述第一调度请求的发送,第一计数器被增加1;
其中,所述第一消息被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间与所述第一计数器无关。
作为一个实施例,所述第二发射机1301,发送第一系统信息块;所述第一系统信息块被用于指示第一参数,所述第一参数的单位是时隙;
其中,所述第一调度请求的发送者所维护的定时提前与所述第一参数的和被用于确定所述第一时间长度;所述第一消息被用于指示所述活跃时间包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间。
作为一个实施例,所述第二发射机1301,发送第一系统信息块和第一MAC CE,所述第一MAC CE指示第二参数;所述第二参数的单位是时隙;所述第一系统信息块指示第三参数,所述第三参数的单位是时隙;
伴随所述第一调度请求的发送,第一计数器被增加1;所述第一计数器等于或大于第一阈值被用于触发第一随机接入过程;
所述第二发射机1301,发送针对所述第一随机接入过程的随机接入响应;
所述第二接收机1302,在针对所述第一随机接入过程的所述随机接入响应所述所指示的时频资源上接收第二消息;所述第二消息占用第一PUSCH;
其中,所述第二参数和所述第三参数共同被用于确定所述第一调度请求的发送者所维护的定时提前;所述第二参数和所述第三参数中的至少之一被用于确定所述第一PUSCH的发送定时。
作为一个实施例,伴随所述第一调度请求的发送,第一计时器被开始;
其中,所述第一调度请求仅在所述第一计时器未运行时被发送,所述第一计时器的过期值等于所述第一时间长度;所述第一消息被用于指示所述活跃时间包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间。
作为一个实施例,所述第二发射机1301,在所述PDCCH上发送第一信令;所述第二接收机1302,接收第一MAC PDU组;所述第二MAC CE被用于触发所述第一调度请求;伴随所述第一MAC PDU组的发送, 所述第一调度请求被取消;所述第一MAC PDU组包括至少一个MAC PDU;
其中,所述第一MAC PDU组占用所述第一信令所指示的时频资源。
作为一个实施例,所述第二发射机1301,发送第一调度请求配置,所述第一调度请求对应的调度请求配置是所述第一调度请求配置;
伴随与所述第一调度请求配置对应的任一调度请求的发送,第一计数器被增加1;
其中,仅当所述第一计数器等于1时,所述第一消息被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间。
作为一个实施例,所述第二发射机1301,发送第一调度请求配置,所述第一调度请求对应的调度请求配置是所述第一调度请求配置;
伴随与所述第一调度请求配置对应的任一调度请求的发送,第一计数器被增加1;
其中,所述第一消息被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间与所述第一计数器无关。
作为一个实施例,所述第二节点是卫星。
作为一个实施例,所述第二节点是IoT节点。
作为一个实施例,所述第二节点是中继。
作为一个实施例,所述第二节点是接入点。
作为一个实施例,所述第二节点是基站。
作为一个实施例,所述第二发射机1301包括实施例4中的天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476中的至少之一。
作为一个实施例,所述第二接收机1302包括实施例4中的天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IoT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑,卫星通信设备,船只通信设备,NTN用户设备等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点),NTN基站,卫星设备,飞行平台设备等无线通信设备。
本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (13)

  1. 一种被用于无线通信的第一节点,其中,包括:
    第一接收机,接收第一消息;所述第一消息被用于指示活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;
    第一发射机,在第一PUCCH资源上发送所述第一调度请求;
    所述第一接收机,在所述活跃时间中监测PDCCH。
  2. 根据权利要求1所述的第一节点,其特征在于,包括:
    所述第一发射机,伴随所述第一调度请求的发送,将第一计数器增加1;
    其中,仅当所述第一计数器等于1时,所述第一消息被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间。
  3. 根据权利要求1所述的第一节点,其特征在于,包括:
    所述第一发射机,伴随所述第一调度请求的发送,将第一计数器增加1;
    其中,所述第一消息被用于指示所述活跃时间包括所述第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间与所述第一计数器无关。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,
    所述第一接收机,接收第一系统信息块;所述第一系统信息块被用于指示第一参数,所述第一参数的单位是时隙;
    其中,所述第一节点所维护的定时提前与所述第一参数的和被用于确定所述第一时间长度;所述第一消息被用于指示所述活跃时间包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间。
  5. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,
    所述第一接收机,接收第一系统信息块;所述第一系统信息块被用于指示第一参数,所述第一参数的单位是时隙;
    其中,所述第一节点所维护的定时提前与所述第一参数的和被用于确定所述第一时间长度;所述第一参数是k mac
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,
    所述第一消息是或包括系统信息块(system information block,SIB),所述第一消息被用于指示NTN通信。
  7. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于,
    所述第一节点是一个支持NTN的终端;所述第一消息的发送者是第二节点,所述第二节点是gNB。
  8. 根据权利要求1至7中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第一系统信息块和第一MAC CE,所述第一MAC CE指示第二参数;所述第二参数的单位是时隙;所述第一系统信息块指示第三参数,所述第三参数的单位是时隙;
    所述第一发射机,伴随所述第一调度请求的发送,将第一计数器增加1;作为所述第一计数器等于第一阈值的响应,发起第一随机接入过程;所述行为发起第一随机接入过程包括在针对所述第一随机接入过程的随机接入响应所指示的时频资源上发送第二消息;所述第二消息占用第一PUSCH;
    其中,所述第二参数和所述第三参数共同被用于确定所述第一节点的上行发送时刻;所述第二参数和所述第三参数中的至少之一被用于确定所述第一PUSCH的发送定时。
  9. 根据权利要求1至8中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一发射机,伴随所述第一调度请求的发送,开始第一计时器;
    其中,所述第一调度请求仅在所述第一计时器未运行时被发送,所述第一计时器的过期值等于所述第一时间长度;所述第一消息被用于指示所述活跃时间包括从所述第一调度请求被发送后再延迟所述第一时间长度之后并且所述第一调度请求处于待定状态的时间。
  10. 根据权利要求1至9中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一发射机,生成第二MAC CE;作为至少生成所述第二MAC CE的响应,触发所述第一调度请求;发送第一MAC PDU组;伴随所述第一MAC PDU组的发送,取消所述第一调度请求;所述第一MAC PDU组包括至少一个MAC PDU;
    其中,所述行为在所述活跃时间中监测PDCCH包括接收第一信令;所述第一MAC PDU组占用所述第一信令所指示的时频资源。
  11. 一种被用于无线通信的第二节点,其中,包括:
    第二发射机,发送第一消息;所述第一消息被用于指示活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;
    第二接收机,在第一PUCCH资源上接收所述第一调度请求;
    其中,所述第一调度请求的发送者在所述活跃时间中监测PDCCH。
  12. 一种被用于无线通信的第一节点中的方法,其中,包括:
    接收第一消息;所述第一消息被用于指示活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;
    在第一PUCCH资源上发送所述第一调度请求;
    在所述活跃时间中监测PDCCH。
  13. 一种被用于无线通信的第二节点中的方法,其中,包括:
    发送第一消息;所述第一消息被用于指示活跃时间包括第一调度请求在PUCCH上被发送后且处于待定状态的时间还是包括从第一调度请求被发送后再延迟第一时间长度之后并且所述第一调度请求处于待定状态的时间;
    在第一PUCCH资源上接收所述第一调度请求;
    其中,所述第一调度请求的发送者在所述活跃时间中监测PDCCH。
PCT/CN2022/121558 2021-10-11 2022-09-27 一种被用于无线通信的方法和设备 WO2023061204A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111181912.XA CN115968015A (zh) 2021-10-11 2021-10-11 一种被用于无线通信的方法和设备
CN202111181912.X 2021-10-11

Publications (1)

Publication Number Publication Date
WO2023061204A1 true WO2023061204A1 (zh) 2023-04-20

Family

ID=85903495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121558 WO2023061204A1 (zh) 2021-10-11 2022-09-27 一种被用于无线通信的方法和设备

Country Status (2)

Country Link
CN (2) CN115968015A (zh)
WO (1) WO2023061204A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190239160A1 (en) * 2016-09-30 2019-08-01 Lg Electronics Inc. Pdcch monitoring after drx configuration or reconfiguration
US20210007173A1 (en) * 2019-07-01 2021-01-07 Apple Inc. Low latency beam alignment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190239160A1 (en) * 2016-09-30 2019-08-01 Lg Electronics Inc. Pdcch monitoring after drx configuration or reconfiguration
US20210007173A1 (en) * 2019-07-01 2021-01-07 Apple Inc. Low latency beam alignment

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Text proposal on DRX, HARQ and UL scheduling", 3GPP DRAFT; R2-1916415, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, Nevada, US; 20191118 - 20191122, 29 November 2019 (2019-11-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051831871 *
INTERDIGITAL, MEDIATEK, SAMSUNG: "UL HARQ RTT timer in NTN", 3GPP DRAFT; R2-2106047, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. eMeeting; 20210519 - 20210527, 10 May 2021 (2021-05-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052004058 *

Also Published As

Publication number Publication date
CN117880940A (zh) 2024-04-12
CN115968015A (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
WO2022143481A1 (zh) 一种被用于无线通信的方法和设备
WO2023061204A1 (zh) 一种被用于无线通信的方法和设备
CN115379530A (zh) 一种被用于无线通信的方法和设备
WO2023231973A1 (zh) 一种被用于无线通信的方法和设备
WO2022194113A1 (zh) 一种被用于无线通信的方法和设备
WO2024046155A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2024061247A1 (zh) 一种被用于无线通信的方法和设备
US20240089772A1 (en) Method and device for wireless communication
WO2024032478A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
US20240121848A1 (en) Method and device for wireless communication
WO2024001938A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023216895A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2021129248A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024055915A1 (zh) 一种被用于无线通信的方法和设备
US20230413365A1 (en) Method and device for wireless communication
WO2023040811A1 (zh) 一种被用于无线通信的方法和设备
WO2024007870A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023274045A1 (zh) 一种被用于无线通信的方法和设备
WO2022135297A1 (zh) 一种被用于无线通信的方法和设备
WO2022188747A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023046073A1 (zh) 一种被用于无线通信的方法和设备
CN114867131A (zh) 一种被用于无线通信的方法和设备
CN117793830A (zh) 一种被用于无线通信的方法和设备
CN117858277A (zh) 一种被用于无线通信的方法和设备
CN114916095A (zh) 一种被用于无线通信的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880144

Country of ref document: EP

Kind code of ref document: A1