WO2023174229A1 - 一种被用于无线通信的方法和设备 - Google Patents

一种被用于无线通信的方法和设备 Download PDF

Info

Publication number
WO2023174229A1
WO2023174229A1 PCT/CN2023/081198 CN2023081198W WO2023174229A1 WO 2023174229 A1 WO2023174229 A1 WO 2023174229A1 CN 2023081198 W CN2023081198 W CN 2023081198W WO 2023174229 A1 WO2023174229 A1 WO 2023174229A1
Authority
WO
WIPO (PCT)
Prior art keywords
signaling
rrc connection
node
relay
indicate
Prior art date
Application number
PCT/CN2023/081198
Other languages
English (en)
French (fr)
Inventor
陈宇
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2023174229A1 publication Critical patent/WO2023174229A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment

Definitions

  • the present application relates to transmission methods and devices in wireless communication systems, and in particular to methods and devices for network optimization in communications, improving business service quality, and relay communications.
  • LTE Long Term Evolution, Long Term Evolution
  • 5G NR 5th Generation NR
  • eMBB enhanced Mobile BroadBand, enhanced mobile broadband
  • URLLC Ultra Reliable Low Latency Communication, Ultra-high reliability and low-latency communication
  • eMTC enhanced Machine Type Communication, enhanced machine type communication
  • IIoT Industrial Internet of Things, the Internet of Things in the industrial field, in V2X (Vehicular to X, vehicle communication), in communication between devices (Device to Device), in communication in unlicensed spectrum, in User communication quality monitoring, in network planning and optimization, in NTN (Non Territerial Network, non-terrestrial network communication), in TN (Territerial Network, terrestrial network communication), in dual connectivity (Dual connectivity) systems, in wireless resource management As well as multi-antenna codebook selection, there are extensive needs in signaling design, neighbor cell management, service management, and beamforming. Information transmission methods are divided into broadcast and unicast. Both transmission methods are 5G. Systems are essential because they are very helpful in meeting the above requirements.
  • the UE can be connected to the network either directly or through a relay.
  • the 3GPP standardization organization has done relevant standardization work for 5G and formed a series of standards.
  • relays In various communication scenarios, the use of relays will be involved. For example, when a UE (User Equipment) is at the edge of a cell and the coverage is poor, it can access the network through a relay.
  • the relay node can be another UE.
  • Relay mainly includes layer 3 relay and layer 2 relay (L2 U2N relay), both of which provide network access services to remote nodes (U2N remote UE) through relay nodes. Among them, layer 3 relay is responsible for the access network.
  • the remote UE In layer 2 relay, the remote node (U2N remote UE) and the access network (RAN) has RRC connection, the access network can manage remote nodes, and wireless bearers can be established between the access network and remote nodes.
  • the relay can be another UE.
  • the UE In a system that supports layer 2 relay, the UE can communicate with the network through the L2 relay UE (L2 U2N relay UE), even if it uses an indirect path or not. Relays communicate directly with the network, using a direct path. In some scenarios, a UE can use both direct paths and indirect paths to obtain better reliability and higher throughput.
  • Direct paths and indirect paths are different in terms of radio resource management and network optimization.
  • One of the direct path and the indirect path does not use a relay, and the other uses a relay.
  • the relay node may provide services for multiple nodes, so the throughput rate, QoS, and functions of the two or more paths may not be the same. , these are different from traditional network structures, Solutions must fit into this new network structure.
  • a remote UE communicates with the network through an indirect path, if it needs to use a direct path at the same time, it is necessary to solve the problem of how to add a direct path.
  • a user wants to establish a connection with a cell, he needs to release the previous connection, and cannot support two links or paths.
  • Adding a direct path is a very complex issue.
  • the addition of a direct path involves resynchronization and random access, while relay communication involves a new scenario, that is, establishing a wireless link again when a higher-layer communication connection has been established. This is cannot be supported by existing technology.
  • the indirect path is interrupted first and then the direct path is established, the reliability will be reduced, because the direct path may not be established successfully, and most of the UEs that need to use relays are located at the edge of the cell, and there may be no direct path or indirect path. For good signal quality, it is necessary to try to improve reliability.
  • the network needs to support path switching, that is, first release the indirect path, because one UE can only be connected to one PCell.
  • the problem to be solved by this application is how to support multiple paths when using relays.
  • the solution proposed in this application can also solve other problems in the communication system, and is not limited to the above problems.
  • this application provides a solution.
  • This application discloses a method used in a first node of wireless communication, including:
  • the first signaling includes a first domain, the first domain is used to configure the first cell; the first signaling is used to indicate maintaining the first RRC connection, Or, release the first RRC connection;
  • the first domain includes a second domain, and the second domain is used to configure the random access process for the first cell;
  • the first air interface is between the first node and the first The air interface between relays, the second air interface is the air interface between the first node and the wireless access network where the first cell is located;
  • the first RRC connection is the first node PC5-RRC connection with the first relay.
  • the problems to be solved by this application include: how to support two paths or links in the scenario of using L2 relay, so as to ensure the reliability and flexibility of network communication.
  • the benefits of the above method include: supporting the simultaneous use of multiple paths to communicate with the network when using L2 relays, reducing communication interruptions, improving service quality, improving network communication reliability, and increasing coverage , with better support for mobility and business continuity.
  • the first RRC connection is released;
  • the first cell is SpCell (Special Cell, special cell), and the first domain is SpCellConfig, the second domain is ReconfigurationWithSync,
  • the first signaling is sent through SRB1,
  • the SRB1 is the radio bearer between the first node and the primary cell group, and the SRB1 is associated with the first RLC bearer
  • the first RLC bearer is an RLC bearer between the first node and the first relay; the first node is connected to the first relay; the act of releasing the first RRC connection includes The first RLC bearer is released; the first signaling is used to indicate releasing the first RRC connection.
  • the first cell is SpCell (Special Cell, special cell)
  • the first domain is SpCellConfig
  • the second domain is ReconfigurationWithSync
  • the first signaling is sent through SRB1
  • the SRB1 is a radio bearer between the first node and the primary cell group
  • the SRB1 is associated with a first RLC bearer
  • the first RLC bearer is a link between the first node and the first relay RLC bearer between; the first node is connected to the first relay; the first signaling is used to indicate maintaining the first RRC connection.
  • whether the first signaling includes a third domain is used to indicate whether to maintain the first RRC connection or release the first RRC connection; when the first signaling includes the When the third domain is included, the first signaling is used to indicate maintaining the first RRC connection; when the first signaling does not include the third domain, the first signaling is used to indicate releasing the first RRC connection.
  • the first RRC connection when the first signaling includes the third domain is included, the first signaling is used to indicate maintaining the first RRC connection; when the first signaling does not include the third domain, the first signaling is used to indicate releasing the first RRC connection.
  • the first signaling includes a fourth field, and the fourth field included in the first signaling explicitly indicates whether to release or maintain the first RRC connection.
  • the first signaling in the sentence is used to indicate maintaining the first RRC connection, or the meaning of releasing the first RRC connection includes: when the first signaling indicates that all Uu When none of the RBs of the interface is associated with the RLC bearer between the first node and the first relay, the first signaling is used to indicate releasing the first RRC connection; when the first signaling When it is not indicated that all RBs of the Uu interface are not associated with the RLC bearer between the first node and the first relay, the first signaling is used to indicate maintaining all The first RRC connection.
  • the first signaling in the sentence is used to indicate maintaining the first RRC connection, or the meaning of releasing the first RRC connection includes: when the first signaling indicates releasing all When the RLC entity for the first relay is associated with the RB of the Uu interface, the first signaling is used to indicate releasing the first RRC connection; when the first signaling does not indicate releasing all connections with the Uu When the RB of the interface is associated with the RLC entity for the first relay, the first signaling is used to indicate maintaining the first RRC connection.
  • the first signaling in the sentence is used to indicate maintaining the first RRC connection, or the meaning of releasing the first RRC connection includes: when the first signaling indicates that SRB1 only When associated with the RLC entity of the Uu interface, the first signaling is used to indicate releasing the first RRC connection; when the first signaling does not indicate that SRB1 is only associated with the RLC entity of the Uu interface, the first signaling The first signaling is used to indicate maintaining the first RRC connection.
  • the first signaling in the sentence is used to indicate maintaining the first RRC connection, or the meaning of releasing the first RRC connection is: when the first signaling indicates the When the destination relay of the first node is a node other than the first relay, the first signaling is used to indicate releasing the first RRC connection. When the first signaling does not indicate the first node When the destination relay does not indicate another node other than the first relay as the destination relay, the first signaling is used to indicate maintaining the first RRC connection.
  • a first timer is started, and as a response to expiration of the first timer, a target message is sent, and the target message is the first One of the message or the second message, the target message is the first message or the second message and the first signaling are used to indicate whether to maintain the first RRC connection or release the first RRC. connection related;
  • the first message is used to request RRC connection reestablishment
  • the second message is used to report link establishment failure
  • the stop condition of the first timer includes: successful completion of the link establishment for the first cell. Random access process; whether the target message in the sentence is the first message or the second message has a meaning related to whether the first signaling is used to indicate whether to maintain the first RRC connection or release the first RRC connection. Yes: when the first signaling is used to indicate maintaining the first RRC connection, the target message is the second message; when the first signaling is not used to indicate maintaining the first RRC connection During RRC connection, the target message is the first message.
  • the first node is an Internet of Things terminal.
  • the first node is a relay.
  • the first node is a U2N remote UE.
  • the first node is a vehicle-mounted terminal.
  • the first node is an aircraft.
  • the first node is a mobile phone.
  • the first node is a communication terminal that supports multi-SIM card communication.
  • This application discloses a first node used for wireless communication, including:
  • the first receiver receives first signaling through the first air interface.
  • the first signaling includes a first domain, and the first domain is used to configure the first cell; the first signaling is used to indicate maintaining The first RRC connection, or releasing the first RRC connection;
  • the first transmitter in response to receiving the first signaling, initiates a random access process for the first cell through the second air interface;
  • the first domain includes a second domain, and the second domain is used to configure the random access process for the first cell;
  • the first air interface is between the first node and the first The air interface between relays, the second air interface is the air interface between the first node and the wireless access network where the first cell is located;
  • the first RRC connection is the first node PC5-RRC connection with the first relay.
  • this application has the following advantages:
  • the network is supported to configure and process the wireless links connecting the cell groups and the wireless links connecting the relays differently, that is, functionally different, which helps simplify the processing of failures and increases the throughput rate.
  • the previous path can not be interrupted, thus ensuring business continuity.
  • Figure 1 shows a flow chart of receiving first signaling through the first air interface and initiating a random access process for the first cell through the second air interface according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Figure 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a flow chart of wireless signal transmission according to an embodiment of the present application
  • Figure 6 shows a schematic diagram of a protocol stack for relay communication according to an embodiment of the present application
  • Figure 7 shows a schematic diagram of a radio bearer according to an embodiment of the present application.
  • Figure 8 shows a schematic diagram of a topology according to an embodiment of the present application.
  • Figure 9 illustrates a schematic diagram of a processing device used in a first node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of receiving the first signaling through the first air interface and initiating a random access process for the first cell through the second air interface according to an embodiment of the present application, as shown in FIG. 1 .
  • each box represents a step. It should be particularly emphasized that the order of the boxes in the figure does not represent the temporal relationship between the steps represented.
  • the first node in this application receives the first signaling through the first air interface in step 101, and initiates a random access process for the first cell through the second air interface in step 102;
  • the first signaling includes a first domain, and the first domain is used to configure the first cell; the first signaling is used to indicate maintaining the first RRC connection, or releasing the first RRC connection. ;
  • the first node 100 in response to receiving the first signaling, initiates a random access process for the first cell through the second air interface; the first domain includes a second domain, and the third domain The second domain is used to configure the random access process for the first cell;
  • the first air interface is the air interface between the first node and the first relay, and the second air interface is The air interface between the first node and the radio access network where the first cell is located;
  • the first RRC connection is the PC5-RRC connection between the first node and the first relay.
  • the first node is UE (User Equipment).
  • the first node is in an RRC connection state.
  • the direct path refers to a transmission path from the UE to the network.
  • Transmission through the direct path means that data is transmitted between the remote UE and the network between the UE and the network (U2N). Sends between do not go through relays.
  • the data includes higher-layer data and signaling.
  • the data includes RRC signaling.
  • the data includes bit strings or bit blocks.
  • the data only includes signaling or data carried by RB (radio bearer, radio bearer).
  • the indirect path refers to a transmission path from the UE to the network. Transmission through the indirect path means that the data is transmitted from the UE to the network (U2N, UE-to-Network). Forwarding of UE between the remote UE and the network via UE-to-Network (UE-to-Network) relay.
  • U2N UE-to-Network
  • UE-to-Network UE-to-Network
  • the data includes higher-layer data and signaling.
  • the data includes RRC signaling.
  • the data includes bit strings or bit blocks.
  • the data only includes signaling or data carried by RB (radio bearer, radio bearer).
  • a wireless link is either the direct path or the indirect path.
  • U2N relay UE refers to a UE that provides the function of supporting the connection of U2N remote UE to the network.
  • U2N remote UE refers to a UE that needs to pass through a U2N relay UE to communicate with the network.
  • U2N remote UE refers to a UE that needs to pass through a U2N relay UE to communicate with the network.
  • U2N remote UE refers to a UE that supports relay services and communicates with the network.
  • the U2N relay is a U2N relay UE.
  • both the U2N relay and the U2N remote node are in the RRC connection state.
  • the U2N relay UE when the U2N remote UE is in the RRC idle state or the RRC inactive state, the U2N relay UE can be in any RRC state, including the RRC connected state, the RRC idle state and the RRC inactive state.
  • not transmitting via a direct path is equivalent to transmitting via an indirect path.
  • transmission not via a direct path includes transmission via a relay.
  • transmitting via a direct path is or includes transmitting without a relay.
  • transmitting via a direct path is or includes forwarding without a relay.
  • a U2N relay UE is a UE that provides functionality (functionality) for U2N remote UE to support connectivity to the network.
  • the U2N relay UE is a UE.
  • the U2N relay UE provides relay services to the network for the U2N remote UE.
  • the U2N remote UE is a UE that communicates with the network through a U2N relay UE.
  • the direct mode is a mode that uses the direct path.
  • the direct connection mode is a mode in which the U2N remote UE uses the direct path to communicate with the network.
  • the direct connection mode is a mode in which the U2N remote UE uses the direct path to transmit RRC signaling or establish an RRC connection with the network.
  • the indirect mode is a mode using the indirect path.
  • the indirect connection mode is a mode using the indirect path.
  • the direct connection mode is a mode in which the U2N remote UE uses the indirect path to communicate with the network.
  • the direct connection mode is a mode in which the U2N remote UE uses the indirect path to transmit RRC signaling or establish an RRC connection with the network.
  • the serving cell is or includes a cell where the UE is camped.
  • Performing cell search includes: UE searches for a suitable (suitable) cell of the selected PLMN (Public Land Mobile Network) or SNPN (Stand-alone Non-Public Network, independent non-public network), and selects the A suitable cell provides available services and monitors the control channel of the suitable cell. This process is defined as camping on the cell; that is, a camped cell, relative to the UE, is this The serving cell of the UE.
  • PLMN Public Land Mobile Network
  • SNPN Seand-alone Non-Public Network, independent non-public network
  • camphas on a cell in RRC idle state or RRC inactive state has the following benefits: it allows the UE to receive system messages from the PLMN or SNPN; after registration, if the UE wants to establish an RRC connection or continue a suspended RRC connection, The UE can be implemented by performing initial access on the control channel of the resident cell; the network can page the UE; allowing the UE to receive ETWS (Earthquake and Tsunami Warning System) and CMAS (Commercial Mobile Alert System), Commercial mobile alarm systems) notifications.
  • ETWS Earthquake and Tsunami Warning System
  • CMAS Common Mobile Alert System
  • the serving cell is or includes a cell where the U2N relay resides or is connected.
  • the serving cell is used to indicate the cell set including the special cell (SpCell, Special Cell) and all secondary cells.
  • the Primary Cell is an MCG (Master Cell Group) cell that works on the primary frequency. The UE performs the initial connection establishment process or initiates connection reestablishment on the primary cell.
  • the special cell refers to the PCell (Primary Cell, main cell) of MCG or the PSCell (Primary SCG Cell, main SCG cell) of SCG (Secondary Cell Group); if it is not dual connection operation, the special cell refers to PCell.
  • the frequency at which SCell (Secondary Cell) works is the secondary frequency.
  • the individual contents of an information element are called fields.
  • MR-DC Multi-Radio Dual Connectivity refers to dual connectivity of E-UTRA and NR nodes, or dual connectivity between two NR nodes.
  • the wireless access node that provides control plane connection to the core network is the master node.
  • the master node may be the master eNB, the master ng-eNB, or the master gNB.
  • MCG refers to, in the MR-DC, a group of serving cells associated with the master node, including SpCell, and may also, optionally, include one or more SCells.
  • the PCell is MCG's SpCell.
  • the PSCell is the SpCell of SCG.
  • a control plane connection to the core network is not provided, and the radio access node that provides additional resources to the UE is a slave node.
  • the slave node can be en-gNB, slave ng-eNB or slave gNB.
  • a group of serving cells associated with a slave node is SCG (secondary cell group), including SpCell and, optionally, one or more SCells.
  • V2X sidelink communication V2X sidelink communication
  • V2X sidelink communication the access layer function that enables V2X (Vehicle-to-Everything) communication defined in 3GPP standard TS 23.285 is V2X sidelink communication (V2X sidelink communication), where the V2X sidelink communication occurs Between adjacent UEs, and using E-UTRA technology but not traversing network nodes.
  • At least the access layer function that enables V2X (Vehicle-to-Everything) communication defined in 3GPP standard TS 23.287 is NR sidelink communication, where the NR sidelink communication Occurs between two or more adjacent UEs and uses NR technology but does not traverse (traversing) network nodes.
  • the secondary link is a direct communication link between UE-to-UE using the secondary link resource allocation mode, physical layer signals or channels, and physical layer procedures.
  • not or not or not in coverage equals out of coverage.
  • within coverage equals within coverage.
  • out-of-coverage equals out-of-coverage
  • the first node is a U2N remote node.
  • the PDCP entities corresponding to the radio bearers that terminate between the UE and the network are located in the UE and the network respectively.
  • the direct path is a communication link or channel or bearer used when transmitting through the direct path.
  • the direct path transmission refers to that data carried by at least SRB (Signaling radio bearer, signaling radio bearer) between the UE and the network does not pass through the relay or forwarding of other nodes.
  • SRB Signaling radio bearer
  • the direct path transmission refers to that the RLC bearers associated with at least SRB (Signaling radio bearer) between the UE and the network terminate at the UE and the network respectively.
  • SRB Signaling radio bearer
  • the direct path transmission refers to that the RLC entities associated with at least SRB (Signaling radio bearer) between the UE and the network terminate at the UE and the network respectively.
  • SRB Signaling radio bearer
  • the direct path transmission refers to the existence of a directly connected communication link between the UE and the network.
  • the direct path transmission refers to the existence of a Uu interface between the UE and the network.
  • the direct path transmission refers to that the MAC layer of the Uu interface exists between the UE and the network, and the MAC layer of the Uu interface carries RRC signaling.
  • the direct path transmission refers to the physical layer of the Uu interface between the UE and the network.
  • the direct path transmission refers to the existence of a logical channel and/or a transmission channel between the UE and the network.
  • the indirect path is an indirect path or communication link or channel or bearer used when transmitting through the indirect path.
  • the indirect path transmission refers to the relay or forwarding of data carried by at least SRB (Signaling radio bearer, signaling radio bearer) between the UE and the network through other nodes.
  • SRB Signaling radio bearer
  • the indirect path transmission refers to that the RLC bearers associated with at least SRB (Signaling radio bearer) between the UE and the network terminate respectively between the UE and other nodes, other nodes and network.
  • SRB Signaling radio bearer
  • the non-direct path transmission refers to at least SRB (Signaling radio bearer).
  • SRB Signaling radio bearer
  • the RLC entities associated with the signaling radio bearer are respectively terminated between the UE and other nodes, and other nodes and the network.
  • the meaning of the phrase at least SRB includes at least one of ⁇ SRBO, SRB1, SRB2, SRB3 ⁇ .
  • the meaning of the phrase at least SRB includes SRB and DRB (data radio bearer, data radio bearer).
  • the indirect path transmission means that there is no direct communication link between the UE and the network.
  • the non-direct path transmission refers to that there is no MAC layer of the Uu interface between the UE and the network.
  • the non-direct path transmission refers to a physical layer in which there is no Uu interface between the UE and the network.
  • the non-direct path transmission means that there is neither a logical channel nor a transmission channel between the UE and the network.
  • the network includes a radio access network (RAN) and/or serving cells and/or base stations.
  • RAN radio access network
  • the phrase UE and the UE in the network include the first node.
  • the other nodes include relay nodes or other UEs.
  • the UE when using direct path transmission, the UE can send physical layer signaling to the network; when using indirect path transmission, the UE cannot send or directly send physical layer signaling to the network;
  • the UE when using direct path transmission, the UE can send MAC CE to the network; when using indirect path transmission, the UE cannot send MAC CE to the network or directly;
  • the other protocol layer is or includes an adaptation layer.
  • the network when direct path transmission is used, the network directly schedules the uplink transmission of the first node through DCI; when indirect path transmission is used, the network does not directly schedule the uplink transmission of the first node through DCI.
  • the SRB of the first node when direct path transmission is used, the SRB of the first node is associated with the RLC entity and/or RLC layer and/or RLC bearer; when indirect path transmission is used, the SRB of the first node Associated with the RLC entity of the PC5 interface.
  • mapping relationship between the SRB of the first node and the RLC entity of the Uu interface; when indirect path transmission is used, the SRB of the first node and the RLC entity of the PC5 interface There is a mapping relationship.
  • the meaning of converting or switching from a direct path to an indirect path is to start using the indirect path and stop using the direct path at the same time.
  • switching from a direct path to an indirect path means: starting to use the indirect path for transmission, and at the same time stopping using the direct path for transmission.
  • converting from a direct path to an indirect path means: changing from direct path transmission to indirect path transmission.
  • the meaning of converting from a direct path to an indirect path is that the first node associates the SRB with the RLC entity of the PC5 interface and simultaneously releases the RLC entity of the Uu interface associated with the SRB.
  • the meaning of converting from a direct path to an indirect path is: the first node associates the SRB and DRB with the RLC entity of the PC5 interface, and at the same time releases the RLC of the Uu interface associated with the SRB and DRB. entity.
  • the meaning of converting from an indirect path to a direct path is to start using the direct path and stop using the indirect path at the same time.
  • switching from an indirect path to a direct path means: starting to use the direct path for transmission, and at the same time stopping using the indirect path for transmission.
  • converting from an indirect path to a direct path means: changing from indirect path transmission to direct path transmission.
  • the meaning of switching from an indirect path to a direct path is that the first node releases the RLC entity of the PC5 interface associated with the SRB and simultaneously associates the SRB with the RLC entity of the Uu interface.
  • the meaning of switching from an indirect path to a direct path is: the first node releases all RLC entities of the PC5 interface associated with the DRB, and at the same time associates the DRB with the RLC entities of the Uu interface.
  • the first node supports conversion from an indirect path to an indirect path.
  • the relay used by the indirect path is the first relay.
  • the relay in this application refers to the U2N relay UE.
  • the first node in this application does not use DC (dual connectivity, dual connectivity).
  • the first node in this application is not configured with DC (dual connectivity).
  • the first node in this application has only one cell group.
  • the first node in this application has only one cell group, that is, the main cell group (MCG).
  • MCG main cell group
  • the first node in this application is not configured in a slave cell group (SCG).
  • SCG slave cell group
  • the relay in this application refers to L2 U2N relay UE.
  • the first node in this application uses both direct paths and indirect paths.
  • the first air interface is an air interface between the first node and the first relay.
  • the first air interface is a PC5 interface.
  • the wireless link corresponding to the first air interface is a secondary link.
  • the first air interface uses secondary link resources.
  • the first air interface is an air interface between two UEs.
  • the first air interface is different from the second air interface.
  • the first air interface is a short-range communication interface.
  • the first air interface is a Bluetooth interface.
  • the node targeted by the first air interface and the second air interface is not co-located.
  • the first air interface includes a wireless link between the first node and the first relay.
  • the first air interface includes a physical channel between the first node and the first relay.
  • the first air interface includes a logical channel between the first node and the first relay.
  • the first air interface includes a transmission channel between the first node and the first relay.
  • the first air interface includes a direct link between the first node and the first relay.
  • the direct link is used for relay service.
  • the first air interface includes a protocol entity for communication between the first node and the first relay.
  • the first relay is an L2 U2N relay UE.
  • the first relay is an L2 relay of the first node.
  • the first relay is a relay between the first node and the network.
  • the first relay is a relay between the first node and the first cell.
  • the second air interface is an air interface between the first node and the radio access network where the first cell is located.
  • the second air interface is a Uu interface.
  • the second air interface corresponds to the main link.
  • the second air interface corresponds to a wireless link other than the secondary link.
  • the second air interface corresponds to the air interface between the UE and RAN (radio access network, radio access network).
  • the second air interface includes a wireless link.
  • the second air interface includes a wireless link between the first node and the first cell.
  • the second air interface includes a physical channel between the first node and the first cell.
  • the second air interface includes a transmission channel between the first node and the first cell.
  • the second air interface includes a logical channel between the first node and the first cell.
  • the second air interface includes a protocol entity between the first node and the first cell.
  • the first air interface and the second air interface are both NR-oriented.
  • the second air interface is targeted at mobile networks.
  • the first cell is SpCell (Special Cell).
  • the first cell is the PCell of the first node.
  • the first cell is the PSCell of the first node.
  • the first domain is SpCellConfig.
  • the first domain is spCellConfigDedicated.
  • the first domain is spCellConfigCommon.
  • the first domain is condRRRCReconfig.
  • the second domain is ReconfigurationWithSync.
  • the second domain is RRCReconfiguration.
  • the second domain is condRRRCReconfig.
  • the phrase "the first domain is used to configure the first cell” includes: the first domain is used to configure the identity of the first cell.
  • the phrase the first domain is used to configure the first cell includes: the first domain is used to configure the identity used by the first node in the first cell.
  • the phrase that the first domain is used to configure the first cell includes: the first domain is used to configure physical layer resources of the first cell.
  • the phrase the first domain is used to configure the first cell includes: the first domain is used to configure at least one timer of the first cell.
  • the phrase the first domain is used to configure the first cell includes: the first domain is used to configure the frequency of the first cell.
  • the phrase "the first domain is used to configure the first cell” includes: the first domain is used to configure a broadcast message of the first cell.
  • the phrase that the first domain is used to configure the first cell includes: the first domain is used to configure wireless link monitoring parameters of the first cell.
  • the phrase the first domain is used to configure the first cell includes: the first domain is used to configure measurements for the first cell.
  • the phrase the first domain is used to configure the first cell includes: the first domain is used to configure the MAC layer for the first cell.
  • the phrase that the first domain is used to configure the first cell includes: the first domain is used to configure reference signal resources for the first cell.
  • the phrase that the first domain is used to configure the first cell includes: the first domain is used to configure the BWP for the first cell.
  • the second domain is used to configure the random access process for the first cell.
  • the second domain includes random access resources of the first cell.
  • the second domain includes a preamble sequence of random access of the first cell.
  • the second domain includes whether the type of random access procedure for the first cell is contention-based or contention-free.
  • the second domain includes a priority of a random access process for the first cell.
  • the second domain includes parameters for a timer that needs to be used in the random access process of the first cell.
  • the second domain includes whether the random access process for the first cell is two-step random access or four-step random access.
  • the second domain includes SSB or CSI-RS associated with the random access process of the first cell.
  • the phrase "random access process for the first cell” means that the random access process occupies resources of the first cell.
  • the meaning of the phrase "random access process for the first cell" is that the random access process is initiated according to the random access configuration of the first cell.
  • the phrase "random access process for the first cell” means that the random access process is initiated according to the configuration of the random access channel of the first cell.
  • the phrase "random access procedure for the first cell” means that the random access procedure is responded to by the first cell.
  • the first RRC connection is for the first air interface.
  • the PC5-RRC connection is an RRC connection for the PC5 air interface.
  • the PC5 air interface is an air interface between UEs.
  • the first RRC connection is an RRC connection between the first node and the first relay.
  • a second RRC connection is established between the first node and the first cell.
  • the RRC connection established between the first node and the first cell is an RRC connection of a Uu interface.
  • the RRC connection function of the PC5 interface is different from the RRC connection function of the Uu interface.
  • the first signaling is RRC signaling.
  • the first signaling is or includes RRCReconfiguration.
  • the first signaling is or includes at least part of the fields in RRCReconfiguration.
  • the first node in response to receiving the first signaling, releases the first RRC connection
  • the first cell is SpCell (Special Cell, special cell)
  • the first domain is SpCellConfig
  • the second domain is ReconfigurationWithSync
  • the first signaling is sent through SRB1
  • the SRB1 is the first node
  • the radio bearer between the primary cell group the SRB1 is associated with the first RLC bearer
  • the first RLC bearer is the RLC bearer between the first node and the first relay
  • the first The node is connected to the first relay
  • the act of releasing the first RRC connection includes releasing the first RLC bearer
  • the first signaling is used to indicate releasing the first RRC connection.
  • reception of the first signaling triggers the first node to release the first RRC connection.
  • execution of the first signaling triggers the first node to release the first RRC connection.
  • the SRB1 is a radio bearer specially used for transmitting signaling.
  • the SRB1 is a radio bearer used to transmit RRC signaling.
  • SRB1 will be established.
  • the network will also configure SRB2 and/or SRB3.
  • the network will configure up to three SRBs of the Uu interface, namely SRB1, SRB2, and SRB3.
  • SRB2 is used to transmit security-related signaling or to transmit NAS signaling.
  • the network when SCG is configured, can also optionally configure SRB3.
  • the phrase "SRB1 is associated with the first RLC bearer" means: before performing the first signaling, the SRB1 is associated with the first RLC bearer.
  • the phrase "SRB1 is associated with the first RLC bearer" means: before releasing the first RLC bearer, the SRB1 is associated with the first RLC bearer.
  • the phrase "SRB1 is associated with the first RLC bearer" means: there is a mapping relationship between the first RLC bearer and the SRB1.
  • the phrase "SRB1 is associated with the first RLC bearer" means: the first RLC bearer is used to transmit signaling on SRB1.
  • the SRB1 before receiving the first signaling, the SRB1 is only associated with the first RLC bearer.
  • the SRB1 is transmitted only through the first RLC bearer.
  • the first RLC bearer is a secondary link RLC bearer.
  • RLC entities corresponding to the first RLC bearer are respectively located in the first node and the first relay.
  • the first node releases the first RLC bearer while releasing the first RRC connection.
  • releasing the first RLC bearer is a part of releasing the first RRC connection.
  • releasing the first RLC bearer means releasing the RLC entity of the first node corresponding to the first RLC bearer.
  • the first cell is SpCell (Special Cell, special cell)
  • the first domain is SpCellConfig
  • the second domain is ReconfigurationWithSync
  • the first signaling is sent through SRB1
  • the SRB1 is The radio bearer between the first node and the primary cell group
  • the SRB1 is associated with the first RLC bearer
  • the first RLC bearer is the link between the first node and the third An RLC bearer between relays; the first node is connected to the first relay; and the first signaling is used to indicate maintaining the first RRC connection.
  • reception of the first signaling triggers the first node to release the first RRC connection.
  • execution of the first signaling triggers the first node to release the first RRC connection.
  • the SRB1 is a radio bearer specially used for transmitting signaling.
  • the SRB1 is a radio bearer used to transmit RRC signaling.
  • SRB1 will be established.
  • the network will also configure SRB2 and/or SRB3.
  • the network will configure up to three SRBs of the Uu interface, namely SRB1, SRB2, and SRB3.
  • SRB2 is used to transmit security-related signaling or to transmit NAS signaling.
  • the network when SCG is configured, can also optionally configure SRB3.
  • the phrase "SRB1 is associated with the first RLC bearer" means: before performing the first signaling, the SRB1 is associated with the first RLC bearer.
  • the phrase "SRB1 is associated with the first RLC bearer" means: before releasing the first RLC bearer, the SRB1 is associated with the first RLC bearer.
  • the phrase "SRB1 is associated with the first RLC bearer" means: there is a mapping relationship between the first RLC bearer and the SRB1.
  • the phrase "SRB1 is associated with the first RLC bearer" means: the first RLC bearer is used to transmit signaling on SRB1.
  • the SRB1 before receiving the first signaling, the SRB1 is only associated with the first RLC bearer.
  • the SRB1 is transmitted only through the first RLC bearer.
  • the first RLC bearer is the RLC bearer of the PC5 interface.
  • the first RLC bearer is a secondary link RLC bearer.
  • RLC entities corresponding to the first RLC bearer are respectively located in the first node and the first relay.
  • the first node releases the first RLC bearer while releasing the first RRC connection.
  • releasing the first RLC bearer is a part of releasing the first RRC connection.
  • releasing the first RLC bearer means releasing the RLC entity of the first node corresponding to the first RLC bearer.
  • the meaning of the first signaling indicating releasing the first RRC connection is that the first signaling does not indicate maintaining the first RRC connection.
  • the meaning of the first signaling indicating maintaining the first RRC connection is that the first signaling does not indicate releasing the first RRC connection.
  • the meaning of the first signaling indicating maintaining the first RRC connection is: the first signaling indicating retaining the first RRC connection.
  • the first node releases the first RRC connection.
  • the first node when the first signaling is used to indicate maintaining the first RRC connection, the first node does not release the first RRC connection.
  • the first node when the first signaling is used to indicate maintaining the first RRC connection, the first node continues to use the first RRC connection.
  • the first node when the first signaling is used to indicate maintaining the first RRC connection, the first node retains the first RRC connection.
  • the act of releasing the first RRC connection includes: releasing the first RLC bearer, where the first RLC bearer is an RLC bearer between the first node and the first relay.
  • the act of releasing the first RRC connection includes resetting the MAC for the first relay.
  • the act of releasing the first RRC connection includes: considering that the RRC connection with the first relay is released.
  • the act of releasing the first RRC connection includes: releasing a radio bearer for the first relay.
  • the act of releasing the first RRC connection includes: discarding the NR secondary link communication configuration for the first relay.
  • the meaning of the phrase "the first node is connected to the first relay” includes: a PC5-RRC connection is established between the first node and the first relay.
  • the meaning of the phrase "the first node is connected to the first relay” includes: a relay service relationship is established between the first node and the first relay.
  • the meaning of the phrase that the first node is connected to the first relay includes: the first relay becomes the L2 U2N relay of the first node.
  • the meaning of the phrase that the first node is connected to the first relay includes: the first node is connected to the network through the first relay.
  • the meaning of the phrase "the first node is connected to the first relay" includes: the first node establishes an RRC connection with the network through the first relay.
  • the RRC connection is an RRC connection of the Uu interface.
  • the first cell is SpCell (Special Cell).
  • the first signaling is sent through SRB1, which is a radio bearer between the first node and the primary cell group.
  • the SRB1 is associated with a first RLC bearer
  • the first RLC bearer is an RLC bearer between the first node and the first relay.
  • the first node is connected to the first relay.
  • releasing the first RRC connection includes releasing the first RLC bearer.
  • whether the first signaling includes the third domain is used to indicate whether to maintain the first RRC connection or release the first RRC connection; when the first signaling includes the third domain , the first signaling is used to indicate maintaining the first RRC connection, and when the first signaling does not include the third domain, the first signaling is used to indicate releasing the first RRC connection. .
  • the first domain includes the third domain.
  • the second domain includes the third domain.
  • the second domain does not include the third domain.
  • the meaning of the first signaling including the third field is: the third appearance (present).
  • the meaning that the first signaling includes the third domain means: the third domain is configured.
  • the third field has only one bit.
  • the value of the third field only supports true.
  • the first signaling includes a fourth field, and the fourth field included in the first signaling explicitly indicates whether to release or maintain the first RRC connection.
  • the first domain includes the fourth domain.
  • the second domain includes the fourth domain.
  • the second domain does not include the fourth domain.
  • the value of the fourth field is true or false.
  • the first signaling when the value of the fourth field is true, the first signaling is used to indicate releasing the first RRC connection, and the value of the fourth field is false. when the first signaling is used to indicate maintaining the first RRC connection.
  • the first signaling when the value of the fourth field is false, the first signaling is used to indicate releasing the first RRC connection, and the value of the fourth field is true. when the first signaling is used to indicate maintaining the first RRC connection.
  • one value of the fourth field is used to indicate releasing the first RRC connection, and another value of the fourth field is used to indicate maintaining the first RRC connection.
  • the fourth field of the first signaling is used to indicate whether to release or maintain the first RRC connection.
  • the first signaling when the first signaling does not include the fourth domain, the first signaling indicates releasing the first RRC connection.
  • the first signaling when the first signaling does not include the fourth domain, the first signaling indicates maintaining the first RRC connection.
  • the first signaling in the sentence is used to indicate maintaining the first RRC connection, or the meaning of releasing the first RRC connection includes: when the first signaling indicates that all RBs of the Uu interface are not When associated with the RLC bearer between the first node and the first relay, the first signaling is used to indicate release of the first RRC connection; when the first signaling does not indicate that all Uu When no RB of the interface is associated with the RLC bearer between the first node and the first relay, the first signaling is used to indicate maintaining the first RRC connection.
  • the meaning of the sentence that the first signaling indicates that all RBs of the Uu interface are not associated with the RLC bearer between the first node and the first relay is:
  • the first signaling indicates that all RBs (radio bearers, radio bearers) of the Uu interface are not associated with any RLC bearers related to the first relay.
  • the meaning of the sentence that the first signaling indicates that all RBs of the Uu interface are not associated with the RLC bearer between the first node and the first relay is:
  • the first signaling indicates that all RBs (radio bearers, radio bearers) of the Uu interface associated with the RLC bearer related to the first relay are not associated with any RLC bearer related to the first relay.
  • the meaning of the sentence that the first signaling indicates that all RBs of the Uu interface are not associated with the RLC bearer between the first node and the first relay is:
  • the first signaling indicates that all RBs (radio bearers) of the Uu interface are only associated with the RLC bearers of the Uu interface.
  • the meaning of the sentence that the first signaling indicates that all RBs of the Uu interface are not associated with the RLC bearer between the first node and the first relay is:
  • the first signaling indicates that the RBs (radio bearers, radio bearers) of all Uu interfaces are only associated with the RLC bearer for the first cell.
  • the meaning of the sentence that the first signaling indicates that all RBs of the Uu interface are not associated with the RLC bearer between the first node and the first relay is: execute After the first signaling, there is no mapping or association between any RB of the Uu interface and the RLC bearer for the first relay.
  • the meaning of the sentence that the first signaling indicates that all RBs of the Uu interface are not associated with the RLC bearer between the first node and the first relay is: execute After the first signaling, there is no mapping or association relationship between any RB of the Uu interface and the secondary link RLC bearer.
  • the meaning of the sentence that the first signaling does not indicate that all RBs of the Uu interface are not associated with the RLC bearer between the first node and the first relay is: After the first signaling is executed, there is a mapping relationship between at least one RB of the Uu interface and the RLC bearer of the PC5 interface.
  • the meaning of the sentence that the first signaling does not indicate that all RBs of the Uu interface are not associated with the RLC bearer between the first node and the first relay is: After the first signaling is executed, there is a mapping relationship between at least one RB of the Uu interface and the secondary link RLC bearer.
  • the meaning of the sentence that the first signaling does not indicate that all RBs of the Uu interface are not associated with the RLC bearer between the first node and the first relay is: After the first signaling is performed, there is a mapping relationship between at least one RB of the Uu interface and the secondary link RLC bearer between the first node and the first relay.
  • the meaning of the sentence that the first signaling does not indicate that all RBs of the Uu interface are not associated with the RLC bearer between the first node and the first relay is:
  • the first signaling does not indicate changing the mapping relationship between the RBs of the Uu interface and the secondary link RLC bearer.
  • the meaning of the sentence that the first signaling does not indicate that all RBs of the Uu interface are not associated with the RLC bearer between the first node and the first relay is:
  • the first signaling indicates that there is a mapping relationship between the RB of at least one Uu interface and the secondary link RLC bearer between the first node and the first relay.
  • the first signaling in the sentence is used to indicate maintaining the first RRC connection, or the meaning of releasing the first RRC connection includes: when the first signaling indicates releasing all RBs interfaced with Uu When the RLC entity for the first relay is associated, the first signaling is used to indicate releasing the first RRC connection; when the first signaling does not indicate releasing all RBs associated with the Uu interface targeted When the first relay is an RLC entity, the first signaling is used to indicate maintaining the first RRC connection.
  • the meaning of the sentence that the first signaling indicates releasing all RLC entities associated with the RB of the Uu interface for the first relay is: after executing the first signaling , any secondary link RLC entity associated with the RB of the Uu interface is released.
  • the meaning of the sentence that the first signaling indicates releasing all RLC entities associated with the RB of the Uu interface for the first relay is: after executing the first signaling , any secondary link RLC entity related to the first relay associated with the RB of the Uu interface is released.
  • the meaning of the sentence that the first signaling indicates releasing all RLC entities associated with the RB of the Uu interface for the first relay is: after executing the first signaling , all RLC entities associated with the RB of the Uu interface where the opposite end RLC entity is located on the first relay are released.
  • the meaning of the first signaling instruction in the sentence to release all RLC entities associated with the RB of the Uu interface for the first relay is: the first signaling instruction is for All RLC entities of the first relay associated with the RB of the Uu interface are released.
  • the meaning of the sentence that the first signaling indicates releasing all RLC entities associated with the RB of the Uu interface for the first relay is: after executing the first signaling , any RB of the Uu interface is no longer associated with the secondary link RLC entity.
  • the meaning of the sentence that the first signaling indicates releasing all RLC entities associated with the RB of the Uu interface for the first relay is: after executing the first signaling , any RB of the Uu interface is no longer associated with the secondary link RLC entity for the first relay.
  • the RLC entity for the first relay is an RLC entity where the peer RLC entity is located at the first relay.
  • the RLC entity for the first relay is an RLC entity corresponding to a first RLC bearer
  • the first RLC bearer is a link between the first node and the first RLC bearer.
  • RLC bearer between the first relays.
  • the meaning of the sentence that the first signaling does not indicate releasing all RLC entities associated with the RBs of the Uu interface for the first relay is: before executing the first signaling After that, at least one RB of the Uu interface is associated with the first RLC entity, and the first RLC entity is directed to the first relay.
  • the meaning of the sentence that the first signaling does not indicate releasing all RLC entities associated with the RBs of the Uu interface for the first relay is: before executing the first signaling
  • the meaning of the sentence that the first signaling does not indicate releasing all RLC entities associated with the RB of the Uu interface for the first relay is: the first signaling is The RB used to indicate that at least one Uu interface is associated with a first RLC entity, said first RLC entity is for said first relay; the phrase said first RLC entity is for said first relay This means: the peer RLC entity of the first RLC entity is located on the first relay.
  • the RLC entity for the first relay refers to the RLC entity whose counterpart RLC entity is located at the first node of the first relay.
  • the first signaling in the sentence is used to indicate maintaining the first RRC connection, or the meaning of releasing the first RRC connection includes: when the first signaling indicates that SRB1 only interfaces with the RLC of Uu When the entity is associated, the first signaling is used to indicate releasing the first RRC connection; when the first signaling does not indicate that SRB1 is only associated with the RLC entity of the Uu interface, the first signaling is used The instruction maintains the first RRC connection.
  • the meaning of the sentence that the first signaling indicates that SRB1 is only associated with the RLC entity of the Uu interface is: before executing the first signaling, the SRB1 is associated with the first signaling.
  • the RLC entity of a relay is associated; after executing the first signaling, the SRB1 is not associated with the RLC entity of the first relay, but is only associated with the RLC entity of the Uu interface.
  • the RLC entity for the first relay refers to the RLC entity whose counterpart RLC entity is located at the first node of the first relay.
  • the meaning of the sentence that the first signaling indicates that SRB1 is only associated with the RLC entity of the Uu interface is: before executing the first signaling, the SRB1 is associated with the first signaling. A relay's RLC bearer is associated; after performing the first signaling, The SRB1 is not associated with the RLC bearer for the first relay, but is only associated with the RLC bearer of the Uu interface.
  • the RLC bearer for the first relay refers to the RLC bearer between the first node and the first relay.
  • the meaning of the sentence that the first signaling does not indicate that SRB1 is only associated with the RLC entity of the Uu interface is: after executing the first signaling, SRB1 is associated with the first RLC entity.
  • the RLC entity associated with the relay is: after executing the first signaling, SRB1 is associated with the first RLC entity.
  • the RLC entity associated with the relay is: after executing the first signaling, SRB1 is associated with the first RLC entity.
  • the meaning of the sentence that the first signaling does not indicate that SRB1 is only associated with the RLC entity of the Uu interface is: after executing the first signaling, SRB1 is associated with the first RLC entity.
  • the trunk's RLC bearer is associated.
  • the meaning of the sentence that the first signaling does not indicate that SRB1 is only associated with the RLC entity of the Uu interface is: the first signaling indicates that SRB1 is associated with the first relay. RLC entities are associated.
  • the meaning of the sentence that the first signaling does not indicate that SRB1 is only associated with the RLC entity of the Uu interface is: the first signaling indicates that SRB1 is associated with the first relay. RLC bearer association.
  • the SRB1 can only be associated with one RLC bearer.
  • the SRB1 can only be associated with one of the RLC bearer of the Uu interface or the RLC bearer of the PC5 interface.
  • the SRB1 can only be associated with one of the RLC bearer or the secondary link RLC bearer.
  • the first signaling in the sentence is used to indicate maintaining the first RRC connection, or the meaning of releasing the first RRC connection is: when the first signaling indicates the purpose of the first node When the relay is a node other than the first relay, the first signaling is used to indicate releasing the first RRC connection. When the first signaling does not indicate the destination relay of the first node, the first signaling is used to indicate the release of the first RRC connection. When no node other than the first relay is instructed to be the destination relay, the first signaling is used to indicate maintaining the first RRC connection.
  • the first signaling indicates the identity of the destination relay.
  • the first node is only connected to one L2 U2N relay UE at the same time.
  • the destination relay indicated by the first signaling is for an indirect path between the first node and the first relay.
  • the destination relay indicated by the first signaling is for the first relay.
  • the first node in response to receiving the first signaling, the first node is connected to the destination relay indicated by the first signaling and releases the connection with the first signaling.
  • the first node if the first signaling indicates that the destination relay of the first node is the first relay, then the first node maintains the first RRC connection.
  • the destination relay indicated by the first signaling belongs to the L2 U2N relay UE.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in Figure 2.
  • FIG. 2 illustrates a diagram of the network architecture 200 of 5G NR, LTE (Long-Term Evolution, Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced, Enhanced Long-Term Evolution) systems.
  • the 5G NR or LTE network architecture 200 may be called 5GS (5G System)/EPS (Evolved Packet System) 200 or some other suitable term.
  • 5GS 5G System
  • EPS Evolved Packet System
  • 5GS/EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Server)/UDM (Unified Data Management, Unified Data Management) 220 and Internet services 230.
  • 5GS/EPS can be interconnected with other access networks, but for simplicity it is not Expose these entities/interfaces. As shown, 5GS/EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks that provide circuit-switched services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB 203 may connect to other gNBs 204 via the Xn interface (eg, backhaul).
  • gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmitting and receiving node) or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radio, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any other similarly functional device.
  • Those skilled in the art may also refer to UE 201 as mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, session management function) 211.
  • MME/AMF/SMF214 S-GW (Service Gateway, Service Gateway)/UPF (User Plane Function, User Plane Function) 212 and P-GW (Packet Date Network Gateway, Packet Data Network Gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210.
  • MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. P-GW provides UE IP address allocation and other functions. P-GW/UPF 213 is connected to Internet service 230.
  • the Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, an intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching streaming services.
  • the first node in this application is UE201.
  • the base station of the first node in this application is gNB203.
  • the wireless link from the UE 201 to the NR Node B is an uplink.
  • the wireless link from the NR Node B to the UE 201 is the downlink.
  • the UE 201 supports relay transmission.
  • the UE201 includes a mobile phone.
  • the UE 201 is a vehicle including a car.
  • the UE 201 supports secondary link transmission.
  • the UE 201 supports MBS transmission.
  • the UE 201 supports MBMS transmission.
  • the gNB 203 is a macro cellular (MarcoCellular) base station.
  • the gNB 203 is a Micro Cell base station.
  • the gNB 203 is a PicoCell base station.
  • the gNB 203 is a flying platform device.
  • the gNB 203 is a satellite device.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for user plane 350 and control plane 300
  • Figure 3 shows with three layers for a first node (UE, satellite or aircraft in gNB or NTN) and a second Node (gNB, UE or satellite or aircraft in NTN), or radio protocol architecture of the control plane 300 between two UEs: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions. The L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first node and the second node and the two UEs through the PHY 301.
  • L2 layer 305 includes MAC (Medium Access Control, media access control) sublayer 302, RLC (Radio Link Control, wireless link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304, these sub-layers terminate at the second node.
  • PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels. The PDCP sublayer 304 also provides security by encrypting data packets, and provides handoff support for the first node between second nodes.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • MAC sublayer 302 provides multiplexing between logical and transport channels. The MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first nodes. MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the RRC signaling between the second node and the first node. command to configure the lower layer.
  • PC5-S (PC5 Signaling Protocol, PC5 signaling protocol) sublayer 307 is responsible for processing the signaling protocol of the PC5 interface.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer), and is used in the user plane 350 for wireless communication of the first node and the second node.
  • the electrical protocol architecture for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 is generally the same as the corresponding layers and sublayers in the control plane 300. Same as above, but PDCP sublayer 354 also provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • SRB can be regarded as a service or interface provided by the PDCP layer to a higher layer, such as the RRC layer.
  • SRBs include SRB1, SRB2, SRB3, and when it comes to secondary link communication, there is also SRB4, which are used to transmit different types of control signaling.
  • the SRB is a bearer between the UE and the access network and is used to transmit control signaling including RRC signaling between the UE and the access network.
  • SRB1 has special significance for UE. After each UE establishes an RRC connection, there will be SRB1 for transmitting RRC signaling. Most of the signaling is transmitted through SRB1. If SRB1 is interrupted or unavailable, the UE must perform RRC reconstruction. SRB2 is generally only used to transmit NAS signaling or security-related signaling. The UE may not configure SRB3. Except for emergency services, the UE must establish an RRC connection with the network to conduct subsequent communications.
  • the first node may have several upper layers above the L2 layer 355. Also included are the network layer (eg, IP layer) terminating at the P-GW on the network side and the application layer terminating at the other end of the connection (eg, remote UE, server, etc.).
  • control plane may also include the adaptation sublayer SRAP (Sidelink Relay Adaptation Protocol, secondary link relay adaptation is possible) 308, and the user plane may also include the adaptation sublayer SRAP 358.
  • adaptation sublayer SRAP Segment Relay Adaptation Protocol, secondary link relay adaptation is possible
  • the introduction of layers helps lower layers, such as the MAC layer, such as the RLC layer, to multiplex and/or differentiate data from multiple source UEs.
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the first signaling in this application is generated in RRC306.
  • the random access signal in the random access process for the first cell in this application is generated in PHY301.
  • the first message in this application is generated in RRC306.
  • the second message in this application is generated in RRC306.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in the access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, and may optionally include a multi-antenna transmit processor 457 and a multi-antenna receive processor 458, Transmitter/receiver 454 and antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, and may optionally include a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter/receiving transmitter 418 and antenna 420.
  • Controller/processor 475 implements the functionality of the L2 (Layer-2) layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and radio resource allocation to the first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer). Transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 410, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M-phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for M-phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams. Transmit processor 416 then maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the first communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream to
  • the baseband multi-carrier symbol stream is provided to receive processor 456.
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial stream that is the destination. The symbols on each spatial stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover upper layer data and control signals transmitted by the second communications device 410 on the physical channel. Upper layer data and control signals are then provided to controller/processor 459. Controller/processor 459 implements the functions of the L2 layer.
  • Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media.
  • the controller/processor 459 In transmission from the second communication device 410 to the second communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements headers based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 In transmission from the first communications device 450 to the second communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Using the at least one processor together, the first communication device 450 at least: receives first signaling through the first air interface, the first signaling includes a first domain, and the first domain is used to configure the first Cell; the first signaling is used to indicate maintaining the first RRC connection, or releasing the first RRC connection; in response to receiving the first signaling, initiating a response to the first RRC connection through the second air interface.
  • the random access process of the cell wherein the first domain includes a second domain, the second domain is used to configure the random access process for the first cell;
  • the first air interface is the The air interface between the first node and the first relay, the second air interface is the air interface between the first node and the radio access network where the first cell is located;
  • the first RRC The connection is a PC5-RRC connection between the first node and the first relay.
  • the first communication device 450 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: An air interface receives first signaling, the first signaling includes a first domain, the first domain is used to configure the first cell; the first signaling is used to indicate maintaining the first RRC connection, or, Release the first RRC connection; in response to receiving the first signaling, initiate a random access process for the first cell through the second air interface; wherein the first domain includes a second domain, and the The second domain is used to configure the random access process for the first cell; the first air interface is an air interface between the first node and the first relay, and the second air interface The interface is an air interface between the first node and the radio access network where the first cell is located; the first RRC connection is an air interface between the first node and the first PC5-RRC connection between relays.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a UE.
  • the first communication device 450 is a vehicle-mounted terminal.
  • the second communication device 450 is a relay.
  • the second communication device 410 is a satellite.
  • the second communication device 410 is an aircraft.
  • the second communication device 410 is a base station.
  • a receiver 454 (including an antenna 452), a reception processor 456 and a controller/processor 459 are used in this application to receive the first signaling.
  • transmitter 454 (including antenna 452), transmit processor 468 and controller/processor 459 are used in this application to transmit the first message.
  • transmitter 418 (including antenna 420), transmit processor 416 and controller/processor 475 are used in this application to transmit the second message.
  • Embodiment 5 illustrates a wireless signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 5 .
  • U01 corresponds to the first node of this application. It is particularly noted that the order in this example does not limit the signal transmission sequence and implementation order in this application, and the steps in F51 are optional.
  • the first signaling is received in step S5101; the random access signal is sent in step S5102; and the target message is sent in step S5103.
  • the first signaling is sent in step S5201; the random access signal is received in step S5202; and the target message is received in step S5203.
  • the first node U01 receives the first signaling through the first air interface, the first signaling includes a first domain, and the first domain is used to configure the first cell; the first signaling A signaling is used to indicate maintaining the first RRC connection or releasing the first RRC connection;
  • the first node U01 in response to receiving the first signaling, initiates a random access process for the first cell through the second air interface;
  • the first domain includes a second domain, and the second domain is used to configure the random access process for the first cell;
  • the first air interface is between the first node and the first The air interface between relays, the second air interface is the air interface between the first node and the wireless access network where the first cell is located;
  • the first RRC connection is the first node PC5-RRC connection with the first relay.
  • the first node U01 is a U2N relay UE.
  • the first node U01 is a U2N remote UE.
  • the first node U01 is an NR ProSe U2N remote UE.
  • the third node U03 is the first relay.
  • the third node U03 is an L2 U2N relay UE.
  • the second node U02 is a base station.
  • the second node U02 is a primary cell group or a base station of a primary cell group.
  • the second node U02 is the primary cell of the first node U01.
  • the second node U02 is the primary cell group of the first node U01.
  • the second node U02 corresponds to the base station corresponding to the cell group of this application.
  • the second node U02 is the first cell.
  • the second node U02 is a base station corresponding to the first cell.
  • the second node U02 is a cell group corresponding to the first cell.
  • the primary cell of the third node U03 is the second node U02.
  • the primary cell group of the third node U03 is the second node U02.
  • the first signaling is forwarded by the third node U03 and sent to the first node U01.
  • the first node U01 communicates with the second node U02 using an indirect path, and the indirect path involves or uses the third node U03.
  • the first node U01 establishes an RRC connection with the second node U02 before receiving the first signaling.
  • the first node U01 is not synchronized with the second node U02 before receiving the first signaling.
  • the RRC connection established between the first node U01 and the second node is established through the third node U03.
  • the first node U03 sends second signaling, and the second signaling is used to feed back the first signaling.
  • the second signaling is RRC signaling.
  • the second signaling is RRCReconfigurationComplete.
  • the second signaling is forwarded to the second node U02 through the third node U03.
  • the second signaling is directly sent to the second node U02.
  • a copy of the second signaling is sent to the second node U03 through forwarding by the third node U03, and a copy of the second signaling is sent directly to the second node U02.
  • the air interface between the first node U01 and the second node U02 is the second air interface.
  • the air interface between the first node U01 and the third node U03 is the first air interface.
  • step S5102 belongs to the act of initiating a random access process for the first cell through the second air interface.
  • the random access signal is a physical layer signal.
  • the random access signal is directly sent to the second node U02.
  • the random access signal is message A in a random access process.
  • the random access signal is the first message in the random access process.
  • the random access signal is generated by a sequence.
  • the random access signal occupies a random access channel.
  • the random access process for the first cell initiated by the first node U01 through the second air interface uses a contention-free manner.
  • receiving a response on the PDCCH channel is used to determine the successful completion of the random access process initiated by the first node U01 through the second air interface for the first cell.
  • the response on the PDCCH channel includes receiving a signal scrambled using the C-RNTI of the first node U01 on the PDCCH channel.
  • the response on the PDCCH channel includes receiving DCI scrambled using the C-RNTI of the first node U01.
  • the first node U01 starts a first timer in response to executing the first signaling.
  • the first node U01 as a response to the expiration of the first timer, sends a target message, where the target message is either the first message or the second message, and the target message is Whether the first message or the second message is related to whether the first signaling is used to indicate whether to maintain the first RRC connection or release the first RRC connection.
  • the first node U01 as a response to the expiration of the first timer, initiates a first signaling process.
  • the first signaling process includes at least sending a target message, and the target message is the first Either a message or a second message, the target message is the first message or the second message and the first signaling are used to indicate whether to maintain the first RRC connection or release the first RRC connection related.
  • the first message is used to request RRC connection reestablishment.
  • the second message is used to report link establishment failure.
  • the stopping condition of the first timer includes: successfully completing a random access process for the first cell.
  • receiving a signal for the first node U01 on the PDCCH is used to determine successful completion of the random access procedure for the first cell.
  • contention resolution in the complete random access process is used to determine successful completion of the random access process for the first cell.
  • the sentence "whether the target message is the first message or the second message” means that the first signaling is used to indicate whether to maintain the first RRC connection or release the first RRC connection. Yes: when the first signaling is used to indicate maintaining the first RRC connection, the target message is the second message; when the first signaling is not used to indicate maintaining the first RRC connection During RRC connection, the target message is the first message.
  • the first timer is T304.
  • the first node U01 starts the first timer.
  • the first node U01 fails to detect a signal on the PDCCH channel for the first node U01 before the first timer expires.
  • the first node U01 fails to detect the C-RNTI signal of the first node U01 on the PDCCH channel before the first timer expires.
  • the target message is either the first message or the second message.
  • the first message and the second message are both RRC messages.
  • the first message includes RRCReestablishmentRequest.
  • the first message includes RRCConnectionReestablishmentRequest.
  • the first message is directed to the second node U02.
  • the first message passes through the third node U03.
  • the first message is sent directly to the second node U02.
  • the first message is sent to the second node U02 through relay forwarding.
  • the first message may also be sent to a node other than the second node U02.
  • the first message may also be sent to a cell other than the first cell.
  • the target message when the target message is the first message, the target message may be sent to the second node U02 or to a node other than the second node U02, although the latter case Figure 5 does not show that when the target message is the second message, the target message is directed to the second node U02.
  • the second message is sent to the second node U02 through forwarding by the third node U03.
  • the second message is sent directly to the second node U02.
  • the name of the second message includes failure.
  • the link establishment failure reported in the second message includes expiration of the first timer.
  • the link establishment failure reported in the second message includes a problem in the random access process.
  • the link establishment failure reported in the second message includes RLC establishment failure.
  • the link establishment failure reported in the second message includes the logical channel identity of the Uu interface indicated by the first signaling.
  • the link establishment failure reported in the second message includes measurement results for the Uu interface.
  • the link establishment failure reported in the second message includes a measurement result for the first cell.
  • the link establishment failure reported in the second message includes the cause of the failure and/or the type of failure.
  • the link establishment failure reported in the second message includes the time when the failure occurred or how long the failure lasted.
  • the sentence "whether the target message is the first message or the second message” means that the first signaling is used to indicate whether to maintain the first RRC connection or release the first RRC connection. Yes: when the first signaling is used to indicate maintaining the first RRC connection, the target message is the second message; when the first signaling indicates releasing the first RRC connection, The target message is the first message.
  • the first node U01 when the target message is the first message, before sending the first message, the first node U01 releases the first RRC connection. When the target message is the first message, the first node U01 releases the first RRC connection. When sending two messages, the first node U01 does not release the first RRC connection before sending the second message.
  • the first node U01 suspends the DRB for the first cell.
  • the target message is When sending the second message, the first node U01 does not suspend the DRB for the first cell before sending the second message.
  • the first node U01 when the target message is the first message, before sending the first message, the first node U01 resets the MAC for the first cell.
  • the target message is When sending the second message, the first node U01 does not reset the MAC for the first cell before sending the second message.
  • the first node U01 when the target message is the first message, before sending the first message, the first node U01 releases the information indicated by the first domain of the first signaling.
  • the target message is the second message, the first node U01 does not release the signaling indicated by the first domain of the first signaling before sending the second message.
  • the first signaling process when the target message is the first message, the first signaling process includes receiving an RRC feedback message of the target message; when the target message is the second message, the first signaling process includes receiving an RRC feedback message of the target message; The first signaling process does not include receiving an RRC feedback message of the target message.
  • the sentence that the first signaling process does not include receiving an RRC feedback message of the target message means: the target message does not have a corresponding feedback message.
  • Embodiment 6 illustrates a schematic diagram of a protocol stack for relay communication according to an embodiment of the present application, as shown in FIG. 6 .
  • Figure 6 is divided into three sub-figures (a), (b) and (c).
  • the protocol stack shown in Figure 6 is suitable for L2 U2N relay communication, and Embodiment 6 is based on Embodiment 3.
  • the first relay in Figure 6 is a relay when the first node uses an indirect path.
  • the first relay in Figure 6 is the L2 U2N relay UE between the first node and the first cell group, and the first cell group is the MCG of the first node. .
  • the gNB in Figure 6 is the base station corresponding to the first cell.
  • the gNB in Figure 6 is the PCell of the first node or the gNB corresponding to the PCell.
  • the gNB in Figure 6 is the MCG of the first node or the gNB corresponding to the MCG.
  • the gNB in Figure 6 is the gNB to which the first node is connected.
  • the first air interface is an interface between the first node and the first relay, and the protocol entities related to the first air interface ⁇ PC5-SRAP, PC5-RLC, PC5-MAC , PC5-PHY ⁇ terminates at the first node and the first relay;
  • the Uu interface is the interface between the UE and the gNB, and the protocol entities of the Uu interface terminate at the UE and the gNB respectively.
  • the first relay is a U2N relay UE, and before performing the first signaling, the first relay provides L2 U2N relay services to the first node.
  • the first node and the first relay are both UEs.
  • the gNB in Figure 6 corresponds to the second node involved in this application.
  • the protocol entities ⁇ Uu-SRAP, Uu-RLC, Uu-MAC, Uu-PHY ⁇ of the Uu interface terminate at the first relay and gNB.
  • the protocol entities ⁇ Uu-SDAP, Uu-PDCP ⁇ of the Uu interface terminate at the first node and gNB, and the SDAP PDU and PDCP PDU of the first node pass through the first node.
  • the first relay does not modify the SDAP PDU and the PDCP PDU of the first node, that is to say, the SDAP PDU and PDCP PDU sent by the first node to the gNB are correct for the For the first relay mentioned above, it is transparent transmission.
  • the protocol entities ⁇ Uu-RRC, Uu-PDCP ⁇ of the Uu interface terminate at the first node and gNB, and the RRC PDU and PDCP PDU of the first node pass through the first node. Forwarding by a relay, but the first relay does not modify the RRC PDU and the PDCP PDU sent by the first node, that is to say, the RRC PDU and PDCP PDU sent by the first node to the gNB It is transparent to the first relay.
  • PC5-SRAP corresponds to SRAP357 in Figure 3
  • PC5-RLC corresponds to RLC353 in Figure 3
  • PC5-MAC corresponds to MAC352 in Figure 3
  • PC5-PHY corresponds to Figure 3 PHY351 in 3.
  • Uu-SDAP corresponds to SDAP356 in Figure 3
  • Uu-PDCP corresponds to PDCP354 in Figure 3.
  • PC5-SRAP corresponds to SRAP307 in Figure 3
  • PC5-RLC corresponds to RLC303 in Figure 3.
  • PC5-MAC corresponds to MAC302 in Figure 3
  • PC5-PHY corresponds to PHY301 in Figure 3.
  • Uu-RRC corresponds to RRC 306 in Figure 3
  • Uu-PDCP corresponds to PDCP 304 in Figure 3.
  • one cell of the gNB in Figure 6 is the PCell of the first relay, and the first relay is in the RRC connected state.
  • the gNB in Figure 6 manages the first cell, and the first cell is the PCell of the first relay.
  • the MCG of the first node is also the MCG of the first relay.
  • PC5-SRAP is used only for specific RBs or messages or data.
  • the PC5-SRAP layer is not used.
  • the SRB1 of the first node is the SRB1 between the first node and the gNB in Figure 6(b), and the associated protocol entities include Uu-PDCP and Uu-RRC.
  • communication between the first node and the gNB uses an indirect path.
  • communication between the first node and the gNB uses a direct path.
  • the communication between the first node and the gNB uses an indirect path, and the first signaling is used to indicate the The communication between the first node and the gNB includes using a direct path, and the first signaling is used to indicate whether the first node uses an indirect path to communicate with the gNB.
  • the meaning of the sentence that the first signaling is used to indicate whether the first node uses an indirect path to communicate with the gNB includes that the first signaling is used to indicate that the Whether the first node continues to use or maintain the indirect path to communicate with the gNB.
  • communication between the first node and the gNB uses both a direct path and an indirect path.
  • the first signaling is generated by the Uu-RRC of the gNB in Figure 6(b) and received by the Uu-RRC of the first node.
  • the first signaling is transparently transmitted to the first relay.
  • the first relay is used for the transmission of the first signaling, and the transmission of the first signaling is applicable to Figure 6(b).
  • the first message is suitable for the protocol structure of Figure 6(b) and/or (c).
  • the first message is forwarded to the gNB by the first relay.
  • the Uu-PDCP of the first node is associated with the PC5-RLC, or is associated with the PC5-RLC through PC5-SRAP.
  • the first node when using a direct path, the first node will establish Uu-RLC, and the Uu-PDCP of the first node is associated with the Uu-RLC.
  • the first node releases the PC5-RLC.
  • the first node after switching to the direct path, the first node releases PC5-SRAP.
  • the first node after switching to the direct path, the first node releases PC5-MAC and PC5-PHY.
  • the first node after switching to the direct path, the first node no longer uses PC5-SRAP.
  • the first signaling is used to indicate path conversion or path addition.
  • the wireless link corresponding to the first air interface is a second wireless link.
  • the second wireless link includes the wireless link between the first node and the first relay in (a) and/or (b) of FIG. 6 .
  • the second wireless link includes a secondary link wireless link between the first node and the first relay in (a) and/or (b) of FIG. 6 .
  • the second wireless link includes a secondary link RLC bearer between the first node and the first relay in (a) and/or (b) of Figure 6 .
  • the second wireless link includes a transmission channel between the first node and the first relay in (a) and/or (b) of FIG. 6 .
  • the second wireless link includes the first node and the first relay in (a) and/or (b) of Figure 6 logical channels between them.
  • the second wireless link includes a physical channel between the first node and the first relay in (a) and/or (b) of FIG. 6 .
  • the second wireless link includes a direct unicast link between the first node and the first relay in (a) and/or (b) of FIG. 6 .
  • the second wireless link includes an interface between the PC5-SRAP entity between the first node and the first relay in (a) and/or (b) of Figure 6 .
  • the second wireless link includes the PC5 interface between the first node and the first relay in (a) and/or (b) of Figure 6 .
  • (c) in Figure 6 is a protocol stack for communication between the first node and the gNB when no relay is used.
  • (c) in Figure 6 is a protocol stack for communication between the first node and the gNB when using a direct path.
  • the wireless link corresponding to the second air interface is the first wireless link.
  • the first wireless link includes a wireless bearer between the first node and gNB in (c) of Figure 6 .
  • the first wireless link includes the wireless link between the first node and the gNB in (c) of FIG. 6 .
  • the first wireless link includes an RLC bearer between the first node and gNB in (c) of FIG. 6 .
  • the first wireless link includes the channel between the first node and the gNB in (c) of FIG. 6 .
  • the first wireless link includes a logical channel between the first node and the gNB in (c) of FIG. 6 .
  • the first wireless link includes a physical channel between the first node and the gNB in (c) of FIG. 6 .
  • the first wireless link includes the Uu interface between the first node and gNB in (c) of FIG. 6 .
  • the second radio link includes a radio bearer between the first node and gNB in (c) of Figure 6 .
  • the second wireless link includes the wireless link between the first node and the gNB in (c) of FIG. 6 .
  • the second wireless link includes an RLC bearer between the first node and gNB in (c) of Figure 6 .
  • the second wireless link includes the channel between the first node and the gNB in (c) of FIG. 6 .
  • the second wireless link includes a logical channel between the first node and the gNB in (c) of FIG. 6 .
  • the second wireless link includes a physical channel between the first node and the gNB in (c) of FIG. 6 .
  • the second wireless link includes the Uu interface between the first node and gNB in (c) of Figure 6 .
  • the second air interface in Figure 6 is the air interface between the first node and the gNB.
  • the second air interface in Figure 6 is the air interface between the first node and the RAN corresponding to the gNB.
  • the second air interface in Figure 6 is the air interface between the first node and the first cell managed by gNB.
  • Embodiment 7 illustrates a schematic diagram of a radio bearer according to an embodiment of the present application, as shown in FIG. 7 .
  • Embodiment 7 further shows a PDCP entity based on Embodiment 3, which is associated with two RLC entities, namely RLC1 and RLC2, where each RLC entity is associated with a different MAC, that is, RLC1 is associated with MAC1, and RLC2 Associated with MAC2.
  • Embodiment 7 shows the protocol structure on the first node side.
  • the first signaling is used to indicate maintaining the first RRC connection.
  • the first node after performing the first signaling, the first node communicates with the network using a direct path and an indirect path at the same time.
  • Figure 7 is applicable to SRBs including SRB1.
  • Figure 7 is applicable to DRB.
  • Figure 7 is applicable to MRB.
  • the protocol structure shown in Figure 7 is a split SRB, that is, split SRB.
  • the protocol structure shown in Figure 7 is a split DRB, that is, split DRB.
  • Figure 7 is suitable for sending.
  • Figure 7 is suitable for reception.
  • the first protocol entity in Figure 7 is RRC, and Figure 7 is for SRBs including SRB1.
  • the first protocol entity in Figure 7 is SDAP, and Figure 7 is for DRB.
  • the PDCP PDU formed by processing the RRC message by the PDCP entity is sent through RLC1.
  • the PDCP PDU formed by processing the RRC message by the PDCP entity is sent through RLC2.
  • the PDCP PDU formed by processing the RRC message by the PDCP entity is sent through RLC1 or RLC2.
  • the RRC message is copied into a PDCP PDU formed by processing by the PDCP entity and sent through RLC1 and RLC2 at the same time.
  • the SRB1 is used to carry the first signaling and the first message.
  • the main path of SRB1 is for RLC1.
  • the main path of SRB1 is for RLC2.
  • one of RLC1 and RLC2 in Figure 7 is for the first air interface, and the other is for the second air interface.
  • the wireless link corresponding to the first air interface is a second wireless link
  • the wireless link corresponding to the second air interface is the first wireless link
  • the first wireless link is for RLC1.
  • the first wireless link is associated with RLC1 and MAC1.
  • the second wireless link is associated with RLC2 and MAC2.
  • the RLC2 and MAC2 are both for secondary link communication.
  • the RLC1 and MAC1 are both for primary link communication, that is, not for secondary link communication.
  • the RLC1 and MAC1 are both targeted at cell groups.
  • the RLC1 and MAC1 are both directed to the first cell or the cell group in which the first cell is located.
  • the RLC1 and MAC1 are for the primary cell group.
  • releasing the first RRC connection includes releasing RLC2.
  • releasing the first RRC connection includes resetting MAC2.
  • releasing the first RRC connection releases or deletes MAC2.
  • Embodiment 8 illustrates a schematic diagram of a topology structure according to an embodiment of the present application, as shown in FIG. 8 .
  • the first node in Embodiment 8 corresponds to the first node in this application.
  • the second node in Embodiment 8 corresponds to a cell group of the first node in this application.
  • the second node in Embodiment 8 corresponds to the primary cell of the first node in this application.
  • the second node in Embodiment 8 corresponds to the first cell of this application or the base station corresponding to the first cell.
  • the second node in Embodiment 8 corresponds to the cell group in which the first cell of this application is located.
  • the third node in Embodiment 8 is a relay node of the first node.
  • the third node in Embodiment 8 is the U2N relay of the first node.
  • the third node in Embodiment 8 is a relay between the first node and the network.
  • the third node in Embodiment 8 is the L2 U2N relay UE.
  • the third node in Embodiment 8 is a relay node between the first node and the second node.
  • the third node in Embodiment 8 is an L2 U2N relay UE of the first node.
  • the third node in Embodiment 8 is the first relay.
  • the wireless link corresponding to the first air interface is the second wireless link; the wireless link corresponding to the second air interface is the first wireless link.
  • the first wireless link refers to a bearer between the first node and the second node.
  • the first wireless link refers to the wireless link between the first node and the second node.
  • the first wireless link refers to an RLC bearer between the first node and the second node.
  • the first wireless link refers to the communication link between the first node and the second node.
  • the first wireless link refers to a channel between the first node and the second node.
  • the first wireless link refers to the communication interface between the first node and the second node.
  • the first wireless link has nothing to do with relays.
  • the second wireless link includes a wireless link between the first node and the third node.
  • the second wireless link includes an RLC bearer between the first node and the third node.
  • the second wireless link includes a communication link between the first node and the third node.
  • the second wireless link includes a channel between the first node and the third node.
  • the second wireless link includes a communication interface between the first node and the third node.
  • the second wireless link is related to a relay.
  • the first wireless link is a direct path.
  • the link between the first node and the second node that is not forwarded through the third node is a direct path.
  • the link forwarded through the third node between the first node and the second node is an indirect path.
  • a direct path is a method or transmission path through which the first node and the second node communicate without passing through the third node.
  • the indirect path is a method or transmission path through which the first node and the second node communicate through the third node.
  • the first wireless link is or belongs to a direct path.
  • the second wireless link is an indirect path.
  • the first wireless link and the second wireless link are both directed to the first node.
  • the first wireless link and the second wireless link are both aimed at data transmission of the first node and the second node.
  • the second wireless link includes a transmission path between the first node and the third node and the third node and the second node.
  • the second wireless link includes a direct link between the first node and the third node.
  • the second wireless link includes a PC5 direct link between the first node and the third node.
  • the first wireless link includes a wireless link between the first node and the second node.
  • the first wireless link includes an RLC bearer between the first node and the second node.
  • the first wireless link includes a communication link between the first node and the second node.
  • the first wireless link includes a channel between the first node and the second node.
  • the first wireless link includes a communication interface between the first node and the second node.
  • the second wireless link refers to a bearer between the first node and the third node.
  • the second wireless link refers to the wireless link between the first node and the third node.
  • the second wireless link refers to an RLC bearer between the first node and the third node.
  • the second wireless link refers to the communication link between the first node and the third node.
  • the second wireless link refers to a channel between the first node and the third node.
  • the second wireless link refers to the communication interface between the first node and the third node.
  • the first wireless link before receiving the first signaling, does not exist between the first node and the network.
  • communication between the first node and the network does not use the first wireless link.
  • communication between the first node and the network is only designed for the second wireless link.
  • the first signaling is used to indicate whether to maintain the second wireless link.
  • the first signaling is used to indicate whether to release the second wireless link.
  • the first signaling is used to indicate whether to use or continue to use the second wireless link.
  • releasing the first RRC connection includes releasing or no longer using the second wireless link.
  • Embodiment 9 illustrates a structural block diagram of a processing device used in a first node according to an embodiment of the present application; as shown in FIG. 9 .
  • the processing device 900 in the first node includes a first receiver 901 and a first transmitter 902.
  • Example 9
  • the first receiver 901 receives first signaling through the first air interface.
  • the first signaling includes a first domain, and the first domain is used to configure the first cell; the first signaling is used to indicate Maintain the first RRC connection, or release the first RRC connection;
  • the first transmitter 902 in response to receiving the first signaling, initiates a random access process for the first cell through the second air interface;
  • the first domain includes a second domain, and the second domain is used to configure the random access process for the first cell;
  • the first air interface is between the first node and the first The air interface between relays, the second air interface is the air interface between the first node and the wireless access network where the first cell is located;
  • the first RRC connection is the first node PC5-RRC connection with the first relay.
  • the first receiver 901 releases the first RRC connection in response to receiving the first signaling
  • the first cell is SpCell (Special Cell, special cell)
  • the first domain is SpCellConfig
  • the second domain is ReconfigurationWithSync
  • the first signaling is sent through SRB1
  • the SRB1 is the first node
  • the radio bearer between the primary cell group the SRB1 is associated with the first RLC bearer
  • the first RLC bearer is the RLC bearer between the first node and the first relay
  • the first The node is connected to the first relay
  • the act of releasing the first RRC connection includes releasing the first RLC bearer
  • the first signaling is used to indicate releasing the first RRC connection.
  • the first cell is SpCell (Special Cell, special cell)
  • the first domain is SpCellConfig
  • the second domain is ReconfigurationWithSync
  • the first signaling is sent through SRB1
  • the SRB1 is The radio bearer between the first node and the primary cell group
  • the SRB1 is associated with the first RLC bearer
  • the first RLC bearer is the RLC bearer between the first node and the first relay.
  • the first node is connected to the first relay; the first signaling is used to indicate maintaining the first RRC connection.
  • whether the first signaling includes the third domain is used to indicate whether to maintain the first RRC connection or release the first RRC connection; when the first signaling includes the third domain , the first signaling is used to indicate maintaining the first RRC connection, and when the first signaling does not include the third domain, the first signaling is used to indicate releasing the first RRC connection. .
  • the first signaling includes a fourth field, and the fourth field included in the first signaling explicitly indicates whether to release or maintain the first RRC connection.
  • the first signaling in the sentence is used to indicate maintaining the first RRC connection, or the meaning of releasing the first RRC connection includes: when the first signaling indicates that all RBs of the Uu interface are not When associated with the RLC bearer between the first node and the first relay, the first signaling is used to indicate release of the first RRC connection; when the first signaling does not indicate that all Uu When no RB of the interface is associated with the RLC bearer between the first node and the first relay, the first signaling is used to indicate maintaining the first RRC connection.
  • the first signaling in the sentence is used to indicate maintaining the first RRC connection, or the meaning of releasing the first RRC connection includes: when the first signaling indicates releasing all RBs interfaced with Uu When the RLC entity for the first relay is associated, the first signaling is used to indicate releasing the first RRC connection; when the first signaling does not indicate releasing all RBs associated with the Uu interface When the RLC entity is directed to the first relay, the first signaling is used to indicate maintaining the first RRC connection.
  • the first signaling in the sentence is used to indicate maintaining the first RRC connection, or the meaning of releasing the first RRC connection includes: when the first signaling indicates that SRB1 only interfaces with the RLC of Uu When the entity is associated, the first signaling is used to indicate releasing the first RRC connection; when the first signaling does not indicate that SRB1 is only associated with the RLC entity of the Uu interface, the first signaling is used The instruction is to maintain the first RRC connection.
  • the first signaling in the sentence is used to indicate maintaining the first RRC connection, or the meaning of releasing the first RRC connection is: when the first signaling indicates the purpose of the first node When the relay is a node other than the first relay, the first signaling is used to indicate releasing the first RRC connection. When the first signaling does not indicate the destination relay of the first node, the first signaling is used to indicate the release of the first RRC connection. When no node other than the first relay is instructed to be the destination relay, the first signaling is used to indicate maintaining the first RRC connection.
  • the first transmitter 902 starts a first timer in response to executing the first signaling, and sends a target message in response to expiration of the first timer.
  • the target message It is one of the first message or the second message.
  • the target message is the first message or the second message and the first signaling. It is used to indicate whether to maintain the first RRC connection or to release the The first RRC connection is related;
  • the first message is used to request RRC connection reestablishment, and the second message is used to report link establishment failure;
  • the first calculation The stop condition of the timer includes: successfully completing the random access process for the first cell; whether the target message is the first message or the second message and the first signaling is used to indicate maintenance
  • the meaning related to whether the first RRC connection or the first RRC connection is released is: when the first signaling is used to indicate maintaining the first RRC connection, the target message is the second message; When the first signaling is not used to indicate maintaining the first RRC connection, the target message is the first message.
  • the first node is a user equipment (UE).
  • UE user equipment
  • the first node is a terminal that supports a large delay difference.
  • the first node is a terminal supporting NTN.
  • the first node is an aircraft or ship.
  • the first node is a mobile phone or a vehicle-mounted terminal.
  • the first node is a relay UE and/or a U2N remote UE.
  • the first node is an Internet of Things terminal or an industrial Internet of Things terminal.
  • the first node is a device that supports low-latency and high-reliability transmission.
  • the first node is a secondary link communication node.
  • the first receiver 901 includes the antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, or data source in Embodiment 4. At least one of 467.
  • the first transmitter 902 includes the antenna 452, transmitter 454, transmission processor 468, multi-antenna transmission processor 457, controller/processor 459, memory 460, or data source in Embodiment 4. At least one of 467.
  • User equipment, terminals and UEs in this application include but are not limited to drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IoT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC, enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost Cost tablet computers, satellite communication equipment, ship communication equipment, NTN user equipment and other wireless communication equipment.
  • drones communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IoT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC, enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile
  • the base station or system equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, sending and receiving node), NTN base station , satellite equipment, flight platform equipment and other wireless communication equipment.
  • gNB NR Node B
  • TRP Transmitter Receiver Point

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的方法和设备,包括接收第一信令;所述第一信令用于指示SRB1(Signaling Radio Bearer 1,第一信令无线承载)的主路径与第一无线链路相关联;所述SRB1分别与所述第一无线链路和第二无线链路相关联;在接收到所述第一信令之后,检测到所述第一无线链路发生失败;作为所述行为检测到所述第一无线链路发生失败的响应,执行第一操作集合,所述第一操作集合与所述第一无线链路和所述第二无线链路中的之一是否是针对U2N(UE to Network,用户设备到网络)中继的有关。本申请通过第一信令和第一消息,有助于网络优化,提高通信的可靠性,避免通信中断。

Description

一种被用于无线通信的方法和设备 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及通信中网络优化,提高业务服务质量,中继通信等方面的方法和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或Fifth Generation,5G)进行研究,在3GPP RAN#75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。
在通信中,无论是LTE(Long Term Evolution,长期演进)还是5G NR都会涉及到可靠的信息的准确接收,优化的能效比,信息有效性的确定,灵活的资源分配,可伸缩的系统结构,高效的非接入层信息处理,较低的业务中断和掉线率,对低功耗支持,这对基站和用户设备的正常通信,对资源的合理调度,对系统负载的均衡都有重要的意义,可以说是高吞吐率,满足各种业务的通信需求,提高频谱利用率,提高服务质量的基石,无论是eMBB(ehanced Mobile BroadBand,增强的移动宽带),URLLC(Ultra Reliable Low Latency Communication,超高可靠低时延通信)还是eMTC(enhanced Machine Type Communication,增强的机器类型通信)都不可或缺的。同时在IIoT(Industrial Internet of Things,工业领域的物联网中,在V2X(Vehicular to X,车载通信)中,在设备与设备之间通信(Device to Device),在非授权频谱的通信中,在用户通信质量监测,在网络规划优化,在NTN(Non Territerial Network,非地面网络通信)中,在TN(Territerial Network,地面网络通信)中,在双连接(Dual connectivity)系统中,在无线资源管理以及多天线的码本选择中,在信令设计,邻区管理,业务管理,在波束赋形中都存在广泛的需求,信息的发送方式分为广播和单播,两种发送方式都是5G系统必不可少的,因为它们对满足以上需求十分有帮助。UE与网络连接的方式可以是直接连接也可以通过中继连接。
随着系统的场景和复杂性的不断增加,对降低中断率,降低时延,增强可靠性,增强系统的稳定性,对业务的灵活性,对功率的节省也提出了更高的要求,同时在系统设计的时候还需要考虑不同系统不同版本之间的兼容性。
3GPP标准化组织针对5G做了相关标准化工作,形成了一系列标准,标准内容可参考:
https://www.3gpp.org/ftp/Specs/archive/38_series/38.211/38211-g60.zip
https://www.3gpp.org/ftp/Specs/archive/38_series/38.213/38213-g60.zip
https://www.3gpp.org/ftp/Specs/archive/38_series/38.331/38331-g60.zip
https://www.3gpp.org/ftp/Specs/archive/38_series/38.331/38323-g60.zip
发明内容
在多种通信场景中,会涉及中继的使用,例如当一个UE(User Equipment,用户设备)在小区边缘时,覆盖不佳时,可以通过中继接入网络,中继节点可以是另外一个UE。中继主要包括层3中继和层2中继(L2 U2N relay),都是通过中继节点为远端节点(U2N remote UE)提供网络接入服务,其中层3中继对接入网是透明的,即远端UE只与核心网建立连接,接入网无法识别数据是来自远端节点还是中继节点的;而层2中继,远端节点(U2N remote UE)和接入网(RAN)具有RRC连接,接入网可以管理远端节点,接入网和远端节点之间可以建立无线承载。中继可以是另一个UE,在支持层2中继的系统中,UE可以通过L2中继UE(L2 U2N relay UE)与网络进行通信,即使用非直接路径(indirect path),也可以不通过中继直接与网络进行通信,即使用直接路径(direct path)。在一些场景中,一个UE可以同时使用直接路径和非直接路径以获得更好的可靠性和更高的吞吐率。直接路径和非直接路径在无线资源管理和网络优化方面是不同的。直接路径和非直接路径一个不使用中继,一个使用中继,而中继节点可能为多个节点提供业务,因此两条,或更多条路径的吞吐率,QoS,以及功能可能并不相同,这些都与传统的网络结构不同, 解决方案必须要适合这种新的网络结构。当一个远端UE通过非直接路径与网络通信,如果需要同时使用直接路径,就需要解决如何增加直接路径的问题。现有的技术中,用户如果要与一个小区建立连接需要释放掉之前的连接,无法支持两个链路或路径。增加直接路径是一个很复杂的问题,直接路径的增加涉及重新同步和进行随机接入,而中继通信涉及新的场景,即已经建立更高层通信连接的情况下再次建立无线链路,这是现有技术所无法支持的。如果先中断非直接路径,再建立直接路径,则会降低可靠性,因为直接路径未必会建立成功,而且需要使用中继的UE多半位于小区边缘,无论直接路径还是非直接路径可能都不会有良好的信号质量,尽力提高可靠性是很有必要的。另一方面,网络需要支持路径的切换,即先释放非直接路径,因为一个UE只能与一个PCell连接,这样可以保证一定的灵活性,减少网络管理的复杂度。因此,本申请所要解决的问题是如何在使用中继的情况下,支持多个路径的问题。当然本申请所提出的解决方案,也可以解决通信系统中的其它问题,而不限于以上问题。
针对以上所述问题,本申请提供了一种解决方案。
需要说明的是,在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,包括:
通过第一空中接口接收第一信令,所述第一信令包括第一域,所述第一域用于配置第一小区;所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接;
作为接收所述第一信令的响应,通过第二空中接口发起针对所述第一小区的随机接入过程;
其中,所述第一域包括第二域,所述第二域被用于配置针对所述第一小区的所述随机接入过程;所述第一空中接口是所述第一节点与第一中继之间的空中接口,所述第二空中接口是所述第一节点与所述第一小区所在的无线接入网络之间的空中接口;所述第一RRC连接是所述第一节点与所述第一中继之间的PC5-RRC连接。
作为一个实施例,本申请要解决的问题包括:在使用L2中继的场景中,如何支持两条路径或链路,既保证了网络通信的可靠性也保证了灵活性。
作为一个实施例,上述方法的好处包括:支持使用L2中继时,支持同时使用多条路径与网络通信,减少了通信的中断,提高了业务质量,提高了网络通信的可靠性,增加了覆盖,对移动性和业务连续性有更好的支持。
具体的,根据本申请的一个方面,作为接收所述第一信令的响应,释放所述第一RRC连接;所述第一小区是SpCell(Special Cell,特殊小区),所述第一域是SpCellConfig,所述第二域是ReconfigurationWithSync,所述第一信令通过SRB1发送,所述SRB1是所述第一节点与主小区组之间的无线承载,所述SRB1与第一RLC承载相关联,所述第一RLC承载是所述第一节点与所述第一中继之间的RLC承载;所述第一节点与所述第一中继连接;所述行为释放所述第一RRC连接包括释放所述第一RLC承载;所述第一信令被用于指示释放所述第一RRC连接。
具体的,根据本申请的一个方面,所述第一小区是SpCell(Special Cell,特殊小区),所述第一域是SpCellConfig,所述第二域是ReconfigurationWithSync,所述第一信令通过SRB1发送,所述SRB1是所述第一节点与主小区组之间的无线承载,所述SRB1与第一RLC承载相关联,所述第一RLC承载是所述第一节点与所述第一中继之间的RLC承载;所述第一节点与所述第一中继连接;所述第一信令被用于指示维持所述第一RRC连接。
具体的,根据本申请的一个方面,所述第一信令是否包括第三域被用于指示维持所述第一RRC连接还是释放所述第一RRC连接;当所述第一信令包括所述第三域时,所述第一信令用于指示维持所述第一RRC连接,当所述第一信令不包括所述第三域时,所述第一信令用于指示释放所述第一RRC连接。
具体的,根据本申请的一个方面,所述第一信令包括第四域,所述第一信令所包括的所述第四域显式的指示释放还是维持所述第一RRC连接。
具体的,根据本申请的一个方面,句子所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接的含义包括:当所述第一信令指示所有Uu接口的RB都不与所述第一节点和所述第一中继之间的RLC承载相关联时,所述第一信令用于指示释放所述第一RRC连接;当所述第一信令未指示所有Uu接口的RB都不与所述第一节点和所述第一中继之间的RLC承载相关联时,所述第一信令用于指示维持所 述第一RRC连接。
具体的,根据本申请的一个方面,句子所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接的含义包括:当所述第一信令指示释放所有与Uu接口的RB相关联的针对所述第一中继的RLC实体时,所述第一信令用于指示释放所述第一RRC连接;当所述第一信令未指示释放所有与Uu接口的RB相关联的针对所述第一中继的RLC实体时,所述第一信令用于指示维持所述第一RRC连接。
具体的,根据本申请的一个方面,句子所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接的含义包括:当所述第一信令指示SRB1仅与Uu接口的RLC实体相关联时,所述第一信令用于指示释放所述第一RRC连接;当所述第一信令未指示SRB1仅与Uu接口的RLC实体相关联时,所述第一信令用于指示维持所述第一RRC连接。
具体的,根据本申请的一个方面,句子所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接的含义是:当所述第一信令指示所述第一节点的目的中继是所述第一中继以外的节点时,所述第一信令用于指示释放所述第一RRC连接,当所述第一信令未指示所述第一节点的目的中继也未指示所述第一中继以外的其它节点为目的中继时,所述第一信令被用于指示维持所述第一RRC连接。
具体的,根据本申请的一个方面,作为执行所述第一信令的响应,开始第一计时器,作为所述第一计时器的过期的响应,发送目标消息,所述目标消息是第一消息或第二消息二者之一,所述目标消息是所述第一消息还是所述第二消息与所述第一信令用于指示维持所述第一RRC连接还是释放所述第一RRC连接有关;
其中,所述第一消息被用于请求RRC连接重建,所述第二消息被用于报告链路建立失败;所述第一计时器的停止条件包括:成功的完成针对所述第一小区的随机接入过程;句子所述目标消息是所述第一消息还是所述第二消息与所述第一信令用于指示维持所述第一RRC连接还是释放所述第一RRC连接有关的含义是:当所述第一信令被用于指示维持所述第一RRC连接时,所述目标消息是所述第二消息;当所述第一信令未被用于指示维持所述第一RRC连接时,所述目标消息是所述第一消息。
具体的,根据本申请的一个方面,所述第一节点是物联网终端。
具体的,根据本申请的一个方面,所述第一节点是中继。
具体的,根据本申请的一个方面,所述第一节点是U2N remote UE。
具体的,根据本申请的一个方面,所述第一节点是车载终端。
具体的,根据本申请的一个方面,所述第一节点是飞行器。
具体的,根据本申请的一个方面,所述第一节点是手机。
具体的,根据本申请的一个方面,所述第一节点是支持多SIM卡通信的通信终端。
本申请公开了一种被用于无线通信的第一节点,包括:
第一接收机,通过第一空中接口接收第一信令,所述第一信令包括第一域,所述第一域用于配置第一小区;所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接;
第一发射机,作为接收所述第一信令的响应,通过第二空中接口发起针对所述第一小区的随机接入过程;
其中,所述第一域包括第二域,所述第二域被用于配置针对所述第一小区的所述随机接入过程;所述第一空中接口是所述第一节点与第一中继之间的空中接口,所述第二空中接口是所述第一节点与所述第一小区所在的无线接入网络之间的空中接口;所述第一RRC连接是所述第一节点与所述第一中继之间的PC5-RRC连接。
作为一个实施例,和传统方案相比,本申请具备如下优势:
支持同时配置了直接路径和非直接路径。
支持同时配置了直接路径和非直接路径时,其中之一发生失败后的处理,特别是,当其中之一的承载或路径发生失败,另一条正常时,可以实现包括SRB1在内的承载的切换,保证通信的正常进行,避免了通信的中断。
支持网络对连接小区组的无线链路和连接中继的无线链路进行不同的配置和处理,即在功能上有所区分,这有利于简化失效时的处理,同时可以增加吞吐率。
在增加另一个条路径时,可以不中断之前的路径,从而保证了业务的连续性。
支持无线承载,尤其是SRB1在直接路径和非直接路径上使用分裂(split bearer)的承载架构。
支持信令承载使用非直接路径作为主路径。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的通过第一空中接口接收第一信令,通过第二空中接口发起针对第一小区的随机接入过程的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输的流程图;
图6示出了根据本申请的一个实施例的中继通信的协议栈的示意图;
图7示出了根据本申请的一个实施例的无线承载的示意图;
图8示出了根据本申请的一个实施例的拓扑结构的示意图;
图9示例了根据本申请的一个实施例的用于第一节点中的处理装置的示意图。
实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的通过第一空中接口接收第一信令,通过第二空中接口发起针对第一小区的随机接入过程的流程图,如附图1所示。附图1中,每个方框代表一个步骤,特别需要强调的是图中的各个方框的顺序并不代表所表示的步骤之间在时间上的先后关系。
在实施例1中,本申请中的第一节点在步骤101中通过第一空中接口接收第一信令,在步骤102中通过第二空中接口发起针对所述第一小区的随机接入过程;
其中,所述第一信令包括第一域,所述第一域用于配置第一小区;所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接;所述第一节点100,作为接收所述第一信令的响应,通过第二空中接口发起针对所述第一小区的随机接入过程;所述第一域包括第二域,所述第二域被用于配置针对所述第一小区的所述随机接入过程;所述第一空中接口是所述第一节点与第一中继之间的空中接口,所述第二空中接口是所述第一节点与所述第一小区所在的无线接入网络之间的空中接口;所述第一RRC连接是所述第一节点与所述第一中继之间的PC5-RRC连接。
作为一个实施例,所述第一节点是UE(User Equipment,用户设备)。
作为一个实施例,所述第一节点处于RRC连接态。
作为一个实施例,所述直接路径(direct path)指的是一种UE到网络的传输路径,通过所述直接路径传输意味着数据在UE到网络(U2N)的远端(remote)UE和网络之间发送不通过中继。
作为该实施例的一个子实施例,所述数据包括更高层的数据和信令。
作为该实施例的一个子实施例,所述数据包括RRC信令。
作为该实施例的一个子实施例,所述数据包括比特串或比特块。
作为该实施例的一个子实施例,所述数据仅包括RB(radio bearer,无线承载)所承载的信令或数据。
作为一个实施例,所述非直接路径(indirect path)指的是一种UE到网络的传输路径,通过所述非直接路径传输意味着数据在UE到网络(U2N,UE-to-Network)的远端UE和网络之间经过UE到网络(U2N,UE-to-Network)的中继UE的转发。
作为该实施例的一个子实施例,所述数据包括更高层的数据和信令。
作为该实施例的一个子实施例,所述数据包括RRC信令。
作为该实施例的一个子实施例,所述数据包括比特串或比特块。
作为该实施例的一个子实施例,所述数据仅包括RB(radio bearer,无线承载)所承载的信令或数据。
作为一个实施例,一个无线链路要么是所述直接路径要么是非直接路径。
作为一个实施例,U2N中继UE指的是提供支持U2N远端UE到网络的连接的功能的UE。
作为一个实施例,U2N远端UE指的是与网络通信需要经过U2N中继UE的UE。
作为一个实施例,U2N远端UE指的是与网络通信需要经过U2N中继UE的UE。
作为一个实施例,U2N远端UE指的是支持中继业务的与网络进行通信的UE。
作为一个实施例,U2N中继是U2N中继UE。
作为一个实施例,在与网络进行单播业务收发时,U2N中继和U2N远端节点都处于RRC连接态。
作为一个实施例,U2N远端UE处于RRC空闲态或RRC非活跃态时,U2N中继UE可以处于任何RRC状态,包括RRC连接态,RRC空闲态和RRC非活跃态。
作为一个实施例,不通过直接路径传输等于通过非直接路径传输。
作为一个实施例,不通过直接路径传输包括通过中继传输。
作为一个实施例,通过直接路径传输是或包括不通过中继传输。
作为一个实施例,通过直接路径传输是或包括不通过中继转发。
作为一个实施例,U2N中继UE是为U2N远端UE提供到网络的连接(connectivity)支持的功能(functionality)的UE。
作为该实施例的一个子实施例,U2N中继UE是UE。
作为该实施例的一个子实施例,U2N中继UE为U2N远端UE提供到网络的中继服务。
作为一个实施例,U2N远端UE是通过U2N中继UE与网络通信的UE。
作为一个实施例,直连(direct)模式是使用所述直接路径的模式。
作为一个实施例,所述直连模式是U2N远端UE使用所述直接路径与网络通信的模式。
作为一个实施例,所述直连模式是U2N远端UE使用所述直接路径与网络之间传输RRC信令或建立RRC连接的模式。
作为一个实施例,非直连(indirect)模式是使用所述非直接路径的模式。
作为一个实施例,所述非直连模式是使用所述非直接路径的模式。
作为一个实施例,所述直连模式是U2N远端UE使用所述非直接路径与网络通信的模式。
作为一个实施例,所述直连模式是U2N远端UE使用所述非直接路径与网络之间传输RRC信令或建立RRC连接的模式。
作为一个实施例,服务小区是或包括UE驻留的小区。执行小区搜索包括,UE搜索所选择的PLMN(公共陆地移动网,Public Land Mobile Network)或SNPN(Stand-alone Non-Public Network,独立非公共网络)的一个合适的(suitable)小区,选择所述一个合适的小区提供可用的业务,监测所述一个合适的小区的控制信道,这一过程被定义为驻留在小区上;也就是说,一个被驻留的小区,相对于这个UE,是这个UE的服务小区。在RRC空闲态或RRC非活跃态驻留在一个小区上有如下好处:使得UE可以从PLMN或SNPN接收系统消息;当注册后,如果UE希望建立RRC连接或继续一个被挂起的RRC连接,UE可以通过在驻留小区的控制信道上执行初始接入来实现;网络可以寻呼到UE;使得UE可以接收ETWS(Earthquake and Tsunami Warning System,地震海啸预警系统)和CMAS(Commercial Mobile Alert System,商业移动报警系统)通知。
作为一个实施例,对于U2N远端节点,服务小区是或包括U2N中继所驻留或连接的小区。
作为一个实施例,对于没有配置CA/DC(carrier aggregation/dual connectivity,载波聚合/双连接)的处于RRC连接态的UE,只有一个服务小区包括主小区。对于配置了CA/DC(carrier aggregation/dual connectivity,载波聚合/双连接)的处于RRC连接态的UE,服务小区用于指示包括特殊小区(SpCell,Special Cell)和所有从小区的小区集合。主小区(Primary Cell)是MCG(Master Cell Group)小区,工作在主频率上,UE在主小区上执行初始连接建立过程或发起连接重建。对于双连接操作,特殊小区指的是MCG的PCell(Primary Cell,主小区)或SCG(Secondary Cell Group)的PSCell(Primary SCG Cell,主SCG小区);如果不是双连接操作,特殊小区指的是PCell。
作为一个实施例,SCell(Secondary Cell,从小区)工作的频率是从频率。
作为一个实施例,信息元素的单独的内容被称为域。
作为一个实施例,MR-DC(Multi-Radio Dual Connectivity,多无线双连接)指的是E-UTRA和NR节点的双连接,或两个NR节点之间的双连接。
作为一个实施例,在MR-DC中,提供到核心网的控制面连接的无线接入节点是主节点,主节点可以是主eNB,主ng-eNB,或主gNB。
作为一个实施例,MCG指的是,在MR-DC中,与主节点相关联的一组服务小区,包括SpCell,还可以,可选的,包括一个或多个SCell。
作为一个实施例,PCell是MCG的SpCell。
作为一个实施例,PSCell是SCG的SpCell。
作为一个实施例,在MR-DC中,不提供到核心网的控制面连接,给UE提供额外资源的无线接入节点是从节点。从节点可以是en-gNB,从ng-eNB或从gNB。
作为一个实施例,在MR-DC中,与从节点相关联的一组服务小区是SCG(secondary cell group,从小区组),包括SpCell和,可选的,一个或多个SCell。
作为一个实施例,使能定义在3GPP标准TS 23.285中的V2X(Vehicle-to-Everything)通信的接入层功能是V2X副链路通信(V2X sidelink communication),其中所述V2X副链路通信发生在临近的UE之间,且使用E-UTRA技术但并没有穿过(traversing)网络节点。
作为一个实施例,至少使能定义在3GPP标准TS 23.287中的V2X(Vehicle-to-Everything)通信的接入层功能是NR副链路通信(NR sidelink communication),其中所述NR副链路通信发生在临近的两个或多个UE之间,且使用NR技术但并没有穿过(traversing)网络节点。
作为一个实施例,副链路是,UE-to-UE之间,使用副链路资源分配模式,物理层信号或信道,以及物理层过程的直接通信链路。
作为一个实施例,不是或不在或不处于覆盖内等于覆盖外。
作为一个实施例,覆盖内等于覆盖之内。
作为一个实施例,覆盖外等于覆盖之外。
作为一个实施例,所述第一节点是U2N远端节点。
作为一个实施例,终结于UE与网络之间的无线承载所对应的PDCP实体分别位于UE和网络内。
作为一个实施例,所述直接路径是通过所述直接路径传输时所使用的通信链路或信道或承载。
作为一个实施例,所述直接路径传输指的是UE与网络之间的至少SRB(Signaling radio bearer,信令无线承载)所承载的数据不经过其它节点的中继或转发。
作为一个实施例,所述直接路径传输指的是,与UE与网络之间的至少SRB(Signaling radio bearer,信令无线承载)相关联的RLC承载分别终结于UE与网络。
作为一个实施例,所述直接路径传输指的是,与UE与网络之间的至少SRB(Signaling radio bearer,信令无线承载)相关联的RLC实体分别终结于UE与网络。
作为一个实施例,所述直接路径传输指的是,UE与网络之间存在直连的通信链路。
作为一个实施例,所述直接路径传输指的是,UE与网络之间存在Uu接口。
作为一个实施例,所述直接路径传输指的是,UE与网络之间存在Uu接口的MAC层,且所述Uu接口的MAC层承载RRC信令。
作为一个实施例,所述直接路径传输指的是,UE与网络之间存在Uu接口的物理层。
作为一个实施例,所述直接路径传输指的是,UE与网络之间存在逻辑信道和/或传输信道。
作为一个实施例,所述非直接路径是通过所述非直接路径传输时所使用的非直接路径或通信链路或信道或承载。
作为一个实施例,所述非直接路径传输指的是UE与网络之间的至少SRB(Signaling radio bearer,信令无线承载)所承载的数据经过其它节点的中继或转发。
作为一个实施例,所述非直接路径传输指的是,与UE与网络之间的至少SRB(Signaling radio bearer,信令无线承载)相关联的RLC承载分别终结于UE与其它节点、其它节点与网络。
作为一个实施例,所述非直接路径传输指的是,与UE与网络之间的至少SRB(Signaling radio bearer, 信令无线承载)相关联的RLC实体分别终结于UE与其它节点、其它节点与网络。
作为一个实施例,所述短语至少SRB的含义包括{SRB0,SRB1,SRB2,SRB3}中的至少之一。
作为一个实施例,所述短语至少SRB的含义包括SRB和DRB(data radio bearer,数据无线承载)。
作为一个实施例,所述非直接路径传输指的是,UE与网络之间不存在直连的通信链路。
作为一个实施例,所述非直接路径传输指的是,UE与网络之间不存在Uu接口的MAC层。
作为一个实施例,所述非直接路径传输指的是,UE与网络之间不存在Uu接口的物理层。
作为一个实施例,所述非直接路径传输指的是,UE与网络之间不存在逻辑信道也不存在传输信道。
作为一个实施例,所述网络包括无线接入网(RAN)和/或服务小区和/或基站。
作为一个实施例,所述短语UE与网络中的所述UE包括所述第一节点。
作为一个实施例,所述其它节点包括中继节点或其它UE。
作为一个实施例,在使用直接路径传输时,UE可以向网络发送物理层信令;在使用非直接路径传输时,UE无法向网络发送或直接发送物理层信令;
作为一个实施例,在使用直接路径传输时,UE可以向网络发送MAC CE;在使用非直接路径传输时,UE无法向网络发送或直接发送MAC CE;
作为一个实施例,在使用直接路径传输时,所述第一节点的PDCP层与RLC层之间不存在其它协议层;在使用非直接路径传输时,所述第一节点的PDCP层与RLC层之间存在其它协议层。
作为该实施例的一个子实施例,所述其它协议层是或包括适配层。
作为一个实施例,在使用直接路径传输时,网络通过DCI直接调度所述第一节点的上行发送;在使用非直接路径传输时,网络不通过DCI直接调度所述第一节点的上行发送。
作为一个实施例,在使用直接路径传输时,所述第一节点的SRB与RLC实体和/或RLC层和/或RLC承载相关联;在使用非直接路径传输时,所述第一节点的SRB与PC5接口的RLC实体相关联。
作为一个实施例,在使用直接路径传输时,所述第一节点的SRB与Uu接口的RLC实体存在映射关系;在使用非直接路径传输时,所述第一节点的SRB与PC5接口的RLC实体存在映射关系。
作为一个实施例,所述第一节点与网络之间存在直接路径和/或非直接路径。
作为一个实施例,从直接路径转换或切换到非直接路径的含义是:开始使用非直接路径,同时停止使用直接路径。
作为一个实施例,从直接路径转换到非直接路径的含义是:开始使用非直接路径传输,同时停止使用直接路径传输。
作为一个实施例,从直接路径转换到非直接路径的含义是:由直接路径传输变成非直接路径传输。
作为一个实施例,从直接路径转换到非直接路径的含义是:所述第一节点将SRB与PC5接口的RLC实体相关联,同时释放与所述SRB相关联的Uu接口的RLC实体。
作为一个实施例,从直接路径转换到非直接路径的含义是:所述第一节点将SRB和DRB与PC5接口的RLC实体相关联,同时释放与所述SRB和DRB相关联的Uu接口的RLC实体。
作为一个实施例,从非直接路径转换到直接路径的含义是:开始使用直接路径,同时停止使用非直接路径。
作为一个实施例,从非直接路径转换到直接路径的含义是:开始使用直接路径传输,同时停止使用非直接路径传输。
作为一个实施例,从非直接路径转换到直接路径的含义是:由非直接路径传输变成直接路径传输。
作为一个实施例,从非直接路径转换到直接路径的含义是:所述第一节点释放与SRB相关联的PC5接口的RLC实体,同时将SRB与Uu接口的RLC实体相关联。
作为一个实施例,从非直接路径转换到直接路径的含义是:所述第一节点释放与DRB相关联的PC5接口的所有RLC实体,同时将DRB与Uu接口的RLC实体相关联。
作为一个实施例,所述第一节点支持非直接路径到非直接路径的转换。
作为一个实施例,当所述第一节点使用非直接路径时,所述非直接路径所使用的中继是第一中继。
作为一个实施例,本申请中的中继指的是U2N中继UE。
作为一个实施例,本申请中的所述第一节点未使用DC(dual connectivity,双连接)。
作为一个实施例,本申请中的所述第一节点未被配置DC(dual connectivity,双连接)。
作为一个实施例,本申请中的所述第一节点仅有一个小区组。
作为一个实施例,本申请中的所述第一节点仅有一个小区组,即主小区组(MCG)。
作为一个实施例,本申请中的所述第一节点未被配置从小区组(SCG)。
作为一个实施例,本申请中的中继指的是L2 U2N relay UE。
作为一个实施例,本申请中的所述第一节点同时使用直接路径和非直接路径。
作为一个实施例,所述第一空中接口是所述第一节点与第一中继之间的空中接口。
作为一个实施例,所述第一空中接口是PC5接口。
作为一个实施例,所述第一空中接口对应的无线链路是副链路。
作为一个实施例,所述第一空中接口使用副链路资源。
作为一个实施例,所述第一空中接口是两个UE之间的空中接口。
作为一个实施例,所述第一空中接口与所述第二空中接口不同。
作为一个实施例,所述第一空中接口是短距离通信接口。
作为一个实施例,所述第一空中接口是蓝牙接口。
作为一个实施例,所述第一空中接口与所述第二空中接口所针对的节点不共址。
作为一个实施例,所述第一空中接口包括所述第一节点和所述第一中继之间的无线链路。
作为一个实施例,所述第一空中接口包括所述第一节点和所述第一中继之间的物理信道。
作为一个实施例,所述第一空中接口包括所述第一节点和所述第一中继之间的逻辑信道。
作为一个实施例,所述第一空中接口包括所述第一节点和所述第一中继之间的传输信道。
作为一个实施例,所述第一空中接口包括所述第一节点和所述第一中继之间的直接链路。
作为该实施例的一个子实施例,所述直接链路用于中继服务。
作为一个实施例,所述第一空中接口包括所述第一节点和所述第一中继之间的用于通信的协议实体。
作为一个实施例,所述第一中继是一个L2 U2N中继UE。
作为一个实施例,所述第一中继是所述第一节点的L2中继。
作为一个实施例,所述第一中继是所述第一节点与网络之间的中继。
作为一个实施例,所述第一中继是所述第一节点与所述第一小区之间的中继。
作为一个实施例,所述第二空中接口是所述第一节点与所述第一小区所在的无线接入网络之间的空中接口。
作为一个实施例,所述第二空中接口是Uu接口。
作为一个实施例,所述第二空中接口对应的是主链路。
作为一个实施例,所述第二空中接口对应的是副链路以外的无线链路。
作为一个实施例,所述第二空中接口对应的是UE与RAN(radio access network,无线接入网)之间的空中接口。
作为一个实施例,所述第二空中接口包括无线链路。
作为一个实施例,所述第二空中接口包括所述第一节点与所述第一小区之间的无线链路。
作为一个实施例,所述第二空中接口包括所述第一节点与所述第一小区之间的物理信道。
作为一个实施例,所述第二空中接口包括所述第一节点与所述第一小区之间的传输信道。
作为一个实施例,所述第二空中接口包括所述第一节点与所述第一小区之间的逻辑信道信道。
作为一个实施例,所述第二空中接口包括所述第一节点与所述第一小区之间的协议实体。
作为一个实施例,所述第一空中接口和所述第二空中接口都是针对NR的。
作为一个实施例,所述第二空中接口是针对移动网络的。
作为一个实施例,所述第一小区是SpCell(Special Cell,特殊小区)。
作为该实施例的一个子实施例,所述第一小区是所述第一节点的PCell。
作为该实施例的一个子实施例,所述第一小区是所述第一节点的PSCell。
作为一个实施例,所述第一域是SpCellConfig。
作为一个实施例,所述第一域是spCellConfigDedicated。
作为一个实施例,所述第一域是spCellConfigCommon。
作为一个实施例,所述第一域是condRRCReconfig。
作为一个实施例,所述第二域是ReconfigurationWithSync。
作为一个实施例,所述第二域是RRCReconfiguration。
作为一个实施例,所述第二域是condRRCReconfig。
作为一个实施例,短语所述第一域用于配置第一小区包括:所述第一域用于配置所述第一小区的标识。
作为一个实施例,短语所述第一域用于配置第一小区包括:所述第一域用于配置所述第一节点在所述第一小区中所使用的身份。
作为一个实施例,短语所述第一域用于配置第一小区包括:所述第一域用于配置所述第一小区的物理层资源。
作为一个实施例,短语所述第一域用于配置第一小区包括:所述第一域用于配置所述第一小区的至少一个计时器。
作为一个实施例,短语所述第一域用于配置第一小区包括:所述第一域用于配置所述第一小区的频率。
作为一个实施例,短语所述第一域用于配置第一小区包括:所述第一域用于配置所述第一小区的广播消息。
作为一个实施例,短语所述第一域用于配置第一小区包括:所述第一域用于配置所述第一小区的无线链路监测参数。
作为一个实施例,短语所述第一域用于配置第一小区包括:所述第一域用于配置针对所述第一小区的测量。
作为一个实施例,短语所述第一域用于配置第一小区包括:所述第一域用于配置针对所述第一小区的MAC层。
作为一个实施例,短语所述第一域用于配置第一小区包括:所述第一域用于配置针对所述第一小区的参考信号资源。
作为一个实施例,短语所述第一域用于配置第一小区包括:所述第一域用于配置针对所述第一小区的BWP。
作为一个实施例,所述第二域被用于配置针对所述第一小区的所述随机接入过程。
作为该实施例的一个子实施例,所述第二域包括所述第一小区的随机接入资源。
作为该实施例的一个子实施例,所述第二域包括所述第一小区的随机接入的前导序列。
作为该实施例的一个子实施例,所述第二域包括针对所述第一小区的随机接入过程的类型是基于竞争的还是免于竞争的。
作为该实施例的一个子实施例,所述第二域包括针对所述第一小区的随机接入过程的优先级。
作为该实施例的一个子实施例,所述第二域包括针对所述第一小区的随机接入过程中所需要使用的计时器的参数。
作为该实施例的一个子实施例,所述第二域包括针对所述第一小区的随机接入过程是两步随机接入还是4步随机接入。
作为该实施例的一个子实施例,所述第二域包括针对所述第一小区的随机接入过程相关联的SSB或CSI-RS。
作为一个实施例,短语针对所述第一小区的随机接入过程的含义是,所述随机接入过程占用所述第一小区的资源。
作为一个实施例,短语针对所述第一小区的随机接入过程的含义是,所述随机接入过程根据所述第一小区的随机接入的配置发起。
作为一个实施例,短语针对所述第一小区的随机接入过程的含义是,所述随机接入过程根据所述第一小区的随机接入信道的配置发起。
作为一个实施例,短语针对所述第一小区的随机接入过程的含义是,所述随机接入过程由所述第一小区响应。
作为一个实施例,所述第一RRC连接是针对所述第一空中接口的。
作为一个实施例,所述PC5-RRC连接是针对PC5空中接口的RRC连接。
作为一个实施例,PC5空中接口是UE与UE之间的空中接口。
作为一个实施例,所述第一RRC连接是所述第一节点与所述第一中继之间的RRC连接。
作为一个实施例,所述第一节点与所述第一小区之间建立了第二RRC连接。
作为一个实施例,所述第一节点与所述第一小区之间建立的RRC连接是Uu接口的RRC连接。
作为一个实施例,PC5接口的RRC连接与Uu接口的RRC连接功能不同。
作为一个实施例,所述第一信令是RRC信令。
作为一个实施例,所述第一信令是或包括RRCReconfiguration。
作为一个实施例,所述第一信令是或包括RRCReconfiguration中的至少部分域。
作为一个实施例,所述第一节点,作为接收所述第一信令的响应,释放所述第一RRC连接;
所述第一小区是SpCell(Special Cell,特殊小区),所述第一域是SpCellConfig,所述第二域是ReconfigurationWithSync,所述第一信令通过SRB1发送,所述SRB1是所述第一节点与主小区组之间的无线承载,所述SRB1与第一RLC承载相关联,所述第一RLC承载是所述第一节点与所述第一中继之间的RLC承载;所述第一节点与所述第一中继连接;所述行为释放所述第一RRC连接包括释放所述第一RLC承载;所述第一信令被用于指示释放所述第一RRC连接。
作为该实施例的一个子实施例,所述第一信令的接收触发所述第一节点释放所述第一RRC连接。
作为该实施例的一个子实施例,所述第一信令的执行触发所述第一节点释放所述第一RRC连接。
作为该实施例的一个子实施例,所述SRB1是专门用于传输信令的无线承载。
作为该实施例的一个子实施例,所述SRB1是用于传输RRC信令的无线承载。
作为该实施例的一个子实施例,一个UE与网络建立RRC连接后,一定会建立SRB1,可选的,网络还会配置SRB2和/或SRB3。
作为该实施例的一个子实施例,一个UE与网络建立RRC连接后,网络最多会配置3个Uu接口的SRB,分别是SRB1,SRB2,SRB3。
作为该实施例的一个子实施例,SRB2用于传输与安全有关的信令或用于传输NAS信令。
作为该实施例的一个子实施例,在配置了SCG时,网络也可以可选的配置SRB3。
作为该实施例的一个子实施例,短语所述SRB1与第一RLC承载相关联的含义是:在执行所述第一信令之前,所述SRB1与所述第一RLC承载相关联。
作为该实施例的一个子实施例,短语所述SRB1与第一RLC承载相关联的含义是:在释放所述第一RLC承载之前,所述SRB1与所述第一RLC承载相关联。
作为该实施例的一个子实施例,短语所述SRB1与第一RLC承载相关联的含义是:所述第一RLC承载与所述SRB1存在映射关系。
作为该实施例的一个子实施例,短语所述SRB1与第一RLC承载相关联的含义是:所述第一RLC承载用于传输SRB1上的信令。
作为该实施例的一个子实施例,在接收所述第一信令之前,所述SRB1仅与所述第一RLC承载关联。
作为该实施例的一个子实施例,在接收所述第一信令之前,所述SRB1仅通过所述第一RLC承载传输。
作为该实施例的一个子实施例,所述第一RLC承载是PC5接口的RLC承载。
作为该实施例的一个子实施例,所述第一RLC承载是副链路RLC承载。
作为该实施例的一个子实施例,与所述第一RLC承载相对应的RLC实体分别位于所述第一节点和所述第一中继内。
作为该实施例的一个子实施例,所述第一节点在释放所述第一RRC连接的同时释放所述第一RLC承载。
作为该实施例的一个子实施例,释放所述第一RLC承载是释放所述第一RRC连接的一部分。
作为该实施例的一个子实施例,释放所述第一RLC承载意味着释放所述第一节点的与所述第一RLC承载相对应的RLC实体。
作为一个实施例,所述第一小区是SpCell(Special Cell,特殊小区),所述第一域是SpCellConfig,所述第二域是ReconfigurationWithSync,所述第一信令通过SRB1发送,所述SRB1是所述第一节点与主小区组之间的无线承载,所述SRB1与第一RLC承载相关联,所述第一RLC承载是所述第一节点与所述第 一中继之间的RLC承载;所述第一节点与所述第一中继连接;所述第一信令被用于指示维持所述第一RRC连接。
作为该实施例的一个子实施例,所述第一信令的接收触发所述第一节点释放所述第一RRC连接。
作为该实施例的一个子实施例,所述第一信令的执行触发所述第一节点释放所述第一RRC连接。
作为该实施例的一个子实施例,所述SRB1是专门用于传输信令的无线承载。
作为该实施例的一个子实施例,所述SRB1是用于传输RRC信令的无线承载。
作为该实施例的一个子实施例,一个UE与网络建立RRC连接后,一定会建立SRB1,可选的,网络还会配置SRB2和/或SRB3。
作为该实施例的一个子实施例,一个UE与网络建立RRC连接后,网络最多会配置3个Uu接口的SRB,分别是SRB1,SRB2,SRB3。
作为该实施例的一个子实施例,SRB2用于传输与安全有关的信令或用于传输NAS信令。
作为该实施例的一个子实施例,在配置了SCG时,网络也可以可选的配置SRB3。
作为该实施例的一个子实施例,短语所述SRB1与第一RLC承载相关联的含义是:在执行所述第一信令之前,所述SRB1与所述第一RLC承载相关联。
作为该实施例的一个子实施例,短语所述SRB1与第一RLC承载相关联的含义是:在释放所述第一RLC承载之前,所述SRB1与所述第一RLC承载相关联。
作为该实施例的一个子实施例,短语所述SRB1与第一RLC承载相关联的含义是:所述第一RLC承载与所述SRB1存在映射关系。
作为该实施例的一个子实施例,短语所述SRB1与第一RLC承载相关联的含义是:所述第一RLC承载用于传输SRB1上的信令。
作为该实施例的一个子实施例,在接收所述第一信令之前,所述SRB1仅与所述第一RLC承载关联。
作为该实施例的一个子实施例,在接收所述第一信令之前,所述SRB1仅通过所述第一RLC承载传输。
作为该实施例的一个子实施例,所述第一RLC承载是PC5接口的RLC承载。
作为该实施例的一个子实施例,所述第一RLC承载是副链路RLC承载。
作为该实施例的一个子实施例,与所述第一RLC承载相对应的RLC实体分别位于所述第一节点和所述第一中继内。
作为该实施例的一个子实施例,所述第一节点在释放所述第一RRC连接的同时释放所述第一RLC承载。
作为该实施例的一个子实施例,释放所述第一RLC承载是释放所述第一RRC连接的一部分。
作为该实施例的一个子实施例,释放所述第一RLC承载意味着释放所述第一节点的与所述第一RLC承载相对应的RLC实体。
作为一个实施例,所述第一信令指示释放所述第一RRC连接的含义是:所述第一信令不指示维持所述第一RRC连接。
作为一个实施例,所述第一信令指示维持所述第一RRC连接的含义是:所述第一信令不指示释放所述第一RRC连接。
作为一个实施例,所述第一信令指示维持所述第一RRC连接的含义是:所述第一信令指示保留所述第一RRC连接。
作为一个实施例,当所述第一信令被用于指示释放所述第一RRC连接时,所述第一节点释放所述第一RRC连接。
作为一个实施例,当所述第一信令被用于指示维持所述第一RRC连接时,所述第一节点不释放所述第一RRC连接。
作为一个实施例,当所述第一信令被用于指示维持所述第一RRC连接时,所述第一节点继续使用所述第一RRC连接。
作为一个实施例,当所述第一信令被用于指示维持所述第一RRC连接时,所述第一节点保留所述第一RRC连接。
作为一个实施例,所述行为释放所述第一RRC连接包括:释放所述第一RLC承载,所述第一RLC承载是所述第一节点与所述第一中继之间的RLC承载。
作为一个实施例,所述行为释放所述第一RRC连接包括:重置针对所述第一中继的MAC。
作为一个实施例,所述行为释放所述第一RRC连接包括:认为与所述第一中继之间的RRC连接被释放。
作为一个实施例,所述行为释放所述第一RRC连接包括:释放针对所述第一中继的无线承载。
作为一个实施例,所述行为释放所述第一RRC连接包括:丢弃针对所述第一中继的NR副链路通信配置。
作为一个实施例,短语所述第一节点与所述第一中继连接的含义包括:所述第一节点与所述第一中继之间建立了PC5-RRC连接。
作为一个实施例,短语所述第一节点与所述第一中继连接的含义包括:所述第一节点与所述第一中继之间建立了中继服务关系。
作为一个实施例,短语所述第一节点与所述第一中继连接的含义包括:所述第一中继成为所述第一节点的L2 U2N中继。
作为一个实施例,短语所述第一节点与所述第一中继连接的含义包括:所述第一节点通过所述第一中继与网络连接。
作为一个实施例,短语所述第一节点与所述第一中继连接的含义包括:所述第一节点通过所述第一中继与网络建立RRC连接。
作为该实施例的一个子实施例,所述RRC连接是Uu接口的RRC连接。
作为一个实施例,所述第一小区是SpCell(Special Cell,特殊小区)。
作为一个实施例,所述第一信令通过SRB1发送,所述SRB1是所述第一节点与主小区组之间的无线承载。
作为一个实施例,所述SRB1与第一RLC承载相关联,所述第一RLC承载是所述第一节点与所述第一中继之间的RLC承载。
作为一个实施例,所述第一节点与所述第一中继连接。
作为一个实施例,释放所述第一RRC连接包括释放所述第一RLC承载。
作为一个实施例,所述第一信令是否包括第三域被用于指示维持所述第一RRC连接还是释放所述第一RRC连接;当所述第一信令包括所述第三域时,所述第一信令用于指示维持所述第一RRC连接,当所述第一信令不包括所述第三域时,所述第一信令用于指示释放所述第一RRC连接。
作为该实施例的一个子实施例,所述第一域包括所述第三域。
作为该实施例的一个子实施例,所述第二域包括所述第三域。
作为该实施例的一个子实施例,所述第二域不包括所述第三域。
作为该实施例的一个子实施例,所述第一信令包括所述第三域的含义是:所述第三出现(present)。
作为该实施例的一个子实施例,所述第一信令包括所述第三域的含义是:所述第三域被配置。
作为该实施例的一个子实施例,所述第三域仅有一个比特。
作为该实施例的一个子实施例,所述第三域的取值仅支持true。
作为一个实施例,所述第一信令包括第四域,所述第一信令所包括的所述第四域显式的指示释放还是维持所述第一RRC连接。
作为该实施例的一个子实施例,所述第一域包括所述第四域。
作为该实施例的一个子实施例,所述第二域包括所述第四域。
作为该实施例的一个子实施例,所述第二域不包括所述第四域。
作为该实施例的一个子实施例,所述第四域的取值为true或false。
作为该实施例的一个子实施例,所述第四域的取值为true时,所述第一信令被用于指示释放所述第一RRC连接,所述第四域的取值为false时,所述第一信令被用于指示维持所述第一RRC连接。
作为该实施例的一个子实施例,所述第四域的取值为false时,所述第一信令被用于指示释放所述第一RRC连接,所述第四域的取值为true时,所述第一信令被用于指示维持所述第一RRC连接。
作为该实施例的一个子实施例,所述第四域的一个取值用于指示释放所述第一RRC连接,所述第四域的另一个取值用于指示维持所述第一RRC连接。
作为一个实施例,所述第一信令的第四域被用于指示释放还是维持所述第一RRC连接。
作为该实施例的一个子实施例,当所述第一信令未包括所述第四域时,所述第一信令指示释放所述第一RRC连接。
作为该实施例的一个子实施例,当所述第一信令未包括所述第四域时,所述第一信令指示维持所述第一RRC连接。
作为该实施例的一个子实施例,当所述第一信令包括所述第四域时,所述第四信令的取值被用于指示释放还是维持所述第一RRC连接。
作为一个实施例,句子所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接的含义包括:当所述第一信令指示所有Uu接口的RB都不与所述第一节点和所述第一中继之间的RLC承载相关联时,所述第一信令用于指示释放所述第一RRC连接;当所述第一信令未指示所有Uu接口的RB都不与所述第一节点和所述第一中继之间的RLC承载相关联时,所述第一信令用于指示维持所述第一RRC连接。
作为该实施例的一个子实施例,句子所述第一信令指示所有Uu接口的RB都不与所述第一节点和所述第一中继之间的RLC承载相关联的含义是:所述第一信令指示所有Uu接口的RB(radio bearer,无线承载)都不与任何与所述第一中继有关的RLC承载相关联。
作为该实施例的一个子实施例,句子所述第一信令指示所有Uu接口的RB都不与所述第一节点和所述第一中继之间的RLC承载相关联的含义是:所述第一信令指示所有与所述第一中继有关的RLC承载相关联的Uu接口的RB(radio bearer,无线承载)都不与任何与所述第一中继有关的RLC承载相关联。
作为该实施例的一个子实施例,句子所述第一信令指示所有Uu接口的RB都不与所述第一节点和所述第一中继之间的RLC承载相关联的含义是:所述第一信令指示所有Uu接口的RB(radio bearer,无线承载)仅与Uu接口的RLC承载相关联。
作为该实施例的一个子实施例,句子所述第一信令指示所有Uu接口的RB都不与所述第一节点和所述第一中继之间的RLC承载相关联的含义是:所述第一信令指示所有Uu接口的RB(radio bearer,无线承载)仅与针对所述第一小区的RLC承载相关联。
作为该实施例的一个子实施例,句子所述第一信令指示所有Uu接口的RB都不与所述第一节点和所述第一中继之间的RLC承载相关联的含义是:执行所述第一信令之后,Uu接口的任意RB与针对所述第一中继的RLC承载都不存在映射或关联关系。
作为该实施例的一个子实施例,句子所述第一信令指示所有Uu接口的RB都不与所述第一节点和所述第一中继之间的RLC承载相关联的含义是:执行所述第一信令之后,Uu接口的任意RB都不与副链路RLC承载存在映射或关联关系。
作为该实施例的一个子实施例,句子所述第一信令未指示所有Uu接口的RB都不与所述第一节点和所述第一中继之间的RLC承载相关联的含义是:执行所述第一信令后,至少存在一个Uu接口的RB与PC5接口的RLC承载存在映射关系。
作为该实施例的一个子实施例,句子所述第一信令未指示所有Uu接口的RB都不与所述第一节点和所述第一中继之间的RLC承载相关联的含义是:执行所述第一信令后,至少存在一个Uu接口的RB与副链路RLC承载存在映射关系。
作为该实施例的一个子实施例,句子所述第一信令未指示所有Uu接口的RB都不与所述第一节点和所述第一中继之间的RLC承载相关联的含义是:执行所述第一信令后,至少存在一个Uu接口的RB与所述第一节点和所述第一中继之间的副链路RLC承载存在映射关系。
作为该实施例的一个子实施例,句子所述第一信令未指示所有Uu接口的RB都不与所述第一节点和所述第一中继之间的RLC承载相关联的含义是:所述第一信令未指示改变Uu接口的RB与副链路RLC承载的映射关系。
作为该实施例的一个子实施例,句子所述第一信令未指示所有Uu接口的RB都不与所述第一节点和所述第一中继之间的RLC承载相关联的含义是:所述第一信令指示至少一个Uu接口的RB与所述第一节点和所述第一中继之间的副链路RLC承载存在映射关系。
作为一个实施例,句子所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接的含义包括:当所述第一信令指示释放所有与Uu接口的RB相关联的针对所述第一中继的RLC实体时,所述第一信令用于指示释放所述第一RRC连接;当所述第一信令未指示释放所有与Uu接口的RB相关联的针对 所述第一中继的RLC实体时,所述第一信令用于指示维持所述第一RRC连接。
作为该实施例的一个子实施例,句子所述第一信令指示释放所有与Uu接口的RB相关联的针对所述第一中继的RLC实体的含义是:执行所述第一信令后,任何与Uu接口的RB相关联的副链路RLC实体都被释放。
作为该实施例的一个子实施例,句子所述第一信令指示释放所有与Uu接口的RB相关联的针对所述第一中继的RLC实体的含义是:执行所述第一信令后,任何与Uu接口的RB相关联的与所述第一中继有关的副链路RLC实体都被释放。
作为该实施例的一个子实施例,句子所述第一信令指示释放所有与Uu接口的RB相关联的针对所述第一中继的RLC实体的含义是:执行所述第一信令后,对端RLC实体位于所述第一中继的与Uu接口的RB相关联的RLC实体都被释放。
作为该实施例的一个子实施例,句子所述第一信令指示释放所有与Uu接口的RB相关联的针对所述第一中继的RLC实体的含义是:所述第一信令指示针对所述第一中继的与Uu接口的RB相关联的RLC实体都被释放。
作为该实施例的一个子实施例,句子所述第一信令指示释放所有与Uu接口的RB相关联的针对所述第一中继的RLC实体的含义是:执行所述第一信令后,任何Uu接口的RB都不再与副链路RLC实体相关联。
作为该实施例的一个子实施例,句子所述第一信令指示释放所有与Uu接口的RB相关联的针对所述第一中继的RLC实体的含义是:执行所述第一信令后,任何Uu接口的RB都不再与针对所述第一中继的副链路RLC实体相关联。
作为该实施例的一个子实施例,所述针对所述第一中继的所述RLC实体是,对端RLC实体位于所述第一中继的RLC实体。
作为该实施例的一个子实施例,所述针对所述第一中继的所述RLC实体是,第一RLC承载所对应的RLC实体,所述第一RLC承载是所述第一节点与所述第一中继之间的RLC承载。
作为该实施例的一个子实施例,句子所述第一信令未指示释放所有与Uu接口的RB相关联的针对所述第一中继的RLC实体的含义是:在执行所述第一信令之后,至少存在一个Uu接口的RB与第一RLC实体相关联,所述第一RLC实体是针对所述第一中继的。
作为该实施例的一个子实施例,句子所述第一信令未指示释放所有与Uu接口的RB相关联的针对所述第一中继的RLC实体的含义是:在执行所述第一信令之后,至少存在一个Uu接口的RB与第一RLC实体相关联,所述第一RLC实体是针对所述第一中继的;短语所述第一RLC实体是针对所述第一中继的的含义是:所述第一RLC实体的对端RLC实体位于所述第一中继。
作为该实施例的一个子实施例,句子所述第一信令未指示释放所有与Uu接口的RB相关联的针对所述第一中继的RLC实体的含义是:所述第一信令被用于指示至少一个Uu接口的RB与第一RLC实体相关联,所述第一RLC实体是针对所述第一中继的;短语所述第一RLC实体是针对所述第一中继的的含义是:所述第一RLC实体的对端RLC实体位于所述第一中继。
作为该实施例的一个子实施例,所述针对所述第一中继的所述RLC实体指的是对端RLC实体位于所述第一中继的所述第一节点的RLC实体。
作为一个实施例,句子所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接的含义包括:当所述第一信令指示SRB1仅与Uu接口的RLC实体相关联时,所述第一信令用于指示释放所述第一RRC连接;当所述第一信令未指示SRB1仅与Uu接口的RLC实体相关联时,所述第一信令用于指示维持所述第一RRC连接。
作为该实施例的一个子实施例,句子所述第一信令指示SRB1仅与Uu接口的RLC实体相关联的含义是:在执行所述第一信令之前,所述SRB1与针对所述第一中继的RLC实体相关联;在执行所述第一信令之后,所述SRB1不与针对所述第一中继的RLC实体相关联,仅与Uu接口的RLC实体相关联。
作为该实施例的一个子实施例,所述针对所述第一中继的所述RLC实体指的是对端RLC实体位于所述第一中继的所述第一节点的RLC实体。
作为该实施例的一个子实施例,句子所述第一信令指示SRB1仅与Uu接口的RLC实体相关联的含义是:在执行所述第一信令之前,所述SRB1与针对所述第一中继的RLC承载相关联;在执行所述第一信令之后, 所述SRB1不与针对所述第一中继的RLC承载相关联,仅与Uu接口的RLC承载相关联。
作为该实施例的一个子实施例,所述针对所述第一中继的所述RLC承载指的是所述第一节点和所述第一中继之间的RLC承载。
作为该实施例的一个子实施例,句子所述第一信令未指示SRB1仅与Uu接口的RLC实体相关联的含义是:在执行所述第一信令之后,SRB1与针对所述第一中继的RLC实体相关联。
作为该实施例的一个子实施例,句子所述第一信令未指示SRB1仅与Uu接口的RLC实体相关联的含义是:在执行所述第一信令之后,SRB1与针对所述第一中继的RLC承载相关联。
作为该实施例的一个子实施例,句子所述第一信令未指示SRB1仅与Uu接口的RLC实体相关联的含义是:所述第一信令指示SRB1与针对所述第一中继的RLC实体相关联。
作为该实施例的一个子实施例,句子所述第一信令未指示SRB1仅与Uu接口的RLC实体相关联的含义是:所述第一信令指示SRB1与针对所述第一中继的RLC承载相关联。
作为该实施例的一个子实施例,所述SRB1仅可以与一个RLC承载相关联。
作为该实施例的一个子实施例,所述SRB1仅可以Uu接口的RLC承载或PC5接口的RLC承载中的一个相关联。
作为该实施例的一个子实施例,所述SRB1仅可以与RLC承载或副链路RLC承载中的一个相关联。
作为一个实施例,句子所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接的含义是:当所述第一信令指示所述第一节点的目的中继是所述第一中继以外的节点时,所述第一信令用于指示释放所述第一RRC连接,当所述第一信令未指示所述第一节点的目的中继也未指示所述第一中继以外的其它节点为目的中继时,所述第一信令被用于指示维持所述第一RRC连接。
作为该实施例的一个子实施例,所述第一信令指示目的中继的身份。
作为该实施例的一个子实施例,所述第一节点同一时间只与一个L2 U2N中继UE连接。
作为该实施例的一个子实施例,所述第一信令所指示的目的中继是针对所述第一节点与所述第一中继的非直接路径的。
作为该实施例的一个子实施例,所述第一信令所指示的目的中继是针对所述第一中继的。
作为该实施例的一个子实施例,作为接收所述第一信令的响应,所述第一节点与所述第一信令所指示的所述目的中继连接,并释放与所述第一中继之间的所述第一RRC连接。
作为该实施例的一个子实施例,所述第一信令指示所述第一节点的所述目的中继是所述第一中继,则所述第一节点维持所述第一RRC连接。
作为该实施例的一个子实施例,所述第一信令所指示的所述目的中继属于L2 U2N中继UE。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。
附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网 设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远端单元、移动装置、无线装置、无线通信装置、远端装置、移动订户台、接入终端、移动终端、无线终端、远端终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,本申请中的第一节点是UE201。
作为一个实施例,本申请中的第一节点的基站是gNB203。
作为一个实施例,从所述UE201到NR节点B的无线链路是上行链路。
作为一个实施例,从NR节点B到UE201的无线链路是下行链路。
作为一个实施例,所述UE201支持中继传输。
作为一个实施例,所述UE201是包括手机。
作为一个实施例,所述UE201是包括汽车在内的交通工具。
作为一个实施例,所述UE201支持副链路传输。
作为一个实施例,所述UE201支持MBS传输。
作为一个实施例,所述UE201支持MBMS传输。
作为一个实施例,所述gNB203是宏蜂窝(MarcoCellular)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(PicoCell)基站。
作为一个实施例,所述gNB203是一个飞行平台设备。
作为一个实施例,所述gNB203是卫星设备。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一节点(UE,gNB或NTN中的卫星或飞行器)和第二节点(gNB,UE或NTN中的卫星或飞行器),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一节点与第二节点以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二节点之间的对第一节点的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一节点之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点与第一节点之间的RRC信令来配置下部层。PC5-S(PC5 Signaling Protocol,PC5信令协议)子层307负责PC5接口的信令协议的处理。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点和第二节点的无线 电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。SRB可看作是PDCP层向更高层,例如RRC层提供的服务或接口。在NR系统中SRB包括SRB1,SRB2,SRB3,涉及到副链路通信时还有SRB4,分别用于传输不同类型的控制信令。SRB是UE与接入网之间的承载,用于在UE和接入网之间传输包括RRC信令在内的控制信令。SRB1对于UE具有特别的意义,每个UE建立RRC连接以后,都会有SRB1,用于传输RRC信令,大部分信令都是通过SRB1传输的,如果SRB1中断或无法使用,则UE必须进行RRC重建。SRB2一般仅用于传输NAS信令或与安全方面有关的信令。UE可以不配置SRB3。除紧急业务,UE必须与网络建立RRC连接才能进行后续的通信。虽然未图示,但第一节点可具有在L2层355之上的若干上部层。此外还包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。对于涉及中继服务的UE,其控制面还可包括适配子层SRAP(Sidelink Relay Adaptation Protocol,副链路中继适配可以)308,其用户面也可包括适配子层SRAP358,适配层的引入有助于更低层,例如MAC层,例如RLC层,对来自于多个源UE的数据进行复用和/或区分。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一信令生成于RRC306。
作为一个实施例,本申请中的针对所述第一小区的所述随机接入过程中的随机接入信号生成于PHY301.
作为一个实施例,本申请中的所述第一消息生成于RRC306。
作为一个实施例,本申请中的所述第二消息生成于RRC306。
实施例4
实施例4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,可选的还可以包括多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,可选的还可以包括多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2(Layer-2)层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化 成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:通过第一空中接口接收第一信令,所述第一信令包括第一域,所述第一域用于配置第一小区;所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接;作为接收所述第一信令的响应,通过第二空中接口发起针对所述第一小区的随机接入过程;其中,所述第一域包括第二域,所述第二域被用于配置针对所述第一小区的所述随机接入过程;所述第一空中接口是所述第一节点与第一中继之间的空中接口,所述第二空中接口是所述第一节点与所述第一小区所在的无线接入网络之间的空中接口;所述第一RRC连接是所述第一节点与所述第一中继之间的PC5-RRC连接。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:通过第一空中接口接收第一信令,所述第一信令包括第一域,所述第一域用于配置第一小区;所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接;作为接收所述第一信令的响应,通过第二空中接口发起针对所述第一小区的随机接入过程;其中,所述第一域包括第二域,所述第二域被用于配置针对所述第一小区的所述随机接入过程;所述第一空中接口是所述第一节点与第一中继之间的空中接口,所述第二空中接口是所述第一节点与所述第一小区所在的无线接入网络之间的空中接口;所述第一RRC连接是所述第一节点与所述第一中 继之间的PC5-RRC连接。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第一通信设备450是一个车载终端。
作为一个实施例,所述第二通信设备450是一个中继。
作为一个实施例,所述第二通信设备410是一个卫星。
作为一个实施例,所述第二通信设备410是一个飞行器。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,接收器454(包括天线452),接收处理器456和控制器/处理器459被用于本申请中接收所述第一信令。
作为一个实施例,发射器454(包括天线452),发射处理器468和控制器/处理器459被用于本申请中发送所述第一消息。
作为一个实施例,发射器418(包括天线420),发射处理器416和控制器/处理器475被用于本申请中发送所述第二消息。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。附图5中,U01对应本申请的第一节点,特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序,其中F51内的步骤是可选的。
对于第一节点U01,在步骤S5101中接收第一信令;在步骤S5102中发送随机接入信号;在步骤S5103中发送目标消息。
对于第二节点U02,在步骤S5201中发送第一信令;在步骤S5202中接收随机接入信号;在步骤S5203中接收目标消息。
在实施例5中,所述第一节点U01,通过第一空中接口接收第一信令,所述第一信令包括第一域,所述第一域用于配置第一小区;所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接;
所述第一节点U01,作为接收所述第一信令的响应,通过第二空中接口发起针对所述第一小区的随机接入过程;
其中,所述第一域包括第二域,所述第二域被用于配置针对所述第一小区的所述随机接入过程;所述第一空中接口是所述第一节点与第一中继之间的空中接口,所述第二空中接口是所述第一节点与所述第一小区所在的无线接入网络之间的空中接口;所述第一RRC连接是所述第一节点与所述第一中继之间的PC5-RRC连接。
作为一个实施例,所述第一节点U01是一个U2N中继UE。
作为一个实施例,所述第一节点U01是一个U2N远端UE。
作为一个实施例,所述第一节点U01是一个NR ProSe U2N远端UE。
作为一个实施例,第三节点U03是所述第一中继。
作为一个实施例,第三节点U03是一个L2 U2N中继UE。
作为一个实施例,所述第二节点U02是一个基站。
作为一个实施例,所述第二节点U02是主小区组或主小区组的基站。
作为一个实施例,所述第二节点U02是所述第一节点U01的主小区。
作为一个实施例,所述第二节点U02是所述第一节点U01的主小区组。
作为一个实施例,所述第二节点U02对应本申请的小区组所对应的基站。
作为一个实施例,所述第二节点U02是所述第一小区。
作为一个实施例,所述第二节点U02是所述第一小区所对应的基站。
作为一个实施例,所述第二节点U02是所述第一小区所对应的小区组。
作为一个实施例,所述第三节点U03的主小区是所述第二节点U02。
作为一个实施例,所述第三节点U03的主小区组是所述第二节点U02。
作为一个实施例,所述第一信令经过所述第三节点U03的转发而发送给所述第一节点U01。
作为一个实施例,所述第一节点U01使用非直接路径与所述第二节点U02通信,所述非直接路径涉及或使用所述第三节点U03。
作为一个实施例,所述第一节点U01在接收到所述第一信令之前与所述第二节点U02建立了RRC连接。
作为一个实施例,所述第一节点U01在接收到所述第一信令之前未与所述第二节点U02同步。
作为一个实施例,所述第一节点U01与所述第二节点所建立的RRC连接是通过所述第三节点U03建立的。
作为一个实施例,所述第一节点U03发送第二信令,所述第二信令被用于反馈所述第一信令。
作为该实施例的一个子实施例,所述第二信令是RRC信令。
作为该实施例的一个子实施例,所述第二信令是RRCReconfigurationComplete。
作为该实施例的一个子实施例,所述第二信令通过所述第三节点U03的转发至所述第二节点U02。
作为该实施例的一个子实施例,所述第二信令直接发送至所述第二节点U02。
作为该实施例的一个子实施例,所述第二信令的一份拷贝通过所述第三节点U03的转发发送给所述第二节点U03,所述第二信令的一份拷贝直接发送给所述第二节点U02。
作为一个实施例,所述第一节点U01和所述第二节点U02之间的空中接口是所述第二空中接口。
作为一个实施例,所述第一节点U01和所述第三节点U03之间的空中接口是所述第一空中接口。
作为一个实施例,步骤S5102属于所述行为通过第二空中接口发起针对所述第一小区的随机接入过程。
作为一个实施例,所述随机接入信号是物理层信号。
作为一个实施例,所述随机接入信号直接发送给所述第二节点U02。
作为一个实施例,所述随机接入信号是随机接入过程中的消息A。
作为一个实施例,所述随机接入信号是随机接入过程中的第一个消息。
作为一个实施例,所述随机接入信号由一个序列生成。
作为一个实施例,所述随机接入信号占用随机接入信道。
作为一个实施例,所述第一节点U01通过第二空中接口所发起的针对所述第一小区的随机接入过程使用免于竞争的方式。
作为一个实施例,接收到PDCCH信道上的响应用于确定所述第一节点U01通过第二空中接口所发起的针对所述第一小区的随机接入过程的成功完成。
作为该实施例的一个子实施例,所述PDCCH信道上的所述响应包括在PDCCH信道上接收到使用所述第一节点U01的C-RNTI加扰的信号。
作为该实施例的一个子实施例,所述PDCCH信道上的所述响应包括接收到使用所述第一节点U01的C-RNTI加扰的DCI。
作为一个实施例,所述第一节点U01,作为执行所述第一信令的响应,开始第一计时器。
作为一个实施例,所述第一节点U01,作为所述第一计时器的过期的响应,发送目标消息,所述目标消息是第一消息或第二消息二者之一,所述目标消息是所述第一消息还是所述第二消息与所述第一信令用于指示维持所述第一RRC连接还是释放所述第一RRC连接有关。
作为一个实施例,所述第一节点U01,作为所述第一计时器的过期的响应,发起第一信令过程,所述第一信令过程包括至少发送目标消息,所述目标消息是第一消息或第二消息二者之一,所述目标消息是所述第一消息还是所述第二消息与所述第一信令用于指示维持所述第一RRC连接还是释放所述第一RRC连接有关。
作为一个实施例,所述第一消息被用于请求RRC连接重建。
作为一个实施例,所述第二消息被用于报告链路建立失败。
作为一个实施例,所述第一计时器的停止条件包括:成功的完成针对所述第一小区的随机接入过程。
作为该实施例的一个子实施例,在PDCCH上接收到针对所述第一节点U01的信号被用于确定成功的完成针对所述第一小区的随机接入过程。
作为该实施例的一个子实施例,完整了随机接入过程中的竞争解决被用于确定成功的完成针对所述第一小区的随机接入过程。
作为一个实施例,句子所述目标消息是所述第一消息还是所述第二消息与所述第一信令用于指示维持所述第一RRC连接还是释放所述第一RRC连接有关的含义是:当所述第一信令被用于指示维持所述第一RRC连接时,所述目标消息是所述第二消息;当所述第一信令未被用于指示维持所述第一RRC连接时,所述目标消息是所述第一消息。
作为一个实施例,所述第一计时器是T304。
作为一个实施例,伴随所述行为通过第二空中接口所发起的针对所述第一小区的随机接入过程,所述第一节点U01开始所述第一计时器。
作为一个实施例,所述第一节点U01在所述第一计时器过期前,未能检测到PDCCH信道上针对所述第一节点U01的信号。
作为一个实施例,所述第一节点U01在所述第一计时器过期前,未能检测到PDCCH信道上针对所述第一节点U01的C-RNTI的信号。
作为一个实施例,所述目标消息要么是所述第一消息,要么是所述第二消息。
作为一个实施例,所述第一消息和所述第二消息都是RRC消息。
作为一个实施例,所述第一消息包括RRCReestablishmentRequest。
作为一个实施例,所述第一消息包括RRCConnectionReestablishmentRequest。
作为一个实施例,所述第一消息针对所述第二节点U02。
作为一个实施例,所述第一消息通过所述第三节点U03。
作为一个实施例,所述第一消息直接发送给所述第二节点U02。
作为一个实施例,所述第一消息通过中继的转发发送给所述第二节点U02。
作为一个实施例,所述第一消息也可以发送给所述第二节点U02以外的节点。
作为一个实施例,所述第一消息也可以发送给所述第一小区以外的小区。
作为一个实施例,当所述目标消息是所述第一消息时,所述目标消息可以针对所述第二节点U02,也可以针对所述第二节点U02以外的节点发送,尽管后一种情况附图5并未示出;当所述目标消息是所述第二消息时,所述目标消息是针对所述第二节点U02的。
作为一个实施例,所述第二消息通过所述第三节点U03的转发发送给所述第二节点U02。
作为一个实施例,所述第二消息直接发送给所述第二节点U02。
作为一个实施例,所述第二消息的名字包括failure。
作为一个实施例,所述第二消息所报告的所述链路建立失败包括所述第一计时器过期。
作为一个实施例,所述第二消息所报告的所述链路建立失败包括随机接入过程出现问题。
作为一个实施例,所述第二消息所报告的所述链路建立失败包括RLC建立不成功。
作为一个实施例,所述第二消息所报告的所述链路建立失败包括所述第一信令所指示的Uu接口的逻辑信道身份。
作为一个实施例,所述第二消息所报告的所述链路建立失败包括针对Uu接口的测量结果。
作为一个实施例,所述第二消息所报告的所述链路建立失败包括针对所述第一小区的测量结果。
作为一个实施例,所述第二消息所报告的所述链路建立失败包括失败的原因和/或失败的类型。
作为一个实施例,所述第二消息所报告的所述链路建立失败包括失败的发生时刻或失败了多长时间。
作为一个实施例,句子所述目标消息是所述第一消息还是所述第二消息与所述第一信令用于指示维持所述第一RRC连接还是释放所述第一RRC连接有关的含义是:当所述第一信令被用于指示维持所述第一RRC连接时,所述目标消息是所述第二消息;当所述第一信令指示释放所述第一RRC连接时,所述目标消息是所述第一消息。
作为一个实施例,当所述目标消息是所述第一消息时,在发送所述第一消息之前,所述第一节点U01释放所述第一RRC连接,当所述目标消息是所述第二消息时,在发送所述第二消息之前,所述第一节点U01不释放所述第一RRC连接。
作为一个实施例,当所述目标消息是所述第一消息时,在发送所述第一消息之前,所述第一节点U01挂起针对所述第一小区的DRB,当所述目标消息是所述第二消息时,在发送所述第二消息之前,所述第一节点U01不挂起针对所述第一小区的DRB。
作为一个实施例,当所述目标消息是所述第一消息时,在发送所述第一消息之前,所述第一节点U01重置针对所述第一小区的MAC,当所述目标消息是所述第二消息时,在发送所述第二消息之前,所述第一节点U01不重置针对所述第一小区的MAC。
作为一个实施例,当所述目标消息是所述第一消息时,在发送所述第一消息之前,所述第一节点U01释放所述第一信令的所述第一域所指示的信令,当所述目标消息是所述第二消息时,在发送所述第二消息之前,所述第一节点U01不释放所述第一信令的所述第一域所指示的信令。
作为一个实施例,当所述目标消息是所述第一消息时,所述第一信令过程包括接收所述目标消息的RRC反馈消息;当所述目标消息是所述第二消息时,所述第一信令过程不包括接收所述目标消息的RRC反馈消息。
作为该实施例的一个子实施例,句子所述第一信令过程不包括接收所述目标消息的RRC反馈消息的含义是:所述目标消息没有对应的反馈消息。
实施例6
实施例6示例了根据本申请的一个实施例的中继通信的协议栈的示意图,如附图6所示。
附图6分(a)、(b)、(c)三个子图。
附图6所示出的协议栈适用于L2 U2N中继通信,实施例6以实施例3为基础。
附图6中的(a)对应L2 U2N中继通信中的用户面协议栈;附图6中的(b)对应L2 U2N中继通信中的控制面协议栈。
作为一个实施例,附图6中的第一中继是所述第一节点使用非直接路径时的中继。
作为一个实施例,附图6中的第一中继是所述第一节点与所述第一小区组之间的L2 U2N中继UE,所述第一小区组是所述第一节点的MCG。
作为一个实施例,附图6中的gNB是所述第一小区对应的基站。
作为一个实施例,附图6中的gNB是所述第一节点的PCell或PCell所对应的gNB。
作为一个实施例,附图6中的gNB是所述第一节点的MCG或MCG所对应的gNB。
作为一个实施例,附图6中的gNB是所述第一节点所连接的gNB。
作为一个实施例,附图6中的gNB与所述第一节点之间具有RRC连接。
在实施例6中,第一空中接口是所述第一节点和所述第一中继之间的接口,所述第一空中接口有关的协议实体{PC5-SRAP,PC5-RLC,PC5-MAC,PC5-PHY}终结于所述第一节点和所述第一中继;Uu接口是UE与gNB之间的接口,Uu接口的协议实体分别终结于UE和gNB。
作为一个实施例,所述第一中继是U2N中继UE,在执行所述第一信令之前,所述第一中继向所述第一节点提供L2 U2N中继服务。
作为一个实施例,所述第一节点和所述第一中继都是UE。
作为一个实施例,附图6中的所述gNB对应本申请的所涉及的所述第二节点。
作为一个实施例,Uu接口的协议实体{Uu-SRAP,Uu-RLC,Uu-MAC,Uu-PHY}终结于所述第一中继和gNB。
作为一个实施例,在(a)中,Uu接口的协议实体{Uu-SDAP,Uu-PDCP}终结于所述第一节点和gNB,所述第一节点的SDAP PDU和PDCP PDU经过所述第一中继的转发,但所述第一中继不修改所述第一节点的所述SDAP PDU和所述PDCP PDU,也就是说所述第一节点发送给gNB的SDAP PDU和PDCP PDU对所述第一中继来说是透传的。
作为一个实施例,在(b)中,Uu接口的协议实体{Uu-RRC,Uu-PDCP}终结于所述第一节点和gNB,所述第一节点的RRC PDU和PDCP PDU经过所述第一中继的转发,但所述第一中继不修改所述第一节点所发送的所述RRC PDU和所述PDCP PDU,也就是说所述第一节点发送给gNB的RRC PDU和PDCP PDU对所述第一中继来说是透传的。
作为一个实施例,在(a)中,PC5-SRAP对应附图3中的SRAP357,PC5-RLC对应附图3中的RLC353,PC5-MAC对应附图3中的MAC352,PC5-PHY对应附图3中的PHY351。
作为一个实施例,在(a)中,Uu-SDAP对应附图3中的SDAP356,Uu-PDCP对应附图3中的PDCP354.
作为一个实施例,在(b)中,PC5-SRAP对应附图3中的SRAP307,PC5-RLC对应附图3中的RLC303, PC5-MAC对应附图3中的MAC302,PC5-PHY对应附图3中的PHY301。
作为一个实施例,在(b)中,Uu-RRC对应附图3中的RRC306,Uu-PDCP对应附图3中的PDCP304。
作为一个实施例,附图6中所述gNB的一个小区是所述第一中继的PCell,所述第一中继处于RRC连接态。
作为一个实施例,附图6中所述gNB管理所述第一小区,所述第一小区是所述第一中继的PCell。
作为一个实施例,所述第一节点的MCG也是所述第一中继的MCG。
作为一个实施例,PC5-SRAP只针对特定RB或消息或数据而被使用。
作为该实施例的一个子实施例,当所述第一中继转发gNB的系统信息时,不使用PC5-SRAP层。
作为一个实施例,所述第一节点的SRB1是所述第一节点与附图6(b)中的gNB之间的SRB1,关联的协议实体包括Uu-PDCP和Uu-RRC。
作为一个实施例,附图6中,所述第一节点与所述gNB之间的通信使用非直接路径。
作为一个实施例,附图6中,所述第一节点与所述gNB之间的通信使用直接路径。
作为一个实施例,附图6中,在接收所述第一信令之前,所述第一节点与所述gNB之间的通信使用非直接路径,所述第一信令被用于指示所述第一节点与gNB的通信包括使用直接路径,所述第一信令被用于指示所述第一节点是否使用非直接路径与gNB通信。
作为该实施例的一个子实施例,句子所述第一信令被用于指示所述第一节点是否使用非直接路径与gNB通信的含义包括,所述第一信令被用于指示所述第一节点是否继续使用或维持非直接路径与gNB通信。
作为一个实施例,附图6中,在执行所述第一信令之后,所述第一节点与所述gNB之间的通信同时使用直接路径和非直接路径。
作为一个实施例,所述第一信令由附图6(b)中的所述gNB的Uu-RRC生成,由所述第一节点的Uu-RRC接收。
作为一个实施例,所述第一信令对所述第一中继而言是透传的。
作为一个实施例,所述第一信令的传输使用所述第一中继,所述第一信令的传输适用于附图6(b)。
作为一个实施例,所述第一消息适用于附图6(b)和/或(c)的协议结构。
作为一个实施例,所述第一消息由所述第一中继转发给gNB。
作为一个实施例,在使用非直接路径时,所述第一节点的Uu-PDCP与PC5-RLC相关联,或通过PC5-SRAP与PC5-RLC相关联。
作为一个实施例,在使用直接路径时,所述第一节点将建立Uu-RLC,所述第一节点的Uu-PDCP与Uu-RLC相关联。
作为该实施例的一个子实施例,在转换到所述直接路径后,所述第一节点释放PC5-RLC。
作为该实施例的一个子实施例,在转换到所述直接路径后,所述第一节点释放PC5-SRAP。
作为该实施例的一个子实施例,在转换到所述直接路径后,所述第一节点释放PC5-MAC和PC5-PHY。
作为该实施例的一个子实施例,在转换到所述直接路径后,所述第一节点不再使用PC5-SRAP。
作为该实施例的一个子实施例,在转换到所述直接路径后,所述第一节点的Uu-PDCP与Uu-RLC之间没有其它的协议层。
作为一个实施例,所述第一信令被用于指示路径转换还是路径增加。
作为一个实施例,所述第一空中接口对应的无线链路是第二无线链路。
作为一个实施例,所述第二无线链路包括附图6的(a)和/或(b)中所述第一节点与所述第一中继之间的无线链路。
作为一个实施例,所述第二无线链路包括附图6的(a)和/或(b)中所述第一节点与所述第一中继之间的副链路无线链路。
作为一个实施例,所述第二无线链路包括附图6的(a)和/或(b)中所述第一节点与所述第一中继之间的副链路RLC承载。
作为一个实施例,所述第二无线链路包括附图6的(a)和/或(b)中所述第一节点与所述第一中继之间的传输信道。
作为一个实施例,所述第二无线链路包括附图6的(a)和/或(b)中所述第一节点与所述第一中继 之间的逻辑信道。
作为一个实施例,所述第二无线链路包括附图6的(a)和/或(b)中所述第一节点与所述第一中继之间的物理信道。
作为一个实施例,所述第二无线链路包括附图6的(a)和/或(b)中所述第一节点与所述第一中继之间的直接单播链路。
作为一个实施例,所述第二无线链路包括附图6的(a)和/或(b)中所述第一节点与所述第一中继之间的PC5-SRAP实体之间的接口。
作为一个实施例,所述第二无线链路包括附图6的(a)和/或(b)中所述第一节点与所述第一中继之间的PC5接口。
作为一个实施例,附图6中的(c)是不使用中继时,所述第一节点与所述gNB之间通信时的协议栈。
作为一个实施例,附图6中的(c)是使用直接路径时,所述第一节点与所述gNB之间通信时的协议栈。
作为一个实施例,所述第二空中接口对应的无线链路是第一无线链路。
作为一个实施例,所述第一无线链路包括附图6的(c)中的所述第一节点和gNB之间的无线承载。
作为一个实施例,所述第一无线链路包括附图6的(c)中的所述第一节点和gNB之间的无线链路。
作为一个实施例,所述第一无线链路包括附图6的(c)中的所述第一节点和gNB之间的RLC承载。
作为一个实施例,所述第一无线链路包括附图6的(c)中的所述第一节点和gNB之间的信道。
作为一个实施例,所述第一无线链路包括附图6的(c)中的所述第一节点和gNB之间的逻辑信道。
作为一个实施例,所述第一无线链路包括附图6的(c)中的所述第一节点和gNB之间的物理信道。
作为一个实施例,所述第一无线链路包括附图6的(c)中的所述第一节点和gNB之间的Uu接口。
作为一个实施例,所述第二无线链路包括附图6的(c)中的所述第一节点和gNB之间的无线承载。
作为一个实施例,所述第二无线链路包括附图6的(c)中的所述第一节点和gNB之间的无线链路。
作为一个实施例,所述第二无线链路包括附图6的(c)中的所述第一节点和gNB之间的RLC承载。
作为一个实施例,所述第二无线链路包括附图6的(c)中的所述第一节点和gNB之间的信道。
作为一个实施例,所述第二无线链路包括附图6的(c)中的所述第一节点和gNB之间的逻辑信道。
作为一个实施例,所述第二无线链路包括附图6的(c)中的所述第一节点和gNB之间的物理信道。
作为一个实施例,所述第二无线链路包括附图6的(c)中的所述第一节点和gNB之间的Uu接口。
作为一个实施例,附图6中的第二空中接口是所述第一节点与gNB之间的空中接口。
作为一个实施例,附图6中的第二空中接口是所述第一节点与gNB所对应的RAN之间的空中接口。
作为一个实施例,附图6中的第二空中接口是所述第一节点与gNB所管理的所述第一小区之间的空中接口。
实施例7
实施例7示例了根据本申请的一个实施例的无线承载的示意图,如附图7所示。
实施例7在实施例3的基础上进一步示出了一个PDCP实体,关联两个RLC实体,即RLC1和RLC2,其中每个RLC实体分别与不同的MAC相关联,即RLC1与MAC1相关联,RLC2与MAC2相关联。
实施例7示出了第一节点侧的协议结构。
作为一个实施例,所述第一信令被用于指示维持所述第一RRC连接。
作为该实施例的一个子实施例,在执行所述第一信令之后,所述第一节点同时使用直接路径和非直接路径与网络通信。
作为一个实施例,附图7适用于包括SRB1在内的SRB。
作为一个实施例,附图7适用于DRB。
作为一个实施例,附图7适用于MRB。
作为一个实施例,附图7示出的协议结构是分裂式的SRB,即split SRB。
作为一个实施例,附图7示出的协议结构是分裂式的DRB,即split DRB。
作为一个实施例,附图7适用于发送。
作为一个实施例,附图7适用于接收。
作为一个实施例,附图7中的第一协议实体是RRC,附图7是针对包括SRB1在内的SRB的。
作为一个实施例,附图7中的第一协议实体是SDAP,附图7是针对DRB的。
作为一个实施例,RRC消息经过PDCP实体的处理形成的PDCP PDU通过RLC1发送。
作为一个实施例,RRC消息经过PDCP实体的处理形成的PDCP PDU通过RLC2发送。
作为一个实施例,RRC消息经过PDCP实体的处理形成的PDCP PDU通过RLC1或RLC2发送。
作为一个实施例,RRC消息经过PDCP实体的处理形成的PDCP PDU进行复制,同时通过RLC1和RLC2发送。
作为一个实施例,所述SRB1用于承载所述第一信令和所述第一消息。
作为一个实施例,所述SRB1的主路径是针对RLC1的。
作为一个实施例,所述SRB1的主路径是针对RLC2的。
作为一个实施例,附图7中的RLC1和RLC2中的一个是针对所述第一空中接口的,另一个是针对所述第二空中接口的。
作为一个实施例,所述第一空中接口对应的无线链路是第二无线链路,所述第二空中接口对应的无线链路是第一无线链路。
作为一个实施例,所述第一无线链路是针对RLC1的。
作为一个实施例,所述第一无线链路与RLC1和MAC1相关联。
作为一个实施例,所述第二无线链路与RLC2和MAC2相关联。
作为一个实施例,所述RLC2和MAC2都是针对副链路通信的。
作为一个实施例,所述RLC1和MAC1都是针对主链路通信的,即不是针对副链路通信的。
作为一个实施例,所述RLC1和MAC1都是针对小区组的。
作为一个实施例,所述RLC1和MAC1都是针对所述第一小区或所述第一小区所在的小区组的。
作为一个实施例,所述RLC1和MAC1是针对主小区组的。
作为一个实施例,释放所述第一RRC连接包括释放RLC2。
作为一个实施例,释放所述第一RRC连接包括重置MAC2。
作为一个实施例,释放所述第一RRC连接释放或删除MAC2。
实施例8
实施例8示例了根据本申请的一个实施例的拓扑结构的示意图,如附图8所示。
实施例8中的第一节点对应本申请的所述第一节点。
作为一个实施例,实施例8中的第二节点对应本申请的所述第一节点的一个小区组。
作为一个实施例,实施例8中的第二节点对应本申请的所述第一节点的主小区。
作为一个实施例,实施例8中的第二节点对应本申请的所述第一小区或所述第一小区所对应的基站。
作为一个实施例,实施例8中的第二节点对应本申请的所述第一小区所在的小区组。
作为一个实施例,实施例8中的第三节点是所述第一节点的一个中继节点。
作为一个实施例,实施例8中的第三节点是所述第一节点的U2N中继。
作为一个实施例,实施例8中的第三节点是所述第一节点和网络之间的中继。
作为一个实施例,实施例8中的第三节点是所述一个L2 U2N中继UE。
作为一个实施例,实施例8中的第三节点是所述第一节点与所述第二节点之间一个中继节点。
作为一个实施例,实施例8中的第三节点是所述第一节点的一个L2 U2N中继UE。
作为一个实施例,实施例8中的第三节点是所述第一中继。
作为一个实施例,所述第一空中接口所对应的无线链路是所述第二无线链路;所述第二空中接口所对应的无线链路是所述第一无线链路。
作为一个实施例,所述第一无线链路指的是所述第一节点和所述第二节点之间的承载。
作为一个实施例,所述第一无线链路指的是所述第一节点和所述第二节点之间的无线链路。
作为一个实施例,所述第一无线链路指的是所述第一节点和所述第二节点之间的RLC承载。
作为一个实施例,所述第一无线链路指的是所述第一节点和所述第二节点之间的通信链路。
作为一个实施例,所述第一无线链路指的是所述第一节点和所述第二节点之间的信道。
作为一个实施例,所述第一无线链路指的是所述第一节点和所述第二节点之间的通信接口。
作为一个实施例,所述第一无线链路与中继无关。
作为一个实施例,所述第二无线链路包括所述第一节点和所述第三节点之间的无线链路。
作为一个实施例,所述第二无线链路包括所述第一节点和所述第三节点之间的RLC承载。
作为一个实施例,所述第二无线链路包括所述第一节点和所述第三节点之间的通信链路。
作为一个实施例,所述第二无线链路包括所述第一节点和所述第三节点之间的信道。
作为一个实施例,所述第二无线链路包括所述第一节点和所述第三节点之间的通信接口。
作为一个实施例,所述第二无线链路与中继有关。
作为一个实施例,所述第一无线链路是直接路径。
作为一个实施例,所述第一节点与所述第二节点之间的不通过所述第三节点转发的链路是直接路径。
作为一个实施例,所述第一节点与所述第二节点之间的通过所述第三节点转发的链路是非直接路径。
作为一个实施例,直接路径是所述第一节点与所述第二节点不通过所述第三节点进行通信的方式或传输路径。
作为一个实施例,非直接路径是所述第一节点与所述第二节点通过所述第三节点进行通信的方式或传输路径。
作为一个实施例,所述第一无线链路是或属于直接路径。
作为一个实施例,所述第二无线链路是非直接路径。
作为一个实施例,所述第一无线链路和所述第二无线链路都是针对所述第一节点的。
作为一个实施例,所述第一无线链路和所述第二无线链路都是针对所述第一节点和所述第二节点的数据传输的。
作为一个实施例,所述第二无线链路包括所述第一节点和所述第三节点以及所述第三节点和所述第二节点之间的传输路径。
作为一个实施例,所述第二无线链路包括所述第一节点和所述第三节点之间的直连链路。
作为一个实施例,所述第二无线链路包括所述第一节点和所述第三节点之间的PC5直连链路。
作为一个实施例,所述第一无线链路包括所述第一节点和所述第二节点之间的无线链路。
作为一个实施例,所述第一无线链路包括所述第一节点和所述第二节点之间的RLC承载。
作为一个实施例,所述第一无线链路包括所述第一节点和所述第二节点之间的通信链路。
作为一个实施例,所述第一无线链路包括所述第一节点和所述第二节点之间的信道。
作为一个实施例,所述第一无线链路包括所述第一节点和所述第二节点之间的通信接口。
作为一个实施例,所述第二无线链路指的是所述第一节点和所述第三节点之间的承载。
作为一个实施例,所述第二无线链路指的是所述第一节点和所述第三节点之间的无线链路。
作为一个实施例,所述第二无线链路指的是所述第一节点和所述第三节点之间的RLC承载。
作为一个实施例,所述第二无线链路指的是所述第一节点和所述第三节点之间的通信链路。
作为一个实施例,所述第二无线链路指的是所述第一节点和所述第三节点之间的信道。
作为一个实施例,所述第二无线链路指的是所述第一节点和所述第三节点之间的通信接口。
作为一个实施例,在接收所述第一信令之前,所述第一节点与网络之间不存在所述第一无线链路。
作为一个实施例,在接收所述第一信令之前,所述第一节点与网络之间的通信不使用所述第一无线链路。
作为一个实施例,在接收所述第一信令之前,所述第一节点与网络之间的通信仅设计所述第二无线链路。
作为一个实施例,所述第一信令被用于指示是否维持所述第二无线链路。
作为一个实施例,所述第一信令被用于指示是否释放所述第二无线链路。
作为一个实施例,所述第一信令被用于指示是否使用或继续使用所述第二无线链路。
作为一个实施例,释放所述第一RRC连接包括,释放或不再使用所述第二无线链路。
实施例9
实施例9示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图9所示。 在附图9中,第一节点中的处理装置900包括第一接收机901和第一发射机902。在实施例9中,
第一接收机901,通过第一空中接口接收第一信令,所述第一信令包括第一域,所述第一域用于配置第一小区;所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接;
第一发射机902,作为接收所述第一信令的响应,通过第二空中接口发起针对所述第一小区的随机接入过程;
其中,所述第一域包括第二域,所述第二域被用于配置针对所述第一小区的所述随机接入过程;所述第一空中接口是所述第一节点与第一中继之间的空中接口,所述第二空中接口是所述第一节点与所述第一小区所在的无线接入网络之间的空中接口;所述第一RRC连接是所述第一节点与所述第一中继之间的PC5-RRC连接。
作为一个实施例,所述第一接收机901,作为接收所述第一信令的响应,释放所述第一RRC连接;
所述第一小区是SpCell(Special Cell,特殊小区),所述第一域是SpCellConfig,所述第二域是ReconfigurationWithSync,所述第一信令通过SRB1发送,所述SRB1是所述第一节点与主小区组之间的无线承载,所述SRB1与第一RLC承载相关联,所述第一RLC承载是所述第一节点与所述第一中继之间的RLC承载;所述第一节点与所述第一中继连接;所述行为释放所述第一RRC连接包括释放所述第一RLC承载;所述第一信令被用于指示释放所述第一RRC连接。
作为一个实施例,所述第一小区是SpCell(Special Cell,特殊小区),所述第一域是SpCellConfig,所述第二域是ReconfigurationWithSync,所述第一信令通过SRB1发送,所述SRB1是所述第一节点与主小区组之间的无线承载,所述SRB1与第一RLC承载相关联,所述第一RLC承载是所述第一节点与所述第一中继之间的RLC承载;所述第一节点与所述第一中继连接;所述第一信令被用于指示维持所述第一RRC连接。
作为一个实施例,所述第一信令是否包括第三域被用于指示维持所述第一RRC连接还是释放所述第一RRC连接;当所述第一信令包括所述第三域时,所述第一信令用于指示维持所述第一RRC连接,当所述第一信令不包括所述第三域时,所述第一信令用于指示释放所述第一RRC连接。
作为一个实施例,所述第一信令包括第四域,所述第一信令所包括的所述第四域显式的指示释放还是维持所述第一RRC连接。
作为一个实施例,句子所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接的含义包括:当所述第一信令指示所有Uu接口的RB都不与所述第一节点和所述第一中继之间的RLC承载相关联时,所述第一信令用于指示释放所述第一RRC连接;当所述第一信令未指示所有Uu接口的RB都不与所述第一节点和所述第一中继之间的RLC承载相关联时,所述第一信令用于指示维持所述第一RRC连接。
作为一个实施例,句子所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接的含义包括:当所述第一信令指示释放所有与Uu接口的RB相关联的针对所述第一中继的RLC实体时,所述第一信令用于指示释放所述第一RRC连接;当所述第一信令未指示释放所有与Uu接口的RB相关联的针对所述第一中继的RLC实体时,所述第一信令用于指示维持所述第一RRC连接。
作为一个实施例,句子所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接的含义包括:当所述第一信令指示SRB1仅与Uu接口的RLC实体相关联时,所述第一信令用于指示释放所述第一RRC连接;当所述第一信令未指示SRB1仅与Uu接口的RLC实体相关联时,所述第一信令用于指示维持所述第一RRC连接。
作为一个实施例,句子所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接的含义是:当所述第一信令指示所述第一节点的目的中继是所述第一中继以外的节点时,所述第一信令用于指示释放所述第一RRC连接,当所述第一信令未指示所述第一节点的目的中继也未指示所述第一中继以外的其它节点为目的中继时,所述第一信令被用于指示维持所述第一RRC连接。
作为一个实施例,所述第一发射机902,作为执行所述第一信令的响应,开始第一计时器,作为所述第一计时器的过期的响应,发送目标消息,所述目标消息是第一消息或第二消息二者之一,所述目标消息是所述第一消息还是所述第二消息与所述第一信令用于指示维持所述第一RRC连接还是释放所述第一RRC连接有关;
其中,所述第一消息被用于请求RRC连接重建,所述第二消息被用于报告链路建立失败;所述第一计 时器的停止条件包括:成功的完成针对所述第一小区的随机接入过程;句子所述目标消息是所述第一消息还是所述第二消息与所述第一信令用于指示维持所述第一RRC连接还是释放所述第一RRC连接有关的含义是:当所述第一信令被用于指示维持所述第一RRC连接时,所述目标消息是所述第二消息;当所述第一信令未被用于指示维持所述第一RRC连接时,所述目标消息是所述第一消息。
作为一个实施例,所述第一节点是一个用户设备(UE)。
作为一个实施例,所述第一节点是一个支持大时延差的终端。
作为一个实施例,所述第一节点是一个支持NTN的终端。
作为一个实施例,所述第一节点是一个飞行器或船只。
作为一个实施例,所述第一节点是一个手机或车载终端。
作为一个实施例,所述第一节点是一个中继UE和/或U2N远端UE。
作为一个实施例,所述第一节点是一个物联网终端或工业物联网终端。
作为一个实施例,所述第一节点是一个支持低时延高可靠传输的设备。
作为一个实施例,所述第一节点是副链路通信节点。
作为一个实施例,所述第一接收机901包括实施例4中的天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,或数据源467中的至少之一。
作为一个实施例,所述第一发射机902包括实施例4中的天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,或数据源467中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IoT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑,卫星通信设备,船只通信设备,NTN用户设备等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点),NTN基站,卫星设备,飞行平台设备等无线通信设备。
本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (20)

  1. 一种被用于无线通信的第一节点,其中,包括:
    第一接收机,通过第一空中接口接收第一信令,所述第一信令包括第一域,所述第一域用于配置第一小区;所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接;
    第一发射机,作为接收所述第一信令的响应,通过第二空中接口发起针对所述第一小区的随机接入过程;
    其中,所述第一域包括第二域,所述第二域被用于配置针对所述第一小区的所述随机接入过程;所述第一空中接口是所述第一节点与第一中继之间的空中接口,所述第二空中接口是所述第一节点与所述第一小区所在的无线接入网络之间的空中接口;所述第一RRC连接是所述第一节点与所述第一中继之间的PC5-RRC连接。
  2. 根据权利要求1所述的第一节点,其特征在于,
    所述第一接收机,作为接收所述第一信令的响应,释放所述第一RRC连接;
    所述第一小区是SpCell(Special Cell,特殊小区),所述第一域是SpCellConfig,所述第二域是ReconfigurationWithSync,所述第一信令通过SRB1发送,所述SRB1是所述第一节点与主小区组之间的无线承载,所述SRB1与第一RLC承载相关联,所述第一RLC承载是所述第一节点与所述第一中继之间的RLC承载;所述第一节点与所述第一中继连接;所述行为释放所述第一RRC连接包括释放所述第一RLC承载;所述第一信令被用于指示释放所述第一RRC连接。
  3. 根据权利要求1所述的第一节点,其特征在于,
    所述第一小区是SpCell(Special Cell,特殊小区),所述第一域是SpCellConfig,所述第二域是ReconfigurationWithSync,所述第一信令通过SRB1发送,所述SRB1是所述第一节点与主小区组之间的无线承载,所述SRB1与第一RLC承载相关联,所述第一RLC承载是所述第一节点与所述第一中继之间的RLC承载;所述第一节点与所述第一中继连接;所述第一信令被用于指示维持所述第一RRC连接。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,
    所述第一信令是否包括第三域被用于指示维持所述第一RRC连接还是释放所述第一RRC连接;当所述第一信令包括所述第三域时,所述第一信令用于指示维持所述第一RRC连接,当所述第一信令不包括所述第三域时,所述第一信令用于指示释放所述第一RRC连接。
  5. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,
    所述第一信令包括第四域,所述第一信令所包括的所述第四域显式的指示释放还是维持所述第一RRC连接。
  6. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,
    句子所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接的含义包括:当所述第一信令指示所有Uu接口的RB都不与所述第一节点和所述第一中继之间的RLC承载相关联时,所述第一信令用于指示释放所述第一RRC连接;当所述第一信令未指示所有Uu接口的RB都不与所述第一节点和所述第一中继之间的RLC承载相关联时,所述第一信令用于指示维持所述第一RRC连接。
  7. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,
    句子所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接的含义包括:当所述第一信令指示释放所有与Uu接口的RB相关联的针对所述第一中继的RLC实体时,所述第一信令用于指示释放所述第一RRC连接;当所述第一信令未指示释放所有与Uu接口的RB相关联的针对所述第一中继的RLC实体时,所述第一信令用于指示维持所述第一RRC连接。
  8. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,
    句子所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接的含义包括:当所述第一信令指示SRB1仅与Uu接口的RLC实体相关联时,所述第一信令用于指示释放所述第一RRC连接;当所述第一信令未指示SRB1仅与Uu接口的RLC实体相关联时,所述第一信令用于指示维持所述第一RRC连接。
  9. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,
    句子所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接的含义是:当所述第一信令指示所述第一节点的目的中继是所述第一中继以外的节点时,所述第一信令用于指示释放所述第一 RRC连接,当所述第一信令未指示所述第一节点的目的中继也未指示所述第一中继以外的其它节点为目的中继时,所述第一信令被用于指示维持所述第一RRC连接。
  10. 根据权利要求1至9中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一发射机,作为执行所述第一信令的响应,开始第一计时器,作为所述第一计时器的过期的响应,发送目标消息,所述目标消息是第一消息或第二消息二者之一,所述目标消息是所述第一消息还是所述第二消息与所述第一信令用于指示维持所述第一RRC连接还是释放所述第一RRC连接有关;
    其中,所述第一消息被用于请求RRC连接重建,所述第二消息被用于报告链路建立失败;所述第一计时器的停止条件包括:成功的完成针对所述第一小区的随机接入过程;句子所述目标消息是所述第一消息还是所述第二消息与所述第一信令用于指示维持所述第一RRC连接还是释放所述第一RRC连接有关的含义是:当所述第一信令被用于指示维持所述第一RRC连接时,所述目标消息是所述第二消息;当所述第一信令未被用于指示维持所述第一RRC连接时,所述目标消息是所述第一消息。
  11. 一种被用于无线通信的第一节点中的方法,其中,包括:
    通过第一空中接口接收第一信令,所述第一信令包括第一域,所述第一域用于配置第一小区;所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接;
    作为接收所述第一信令的响应,通过第二空中接口发起针对所述第一小区的随机接入过程;
    其中,所述第一域包括第二域,所述第二域被用于配置针对所述第一小区的所述随机接入过程;所述第一空中接口是所述第一节点与第一中继之间的空中接口,所述第二空中接口是所述第一节点与所述第一小区所在的无线接入网络之间的空中接口;所述第一RRC连接是所述第一节点与所述第一中继之间的PC5-RRC连接。
  12. 根据权利要求11所述的第一节点中的方法,其特征在于,
    作为接收所述第一信令的响应,释放所述第一RRC连接;
    所述第一小区是SpCell(Special Cell,特殊小区),所述第一域是SpCellConfig,所述第二域是ReconfigurationWithSync,所述第一信令通过SRB1发送,所述SRB1是所述第一节点与主小区组之间的无线承载,所述SRB1与第一RLC承载相关联,所述第一RLC承载是所述第一节点与所述第一中继之间的RLC承载;所述第一节点与所述第一中继连接;所述行为释放所述第一RRC连接包括释放所述第一RLC承载;所述第一信令被用于指示释放所述第一RRC连接。
  13. 根据权利要求11所述的第一节点中的方法,其特征在于,
    所述第一小区是SpCell(Special Cell,特殊小区),所述第一域是SpCellConfig,所述第二域是ReconfigurationWithSync,所述第一信令通过SRB1发送,所述SRB1是所述第一节点与主小区组之间的无线承载,所述SRB1与第一RLC承载相关联,所述第一RLC承载是所述第一节点与所述第一中继之间的RLC承载;所述第一节点与所述第一中继连接;所述第一信令被用于指示维持所述第一RRC连接。
  14. 根据权利要求11至13中任一权利要求所述的第一节点中的方法,其特征在于,
    所述第一信令是否包括第三域被用于指示维持所述第一RRC连接还是释放所述第一RRC连接;当所述第一信令包括所述第三域时,所述第一信令用于指示维持所述第一RRC连接,当所述第一信令不包括所述第三域时,所述第一信令用于指示释放所述第一RRC连接。
  15. 根据权利要求11至13中任一权利要求所述的第一节点中的方法,其特征在于,
    所述第一信令包括第四域,所述第一信令所包括的所述第四域显式的指示释放还是维持所述第一RRC连接。
  16. 根据权利要求11至13中任一权利要求所述的第一节点中的方法,其特征在于,
    句子所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接的含义包括:当所述第一信令指示所有Uu接口的RB都不与所述第一节点和所述第一中继之间的RLC承载相关联时,所述第一信令用于指示释放所述第一RRC连接;当所述第一信令未指示所有Uu接口的RB都不与所述第一节点和所述第一中继之间的RLC承载相关联时,所述第一信令用于指示维持所述第一RRC连接。
  17. 根据权利要求11至13中任一权利要求所述的第一节点中的方法,其特征在于,
    句子所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接的含义包括:当所述第一信令指示释放所有与Uu接口的RB相关联的针对所述第一中继的RLC实体时,所述第一信令用于指示 释放所述第一RRC连接;当所述第一信令未指示释放所有与Uu接口的RB相关联的针对所述第一中继的RLC实体时,所述第一信令用于指示维持所述第一RRC连接。
  18. 根据权利要求11至13中任一权利要求所述的第一节点中的方法,其特征在于,
    句子所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接的含义包括:当所述第一信令指示SRB1仅与Uu接口的RLC实体相关联时,所述第一信令用于指示释放所述第一RRC连接;当所述第一信令未指示SRB1仅与Uu接口的RLC实体相关联时,所述第一信令用于指示维持所述第一RRC连接。
  19. 根据权利要求11至13中任一权利要求所述的第一节点中的方法,其特征在于,
    句子所述第一信令被用于指示维持第一RRC连接,或者,释放所述第一RRC连接的含义是:当所述第一信令指示所述第一节点的目的中继是所述第一中继以外的节点时,所述第一信令用于指示释放所述第一RRC连接,当所述第一信令未指示所述第一节点的目的中继也未指示所述第一中继以外的其它节点为目的中继时,所述第一信令被用于指示维持所述第一RRC连接。
  20. 根据权利要求11至19中任一权利要求所述的第一节点中的方法,其特征在于,包括:
    作为执行所述第一信令的响应,开始第一计时器,作为所述第一计时器的过期的响应,发送目标消息,所述目标消息是第一消息或第二消息二者之一,所述目标消息是所述第一消息还是所述第二消息与所述第一信令用于指示维持所述第一RRC连接还是释放所述第一RRC连接有关;
    其中,所述第一消息被用于请求RRC连接重建,所述第二消息被用于报告链路建立失败;所述第一计时器的停止条件包括:成功的完成针对所述第一小区的随机接入过程;句子所述目标消息是所述第一消息还是所述第二消息与所述第一信令用于指示维持所述第一RRC连接还是释放所述第一RRC连接有关的含义是:当所述第一信令被用于指示维持所述第一RRC连接时,所述目标消息是所述第二消息;当所述第一信令未被用于指示维持所述第一RRC连接时,所述目标消息是所述第一消息。
PCT/CN2023/081198 2022-03-14 2023-03-14 一种被用于无线通信的方法和设备 WO2023174229A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210249357.8 2022-03-14
CN202210249357.8A CN116800390A (zh) 2022-03-14 2022-03-14 一种被用于无线通信的方法和设备

Publications (1)

Publication Number Publication Date
WO2023174229A1 true WO2023174229A1 (zh) 2023-09-21

Family

ID=88022297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081198 WO2023174229A1 (zh) 2022-03-14 2023-03-14 一种被用于无线通信的方法和设备

Country Status (2)

Country Link
CN (1) CN116800390A (zh)
WO (1) WO2023174229A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223658A (zh) * 2010-04-19 2011-10-19 中兴通讯股份有限公司 一种处理无线链路失败的方法和中继节点
WO2021062677A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 通信方法和装置
CN112654061A (zh) * 2020-04-22 2021-04-13 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置
WO2021236894A1 (en) * 2020-05-20 2021-11-25 Convida Wireless, Llc Sidelink relay connectivity management

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223658A (zh) * 2010-04-19 2011-10-19 中兴通讯股份有限公司 一种处理无线链路失败的方法和中继节点
WO2021062677A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 通信方法和装置
CN112654061A (zh) * 2020-04-22 2021-04-13 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置
WO2021236894A1 (en) * 2020-05-20 2021-11-25 Convida Wireless, Llc Sidelink relay connectivity management

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Service Continuity for L2 Relay and L3 Relay", 3GPP TSG-RAN WG2 MEETING #112 ELECTRONIC, R2-2009125, 23 October 2020 (2020-10-23), XP051942150 *
SAMSUNG: "Report of [AT114-e][605][Relay] Summary on AI 8.7.4.2 on L2 relay service continuity", 3GPP TSG-RAN WG2 MEETING #114-E, R2-2106578, 25 May 2021 (2021-05-25), XP052013855 *

Also Published As

Publication number Publication date
CN116800390A (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
WO2022143481A1 (zh) 一种被用于无线通信的方法和设备
US20230300936A1 (en) Method and device for wireless communication
CN114726490A (zh) 一种被用于无线通信的方法和设备
CN116266918A (zh) 一种被用于无线通信的方法和设备
WO2023174229A1 (zh) 一种被用于无线通信的方法和设备
CN116133002A (zh) 一种被用于无线通信的方法和设备
WO2024078431A1 (zh) 一种被用于无线通信的方法和设备
WO2023046073A1 (zh) 一种被用于无线通信的方法和设备
WO2024083056A1 (zh) 一种被用于无线通信的方法和设备
US20230239951A1 (en) Method and device for wireless communication
US20230232485A1 (en) Method and device for wireless communication
WO2023186162A1 (zh) 一种被用于无线通信的方法和设备
WO2024055915A1 (zh) 一种被用于无线通信的方法和设备
WO2023179468A1 (zh) 一种被用于无线通信的方法和设备
US20240179611A1 (en) Method and device for wireless communication
WO2023208080A1 (zh) 一种被用于无线通信的方法和设备
WO2024061247A1 (zh) 一种被用于无线通信的方法和设备
US20230156844A1 (en) Method and device for wireless communication
WO2023072046A1 (zh) 一种被用于无线通信的方法和设备
US20240080926A1 (en) Method and device for wireless communication
WO2022194113A1 (zh) 一种被用于无线通信的方法和设备
WO2023061204A1 (zh) 一种被用于无线通信的方法和设备
WO2023246671A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023174376A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
US20240063967A1 (en) Method and device for wireless communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769731

Country of ref document: EP

Kind code of ref document: A1