WO2021062677A1 - 通信方法和装置 - Google Patents

通信方法和装置 Download PDF

Info

Publication number
WO2021062677A1
WO2021062677A1 PCT/CN2019/109546 CN2019109546W WO2021062677A1 WO 2021062677 A1 WO2021062677 A1 WO 2021062677A1 CN 2019109546 W CN2019109546 W CN 2019109546W WO 2021062677 A1 WO2021062677 A1 WO 2021062677A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal
bearer
information
srb
Prior art date
Application number
PCT/CN2019/109546
Other languages
English (en)
French (fr)
Inventor
王瑞
孙慧明
胡星星
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/109546 priority Critical patent/WO2021062677A1/zh
Priority to CN201980100641.5A priority patent/CN114451062A/zh
Publication of WO2021062677A1 publication Critical patent/WO2021062677A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a communication method and device.
  • the terminal can simultaneously obtain communication services from a master node (master MN) and a secondary node (secondary node, SN).
  • the bearer established between the terminal and the MN is called the master cell group (MCG) bearer
  • MCG master cell group
  • SCG secondary cell group
  • the terminal detects that the MCG bearer cannot perform data transmission, it indicates that the MCG link has failed, and the terminal can send MCG failure information to the MN through the SCG bearer, so as to perform MCG rapid recovery.
  • the terminal that is not configured for duplication transmission needs to switch the primary path (primary path) from the MCG RLC bearer to the SCG RLC bearer.
  • the MCG rapid recovery process will also fail, and the terminal needs to re-establish a radio resource control (Radio Resource Control, RRC) connection at this time. Since the primary path has been switched to the SCG RLC bearer before, if the terminal re-establishes the RRC connection, the RRC re-establishment will fail.
  • RRC Radio Resource Control
  • the embodiments of the present application provide a communication method and device, which are used to complete the RRC re-establishment process when the MCG quick recovery fails.
  • the present application provides a communication method for a terminal that supports dual connectivity.
  • the terminal has a first wireless link with a first base station and a second wireless link with a second base station.
  • the terminal is configured to separate bearers, and the method includes:
  • the main path of the separated bearer is switched from the first radio link control RLC bearer to the second RLC bearer, where the separated bearer includes the first RLC bearer and the second RLC bearer.
  • the first RLC bearer corresponds to the first radio link
  • the second RLC bearer corresponds to the second radio link; when the radio resource control RRC connection is re-established, all The primary path is switched to the first RLC bearer.
  • the terminal after the terminal fails to perform the MCG fast recovery, the terminal automatically or through the MN assistance method switches the primary path to the MCG RLC bearer, so that the terminal side configuration is aligned with the base station side configuration, so that the SRB1 can be separated during the normal RRC re-establishment process.
  • the terminal automatically or through the MN assistance method switches the primary path to the MCG RLC bearer, so that the terminal side configuration is aligned with the base station side configuration, so that the SRB1 can be separated during the normal RRC re-establishment process.
  • To complete the RRC re-establishment process maintain the normal dual-connection communication of the terminal, and improve the communication quality.
  • the switching the primary path to the first RLC bearer during RRC connection re-establishment includes:
  • the method further includes: when the RRC reconfiguration message or the RRC release message of the first base station is not received within a preset time, determining that the first radio link fails to recover, and Perform the RRC connection re-establishment. This prevents the terminal from waiting indefinitely for the MN to perform MCG quick recovery, thereby shortening the terminal's response time.
  • the method further includes: in the process of recovering from the failure of the first wireless link, when the second wireless link fails, determining that the first wireless link fails to recover, and Perform the RRC connection re-establishment. In this way, there is no need to wait for a timeout before re-establishing the RRC connection, thereby further shortening the terminal response time.
  • the method further includes: sending the first link recovery failure cause value to the first base station, where the first link recovery failure cause value is used to trigger the first base station Generating instruction information for instructing to switch the primary path to the first RLC bearer; receiving the instruction information from the first base station, and switching the primary path to the first RLC bearer.
  • the terminal can add a "MCG fast recovery failure" re-establishment reason value to the re-establishment request message that initiates the RRC connection to the first base station, so that the first base station configures the terminal
  • the main path separating SRB1 is the indication information carried by MCG and RLC to assist the terminal in switching the main path.
  • the present application provides a communication method, which is executed by a first base station, and includes:
  • the first request information is sent to the second base station; the first request information is used to request the second base station whether the first base station supports the first base station through the signaling radio bearer SRB between the second base station and the terminal.
  • Wireless link failure recovery the first wireless link being a wireless link between the first base station and the terminal; receiving first feedback information in response to the first request information from the second base station; Instruct the terminal to recover from the failure of the first radio link through the SRB according to the first feedback information.
  • the terminal when the MN requests the SN to support MCG rapid recovery through SRB3, after inquiring whether the SN supports MCG rapid recovery, the terminal is requested to configure the bearer for MCG rapid recovery through SRB3, avoiding the requirement in the prior art that the MN requests After the terminal configures the bearer of MCG fast recovery through SRB3, it is found that the SN does not support the MCG fast recovery and the service interruption time is too long.
  • the method before sending the first request information to the second base station, the method includes: sending query information to the second base station, where the query information is used to query whether the second base station supports the SRB Receiving response information from the second base station; the response information is used to indicate that the second base station supports the SRB.
  • the method further includes: sending second request information to the second base station; the second request information is used to request whether to release the first wireless link through the SRB. Resources for path failure recovery; receiving second feedback information in response to the second request information from the second base station; requesting the terminal to release the second base station through the SRB to perform the first The configuration of wireless link failure recovery.
  • the previous configuration of the SN and the terminal is cancelled, thereby avoiding the resource occupation of the SN and the terminal.
  • the present application provides a communication method, which is executed by a second base station, and includes:
  • Receive first request information sent by the first base station where the first request information is used to request whether the second base station supports the first base station to perform the first request through the signaling radio bearer SRB between the second base station and the terminal
  • a wireless link fails to recover the first wireless link is a wireless link between the first base station and the terminal
  • first feedback information is sent to the first base station, and the first feedback information is used for Triggering the first base station to instruct the terminal to recover from the failure of the first radio link through the SRB.
  • the receiving the first request information sent by the first base station includes: receiving query information sent by the first base station, where the query information is used to query whether the second base station supports the SRB; sending response information to the first base station; the response information is used to indicate that the second base station supports the SRB.
  • the method further includes: receiving second request information sent by the first base station; and the second request information is used to request whether to release the first wireless communication via the SRB.
  • Link failure recovery resources sending second feedback information to the first base station; and the second feedback information is used to trigger the first base station to request the terminal to release the pass-through information in the second base station
  • the SRB configures the failure recovery of the first radio link.
  • an embodiment of the present application provides a communication device, which has a function of realizing the behavior of the terminal in the communication method shown in the first aspect above.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or means corresponding to the above-mentioned functions.
  • the device includes a processor configured to support the device to perform the corresponding functions of the terminal in the communication method shown above.
  • the device may also include a memory, which may be coupled with the processor, which stores program instructions and data necessary for the device.
  • the device further includes a transceiver, which is used to support communication between the device and network elements such as relay equipment and access network equipment.
  • the transceiver may be an independent receiver, an independent transmitter, or a transceiver with integrated transceiver functions.
  • the communication device may be a terminal, or a component that can be used in a terminal, such as a chip or a chip system or a circuit.
  • an embodiment of the present application provides a communication device that has a function of implementing the behavior of the first base station in the resource allocation method for restoring bearer recovery shown in the second aspect above.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or means corresponding to the above-mentioned functions.
  • the device includes a processor configured to support the device to perform corresponding functions of the access network device in the communication method shown above.
  • the device may also include a memory, which may be coupled with the processor, which stores program instructions and data necessary for the device.
  • the resource allocation device for restoring bearer restoration may be the first base station, or a component that can be used in the base station, such as a chip or a chip system or a circuit.
  • the device further includes a transceiver, which may be used to support communication between the access network device and the terminal, and send the information or instructions involved in the above-mentioned communication method to the terminal.
  • the transceiver may be an independent receiver, an independent transmitter, or a transceiver with integrated transceiver functions.
  • an embodiment of the present application provides a communication system, including a first base station as a master node and a second base station as a secondary node.
  • the communication system may further include a terminal, and the terminal may simultaneously access the first base station and the second base station.
  • an embodiment of the present application provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the instructions run on a computer, the computer executes any of the above-mentioned aspects. method.
  • the embodiments of the present application provide a computer program product containing instructions that, when the instructions run on a computer, cause the computer to execute the method described in any of the above aspects.
  • FIG. 1 is a schematic diagram of a communication system 100 provided by an embodiment of this application.
  • Figure 2(a) is a schematic diagram of a dual-connection scenario provided by an embodiment of this application.
  • Figure 2(b) is a schematic diagram of a dual connection scenario provided by an embodiment of this application.
  • Figure 2(c) is a schematic diagram of an LTE-NR dual-connection scenario provided by an embodiment of this application;
  • Figure 2(d) is a schematic diagram of an LTE-NR dual-connection scenario provided by an embodiment of the application;
  • Figure 3(a) is a schematic diagram of the first dual-connection wireless protocol architecture provided by an embodiment of this application.
  • Figure 3(b) is a schematic diagram of a second dual-connection wireless protocol architecture provided by an embodiment of the application.
  • FIG. 4 is a flowchart of a communication method provided by an embodiment of this application.
  • FIG. 5 is a flowchart of a communication method provided by an embodiment of this application.
  • FIG. 6 is a flowchart of a communication method provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a terminal provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a base station provided by an embodiment of the application.
  • Fig. 1 is a schematic diagram of a communication system 100 provided by an embodiment of the present application.
  • the terminal 130 supports DC, and the access network device 110 and the access network device 120 jointly provide data transmission services for the terminal 130, where the access network device 110 is an MN, and the access network device 110 is an SN.
  • the MN 110 and the core network (core network, CN) 140 have a control plane connection or a user plane connection; the SN 120 and the core network 140 can have a user plane connection or no user plane connection.
  • S1-U stands for user plane connection
  • S1-C stands for control plane connection.
  • the user plane connection between the MN 110 and the core network 140 and the user plane connection between the SN 120 and the core network 140 may exist at the same time, or only any one of them may exist.
  • the data of the terminal 130 can be offloaded to the SN 120 by the MN 110 at the packet data convergence protocol (PDCP) layer.
  • PDCP packet data convergence protocol
  • the data of the terminal 130 can be offloaded by the SN 120 to the MN 110 at the PDCP layer.
  • the above MN can also be called a primary base station or a primary access network device, and the SN can also be called a secondary base station or a secondary access network device.
  • the terminal 130 may be various types of devices that provide users with voice and/or data connectivity, such as a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal may communicate with the core network via an access network, such as a radio access network (RAN), and exchange voice and/or data with the RAN.
  • the terminal may refer to user equipment (UE), wireless terminal, mobile terminal, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station ( remote station, access point (AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user device) Wait.
  • the terminal 130 may include mobile phones (or “cellular” phones), computers with mobile terminals, portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices, smart wearable devices, and so on.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • smart bracelets smart watches and other equipment.
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • the terminal 130 may also be a drone device.
  • the chip applied in the above-mentioned device may also be referred to as a terminal.
  • the communication system in this application may be a long term evolution (LTE) wireless communication system, or a fifth generation (5G) mobile communication system such as a new radio (NR) system, or other Next generation (NG) communication systems, etc., are not limited in this application.
  • LTE long term evolution
  • 5G fifth generation
  • NR new radio
  • NG Next generation
  • the access network equipment 110 and the access network equipment 120 may be base stations defined by the 3rd generation partnership project (3GPP).
  • 3GPP 3rd generation partnership project
  • it can be the base station equipment in the LTE system, that is, evolved NodeB (eNB/eNodeB); it can also be the access network side equipment in the NR system, including gNB, transmission point (trasmission/reception point, TRP).
  • eNB/eNodeB evolved NodeB
  • TRP transmission point
  • the aforementioned access network device 110 or access network device 120 may be composed of a centralized unit (CU) and a distributed unit (DU), where the CU may also be referred to as a control unit (CU).
  • CU centralized unit
  • DU distributed unit
  • CU control unit
  • the CU-DU structure can split the protocol layer of the base station, part of the protocol layer functions are placed under the centralized control of the CU, and the remaining part or all of the protocol layer functions are distributed in the DU, and the CU centrally controls the DU, for example ,
  • the radio resource control (Radio Resource Control, RRC), Service Data Adaptation Protocol (SDAP), and Packet Data Convergence Protocol (PDCP) layers can be deployed in the CU, and the rest of the radio link control
  • the (Radio Link Control, RLC) layer, the Media Access Control (MAC) layer, and the physical layer (Physical) are deployed in the DU.
  • the CU and DU are connected through the F1 interface.
  • CU stands for gNB to connect to the core network through the NG interface.
  • the CU may also adopt a structure in which a control plane (control plane) entity and a user plane (user plane, UP) entity are separated, and one control plane entity manages multiple user plane entities.
  • one gNB may have one gNB-CU-CP, multiple gNB-CU-UPs, and multiple gNB-DUs.
  • One gNB-CU-CP connects to multiple gNB-CU-UPs through the E1 interface
  • one gNB-CU-CP can connect to multiple gNB-DUs through the F1-C interface
  • one gNB-DU can connect to multiple gNB-DUs through the F1-U interface gNB-CU-UP.
  • the LTE eNB may also be called eLTE eNB.
  • the eLTE eNB is an evolved LTE base station equipment based on the LTE eNB, and can be directly connected to the 5G CN.
  • the eLTE eNB also belongs to the base station equipment in the NR.
  • the access network device 101 or the access network device 102 can also be a wireless terminal (wireless terminal, WT), such as an access point (access point, AP) or an access controller (access controller, AC), or other devices with a terminal , and network devices with core network communication capabilities, such as relay devices, vehicle-mounted devices, smart wearable devices, etc.
  • WT wireless terminal
  • AP access point
  • AC access controller
  • network devices with core network communication capabilities such as relay devices, vehicle-mounted devices, smart wearable devices, etc.
  • the embodiments of this application do not limit the types of network devices.
  • Dual connectivity can be implemented between access network devices of the same standard, as shown in Figure 2(a), which is a schematic diagram of a 5G core network NR-NR dual connectivity (NR-NR Dual Connectivity, NR-DC) network.
  • NR-NR Dual Connectivity NR-DC
  • both MN110 and SN120 are NR gNB, and there is an Xn interface between MN110 and SN120.
  • There is an NG interface between MN110 and NGC at least there is a control plane connection, and there may be a user plane connection; there is an NG-U interface between SN120 and 5GC, that is, there can only be a user plane connection.
  • NGC may include functional entities such as core access and mobility management function (AMF) network elements and user plane function (UPF) network elements.
  • AMF core access and mobility management function
  • UPF user plane function
  • Dual connectivity can also be implemented between different access network devices, which can be called Multi-RAT DC (MR-DC).
  • MN and SN use different radio access technologies (radio access tenology, RAT). ).
  • the multi-RAT DC (MR-DC) architecture supports multiple bearer types. Different types of bearers can be distinguished by using the MN or SN as the anchor point at the Packet Data Convergence Protocol (PDCP) layer. And the bearer types can be switched.
  • dual connectivity can be realized in the scenario of LTE and NR joint networking, so that the terminal can obtain wireless resources from the LTE and NR air interfaces for data transmission at the same time, and obtain a gain in transmission rate.
  • LTE and NR dual connectivity can include the following three architectures, which are described below with reference to Figure 2(b), Figure 2(c) and Figure 2(d) respectively.
  • FIG. 2(b) is a schematic diagram of an LTE-NR dual connectivity (E-UTRA-NR Dual Connectivity, EN-DC) network.
  • the LTE eNB serves as the MN
  • the NR gNB serves as the SN.
  • EPC evolved Packet Core
  • Figure 2(c) is a schematic diagram of an NR-LTE dual connectivity (NR-E-UTRA Dual Connectivity, NE-DC) network.
  • the NR gNB is used as the anchor point, and the NR gNB is connected to the NGC, and the NR gNB is used as the MN.
  • LTE eNB as an SN, has an NG-U interface with NGC, which only establishes a user plane connection for the terminal.
  • FIG. 2(d) is a schematic diagram of a 5G core network LTE-NR (Next Generation E-UTRA-NR Dual Connectivity, NGEN-DC) network.
  • LTE-NR Next Generation E-UTRA-NR Dual Connectivity, NGEN-DC
  • the LTE eNB accesses the NGC. That is, as the MN, the LTE eNB has an NG interface with the NGC, which can establish a control plane connection and a user plane connection for the terminal; the NR gNB, as an SN, has an NG-U interface with the NGC, which only establishes a user plane connection for the terminal.
  • the SN and the core network may not establish a user plane connection, but transmit data via the MN.
  • the terminal's data arrives at the MN first, and the MN splits the terminal's data at the PDCP layer.
  • the form of the offloaded data is, for example, a PDCP protocol data unit (Protocol Data Unit, PDU).
  • PDU Protocol Data Unit
  • the DRB and SRB established by the terminal and the access network side can be independently provided by the MN or SN, or can be provided by the MN and SN at the same time.
  • the bearer provided by the MN is called the MCG bearer, where the MCG contains at least one cell managed by the MN for providing air interface transmission resources for the terminal;
  • the bearer provided by the SN is called the SCG bearer, where the SCG contains the air interface for the terminal At least one SN-managed cell that transmits resources.
  • the bearer provided by the MN and SN at the same time is called a split bearer.
  • the cell When there is only one cell in the MCG, the cell is the primary cell (PCell) of the terminal. When there is only one cell in the SCG, the cell is the primary and secondary cell (PSCell) of the terminal.
  • PCell and PSCell can be collectively referred to as a special cell (SpCell).
  • SpCell When there are multiple cells in each of the MCG or the SCG, all cells other than SpCell may be referred to as secondary cells (secondary cells, SCells).
  • SCells secondary cells
  • the PSCell is a cell in which the terminal is instructed to perform random access or initial PUSCH transmission among the cells of the SCG.
  • the SCell is a cell working on the secondary carrier. Once the RRC connection is established, the SCell may be configured to provide additional radio resources.
  • FIG. 3(a) and FIG. 3(b) are respectively schematic diagrams of a dual-connection wireless protocol architecture provided by an embodiment of the application.
  • the bearer when the bearer is only provided by the MN, that is, when the data flow is only flowed from the core network to the MN, the bearer is an MCG bearer.
  • the bearer when the bearer is only provided by the SN, that is, when the data flow is only flowed from the core network to the SN, the bearer is an SCG bearer.
  • the bearer When the bearer is provided by both the MN and the SN, that is, when the data stream is split between the MN or SN, the bearer is a split bearer.
  • the split bearer in the MN can be called MCG split bearer ( Figure 3(a))
  • the shunt in the SN can be called SCG split bearer (as shown in Figure 3(b)).
  • each bearer type has corresponding PDCP layer processing and RLC layer processing.
  • SCG bearer/SCG split bearer corresponds to SCG RLC bearer and SN terminated PDCP bearer.
  • the bearers in DC can be divided into the following types, including: MCG bearer terminated at MN (MN terminated MCG bearer), SCG bearer terminated at MN (MN terminated SCG bearer), Terminate the split bearer in the MN (MN terminated split bearer), terminate the MCG bearer in the SN (SN terminated MCG bearer), terminate the SCG bearer in the SN (SN terminated SCG bearer), and terminate the split bearer in the SN (SN terminated split bearer) ), where the PDCP entity is established in the MN for the bearer that terminates in the MN, and the user plane connection with the core network is terminated in the MN, that is, the MN is used as the anchor; for the bearer that is terminated in the SN, the PDCP entity is established in the SN , The user plane connection with the core network is terminated in the SN, that is, the SN is the anchor point.
  • MN terminated MCG bearer MN terminated MCG bearer
  • the bearer terminates at the MN or the SN indicates whether the data transmission with the core network is performed through the MN or the SN.
  • the MCG or SCG is provided.
  • the uplink data sent by the terminal passes through
  • the MAC layer and RLC layer of the SN are processed, they are all transferred to the PDCP layer of the MN for processing and sent to the core network device through the interface between the MN and the core network.
  • the downlink data sent by the core network is processed by the PDCP layer of the MN.
  • the RLC layer and MAC layer of the SN are further processed and sent to the terminal through SCG.
  • part of the uplink data sent by the terminal is sent to the MN through MCG, the other part is sent to the SN through SCG, and the two parts of data are aggregated to the PDCP layer of the MN for processing and sent to the core network through the interface between the MN and the core network Equipment;
  • part of the downlink data issued by the core network is processed by the PDCP layer of the MN, and then part of the data is transferred to the SN and sent to the terminal through the SCG, while the rest is still sent to the terminal by the MN through the MCG.
  • signaling information is transmitted between the terminal and the base station through the SRB.
  • the MN sends signaling information to the terminal through SRB1.
  • the RLC layer under the PDCP layer of the MN is separated, one part transmits signaling information to the terminal through the RLC layer of the MN, and the other part transmits signaling information to the terminal through the RLC layer of the SN.
  • this transmission method is called separated SRB1.
  • the SN sends signaling information to the terminal through SRB3, which is a signaling radio bearer directly established between the terminal and the SN.
  • the terminal When the terminal sends uplink data to the MN by separating the SRB1, if the terminal configuration duplication transmission is activated, it can directly send the uplink data to the PDCP layer of the MN through the MCG bearer, or send the uplink data to the PDCP layer of the MN through the SCG bearer Layer; if the terminal configuration duplication transmission is not activated, the terminal can only select one of the MCG bearer and the SCG bearer for data transmission.
  • the bearer is called the primary path. Wherein, the main path is configured by the base station side, and the main path is used for the terminal to send uplink data packets.
  • Fig. 4 is a flowchart of a communication method provided by an embodiment of the present application.
  • the embodiment of the present application proposes a communication method.
  • the method can be executed by a terminal or by a device for a terminal such as a chip or a chip system, and the terminal supports DC communication.
  • the method includes:
  • Step S401 When the first radio link fails, the main path of the separated bearer is switched from the first radio link control RLC bearer to the second RLC bearer.
  • the embodiment of the present application takes the main path being the MCG bearer as an example.
  • the first wireless link refers to the MCG link between the terminal and the MN
  • the bearer for data transmission through the MCG link is the MCG bearer
  • the second wireless link refers to the SCG link between the terminal and the SN.
  • the bearer for data transmission on the SCG link is the SCG bearer.
  • the separate bearer may be a separate SRB1 bearer.
  • the separate bearer includes two RLC bearers.
  • the first RLC bearer belongs to MCG, and the first RLC bearer is a bearer for data transmission through the first RLC, which can also be expressed as MCG RLC bearer;
  • the second RLC belongs to SCG, and the second RLC bearer.
  • the bearer is a bearer for data transmission through the second RLC, and can also be expressed as an SCG RLC bearer.
  • the terminal When the terminal detects that the MCG bearer cannot perform data transmission, it indicates that the MCG link fails. At this time, the terminal sends an MCG failure message to the MN to inform the MN that the current MCG link fails. After receiving it, the MN can switch to the MN to re-establish the MCG link Data transmission, or the MN sends an RRC connection release message after receiving it, and the UE enters the RRC idle state (RRC_IDLE state) or the RRC inactive state (RRC_INACTIVE state).
  • the MCG link failure may be an air interface link failure (radio link failure, RLF), etc.
  • the terminal autonomously switches the main path of the separated bearer from the MCG RLC bearer to the SCG RLC bearer due to the detection of the failure of the primary path, and sends the MCG failure message to the MN through the SCG bearer to perform MCG
  • MCG fast recovery MCG fast recovery
  • the terminal when the MN performs MCG fast recovery, the terminal starts timing when sending the MCG failure message. If the terminal does not receive the RRC reconfiguration message, RRC release message and other feedback messages sent by the MN within the specified time, the terminal defaults that the MN fails to perform MCG fast recovery, and the terminal re-establishes the RRC connection. This prevents the terminal from waiting indefinitely for the MN to perform MCG quick recovery, thereby shortening the terminal's response time. Of course, if the terminal receives the RRC reconfiguration message or the RRC release message sent by the MN within the specified time, it indicates that the MN has successfully performed the MCG quick recovery. At this time, the terminal does not need to re-establish the RRC connection.
  • the specified time can be implemented by a preset timer (timer).
  • the terminal when the terminal detects that the SCG bearer and cannot perform data transmission during the MCG fast recovery process of the MN, it indicates that the SCG link fails, and the terminal cannot send the MCG failure message to the MN at this time. In this case, the MN cannot receive the MCG failure message and cannot perform MCG fast recovery. Therefore, when the terminal detects that the SCG bearer cannot perform data transmission, the terminal immediately re-establishes the RRC connection. In this way, there is no need to wait for a timeout before re-establishing the RRC connection, thereby further shortening the terminal response time.
  • Step S403 When the RRC connection is re-established, the primary path is switched to the first RLC bearer.
  • the terminal since the primary path has been previously switched to the SCG RLC bearer to send MCG failure information, if the terminal does not switch the primary path to the MCG RLC bearer when re-establishing the RRC connection, the terminal will not be able to switch the primary path to the MCG RLC bearer. Send and receive RRC messages through SRB1. Therefore, when the terminal reestablishes the RRC connection, it needs to switch the primary path to the MCG RLC bearer.
  • the terminal may actively switch the primary path to the MCG RLC bearer when re-establishing the RRC connection.
  • step S401 the method further includes:
  • Step S402 Determine whether the main path of the separated bearer is a second RLC bearer.
  • step S403 is executed;
  • the terminal determines that the current primary path is the MCG RLC bearer, it means that the primary path does not need to be switched.
  • some terminals when MCG link failure is detected, some terminals first perform MCG quick recovery and then perform RRC connection re-establishment, and some terminals directly perform RRC connection re-establishment. Therefore, for different terminals, when performing RRC connection re-establishment, it is necessary to detect whether the current primary path is the MCG RLC bearer or the SCG RLC bearer. If it is detected that the current primary path is the MCG RLC bearer, the terminal does not need to switch the primary path; if it is detected that the current primary path is the SCG RLC bearer, the terminal will switch the primary path to the MCG RLC bearer.
  • the network side (for example, MN) may assist the terminal to switch the main path.
  • the method further includes:
  • Step S404 Send the first link recovery failure reason value to the first base station.
  • the first base station is an MN
  • the first link recovery failure message is an MCG quick recovery failure message.
  • the MN After receiving a re-establishment request message with a re-establishment reason of "MCG fast recovery failure", the MN determines that the terminal has switched the primary path separating SRB1 to the SCG RLC bearer due to MCG fast recovery. Therefore, in order for the MN to send and receive RRC messages through SRB1 after the terminal completes the re-establishment of the RRC connection, an indication information is added to the RRC re-establishment message to instruct the UE to reconfigure the primary path separating SRB1 as an MCG RLC bearer.
  • Step S405 Receive indication information from the first base station, and switch the primary path to the first RLC bearer.
  • the MN When the MN sends a re-establishment message to the terminal, it also sends the indication information to the terminal, and the terminal switches the primary path to the MCG RLC bearer according to the indication information.
  • the method further includes step S406 of sending and/or receiving the RRC message through the first wireless link.
  • the communication method described in the embodiments of the present application can be used in various dual-connection scenarios, such as EN-DC, NR DC, NGEN-DC, NE-DC, etc. scenarios, which are not limited in the present application.
  • the essence of terminal triggering RRC re-establishment is to re-establish the PDCP layer, and this process only operates on certain variables and stored data packets, and Update security configuration does not operate on the main path. If the main path is not switched to MCG RLC bearer after the terminal fails to perform MCG quick recovery, the configuration of the terminal side and the MN side when the RRC re-establishment between the terminal and the MN is carried out It is not aligned, and the RRC re-establishment process cannot be completed.
  • the terminal after the terminal fails the MCG quick recovery, the terminal automatically or through the MN assistance method switches the primary path to the MCG RLC bearer, so that the terminal side configuration is aligned with the base station side configuration, so that the RRC re-establishment process can be performed normally Separate the sending and receiving of RRC messages of SRB1, thereby completing the RRC re-establishment process, maintaining normal dual-connection communication of the terminal, and improving communication quality.
  • the RRC re-establishment process for other situations includes MCG failure recovery and other failure cases, such as radio link failure (RLF). ), reconfiguration failure, handover failure (handover, HO) failure, integrity protection check failure, etc.
  • MCG failure recovery and other failure cases such as radio link failure (RLF).
  • RLF radio link failure
  • reconfiguration failure handover failure (handover, HO) failure
  • integrity protection check failure etc.
  • the primary path of the terminal can be configured for the network as SCG, or the terminal can be configured independently
  • the UE autonomously switches the main path to the MCG.
  • the UE can also delete the moreThanOneRLC configuration, where the moreThanOneRLC configuration contains the settings of the main path.
  • the terminal when the terminal sends uplink data to the MN by separating SRB1, when the terminal detects that the MCG bearer cannot perform data transmission, if the SN is configured with SRB3, the terminal can also perform MCG fast recovery through SRB3.
  • Fig. 5 is a flowchart of a communication method provided by an embodiment of the application.
  • an embodiment of the present application provides a communication method, which is executed by a first base station or a device for the first base station, such as a chip or a chip system.
  • the method includes:
  • Step S503 Send the first request information to the second base station.
  • the bearer recovery method provided in this application may be based on the solution described in FIG. 4.
  • the first base station is MN and the second base station is SN as an example.
  • the first request information is used to request whether the SN supports MCG fast recovery between the MN and the terminal through SRB3.
  • Step S504 Receive first feedback information in response to the first request information from the second base station.
  • the first feedback information means that the SN feeds back to the MN whether it supports the MN to perform MCG quick recovery between the MN and the terminal through the SRB3 according to the first request information.
  • the first feedback information is used to indicate whether the SN accepts/supports rapid MCG recovery through SRB3.
  • SRB3 may refer to the SRB directly established between the SN and the terminal.
  • Step S505 Instruct the terminal to recover from the failure of the first wireless link through SRB3 according to the first feedback information.
  • instructing the terminal to recover from the failure of the first wireless link through SRB3 may include sending to the terminal a configuration for the second base station to perform MCG rapid recovery through SRB3, and these configurations may include timer information.
  • the MN After the MN receives the first feedback information, if the first feedback information indicates that the SN does not support MCG quick recovery between the MN and the terminal through SRB3, the MN either performs MCG quick recovery by separating SRB1 or triggers the terminal to perform RRC connection Re-establishment; if the first feedback information indicates that the SN supports the MN to perform MCG rapid recovery with the terminal through SRB3, the MN sends the relevant configuration of the SRB3 of the SN to the terminal to perform MCG rapid recovery.
  • the related configuration of SRB3 of the SN may be determined in whole or in part by the MN.
  • the MN may determine whether the SN supports sending signaling to the terminal through SRB3.
  • the method also includes:
  • Step S501 Send query information to the second base station.
  • the query information may also be referred to as request information.
  • the query information sent by the MN to the SN is used to query whether the SN supports SRB3. Sending the query message is a prerequisite for whether the SN supports the MCG fast recovery for the MN.
  • the SN receives the query information, and sends a response message in response to the query information to the MN.
  • Step S502 Receive response information sent by the second base station.
  • Steps S503-S505 are executed.
  • the MN when the MN requests the SN to support MCG rapid recovery through SRB3, it queries whether the SN supports SRB3 and whether it supports MCG rapid recovery through SRB3, and then requests the terminal to configure resources for the SN to perform MCG rapid recovery through SRB3.
  • the terminal To avoid the problem of excessive service interruption time caused by the excessively long service interruption time caused by the SN not supporting the MCG fast recovery through SRB3 after the MN requests the terminal to configure the bearer for the SN to perform the MCG fast recovery through SRB3, so that the service transmission can be quickly resumed, Improve communication quality.
  • the method further includes:
  • Step S506 Send the second request information to the second base station.
  • the second request information is used to request the SN to release resources for MCG rapid recovery through SRB3.
  • the SN receives the request information, and sends the second feedback information in response to the request information to the MN.
  • the MN After the MN succeeds in MCG quick recovery through SRB3 or MCG quick recovery fails, in order to prevent the process from occupying the resources of the terminal all the time, the MN needs to let the terminal release the configuration resources for MCG quick recovery through SRB3.
  • Step S507 Receive second feedback information in response to the second request information from the second base station.
  • Step S508 Request the terminal to release the configuration of the first wireless link failure recovery through SRB3.
  • the MN After the MN receives the feedback information sent by the SN, if the feedback information indicates that the SN releases/cancel the MCG quick recovery configuration through SRB3, the MN requests the terminal to release/cancel the corresponding configuration in the SN; if the feedback information indicates that the SN has not been released/cancelled When the MCG quick recovery configuration is performed through SRB3, the MN will not request the terminal to release/cancel the MCG quick recovery configuration.
  • the previous configuration of the terminal is cancelled, thereby avoiding the resource occupation of the terminal.
  • Fig. 6 is a flowchart of a communication method provided by an embodiment of the application.
  • an embodiment of the present application provides a communication method, which is executed by a second base station or a device for the second base station, such as a chip or a chip system.
  • the method includes:
  • Step S601 Receive query information sent by the first base station.
  • the bearer recovery method provided in this application may be based on the solution described in FIG. 4.
  • the first base station is MN and the second base station is SN as an example.
  • the query information is used to query whether the SN supports SRB3.
  • Step S602 Send response information to the first base station.
  • the response information can be that the SN does not support SRB3, indicating that the SN cannot transmit signaling information with the terminal; it can also be that the SN supports SRB3, indicating that the SN can transmit signaling information with the terminal.
  • Step S603 Receive the first request information sent by the first base station.
  • the first request information is used to request whether the SN supports SRB3 to perform MCG rapid recovery.
  • Step S604 Send first feedback information in response to the first request information to the first base station.
  • the first feedback information is used to trigger the MN to instruct the terminal to perform MCG quick recovery configuration through SRB3.
  • Step S605 Receive the second request information sent by the first base station.
  • the second request information is used to request whether the SN releases resources for rapid recovery of MCG through SRB3.
  • Step S606 Send second feedback information to the first base station.
  • the second feedback information is used to trigger the MN to instruct the terminal to perform MCG rapid recovery through SRB3.
  • the SN when the SN receives a request from the MN to support MCG rapid recovery through SRB3, it queries whether the SN supports SRB3 and whether it supports MCG rapid recovery through SRB3. Recovery of resources, so as to achieve rapid MCG recovery through SRB3.
  • the communication device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the present application may divide the communication device into functional units according to the foregoing method examples.
  • each function may be divided into each functional unit, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in this application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the communication device 700 shown in FIG. 7 includes a transceiver unit 701 and a processing unit 702.
  • the communication device 700 is used to support the terminal device to implement the function of the terminal in the communication method provided in the embodiment of the present application.
  • the processing unit 702 may be used to separate the terminal when the first wireless link fails.
  • the primary path of the bearer is switched from the first radio link control RLC bearer to the second RLC bearer; and when the RRC connection is re-established, the primary path is switched to the first RLC bearer.
  • the first wireless link refers to the MCG link between the terminal and the MN
  • the bearer for data transmission through the MCG link is the MCG bearer
  • the second wireless link refers to the SCG link between the terminal and the SN.
  • the bearer for data transmission on the SCG link is the SCG bearer.
  • the transceiver unit 701 is used for data/signaling transmission between the terminal and other communication devices, such as other terminals or access network devices.
  • the terminal can learn that the MCG link fails through detection, and then initiate the MCG fast recovery process. When the MCG fast recovery is unsuccessful, the terminal further performs the RRC re-establishment process.
  • the terminal For a detailed description of this series of processes, please refer to some embodiments of the method of this application. For example, the relevant content in the embodiment shown in FIG. 4 will not be repeated.
  • the processing unit 702 is configured to determine that the MCG recovery fails when the RRC reconfiguration message or the RRC release message of the MN is not received within a preset time, and perform RRC connection re-establishment.
  • the specific method of how to determine the failure of the MCG rapid recovery within the preset time you can refer to some embodiments of the method of this application, for example, the related content in the embodiment shown in FIG. 4, which will not be repeated.
  • the processing unit 702 is further configured to determine that the MCG rapid recovery fails when the SCG bearer fails during the rapid recovery of the MCG, and perform RRC connection re-establishment.
  • the specific method of how to determine the SCG bearer failure reference may be made to some embodiments of the method of this application, for example, related content in the embodiment shown in FIG.
  • the processing unit 702 is configured to determine whether the main path of the separated bearer is the second RLC bearer. When the processing unit 702 determines that the current primary path is the SCG RLC bearer, it switches the primary path to the MCG RLC bearer; when the processing unit 702 determines that the current primary path is the MCG RLC bearer, it means that the primary path does not need to be switched.
  • the processing unit 702 transceiver unit 701 is configured to send the first link recovery failure cause value to the first base station.
  • the first base station is an MN
  • the first link recovery failure message may be an MCG rapid recovery failure message.
  • the transceiver unit 701 is further configured to receive indication information from the first base station, and switch the main path to the first RLC bearer.
  • the MN When the MN sends a re-establishment message to the terminal, it also sends the indication information to the terminal, and the terminal switches the primary path to the MCG RLC bearer according to the indication information.
  • the processing unit 702 is configured to control the transceiver unit 701 to send and/or receive RRC messages through the first wireless link.
  • a processor may perform the functions of the processing unit 702, and a transceiver (transmitter/receiver) and/or a communication interface may perform the functions of the transceiver unit 701.
  • the processing unit 702 may be embedded in the processor of the terminal in the form of hardware or independent of the terminal, and may also be stored in the memory of the terminal or the base station in the form of software, so that the processor can call and execute the operations corresponding to the above functional units.
  • the device provided by the embodiment of the application automatically switches the primary path to the MCG RLC bearer after the terminal fails the MCG quick recovery, or MN-assisted, so that the terminal side configuration is aligned with the base station side configuration, so that the RRC re-establishment can be performed normally
  • the sending and receiving of the RRC message of SRB1 is separated, thereby completing the RRC re-establishment process, maintaining the normal dual-connection communication of the terminal, and improving the communication quality.
  • the communication device 800 shown in FIG. 8 includes a transceiver unit 801 and a processing unit 802.
  • the communication device 800 is used to support the base station to implement the function of the first base station in the communication method provided in the embodiment of the present application.
  • the transceiver unit 801 is used to send the first request information to the second base station;
  • the unit 801 is further configured to receive the first feedback information in response to the first request information from the second base station;
  • the processing unit 802 is configured to request the terminal to configure the resource for the second base station to recover from the failure of the first radio link through SRB3.
  • the first base station may be the MN of the terminal in the DC communication process, and the second base station may be the SN of the terminal in the DC communication process.
  • the first request information is used to request whether the SN supports the result of MCG quick recovery between the MN and the terminal through SRB3.
  • the first feedback information means that the SN feeds back to the MN whether it supports the MN to perform MCG quick recovery between the MN and the terminal through the SRB3.
  • the first feedback information is used to indicate whether the SN accepts/supports rapid MCG recovery through SRB3.
  • the transceiver unit 801 is configured to send query information to the second base station; the transceiver unit 801 is also configured to receive response information sent by the second base station in response to the query information.
  • the query information may also be referred to as request information.
  • the query information sent by the MN to the SN is used to query whether the SN supports SRB3.
  • the transceiver unit 801 is configured to send the second request information to the second base station; the transceiver unit 801 is also configured to receive a response to the second base station from the second base station.
  • the second feedback information of the request information; the processing unit 802 is configured to request the terminal to release the configuration of the first wireless link failure recovery through SRB3.
  • the communication device 800 is used to support the base station to implement the function of the second base station in the communication method provided in the embodiment of the present application.
  • the transceiver unit 801 is used to receive the first request information sent by the first base station. ;
  • the transceiver unit 801 is also used to send first feedback information to the first base station.
  • the second base station may be the SN of the terminal in the DC communication process.
  • the first request information is used to request whether the SN supports SRB3 to perform MCG rapid recovery, and the first feedback information is used to trigger the MN to instruct the terminal to perform MCG rapid recovery resources through SRB3.
  • the transceiver unit 801 is configured to receive query information sent by the first base station; the transceiver unit 801 is also configured to send response information to the first base station.
  • the query information is used to query whether the SN supports SRB3, and the response information can be that the SN does not support SRB3, indicating that the SN cannot transmit signaling information with the terminal; it can also be that the SN supports SRB3, indicating that the SN can communicate with the terminal Transmission of signaling information.
  • the transceiver unit 801 is configured to receive the second request information sent by the first base station; the transceiver unit 801 is also configured to send second feedback information to the first base station.
  • the second request information is used to request whether the SN releases resources for rapid recovery of MCG through SRB3, and the second feedback information is used to trigger the MN to instruct the terminal to release the configuration of rapid recovery of MCG through SRB3.
  • the specific implementation manner of how to implement the SN to determine whether to release the resources for rapid recovery of MCG through SRB3 please refer to some embodiments of the method of this application, for example, related content in the embodiments shown in Figures 5-6, which will not be repeated.
  • each functional unit of the communication device 800 for example, refer to the behavior of the access network device (primary node/secondary node) in the embodiment of the communication method provided in this application, for example, FIGS. 5 to 6 The relevant content in the illustrated embodiment will not be repeated.
  • a processor may perform the functions of the processing unit 802, and a transceiver (transmitter/receiver) and/or a communication interface may perform the functions of the transceiver unit 801,
  • the processing unit 802 may be embedded in the processor of the terminal or independent of the terminal in the form of hardware, and may also be stored in the memory of the terminal or the base station in the form of software, so that the processor can call and execute the operations corresponding to the above functional units.
  • the MN when the MN requests the SN to support MCG rapid recovery through SRB3, it queries whether the SN supports SRB3 and whether it supports MCG rapid recovery through SRB3, and then requests the terminal to configure resources for the SN to perform MCG rapid recovery through SRB3.
  • the problem of excessive service interruption time caused by the long service interruption time caused by the fact that the SN does not support the MCG fast recovery through the SRB3 after the MN requests the terminal to configure the bearer for the SN to perform the MCG fast recovery through the SRB3 is avoided.
  • FIG. 9 shows a schematic structural diagram of a communication device 900 provided in this application.
  • the communication device 900 may be used to implement the communication method and the communication method described in the foregoing method embodiments.
  • the communication device 800 may be a chip, a terminal, a base station, or other wireless communication equipment.
  • the communication device 900 includes one or more processors 901, and the one or more processors 901 can support the communication device 700 to implement the communication method performed by the terminal (UE) described in the embodiments of the present application, for example, as shown in FIG. 4
  • the method executed by the terminal in the embodiment; or, the one or more processors 901 can support the communication device 800 to implement the communication method executed by the base station described in the embodiment of the present application, for example, the embodiment shown in FIGS. 5-6 In the method performed by the base station (the first base station or the second base station).
  • the processor 901 may be a general-purpose processor or a special-purpose processor.
  • the processor 901 may include a central processing unit (CPU) and/or a baseband processor.
  • the baseband processor may be used to process communication data (for example, the first message described above), and the CPU may be used to implement corresponding control and processing functions, execute software programs, and process data of the software programs.
  • the communication device 900 may also include a transceiver unit 905 to implement signal input (reception) and output (transmission).
  • the communication device 900 may be a chip, and the transceiver unit 905 may be an input and/or output circuit of the chip, or the transceiver unit 905 may be an interface circuit of the chip, and the chip may be used as a UE or a base station or other wireless communication device. component.
  • the communication device 900 may be a UE or a base station.
  • the transceiving unit 905 may include a transceiver or a radio frequency chip.
  • the transceiving unit 905 may also include a communication interface.
  • the communication device 900 may further include an antenna 906, which may be used to support the transceiver unit 905 to implement the transceiver function of the communication device 900.
  • the communication device 900 may include one or more memories 902, on which a program (or an instruction or code) 903 is stored, and the program 903 may be executed by the processor 901, so that the processor 901 executes the foregoing method embodiments Method described in.
  • data may also be stored in the memory 902.
  • the processor 901 may also read data (for example, predefined information) stored in the memory 902. The data may be stored at the same storage address as the program 903, and the data may also be stored at a different address from the program 903. Storage address.
  • the processor 901 and the memory 902 may be provided separately or integrated together, for example, integrated on a single board or a system-on-chip (SOC).
  • SOC system-on-chip
  • the communication device 900 is a terminal or a chip that can be used in the terminal.
  • the terminal has a DC communication function.
  • the processor 901 is used to transfer the main path of the separated bearer from the first wireless link to the first wireless link.
  • a radio link control RLC bearer is switched to the second RLC bearer; and when the radio resource control RRC connection is re-established, the primary path is switched to the first RLC bearer.
  • the terminal has a first radio link with the first base station and a second radio link with the second base station, the terminal is configured to separate bearers, and the separated bearers include a first RLC bearer and a second RLC bearer, the The first RLC bearer corresponds to the first radio link, and the second RLC bearer corresponds to the second radio link.
  • the communication device 900 is a base station or a chip that can be used for access network equipment, and the base station can be used as a master node in DC communication.
  • the transceiver unit 905 is configured to send first request information to the second base station to request whether it supports the base station to perform MCG fast recovery through the SRB between the second base station and the terminal; and receive a response from the second base station to the second base station.
  • First feedback information of a request information the processor 901 is configured to request the terminal to perform MCG quick recovery through SRB3 according to the first feedback information.
  • the second base station is a secondary node in DC communication.
  • the base station can be used as a secondary node in DC communication.
  • the transceiver unit 905 is used to receive the first request information sent by the first base station and determine whether to support the first base station to perform MCG fast recovery through SRB3; The base station sends the first feedback information.
  • the first base station is a master node in DC communication.
  • the processor 801 may be a CPU, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), a field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices , For example, discrete gates, transistor logic devices, or discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the terminal 1000 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal. For example, the processor generates the first message, and then transmits the first message through the control circuit and the antenna.
  • the memory is mainly used to store programs and data, such as storing communication protocols and the above configuration information.
  • the control circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the input and output device is, for example, a touch screen, a display screen or a keyboard, and is mainly used to receive data input by the user and output data to the user.
  • the processor can read the program in the memory, interpret and execute the instructions contained in the program, and process the data in the program.
  • the processor When information needs to be sent through an antenna, the processor performs baseband processing on the information to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal to obtain a radio frequency signal, and transmits the radio frequency signal to the antenna in the form of electromagnetic waves. Send outside.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into information and Process this information.
  • FIG. 10 only shows one memory and one processor. In an actual terminal, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in this application.
  • the processor in FIG. 10 can integrate the functions of the baseband processor and the CPU.
  • the baseband processor and the CPU can also be independent processors, using technologies such as buses. interconnected.
  • the terminal may include multiple baseband processors to adapt to different network standards, the terminal may include multiple CPUs to enhance its processing capabilities, and various components of the terminal may be connected through various buses.
  • the baseband processor may also be referred to as a baseband processing circuit or a baseband processing chip.
  • the CPU may also be called a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the memory in the form of a program, and the processor executes the program in the memory to realize the baseband processing function.
  • the antenna and the control circuit with the transceiver function can be regarded as the transceiver unit 1001 of the terminal 1000, which is used to support the terminal to implement the receiving function in the method embodiment, or to support the terminal to implement the transmitting function in the method embodiment.
  • the processor having processing functions is regarded as the processing unit 1002 of the terminal 1000.
  • the terminal 1000 includes a transceiver unit 1001 and a processing unit 1002.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1001 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1001 can be regarded as the sending unit, that is, the transceiver unit 1001 includes a receiving unit and a sending unit,
  • the receiving unit may also be called a receiver, an input port, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the processor 1002 may be used to execute a program stored in the memory to control the transceiver unit 1001 to receive signals and/or send signals, and complete the functions of the terminal in the foregoing method embodiments.
  • the function of the transceiver unit 1001 may be implemented by a transceiver circuit or a dedicated transceiver chip.
  • the processor 1002 can execute the functions of the processing unit 702 in the communication device 700 shown in FIG. 7 or the processor 901 in the communication device 900 shown in FIG. 9; the transceiving unit 1001 can execute the communication device 700 shown in FIG.
  • the functions of the transceiving unit 701 in the communication device 900 or the transceiving unit 905 in the communication device 900 will not be described in detail.
  • FIG. 11 is a schematic structural diagram of a base station provided in an embodiment of the present application. As shown in FIG. 11, the base station can be applied to the system shown in FIG. 1 to perform the function of the access network device in the foregoing method embodiment.
  • the base station has the function of being a primary node or a secondary node in DC communication.
  • the base station 1100 may include one or more DU 1101 and one or more CU 1102.
  • the DU 1101 may include at least one antenna 11011, at least one radio frequency unit 11012, at least one processor 11013, and at least one memory 11014.
  • the DU 1101 part is mainly used for the transmission and reception of radio frequency signals, the conversion of radio frequency signals and baseband signals, and part of baseband processing.
  • the CU1102 may include at least one processor 11022 and at least one memory 11021.
  • CU1102 and DU1101 can communicate through interfaces, where the control plane interface can be Fs-C, such as F1-C, and the user plane (User Plane) interface can be Fs-U, such as F1-U.
  • the CU 1102 part is mainly used to perform baseband processing, control the base station, and so on.
  • the DU 1101 and the CU 1102 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the CU 1102 is the control center of the base station, which may also be referred to as a processing unit, and is mainly used to complete the baseband processing function.
  • the CU 1102 may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the baseband processing on the CU and DU can be divided according to the protocol layer of the wireless network, for example, the packet data convergence protocol (PDCP) layer and the functions of the above protocol layers are set in the CU, the protocol layer below PDCP, For example, functions such as the radio link control (RLC) layer and the media access control (media access control, MAC) layer are set in the DU.
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • DU implements radio link control (radio link control, RLC), media access Control (media access control, MAC) and physical (physical, PHY) layer functions.
  • the base station 1100 may include one or more radio frequency units (RU), one or more DUs, and one or more CUs.
  • the DU may include at least one processor 11013 and at least one memory 11014
  • the RU may include at least one antenna 11011 and at least one radio frequency unit 11012
  • the CU may include at least one processor 11022 and at least one memory 11021.
  • the CU1102 may be composed of one or more single boards, and multiple single boards may jointly support a wireless access network (such as a 5G network) with a single access indication, or may respectively support wireless access networks of different access standards.
  • Access network such as LTE network, 5G network or other networks.
  • the memory 11021 and the processor 11022 may serve one or more boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the DU1101 can be composed of one or more single boards.
  • Multiple single boards can jointly support a wireless access network with a single access indication (such as a 5G network), and can also support wireless access networks with different access standards (such as a 5G network).
  • the memory 11014 and the processor 11013 may serve one or more boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the DU and the CU can jointly perform the functions of the processor 802 in the communication device 800 shown in FIG. 8 or the functions of the processor 901 in the communication device 900 shown in FIG. 9; the transceiver unit 1001 can perform the functions shown in FIG.
  • the functions of the transceiving unit 801 in the communication device 800 or the functions of the transceiving unit 905 in the communication device 900 will not be described in detail.
  • the present application also provides a communication system, including a first base station and a second base station.
  • the first base station may serve as a master node
  • the second base station may serve as a secondary node.
  • the communication system further includes a terminal, and the terminal can simultaneously access the first base station and the second base station.
  • the terminal can simultaneously access the first base station and the second base station.
  • the disclosed system, device, and method may be implemented in other ways. For example, some features of the method embodiments described above may be ignored or not implemented.
  • the device embodiments described above are merely illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods, and multiple units or components may be combined or integrated into another system.
  • the coupling between the units or the coupling between the components may be direct coupling or indirect coupling, and the foregoing coupling includes electrical, mechanical, or other forms of connection.
  • the size of the sequence number of each process does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the terminal and/or network device can perform some or all of the steps in the embodiments of the present application. These steps or operations are only examples. The embodiments of the present application may also perform other operations or variations of various operations. .
  • each step may be performed in a different order presented in the embodiment of the present application, and it may not be necessary to perform all the operations in the embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和装置,其应用于无线通信技术领域。所述通信方法包括:当第一无线链路失败时,将分离承载的主路径由第一无线链路控制RLC承载切换为第二RLC承载;在进行无线资源控制RRC连接重建立时,将主路径切换至所述第一RLC承载。本申请在终端进行了MCG快速恢复失败后,终端自动或通过MN协助的方式将主路径切换至MCG RLC承载,使终端侧配置与基站侧配置对齐,从而能够正常进行RRC重建立过程中分离SRB1的RRC消息的收发,从而完成RRC重建过程,维持终端正常的双连接通信,提升通信质量。

Description

通信方法和装置 技术领域
本申请涉及无线通信技术领域,具体涉及一种通信方法和装置。
背景技术
在双连接(dual connectivity,DC)中,终端可以同时从主节点(master MN)与辅节点(secondary node,SN)获取通信服务。终端与MN之间建立的承载称为主小区组(master cell group,MCG)承载,终端与SN之间建立的承载称为辅小区组(secondary cell group,SCG)承载。当终端检测到MCG承载不能进行数据传输时,表明MCG链路失败,终端可以通过SCG承载向MN发送MCG失败信息,从而进行MCG快速恢复。为了能够通过SCG承载向MN发送MCG失败消息,未配置重复(duplication)传输的终端需要将主路径(primary path)从MCG RLC承载切换为SCG RLC承载。
然而,MCG快速恢复的过程也会发生失败,此时终端需要进行无线资源控制(radio resource control,RRC)连接的重建立。由于此前已经将主路径切换成SCG RLC承载,如果终端进行RRC连接的重建立时,会导致RRC重建立失败。
发明内容
本申请的实施例提供了一种通信方法和装置,用于在MCG快速恢复失败时,完成RRC重建立过程。
第一方面,本申请提供一种通信方法,所述方法用于支持双连接的终端,所述终端与第一基站存在第一无线链路且与第二基站存在第二无线链路,所述终端被配置分离承载,所述方法包括:
当所述第一无线链路失败时,将所述分离承载的主路径由第一无线链路控制RLC承载切换为第二RLC承载,其中,所述分离承载包括所述第一RLC承载与所述第二RLC承载,所述第一RLC承载对应于所述第一无线链路,所述第二RLC承载对应于所述第二无线链路;在进行无线资源控制RRC连接重建立时,将所述主路径切换至所述第一RLC承载。
本申请在终端进行了MCG快速恢复失败后,终端自动或通过MN协助的方式将主路径切换至MCG RLC承载,使终端侧配置与基站侧配置对齐,从而能够正常进行RRC重建立过程中分离SRB1的RRC消息的收发,从而完成RRC重建过程,维持终端正常的双连接通信,提升通信质量。
在另一个可能的实现中,所述在进行RRC连接重建立时,将所述主路径切换至所述第一RLC承载,包括:
判断所述分离承载的主路径是否为所述第二RLC承载;当所述主路径为所述第二RLC承载时,将所述主路径切换至所述第一RLC承载。
对于不同的终端来说,在检测到MCG链路失败时,有的终端先进行MCG快速恢复后再进行RRC连接重建立,有的终端直接进行RRC连接重建立。所以对于不同的终端,在进 行RRC连接重建立时,需要检测当前主路径为MCG RLC承载,还是SCG RLC承载。
在另一个可能的实现中,所述方法还包括:在预设时间内未收到所述第一基站的RRC重配置消息或RRC释放消息时,确定所述第一无线链路恢复失败,以及进行所述RRC连接重建立。这样避免终端无限期等待MN进行MCG快速恢复,从而缩短终端反应时间。
在另一个可能的实现中,所述方法还包括:在对第一无线链路失败恢复的过程中,当所述第二无线链路失败时,确定所述第一无线链路恢复失败,以及进行所述RRC连接重建立。这样就不需要等待超时,再进行RRC连接的重建立,从而进一步缩短终端反应时间。
在另一个可能的实现中,所述方法还包括:向所述第一基站发送所述第一链路恢复失败原因值,所述第一链路恢复失败原因值用于触发所述第一基站生成指示将所述主路径切换至所述第一RLC承载的指示信息;从所述第一基站接收所述指示信息,将所述主路径切换至所述第一RLC承载。
如果终端不能主动将主路径切换至MCG RLC承载,可以在向第一基站发起RRC连接的重建立请求消息中新增一个“MCG快速恢复失败”的重建立原因值,使得第一基站为终端配置分离SRB1的主路径为MCG RLC承载的指示信息,以协助终端切换主路径。
第二方面,本申请提供一种通信方法,所述方法由第一基站执行,包括:
向第二基站发送第一请求信息;所述第一请求信息用于请求所述第二基站是否支持所述第一基站通过所述第二基站与终端之间的信令无线承载SRB进行第一无线链路失败恢复,所述第一无线链路为所述第一基站与所述终端间的无线链路;从所述第二基站接收响应于所述第一请求信息的第一反馈信息;根据所述第一反馈信息指示所述终端通过所述SRB进行所述第一无线链路失败的恢复。
本申请实施例在MN向SN请求支持通过SRB3进行MCG快速恢复时,查询SN是否支持MCG快速恢复后,再进行请求终端配置通过SRB3进行MCG快速恢复的承载,避免现有技术中,在MN请求终端配置通过SRB3进行MCG快速恢复的承载后发现SN并不支持MCG快速恢复所造成业务中断时间过长的问题。
在另一个可能的实现中,所述向第二基站发送第一请求信息之前,包括:向所述第二基站发送查询信息,所述查询信息用于查询所述第二基站是否支持所述SRB;从所述第二基站接收响应信息;所述响应信息用于指示所述第二基站支持所述SRB。
本申请实施例在MN向SN请求支持通过SRB3进行MCG快速恢复时,在查询SN是否支持MCG快速恢复之前,还需要查询SN是否支持SRB3,以避免业务中断时间过长的问题。
在另一个可能的实现中,所述方法还包括:向所述第二基站发送第二请求信息;所述第二请求信息用于请求是否释放所述通过所述SRB进行所述第一无线链路失败恢复的资源;从所述第二基站接收响应于所述第二请求信息的第二反馈信息;请求所述终端释放所述第二基站中的所述通过所述SRB进行所述第一无线链路失败恢复的配置。
本申请实施例在MN完成通过SRB3进行MCG快速恢复的流程后,取消之前的对SN和终端的配置,从而避免对SN和终端的资源占用。
第三方面,本申请提供一种通信方法,所述方法由第二基站执行,包括:
接收第一基站发送的第一请求信息,所述第一请求信息用于请求所述第二基站是否支持所述第一基站通过所述第二基站与终端之间的信令无线承载SRB进行第一无线链路失败恢复,所述第一无线链路为所述第一基站与所述终端间的无线链路;向所述第一基站发送 第一反馈信息,所述第一反馈信息用于触发所述第一基站指示所述终端通过所述SRB进行所述第一无线链路失败的恢复。
在另一个可能的实现中,所述接收第一基站发送的第一请求信息,包括:接收所述第一基站发送的查询信息,所述查询信息用于查询所述第二基站是否支持所述SRB;向所述第一基站发送响应信息;所述响应信息用于指示所述第二基站支持所述SRB。
在另一个可能的实现中,所述方法还包括:接收所述第一基站发送的第二请求信息;所述第二请求信息用于请求是否释放所述通过所述SRB进行所述第一无线链路失败恢复的资源;向所述第一基站发送第二反馈信息;所述第二反馈信息用于触发所述第一基站请求所述终端释放所述第二基站中的所述通过所述SRB进行所述第一无线链路失败恢复的配置。
第四方面,本申请实施例提供了一种通信装置,该装置具有实现以上第一方面所示通信方法中终端的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或手段(means)。
在一种可能的设计中,该装置包括处理器,该处理器被配置为支持该装置执行以上所示通信方法中终端的相应功能。该装置还可以包括存储器,该存储可以与处理器耦合,其保存该装置必要的程序指令和数据。可选地,该装置还包括收发器,该收发器用于支持该装置与中继设备、接入网设备等网元之间的通信。其中,所述收发器可以为独立的接收器、独立的发射器或者集成收发功能的收发器。
在一个可能的实现方式中,该通信装置可以是终端,或者可用于终端的部件,例如芯片或芯片系统或者电路。
第五方面,本申请实施例提供了一种通信装置,该装置具有实现以上第二方面所示恢复承载恢复的资源分配方法中第一基站的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或手段(means)。
在一种可能的设计中,该装置包括处理器,该处理器被配置为支持该装置执行以上所示通信方法中接入网设备的相应功能。该装置还可以包括存储器,该存储器可以与处理器耦合,其保存该装置必要的程序指令和数据。
在一个可能的实现方式中,该恢复承载恢复的资源分配装置可以是第一基站,或者可用于基站的部件,例如芯片或芯片系统或者电路。
可选地,该装置还包括收发器,所述收发器可以用于支持接入网设备与终端之间的通信,向终端发送上述通信方法中所涉及的信息或者指令。所述收发器可以为独立的接收器、独立的发射器或者集成收发功能的收发器。
第六方面,本申请实施例提供了一种通信系统,包括作为主节点的第一基站,作为辅节点的第二基站。可选的,所述通信系统还可以包含终端,该终端可以同时接入第一基站与第二基站。
第七面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得计算机执行上述任一方面所述的方法。
第八方面,本申请实施例提供了一种包含指令的计算机程序产品,当所述指令在计算 机上运行时,使得计算机执行上述任一方面所述的方法。
附图说明
下面对实施例或现有技术描述中所需使用的附图作简单地介绍。
图1为本申请实施例提供的一种通信系统100的示意图;
图2(a)为本申请实施例提供的一种双连接场景示意图;
图2(b)为本申请实施例提供的一种双连接场景示意图;
图2(c)为本申请实施例提供的一种LTE-NR双连接场景示意图;
图2(d)为本申请实施例提供的一种LTE-NR双连接场景示意图;
图3(a)为本申请实施例提供的第一种双连接的无线协议架构示意图;
图3(b)为本申请实施例提供的第二种双连接的无线协议架构示意图;
图4为本申请实施例提供的一种通信方法的流程图;
图5为本申请实施例提供的一种通信方法的流程图;
图6为本申请实施例提供的一种通信方法的流程图;
图7为本申请实施例提供的一种通信装置的结构示意图;
图8为本申请实施例提供的一种通信的装置的结构示意图;
图9为本申请实施例提供的一种通信装置的结构示意图;
图10为本申请实施例提供的一种终端的结构示意图;
图11为本申请实施例提供的一种基站的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
图1是本申请实施例提供的一种通信系统100的示意图。如图1所示,终端130支持DC,接入网设备110和接入网设备120共同为终端130提供数据传输服务,其中接入网设备110为MN,接入网设备110为SN。MN 110与核心网(core network,CN)140之间具有控制面连接,也可以有用户面连接;SN 120与核心网140之间可以具有用户面连接,也可以不具有用户面连接,其中用S1-U代表用户面连接,用S1-C代表控制面连接。可以理解,MN 110与核心网140的用户面连接以及SN 120与核心网140的用户面连接可以同时存在,也可以只存在其中的任意一个。在SN 120与核心网140之间不具有用户面连接时,终端130的数据可以由MN 110在分组数据汇聚协议(packet data convergence protocol,PDCP)层分流给SN 120。在MN 110与核心网140之间不具有用户面连接时,终端130的数据可以由SN 120在PDCP层分流给MN 110。以上MN又可被称为主基站或主接入网设备,SN又可被称为辅基站或辅接入网设备。
在本申请中,终端130可以是向用户提供语音和/或数据连通性的各类设备,例如可以是具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。终端可以经接入网,例如无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端可以是指用户设备(user equipment,UE)、无线终端、移动终端、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、 接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、智能手环、智能手表等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。此外,终端130还可以是无人机设备。在本申请实施例中,应用于上述设备中的芯片也可以称为终端。
本申请中的通信系统可以是长期演进(long term evolution,LTE)无线通信系统,或者是新无线(new radio,NR)系统等第五代(5th generation,5G)移动通信系统、还可以是其他下一代(next generation,NG)通信系统等,本申请不做限定。
在本申请中,接入网设备110、接入网设备120可以是第三代合作伙伴计划(3rd generation partnership project,3GPP)所定义的基站。例如,可以是LTE系统中的基站设备,即演进型节点B(evolved NodeB,eNB/eNodeB);还可以是NR系统中的接入网侧设备,包括gNB、传输点(trasmission/reception point,TRP)等。上述接入网设备110或者接入网设备120可以是由集中单元(centralized unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit,CU),采用CU-DU的结构可以将基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU,例如,可以将无线资源控制(Radio Resource Control,RRC),业务数据适应协议(Service Data Adaptation Protocol,SDAP)以及分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层部署在CU,其余的无线链路控制(Radio Link Control,RLC)层、介质访问控制(Media Access Control,MAC)层以及物理层(Physical)部署在DU。CU和DU之间通过F1接口连接。CU代表gNB通过NG接口和核心网连接。可选地,CU还可以采用控制面(control plane)实体和用户面(user plane,UP)实体分离的结构,由一个控制面实体管理多个用户面实体。在一个示例中,一个gNB可以有一个gNB-CU-CP,多个gNB-CU-UP和多个gNB-DU。一个gNB-CU-CP通过E1接口连接多个gNB-CU-UP,一个gNB-CU-CP可以通过F1-C接口连接多个gNB-DU,一个gNB-DU可以通过F1-U接口连接多个gNB-CU-UP。
此外,当eNB接入NR的核心网或者称为下一代核心网(Next Genaeration Core,NGC)或者5G核心网(5th Generation Core Network,5GC)时,LTE eNB也可以称为eLTE eNB。具体地,eLTE eNB是在LTE eNB基础上演进的LTE基站设备,可以直接连接5G CN,eLTE eNB也属于NR中的基站设备。接入网设备101或接入网设备102还可以是无线端点(wireless terminal,WT),例如接入点(access point,AP)或者接入控制器(access controller,AC),或者其他具有与终端、及核心网通信能力的网络设备,例如,中继设备、车载设备、智能穿戴设备等,本申请实施例对网络设备的类型不做限定。
双连接可以在同制式的接入网设备之间实现,如图2(a)所示,为5G核心网NR-NR双连接(NR-NR Dual Connectivity,NR-DC)网络的示意图。在NR单独组网的场景中,MN110 与SN120均为NR gNB,MN110与SN120之间存在Xn接口。MN110和NGC之间存在NG接口,至少有控制面连接,可以还有用户面连接;SN120和5GC之间存在NG-U接口,即只可以有用户面连接。其中,NGC可以包括移动性管理功能(core access and mobility management function,AMF)网元以及用户面功能(user plane function,UPF)网元等功能实体。
双连接也可以在异制式接入网设备之间实现,可以称为多制式DC(Multi-RAT DC,MR-DC),其中,MN与SN采用不同的无线接入技术(radio access tenology,RAT)。多制式双连接(multi RAT DC,MR-DC)架构支持多种承载类型,不同类型的承载可以通过分组数据汇聚层协议(Packet Data Convergence Protocol,PDCP)层以MN还是SN为锚点进行区分,且承载类型之间可以切换。例如,可以在LTE和NR联合组网的场景下实现双连接,从而终端可以同时从LTE和NR空口获得无线资源进行数据传输,获得传输速率的增益。LTE与NR双连接可以包括如下三种架构,下面分别结合图2(b),图2(c)和图2(d)进行说明。
请参考图2(b),为LTE-NR双连接(E-UTRA-NR Dual Connectivity,EN-DC)网络的示意图。如图2(b)所示,LTE eNB作为MN,NR gNB作为SN。LTE eNB与NR gNB之间存在X2接口。LTE eNB与LTE系统的演进型分组核心网(evolved Packet Core,EPC)之间存在S1接口,至少有控制面连接,可以还有用户面连接;NR gNB和EPC之间存在S1-U接口,即只可以有用户面连接。可见,在图2(b)所示的场景中,以LTE eNB为锚点,且该LTE eNB接入LTE的核心网。
请参考图2(c),为NR-LTE双连接(NR-E-UTRA Dual Connectivity,NE-DC)网络的示意图。其与图2(b)的区别在于,以NR gNB为锚点,且该NR gNB接入NGC,NR gNB作为MN,与NGC之间存在NG接口,可以为终端建立控制面连接和用户面连接;LTE eNB作为SN,与NGC之间存在NG-U接口,仅为终端建立用户面连接。
请参考图2(d),为5G核心网LTE-NR双连接(Next Generation E-UTRA-NR Dual Connectivity,NGEN-DC)网络的示意图。。其与图2(b)同样以LTE eNB为锚点,区别在于该LTE eNB接入NGC。即,LTE eNB作为MN,与NGC之间存在NG接口,可以为终端建立控制面连接和用户面连接;NR gNB作为SN,与NGC之间存在NG-U接口,仅为终端建立用户面连接。
在以上四种场景中,SN和核心网之间也可以不建立用户面连接,而是经由MN传递数据,例如,在下行方向上,终端的数据先到达MN,MN在PDCP层将终端的数据分流给SN,其中分流的数据的形式例如为PDCP协议数据单元(Protocol Data Unit,PDU)。当MN与核心网之间没有用户面连接而SN与核心网之前有用户面连接时,终端的数据也可以由核心网传输至SN,由SN分流给MN,不做赘述。
在双连接中,终端与接入网侧建立的DRB和SRB可以由MN或者SN独立提供,也可由MN和SN同时提供。由MN提供的承载称为MCG承载,其中,MCG包含用于为终端提供空口传输资源的至少一个MN管理的小区;由SN提供的承载称为SCG承载,其中,SCG包含用于为终端提供空口传输资源的至少一个SN管理的小区。此外,同时由MN和SN提供的承载称为分离承载(split bearer)。
当MCG中仅有一个小区时,该小区为终端的主小区(primary cell,PCell)。当SCG中仅一个小区时,该小区为终端的主辅小区(primary secondary cell,PSCell)。PCell和PSCell可以统称为特别小区(special cell,SpCell)。当MCG或SCG中各有多个小区时,除了SpCell 的小区都可以称为辅小区(secondary cell,SCell)。此时各个小区组中的SCell与SpCell进行载波聚合(carrier aggregation,CA),共同为终端提供传输资源。其中,PSCell属于SCG的小区中,终端被指示进行随机接入或者初始PUSCH传输的小区。SCell是工作在辅载波上的小区,一旦RRC连接建立,SCell就可能被配置以提供额外的无线资源。
下面结合图3(a)和图3(b)进行说明,图3(a)和图3(b)分别为本申请实施例提供的双连接的无线协议架构示意图。如图3(a)和图3(b)所示,当承载仅由MN提供,即数据流仅由核心网流向MN时,该承载为MCG承载(bearer)。当承载仅由SN提供,即数据流仅由核心网流向SN时,该承载为SCG承载。当承载同时由MN和SN提供,即数据流在MN或SN分流时,该承载为分离承载(split bearer),为了区别起见,在MN分流的可以称为MCG split bearer(如图3(a)),在SN分流的可以称为SCG split bearer(如图3(b))。从图3(a)和图3(b)可知,每一种承载类型都有相应的PDCP层处理和RLC层处理,例如,SCG bearer/SCG split bearer对应有SCG RLC bearer和SN terminated PDCP bearer。
根据PDCP实体建立在MN还是SN,DC中的承载又可以分为如下几种类型,包括:终结在MN的MCG承载(MN terminated MCG bearer),终结在MN的SCG承载(MN terminated SCG bearer),终结在MN的split承载(MN terminated split bearer),终结在SN的MCG承载(SN terminated MCG bearer),终结在SN的SCG承载(SN terminated SCG bearer),终结在SN的split承载(SN terminated split bearer),其中,对于终结在MN的承载,PDCP实体建立在MN,与核心网的用户面连接终结在MN,即以MN为锚点(anchor);对于终结在SN的承载,PDCP实体建立在SN,与核心网的用户面连接终结在SN,即以SN为锚点。可以理解,承载终结在MN还是SN表示与核心网的数据传输通过MN进行还是SN进行,至于空口传输资源则由MCG或者SCG提供,例如,若采用MN terminated SCG bearer,则终端发送的上行数据通过SN的MAC层、RLC层处理后全部转到MN的PDCP层处理并通过MN与核心网的接口发送给核心网设备;对应地,核心网下发的下行数据通过MN的PDCP层处理后全部转到SN的RLC层、MAC层进一步处理并通过SCG发送给终端。若采用MN terminated split bearer,则终端发送的上行数据一部分通过MCG发送到MN,另一部分通过SCG发送到SN,两部分数据汇聚到MN的PDCP层处理并通过MN与核心网的接口发送给核心网设备;对应地,核心网下发的下行数据通过MN的PDCP层处理后一部分数据转到SN,通过SCG发送给终端,其余部分仍由MN通过MCG发送给终端。
在终端与基站之间的控制面信息交互过程中,终端与基站之间通过SRB进行信令信息的传输。以图3(a)为例,对于MN,MN通过SRB1向终端发送信令信息。当MN的PDCP层下面RLC层分离,一部分通过MN的RLC层向终端进行传输信令信息,另一部分通过SN的RLC层向终端进行传输信令信息,在此将这种传输方式叫做分离SRB1。对于SN,SN通过SRB3向终端发送信令信息,SRB3是终端与SN之间直接建立的信令无线承载。
在终端通过分离SRB1向MN发送上行数据时,如果终端配置重复(duplication)传输被激活时,可以直接通过MCG承载发送上行数据到MN的PDCP层,也可以通过SCG承载发送上行数据到MN的PDCP层;如果终端配置重复(duplication)传输未激活时,终端只能从MCG承载和SCG承载中选择一个承载进行数据传输,此时将该承载称为主路径(primary path)。其中,主路径由基站侧进行配置,且所述主路径用于终端发送上行数据包。
图4是本申请实施例提供的一种通信方法的流程图。如图4所示,本申请实施例为了解决上述问题,提出了一种通信方法,该方法可以终端执行,也可以由用于终端的装置例如芯片或者芯片系统执行,该终端支持DC通信。所述方法包括:
步骤S401,当第一无线链路失败时,将分离承载的主路径由第一无线链路控制RLC承载切换为第二RLC承载。
为了方便后续对该方案的描述,本申请实施例以主路径为MCG承载为例。其中,第一无线链路是指终端与MN之间的MCG链路,通过MCG链路进行数据传输的承载为MCG承载;第二无线链路是指终端与SN之间的SCG链路,通过SCG链路进行数据传输的承载为SCG承载。
所述分离承载可以是分离SRB1承载。所述分离承载包括两个RLC承载,第一RLC是属于MCG,第一RLC承载是通过第一RLC进行数据传输的承载,也可以表示为MCG RLC承载;第二RLC是属于SCG,第二RLC承载是通过第二RLC进行数据传输的承载,也可以表示为SCG RLC承载。
当终端检测到MCG承载不能进行数据传输时,表明MCG链路失败,此时终端发送MCG失败消息给MN,通知MN当前MCG链路失败,MN收到之后可以切换MN以重建立MCG链路进行数据传输,或者MN收到之后发送RRC连接释放消息,UE进入RRC空闲态(RRC_IDLE state)或RRC非激活态(RRC_INACTIVE state)。其中,MCG链路失败可以为空口链路失败(radio link failure,RLF)等。
在终端向MN发送MCG失败消息过程中,由于检测到主路径失败,所以终端自主的将分离承载的主路径由MCG RLC承载切换到SCG RLC承载,通过SCG承载向MN发送MCG失败消息,进行MCG承载快速恢复。然而,MN进行MCG快速恢复(MCG fast recovery)的过程也会发生失败,此时终端进行RRC连接的重建立。
在一种可能的实现方式中,在MN进行MCG快速恢复的过程中,终端在发送MCG失败消息时,开始计时。如果终端在规定的时间内未接收到MN发送的RRC重配置消息、RRC释放消息等反馈消息时,终端默认MN进行MCG快速恢复失败,此时终端进行RRC连接的重建立。这样避免终端无限期等待MN进行MCG快速恢复,从而缩短终端反应时间。当然,如果终端在规定的时间内接收到MN发送的RRC重配置消息或RRC释放消息,表明MN进行MCG快速恢复成功,此时终端就不需要进行RRC连接的重建立。所述规定的时间可以由一个预先设置的定时器(timer)实现。
在一种可能的实现方式中,在MN进行MCG快速恢复的过程中,当终端检测到SCG承载也不能进行数据传输时,表明SCG链路失败,此时终端无法向MN发送MCG失败消息。这种情况下,MN就无法接收到MCG失败消息,也就不能进行MCG快速恢复。所以终端在检测到SCG承载不能进行数据传输时,终端随即进行RRC连接的重建立。这样就不需要等待超时,再进行RRC连接的重建立,从而进一步缩短终端反应时间。
步骤S403,在进行RRC连接重建立时,将主路径切换至第一RLC承载。
在终端进行RRC连接的重建立过程中,由于此前已经将主路径切换成SCG RLC承载来发送MCG失败信息,如果终端进行RRC连接的重建立时,未将主路径切换至MCG RLC承载,终端将无法通过SRB1发送和接收RRC消息。所以终端在进行RRC连接的重建立时,需要将主路径切换至MCG RLC承载。
可选地,对于终端将主路径切换至MCG RLC承载的实现方式,可以为终端在进行RRC连接的重建立时,主动将主路径切换至MCG RLC承载。
在一种可能的实现方式中,在步骤S401之后,所述方法还包括:
步骤S402,判断分离承载的主路径是否为第二RLC承载。
当终端判断出当前主路径为SCG RLC承载时,则执行步骤S403;
当终端判断当前主路径为MCG RLC承载时,则表示主路径无需进行切换。
对于不同的终端来说,在检测到MCG链路失败时,有的终端先进行MCG快速恢复后再进行RRC连接重建立,有的终端直接进行RRC连接重建立。所以对于不同的终端,在进行RRC连接重建立时,需要检测当前主路径为MCG RLC承载,还是SCG RLC承载。如果检测当前主路径为MCG RLC承载时,终端就不需要进行主路径切换;如果检测当前主路径为SCG RLC承载时,终端就要将主路径切换至MCG RLC承载。
在一种可能的实现方式中,可以由网络侧(例如MN)协助终端切换主路径。在该实施方式中,在步骤S403之后,所述方法还包括:
步骤S404,向第一基站发送第一链路恢复失败原因值。
其中,第一基站为MN,第一链路恢复失败消息为可以为MCG快速恢复失败消息。在终端向MN发起RRC连接的重建立请求时,终端在重建立请求消息为“MCG快速恢复失败消息”中新增一个“MCG快速恢复失败”的重建立原因值(reestablishment cause),然后一并发送给MN。
对于MN来说,MN收到带有重建立原因为“MCG快速恢复失败”的重建立请求消息后,确定终端由于进行了MCG快速恢复,已经将分离SRB1的主路径已经切换成SCG RLC承载。因此,MN为了在终端完成RRC连接的重建立后可以通过SRB1发送和接收RRC消息,在RRC重建立消息中添加一个指示信息,用于指示UE重新配置分离SRB1的主路径为MCG RLC承载。
步骤S405,从第一基站接收指示信息,将主路径切换至第一RLC承载。
在MN向终端发送重建立消息时,一并将指示信息发送给终端,终端根据指示信息,将主路径切换至MCG RLC承载。
可选的,在本申请的一个实施方式中,所述方法还包括步骤S406,通过第一无线链路发送和/或接收RRC消息。
可以理解,本申请实施例中描述的通信方法可以用于各种双连接场景,例如EN-DC、NR DC、NGEN-DC、NE-DC等等场景,本申请在此不作限制。
在终端进行RRC连接重建立的过程中,对于各种DC场景,终端触发RRC重建立的实质是对PDCP层进行重建立,而这个过程中仅针对某些变量和存储的数据包进行操作,以及更新安全配置,并不会对主路径进行操作,如果在终端进行了MCG快速恢复失败后,不把主路径切换成MCG RLC承载,导致终端与MN进行RRC重建立时,终端侧与MN侧的配置不对齐,进而无法完成该RRC重建立过程。
因此,本申请在终端进行了MCG快速恢复失败后,终端自动或通过MN协助的方式将主路径切换至MCG RLC承载,使终端侧配置与基站侧配置对齐,从而能够正常进行RRC重建立过程中分离SRB1的RRC消息的收发,从而完成RRC重建过程,维持终端正常的双连接通信,提升通信质量。
可选地,在本申请的一个实施方式中,对于其他情况的RRC重建立流程,即包含触发原因为MCG failure recovery和其他失败事例(failure case),例如无线链路失败(radio link failure,RLF)、重配失败、切换失败(handover,HO)失败、完整性保护校验失败等,若终端当前的主路径为SCG,其中,可以为网络配置终端的主路径为SCG,或者为终端自主把主路径切换至SCG的的,则UE自主地将主路径切换至MCG。或者UE也可以删除moreThanOneRLC配置,其中moreThanOneRLC配置包含主路径的设置。
在MCG快速恢复过程中,在终端通过分离SRB1向MN发送上行数据时,当终端检测到MCG承载不能进行数据传输时,如果SN配置了SRB3的话,终端还可以通过SRB3进行MCG快速恢复。
图5为本申请实施例提供的一种通信方法的流程图。如图5所示,本申请实施例提供了一种通信方法,该方法是由第一基站或用于第一基站的装置例如芯片或者芯片系统执行。该方法包括:
步骤S503,向第二基站发送第一请求信息。
本申请提供的承载恢复的方法可以是基于图4描述的方案。以下以第一基站为MN,第二基站为SN为例进行说明。
其中,第一请求信息用于请求SN是否支持MN通过SRB3与终端之间进行MCG快速恢复。
步骤S504,从第二基站接收响应于所述第一请求信息的第一反馈信息。
其中,第一反馈信息是指SN根据第一请求信息,向MN反馈其是否支持MN通过SRB3与终端之间进行MCG快速恢复。或者说,第一反馈信息用于指示SN是否接纳/支持通过SRB3进行MCG快速恢复。SRB3可以是指SN与终端之间直接建立的SRB。
步骤S505,根据第一反馈信息指示终端通过SRB3进行第一无线链路失败的恢复。
其中,指示终端通过SRB3进行第一无线链路失败的恢复,可以包括向终端发送第二基站通过SRB3进行MCG快速恢复的配置,这些配置可以包括计时器(timer)信息。
在MN接收到第一反馈信息后,如果第一反馈信息表明SN不支持MN通过SRB3与终端之间进行MCG快速恢复时,此时MN要么通过分离SRB1进行MCG快速恢复,要么触发终端进行RRC连接重建立;如果第一反馈信息表明SN支持MN通过SRB3与终端之间进行MCG快速恢复,MN向终端发送SN的SRB3的相关配置以进行MCG快速恢复。可选地,SN的SRB3的相关配置可以全部或者部分由MN确定。
可选地,在本申请的一个实施方式中,在步骤S503之前,也即MN通过SRB3进行MCG快速恢复之前,MN可以确定SN是否支持通过SRB3向终端发送信令。所述方法还包括:
步骤S501,向第二基站发送查询信息。
其中,查询信息也可以称为请求信息。MN向SN发送的查询信息用于查询SN是否支持SRB3。发送查询消息是SN是否支持为MN进行MCG快速恢复的前提。
相应地,SN接收所述查询信息,向MN发送响应于该查询信息的响应消息。
步骤S502,接收第二基站发送的响应信息。
MN接收到响应信息后,如果查询结果为SN不支持SRB3,则表明SN不能与终端之间进行信令的传输,也就是说SN不支持MN进行MCG快速恢复;如果查询结果为SN支持 SRB3,执行步骤S503-S505。
本申请实施例在MN向SN请求支持通过SRB3进行MCG快速恢复时,查询SN是否支持SRB3和是否支持通过SRB3进行MCG快速恢复后,再进行请求终端为SN配置通过SRB3进行MCG快速恢复的资源,避免现有技术中,在MN请求终端为SN配置通过SRB3进行MCG快速恢复的承载后发现SN并不支持通过SRB3进行MCG快速恢复所造成业务中断时间过长的问题,从而能够快速恢复业务传输,提升通信质量。
可选的,在本申请的一个实施方式中,在MN通过SRB3进行MCG快速恢复后,还包括:
步骤S506,向第二基站发送第二请求信息。
其中,第二请求信息用于请求SN释放通过SRB3进行MCG快速恢复的资源。
相应地,SN接收该请求信息,向MN发送响应于该请求信息的第二反馈信息。
在MN通过SRB3进行MCG快速恢复成功或MCG快速恢复失败后,为了避免该进程一直占用终端的资源,MN需要让终端释放通过SRB3进行MCG快速恢复的配置资源。
步骤S507,从所述第二基站接收响应于第二请求信息的第二反馈信息。
步骤S508,请求终端释放通过SRB3进行第一无线链路失败恢复的配置。
MN接收到SN发送的反馈信息后,如果反馈信息表明SN释放/取消通过SRB3进行MCG快速恢复的配置,则MN请求终端释放/取消SN中的相应的配置;如果反馈信息表明SN未释放/取消通过SRB3进行MCG快速恢复的配置,则MN不会请求终端释放/取消进行MCG快速恢复的配置。
本申请实施例在MN完成通过SRB3进行MCG快速恢复的流程后,取消之前的对终端的配置,从而避免对终端的资源占用。
图6为本申请实施例提供的一种通信方法的流程图。如图6所示,本申请实施例提供了一种通信方法,该方法是由第二基站或用于第二基站的装置例如芯片或者芯片系统执行。该方法包括:
步骤S601,接收第一基站发送的查询信息。
本申请提供的承载恢复的方法可以是基于图4描述的方案。以下以第一基站为MN,第二基站为SN为例进行说明。
其中,查询信息用于查询SN是否支持SRB3。
步骤S602,向第一基站发送响应信息。
其中,响应信息可以为SN不支持SRB3,表明SN不能与终端之间进行信令信息的传输;也可以为SN支持SRB3,表明SN能与终端之间进行信令信息的传输。
步骤S603,接收第一基站发送的第一请求信息。
其中,第一请求信息用于请求SN是否支持SRB3进行MCG进行快速恢复。
步骤S604,向第一基站发送响应于所述第一请求信息的第一反馈信息。
其中,第一反馈信息用于触发MN指示终端通过SRB3进行MCG进行快速恢复的配置。
步骤S605,接收第一基站发送的第二请求信息。
其中,第二请求信息用于请求SN是否释放通过SRB3进行MCG进行快速恢复的资源。
步骤S606,向第一基站发送第二反馈信息。
其中,第二反馈信息用于触发MN指示终端通过SRB3进行MCG进行快速恢复。
本申请实施例在SN接收MN请求支持通过SRB3进行MCG快速恢复时,查询SN是否支持SRB3和是否支持通过SRB3进行MCG快速恢复后,告诉MN,然后由MN请求终端为SN配置通过SRB3进行MCG快速恢复的资源,从而实现通过SRB3进行MCG快速恢复。
上文详细介绍了本申请提供的一种通信方法和一种通信的方法的示例。可以理解的是,通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请可以根据上述方法示例对通信装置进行功能单元的划分,例如,可以将各个功能划分为各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
例如,图7所示的通信装置700中包括收发单元701与处理单元702。
在本申请的一个实施方式中,通信装置700用于支持终端设备实现本申请实施例提供的通信方法中终端的功能,例如,处理单元702可以用于当第一无线链路失败时,将分离承载的主路径由第一无线链路控制RLC承载切换为第二RLC承载;以及在进行RRC连接重建立时,将主路径切换至第一RLC承载。其中,第一无线链路是指终端与MN之间的MCG链路,通过MCG链路进行数据传输的承载为MCG承载;第二无线链路是指终端与SN之间的SCG链路,通过SCG链路进行数据传输的承载为SCG承载。收发单元701用于终端与其他通信设备,例如其他终端或者接入网设备进行数据/信令传输。
终端可以通过检测获知MCG链路失败,进而发起MCG快速恢复过程,当MCG快速恢复未成功,则终端进一步进行RRC重建立过程,关于这一系列过程的详细描述可以参考本申请方法部分实施例,例如图4所示实施例中的相关内容,不做赘述。
在一种可能的实现方式中,处理单元702用于在预设时间内未收到MN的RRC重配置消息或RRC释放消息时,确定MCG恢复失败,以及进行RRC连接重建立。关于如何在预设时间内判断MCG快速恢复失败的具体方式,可以参考本申请方法部分实施例,例如图4所示实施例中的相关内容,不做赘述。
在一个可能的实现方式中,处理单元702还用于在对MCG快速恢复的过程中,当SCG承载失败时,确定MCG快速恢复失败,以及进行RRC连接重建立。关于如何判断SCG承载失败的具体方式,可以参考本申请方法部分实施例,例如图4所示实施例中的相关内容,不做赘述。
在一个可能的实现方式中,处理单元702用于判断分离承载的主路径是否为第二RLC承载。当处理单元702判断出当前主路径为SCG RLC承载时,则将主路径切换至MCG RLC承载;当处理单元702判断当前主路径为MCG RLC承载时,则表示主路径无需进行切换。
在一种可能的实现方式中,处理单元702收发单元701用于向第一基站发送第一链路恢 复失败原因值。
其中,第一基站为MN,第一链路恢复失败消息可以为MCG快速恢复失败消息。
关于第一链路恢复失败原因值的具体描述可以参照参考本申请方法部分实施例,例如图4所示实施例中的相关内容,不做赘述。
收发单元701还用于从第一基站接收指示信息,将主路径切换至第一RLC承载。
在MN向终端发送重建立消息时,一并将指示信息发送给终端,终端根据指示信息,将主路径切换至MCG RLC承载。
在一个可能的实现方式中,处理单元702用于控制收发单元701通过第一无线链路发送和/或接收RRC消息。
关于上述通信装置700的各个功能单元执行的操作的详细描述,例如,可以参照本申请提供的通信方法的实施例中终端的行为,例如图4所示实施例中的相关内容,不做赘述。
在本申请的另一个实施方式中,在硬件实现上,可以由一个处理器执行处理单元702的功能,可以由收发器(发送器/接收器)和/或通信接口执行收发单元701的功能,其中,处理单元702可以以硬件形式内嵌于或独立于终端的处理器中,也可以以软件形式存储于终端、基站的存储器中,以便于处理器调用执行以上各个功能单元对应的操作。
本申请实施例提供的装置在终端进行了MCG快速恢复失败后,自动或通过MN协助的方式将主路径切换至MCG RLC承载,使终端侧配置与基站侧配置对齐,从而能够正常进行RRC重建立过程中分离SRB1的RRC消息的收发,从而完成RRC重建过程,维持终端正常的双连接通信,提升通信质量。
例如,图8所示的通信装置800中包括收发单元801与处理单元802。
在本申请的一个实施方式中,通信装置800用于支持基站实现本申请实施例提供的通信方法中第一基站的功能,例如,收发单元801用于向第二基站发送第一请求信息;收发单元801还用于从第二基站接收响应于所述第一请求信息的第一反馈信息;处理单元802用于请求终端为第二基站配置通过SRB3进行第一无线链路失败恢复的资源。其中,第一基站可以是终端在DC通信过程中的MN,第二基站可以是终端在DC通信过程中的SN。
其中,第一请求信息用于请求SN是否支持MN通过SRB3与终端之间进行MCG快速恢复的结果。第一反馈信息是指SN向MN反馈其是否支持MN通过SRB3与终端之间进行MCG快速恢复。或者说,第一反馈信息用于指示SN是否接纳/支持通过SRB3进行MCG快速恢复。关于如何实现终端通过SRB3进行MCG快速恢复的具体实现方式,可以参考本申请方法部分实施例,例如图5所示实施例中的相关内容,不做赘述。
在一个可能的实现方式中,收发单元801用于向第二基站发送查询信息;收发单元801还用于接收第二基站发送的响应于该查询信息的响应信息。其中,查询信息也可以称为请求信息。MN向SN发送的查询信息用于查询SN是否支持SRB3。关于如何实现MN查询SN是否支持SRB3的具体实现方式,可以参考本申请方法部分实施例,例如图5所示实施例中的相关内容,不做赘述。
在一个可能的实现方式中,在MN通过SRB3进行MCG快速恢复后,收发单元801用于向第二基站发送第二请求信息;收发单元801还用于从所述第二基站接收响应于第二请求信息的第二反馈信息;处理单元802用于请求终端释放通过SRB3进行第一无线链路失败恢 复的配置。关于如何实现请求终端释放通过SRB3进行MCG快速恢复的资源的具体实现方式,可以参考本申请方法部分实施例,例如图5所示实施例中的相关内容,不做赘述。
在本申请的另一个实施方式中,通信装置800用于支持基站实现本申请实施例提供的通信方法中第二基站的功能,例如,收发单元801用于接收第一基站发送的第一请求信息;收发单元801还用于向第一基站发送第一反馈信息。其中,第二基站可以是终端在DC通信过程中的SN。
其中,第一请求信息用于请求SN是否支持SRB3进行MCG进行快速恢复,第一反馈信息用于触发MN指示终端通过SRB3进行MCG进行快速恢复的资源。关于如何实现SN是否支持通过SRB3进行MCG快速恢复的具体实现方式,可以参考本申请方法部分实施例,例如图5-6所示实施例中的相关内容,不做赘述。
在一个可能的实现方式中,收发单元801用于接收第一基站发送的查询信息;收发单元801还用于向第一基站发送响应信息。其中,查询信息用于查询SN是否支持SRB3,响应信息可以为SN不支持SRB3,表明SN不能与终端之间进行信令信息的传输;也可以为SN支持SRB3,表明SN能与终端之间进行信令信息的传输。关于如何实现SN进行查询是否支持SRB3的具体实现方式,可以参考本申请方法部分实施例,例如图5-6所示实施例中的相关内容,不做赘述。
在一个可能的实现方式中,收发单元801用于接收第一基站发送的第二请求信息;收发单元801还用于向第一基站发送第二反馈信息。其中,第二请求信息用于请求SN是否释放通过SRB3进行MCG进行快速恢复的资源,第二反馈信息用于触发MN指示终端释放通过SRB3进行MCG进行快速恢复的配置。关于如何实现SN确定是否释放通过SRB3进行MCG进行快速恢复的资源的具体实现方式,可以参考本申请方法部分实施例,例如图5-6所示实施例中的相关内容,不做赘述。
关于上述通信装置800的各个功能单元执行的操作的详细描述,例如,可以参照本申请提供的通信方法的实施例中接入网设备(主节点/辅节点)的行为,例如图5-图6所示实施例中的相关内容,不做赘述。
在本申请的另一个实施方式中,在硬件实现上,可以由一个处理器执行处理单元802的功能,可以由收发器(发送器/接收器)和/或通信接口执行收发单元801的功能,其中,处理单元802可以以硬件形式内嵌于或独立于终端的处理器中,也可以以软件形式存储于终端、基站的存储器中,以便于处理器调用执行以上各个功能单元对应的操作。
本申请实施例在MN向SN请求支持通过SRB3进行MCG快速恢复时,查询SN是否支持SRB3和是否支持通过SRB3进行MCG快速恢复后,再进行请求终端为SN配置通过SRB3进行MCG快速恢复的资源,避免现有技术中,在MN请求终端为SN配置通过SRB3进行MCG快速恢复的承载后发现SN并不支持通过SRB3进行MCG快速恢复所造成业务中断时间过长的问题。
图9示出了本申请提供的一种通信装置900的结构示意图。通信装置900可用于实现上述方法实施例中描述的通信方法和通信方法。该通信装置800可以是芯片、终端、基站或者其它无线通信设备等。
通信装置900包括一个或多个处理器901,该一个或多个处理器901可支持通信装置700 实现本申请实施例中所述的由终端(UE)执行的通信方法,例如图4所示的实施例中由终端执行的方法;或者,该一个或多个处理器901可支持通信装置800实现本申请实施例中所述的由基站执行的通信方法,例如图5-6所示的实施例中由基站(第一基站或第二基站)执行的方法。
该处理器901可以是通用处理器或者专用处理器。例如,处理器901可以包括中央处理器(central processing unit,CPU)和/或基带处理器。其中,基带处理器可以用于处理通信数据(例如,上文所述第一消息),CPU可以用于实现相应的控制和处理功能,执行软件程序,处理软件程序的数据。
进一步的,通信装置900还可以包括收发单元905,用以实现信号的输入(接收)和输出(发送)。
例如,通信装置900可以是芯片,收发单元905可以是该芯片的输入和/或输出电路,或者,收发单元905可以是该芯片的接口电路,该芯片可以作为UE或基站或其它无线通信设备的组成部分。
又例如,通信装置900可以为UE或基站。收发单元905可以包括收发器或射频芯片。收发单元905还可以包括通信接口。
可选地,通信装置900还可以包括天线906,可以用于支持收发单元905实现通信装置900的收发功能。
可选地,通信装置900中可以包括一个或多个存储器902,其上存有程序(也可以是指令或者代码)903,程序903可被处理器901运行,使得处理器901执行上述方法实施例中描述的方法。可选地,存储器902中还可以存储有数据。可选地,处理器901还可以读取存储器902中存储的数据(例如,预定义的信息),该数据可以与程序903存储在相同的存储地址,该数据也可以与程序903存储在不同的存储地址。
处理器901和存储器902可以单独设置,也可以集成在一起,例如,集成在单板或者系统级芯片(system on chip,SOC)上。
在一种可能的设计中,通信装置900是终端或者可用于终端的芯片,该终端具有DC通信的功能,处理器901用于当第一无线链路失败时,将分离承载的主路径由第一无线链路控制RLC承载切换为第二RLC承载;以及在进行无线资源控制RRC连接重建立时,将主路径切换至所述第一RLC承载。所述终端与第一基站存在第一无线链路且与第二基站存在第二无线链路,所述终端被配置分离承载,所述分离承载包括第一RLC承载与第二RLC承载,所述第一RLC承载对应于第一无线链路,所述第二RLC承载对应于第二无线链路。
在一种可能的设计中,通信装置900是基站或者可用于接入网设备的芯片,该基站可以作为DC通信中的主节点。例如,收发单元905用于向第二基站发送第一请求信息请求其是否支持该基站通过所述第二基站与终端之间的SRB进行MCG快速恢复;以及从第二基站接收响应于所述第一请求信息的第一反馈信息;处理器901用于根据第一反馈信息请求所述终端通过SRB3进行MCG快速恢复。其中,所述第二基站是DC通信中的辅节点。
该基站可以作为DC通信中的辅节点,例如,收发单元905用于接收第一基站发送的第一请求信息,确定是否支持第一基站通过SRB3进行MCG快速恢复;还用于向所述第一基站发送第一反馈信息。其中,所述第一基站是DC通信中的主节点。
关于通信装置900在上述各种可能的设计中执行的操作的详细描述可以参照本申请提 供的通信方法的实施例中终端或通信方法的实施例中基站(主节点/辅节点)的行为,例如图4-图6所示实施例中的相关内容,不做赘述。
应理解,上述方法实施例的各步骤可以通过处理器901中的硬件形式的逻辑电路或者软件形式的指令完成。处理器801可以是CPU、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件,例如,分立门、晶体管逻辑器件或分立硬件组件。
如图10所示,终端1000包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及用于对整个终端进行控制。例如,处理器生成第一消息,随后通过控制电路和天线发送第一消息。存储器主要用于存储程序和数据,例如存储通信协议和上述配置信息。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置例如是触摸屏、显示屏或键盘,主要用于接收用户输入的数据以及对用户输出数据。
处理器可以读取存储器中的程序,解释并执行该程序所包含的指令,处理程序中的数据。当需要通过天线发送信息时,处理器对待发送的信息进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后得到射频信号,并将射频信号通过天线以电磁波的形式向外发送。当承载信息的电磁波(即,射频信号)到达终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为信息并对该信息进行处理。
本领域技术人员可以理解,为了便于说明,图10仅示出了一个存储器和一个处理器。在实际的终端中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请对此不做限定。
作为一种可选的实现方式,图10中的处理器可以集成基带处理器和CPU的功能,本领域技术人员可以理解,基带处理器和CPU也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端可以包括多个基带处理器以适应不同的网络制式,终端可以包括多个CPU以增强其处理能力,终端的各个部件可以通过各种总线连接。基带处理器也可以被称为基带处理电路或者基带处理芯片。CPU也可以被称为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以程序的形式存储在存储器中,由处理器执行存储器中的程序以实现基带处理功能。
在本申请中,可以将具有收发功能的天线和控制电路视为终端1000的收发单元1001,用于支持终端实现方法实施例中的接收功能,或者,用于支持终端实现方法实施例中的发送功能。将具有处理功能的处理器视为终端1000的处理单元1002。如图10所示,终端1000包括收发单元1001和处理单元1002。收发单元也可以称为收发器、收发机、收发装置等。可选地,可以将收发单元1001中用于实现接收功能的器件视为接收单元,将收发单元1001中用于实现发送功能的器件视为发送单元,即收发单元1001包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理器1002可用于执行存储器存储的程序,以控制收发单元1001接收信号和/或发送信号,完成上述方法实施例中终端的功能。作为一种实现方式,收发单元1001的功能可以考虑通过收发电路或者收发专用芯片实现。
其中,处理器1002可以执行图7所示的通信装置700中的处理单元702或者图9所示的通信装置900中的处理器901的功能;收发单元1001可以执行图7所示的通信装置700中的收发单元701或者通信装置900中的收发单元905的功能,不做赘述。
在通信装置800为基站的情况下,图11是本申请实施例提供的一种基站的结构示意图。如图11所示,该基站可应用于如图1所示的系统中,执行上述方法实施例中接入网设备的功能,该基站具有作为DC通信时主节点或者辅节点的功能。基站1100可包括一个或多个DU 1101和一个或多个CU 1102。所述DU 1101可以包括至少一个天线11011,至少一个射频单元11012,至少一个处理器11013和至少一个存储器11014。所述DU 1101部分主要用于射频信号的收发以及射频信号与基带信号的转换,以及部分基带处理。CU1102可以包括至少一个处理器11022和至少一个存储器11021。CU1102和DU1101之间可以通过接口进行通信,其中,控制面(Control plane)接口可以为Fs-C,比如F1-C,用户面(User Plane)接口可以为Fs-U,比如F1-U。
所述CU 1102部分主要用于进行基带处理,对基站进行控制等。所述DU 1101与CU 1102可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。所述CU 1102为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能。例如所述CU 1102可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
具体的,CU和DU上的基带处理可以根据无线网络的协议层划分,例如分组数据汇聚层协议(packet data convergence protocol,PDCP)层及以上协议层的功能设置在CU,PDCP以下的协议层,例如无线链路控制(radio link control,RLC)层和媒体接入控制(media access control,MAC)层等的功能设置在DU。又例如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。
此外,可选地,基站1100可以包括一个或多个射频单元(RU),一个或多个DU和一个或多个CU。其中,DU可以包括至少一个处理器11013和至少一个存储器11014,RU可以包括至少一个天线11011和至少一个射频单元11012,CU可以包括至少一个处理器11022和至少一个存储器11021。
在一个实例中,所述CU1102可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器11021和处理器11022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。所述DU1101可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器11014和处理器11013可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是 多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
其中,DU与CU可以共同执行图8所示的通信装置800中的处理器802的功能或者图9所示的通信装置900中的处理器901的功能;收发单元1001可以执行图8所示的通信装置800中的收发单元801的功能或者通信装置900中的收发单元905的功能,不做赘述。
本申请还提供一种通信系统,包括第一基站以及第二基站,所述第一基站可以作为主节点,所述第二基站可以作为辅节点。
可选地,所述通信系统还包括终端,所述终端可以同时接入所述第一基站以及所述第二基站。关于该通信系统中各设备的功能可以参照本申请其他实施例的相关描述,不做赘述。
本所属领域的技术人员可以清楚地了解到,本申请提供的各实施例的描述可以相互参照,为描述的方便和简洁,例如关于本申请实施例提供的各装置、设备的功能以及执行的步骤可以参照本申请方法实施例的相关描述,各方法实施例之间、各装置实施例之间也可以互相参考、结合或引用。
在本申请所提供的几个实施例中,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的方法实施例的一些特征可以忽略,或不执行。以上所描述的装置实施例仅仅是示意性的,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,多个单元或组件可以结合或者可以集成到另一个系统。另外,各单元之间的耦合或各个组件之间的耦合可以是直接耦合,也可以是间接耦合,上述耦合包括电的、机械的或其它形式的连接。
应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。此外,本申请实施例中,终端和/或网络设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。

Claims (29)

  1. 一种通信方法,其特征在于,所述方法用于支持双连接的终端,所述终端与第一基站存在第一无线链路且与第二基站存在第二无线链路,所述终端被配置分离承载,所述方法包括:
    当所述第一无线链路失败时,将所述分离承载的主路径由第一无线链路控制RLC承载切换为第二RLC承载,其中,所述分离承载包括所述第一RLC承载与所述第二RLC承载,所述第一RLC承载对应于所述第一无线链路,所述第二RLC承载对应于所述第二无线链路;
    在进行无线资源控制RRC连接重建立时,将所述主路径切换至所述第一RLC承载。
  2. 根据权利要求1所述的方法,其特征在于,所述在进行RRC连接重建立时,将所述主路径切换至所述第一RLC承载,包括:
    判断所述分离承载的主路径是否为所述第二RLC承载;
    当所述主路径为所述第二RLC承载时,将所述主路径切换至所述第一RLC承载。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在预设时间内未收到所述第一基站的RRC重配置消息或RRC释放消息时,确定所述第一无线链路恢复失败,以及进行所述RRC连接重建立。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在对第一无线链路失败恢复的过程中,当所述第二无线链路失败时,确定所述第一无线链路恢复失败,以及进行所述RRC连接重建立。
  5. 根据权利要求1-4中任意一项所述的方法,其特征在于,所述方法还包括:
    向所述第一基站发送所述第一链路恢复失败原因值,所述第一链路恢复失败原因值用于触发所述第一基站生成指示将所述主路径切换至所述第一RLC承载的指示信息;
    从所述第一基站接收所述指示信息,将所述主路径切换至所述第一RLC承载。
  6. 一种通信方法,所述方法由第一基站执行,其特征在于,包括:
    向第二基站发送第一请求信息;所述第一请求信息用于请求所述第二基站是否支持所述第一基站通过所述第二基站与终端之间的信令无线承载SRB进行第一无线链路失败恢复,所述第一无线链路为所述第一基站与所述终端间的无线链路;
    从所述第二基站接收响应于所述第一请求信息的第一反馈信息;
    根据所述第一反馈信息指示所述终端通过所述SRB进行所述第一无线链路失败的恢复。
  7. 根据权利要求6所述的方法,其特征在于,所述向第二基站发送第一请求信息之前,包括:
    向所述第二基站发送查询信息,所述查询信息用于查询所述第二基站是否支持所述SRB;
    从所述第二基站接收响应信息;所述响应信息用于指示所述第二基站支持所述SRB。
  8. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    向所述第二基站发送第二请求信息;所述第二请求信息用于请求是否释放所述通过所述SRB进行所述第一无线链路失败恢复的资源;
    从所述第二基站接收响应于所述第二请求信息的第二反馈信息;
    请求所述终端释放所述第二基站中的所述通过所述SRB进行所述第一无线链路失败恢复的配置。
  9. 一种通信的方法,所述方法由第二基站执行,其特征在于,包括:
    接收第一基站发送的第一请求信息,所述第一请求信息用于请求所述第二基站是否支持所述第一基站通过所述第二基站与终端之间的信令无线承载SRB进行第一无线链路失败恢复,所述第一无线链路为所述第一基站与所述终端间的无线链路;
    向所述第一基站发送第一反馈信息,所述第一反馈信息用于触发所述第一基站指示所述终端通过所述SRB进行所述第一无线链路失败的恢复。
  10. 根据权利要求9所述的方法,其特征在于,所述接收第一基站发送的第一请求信息,包括:
    接收所述第一基站发送的查询信息,所述查询信息用于查询所述第二基站是否支持所述SRB;
    向所述第一基站发送响应信息;所述响应信息用于指示所述第二基站支持所述SRB。
  11. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    接收所述第一基站发送的第二请求信息;所述第二请求信息用于请求是否释放所述通过所述SRB进行所述第一无线链路失败恢复的资源;
    向所述第一基站发送第二反馈信息;所述第二反馈信息用于触发所述第一基站请求所述终端释放所述第二基站中的所述通过所述SRB进行所述第一无线链路失败恢复的配置。
  12. 一种通信装置,其特征在于,用于支持双连接的终端,所述终端与第一基站存在第一无线链路且与第二基站存在第二无线链路,所述终端被配置分离承载,所述装置包括:
    处理单元,用于当所述第一无线链路失败时,将所述分离承载的主路径由第一无线链路控制RLC承载切换为第二RLC承载,其中,所述分离承载包括所述第一RLC承载与所述第二RLC承载,所述第一RLC承载对应于所述第一无线链路,所述第二RLC承载对应于所述第二无线链路;以及
    在进行无线资源控制RRC连接重建立时,将所述主路径切换至所述第一RLC承载。
  13. 根据权利要求12所述的装置,其特征在于,
    所述处理单元,用于判断所述分离承载的主路径是否为所述第二RLC承载;以及当所述主路径为所述第二RLC承载时,将所述主路径切换至所述第一RLC承载。
  14. 根据权利要求12所述的装置,其特征在于,
    所述处理单元,用于在预设时间内未收到所述第一基站的RRC重配置消息或RRC释放消息时,确定所述第一无线链路恢复失败,以及进行所述RRC连接重建立。
  15. 根据权利要求12-14中任意一项所述的装置,其特征在于,所述处理单元,还用于在对第一无线链路失败恢复的过程中,当所述第二无线链路失败时,确定所述第一无线链路恢复失败,以及进行所述RRC连接重建立。
  16. 根据权利要求12-15中任意一项所述的装置,其特征在于,所述装置还包括:收发单元,
    所述收发单元,用于向所述第一基站发送所述第一链路恢复失败原因值,所述第一链 路恢复失败原因值用于触发所述第一基站生成指示将所述主路径切换至所述第一RLC承载的指示信息;以及
    从所述第一基站接收所述指示信息,将所述主路径切换至所述第一RLC承载。
  17. 一种通信装置,其特征在于,用于第一基站,所述装置包括:
    收发单元,用于向第二基站发送第一请求信息;所述第一请求信息用于请求所述第二基站是否支持所述第一基站通过所述第二基站与终端之间的信令无线承载SRB进行第一无线链路失败恢复,所述第一无线链路为所述第一基站与所述终端间的无线链路;
    所述收发单元,还用于从所述第二基站接收响应于所述第一请求信息的第一反馈信息;
    处理单元,用于根据所述第一反馈信息指示所述终端通过所述SRB进行所述第一无线链路失败的恢复。
  18. 根据权利要求17所述的装置,其特征在于,
    所述收发单元,还用于向所述第二基站发送查询信息,所述查询信息用于查询所述第二基站是否支持所述SRB;以及
    从所述第二基站接收响应信息;所述响应信息用于指示所述第二基站支持所述SRB。
  19. 根据权利要求17所述的装置,其特征在于,
    所述收发单元,还用于向所述第二基站发送第二请求信息;所述第二请求信息用于请求是否释放所述通过所述SRB进行所述第一无线链路失败恢复的资源;
    所述收发单元,还用于从所述第二基站接收响应于所述第二请求信息的第二反馈信息;
    所述处理单元,还用于请求所述终端释放所述第二基站中的所述通过所述SRB进行所述第一无线链路失败恢复的配置。
  20. 一种通信装置,其特征在于,用于第二基站,所述装置包括:
    收发单元,用于接收第一基站发送的第一请求信息,所述第一请求信息用于请求所述第二基站是否支持所述第一基站通过所述第二基站与终端之间的信令无线承载SRB进行第一无线链路失败恢复,所述第一无线链路为所述第一基站与所述终端间的无线链路;
    所述收发单元,还用于向所述第一基站发送第一反馈信息,所述第一反馈信息用于触发所述第一基站指示所述终端通过所述SRB进行所述第一无线链路失败的恢复。
  21. 根据权利要求20所述的装置,其特征在于,
    所述收发单元,还用于接收所述第一基站发送的查询信息,所述查询信息用于查询所述第二基站是否支持所述SRB;
    所述收发单元,还用于向所述第一基站发送响应信息;所述响应信息用于指示所述第二基站支持所述SRB。
  22. 根据权利要求20所述的装置,其特征在于,
    所述收发单元,还用于接收所述第一基站发送的请求信息;所述请求信息用于请求是否释放所述通过所述SRB进行所述第一无线链路失败恢复的资源;
    所述收发单元,还用于向所述第一基站发送第二反馈信息;所述第二反馈信息用于触 发所述第一基站请求所述终端释放所述第二基站中的所述通过所述SRB进行所述第一无线链路失败恢复的配置。
  23. 一种通信装置,包括至少一个处理器,所述处理器用于执行存储器中存储的指令,以使得终端执行如权利要求1-5任一所述的方法。
  24. 一种通信装置,包括至少一个处理器,所述处理器用于执行存储器中存储的指令,以使得基站执行如权利要求6-8或如权利要求9-11任一所述的方法。
  25. 一种终端设备,用于执行如权利要求1-5中的任一项所述的方法。
  26. 一种基站,用于执行如权利要求6-8或如权利要求9-11中的任一项所述的方法。
  27. 一种计算机存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1-11任一所述的方法。
  28. 一种包含指令的计算机程序产品,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-11任一所述的方法。
  29. 一种通信系统,包括第一基站、第二基站,其中,所述第一基站作为终端的主节点,所述第二基站作为终端的辅节点,所述第一基站用于执行如权利要求6-8任一所述的方法,所述第二基站用于执行如权利要求9-11任一所述的方法。
PCT/CN2019/109546 2019-09-30 2019-09-30 通信方法和装置 WO2021062677A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/109546 WO2021062677A1 (zh) 2019-09-30 2019-09-30 通信方法和装置
CN201980100641.5A CN114451062A (zh) 2019-09-30 2019-09-30 通信方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109546 WO2021062677A1 (zh) 2019-09-30 2019-09-30 通信方法和装置

Publications (1)

Publication Number Publication Date
WO2021062677A1 true WO2021062677A1 (zh) 2021-04-08

Family

ID=75336319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109546 WO2021062677A1 (zh) 2019-09-30 2019-09-30 通信方法和装置

Country Status (2)

Country Link
CN (1) CN114451062A (zh)
WO (1) WO2021062677A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023174229A1 (zh) * 2022-03-14 2023-09-21 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备
WO2023216640A1 (zh) * 2022-05-13 2023-11-16 中兴通讯股份有限公司 无线资源对齐方法、装置和系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105101459A (zh) * 2014-05-13 2015-11-25 中兴通讯股份有限公司 一种对无线链路失败的处理方法、终端及基站
CN108282796A (zh) * 2017-01-05 2018-07-13 中兴通讯股份有限公司 一种无线链路管理的方法及装置、系统
CN108574993A (zh) * 2017-03-08 2018-09-25 宏达国际电子股份有限公司 处理在双连接中的通信的装置及方法
CN108924949A (zh) * 2017-03-24 2018-11-30 华为技术有限公司 无线网络中的通信方法、装置和系统
US20190090144A1 (en) * 2017-09-20 2019-03-21 Htc Corporation Method of Handling Secondary Cell Group Failure
WO2019066707A1 (en) * 2017-09-28 2019-04-04 Telefonaktiebolaget Lm Ericsson (Publ) WIRELESS DEVICE, NETWORK NODE, AND METHODS PERFORMED THEREFOR TO MANAGE FAILURE IN SECONDARY CELL SERVING THE WIRELESS DEVICE
CN109995461A (zh) * 2017-12-29 2019-07-09 电信科学技术研究院 一种通知执行pdcp数据恢复的方法及设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651899B (zh) * 2008-08-12 2012-12-05 中兴通讯股份有限公司 Lte rrc连接重建立请求方法、原因值设置方法及终端

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105101459A (zh) * 2014-05-13 2015-11-25 中兴通讯股份有限公司 一种对无线链路失败的处理方法、终端及基站
CN108282796A (zh) * 2017-01-05 2018-07-13 中兴通讯股份有限公司 一种无线链路管理的方法及装置、系统
CN108574993A (zh) * 2017-03-08 2018-09-25 宏达国际电子股份有限公司 处理在双连接中的通信的装置及方法
CN108924949A (zh) * 2017-03-24 2018-11-30 华为技术有限公司 无线网络中的通信方法、装置和系统
US20190090144A1 (en) * 2017-09-20 2019-03-21 Htc Corporation Method of Handling Secondary Cell Group Failure
WO2019066707A1 (en) * 2017-09-28 2019-04-04 Telefonaktiebolaget Lm Ericsson (Publ) WIRELESS DEVICE, NETWORK NODE, AND METHODS PERFORMED THEREFOR TO MANAGE FAILURE IN SECONDARY CELL SERVING THE WIRELESS DEVICE
CN109995461A (zh) * 2017-12-29 2019-07-09 电信科学技术研究院 一种通知执行pdcp数据恢复的方法及设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON, INTERDIGITAL: "SRB primary path handling for MR-DC", 3GPP DRAFT; R2-1905986 - SRB PRIMARY PATH HANDLING FOR MR-DC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051729476 *
ERICSSON, INTERDIGITAL: "SRB primary path handling for MR-DC", 3GPP DRAFT; R2-1910269 - SRB PRIMARY PATH HANDLING FOR MR-DC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Prague, Czech Republic; 20190826 - 20190830, 15 August 2019 (2019-08-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051768048 *
QUALCOMM INCORPORATED: "Discussion on primaryPath switch in Fast MCG Recovery", 3GPP DRAFT; R2-1908681 - DISCUSSION ON PRIMARYPATH SWITCH IN FAST MCG RECOVERY, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Prague, CZ; 20190826 - 20190830, 16 August 2019 (2019-08-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051766506 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023174229A1 (zh) * 2022-03-14 2023-09-21 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备
WO2023216640A1 (zh) * 2022-05-13 2023-11-16 中兴通讯股份有限公司 无线资源对齐方法、装置和系统

Also Published As

Publication number Publication date
CN114451062A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
US10624146B2 (en) Radio link failure handling method, related device, and communications system
US10785824B2 (en) Information processing method and related apparatus
WO2021026906A1 (zh) 通信方法、通信装置、计算机存储介质及通信系统
US11212720B2 (en) 5GSM handling on invalid PDU session
TW201944840A (zh) 處理qos 流的方法及使用者設備
US11375025B2 (en) Communications method and apparatus
CN108391324B (zh) 处理双连接的装置及方法
WO2020199992A1 (zh) 一种通信方法及装置
TWI775811B (zh) 通信方法、輔網絡節點和終端
WO2018014154A1 (zh) 一种rrc连接重建方法和装置
WO2021062677A1 (zh) 通信方法和装置
US20210377758A1 (en) Communication control method
CN110831083B (zh) 数据传输的方法和设备
WO2019062794A1 (zh) 一种建立承载的方法及设备
CN114586405A (zh) 测量报告上报方法及装置
WO2018228545A1 (zh) 信息处理方法以及相关装置
EP4044757B1 (en) Data service switching
WO2022247338A1 (zh) 一种通信方法及装置
WO2022141298A1 (zh) 一种通信方法及装置
WO2023273926A1 (zh) 一种多连接下的通信方法及装置
WO2023082035A1 (en) Nr udc -flexible drb switch
US20230262827A1 (en) Communication method applied to integrated access and backhaul iab system and related device
WO2023160706A1 (zh) 一种通信方法及装置
CN117063607A (zh) 无线通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947649

Country of ref document: EP

Kind code of ref document: A1