WO2024083056A1 - 一种被用于无线通信的方法和设备 - Google Patents
一种被用于无线通信的方法和设备 Download PDFInfo
- Publication number
- WO2024083056A1 WO2024083056A1 PCT/CN2023/124635 CN2023124635W WO2024083056A1 WO 2024083056 A1 WO2024083056 A1 WO 2024083056A1 CN 2023124635 W CN2023124635 W CN 2023124635W WO 2024083056 A1 WO2024083056 A1 WO 2024083056A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signaling
- candidate value
- node
- message
- timer
- Prior art date
Links
- 230000006854 communication Effects 0.000 title claims abstract description 132
- 238000004891 communication Methods 0.000 title claims abstract description 130
- 238000000034 method Methods 0.000 title claims abstract description 34
- 230000011664 signaling Effects 0.000 claims abstract description 434
- 230000004044 response Effects 0.000 claims description 27
- 230000005540 biological transmission Effects 0.000 description 40
- 238000010586 diagram Methods 0.000 description 20
- 230000006870 function Effects 0.000 description 18
- 238000005259 measurement Methods 0.000 description 18
- 108091005487 SCARB1 Proteins 0.000 description 17
- 102100037118 Scavenger receptor class B member 1 Human genes 0.000 description 17
- 230000008569 process Effects 0.000 description 17
- 238000012545 processing Methods 0.000 description 14
- 101100077212 Schizosaccharomyces pombe (strain 972 / ATCC 24843) rlc1 gene Proteins 0.000 description 11
- 230000000977 initiatory effect Effects 0.000 description 11
- 230000009977 dual effect Effects 0.000 description 10
- 230000006978 adaptation Effects 0.000 description 7
- 238000007726 management method Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 238000013507 mapping Methods 0.000 description 5
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 4
- 238000013468 resource allocation Methods 0.000 description 4
- 101100059544 Arabidopsis thaliana CDC5 gene Proteins 0.000 description 3
- 101100244969 Arabidopsis thaliana PRL1 gene Proteins 0.000 description 3
- 101100150275 Caenorhabditis elegans srb-3 gene Proteins 0.000 description 3
- 102100039558 Galectin-3 Human genes 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 101100454448 Homo sapiens LGALS3 gene Proteins 0.000 description 3
- 101001055444 Homo sapiens Mediator of RNA polymerase II transcription subunit 20 Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 101150115300 MAC1 gene Proteins 0.000 description 3
- 101150051246 MAC2 gene Proteins 0.000 description 3
- 102100026165 Mediator of RNA polymerase II transcription subunit 20 Human genes 0.000 description 3
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000011218 segmentation Effects 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- 101000575066 Homo sapiens Mediator of RNA polymerase II transcription subunit 17 Proteins 0.000 description 2
- 102100025530 Mediator of RNA polymerase II transcription subunit 17 Human genes 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 230000027311 M phase Effects 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000013439 planning Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/30—Connection release
- H04W76/38—Connection release triggered by timers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/15—Setup of multiple wireless link connections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/27—Transitions between radio resource control [RRC] states
Definitions
- the present application relates to a transmission method and apparatus in a wireless communication system, and in particular to side-link communication, relay communication, and multipath relay.
- the 3GPP (3rd Generation Partner Project) RAN (Radio Access Network) #72 plenary meeting decided to study the new air interface technology (NR, New Radio) (or Fifth Generation, 5G), and the NR WI (Work Item) was passed at the 3GPP RAN #75 plenary meeting, starting the standardization work on NR.
- NR New Radio
- 5G Fifth Generation
- both LTE (Long Term Evolution) and 5G NR involve accurate reception of reliable information, optimized energy efficiency, determination of information validity, flexible resource allocation, scalable system structure, efficient non-access layer information processing, low service interruption and drop rate, and support for low power consumption.
- This is of great significance to the normal communication between base stations and user equipment, the reasonable scheduling of resources, and the balancing of system load. It can be said to be the cornerstone of high throughput, meeting the communication needs of various services, improving spectrum utilization, and improving service quality.
- V2X Vehicle to X
- device to device unlicensed spectrum communication
- user communication quality monitoring user communication quality monitoring
- network planning optimization network planning optimization
- NTN Non Territerial Network
- TN Tutial Network
- dual connectivity systems wireless resource management and multi-antenna codebook selection, signaling design, neighbor management, business management, and beamforming.
- the information transmission methods are divided into broadcast and unicast. Both transmission methods are essential for 5G systems because they are very helpful in meeting the above requirements.
- the UE can be connected to the network directly or through a relay.
- relays In many communication scenarios, the use of relays is involved. For example, when a UE (User Equipment) is at the edge of a cell and has poor coverage, it can access the network through a relay, and the relay node can be another UE.
- the relay methods mainly include layer 3 relay and layer 2 relay (L2 U2N relay), both of which provide network access services for remote nodes (U2N remote UE) through relay nodes.
- Layer 3 relay is transparent to the access network, that is, the remote UE only establishes a connection with the core network, and the access network cannot identify whether the data comes from the remote node or the relay node; while in layer 2 relay, the remote node (U2N remote UE) and the access network (RAN) have an RRC connection, the access network can manage the remote node, and a radio bearer can be established between the access network and the remote node.
- the relay can be another UE. In a system that supports layer 2 relay, the UE can communicate with the network through the L2 relay UE (L2 U2N relay UE), that is, using an indirect path, or it can communicate with the network directly without a relay, that is, using a direct path.
- a UE can use both direct and indirect paths to achieve better reliability and higher throughput.
- the direct path has a smaller latency
- the indirect path has a smaller latency.
- the use of non-direct paths requires the participation of relays.
- the relay may not have established an RRC connection when receiving a relay service request from a remote UE. It needs to establish a connection with the network before it can start transmitting information about the remote UE, which also increases the latency of the remote UE. Therefore, a problem that needs to be solved regarding relay communication is how to configure the UE to control the RRC connection request process according to different situations.
- this application provides a solution.
- the present application discloses a method in a first node used for wireless communication, comprising:
- the first signaling indicates a first candidate value set of a first timer
- the second signaling indicates a second candidate value of the first timer
- the first candidate value set includes at least one candidate value
- the first message is an RRC message
- the first message is used to request an RRC connection, whether the first message is sent through a direct path or an indirect path is used to determine whether the target value is a candidate value in the first candidate value set or the second candidate value
- the indirect path is to transmit information through L2 (Layer-2) U2N (UE to Network) relay
- the direct path is not to transmit information through L2 U2N relay
- the stop condition of the first timer includes receiving a response to the first message
- the expiration of the first timer is used to determine the failure of the RRC connection.
- the problems to be solved by the present application include: how to configure the timer in the RRC connection request according to different communication modes; how to control the RRC connection request process according to different communication modes; how to increase the flexibility of configuration; how to better support relay communications in different scenarios; how to configure the timer; how to perform different optimizations or configurations for direct paths and indirect paths.
- the benefits of the above method include: supporting UEs that use direct paths and indirect paths at the same time, supporting multiple application scenarios; ensuring communication reliability, ensuring communication flexibility, reducing complexity, improving user experience, avoiding communication interruptions, and reducing communication delays.
- the first message is transmitted using SRB0;
- the sentence "the first message is used to request an RRC connection, and whether the first message is sent through a direct path or an indirect path is used to determine whether the target value is a candidate value in the first candidate value set or the second candidate value" means: SRB0 is mapped to a direct path or an indirect path is used to determine whether the target value is a candidate value in the first candidate value set or the second candidate value.
- the first signaling is unicast, and the second signaling is broadcast; or, both the first signaling and the second signaling are broadcast.
- whether the target value is a candidate value in the first candidate value set or the second candidate value has nothing to do with whether the first node behaves as a first type UE when at least one of the first signaling and the second signaling is received; the first type UE at least uses a non-direct path to transmit information.
- whether the target value is a candidate value in the first candidate value set or the second candidate value is independent of whether at least one of the first signaling and the second signaling is received through a direct path or an indirect path.
- the first signaling includes an RRC reconfiguration message;
- the rlf-TimersAndConstants information element included in the first signaling indicates a candidate value in the first candidate value set;
- the second signaling includes a system message block 12 (SIB12), and the system message block 12 is used to configure secondary link communication;
- the UE-TimersAndConstantsRemoteUE information element included in the second signaling indicates the second candidate value;
- the second candidate value is determined as the target value.
- the first signaling includes a system message block 1; the system message block 1 includes scheduling information of other system messages; the UE-TimersAndConstants information element included in the first signaling indicates a candidate value in the first candidate value set; the second signaling includes a system message block 12 (SIB12), and the system message block 12 is used to configure secondary link communication; the UE-TimersAndConstantsRemoteUE information element included in the second signaling indicates the second candidate value;
- SIB12 system message block 12
- the second candidate value is determined as the target value.
- the first signaling is used to configure a second timer and N; a start condition of the second timer includes: detecting a problem with the physical layer of the SpCell; a stop condition of the second timer includes: receiving N consecutive synchronization indications from a lower layer for the SpCell;
- the second timer is configured by the first signaling; the second candidate value is determined as the target value; the first signaling is unicast, and the second signaling is broadcast.
- the first candidate value set includes a first candidate value and a third candidate value, the first candidate value is for a direct path, and the third candidate value is for an indirect path; when the first message is sent via a direct path, the first candidate value is determined as the target value; when the first message is sent via an indirect path, the third candidate value is determined as the target value.
- the first node is a user equipment.
- the first node is an access network device.
- the first node is a vehicle-mounted terminal.
- the first node is an aircraft.
- the first node is a mobile phone.
- the present application discloses a first node used for wireless communication, comprising:
- a first receiver receives a first signaling and a second signaling; the first signaling indicates a first candidate value set of a first timer; the second signaling indicates a second candidate value of the first timer; the first candidate value set includes at least one candidate value;
- a first transmitter sends a first message, and along with the sending of the first message, starts the first timer, wherein the value of the first timer is a target value;
- the first message is an RRC message
- the first message is used to request an RRC connection, whether the first message is sent through a direct path or an indirect path is used to determine whether the target value is a candidate value in the first candidate value set or the second candidate value
- the indirect path is to transmit information through L2 (Layer-2) U2N (UE to Network) relay
- the direct path is not to transmit information through L2 U2N relay
- the stop condition of the first timer includes receiving a response to the first message
- the expiration of the first timer is used to determine the failure of the RRC connection.
- this application has the following advantages:
- RRC connection request process It supports initiating RRC connection request through a direct path and supports initiating RRC connection request through an indirect path.
- the RRC connection request process is more targeted.
- the status when receiving signaling does not affect the use of signaling.
- FIG1 shows a flowchart of receiving a first signaling, receiving a second signaling, sending a first message, and starting a first timer according to an embodiment of the present application
- FIG2 shows a schematic diagram of a network architecture according to an embodiment of the present application
- FIG3 is a schematic diagram showing an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
- FIG4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
- FIG5 shows a flow chart of wireless signal transmission according to an embodiment of the present application
- FIG6 shows a flowchart of a protocol stack according to an embodiment of the present application
- FIG7 shows a schematic diagram of a protocol stack according to an embodiment of the present application.
- FIG8 shows a schematic diagram of a direct path and an indirect path according to an embodiment of the present application
- FIG. 9 is a schematic diagram showing whether a first message is sent through a direct path or an indirect path and is used to determine whether a target value is a candidate value in a first candidate value set or a second candidate value according to an embodiment of the present application;
- FIG10 is a schematic diagram showing that expiration of a first timer is used to determine an RRC connection failure according to an embodiment of the present application
- FIG11 illustrates a schematic diagram of a processing device used in a first node according to an embodiment of the present application.
- Embodiment 1 illustrates a flowchart of receiving a first signaling, receiving a second signaling, sending a first message, and starting a first timer according to an embodiment of the present application, as shown in FIG1.
- each box represents a step, and it is particularly important to emphasize that the order of the boxes in the figure does not represent the temporal sequence between the steps represented.
- Example 1 the first node in the present application receives a first signaling in step 101; receives a second signaling in step 102; sends a first message in step 103; and starts a first timer in step 104.
- the first signaling indicates a first candidate value set for the first timer; the second signaling indicates a second candidate value for the first timer; the first candidate value set includes at least one candidate value; the value of the first timer is a target value; the first message is an RRC message, the first message is used to request an RRC connection, and whether the first message is sent through a direct path or an indirect path is used to determine whether the target value is a candidate value in the first candidate value set or the second candidate value; the indirect path is to transmit information through L2 (Layer-2) U2N (UE to Network) relay; the direct path is not to transmit information through L2 U2N relay; the stop condition of the first timer includes receiving a response to the first message; and the expiration of the first timer is used to determine the failure of the RRC connection.
- L2 Layer-2
- U2N UE to Network
- the first timer is started along with the sending of the first message.
- the first message belongs to a first RRC connection request process, and initiating the first RRC connection request process includes starting the first timer.
- the sentence accompanies the sending of the first message and the meaning of starting the first timer includes: the first message belongs to a first RRC connection request process, and initiating the first RRC connection request process includes starting the first timer.
- the sending of the first message triggers the start of the first timer.
- the first node is UE (User Equipment).
- the first node is in an RRC connected state.
- the first signaling triggers the execution of a target operation set.
- the serving cell refers to the cell where the UE resides.
- Performing a cell search includes the UE searching for a suitable cell of the selected PLMN (Public Land Mobile Network) or SNPN (Stand-alone Non-Public Network), selecting the suitable cell to provide available services, and monitoring the control channel of the suitable cell.
- PLMN Public Land Mobile Network
- SNPN Seand-alone Non-Public Network
- the UE can receive system messages from the PLMN or SNPN; after registration, if the UE wishes to establish an RRC connection or continue a suspended RRC connection, the UE can do so by performing initial access on the control channel of the residing cell; the network can page the UE; and the UE can receive ETWS (Earthquake and Tsunami Warning System) and CMAS (Commercial Mobile Alert System) notifications.
- ETWS Earthquake and Tsunami Warning System
- CMAS Common Mobile Alert System
- the serving cell is used to indicate a collection of cells including a special cell (SpCell) and all cells from the cells.
- the primary cell Primary Cell
- MCG Master Cell Group
- the special cell refers to the PCell (Primary Cell) of the MCG or the PSCell (Primary SCG Cell) of the SCG (Secondary Cell Group); if it is not a dual connection operation, the special cell refers to the PCell.
- the operating frequency of SCell is the secondary frequency.
- MR-DC Multi-Radio Dual Connectivity refers to the dual connection of E-UTRA and NR nodes, or the dual connection between two NR nodes.
- the wireless access node that provides the control plane connection to the core network is the master node, which may be Master eNB, master ng-eNB, or master gNB.
- MCG refers to a group of service cells associated with a master node in MR-DC, including SpCells, and may also, optionally, include one or more SCells.
- PCell is the SpCell of MCG.
- the PSCell is the SpCell of the SCG.
- the control plane connection to the core network is not provided, and the radio access node that provides additional resources to the UE is a slave node.
- the slave node can be an en-gNB, a slave ng-eNB or a slave gNB.
- a group of service cells associated with a slave node is a SCG (secondary cell group), including a SpCell and, optionally, one or more SCells.
- the access layer function that enables V2X (Vehicle-to-Everything) communication defined in 3GPP standard TS 23.285 is V2X sidelink communication, wherein the V2X sidelink communication occurs between adjacent UEs and uses E-UTRA technology but does not traverse network nodes.
- At least the access layer function that enables V2X (Vehicle-to-Everything) communication defined in 3GPP standard TS 23.287 is NR sidelink communication, wherein the NR sidelink communication occurs between two or more adjacent UEs and uses NR technology but does not traverse (traversing) network nodes.
- the sidelink is a direct communication link between UE-to-UE using a sidelink resource allocation mode, a physical layer signal or channel, and a physical layer process.
- signaling names or domain names or message names starting with "SL-" are all for secondary links.
- not or not in or not in coverage is equivalent to out of coverage.
- within coverage is equal to within coverage.
- outside coverage is equal to outside coverage.
- the relay in the present application refers to a U2U relay UE.
- the direct path refers to a transmission path from UE to network, and transmission through the direct path means that data is sent between a remote UE and the network of UE to network (U2N) without passing through a relay.
- the data includes higher-layer data and signaling.
- the data includes RRC signaling.
- the data includes a bit string or a bit block.
- the data only includes signaling or data carried by RB (radio bearer).
- the indirect path refers to a transmission path from UE to network, and transmission through the indirect path means that data is forwarded between a remote UE from UE to network (U2N, UE-to-Network) and the network through a relay UE from UE to network (U2N, UE-to-Network).
- the data includes higher-layer data and signaling.
- the data includes RRC signaling.
- the data includes a bit string or a bit block.
- the data only includes signaling or data carried by RB (radio bearer).
- a wireless link is either the direct path or the indirect path.
- the U2N relay UE refers to a UE that provides a function of supporting a connection between a U2N remote UE and a network.
- the U2N remote UE refers to a UE that needs to communicate with the network through a U2N relay UE.
- the U2N remote UE refers to a UE that needs to communicate with the network through a U2N relay UE.
- the U2N remote UE refers to a UE that supports relay services and communicates with the network.
- the U2N relay is a U2N relay UE.
- both the U2N relay and the U2N remote node are in the RRC connected state.
- not transmitting through a direct path is equal to transmitting through an indirect path.
- not transmitting through a direct path includes transmitting through a relay.
- transmission through a direct path is or includes transmission without passing through a relay.
- transmitting via a direct path is or includes forwarding without passing through a relay.
- the U2N relay UE is a UE that provides a functionality of supporting connectivity to a network for a U2N remote UE.
- the U2N relay UE is a UE.
- the U2N relay UE provides a relay service to the network for the U2N remote UE.
- the U2N remote UE is a UE that communicates with the network through the U2N relay UE.
- a direct mode is a mode using the direct path.
- the direct connection mode is a mode in which the U2N remote UE communicates with the network using the direct path.
- the direct connection mode is a mode in which the U2N remote UE uses the direct path to transmit RRC signaling or establish an RRC connection with the network.
- an indirect mode is a mode using the indirect path.
- the non-direct connection mode is a mode using the non-direct path.
- the direct connection mode is a mode in which the U2N remote UE communicates with the network using the indirect path.
- the direct connection mode is a mode in which the U2N remote UE uses the non-direct path to transmit RRC signaling or establish an RRC connection with the network.
- the PDCP entity corresponding to the radio bearer terminated between the UE and the network is located in the UE and the network respectively.
- the direct path is a communication link, channel or bearer used for transmission via the direct path.
- the phrase using a direct path means that the data carried by at least one SRB (Signaling radio bearer) between the UE and the network does not pass through the relay or forwarding of other nodes.
- SRB Signal Radio Bearer
- the phrase using a direct path means that the data carried by at least one RB (radio bearer) between the UE and the network does not pass through the relay or forwarding of other nodes.
- the phrase using a direct path refers to that an RLC bearer associated with at least one SRB (Signaling radio bearer) between the UE and the network terminates at the UE and the network respectively.
- SRB Signaling radio bearer
- the phrase using a direct path refers to that an RLC entity associated with at least one SRB (Signaling radio bearer) between the UE and the network terminates at the UE and the network, respectively.
- SRB Signaling radio bearer
- the phrase using a direct path means that the data carried by at least one DRB (Data radio bearer) between the UE and the network does not pass through the relay or forwarding of other nodes.
- DRB Data radio bearer
- the phrase using a direct path refers to that an RLC bearer associated with at least one DRB (Data radio bearer) between the UE and the network terminates at the UE and the network, respectively.
- DRB Data radio bearer
- the phrase using a direct path refers to that an RLC entity associated with at least one DRB (Data radio bearer) between the UE and the network terminates at the UE and the network, respectively.
- DRB Data radio bearer
- the phrase using a direct path refers to the existence of a direct communication link between the UE and the network.
- the phrase using a direct path refers to the presence of a Uu interface between the UE and the network.
- the phrase using a direct path means that there is a MAC layer of a Uu interface between the UE and the network, and the MAC layer of the Uu interface carries RRC signaling.
- the phrase uses a direct path to refer to the physical layer of the Uu interface existing between the UE and the network.
- the phrase using a direct path refers to the existence of a logical channel and/or a transport channel between the UE and the network.
- the indirect path is an indirect path or a communication link or a channel or a bearer used when transmitting through the indirect path.
- the phrase using non-direct path transmission refers to that the data carried by at least one RB (radio bearer) between the UE and the network is relayed or forwarded through other nodes.
- the phrase using a non-direct path refers to that data carried by at least one SRB (Signaling radio bearer) between the UE and the network is relayed or forwarded through other nodes.
- SRB Signaling radio bearer
- the phrase using non-direct path transmission means that the RLC bearer associated with at least one SRB (Signaling radio bearer) between the UE and the network terminates at the UE and other nodes, and other nodes and the network respectively.
- SRB Signal Radio Bearer
- the phrase using a non-direct path means that an RLC entity associated with at least one SRB (Signaling radio bearer) between the UE and the network terminates at the UE and other nodes, and the other nodes and the network respectively.
- SRB Signaling radio bearer
- the phrase using a non-direct path refers to that data carried by at least one DRB (data radio bearer) between the UE and the network is relayed or forwarded through other nodes.
- DRB data radio bearer
- the phrase using a non-direct path refers to that an RLC bearer associated with at least one DRB (data radio bearer) between the UE and the network terminates at the UE and other nodes, and other nodes and the network, respectively.
- DRB data radio bearer
- the phrase using a non-direct path refers to that an RLC entity associated with at least one DRB (data radio bearer) between the UE and the network terminates at the UE and other nodes, and other nodes and the network, respectively.
- DRB data radio bearer
- the method proposed in the present application is also applicable to other L2 relays.
- the other node is other UE.
- the other node is an L2 U2N relay UE.
- the phrase at least one SRB means at least one of ⁇ SRB0, SRB1, SRB2, SRB3 ⁇ .
- the phrase at least one RB means SRB and DRB (data radio bearer).
- the network includes a radio access network (RAN) and/or a serving cell and/or a base station.
- RAN radio access network
- the UE when a direct path is used, the UE may send physical layer signaling to the network; when an indirect path transmission is used, the UE may not send or directly send physical layer signaling to the network;
- the UE when using a direct path, can send a MAC CE to the network; when using an indirect path transmission, the UE cannot send or directly send a MAC CE to the network;
- the other protocol layer is or includes a side link adaptation layer.
- the network when a direct path is used, the network directly schedules the uplink transmission of the first node through DCI; when an indirect path transmission is used, the network does not directly schedule the uplink transmission of the first node through DCI.
- the SRB of the first node when a direct path is used, the SRB of the first node is associated with the RLC entity and/or RLC layer and/or RLC bearer; when an indirect path transmission is used, the SRB of the first node is associated with the RLC entity of the PC5 interface.
- mapping relationship exists between the SRB of the first node and the RLC entity of the Uu interface; when an indirect path transmission is used, a mapping relationship exists between the SRB of the first node and the RLC entity of the PC5 interface.
- the phrase using a direct path includes receiving using a direct path and/or sending using a direct path.
- the phrase using an indirect path includes receiving using an indirect path and/or sending using an indirect path.
- the first node supports conversion of an indirect path to an indirect path.
- the relay in the present application refers to a U2N relay UE.
- the relay in this application refers to L2 U2N relay UE.
- the first node in the present application does not use DC (dual connectivity).
- the first node in the present application is not configured with DC (dual connectivity).
- the first node in the present application has only one cell group.
- the first node in the present application has only one cell group, namely, a master cell group (MCG).
- MCG master cell group
- the first node in the present application is not configured with a secondary cell group (SCG).
- SCG secondary cell group
- the first node in the present application is configured with a secondary cell group (SCG).
- SCG secondary cell group
- the relay in this application refers to L2 U2N relay UE.
- the first node in the present application uses both a direct path and an indirect path.
- the L2 U2N relay UE of the first node has the same PCell as the first node.
- the L2 U2N relay UE of the first node has a different PCell from the first node.
- the first node at least uses an indirect path.
- the SpCell is or includes a PCell.
- the SpCell is or includes a PSCell.
- the first signaling is RRC signaling.
- the first signaling is downlink signaling.
- the first signaling includes one or more RRC messages.
- the first signaling includes an RRCReconfiguration message.
- the first signaling is unicast.
- the first signaling includes at least a partial field of the RRCReconfiguration message.
- the first signaling is unicast.
- the first signaling includes the spCellConfig field carried by RRCReconfiguration.
- the first signaling is unicast.
- the first signaling is or includes spCellConfig.
- the first signaling is unicast.
- the first signaling is or includes cellGroupConfig.
- the first signaling is unicast.
- the first signaling includes an element for configuring a direct path or an indirect path.
- the first signaling carries a domain whose name includes path.
- the reception of the first signaling is executed.
- the sentence "executes the target operation set as a response to receiving the first signaling" includes: the execution of the first signaling includes executing the target operation set.
- the phrase "the first signaling" is used to configure SpCell including configuring rlf-related timers.
- the phrase said first signaling is used to configure SpCell including configuring rlf related constants.
- the phrase said first signaling is used to configure the SpCell including configuring the bandwidth part (BWP, bandwidth part).
- the phrase said first signaling is used to configure SpCell including configuring low mobility assessment.
- the phrase "the first signaling" is used to configure SpCell including the configured serving cell radio link monitoring and evaluation.
- the phrase said first signaling is used to configure SpCell including a configured serving cell beam failure detection evaluation.
- the phrase "the first signaling" is used to configure PDCCH (physical downlink control channel).
- the first signaling is used to configure PDSCH (physical downlink shared channel).
- the first signaling is used to configure a link loss reference link.
- the first signaling is used to configure a serving cell measurement object.
- the first signaling is used to configure reference signal resources.
- the first signaling is used to configure HARQ (Hybrid Automatic Repeat reQuest).
- HARQ Hybrid Automatic Repeat reQuest
- the first signaling is used to configure beam or spatial parameters.
- the first signaling is used to configure multiple antennas.
- the first signaling includes an RRC reconfiguration message.
- the second candidate value is determined as the target value.
- the first candidate value is for a direct path.
- the first candidate value is not dedicated to a non-direct path.
- the first candidate value is not dedicated to the remote UE.
- the third information element included in the first signaling indicates a candidate value in the first candidate value set.
- the third information element is rlf-TimersAndConstants.
- the third information element includes each candidate value in the first candidate value set.
- the second candidate value is determined as the target value.
- the first candidate value is for a direct path.
- the first candidate value is not dedicated to a non-direct path.
- the first candidate value is not dedicated to the remote UE.
- each candidate value in the first candidate value set is indicated by the first signaling.
- the second candidate value is determined as the target value.
- the first candidate value is for a direct path.
- the first candidate value is not dedicated to a non-direct path.
- the first candidate value is not dedicated to the remote UE.
- the first node uses the candidate value of the first timer indicated by the second signaling, and ignores the candidate value of the first timer indicated by the first signaling.
- the second signaling is SIB12
- the first signaling is an RRCReconfiguration message.
- the advantage of the above embodiment is that a broadcast system message covering a message transmitted on a unicast dedicated channel can increase flexibility and optimize the performance of using a non-direct path transmission.
- the first signaling is or includes a system message block.
- the first signaling is or includes system message block 1 (SIB1).
- SIB1 system message block 1
- the second candidate value is determined as the target value.
- the first candidate value is for a direct path.
- the first candidate value is not dedicated to a non-direct path.
- the first candidate value is not dedicated to the remote UE.
- the first signaling includes information related to evaluating whether a UE is allowed to access a cell.
- the first signaling defines the scheduling of other system information.
- the first signaling includes wireless resource configuration information common to all UEs.
- the first signaling includes blocking information for unified access control.
- the first signaling includes cell selection information.
- the first information element included in the first signaling indicates a candidate value in the first candidate value set.
- the second candidate value is determined as the target value.
- the first information element is the UE-TimersAndConstants information element.
- the first candidate value is for a direct path.
- the first candidate value is not dedicated to a non-direct path.
- the first candidate value is not dedicated to the remote UE.
- the second signaling is or includes a system information block 12 (SIB12), and the system information block 12 is used to configure the secondary link communication.
- SIB12 system information block 12
- the second candidate value is determined as the target value.
- the first candidate value is for a direct path.
- the first candidate value is not dedicated to a non-direct path.
- the first candidate value is not dedicated to the remote UE.
- the second information element included in the second signaling indicates the second candidate value.
- the second candidate value is determined as the target value.
- the second information element is UE-TimersAndConstantsRemoteUE.
- the first candidate value is for a direct path.
- the first candidate value is not dedicated to a non-direct path.
- the first candidate value is not dedicated to the remote UE.
- SIB12 covering SIB1 can increase flexibility and optimize the performance of using non-direct path transmission.
- the first candidate value set only includes the first candidate value.
- the first timer is any timer in a first timer set.
- the first timer set includes a T319 timer.
- the first timer set includes a T301 timer.
- the first timer set includes a T300 timer.
- the first candidate value and the second candidate value are both candidate values for the first timer.
- each candidate value in the first candidate value set and the second candidate value are candidate values for the first timer.
- the first information element includes the first candidate value set.
- the first candidate value set only includes the first candidate value.
- the first candidate value set includes candidate values other than the first candidate value.
- the first message is sent either through a direct path or through an indirect path.
- the first message may be sent through a direct path and through an indirect path at the same time.
- the first candidate value set includes more than one candidate value.
- the first candidate value set includes candidate values for a direct path and for an indirect path.
- the first candidate value set includes candidate values for remote nodes and candidate values not for remote nodes.
- the first candidate value set includes candidate values for remote nodes and for nodes other than remote nodes.
- the first candidate value set includes candidate values for remote nodes and universal candidate values.
- the first candidate value set includes candidate values for remote nodes and not for nodes of a specific type.
- the first candidate value set includes only 2 candidate values.
- the first signaling is used to configure a non-direct path.
- the sentence that the first signaling is used to configure an indirect path includes: the first signaling configures the RLC associated with the indirect path.
- the sentence that the first signaling is used to configure an indirect path includes: the first signaling configures resources used by the indirect path.
- the sentence that the first signaling is used to configure an indirect path includes: the first signaling configures measurements associated with the indirect path.
- the sentence that the first signaling is used to configure an indirect path includes: the first signaling configures the SRAP layer associated with the indirect path.
- the sentence that the first signaling is used to configure a non-direct path includes: the first signaling configures the relay UE associated with the non-direct path.
- the sentence that the first signaling is used to configure an indirect path includes: the first signaling configures the RB associated with the indirect path.
- the sentence that the first signaling is used to configure an indirect path includes: the first signaling configures the RB associated with the indirect path.
- the sentence that the first signaling is used to configure a non-direct path includes: configuring a T420 timer.
- the sentence that the first signaling is used to configure a non-direct path includes: configuring an RLC channel.
- the RLC channel is an RLC channel of the PC5 interface.
- the meaning of the sentence that the first signaling is used to configure a non-direct path includes: the first signaling includes sl-RemoteUE-ConfigCommon.
- the sentence that the first signaling is used to configure a non-direct path includes: the first signaling includes SL-RemoteUE-Config.
- the sentence that the first signaling is used to configure a non-direct path includes: the first signaling includes SL-RLC-ChannelConfig.
- the sentence that the first signaling is used to configure a non-direct path includes: the first signaling includes SL-SRAP-Config.
- the sentence that the first signaling is used to configure a non-direct path includes: the first signaling includes SL-RLC-ChannelConfigPC5.
- the sentence that the first signaling is used to configure a non-direct path includes: the first signaling includes sl-PHY-MAC-RLC-Config.
- the first signaling includes the first candidate value set.
- the second signaling includes the second candidate value.
- a first candidate value set for a first timer means that any candidate value in the first candidate value set can be determined as the value of the first timer.
- a first candidate value set for a first timer means that any candidate value in the first candidate value set can be determined as the value of the first timer.
- a first candidate value set for a first timer means that: there is a situation where a candidate value in the first candidate value set is determined to be the value of the first timer.
- a first candidate value set for a first timer means: there is a situation where any one candidate value in the first candidate value set is determined to be the value of the first timer.
- a first candidate value set for a first timer means that the value of the first timer comes from the first candidate value set.
- the phrase "the second candidate value of the first timer" means that the second candidate value can be determined as the value of the first timer.
- a second candidate value of the first timer means that the second candidate value is determined to be the value of the first timer.
- the phrase "the second candidate value of the first timer" means that the value of the first timer may be derived from the second candidate value.
- the first candidate value is different from the second candidate value.
- any candidate value in the first candidate value set is different from the second candidate value.
- At least one candidate value in the first candidate value set is different from the second candidate value.
- whether the candidate value in the first candidate value set is the same as the second candidate value depends on implementation.
- the phrase "the value of the first timer” means: an expiration value of the first timer.
- the phrase "the value of the first timer” means: the expiration time of the first timer.
- the phrase "the value of the first timer" means that when the first timer is not stopped after starting, the first timer will expire at a time determined by the value of the first timer after starting the first timer.
- the unit of any candidate value in the first timer set is milliseconds.
- the first node is an L2 U2N remote node.
- the first node is not a L2 U2N remote node.
- the first node when sending the first message, is an L2 U2N remote node.
- the first node when sending the first message, is not a L2 U2N remote node.
- the first node appears as an L2 U2N remote node.
- the first node does not appear as an L2 U2N remote node.
- the first node when sending the first message, the first node behaves as an L2 U2N remote node.
- the first node when sending the first message, does not appear as an L2 U2N remote node.
- the phrase that the first message is used to request an RRC connection includes: the first message is used to request establishment of an RRC connection.
- the phrase that the first message is used to request an RRC connection includes: the first message is used to request reestablishment of an RRC connection.
- the phrase that the first message is used to request an RRC connection includes: the first message is used to request to continue the RRC connection.
- the first message is an uplink message.
- the first message is sent via SRB0.
- the size of the first message is fixed.
- the size of the first message includes 56 bits.
- the first message is or includes RRCSetupRequest.
- the response to the first message is or includes: RRCSetup.
- the response to the first message is or includes: RRCRelease.
- the response to the first message is or includes: RRCReject.
- the first message is or includes RRCResumeRequest.
- the response to the first message is or includes: RRCSetup.
- the response to the first message is or includes: RRCResume.
- the response to the first message is or includes: RRCRelease.
- the response to the first message is or includes: RRCReject.
- the first message is or includes RRCResumeRequest.
- the response to the first message is or includes: RRCSetup.
- the response to the first message is or includes: RRCResume.
- the response to the first message is or includes: RRCRelease.
- the response to the first message is or includes: RRCReject.
- the first message is or includes RRCReestablishmentRequest.
- the response to the first message is or includes: RRCSetup.
- the response to the first message is or includes: RRCReestablishment.
- the first message includes the identity of the first node.
- the response to the first message refers to RRC signaling.
- the response to the first message is used to establish or restore an RRC connection.
- the response to the first message is used to configure the RRC connection.
- the response to the first message is used to confirm the RRC connection.
- the first signaling is unicast and the second signaling is broadcast.
- the first signaling and the second signaling are both broadcast.
- the first message is transmitted using SRB0 (signaling radio bearer 0).
- the sentence that the first message is used to request an RRC connection, and whether the first message is sent through a direct path or an indirect path is used to determine whether the target value is a candidate value in the first candidate value set or the second candidate value means: whether SRB0 is mapped to a direct path or an indirect path is used to determine whether the target value is a candidate value in the first candidate value set or the second candidate value.
- whether SRB0 is mapped to a direct path or an indirect path is used to determine whether the target value is a candidate value in the first candidate value set or the second candidate value.
- whether SRB0 is mapped to a direct path or an indirect path is used to determine whether the target value is a candidate value in the first candidate value set or the second candidate value.
- whether SRB0 is mapped to a direct path or an indirect path is used to determine whether the target value is a candidate value in the first candidate value set or the second candidate value is used to determine whether the first message is sent via a direct path or an indirect path is used to determine whether the target value is a candidate value in the first candidate value set or the second candidate value.
- whether the SRB is mapped to a direct path or an indirect path is used to determine whether the target value is a candidate value in the first candidate value set or the second candidate value.
- whether the SRB is mapped to a direct path or an indirect path is used to determine whether the target value is a candidate value in the first candidate value set or the second candidate value is used to determine whether the first message is sent via a direct path or an indirect path is used to determine whether the target value is a candidate value in the first candidate value set or the second candidate value.
- the first node determines whether SRB and/or SRB0 is mapped to a direct path or an indirect path.
- the network indicates whether SRB and/or SRB0 is mapped to a direct path or an indirect path.
- the first signaling is used to indicate whether SRB0 is mapped to a direct path or an indirect path.
- the second signaling is used to indicate whether SRB0 is mapped to a direct path or an indirect path.
- the phrase “SRB0 is mapped to a direct path” means that SRB0 uses a direct path.
- the phrase “SRB0 is mapped to an indirect path” means that SRB0 uses an indirect path.
- whether the target value is a candidate value in the first candidate value set or the second candidate value is irrelevant to whether at least one of the first signaling and the second signaling is received through a direct path or an indirect path.
- the sentence whether the target value is a candidate value in the first candidate value set or the second candidate value, regardless of whether at least one of the first signaling and the second signaling is received through a direct path or an indirect path means or includes: whether the target value is a candidate value in the first candidate value set or the second candidate value, regardless of whether the first signaling is received through a direct path or an indirect path.
- the sentence whether the target value is a candidate value in the first candidate value set or the second candidate value, regardless of whether at least one of the first signaling and the second signaling is received through a direct path or an indirect path means or includes: whether the target value is a candidate value in the first candidate value set or the second candidate value, regardless of whether the second signaling is received through a direct path or an indirect path.
- the sentence whether the target value is a candidate value in the first candidate value set or the second candidate value, regardless of whether at least one of the first signaling and the second signaling is received through a direct path or an indirect path means or includes: whether the first signaling is received through a direct path or an indirect path, regardless of whether the target value is a candidate value in the first candidate value set or the second candidate value.
- the sentence whether the target value is a candidate value in the first candidate value set or the second candidate value, regardless of whether at least one of the first signaling and the second signaling is received through a direct path or an indirect path means or includes: whether the second signaling is received through a direct path or an indirect path, regardless of whether the target value is a candidate value in the first candidate value set or the second candidate value.
- the sentence whether the target value is a candidate value in the first candidate value set or the second candidate value, regardless of whether at least one of the first signaling and the second signaling is received through a direct path or an indirect path means or includes: whether the target value is a candidate value in the first candidate value set or the second candidate value, regardless of whether the first signaling and the second signaling are received through a direct path or an indirect path.
- the phrase "it does not matter whether the first signaling is received through a direct path or an indirect path” means that whether the first signaling is sent through a direct path or an indirect path does not affect whether the target value is a candidate value in the first candidate value set or the second candidate value.
- the phrase "regardless of whether the first signaling is received through a direct path or an indirect path" means that regardless of whether the first signaling is sent through a direct path or an indirect path, the target value can be a candidate value in the first candidate value set or the second candidate value.
- the phrase "it does not matter whether the second signaling is received through a direct path or an indirect path” means that whether the second signaling is sent through a direct path or an indirect path does not affect whether the target value is a candidate value in the first candidate value set or the second candidate value.
- the phrase "regardless of whether the second signaling is received through a direct path or an indirect path" means that regardless of whether the second signaling is sent through a direct path or an indirect path, the target value can be a candidate value in the first candidate value set or the second candidate value.
- the phrase "it does not matter whether the first signaling and the second signaling are received through a direct path or an indirect path" means: it does not matter whether the first signaling is received through a direct path or an indirect path, and it does not matter whether the second signaling is received through a direct path or an indirect path.
- whether the target value is a candidate value in the first candidate value set or the second candidate value is irrelevant to whether the first node behaves as a first type of UE when at least one of the first signaling and the second signaling is received.
- the first type of UE at least uses a non-direct path to transmit information.
- whether the target value in the sentence is a candidate value in the first candidate value set or the second candidate value is related to the first
- the meaning of "whether the first node behaves as a first type UE when at least one of the first signaling and the second signaling is received is irrelevant" includes: whether the first node behaves as a first type UE when the first signaling is received does not affect whether the target value is a candidate value in the first candidate value set or the second candidate value.
- the sentence whether the target value is a candidate value in the first candidate value set or the second candidate value, and the meaning that it is independent of whether the first node behaves as a first type UE when at least one of the first signaling and the second signaling is received includes: whether the first node behaves as a first type UE when the second signaling is received does not affect whether the target value is a candidate value in the first candidate value set or the second candidate value.
- the sentence "whether the target value is a candidate value in the first candidate value set or the second candidate value, and the meaning that is independent of whether the first node behaves as a first-class UE when at least one of the first signaling and the second signaling is received" includes: whether the first node behaves as a first-class UE when the first signaling is received does not affect whether the target value is a candidate value in the first candidate value set or the second candidate value, and whether the first node behaves as a first-class UE when the second signaling is received does not affect whether the target value is a candidate value in the first candidate value set or the second candidate value.
- the sentence whether the target value is a candidate value in the first candidate value set or the second candidate value, and the meaning that it is independent of whether the first node behaves as a first type of UE when at least one of the first signaling and the second signaling is received includes: regardless of whether the first node behaves as a first type of UE when the first signaling is received, the target value can be a candidate value in the first candidate value set or the second candidate value.
- the sentence whether the target value is a candidate value in the first candidate value set or the second candidate value, and the meaning that it is independent of whether the first node behaves as a first type of UE when at least one of the first signaling and the second signaling is received includes: regardless of whether the first node behaves as a first type of UE when the second signaling is received, the target value can be a candidate value in the first candidate value set or the second candidate value.
- the sentence whether the target value is a candidate value in the first candidate value set or the second candidate value, and whether the first node behaves as a first type UE when at least one of the first signaling and the second signaling is received means that whether the first node behaves as a first type UE when at least one of the first signaling and the second signaling is received has nothing to do with whether the target value is a candidate value in the first candidate value set or the second candidate value.
- the first type of UE is L2 U2N remote UE.
- the first type of UE is a L2 U2N remote UE that only uses a non-direct path.
- the phrase that the first type of UE uses a non-direct path includes: the first type of UE at least uses a non-direct path.
- the phrase that the first type of UE uses an indirect path includes: the first type of UE uses both an indirect path and a direct path.
- the phrase acting as a first category UE includes: complying with the behavior of the first category UE.
- first type of UE means that: when executing the first signaling, the first signaling is executed according to the operation required to be performed by the first type of UE.
- the phrase expressed as a first type of UE includes: executing a target operation set when executing a first signaling.
- the phrase representing the first type of UE includes: using an indirect path.
- the phrase representing the first type of UE means that only indirect paths are used.
- the phrase expressed as the first type of UE means including: being an L2 U2N remote UE.
- the phrase representing the first type of UE includes: performing signaling for configuring a non-direct path.
- the phrase manifests itself as a first type of UE, including: executing signaling for configuring L2 U2N remote UE.
- the phrase expressed as the first type of UE means including: considering itself as a L2 U2N remote UE.
- the phrase that the first node behaves as a first type of UE includes: the first node behaves as an L2 U2N remote UE.
- the phrase that the first node behaves as a first type of UE includes: the first node behaves as an L2 U2N remote UE and only uses an indirect path.
- the phrase that the first node behaves as a first type of UE includes: the first node behaves as an L2 U2N remote UE and is only configured with an indirect path.
- the phrase that the first node behaves as a first type of UE includes: the first node behaves as an L2 U2N remote UE and no direct path is used.
- the phrase that the first node behaves as a first type of UE includes: the first node behaves as an L2 U2N remote UE and is not configured with a direct path.
- the phrase that the first node behaves as a first type of UE includes: the first node behaves as a L2 U2N remote UE that only uses a non-direct path.
- the phrase that the first node behaves as a first type of UE includes: the first node behaves as an L2 U2N remote UE that is only configured with a non-direct path.
- the first node behaves as a first type of UE, which means or includes: the first node behaves as an L2 U2N remote UE.
- the phrase that the first node behaves as an L2 U2N remote UE means or includes: the first node only uses an indirect path.
- the phrase that the first node behaves as an L2 U2N remote UE means or includes: the first node is only configured with an indirect path.
- the phrase that the first node behaves as an L2 U2N remote UE means or includes: the first node does not use a direct path.
- the phrase that the first node behaves as an L2 U2N remote UE means or includes: the first node is not configured with a direct path.
- phrase using only indirect paths means that no direct paths are used.
- phrase using only non-direct paths means that no direct paths are configured.
- phrase using only indirect paths means that direct paths are not supported or cannot be used.
- the phrase using both an indirect path and a direct path includes: being configured with both an indirect path and a direct path.
- phrase using both an indirect path and a direct path includes: both an indirect path and a direct path can be used.
- the phrase using both an indirect path and a direct path means that during the communication process, both an indirect path and a direct path may be used.
- the phrase using both an indirect path and a direct path means that in one communication, both an indirect path and a direct path can be used.
- the phrase using both an indirect path and a direct path means that at least one RB uses or is associated with the indirect path, and at least one RB uses or is associated with the direct path.
- the phrase using both an indirect path and a direct path includes: transmitting data using both the direct path and the indirect path at the same time.
- phrase using both the indirect path and the direct path includes: using both the direct path and the indirect path to transmit the same data.
- the phrase "transmitting information" includes transmitting signaling and/or data.
- target signaling is used to configure a second timer and N;
- the start condition of the second timer includes: detecting a problem with the physical layer of the SpCell;
- the stop condition of the second timer includes: receiving N consecutive synchronization indications from a lower layer for the SpCell.
- the target signaling is the first signaling.
- the target signaling is signaling other than the first signaling.
- the target signaling is the third signaling.
- the third signaling is RRC signaling.
- the second candidate value is determined as the target value.
- the target signaling is unicast and the second signaling is broadcast.
- the second timer is configured by the target signaling.
- the second candidate value is determined as the target value.
- the target signaling is unicast and the second signaling is broadcast.
- the first timer is different from the second timer.
- N is a positive integer.
- configuration N means the value of configuration N.
- the target signaling is sent to the first node via a dedicated channel.
- the first node can communicate normally with the network only when having an RRC connection.
- expiration of the second timer is used to trigger a wireless link failure.
- a radio link failure triggers the initiation of RRC connection reestablishment.
- initiating RRC connection reestablishment includes sending an RRC connection reestablishment request message.
- initiating RRC connection reestablishment includes selecting a suitable cell to send an RRC connection reestablishment request message.
- initiating RRC connection reestablishment includes selecting a suitable L2 U2N relay UE to send an RRC connection reestablishment request message.
- initiating RRC connection reestablishment includes suspending at least one RB.
- initiating RRC connection reestablishment includes MAC reset.
- the method proposed in the present application is suitable for NR networks.
- the method proposed in this application is suitable for networks after NR.
- the suitable cell includes a suitable NR cell.
- the NR cell is a cell of the NR network.
- the first node sends an RRC connection reestablishment request via a direct path.
- a suitable L2 U2N relay UE is selected, and the first node sends an RRC connection reestablishment request via a non-direct path.
- the suitable NR cell is an NR cell that meets certain channel quality.
- the suitable L2 U2N relay UE is a L2 U2N relay UE that meets certain channel quality.
- expiration of the first timer triggers the first node to enter the RRC idle state.
- the first timer is a T301 timer.
- the first timer is a T319 timer.
- the first timer is a T300 timer.
- the second timer is a T310 timer.
- the second timer is for MCG.
- the physical layer of the SpCell is the physical layer of the first node for communicating with the SpCell.
- the physical layer of the SpCell is the physical layer of the first node used to measure the SpCell signal.
- the phrase "a problem is detected in the physical layer of the SpCell" includes: the physical layer of the first node reports that the measurement result on the reference signal resource of the SpCell is worse than a certain threshold.
- the phrase "a problem is detected in the physical layer of the SpCell" includes: a measurement result reported by the physical layer of the first node on a reference signal resource used to monitor the wireless link quality of the SpCell is worse than a certain threshold.
- the phrase "a problem has been detected in the physical layer of the SpCell" includes: receiving N1 consecutive out-of-sync indications from a lower layer of the SpCell.
- the target signaling indicates the N1.
- N1 is a positive integer.
- the N310 field of the target signaling indicates the N1.
- the N311 field of the target signaling indicates the N.
- the lower layer includes a physical layer.
- the lower layer includes a layer below the RRC layer.
- the continuous out-of-sync indication means that no synchronization indication for the physical layer of the SpCell is received between the N1 out-of-sync indications.
- the continuous out-of-sync indication means that the N1 out-of-sync indications are not mixed with in-sync indications for the physical layer of the SpCell.
- the lower layer for SpCell includes a protocol layer for SpCell below the RRC layer.
- the lower layer for SpCell includes a physical layer for SpCell.
- the phrase receiving N consecutive synchronization indications from a lower layer for SpCell includes: the physical layer of the first node sends an in-sync indication to the RRC layer of the first node based on that the measurement result on the reference signal resource used to monitor the wireless link quality of the SpCell is better than a specific threshold.
- the N consecutive synchronization indications are that no out-of-synchronization indication is received from the physical layer for the SpCell between the N synchronization indications.
- expiration of the second timer is used to determine or trigger a radio link failure for the SpCell.
- the meaning that the first node behaves as a first type of UE includes: the first node uses both an indirect path and a direct path, and the indirect path is a specific path.
- the meaning that the first node does not behave as a first-category UE includes: the first node uses both an indirect path and a direct path, and the direct path is a specific path.
- the meaning that the first node does not behave as a first-class UE includes: the first node behaves as an L2 U2N remote UE and is configured with a direct path.
- the meaning that the first node does not behave as a first-class UE includes: the first node behaves as an L2 U2N remote UE and uses a direct path.
- the meaning that the first node does not behave as a first-class UE includes: the first node behaves as an L2 U2N remote UE and uses multipath.
- the meaning that the first node does not behave as a first-class UE includes: the first node behaves as an L2 U2N remote UE and is configured with multipath.
- the meaning that the first node does not appear as a first-type UE includes: the first node appears as an L2 U2N remote UE configured with a direct path.
- the meaning that the first node does not behave as a first-class UE includes: the first node behaves as an L2 U2N remote UE using a direct path.
- the meaning that the first node does not behave as a first-class UE includes: the first node behaves as an L2 U2N remote UE using multipath.
- the meaning that the first node does not appear as a first-class UE includes: the first node appears as an L2 U2N remote UE configured with multipath.
- the meaning that the first node does not appear as a first-class UE includes: the first node does not appear as an L2 U2N remote UE that is only configured with a non-direct path.
- the meaning that the first node does not behave as a first-class UE includes: the first node does not behave as an L2 U2N remote UE that only uses a direct path.
- the meaning that the first node does not appear as a first-category UE includes: the first node does not appear as an L2 U2N remote UE.
- the first node is an L2 U2N remote UE.
- the meaning that the first node does not behave as a first-category UE includes: the first node does not meet the conditions for behaving as a first-category UE.
- the specific path is a main path among the indirect path and the direct path.
- the specific path is a path configured with a control plane among an indirect path and a direct path.
- the specific path is used to transmit or associate a path of SRB1.
- a specific path is preconfigured.
- a specific path is specified.
- the first node is a L2 U2N remote UE.
- the phrase “the first node is a L2 U2N remote UE” means that the first node selects a L2 U2N relay UE.
- the phrase that the first node is a L2 U2N remote UE includes: the first node establishes a connection with a L2U2N relay UE for relaying.
- the phrase “the first node is a L2 U2N remote UE” means that the first node communicates with the network through a L2 U2N relay UE.
- the phrase that the first node is a L2 U2N remote UE includes: the first node uses the relay service of the L2 U2N relay UE.
- the phrase “the first node is a L2 U2N remote UE” means that the first node communicates with the network through a U2N relay UE.
- the phrase “the first node is an L2 U2N remote UE” means that the first node communicates with the network through a U2N relay UE.
- the phrase said first signaling is used to configure a non-direct path including: configuring a SRAP (Sidelink Relay Adaptation Protocol) layer of a L2 U2N remote UE;
- SRAP Segmentlink Relay Adaptation Protocol
- the first node does not appear to be a first-category UE.
- the phrase configuring the SRAP layer of the L2 U2N remote UE includes: configuring the SRAP layer of the first node.
- the phrase configuring the SRAP layer of the L2 U2N remote UE includes: the first signaling includes SL-SRAP-Config.
- the phrase configuring the SRAP layer of the L2 U2N remote UE includes: configuring the RLC channel.
- the phrase configuring the SRAP layer of the L2 U2N remote UE includes: configuring an RLC channel for communicating with the network.
- the phrase configuring the SRAP layer of the L2 U2N remote UE includes: configuring the RLC channel of the PC5 interface.
- the first candidate value set includes a first candidate value and a third candidate value
- the first candidate value is for a direct path
- the third candidate value is for an indirect path
- the first signaling is unicast; and the second signaling is broadcast.
- whether the first message is sent through a direct path or an indirect path is used to determine the target value.
- the first signaling is unicast; and the second signaling is broadcast.
- the first candidate value is determined as the target value; when the first message is sent through an indirect path, the third candidate value is determined as the target value.
- the first signaling is unicast; and the second signaling is broadcast.
- the second candidate value is for a non-direct path.
- the second candidate value is for L2 U2N remote UE.
- the second candidate value is for a UE that behaves as an L2 U2N remote UE.
- the first candidate value set includes a first candidate value and a third candidate value, the first candidate value is for a direct path, and the third candidate value is for an indirect path; when the first message is sent via a direct path, the first candidate value is determined as the target value; when the first message is sent via an indirect path, the third candidate value is determined as the target value.
- the first signaling is unicast.
- the second signaling is broadcast.
- the second candidate value is for a non-direct path.
- the phrase that the first candidate value is for a direct path means or includes: the first candidate value is not for an indirect path.
- the phrase that the first candidate value is for a direct path means or includes: the first candidate value is not for a secondary link.
- the phrase that the first candidate value is for a direct path means or includes: the first candidate value is not for an L2 U2N remote node.
- the phrase that the first candidate value is for a direct path means or includes: the first candidate value is not for a node that appears as an L2 U2N remote node.
- the phrase "the first candidate value is for a direct path" means or includes: the first candidate value is for the There are UEs.
- the phrase that the first candidate value is for a direct path means or includes: the first candidate value is not for a specific UE.
- the phrase that the third candidate value is for a non-direct path means or includes: the third candidate value is for a UE using a non-direct path.
- the phrase that the third candidate value is for a non-direct path means or includes: the third candidate value is for an L2 U2N remote UE.
- the phrase that the third candidate value is for a non-direct path means or includes: the third candidate value is for a UE that appears as an L2 U2N remote UE.
- the phrase that the third candidate value is for a non-direct path means or includes: the third candidate value is for secondary link communication.
- the second signaling is not used to configure the second timer.
- the first signaling is used to configure a third timer, and the third timer is T311.
- the third signaling is used to configure a third timer, and the third timer is T311.
- Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG2 .
- FIG2 illustrates a diagram of a network architecture 200 of a 5G NR, LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) system.
- the 5G NR or LTE network architecture 200 may be referred to as a 5GS (5G System)/EPS (Evolved Packet System) 200 or some other suitable terminology.
- the 5GS/EPS 200 may include one or more UEs (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server)/UDM (Unified Data Management) 220 and Internet services 230.
- UEs User Equipment
- NG-RAN Next Generation Radio Access Network
- 5GC 5G Core Network
- 5G Core Network 5G Core Network
- EPC Evolved Packet Core
- HSS Home Subscriber Server
- UDM Unified Data Management
- NG-RAN includes NR Node B (gNB) 203 and other gNBs 204.
- gNB 203 provides user and control plane protocol terminations toward UE 201.
- gNB 203 can be connected to other gNBs 204 via an Xn interface (e.g., backhaul).
- gNB 203 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), a TRP (transmitting receiving node), or some other suitable term.
- gNB 203 provides an access point to 5GC/EPC 210 for UE 201.
- Examples of UE 201 include cellular phones, smart phones, session initiation protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices, video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband Internet of Things devices, machine type communication devices, land vehicles, cars, wearable devices, or any other similar functional devices.
- SIP session initiation protocol
- PDAs personal digital assistants
- satellite radios non-terrestrial base station communications
- satellite mobile communications global positioning systems
- multimedia devices video devices
- digital audio players e.g., MP3 players
- cameras e.g., digital audio players
- game consoles e.g., drones, aircraft, narrowband Internet of Things devices, machine type communication devices, land vehicles, cars, wearable devices, or any other similar functional devices.
- UE 201 may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable term.
- the gNB 203 is connected to the 5GC/EPC 210 via the S1/NG interface.
- the 5GC/EPC 210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/SMF (Session Management Function) 211, other MME/AMF/SMF 214, S-GW (Service Gateway)/UPF (User Plane Function) 212, and P-GW (Packet Data Network Gateway)/UPF 213.
- MME Mobility Management Entity
- AMF Authentication Management Field
- S-GW Service Gateway
- User Plane Function User Plane Function
- P-GW Packet Data Network Gateway
- the MME/AMF/SMF 211 is a control node that processes signaling between the UE 201 and the 5GC/EPC 210.
- the MME/AMF/SMF 211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, which is itself connected to P-GW/UPF213.
- P-GW provides UE IP address allocation and other functions.
- P-GW/UPF213 is connected to Internet service 230.
- Internet service 230 includes operator-corresponding Internet protocol services, which may specifically include Internet, intranet, IMS (IP Multimedia Subsystem) and packet-switched streaming services.
- the first node in the present application is UE201.
- the second node in the present application is gNB203.
- the wireless link from the UE201 to the NR Node B is an uplink.
- the wireless link from the NR Node B to UE201 is a downlink.
- the UE 201 supports relay transmission.
- the UE 201 includes a mobile phone.
- the UE 201 is a vehicle including a car.
- the gNB203 is a macrocellular base station.
- the gNB203 is a micro cell base station.
- the gNB203 is a pico cell base station.
- the gNB203 is a flying platform device.
- the gNB203 is a satellite device.
- Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture for a user plane and a control plane according to the present application, as shown in FIG3.
- FIG3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
- FIG3 shows the radio protocol architecture of the control plane 300 for a first node (UE, satellite or aircraft in gNB or NTN) and a second node (satellite or aircraft in gNB, UE or NTN), or between two UEs using three layers: layer 1, layer 2, and layer 3.
- Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
- the L1 layer will be referred to as PHY301 herein.
- Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first node and the second node and the two UEs through PHY301.
- the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol) sublayer 304, which terminate at the second node.
- the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
- the PDCP sublayer 304 also provides security by encrypting data packets, and provides support for inter-zone mobility of the first node between the second node.
- the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
- the MAC sublayer 302 provides multiplexing between logical and transport channels.
- the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in a cell between the first nodes.
- the MAC sublayer 302 is also responsible for HARQ operations.
- the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (i.e., radio bearers) and configuring the lower layers using RRC signaling between the second node and the first node.
- the PC5-S (PC5 Signaling Protocol) sublayer 307 is responsible for processing the signaling protocol of the PC5 interface.
- the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
- the radio protocol architecture for the first node and the second node in the user plane 350 is substantially the same as the corresponding layers and sublayers in the control plane 300 for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355, but the PDCP sublayer 354 also provides header compression for upper layer data packets to reduce radio transmission overhead.
- the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol) sublayer 356, which is responsible for mapping between QoS flows and data radio bearers (DRBs) to support the diversity of services.
- SDAP Service Data Adaptation Protocol
- SRB can be regarded as a service or interface provided by the PDCP layer to a higher layer, such as the RRC layer.
- SRBs include SRB1, SRB2, SRB3, and SRB4 when it comes to sidelink communication, which are used to transmit different types of control signaling.
- SRB is a bearer between the UE and the access network, and is used to transmit control signaling including RRC signaling between the UE and the access network.
- SRB1 has a special meaning for the UE.
- the first node may have several upper layers above the L2 layer 355. In addition, it also includes a network layer (e.g., IP layer) terminated at the P-GW on the network side and an application layer terminated at the other end of the connection (e.g., remote UE, server, etc.).
- a network layer e.g., IP layer
- an application layer terminated at the other end of the connection (e.g., remote UE, server, etc.).
- its control plane may also include an adaptation sublayer SRAP (Sidelink Relay Adaptation Protocol) 308, and its user plane may also include an adaptation sublayer SRAP358.
- SRAP Segment Relay Adaptation Protocol
- the introduction of the adaptation layer helps lower layers, such as the MAC layer, such as the RLC layer, to multiplex and/or distinguish data from multiple source UEs.
- PC5-S307, SRAP308, SRAP358 are not required during the communication process.
- the wireless protocol architecture in FIG. 3 is applicable to the first node in the present application.
- the wireless protocol architecture in FIG. 3 is applicable to the second node in the present application.
- the first signaling in the present application is generated in RRCC306.
- the second signaling in the present application is generated in RRCC306.
- the third signaling in the present application is generated in RRCC306.
- the first message in the present application is generated in RRCC306.
- Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application, as shown in Figure 4.
- Figure 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in an access network.
- the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, and may optionally also include a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and an antenna 452.
- the second communication device 410 includes a controller/processor 475 , a memory 476 , a receiving processor 470 , a transmitting processor 416 , and may optionally also include a multi-antenna receiving processor 472 , a multi-antenna transmitting processor 471 , a transmitter/receiver 418 and an antenna 420 .
- the controller/processor 475 implements the functionality of the L2 (Layer-2) layer.
- the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocation to the first communication device 450 based on various priority metrics.
- the controller/processor 475 is also responsible for the retransmission of lost packets and signaling to the first communication device 450.
- the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (i.e., the physical layer).
- the transmit processor 416 implements coding and interleaving to facilitate forward error correction (FEC) at the second communication device 410, as well as mapping of signal constellations based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
- FEC forward error correction
- BPSK binary phase shift keying
- QPSK quadrature phase shift keying
- M-PSK M-phase shift keying
- M-QAM M-quadrature amplitude modulation
- the multi-antenna transmit processor 471 performs digital spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing on the coded and modulated symbols to generate one or more spatial streams.
- the transmit processor 416 maps each spatial stream to a subcarrier, multiplexes with a reference signal (e.g., a pilot) in the time domain and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate a physical channel carrying a time-domain multi-carrier symbol stream.
- IFFT inverse fast Fourier transform
- the multi-antenna transmit processor 471 then performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream.
- Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
- each receiver 454 receives a signal through its corresponding antenna 452.
- Each receiver 454 recovers the information modulated onto the RF carrier and converts the RF stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
- the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
- the multi-antenna receiving processor 458 performs a receiving analog precoding/beamforming operation on the baseband multi-carrier symbol stream from the receiver 454.
- the receiving processor 456 uses a fast Fourier transform (FFT) to convert the baseband multi-carrier symbol stream after the receiving analog precoding/beamforming operation from the time domain to the frequency domain.
- FFT fast Fourier transform
- the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458 to any spatial stream destined for the first communication device 450.
- the symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
- the receiving processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the second communication device 410 on the physical channel.
- the upper layer data and control signals are then provided to the controller/processor 459.
- the controller/processor 459 implements the functions of the L2 layer.
- the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
- the memory 460 may be referred to as a computer-readable medium.
- the controller/processor 459 provides multiplexing between transport and logical channels, packet reassembly, decryption, header decompression, and control signal processing to recover the upper layer data packets from the core network.
- the upper layer data packets are then provided to all protocol layers above the L2 layer.
- Various control signals may also be provided to L3 for L3 processing.
- a data source 467 is used to provide upper layer data packets to the controller/processor 459.
- the data source 467 represents all protocol layers above the L2 layer.
- the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels based on wireless resource allocation, and implements L2 layer functions for the user plane and control plane.
- the controller/processor 459 is also responsible for retransmission of lost packets and signaling to the second communication device 410.
- the transmit processor 468 performs modulation mapping, channel coding processing, and the multi-antenna transmit processor 457 Digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing are performed, and then the transmit processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is then provided to different antennas 452 via the transmitter 454 after analog precoding/beamforming operations in the multi-antenna transmit processor 457.
- Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
- the function at the second communication device 410 is similar to the reception function at the first communication device 450 described in the transmission from the second communication device 410 to the first communication device 450.
- Each receiver 418 receives a radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the multi-antenna reception processor 472 and the reception processor 470.
- the reception processor 470 and the multi-antenna reception processor 472 jointly implement the functions of the L1 layer.
- the controller/processor 475 implements the L2 layer functions.
- the controller/processor 475 can be associated with a memory 476 storing program codes and data.
- the memory 476 can be referred to as a computer-readable medium.
- the controller/processor 475 In the transmission from the first communication device 450 to the second communication device 410, the controller/processor 475 provides multiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover the upper layer data packets from the UE 450. Upper layer packets from controller/processor 475 may be provided to the core network.
- the first communication device 450 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be used together with the at least one processor, and the first communication device 450 apparatus at least: receives a first signaling and a second signaling; the first signaling indicates a first candidate value set for a first timer; the second signaling indicates a second candidate value for the first timer; the first candidate value set includes at least one candidate value; sends a first message, and starts the first timer along with the sending of the first message, and the value of the first timer is a target value; wherein the first message is an RRC message, the first message is used to request an RRC connection, whether the first message is sent through a direct path or through an indirect path is used to determine whether the target value is a candidate value in the first candidate value set or the second candidate value; the indirect path is to transmit information through an L2 (Layer-2) U2N (UE to Network) relay; the direct
- the first communication device 450 includes: a memory storing a computer-readable instruction program, wherein the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving a first signaling and a second signaling; the first signaling indicates a first candidate value set for a first timer; the second signaling indicates a second candidate value for the first timer; the first candidate value set includes at least one candidate value; sending a first message, and starting the first timer along with the sending of the first message, and the value of the first timer is a target value; wherein the first message is an RRC message, the first message is used to request an RRC connection, and whether the first message is sent through a direct path or an indirect path is used to determine whether the target value is a candidate value in the first candidate value set or the second candidate value; the indirect path is to transmit information through an L2 (Layer-2) U2N (UE to Network) relay; the direct path is not to transmit information through an L2 U2N relay; the stop condition of
- the first communication device 450 corresponds to the first node in this application.
- the second communication device 410 corresponds to the second node in this application.
- the first communication device 450 is a UE.
- the first communication device 450 is a vehicle-mounted terminal.
- the second communication device 450 is a relay.
- the second communication device 410 is a UE.
- the second communication device 410 is a vehicle-mounted terminal.
- the second communication device 410 is a wearable device.
- the second communication device 410 is an Internet of Things device.
- the receiver 454 (including the antenna 452), the receiving processor 456 and the controller/processor 459 are used to receive the first signaling in the present application.
- the receiver 454 (including the antenna 452), the receiving processor 456 and the controller/processor 459 are used to receive the second signaling in the present application.
- the receiver 454 (including the antenna 452 ), the receiving processor 456 and the controller/processor 459 are used to receive the third signaling in the present application.
- the transmitter 454 (including the antenna 452), the transmit processor 468 and the controller/processor 459 are used to send the first message in the present application.
- Embodiment 5 illustrates a wireless signal transmission flow chart according to an embodiment of the present application, as shown in FIG5.
- U01 corresponds to the first node of the present application, and it is particularly noted that the order in this example does not limit the signal transmission order and implementation order in the present application, wherein the steps in F51 are optional.
- a first signaling is received in step S5101; a second signaling is received in step S5102; a third signaling is received in step S5103; and a first message is sent in step S5104.
- a first signaling is sent in step S5201; a second signaling is sent in step S5202; a third signaling is sent in step S5203; and a first message is received in step S5204.
- the first signaling indicates a first candidate value set for the first timer; the second signaling indicates a second candidate value for the first timer; the first candidate value set includes at least one candidate value; the first node U01, accompanying the sending of the first message, starts the first timer, and the value of the first timer is a target value; wherein the first message is an RRC message, the first message is used to request an RRC connection, and whether the first message is sent through a direct path or an indirect path is used to determine whether the target value is a candidate value in the first candidate value set or the second candidate value; the indirect path is to transmit information through an L2 (Layer-2) U2N (UE to Network) relay; the direct path is not to transmit information through an L2 U2N relay; the stop condition of the first timer includes receiving a response to the first message; and expiration of the first timer is used to determine that the RRC connection has failed.
- the first message is an RRC message
- the first message is used to request an RRC connection, and whether the first
- the first node U01 is a UE.
- the first node U01 is a U2N remote UE.
- the second node U02 is a network node.
- the second node U02 is a cell.
- the second node U02 is a base station.
- the second node U02 is the PCell of the first node U01.
- the second node U02 is the PSCell of the first node U01.
- the second node U02 is the SpCell of the first node U01.
- the first signaling is forwarded via a relay.
- the first signaling is sent using an indirect path.
- the first signaling is sent using a direct path.
- the first signaling is sent using both a direct path and an indirect path.
- the first signaling is used to configure a non-direct path.
- the meaning that the first signaling is used to configure an indirect path includes: the first signaling is used to add an indirect path.
- the meaning that the first signaling is used to configure an indirect path includes: the first signaling is used to reconfigure an indirect path.
- the first signaling is used to add a direct path.
- the first signaling includes a measurement configuration
- the measurement configuration is associated with the first measurement report.
- the first signaling includes a measurement configuration
- the first measurement report is generated according to the measurement configuration indicated by the first signaling.
- the first signaling includes a measurement report configuration, and the first measurement report is generated according to the measurement report configuration indicated by the first signaling.
- the measurement configuration includes a reference signal resource targeted for measurement.
- the measurement configuration includes the relay UE targeted for the measurement.
- step S5101 is performed earlier than step S5102.
- step S5101 is not earlier than step S5102.
- step S5101 is performed later than step S5102.
- the reception of the second signaling is independent of the first signaling.
- the reception of the second signaling depends on the first signaling.
- the application or execution of the second signaling depends on the first signaling.
- the first signaling indicates the second signaling.
- the first signaling includes scheduling information of the second signaling.
- the second signaling is a system information block.
- the second signaling is SIB.
- the second signaling is SIB12.
- the first node U01 when sending the first signaling, the first node U01 is in an RRC idle state.
- the first node U01 when sending the first signaling, the first node U01 is in an RRC inactive state.
- SRBs other than SRB0 of the first node U01 are not suspended.
- the first node U01 when sending the first signaling, the first node U01 is in an RRC connected state.
- the first node U01 when sending the second signaling, the first node U01 is in the RRC idle state.
- the first node U01 when sending the second signaling, the first node U01 is in an RRC inactive state.
- the first node U01 when sending the second signaling, the first node U01 is in an RRC connected state.
- the first signaling is sent non-periodically.
- the first signaling is sent periodically.
- the second signaling is sent periodically.
- the first signaling when the first signaling uses a non-direct path, the first signaling is forwarded from the first node U01 to the second node U02 via a relay.
- the second signaling is forwarded from the first node U01 to the second node U02 via a relay.
- the third signaling is forwarded from the first node U01 to the second node U02 via a relay.
- the third signaling uses a direct path.
- the third signaling uses a non-direct path.
- the third signaling uses a direct path and an indirect path.
- step S5104 is performed later than step S5101.
- step S5104 is performed later than step S5102.
- step S5104 is performed later than step S5103.
- the first message is sent using a direct path.
- the first message is sent using an indirect path.
- the first node U01 is in an RRC idle state.
- the first node U01 is in an RRC inactive state.
- the first node U01 detects that the wireless link fails.
- the first node U01 has a L2 U2N relay UE.
- the L2 U2N relay UE of the first node U01 periodically sends discovery messages.
- the discovery message sent by the L2 U2N relay UE of the first node U01 is a PC5-S message.
- the discovery message sent by the L2 U2N relay UE of the first node U01 is a NAS message of the PC5 interface.
- the discovery message sent by the L2 U2N relay UE of the first node U01 is used to be received by the U2N remote UE Discover.
- the discovery message sent by the L2 U2N relay UE of the first node U01 is used to discover the U2N remote UE.
- the discovery message sent by the L2 U2N relay UE of the first node U01 indicates the identity of the L2 U2N relay UE.
- the discovery message sent by the L2 U2N relay UE of the first node U01 indicates the service cell of the L2 U2N relay UE.
- the discovery message sent by the L2 U2N relay UE of the first node U01 indicates the physical cell identity of the service cell of the L2 U2N relay UE.
- the discovery message sent by the L2 U2N relay UE of the first node U01 indicates whether the L2 U2N relay UE provides relay service.
- the discovery message sent by the L2 U2N relay UE of the first node U01 indicates the relay service code of the L2 U2N relay UE.
- the discovery message sent by the L2 U2N relay UE of the first node U01 indicates the PLMN (Public Land Mobile Network) of the L2 U2N relay UE.
- PLMN Public Land Mobile Network
- the discovery message sent by the L2 U2N relay UE of the first node U01 is sent via SRB4.
- the first signaling uses encryption.
- the first signaling uses integrity protection.
- the second signaling uses encryption.
- the second signaling uses integrity protection.
- the third signaling uses encryption.
- the third signaling uses integrity protection.
- the first signaling does not use encryption.
- the first signaling does not use integrity protection.
- the second signaling does not use encryption.
- the second signaling does not use integrity protection.
- Embodiment 6 illustrates a schematic diagram of a protocol stack according to an embodiment of the present application, as shown in FIG6 .
- Figure 6 is divided into two sub-figures (a) and (b).
- the protocol stack shown in Figure 6 is applicable to L2 U2N relay communication, and Example 6 is based on Example 3.
- the prefix "Uu-" in FIG. 6 indicates the protocol of the Uu interface; the prefix "PC5-” indicates the protocol of the PC5 interface.
- the first relay in FIG. 6 is a relay when the first node uses a non-direct path.
- the first relay is an L2 U2N relay UE for communication between the first node and the MCG.
- the second node in FIG. 6 is the PCell of the first node or the gNB corresponding to the PCell.
- the second node in Figure 6 is the MCG of the first node or the gNB corresponding to the MCG.
- the second node in FIG. 6 is the gNB to which the first node is connected.
- the second node in FIG. 6 is the gNB to which the first relay is connected.
- the second node in Figure 6 is the DU (data Unit) or service cell connected to the first relay.
- the second node in FIG. 6 is a network node.
- the second node in FIG. 6 corresponds to the second node in Embodiment 5 of the present application.
- the PC5 interface is the interface between the first node and the first relay, and the protocol entities related to the PC5 interface ⁇ PC5-SRAP, PC5-RLC, PC5-MAC, PC5-PHY ⁇ are terminated at the first node and the first relay;
- the Uu interface is the interface between the UE and the second node, and the protocol entities of the Uu interface are terminated at the UE and the second node respectively.
- the first relay is a U2N relay UE, and before executing the first signaling, the first relay provides L2 U2N relay service to the first node.
- the first relay is a U2N relay UE. Before executing the first signaling, the first relay does not provide L2 U2N relay service to the first node. After receiving the first signaling or the second signaling or the third signaling, the first node uses the U2N relay service provided by the first relay.
- the first node and the first relay are both UEs.
- the protocol entities ⁇ Uu-SRAP, Uu-RLC, Uu-MAC, Uu-PHY ⁇ of the Uu interface are terminated at the first relay and the second node.
- the protocol entity ⁇ Uu-PDCP ⁇ of the Uu interface terminates at the first node and the second node, and the PDCP PDU of the first node is forwarded by the first relay, but the first relay does not modify the PDCP PDU of the first node, that is, the PDCP PDU sent by the first node to the network is transparent to the first relay.
- PC5-SRAP corresponds to SRAP357 in FIG. 3
- PC5-RLC corresponds to RLC353 in FIG. 3
- PC5-MAC corresponds to MAC352 in FIG. 3
- PC5-PHY corresponds to PHY351 in FIG. 3 .
- Uu-SDAP corresponds to SDAP356 in FIG. 3
- Uu-PDCP corresponds to PDCP354 in FIG. 3
- Uu-RRC corresponds to RRC306 in FIG. 3 .
- a cell of the second node in FIG. 6 is the PCell of the first relay, and the first relay is in an RRC connected state.
- the first node is in an RRC connected state.
- the MCG of the first node is also the MCG of the first relay.
- PC5-SRAP is used only for specific RBs or messages or data.
- the PC5-SRAP layer is not used.
- the SRB1 of the first node is the SRB1 between the first node and the second node in FIG. 6( a ), and the associated protocol entities include Uu-PDCP and Uu-RRC.
- the communication between the first node and the second node uses a non-direct path.
- the communication between the first node and the second node uses a direct path.
- the communication between the first node and the second node uses both a direct path and an indirect path.
- the first signaling is transparently transmitted to the first relay.
- the transmission of the first signaling does not use the first relay, and the transmission of the first signaling is applicable to Figure 6(c).
- the first signaling is applicable to the protocol structure of FIG. 6( a ).
- the first signaling is applicable to the protocol structure of FIG. 6( b ).
- the Uu-PDCP of the first node is associated with PC5-RLC, or is associated with PC5-RLC through PC5-SRAP.
- the first node when a direct path is used, the first node establishes Uu-RLC, and the Uu-PDCP of the first node is associated with the Uu-RLC.
- the first node releases PC5-RLC.
- the first node releases PC5-SRAP.
- the first node releases PC5-MAC and PC5-PHY.
- the first node after switching to the direct path, the first node no longer uses PC5-SRAP.
- (b) in FIG. 6 is a protocol stack for communication between the first node and the third node when relay is not used.
- (b) in FIG. 6 is a protocol stack for communication between the first node and the third node when a direct path is used.
- the first node uses a direct path and an indirect path to communicate with the network at the same time
- the first node uses the protocol stack shown in (a) and the protocol stack shown in (b) at the same time.
- protocol stacks shown in (a) and (b) are applied to the same RB.
- the main path is a link when the first node and the third node communicate using (b).
- the main path is a link when the first node and the second node communicate using (a).
- the specific path is a link when the first node and the third node communicate using (b).
- the specific path is a link when the first node and the second node communicate using (a).
- the third node in FIG. 6 is the PCell of the first node or the gNB corresponding to the PCell.
- the third node in Figure 6 is the MCG of the first node or the gNB corresponding to the MCG.
- the third node in FIG. 6 is the gNB to which the first node is connected.
- the third node in FIG. 6 is a DU or a serving cell to which the first node is connected.
- the third node in FIG. 6 is a network node.
- the third node in FIG. 6 corresponds to the second node in Embodiment 5 of the present application.
- the second node is the third node.
- the second node is not the third node.
- the second node and the third node belong to the same cell group.
- a communication interface is provided between the second node and the third node.
- the second node is the sender of the first signaling.
- the third node is the sender of the first signaling.
- the second node is a sender of the second signaling.
- the third node is the sender of the second signaling.
- the second node is the sender of the third signaling.
- the third node is the sender of the third signaling.
- a UE that only uses protocol stack (a) behaves as the first type of UE.
- a UE using protocol stack (b) does not behave as the first type of UE.
- Embodiment 7 illustrates a schematic diagram of a protocol stack according to an embodiment of the present application, as shown in FIG7 .
- Example 7 further illustrates the protocol stack when the first node uses a direct path and an indirect path at the same time based on Example 3.
- the first PDCP entity of the first node is associated with two RLC entities, namely RLC1 and RLC2.
- each RLC entity associated with the first PDCP entity is respectively associated with a different MAC, that is, RLC1 is associated with MAC1, and RLC2 is associated with MAC2.
- each RLC entity associated with the first PDCP entity is respectively associated with the same MAC, that is, RLC1 is associated with MAC1, and RLC2 is associated with MAC2, and the MAC1 is the MAC2.
- FIG. 7 is applicable to RB.
- FIG. 7 is applicable to SRBs including SRB1.
- FIG. 7 is applicable to DRB.
- the protocol structure shown in FIG7 is a split SRB, namely split SRB.
- the protocol structure shown in FIG7 is a split DRB, namely split DRB.
- FIG. 7 is applicable to sending.
- FIG. 7 is applicable to reception.
- the first protocol entity in FIG. 7 is RRC, and FIG. 7 is for SRBs including SRB1.
- the first protocol entity in FIG. 7 is SDAP, and FIG. 7 is for DRB.
- the PDCP PDU formed by the RRC message being processed by the PDCP entity is sent through RLC1.
- the PDCP PDU formed by the RRC message being processed by the PDCP entity is sent through RLC2.
- the PDCP PDU formed by the RRC message being processed by the PDCP entity is sent via RLC1 or RLC2.
- the PDCP PDU formed by the RRC message processing by the PDCP entity is copied and sent through RLC1 and RLC2 at the same time.
- the SRB1 is used to carry the first signaling and the first message.
- the main path of SRB1 is for RLC1.
- the main path of SRB1 is for RLC2.
- the RLC2 is for secondary link communication.
- the RLC1 is for the main link communication, that is, not for the secondary link communication.
- the RLC1 is for the primary cell group.
- the RLC1 is for a secondary cell group.
- the first PDCP entity is any PDCP entity of the first node.
- the first PDCP entity is the PDCP entity of the corresponding SRB of the first node.
- the first PDCP entity is the PDCP entity of the corresponding DRB of the first node.
- the RLC1 is for a specific path.
- the RLC2 is for a specific path.
- the specific path is a main path.
- SRB1 of the first node uses only a direct path.
- SRB1 of the first node only uses a direct path as a primary path.
- the RLC2 entity corresponds to the primary path.
- the first node determines whether to behave as the first type of UE based on the RLC entity associated with the first PDCP entity.
- the first node when the protocol stack of FIG. 7 is used, the first node does not behave as the first type of UE.
- the first node uses multi-path (MP).
- MP multi-path
- Embodiment 8 illustrates a schematic diagram of a direct path and an indirect path according to an embodiment of the present application, as shown in FIG8 .
- the first node in Example 8 corresponds to the first node in this application.
- the second node in Embodiment 8 corresponds to the second node of the present application.
- the second node in Embodiment 8 is a cell group of the first node.
- the second node in Embodiment 8 is a primary cell of the first node.
- the second node in Embodiment 8 is the gNB corresponding to the primary cell group of the first node.
- the second node in Embodiment 8 is the PCell of the first node.
- the second node in Embodiment 8 is a transmission point of the primary cell group of the first node.
- the third node in Embodiment 8 is a relay node of the first node.
- the third node in Embodiment 8 is a U2N relay of the first node.
- the third node in Embodiment 8 is a relay between the first node and the network.
- the third node in Embodiment 8 is the L2 U2N relay UE.
- the third node in Embodiment 8 is a relay node between the first node and the second node.
- the third node in Embodiment 8 is an L2 U2N relay UE of the first node.
- the third node in Embodiment 8 corresponds to the first relay in Embodiment 6.
- the direct path is a manner or a transmission path in which the first node and the second node communicate with each other without going through the third node.
- the indirect path is a manner or a transmission path in which the first node and the second node communicate with each other through the third node.
- the arrowed lines in FIG. 8 represent logical channels.
- the line with an arrow in FIG. 8 represents an RLC bearer.
- the arrowed line in FIG. 8 represents a secondary link RLC channel.
- the thick line with an arrow in FIG. 8 represents a secondary link RLC channel.
- the thick line with an arrow in FIG. 8 represents an indirect path.
- the thin line with an arrow in FIG. 8 represents a direct path.
- the main link of the present application is a direct link between the first node and the second node, which is represented by a thin line in FIG8;
- the secondary link of the present application is a link between the first node and the third node, which is represented by a thick line in FIG8.
- the communication interface between the first node and the third node is a PC5 interface, and the first node and the third node communicate through a secondary link.
- the second node is the sender of the first signaling.
- the second node is a sender of the second signaling.
- the second node is the sender of the third signaling.
- the second node is a recipient of the first message.
- the UE adopting the communication structure of FIG. 8 does not appear as the first type of UE.
- the UE adopting the communication structure of FIG. 8 behaves as the first type of UE.
- Embodiment 9 illustrates a schematic diagram of whether a first message sent through a direct path or an indirect path is used to determine whether a target value is a candidate value in a first candidate value set or a second candidate value according to an embodiment of the present application, as shown in FIG9 .
- the first message is sent either through a direct path or through an indirect path.
- the first node does not reselect a cell.
- no relay reselection occurs at the first node.
- the target value is either a candidate value in the first candidate value set or the second candidate value.
- the meaning of the sentence whether the first message is sent through a direct path or an indirect path is used to determine whether the target value is a candidate value in the first candidate value set or a second candidate value includes: whether the first message is sent through a direct path or an indirect path is used to determine whether the target value is a candidate value included in the first candidate value set or one of the second candidate values.
- the first candidate value set includes only one candidate value
- the sentence whether the first message is sent through a direct path or an indirect path is used to determine whether the target value is a candidate value in the first candidate value set or a second candidate value includes: whether the first message is sent through a direct path or an indirect path is used to determine whether the target value is the one candidate value included in the first candidate value set or the second candidate value.
- the first candidate value set includes more than one candidate value
- the meaning of the sentence whether the first message is sent through a direct path or an indirect path is used to determine whether the target value is a candidate value in the first candidate value set or the second candidate value includes: whether the first message is sent through a direct path or an indirect path is used to determine whether the target value is a candidate value included in the first candidate value set or the second candidate value.
- the first candidate value set includes more than one candidate value
- the meaning of the sentence whether the first message is sent through a direct path or an indirect path is used to determine whether the target value is a candidate value in the first candidate value set or a second candidate value includes: whether the first message is sent through a direct path or an indirect path is used to determine which candidate value included in the first candidate value set the target value is.
- the target value when the first message is sent through a direct path, the target value is a candidate value in the first candidate value set; when the first message is sent through an indirect path, the target value is a candidate value in the second candidate value set.
- the first candidate value set includes only one candidate value.
- the first candidate value set includes more than one candidate value
- the first candidate value set only includes one candidate value associated with a direct path
- the target value is the one candidate value associated with a direct path included in the first candidate value set.
- the first candidate value set includes more than one candidate value
- the first candidate value set only includes one candidate value applicable to all UEs
- the target value is the one candidate value applicable to all UEs included in the first candidate value set.
- the first candidate value set includes more than one candidate value
- the first candidate value set includes only one candidate value that is not for the indirect path
- the target value is the one candidate value that is not for the indirect path included in the first candidate value set.
- the first candidate value set includes more than one candidate value
- the first candidate value set only includes one candidate value not targeting the remote UE
- the target value is the one candidate value not targeting the remote UE included in the first candidate value set.
- the target value is any candidate value in the first candidate value set.
- the first node determines a candidate value from the first candidate value set as the target value by itself.
- the first candidate value set includes at least a first candidate value and a third candidate value, and no matter the first message is sent through a direct path or an indirect path, the target value is a candidate value in the first candidate value set.
- the first candidate value and the third candidate value are for a direct path and an indirect path, respectively.
- the target value is the first candidate value; when the first message is sent via an indirect path, the target value is the third candidate value.
- the first candidate value and the third candidate value are for all UEs and for remote UEs, respectively.
- the target value is the first candidate value; when the first message is sent through an indirect path, the target value is the third candidate value.
- the first candidate value is not specified to be for a non-direct path
- the third candidate value is for a non-direct path
- the target value is the first candidate value
- the target value is the third candidate value
- the first candidate value is not specified as being for a specific type of UE
- the third candidate value is for a remote UE
- Embodiment 10 illustrates a schematic diagram of a method in which the expiration of a first timer according to an embodiment of the present application is used to determine an RRC connection failure, as shown in FIG10 .
- expiration of the first timer is used to determine that the first message fails to successfully request an RRC connection.
- expiration of the first timer is used to determine that the first message is unsuccessful.
- the expiration of the first timer in the sentence is used to determine the meaning of RRC connection failure includes: the expiration of the first timer is regarded as a failure to establish the RRC connection, or is regarded as a failure to continue the RRC connection, or is regarded as a failure to re-establish the RRC connection.
- the expiration of the first timer of the sentence is used to determine the meaning of the RRC connection failure includes: entering the RRC connected state with a name including the reason for the failure.
- the first timer is related to the RRC establishment request process.
- the expiration of the first timer of the sentence is used to determine the meaning of the RRC connection failure, including: notifying a higher layer about the RRC connection establishment failure.
- the higher layer includes NAS.
- the meaning of the sentence that the first timer is related to the RRC establishment request process includes: the first timer is started along with the sending of the RRC establishment request.
- the first timer is T300.
- the expiration of the sentence first timer is used to determine the meaning of the RRC connection failure, including: recording the information in a state variable whose name includes fail.
- the expiration of the first timer of the sentence is used to determine the meaning of the RRC connection failure, including: adding 1 to a variable that records the number of connection failures.
- variable recording the number of connection failures is numberOfConnFail.
- the first timer is related to an RRC resume request process.
- the meaning of the sentence that the first timer is related to the RRC continue request process includes: the first timer is started along with the sending of the RRC continue request.
- the first timer is T319.
- the expiration of the sentence first timer is used to determine the meaning of the RRC connection failure, including: recording the information in a state variable whose name includes fail.
- the expiration of the first timer of the sentence is used to determine the meaning of the RRC connection failure, including: adding 1 to a variable that records the number of connection failures.
- variable recording the number of connection failures is numberOfConnFail.
- the expiration of the first timer of the sentence is used to determine the meaning of RRC connection failure, including: entering the RRC idle state due to RRC continued failure.
- the expiration of the first timer of the sentence is used to determine that the meaning of the RRC connection failure includes: failure to enter the RRC connection state.
- the first timer is related to the RRC reconstruction request process.
- the meaning of the sentence that the first timer is related to the RRC reconstruction request process includes: the first timer is started along with the sending of the RRC reconstruction request.
- the first timer is T301.
- the expiration of the first timer of the sentence is used to determine that the meaning of RRC connection failure includes: entering the RRC idle state with RRC connection failure as the release cause.
- Embodiment 11 illustrates a structural block diagram of a processing device in a first node according to an embodiment of the present application; as shown in FIG11.
- the processing device 1100 in the first node includes a first receiver 1101 and a first transmitter 1102.
- Embodiment 11 illustrates a structural block diagram of a processing device in a first node according to an embodiment of the present application; as shown in FIG11.
- the processing device 1100 in the first node includes a first receiver 1101 and a first transmitter 1102.
- the first receiver 1101 receives a first signaling and a second signaling, wherein the first signaling indicates a first candidate value set of a first timer; the second signaling indicates a second candidate value of the first timer; the first candidate value set includes at least one candidate value;
- the first transmitter 1102 sends a first message, and along with the sending of the first message, starts the first timer, where the value of the first timer is a target value;
- the first message is an RRC message
- the first message is used to request an RRC connection, whether the first message is sent through a direct path or an indirect path is used to determine whether the target value is a candidate value in the first candidate value set or the second candidate value
- the indirect path is to transmit information through L2 (Layer-2) U2N (UE to Network) relay
- the direct path is not to transmit information through L2 U2N relay
- the stop condition of the first timer includes receiving a response to the first message
- the expiration of the first timer is used to determine the failure of the RRC connection.
- the first message is transmitted using SRB0 (signaling radio bearer 0);
- SRB0 signal radio bearer 0
- the sentence "the first message is used to request an RRC connection, and whether the first message is sent through a direct path or an indirect path is used to determine whether the target value is a candidate value in the first candidate value set or the second candidate value" means: whether SRB0 is mapped to a direct path or an indirect path is used to determine whether the target value is a candidate value in the first candidate value set or the second candidate value.
- the first signaling is unicast and the second signaling is broadcast; or, both the first signaling and the second signaling are broadcast.
- whether the target value is a candidate value in the first candidate value set or the second candidate value has nothing to do with whether the first node behaves as a first type UE when at least one of the first signaling and the second signaling is received; the first type UE at least uses a non-direct path to transmit information.
- whether the target value is a candidate value in the first candidate value set or the second candidate value is irrelevant to whether at least one of the first signaling and the second signaling is received through a direct path or an indirect path.
- the first signaling includes an RRC reconfiguration message;
- the rlf-TimersAndConstants information element included in the first signaling indicates a candidate value in the first candidate value set;
- the second signaling includes a system message block 12 (SIB12), and the system message block 12 is used to configure the secondary link communication;
- the UE-TimersAndConstantsRemoteUE information element included in the second signaling indicates the second candidate value;
- the second candidate value is determined as the target value.
- the first signaling includes a system message block 1; the system message block 1 includes scheduling information of other system messages; the UE-TimersAndConstants information element included in the first signaling indicates a candidate value in the first candidate value set; the second signaling includes a system message block 12 (SIB12), and the system message block 12 is used to configure the secondary link communication; the second signaling includes The UE-TimersAndConstantsRemoteUE information element indicates the second candidate value;
- the second candidate value is determined as the target value.
- the first signaling is used to configure a second timer and N; a start condition of the second timer includes: detecting a problem with the physical layer of the SpCell; a stop condition of the second timer includes: receiving N consecutive synchronization indications from a lower layer for the SpCell;
- the second timer is configured by the first signaling; the second candidate value is determined as the target value; the first signaling is unicast, and the second signaling is broadcast.
- the first candidate value set includes a first candidate value and a third candidate value, the first candidate value is for a direct path, and the third candidate value is for an indirect path; when the first message is sent via a direct path, the first candidate value is determined as the target value; when the first message is sent via an indirect path, the third candidate value is determined as the target value.
- the first type of UE is L2 U2N remote UE.
- the first node is a user equipment (UE).
- UE user equipment
- the first node is a terminal supporting a large delay difference.
- the first node is a terminal supporting NTN.
- the first node is an aircraft or a ship.
- the first node is a mobile phone or a vehicle-mounted terminal.
- the first node is a relay UE and/or a U2U remote UE.
- the first node is an Internet of Things terminal or an industrial Internet of Things terminal.
- the first node is a device supporting low-latency and high-reliability transmission.
- the first node is a secondary link communication node.
- the first receiver 1101 includes at least one of the antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, or data source 467 in Example 4.
- the first transmitter 1102 includes at least one of the antenna 452, transmitter 454, transmit processor 468, multi-antenna transmit processor 457, controller/processor 459, memory 460, or data source 467 in Embodiment 4.
- each module unit in the above embodiment can be implemented in the form of hardware or in the form of a software function module, and the present application is not limited to any specific form of software and hardware combination.
- the user equipment, terminal and UE in the present application include but are not limited to drones, communication modules on drones, remote-controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IoT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost tablet computers, satellite communication equipment, ship communication equipment, NTN user equipment and other wireless communication equipment.
- drones communication modules on drones, remote-controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IoT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost
- the base stations or system equipment in this application include but are not limited to macrocell base stations, microcell base stations, home base stations, relay base stations, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point), NTN base stations, satellite equipment, flight platform equipment and other wireless communication equipment.
- gNB NR Node B
- TRP Transmitter Receiver Point
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请公开了一种被用于无线通信的方法和设备,包括接收第一信令和第二信令;所述第一信令指示第一计时器的第一候选值集合;所述第二信令指示第一计时器的第二候选值;所述第一候选值集合包括至少一个候选值;发送第一消息,伴随所述第一消息的发送,开始所述第一计时器,所述第一计时器的值是目标值;其中,所述第一消息是RRC消息,所述第一消息被用于请求RRC连接,所述第一消息是通过直接路径发送还是通过非直接路径发送被用于确定所述目标值是所述第一候选值集合中的候选值还是所述第二候选值;所述非直接路径是通过L2中继传输信息;所述直接路径是不通过L2 U2N中继传输信息。本申请通过第一信令有助于提高通信的可靠性,避免通信中断。
Description
本申请涉及无线通信系统中的传输方法和装置,尤其涉及副链路通信,中继通信,多路径中继。
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或Fifth Generation,5G)进行研究,在3GPP RAN#75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。
在通信中,无论是LTE(Long Term Evolution,长期演进)还是5G NR都会涉及到可靠的信息的准确接收,优化的能效比,信息有效性的确定,灵活的资源分配,可伸缩的系统结构,高效的非接入层信息处理,较低的业务中断和掉线率,对低功耗支持,这对基站和用户设备的正常通信,对资源的合理调度,对系统负载的均衡都有重要的意义,可以说是高吞吐率,满足各种业务的通信需求,提高频谱利用率,提高服务质量的基石,无论是eMBB(ehanced Mobile BroadBand,增强的移动宽带),URLLC(Ultra Reliable Low Latency Communication,超高可靠低时延通信)还是eMTC(enhanced Machine Type Communication,增强的机器类型通信)都不可或缺的。同时在IIoT(Industrial Internet of Things,工业领域的物联网中,在V2X(Vehicular to X,车载通信)中,在设备与设备之间通信(Device to Device),在非授权频谱的通信中,在用户通信质量监测,在网络规划优化,在NTN(Non Territerial Network,非地面网络通信)中,在TN(Territerial Network,地面网络通信)中,在双连接(Dual connectivity)系统中,在无线资源管理以及多天线的码本选择中,在信令设计,邻区管理,业务管理,在波束赋形中都存在广泛的需求,信息的发送方式分为广播和单播,两种发送方式都是5G系统必不可少的,因为它们对满足以上需求十分有帮助。UE与网络连接的方式可以是直接连接也可以通过中继连接。
随着系统的场景和复杂性的不断增加,对降低中断率,降低时延,增强可靠性,增强系统的稳定性,对业务的灵活性,对功率的节省也提出了更高的要求,同时在系统设计的时候还需要考虑不同系统不同版本之间的兼容性。
本申请中的概念、术语与缩写的含义可参考3GPP标准,包括但不限于:
https://www.3gpp.org/ftp/Specs/archive/21_series/21.905/21905-h10.zip
https://www.3gpp.org/ftp/Specs/archive/38_series/38.300/38300-h10.zip
https://www.3gpp.org/ftp/Specs/archive/38_series/38.331/38331-h10.zip
https://www.3gpp.org/ftp/Specs/archive/38_series/38.321/38321-h10.zip
https://www.3gpp.org/ftp/Specs/archive/38_series/38.304/38304-h10.zip
https://www.3gpp.org/ftp/Specs/archive/23_series/23.287/23287-h10.zip
https://www.3gpp.org/ftp/Specs/archive/23_series/23.304/23304-h10.zip
发明内容
在多种通信场景中,会涉及中继的使用,例如当一个UE(User Equipment,用户设备)在小区边缘时,覆盖不佳时,可以通过中继接入网络,中继节点可以是另外一个UE。中继的方式主要包括层3中继和层2中继(L2 U2N relay),都是通过中继节点为远端节点(U2N remote UE)提供网络接入服务,其中层3中继对接入网是透明的,即远端UE只与核心网建立连接,接入网无法识别数据是来自远端节点还是中继节点的;而层2中继,远端节点(U2N remote UE)和接入网(RAN)具有RRC连接,接入网可以管理远端节点,接入网和远端节点之间可以建立无线承载。中继可以是另一个UE,在支持层2中继的系统中,UE可以通过L2中继UE(L2 U2N relay UE)与网络进行通信,即使用非直接路径(indirect path),也可以不通过中继直接与网络进行通信,即使用直接路径(direct path)。在一些场景中,一个UE可以同时使用直接路径和非直接路径以获得更好的可靠性和更高的吞吐率。一般来说,使用直接路径时延要小一些,而
使用非直接路径由于需要中继的参与,同时中继可能在接收到远端UE的中继业务请求时,还没有建立RRC连接,需要与网络先建立连接才能开始传输远端UE的信息,这也增加了远端UE的时延。因此,有关中继通信,需要解决的一个问题是,如何配置UE根据不同的情况控制RRC连接请求过程。
针对以上所述问题,本申请提供了一种解决方案。
需要说明的是,在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。同时,本申请所提出的方法也可以用于解决通信中的其它问题。
本申请公开了一种被用于无线通信的第一节点中的方法,包括:
接收第一信令和第二信令;所述第一信令指示第一计时器的第一候选值集合;所述第二信令指示第一计时器的第二候选值;所述第一候选值集合包括至少一个候选值;
发送第一消息,伴随所述第一消息的发送,开始所述第一计时器,所述第一计时器的值是目标值;
其中,所述第一消息是RRC消息,所述第一消息被用于请求RRC连接,所述第一消息是通过直接路径发送还是通过非直接路径发送被用于确定所述目标值是所述第一候选值集合中的候选值还是所述第二候选值;所述非直接路径是通过L2(Layer-2)U2N(UE to Network,UE到网络)中继传输信息;所述直接路径是不通过L2 U2N中继传输信息;所述第一计时器的停止条件包括接收到针对所述第一消息的响应;所述第一计时器的过期被用于确定RRC连接失败。
作为一个实施例,本申请要解决的问题包括:如何根据不同的通信方式配置RRC连接请求中的计时器;如何根据不同的通信方式控制RRC连接请求过程;如何增加配置的灵活性;如何更好的支持不同场景的中继通信;如何配置计时器;如何针对直接路径和非直接路径进行不同的优化或配置。
作为一个实施例,上述方法的好处包括:支持同时使用直接路径和非直接路径的UE,支持多种应用场景;保证了通信可靠性,保证了通信的灵活性,降低了复杂度,提高了用户体验,避免了通信的中断,降低了通信的时延。
具体的,根据本申请的一个方面,所述第一消息使用SRB0传输;句子所述第一消息被用于请求RRC连接,所述第一消息是通过直接路径发送还是通过非直接路径发送被用于确定所述目标值是所述第一候选值集合中的候选值还是所述第二候选值的含义是:SRB0被映射到直接路径还是非直接路径被用于确定所述目标值是所述第一候选值集合中的候选值还是所述第二候选值。
具体的,根据本申请的一个方面,所述第一信令是单播的,所述第二信令是广播的;或者,所述第一信令和所述第二信令都是广播的。
具体的,根据本申请的一个方面,所述目标值是所述第一候选值集合中的候选值还是所述第二候选值,与所述第一信令和所述第二信令中的至少之一被接收时所述第一节点是否表现为第一类UE无关;所述第一类UE至少使用非直接路径传输信息。
具体的,根据本申请的一个方面,所述目标值是所述第一候选值集合中的候选值还是所述第二候选值,与所述第一信令和所述第二信令中的至少之一通过直接路径还是通过非直接路径接收无关。
具体的,根据本申请的一个方面,所述第一信令包括RRC重配置消息;所述第一信令所包括的rlf-TimersAndConstants信元指示所述第一候选值集合中的候选值;所述第二信令包括系统消息块12(SIB12),所述系统消息块12用于配置副链路通信;所述第二信令所包括的UE-TimersAndConstantsRemoteUE信元指示所述第二候选值;
其中,所述第二候选值被确定为所述目标值。
具体的,根据本申请的一个方面,所述第一信令包括系统消息块1;所述系统消息块1包括其它系统消息的调度信息;所述第一信令所包括的UE-TimersAndConstants信元指示所述第一候选值集合中的候选值;所述第二信令包括系统消息块12(SIB12),所述系统消息块12用于配置副链路通信;所述第二信令所包括的UE-TimersAndConstantsRemoteUE信元指示所述第二候选值;
其中,所述第二候选值被确定为所述目标值。
具体的,根据本申请的一个方面,所述第一信令被用于配置第二计时器和N;所述第二计时器的启动条件包括:检测到SpCell的物理层出现问题;所述第二计时器的停止条件包括:从针对SpCell的更低层接收到N个连续的同步指示;
其中,所述第二计时器由所述第一信令配置;所述第二候选值被确定为所述目标值;所述第一信令是单播的,所述第二信令是广播的。
具体的,根据本申请的一个方面,所述第一候选值集合包括第一候选值和第三候选值,所述第一候选值是针对直接路径的,所述第三候选值是针对非直接路径的;当所述第一消息是通过直接路径发送时,所述第一候选值被确定为所述目标值;当所述第一消息是通过非直接路径发送时,所述第三候选值被确定为所述目标值。
具体的,根据本申请的一个方面,所述第一节点是用户设备。
具体的,根据本申请的一个方面,所述第一节点是接入网设备。
具体的,根据本申请的一个方面,所述第一节点是车载终端。
具体的,根据本申请的一个方面,所述第一节点是飞行器。
具体的,根据本申请的一个方面,所述第一节点是手机。
本申请公开了一种被用于无线通信的第一节点,包括:
第一接收机,接收第一信令和第二信令;所述第一信令指示第一计时器的第一候选值集合;所述第二信令指示第一计时器的第二候选值;所述第一候选值集合包括至少一个候选值;
第一发射机,发送第一消息,伴随所述第一消息的发送,开始所述第一计时器,所述第一计时器的值是目标值;
其中,所述第一消息是RRC消息,所述第一消息被用于请求RRC连接,所述第一消息是通过直接路径发送还是通过非直接路径发送被用于确定所述目标值是所述第一候选值集合中的候选值还是所述第二候选值;所述非直接路径是通过L2(Layer-2)U2N(UE to Network,UE到网络)中继传输信息;所述直接路径是不通过L2 U2N中继传输信息;所述第一计时器的停止条件包括接收到针对所述第一消息的响应;所述第一计时器的过期被用于确定RRC连接失败。
作为一个实施例,和传统方案相比,本申请具备如下优势:
支持多种类型的通信方式,包括只使用直接路径,只使用非直接路径,同时使用直接路径和非直接路径。
复杂度比较低,且更有灵活性。
支持通过直接路径发起RRC连接请求,支持通过非直接路径发起RRC连接请求,RRC连接请求过程更加具有针对性。
接收信令时的状态不影响信令使用。
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的接收第一信令,接收第二信令,发送第一消息,开始第一计时器的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输的流程图;
图6示出了根据本申请的一个实施例的协议栈的流程图;
图7示出了根据本申请的一个实施例的协议栈的示意图;
图8示出了根据本申请的一个实施例的直接路径与非直接路径的示意图;
图9示出了根据本申请的一个实施例的第一消息是通过直接路径发送还是通过非直接路径发送被用于确定目标值是第一候选值集合中的候选值还是第二候选值的示意图;
图10示出了根据本申请的一个实施例的第一计时器的过期被用于确定RRC连接失败的示意图;
图11示例了根据本申请的一个实施例的用于第一节点中的处理装置的示意图。
实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的接收第一信令,接收第二信令,发送第一消息,开始第一计时器的流程图,如附图1所示。附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一节点在步骤101中接收第一信令;在步骤102中接收第二信令;在步骤103中发送第一消息;在步骤104中开始第一计时器。
其中,所述第一信令指示第一计时器的第一候选值集合;所述第二信令指示第一计时器的第二候选值;所述第一候选值集合包括至少一个候选值;所述第一计时器的值是目标值;所述第一消息是RRC消息,所述第一消息被用于请求RRC连接,所述第一消息是通过直接路径发送还是通过非直接路径发送被用于确定所述目标值是所述第一候选值集合中的候选值还是所述第二候选值;所述非直接路径是通过L2(Layer-2)U2N(UE to Network,UE到网络)中继传输信息;所述直接路径是不通过L2 U2N中继传输信息;所述第一计时器的停止条件包括接收到针对所述第一消息的响应;所述第一计时器的过期被用于确定RRC连接失败。
作为一个实施例,伴随所述第一消息的发送,所述第一计时器被开始。
作为一个实施例,所述第一消息属于第一RRC连接请求过程,发起所述第一RRC连接请求过程包括开始所述第一计时器。
作为一个实施例,句子伴随所述第一消息的发送,开始所述第一计时器的含义包括:所述第一消息属于第一RRC连接请求过程,发起所述第一RRC连接请求过程包括开始所述第一计时器。
作为一个实施例,所述第一消息的发送触发开始所述第一计时器。
作为一个实施例,所述第一节点是UE(User Equipment,用户设备)。
作为一个实施例,所述第一节点处于RRC连接态。
作为一个实施例,所述第一信令触发执行目标操作集合。
作为一个实施例,服务小区指的是UE驻留的小区。执行小区搜索包括,UE搜索所选择的PLMN(公共陆地移动网,Public Land Mobile Network)或SNPN(Stand-alone Non-Public Network,独立非公共网络)的一个合适的(suitable)小区,选择所述一个合适的小区提供可用的业务,监测所述一个合适的小区的控制信道,这一过程被定义为驻留在小区上;也就是说,一个被驻留的小区,相对于这个UE,是这个UE的服务小区。在RRC空闲态或RRC非活跃态驻留在一个小区上有如下好处:使得UE可以从PLMN或SNPN接收系统消息;当注册后,如果UE希望建立RRC连接或继续一个被挂起的RRC连接,UE可以通过在驻留小区的控制信道上执行初始接入来实现;网络可以寻呼到UE;使得UE可以接收ETWS(Earthquake and Tsunami Warning System,地震海啸预警系统)和CMAS(Commercial Mobile Alert System,商业移动报警系统)通知。
作为一个实施例,对于没有配置CA/DC(carrier aggregation/dual connectivity,载波聚合/双连接)的处于RRC连接态的UE,只有一个服务小区包括主小区。对于配置了CA/DC(carrier aggregation/dual connectivity,载波聚合/双连接)的处于RRC连接态的UE,服务小区用于指示包括特殊小区(SpCell,Special Cell)和所有从小区的小区集合。主小区(Primary Cell)是MCG(Master Cell Group)小区,工作在主频率上,UE在主小区上执行初始连接建立过程或发起连接重建。对于双连接操作,特殊小区指的是MCG的PCell(Primary Cell,主小区)或SCG(Secondary Cell Group)的PSCell(Primary SCG Cell,主SCG小区);如果不是双连接操作,特殊小区指的是PCell。
作为一个实施例,SCell(Secondary Cell,从小区)工作的频率是从频率。
作为一个实施例,信息元素的单独的内容被称为域。
作为一个实施例,MR-DC(Multi-Radio Dual Connectivity,多无线双连接)指的是E-UTRA和NR节点的双连接,或两个NR节点之间的双连接。
作为一个实施例,在MR-DC中,提供到核心网的控制面连接的无线接入节点是主节点,主节点可以是
主eNB,主ng-eNB,或主gNB。
作为一个实施例,MCG指的是,在MR-DC中,与主节点相关联的一组服务小区,包括SpCell,还可以,可选的,包括一个或多个SCell。
作为一个实施例,PCell是MCG的SpCell。
作为一个实施例,PSCell是SCG的SpCell。
作为一个实施例,在MR-DC中,不提供到核心网的控制面连接,给UE提供额外资源的无线接入节点是从节点。从节点可以是en-gNB,从ng-eNB或从gNB。
作为一个实施例,在MR-DC中,与从节点相关联的一组服务小区是SCG(secondary cell group,从小区组),包括SpCell和,可选的,一个或多个SCell。
作为一个实施例,使能定义在3GPP标准TS 23.285中的V2X(Vehicle-to-Everything)通信的接入层功能是V2X副链路通信(V2X sidelink communication),其中所述V2X副链路通信发生在临近的UE之间,且使用E-UTRA技术但并没有穿过(traversing)网络节点。
作为一个实施例,至少使能定义在3GPP标准TS 23.287中的V2X(Vehicle-to-Everything)通信的接入层功能是NR副链路通信(NR sidelink communication),其中所述NR副链路通信发生在临近的两个或多个UE之间,且使用NR技术但并没有穿过(traversing)网络节点。
作为一个实施例,副链路(sidelink,SL)是,UE-to-UE之间,使用副链路资源分配模式,物理层信号或信道,以及物理层过程的直接通信链路。
作为一个实施例,在本申请中,以“SL-”开头的信令名或域名或消息名都是针对副链路的。
作为一个实施例,不是或不在或不处于覆盖内等于覆盖外。
作为一个实施例,覆盖内等于覆盖之内。
作为一个实施例,覆盖外等于覆盖之外。
作为一个实施例,本申请中的中继指的是U2U中继UE。
作为一个实施例,所述直接路径(direct path)指的是一种UE到网络的传输路径,通过所述直接路径传输意味着数据在UE到网络(U2N)的远端(remote)UE和网络之间发送不通过中继。
作为该实施例的一个子实施例,所述数据包括更高层的数据和信令。
作为该实施例的一个子实施例,所述数据包括RRC信令。
作为该实施例的一个子实施例,所述数据包括比特串或比特块。
作为该实施例的一个子实施例,所述数据仅包括RB(radio bearer,无线承载)所承载的信令或数据。
作为一个实施例,所述非直接路径(indirect path)指的是一种UE到网络的传输路径,通过所述非直接路径传输意味着数据在UE到网络(U2N,UE-to-Network)的远端UE和网络之间经过UE到网络(U2N,UE-to-Network)的中继UE的转发。
作为该实施例的一个子实施例,所述数据包括更高层的数据和信令。
作为该实施例的一个子实施例,所述数据包括RRC信令。
作为该实施例的一个子实施例,所述数据包括比特串或比特块。
作为该实施例的一个子实施例,所述数据仅包括RB(radio bearer,无线承载)所承载的信令或数据。
作为一个实施例,一个无线链路要么是所述直接路径要么是非直接路径。
作为一个实施例,U2N中继UE指的是提供支持U2N远端UE到网络的连接的功能的UE。
作为一个实施例,U2N远端UE指的是与网络通信需要经过U2N中继UE的UE。
作为一个实施例,U2N远端UE指的是与网络通信需要经过U2N中继UE的UE。
作为一个实施例,U2N远端UE指的是支持中继业务的与网络进行通信的UE。
作为一个实施例,U2N中继是U2N中继UE。
作为一个实施例,在与网络进行单播业务收发时,U2N中继和U2N远端节点都处于RRC连接态。
作为一个实施例,不通过直接路径传输等于通过非直接路径传输。
作为一个实施例,不通过直接路径传输包括通过中继传输。
作为一个实施例,通过直接路径传输是或包括不通过中继传输。
作为一个实施例,通过直接路径传输是或包括不通过中继转发。
作为一个实施例,U2N中继UE是为U2N远端UE提供到网络的连接(connectivity)支持的功能(functionality)的UE。
作为该实施例的一个子实施例,U2N中继UE是UE。
作为该实施例的一个子实施例,U2N中继UE为U2N远端UE提供到网络的中继服务。
作为一个实施例,U2N远端UE是通过U2N中继UE与网络通信的UE。
作为一个实施例,直连(direct)模式是使用所述直接路径的模式。
作为一个实施例,所述直连模式是U2N远端UE使用所述直接路径与网络通信的模式。
作为一个实施例,所述直连模式是U2N远端UE使用所述直接路径与网络之间传输RRC信令或建立RRC连接的模式。
作为一个实施例,非直连(indirect)模式是使用所述非直接路径的模式。
作为一个实施例,所述非直连模式是使用所述非直接路径的模式。
作为一个实施例,所述直连模式是U2N远端UE使用所述非直接路径与网络通信的模式。
作为一个实施例,所述直连模式是U2N远端UE使用所述非直接路径与网络之间传输RRC信令或建立RRC连接的模式。
作为一个实施例,终结于UE与网络之间的无线承载所对应的PDCP实体分别位于UE和网络内。
作为一个实施例,所述直接路径是通过所述直接路径传输时所使用的通信链路或信道或承载。
作为一个实施例,所述短语使用直接路径指的是UE与网络之间的至少一个SRB(Signaling radio bearer,信令无线承载)所承载的数据不经过其它节点的中继或转发。
作为一个实施例,所述短语使用直接路径指的是UE与网络之间的至少一个RB(radio bearer,信令无线承载)所承载的数据不经过其它节点的中继或转发。
作为一个实施例,所述短语使用直接路径指的是,与UE与网络之间的至少一个SRB(Signaling radio bearer,信令无线承载)相关联的RLC承载分别终结于UE与网络。
作为一个实施例,所述短语使用直接路径指的是,与UE与网络之间的至少一个SRB(Signaling radio bearer,信令无线承载)相关联的RLC实体分别终结于UE与网络。
作为一个实施例,所述短语使用直接路径指的是UE与网络之间的至少一个DRB(Data radio bearer,信令无线承载)所承载的数据不经过其它节点的中继或转发。
作为一个实施例,所述短语使用直接路径指的是,与UE与网络之间的至少一个DRB(Data radio bearer,信令无线承载)相关联的RLC承载分别终结于UE与网络。
作为一个实施例,所述短语使用直接路径指的是,与UE与网络之间的至少一个DRB(Data radio bearer,信令无线承载)相关联的RLC实体分别终结于UE与网络。
作为一个实施例,所述短语使用直接路径指的是,UE与网络之间存在直连的通信链路。
作为一个实施例,所述短语使用直接路径指的是,UE与网络之间存在Uu接口。
作为一个实施例,所述短语使用直接路径指的是,UE与网络之间存在Uu接口的MAC层,且所述Uu接口的MAC层承载RRC信令。
作为一个实施例,所述短语使用直接路径指的是,UE与网络之间存在Uu接口的物理层。
作为一个实施例,所述短语使用直接路径指的是,UE与网络之间存在逻辑信道和/或传输信道。
作为一个实施例,所述非直接路径是通过所述非直接路径传输时所使用的非直接路径或通信链路或信道或承载。
作为一个实施例,所述短语使用非直接路径传输指的是UE与网络之间的至少一个RB(radio bearer,信令无线承载)所承载的数据经过其它节点的中继或转发。
作为一个实施例,所述短语使用非直接路径指的是UE与网络之间的至少一个SRB(Signaling radio bearer,信令无线承载)所承载的数据经过其它节点的中继或转发。
作为一个实施例,所述短语使用非直接路径传指的是,与UE与网络之间的至少一个SRB(Signaling radio bearer,信令无线承载)相关联的RLC承载分别终结于UE与其它节点、其它节点与网络。
作为一个实施例,所述短语使用非直接路径指的是,与UE与网络之间的至少一个SRB(Signaling radio bearer,信令无线承载)相关联的RLC实体分别终结于UE与其它节点、其它节点与网络。
作为一个实施例,所述短语使用非直接路径指的是UE与网络之间的至少一个DRB(data radio bearer,信令无线承载)所承载的数据经过其它节点的中继或转发。
作为一个实施例,所述短语使用非直接路径指的是,与UE与网络之间的至少一个DRB(data radio bearer,信令无线承载)相关联的RLC承载分别终结于UE与其它节点、其它节点与网络。
作为一个实施例,所述短语使用非直接路径指的是,与UE与网络之间的至少一个DRB(data radio bearer,信令无线承载)相关联的RLC实体分别终结于UE与其它节点、其它节点与网络。
作为一个实施例,本申请所提出的方法也适用于其它L2中继。
作为一个实施例,所述其它节点是其它UE。
作为一个实施例,所述其它节点是L2 U2N中继UE。
作为一个实施例,所述短语至少一个SRB的含义包括{SRB0,SRB1,SRB2,SRB3}中的至少之一。
作为一个实施例,所述短语至少一个RB的含义包括SRB和DRB(data radio bearer,数据无线承载)。
作为一个实施例,所述网络包括无线接入网(RAN)和/或服务小区和/或基站。
作为一个实施例,在使用直接路径时,UE可以向网络发送物理层信令;在使用非直接路径传输时,UE无法向网络发送或直接发送物理层信令;
作为一个实施例,在使用直接路径时,UE可以向网络发送MAC CE;在使用非直接路径传输时,UE无法向网络发送或直接发送MAC CE;
作为一个实施例,在使用直接路径时,所述第一节点的PDCP层与RLC层之间不存在其它协议层;在使用非直接路径传输时,所述第一节点的PDCP层与RLC层之间存在其它协议层。
作为该实施例的一个子实施例,所述其它协议层是或包括副链路适配层。
作为一个实施例,在使用直接路径时,网络通过DCI直接调度所述第一节点的上行发送;在使用非直接路径传输时,网络不通过DCI直接调度所述第一节点的上行发送。
作为一个实施例,在使用直接路径时,所述第一节点的SRB与RLC实体和/或RLC层和/或RLC承载相关联;在使用非直接路径传输时,所述第一节点的SRB与PC5接口的RLC实体相关联。
作为一个实施例,在使用直接路径时,所述第一节点的SRB与Uu接口的RLC实体存在映射关系;在使用非直接路径传输时,所述第一节点的SRB与PC5接口的RLC实体存在映射关系。
作为一个实施例,短语使用直接路径包括使用直接路径接收和/或使用直接路径发送。
作为一个实施例,短语使用非直接路径包括使用非直接路径接收和/或使用非直接路径发送。
作为一个实施例,所述第一节点与网络之间存在直接路径和/或非直接路径。
作为一个实施例,所述第一节点支持非直接路径到非直接路径的转换。
作为一个实施例,本申请中的中继指的是U2N中继UE。
作为一个实施例,本申请中的中继指的是L2 U2N中继UE。
作为一个实施例,本申请中的所述第一节点未使用DC(dual connectivity,双连接)。
作为一个实施例,本申请中的所述第一节点未被配置DC(dual connectivity,双连接)。
作为一个实施例,本申请中的所述第一节点仅有一个小区组。
作为一个实施例,本申请中的所述第一节点仅有一个小区组,即主小区组(MCG)。
作为一个实施例,本申请中的所述第一节点未被配置从小区组(SCG)。
作为一个实施例,本申请中的所述第一节点被配置了从小区组(SCG)。
作为一个实施例,本申请中的中继指的是L2 U2N relay UE。
作为一个实施例,本申请中的所述第一节点同时使用直接路径和非直接路径。
作为一个实施例,所述第一节点的L2 U2N中继UE与所述第一节点具有相同的PCell。
作为一个实施例,所述第一节点的L2 U2N中继UE与所述第一节点具有不相同的PCell。
作为一个实施例,所述第一节点至少使用非直接路径。
作为一个实施例,所述SpCell是或包括PCell。
作为一个实施例,所述SpCell是或包括PSCell。
作为一个实施例,所述第一信令是RRC信令。
作为一个实施例,所述第一信令是下行信令。
作为一个实施例,所述第一信令包括一个或多个RRC消息。
作为一个实施例,所述第一信令包括RRCReconfiguration消息。
作为该实施例的一个子实施例,所述第一信令是单播的。
作为一个实施例,所述第一信令包括RRCReconfiguration消息的至少部分域。
作为该实施例的一个子实施例,所述第一信令是单播的。
作为一个实施例,所述第一信令包括RRCReconfiguration所携带的spCellConfig域。
作为该实施例的一个子实施例,所述第一信令是单播的。
作为一个实施例,所述第一信令是或包括spCellConfig。
作为该实施例的一个子实施例,所述第一信令是单播的。
作为一个实施例,所述第一信令是或包括cellGroupConfig。
作为该实施例的一个子实施例,所述第一信令是单播的。
作为一个实施例,所述第一信令包括用于配置direct path或indirect path的信元。
作为一个实施例,所述第一信令携带名字包括path的域。
作为一个实施例,所述第一信令的接收即被执行。
作为一个实施例,句子作为接收所述第一信令的响应,执行目标操作集合的含义包括:所述第一信令的执行是包括执行所述目标操作集合。
作为一个实施例,短语所述第一信令被用于配置SpCell包括配置rlf有关的计时器。
作为一个实施例,短语所述第一信令被用于配置SpCell包括配置rlf有关的常数。
作为一个实施例,短语所述第一信令被用于配置SpCell包括配置带宽部分(BWP,bandwidth part)。
作为一个实施例,短语所述第一信令被用于配置SpCell包括配置低移动性评估。
作为一个实施例,短语所述第一信令被用于配置SpCell包括配置好的服务小区无线链路监测评估。
作为一个实施例,短语所述第一信令被用于配置SpCell包括配置好的服务小区波束失败检测评估。
作为一个实施例,短语所述第一信令被用于配置PDCCH(physical downlink control channel,物理下行控制信道)。
作为一个实施例,所述第一信令被用于配置PDSCH(physical downlink shared channel,物理下行共享信道)。
作为一个实施例,所述第一信令被用于配置链路损耗参考链路。
作为一个实施例,所述第一信令被用于配置服务小区测量对象。
作为一个实施例,所述第一信令被用于配置参考信号资源。
作为一个实施例,所述第一信令被用于配置HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)。
作为一个实施例,所述第一信令被用于配置波束或空间参数。
作为一个实施例,所述第一信令被用于配置多天线。
作为一个实施例,所述第一信令包括RRC重配置消息。
作为该实施例的一个子实施例,所述第二候选值被确定为所述目标值。
作为该实施例的一个子实施例,所述第一候选值是针对直接路径的。
作为该实施例的一个子实施例,所述第一候选值不是非直接路径专用的。
作为该实施例的一个子实施例,所述第一候选值不是远端UE专用的。
作为一个实施例,所述第一信令所包括的第三信元指示所述第一候选值集合中的候选值。
作为该实施例的一个子实施例,所述第三信元是rlf-TimersAndConstants。
作为该实施例的一个子实施例,所述第三信元包括所述第一候选值集合中的每个候选值。
作为该实施例的一个子实施例,所述第二候选值被确定为所述目标值。
作为该实施例的一个子实施例,所述第一候选值是针对直接路径的。
作为该实施例的一个子实施例,所述第一候选值不是非直接路径专用的。
作为该实施例的一个子实施例,所述第一候选值不是远端UE专用的。
作为一个实施例,所述第一候选值集合中的每个候选值都由所述第一信令所指示。
作为该实施例的一个子实施例,所述第二候选值被确定为所述目标值。
作为该实施例的一个子实施例,所述第一候选值是针对直接路径的。
作为该实施例的一个子实施例,所述第一候选值不是非直接路径专用的。
作为该实施例的一个子实施例,所述第一候选值不是远端UE专用的。
作为一个实施例,所述第一节点使用所述第二信令所指示的所述第一计时器的候选值,而忽略所述第一信令所指示所述第一计时器的候选值。
作为该实施例的一个子实施例,所述第二信令是SIB12,所述第一信令是RRCReconfiguration消息。
作为一个实施例,以上实施例的好处在于,一个广播的系统消息覆盖单播的专用信道传输的消息可以增加灵活性,优化使用非直接路径传输的性能。
作为一个实施例,所述第一信令是或包括系统消息块。
作为一个实施例,所述第一信令是或包括系统消息块1(SIB1)。
作为该实施例的一个子实施例,所述第二候选值被确定为所述目标值。
作为该实施例的一个子实施例,所述第一候选值是针对直接路径的。
作为该实施例的一个子实施例,所述第一候选值不是非直接路径专用的。
作为该实施例的一个子实施例,所述第一候选值不是远端UE专用的。
作为一个实施例,所述第一信令包括有关评估是否一个UE被允许接入一个小区的信息。
作为一个实施例,所述第一信令定义了其它系统信息的调度。
作为一个实施例,所述第一信令包括对所有UE公共的无线资源配置信息。
作为一个实施例,所述第一信令包括用于统一接入控制的阻止信息。
作为一个实施例,所述第一信令包括小区选择信息。
作为一个实施例,所述第一信令所包括的第一信元指示所述第一候选值集合中的候选值。
作为该实施例的一个子实施例,所述第二候选值被确定为所述目标值。
作为该实施例的一个子实施例,所述第一信元UE-TimersAndConstants信元。
作为该实施例的一个子实施例,所述第一候选值是针对直接路径的。
作为该实施例的一个子实施例,所述第一候选值不是非直接路径专用的。
作为该实施例的一个子实施例,所述第一候选值不是远端UE专用的。
作为一个实施例,所述第二信令是或包括系统消息块12(SIB12),所述系统消息块12用于配置副链路通信。
作为该实施例的一个子实施例,所述第二候选值被确定为所述目标值。
作为该实施例的一个子实施例,所述第一候选值是针对直接路径的。
作为该实施例的一个子实施例,所述第一候选值不是非直接路径专用的。
作为该实施例的一个子实施例,所述第一候选值不是远端UE专用的。
作为一个实施例,所述第二信令所包括的第二信元指示所述第二候选值。
作为该实施例的一个子实施例,所述第二候选值被确定为所述目标值。
作为该实施例的一个子实施例,所述第二信元是UE-TimersAndConstantsRemoteUE。
作为该实施例的一个子实施例,所述第一候选值是针对直接路径的。
作为该实施例的一个子实施例,所述第一候选值不是非直接路径专用的。
作为该实施例的一个子实施例,所述第一候选值不是远端UE专用的。
作为一个实施例,以上实施例的好处在于,SIB12覆盖SIB1可以增加灵活性,优化使用非直接路径传输的性能。
作为该实施例的一个子实施例,所述第一候选值集合仅包括所述第一候选值。
作为一个实施例,所述第一计时器是第一计时器集合中的任意一个计时器。
作为一个实施例,所述第一计时器集合包括T319计时器。
作为一个实施例,所述第一计时器集合包括T301计时器。
作为一个实施例,所述第一计时器集合包括T300计时器。
作为一个实施例,所述第一候选值和所述第二候选值都是针对所述第一计时器的候选值。
作为一个实施例,所述第一候选值集合中的每个候选值和所述第二候选值都是针对所述第一计时器的候选值。
作为一个实施例,所述第一信元包括所述第一候选值集合。
作为一个实施例,所述第一候选值集合仅包括所述第一候选值。
作为一个实施例,所述第一候选值集合包括所述第一候选值以外的候选值。
作为一个实施例,所述第一消息要么通过直接路径发送,要么通过非直接路径发送。
作为一个实施例,所述第一消息可以同时通过直接路径发送和通过非直接路径发送。
作为一个实施例,所述第一候选值集合包括多于1个候选值。
作为该实施例的一个子实施例,所述第一候选值集合包括针对直接路径和针对非直接路径的候选值。
作为该实施例的一个子实施例,所述第一候选值集合包括针对远端节点的和未针对远端节点的候选值。
作为该实施例的一个子实施例,所述第一候选值集合包括针对远端节点的和针对远端节点以外的节点的候选值。
作为该实施例的一个子实施例,所述第一候选值集合包括针对远端节点的和通用的候选值。
作为该实施例的一个子实施例,所述第一候选值集合包括针对远端节点的和未针对特定类型的节点的候选值。
作为该实施例的一个子实施例,当所述第一消息同时通过直接路径和通过非直接路径发送时,视为使用直接路径。
作为该实施例的一个子实施例,当所述第一消息同时通过直接路径和通过非直接路径发送时,视为使用非直接路径。
作为该实施例的一个子实施例,所述第一候选值集合仅包括2个候选值。
作为一个实施例,所述第一信令用于配置非直接路径。
作为一个实施例,句子所述第一信令被用于配置非直接路径的含义包括:所述第一信令配置非直接路径所关联的RLC。
作为一个实施例,句子所述第一信令被用于配置非直接路径的含义包括:所述第一信令配置非直接路径所使用的资源。
作为一个实施例,句子所述第一信令被用于配置非直接路径的含义包括:所述第一信令配置非直接路径所关联的测量。
作为一个实施例,句子所述第一信令被用于配置非直接路径的含义包括:所述第一信令配置非直接路径所关联的SRAP层。
作为一个实施例,句子所述第一信令被用于配置非直接路径的含义包括:所述第一信令配置非直接路径所关联的中继UE。
作为一个实施例,句子所述第一信令被用于配置非直接路径的含义包括:所述第一信令配置非直接路径所关联的RB。
作为一个实施例,句子所述第一信令被用于配置非直接路径的含义包括:所述第一信令配置非直接路径所关联的RB。
作为一个实施例,句子所述第一信令被用于配置非直接路径的含义包括:配置T420计时器。
作为一个实施例,句子所述第一信令被用于配置非直接路径的含义包括:配置RLC信道。
作为该实施例的一个子实施例,所述RLC信道是PC5接口的RLC信道。
作为一个实施例,句子所述第一信令被用于配置非直接路径的含义包括:所述第一信令包括sl-RemoteUE-ConfigCommon。
作为一个实施例,句子所述第一信令被用于配置非直接路径的含义包括:所述第一信令包括SL-RemoteUE-Config。
作为一个实施例,句子所述第一信令被用于配置非直接路径的含义包括:所述第一信令包括SL-RLC-ChannelConfig。
作为一个实施例,句子所述第一信令被用于配置非直接路径的含义包括:所述第一信令包括
SL-SRAP-Config。
作为一个实施例,句子所述第一信令被用于配置非直接路径的含义包括:所述第一信令包括SL-RLC-ChannelConfigPC5。
作为一个实施例,句子所述第一信令被用于配置非直接路径的含义包括:所述第一信令包括sl-PHY-MAC-RLC-Config。
作为一个实施例,所述第一信令包括所述第一候选值集合。
作为一个实施例,所述第二信令包括所述第二候选值。
作为一个实施例,短语第一计时器的第一候选值集合的含义包括:所述第一候选值集合中的任意一个候选值都可以被确定为所述第一计时器的值。
作为一个实施例,短语第一计时器的第一候选值集合的含义包括:所述第一候选值集合中的任一候选值都可以被确定为所述第一计时器的值。
作为一个实施例,短语第一计时器的第一候选值集合的含义包括:存在所述第一候选值集合中的一个候选值被确定为所述第一计时器的值的情况。
作为一个实施例,短语第一计时器的第一候选值集合的含义包括:存在所述第一候选值集合中的任意一个候选值被确定为所述第一计时器的值的情况。
作为一个实施例,短语第一计时器的第一候选值集合的含义包括:所述第一计时器的值来自于所述第一候选值集合。
作为一个实施例,短语第一计时器的第二候选值的含义包括:所述第二候选值可以被确定为所述第一计时器的值。
作为一个实施例,短语第一计时器的第二候选值的含义包括:存在所述第二候选值被确定为所述第一计时器的值。
作为一个实施例,短语第一计时器的第二候选值的含义包括:所述第一计时器的值可以来自于所述第二候选值。
作为一个实施例,所述第一候选值与所述第二候选值不同。
作为一个实施例,所述第一候选值集合中的任一候选值与所述第二候选值不同。
作为一个实施例,所述第一候选值集合中的至少一个候选值与所述第二候选值不同。
作为一个实施例,所述第一候选值集合中的候选值是否与所述第二候选值相同取决于实现。
作为一个实施例,短语所述第一计时器的值的含义包括:所述第一计时器的过期值。
作为一个实施例,短语所述第一计时器的值的含义包括:所述第一计时器的过期时间。
作为一个实施例,短语所述第一计时器的值的含义包括:当所述第一计时器开始后未被停止的情况下,所述第一计时器将在所述第一计时器的开始之后的所述第一计时器的值所确定的时间过期。
作为一个实施例,所述第一计时器集合中的任意一个候选值的单位是毫秒。
作为一个实施例,所述第一节点是一个L2 U2N远端节点。
作为一个实施例,所述第一节点不是一个L2 U2N远端节点。
作为一个实施例,在发送所述第一消息时,所述第一节点是一个L2 U2N远端节点。
作为一个实施例,在发送所述第一消息时,所述第一节点不是一个L2 U2N远端节点。
作为一个实施例,所述第一节点表现为一个L2 U2N远端节点。
作为一个实施例,所述第一节点未表现为一个L2 U2N远端节点。
作为一个实施例,在发送所述第一消息时,所述第一节点表现为一个L2 U2N远端节点。
作为一个实施例,在发送所述第一消息时,所述第一节点未表现为一个L2 U2N远端节点。
作为一个实施例,短语所述第一消息被用于请求RRC连接包括:所述第一消息被用于请求建立RRC连接。
作为一个实施例,短语所述第一消息被用于请求RRC连接包括:所述第一消息被用于请求重建RRC连接。
作为一个实施例,短语所述第一消息被用于请求RRC连接包括:所述第一消息被用于请求继续RRC连接。
作为一个实施例,所述第一消息是上行的消息。
作为一个实施例,所述第一消息通过SRB0发送。
作为一个实施例,所述第一消息的大小是固定的。
作为一个实施例,所述第一消息的大小包括56个比特。
作为一个实施例,所述第一消息是或包括RRCSetupRequest。
作为该实施例的一个子实施例,所述第一消息的所述响应是或包括:RRCSetup。
作为该实施例的一个子实施例,所述第一消息的所述响应是或包括:RRCRelease。
作为该实施例的一个子实施例,所述第一消息的所述响应是或包括:RRCReject。
作为一个实施例,所述第一消息是或包括RRCResumeRequest。
作为该实施例的一个子实施例,所述第一消息的所述响应是或包括:RRCSetup。
作为该实施例的一个子实施例,所述第一消息的所述响应是或包括:RRCResume。
作为该实施例的一个子实施例,所述第一消息的所述响应是或包括:RRCRelease。
作为该实施例的一个子实施例,所述第一消息的所述响应是或包括:RRCReject。
作为一个实施例,所述第一消息是或包括RRCResumeRequest。
作为该实施例的一个子实施例,所述第一消息的所述响应是或包括:RRCSetup。
作为该实施例的一个子实施例,所述第一消息的所述响应是或包括:RRCResume。
作为该实施例的一个子实施例,所述第一消息的所述响应是或包括:RRCRelease。
作为该实施例的一个子实施例,所述第一消息的所述响应是或包括:RRCReject。
作为一个实施例,所述第一消息是或包括RRCReestablishmentRequest。
作为该实施例的一个子实施例,所述第一消息的所述响应是或包括:RRCSetup。
作为该实施例的一个子实施例,所述第一消息的所述响应是或包括:RRCReestablishment。
作为一个实施例,所述第一消息包括所述第一节点的身份。
作为一个实施例,所述第一消息的所述响应指的是RRC信令。
作为一个实施例,所述第一消息的所述响应用于建立或恢复RRC连接。
作为一个实施例,所述第一消息的所述响应用于配置RRC连接。
作为一个实施例,所述第一消息的所述响应用于确认RRC连接。
作为一个实施例,所述第一信令是单播的,所述第二信令是广播的。
作为一个实施例,所述第一信令和所述第二信令都是广播的。
作为一个实施例,所述第一消息使用SRB0(signaling radio bearer 0,信令无线承载0)传输。
作为一个实施例,句子所述第一消息被用于请求RRC连接,所述第一消息是通过直接路径发送还是通过非直接路径发送被用于确定所述目标值是所述第一候选值集合中的候选值还是所述第二候选值的含义是:SRB0被映射到直接路径还是非直接路径被用于确定所述目标值是所述第一候选值集合中的候选值还是所述第二候选值。
作为一个实施例,SRB0被映射到直接路径还是非直接路径被用于确定所述目标值是所述第一候选值集合中的候选值还是所述第二候选值。
作为一个实施例,所述第一消息被发送时,SRB0被映射到直接路径还是非直接路径被用于确定所述目标值是所述第一候选值集合中的候选值还是所述第二候选值。
作为一个实施例,SRB0被映射到直接路径还是非直接路径被用于确定所述目标值是所述第一候选值集合中的候选值还是所述第二候选值被用于确定所述第一消息是通过直接路径发送还是通过非直接路径发送被用于确定所述目标值是所述第一候选值集合中的候选值还是所述第二候选值。
作为一个实施例,所述第一消息被发送时,SRB被映射到直接路径还是非直接路径被用于确定所述目标值是所述第一候选值集合中的候选值还是所述第二候选值。
作为一个实施例,SRB被映射到直接路径还是非直接路径被用于确定所述目标值是所述第一候选值集合中的候选值还是所述第二候选值被用于确定所述第一消息是通过直接路径发送还是通过非直接路径发送被用于确定所述目标值是所述第一候选值集合中的候选值还是所述第二候选值。
作为一个实施例,所述第一节点确定SRB和/或SRB0映射到直接路径还是映射到非直接路径。
作为一个实施例,网络指示SRB和/或SRB0映射到直接路径还是映射到非直接路径。
作为一个实施例,所述第一信令被用于指示SRB0映射到直接路径还是映射到非直接路径。
作为一个实施例,所述第二信令被用于指示SRB0映射到直接路径还是映射到非直接路径。
作为一个实施例,短语SRB0映射到直接路径的含义包括,SRB0使用直接路径。
作为一个实施例,短语SRB0映射到非直接路径的含义包括,SRB0使用非直接路径。
作为一个实施例,所述目标值是所述第一候选值集合中的候选值还是所述第二候选值,与所述第一信令和所述第二信令中的至少之一通过直接路径还是通过非直接路径接收无关。
作为一个实施例,句子所述目标值是所述第一候选值集合中的候选值还是所述第二候选值,与所述第一信令和所述第二信令中的至少之一通过直接路径还是通过非直接路径接收无关的含义是或包括:所述目标值是所述第一候选值集合中的候选值还是所述第二候选值,与所述第一信令通过直接路径还是通过非直接路径接收无关。
作为一个实施例,句子所述目标值是所述第一候选值集合中的候选值还是所述第二候选值,与所述第一信令和所述第二信令中的至少之一通过直接路径还是通过非直接路径接收无关的含义是或包括:所述目标值是所述第一候选值集合中的候选值还是所述第二候选值,与所述第二信令通过直接路径还是通过非直接路径接收无关。
作为一个实施例,句子所述目标值是所述第一候选值集合中的候选值还是所述第二候选值,与所述第一信令和所述第二信令中的至少之一通过直接路径还是通过非直接路径接收无关的含义是或包括:所述第一信令通过直接路径还是通过非直接路径接收,与所述目标值是所述第一候选值集合中的候选值还是所述第二候选值无关。
作为一个实施例,句子所述目标值是所述第一候选值集合中的候选值还是所述第二候选值,与所述第一信令和所述第二信令中的至少之一通过直接路径还是通过非直接路径接收无关的含义是或包括:所述第二信令通过直接路径还是通过非直接路径接收,与所述目标值是所述第一候选值集合中的候选值还是所述第二候选值无关。
作为一个实施例,句子所述目标值是所述第一候选值集合中的候选值还是所述第二候选值,与所述第一信令和所述第二信令中的至少之一通过直接路径还是通过非直接路径接收无关的含义是或包括:所述目标值是所述第一候选值集合中的候选值还是所述第二候选值,与所述第一信令和所述第二信令通过直接路径还是通过非直接路径接收无关。
作为一个实施例,短语与所述第一信令通过直接路径还是通过非直接路径接收无关的含义包括:所述第一信令通过直接路径还是通过非直接路径发送不影响所述目标值是所述第一候选值集合中的候选值还是所述第二候选值。
作为一个实施例,短语与所述第一信令通过直接路径还是通过非直接路径接收无关的含义包括:无论所述第一信令通过直接路径还是通过非直接路径发送,所述目标值都可以是所述第一候选值集合中的候选值或所述第二候选值。
作为一个实施例,短语与所述第二信令通过直接路径还是通过非直接路径接收无关的含义包括:所述第二信令通过直接路径还是通过非直接路径发送不影响所述目标值是所述第一候选值集合中的候选值还是所述第二候选值。
作为一个实施例,短语与所述第二信令通过直接路径还是通过非直接路径接收无关的含义包括:无论所述第二信令通过直接路径还是通过非直接路径发送,所述目标值都可以是所述第一候选值集合中的候选值或所述第二候选值。
作为一个实施例,短语与所述第一信令和所述第二信令通过直接路径还是通过非直接路径接收无关的含义包括:与所述第一信令通过直接路径还是通过非直接路径接收无关,与所述第二信令通过直接路径还是通过非直接路径接收无关。
作为一个实施例,所述目标值是所述第一候选值集合中的候选值还是所述第二候选值,与所述第一信令和所述第二信令中的至少之一被接收时所述第一节点是否表现为第一类UE无关。
作为一个实施例,所述第一类UE至少使用非直接路径传输信息。
作为一个实施例,句子所述目标值是所述第一候选值集合中的候选值还是所述第二候选值,与所述第
一信令和所述第二信令中的至少之一被接收时所述第一节点是否表现为第一类UE无关的含义包括:所述第一信令被接收时所述第一节点是否表现为第一类UE不影响所述目标值是所述第一候选值集合中的候选值还是所述第二候选值。
作为一个实施例,句子所述目标值是所述第一候选值集合中的候选值还是所述第二候选值,与所述第一信令和所述第二信令中的至少之一被接收时所述第一节点是否表现为第一类UE无关的含义包括:所述第二信令被接收时所述第一节点是否表现为第一类UE不影响所述目标值是所述第一候选值集合中的候选值还是所述第二候选值。
作为一个实施例,句子所述目标值是所述第一候选值集合中的候选值还是所述第二候选值,与所述第一信令和所述第二信令中的至少之一被接收时所述第一节点是否表现为第一类UE无关的含义包括:所述第一信令被接收时所述第一节点是否表现为第一类UE不影响所述目标值是所述第一候选值集合中的候选值还是所述第二候选值,所述第二信令被接收时所述第一节点是否表现为第一类UE不影响所述目标值是所述第一候选值集合中的候选值还是所述第二候选值。
作为一个实施例,句子所述目标值是所述第一候选值集合中的候选值还是所述第二候选值,与所述第一信令和所述第二信令中的至少之一被接收时所述第一节点是否表现为第一类UE无关的含义包括:无论所述第一信令被接收时所述第一节点是否表现为第一类UE,所述目标值都可以是所述第一候选值集合中的候选值或者是所述第二候选值。
作为一个实施例,句子所述目标值是所述第一候选值集合中的候选值还是所述第二候选值,与所述第一信令和所述第二信令中的至少之一被接收时所述第一节点是否表现为第一类UE无关的含义包括:无论所述第二信令被接收时所述第一节点是否表现为第一类UE,所述目标值都可以是所述第一候选值集合中的候选值或者是所述第二候选值。
作为一个实施例,句子所述目标值是所述第一候选值集合中的候选值还是所述第二候选值,与所述第一信令和所述第二信令中的至少之一被接收时所述第一节点是否表现为第一类UE无关的含义包括:所述第一信令和所述第二信令中的至少之一被接收时所述第一节点是否表现为第一类UE与所述目标值是所述第一候选值集合中的候选值还是所述第二候选值无关。
作为一个实施例,所述第一类UE是L2 U2N远端UE。
作为一个实施例,所述第一类UE是仅使用非直接路径的L2 U2N远端UE。
作为一个实施例,短语所述第一类UE使用非直接路径的含义包括:所述第一类UE至少使用非直接路径。
作为一个实施例,短语所述第一类UE使用非直接路径的含义包括:所述第一类UE使用非直接路径也使用直接路径。
作为一个实施例,短语表现为(acting as)第一类UE的含义包括:遵从第一类UE的行为。
作为一个实施例,短语表现为第一类UE的含义包括:执行第一信令时按照第一类UE的需要执行的操作执行所述第一信令。
作为一个实施例,短语表现为第一类UE的含义包括:执行第一信令时执行目标操作集合。
作为一个实施例,短语表现为第一类UE的含义包括:使用非直接路径。
作为一个实施例,短语表现为第一类UE的含义包括:仅使用非直接路径。
作为一个实施例,短语表现为第一类UE的含义包括:是L2 U2N远端UE。
作为一个实施例,短语表现为第一类UE的含义包括:执行用于配置非直接路径的信令。
作为一个实施例,短语表现为第一类UE的含义包括:执行用于配置L2 U2N远端UE的信令。
作为一个实施例,短语表现为第一类UE的含义包括:认为自己L2 U2N远端UE。
作为一个实施例,短语所述第一节点表现为第一类UE的含义包括:所述第一节点表现为L2 U2N远端UE。
作为一个实施例,短语所述第一节点表现为第一类UE的含义包括:所述第一节点表现为L2 U2N远端UE且仅使用非直接路径。
作为一个实施例,短语所述第一节点表现为第一类UE的含义包括:所述第一节点表现为L2 U2N远端UE且仅被配置了非直接路径。
作为一个实施例,短语所述第一节点表现为第一类UE的含义包括:所述第一节点表现为L2 U2N远端UE且未使用直接路径。
作为一个实施例,短语所述第一节点表现为第一类UE的含义包括:所述第一节点表现为L2 U2N远端UE且未被配置直接路径。
作为一个实施例,短语所述第一节点表现为第一类UE的含义包括:所述第一节点表现为仅使用非直接路径的L2 U2N远端UE。
作为一个实施例,短语所述第一节点表现为第一类UE的含义包括:所述第一节点表现为仅被配置了非直接路径的L2 U2N远端UE。
作为一个实施例,所述第一节点表现为第一类UE的意思是或包括:所述第一节点表现为L2 U2N远端UE。
作为一个实施例,短语所述第一节点表现为L2 U2N远端UE的含义是或包括:所述第一节点仅使用非直接路径。
作为一个实施例,短语所述第一节点表现为L2 U2N远端UE的含义是或包括:所述第一节点仅被配置了非直接路径。
作为一个实施例,短语所述第一节点表现为L2 U2N远端UE的含义是或包括:所述第一节点未使用直接路径。
作为一个实施例,短语所述第一节点表现为L2 U2N远端UE的含义是或包括:所述第一节点未被配置直接路径。
作为一个实施例,短语仅使用非直接路径的含义是:未使用直接路径。
作为一个实施例,短语仅使用非直接路径的含义是:未被配置直接路径。
作为一个实施例,短语仅使用非直接路径的含义是:不支持或不能使用直接路径。
作为一个实施例,短语既使用非直接路径也使用直接路径的含义包括:既被配置了非直接路径也被配置了直接路径。
作为一个实施例,短语既使用非直接路径也使用直接路径的含义包括:既可以使用非直接路径也可以使用直接路径。
作为一个实施例,短语既使用非直接路径也使用直接路径的含义包括:在通信的过程中,既可以使用非直接路径也可以使用直接路径。
作为一个实施例,短语既使用非直接路径也使用直接路径的含义包括:在一次通信中,既可以使用非直接路径也可以使用直接路径。
作为一个实施例,短语既使用非直接路径也使用直接路径的含义包括:至少一个RB使用或与非直接路径相关联,至少一个RB使用或与直接路径相关联。
作为一个实施例,短语既使用非直接路径也使用直接路径的含义包括:同时使用直接路径和非直接路径传输数据。
作为一个实施例,短语既使用非直接路径也使用直接路径的含义包括:同时使用直接路径和非直接路径传输相同的数据。
作为一个实施例,短语继传输信息包括传输信令和/或数据。
作为一个实施例,目标信令被用于配置第二计时器和N;所述第二计时器的启动条件包括:检测到SpCell的物理层出现问题;所述第二计时器的停止条件包括:从针对SpCell的更低层接收到N个连续的同步指示。
作为一个实施例,所述目标信令是所述第一信令。
作为一个实施例,所述目标信令是所述第一信令以外的信令。
作为该实施例的一个子实施例,所述目标信令是第三信令。
作为该实施例的一个子实施例,所述第三信令是RRC信令。
作为该实施例的一个子实施例,所述第二候选值被确定为所述目标值。
作为该实施例的一个子实施例,所述目标信令是单播的,所述第二信令是广播的。
作为一个实施例,所述第二计时器由所述目标信令配置。
作为该实施例的一个子实施例,所述第二候选值被确定为所述目标值。
作为该实施例的一个子实施例,所述目标信令是单播的,所述第二信令是广播的。
作为一个实施例,所述第一计时器与所述第二计时器不同。
作为一个实施例,所述N为正整数。
作为一个实施例,配置N的含义是配置N的取值。
作为一个实施例,所述目标信令通过专用信道发送给所述第一节点。
作为一个实施例,所述第一节点仅在具有RRC连接的情况下才可以与网络进行正常的通信。
作为一个实施例,所述第二计时器的过期用于触发无线链路失败。
作为一个实施例,发生无线链路失败触发发起RRC连接重建。
作为一个实施例,发起RRC连接重建包括发送RRC连接重建请求消息。
作为一个实施例,发起RRC连接重建包括选择一个合适的小区以发送RRC连接重建请求消息。
作为一个实施例,发起RRC连接重建包括选择一个合适的L2 U2N中继UE以发送RRC连接重建请求消息。
作为一个实施例,发起RRC连接重建包括挂起至少一个RB。
作为一个实施例,发起RRC连接重建包括MAC重置。
作为一个实施例,本申请所提出的方法适合NR网络。
作为一个实施例,本申请所提出的方法适合NR以后的网络。
作为一个实施例,所述合适的小区包括合适NR小区。
作为一个实施例,所述NR小区是NR网络的小区。
作为一个实施例,选择了合适的小区,则所述第一节点通过直接路径发送RRC连接重建请求。
作为一个实施例,选择了合适的L2 U2N中继UE,则所述第一节点通过非直接路径发送RRC连接重建请求。
作为一个实施例,所述合适的NR小区是满足一定信道质量的NR小区。
作为一个实施例,所述合适的L2 U2N中继UE是满足一定信道质量的L2 U2N中继UE。
作为一个实施例,所述第一计时器过期触发所述第一节点进入RRC空闲态。
作为一个实施例,所述第一计时器是T301计时器。
作为一个实施例,所述第一计时器是T319计时器。
作为一个实施例,所述第一计时器是T300计时器。
作为一个实施例,所述第二计时器是T310计时器。
作为一个实施例,所述第二计时器是针对MCG的。
作为一个实施例,所述SpCell的物理层是所述第一节点的针对与SpCell通信的物理层。
作为一个实施例,所述SpCell的物理层是所述第一节点的用于测量SpCell信号的物理层。
作为一个实施例,短语检测到SpCell的物理层出现问题的含义包括:所述第一节点的物理层报告SpCell的参考信号资源上的测量结果差于一定阈值。
作为一个实施例,短语检测到SpCell的物理层出现问题的含义包括:所述第一节点的物理层报告用于监测SpCell的无线链路质量的参考信号资源上的测量结果差于一定阈值。
作为一个实施例,短语检测到SpCell的物理层出现问题的含义包括:从针对SpCell的更低层接收到N1个连续的失步(out-of-sync)指示。
作为一个实施例,所述目标信令指示所述N1。
作为一个实施例,所述N1是正整数。
作为一个实施例,所述目标信令的N310域指示所述N1。
作为一个实施例,所述目标信令的N311域指示所述N。
作为一个实施例,所述更低层包括物理层。
作为一个实施例,所述更低层包括RRC层以下的层。
作为一个实施例,所述连续的失步指示指的是在所述N1个失步指示之间未接收到针对所述SpCell的物理层的同步指示。
作为一个实施例,所述连续的失步指示指的是所述N1个失步指示未夹杂针对所述SpCell的物理层的同步(in-sync)指示。
作为一个实施例,所述针对SpCell的更低层包括RRC层以下的针对SpCell的协议层。
作为一个实施例,所述针对SpCell的更低层包括针对SpCell的物理层。
作为一个实施例,短语从针对SpCell的更低层接收到N个连续的同步指示的含义包括:所述第一节点的物理层根据用于监测SpCell的无线链路质量的参考信号资源上的测量结果好于一个特定的阈值,向所述第一节点的RRC层发送同步(in-sync)指示。
作为一个实施例,当接收到N个连续的同步指示时,所述SpCell的无线链路失败的风险被解除。
作为一个实施例,所述N个连续的同步指示是,在所述N个同步指示之间没有接收到来自于针对SpCell的物理层的失步指示。
作为一个实施例,所述第二计时器的过期被用于确定或用于触发针对所述SpCell的无线链路失败。
作为一个实施例,所述第一节点表现为第一类UE的意思包括:所述第一节点既使用非直接路径也使用直接路径,并且非直接路径是特定路径。
作为一个实施例,所述第一节点不表现为第一类UE的意思包括:所述第一节点既使用非直接路径也使用直接路径,并且直接路径是特定路径。
作为一个实施例,所述第一节点不表现为第一类UE的意思包括:所述第一节点表现为L2 U2N远端UE并且被配置了直接路径。
作为一个实施例,所述第一节点不表现为第一类UE的意思包括:所述第一节点表现为L2 U2N远端UE并且使用直接路径。
作为一个实施例,所述第一节点不表现为第一类UE的意思包括:所述第一节点表现为L2 U2N远端UE并且使用多路径。
作为一个实施例,所述第一节点不表现为第一类UE的意思包括:所述第一节点表现为L2 U2N远端UE并且被配置了多路径。
作为一个实施例,所述第一节点不表现为第一类UE的意思包括:所述第一节点表现为被配置了直接路径的L2 U2N远端UE。
作为一个实施例,所述第一节点不表现为第一类UE的意思包括:所述第一节点表现为使用直接路径的L2 U2N远端UE。
作为一个实施例,所述第一节点不表现为第一类UE的意思包括:所述第一节点表现为使用多路径的L2 U2N远端UE。
作为一个实施例,所述第一节点不表现为第一类UE的意思包括:所述第一节点表现为被配置了多路径的L2 U2N远端UE。
作为一个实施例,所述第一节点不表现为第一类UE的意思包括:所述第一节点不表现为仅被配置了非直接路径的L2 U2N远端UE。
作为一个实施例,所述第一节点不表现为第一类UE的意思包括:所述第一节点不表现为仅使用直接路径的L2 U2N远端UE。
作为一个实施例,所述第一节点不表现为第一类UE的意思包括:所述第一节点不表现为L2 U2N远端UE。
作为该实施例的一个子实施例,所述第一节点是L2 U2N远端UE。
作为一个实施例,所述第一节点不表现为第一类UE的意思包括:所述第一节点不满足表现为第一类UE的条件。
作为一个实施例,特定路径是非直接路径和直接路径中的主路径。
作为一个实施例,特定路径是非直接路径和直接路径中被配置控制面的路径。
作为一个实施例,特定路径用于传输或关联SRB1的路径。
作为一个实施例,特定路径是预配置的。
作为一个实施例,特定路径是指定的。
作为一个实施例,所述第一节点是L2 U2N远端UE。
作为一个实施例,短语所述第一节点是L2 U2N远端UE的含义包括:所述第一节点选择了一个L2 U2N中继UE。
作为一个实施例,短语所述第一节点是L2 U2N远端UE的含义包括:所述第一节点为了中继与一个L2U2N中继UE建立了连接。
作为一个实施例,短语所述第一节点是L2 U2N远端UE的含义包括:所述第一节点通过L2 U2N中继UE与网络通信。
作为一个实施例,短语所述第一节点是L2 U2N远端UE的含义包括:所述第一节点使用L2 U2N中继UE的中继服务。
作为一个实施例,短语所述第一节点是L2 U2N远端UE的含义包括:所述第一节点通过U2N中继UE与网络通信。
作为一个实施例,短语所述第一节点是L2 U2N远端UE的含义包括:所述第一节点与网络通信的方式包括通过U2N中继UE。
作为一个实施例,短语所述第一信令被用于配置非直接路径包括:配置L2 U2N远端UE的SRAP(Sidelink Relay Adaptation Protocol,副链路中继适配层协议)层;
其中,所述第一节点不表现为第一类UE。
作为一个实施例,短语配置L2 U2N远端UE的SRAP层的含义包括:配置所述第一节点的SRAP层。
作为一个实施例,短语配置L2 U2N远端UE的SRAP层的含义包括:所述第一信令包括SL-SRAP-Config。
作为一个实施例,短语配置L2 U2N远端UE的SRAP层的含义包括:配置RLC信道。
作为一个实施例,短语配置L2 U2N远端UE的SRAP层的含义包括:配置用于与网络通信的RLC信道。
作为一个实施例,短语配置L2 U2N远端UE的SRAP层的含义包括:配置PC5接口的RLC信道。
作为一个实施例,所述第一候选值集合包括第一候选值和第三候选值,所述第一候选值是针对直接路径的,所述第三候选值是针对非直接路径的。
作为该实施例的一个子实施例,所述第一信令是单播的;所述第二信令是广播的。
作为一个实施例,所述第一消息通过直接路径发送还是通过非直接路径发送,被用于确定所述目标值。
作为该实施例的一个子实施例,所述第一信令是单播的;所述第二信令是广播的。
作为一个实施例,当所述第一消息是通过直接路径发送时,所述第一候选值被确定为所述目标值;当所述第一消息是通过非直接路径发送时,所述第三候选值被确定为所述目标值。
作为该实施例的一个子实施例,所述第一信令是单播的;所述第二信令是广播的。
作为一个实施例,所述第二候选值是针对非直接路径的。
作为一个实施例,所述第二候选值是针对L2 U2N远端UE的。
作为一个实施例,所述第二候选值是针对表现为L2 U2N远端UE的UE的。
作为一个实施例,所述第一候选值集合包括第一候选值和第三候选值,所述第一候选值是针对直接路径的,所述第三候选值是针对非直接路径的;当所述第一消息是通过直接路径发送时,所述第一候选值被确定为所述目标值;当所述第一消息是通过非直接路径发送时,所述第三候选值被确定为所述目标值。
作为该实施例的一个子实施例,所述第一信令是单播的。
作为该实施例的一个子实施例,所述第二信令是广播的。
作为该实施例的一个子实施例,所述第二候选值是针对非直接路径的。
作为一个实施例,短语所述第一候选值是针对直接路径的的含义是或包括:所述第一候选值不是针对非直接路径的。
作为一个实施例,短语所述第一候选值是针对直接路径的的含义是或包括:所述第一候选值不是针对副链路的。
作为一个实施例,短语所述第一候选值是针对直接路径的的含义是或包括:所述第一候选值不是针对L2 U2N远端节点的。
作为一个实施例,短语所述第一候选值是针对直接路径的的含义是或包括:所述第一候选值不是针对表现为L2 U2N远端节点的节点的。
作为一个实施例,短语所述第一候选值是针对直接路径的的含义是或包括:所述第一候选值是针对所
有UE的。
作为一个实施例,短语所述第一候选值是针对直接路径的的含义是或包括:所述第一候选值不是特定UE的。
作为一个实施例,短语所述第三候选值是针对非直接路径的的含义是或包括:所述第三候选值是针对使用非直接路径的UE的。
作为一个实施例,短语所述第三候选值是针对非直接路径的的含义是或包括:所述第三候选值是针对L2 U2N远端UE的。
作为一个实施例,短语所述第三候选值是针对非直接路径的的含义是或包括:所述第三候选值是针对表现为L2 U2N远端UE的UE的。
作为一个实施例,短语所述第三候选值是针对非直接路径的的含义是或包括:所述第三候选值是针对副链路通信的。
作为一个实施例,所述第二信令不用于配置所述第二计时器。
作为一个实施例,所述第一信令被用于配置第三计时器,所述第三计时器是T311。
作为一个实施例,所述第三信令被用于配置第三计时器,所述第三计时器是T311。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。
附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远端单元、移动装置、无线装置、无线通信装置、远端装置、移动订户台、接入终端、移动终端、无线终端、远端终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,本申请中的第一节点是UE201。
作为一个实施例,本申请中的第二节点是gNB203。
作为一个实施例,从所述UE201到NR节点B的无线链路是上行链路。
作为一个实施例,从NR节点B到UE201的无线链路是下行链路。
作为一个实施例,所述UE201支持中继传输。
作为一个实施例,所述UE201是包括手机。
作为一个实施例,所述UE201是包括汽车在内的交通工具。
作为一个实施例,所述gNB203是宏蜂窝(MarcoCellular)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(Pico Cell)基站。
作为一个实施例,所述gNB203是一个飞行平台设备。
作为一个实施例,所述gNB203是卫星设备。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一节点(UE,gNB或NTN中的卫星或飞行器)和第二节点(gNB,UE或NTN中的卫星或飞行器),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一节点与第二节点以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二节点之间的对第一节点的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一节点之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点与第一节点之间的RRC信令来配置下部层。PC5-S(PC5Signaling Protocol,PC5信令协议)子层307负责PC5接口的信令协议的处理。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点和第二节点的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。SRB可看作是PDCP层向更高层,例如RRC层提供的服务或接口。在NR系统中SRB包括SRB1,SRB2,SRB3,涉及到副链路通信时还有SRB4,分别用于传输不同类型的控制信令。SRB是UE与接入网之间的承载,用于在UE和接入网之间传输包括RRC信令在内的控制信令。SRB1对于UE具有特别的意义,每个UE建立RRC连接以后,都会有SRB1,用于传输RRC信令,大部分信令都是通过SRB1传输的,如果SRB1中断或无法使用,则UE必须进行RRC重建。SRB2一般仅用于传输NAS信令或与安全方面有关的信令。UE可以不配置SRB3。除紧急业务,UE必须与网络建立RRC连接才能进行后续的通信。虽然未图示,但第一节点可具有在L2层355之上的若干上部层。此外还包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。对于涉及中继服务的UE,其控制面还可包括适配子层SRAP(Sidelink Relay Adaptation Protocol,副链路中继适配可以)308,其用户面也可包括适配子层SRAP358,适配层的引入有助于更低层,例如MAC层,例如RLC层,对来自于多个源UE的数据进行复用和/或区分。对于不涉及中继通信的节点,通信的过程中不需要PC5-S307、SRAP308,SRAP358.
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一信令生成于RRCC306。
作为一个实施例,本申请中的所述第二信令生成于RRCC306。
作为一个实施例,本申请中的所述第三信令生成于RRCC306。
作为一个实施例,本申请中的所述第一消息生成于RRCC306。
实施例4
实施例4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,可选的还可以包括多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,可选的还可以包括多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2(Layer-2)层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457
进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:接收第一信令和第二信令;所述第一信令指示第一计时器的第一候选值集合;所述第二信令指示第一计时器的第二候选值;所述第一候选值集合包括至少一个候选值;发送第一消息,伴随所述第一消息的发送,开始所述第一计时器,所述第一计时器的值是目标值;其中,所述第一消息是RRC消息,所述第一消息被用于请求RRC连接,所述第一消息是通过直接路径发送还是通过非直接路径发送被用于确定所述目标值是所述第一候选值集合中的候选值还是所述第二候选值;所述非直接路径是通过L2(Layer-2)U2N(UE to Network,UE到网络)中继传输信息;所述直接路径是不通过L2 U2N中继传输信息;所述第一计时器的停止条件包括接收到针对所述第一消息的响应;所述第一计时器的过期被用于确定RRC连接失败。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令和第二信令;所述第一信令指示第一计时器的第一候选值集合;所述第二信令指示第一计时器的第二候选值;所述第一候选值集合包括至少一个候选值;发送第一消息,伴随所述第一消息的发送,开始所述第一计时器,所述第一计时器的值是目标值;其中,所述第一消息是RRC消息,所述第一消息被用于请求RRC连接,所述第一消息是通过直接路径发送还是通过非直接路径发送被用于确定所述目标值是所述第一候选值集合中的候选值还是所述第二候选值;所述非直接路径是通过L2(Layer-2)U2N(UE to Network,UE到网络)中继传输信息;所述直接路径是不通过L2 U2N中继传输信息;所述第一计时器的停止条件包括接收到针对所述第一消息的响应;所述第一计时器的过期被用于确定RRC连接失败。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第一通信设备450是一个车载终端。
作为一个实施例,所述第二通信设备450是一个中继。
作为一个实施例,所述第二通信设备410是一个UE。
作为一个实施例,所述第二通信设备410是一个车载终端。
作为一个实施例,所述第二通信设备410是一个可穿戴设备。
作为一个实施例,所述第二通信设备410是一个物联网设备。
作为一个实施例,接收器454(包括天线452),接收处理器456和控制器/处理器459被用于本申请中接收所述第一信令。
作为一个实施例,接收器454(包括天线452),接收处理器456和控制器/处理器459被用于本申请中接收所述第二信令。
作为一个实施例,接收器454(包括天线452),接收处理器456和控制器/处理器459被用于本申请中接收所述第三信令。
作为一个实施例,发射器454(包括天线452),发射处理器468和控制器/处理器459被用于本申请中发送所述第一消息。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。附图5中,U01对应本申请的第一节点,特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序,其中F51内的步骤是可选的。
对于第一节点U01,在步骤S5101中接收第一信令;在步骤S5102中接收第二信令;在步骤S5103中接收第三信令;在步骤S5104中发送第一消息。
对于第二节点U02,在步骤S5201中发送第一信令;在步骤S5202中发送第二信令;在步骤S5203中发送第三信令;在步骤S5204中接收第一消息。
在实施例5中,所述第一信令指示第一计时器的第一候选值集合;所述第二信令指示第一计时器的第二候选值;所述第一候选值集合包括至少一个候选值;所述第一节点U01,伴随所述第一消息的发送,开始所述第一计时器,所述第一计时器的值是目标值;其中,所述第一消息是RRC消息,所述第一消息被用于请求RRC连接,所述第一消息是通过直接路径发送还是通过非直接路径发送被用于确定所述目标值是所述第一候选值集合中的候选值还是所述第二候选值;所述非直接路径是通过L2(Layer-2)U2N(UE to Network,UE到网络)中继传输信息;所述直接路径是不通过L2 U2N中继传输信息;所述第一计时器的停止条件包括接收到针对所述第一消息的响应;所述第一计时器的过期被用于确定RRC连接失败。
作为一个实施例,所述第一节点U01是一个UE。
作为一个实施例,所述第一节点U01是一个U2N远端UE。
作为一个实施例,所述第二节点U02是一个网络节点。
作为一个实施例,所述第二节点U02是一个小区。
作为一个实施例,所述第二节点U02是一个基站。
作为一个实施例,所述第二节点U02是所述第一节点U01的PCell。
作为一个实施例,所述第二节点U02是所述第一节点U01的PSCell。
作为一个实施例,所述第二节点U02是所述第一节点U01的SpCell。
作为一个实施例,所述第一信令通过中继转发。
作为一个实施例,所述第一信令使用非直接路径发送。
作为一个实施例,所述第一信令使用直接路径发送。
作为一个实施例,所述第一信令同时使用直接路径和非直接路径发送。
作为一个实施例,所述第一信令被用于配置非直接路径。
作为一个实施例,所述第一信令被用于配置非直接路径的含义包括:所述第一信令用于添加非直接路径。
作为一个实施例,所述第一信令被用于配置非直接路径的含义包括:所述第一信令用于重配置非直接路径。
作为一个实施例,所述第一信令用于添加直接路径。
作为一个实施例,所述第一信令包括测量配置,所述测量配置与所述第一测量报告相关联。
作为一个实施例,所述第一信令包括测量配置,所述第一测量报告根据所述第一信令所指示的测量配置生成。
作为一个实施例,所述第一信令包括测量报告配置,所述第一测量报告根据所述第一信令所指示的测量报告配置生成。
作为一个实施例,所述测量配置包括测量所针对的参考信号资源。
作为一个实施例,所述测量配置包括测量所针对的中继UE。
作为一个实施例,所述第一信令和所述第二信令没有固定的先后顺序。
作为一个实施例,步骤S5101早于步骤S5102。
作为一个实施例,步骤S5101不早于步骤S5102。
作为一个实施例,步骤S5101晚于步骤S5102。
作为一个实施例,所述第二信令的接收不依赖所述第一信令。
作为一个实施例,所述第二信令的接收依赖所述第一信令。
作为一个实施例,所述第二信令的应用或执行依赖所述第一信令。
作为一个实施例,所述第一信令指示所述第二信令。
作为一个实施例,所述第一信令包括所述第二信令的调度信息。
作为一个实施例,所述第二信令是系统信息块。
作为一个实施例,所述第二信令是SIB。
作为一个实施例,所述第二信令是SIB12。
作为一个实施例,发送所述第一信令时,所述第一节点U01处于RRC空闲态。
作为一个实施例,发送所述第一信令时,所述第一节点U01处于RRC不活跃态。
作为一个实施例,发送所述第一信令时,所述第一节点U01的SRB0以外的SRB被挂起。
作为一个实施例,发送所述第一信令时,所述第一节点U01未发生无线链路失败。
作为一个实施例,发送所述第一信令时,所述第一节点U01的SRB0以外的SRB未被挂起。
作为一个实施例,发送所述第一信令时,所述第一节点U01处于RRC连接态。
作为一个实施例,发送所述第二信令时,所述第一节点U01处于RRC空闲态。
作为一个实施例,发送所述第二信令时,所述第一节点U01处于RRC不活跃态。
作为一个实施例,发送所述第二信令时,所述第一节点U01的SRB0以外的SRB被挂起。
作为一个实施例,发送所述第二信令时,所述第一节点U01未发生无线链路失败。
作为一个实施例,发送所述第二信令时,所述第一节点U01的SRB0以外的SRB未被挂起。
作为一个实施例,发送所述第二信令时,所述第一节点U01处于RRC连接态。
作为一个实施例,所述第一信令非周期性发送。
作为一个实施例,所述第一信令周期性发送。
作为一个实施例,所述第二信令周期性发送。
作为一个实施例,当所述第一信令使用非直接路径时,所述第一信令经过中继从所述第一节点U01转发给所述第二节点U02。
作为一个实施例,当所述第一信令使用非直接路径时,所述第二信令经过中继从所述第一节点U01转发给所述第二节点U02。
作为一个实施例,当所述第一信令使用非直接路径时,所述第三信令经过中继从所述第一节点U01转发给所述第二节点U02。
作为一个实施例,所述第三信令使用直接路径。
作为一个实施例,所述第三信令使用非直接路径。
作为一个实施例,所述第三信令使用直接路径和非直接路径。
作为一个实施例,步骤S5104晚于步骤S5101。
作为一个实施例,步骤S5104晚于步骤S5102。
作为一个实施例,步骤S5104晚于步骤S5103。
作为一个实施例,所述第一消息使用直接路径发送。
作为一个实施例,所述第一消息使用非直接路径发送。
作为一个实施例,所述第一节点U01处于RRC空闲态。
作为一个实施例,所述第一节点U01处于RRC非活跃态。
作为一个实施例,在步骤S5104之前,所述第一节点U01检测到无线链路失败。
作为一个实施例,所述第一节点U01具有L2 U2N中继UE。
作为一个实施例,所述第一节点U01的所述L2 U2N中继UE周期性的发送发现消息。
作为一个实施例,所述第一节点U01的所述L2 U2N中继UE所发送的所述发现消息是PC5-S消息。
作为一个实施例,所述第一节点U01的所述L2 U2N中继UE所发送的所述发现消息是PC5接口的NAS消息。
作为一个实施例,所述第一节点U01的所述L2 U2N中继UE所发送的所述发现消息用于被U2N远端UE
发现。
作为一个实施例,所述第一节点U01的所述L2 U2N中继UE所发送的所述发现消息用于发现U2N远端UE。
作为一个实施例,所述第一节点U01的所述L2 U2N中继UE所发送的所述发现消息指示所述L2 U2N中继UE的身份。
作为一个实施例,所述第一节点U01的所述L2 U2N中继UE所发送的所述发现消息指示所述L2 U2N中继UE的服务小区。
作为一个实施例,所述第一节点U01的所述L2 U2N中继UE所发送的所述发现消息指示所述L2 U2N中继UE的服务小区的物理小区身份。
作为一个实施例,所述第一节点U01的所述L2 U2N中继UE所发送的所述发现消息指示所述L2 U2N中继UE是否提供中继服务。
作为一个实施例,所述第一节点U01的所述L2 U2N中继UE所发送的所述发现消息指示所述L2 U2N中继UE的中继服务码。
作为一个实施例,所述第一节点U01的所述L2 U2N中继UE所发送的所述发现消息指示所述L2 U2N中继UE的PLMN(Public Land Mobile Network,公共陆地移动通信网)。
作为一个实施例,所述第一节点U01的所述L2 U2N中继UE所发送的所述发现消息通过SRB4发送。
作为一个实施例,所述第一信令使用加密。
作为一个实施例,所述第一信令使用完整性保护。
作为一个实施例,所述第二信令使用加密。
作为一个实施例,所述第二信令使用完整性保护。
作为一个实施例,所述第三信令使用加密。
作为一个实施例,所述第三信令使用完整性保护。
作为一个实施例,所述第一信令不使用加密。
作为一个实施例,所述第一信令不使用完整性保护。
作为一个实施例,所述第二信令不使用加密。
作为一个实施例,所述第二信令不使用完整性保护。
实施例6
实施例6示例了根据本申请的一个实施例的协议栈的示意图,如附图6所示。
附图6分(a)、(b)两个子图。
附图6所示出的协议栈适用于L2 U2N中继通信,实施例6以实施例3为基础。
附图6中的(a)对应使用非直接路径通信时的协议栈;附图6中的(b)对应使用直接路径通信时协议栈。
附图6中的前缀“Uu-”表示是Uu接口的协议;前缀“PC5-”表示是PC5接口的协议。
作为一个实施例,附图6中的第一中继是所述第一节点使用非直接路径时的中继。
作为一个实施例,所述第一中继是所述第一节点与MCG之间通信的L2 U2N中继UE。
作为一个实施例,附图6中的第二节点是所述第一节点的PCell或PCell所对应的gNB。
作为一个实施例,附图6中的第二节点是所述第一节点的MCG或MCG所对应的gNB。
作为一个实施例,附图6中的第二节点是所述第一节点所连接的gNB。
作为一个实施例,附图6中的第二节点是所述第一中继所连接的gNB。
作为一个实施例,附图6中的第二节点是所述第一中继所连接的DU(data Unit,数据单元)或服务小区。
作为一个实施例,附图6中的第二节点是一个网络节点。
作为一个实施例,附图6中的第二节点与所述第一节点之间具有RRC连接。
作为一个实施例,附图6中的第二节点对应本申请的实施例5中的第二节点。
在实施例6中,PC5接口是所述第一节点和所述第一中继之间的接口,PC5接口有关的协议实体{PC5-SRAP,PC5-RLC,PC5-MAC,PC5-PHY}终结于所述第一节点和所述第一中继;Uu接口是UE与所述第二节点之间的接口,Uu接口的协议实体分别终结于UE和所述第二节点。
作为一个实施例,所述第一中继是U2N中继UE,在执行所述第一信令之前,所述第一中继向所述第一节点提供L2 U2N中继服务。
作为一个实施例,所述第一中继是U2N中继UE,在执行所述第一信令之前,所述第一中继未向所述第一节点提供L2 U2N中继服务,在接收到所述第一信令或第二信令或第三信令之后,所述第一节点使用所述第一中继提供的U2N中继服务。
作为一个实施例,所述第一节点和所述第一中继都是UE。
作为一个实施例,Uu接口的协议实体{Uu-SRAP,Uu-RLC,Uu-MAC,Uu-PHY}终结于所述第一中继和第二节点。
作为一个实施例,在(a)中,Uu接口的协议实体{Uu-PDCP}终结于所述第一节点和所述第二节点,所述第一节点的PDCP PDU使用所述第一中继的转发,但所述第一中继不修改所述第一节点的所述PDCP PDU,也就是说所述第一节点发送给网络的PDCP PDU对所述第一中继来说是透传的。
作为一个实施例,在(a)中,PC5-SRAP对应附图3中的SRAP357,PC5-RLC对应附图3中的RLC353,PC5-MAC对应附图3中的MAC352,PC5-PHY对应附图3中的PHY351。
作为一个实施例,在(a)中,对于所述第一节点的用户面,Uu-PDCP之上还有Uu-SDAP;对于所述第一节点的控制面,Uu-PDCP之上还有Uu-RRC层。
作为一个实施例,Uu-SDAP对应附图3中的SDAP356,Uu-PDCP对应附图3中的PDCP354;Uu-RRC对应附图3中的RRC306。
作为一个实施例,附图6中所述第二节点的一个小区是所述第一中继的PCell,所述第一中继处于RRC连接态。
作为一个实施例,所述第一节点处于RRC连接态。
作为一个实施例,所述第一节点的MCG也是所述第一中继的MCG。
作为一个实施例,PC5-SRAP只针对特定RB或消息或数据而被使用。
作为该实施例的一个子实施例,当所述第一中继转发gNB的系统信息时,不使用PC5-SRAP层。
作为一个实施例,所述第一节点的SRB1是所述第一节点与附图6(a)中的第二节点之间的SRB1,关联的协议实体包括Uu-PDCP和Uu-RRC。
作为一个实施例,所述第一节点与所述第二节点之间的通信使用非直接路径。
作为一个实施例,所述第一节点与所述第二节点之间的通信使用直接路径。
作为一个实施例,所述第一节点与所述第二节点之间的通信同时使用直接路径和非直接路径。
作为一个实施例,所述第一信令对所述第一中继而言是透传的。
作为一个实施例,所述第一信令的传输不使用所述第一中继,所述第一信令的传输适用于附图6(c)。
作为一个实施例,所述第一信令适用于附图6(a)的协议结构。
作为一个实施例,所述第一信令适用于附图6(b)的协议结构。
作为一个实施例,在使用非直接路径时,所述第一节点的Uu-PDCP与PC5-RLC相关联,或通过PC5-SRAP与PC5-RLC相关联。
作为一个实施例,在使用直接路径时,所述第一节点建立Uu-RLC,所述第一节点的Uu-PDCP与Uu-RLC相关联。
作为该实施例的一个子实施例,在转换到所述直接路径后,所述第一节点释放PC5-RLC。
作为该实施例的一个子实施例,在转换到所述直接路径后,所述第一节点释放PC5-SRAP。
作为该实施例的一个子实施例,在转换到所述直接路径后,所述第一节点释放PC5-MAC和PC5-PHY。
作为该实施例的一个子实施例,在转换到所述直接路径后,所述第一节点不再使用PC5-SRAP。
作为该实施例的一个子实施例,在转换到所述直接路径后,所述第一节点的Uu-PDCP与Uu-RLC之间没有其它的协议层。
作为一个实施例,附图6中的(b)是不使用中继时,所述第一节点与所述第三节点之间通信时的协议栈。
作为一个实施例,附图6中的(b)是使用直接路径时,所述第一节点与所述第三节点之间通信时的协议栈。
作为一个实施例,当所述第一节点同时使用直接路径和非直接路径与网络通信时,所述第一节点同时使用(a)所示的协议栈和(b)所示的协议栈。
作为该实施例的一个子实施例,(a)和(b)所示的协议栈被应用于同一个RB。
作为一个实施例,所述主路径是所述第一节点和所述第三节点采用(b)通信时的链路。
作为一个实施例,所述主路径是所述第一节点和所述第二节点采用(a)通信时的链路。
作为一个实施例,所述特定路径是所述第一节点和所述第三节点采用(b)通信时的链路。
作为一个实施例,所述特定路径是所述第一节点和所述第二节点采用(a)通信时的链路。
作为一个实施例,附图6中的第三节点是所述第一节点的PCell或PCell所对应的gNB。
作为一个实施例,附图6中的第三节点是所述第一节点的MCG或MCG所对应的gNB。
作为一个实施例,附图6中的第三节点是所述第一节点所连接的gNB。
作为一个实施例,附图6中的第三节点是所述第一节点所连接的DU或服务小区。
作为一个实施例,附图6中的第三节点是一个网络节点。
作为一个实施例,附图6中的第三节点与所述第一节点之间具有RRC连接。
作为一个实施例,附图6中的第三节点对应本申请的实施例5中的第二节点。
作为一个实施例,所述第二节点是所述第三节点。
作为一个实施例,所述第二节点不是所述第三节点。
作为该实施例的一个子实施例,所述第二节点和所述第三节点属于相同的小区组。
作为一个实施例,所述第二节点与所述第三节点之间具有通信接口。
作为一个实施例,所述第二节点是所述第一信令的发送者。
作为一个实施例,所述第三节点是所述第一信令的发送者。
作为一个实施例,所述第二节点是所述第二信令的发送者。
作为一个实施例,所述第三节点是所述第二信令的发送者。
作为一个实施例,所述第二节点是所述第三信令的发送者。
作为一个实施例,所述第三节点是所述第三信令的发送者。
作为一个实施例,仅使用协议栈(a)的UE表现为所述第一类UE。
作为一个实施例,使用了协议栈(b)的UE不表现为所述第一类UE。
实施例7
实施例7示例了根据本申请的一个实施例的协议栈的示意图,如附图7所示。
实施例7在实施例3的基础上进一步示出了所述第一节点同时使用直接路径和非直接路径时的协议栈,在附图7中,所述第一节点的第一PDCP实体关联两个RLC实体,即RLC1和RLC2。
作为一个实施例,与所述第一PDCP实体相关联的每个RLC实体分别与不同的MAC相关联,即RLC1与MAC1相关联,RLC2与MAC2相关联。
作为一个实施例,与所述第一PDCP实体相关联的每个RLC实体分别与相同的MAC相关联,即RLC1与MAC1相关联,RLC2与MAC2相关联,所述MAC1是所述MAC2。
作为一个实施例,附图7适用于RB。
作为一个实施例,附图7适用于包括SRB1在内的SRB。
作为一个实施例,附图7适用于DRB。
作为一个实施例,附图7示出的协议结构是分裂式的SRB,即split SRB。
作为一个实施例,附图7示出的协议结构是分裂式的DRB,即split DRB。
作为一个实施例,附图7适用于发送。
作为一个实施例,附图7适用于接收。
作为一个实施例,附图7中的第一协议实体是RRC,附图7是针对包括SRB1在内的SRB的。
作为一个实施例,附图7中的第一协议实体是SDAP,附图7是针对DRB的。
作为一个实施例,RRC消息经过PDCP实体的处理形成的PDCP PDU通过RLC1发送。
作为一个实施例,RRC消息经过PDCP实体的处理形成的PDCP PDU通过RLC2发送。
作为一个实施例,RRC消息经过PDCP实体的处理形成的PDCP PDU通过RLC1或RLC2发送。
作为一个实施例,RRC消息经过PDCP实体的处理形成的PDCP PDU进行复制,同时通过RLC1和RLC2发送。
作为一个实施例,所述SRB1用于承载所述第一信令和所述第一消息。
作为一个实施例,所述SRB1的主路径是针对RLC1的。
作为一个实施例,所述SRB1的主路径是针对RLC2的。
作为一个实施例,所述RLC2是针对副链路通信的。
作为一个实施例,所述RLC1是针对主链路通信的,即不是针对副链路通信的。
作为一个实施例,所述RLC1是针对主小区组的。
作为一个实施例,所述RLC1是针对从小区组的。
作为一个实施例,所述第一PDCP实体是所述第一节点的任一PDCP实体。
作为一个实施例,所述第一PDCP实体是所述第一节点的对应SRB的PDCP实体。
作为一个实施例,所述第一PDCP实体是所述第一节点的对应DRB的PDCP实体。
作为一个实施例,所述RLC1是针对特定路径的。
作为一个实施例,所述RLC2是针对特定路径的。
作为一个实施例,所述特定路径是主路径。
作为一个实施例,所述第一节点的SRB1只使用直接路径。
作为一个实施例,所述第一节点的SRB1只使用直接路径做主路径。
作为一个实施例,针对SRB1,RLC2实体对应主路径。
作为一个实施例,所述第一节点根据所述第一PDCP实体关联的RLC实体确定是否表现为所述第一类UE。
作为一个实施例,当使用附图7的协议栈时,所述第一节点不表现为所述第一类UE。
作为一个实施例,所述第一节点使用多路径(multi-path,MP)。
实施例8
实施例8示例了根据本申请的一个实施例的直接路径与非直接路径的示意图,如附图8所示。
实施例8中的第一节点对应本申请的所述第一节点。
作为一个实施例,实施例8中的第二节点对应本申请的所述第二节点。
作为一个实施例,实施例8中的第二节点是所述第一节点的一个小区组。
作为一个实施例,实施例8中的第二节点是所述第一节点的主小区。
作为一个实施例,实施例8中的第二节点是所述第一节点的主小区组所对应的gNB。
作为一个实施例,实施例8中的第二节点是所述第一节点的PCell。
作为一个实施例,实施例8中的第二节点是所述第一节点的主小区组的一个发射点。
作为一个实施例,实施例8中的第三节点是所述第一节点的一个中继节点。
作为一个实施例,实施例8中的第三节点是所述第一节点的U2N中继。
作为一个实施例,实施例8中的第三节点是所述第一节点和网络之间的中继。
作为一个实施例,实施例8中的第三节点是所述一个L2 U2N中继UE。
作为一个实施例,实施例8中的第三节点是所述第一节点与所述第二节点之间一个中继节点。
作为一个实施例,实施例8中的第三节点是所述第一节点的一个L2 U2N中继UE。
作为一个实施例,实施例8中的第三节点对应实施例6中的第一中继。
作为一个实施例,直接路径是所述第一节点与所述第二节点不通过所述第三节点进行通信的方式或传输路径。
作为一个实施例,非直接路径是所述第一节点与所述第二节点通过所述第三节点进行通信的方式或传输路径。
作为一个实施例,附图8中的带箭头的线表示逻辑信道。
作为一个实施例,附图8中的带箭头的线表示RLC承载。
作为一个实施例,附图8中的带箭头的线表示副链路RLC信道。
作为一个实施例,附图8中的带箭头的粗线表示副链路RLC信道。
作为一个实施例,附图8中的带箭头的粗线表示非直接路径。
作为一个实施例,附图8中的带箭头的细线表示直接路径。
作为一个实施例,本申请的主链路是所述第一节点和所述第二节点之间的直连的链路,在附图8中用细线表示;本申请的副链路是所述第一节点和所述第三节点之间的链路,在附图8中用粗线表示。
作为一个实施例,所述第一节点和所述第三节点之间的通信接口是PC5接口,所述第一节点和所述第三节点通过副链路通信。
作为一个实施例,所述第二节点是所述第一信令的发送者。
作为一个实施例,所述第二节点是所述第二信令的发送者。
作为一个实施例,所述第二节点是所述第三信令的发送者。
作为一个实施例,所述第二节点是所述第一消息的接收者。
作为一个实施例,采用附图8的通信结构的UE不表现为所述第一类UE。
作为一个实施例,采用附图8的通信结构的UE表现为所述第一类UE。
实施例9
实施例9示例了根据本申请的一个实施例的第一消息是通过直接路径发送还是通过非直接路径发送被用于确定目标值是第一候选值集合中的候选值还是第二候选值的示意图,如附图9所示。
作为一个实施例,所述第一消息要么通过直接路径发送要么通过非直接路径发送。
作为一个实施例,在所述第一计时器的运行期间,所述第一节点未发生小区重选。
作为一个实施例,在所述第一计时器的运行期间,所述第一节点未发生中继重选。
作为一个实施例,所述目标值要么是所述第一候选值集合中的候选值,要么是所述第二候选值。
作为一个实施例,句子第一消息是通过直接路径发送还是通过非直接路径发送被用于确定目标值是第一候选值集合中的候选值还是第二候选值的含义包括:所述第一消息是通过直接路径发送还是通过非直接路径发送被用于确定所述目标值是所述第一候选值集合所包括的候选值或所述第二候选值中的一个。
作为一个实施例,所述第一候选值集合仅包括一个候选值,句子第一消息是通过直接路径发送还是通过非直接路径发送被用于确定目标值是第一候选值集合中的候选值还是第二候选值的含义包括:所述第一消息是通过直接路径发送还是通过非直接路径发送被用于确定所述目标值是所述第一候选值集合所包括的所述一个候选值还是所述第二候选值。
作为一个实施例,所述第一候选值集合包括多于一个候选值,句子第一消息是通过直接路径发送还是通过非直接路径发送被用于确定目标值是第一候选值集合中的候选值还是第二候选值的含义包括:所述第一消息是通过直接路径发送还是通过非直接路径发送被用于确定所述目标值是所述第一候选值集合所包括的候选值还是所述第二候选值。
作为一个实施例,所述第一候选值集合包括多于一个候选值,句子第一消息是通过直接路径发送还是通过非直接路径发送被用于确定目标值是第一候选值集合中的候选值还是第二候选值的含义包括:所述第一消息是通过直接路径发送还是通过非直接路径发送被用于确定所述目标值是所述第一候选值集合所包括的哪个候选值。
作为一个实施例,当所述第一消息通过直接路径发送时,所述目标值时所述第一候选值集合中的候选值;当所述第一消息通过非直接路径发送时,所述目标值时所述第二候选值中的候选值。
作为该实施例的一个子实施例,所述第一候选值集合仅包括一个候选值。
作为该实施例的一个子实施例,所述第一候选值集合包括多于一个候选值,所述第一候选值集合仅包括一个与直接路径相关联的候选值,所述目标值是所述第一候选值集合所包括的所述一个与直接路径相关联的候选值。
作为该实施例的一个子实施例,所述第一候选值集合包括多于一个候选值,所述第一候选值集合仅包括一个适用于所有UE的候选值,所述目标值是所述第一候选值集合所包括的所述一个适用于所有UE的候选值。
作为该实施例的一个子实施例,所述第一候选值集合包括多于一个候选值,所述第一候选值集合仅包括一个与未针对非直接路径的候选值,所述目标值是所述第一候选值集合所包括的所述一个未针对非直接
路径的候选值。
作为该实施例的一个子实施例,所述第一候选值集合包括多于一个候选值,所述第一候选值集合仅包括一个与未针对远端UE的候选值,所述目标值是所述第一候选值集合所包括的所述一个未针对远端UE的候选值。
作为该实施例的一个子实施例,所述目标值是所述第一候选值集合中的任一候选值。
作为该实施例的一个子实施例,所述第一节点自行在所述第一候选值集合中确定一个候选值作为所述目标值。
作为一个实施例,所述第一候选值集合包括至少第一候选值和第三候选值,无论所述第一消息通过直接路径发送还是通过非直接路径发送,所述目标值都是所述第一候选值集合中的候选值。
作为该实施例的一个子实施例,所述第一候选值和所述第三候选值分别是针对直接路径和非直接路径的,当所述第一消息通过直接路径发送时,所述目标值是所述第一候选值;当所述第一消息通过非直接路径发送时,所述目标值是所述第三候选值。
作为该实施例的一个子实施例,所述第一候选值和所述第三候选值分别是针对所有UE的和针对远端UE的,当所述第一消息通过直接路径发送时,所述目标值是所述第一候选值;当所述第一消息通过非直接路径发送时,所述目标值是所述第三候选值。
作为该实施例的一个子实施例,所述第一候选值未指明是针对非直接路径的,所述第三候选值是针对非直接路径的,当所述第一消息通过直接路径发送时,所述目标值是所述第一候选值;当所述第一消息通过非直接路径发送时,所述目标值是所述第三候选值。
作为该实施例的一个子实施例,所述第一候选值未指明是针对特定类型的UE的,所述第三候选值是针对远端UE的,当所述第一消息通过直接路径发送时,所述目标值是所述第一候选值;当所述第一消息通过非直接路径发送时,所述目标值是所述第三候选值。
实施例10
实施例10示例了根据本申请的一个实施例的第一计时器的过期被用于确定RRC连接失败的示意图,如附图10所示。
作为一个实施例,所述第一计时器的过期被用于确定所述第一消息未能成功请求RRC连接。
作为一个实施例,所述第一计时器的过期被用于确定所述第一消息不成功。
作为一个实施例,句子第一计时器的过期被用于确定RRC连接失败的含义包括:所述第一计时器的过期被视为建立RRC连接失败,或者被视为继续RRC连接失败,或者被视为重建RRC连接失败。
作为一个实施例,句子第一计时器的过期被用于确定RRC连接失败的含义包括:以一个名字包括失败的缘由进入RRC连接态。
作为一个实施例,所述第一计时器与RRC建立请求过程有关。
作为该实施例的一个子实施例,句子第一计时器的过期被用于确定RRC连接失败的含义包括:通知更高层有关RRC连接建立失败。
作为该实施例的一个子实施例,所述更高层包括NAS。
作为该实施例的一个子实施例,句子所述第一计时器与RRC建立请求过程有关的含义包括:伴随RRC建立请求的发送,所述第一计时器被开始。
作为该实施例的一个子实施例,所述第一计时器是T300。
作为该实施例的一个子实施例,句子第一计时器的过期被用于确定RRC连接失败的含义包括:在一个名字包括fail(失败)的状态变量中记录信息。
作为该实施例的一个子实施例,句子第一计时器的过期被用于确定RRC连接失败的含义包括:将一记录连接失败次数的变量加1。
作为该实施例的一个子实施例,所述记录连接失败次数的变量是numberOfConnFail。
作为一个实施例,所述第一计时器与RRC继续(resume)请求过程有关。
作为该实施例的一个子实施例,句子所述第一计时器与RRC继续请求过程有关的含义包括:伴随RRC继续请求的发送,所述第一计时器被开始。
作为该实施例的一个子实施例,所述第一计时器是T319。
作为该实施例的一个子实施例,句子第一计时器的过期被用于确定RRC连接失败的含义包括:在一个名字包括fail(失败)的状态变量中记录信息。
作为该实施例的一个子实施例,句子第一计时器的过期被用于确定RRC连接失败的含义包括:将一记录连接失败次数的变量加1。
作为该实施例的一个子实施例,所述记录连接失败次数的变量是numberOfConnFail。
作为该实施例的一个子实施例,句子第一计时器的过期被用于确定RRC连接失败的含义包括:以RRC继续失败为缘由(cause)进入RRC空闲态。
作为该实施例的一个子实施例,句子第一计时器的过期被用于确定RRC连接失败的含义包括:未能进入RRC连接态。
作为一个实施例,所述第一计时器与RRC重建请求过程有关。
作为该实施例的一个子实施例,句子所述第一计时器与RRC重建请求过程有关的含义包括:伴随RRC重建请求的发送,所述第一计时器被开始。
作为该实施例的一个子实施例,所述第一计时器是T301。
作为该实施例的一个子实施例,句子第一计时器的过期被用于确定RRC连接失败的含义包括:以RRC连接失败为释放缘由(release cause)进入RRC空闲态。
实施例11
实施例11示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图11所示。在附图11中,第一节点中的处理装置1100包括第一接收机1101和第一发射机1102。在实施例11中,
第一接收机1101,接收第一信令和第二信令;所述第一信令指示第一计时器的第一候选值集合;所述第二信令指示第一计时器的第二候选值;所述第一候选值集合包括至少一个候选值;
第一发射机1102,发送第一消息,伴随所述第一消息的发送,开始所述第一计时器,所述第一计时器的值是目标值;
其中,所述第一消息是RRC消息,所述第一消息被用于请求RRC连接,所述第一消息是通过直接路径发送还是通过非直接路径发送被用于确定所述目标值是所述第一候选值集合中的候选值还是所述第二候选值;所述非直接路径是通过L2(Layer-2)U2N(UE to Network,UE到网络)中继传输信息;所述直接路径是不通过L2 U2N中继传输信息;所述第一计时器的停止条件包括接收到针对所述第一消息的响应;所述第一计时器的过期被用于确定RRC连接失败。
作为一个实施例,所述第一消息使用SRB0(signaling radio bearer 0,信令无线承载0)传输;句子所述第一消息被用于请求RRC连接,所述第一消息是通过直接路径发送还是通过非直接路径发送被用于确定所述目标值是所述第一候选值集合中的候选值还是所述第二候选值的含义是:SRB0被映射到直接路径还是非直接路径被用于确定所述目标值是所述第一候选值集合中的候选值还是所述第二候选值。
作为一个实施例,所述第一信令是单播的,所述第二信令是广播的;或者,所述第一信令和所述第二信令都是广播的。
作为一个实施例,所述目标值是所述第一候选值集合中的候选值还是所述第二候选值,与所述第一信令和所述第二信令中的至少之一被接收时所述第一节点是否表现为第一类UE无关;所述第一类UE至少使用非直接路径传输信息。
作为一个实施例,所述目标值是所述第一候选值集合中的候选值还是所述第二候选值,与所述第一信令和所述第二信令中的至少之一通过直接路径还是通过非直接路径接收无关。
作为一个实施例,所述第一信令包括RRC重配置消息;所述第一信令所包括的rlf-TimersAndConstants信元指示所述第一候选值集合中的候选值;所述第二信令包括系统消息块12(SIB12),所述系统消息块12用于配置副链路通信;所述第二信令所包括的UE-TimersAndConstantsRemoteUE信元指示所述第二候选值;
其中,所述第二候选值被确定为所述目标值。
作为一个实施例,所述第一信令包括系统消息块1;所述系统消息块1包括其它系统消息的调度信息;所述第一信令所包括的UE-TimersAndConstants信元指示所述第一候选值集合中的候选值;所述第二信令包括系统消息块12(SIB12),所述系统消息块12用于配置副链路通信;所述第二信令所包括的
UE-TimersAndConstantsRemoteUE信元指示所述第二候选值;
其中,所述第二候选值被确定为所述目标值。
作为一个实施例,所述第一信令被用于配置第二计时器和N;所述第二计时器的启动条件包括:检测到SpCell的物理层出现问题;所述第二计时器的停止条件包括:从针对SpCell的更低层接收到N个连续的同步指示;
其中,所述第二计时器由所述第一信令配置;所述第二候选值被确定为所述目标值;所述第一信令是单播的,所述第二信令是广播的。
作为一个实施例,所述第一候选值集合包括第一候选值和第三候选值,所述第一候选值是针对直接路径的,所述第三候选值是针对非直接路径的;当所述第一消息是通过直接路径发送时,所述第一候选值被确定为所述目标值;当所述第一消息是通过非直接路径发送时,所述第三候选值被确定为所述目标值。
作为一个实施例,所述第一类UE是L2 U2N远端UE。
作为一个实施例,所述第一节点是一个用户设备(UE)。
作为一个实施例,所述第一节点是一个支持大时延差的终端。
作为一个实施例,所述第一节点是一个支持NTN的终端。
作为一个实施例,所述第一节点是一个飞行器或船只。
作为一个实施例,所述第一节点是一个手机或车载终端。
作为一个实施例,所述第一节点是一个中继UE和/或U2U远端UE。
作为一个实施例,所述第一节点是一个物联网终端或工业物联网终端。
作为一个实施例,所述第一节点是一个支持低时延高可靠传输的设备。
作为一个实施例,所述第一节点是副链路通信节点。
作为一个实施例,所述第一接收机1101包括实施例4中的天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,或数据源467中的至少之一。
作为一个实施例,所述第一发射机1102包括实施例4中的天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,或数据源467中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IoT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑,卫星通信设备,船只通信设备,NTN用户设备等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点),NTN基站,卫星设备,飞行平台设备等无线通信设备。
本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。
Claims (15)
- 一种被用于无线通信的第一节点,其中,包括:第一接收机,接收第一信令和第二信令;所述第一信令指示第一计时器的第一候选值集合;所述第二信令指示第一计时器的第二候选值;所述第一候选值集合包括至少一个候选值;第一发射机,发送第一消息,伴随所述第一消息的发送,开始所述第一计时器,所述第一计时器的值是目标值;其中,所述第一消息是RRC消息,所述第一消息被用于请求RRC连接,所述第一消息是通过直接路径发送还是通过非直接路径发送被用于确定所述目标值是所述第一候选值集合中的候选值还是所述第二候选值;所述非直接路径是通过L2(Layer-2)U2N(UE to Network,UE到网络)中继传输信息;所述直接路径是不通过L2 U2N中继传输信息;所述第一计时器的停止条件包括接收到针对所述第一消息的响应;所述第一计时器的过期被用于确定RRC连接失败。
- 根据权利要求1所述的第一节点,其特征在于,所述第一消息使用SRB0(signaling radio bearer 0,信令无线承载0)传输;句子所述第一消息被用于请求RRC连接,所述第一消息是通过直接路径发送还是通过非直接路径发送被用于确定所述目标值是所述第一候选值集合中的候选值还是所述第二候选值的含义是:SRB0被映射到直接路径还是非直接路径被用于确定所述目标值是所述第一候选值集合中的候选值还是所述第二候选值。
- 根据权利要求1或2所述的第一节点,其特征在于,所述第一信令是单播的,所述第二信令是广播的;或者,所述第一信令和所述第二信令都是广播的。
- 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,所述目标值是所述第一候选值集合中的候选值还是所述第二候选值,与所述第一信令和所述第二信令中的至少之一被接收时所述第一节点是否表现为第一类UE无关;所述第一类UE至少使用非直接路径传输信息。
- 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,所述目标值是所述第一候选值集合中的候选值还是所述第二候选值,与所述第一信令和所述第二信令中的至少之一通过直接路径还是通过非直接路径接收无关。
- 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,所述第一信令包括RRC重配置消息;所述第一信令所包括的rlf-TimersAndConstants信元指示所述第一候选值集合中的候选值;所述第二信令包括系统消息块12(SIB12),所述系统消息块12用于配置副链路通信;所述第二信令所包括的UE-TimersAndConstantsRemoteUE信元指示所述第二候选值;其中,所述第二候选值被确定为所述目标值。
- 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,所述第一信令包括系统消息块1;所述系统消息块1包括其它系统消息的调度信息;所述第一信令所包括的UE-TimersAndConstants信元指示所述第一候选值集合中的候选值;所述第二信令包括系统消息块12(SIB12),所述系统消息块12用于配置副链路通信;所述第二信令所包括的UE-TimersAndConstantsRemoteUE信元指示所述第二候选值;其中,所述第二候选值被确定为所述目标值。
- 根据权利要求1至7中任一权利要求所述的第一节点,其特征在于,所述第一信令被用于配置第二计时器和N;所述第二计时器的启动条件包括:检测到SpCell(Special Cell)的物理层出现问题;所述第二计时器的停止条件包括:从针对SpCell的更低层接收到N个连续的同步指示;其中,所述第二计时器由所述第一信令配置;所述第二候选值被确定为所述目标值;所述第一信令是单播的,所述第二信令是广播的。
- 根据权利要求1至8中任一权利要求所述的第一节点,其特征在于,所述第一候选值集合包括第一候选值和第三候选值,所述第一候选值是针对直接路径的,所述第三候选值是针对非直接路径的;当所述第一消息是通过直接路径发送时,所述第一候选值被确定为所述目标值;当所述第一消息是通过非直接路径发送时,所述第三候选值被确定为所述目标值。
- 根据权利要求1至9中任一权利要求所述的第一节点,其特征在于,所述第一节点使用所述第二信令所指示的所述第一计时器的候选值,而忽略所述第一信令所指示所述第一计时器的候选值;所述第二信令是SIB12,所述第一信令是RRCReconfiguration消息;其中,所述第一消息通过非直接路径发送。
- 根据权利要求1至10中任一权利要求所述的第一节点,其特征在于,所述第一信令使用加密;所述第二信令不使用加密。
- 根据权利要求1至11中任一权利要求所述的第一节点,其特征在于,目标信令被用于配置第二计时器和N;所述第二计时器的启动条件包括:检测到SpCell的物理层出现问题;所述第二计时器的停止条件包括:从针对SpCell的更低层接收到N个连续的同步指示;所述目标信令是所述第一信令以外的信令;所述目标信令是第三信令;所述第三信令是RRC信令;所述第二候选值被确定为所述目标值。
- 根据权利要求1至12中任一权利要求所述的第一节点,其特征在于,所述第三信令被用于配置第三计时器,所述第三计时器是T311。
- 根据权利要求1至13中任一权利要求所述的第一节点,其特征在于,所述第一信令定义了其它系统信息的调度;所述第一信令所包括的第一信元指示所述第一候选值集合中的候选值,所述第一信元UE-TimersAndConstants信元;所述第二信令所包括的第二信元指示所述第二候选值;所述第二信元是UE-TimersAndConstantsRemoteUE。
- 一种被用于无线通信的第一节点中的方法,其中,包括:接收第一信令和第二信令;所述第一信令指示第一计时器的第一候选值集合;所述第二信令指示第一计时器的第二候选值;所述第一候选值集合包括至少一个候选值;发送第一消息,伴随所述第一消息的发送,开始所述第一计时器,所述第一计时器的值是目标值;其中,所述第一消息是RRC消息,所述第一消息被用于请求RRC连接,所述第一消息是通过直接路径发送还是通过非直接路径发送被用于确定所述目标值是所述第一候选值集合中的候选值还是所述第二候选值;所述非直接路径是通过L2(Layer-2)U2N(UE to Network,UE到网络)中继传输信息;所述直接路径是不通过L2 U2N中继传输信息;所述第一计时器的停止条件包括接收到针对所述第一消息的响应;所述第一计时器的过期被用于确定RRC连接失败。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211293853.XA CN117917916A (zh) | 2022-10-21 | 2022-10-21 | 一种被用于无线通信的方法和设备 |
CN202211293853.X | 2022-10-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024083056A1 true WO2024083056A1 (zh) | 2024-04-25 |
Family
ID=90729698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/124635 WO2024083056A1 (zh) | 2022-10-21 | 2023-10-15 | 一种被用于无线通信的方法和设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117917916A (zh) |
WO (1) | WO2024083056A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022061818A1 (en) * | 2020-09-27 | 2022-03-31 | Lenovo (Beijing) Limited | Methods and apparatuses for relay reselection and connection handling procedure in ue-to-ue relay scenario |
WO2022141202A1 (en) * | 2020-12-30 | 2022-07-07 | Lenovo (Beijing) Limited | Method and apparatus for conditional path switch in a wireless communication system |
CN115150973A (zh) * | 2021-03-31 | 2022-10-04 | 展讯通信(上海)有限公司 | 中继通信方法及装置、存储介质、中继设备 |
CN115209569A (zh) * | 2021-04-09 | 2022-10-18 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的通信节点中的方法和装置 |
-
2022
- 2022-10-21 CN CN202211293853.XA patent/CN117917916A/zh active Pending
-
2023
- 2023-10-15 WO PCT/CN2023/124635 patent/WO2024083056A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022061818A1 (en) * | 2020-09-27 | 2022-03-31 | Lenovo (Beijing) Limited | Methods and apparatuses for relay reselection and connection handling procedure in ue-to-ue relay scenario |
WO2022141202A1 (en) * | 2020-12-30 | 2022-07-07 | Lenovo (Beijing) Limited | Method and apparatus for conditional path switch in a wireless communication system |
CN115150973A (zh) * | 2021-03-31 | 2022-10-04 | 展讯通信(上海)有限公司 | 中继通信方法及装置、存储介质、中继设备 |
CN115209569A (zh) * | 2021-04-09 | 2022-10-18 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的通信节点中的方法和装置 |
Non-Patent Citations (1)
Title |
---|
ERICSSON: "Remaining Issues on Service Continuity for L2 Sidelink relay", 3GPP DRAFT; R2-2110690, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic meeting; 20211101 - 20211112, 21 October 2021 (2021-10-21), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052067135 * |
Also Published As
Publication number | Publication date |
---|---|
CN117917916A (zh) | 2024-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230422336A1 (en) | Method and device for wireless communication | |
US20230300936A1 (en) | Method and device for wireless communication | |
CN114726490A (zh) | 一种被用于无线通信的方法和设备 | |
US20230156535A1 (en) | Method and device for wireless communication | |
CN113938841B (zh) | 一种被用于无线通信的节点中的方法和装置 | |
CN116266918A (zh) | 一种被用于无线通信的方法和设备 | |
WO2024083056A1 (zh) | 一种被用于无线通信的方法和设备 | |
WO2024078431A1 (zh) | 一种被用于无线通信的方法和设备 | |
CN115484691A (zh) | 一种被用于无线通信的方法和设备 | |
WO2023046073A1 (zh) | 一种被用于无线通信的方法和设备 | |
WO2024140675A1 (zh) | 一种被用于无线通信的方法和设备 | |
WO2024156283A1 (zh) | 一种被用于无线通信的方法和设备 | |
US20230239951A1 (en) | Method and device for wireless communication | |
US20230232485A1 (en) | Method and device for wireless communication | |
WO2023174229A1 (zh) | 一种被用于无线通信的方法和设备 | |
US20230156844A1 (en) | Method and device for wireless communication | |
US20240107296A1 (en) | Method and device for wireless communication | |
WO2023186162A1 (zh) | 一种被用于无线通信的方法和设备 | |
US20240063967A1 (en) | Method and device for wireless communication | |
WO2023208080A1 (zh) | 一种被用于无线通信的方法和设备 | |
WO2024055915A1 (zh) | 一种被用于无线通信的方法和设备 | |
WO2024125278A1 (zh) | 一种被用于无线通信的方法和设备 | |
US20230199599A1 (en) | Method and device used for wireless communication | |
WO2024164907A1 (zh) | 一种被用于无线通信的方法和设备 | |
CN116567756A (zh) | 一种被用于无线通信的方法和设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23879045 Country of ref document: EP Kind code of ref document: A1 |