WO2023046073A1 - 一种被用于无线通信的方法和设备 - Google Patents

一种被用于无线通信的方法和设备 Download PDF

Info

Publication number
WO2023046073A1
WO2023046073A1 PCT/CN2022/120891 CN2022120891W WO2023046073A1 WO 2023046073 A1 WO2023046073 A1 WO 2023046073A1 CN 2022120891 W CN2022120891 W CN 2022120891W WO 2023046073 A1 WO2023046073 A1 WO 2023046073A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
timer
node
direct path
signal
Prior art date
Application number
PCT/CN2022/120891
Other languages
English (en)
French (fr)
Inventor
陈宇
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111318202.7A external-priority patent/CN115884222A/zh
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2023046073A1 publication Critical patent/WO2023046073A1/zh
Priority to US18/434,755 priority Critical patent/US20240179611A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, in particular to a method and device for reducing service interruption, improving service continuity, enhancing reliability, and security in wireless communication.
  • NR new air interface technology
  • WI Work Item, work item
  • LTE Long Term Evolution, long-term evolution
  • 5G NR 5th Generation NR
  • eMBB enhanced Mobile BroadBand, enhanced mobile broadband
  • URLLC Ultra Reliable Low Latency Communication, Ultra-reliable and low-latency communication
  • eMTC enhanced Machine Type Communication, enhanced machine type communication
  • IIoT Industrial Internet of Things, the Internet of Things in the industrial field, in V2X (Vehicular to X, vehicle communication), in the communication between devices (Device to Device), in the communication of unlicensed spectrum, in User communication quality monitoring, network planning optimization, in NTN (Non Territerial Network, non-terrestrial network communication), in TN (Territerial Network, terrestrial network communication), in dual connectivity (Dual connectivity) system, in wireless resource management As well as multi-antenna codebook selection, there are extensive requirements in signaling design, neighbor cell management, service management, and beamforming. Information transmission methods are divided into broadcast and unicast, both of which are 5G Systems are essential because they are very helpful in meeting the above requirements.
  • the UE can connect to the network either directly or through a relay.
  • the 3GPP standardization organization has done relevant standardization work for 5G, and formed a series of standards including 38.304, 38.211, 38.213, etc.
  • the content of the standard can be referred to:
  • a relay In various communication scenarios, the use of a relay is involved. For example, when a UE is not within the coverage area of a cell, it can access the network through a relay, and the relay node can be another UE.
  • Relays mainly include layer 3 relays and layer 2 relays, both of which provide network access services for remote nodes (remote UEs) through relay nodes.
  • Layer 3 relays are transparent to the access network, that is, remote UEs
  • the UE only establishes a connection with the core network, and the access network cannot identify whether the data comes from the remote node or the relay node; in layer 2 relay, the remote node and the access network have an RRC connection, and the access network can manage the remote Radio bearers can be established between nodes, access network and remote nodes.
  • the network will instruct the remote UE to switch the direct path transmission to Indirect path transmission is to change from directly connecting to the network to connecting to the network through relays.
  • the remote UE may not always succeed in the process of switching from the direct path to the non-direct path.
  • it may be necessary to set a timer. How to control this timer, that is, when to stop this Timer, how to deal with the remote UE after the timer expires is a problem that needs to be solved.
  • timers in the transition process are neither the traditional timers used when directly communicating with the network, nor the timers involved in purely using the secondary link for transmission, so special settings are required according to this special scenario deal with.
  • how to determine that the indirect path transmission has been successfully established is also a problem to be solved.
  • the present application provides a solution to the above-mentioned problems.
  • the present application discloses a method used in a first node of wireless communication, comprising:
  • the first message being used to indicate switching from a direct path to a non-direct path; starting a first timer; expiration of the first timer being used to trigger RRC re-establishment;
  • the first message is transmitted through the direct path; the second message is transmitted through the indirect path; the first message and the second message are RRC messages respectively; the second message is transmitted by the sender of said first signal; said first message being used for said action to start said first timer.
  • the problem to be solved in this application includes: in a scenario involving relay, especially when switching or switching from direct path transmission to indirect path transmission, how to use a timer to control the switching process.
  • the advantages of the above method include: the method proposed in this application can avoid problems such as long waiting time and no response that may occur when the direct path transmission switches to the non-direct path transmission. Stopping this timer for non-direct path transmissions can avoid procedures such as RRC reestablishment.
  • the first signal includes a data packet generated by any sender of the first message.
  • the first signal includes first signaling, and the first signaling is used to indicate that the indirect path has been established.
  • the first signal includes second signaling, and the second signaling is used to confirm the direct link between the first node and the sender of the first signal The path has been established successfully; the second signaling includes a relay service code; and the second signaling is a PC5-S message.
  • a first discovery message is received, the first discovery message includes a first cell identity, and the first cell identity is the cell identity of the sender of the first message; the first A discovery message includes the first link layer identity of the sender of the first signal; evaluate the first measurement result according to the first reference signal resource; evaluate the secondary link signal according to the sender of the first discovery message second measurement result;
  • the first message is used to indicate that when the first condition is met, switch from the direct path to the indirect path; the first condition includes that the first measurement result is lower than a first threshold and the second measurement The result is higher than a second threshold; the first message includes the first link layer identity; the first condition is met; the configuration associated with the first condition in the first message is executed and used The first timer is started on a trigger.
  • the RRC reconstruction includes: selecting a third node, the third node belongs to a first candidate relay list, and the first candidate relay list is related to switching from direct path to indirect path The path is related; the third node uses the non-direct path to transmit an RRC reestablishment request message; as a response to applying the first message, deleting the first candidate relay list;
  • a first candidate cell list is retained, and the first candidate cell list is related to conditional reconfiguration; the first candidate cell list includes at least one cell.
  • the conditional reconfiguration evaluation for the CHO is maintained, and the evaluation for the conditional handover from the direct path to the indirect path is stopped.
  • the first node is a user equipment.
  • the first node is an Internet of Things terminal.
  • the first node is a relay.
  • the first node is a vehicle-mounted terminal.
  • the first node is an aircraft.
  • a method used in a second node for wireless communication comprising:
  • the sender of the second message starts a first timer, and the expiration of the first timer is used to trigger RRC re-establishment, after the behavior starts the first timer and after the first timer
  • a first signal is received on the secondary link; the first signal is used to stop the first timer; the first message is transmitted via the direct path; the second message is transmitted via the non- Direct path transmission; the first message and the second message are RRC messages respectively; the second message is relayed by the sender of the first signal; the first message is used for the start of the action Describe the first timer.
  • a third message is received through the direct path, the third message is used to indicate the first link layer identity; the first reference signal resource is used to evaluate the first measurement Result; the secondary link signal is used to evaluate the second measurement result;
  • the first message is used to indicate that when the first condition is met, switch from the direct path to the indirect path; the first condition includes that the first measurement result is lower than a first threshold and the second measurement The result is higher than a second threshold; the first message includes the first link layer identity; the configuration associated with the first condition in the first message is performed to trigger the start of the first timing device.
  • the RRC re-establishment includes: receiving an RRC re-establishment request message through the third node using the indirect path.
  • the second node is a base station.
  • the second node is a relay.
  • the second node is an aircraft.
  • the second node is a satellite.
  • the second node is an access point device.
  • a method used in a third node for wireless communication comprising:
  • the sender of the second message starts a first timer, and the expiration of the first timer is used to trigger RRC reestablishment; the first signal is used to stop the first timer; the first A message is used to indicate switching from a direct path to a non-direct path; said first message is transmitted over said direct path; said second message is transmitted over said non-direct path; said first message and said second message are RRC messages respectively; said first message is used for said action to start said first timer.
  • the first signal includes a data packet generated by any sender of the first message.
  • the first signal includes first signaling, and the first signaling is used to indicate that the indirect path has been established.
  • the first signal includes second signaling, and the second signaling is used to confirm that the direct link between the first node and the third node has been successful Establishment;
  • the second signaling includes a relay service code;
  • the second signaling is a PC5-S message.
  • a first discovery message and a secondary link signal are sent, the first discovery message includes a first cell identity, and the first cell identity is the cell of the sender of the first message identity; the first discovery message includes a first link layer identity of the third node; a first reference signal resource is used to evaluate a first measurement result; the secondary link signal is used to evaluate a second measurement result ;
  • the first message is used to indicate that when the first condition is met, switch from the direct path to the indirect path; the first condition includes that the first measurement result is lower than a first threshold and the second measurement The result is higher than a second threshold; the first message includes the first link layer identity; the configuration associated with the first condition in the first message is performed to trigger the start of the first timing device.
  • the RRC reestablishment includes: selecting the third node, the third node belongs to a first candidate relay list, and the first candidate relay list is related to switching from direct path to The non-direct path is related; the third node uses the non-direct path to transmit an RRC reestablishment request message; as a response to applying the first message, deleting the first candidate relay list;
  • a first candidate cell list is retained, and the first candidate cell list is related to conditional reconfiguration; the first candidate cell list includes at least one cell.
  • the third node is a user equipment.
  • the third node is an Internet of Things terminal.
  • the third node is a relay.
  • the third node is a vehicle-mounted terminal.
  • the third node is an aircraft.
  • This application discloses a first node used for wireless communication, including:
  • a first receiver receiving a first message, the first message being used to indicate switching from a direct path to a non-direct path; starting a first timer; expiration of the first timer being used to trigger RRC re-establishment;
  • said first receiver after said action starts a first timer and before said first timer expires, receives a first signal on a secondary link; and in response to receiving said first signal, stops all the first timer;
  • the first message is transmitted through the direct path; the second message is transmitted through the indirect path; the first message and the second message are RRC messages respectively; the second message is transmitted by the sender of said first signal; said first message being used for said action to start said first timer.
  • the present application discloses a second node used for wireless communication, including:
  • a second transmitter sending a first message, the first message being used to indicate switching from a direct path to an indirect path;
  • a second receiver receiving a second message, the second message being used to feed back the first message
  • the sender of the second message starts a first timer, and the expiration of the first timer is used to trigger RRC re-establishment, after the behavior starts the first timer and after the first timer
  • a first signal is received on the secondary link; the first signal is used to stop the first timer; the first message is transmitted via the direct path; the second message is transmitted via the non- Direct path transmission; the first message and the second message are RRC messages respectively; the second message is relayed by the sender of the first signal; the first message is used for the start of the action Describe the first timer.
  • the present application discloses a third node used for wireless communication, including:
  • a third transmitter forwarding a second message, the second message being used to feed back the first message
  • said third transmitter after said action starts a first timer and before said first timer expires, transmits a first signal on a secondary link;
  • the sender of the second message starts a first timer, and the expiration of the first timer is used to trigger RRC reestablishment; the first signal is used to stop the first timer; the first A message is used to indicate switching from a direct path to a non-direct path; said first message is transmitted over said direct path; said second message is transmitted over said non-direct path; said first message and said second message are RRC messages respectively; said first message is used for said action to start said first timer.
  • this application has the following advantages:
  • An appropriate evaluation method is established for evaluating the successful flag of the indirect path establishment, and thereby stopping the first timer.
  • FIG. 1 shows a flow chart of receiving a first message, starting a first timer, receiving a first signal, and sending a second message according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG. 5 shows a flow chart of wireless signal transmission according to an embodiment of the present application
  • FIG. 6 shows a flowchart of wireless signal transmission according to an embodiment of the present application
  • FIG. 7 shows a schematic diagram of a protocol stack of relay communication according to an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of path switching according to an embodiment of the present application.
  • FIG. 9 shows a schematic diagram of a first message being used for the behavior to start the first timer according to an embodiment of the present application.
  • FIG. 10 illustrates a schematic diagram of a processing device used in a first node according to an embodiment of the present application
  • Fig. 11 illustrates a schematic diagram of a processing device used in a second node according to an embodiment of the present application
  • Fig. 12 illustrates a schematic diagram of a processing device used in a third node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of receiving a first message, starting a first timer, receiving a first signal, and sending a second message according to an embodiment of the present application, as shown in FIG. 1 .
  • each block represents a step, and it should be emphasized that the order of the blocks in the figure does not represent the temporal sequence of the steps represented.
  • the first node in this application receives the first message in step 101; starts the first timer in step 102; receives the first signal in step 103; sends the second message in step 104;
  • the first message is used to indicate switching from the direct path to the non-direct path; the expiration of the first timer is used to trigger RRC reestablishment; the first node starts the first timer in the behavior thereafter and before the first timer expires, receiving the first signal on a secondary link; the first node, in response to receiving the first signal, stopping the first timer; the The second message is used to feed back the first message; the first message is transmitted through the direct path; the second message is transmitted through the indirect path; the first message and the second message are respectively is an RRC message; said second message is relayed by the sender of said first signal; said first message is used for said action to start said first timer.
  • the first node is UE (User Equipment, user equipment).
  • a direct path refers to a transmission path from UE to the network, and transmission through the direct path means that data is between the remote UE and the network of UE to network (U2N) Send without relaying.
  • U2N UE to network
  • the data includes higher layer data and signaling.
  • the data includes a bit string or a bit block.
  • the data only includes signaling or data carried by an RB (radio bearer, radio bearer).
  • RB radio bearer, radio bearer
  • an indirect path refers to a transmission path from the UE to the network, and transmission through the indirect path means that the data is at the far end of the UE to the network (U2N, UE-to-Network)
  • the data includes higher layer data and signaling.
  • the data includes a bit string or a bit block.
  • the data only includes signaling or data carried by an RB (radio bearer, radio bearer).
  • RB radio bearer, radio bearer
  • the U2N relay UE refers to a UE that provides a function of supporting the connection of the U2N remote UE to the network.
  • the U2N remote UE refers to a UE that needs to pass through a U2N relay UE to communicate with the network.
  • the U2N remote UE refers to a UE that needs to pass through a U2N relay UE to communicate with the network.
  • the U2N remote UE refers to a UE that supports a relay service and communicates with a network.
  • the U2N relay is a U2N relay UE.
  • both the U2N relay and the U2N remote node are in the RRC connection state.
  • the U2N relay UE when the U2N remote UE is in the RRC idle state or the RRC inactive state, the U2N relay UE can be in any RRC state, including the RRC connected state, the RRC idle state and the RRC inactive state.
  • not transmitting over a direct path is equal to transmitting over an indirect path.
  • transmitting not via a direct path includes transmitting via a relay.
  • transmitting via a direct path includes transmitting without a relay.
  • transmitting over a direct path includes forwarding without a relay.
  • the U2N relay UE is a functional UE that provides connectivity support to the network for the U2N remote UE.
  • the U2N relay UE is a UE.
  • the U2N relay UE provides the U2N remote UE with a relay service to the network.
  • the U2N remote UE is a UE that communicates with the network through a U2N relay UE.
  • the serving cell refers to a cell where the UE camps.
  • Performing the cell search includes that the UE searches for a suitable (suitable) cell of the selected PLMN (Public Land Mobile Network, Public Land Mobile Network) or SNPN (Stand-alone Non-Public Network, independent non-public network), and selects the A suitable cell provides available services, and monitors the control channel of the suitable cell.
  • PLMN Public Land Mobile Network, Public Land Mobile Network
  • SNPN Seand-alone Non-Public Network, independent non-public network
  • Residential in a cell in the RRC idle state or RRC inactive state has the following advantages: it enables the UE to receive system messages from the PLMN or SNPN; after registration, if the UE wishes to establish an RRC connection or continue a suspended RRC connection, The UE can achieve this by performing initial access on the control channel of the resident cell; the network can page the UE; so that the UE can receive ETWS (Earthquake and Tsunami Warning System, Earthquake and Tsunami Warning System) and CMAS (Commercial Mobile Alert System, Commercial Mobile Alarm System) Notifications.
  • ETWS Earthquake and Tsunami Warning System, Earthquake and Tsunami Warning System
  • CMAS Common Mobile Alert System, Commercial Mobile Alarm System
  • the serving cell is used to indicate a cell set including a special cell (SpCell, Special Cell) and all secondary cells.
  • the primary cell is an MCG (Master Cell Group) cell, which works on the primary frequency. The UE performs the initial connection establishment process or initiates connection reestablishment on the primary cell.
  • the special cell refers to the PCell (Primary Cell, primary cell) of the MCG or the PSCell (Primary SCG Cell, primary SCG cell) of the SCG (Secondary Cell Group); if it is not a dual connection operation, the special cell refers to the PCell.
  • the frequency at which the SCell (Secondary Cell, secondary cell) works is a secondary frequency.
  • MR-DC Multi-Radio Dual Connectivity, multi-radio dual connectivity refers to dual connectivity between E-UTRA and NR nodes, or dual connectivity between two NR nodes.
  • the radio access node providing the control plane connection to the core network is a master node
  • the master node may be a master eNB, a master ng-eNB, or a master gNB.
  • the MCG refers to a group of serving cells associated with the master node in the MR-DC, including an SpCell, and may also, optionally, include one or more SCells.
  • the PCell is the SpCell of the MCG.
  • the PSCell is the SpCell of the SCG.
  • the control plane connection to the core network is not provided, and the wireless access node that provides additional resources to the UE is a slave node.
  • the slave node can be en-gNB, slave ng-eNB or slave gNB.
  • a set of serving cells associated with the secondary node is an SCG (secondary cell group, secondary cell group), including an SpCell and, optionally, one or more SCells.
  • SCG secondary cell group, secondary cell group
  • the access layer function that enables the V2X (Vehicle-to-Everything) communication defined in the 3GPP standard TS 23.285 is V2X sidelink communication (V2X sidelink communication), wherein the V2X sidelink communication occurs Between adjacent UEs, using E-UTRA technology without traversing network nodes.
  • At least the access layer function that enables the V2X (Vehicle-to-Everything) communication defined in the 3GPP standard TS 23.287 is NR sidelink communication (NR sidelink communication), wherein the NR sidelink communication Occurs between two or more UEs in close proximity, using NR techniques without traversing network nodes.
  • NR sidelink communication NR sidelink communication
  • the secondary link supports UE-to-UE direct communication using a secondary link resource allocation mode, physical layer signals or channels, and physical layer procedures.
  • not or not in or not in coverage equals out of coverage.
  • within coverage equals within coverage.
  • outside of coverage equals outside of coverage
  • the first node is a U2N remote node.
  • the PDCP entities corresponding to the radio bearers terminated between the UE and the network are respectively located in the UE and the network.
  • the direct path is a direct path or a communication link or a channel or a bearer used when transmitting through the direct path.
  • the direct path transmission means that the data carried by at least an SRB (Signaling radio bearer, signaling radio bearer) between the UE and the network does not undergo relay or forwarding by other nodes.
  • SRB Signaling radio bearer
  • the direct path transmission refers to that RLC bearers associated with at least an SRB (Signaling radio bearer, signaling radio bearer) between the UE and the network are respectively terminated at the UE and the network.
  • SRB Signaling radio bearer
  • the direct path transmission refers to that RLC entities associated with at least an SRB (Signaling radio bearer, signaling radio bearer) between the UE and the network are respectively terminated at the UE and the network.
  • SRB Signaling radio bearer
  • the direct path transmission means that there is a direct communication link between the UE and the network.
  • the direct path transmission means that a Uu interface exists between the UE and the network.
  • the direct path transmission means that there is a MAC layer of the Uu interface between the UE and the network, and the MAC layer of the Uu interface bears RRC signaling.
  • the direct path transmission means that a physical layer of a Uu interface exists between the UE and the network.
  • the direct path transmission means that a logical channel and/or a transmission channel exists between the UE and the network.
  • the indirect path is an indirect path or communication link or channel or bearer used when transmitting through the indirect path.
  • the indirect path transmission refers to relaying or forwarding of data carried by at least an SRB (Signaling radio bearer, signaling radio bearer) between the UE and the network via other nodes.
  • SRB Signaling radio bearer
  • the indirect path transmission refers to that the RLC bearer associated with at least SRB (Signaling radio bearer, signaling radio bearer) between the UE and the network is respectively terminated at the UE and other nodes, and between other nodes and network.
  • SRB Signaling radio bearer
  • the indirect path transmission refers to that RLC entities associated with at least an SRB (Signaling radio bearer, signaling radio bearer) between the UE and the network are respectively terminated at the UE and other nodes, and between other nodes and network.
  • SRB Signaling radio bearer
  • the indirect path transmission means that there is no direct communication link between the UE and the network.
  • the indirect path transmission refers to that there is no MAC layer of the Uu interface between the UE and the network.
  • the indirect path transmission refers to that there is no physical layer of the Uu interface between the UE and the network.
  • the non-direct path transmission refers to that there is neither a logical channel nor a transport channel between the UE and the network.
  • the network includes a radio access network (RAN) and/or a serving cell and/or a base station.
  • RAN radio access network
  • the meaning of the phrase at least SRB includes at least one of ⁇ SRB0, SRB1, SRB2, SRB3 ⁇ .
  • the meaning of the phrase at least SRB includes SRB and DRB (data radio bearer, data radio bearer).
  • the phrase UE and the UE in the network includes the first node.
  • the other nodes include relay nodes or other UEs.
  • the UE when direct path transmission is used, the UE can send physical layer signaling to the network; when non-direct path transmission is used, the UE cannot send or directly send physical layer signaling to the network;
  • the UE when using the direct path transmission, can send the MAC CE to the network; when using the non-direct path transmission, the UE cannot send the network or directly send the MAC CE;
  • the other protocol layer is or includes an adaptation layer.
  • the network when the direct path transmission is used, the network directly schedules the uplink transmission of the first node through the DCI; when the indirect path transmission is used, the network does not directly schedule the uplink transmission of the first node through the DCI.
  • the SRB of the first node when direct path transmission is used, the SRB of the first node is associated with the RLC entity and/or RLC layer and/or RLC bearer; when non-direct path transmission is used, the SRB of the first node Associated with the RLC entity of the PC5 interface.
  • mapping relationship between the SRB of the first node and the RLC entity of the Uu interface; when non-direct path transmission is used, the SRB of the first node and the RLC entity of the PC5 interface There is a mapping relationship.
  • the meaning of the phrase switch from direct path to indirect path is to start using the indirect path and stop using the direct path at the same time.
  • the meaning of the phrase switch from direct path to non-direct path is to start using non-direct path transmission and stop using direct path transmission at the same time.
  • the meaning of the phrase switching from direct path to non-direct path is: from direct path transmission to non-direct path transmission.
  • the meaning of the phrase switching from the direct path to the non-direct path is: the first node associates the SRB with the RLC entity of the PC5 interface, and at the same time releases the RLC entity of the Uu interface associated with the SRB.
  • the meaning of the phrase switching from a direct path to a non-direct path is: the first node associates the SRB and the DRB with the RLC entity of the PC5 interface, and at the same time releases the Uu interface associated with the SRB and the DRB. RLC entity.
  • the meaning of the phrase switching from a direct path to a non-direct path is: the SRB and DRB of the first node are associated with the RLC entity of the PC5 interface, and are no longer associated with the RLC entity of the Uu interface or the RLC bearer of the Uu interface Associated.
  • the meaning of the phrase no longer being associated with the RLC entity of the Uu interface includes the disassociation relationship.
  • the meaning of the phrase no longer associated with the RLC entity of the Uu interface includes that the radio bearer served by the RLC entity of the Uu interface does not include SRB or DRB.
  • the meaning of the phrase no longer associated with the RLC entity of the Uu interface includes releasing the RLC bearer or the RLC entity of the Uu interface.
  • At least one RLC bearer of the PC5 interface is added, and the added RLC bearer of the at least one PC5 interface serves the SRB and/or DRB of the first node.
  • the meaning of the phrase switching from direct path to non-direct path is: the SRB and DRB of the first node are associated with the secondary link RLC entity, and are no longer associated with the RLC entity of the Uu interface or the RLC bearer of the Uu interface Associated.
  • the meaning of the phrase no longer being associated with the RLC entity of the Uu interface includes the disassociation relationship.
  • the meaning of the phrase no longer associated with the RLC entity of the Uu interface includes that the radio bearer served by the RLC entity of the Uu interface does not include SRB or DRB.
  • the meaning of the phrase no longer associated with the RLC entity of the Uu interface includes releasing the RLC bearer or the RLC entity of the Uu interface.
  • At least one secondary link RLC bearer is added, and the added at least one secondary link RLC bearer serves the SRB and/or DRB of the first node.
  • the meaning of the phrase switching from direct path to non-direct path is: at least one radio bearer of the first node is associated with a second RLC entity, and the at least one radio bearer of the first node is not associated with The first RLC entity is associated.
  • the second RLC entity is a secondary link RLC entity.
  • the second RLC entity is an RLC entity of the PC5 interface.
  • the first RLC entity is an RLC entity of the Uu interface.
  • the first RLC entity is an RLC entity.
  • the RLC entity is configured by RLC-BearerConfig.
  • the RLC entity is configured by RLC-config of RLC-BearerConfig.
  • the meaning of the phrase not associated with the first RLC entity is no longer associated with the first RLC entity.
  • the meaning of the phrase not being associated with the first RLC entity includes no longer being associated with the first RLC entity.
  • the meaning of the phrase not being associated with the first RLC entity includes a disassociation relationship.
  • the meaning of the phrase not being associated with the first RLC entity includes a de-mapping relationship.
  • the meaning of the phrase not associated with the first RLC entity includes that the radio bearer served by the RLC bearer corresponding to the first RLC entity does not include the at least one of the first node wireless bearer.
  • the meaning of the phrase not associated with the first RLC entity includes releasing the first RLC entity serving the at least one radio bearer of the first node.
  • the meaning of the phrase not associated with the first RLC entity includes releasing the RLC bearer corresponding to the first RLC entity serving the at least one radio bearer of the first node.
  • the meaning of the phrase not associated with the first RLC entity includes releasing all RLC bearers and/or RLC entities of the Uu interface.
  • the meaning of the phrase associated with the second RLC entity is: add at least one secondary link RLC bearer, and the added at least one secondary link RLC bearer serves the first node The at least one radio bearer of .
  • the meaning of the phrase associated with the second RLC entity is: configuring at least one secondary link RLC bearer to serve the at least one radio bearer of the first node.
  • the at least one radio bearer of the first node is an SRB.
  • the at least one radio bearer of the first node is a DRB.
  • the at least one radio bearer of the first node is any SRB other than SRB0.
  • the at least one radio bearer of the first node is any RB.
  • the at least one radio bearer of the first node includes any RB.
  • the at least one radio bearer of the first node is or includes any SRB.
  • the at least one radio bearer of the first node is or includes any DRB.
  • the meaning of the phrase switching from direct path to non-direct path is that: at least one radio bearer of the first node is associated with a second RLC bearer, and the at least one radio bearer of the first node is not associated with The first RLC bearer is associated.
  • the second RLC bearer is a secondary link RLC bearer.
  • the second RLC bearer is an RLC bearer of the PC5 interface.
  • the first RLC bearer is an RLC bearer of a Uu interface.
  • the first RLC bearer is an RLC bearer.
  • the RLC bearer is configured by RLC-BearerConfig.
  • the RLC bearer is configured by RLC-config of RLC-BearerConfig.
  • the secondary link RLC bearer is configured by an RRC IE other than RLC-BearerConfig.
  • the secondary link RLC bearer is configured by an RRC IE other than RLC-config of RLC-BearerConfig.
  • the secondary link RLC bearer is configured by sl-RLC-BearerConfig.
  • the secondary link RLC bearer is configured by RLC-config of sl-RLC-BearerConfig.
  • the meaning of the phrase not associated with the first RLC bearer is that it is no longer associated with the first RLC bearer.
  • the meaning of the phrase not being associated with the first RLC bearer includes no longer being associated with the first RLC bearer.
  • the meaning of the phrase not being associated with the first RLC bearer includes a disassociation relationship.
  • the meaning of the phrase not being associated with the first RLC bearer includes a de-mapping relationship.
  • the meaning of the phrase not associated with the first RLC bearer includes that the radio bearer served by the first RLC bearer does not include the at least one radio bearer of the first node.
  • the meaning of the phrase not associated with the first RLC bearer includes releasing the first RLC bearer serving the at least one radio bearer of the first node.
  • the meaning of the phrase not associated with the first RLC bearer includes releasing the first RLC bearer serving the at least one radio bearer of the first node.
  • the meaning of the phrase not associated with the first RLC bearer includes releasing the first RLC bearer.
  • the at least one radio bearer of the first node before receiving the first message, is served by the first RLC bearer.
  • the meaning of the phrase not associated with the first RLC bearer includes releasing all RLC bearers and/or RLC entities of the Uu interface.
  • the meaning of the phrase associated with the second RLC bearer is: add at least one secondary link RLC bearer, and the added at least one secondary link RLC bearer serves the first node The at least one radio bearer of .
  • the meaning of the phrase associated with the second RLC bearer is: configuring at least one secondary link RLC bearer to serve the at least one radio bearer of the first node.
  • the at least one radio bearer of the first node is an SRB.
  • the at least one radio bearer of the first node is a DRB.
  • the at least one radio bearer of the first node is any SRB other than SRB0.
  • the at least one radio bearer of the first node is any RB.
  • the at least one radio bearer of the first node includes any RB.
  • the at least one radio bearer of the first node is or includes any SRB.
  • the at least one radio bearer of the first node is or includes any DRB.
  • the rlc-BearerToReleaseList of the first message includes the identity of the first RLC bearer.
  • the meaning of the phrase not associated with the first RLC bearer is that the rlc-BearerToReleaseList of the first message includes the identity of the first RLC bearer.
  • the meaning of the phrase associated with the second RLC bearer is: the sl-rlc-BearerToReleaseList included in the first message configures the second RLC bearer to serve all the nodes of the first node at least one radio bearer.
  • the meaning of the phrase associated with the second RLC bearer is: the RLC-BearerToAddModList related to PC5 included in the first message configures the second RLC bearer to serve the first node The at least one radio bearer.
  • the meaning of the phrase associated with the second RLC bearer is: the relay-related RLC-BearerToAddModList included in the first message configures the second RLC bearer to serve the first node The at least one radio bearer.
  • the meaning of the phrase associated with the second RLC bearer is: the RLC-BearerToAddModList related to the secondary link included in the first message configures the second RLC bearer to serve the first The at least one radio bearer of a node.
  • the first message includes rlc-BearerToReleaseList.
  • the first message includes rlc-BearerToReleaseList.
  • the first message includes sl-RLC-BearerToAddModList.
  • the first message includes RLC-BearerToAddModList related to PC5.
  • the meaning of the phrase that the first message includes RLC-BearerToAddModList related to PC5 is: the first message includes an information element (IE) whose name includes both PC5 and BearerToAddModList.
  • IE information element
  • the first message includes RLC-BearerToAddModList related to the relay.
  • the meaning of the phrase that the first message includes the RLC-BearerToAddModList related to the relay is that the first message includes an information element (IE) whose name includes both relay and BearerToAddModList.
  • IE information element
  • the meaning of the phrase that the first message includes the RLC-BearerToAddModList related to the relay is: the first message includes an information element (IE) whose name includes BearerToAddModList, and the name includes The information element of BearerToAddModList indicates that it is related to the relay.
  • IE information element
  • the first message includes RLC-BearerToAddModList related to the secondary link.
  • the first message is or includes RRCReconfiguration.
  • the first message is or includes RRCConnectionReconfiguration.
  • the first message includes CellGroupConfig.
  • the first message includes RLC-config.
  • the first message includes sl-RLC-config.
  • the first message includes relay-RLC-config.
  • the first message includes RLC-config-relay.
  • the first message indicates to release the RLC bearer associated with the direct path.
  • the first message indicates to release at least one logical channel.
  • the first message indicates to release at least one LogicalChannelIdentity through rlc-BearerToReleaseList.
  • the first message indicates adding at least one RLC bearer related to the indirect path.
  • the first message indicates to add at least one secondary link RLC bearer related to the indirect path or an RLC bearer of the PC5 interface.
  • the first message at least indicates that the RLC bearer associated with one SRB is changed to the secondary link RLC bearer or the RLC bearer of the PC5 interface.
  • the first message at least indicates that one SRB is no longer associated with the RLC bearer, but is associated with the sidelink RLC bearer or the RLC bearer of the PC5 interface.
  • the first message at least indicates that one SRB is no longer associated with the RLC bearer, but is related to the RLC bearer or the relay RLC bearer related to the indirect path.
  • the first message indicates that all SRBs are no longer associated with RLC bearers, but are associated with non-direct path-related RLC bearers or relay RLC bearers.
  • the RLC bearer refers to the RLC bearer of the Uu interface.
  • the first message indicates that: all DRBs are no longer associated with RLC bearers, but are related to RLC bearers or relay RLC bearers related to indirect paths.
  • the RLC bearer refers to the RLC bearer of the Uu interface.
  • the first message indicates that all SRBs are no longer associated with RLC bearers, but are associated with non-direct path-related RLC bearers or relay RLC bearers.
  • the first message indicates that: all DRBs are no longer associated with RLC bearers, but are related to RLC bearers or relay RLC bearers related to indirect paths.
  • the first message includes reconfigurationWithSync.
  • the first timer is not T304.
  • the first timer is not T310.
  • the first timer is not T311.
  • the first timer is not T312.
  • the first timer is not T316.
  • the first timer is T303.
  • the first timer is T305.
  • the first timer is T314.
  • the first timer is T324.
  • the first timer is T334.
  • the first timer is T344.
  • the first timer is T304a.
  • the first timer is T304b.
  • the first timer is T304r.
  • the first timer is T304-r.
  • the first timer is T401.
  • the first timer is T402.
  • the first timer is T403.
  • the first timer is T404.
  • the first timer is T414.
  • the first timer is T411.
  • the first timer is T410.
  • the first timer is T500.
  • the first timer is T501.
  • the first timer is T502.
  • the first timer is T503.
  • the first timer is T504.
  • the first timer is T514.
  • the name of the first timer includes relay.
  • the name of the first timer includes r.
  • the name of the first timer includes T1.
  • the name of the first timer includes T2.
  • the name of the first timer includes 304 .
  • the first timer is not T304.
  • the expiration of the first timer triggers the first node to perform RRC re-establishment (RRC Re-establishment).
  • expiration of the first timer is considered a failure.
  • the expiration of the first timer triggers the first node to initiate RRC connection reestablishment.
  • the first node is in an RRC connected state.
  • the act of starting the first timer includes restarting the first timer.
  • the time after the behavior starts the first timer and before the first timer expires refers to the time when the first timer is in the running state.
  • the reception of the first signal triggers the first node to stop the first timer.
  • the secondary link is a communication link between the first node and other UEs.
  • the secondary link is a communication link between the first node and a relay.
  • the physical channel occupied by the first signal is PSSCH (Physical Sidelink Shared Channel, Physical Sidelink Shared Channel).
  • the physical channel occupied by the first signal is PSCCH (Physical Sidelink Control Channel, Physical Sidelink Control Channel).
  • the physical channel occupied by the first signal is PSFCH (Physical Sidelink Feedback Channel, Physical Sidelink Feedback Channel).
  • PSFCH Physical Sidelink Feedback Channel, Physical Sidelink Feedback Channel
  • the first signal is received after the second message is sent.
  • the receiving of the first signal is later than the sending of the second message.
  • the second message triggers the first signal.
  • the first signal is ACK.
  • the first signal includes ACK.
  • the first signal includes SCI (sidelink control information, sidelink control information).
  • the first signal is SCI.
  • the first signal includes MAC CE.
  • the first signal is MAC CE.
  • the first signal includes MAC CE and SCI.
  • the first signal is MAC CE and SCI.
  • the first signal includes a PC5-RRC message.
  • the first signal is a PC5-RRC message.
  • the bearer occupied by the first signal is a secondary link bearer.
  • the second message occupies secondary link resources; the first message does not occupy secondary link resources.
  • the second message includes RRC signaling.
  • the second message is RRCReconfigurationComplete.
  • the second message is RRCConnectionReconfigurationComplete.
  • the second message and the first message appear in pairs.
  • the second message indicates that at least part of the configuration in the first message has been applied.
  • the transmission of the first message through the direct path means that the physical channel occupied by the first message includes or only includes PDSCH; the transmission of the second message through the indirect path means that the The physical channels occupied by the second message include or only include at least one of ⁇ PSSCH, PSCCH, PSFCH ⁇ .
  • the transmission of the first message through the direct path means that the physical channel occupied by the first message does not include any one of ⁇ PSSCH, PSCCH, PSFCH ⁇ .
  • the meaning of receiving through the secondary link includes: receiving on the resources of the secondary link.
  • the meaning of receiving through the secondary link includes: receiving on the channel of the secondary link.
  • the channel of the secondary link includes at least one of ⁇ PSSCH, PSCCH, PSFCH ⁇ .
  • the sender of the first signal is a relay of the first node.
  • the sender of the first signal is a U2N relay of the first node.
  • the sender of the first signal is a relay included in the indirect path.
  • the sender of the first signal is a relay between the first node and the network.
  • the transmission of the second message through the indirect path includes that the second message is forwarded by the sender of the first signal.
  • the first signal includes a data packet generated by any sender of the first message; or, the first signal includes a data packet generated by the first sender of the first message.
  • the sender of the first message is a serving cell of the first node.
  • the sender of the first message is a base station.
  • the sender of the first message does not include a relay.
  • the sender of the first message is the generator of the first message.
  • the sender of the first message does not include other UEs.
  • the data packet generated by the sender of any one of the first messages is or includes a PDCP PDU.
  • the data packet generated by the sender of any one of the first messages is or includes a PDCP SDU.
  • the data packet generated by the sender of any one of the first messages is or includes an IP packet.
  • the data packet generated by the sender of any one of the first messages is or includes an RRC message.
  • the data packet generated by the sender of any one of the first messages is or includes a NAS message.
  • the data packet generated by the sender of any one of the first messages uses the SRB and/or DRB of the first node.
  • the data packet generated by the sender of any one of the first messages is or includes a system message.
  • the first signal includes first signaling, and the first signaling is used to indicate that the indirect path has been established.
  • the first signaling indicates that the sender of the first signal has established an RRC connection, and the sender of the first signal has established an RRC connection to confirm the indirect path It has been established.
  • the first signaling is a PC5-S message.
  • the first signaling is a PC5-RRC message.
  • the first signaling is a discovery message.
  • the first signaling indicates that the data of the first node has been successfully forwarded to the network.
  • the first signaling is a PDCP status report.
  • the first signaling is adaptation layer signaling.
  • the first signaling is MAC CE.
  • the first signaling is transmitted through a PSCCH.
  • the first signaling indicates that the first node can communicate with the network through the indirect path.
  • the first signaling explicitly indicates that the indirect path has been established.
  • the first signaling indicates that an acknowledgment from the network that the indirect path has been established has been received.
  • the first signaling indicates receipt of an acknowledgment sent by an RLC entity on the network side corresponding to the RLC bearer used to forward the data of the first node.
  • the first signaling indicates that the RLC status report sent by the RLC entity on the network side corresponding to the RLC bearer used to forward the data of the first node is received.
  • the first signaling indicates that the RLC entity located at the Uu interface of the sender of the first signal corresponding to the RLC bearer used to forward the data of the first node is received
  • the receive or send window has moved.
  • the first signaling indicates that the received RLC bearer of the Uu interface for forwarding the data of the first node has been established.
  • the first signaling is RRCReconfigurationSidelink.
  • the first signaling is RRCReconfigurationCompleteSidelink.
  • the first signaling is an SCCH-Message.
  • the generator of the first signaling is the sender of the first signal.
  • the generator of the first signaling is a relay of the first node.
  • the reception of the first signaling may confirm that the first node can use the indirect path to communicate with the network.
  • the first signal includes second signaling, and the second signaling is used to confirm that the direct link between the first node and the sender of the first signal has been successfully established;
  • the second signaling includes a relay service code;
  • the second signaling is a PC5-S message.
  • the second signaling indicates to PC5 that the establishment of the unicast link is completed.
  • the second signaling indicates to PC5 that the modification of the unicast link is completed.
  • the second signaling indicates that the establishment of the direct link is agreed.
  • the second signaling indicates that the direct link has been established.
  • the second signaling indicates that the direct link authentication is completed.
  • the second signaling is Direct link establishment accept.
  • the second signaling is Direct link modification accept.
  • the second signaling is a Direct link authentication response.
  • the relay service code is RSC (relay service code).
  • the relay service code is used for 5G ProSe U2N (UE-to-Network) relay discovery, and is used to indicate the connection service provided by the 5G ProSe U2N relay; in 5G ProSe U2N Relay and 5G ProSe U2N
  • the remote UE can judge whether it supports layer 2 or layer 3 relay from the RSC.
  • the first node sends a second signal on the secondary link;
  • the second signal includes third signaling, and the second signaling is used to confirm that the first node and the second A direct link between senders of a signal has been successfully established;
  • the second signaling includes a relay service code;
  • the third signaling is a PC5-S message; as a response to sending the second signal, the The first node stops the first timer.
  • the third signal occupies a PSSCH channel.
  • the third signal occupies a PSCCH channel.
  • the third signaling indicates to PC5 that the establishment of the unicast link is completed.
  • the third signaling indicates to PC5 that the modification of the unicast link is completed.
  • the third signaling indicates that the establishment of the direct link is agreed.
  • the third signaling indicates that the direct link has been established.
  • the third signaling indicates that the direct link authentication is completed.
  • the third signaling is Direct link establishment accept.
  • the third signaling is Direct link modification accept.
  • the third signaling is Direct link authentication response.
  • the relay service code is RSC (relay service code).
  • the relay service code is used for 5G ProSe U2N (UE-to-Network) relay discovery, and is used to indicate the connection service provided by the 5G ProSe U2N relay; in 5G ProSe U2N Relay and 5G ProSe U2N
  • the remote UE can judge whether it supports layer 2 or layer 3 relay from the RSC.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG. 2 .
  • Attached Figure 2 illustrates the V2X communication architecture under the system architecture of 5G NR (New Radio, new air interface), LTE (Long-Term Evolution, long-term evolution) and LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution).
  • the 5G NR or LTE network architecture may be referred to as 5GS (5G System)/EPS (Evolved Packet System, Evolved Packet System) or some other suitable term.
  • the V2X communication architecture of Embodiment 2 includes UE (User Equipment, user equipment) 201, UE 241, NG-RAN (next generation radio access network) 202, 5GC (5G Core Network, 5G core network)/EPC (Evolved Packet Core, Evolved packet core) 210, HSS (Home Subscriber Server, home subscriber server)/UDM (Unified Data Management, unified data management) 220, ProSe function 250 and ProSe application server 230.
  • the V2X communication architecture can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204 .
  • the gNB 203 provides user and control plane protocol termination towards the UE 201 .
  • a gNB 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • a gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmitting Receiver Node) or some other suitable terminology.
  • the gNB203 provides an access point to the 5GC/EPC210 for the UE201.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management domain
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF 214 S-GW (Service Gateway, service gateway)/UPF (UserPlane Function, user plane function) 212, and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF 213.
  • MME/AMF/SMF211 is a control node that handles signaling between UE201 and 5GC/EPC210. In general, the MME/AMF/SMF 211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 connects to Internet service 230 .
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and specifically may include the Internet, the intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet-switched streaming services.
  • the ProSe function 250 is a logical function for network-related behaviors required by Proximity-based Service (ProSe, Proximity-based Service); including DPF (Direct Provisioning Function, direct supply function), direct discovery name management function (Direct Discovery Name Management Function), EPC-level Discovery ProSe Function (EPC-level Discovery ProSe Function), etc.
  • the ProSe application server 230 has functions such as storing EPC ProSe user IDs, mapping between application layer user IDs and EPC ProSe user IDs, and distributing ProSe-restricted code suffix pools.
  • the UE201 and the UE241 are connected through a PC5 reference point (Reference Point).
  • PC5 reference point Reference Point
  • the ProSe function 250 is respectively connected to the UE 201 and the UE 241 through a PC3 reference point.
  • the ProSe function 250 is connected to the ProSe application server 230 through the PC2 reference point.
  • the ProSe application server 230 is respectively connected to the ProSe application of the UE 201 and the ProSe application of the UE 241 through the PC1 reference point.
  • the first node in this application is UE201.
  • the second node in this application is gNB203.
  • the third node in this application is UE241.
  • the wireless link between the UE201 and the UE241 corresponds to a secondary link (Sidelink, SL) in this application.
  • SL secondary link
  • the radio link from the UE 201 to the NR Node B is an uplink.
  • the wireless link from NR Node B to UE 201 is downlink.
  • the wireless link from the UE241 to the NR Node B is an uplink.
  • the wireless link from NR Node B to UE 241 is downlink.
  • the UE 201 supports relay transmission.
  • the UE241 supports relay transmission.
  • the UE 201 is a vehicle including a car.
  • the UE 241 is a vehicle including a car.
  • the gNB203 is a macrocell (MarcoCellular) base station.
  • the gNB203 is a micro cell (Micro Cell) base station.
  • the gNB203 is a pico cell (PicoCell) base station.
  • the gNB203 is a flight platform device.
  • the gNB203 is a satellite device.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300.
  • FIG. 3 shows three layers for the first node (UE, gNB or satellite or aircraft in NTN) and the second Radio protocol architecture of a node (gNB, UE or satellite or aircraft in NTN), or control plane 300 between two UEs: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301 .
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first node and the second node and the two UEs through the PHY 301 .
  • L2 layer 305 includes MAC (Medium Access Control, Media Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers terminate at the second node.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides handoff support to a first node between a second node.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer packets, retransmission of lost packets, and reordering of packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg resource blocks) in a cell among the first nodes.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in the layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (that is, radio bearers) and using the RRC signal between the second node and the first node command to configure the lower layer.
  • the PC5-S (PC5 Signaling Protocol, PC5 signaling protocol) sublayer 307 is responsible for the processing of the signaling protocol of the PC5 interface.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer), the radio protocol architecture for the first node and the second node in the user plane 350 is for the physical layer 351, the L2 layer 355
  • the PDCP sublayer 354, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides for upper Layer packet header compression to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer) , to support business diversity.
  • the first node may have several upper layers above the L2 layer 355 . It also includes a network layer (eg IP layer) terminated at the P-GW on the network side and an application layer terminated at the other end of the connection (eg remote UE, server, etc.).
  • its control plane may also include an adaptation sublayer AP308, and its user plane may also include an adaptation sublayer AP358.
  • adaptation layer helps lower layers, such as the MAC layer, such as the RLC layer , to multiplex and/or differentiate data from multiple source UEs, and for UE-to-UE communications involving relay services, the adaptation sublayer may also not be included.
  • adaptation sublayers AP308 and AP358 can also be used as sublayers in PDCP304 and PDCP354 respectively.
  • the RRC306 can be used to process the RRC signaling of the Uu interface and the signaling of the PC5 interface.
  • the wireless protocol architecture in Fig. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Fig. 3 is applicable to the second node in this application.
  • the wireless protocol architecture in Fig. 3 is applicable to the third node in this application.
  • the first message in this application is generated in RRC306.
  • the second message in this application is generated in RRC306.
  • the third message in this application is generated in RRC306.
  • the first signal in this application is generated by PHY301 or MAC302 or RLC303 or RRC306 or PC5-S307.
  • the second signal in this application is generated by PHY301 or MAC302 or RLC303 or RRC306 or PC5-S307.
  • the first signaling in this application is generated by PHY301 or MAC302 or RLC303 or RRC306 or PC5-S307.
  • the second signaling in this application is generated at PC5-S307.
  • the third signaling in this application is generated at PC5-S307.
  • the first discovery message in this application is generated by PHY301 or MAC302 or RLC303 or RRC306 or PC5-S307.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application, as shown in FIG. 4 .
  • Fig. 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in an access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452 .
  • Second communications device 410 includes controller/processor 475 , memory 476 , receive processor 470 , transmit processor 416 , multi-antenna receive processor 472 , multi-antenna transmit processor 471 , transmitter/receiver 418 and antenna 420 .
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels. Multiplexing, and allocation of radio resources to said first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communication device 450 .
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 410, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)).
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes with a reference signal (e.g., pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel that carries a time-domain multi-carrier symbol stream. Then the multi-antenna transmit processor 471 performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into an RF stream, which is then provided to a different antenna 420 .
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives a signal via its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto an RF carrier and converts the RF stream to a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • Receive processor 456 and multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454 .
  • Receive processor 456 converts the baseband multi-carrier symbol stream after the receive analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered in the multi-antenna detection in the multi-antenna receiving processor 458.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456 and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the second communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 can be associated with memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium.
  • controller/processor 459 In transmission from said second communication device 410 to said second communication device 450, controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459 .
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements a header based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implementing L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communication device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is provided to different antennas 452 via the transmitter 454 after undergoing analog precoding/beamforming operations in the multi-antenna transmit processor 457 .
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into an RF symbol stream, and then provides it to the antenna 452 .
  • each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 can be associated with memory 476 that stores program codes and data.
  • Memory 476 may be referred to as a computer-readable medium.
  • controller/processor 475 In transmission from said first communication device 450 to said second communication device 410, controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression . Control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be compatible with the said at least one processor, said first communication device 450 means at least: receiving a first message, said first message being used to indicate switching from a direct path to an indirect path; starting a first timer; said second Expiration of a timer is used to trigger RRC re-establishment; receiving a first signal on the secondary link after said behavior starts a first timer and before said first timer expires; receiving said first signal as In response, stop the first timer; send a second message, and the second message is used to feed back the first message; wherein, the first message is transmitted through the direct path; the second message Transmission over the indirect path; the first message and the second message are RRC messages respectively; the second message is relayed by the sender of the first signal; the first message is used for the The above acts start the first timer.
  • the first communication device 450 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving a first A message, the first message is used to indicate switching from a direct path to a non-direct path; a first timer is started; expiration of the first timer is used to trigger RRC re-establishment; a first timing is started at the behavior After the timer and before the first timer expires, receive a first signal on the secondary link; in response to receiving the first signal, stop the first timer; send a second message, the second A message is used to feed back the first message; wherein, the first message is transmitted through the direct path; the second message is transmitted through the indirect path; the first message and the second message are respectively is an RRC message; said second message is relayed by the sender of said first signal; said first message is used for said action to start said first timer.
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be compatible with the at least one of the processors described above.
  • the second communication device 410 means at least: sending a first message, where the first message is used to indicate switching from a direct path to an indirect path; receiving a second message, where the second message is used to feed back the first A message; wherein the sender of said second message starts a first timer whose expiration is used to trigger RRC re-establishment after said act starts the first timer and at said second A first signal is received on the secondary link before a timer expires; the first signal is used to stop the first timer; the first message is transmitted via the direct path; the second message is transmitted via The indirect path transmission; the first message and the second message are RRC messages respectively; the second message is relayed by the sender of the first signal; the first message is used for the The behavior starts the first timer.
  • the second communication device 410 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending A first message, where the first message is used to indicate switching from a direct path to an indirect path; receiving a second message, where the second message is used to feed back the first message; wherein, the second message sender, starts a first timer whose expiration is used to trigger RRC re-establishment, on the secondary link after said behavior starts the first timer and before said first timer expires a first signal is received; the first signal is used to stop the first timer; the first message is transmitted via the direct path; the second message is transmitted via the indirect path; the first message and said second message are respectively RRC messages; said second message is relayed by the sender of said first signal; said first message is used for said action to start said first timer.
  • the first communication device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be compatible with the used together with the at least one processor, the first communication device 450 device at least: forwards a second message, the second message is used to feed back the first message; after the behavior starts the first timer and after Before the first timer expires, send a first signal on the secondary link; wherein, the sender of the second message starts the first timer, and the expiration of the first timer is used to trigger RRC re-establishment ; the first signal is used to stop the first timer; the first message is used to indicate switching from the direct path to the non-direct path; the first message is transmitted through the direct path; the second message transmitted through the indirect path; the first message and the second message are RRC messages respectively; the first message is used for the action to start the first timer.
  • the first communication device 450 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: forwarding the first Two messages, the second message being used to feed back the first message; sending the first signal on the secondary link after the behavior starts the first timer and before the first timer expires; wherein , the sender of the second message starts a first timer, and the expiration of the first timer is used to trigger RRC reestablishment; the first signal is used to stop the first timer; the first message is used to indicate switching from a direct path to an indirect path; the first message is transmitted over the direct path; the second message is transmitted over the indirect path; the first message and the second message are respectively is an RRC message; the first message is used for the action to start the first timer.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 450 corresponds to the second node in this application.
  • the first communication device 450 corresponds to the third node in this application.
  • the first communication device 450 is a UE.
  • the first communication device 450 is a vehicle-mounted terminal.
  • the first communication device 450 is a relay.
  • the second communication device 410 is a base station.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used herein to receive the first message.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used herein to receive the first signal.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used herein to receive the second signal.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used in this application to receive the first discovery message.
  • transmitter 456 (including antenna 460), transmit processor 455 and controller/processor 490 are used in this application to transmit the second message.
  • the transmitter 456 (including the antenna 460), the transmit processor 455 and the controller/processor 490 are used in this application to transmit the third message.
  • the transmitter 416 (including the antenna 420), the transmit processor 412 and the controller/processor 440 are used in this application to transmit the first message.
  • receiver 416 (including antenna 420), receive processor 412 and controller/processor 440 are used herein to receive the second message.
  • receiver 416 (including antenna 420), receive processor 412 and controller/processor 440 are used in this application to receive the third message.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used herein to receive the first message.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used herein to receive the second message.
  • transmitter 456 (including antenna 460), transmit processor 455 and controller/processor 490 are used in this application to transmit the first message.
  • transmitter 456 (including antenna 460), transmit processor 455 and controller/processor 490 are used in this application to transmit the second message.
  • the transmitter 456 (including the antenna 460), the transmit processor 455 and the controller/processor 490 are used in this application to transmit the first signal.
  • the transmitter 456 (including the antenna 460), the transmit processor 455 and the controller/processor 490 are used in this application to transmit the second signal.
  • the transmitter 456 (including the antenna 460), the transmit processor 455 and the controller/processor 490 are used in this application to send the first discovery message.
  • Embodiment 5 illustrates a flow chart of wireless signal transmission according to an embodiment of the present application, as shown in FIG. 5 .
  • U01 corresponds to the first node of this application
  • U02 corresponds to the second node of this application
  • the third node of U03 corresponds to the third node of this application. It is particularly noted that the order in this example does not limit the The sequence of signal transmission and the sequence of implementation, where the steps within F51 are optional.
  • the first discovery message is received in step S5101; the first message is received in step S5102; the first signal is received in step S5103; the second message is sent in step S5104.
  • step S5301 For the third node U03 , send the first discovery message in step S5301; send the first signal in step S5302; forward the second message in step S5303.
  • the first message is used to indicate switching from the direct path to the non-direct path; the first node U01 starts a first timer; the expiration of the first timer is used to trigger RRC reestablishment ; said first node U01, receiving a first signal on a secondary link after said behavior starts a first timer and before said first timer expires, in response to receiving said first signal, stops The first timer; the second message is used to feed back the first message; the first message is transmitted through the direct path; the second message is transmitted through the indirect path; the second A message and said second message are respectively RRC messages; said second message is relayed by the sender of said first signal; said first message is used for said action to start said first timer.
  • the first node U01 is a U2N relay UE.
  • the first node U01 is a U2N remote UE.
  • the first node U01 is an NR ProSe U2N remote UE.
  • the third node U03 is a UE.
  • the third node U03 is a U2N relay of the first node U01.
  • the third node U03 is a layer 2 relay of the first node U01.
  • the third node U03 is an NR ProSe U2N relay.
  • the second node U02 is a serving cell of the first node U01.
  • the second node U02 is the primary cell of the first node U01.
  • the second node U02 is the primary cell group of the first node U01.
  • the second node U02 is a base station corresponding to or belonging to the primary cell of the first node U01.
  • the second node U02 is a base station corresponding to or belonging to a primary cell of the second node U02.
  • the second node U02 is not a serving cell of the first node U01.
  • the second node U02 is a serving cell of the third node U03.
  • the second node U02 is the primary cell of the third node U03.
  • the second node U02 is the primary cell group of the third node U03.
  • the second node U02 is a base station corresponding to or belonging to the primary cell of the third node U03.
  • the first node U01 and the third node U03 have the same primary cell (PCell).
  • the cell where the first node U01 resides is or belongs to the second node U02.
  • the cell where the third node U03 resides is or belongs to the second node U02.
  • the home cell of the first node U01 is or belongs to the second node U02.
  • the home cell of the third node U03 is or belongs to the second node U02.
  • an RRC connection exists between the first node U01 and the third node U03.
  • an RRC connection exists between the third node U03 and the second node U02.
  • an RRC connection exists between the first node U01 and the second node U02.
  • the third node U03 applies the system information of the second node U02.
  • the first node U01 applies the system message forwarded by the third node U03.
  • the first node U01 communicates with the second node U02 through a direct path at least before receiving the first message.
  • the first node U01 communicates with the third node U03 through a secondary link.
  • the first node U01 establishes a direct link with the third node U03.
  • the first discovery message includes a discovery message.
  • the first discovery message is a NAS layer message.
  • the first discovery message occupies secondary link resources.
  • the first discovery message is sent on the secondary link.
  • the name of the first discovery message includes discovery.
  • the first cell identity is NCI.
  • the first cell identity is the ID of the second node U02.
  • the first cell identity is an ID of a cell of the second node U02.
  • the sender of the first message is the second node U02.
  • the sender of the first signal is the third node U03.
  • the first link layer identity is a link layer identity.
  • the first link layer identity is a layer-2 ID.
  • the first discovery message includes the first link layer identity.
  • the header of the MAC sub-PDU carrying the first discovery message includes the 8 most significant bits of the first link layer identity, the first link layer identity includes 24 bits, and carries the The header of the MAC sub-PDU of the first discovery message does not include bits other than the eight most significant bits of the first link layer identity.
  • the header of the MAC sub-PDU carrying the first discovery message includes the 16 most significant bits of the first link layer identity, the first link layer identity includes 24 bits, and carries the The header of the MAC sub-PDU of the first discovery message does not include bits other than the 16 most significant bits of the first link layer identity.
  • the header of the MAC sub-PDU carrying the second message includes the 8 most significant bits of the first link layer identity
  • the first link layer identity includes 24 bits
  • the header of the MAC sub-PDU of the second message does not include bits other than the 8 most significant bits of the first link layer identity.
  • the MAC sub-PDU carrying the second message is sent through a secondary link.
  • the first reference signal resource includes SSB.
  • the first reference signal resource includes a CSI-RS.
  • the first reference signal resource includes SSB-index.
  • the first reference signal resource includes CSI-RS-index.
  • the first reference signal resource is indicated by the second node U02.
  • the first reference signal resource is indicated by the first message.
  • the first reference signal resource is a reference signal resource of the second node U02.
  • the meaning of the sentence evaluating the first measurement result according to the first reference signal resource includes measuring the first reference signal resource, and the measurement result on the first reference signal resource is the first measurement result.
  • the meaning of the sentence evaluating the first measurement result according to the first reference signal resource includes performing measurement on the first reference signal resource, and the measurement result on the first reference signal resource is the first measurement result.
  • the first measurement result is RSRP (Reference Signal Receiving Power, reference signal receiving power).
  • the first measurement result is RSRQ (Reference Signal Receiving Quality, reference signal receiving quality).
  • the first measurement result is RSSI (Received Signal Strength Indication, received signal strength indication).
  • the first measurement result is SNR (SIGNAL-NOISE RATIO, signal-to-noise ratio).
  • the sender of the first discovery message is the sender of the first signal.
  • the secondary link signal sent by the sender of the first discovery message is or includes a discovery message.
  • the secondary link signal sent by the sender of the first discovery message is or includes a reference signal.
  • the meaning of evaluating the second measurement result according to the secondary link signal sent by the sender of the first discovery message includes measuring the secondary link signal sent by the sender of the first discovery message to obtain Obtain the second measurement result.
  • the meaning of evaluating the second measurement result according to the secondary link signal sent by the sender of the first discovery message includes measuring the first discovery message or the physical space occupied by the first discovery message resources or the reference signal included in the physical resource block occupied by the first discovery message to obtain the second measurement result.
  • the meaning of evaluating the second measurement result according to the secondary link signal sent by the sender of the first discovery message includes measuring the discovery message sent by the sender of the first discovery message to obtain the Describe the second measurement result.
  • the meaning of evaluating the second measurement result according to the secondary link signal sent by the sender of the first discovery message includes measuring the signal sent by the sender of the first discovery message on the secondary link a reference signal to obtain the second measurement result.
  • the meaning of evaluating the second measurement result according to the secondary link signal sent by the sender of the first discovery message includes measuring that the sender of the first discovery message is on ⁇ PBSCH, PSSCH, PSCCH ⁇ signals sent on at least one of them to obtain the second measurement result.
  • the second measurement result is SL-RSRP (Sidelink Reference Signal Receiving Power, sidelink reference signal receiving power).
  • the second measurement result is SD-RSRP.
  • the second measurement result is the RSRP measured according to the discovery message.
  • the second measurement result is PSBCH RSRP (PSBCH reference signal received power).
  • the second measurement result is PSSCH-RSRP (PSSCH reference signal received power).
  • the second measurement result is PSCCH-RSRP (PSCCH reference signal received power).
  • the second measurement result is SL RSSI (Sidelink received signal strength indicator).
  • the second measurement result is SL CR (Sidelink channel occupancy ratio).
  • the second measurement result is SLCBR (Sidelink channel busy ratio).
  • the third message is or includes a measurement report.
  • the third message is an RRC message.
  • the third message is or includes MCGfailureinformation.
  • the third message is or includes SCG failure information.
  • the third message is or includes UEAssistanceInformation.
  • the transmission channel occupied by the third message is UL-SCH.
  • the third message is not forwarded through the third node U03.
  • the third message is carried by an SRB.
  • the third message includes the first link layer identity.
  • the third message includes an index of the first link layer identity.
  • the first message indicates condition-based switching from the direct path to the non-direct path.
  • condition-based switching from the direct path to the non-direct path refers to conditional reconfiguration for switching from the direct path to the non-direct path.
  • condition-based switching from the direct path to the non-direct path refers to the RLC bearer that involves reconfiguration and radio bearer mapping, but does not involve changing the conditional reconfiguration of the existing radio bearer. configure.
  • condition-based switching from the direct path to the non-direct path refers to radio bearer reconfiguration.
  • condition-based switching from the direct path to the non-direct path refers to RLC bearer reconfiguration.
  • condition-based switching from direct path to indirect path does not change SpCellConfig.
  • the serving cell of the first node is still the second node U02.
  • the second node U02 indicates the first threshold and the second threshold.
  • the first message indicates the first threshold and the second threshold.
  • the first node U01 does not immediately perform switching from the direct path to the indirect path after receiving the first message, but waits for the first condition to be met before executing the direct path switch to the non-direct path.
  • step S5303 forwarding the second message includes: receiving the first MAC PDU bearing the second message; extracting the first RLC PDU from the first MAC PDU, and extracting the first RLC PDU from the first RLC PDU An adaptation layer PDU, determining according to the header of the first adaptation layer PDU that the data carried by the first adaptation layer PDU is for an RLC channel of a Uu interface; the first adaptation layer PDU carries the first A PDCP PDU, the first PDCP PDU includes the second message; encapsulate the first PDCP PDU and send it to the second node U02 through the Uu interface.
  • step S5303 of forwarding the second message includes: receiving a PDU carrying the second message on the secondary link, and sending the PDU carrying the second message to the second node U02.
  • the PDU carrying the second message includes a PDCP PDU.
  • the action of sending the PDU carrying the second message to the second node U02 includes: sending the PDU carrying the second message on a PUSCH channel PDUs.
  • the action of sending the PDU carrying the second message to the second node U02 includes: encapsulating the PDU carrying the second message in an RLC PDU .
  • the action of sending the PDU carrying the second message to the second node U02 includes: encapsulating the PDU carrying the second message in an adaptation layer in the PDU.
  • the action of sending the PDU carrying the second message to the second node U02 includes: encapsulating the PDU carrying the second message in a MAC PDU .
  • the action of sending the PDU carrying the second message to the second node U02 includes: encapsulating the PDU carrying the second message at the PDCP layer and In the PDU of the protocol layer between the RLC layer.
  • step S5303 forwarding the second message includes: relaying the second message.
  • the first node U01 during the running of the first timer, maintains the evaluation of the conditional reconfiguration (conditional reconfiguration) of CHO, and stops the evaluation of the conditional handover from the direct path to the non-direct path .
  • the meaning of the sentence maintaining the evaluation of conditional reconfiguration for CHO includes: the operation of the first timer does not affect the evaluation of conditional reconfiguration for CHO.
  • the meaning of the sentence maintaining the conditional reconfiguration evaluation for CHO includes: the running of the first timer does not affect the evaluation of whether the conditional reconfiguration for CHO is satisfied.
  • the meaning of the sentence maintaining the conditional reconfiguration evaluation for CHO includes: during the operation of the first timer, do not stop the already started evaluation of whether the conditional reconfiguration for CHO is satisfied.
  • the meaning of the sentence maintaining the conditional reconfiguration evaluation for CHO includes: during the operation of the first timer, the evaluation of whether the conditional reconfiguration for CHO is satisfied may start.
  • the meaning of the sentence maintaining the conditional reconfiguration evaluation for the CHO includes: during the running of the first timer, re-evaluation for the conditional reconfiguration of the CHO may be performed.
  • the meaning of the sentence maintaining the evaluation (evaluation) for conditional reconfiguration of CHO includes: evaluating whether the condition for conditional reconfiguration of CHO is satisfied.
  • the meaning of the sentence stopping the evaluation of the conditional switching from the direct path to the non-direct path includes: the running of the first timer triggers the termination of the evaluation of the conditional switching from the direct path to the non-direct path.
  • the meaning of the sentence stopping the evaluation of the conditional switching from the direct path to the non-direct path includes: the evaluation of the conditional switching from the direct path to the non-direct path is not performed during the operation of the first timer .
  • the meaning of the sentence stop evaluation of conditional switching from direct path to non-direct path includes: the operation of said first timer causes the termination of ongoing and outstanding switching from direct path to non-direct path Evaluation of conditional toggles.
  • the meaning of the sentence stop evaluating the conditional switching from the direct path to the non-direct path includes: evaluating whether the condition for the conditional switching from the direct path to the non-direct path is satisfied.
  • the first message indicates a condition of conditional switching from the direct path to the non-direct path.
  • the first message indicates conditional reconfiguration for CHO.
  • conditional switch from direct path to non-direct path is a conditional reconfiguration from direct path to non-direct path.
  • the advantage of the above method is that during the running of the first timer, the UE can still perform CHO type handover, which is beneficial to ensure service continuity of the UE.
  • the advantage of the above method is that during the running of the first timer, the UE stops the conditional switching from the direct path to the non-direct path, which is beneficial to reduce the complexity, ensure the consistency of the UE and the network behavior, and avoid cause unnecessary confusion.
  • the sentence that the first message is used to indicate that when the first condition is met, the meaning of switching from the direct path to the indirect path is: the first condition is met and used to trigger the first node Switch from direct path to indirect path.
  • the sentence that the first message is used to indicate that when the first condition is met, the meaning of switching from the direct path to the indirect path is: as a response to the first condition being met, the first node Switch from direct path to indirect path.
  • the sentence that the first message is used to indicate that when the first condition is met, the meaning of switching from the direct path to the indirect path is: when the first condition is met, the first node executes A configuration related to transmission using an indirect path associated with the first condition.
  • Embodiment 6 illustrates a flow chart of wireless signal transmission according to an embodiment of the present application, as shown in FIG. 6 .
  • U11 corresponds to the first node of this application
  • U12 corresponds to the second node of this application
  • the third node of U13 corresponds to the third node of this application. It is particularly noted that the order in this example does not limit the The order of signal transmission and the order of implementation.
  • the first discovery message is received in step S6101; the third message is sent in step S6102; the first message is received in step S6103; the RRC reestablishment request message is sent in step S6104.
  • the third message is received in step S6201; the first message is sent in step S6202; and the RRC reestablishment request message is received in step S6203.
  • Embodiment 6 shows the RRC re-establishment process; Embodiment 6 is based on Embodiment 5, and the content required but not described in Embodiment 6 can refer to Embodiment 5.
  • the RRC reconstruction includes: selecting a third node, the third node belongs to a first candidate relay list, and the first candidate relay list is related to switching from a direct path to an indirect path; through the The third node uses the indirect path to transmit an RRC reestablishment request message; as a response to applying the first message, deletes the first candidate relay list;
  • a first candidate cell list is retained, and the first candidate cell list is related to conditional reconfiguration; the first candidate cell list includes at least one cell.
  • the first discovery message includes a relay service code.
  • the relay service code included in the first discovery message indicates that a relay service is supported.
  • the relay service code included in the first discovery message indicates that an L2 relay service is supported.
  • the first discovery message includes the cell ID of the second node U12.
  • the first discovery message includes the cell NCI of the second node U12.
  • the second node U12 is a serving cell of the first node U11.
  • the second node U12 is a serving cell of the third node U13.
  • the third message is sent after the first discovery message is received.
  • the reception of the first discovery message triggers the sending of the third message.
  • the first message indicates conditional reconfiguration.
  • the nodes included in the first relay candidate list are all UEs.
  • the nodes included in the first candidate relay list are all relays.
  • the first message indicates conditional reconfiguration for CHO (conditional handover, conditional handover).
  • conditional reconfiguration for CHO indicated by the first message includes reconfigurationWithSync.
  • the candidate cells included in the conditional reconfiguration for CHO are saved in the first candidate cell list.
  • all candidate cells included in the conditional reconfiguration for CHO constitute the first candidate cell list.
  • the first candidate cell list is VarConditionalReconfig.
  • the first candidate cell list is stored in VarConditionalReconfig.
  • conditional reconfiguration for CHO indicated by the first message includes SpCellConfig.
  • conditional reconfiguration indicated by the first message includes reconfigurationWithSync.
  • the first message indicates conditional reconfiguration for switching from direct path to non-direct path.
  • conditional reconfiguration for switching from the direct path to the non-direct path indicated by the first message does not include SpCellConfig.
  • conditional reconfiguration indicated by the first message for direct path to non-direct path switching does not include reconfigurationWithSync.
  • the candidate relay nodes indicated by the first message for switching from the direct path to the non-direct path are stored in the first candidate relay list.
  • the candidate relay nodes indicated by the first message for switching from the direct path to the non-direct path are included in the first candidate relay list.
  • the first candidate relay list is VarConditionalReconfig.
  • the first candidate relay list is stored in VarConditionalReconfig.
  • the first candidate relay list is stored in a state variable other than VarConditionalReconfig.
  • the first candidate relay list includes link layer identities of candidate relays.
  • the first candidate relay list includes the first link-layer identity.
  • the first message notification indicates conditional reconfiguration for CHO and conditional reconfiguration for switching from direct path to non-direct path.
  • conditional reconfiguration for CHO and the conditional reconfiguration for direct path to non-direct path switching may have the same name or different names.
  • a radio link failure occurs after the first node U11 receives the first message.
  • the RRC reestablishment is triggered after the first node U11 receives the first message.
  • the expiration of the first timer triggers the RRC re-establishment.
  • the RRC reestablishment includes performing relay selection, and the relay node selected by the first node U11 in the relay selection process is the third node U13.
  • the RRC reestablishment includes performing cell selection, and the node selected by the first node U11 in the cell selection process is the third node U13.
  • the RRC reestablishment includes performing cell and relay selection, and the node selected by the first node U11 in the cell and relay selection process is the third node U13.
  • the meaning of the phrase that the first message is applied includes: applying the conditional reconfiguration triggered in the first message.
  • the meaning of the phrase that the first message is applied includes: applying the configuration in the first message that needs to be applied because a condition is met.
  • the meaning of the phrase "the first message is applied” includes: applying the configuration related to the third node U13 in the first message.
  • the meaning of the phrase first message being applied includes: applying the configuration related to the third node U13 being selected as a relay in the first message.
  • the meaning of the phrase "the first message is applied” includes: applying the configuration related to the indirect path transmission related to the third node U13 in the first message.
  • the meaning of the phrase "the first message is applied” includes: applying the configuration related to the indirect path transmission performed by the third node U13 in the first message.
  • the RRC reestablishment request message is RRCReestablishmentRequest.
  • the RRC reestablishment request message is RRCConnectionReestablishmentRequest.
  • Embodiment 7 illustrates a schematic diagram of a protocol stack for relay communication according to an embodiment of the present application, as shown in FIG. 7 .
  • the first protocol layer is respectively terminated at the UE and the relay node, and the relay node and the gNB node.
  • the UE in Figure 7 corresponds to the first node in this application
  • the relay in Figure 7 corresponds to the third node in this application
  • the gNB in Figure 7 corresponds to the Third node
  • Figure 7 shows a layer 2 relay.
  • Embodiment 7 is based on Embodiment 3, and further shows the protocol stack and interface related to the relay node; in Embodiment 7, NAS is the non-access stratum, and Uu-RRC is the RRC of the Uu interface Protocol, Uu-PDCP is the PDCP layer of the Uu interface; Uu-RLC is the RLC layer of the Uu interface, Uu-MAC is the MAC layer of the Uu interface, Uu-PHY is the physical layer of the Uu interface; PC5-RLC is the RLC of the PC5 interface PC5-MAC is the MAC layer of the PC5 interface; PC5-PHY is the physical layer of the PC5 interface; N2Stack is the protocol stack of the N2 interface, and the N2 interface is the interface between the gNB and the core network; Uu The first protocol layer is the Uu interface The first protocol layer of the PC5-second protocol layer is the second protocol layer of the PC5 interface.
  • the prefix Uu- in FIG. 7 indicates the protocol layer of the Uu interface.
  • the prefix PC5- in FIG. 7 indicates the protocol layer of the PC5 interface.
  • the communication interface between the UE and the gNB in FIG. 7 is a Uu interface.
  • the communication interface between the relay and the gNB in Fig. 7 is a Uu interface.
  • the communication interface between the UE and the relay in FIG. 7 is a PC5 interface.
  • the first protocol layer is an adaptation layer.
  • the second protocol layer is an adaptation layer.
  • the first protocol layer is a protocol layer between the PDCP layer and the RLC layer.
  • the second protocol layer is a protocol layer between the PDCP layer and the RLC layer.
  • the Uu first protocol layer is used to multiplex data of multiple radio bearers on the same Uu-RLC bearer/entity.
  • the PC5-second protocol layer is used to multiplex data of multiple radio bearers on the same PC5-RLC bearer/entity.
  • the PC5-second protocol layer is used for PC5-RLC bearer/entity mapping.
  • the first protocol layer is used to associate one or more PC5-RLC entities with one Uu-RLC entity.
  • the second protocol layer is used to associate one or more PC5-RLC entities with one Uu-RLC entity.
  • the PC5 second protocol layer in FIG. 7 is the adaptation layer of the PC5 interface.
  • the Uu first protocol layer in FIG. 7 is the adaptation layer of the Uu interface.
  • the peer PDCP entity of the PDCP entity of the UE in FIG. 7 is located in the gNB.
  • the peer RRC entity of the RRC entity of the UE in FIG. 7 is located in the gNB.
  • the first signal is a signal between the UE and the relay, generated in PC5-PHY or PC5-MAC or PC5-RLC or PC5-second protocol layer or PC5-RRC or PC5 -S.
  • the second signal is a signal between the UE and the relay, generated in PC5-PHY or PC5-MAC or PC5-RLC or PC5-second protocol layer or PC5-RRC or PC5 -S.
  • the first message is generated by the gNB, and the first message is a Uu-RRC message.
  • the second message is generated by the first node, and the second message is a Uu-RRC message.
  • the second message is transparently transmitted to the relay.
  • the UE in FIG. 7 is a U2N remote UE.
  • the relay in FIG. 7 is a U2N relay UE.
  • the direct path refers to a direct communication path between the UE and the gNB without forwarding through the relay.
  • the UE when using the direct path transmission, the UE does not use the PC5-second protocol layer, does not use the PC5-RLC layer, does not use the PC5-MAC, does not use the PC5-PHY, and does not use the Uu-PDCP layer below are Uu-RLC, Uu-MAC, Uu-PHY.
  • switching from the direct path to the non-direct path includes at least adding or modifying entities corresponding to protocol layers below the Uu-PDCP layer.
  • the entity corresponding to the protocol layer below the Uu-PDCP layer is at least one of the entities corresponding to the ⁇ Uu-RLC, Uu-MAC, Uu-PHY ⁇ layer.
  • switching from the direct path to the non-direct path includes connecting the protocol entity corresponding to the Uu-PDCP protocol layer and the at least adding or modifying the protocol entity corresponding to the protocol layer below the Uu-PDCP layer associated with the above entity.
  • switching from the direct path to the non-direct path includes at least sending a PDCP status report.
  • the indirect path refers to a communication path between the UE and the gNB forwarded by the relay.
  • the indirect path transmission needs to at least use the secondary link or the PC5 interface for transmission.
  • Fig. 7 shows an implementation manner of indirect path transmission.
  • the Uu first protocol layer in the relay bears the SDU of the PC5-second protocol layer in the relay.
  • the PC5-second protocol layer in the relay bears the SDU of the Uu first protocol layer in the relay.
  • the first signal is generated by the relay, and the first signal is transmitted through the PC5 interface.
  • Embodiment 8 illustrates a schematic diagram of path switching according to an embodiment of the present application, as shown in FIG. 8 .
  • the first node in Embodiment 8 corresponds to the first node of the present application; the second node in Embodiment 8 corresponds to the second node of the present application; the third node in Embodiment 8 corresponds to the described The third node; the fourth node in Embodiment 8 is a cell or a base station or a cell group other than the second node.
  • the arrow with "path switching" in Fig. 8 indicates that the first node is switched from direct path transmission to non-direct path transmission, wherein the direct path is the direct path between the first node and the second node The communication link; the indirect path is the link through which the first node communicates with the fourth node through the third node; it should be noted that although the fourth node and the fourth node in Fig. 8 The second node mentioned above is different, but the method proposed in this application is also used in the scenario where the fourth node is the same node as the second node; the direct path transmission and the indirect path transmission refer to the between the first node and the network.
  • the configuration of the indirect path communication through the third node is part of conditional reconfiguration of CHO for the fourth node.
  • the first message indicates a first conditional reconfiguration for CHO for the fourth node, where the first conditional reconfiguration includes a configuration for indirect path transmission through the third node.
  • the CHO refers to conditional handover. After the first node completes the conditional handover, the PCell of the first node changes from the second node to the first Four nodes.
  • the first node when performing the first conditional reconfiguration, starts a timer T304, and the first signal is used to stop the timer T304.
  • the first node when performing the first conditional reconfiguration, only starts the first timer, but does not start the timer T304.
  • the first node when performing the first conditional reconfiguration, starts both the timer T304 and the first timer, and the stop of the first timer triggers The timer T304 is stopped.
  • the PCI of the second node is different from that of the fourth node, and the second node and the fourth node belong to the same DU or are managed by the same DU.
  • the second node and the fourth node belong to the same cell group.
  • the second node and the fourth node belong to the MCG and the SCG of the first node respectively.
  • the first node maintains a first candidate cell list for CHO, and a first candidate relay list for condition-based switching from a direct path to an indirect path;
  • the first candidate cell list includes candidate cells, the first candidate relay list includes candidate relays for condition-based path switching;
  • the first message is used to indicate the first candidate cell list and the first candidate relay list,
  • the first node executes RRC re-establishment.
  • the RRC reconstruction includes selecting a first cell, the first cell belongs to the first candidate cell list, and the first node applies RRCReconfiguration for the first cell, as The behavior applies a response to the RRCReconfiguration of the first cell, and the first node deletes the first candidate cell list and deletes a relay of the first cell whose PCell is the first cell in the first candidate relay list.
  • the RRC re-establishment includes selecting a first relay, the first relay belongs to the first candidate relay list, and the first node applies configuration of the first cell, as a response to the configuration of the behavior application for the first cell, the first node deletes the first candidate relay list and deletes the first relay in the first candidate cell list PCell.
  • the path switching refers to stop using the direct path transmission and start using the indirect path transmission, if the change of SpCell is not involved in the path switching process, then the path switching is different from the traditional The inter-cell handover (handover) is not the same; if the change of SpCell is involved in the process of the path handover, the path handover can be performed in the traditional sense of the inter-cell handover process; in short, the traditional sense of the inter-cell handover No path switching is involved.
  • Embodiment 9 illustrates a schematic diagram in which the first message is used for the behavior to start the first timer according to an embodiment of the present application, as shown in FIG. 9 .
  • the first message is executed or applied immediately after being received, and the execution or application of the first message triggers the start of the first timer.
  • the reception of the first message triggers the start of the first counter.
  • the application of the first message triggers to start the first counter.
  • execution of the first message triggers starting of the first counter.
  • the first message includes configuration information of the first timer.
  • the configuration information of the first timer includes an expiration time of the first timer.
  • the configuration information of the first timer includes the time of the first timer.
  • execution of the configuration included in the first message that is executed when a certain condition is met triggers the first timer.
  • the first timer is triggered by the application of the configuration that is applied when a certain condition is met included in the first message.
  • conditional reconfiguration when the conditional reconfiguration is performed, at least part of the configurations for the conditional reconfiguration included in the first message is triggered by the application to start the first timer.
  • the execution of the configuration associated with the first condition in the first message is used to trigger the start of the first timer.
  • the configuration associated with the first condition is a configuration triggered to be applied or executed when the first condition is met.
  • the configuration associated with the first condition is one or several fields in the first message.
  • the configuration associated with the first condition is one or several information elements in the first message.
  • the communication mode between the first node and the network is or switched to indirect path transmission.
  • the first node in response to the configuration associated with the first condition in the first message being performed, starts the first timer.
  • the start of the first timer is part of the execution of the configuration associated with the first condition in the first message.
  • Embodiment 10 illustrates a structural block diagram of a processing device used in a first node according to an embodiment of the present application; as shown in FIG. 10 .
  • a processing device 1000 in a first node includes a first receiver 1001 and a first transmitter 1002 .
  • Example 10
  • the first receiver 1001 receives a first message, the first message is used to indicate switching from a direct path to a non-direct path; a first timer is started; expiration of the first timer is used to trigger RRC reestablishment;
  • said first receiver 1001 after said action starts a first timer and before said first timer expires, receives a first signal on a secondary link; in response to receiving said first signal, stops said first timer;
  • the first transmitter 1002 sends a second message, where the second message is used to feed back the first message;
  • the first message is transmitted through the direct path; the second message is transmitted through the indirect path; the first message and the second message are RRC messages respectively; the second message is transmitted by the sender of said first signal; said first message being used for said action to start said first timer.
  • the first signal includes a data packet generated by any sender of the first message.
  • the first signal includes first signaling, and the first signaling is used to indicate that the indirect path has been established.
  • the first signal includes second signaling, and the second signaling is used to confirm that the direct link between the first node and the sender of the first signal has been successfully established;
  • the second signaling includes a relay service code;
  • the second signaling is a PC5-S message.
  • the first receiver 1001 receives a first discovery message, where the first discovery message includes a first cell identity, and the first cell identity is a cell identity of a sender of the first message;
  • the first discovery message includes the first link layer identity of the sender of the first signal; evaluates the first measurement result according to the first reference signal resource; road signal evaluation second measurement result;
  • the first transmitter 1002 sends a third message via the direct path, the third message being used to indicate the first link layer identity;
  • the first message is used to indicate that when the first condition is met, switch from the direct path to the indirect path; the first condition includes that the first measurement result is lower than a first threshold and the second measurement The result is higher than a second threshold; the first message includes the first link layer identity; the first condition is met; the configuration associated with the first condition in the first message is executed and used The first timer is started on a trigger.
  • the RRC reconstruction includes: selecting a third node, the third node belongs to a first candidate relay list, and the first candidate relay list is related to switching from a direct path to an indirect path; through the The third node uses the indirect path to transmit an RRC reestablishment request message; as a response to applying the first message, deletes the first candidate relay list;
  • a first candidate cell list is retained, and the first candidate cell list is related to conditional reconfiguration; the first candidate cell list includes at least one cell.
  • the first receiver 1001 maintains the conditional reconfiguration evaluation for the CHO while the first timer is running, and stops the evaluation for the conditional handover from the direct path to the indirect path.
  • the first receiver 1001 receives a first message, and the first message is used to indicate switching from a direct path to an indirect path via a third node; according to whether a direct path is established with the third node the link determines whether to start the first timer;
  • the first transmitter 1002 sends a second message, where the second message is used to feed back the first message;
  • the first message is transmitted through the direct path; the second message is transmitted through the indirect path via the third node; the first message and the second message are RRC messages respectively;
  • the second message is relayed by the third node;
  • the first message includes a first link layer identity, and the first link layer identity includes 24 bits;
  • the first link layer identity is the The identity of the third node;
  • the meaning of the sentence determining whether to start the first timer according to whether a direct link has been established with the third node includes:
  • a relay service code is used to establish the direct link; the phrase via the third node means that the third node is a relay on the indirect path.
  • the expiration of the first timer is used to trigger RRC reestablishment.
  • the first node is a user equipment (UE).
  • UE user equipment
  • the first node is a terminal supporting a large delay difference.
  • the first node is a terminal supporting NTN.
  • the first node is an aircraft.
  • the first node is a vehicle-mounted terminal.
  • the first node is a relay.
  • the first node is a ship.
  • the first node is an Internet of Things terminal.
  • the first node is a terminal of the Industrial Internet of Things.
  • the first node is a device supporting low-latency high-reliability transmission.
  • the first node is a secondary link communication node.
  • the first receiver 1001 includes the antenna 452 in Embodiment 4, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, or the data source At least one of 467.
  • the first transmitter 1002 includes the antenna 452 in Embodiment 4, the transmitter 454, the transmission processor 468, the multi-antenna transmission processor 457, the controller/processor 459, the memory 460, or the data source At least one of 467.
  • Embodiment 11 illustrates a structural block diagram of a processing device used in a second node according to an embodiment of the present application; as shown in FIG. 11 .
  • the processing device 1100 in the second node includes a second transmitter 1101 and a second receiver 1102 .
  • Example 11
  • the second transmitter 1101 sends a first message, where the first message is used to indicate switching from a direct path to an indirect path;
  • the second receiver 1102 receives a second message, where the second message is used to feed back the first message;
  • the sender of the second message starts a first timer, and the expiration of the first timer is used to trigger RRC re-establishment, after the behavior starts the first timer and after the first timer
  • a first signal is received on the secondary link; the first signal is used to stop the first timer; the first message is transmitted via the direct path; the second message is transmitted via the non- Direct path transmission; the first message and the second message are RRC messages respectively; the second message is relayed by the sender of the first signal; the first message is used for the start of the action Describe the first timer.
  • the second receiver 1102 receives a third message through the direct path, the third message is used to indicate the identity of the first link layer; the first reference signal resource is used to evaluate the first measurement result; the secondary link signal is used to evaluate the second measurement result;
  • the first message is used to indicate that when the first condition is met, switch from the direct path to the indirect path; the first condition includes that the first measurement result is lower than a first threshold and the second measurement The result is higher than a second threshold; the first message includes the first link layer identity; the configuration associated with the first condition in the first message is performed to trigger the start of the first timing device.
  • the RRC reestablishment includes: receiving an RRC reestablishment request message by using the indirect path through the third node.
  • the second node is a satellite.
  • the second node is an IoT node.
  • the second node is a relay.
  • the second node is an access point.
  • the second node is a base station.
  • the second transmitter 1101 includes at least one of the antenna 420 in Embodiment 4, the transmitter 418, the transmitting processor 416, the multi-antenna transmitting processor 471, the controller/processor 475, and the memory 476 one.
  • the second receiver 1102 includes at least one of the antenna 420 in Embodiment 4, the receiver 418, the receiving processor 470, the multi-antenna receiving processor 472, the controller/processor 475, and the memory 476 one.
  • Embodiment 12 illustrates a structural block diagram of a processing device used in a third node according to an embodiment of the present application; as shown in FIG. 12 .
  • the processing device 1200 in the third node includes a third receiver 1202 and a third transmitter 1201 .
  • Example 12
  • the third transmitter 1201 forwards a second message, where the second message is used to feed back the first message;
  • the third transmitter 1201 after the action starts the first timer and before the first timer expires, sends the first signal on the secondary link;
  • the sender of the second message starts a first timer, and the expiration of the first timer is used to trigger RRC reestablishment; the first signal is used to stop the first timer; the first A message is used to indicate switching from a direct path to a non-direct path; said first message is transmitted over said direct path; said second message is transmitted over said non-direct path; said first message and said second message are RRC messages respectively; said first message is used for said action to start said first timer.
  • the first signal includes a data packet generated by any sender of the first message.
  • the first signal includes first signaling, and the first signaling is used to indicate that the indirect path has been established.
  • the first signal includes second signaling, and the second signaling is used to confirm that the direct link between the first node and the third node has been successfully established;
  • the first The second signaling includes a relay service code;
  • the second signaling is a PC5-S message.
  • the third transmitter 1201 sends a first discovery message and a secondary link signal, the first discovery message includes a first cell identity, and the first cell identity is the sending of the first message
  • the first discovery message includes the first link layer identity of the third node; the first reference signal resource is used to evaluate the first measurement result; the secondary link signal is used to evaluate the second 2. Measurement results;
  • the first message is used to indicate that when the first condition is met, switch from the direct path to the indirect path; the first condition includes that the first measurement result is lower than a first threshold and the second measurement The result is higher than a second threshold; the first message includes the first link layer identity; the configuration associated with the first condition in the first message is performed to trigger the start of the first timing device.
  • the RRC reconstruction includes: selecting the third node, the third node belongs to a first candidate relay list, and the first candidate relay list is related to switching from a direct path to an indirect path; transmitting an RRC re-establishment request message through the third node using the indirect path; as a response to applying the first message, deleting the first candidate relay list;
  • a first candidate cell list is retained, and the first candidate cell list is related to conditional reconfiguration; the first candidate cell list includes at least one cell.
  • the third node is a user equipment (UE).
  • UE user equipment
  • the third node is a terminal supporting a large delay difference.
  • the third node is a terminal supporting NTN.
  • the third node is an aircraft.
  • the third node is a vehicle-mounted terminal.
  • the third node is a relay.
  • the third node is a ship.
  • the third node is an Internet of Things terminal.
  • the third node is a terminal of the Industrial Internet of Things.
  • the third node is a device supporting low-latency high-reliability transmission.
  • the third node is a secondary link communication node.
  • the third receiver 1202 includes the antenna 452 in Embodiment 4, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, or the data source 467 at least one of the .
  • the third transmitter 1201 includes the antenna 452 in Embodiment 4, the transmitter 454, the transmission processor 468, the multi-antenna transmission processor 457, the controller/processor 459, the memory 460, or the data source At least one of 467.
  • the user equipment, terminal and UE in this application include but are not limited to drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, vehicle communication equipment, wireless sensors, network cards, Internet of things terminal, RFID terminal, NB-IoT terminal, MTC (Machine Type Communication, machine type communication) terminal, eMTC (enhanced MTC, enhanced MTC) terminal, data card, network card, vehicle communication equipment, low-cost mobile phone, low-cost Cost Tablet PC, satellite communication equipment, ship communication equipment, NTN user equipment and other wireless communication equipment.
  • MTC Machine Type Communication, machine type communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes but not limited to macrocell base station, microcell base station, home base station, relay base station, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, sending and receiving node), NTN base station , satellite equipment, flight platform equipment and other wireless communication equipment.
  • gNB NR Node B
  • TRP Transmitter Receiver Point

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的方法和设备,包括接收第一消息,所述第一消息被用于指示从直接路径切换到非直接路径;开始第一计时器;所述第一计时器的过期被用于触发RRC重建;在所述行为开始第一计时器之后且在所述第一计时器过期之前,在副链路上接收第一信号;作为接收所述第一信号的响应,停止所述第一计时器;发送第二消息,所述第二消息被用于反馈所述第一消息;其中,所述第一消息通过所述直接路径传输;所述第二消息通过所述非直接路径传输;所述第一消息和所述第二消息分别是RRC消息;所述第二消息被所述第一信号的发送者中继;所述第一消息被用于所述行为开始所述第一计时器。本申请通过接收第一消息和第一信号,可以进行路径切换。

Description

一种被用于无线通信的方法和设备 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中减少业务中断,提高业务连续性,增强可靠性,以及安全等方面的方法和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或Fifth Generation,5G)进行研究,在3GPP RAN#75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。
在通信中,无论是LTE(Long Term Evolution,长期演进)还是5G NR都会涉及到可靠的信息的准确接收,优化的能效比,信息有效性的确定,灵活的资源分配,可伸缩的系统结构,高效的非接入层信息处理,较低的业务中断和掉线率,对低功耗支持,这对基站和用户设备的正常通信,对资源的合理调度,对系统负载的均衡都有重要的意义,可以说是高吞吐率,满足各种业务的通信需求,提高频谱利用率,提高服务质量的基石,无论是eMBB(ehanced Mobile BroadBand,增强的移动宽带),URLLC(Ultra Reliable Low Latency Communication,超高可靠低时延通信)还是eMTC(enhanced Machine Type Communication,增强的机器类型通信)都不可或缺的。同时在IIoT(Industrial Internet of Things,工业领域的物联网中,在V2X(Vehicular to X,车载通信)中,在设备与设备之间通信(Device to Device),在非授权频谱的通信中,在用户通信质量监测,在网络规划优化,在NTN(Non Territerial Network,非地面网络通信)中,在TN(Territerial Network,地面网络通信)中,在双连接(Dual connectivity)系统中,在无线资源管理以及多天线的码本选择中,在信令设计,邻区管理,业务管理,在波束赋形中都存在广泛的需求,信息的发送方式分为广播和单播,两种发送方式都是5G系统必不可少的,因为它们对满足以上需求十分有帮助。UE与网络连接的方式可以是直接连接也可以通过中继连接。
随着系统的场景和复杂性的不断增加,对降低中断率,降低时延,增强可靠性,增强系统的稳定性,对业务的灵活性,对功率的节省也提出了更高的要求,同时在系统设计的时候还需要考虑不同系统不同版本之间的兼容性。
3GPP标准化组织针对5G做了相关标准化工作,形成了包括38.304,38.211,38.213等一系列标准,标准内容可参考:
https://www.3gpp.org/ftp/Specs/archive/38_series/38.304/38304-g40.zip
https://www.3gpp.org/ftp/Specs/archive/38_series/38.211/38211-g50.zip
https://www.3gpp.org/ftp/Specs/archive/38_series/38.213/38213-g50.zip
发明内容
在多种通信场景中,会涉及中继的使用,例如当一个UE不在小区的覆盖区域内时,可以通过中继接入网络,中继节点可以是另外一个UE。中继主要包括层3中继和层2中继,都是通过中继节点为远端节点(remote UE)提供网络接入服务,其中层3中继对接入网是透明的,即远端UE只与核心网建立连接,接入网无法识别数据是来自远端节点还是中继节点的;而层2中继中,远端节点和接入网具有RRC连接,接入网可以管理远端节点,接入网和远端节点之间可以建立无线承载。在某些情况下,尤其是通过直接路径传输的remote UE的信号变差,而周围有可用的中继节点时,网络会根据remote UE的测量报告等信息,指示remote UE将直接路径传输切换到非直接路径传输,就是由直接连接网络变成通过中继连接网络。但是remote UE在由直接路径切换到非直接路径的过程中未必总是成功的,为了避免remote UE无限制的等待或尝试,可能需要设置一个计时器,如何控制这个计时器,即何时停止这个计时器,这个计时器的过期后remote UE应该如何处理,是一个需要解决的问题,如果处理不好就导致过长的时延或通信的中断,又因为这是直接路径传输到非直接路径传输过度过程中的计时器,既不是传统的直接与网络通信时的各种计 时器,也不是单纯使用副链路传输时所涉及的各种计时器,因此需要根据这一特殊的场景进行特殊的处理。另外,如何确定非直接路径传输已经被成功的建立起来了也是一个需要解决的问题。
以上所述问题,本申请提供了一种解决方案。
需要说明的是,在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,包括:
接收第一消息,所述第一消息被用于指示从直接路径切换到非直接路径;开始第一计时器;所述第一计时器的过期被用于触发RRC重建;
在所述行为开始第一计时器之后且在所述第一计时器过期之前,在副链路上接收第一信号;作为接收所述第一信号的响应,停止所述第一计时器;
发送第二消息,所述第二消息被用于反馈所述第一消息;
其中,所述第一消息通过所述直接路径传输;所述第二消息通过所述非直接路径传输;所述第一消息和所述第二消息分别是RRC消息;所述第二消息被所述第一信号的发送者中继;所述第一消息被用于所述行为开始所述第一计时器。
作为一个实施例,本申请要解决的问题包括:在涉及中继的场景中,尤其是从直接路径传输切换或转换到非直接路径传输时,如何使用计时器进行控制这一切换过程。
作为一个实施例,上述方法的好处包括:本申请所提出的方法可以避免直接路径传输切换非直接路径传输时可能出现的等待时间过长以及没有响应等切换不成功的问题,同时在确定可以使用非直接路径传输时停止这一计时器,可以避免例如RRC重建等流程。
具体的,根据本申请的一个方面,所述第一信号包括任一所述第一消息的发送者生成的数据包。
具体的,根据本申请的一个方面,所述第一信号包括第一信令,所述第一信令被用于指示所述非直接路径已建立。
具体的,根据本申请的一个方面,所述第一信号包括第二信令,所述第二信令被用于确认所述第一节点和所述第一信号的发送者之间的直接链路已成功建立;所述第二信令包括中继服务码;所述第二信令是PC5-S消息。
具体的,根据本申请的一个方面,接收第一发现消息,所述第一发现消息包括第一小区身份,所述第一小区身份是所述第一消息的发送者的小区身份;所述第一发现消息包括所述第一信号的发送者的第一链路层身份;根据第一参考信号资源评估第一测量结果;根据所述第一发现消息的发送者所发送的副链路信号评估第二测量结果;
通过所述直接路径发送第三消息,所述第三消息被用于指示所述第一链路层身份;
其中,所述第一消息用于指示当第一条件被满足时,从直接路径切换到非直接路径;所述第一条件包括所述第一测量结果低于第一阈值且所述第二测量结果高于第二阈值;所述第一消息包括所述第一链路层身份;所述第一条件被满足;所述第一消息中与所述第一条件相关联的配置被执行被用于触发开始所述第一计时器。
具体的,根据本申请的一个方面,所述RRC重建包括:选择第三节点,所述第三节点属于第一候选中继列表,所述第一候选中继列表与从直接路径切换到非直接路径有关;通过所述第三节点使用所述非直接路径传输RRC重建请求消息;作为应用所述第一消息的响应,删除所述第一候选中继列表;
其中,在所述第一消息被应用的过程中,第一候选小区列表被保留,所述第一候选小区列表与条件重配置有关;所述第一候选小区列表包括至少一个小区。
具体的,根据本申请的一个方面,在所述第一计时器运行期间,维持针对CHO的条件重配置评估,停止针对从直接路径切换到非直接路径的条件切换的评估。
具体的,根据本申请的一个方面,所述第一节点是用户设备。
具体的,根据本申请的一个方面,所述第一节点是物联网终端。
具体的,根据本申请的一个方面,所述第一节点是中继。
具体的,根据本申请的一个方面,所述第一节点是车载终端。
具体的,根据本申请的一个方面,所述第一节点是飞行器。
一种被用于无线通信的第二节点中的方法,其中,包括:
发送第一消息,所述第一消息被用于指示从直接路径切换到非直接路径;
接收第二消息,所述第二消息被用于反馈所述第一消息;
其中,所述第二消息的发送者,开始第一计时器,所述第一计时器的过期被用于触发RRC重建,在所述行为开始第一计时器之后且在所述第一计时器过期之前,在副链路上接收第一信号;所述第一信号被用于停止所述第一计时器;所述第一消息通过所述直接路径传输;所述第二消息通过所述非直接路径传输;所述第一消息和所述第二消息分别是RRC消息;所述第二消息被所述第一信号的发送者中继;所述第一消息被用于所述行为开始所述第一计时器。
具体的,根据本申请的一个方面,通过所述直接路径接收第三消息,所述第三消息被用于指示所述第一链路层身份;第一参考信号资源被用于评估第一测量结果;副链路信号被用于评估第二测量结果;
其中,所述第一消息用于指示当第一条件被满足时,从直接路径切换到非直接路径;所述第一条件包括所述第一测量结果低于第一阈值且所述第二测量结果高于第二阈值;所述第一消息包括所述第一链路层身份;所述第一消息中与所述第一条件相关联的配置被执行被用于触发开始所述第一计时器。
具体的,根据本申请的一个方面,所述RRC重建包括:通过第三节点使用所述非直接路径接收RRC重建请求消息。
具体的,根据本申请的一个方面,所述第二节点是基站。
具体的,根据本申请的一个方面,所述第二节点是中继。
具体的,根据本申请的一个方面,所述第二节点是飞行器。
具体的,根据本申请的一个方面,所述第二节点是卫星。
具体的,根据本申请的一个方面,所述第二节点是接入点设备。
一种被用于无线通信的第三节点中的方法,其中,包括:
转发第二消息,所述第二消息被用于反馈所述第一消息;
在所述行为开始第一计时器之后且在所述第一计时器过期之前,在副链路上发送第一信号;
其中,所述第二消息的发送者,开始第一计时器,所述第一计时器的过期被用于触发RRC重建;所述第一信号被用于停止所述第一计时器;第一消息被用于指示从直接路径切换到非直接路径;所述第一消息通过所述直接路径传输;所述第二消息通过所述非直接路径传输;所述第一消息和所述第二消息分别是RRC消息;所述第一消息被用于所述行为开始所述第一计时器。
具体的,根据本申请的一个方面,所述第一信号包括任一所述第一消息的发送者生成的数据包。
具体的,根据本申请的一个方面,所述第一信号包括第一信令,所述第一信令被用于指示所述非直接路径已建立。
具体的,根据本申请的一个方面,所述第一信号包括第二信令,所述第二信令被用于确认所述第一节点和所述第三节点之间的直接链路已成功建立;所述第二信令包括中继服务码;所述第二信令是PC5-S消息。
具体的,根据本申请的一个方面,发送第一发现消息和副链路信号,所述第一发现消息包括第一小区身份,所述第一小区身份是所述第一消息的发送者的小区身份;所述第一发现消息包括所述第三节点的第一链路层身份;第一参考信号资源被用于评估第一测量结果;所述副链路信号被用于评估第二测量结果;
其中,所述第一消息用于指示当第一条件被满足时,从直接路径切换到非直接路径;所述第一条件包括所述第一测量结果低于第一阈值且所述第二测量结果高于第二阈值;所述第一消息包括所述第一链路层身份;所述第一消息中与所述第一条件相关联的配置被执行被用于触发开始所述第一计时器。
具体的,根据本申请的一个方面,所述RRC重建包括:选择所述第三节点,所述第三节点属于第一候选中继列表,所述第一候选中继列表与从直接路径切换到非直接路径有关;通过所述第三节点使用所述非直接路径传输RRC重建请求消息;作为应用所述第一消息的响应,删除所述第一候选中继列表;
其中,在所述第一消息被应用的过程中,第一候选小区列表被保留,所述第一候选小区列表与条件重配置有关;所述第一候选小区列表包括至少一个小区。
具体的,根据本申请的一个方面,所述第三节点是用户设备。
具体的,根据本申请的一个方面,所述第三节点是物联网终端。
具体的,根据本申请的一个方面,所述第三节点是中继。
具体的,根据本申请的一个方面,所述第三节点是车载终端。
具体的,根据本申请的一个方面,所述第三节点是飞行器。
本申请公开了一种被用于无线通信的第一节点,包括:
第一接收机,接收第一消息,所述第一消息被用于指示从直接路径切换到非直接路径;开始第一计时器;所述第一计时器的过期被用于触发RRC重建;
所述第一接收机,在所述行为开始第一计时器之后且在所述第一计时器过期之前,在副链路上接收第一信号;作为接收所述第一信号的响应,停止所述第一计时器;
第一发射机,发送第二消息,所述第二消息被用于反馈所述第一消息;
其中,所述第一消息通过所述直接路径传输;所述第二消息通过所述非直接路径传输;所述第一消息和所述第二消息分别是RRC消息;所述第二消息被所述第一信号的发送者中继;所述第一消息被用于所述行为开始所述第一计时器。
本申请公开了一种被用于无线通信的第二节点,包括:
第二发射机,发送第一消息,所述第一消息被用于指示从直接路径切换到非直接路径;
第二接收机,接收第二消息,所述第二消息被用于反馈所述第一消息;
其中,所述第二消息的发送者,开始第一计时器,所述第一计时器的过期被用于触发RRC重建,在所述行为开始第一计时器之后且在所述第一计时器过期之前,在副链路上接收第一信号;所述第一信号被用于停止所述第一计时器;所述第一消息通过所述直接路径传输;所述第二消息通过所述非直接路径传输;所述第一消息和所述第二消息分别是RRC消息;所述第二消息被所述第一信号的发送者中继;所述第一消息被用于所述行为开始所述第一计时器。
本申请公开了一种被用于无线通信的第三节点,包括:
第三发射机,转发第二消息,所述第二消息被用于反馈所述第一消息;
所述第三发射机,在所述行为开始第一计时器之后且在所述第一计时器过期之前,在副链路上发送第一信号;
其中,所述第二消息的发送者,开始第一计时器,所述第一计时器的过期被用于触发RRC重建;所述第一信号被用于停止所述第一计时器;第一消息被用于指示从直接路径切换到非直接路径;所述第一消息通过所述直接路径传输;所述第二消息通过所述非直接路径传输;所述第一消息和所述第二消息分别是RRC消息;所述第一消息被用于所述行为开始所述第一计时器。
作为一个实施例,和传统方案相比,本申请具备如下优势:
可以避免直接路径到非直接路径切换时发生失败而导致的系统错误。
减少了因为直接路径到非直接路径切换时发生失败而带来的过长的时延。
建立了恰当的评估方式,用以评估非直接路径建立成功的标志,并以此停止第一计时器。
支持基于条件的直接路径到非直接路径的切换。
支持CHO与基于条件的直接路径到非直接路径切换的混合应用。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的接收第一消息,开始第一计时器,接收第一信号,发送第二消息的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输的流程图;
图6示出了根据本申请的一个实施例的无线信号传输的流程图;
图7示出了根据本申请的一个实施例的中继通信的协议栈的示意图;
图8示出了根据本申请的一个实施例的路径切换的示意图;
图9示出了根据本申请的一个实施例的第一消息被用于所述行为开始所述第一计时器的示意图;
图10示例了根据本申请的一个实施例的用于第一节点中的处理装置的示意图;
图11示例了根据本申请的一个实施例的用于第二节点中的处理装置的示意图;
图12示例了根据本申请的一个实施例的用于第三节点中的处理装置的示意图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的接收第一消息,开始第一计时器,接收第一信号,发送第二消息的流程图,如附图1所示。附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一节点在步骤101中接收第一消息;在步骤102中开始第一计时器;在步骤103中接收第一信号;在步骤104中发送第二消息;
其中,所述第一消息被用于指示从直接路径切换到非直接路径;所述第一计时器的过期被用于触发RRC重建;所述第一节点,在所述行为开始第一计时器之后且在所述第一计时器过期之前,在副链路上接收所述第一信号;所述第一节点,作为接收所述第一信号的响应,停止所述第一计时器;所述第二消息被用于反馈所述第一消息;所述第一消息通过所述直接路径传输;所述第二消息通过所述非直接路径传输;所述第一消息和所述第二消息分别是RRC消息;所述第二消息被所述第一信号的发送者中继;所述第一消息被用于所述行为开始所述第一计时器。
作为一个实施例,所述第一节点是UE(User Equipment,用户设备)。
作为一个实施例,直接路径(direct path)指的是一种UE到网络的传输路径,通过所述直接路径传输意味着数据在UE到网络(U2N)的远端(remote)UE和网络之间发送不通过中继。
作为该实施例的一个子实施例,所述数据包括更高层的数据和信令。
作为该实施例的一个子实施例,所述数据包括比特串或比特块。
作为该实施例的一个子实施例,所述数据仅包括RB(radio bearer,无线承载)所承载的信令或数据。
作为一个实施例,非直接路径(indirect path)指的是一种UE到网络的传输路径,通过所述非直接路径传输意味着数据在UE到网络(U2N,UE-to-Network)的远端UE和网络之间经过UE到网络(U2N,UE-to-Network)的中继UE的转发。
作为该实施例的一个子实施例,所述数据包括更高层的数据和信令。
作为该实施例的一个子实施例,所述数据包括比特串或比特块。
作为该实施例的一个子实施例,所述数据仅包括RB(radio bearer,无线承载)所承载的信令或数据。
作为一个实施例,U2N中继UE指的是提供支持U2N远端UE到网络的连接的功能的UE。
作为一个实施例,U2N远端UE指的是与网络通信需要经过U2N中继UE的UE。
作为一个实施例,U2N远端UE指的是与网络通信需要经过U2N中继UE的UE。
作为一个实施例,U2N远端UE指的是支持中继业务的与网络进行通信的UE。
作为一个实施例,U2N中继是U2N中继UE。
作为一个实施例,在与网络进行单播业务收发时,U2N中继和U2N远端节点都处于RRC连接态。
作为一个实施例,U2N远端UE处于RRC空闲态或RRC非活跃态时,U2N中继UE可以处于任何RRC状态,包括RRC连接态,RRC空闲态和RRC非活跃态。
作为一个实施例,不通过直接路径传输等于通过非直接路径传输。
作为一个实施例,不通过直接路径传输包括通过中继传输。
作为一个实施例,通过直接路径传输包括不通过中继传输。
作为一个实施例,通过直接路径传输包括不通过中继转发。
作为一个实施例,U2N中继UE是为U2N远端UE提供到网络的连接(connectivity)支持的功能 (functionality)的UE。
作为该实施例的一个子实施例,U2N中继UE是UE。
作为该实施例的一个子实施例,U2N中继UE为U2N远端UE提供到网络的中继服务。
作为一个实施例,U2N远端UE是通过U2N中继UE与网络通信的UE。
作为一个实施例,服务小区指的是UE驻留的小区。执行小区搜索包括,UE搜索所选择的PLMN(公共陆地移动网,Public Land Mobile Network)或SNPN(Stand-alone Non-Public Network,独立非公共网络)的一个合适的(suitable)小区,选择所述一个合适的小区提供可用的业务,监测所述一个合适的小区的控制信道,这一过程被定义为驻留在小区上;也就是说,一个被驻留的小区,相对于这个UE,是这个UE的服务小区。在RRC空闲态或RRC非活跃态驻留在一个小区上有如下好处:使得UE可以从PLMN或SNPN接收系统消息;当注册后,如果UE希望建立RRC连接或继续一个被挂起的RRC连接,UE可以通过在驻留小区的控制信道上执行初始接入来实现;网络可以寻呼到UE;使得UE可以接收ETWS(Earthquake and Tsunami Warning System,地震海啸预警系统)和CMAS(Commercial Mobile Alert System,商业移动报警系统)通知。
作为一个实施例,对于没有配置CA/DC(carrier aggregation/dual connectivity,载波聚合/双连接)的处于RRC连接态的UE,只有一个服务小区包括主小区。对于配置了CA/DC(carrier aggregation/dual connectivity,载波聚合/双连接)的处于RRC连接态的UE,服务小区用于指示包括特殊小区(SpCell,Special Cell)和所有从小区的小区集合。主小区(Primary Cell)是MCG(Master Cell Group)小区,工作在主频率上,UE在主小区上执行初始连接建立过程或发起连接重建。对于双连接操作,特殊小区指的是MCG的PCell(Primary Cell,主小区)或SCG(Secondary Cell Group)的PSCell(Primary SCG Cell,主SCG小区);如果不是双连接操作,特殊小区指的是PCell。
作为一个实施例,SCell(Secondary Cell,从小区)工作的频率是从频率。
作为一个实施例,信息元素的单独的内容被称为域。
作为一个实施例,MR-DC(Multi-Radio Dual Connectivity,多无线双连接)指的是E-UTRA和NR节点的双连接,或两个NR节点之间的双连接。
作为一个实施例,在MR-DC中,提供到核心网的控制面连接的无线接入节点是主节点,主节点可以是主eNB,主ng-eNB,或主gNB。
作为一个实施例,MCG指的是,在MR-DC中,与主节点相关联的一组服务小区,包括SpCell,还可以,可选的,包括一个或多个SCell。
作为一个实施例,PCell是MCG的SpCell。
作为一个实施例,PSCell是SCG的SpCell。
作为一个实施例,在MR-DC中,不提供到核心网的控制面连接,给UE提供额外资源的无线接入节点是从节点。从节点可以是en-gNB,从ng-eNB或从gNB。
作为一个实施例,在MR-DC中,与从节点相关联的一组服务小区是SCG(secondary cell group,从小区组),包括SpCell和,可选的,一个或多个SCell。
作为一个实施例,使能定义在3GPP标准TS 23.285中的V2X(Vehicle-to-Everything)通信的接入层功能是V2X副链路通信(V2X sidelink communication),其中所述V2X副链路通信发生在临近的UE之间,且使用E-UTRA技术但并没有穿过(traversing)网络节点。
作为一个实施例,至少使能定义在3GPP标准TS 23.287中的V2X(Vehicle-to-Everything)通信的接入层功能是NR副链路通信(NR sidelink communication),其中所述NR副链路通信发生在临近的两个或多个UE之间,且使用NR技术但并没有穿过(traversing)网络节点。
作为一个实施例,副链路支持UE-to-UE之间使用副链路资源分配模式,物理层信号或信道,以及物理层过程,直接通信。
作为一个实施例,不是或不在或不处于覆盖内等于覆盖外。
作为一个实施例,覆盖内等于覆盖之内。
作为一个实施例,覆盖外等于覆盖之外。
作为一个实施例,所述第一节点是U2N远端节点。
作为一个实施例,终结于UE与网络之间的无线承载所对应的PDCP实体分别位于UE和网络内。
作为一个实施例,所述直接路径是通过所述直接路径传输时所使用的直接路径或通信链路或信道或承载。
作为一个实施例,所述直接路径传输指的是UE与网络之间的至少SRB(Signaling radio bearer,信令无线承载)所承载的数据不经过其它节点的中继或转发。
作为一个实施例,所述直接路径传输指的是,与UE与网络之间的至少SRB(Signaling radio bearer,信令无线承载)相关联的RLC承载分别终结于UE与网络。
作为一个实施例,所述直接路径传输指的是,与UE与网络之间的至少SRB(Signaling radio bearer,信令无线承载)相关联的RLC实体分别终结于UE与网络。
作为一个实施例,所述直接路径传输指的是,UE与网络之间存在直连的通信链路。
作为一个实施例,所述直接路径传输指的是,UE与网络之间存在Uu接口。
作为一个实施例,所述直接路径传输指的是,UE与网络之间存在Uu接口的MAC层,且所述Uu接口的MAC层承载RRC信令。
作为一个实施例,所述直接路径传输指的是,UE与网络之间存在Uu接口的物理层。
作为一个实施例,所述直接路径传输指的是,UE与网络之间存在逻辑信道和/或传输信道。
作为一个实施例,所述非直接路径是通过所述非直接路径传输时所使用的非直接路径或通信链路或信道或承载。
作为一个实施例,所述非直接路径传输指的是UE与网络之间的至少SRB(Signaling radio bearer,信令无线承载)所承载的数据经过其它节点的中继或转发。
作为一个实施例,所述非直接路径传输指的是,与UE与网络之间的至少SRB(Signaling radio bearer,信令无线承载)相关联的RLC承载分别终结于UE与其它节点、其它节点与网络。
作为一个实施例,所述非直接路径传输指的是,与UE与网络之间的至少SRB(Signaling radio bearer,信令无线承载)相关联的RLC实体分别终结于UE与其它节点、其它节点与网络。
作为一个实施例,所述非直接路径传输指的是,UE与网络之间不存在直连的通信链路。
作为一个实施例,所述非直接路径传输指的是,UE与网络之间不存在Uu接口的MAC层。
作为一个实施例,所述非直接路径传输指的是,UE与网络之间不存在Uu接口的物理层。
作为一个实施例,所述非直接路径传输指的是,UE与网络之间不存在逻辑信道也不存在传输信道。
作为一个实施例,所述网络包括无线接入网(RAN)和/或服务小区和/或基站。
作为一个实施例,所述短语至少SRB的含义包括{SRB0,SRB1,SRB2,SRB3}中的至少之一。
作为一个实施例,所述短语至少SRB的含义包括SRB和DRB(data radio bearer,数据无线承载)。
作为一个实施例,所述短语UE与网络中的所述UE包括所述第一节点。
作为一个实施例,所述其它节点包括中继节点或其它UE。
作为一个实施例,在使用直接路径传输时,UE可以向网络发送物理层信令;在使用非直接路径传输时,UE无法向网络发送或直接发送物理层信令;
作为一个实施例,在使用直接路径传输时,UE可以向网络发送MAC CE;在使用非直接路径传输时,UE无法向网络发送或直接发送MAC CE;
作为一个实施例,在使用直接路径传输时,所述第一节点的PDCP层与RLC层之间不存在其它协议层;在使用非直接路径传输时,所述第一节点的PDCP层与RLC层之间存在其它协议层。
作为该实施例的一个子实施例,所述其它协议层是或包括适配层。
作为一个实施例,在使用直接路径传输时,网络通过DCI直接调度所述第一节点的上行发送;在使用非直接路径传输时,网络不通过DCI直接调度所述第一节点的上行发送。
作为一个实施例,在使用直接路径传输时,所述第一节点的SRB与RLC实体和/或RLC层和/或RLC承载相关联;在使用非直接路径传输时,所述第一节点的SRB与PC5接口的RLC实体相关联。
作为一个实施例,在使用直接路径传输时,所述第一节点的SRB与Uu接口的RLC实体存在映射关系;在使用非直接路径传输时,所述第一节点的SRB与PC5接口的RLC实体存在映射关系。
作为一个实施例,所述第一节点与网络之间只存在直接路径或只存在非直接路径。
作为一个实施例,短语从直接路径切换到非直接路径的含义是:开始使用非直接路径,同时停止使用直接路径。
作为一个实施例,短语从直接路径切换到非直接路径的含义是:开始使用非直接路径传输,同时停止使用直接路径传输。
作为一个实施例,短语从直接路径切换到非直接路径的含义是:由直接路径传输变成非直接路径传输。
作为一个实施例,短语从直接路径切换到非直接路径的含义是:所述第一节点将SRB与PC5接口的RLC实体相关联,同时释放与所述SRB相关联的Uu接口的RLC实体。
作为一个实施例,短语从直接路径切换到非直接路径的含义是:所述第一节点将SRB和DRB与PC5接口的RLC实体相关联,同时释放与所述SRB和DRB相关联的Uu接口的RLC实体。
作为一个实施例,短语从直接路径切换到非直接路径的含义是:所述第一节点的SRB和DRB与PC5接口的RLC实体相关联,不再与Uu接口的RLC实体或Uu接口的RLC承载相关联。
作为该实施例的一个子实施例,短语不再与Uu接口的RLC实体相关联的含义包括解除关联关系。
作为该实施例的一个子实施例,短语不再与Uu接口的RLC实体相关联的含义包括Uu接口的RLC实体所服务的无线承载不包括SRB也不包括DRB。
作为该实施例的一个子实施例,短语不再与Uu接口的RLC实体相关联的含义包括释放Uu接口的RLC承载或RLC实体。
作为该实施例的一个子实施例,增加至少一个PC5接口的RLC承载,且所增加的所述至少一个PC5接口的RLC承载服务所述第一节点的SRB和/或DRB。
作为一个实施例,短语从直接路径切换到非直接路径的含义是:所述第一节点的SRB和DRB与副链路RLC实体相关联,不再与Uu接口的RLC实体或Uu接口的RLC承载相关联。
作为该实施例的一个子实施例,短语不再与Uu接口的RLC实体相关联的含义包括解除关联关系。
作为该实施例的一个子实施例,短语不再与Uu接口的RLC实体相关联的含义包括Uu接口的RLC实体所服务的无线承载不包括SRB也不包括DRB。
作为该实施例的一个子实施例,短语不再与Uu接口的RLC实体相关联的含义包括释放Uu接口的RLC承载或RLC实体。
作为该实施例的一个子实施例,增加至少一个副链路RLC承载,且所增加的所述至少一个副链路RLC承载服务所述第一节点的SRB和/或DRB。
作为一个实施例,短语从直接路径切换到非直接路径的含义是:所述第一节点的至少一个无线承载与第二RLC实体相关联,所述第一节点的所述至少一个无线承载不与第一RLC实体相关联。
作为该实施例的一个子实施例,所述第二RLC实体是副链路RLC实体。
作为该实施例的一个子实施例,所述第二RLC实体是PC5接口的RLC实体。
作为该实施例的一个子实施例,所述第一RLC实体是Uu接口的RLC实体。
作为该实施例的一个子实施例,所述第一RLC实体是RLC实体。
作为该实施例的一个子实施例,所述RLC实体由RLC-BearerConfig配置。
作为该实施例的一个子实施例,所述RLC实体由RLC-BearerConfig的RLC-config配置。
作为该实施例的一个子实施例,短语不与第一RLC实体相关联的含义是不再与所述第一RLC实体相关联。
作为该实施例的一个子实施例,短语不与第一RLC实体相关联的含义包括不再与所述第一RLC实体相关联。
作为该实施例的一个子实施例,短语不与第一RLC实体相关联的含义包括解除关联关系。
作为该实施例的一个子实施例,短语不与第一RLC实体相关联的含义包括解除映射关系。
作为该实施例的一个子实施例,短语不与第一RLC实体相关联的含义包括所述第一RLC实体所对应的RLC承载所服务的无线承载不包括所述第一节点的所述至少一个无线承载。
作为该实施例的一个子实施例,短语不与第一RLC实体相关联的含义包括释放服务所述第一节点的所述至少一个无线承载的所述第一RLC实体。
作为该实施例的一个子实施例,短语不与第一RLC实体相关联的含义包括释放服务所述第一节点的所 述至少一个无线承载的所述第一RLC实体所对应的RLC承载。
作为该实施例的一个子实施例,短语不与第一RLC实体相关联的含义包括释放所有Uu接口的RLC承载和/或RLC实体。
作为该实施例的一个子实施例,短语与第二RLC实体相关联的含义是:增加至少一个副链路RLC承载,且所增加的所述至少一个副链路RLC承载服务所述第一节点的所述至少一个无线承载。
作为该实施例的一个子实施例,短语与第二RLC实体相关联的含义是:配置至少一个副链路RLC承载服务所述第一节点的所述至少一个无线承载。
作为该实施例的一个子实施例,所述第一节点的所述至少一个无线承载是SRB。
作为该实施例的一个子实施例,所述第一节点的所述至少一个无线承载是DRB。
作为该实施例的一个子实施例,所述第一节点的所述至少一个无线承载是SRB0以外的任一SRB。
作为该实施例的一个子实施例,所述第一节点的所述至少一个无线承载是任一RB。
作为该实施例的一个子实施例,所述第一节点的所述至少一个无线承载包括任一RB。
作为该实施例的一个子实施例,所述第一节点的所述至少一个无线承载是或包括任一SRB。
作为该实施例的一个子实施例,所述第一节点的所述至少一个无线承载是或包括任一DRB。
作为一个实施例,短语从直接路径切换到非直接路径的含义是:所述第一节点的至少一个无线承载与第二RLC承载相关联,所述第一节点的所述至少一个无线承载不与第一RLC承载相关联。
作为该实施例的一个子实施例,所述第二RLC承载是副链路RLC承载。
作为该实施例的一个子实施例,所述第二RLC承载是PC5接口的RLC承载。
作为该实施例的一个子实施例,所述第一RLC承载是Uu接口的RLC承载。
作为该实施例的一个子实施例,所述第一RLC承载是RLC承载。
作为该实施例的一个子实施例,所述RLC承载由RLC-BearerConfig配置。
作为该实施例的一个子实施例,所述RLC承载由RLC-BearerConfig的RLC-config配置。
作为该实施例的一个子实施例,所述副链路RLC承载由RLC-BearerConfig以外的RRC IE配置。
作为该实施例的一个子实施例,所述副链路RLC承载由RLC-BearerConfig的RLC-config以外的RRC IE配置。
作为该实施例的一个子实施例,所述副链路RLC承载由sl-RLC-BearerConfig配置。
作为该实施例的一个子实施例,所述副链路RLC承载由sl-RLC-BearerConfig的RLC-config配置。
作为该实施例的一个子实施例,短语不与第一RLC承载相关联的含义是不再与所述第一RLC承载相关联。
作为该实施例的一个子实施例,短语不与第一RLC承载相关联的含义包括不再与所述第一RLC承载相关联。
作为该实施例的一个子实施例,短语不与第一RLC承载相关联的含义包括解除关联关系。
作为该实施例的一个子实施例,短语不与第一RLC承载相关联的含义包括解除映射关系。
作为该实施例的一个子实施例,短语不与第一RLC承载相关联的含义包括所述第一RLC承载所服务的无线承载不包括所述第一节点的所述至少一个无线承载。
作为该实施例的一个子实施例,短语不与第一RLC承载相关联的含义包括释放服务所述第一节点的所述至少一个无线承载的所述第一RLC承载。
作为该实施例的一个子实施例,短语不与第一RLC承载相关联的含义包括释放服务所述第一节点的所述至少一个无线承载的所述第一RLC承载。
作为该实施例的一个子实施例,短语不与第一RLC承载相关联的含义包括释放所述第一RLC承载。
作为该实施例的一个子实施例,在接收到所述第一消息之前,所述第一节点的所述至少一个无线承载由所述第一RLC承载服务。
作为该实施例的一个子实施例,短语不与第一RLC承载相关联的含义包括释放所有Uu接口的RLC承载和/或RLC实体。
作为该实施例的一个子实施例,短语与第二RLC承载相关联的含义是:增加至少一个副链路RLC承载,且所增加的所述至少一个副链路RLC承载服务所述第一节点的所述至少一个无线承载。
作为该实施例的一个子实施例,短语与第二RLC承载相关联的含义是:配置至少一个副链路RLC承载服务所述第一节点的所述至少一个无线承载。
作为该实施例的一个子实施例,所述第一节点的所述至少一个无线承载是SRB。
作为该实施例的一个子实施例,所述第一节点的所述至少一个无线承载是DRB。
作为该实施例的一个子实施例,所述第一节点的所述至少一个无线承载是SRB0以外的任一SRB。
作为该实施例的一个子实施例,所述第一节点的所述至少一个无线承载是任一RB。
作为该实施例的一个子实施例,所述第一节点的所述至少一个无线承载包括任一RB。
作为该实施例的一个子实施例,所述第一节点的所述至少一个无线承载是或包括任一SRB。
作为该实施例的一个子实施例,所述第一节点的所述至少一个无线承载是或包括任一DRB。
作为该实施例的一个子实施例,所述第一消息的rlc-BearerToReleaseList包括所述第一RLC承载的身份。
作为该实施例的一个子实施例,短语不与第一RLC承载相关联的含义是所述第一消息的rlc-BearerToReleaseList包括所述第一RLC承载的身份。
作为该实施例的一个子实施例,短语与第二RLC承载相关联的含义是:所述第一消息所包括的sl-rlc-BearerToReleaseList配置所述第二RLC承载服务所述第一节点的所述至少一个无线承载。
作为该实施例的一个子实施例,短语与第二RLC承载相关联的含义是:所述第一消息所包括的PC5有关的RLC-BearerToAddModList配置所述第二RLC承载服务所述第一节点的所述至少一个无线承载。
作为该实施例的一个子实施例,短语与第二RLC承载相关联的含义是:所述第一消息所包括的relay有关的RLC-BearerToAddModList配置所述第二RLC承载服务所述第一节点的所述至少一个无线承载。
作为该实施例的一个子实施例,短语与第二RLC承载相关联的含义是:所述第一消息所包括的与副链路有关的RLC-BearerToAddModList配置所述第二RLC承载服务所述第一节点的所述至少一个无线承载。
作为一个实施例,所述第一消息包括rlc-BearerToReleaseList。
作为一个实施例,所述第一消息包括rlc-BearerToReleaseList。
作为一个实施例,所述第一消息包括sl-RLC-BearerToAddModList。
作为一个实施例,所述第一消息包括与PC5有关的RLC-BearerToAddModList。
作为该实施例的一个子实施例,短语所述第一消息包括与PC5有关的RLC-BearerToAddModList的含义是:所述第一消息包括一个名字中既包括PC5也包括BearerToAddModList的信元(IE)。
作为一个实施例,所述第一消息包括与relay有关的RLC-BearerToAddModList。
作为该实施例的一个子实施例,短语所述第一消息包括与relay有关的RLC-BearerToAddModList的含义是:所述第一消息包括一个名字中既包括relay也包括BearerToAddModList的信元(IE)。
作为该实施例的一个子实施例,短语所述第一消息包括与relay有关的RLC-BearerToAddModList的含义是:所述第一消息包括一个名字包括BearerToAddModList的信元(IE),且所述名字包括BearerToAddModList的所述信元指示与中继有关。
作为一个实施例,所述第一消息包括与副链路有关的RLC-BearerToAddModList。
作为一个实施例,所述第一消息是或包括RRCReconfiguration。
作为一个实施例,所述第一消息是或包括RRCConnectionReconfiguration。
作为一个实施例,所述第一消息包括CellGroupConfig。
作为一个实施例,所述第一消息包括RLC-config。
作为一个实施例,所述第一消息包括sl-RLC-config。
作为一个实施例,所述第一消息包括relay-RLC-config。
作为一个实施例,所述第一消息包括RLC-config-relay。
作为一个实施例,所述第一消息指示释放与直接路径相关联的RLC承载。
作为一个实施例,所述第一消息指示释放至少一个逻辑信道。
作为一个实施例,所述第一消息通过rlc-BearerToReleaseList指示释放至少一个LogicalChannelIdentity。
作为一个实施例,所述第一消息指示至少增加一个与非直接路径有关的RLC承载。
作为一个实施例,所述第一消息指示至少增加一个与非直接路径有关的副链路RLC承载或PC5接口的RLC承载。
作为一个实施例,所述第一消息至少指示与一个SRB相关联的RLC承载被修改为副链路RLC承载或PC5接口的RLC承载。
作为一个实施例,所述第一消息至少指示一个SRB不再与RLC承载相关联,而与副链路(sidelink)RLC承载或PC5接口的RLC承载。
作为一个实施例,所述第一消息至少指示一个SRB不再与RLC承载相关联,而与非直接路径有关的RLC承载或中继RLC承载。
作为一个实施例,所述第一消息指示:所有SRB不再与RLC承载相关联,而与非直接路径有关的RLC承载或中继RLC承载。
作为该实施例的一个子实施例,所述RLC承载指的是Uu接口的RLC承载。
作为一个实施例,所述第一消息指示:所有DRB不再与RLC承载相关联,而与非直接路径有关的RLC承载或中继RLC承载。
作为该实施例的一个子实施例,所述RLC承载指的是Uu接口的RLC承载。
作为一个实施例,所述第一消息指示:所有SRB不再与RLC承载相关联,而与非直接路径有关的RLC承载或中继RLC承载。
作为一个实施例,所述第一消息指示:所有DRB不再与RLC承载相关联,而与非直接路径有关的RLC承载或中继RLC承载。
作为一个实施例,所述第一消息包括reconfigurationWithSync。
作为一个实施例,所述第一计时器不是T304。
作为一个实施例,所述第一计时器不是T310。
作为一个实施例,所述第一计时器不是T311。
作为一个实施例,所述第一计时器不是T312。
作为一个实施例,所述第一计时器不是T316。
作为一个实施例,所述第一计时器是T303。
作为一个实施例,所述第一计时器是T305。
作为一个实施例,所述第一计时器是T314。
作为一个实施例,所述第一计时器是T324。
作为一个实施例,所述第一计时器是T334。
作为一个实施例,所述第一计时器是T344。
作为一个实施例,所述第一计时器是T304a。
作为一个实施例,所述第一计时器是T304b。
作为一个实施例,所述第一计时器是T304r。
作为一个实施例,所述第一计时器是T304-r。
作为一个实施例,所述第一计时器是T401。
作为一个实施例,所述第一计时器是T402。
作为一个实施例,所述第一计时器是T403。
作为一个实施例,所述第一计时器是T404。
作为一个实施例,所述第一计时器是T414。
作为一个实施例,所述第一计时器是T411。
作为一个实施例,所述第一计时器是T410。
作为一个实施例,所述第一计时器是T500。
作为一个实施例,所述第一计时器是T501。
作为一个实施例,所述第一计时器是T502。
作为一个实施例,所述第一计时器是T503。
作为一个实施例,所述第一计时器是T504。
作为一个实施例,所述第一计时器是T514。
作为一个实施例,所述第一计时器的名字包括relay。
作为一个实施例,所述第一计时器的名字包括r。
作为一个实施例,所述第一计时器的名字包括T1。
作为一个实施例,所述第一计时器的名字包括T2。
作为一个实施例,所述第一计时器的名字包括304。
作为一个实施例,所述第一计时器不是T304。
作为一个实施例,所述第一计时器过期触发所述第一节点执行RRC重建(RRC Re-establishment)。
作为一个实施例,所述第一计时器的过期被认为是失败(failure)。
作为一个实施例,所述第一计时器过期触发所述第一节点发起重建RRC连接。
作为一个实施例,所述第一节点处于RRC连接态。
作为一个实施例,所述行为开始所述第一计时器包括重新开始所述第一计时器。
作为一个实施例,在所述行为开始第一计时器之后且在所述第一计时器过期之前的时间指的是所述第一计时器的处于运行状态的时间。
作为一个实施例,所述第一信号的接收触发所述第一节点停止所述第一计时器。
作为一个实施例,所述副链路是所述第一节点和其它UE之间的通信链路。
作为一个实施例,所述副链路是所述第一节点和中继之间的通信链路。
作为一个实施例,所述第一信号占用的物理信道是PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)。
作为一个实施例,所述第一信号占用的物理信道是PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)。
作为一个实施例,所述第一信号占用的物理信道是PSFCH(Physical Sidelink Feedback Channel,物理副链路反馈信道)。
作为一个实施例,所述第一信号在所述第二消息发送后被接收。
作为一个实施例,所述第一信号的接收晚于所述第二消息的发送。
作为一个实施例,所述第二消息触发所述第一信号。
作为一个实施例,所述第一信号是ACK。
作为一个实施例,所述第一信号包括ACK。
作为一个实施例,所述第一信号包括SCI(sidelink control information,副链路控制信息)。
作为一个实施例,所述第一信号是SCI。
作为一个实施例,所述第一信号包括MAC CE。
作为一个实施例,所述第一信号是MAC CE。
作为一个实施例,所述第一信号包括MAC CE和SCI。
作为一个实施例,所述第一信号是MAC CE和SCI。
作为一个实施例,所述第一信号包括PC5-RRC消息。
作为一个实施例,所述第一信号是PC5-RRC消息。
作为一个实施例,所述第一信号占用的承载是副链路承载。
作为一个实施例,所述第二消息占用副链路资源;所述第一消息不占用副链路资源。
作为一个实施例,所述第二消息包括RRC信令。
作为一个实施例,所述第二消息是RRCReconfigurationComplete。
作为一个实施例,所述第二消息是RRCConnectionReconfigurationComplete。
作为一个实施例,所述第二消息与所述第一消息成对出现。
作为一个实施例,所述第二消息指示所述第一消息中的至少部分配置已经被应用。
作为一个实施例,所述第一消息通过所述直接路径传输意味着所述第一消息所占用的物理信道包括或仅包括PDSCH;所述第二消息通过所述非直接路径传输意味着,所述第二消息所占用的物理信道包括或仅包括{PSSCH,PSCCH,PSFCH}中的至少之一。
作为一个实施例,所述第一消息通过所述直接路径传输意味着所述第一消息所占用的物理信道不包括{PSSCH,PSCCH,PSFCH}中的任何一个。
作为一个实施例,所述行为通过副链路接收的含义包括:在副链路的资源上接收。
作为一个实施例,所述行为通过副链路接收的含义包括:在副链路的信道上接收。
作为该实施例的一个子实施例,所述副链路的信道包括{PSSCH,PSCCH,PSFCH}中的至少之一。
作为一个实施例,所述第一信号的发送者是所述第一节点的中继。
作为一个实施例,所述第一信号的发送者是所述第一节点的U2N中继。
作为一个实施例,所述第一信号的发送者是所述非直接路径所包括的中继。
作为一个实施例,所述第一信号的发送者是所述第一节点与网络之间的中继。
作为一个实施例,所述第二消息通过非直接路径传输的含义包括,所述第二消息被所述第一信号的发送者转发。
作为一个实施例,所述第一信号包括任一所述第一消息的发送者生成的数据包;或者,所述第一信号包括第一个所述第一消息的发送者生成的数据包。
作为该实施例的一个子实施例,所述第一消息的发送者是所述第一节点的服务小区。
作为该实施例的一个子实施例,所述第一消息的发送者是基站。
作为该实施例的一个子实施例,所述第一消息的发送者不包括中继。
作为该实施例的一个子实施例,所述第一消息的发送者是所述第一消息的生成者。
作为该实施例的一个子实施例,所述第一消息的发送者不包括其它UE。
作为该实施例的一个子实施例,所述任一所述第一消息的发送者生成的数据包是或包括PDCP PDU。
作为该实施例的一个子实施例,所述任一所述第一消息的发送者生成的数据包是或包括PDCP SDU。
作为该实施例的一个子实施例,所述任一所述第一消息的发送者生成的数据包是或包括IP包。
作为该实施例的一个子实施例,所述任一所述第一消息的发送者生成的数据包是或包括RRC消息。
作为该实施例的一个子实施例,所述任一所述第一消息的发送者生成的数据包是或包括NAS消息。
作为该实施例的一个子实施例,所述任一所述第一消息的发送者生成的数据包使用所述第一节点的SRB和/或DRB。
作为该实施例的一个子实施例,所述任一所述第一消息的发送者生成的数据包是或包括系统消息。
作为一个实施例,所述第一信号包括第一信令,所述第一信令被用于指示所述非直接路径已建立。
作为该实施例的一个子实施例,所述第一信令指示所述第一信号的发送者已建立RRC连接,所述第一信号的发送者已建立RRC连接用于确认所述非直接路径已建立。
作为该实施例的一个子实施例,所述第一信令是PC5-S消息。
作为该实施例的一个子实施例,所述第一信令是PC5-RRC消息。
作为该实施例的一个子实施例,所述第一信令是发现消息。
作为该实施例的一个子实施例,所述第一信令指示所述第一节点的数据已成功转发给网络。
作为该实施例的一个子实施例,所述第一信令是PDCP状态报告。
作为该实施例的一个子实施例,所述第一信令是适配层信令。
作为该实施例的一个子实施例,所述第一信令是MAC CE。
作为该实施例的一个子实施例,所述第一信令通过PSCCH传输。
作为该实施例的一个子实施例,所述第一信令指示所述第一节点可通过所述非直接路径与网络通信。
作为该实施例的一个子实施例,所述第一信令显式的指示所述非直接路径已建立。
作为该实施例的一个子实施例,所述第一信令指示已接收到网络关于非直接路径已建立的确认。
作为该实施例的一个子实施例,所述第一信令指示接收到用于转发所述第一节点的数据的RLC承载所对应的位于网络侧的RLC实体所发送的确认。
作为该实施例的一个子实施例,所述第一信令指示接收到用于转发所述第一节点的数据的RLC承载所对应的位于网络侧的RLC实体所发送的RLC状态报告。
作为该实施例的一个子实施例,所述第一信令指示接收到用于转发所述第一节点的数据的RLC承载所对应的位于所述第一信号的发送者的Uu接口的RLC实体的接收或发送窗口发生移动。
作为该实施例的一个子实施例,所述第一信令指示接收到用于转发所述第一节点的数据的Uu接口的RLC承载已建立。
作为该实施例的一个子实施例,所述第一信令是RRCReconfigurationSidelink。
作为该实施例的一个子实施例,所述第一信令是RRCReconfigurationCompleteSidelink。
作为该实施例的一个子实施例,所述第一信令是SCCH-Message。
作为该实施例的一个子实施例,所述第一信令的生成者是所述第一信号的发送者。
作为该实施例的一个子实施例,所述第一信令的生成者是所述第一节点的中继。
作为该实施例的一个子实施例,所述第一信令的接收可以确认所述第一节点能够使用所述非直接路径与网络通信。
作为一个实施例,所述第一信号包括第二信令,所述第二信令被用于确认所述第一节点和所述第一信号的发送者之间的直接链路已成功建立;所述第二信令包括中继服务码;所述第二信令是PC5-S消息。
作为该实施例的一个子实施例,所述第二信令指示PC5单播链路建立完成。
作为该实施例的一个子实施例,所述第二信令指示PC5单播链路修改完成。
作为该实施例的一个子实施例,所述第二信令指示同意建立直接链路。
作为该实施例的一个子实施例,所述第二信令指示直接链路已建立完成。
作为该实施例的一个子实施例,所述第二信令指示直接链路鉴权完成。
作为该实施例的一个子实施例,所述第二信令是Direct link establishment accept。
作为该实施例的一个子实施例,所述第二信令是Direct linkmodification accept。
作为该实施例的一个子实施例,所述第二信令是Direct link authentication response。
作为该实施例的一个子实施例,所述中继服务码是RSC(relay service code)。
作为该实施例的一个子实施例,所述中继服务码用于5G ProSe U2N(UE-to-Network)中继发现,用于指示5G ProSe U2N中继所提供的连接服务;5G ProSe U2N中继和5G ProSe U2N远端UE可以从RSC判断支持层2还是层3中继。
作为一个实施例,所述第一节点在副链路上发送第二信号;所述第二信号包括第三信令,所述第二信令被用于确认所述第一节点和所述第一信号的发送者之间的直接链路已成功建立;所述第二信令包括中继服务码;所述第三信令是PC5-S消息;作为发送所述第二信号的响应,所述第一节点停止所述第一计时器。
作为该实施例的一个子实施例,所述第三信号占用PSSCH信道。
作为该实施例的一个子实施例,所述第三信号占用PSCCH信道。
作为该实施例的一个子实施例,所述第三信令指示PC5单播链路建立完成。
作为该实施例的一个子实施例,所述第三信令指示PC5单播链路修改完成。
作为该实施例的一个子实施例,所述第三信令指示同意建立直接链路。
作为该实施例的一个子实施例,所述第三信令指示直接链路已建立完成。
作为该实施例的一个子实施例,所述第三信令指示直接链路鉴权完成。
作为该实施例的一个子实施例,所述第三信令是Direct link establishment accept。
作为该实施例的一个子实施例,所述第三信令是Direct linkmodification accept。
作为该实施例的一个子实施例,所述第三信令是Direct link authentication response。
作为该实施例的一个子实施例,所述中继服务码是RSC(relay service code)。
作为该实施例的一个子实施例,所述中继服务码用于5G ProSe U2N(UE-to-Network)中继发现,用于指示5G ProSe U2N中继所提供的连接服务;5G ProSe U2N中继和5G ProSe U2N远端UE可以从RSC判断支持层2还是层3中继。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。附图2说明了5G NR(NewRadio,新空口),LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统架构下的V2X通信架构。5G NR或LTE网络架构可称为5GS(5GSystem)/EPS(Evolved Packet System,演进分组系统)某种其它合适术语。
实施例2的V2X通信架构包括UE(User Equipment,用户设备)201,UE241,NG-RAN(下一代无线 接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220,ProSe功能250和ProSe应用服务器230。所述V2X通信架构可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,所述V2X通信架构提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(UserPlaneFunction,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。所述ProSe功能250是用于适地服务(ProSe,Proximity-based Service)所需的网络相关行为的逻辑功能;包括DPF(Direct Provisioning Function,直接供应功能),直接发现名称管理功能(Direct Discovery Name Management Function),EPC水平发现ProSe功能(EPC-level Discovery ProSe Function)等。所述ProSe应用服务器230具备存储EPC ProSe用户标识,在应用层用户标识和EPC ProSe用户标识之间映射,分配ProSe限制的码后缀池等功能。
作为一个实施例,所述UE201和所述UE241之间通过PC5参考点(Reference Point)连接。
作为一个实施例,所述ProSe功能250分别通过PC3参考点与所述UE201和所述UE241连接。
作为一个实施例,所述ProSe功能250通过PC2参考点与所述ProSe应用服务器230连接。
作为一个实施例,所述ProSe应用服务器230连接分别通过PC1参考点与所述UE201的ProSe应用和所述UE241的ProSe应用连接。
作为一个实施例,本申请中的第一节点是UE201。
作为一个实施例,本申请中的第二节点是gNB203。
作为一个实施例,本申请中的第三节点是UE241。
作为一个实施例,所述UE201和所述UE241之间的无线链路对应本申请中的副链路(Sidelink,SL)。
作为一个实施例,从所述UE201到NR节点B的无线链路是上行链路。
作为一个实施例,从NR节点B到UE201的无线链路是下行链路。
作为一个实施例,从所述UE241到NR节点B的无线链路是上行链路。
作为一个实施例,从NR节点B到UE241的无线链路是下行链路。
作为一个实施例,所述UE201支持中继传输。
作为一个实施例,所述UE241支持中继传输。
作为一个实施例,所述UE201是包括汽车在内的交通工具。
作为一个实施例,所述UE241是包括汽车在内的交通工具。
作为一个实施例,所述gNB203是宏蜂窝(MarcoCellular)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(PicoCell)基站。
作为一个实施例,所述gNB203是一个飞行平台设备。
作为一个实施例,所述gNB203是卫星设备。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一节点(UE,gNB或NTN中的卫星或飞行器)和第二节点(gNB,UE或NTN中的卫星或飞行器),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一节点与第二节点以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二节点之间的对第一节点的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一节点之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点与第一节点之间的RRC信令来配置下部层。PC5-S(PC5Signaling Protocol,PC5信令协议)子层307负责PC5接口的信令协议的处理。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点和第二节点的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一节点可具有在L2层355之上的若干上部层。此外还包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。对于涉及中继服务的UE,其控制面还可包括适配子层AP308,其用户面也可包括适配子层AP358,适配层的引入有助于更低层,例如MAC层,例如RLC层,对来自于多个源UE的数据进行复用和/或区分,对于涉及中继服务的UE到UE之间的通信,也可以不包括适配子层。另外,适配子层AP308和AP358也可以分别作为PDCP304和PDCP354内的子层。RRC306可以用于处理Uu接口的RRC信令和PC5接口的信令。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第三节点。
作为一个实施例,本申请中的所述第一消息生成于RRC306。
作为一个实施例,本申请中的所述第二消息生成于RRC306。
作为一个实施例,本申请中的所述第三消息生成于RRC306。
作为一个实施例,本申请中的所述第一信号生成于PHY301或MAC302或RLC303或RRC306或PC5-S307。
作为一个实施例,本申请中的所述第二信号生成于PHY301或MAC302或RLC303或RRC306或PC5-S307。
作为一个实施例,本申请中的所述第一信令生成于PHY301或MAC302或RLC303或RRC306或 PC5-S307。
作为一个实施例,本申请中的所述第二信令生成于PC5-S307。
作为一个实施例,本申请中的所述第三信令生成于PC5-S307。
作为一个实施例,本申请中的所述第一发现消息生成于PHY301或MAC302或RLC303或RRC306或PC5-S307。
实施例4
实施例4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457 进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:接收第一消息,所述第一消息被用于指示从直接路径切换到非直接路径;开始第一计时器;所述第一计时器的过期被用于触发RRC重建;在所述行为开始第一计时器之后且在所述第一计时器过期之前,在副链路上接收第一信号;作为接收所述第一信号的响应,停止所述第一计时器;发送第二消息,所述第二消息被用于反馈所述第一消息;其中,所述第一消息通过所述直接路径传输;所述第二消息通过所述非直接路径传输;所述第一消息和所述第二消息分别是RRC消息;所述第二消息被所述第一信号的发送者中继;所述第一消息被用于所述行为开始所述第一计时器。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一消息,所述第一消息被用于指示从直接路径切换到非直接路径;开始第一计时器;所述第一计时器的过期被用于触发RRC重建;在所述行为开始第一计时器之后且在所述第一计时器过期之前,在副链路上接收第一信号;作为接收所述第一信号的响应,停止所述第一计时器;发送第二消息,所述第二消息被用于反馈所述第一消息;其中,所述第一消息通过所述直接路径传输;所述第二消息通过所述非直接路径传输;所述第一消息和所述第二消息分别是RRC消息;所述第二消息被所述第一信号的发送者中继;所述第一消息被用于所述行为开始所述第一计时器。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:发送第一消息,所述第一消息被用于指示从直接路径切换到非直接路径;接收第二消息,所述第二消息被用于反馈所述第一消息;其中,所述第二消息的发送者,开始第一计时器,所述第一计时器的过期被用于触发RRC重建,在所述行为开始第一计时器之后且在所述第一计时器过期之前,在副链路上接收第一信号;所述第一信号被用于停止所述第一计时器;所述第一消息通过所述直接路径传输;所述第二消息通过所述非直接路径传输;所述第一消息和所述第二消息分别是RRC消息;所述第二消息被所述第一信号的发送者中继;所述第一消息被用于所述行为开始所述第一计时器。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一消息,所述第一消息被用于指示从直接路径切换到非直接路径;接收第二消息,所述第二消息被用于反馈所述第一消息;其中,所述第二消息的发送者,开始第一计时器,所述第一计时器的过期被用于触发RRC重建,在所述行为开始第一计时器之后且在所述第一计时器过期之前,在副链路上接收第一信号;所述第一信号被用于停止所述第一计时器;所述第一消息通过所述直接路径传输;所述第二消息通过所述非直接路径传输;所述第一消息和所述第二消息分别是RRC消息;所述第二消息被所述第一信号的发送者中继;所述第一消息被用于所述行为开始所述第一计时器。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少 一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:转发第二消息,所述第二消息被用于反馈所述第一消息;在所述行为开始第一计时器之后且在所述第一计时器过期之前,在副链路上发送第一信号;其中,所述第二消息的发送者,开始第一计时器,所述第一计时器的过期被用于触发RRC重建;所述第一信号被用于停止所述第一计时器;第一消息被用于指示从直接路径切换到非直接路径;所述第一消息通过所述直接路径传输;所述第二消息通过所述非直接路径传输;所述第一消息和所述第二消息分别是RRC消息;所述第一消息被用于所述行为开始所述第一计时器。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:转发第二消息,所述第二消息被用于反馈所述第一消息;在所述行为开始第一计时器之后且在所述第一计时器过期之前,在副链路上发送第一信号;其中,所述第二消息的发送者,开始第一计时器,所述第一计时器的过期被用于触发RRC重建;所述第一信号被用于停止所述第一计时器;第一消息被用于指示从直接路径切换到非直接路径;所述第一消息通过所述直接路径传输;所述第二消息通过所述非直接路径传输;所述第一消息和所述第二消息分别是RRC消息;所述第一消息被用于所述行为开始所述第一计时器。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备450对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450对应本申请中的第三节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第一通信设备450是一个车载终端。
作为一个实施例,所述第一通信设备450是一个中继。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一消息。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一信号。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第二信号。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一发现消息。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送所述第二消息。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送所述第三消息。
作为一个实施例,发射器416(包括天线420),发射处理器412和控制器/处理器440被用于本申请中发送所述第一消息。
作为一个实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于本申请中接收所述第二消息。
作为一个实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于本申请中接收所述第三消息。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一消息。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第二消息。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送所述第一消息。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请 中发送所述第二消息。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送所述第一信号。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送所述第二信号。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送所述第一发现消息。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。附图5中,U01对应本申请的第一节点,U02对应本申请的第二节点,U03第三节点对应本申请的第三节点,特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序,其中F51内的步骤是可选的。
对于 第一节点U01,在步骤S5101中接收第一发现消息;在步骤S5102中接收第一消息;在步骤S5103中接收第一信号;在步骤S5104中发送第二消息。
对于 第二节点U02,在步骤S5201中发送第一消息;在步骤S5202中接收第二消息。
对于 第三节点U03,在步骤S5301中发送第一发现消息;在步骤S5302中发送第一信号;在步骤S5303中转发第二消息。
在实施例5中,所述第一消息被用于指示从直接路径切换到非直接路径;所述第一节点U01开始第一计时器;所述第一计时器的过期被用于触发RRC重建;所述第一节点U01,在所述行为开始第一计时器之后且在所述第一计时器过期之前,在副链路上接收第一信号,作为接收所述第一信号的响应,停止所述第一计时器;所述第二消息被用于反馈所述第一消息;所述第一消息通过所述直接路径传输;所述第二消息通过所述非直接路径传输;所述第一消息和所述第二消息分别是RRC消息;所述第二消息被所述第一信号的发送者中继;所述第一消息被用于所述行为开始所述第一计时器。
作为一个实施例,所述第一节点U01是一个U2N中继UE。
作为一个实施例,所述第一节点U01是一个U2N远端UE。
作为一个实施例,所述第一节点U01是一个NR ProSe U2N远端UE。
作为一个实施例,所述第三节点U03是一个UE。
作为一个实施例,所述第三节点U03是所述第一节点U01的U2N中继。
作为一个实施例,所述第三节点U03是所述第一节点U01的层2中继。
作为一个实施例,所述第三节点U03是一个NR ProSe U2N中继。
作为一个实施例,所述第二节点U02是所述第一节点U01的服务小区。
作为一个实施例,所述第二节点U02是所述第一节点U01的主小区。
作为一个实施例,所述第二节点U02是所述第一节点U01的主小区组。
作为一个实施例,所述第二节点U02是所述第一节点U01的主小区所对应或所属的基站。
作为一个实施例,所述第二节点U02是所述第二节点U02的主小区所对应或所属的基站。
作为一个实施例,所述第二节点U02不是所述第一节点U01的服务小区。
作为一个实施例,所述第二节点U02是所述第三节点U03的服务小区。
作为一个实施例,所述第二节点U02是所述第三节点U03的主小区。
作为一个实施例,所述第二节点U02是所述第三节点U03的主小区组。
作为一个实施例,所述第二节点U02是所述第三节点U03的主小区所对应或所属的基站。
作为一个实施例,所述第一节点U01和所述第三节点U03有相同的主小区(PCell)。
作为一个实施例,所述第一节点U01的驻留小区是或属于所述第二节点U02。
作为一个实施例,所述第三节点U03的驻留小区是或属于所述第二节点U02。
作为一个实施例,所述第一节点U01的归属小区是或属于所述第二节点U02。
作为一个实施例,所述第三节点U03的归属小区是或属于所述第二节点U02。
作为一个实施例,所述第一节点U01与所述第三节点U03之间存在RRC连接。
作为一个实施例,所述第三节点U03与所述第二节点U02之间存在RRC连接。
作为一个实施例,所述第一节点U01与所述第二节点U02之间存在RRC连接。
作为一个实施例,所述第三节点U03与所述第二节点U02之间不存在RRC连接。
作为一个实施例,所述第三节点U03应用所述第二节点U02的系统消息。
作为一个实施例,所述第一节点U01应用所述第三节点U03所转发的系统消息。
作为一个实施例,所述第一节点U01至少在接收所述第一消息前通过直接路径与所述第二节点U02通信。
作为一个实施例,所述第一节点U01与所述第三节点U03通过副链路通信。
作为一个实施例,所述第一节点U01与所述第三节点U03建立了直接链路。
作为一个实施例,所述第一发现消息包括dicovery消息。
作为一个实施例,所述第一发现消息是NAS层消息。
作为一个实施例,所述第一发现消息占用副链路资源。
作为一个实施例,所述第一发现消息在副链路上发送。
作为一个实施例,所述第一发现消息的名字包括discovery。
作为一个实施例,所述第一小区身份是NCI。
作为一个实施例,所述第一小区身份是所述第二节点U02的ID。
作为一个实施例,所述第一小区身份是所述第二节点U02的小区的ID。
作为一个实施例,所述第一消息的发送者是所述第二节点U02。
作为一个实施例,所述第一信号的发送者是所述第三节点U03。
作为一个实施例,所述第一链路层身份是一个链路层身份。
作为一个实施例,所述第一链路层身份是layer-2 ID。
作为一个实施例,所述第一发现消息包括所述第一链路层身份。
作为一个实施例,承载所述第一发现消息的MAC子PDU的头包括所述第一链路层身份的8个最高位比特,所述第一链路层身份包括24个比特,承载所述第一发现消息的MAC子PDU的头不包括所述第一链路层身份的所述8个最高位比特以外的比特。
作为一个实施例,承载所述第一发现消息的MAC子PDU的头包括所述第一链路层身份的16个最高位比特,所述第一链路层身份包括24个比特,承载所述第一发现消息的MAC子PDU的头不包括所述第一链路层身份的所述16个最高位比特以外的比特。
作为一个实施例,承载所述第二消息的MAC子PDU的头包括所述第一链路层身份的8个最高位比特,所述第一链路层身份包括24个比特,承载所述第二消息的MAC子PDU的头不包括所述第一链路层身份的所述8个最高位比特以外的比特。
作为该实施例的一个子实施例,承载所述第二消息的MAC子PDU通过副链路被发送。
作为一个实施例,所述第一参考信号资源包括SSB。
作为一个实施例,所述第一参考信号资源包括CSI-RS。
作为一个实施例,所述第一参考信号资源包括SSB-index。
作为一个实施例,所述第一参考信号资源包括CSI-RS-index。
作为一个实施例,所述第一参考信号资源由所述第二节点U02所指示。
作为一个实施例,所述第一参考信号资源由所述第一消息指示。
作为一个实施例,所述第一参考信号资源是所述第二节点U02的参考信号资源。
作为一个实施例,句子根据第一参考信号资源评估第一测量结果的含义包括,测量所述第一参考信号资源,所述第一参考信号资源上的测量结果是所述第一测量结果。
作为一个实施例,句子根据第一参考信号资源评估第一测量结果的含义包括,在所述第一参考信号资源上执行测量,所述第一参考信号资源上的测量结果是所述第一测量结果。
作为一个实施例,所述第一测量结果是RSRP(Reference Signal Receiving Power,参考信号接收功率)。
作为一个实施例,所述第一测量结果是RSRQ(Reference Signal Receiving Quality,参考信号接收质量)。
作为一个实施例,所述第一测量结果是RSSI(Received Signal Strength Indication,接收的信号强度指示)。
作为一个实施例,所述第一测量结果是SNR(SIGNAL-NOISE RATIO,信噪比)。
作为一个实施例,所述第一发现消息的发送者是所述第一信号的发送者。
作为一个实施例,所述第一发现消息的发送者所发送的所述副链路信号是或包括发现消息。
作为一个实施例,所述第一发现消息的发送者所发送的所述副链路信号是或包括参考信号。
作为一个实施例,句子根据所述第一发现消息的发送者所发送的副链路信号评估第二测量结果的含义包括,测量所述第一发现消息的发送者所发送的副链路信号以得到所述第二测量结果。
作为一个实施例,句子根据所述第一发现消息的发送者所发送的副链路信号评估第二测量结果的含义包括,测量所述第一发现消息或所述第一发现消息所占用的物理资源或所述第一发现消息所占用的物理资源块所包括的参考信号以得到所述第二测量结果。
作为一个实施例,句子根据所述第一发现消息的发送者所发送的副链路信号评估第二测量结果的含义包括,测量所述第一发现消息的发送者所发送的发现消息以得到所述第二测量结果。
作为一个实施例,句子根据所述第一发现消息的发送者所发送的副链路信号评估第二测量结果的含义包括,测量所述第一发现消息的发送者在副链路上所发送的参考信号以得到所述第二测量结果。
作为一个实施例,句子根据所述第一发现消息的发送者所发送的副链路信号评估第二测量结果的含义包括,测量所述第一发现消息的发送者在{PBSCH,PSSCH,PSCCH}中的至少之一上所发送的信号以得到所述第二测量结果。
作为一个实施例,所述第二测量结果是SL-RSRP(Sidelink Reference Signal Receiving Power,副链路参考信号接收功率)。
作为一个实施例,所述第二测量结果是SD-RSRP。
作为一个实施例,所述第二测量结果是根据discovery消息所测得的RSRP。
作为一个实施例,所述第二测量结果是PSBCH RSRP(PSBCH reference signal received power)。
作为一个实施例,所述第二测量结果是PSSCH-RSRP(PSSCH reference signal received power)。
作为一个实施例,所述第二测量结果是PSCCH-RSRP(PSCCH reference signal received power)。
作为一个实施例,所述第二测量结果是SL RSSI(Sidelink received signal strength indicator)。
作为一个实施例,所述第二测量结果是SL CR(Sidelink channel occupancy ratio)。
作为一个实施例,所述第二测量结果是SL CBR(Sidelink channel busy ratio)。
作为一个实施例,所述第三消息是或包括测量报告。
作为一个实施例,所述第三消息是RRC消息。
作为一个实施例,所述第三消息是或包括MCGfailureinformation。
作为一个实施例,所述第三消息是或包括SCGfailureinformation。
作为一个实施例,所述第三消息是或包括UEAssistanceInformation。
作为一个实施例,所述第三消息所占用的传输信道是UL-SCH。
作为一个实施例,所述第三消息不通过所述第三节点U03转发。
作为一个实施例,所述第三消息使用SRB承载。
作为一个实施例,所述第三消息包括所述第一链路层身份。
作为一个实施例,所述第三消息包括所述第一链路层身份的索引。
作为一个实施例,所述第一消息指示基于条件的直接路径到非直接路径的切换。
作为该实施例的一个子实施例,所述基于条件的直接路径到非直接路径的切换指的是,用于从直接路径切换到非直接路径的条件重配置。
作为该实施例的一个子实施例,所述基于条件的直接路径到非直接路径的切换指的是,涉及重配置与无线承载映射的RLC承载,但是不涉及改变现有的无线承载的条件重配置。
作为该实施例的一个子实施例,所述基于条件的直接路径到非直接路径的切换指的是,无线承载重配置。
作为该实施例的一个子实施例,所述基于条件的直接路径到非直接路径的切换指的是,RLC承载重配 置。
作为该实施例的一个子实施例,所述基于条件的直接路径到非直接路径的切换不改变SpCellConfig。
作为一个实施例,当所述第一节点U01从所述直接路径切换到所述非直接路径后,所述第一节点的服务小区仍然是所述第二节点U02。
作为一个实施例,所述第二节点U02指示所述第一阈值和所述第二阈值。
作为一个实施例,所述第一消息指示所述第一阈值和所述第二阈值。
作为一个实施例,所述第一节点U01收到所述第一消息不立即执行所述直接路径到所述非直接路径的切换,而是等待所述第一条件满足时,执行所述直接路径到所述非直接路径的切换。
作为一个实施例,步骤S5303转发第二消息包括:接收承载所述第二消息的第一MAC PDU;从所述第一MAC PDU中提取第一RLC PDU,从所述第一RLC PDU中提取第一适配层PDU,根据所述第一适配层PDU的头确定所述第一适配层PDU所携带的数据是针对一个Uu接口的RLC信道的;所述第一适配层PDU携带第一PDCP PDU,所述第一PDCP PDU包括所述第二消息;将所述第一PDCP PDU封装并通过Uu接口发送给所述第二节点U02。
作为一个实施例,步骤S5303转发第二消息包括:在副链路上接收承载所述第二消息的PDU,将承载所述第二消息的所述PDU发送给所述第二节点U02。
作为该实施例的一个子实施例,承载所述第二消息的所述PDU包括PDCP PDU。
作为该实施例的一个子实施例,所述行为将承载所述第二消息的所述PDU发送给所述第二节点U02包括:在PUSCH信道上发送所述承载所述第二消息的所述PDU。
作为该实施例的一个子实施例,所述行为将承载所述第二消息的所述PDU发送给所述第二节点U02包括:将承载所述第二消息的所述PDU封装在RLC PDU中。
作为该实施例的一个子实施例,所述行为将承载所述第二消息的所述PDU发送给所述第二节点U02包括:将承载所述第二消息的所述PDU封装在适配层PDU中。
作为该实施例的一个子实施例,所述行为将承载所述第二消息的所述PDU发送给所述第二节点U02包括:将承载所述第二消息的所述PDU封装在MAC PDU中。
作为该实施例的一个子实施例,所述行为将承载所述第二消息的所述PDU发送给所述第二节点U02包括:将承载所述第二消息的所述PDU封装在PDCP层与RLC层之间的协议层的PDU中。
作为一个实施例,步骤S5303转发第二消息包括:中继所述第二消息。
作为一个实施例,所述第一节点U01,在所述第一计时器运行期间,维持针对CHO的条件重配置(conditional reconfiguration)评估,停止针对从直接路径切换到非直接路径的条件切换的评估。
作为一个实施例,句子维持针对CHO的条件重配置评估的含义包括:所述第一计时器的运行不影响针对CHO的条件重配置的评估。
作为一个实施例,句子维持针对CHO的条件重配置评估的含义包括:所述第一计时器的运行不影响评估针对CHO的条件重配置是否被满足。
作为一个实施例,句子维持针对CHO的条件重配置评估的含义包括:在所述第一计时器的运行期间,不停止已经开始的针对CHO的条件重配置是否被满足的评估。
作为一个实施例,句子维持针对CHO的条件重配置评估的含义包括:在所述第一计时器的运行期间,可以开始针对CHO的条件重配置是否被满足的评估。
作为一个实施例,句子维持针对CHO的条件重配置评估的含义包括:在所述第一计时器的运行期间,可以针对CHO的条件重配置进行重新评估。
作为一个实施例,句子维持针对CHO的条件重配置的所述评估(evaluation)的含义包括:评估针对CHO的条件重配置的条件是否被满足。
作为一个实施例,句子停止针对从直接路径切换到非直接路径的条件切换的评估的含义包括:所述第一计时器的运行触发终止针对从直接路径切换到非直接路径的条件切换的评估。
作为一个实施例,句子停止针对从直接路径切换到非直接路径的条件切换的评估的含义包括:所述第一计时器的运行期间不进行针对从直接路径切换到非直接路径的条件切换的评估。
作为一个实施例,句子停止针对从直接路径切换到非直接路径的条件切换的评估的含义包括:所述第 一计时器的运行促使终止正在进行且未完成的针对从直接路径切换到非直接路径的条件切换的评估。
作为一个实施例,句子停止针对从直接路径切换到非直接路径的条件切换的所述评估的含义包括:评估针对从直接路径切换到非直接路径的条件切换的条件是否被满足。
作为一个实施例,所述第一消息指示从直接路径切换到非直接路径的条件切换的条件。
作为一个实施例,所述第一消息指示针对CHO的条件重配置。
作为一个实施例,从直接路径切换到非直接路径的条件切换是从直接路径切换到非直接路径的条件重配置。
作为一个实施例,以上方法的好处在于,在所述第一计时器运行期间,UE仍可以执行CHO类型的切换,有利于保证UE的业务连续性。
作为一个实施例,以上方法的好处在于,在所述第一计时器运行期间,UE停止针对直接路径到非直接路径的条件切换,有利于降低复杂度,保证UE和网络行为的一致性,避免造成不必要的混乱。
作为一个实施例,句子所述第一消息用于指示当第一条件被满足时,从直接路径切换到非直接路径的含义是:所述第一条件被满足被用于触发所述第一节点从直接路径切换到非直接路径。
作为一个实施例,句子所述第一消息用于指示当第一条件被满足时,从直接路径切换到非直接路径的含义是:作为所述第一条件被满足的响应,所述第一节点从直接路径切换到非直接路径。
作为一个实施例,句子所述第一消息用于指示当第一条件被满足时,从直接路径切换到非直接路径的含义是:当所述第一条件被满足时,所述第一节点执行与所述第一条件相关联的与使用非直接路径传输有关的配置。
实施例6
实施例6示例了根据本申请的一个实施例的无线信号传输流程图,如附图6所示。附图6中,U11对应本申请的第一节点,U12对应本申请的第二节点,U13第三节点对应本申请的第三节点,特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于 第一节点U11,在步骤S6101中接收第一发现消息;在步骤S6102中发送第三消息;在步骤S6103中接收第一消息;在步骤S6104中发送RRC重建请求消息。
对于 第二节点U12,在步骤S6201中接收第三消息;在步骤S6202中发送第一消息;在步骤S6203中接收RRC重建请求消息。
对于 第三节点U13,在步骤S6301中发送第一发现消息;在步骤S6302转发RRC重建请求消息;。
实施例6示出了RRC重建过程;实施例6基于实施例5,实施例6中需要但未说明的内容可参考实施例5.
作为一个实施例,所述RRC重建包括:选择第三节点,所述第三节点属于第一候选中继列表,所述第一候选中继列表与从直接路径切换到非直接路径有关;通过所述第三节点使用所述非直接路径传输RRC重建请求消息;作为应用所述第一消息的响应,删除所述第一候选中继列表;
其中,在所述第一消息被应用的过程中,第一候选小区列表被保留,所述第一候选小区列表与条件重配置有关;所述第一候选小区列表包括至少一个小区。
作为一个实施例,所述第一发现消息包括中继服务码。
作为该实施例的一个子实施例,所述第一发现消息所包括的所述中继服务码指示支持中继业务。
作为该实施例的一个子实施例,所述第一发现消息所包括的所述中继服务码指示支持L2中继业务。
作为一个实施例,所述第一发现消息包括所述第二节点U12的小区ID。
作为一个实施例,所述第一发现消息包括所述第二节点U12的小区NCI。
作为一个实施例,所述第二节点U12是所述第一节点U11的服务小区。
作为一个实施例,所述第二节点U12是所述第三节点U13的服务小区。
作为一个实施例,所述第三消息在所述第一发现消息被接收到之后发送。
作为一个实施例,所述第一发现消息的接收触发所述第三消息的发送。
作为一个实施例,所述第一消息指示条件重配置。
作为一个实施例,所述第一候选中继列表所包括的节点都是UE。
作为一个实施例,所述第一候选中继列表所包括的节点都是中继。
作为一个实施例,所述第一消息指示针对CHO(conditional handover,条件切换)的条件重配置。
作为该实施例的一个子实施例,所述第一消息指示的所述针对CHO的所述条件重配置包括的reconfigurationWithSync。
作为该实施例的一个子实施例,所述针对CHO的所述条件重配置所包括的候选小区被保存在所述第一候选小区列表中。
作为该实施例的一个子实施例,所述针对CHO的所述条件重配置所包括的所有候选小区构成所述第一候选小区列表中。
作为该实施例的一个子实施例,所述第一候选小区列表是VarConditionalReconfig。
作为该实施例的一个子实施例,所述第一候选小区列表被保存在VarConditionalReconfig中。
作为一个实施例,所述第一消息指示的所述针对CHO的所述条件重配置包括SpCellConfig。
作为该实施例的一个子实施例,所述第一消息指示的所述条件重配置包括的reconfigurationWithSync。
作为一个实施例,所述第一消息指示针对直接路径到非直接路径切换的条件重配置。
作为该实施例的一个子实施例,所述第一消息所指示的针对所述直接路径到所述非直接路径切换的所述条件重配置不包括SpCellConfig。
作为该实施例的一个子实施例,所述第一消息指示的针对直接路径到非直接路径切换的所述条件重配置不包括reconfigurationWithSync。
作为该实施例的一个子实施例,所述第一消息指示的针对直接路径到非直接路径切换的候选中继节点被保存在所述第一候选中继列表中。
作为该实施例的一个子实施例,所述第一消息指示的针对直接路径到非直接路径切换的候选中继节点构成所述第一候选中继列表中。
作为该实施例的一个子实施例,所述第一候选中继列表是VarConditionalReconfig。
作为该实施例的一个子实施例,所述第一候选中继列表被保存在VarConditionalReconfig中。
作为该实施例的一个子实施例,所述第一候选中继列表被保存在VarConditionalReconfig以外的状态变量中。
作为该实施例的一个子实施例,所述第一候选中继列表包括候选中继的链路层身份。
作为该实施例的一个子实施例,所述第一候选中继列表包括所述第一链路层身份。
作为一个实施例,所述第一消息通知指示针对CHO的条件重配置和针对直接路径到非直接路径切换的条件重配置。
作为一个实施例,针对CHO的条件重配置和针对直接路径到非直接路径切换的条件重配置可以有相同的名字或不同的名字。
作为一个实施例,所述第一节点U11在接收到所述第一消息后发生无线链路失败。
作为一个实施例,所述第一节点U11在接收到所述第一消息后RRC重建被触发。
作为该实施例的一个子实施例,所述第一计时器的过期触发所述RRC重建。
作为一个实施例,所述RRC重建包括执行中继选择,所述第一节点U11在所述中继选择过程中所选的中继节点是所述第三节点U13。
作为一个实施例,所述RRC重建包括执行小区选择,所述第一节点U11在所述小区选择过程中所选的节点是所述第三节点U13。
作为一个实施例,所述RRC重建包括执行小区和中继选择,所述第一节点U11在所述小区和中继选择过程中所选的节点是所述第三节点U13。
作为一个实施例,所述短语第一消息被应用的含义包括:应用所述第一消息中被触发的条件重配置。
作为一个实施例,所述短语第一消息被应用的含义包括:应用所述第一消息中因条件满足而需要应用的配置。
作为一个实施例,所述短语第一消息被应用的含义包括:应用所述第一消息中与所述第三节点U13有关的配置。
作为一个实施例,所述短语第一消息被应用的含义包括:应用所述第一消息中与所述第三节点U13被 选择为中继有关的配置。
作为一个实施例,所述短语第一消息被应用的含义包括:应用所述第一消息中与所述第三节点U13有关的非直接路径传输有关的配置。
作为一个实施例,所述短语第一消息被应用的含义包括:应用所述第一消息中与通过所述第三节点U13执行非直接路径传输有关的配置。
作为一个实施例,所述RRC重建请求消息是RRCReestablishmentRequest。
作为一个实施例,所述RRC重建请求消息是RRCConnectionReestablishmentRequest。
实施例7
实施例7示例了根据本申请的一个实施例的中继通信的协议栈的示意图,如附图7所示。
在附图7所示出的协议栈中,第一协议层分别终结于UE和中继节点,中继节点和gNB节点。
作为一个实施例,附图7中的UE对应本申请的所述第一节点,附图7中的中继对应本申请的所述第三节点;附图7中的gNB对应本申请的所述第三节点;附图7示出了层2中继。
作为一个实施例,实施例7以实施例3为基础,进一步示出了与中继节点有关的协议栈和接口;在实施例7中,NAS是非接入层,Uu-RRC为Uu接口的RRC协议,Uu-PDCP是Uu接口的PDCP层;Uu-RLC是Uu接口的RLC层,Uu-MAC是Uu接口的MAC层,Uu-PHY是Uu接口的物理层;PC5-RLC是PC5接口的RLC层;PC5-MAC是PC5接口的MAC层;PC5-PHY是PC5接口的物理层;N2Stack是N2接口的协议栈,N2接口是gNB与核心网之间的接口;Uu第一协议层是Uu接口的第一协议层;PC5-第二协议层是PC5接口的第二协议层。
作为一个实施例,附图7中前缀Uu-表示Uu接口的协议层。
作为一个实施例,附图7中前缀PC5-表示PC5接口的协议层。
作为一个实施例,附图7中的所述UE与所述gNB之间的通信接口是Uu接口。
作为一个实施例,附图7中的所述中继与所述gNB之间的通信接口是Uu接口。
作为一个实施例,附图7中的所述UE与所述中继之间的通信接口是PC5接口。
作为一个实施例,所述第一协议层是适配层。
作为一个实施例,所述第二协议层是适配层。
作为一个实施例,所述第一协议层是PDCP层和RLC层之间的协议层。
作为一个实施例,所述第二协议层是PDCP层和RLC层之间的协议层。
作为一个实施例,所述Uu第一协议层用于将多个无线承载的数据复用在同一个Uu-RLC承载/实体上。
作为一个实施例,所述PC5-第二协议层用于将多个无线承载的数据复用在同一个PC5-RLC承载/实体上。
作为一个实施例,所述PC5-第二协议层用于PC5-RLC承载/实体的映射。
作为一个实施例,所述第一协议层用于将一个或多个PC5-RLC实体与一个Uu-RLC实体关联起来。
作为一个实施例,所述第二协议层用于将一个或多个PC5-RLC实体与一个Uu-RLC实体关联起来。
作为一个实施例,附图7中的PC5第二协议层是PC5接口的适配层。
作为一个实施例,附图7中的Uu第一协议层是Uu接口的适配层。
作为一个实施例,附图7中的所述UE的PDCP实体的对端PDCP实体位于gNB。
作为一个实施例,附图7中的所述UE的RRC实体的对端RRC实体位于gNB。
作为一个实施例,所述第一信号为所述UE和所述中继之间的信号,生成于PC5-PHY或PC5-MAC或PC5-RLC或PC5-第二协议层或PC5-RRC或PC5-S。
作为一个实施例,所述第二信号为所述UE和所述中继之间的信号,生成于PC5-PHY或PC5-MAC或PC5-RLC或PC5-第二协议层或PC5-RRC或PC5-S。
作为一个实施例,所述第一消息生成于所述gNB,所述第一消息是Uu-RRC消息。
作为一个实施例,所述第二消息生成于所述第一节点,所述第二消息是Uu-RRC消息。
作为一个实施例,所述第二消息对所述中继是透传的。
作为一个实施例,附图7中的所述UE是U2N远端UE。
作为一个实施例,附图7中的所述中继是U2N中继UE。
作为一个实施例,所述直接路径指的是所述UE与所述gNB之间不通过所述中继转发的而进行的直接通信路径。
作为一个实施例,当使用所述直接路径传输时,所述UE不使用PC5-第二协议层,不使用PC5-RLC层,不使用PC5-MAC,不使用PC5-PHY,在Uu-PDCP层之下分别是Uu-RLC,Uu-MAC,Uu-PHY。
作为一个实施例,从直接路径切换到非直接路径,包括至少增加或修改Uu-PDCP层以下的协议层所对应的实体。
作为该实施例的一个子实施例,Uu-PDCP层以下的协议层所对应的实体是{Uu-RLC,Uu-MAC,Uu-PHY}层所对应的实体中的至少之一。
作为该实施例的一个子实施例,从直接路径切换到非直接路径,包括将Uu-PDCP协议层所对应的协议实体与所述至少增加或修改Uu-PDCP层以下的协议层所对应的所述实体相关联。
作为一个实施例,从直接路径切换到非直接路径,包括至少发送PDCP状态报告。
作为一个实施例,所述非直接路径指的是所述UE与所述gNB之间的通过所述中继转发的通信路径。
作为一个实施例,所述非直接路径传输至少需要使用副链路或PC5接口传输。
作为一个实施例,附图7示出了非直接路径传输的一种实施方式。
作为一个实施例,所述中继中的所述Uu第一协议层承载所述中继中的所述PC5-第二协议层的SDU。
作为一个实施例,所述中继中的所述PC5-第二协议层承载所述中继中的所述Uu第一协议层的SDU。
作为一个实施例,所述第一信号生成于所述中继,所述第一信号通过PC5接口传输。
实施例8
实施例8示例了根据本申请的一个实施例的路径切换的示意图,如附图8所示。
实施例8中的第一节点对应本申请的所述第一节点;实施例8中的第二节点对应本申请的所述第二节点;实施例8中的第三节点对应本申请的所述第三节点;实施例8中的第四节点是所述第二节点以外的小区或基站或小区组。
附图8中的带有“路径切换”的箭头指示所述第一节点发生从直接路径传输切换到非直接路径传输,其中,所述直接路径是所述第一节点与所述第二节点直接通信的链路;所述非直接路径是所述第一节点通过所述第三节点与所述第四节点通信的链路;需要注意的是,尽管附图8中所述第四节点与所述第二节点不同,但本申请所提出的方法同样使用于第四节点与所述第二节点是同一个节点的场景;所述直接路径传输和所述非直接路径传输指的都是所述第一节点和网络之间的。
作为一个实施例,所述通过所述第三节点的非直接路径通信的配置属于针对所述第四节点的CHO的条件重配置的一部分。
作为一个实施例,所述第一消息指示针对所述第四节点的针对CHO的第一条件重配置,所述第一条件重配置包括通过所述第三节点的非直接路径传输的配置。
作为该实施例的一个子实施例,所述CHO指的是条件切换,当所述第一节点完成所述条件切换后,所述第一节点的PCell由所述第二节点变成所述第四节点。
作为该实施例的一个子实施例,在执行所述第一条件重配置时,所述第一节点开始计时器T304,所述第一信号被用于停止所述计时器T304。
作为该实施例的一个子实施例,在执行所述第一条件重配置时,所述第一节点只开始所述第一计时器,而不开始所述计时器T304。
作为该实施例的一个子实施例,在执行所述第一条件重配置时,所述第一节点既开始计时器T304,也开始所述第一计时器,所述第一计时器的停止触发所述计时器T304被停止。
作为一个实施例,所述第二节点与所述第四节点的PCI不同,所述第二节点与所述第四节点属于相同的DU或被相同的DU管理。
作为一个实施例,所述第二节点与所述第四节点属于相同的小区组。
作为一个实施例,所述第二节点与所述第四节点分别属于所述第一节点的MCG和SCG。
作为一个实施例,所述第一节点维护针对CHO的第一候选小区列表,和针对基于条件的直接路径切换到非直接路径的第一候选中继列表;所述第一候选小区列表包括针对CHO的候选小区,所述第一候选中继列表包括针对基于条件的路径切换的候选中继;所述第一消息被用于指示所述第一候选小区列表和所述第 一候选中继列表,所述第一节点在接收到所述第一消息后发生无线链路失败,作为发生无线链路失败的响应,所述第一节点执行RRC重建。
作为该实施例的一个子实施例,所述RRC重建包括选择第一小区,所述第一小区属于所述第一候选小区列表,所述第一节点应用针对所述第一小区的RRCReconfiguration,作为所述行为应用针对所述第一小区的RRCReconfiguration的响应,所述第一节点删除所述第一候选小区列表且删除所述第一候选中继列表中PCell为所述第一小区的中继。
作为该实施例的一个子实施例,所述RRC重建包括选择第一中继,所述第一中继属于所述第一候选中继列表,所述第一节点应用针对所述第一中继的配置,作为所述行为应用针对所述第一小区的配置的响应,所述第一节点删除所述第一候选中继列表且删除所述第一候选小区列表中所述第一中继的PCell。
作为一个实施例,所述路径切换指的是停止使用直接路径传输,并开始使用非直接路径传输,如果在所述路径切换的过程中不涉及SpCell的改变,则所述路径切换与传统意义的小区间切换(handover)并不相同;如果在所述路径切换的过程中涉及SpCell的改变,则所述路径切换可在传统意义的小区间切换流程内的被执行;总之传统意义的小区间切换不涉及所述路径切换。
实施例9
实施例9示例了根据本申请的一个实施例的第一消息被用于所述行为开始所述第一计时器的示意图,如附图9所示。
作为一个实施例,所述第一消息被接收到以后立即被执行或被应用,所述第一消息的执行或应用触发开始所述第一计时器。
作为一个实施例,所述第一消息的接收触发开始所述第一计数器。
作为一个实施例,所述第一消息的应用触发开始所述第一计数器。
作为一个实施例,所述第一消息的执行触发开始所述第一计数器。
作为一个实施例,所述第一消息包括所述第一计时器的配置信息。
作为该实施例的一个子实施例,所述第一计时器的所述配置信息包括所述第一计时器的过期时间。
作为该实施例的一个子实施例,所述第一计时器的所述配置信息包括所述第一计时器的时间。
作为一个实施例,所述第一消息所包括的满足一定条件时所执行的配置的被执行触发所述第一计时器。
作为一个实施例,所述第一消息所包括的满足一定条件时所应用的配置的被应用触发所述第一计时器。
作为一个实施例,当条件重配置被执行时,所述第一消息所包括的针对所述条件重配置的至少部分配置被应用触发开始所述第一计时器。
作为一个实施例,所述第一消息中与所述第一条件相关联的配置被执行被用于触发开始所述第一计时器。
作为该实施例的一个子实施例,与所述第一条件相关联的所述配置是所述第一条件被满足所触发应用或执行的配置。
作为该实施例的一个子实施例,与所述第一条件相关联的所述配置是所述第一消息中的一个或若干个域。
作为该实施例的一个子实施例,与所述第一条件相关联的所述配置是所述第一消息中的一个或若干个信元。
作为该实施例的一个子实施例,与所述第一条件相关联的所述配置被执行或应用后,所述第一节点与网络的通信方式是或切换为非直接路径传输。
作为该实施例的一个子实施例,作为所述第一消息中与所述第一条件相关联的配置被执行的响应,所述第一节点开始所述第一计时器。
作为该实施例的一个子实施例,所述第一计时器的开始是所述第一消息中与所述第一条件相关联的配置被执行的一部分。
实施例10
实施例10示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图10所示。 在附图10中,第一节点中的处理装置1000包括第一接收机1001和第一发射机1002。在实施例10中,
第一接收机1001,接收第一消息,所述第一消息被用于指示从直接路径切换到非直接路径;开始第一计时器;所述第一计时器的过期被用于触发RRC重建;
所述第一接收机1001,在所述行为开始第一计时器之后且在所述第一计时器过期之前,在副链路上接收第一信号;作为接收所述第一信号的响应,停止所述第一计时器;
第一发射机1002,发送第二消息,所述第二消息被用于反馈所述第一消息;
其中,所述第一消息通过所述直接路径传输;所述第二消息通过所述非直接路径传输;所述第一消息和所述第二消息分别是RRC消息;所述第二消息被所述第一信号的发送者中继;所述第一消息被用于所述行为开始所述第一计时器。
作为一个实施例,所述第一信号包括任一所述第一消息的发送者生成的数据包。
作为一个实施例,所述第一信号包括第一信令,所述第一信令被用于指示所述非直接路径已建立。
作为一个实施例,所述第一信号包括第二信令,所述第二信令被用于确认所述第一节点和所述第一信号的发送者之间的直接链路已成功建立;所述第二信令包括中继服务码;所述第二信令是PC5-S消息。
作为一个实施例,所述第一接收机1001,接收第一发现消息,所述第一发现消息包括第一小区身份,所述第一小区身份是所述第一消息的发送者的小区身份;所述第一发现消息包括所述第一信号的发送者的第一链路层身份;根据第一参考信号资源评估第一测量结果;根据所述第一发现消息的发送者所发送的副链路信号评估第二测量结果;
所述第一发射机1002,通过所述直接路径发送第三消息,所述第三消息被用于指示所述第一链路层身份;
其中,所述第一消息用于指示当第一条件被满足时,从直接路径切换到非直接路径;所述第一条件包括所述第一测量结果低于第一阈值且所述第二测量结果高于第二阈值;所述第一消息包括所述第一链路层身份;所述第一条件被满足;所述第一消息中与所述第一条件相关联的配置被执行被用于触发开始所述第一计时器。
作为一个实施例,所述RRC重建包括:选择第三节点,所述第三节点属于第一候选中继列表,所述第一候选中继列表与从直接路径切换到非直接路径有关;通过所述第三节点使用所述非直接路径传输RRC重建请求消息;作为应用所述第一消息的响应,删除所述第一候选中继列表;
其中,在所述第一消息被应用的过程中,第一候选小区列表被保留,所述第一候选小区列表与条件重配置有关;所述第一候选小区列表包括至少一个小区。
作为一个实施例,所述第一接收机1001,在所述第一计时器运行期间,维持针对CHO的条件重配置评估,停止针对从直接路径切换到非直接路径的条件切换的评估。
作为一个实施例,第一接收机1001,接收第一消息,所述第一消息被用于指示从直接路径切换到经由第三节点的非直接路径;根据是否与所述第三节点建立了直接链路确定是否开始第一计时器;
第一发射机1002,发送第二消息,所述第二消息被用于反馈所述第一消息;
其中,所述第一消息通过所述直接路径传输;所述第二消息通过所述经由所述第三节点的非直接路径传输;所述第一消息和所述第二消息分别是RRC消息;所述第二消息被所述第三节点中继;所述第一消息包括第一链路层身份,所述第一链路层身份包括24个比特;所述第一链路层身份是所述第三节点的身份;句子根据是否与所述第三节点建立了直接链路确定是否开始第一计时器的含义包括:
当与所述第三节点建立了直接链路时,不开始所述第一计时器;
当与所述第三节点的直接链路未被建立时,开始所述第一计时器;
中继业务码被用于建立所述直接链路;所述短语经由所述第三节点的含义是,所述第三节点是所述非直接路径上的中继。
作为一个实施例,所述第一计时器的过期被用于触发RRC重建。
作为一个实施例,所述第一节点是一个用户设备(UE)。
作为一个实施例,所述第一节点是一个支持大时延差的终端。
作为一个实施例,所述第一节点是一个支持NTN的终端。
作为一个实施例,所述第一节点是一个飞行器。
作为一个实施例,所述第一节点是一个车载终端。
作为一个实施例,所述第一节点是一个中继。
作为一个实施例,所述第一节点是一个船只。
作为一个实施例,所述第一节点是一个物联网终端。
作为一个实施例,所述第一节点是一个工业物联网的终端。
作为一个实施例,所述第一节点是一个支持低时延高可靠传输的设备。
作为一个实施例,所述第一节点是副链路通信节点。
作为一个实施例,所述第一接收机1001包括实施例4中的天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,或数据源467中的至少之一。
作为一个实施例,所述第一发射机1002包括实施例4中的天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,或数据源467中的至少之一。
实施例11
实施例11示例了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;如附图11所示。在附图11中,第二节点中的处理装置1100包括第二发射机1101和第二接收机1102。在实施例11中,
第二发射机1101,发送第一消息,所述第一消息被用于指示从直接路径切换到非直接路径;
第二接收机1102,接收第二消息,所述第二消息被用于反馈所述第一消息;
其中,所述第二消息的发送者,开始第一计时器,所述第一计时器的过期被用于触发RRC重建,在所述行为开始第一计时器之后且在所述第一计时器过期之前,在副链路上接收第一信号;所述第一信号被用于停止所述第一计时器;所述第一消息通过所述直接路径传输;所述第二消息通过所述非直接路径传输;所述第一消息和所述第二消息分别是RRC消息;所述第二消息被所述第一信号的发送者中继;所述第一消息被用于所述行为开始所述第一计时器。
作为一个实施例,所述第二接收机1102,通过所述直接路径接收第三消息,所述第三消息被用于指示所述第一链路层身份;第一参考信号资源被用于评估第一测量结果;副链路信号被用于评估第二测量结果;
其中,所述第一消息用于指示当第一条件被满足时,从直接路径切换到非直接路径;所述第一条件包括所述第一测量结果低于第一阈值且所述第二测量结果高于第二阈值;所述第一消息包括所述第一链路层身份;所述第一消息中与所述第一条件相关联的配置被执行被用于触发开始所述第一计时器。
作为一个实施例,所述RRC重建包括:通过第三节点使用所述非直接路径接收RRC重建请求消息。
作为一个实施例,所述第二节点是卫星。
作为一个实施例,所述第二节点是IoT节点。
作为一个实施例,所述第二节点是中继。
作为一个实施例,所述第二节点是接入点。
作为一个实施例,所述第二节点是基站。
作为一个实施例,所述第二发射机1101包括实施例4中的天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476中的至少之一。
作为一个实施例,所述第二接收机1102包括实施例4中的天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476中的至少之一。
实施例12
实施例12示例了根据本申请的一个实施例的用于第三节点中的处理装置的结构框图;如附图12所示。在附图12中,第三节点中的处理装置1200包括第三接收机1202和第三发射机1201。在实施例12中,
第三发射机1201,转发第二消息,所述第二消息被用于反馈所述第一消息;
所述第三发射机1201,在所述行为开始第一计时器之后且在所述第一计时器过期之前,在副链路上发送第一信号;
其中,所述第二消息的发送者,开始第一计时器,所述第一计时器的过期被用于触发RRC重建;所述第一信号被用于停止所述第一计时器;第一消息被用于指示从直接路径切换到非直接路径;所述第一消息通过所述直接路径传输;所述第二消息通过所述非直接路径传输;所述第一消息和所述第二消息分别是RRC消息;所述第一消息被用于所述行为开始所述第一计时器。
作为一个实施例,所述第一信号包括任一所述第一消息的发送者生成的数据包。
作为一个实施例,所述第一信号包括第一信令,所述第一信令被用于指示所述非直接路径已建立。
作为一个实施例,所述第一信号包括第二信令,所述第二信令被用于确认所述第一节点和所述第三节点之间的直接链路已成功建立;所述第二信令包括中继服务码;所述第二信令是PC5-S消息。
作为一个实施例,所述第三发射机1201,发送第一发现消息和副链路信号,所述第一发现消息包括第一小区身份,所述第一小区身份是所述第一消息的发送者的小区身份;所述第一发现消息包括所述第三节点的第一链路层身份;第一参考信号资源被用于评估第一测量结果;所述副链路信号被用于评估第二测量结果;
其中,所述第一消息用于指示当第一条件被满足时,从直接路径切换到非直接路径;所述第一条件包括所述第一测量结果低于第一阈值且所述第二测量结果高于第二阈值;所述第一消息包括所述第一链路层身份;所述第一消息中与所述第一条件相关联的配置被执行被用于触发开始所述第一计时器。
作为一个实施例,所述RRC重建包括:选择所述第三节点,所述第三节点属于第一候选中继列表,所述第一候选中继列表与从直接路径切换到非直接路径有关;通过所述第三节点使用所述非直接路径传输RRC重建请求消息;作为应用所述第一消息的响应,删除所述第一候选中继列表;
其中,在所述第一消息被应用的过程中,第一候选小区列表被保留,所述第一候选小区列表与条件重配置有关;所述第一候选小区列表包括至少一个小区。
作为一个实施例,所述第三节点是一个用户设备(UE)。
作为一个实施例,所述第三节点是一个支持大时延差的终端。
作为一个实施例,所述第三节点是一个支持NTN的终端。
作为一个实施例,所述第三节点是一个飞行器。
作为一个实施例,所述第三节点是一个车载终端。
作为一个实施例,所述第三节点是一个中继。
作为一个实施例,所述第三节点是一个船只。
作为一个实施例,所述第三节点是一个物联网终端。
作为一个实施例,所述第三节点是一个工业物联网的终端。
作为一个实施例,所述第三节点是一个支持低时延高可靠传输的设备。
作为一个实施例,所述第三节点是副链路通信节点。
作为一个实施例,所述第三接收1202包括实施例4中的天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,或数据源467中的至少之一。
作为一个实施例,所述第三发射机1201包括实施例4中的天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,或数据源467中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IoT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑,卫星通信设备,船只通信设备,NTN用户设备等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点),NTN基站,卫星设备,飞行平台设备等无线通信设备。
本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (14)

  1. 一种被用于无线通信的第一节点,其中,包括:
    第一接收机,接收第一消息,所述第一消息被用于指示从直接路径切换到非直接路径;开始第一计时器;所述第一计时器的过期被用于触发RRC重建;
    所述第一接收机,在所述行为开始第一计时器之后且在所述第一计时器过期之前,在副链路上接收第一信号;作为接收所述第一信号的响应,停止所述第一计时器;
    第一发射机,发送第二消息,所述第二消息被用于反馈所述第一消息;
    其中,所述第一消息通过所述直接路径传输;所述第二消息通过所述非直接路径传输;所述第一消息和所述第二消息分别是RRC消息;所述第二消息被所述第一信号的发送者中继;所述第一消息被用于所述行为开始所述第一计时器。
  2. 根据权利要求1所述的第一节点,其特征在于,
    所述第一信号为所述UE和中继之间的信号,生成于PC5-RLC,所述第一信号是ACK。
  3. 根据权利要求1或2所述的第一节点,其特征在于,
    所述第一信号的发送者是所述第一节点的U2N中继,所述第一信号的发送者是所述第一节点的层2中继。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,
    作为一个实施例,所述第一计时器不是T304。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第一发现消息,所述第一发现消息包括第一小区身份,所述第一小区身份是所述第一消息的发送者的小区身份;所述第一发现消息包括所述第一信号的发送者的第一链路层身份;根据第一参考信号资源评估第一测量结果;根据所述第一发现消息的发送者所发送的副链路信号评估第二测量结果;
    所述第一发射机,通过所述直接路径发送第三消息,所述第三消息被用于指示所述第一链路层身份;
    其中,所述第一消息用于指示当第一条件被满足时,从直接路径切换到非直接路径;所述第一条件包括所述第一测量结果低于第一阈值且所述第二测量结果高于第二阈值;所述第一消息包括所述第一链路层身份;所述第一条件被满足;所述第一消息中与所述第一条件相关联的配置被执行被用于触发开始所述第一计时器。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,
    所述RRC重建包括:选择第三节点,所述第三节点属于第一候选中继列表,所述第一候选中继列表与从直接路径切换到非直接路径有关;通过所述第三节点使用所述非直接路径传输RRC重建请求消息;作为应用所述第一消息的响应,删除所述第一候选中继列表;
    其中,在所述第一消息被应用的过程中,第一候选小区列表被保留,所述第一候选小区列表与条件重配置有关;所述第一候选小区列表包括至少一个小区。
  7. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于,
    所述第一接收机,在所述第一计时器运行期间,维持针对CHO的条件重配置评估,停止针对从直接路径切换到非直接路径的条件切换的评估。
  8. 根据权利要求1至7中任一权利要求所述的第一节点,其特征在于,
    所述第一节点是U2N远端UE;U2N远端UE处于RRC空闲态或RRC非活跃态时,U2N中继UE处于RRC空闲态或RRC非活跃态。
  9. 根据权利要求1至8中任一权利要求所述的第一节点,其特征在于,
    从直接路径切换到非直接路径,包括至少发送PDCP状态报告。
  10. 一种被用于无线通信的第二节点,其中,包括:
    第二发射机,发送第一消息,所述第一消息被用于指示从直接路径切换到非直接路径;
    第二接收机,接收第二消息,所述第二消息被用于反馈所述第一消息;
    其中,所述第二消息的发送者,开始第一计时器,所述第一计时器的过期被用于触发RRC重建,在所述行为开始第一计时器之后且在所述第一计时器过期之前,在副链路上接收第一信号;所述第一信号被用于停止所述第一计时器;所述第一消息通过所述直接路径传输;所述第二消息通过所述非直接路径传输; 所述第一消息和所述第二消息分别是RRC消息;所述第二消息被所述第一信号的发送者中继;所述第一消息被用于所述行为开始所述第一计时器。
  11. 一种被用于无线通信的第三节点,其中,包括:
    第三发射机,转发第二消息,所述第二消息被用于反馈所述第一消息;
    所述第三发射机,在所述行为开始第一计时器之后且在所述第一计时器过期之前,在副链路上发送第一信号;
    其中,所述第二消息的发送者,开始第一计时器,所述第一计时器的过期被用于触发RRC重建;所述第一信号被用于停止所述第一计时器;第一消息被用于指示从直接路径切换到非直接路径;所述第一消息通过所述直接路径传输;所述第二消息通过所述非直接路径传输;所述第一消息和所述第二消息分别是RRC消息;所述第一消息被用于所述行为开始所述第一计时器。
  12. 一种被用于无线通信的第一节点中的方法,其中,包括:
    接收第一消息,所述第一消息被用于指示从直接路径切换到非直接路径;开始第一计时器;所述第一计时器的过期被用于触发RRC重建;
    在所述行为开始第一计时器之后且在所述第一计时器过期之前,在副链路上接收第一信号;作为接收所述第一信号的响应,停止所述第一计时器;
    发送第二消息,所述第二消息被用于反馈所述第一消息;
    其中,所述第一消息通过所述直接路径传输;所述第二消息通过所述非直接路径传输;所述第一消息和所述第二消息分别是RRC消息;所述第二消息被所述第一信号的发送者中继;所述第一消息被用于所述行为开始所述第一计时器。
  13. 一种被用于无线通信的第二节点中的方法,其中,包括:
    发送第一消息,所述第一消息被用于指示从直接路径切换到非直接路径;
    接收第二消息,所述第二消息被用于反馈所述第一消息;
    其中,所述第二消息的发送者,开始第一计时器,所述第一计时器的过期被用于触发RRC重建,在所述行为开始第一计时器之后且在所述第一计时器过期之前,在副链路上接收第一信号;所述第一信号被用于停止所述第一计时器;所述第一消息通过所述直接路径传输;所述第二消息通过所述非直接路径传输;所述第一消息和所述第二消息分别是RRC消息;所述第二消息被所述第一信号的发送者中继;所述第一消息被用于所述行为开始所述第一计时器。
  14. 一种被用于无线通信的第三节点中的方法,其中,包括:
    转发第二消息,所述第二消息被用于反馈所述第一消息;
    在所述行为开始第一计时器之后且在所述第一计时器过期之前,在副链路上发送第一信号;
    其中,所述第二消息的发送者,开始第一计时器,所述第一计时器的过期被用于触发RRC重建;所述第一信号被用于停止所述第一计时器;第一消息被用于指示从直接路径切换到非直接路径;所述第一消息通过所述直接路径传输;所述第二消息通过所述非直接路径传输;所述第一消息和所述第二消息分别是RRC消息;所述第一消息被用于所述行为开始所述第一计时器。
PCT/CN2022/120891 2021-09-26 2022-09-23 一种被用于无线通信的方法和设备 WO2023046073A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/434,755 US20240179611A1 (en) 2021-09-26 2024-02-06 Method and device for wireless communication

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111130089 2021-09-26
CN202111130089.X 2021-09-26
CN202111318202.7A CN115884222A (zh) 2021-09-26 2021-11-09 一种被用于无线通信的方法和设备
CN202111318202.7 2021-11-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/434,755 Continuation US20240179611A1 (en) 2021-09-26 2024-02-06 Method and device for wireless communication

Publications (1)

Publication Number Publication Date
WO2023046073A1 true WO2023046073A1 (zh) 2023-03-30

Family

ID=85719316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120891 WO2023046073A1 (zh) 2021-09-26 2022-09-23 一种被用于无线通信的方法和设备

Country Status (2)

Country Link
US (1) US20240179611A1 (zh)
WO (1) WO2023046073A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210144606A1 (en) * 2017-08-11 2021-05-13 Huawei Technologies Co., Ltd. Path switching method, apparatus and system
CN113365223A (zh) * 2020-03-04 2021-09-07 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2021185227A1 (zh) * 2020-03-18 2021-09-23 上海朗帛通信技术有限公司 一种非连续无线通信的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210144606A1 (en) * 2017-08-11 2021-05-13 Huawei Technologies Co., Ltd. Path switching method, apparatus and system
CN113365223A (zh) * 2020-03-04 2021-09-07 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2021185227A1 (zh) * 2020-03-18 2021-09-23 上海朗帛通信技术有限公司 一种非连续无线通信的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "Left issues on UP aspects for service continuity", 3GPP DRAFT; R2-2107196, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. E-meeting; 20210801, 6 August 2021 (2021-08-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052033944 *

Also Published As

Publication number Publication date
US20240179611A1 (en) 2024-05-30

Similar Documents

Publication Publication Date Title
WO2021212730A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
US20230422336A1 (en) Method and device for wireless communication
US20230300936A1 (en) Method and device for wireless communication
US20230156535A1 (en) Method and device for wireless communication
CN113938841B (zh) 一种被用于无线通信的节点中的方法和装置
CN116266918A (zh) 一种被用于无线通信的方法和设备
WO2023046073A1 (zh) 一种被用于无线通信的方法和设备
WO2023072046A1 (zh) 一种被用于无线通信的方法和设备
WO2024078431A1 (zh) 一种被用于无线通信的方法和设备
WO2024083056A1 (zh) 一种被用于无线通信的方法和设备
US20230239951A1 (en) Method and device for wireless communication
WO2023174229A1 (zh) 一种被用于无线通信的方法和设备
US20230232485A1 (en) Method and device for wireless communication
WO2024055915A1 (zh) 一种被用于无线通信的方法和设备
WO2024156283A1 (zh) 一种被用于无线通信的方法和设备
WO2024140675A1 (zh) 一种被用于无线通信的方法和设备
US20240063967A1 (en) Method and device for wireless communication
US20230156844A1 (en) Method and device for wireless communication
WO2023186162A1 (zh) 一种被用于无线通信的方法和设备
CN115884222A (zh) 一种被用于无线通信的方法和设备
WO2023134591A1 (zh) 一种被用于无线通信中的方法和装置
US20240284224A1 (en) Method and device for wireless communication
WO2023061204A1 (zh) 一种被用于无线通信的方法和设备
WO2023246671A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023274045A1 (zh) 一种被用于无线通信的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22872117

Country of ref document: EP

Kind code of ref document: A1