WO2023273926A1 - 一种多连接下的通信方法及装置 - Google Patents

一种多连接下的通信方法及装置 Download PDF

Info

Publication number
WO2023273926A1
WO2023273926A1 PCT/CN2022/099583 CN2022099583W WO2023273926A1 WO 2023273926 A1 WO2023273926 A1 WO 2023273926A1 CN 2022099583 W CN2022099583 W CN 2022099583W WO 2023273926 A1 WO2023273926 A1 WO 2023273926A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal device
secondary base
information
base stations
Prior art date
Application number
PCT/CN2022/099583
Other languages
English (en)
French (fr)
Inventor
胡星星
耿婷婷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22831744.2A priority Critical patent/EP4344289A1/en
Publication of WO2023273926A1 publication Critical patent/WO2023273926A1/zh
Priority to US18/400,712 priority patent/US20240236719A9/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the embodiments of the present application relate to the field of wireless communication, and in particular, to a communication method and device under multiple connections.
  • a terminal device may communicate with multiple base stations.
  • DC dual-connectivity
  • MR-DC multi-radio dual connectivity
  • Multi-connectivity also called multi-radio multi-connectivity (MR-MC).
  • the resources of the above-mentioned multiple base stations can be used to provide communication services for the terminal device, so as to provide high-speed transmission for the terminal device.
  • the base station that interacts with the core network for control plane signaling is called a master base station (master node, MN), and other base stations are called secondary base stations (secondary node, SN).
  • the cell group for which the MN provides services for the terminal equipment can also be referred to as a master cell group (MCG).
  • MCG master cell group
  • RRC radio resource control
  • Embodiments of the present application provide a communication method and device under multiple connections, so as to realize fast MCG recovery.
  • the present application provides a communication method under multiple connections, the method includes: a terminal device may obtain a first rule from a master base station. When the terminal device detects a link problem with the primary base station, the terminal device may determine the first secondary base station from the N secondary base stations configured for the terminal device according to the first rule, N ⁇ 2, and then the terminal device may send first information to the primary base station through the first secondary base station, where the first information is used to indicate that the terminal device detects a link problem of the primary base station.
  • the terminal device determines the first SeNB from the N secondary base stations configured for the terminal device according to the first rule indicated by the primary base station, and sends the first information to the first secondary base station, so that the first secondary base station sends the first secondary base station to the first secondary base station
  • a message is forwarded to the primary base station, and by selecting a suitable secondary base station, the terminal device can notify the primary base station of the link problem of the primary base station as soon as possible, so that the primary base station can quickly restore the MCG, without the need for the terminal device to initiate RRC for the primary base station
  • the reconstruction process improves communication efficiency in multi-connection scenarios.
  • the first rule indicates M secondary base stations in the N secondary base stations, where M ⁇ N.
  • the first rule includes identities of M cells, and the M cells correspond to the M secondary base stations.
  • the first rule includes identities of SeNBs corresponding to the M SeNBs, SCG identities corresponding to the M SeNBs, or PSCell identities corresponding to the M SeNBs.
  • the terminal device may use the following method to determine the first secondary base station from the N secondary base stations configured for the terminal device according to the first rule: the terminal device determines the first secondary base station from the M The first secondary base station is determined in the secondary base station.
  • the terminal device when the terminal device determines the first secondary base station from the M secondary base stations, the terminal device may use the The secondary base station is used as the first secondary base station; or, the terminal device may use a secondary base station with no link problem detected among the M secondary base stations and whose signal quality is higher than the first signal quality threshold as the first secondary base station The base station, wherein the first signal quality threshold is preconfigured or carried by the first rule.
  • the terminal device can determine the first SeNB in combination with the link detection result of the SeNB and the signal quality of the SeNB according to the first rule.
  • the terminal device when the terminal device determines the first secondary base station from the N secondary base stations configured for the terminal device according to the first rule, all of the M secondary base stations have links When there is a problem or the signal quality of the M secondary base stations is lower than the second signal quality threshold, the terminal device may determine the The first secondary base station.
  • the terminal device can preferentially determine the first SeNB from the M SeNBs.
  • the terminal device can exclude the M SeNB from the N SeNBs.
  • the first secondary base station is determined from the external secondary base stations.
  • the first rule indicates a third signal quality threshold; when the terminal device determines the first secondary base station from the N secondary base stations configured for the terminal device according to the first rule , the terminal device may determine the first secondary base station from the N secondary base stations according to the third signal quality threshold, where the signal quality of the first secondary base station is higher than the third signal quality threshold .
  • the terminal device may determine the first SeNB according to the signal quality corresponding to the N SeNBs respectively and the third signal quality threshold.
  • the terminal device when the terminal device is in the deactivated state in the state of the first SeNB, the terminal device triggers the deactivation state of the terminal device in the state of the first SeNB Active state toggles to active state.
  • the terminal device may start a first timer; when the first timer expires and the terminal device does not When receiving a response to the first information from the first SeNB, the terminal device may send the first information to a second SeNB, and the second SeNB belongs to the N SeNBs base station.
  • the terminal device may receive first indication information from the primary base station, and the terminal device may send the first information to the second secondary base station according to the first indication information.
  • the first indication information indicates the number of times the terminal device is allowed to send the first information
  • the first indication information indicates that the terminal device is allowed to In the case of responding, selecting other SeNBs in the N SeNBs except the first SeNB to send the first information
  • the first indication information indicates the first duration, and in the The terminal device is allowed to send the first information within the first duration.
  • the terminal device determines in the N secondary base stations according to the first rule a third secondary base station, where the terminal device sends the first information to the third secondary base station.
  • the terminal device may start a second timer.
  • the terminal device stops the second timer, and the first response is a response to the first information received by the terminal device for the first time.
  • the terminal device resumes communication with the primary base station according to the first response.
  • the terminal device can resume communication with the primary base station according to the response to the first information received for the first time, thereby realizing rapid MCG recovery, improving recovery efficiency and shortening recovery time.
  • the terminal device may discard responses to the first information received after the first response.
  • the terminal device may discard or not process or ignore responses to the first information received after the first response.
  • the terminal device may determine that the master base station has a link problem according to one or more of the following: failure of the radio link of the master cell group, failure of the handover of the master cell group, radio resource control The reconfiguration fails and the radio resource control layer of the terminal device receives indication information indicating that the integrity check of the signaling radio bearer SRB1 or SRB2 fails.
  • the first information includes a primary cell group failure message.
  • the method further includes: the terminal device may receive configuration information from the master base station, where the configuration information is used to configure the rapid recovery of the primary cell group for the terminal device.
  • the configuration information may indicate the duration of the first timer and/or the second timer.
  • the present application provides a communication method under multi-connection, the method includes: the master base station can indicate a first rule to the terminal device, and the first rule is used when the terminal device detects that the master base station In the case of a link problem, select a first secondary base station from the N secondary base stations configured for the terminal device, and the first secondary base station is used to forward the first information received from the terminal device to the primary secondary base station.
  • a base station where the first information is used to indicate that the terminal device detects a link problem of the primary base station.
  • the primary base station may receive the first information from the first secondary base station, and in response to the first information, the primary base station sends a response to the first secondary base station to the first secondary base station.
  • the primary base station enables the terminal device to determine the first secondary base station through the first rule indicated to the terminal device, so that the first secondary base station forwards the first information to the primary base station, and the primary base station sends a message for the first secondary base station to the first secondary base station A response to a message. Therefore, by indicating the first rule to the terminal device, the master base station can receive the notification of the link problem of the master base station as soon as possible, and the master base station can realize the fast recovery of the MCG according to the notification of the link problem of the master base station without requiring the terminal to The device initiates the RRC reconstruction process for the main base station, which improves the communication efficiency in the multi-connection scenario.
  • the first rule indicates M secondary base stations in the N secondary base stations, where M ⁇ N.
  • the first rule includes identities of M cells, and the M cells correspond to the M secondary base stations.
  • the first rule indicates a third signal quality threshold.
  • the primary base station may send first indication information to the terminal device, where the first indication information indicates the number of times the terminal device is allowed to send the first information, and/or, the The first indication information indicates that the terminal device is allowed to select other SeNBs in the N SeNBs except the first SeNB to send the The first information, and/or, the first indication information indicates a first duration, and the terminal device is allowed to send the first information within the first duration.
  • the primary base station may receive the first information from the second secondary base station, and in response to the first information, the primary base station sends a response to the first information to the second secondary base station. response.
  • the first information includes a primary cell group failure message.
  • the primary base station sends configuration information to the terminal device, where the configuration information is used to configure fast recovery of the primary cell group for the terminal device.
  • the present application provides a communication device, the communication device is a terminal device or a device for implementing functions of the terminal device; the device includes: a transceiver unit and a processing unit;
  • the transceiver unit is configured to obtain the first rule from the master base station; the processing unit is configured to, in the case of detecting a link problem of the master base station, obtain the N secondary rules configured by the terminal device according to the first rule
  • the first secondary base station is determined in the base station, N ⁇ 2; the transceiver unit is configured to send first information to the primary base station through the first secondary base station, and the first information is used to indicate that the terminal device detects The link problem of the primary base station.
  • the first rule indicates M secondary base stations in the N secondary base stations, where M ⁇ N.
  • the first rule includes identities of M cells, and the M cells correspond to the M secondary base stations.
  • the processing unit is configured to, when determining the first secondary base station from the N secondary base stations configured on the terminal device according to the first rule, determine from the M secondary base stations The first secondary base station.
  • the processing unit is configured to, when determining the first secondary base station from the M secondary base stations, select a secondary base station in which a link problem has not been detected among the M secondary base stations as the first secondary base station; or, using a secondary base station with no link problem detected among the M secondary base stations and whose signal quality is higher than a first signal quality threshold as the first secondary base station, wherein the second secondary base station A signal quality threshold is preconfigured or carried by the first rule.
  • the processing unit is configured to determine the first secondary base station from the N secondary base stations configured for the terminal device according to the first rule, when all the M secondary base stations exist When there is a link problem or the signal quality of the M secondary base stations is lower than the second signal quality threshold, the terminal device determines the secondary base stations from the N secondary base stations except the M secondary base stations. The first secondary base station.
  • the first rule indicates a third signal quality threshold
  • the processing unit is configured to determine the first For the secondary base station, the first secondary base station is determined from the N secondary base stations according to the third signal quality threshold, where the signal quality of the first secondary base station is higher than the third signal quality threshold.
  • the state of the terminal device in the first secondary base station is in a deactivated state; the processing unit invokes the transceiver unit to execute: triggering the terminal device in the first secondary base station A state is switched from the deactivated state to the activated state.
  • the processing unit is configured to start a first timer after detecting a link problem of the master base station;
  • the transceiver unit is configured to send the first information to a second secondary base station, where the second secondary base station belongs to the N secondary base stations base station.
  • the transceiver unit is configured to receive first indication information from the primary base station, where the first indication information indicates the number of times the terminal device is allowed to send the first information, and/or , where the first indication information indicates that the terminal device is allowed to select other secondary base stations in the N secondary base stations except the first secondary base station to send The first information, and/or, the first indication information indicates a first duration, and the terminal device is allowed to send the first information within the first duration.
  • the processing unit is configured to, before receiving a response to the first information from the first secondary base station, determine the first secondary base station in the N secondary base stations according to the first rule A three secondary base station: the transceiver unit, configured to send the first information to the third secondary base station.
  • the processing unit is configured to start a second timer after detecting a link problem of the master base station; when the transceiver unit receives the first response, stop the second timer and a timer, wherein the first response is a response to the first information received by the terminal device for the first time; according to the first response, the communication with the main base station is resumed through the transceiver unit.
  • the processing unit is configured to discard responses to the first information received after the first response.
  • the processing unit is configured to determine that a link problem exists in the primary base station according to one or more of the following:
  • the primary cell group radio link fails, the primary cell group handover fails, the radio resource control reconfiguration fails, and the radio resource control layer of the terminal device receives signaling radio bearer SRB1 or SRB2 integrity check failure indication information.
  • the first information includes a primary cell group failure message.
  • the transceiving unit is configured to receive configuration information from the primary base station, where the configuration information is used to configure fast recovery of the primary cell group for the terminal device.
  • the present application provides a communication device, where the communication device is a master base station device or a device for implementing the functions of the master base station; the device includes: a transceiver unit and a processing unit;
  • the processing unit invokes the transceiving unit to execute: indicating to the terminal device a first rule, the first rule is used for the terminal device to be sent from the terminal device when a link problem of the master base station is detected. Select the first secondary base station from the configured N secondary base stations, the first secondary base station is used to forward the first information received from the terminal device to the primary base station, the first information is used to indicate the The terminal device detects the link problem of the primary base station; receives the first information from the first secondary base station; and sends a response to the first information to the first secondary base station.
  • the first rule indicates M secondary base stations in the N secondary base stations, where M ⁇ N.
  • the first rule includes identities of M cells, and the M cells correspond to the M secondary base stations.
  • the first rule indicates a third signal quality threshold.
  • the transceiving unit is configured to send first indication information to the terminal device, where the first indication information indicates the number of times the terminal device is allowed to send the first information, and/or , the first indication information indicates that the terminal device is allowed to select other SeNBs in the N SeNBs except the first SeNB to transmit if no response to the first information is received.
  • the first information, and/or, the first indication information indicates a first duration, and the terminal device is allowed to send the first information within the first duration.
  • the transceiving unit is configured to receive the first information from the second SeNB, and send a response to the first information to the second SeNB.
  • the first information includes a primary cell group failure message.
  • the transceiving unit is configured to send configuration information to the terminal device, where the configuration information is used to configure fast recovery of the primary cell group for the terminal device.
  • the present application further provides a device.
  • the device can perform the method design described above.
  • the apparatus may be a chip or a circuit capable of performing the function corresponding to the above method, or a device including the chip or circuit.
  • the apparatus includes: a memory, configured to store computer executable program codes; and a processor, and the processor is coupled to the memory.
  • the program codes stored in the memory include instructions, and when the processor executes the instructions, the device or the device installed with the device executes the method in any one of the above possible designs.
  • the device may further include a communication interface, which may be a transceiver, or, if the device is a chip or a circuit, the communication interface may be an input/output interface of the chip, such as an input/output pin.
  • a communication interface which may be a transceiver, or, if the device is a chip or a circuit, the communication interface may be an input/output interface of the chip, such as an input/output pin.
  • the device includes corresponding functional units for respectively implementing the steps in the above methods.
  • the functions may be implemented by hardware, or may be implemented by executing corresponding software through hardware.
  • Hardware or software includes one or more units corresponding to the functions described above.
  • the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is run on a device, the method in any one of the above-mentioned possible designs is executed.
  • the present application provides a computer program product, the computer program product includes a computer program, and when the computer program is run on a device, the method in any one of the above possible designs is executed.
  • the present application provides a communication system, the system includes a communication device for implementing any possible design in the third aspect and the third aspect, and a communication device for implementing the fourth aspect and any of the possible designs in the fourth aspect any possible design of the communication device.
  • FIG. 1 is a schematic structural diagram of a mobile communication system applied in an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of an access network device including a CU and a DU in an embodiment of the present application;
  • FIG. 3 is an architecture diagram of the MR-DC control plane in an embodiment of the present application.
  • FIG. 4A is a schematic diagram of protocol stacks for MCG bearer, SCG bearer and separated bearer on the network side in EN-DC according to an embodiment of the present application;
  • FIG. 4B is a schematic diagram of protocol stacks for MCG bearer, SCG bearer and separated bearer on the network side in NGEN-DC or NE-DC or NR-DC in the embodiment of the present application;
  • FIG. 5 is one of the overview flowcharts of a communication method under multiple connections in an embodiment of the present application
  • FIG. 6 is the second overview flowchart of a communication method under multiple connections in an embodiment of the present application.
  • Fig. 7 is one of the structural schematic diagrams of a device in the embodiment of the present application.
  • FIG. 8 is the second structural schematic diagram of a device in the embodiment of the present application.
  • At least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • FIG. 1 is a schematic diagram of the architecture of a mobile communication system applied in the embodiment of the present application, including UE1, node 1 and node 2, and a core network (core network, CN).
  • core network core network
  • Terminal also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • examples of some terminals are: mobile phone (mobile phone), tablet computer, notebook computer, palmtop computer, mobile internet device (mobile internet device, MID), wearable device, virtual reality (virtual reality, VR) device, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, smart grid Wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
  • An access network device refers to an access network (access network, AN) node (or device) that connects a terminal to a network, and may also be called a base station.
  • the access network design here may be a wired access network device or a wireless access network device.
  • radio access network (radio access network, RAN) equipment are: evolving node B (gNB), transmission reception point (transmission reception point, TRP), evolved node B (evolved Node B, eNB) , radio network controller (radio network controller, RNC), node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), base band unit (base band unit, BBU), or wireless fidelity (wireless fidelity, Wifi) access point (access point, AP), etc.
  • gNB evolving node B
  • TRP transmission reception point
  • evolved Node B, eNB evolved node B
  • RNC radio network controller
  • Node B Node B, NB
  • base station controller base station controller
  • base transceiver station base transceiver station
  • BTS home base station
  • home base station for example, home evolved
  • the access network device may include a centralized unit (centralized unit, CU) node, or a distributed unit (distributed unit, DU) node, or a RAN device including a CU node and a DU node.
  • the RAN equipment including the CU node and the DU node separates the protocol layer of the gNB in the NR system, and the functions of some protocol layers are placed in the centralized control of the CU, and the remaining part or all of the functions of the protocol layer are distributed in the DU and centralized by the CU.
  • Control the DU as shown in Figure 2.
  • the CU can also be divided into a control plane (CU-CP) and a user plane (CU-UP).
  • CU-CP control plane
  • CU-UP user plane
  • the CU-CP is responsible for the control plane function, mainly including the packet data convergence protocol (packet data convergence protocol, PDCP) corresponding to the RRC and the control plane (PDCP-C).
  • PDCP-C is mainly responsible for encryption and decryption of control plane data, integrity protection, data transmission, etc.
  • CU-UP is responsible for user plane functions, mainly including service data adaptation protocol (service data adaptation protocol, SDAP) and PDCP corresponding to the user plane (PDCP-U).
  • SDAP service data adaptation protocol
  • PDCP-U is mainly responsible for processing the data of the core network and mapping the flow to the bearer.
  • PDCP-U is mainly responsible for encryption and decryption of the data plane, integrity protection, header compression, serial number maintenance, data transmission, etc.
  • CU-CP and CU-UP are connected through E1 interface.
  • the CU-CP represents the connection between the gNB and the core network through the NG interface, and the connection with the DU through the F1 interface control plane (ie F1-C).
  • the CU-UP is connected to the DU through the F1 interface user plane (namely F1-U).
  • F1-U F1 interface user plane
  • PDCP-C is also in CU-UP.
  • the core network equipment refers to the equipment in the core network that provides service support for the terminal.
  • core network equipment are: access and mobility management function (access and mobility management function, AMF) entity, session management function (session management function, SMF) entity, user plane function (user plane function, UPF) Entities, etc., are not listed here.
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • the AMF entity may be responsible for terminal access management and mobility management
  • the SMF entity may be responsible for session management, such as user session establishment
  • the UPF entity may be a functional entity of the user plane, mainly responsible for connecting external network.
  • AMF entities may also be referred to as AMF network elements or AMF functional entities
  • SMF entities may also be referred to as SMF network elements or SMF functions entity etc.
  • the technical solutions provided by the embodiments of the present application can be applied to various communication systems. For example, it can be applied to a long term evolution (long term evolution, LTE) system or a 5G system, and can also be applied to other future-oriented new systems, such as a programmable user plane system, which is not specifically limited in this embodiment of the present application. Also, the term “system” and “network” may be used interchangeably.
  • a terminal device may communicate with multiple base stations, namely DC or MR-DC.
  • the multiple base stations here may be base stations belonging to the same radio access technology (radio access technology, RAT) (for example, both are 4G base stations, or all are 5G base stations), or they may be base stations of different RATs (for example, one is a 4G base station, One is a 5G base station).
  • RAT radio access technology
  • Each base station has different radio link control (radio link control, RLC) and medium access control (medium access control, MAC) entities.
  • RLC radio link control
  • MAC medium access control
  • data radio bearer data radio bearer
  • DRB data radio bearer
  • MCG bearer Bearer
  • secondary cell group secondary cell group
  • split bearer split Bearer
  • MCG bearer means that the RLC/MAC entity of the DRB is only on the primary base station
  • SCG bearer means that the RLC/MAC entity of the DRB is only on the secondary base station
  • separate bearer means that the RLC/MAC entity of the DRB is on the primary base station Both on the base station and secondary base station.
  • MN terminated bearer For the bearer terminated by PDCP on the main base station, it can be called MN terminated (MN terminated) bearer, that is, downlink (DL) data directly reaches the main base station from the core network, and is processed by the main base station through PDCP (for example, it may first After SDAP, then PDCP processing) and then RLC/MAC to send to the terminal equipment, uplink (uplink, UL) data is processed from the PDCP of the main base station (may be first PDCP, then SDAP processing) and then sent to the core network.
  • MN terminated bearer that is, downlink (DL) data directly reaches the main base station from the core network, and is processed by the main base station through PDCP (for example, it may first After SDAP, then PDCP processing) and then RLC/MAC to send to the terminal equipment, uplink (uplink, UL) data is processed from the PDCP of the main base station (may be first PDCP, then SDAP processing) and then sent
  • the bearer terminated by PDCP on the SeNB it can be called SN terminated (SN terminated) bearer, that is, the DL data directly reaches the SeNB from the core network, and is processed by the PDCP of the SeNB (for example, it may first pass through the SDAP , and then processed by PDCP) and then sent to the terminal device through RLC/MAC, and the UL data is processed by PDCP of the secondary base station (for example, it may be processed by PDCP first and then processed by SDAP) and then sent to the core network.
  • SN terminated SN terminated
  • both the primary base station and the secondary base station have RRC entities, and both can generate RRC messages (that is, control messages, such as measurement messages, etc.), as shown in FIG. 3 .
  • the secondary base station can directly send the RRC message generated by the secondary base station to the terminal device.
  • the RRC message sent by the terminal device to the SeNB is also directly sent to the SeNB.
  • the RRC messages directly exchanged between the secondary base station and the terminal equipment are called signaling radio bearers (Signalling radio bearers, SRB)3.
  • the RRC message generated by the secondary base station may also be notified to the primary base station, and then the primary base station sends it to the terminal device.
  • the terminal device also transfers the RRC messages for the SeNB to the SeNB through the MeNB, that is, the terminal device sends these RRC messages to the MeNB, and the MeNB then forwards the messages to the SeNB.
  • MR-DC there are different types of MR-DC, such as the dual connection (E-UTRA NR-dual connectivity, EN-DC) of the 4G wireless access network connected to the 4G core network and the 5G new radio (new radio, NR), and the 5G core network Dual connectivity between 4G radio access network and 5G NR (NG-RAN E-UTRA-NR Dual Connectivity, NGEN-DC), dual connectivity between 5G NR and 4G radio access network interconnected with 5G core network (NR EUTRA -dual connectivity, NE-DC), 5G NR connected to the 5G core network and 5G NR dual connection (NR-NR Dual Connectivity, NR-DC).
  • E-UTRA NR-dual connectivity, EN-DC of the 4G wireless access network connected to the 4G core network and the 5G new radio (new radio, NR)
  • 5G core network Dual connectivity between 4G radio access network and 5G NR NG-RAN E-UTRA-NR Dual Connectivity, NGEN-DC
  • EN-DC long term evolution (LTE) base station (eNB) connected to a 4G core network (evolved packet core, EPC), and the secondary base station is an NR base station.
  • LTE long term evolution
  • EPC evolved packet core
  • EN-DC is sometimes also called 5G non-standalone networking (Non-Standalone, NSA).
  • Figure 4A is a schematic diagram of the protocol stack for MCG bearer, SCG bearer and separated bearer on the network side of EN-DC.
  • the primary base station in NGEN-DC is an LTE base station (ng-eNB) connected to the 5G core (5generation core 5GC), and the secondary base station is an NR base station.
  • ng-eNB LTE base station
  • NE-DC the primary base station is an NR base station connected to the 5G core network
  • the secondary base station is an LTE base station.
  • NR-DC the primary base station is the NR base station connected to the 5G core network
  • the secondary base station is the NR base station.
  • FIG. 4B is a schematic diagram of protocol stacks for MCG bearer, SCG bearer and split bearer at the network side in NGEN-DC or NE-DC or NR-DC.
  • the user plane of the secondary base station may be connected to the core network connected to the primary base station (that is, the core network can directly send data to the UE through the secondary base station).
  • MR-DC there is a primary cell in the primary base station, and there is a primary secondary cell in the secondary base station.
  • the primary cell refers to the cell that is deployed at the main frequency point, and the terminal device initiates the initial connection establishment process or the connection reestablishment process in the cell, or indicates the cell as the primary cell during the handover process.
  • the primary and secondary cell refers to the cell where the terminal device initiates the random access process in the secondary base station or the cell where the terminal device skips the random access process and initiates data transmission during the change process of the secondary base station, or initiates random access during the synchronization reconfiguration process.
  • the cell of the incoming secondary base station The cell of the incoming secondary base station.
  • the serving cell group provided by the primary base station for the terminal device can also be MCG, and the similar serving cell group provided by the secondary base station for the terminal device is called SCG.
  • MCG and SCG respectively include at least one cell. When there is only one cell in the MCG, this cell is the primary cell (primary cell, PCell) of the terminal device. When there is only one cell in the SCG, the cell is the primary second cell (PSCell) of the terminal device.
  • PCell primary cell
  • PSCell Primary second cell
  • SpCell Special Cell
  • the cells other than the SpCell are called secondary cells (Secondary Cell, SCell).
  • SCells and SpCells in each cell group perform carrier aggregation to jointly provide transmission resources for the terminal equipment.
  • one terminal device may communicate with multiple base stations.
  • One of the base stations is the primary base station, and the other base station is the secondary base station.
  • the network side may configure N secondary base stations for the terminal device, where N ⁇ 2.
  • the terminal device may establish communication connections with all of the N secondary base stations, or it may be that the terminal device establishes communication connections with some of the N secondary base stations, and some secondary base stations do not establish communication connections.
  • the terminal device can trigger the terminal device to switch from the deactivated state to the activated state in a secondary base station, that is, only one secondary base station is activated. At this time, the terminal device is in the deactivated state of the other N-1 secondary base stations. In an active state, the terminal device only establishes a communication connection with one secondary base station, and does not establish communication connection with other N-1 secondary base stations. In addition, the terminal device may also trigger state switching of multiple secondary base stations among the N secondary base stations from a deactivated state to an activated state, that is, activate multiple secondary base stations.
  • the primary base station pre-configures relevant configuration parameters corresponding to N secondary base stations for the terminal device, and the relevant configuration parameters corresponding to each secondary base station are used for the terminal device to establish a communication connection with the secondary base station.
  • the primary base station may notify the terminal device to establish a communication connection with one or more secondary base stations in the N secondary base stations.
  • the primary base station may notify the terminal device to establish a communication connection with one of the N secondary base stations, and at a certain moment the terminal device may only communicate with the secondary base station.
  • the primary base station can also notify the terminal device to establish communication connections with multiple secondary base stations among the N secondary base stations, and the terminal device can have communication connections with the above multiple secondary base stations at the same time, then the terminal device can communicate with the above multiple secondary base stations at a certain moment.
  • the base station communicates.
  • the terminal device may perform data transmission in multiple base stations at the same time, and it may also be that the terminal device does not perform data transmission or sending in the N secondary base stations at the same time. For example, the terminal device performs time-division transmission or reception among N secondary base stations.
  • CA Carrier Aggregation
  • CA specifically refers to configuring multiple carriers (cells) for a single terminal device to jointly perform data transmission.
  • Primary cell a cell that works on the primary carrier.
  • the terminal equipment performs an initial connection establishment process in the cell, or starts a connection re-establishment process. This cell is indicated as the primary cell during the handover process.
  • Primary and secondary cells In cells belonging to the SCG, terminal devices are instructed to perform random access or initial physical uplink shared channel (PUSCH) transmission. (For example, when the random access procedure is omitted during the SCG change procedure).
  • PUSCH physical uplink shared channel
  • Secondary cell a cell that works on a secondary carrier. Once the RRC connection is established, the SCell may be configured to provide additional radio resources.
  • a terminal device in the RRC_CONNECTED state if no CA and/or DC is configured, if there is only one Serving Cell, that is, PCell; if CA and/or DC are configured, the Serving Cell A set is composed of a primary cell and a secondary cell.
  • Each carrier (component carrier, CC) corresponds to an independent cell.
  • a terminal device configured with CA and/or DC is connected to one primary cell and at most 31 secondary cells. Wherein, the primary cell of a certain terminal device and all secondary cells constitute the Serving Cell set of the terminal device.
  • the serving cell may refer to the primary cell or the secondary cell.
  • the link problem of the main base station also called the MCG link problem
  • the terminal device may determine that the master base station has a link problem according to one or more of the following:
  • the terminal device detects MCG RLF (radio link failure, radio link failure), or MCG handover fails, or RRC reconfiguration fails (for example, the terminal device cannot comply with some configurations in the received RRC reconfiguration message), or the terminal
  • the RRC of the device receives from the bottom layer the indication information of the integrity check failure of SRB1 or SRB2 (wherein, the indication information of the integrity check failure of the RRC reconstruction message is not included).
  • the trigger conditions of MCG RLF may include one or more of the following: the terminal device detects that the downlink signal quality of the MCG is relatively poor, or the RRC layer of the terminal device receives a random access problem indication from the MCG MAC, or receives a random access problem indication from the MCG RLC. A packet to a certain SRB or DRB has reached the maximum number of retransmissions.
  • the RRC layer of the terminal device receives N310 consecutive out-of-synchronization indications of the PCell from the physical layer, and the terminal device starts a timer T310. If the RRC layer of the terminal device does not receive the PCell from the physical layer before T310 expires If there are N311 consecutive synchronization indications, the terminal device determines that the downlink signal quality of the MCG is relatively poor.
  • the terminal device may determine that there is a link problem in the secondary base station according to one or more of the following:
  • the terminal device detects that the downlink signal quality of the SCG is relatively poor, or the RRC layer of the terminal device receives a random access problem indication from the SCG MAC, or the terminal device receives a certain SRB or DRB data packet from the SCG RLC and reaches the maximum retransmission
  • SCG handover failure for example, PSCell handover failure
  • RRC reconfiguration failure sent by SN through SRB3 (for example, the terminal device cannot comply with the partial configuration in the RRC reconfiguration message received from SRB3)
  • the RRC of the terminal device receives the indication information that the integrity check of the SRB3 fails from the lower layer.
  • the RRC layer of the terminal device receives N310 consecutive out-of-sync indications of the PSCell from the physical layer, and the terminal device starts a timer T310. If the RRC layer of the terminal device does not receive the PSCell from the physical layer before T310 expires If there are N311 consecutive synchronization indications, the terminal device believes that RLF has occurred in the SCG, and the terminal device determines that the downlink signal quality of the SCG is relatively poor.
  • the first information is used to indicate that the terminal device detects a link problem of the primary base station.
  • the first information may include MCG failure information, and the first information may be generated by the RRC corresponding to the primary base station in the terminal device.
  • the first information may carry an RRC message generated by the RRC corresponding to the primary base station in the terminal device, such as an MCG failure information message.
  • the first information may include at least one of the following: failure type (such as t310 timeout, random access failure, RLC data packets reaching the maximum number of retransmissions, etc.), some measurements in some measurement configurations issued by the main base station Measurement results of cells corresponding to frequency points, measurement results of cells corresponding to some measurement frequency points in some measurement configurations issued by the secondary base station, and the like.
  • failure type such as t310 timeout, random access failure, RLC data packets reaching the maximum number of retransmissions, etc.
  • some measurements in some measurement configurations issued by the main base station Measurement results of cells corresponding to frequency points
  • measurement results of cells corresponding to some measurement frequency points in some measurement configurations issued by the secondary base station and the like.
  • the response to the first information may be carried in an RRC reconfiguration message or an RRC connection release message sent by the primary base station to the terminal device through the first secondary base station.
  • the response to the first information may notify the terminal device to change the primary cell or modify some configuration information.
  • the terminal device In dual connectivity, when the terminal device detects some link problems of the MCG (for details, refer to the link problem of the primary base station above), if the terminal device initiates the RRC reconstruction process, it will cause data transmission to be interrupted, and generally In other words, the RRC reconstruction process takes a long time, so the time required for data transmission recovery is also long. Specifically, the terminal device will select a cell to perform the RRC re-establishment process, the terminal device will release the previous SCG configuration, and the data transmission at the secondary base station side will be interrupted.
  • some link problems of the MCG for details, refer to the link problem of the primary base station above
  • the data transmission on the SeNB side includes the data transmission on the SeNB side in the bearer terminated by the MeNB or the separated bearer terminated by the MeNB, and the data transmission on the SeNB side in the bearer terminated by the SeNB or in the separated bearer terminated by the SeNB. Therefore, the SCG configuration needs to be reconfigured for the terminal equipment later, and the RRC reestablishment process needs to restore the above-mentioned bearer for a long time, that is to say, the data transmission on the secondary base station side needs a long time to resume.
  • the data transmission on the main base station side will also be interrupted. Specifically, during or after the RRC reestablishment process, the main base station needs to send an RRC reconfiguration message to the terminal device to re-establish the DRB, and then the main base station can perform data transmission with the terminal device.
  • an MCG fast recovery process may be adopted. Specifically, when the terminal device detects some link problems of the MCG, the terminal device will judge whether the SCG detects the SCG RLF. If no SCG RLF is detected, the terminal device can also send MCG failure information to the primary base station through the secondary base station, so that the primary base station can perform certain operations (for example, switch or reconfigure the primary base station) to restore the MCG. Therefore, the terminal device does not need to initiate the RRC re-establishment process, and at this time, the SCG configuration can be retained, thereby shortening the data transmission interruption time at the secondary base station side.
  • the main base station can directly carry the DRB configuration corresponding to the main base station in the response to the MCG failure information, and then the main base station and the terminal device can resume data transmission, thereby shortening the data transmission interruption time on the main base station side.
  • the embodiment of the present application provides a communication method under multiple connections, which can be used to realize fast recovery of MCG and improve communication efficiency.
  • the primary base station and N (N ⁇ 2) secondary base stations can provide services for the terminal device, and the N secondary base stations are configured by the primary base station for the terminal device.
  • the N secondary base stations may include a first secondary base station and a second secondary base station.
  • the primary base station may send relevant configuration parameters corresponding to the N secondary base stations to the terminal device, for example, N pieces of SCG configuration information, and each SCG configuration may include RLC parameters and/or MAC parameters.
  • the relevant configuration parameters of the N secondary base stations may be carried in one message sent by the primary base station to the terminal device, or may be carried in multiple messages sent by the primary base station to the terminal device.
  • the method includes:
  • Step 501 The master base station indicates the first rule to the terminal device.
  • the first rule is used for the terminal device to select the first secondary base station from the N secondary base stations configured for the terminal device when the link problem of the master base station is detected.
  • a secondary base station is used to forward the first information received from the terminal device to the primary base station.
  • the primary base station notifies the terminal device of the first rule by displaying an indication.
  • the master base station indicates the first rule to the terminal device.
  • the primary base station notifies the terminal device of the first rule in an implicit indication manner.
  • the primary base station has configured N secondary base stations for the terminal device, and the terminal device obtains the first rule according to a predefined rule (for example, the content of the first rule specified in the protocol).
  • Step 502 When the terminal device detects a link problem of the primary base station, the terminal device determines a first secondary base station from N secondary base stations configured for the terminal device according to a first rule, where N ⁇ 2.
  • the primary base station does not need to indicate the first rule to the terminal device, that is, step 501 does not need to be performed.
  • the terminal device may determine the first secondary base station from the configured N secondary base stations according to a predefined rule.
  • the following describes a specific process for the terminal device to determine the first secondary base station from the N secondary base stations configured for the terminal device according to the first rule in combination with several possible implementation manners of the first rule.
  • Manner 1 the first rule indicates M secondary base stations in the N secondary base stations, where M ⁇ N.
  • the first rule includes identifiers of M secondary base stations or identifiers of M cells, where there is a corresponding relationship between the M cells and the M secondary base stations.
  • the first rule includes identifiers of M secondary base stations or identifiers of SCGs corresponding to the M secondary base stations, or identifiers of PSCells corresponding to the M secondary base stations.
  • the terminal device can directly determine the first secondary base station.
  • the primary base station may instruct the first secondary base station according to the situation on the network side.
  • the primary base station may confirm the first secondary base station according to the transmission delay between the primary base station and each secondary base station.
  • the primary base station selects the secondary base station with the shortest transmission delay between the primary base station and the secondary base station as the first secondary base station.
  • the primary base station may determine the first secondary base station according to the transmission delay between each secondary base station and the terminal device. For example, the primary base station selects a secondary base station with the shortest transmission delay with the terminal device as the first secondary base station.
  • the terminal device may determine the first secondary base station from the M secondary base stations.
  • the terminal device uses a secondary base station in which no SCG link problem is detected among the M secondary base stations as the first secondary base station. For example, the terminal device can first determine whether there is a secondary base station with a link problem among the M secondary base stations. If one or more secondary base stations have a link problem, exclude the secondary base station with a link problem, and then never The first secondary base station is determined in the secondary base station with the path problem. For example, when the terminal device determines that the number of secondary base stations with no link problems is greater than or equal to 2, the terminal device can arbitrarily select a secondary base station as the first secondary base station or the terminal device can select the secondary base station with the best signal quality as the second secondary base station. A secondary base station.
  • the terminal device uses, among the M secondary base stations, a secondary base station in which no SCG link problem is detected and whose signal quality is higher than the first signal quality threshold as the first secondary base station.
  • the first signal quality threshold is preconfigured or carried by the first rule. For example, in the case that the number of SeNBs whose signal quality is higher than the first signal quality threshold is greater than or equal to 2 among the SeNBs without link problems, the terminal device randomly selects a SeNB as the first SeNB or the terminal device can select a signal The secondary base station with the best quality is used as the first secondary base station. Therefore, the terminal device screens the SeNBs based on the signal quality, and can use the SeNB with better signal quality as the first SeNB, so as to improve the transmission reliability of the first information and realize the fast recovery of the MCG.
  • the terminal device when all M secondary base stations have link problems or the signal quality of M secondary base stations is lower than the second signal quality threshold, the terminal device removes M secondary base stations from the N secondary base stations.
  • the first SeNB is determined in the SeNB other than the base station, that is, the terminal device can determine the first SeNB in the SeNB other than the SeNB indicated by the Primary Base Station, so as to rule out that the link problem or the signal quality is poor A secondary base station that is poor and may not be able to receive the first information from the terminal device.
  • the second signal quality threshold may be the same as or different from the first signal quality threshold, for example, the second signal quality threshold may be smaller than the first signal quality threshold.
  • the terminal device may select a SeNB whose signal quality is higher than the first signal quality threshold or the second signal quality threshold from the N SeNBs except the M SeNBs as the first SeNB, or select from Among the N secondary base stations except for the M secondary base stations, a secondary base station with no link problem detected is selected as the first secondary base station, or the terminal device does not send the first information.
  • the terminal device can preferentially select the secondary base station for forwarding the first information received from the terminal device to the primary base station according to the M secondary base stations indicated by the first rule.
  • the first secondary base station is determined from the secondary base stations except the M secondary base stations among the N secondary base stations, and the transmission reliability of the first information is improved by selecting an appropriate first secondary base station, so as to realize fast recovery of the MCG.
  • the third signal quality threshold may be the same as or different from the above-mentioned first signal quality threshold and the second signal quality threshold, which is not limited in this embodiment of the present application.
  • the terminal device may determine the first SeNB from the N SeNBs according to the third signal quality threshold, where the signal quality of the first SeNB is higher than the third signal quality threshold.
  • the terminal device may select a secondary base station with the best signal quality as the first secondary base station, or the terminal device selects a secondary base station with the best signal quality as the first secondary base station.
  • a secondary base station is arbitrarily selected from the secondary base stations whose signal quality is higher than the third threshold as the first secondary base station.
  • Mode 3 The first rule instructs the terminal device to preferentially select the secondary base station whose status of the terminal device in the secondary base station is activated.
  • the primary base station may notify the terminal device to preferentially select the secondary base station in which the terminal device is in the activated state of the secondary base station by means of an implicit indication.
  • the primary base station has configured N secondary base stations for the terminal device, and the terminal device may acquire the first rule according to a predefined rule.
  • the terminal device preferentially selects the SeNB in which the state of the terminal device in the SeNB is activated. Therefore, in the case that the terminal device detects a link problem of the primary base station, the terminal device preferentially selects the secondary base station in which the terminal device is in the activated state of the secondary base station.
  • the activated secondary base station here refers to the activated secondary base station when the terminal device detects a link problem of the primary base station. Therefore, when the terminal device detects a link problem with the primary base station, the terminal device needs to first determine which of the N secondary base stations are active secondary base stations, and determine which secondary base stations are in the active state according to the first rule The first secondary base station.
  • the terminal device is in an active state in a secondary base station, which can be understood as the terminal device can perform signaling transmission and/or data transmission through the communication link of the SCG of the secondary base station.
  • the state of the terminal device in a secondary base station is in the deactivated state, which can be understood as the terminal device suspends signaling transmission and/or data transmission through the communication link of the SCG of the secondary base station, but the terminal device retains or stores the SCG of the secondary base station Some or all of the configurations are used to quickly restore the communication link of the SCG.
  • the terminal device is in a deactivated state in a secondary base station.
  • the primary base station only configures the secondary base station for the terminal device, but the primary base station has not notified the terminal device to access the secondary base station.
  • the "active state” may also be referred to as a non-suspended state or a non-sleep state or an active state.
  • a “deactivated state” may also be referred to as a suspended state or a dormant or inactive state.
  • the terminal device may use the activated secondary base station among the N secondary base stations as the first secondary base station. For example, the terminal device may also first determine whether there is an active secondary base station among the N secondary base stations, and if so, determine the first secondary base station therefrom. For example, when the terminal device determines that the number of activated SeNBs is greater than or equal to 2, the terminal device can arbitrarily select a SeNB as the first SeNB or the terminal device can select the SeNB with the best signal quality as the first SeNB. base station. If there is no secondary base station in an activated state, the terminal device may randomly select a secondary base station as the first secondary base station, or the terminal device may select a secondary base station with the best signal quality as the first secondary base station.
  • the terminal device uses a secondary base station that is in an activated state and whose signal quality is higher than a fourth signal quality threshold among the N secondary base stations as the first secondary base station.
  • the fourth signal quality threshold is preconfigured or carried by the first rule. For example, in the case that the number of secondary base stations whose signal quality is higher than the fourth signal quality threshold is greater than or equal to 2 among the activated secondary base stations, the terminal device can randomly select a secondary base station as the first secondary base station or the terminal device can select the signal quality The best secondary base station is used as the first secondary base station.
  • the terminal device may randomly select a secondary base station as the first secondary base station or the terminal device may select the secondary base station with the best signal quality as the first secondary base station base station.
  • the terminal device selects the secondary base station whose status of the terminal device in the secondary base station is deactivated as the first secondary base station, the terminal device needs to trigger the activation of the terminal device in the first secondary base station before sending the first information to the first secondary base station.
  • the state of the base station is switched from the deactivated state to the activated state, which brings certain signaling overhead.
  • the terminal device selects the secondary base station in which the terminal device is in the activated state in the secondary base station as the first secondary base station, this part of the signaling overhead can be saved, and the terminal device can realize the first secondary base station as soon as possible due to the saving of this part of the signaling overhead.
  • the information is sent to the first SeNB. Therefore, by selecting an appropriate first SeNB, the transmission delay of the first information is reduced, so as to realize fast recovery of the MCG.
  • the first rule indicates M SeNBs among the N SeNBs and instructs the terminal device to preferentially select the SeNB whose state of the terminal device is activated in the SeNB, that is, the combination of method 1 and method 3.
  • the first rule indicates the third signal quality threshold and instructs the terminal device to preferentially select the secondary base station in which the terminal device is activated in the secondary base station, that is, the combination of method 2 and method 3.
  • the first rule indicates M SeNBs among the N SeNBs and indicates a third signal quality threshold, that is, a combination of Mode 1 and Mode 2.
  • the terminal device when the terminal device determines which secondary base station is the first secondary base station, the terminal device can also consider one or more of the following factors: the transmission delay between the primary base station and the secondary base station , the transmission delay between the secondary base station and the terminal equipment, etc.
  • the terminal device may select the SeNB with the shortest transmission delay with the primary base station among the SeNBs without link problems as the first SeNB , or select the secondary base station with the shortest transmission delay between the secondary base station and the terminal device among the secondary base stations without link problems as the first secondary base station.
  • the terminal device may select the transmission time between the primary base station and the secondary base station whose signal quality is higher than the third signal quality threshold.
  • the SeNB with the shortest delay is used as the first SeNB, or the SeNB with the shortest transmission delay between the terminal device and the SeNB whose signal quality is higher than the third signal quality threshold is selected as the first SeNB.
  • the terminal device may select the secondary base station with the shortest transmission delay with the primary base station among the activated secondary base stations as the first secondary base station, or A secondary base station with the shortest transmission delay between the activated secondary base station and the terminal device is selected as the first secondary base station.
  • the terminal device may also refer to other factors to select and determine the first secondary base station, which is not limited in this embodiment of the present application.
  • Step 503 The terminal device sends first information to the first SeNB.
  • the terminal device if the state of the terminal device in the first SeNB is in the deactivated state, the terminal device also triggers the state of the terminal device in the first SeNB to switch from the deactivated state to the activated state.
  • the terminal device may also perform at least one of the following contents (here, the following contents are not limited in sequence):
  • the terminal device initiates a random access (random access) process to the first secondary base station. For example, the terminal device sends a random access channel (random access channel, RACH) to the first secondary base station.
  • RACH random access channel
  • the terminal device initiates the RACH procedure to the first SeNB only when the uplink timing alignment timer (for example, timeAlignmentTimer) corresponding to the first SeNB expires.
  • the terminal device resumes data transmission with the first secondary base station.
  • the terminal device may send the first information to the first SeNB in the following manner.
  • the first information may be MCG failure information, or the first information includes MCG failure information.
  • the terminal device may send the first information to the first secondary base station by splitting an SRB (split SRB) or SRB3.
  • the RRC entity of the terminal device sends the first information to the RLC entity corresponding to the first secondary base station in the separated SRB in the form of a PDCP protocol data unit (protocol data unit, PDU).
  • the RRC entity of the terminal device may send the first information in the form of a PDCP PDU to all corresponding secondary base stations (including the first secondary base station) in the separated SRB. RLC entity.
  • the terminal device carries the first information in the SRB3 RRC message (such as the multi-connection uplink transmission information message) sent to the first secondary base station, and the RRC of the terminal device will be sent to the SRB3 RRC message of the first secondary base station
  • the message is sent to the RLC entity corresponding to the first secondary base station in SRB3 in the form of PDCP PDU.
  • Step 504 the first secondary base station sends the first information to the primary base station.
  • the first secondary base station sends the first information to the primary base station through an interface between the first secondary base station and the primary secondary base station.
  • the first secondary base station if the first secondary base station receives the first information by separating the SRB, the first secondary base station transfers the first information received from the terminal device to the primary base station (that is, sends the PDCP PDU received from the terminal device to the primary base station) primary base station), therefore, the first secondary base station sends the first information to the primary base station through a user plane connection between the first secondary base station and the primary base station.
  • the RRC of the terminal device may send the first information in the form of a PDCP PDU to the RLCs of all corresponding secondary base stations (including the first secondary base station) in the separated SRB entity.
  • the secondary base stations corresponding to the separated SRB including the first secondary base station all send the first information to the primary base station.
  • the terminal device sends the first information to all the secondary base stations corresponding to the separated SRB, and all the secondary base stations corresponding to the separated SRB send the first information to the master base station.
  • the first secondary base station if the first secondary base station receives the first information through SRB3, the first secondary base station needs to decode the RRC message sent by the terminal device to obtain the first information in it, and then the first secondary base station uses the first information Sending to the primary base station, at this time, the first secondary base station sends the first information to the primary base station through a control plane connection between the first secondary base station and the primary base station.
  • Step 505 the primary base station sends a response to the first information to the first secondary base station.
  • the response to the first information may be in the form of a PDCP PDU, and the primary base station will send the first information to the first secondary base station through the user plane connection with the first secondary base station. The response is sent to the first secondary base station.
  • the primary base station sends a response to the first information to the first secondary base station through a control plane connection between the primary base station and the first secondary base station.
  • Step 506 The first SeNB sends a response to the first information to the terminal device.
  • the terminal device sends the first information by separating the SRB
  • the first secondary base station sends the PDCP PDU received from the primary base station to the terminal device.
  • the terminal device sends the first information through SRB3
  • the first secondary base station encapsulates the response received from the primary base station for the first information in an RRC message corresponding to SRB3 (such as the multi-connection downlink transmission information message)
  • the first SeNB sends the RRC message corresponding to SRB3 to the terminal device.
  • the method further includes step 507: the terminal device resumes the communication of the master base station according to the response to the first information.
  • the response to the first information may notify the terminal device to switch the primary cell.
  • the terminal device may switch from the original primary cell to the primary cell determined according to the response to the first information according to the response to the first information, where the switched primary cell and the original primary cell may be different cells under the same base station or Different cells under different base stations.
  • the response to the first information may notify the terminal device to modify some configuration information.
  • the terminal device may modify the configuration information according to the response to the first information, and then resume communication with the original primary cell.
  • the new configuration here may be the maximum number of uplink retransmissions, etc., for example, the maximum number of uplink retransmissions is increased from 10 to 20 times.
  • the primary base station may also send configuration information to the terminal device.
  • the configuration information is used to configure fast recovery of the primary cell group for the terminal equipment.
  • the main base station may send the configuration information and the first rule to the terminal device at the same time, or, before the main base station sends the first rule to the terminal device, the main base station sends the configuration information to the terminal device.
  • the configuration information is carried by an RRC dedicated message.
  • the terminal device may start the first timer.
  • the above configuration information may indicate the duration of the first timer (such as T316, which may also be called the MCG fast recovery timer).
  • the function of the first timer is: when the terminal device detects a link problem of the main base station, the terminal device generates the first information, the terminal device starts the first timer, the terminal device sends the first information, Before the timer expires, the terminal device receives a response to the first information, and the terminal device stops the first timer.
  • the following implementation methods may be included:
  • the terminal device may initiate an RRC re-establishment procedure.
  • Method 2 When the first timer expires and the terminal device does not receive a response to the first information from the first SeNB, the terminal device can send the first information to the second SeNB, and the second SeNB belongs to N secondary base station.
  • the second secondary base station is different from the first secondary base station.
  • the terminal device may determine the second SeNB according to the first rule, or the terminal device may determine the second SeNB according to the first indication information, and the specific manner of determining the second SeNB is not limited here.
  • the second secondary base station may be a secondary base station with no link problem. Adopting the above method 2 can improve the success rate of notifying the primary base station of the first information.
  • the terminal device may also receive first indication information from the primary base station.
  • the terminal device sends the first information to the second SeNB according to the first indication information.
  • the first indication information, the configuration information, and the first rule may be sent simultaneously or separately, which is not limited in this embodiment of the present application.
  • the first indication information indicates the number of times the terminal device is allowed to send the first information.
  • the first indication information indicates that the number of times the terminal device is allowed to send the first information is K, where K ⁇ 2.
  • the first indication information indicates that the terminal device is allowed to select other secondary base stations in the N secondary base stations except the first secondary base station to send the first information if no response to the first information is received.
  • the first indication information may indicate that the terminal device is allowed to select SeNBs in other M-1 SeNBs except the first SeNB to send the first information if no response to the first information is received.
  • the first indication information may indicate S secondary base stations in the N secondary base stations, allowing the terminal device to select the secondary base stations in the S secondary base stations to send the first information if no response to the first information is received, where , the S secondary base stations may be completely the same as the M secondary base stations, completely different, or partly the same and partly different.
  • the first indication information indicates the first duration
  • the terminal device is allowed to send the first information within the first duration.
  • the terminal device may choose to send the first information to the first secondary base station again, or the terminal device may choose to send the first information to other secondary base stations in the N secondary base stations except the first secondary base station or other secondary base stations except the first secondary base station. Secondary base stations in other M-1 secondary base stations other than the base station send the first information.
  • the terminal device generates a message sent to the second SeNB, and the terminal device may restart the first timer, where the message sent to the second SeNB includes the first information.
  • the terminal device may initiate an RRC re-establishment process or remove the first SeNB from the N SeNBs.
  • the base station and other secondary base stations other than the second secondary base station send the first information.
  • the terminal device when the terminal device sends the first information to the second SeNB, it needs to first determine that the first timer expires and the terminal device does not receive a response to the first information from the first SeNB.
  • the terminal device may also send a message to other base stations other than the first secondary base station when the first timer has not expired and the terminal device has not received a response to the first information from the first secondary base station.
  • the secondary base station sends the first information. Therefore, the success rate of notifying the primary base station of the first information can also be improved.
  • the terminal device before the terminal device receives a response to the first information from the first SeNB, the terminal device also determines the third SeNB among the N SeNBs according to the first rule, and sends the first information to the third SeNB . That is to say, the terminal device may determine multiple SeNBs among the N SeNBs according to the first rule, and the multiple SeNBs include the first SeNB and the third SeNB.
  • the terminal device may simultaneously send the first information to multiple secondary base stations respectively, or the terminal device may not simultaneously send the first information to multiple secondary base stations respectively, for example, the terminal device may sequentially send the first information, or the terminal device sends the first information to multiple secondary base stations in an arbitrary order.
  • the preset order of the multiple SeNBs may be the order in which the multiple SeNBs establish connections with the terminal device, or the primary base station may configure the order of the multiple SeNBs for the terminal device.
  • the terminal device resumes communication with the primary base station according to the received response to the first information. It can be understood that since the terminal device has sent multiple pieces of first information, it may receive one or more responses to the first information. Wherein, multiple responses to the first information may be the same or different.
  • the terminal device sends the first information to the first SeNB and the third SeNB respectively, the first SeNB forwards the first information to the MeNB, and receives a response to the first information restored by the MeNB, and the SeNB forwards the first information to the MeNB.
  • a SeNB sends the received response to the first information to the terminal device.
  • the third secondary base station forwards the first information to the primary base station, and receives a response to the first information restored by the primary base station, and the third secondary base station sends the received response to the first information to the terminal device.
  • the terminal device may receive a response to the first information from the first SeNB, and receive a response to the first information from the third SeNB, that is, the terminal device may receive multiple responses to the first information.
  • the response to the first information sent by the primary base station to the first secondary base station may be the same as or different from the response to the first information sent by the primary base station to the third secondary base station.
  • the terminal device may start the second timer.
  • the specific meaning of the second timer can refer to the specific meaning of the above-mentioned first timer, the repetition will not be repeated, and the duration of the second timer can be the same as or different from that of the first timer.
  • the terminal device stops the second timer, and the first response is a response to the first information received by the terminal device for the first time.
  • the terminal device resumes communication with the master base station according to the first response.
  • the terminal device discards or ignores or does not process responses to the first information received after the first response.
  • the terminal device first receives a response to the first information from the first SeNB, the terminal device resumes communication with the MeNB based on the response to the first information, and discards or ignores or does not process the response received from the third SeNB. A response to the first message.
  • the terminal device first receives a response to the first information from the third secondary base station, the terminal device resumes communication with the primary base station according to the response to the first information, and discards or ignores or does not process the response from the first secondary base station. A response to the first message is received.
  • the terminal device sends the first information to the first SeNB and the third SeNB respectively, the first SeNB forwards the first information to the MeNB, and the third SeNB forwards the first information to the MeNB.
  • the master base station may send a response to the first information only for the first information received for the first time, and discard or ignore or not process the first information received later.
  • the primary base station selects a secondary base station to send a response to the first information, for example , the primary base station only sends a response to the first information to the first secondary base station or the third secondary base station. At this time, the terminal device can only receive one response to the first information.
  • the master base station receives the first information from the first secondary base station for the first time, the master base station sends a response to the first information to the first secondary base station.
  • the MeNB After receiving the first information from the first SeNB, the MeNB also receives the first information from the third SeNB, then discards or ignores or does not process the first information, and does not send a response to the first information to the third SeNB.
  • the terminal device can determine the first secondary base station from the N secondary base stations configured for the terminal device according to the first rule indicated by the primary base station, and send the first information to the first secondary base station to Make the first secondary base station forward the first information to the primary base station.
  • the terminal device can notify the primary base station of the link problem of the primary base station to the primary base station as soon as possible, so that the primary base station can quickly restore the MCG without requiring
  • the terminal device initiates the RRC reconstruction process for the main base station, which improves the communication efficiency in the multi-connection scenario.
  • the embodiment of the present application also provides a communication method under multiple connections, which can be used to realize fast recovery of the MCG and improve communication efficiency.
  • the terminal device when the terminal device detects a link problem with the primary base station, the terminal device sends the first information to multiple secondary base stations respectively, thereby effectively ensuring that the first information is received by the primary base station.
  • the terminal device may send the first information to the N secondary base stations respectively, or the terminal device Multiple secondary base stations may be arbitrarily selected to send the first information respectively, or the terminal device may select multiple secondary base stations satisfying a certain condition, for example, the condition here may or may not be the first rule.
  • FIG. 6 is a further description of the communication method provided by this application based on the embodiment shown in FIG. 5 .
  • the embodiment shown in FIG. 6 can be referred to or combined with the embodiment shown in FIG. 5 .
  • the content already described in the illustrated embodiment will not be repeated in the embodiment shown in FIG. 6 .
  • the main base station and N secondary base stations can provide services for the terminal equipment, and the N secondary base stations are configured for the terminal equipment by the network side, and N ⁇ 2.
  • the N secondary base stations may include secondary base station #A and secondary base station #B.
  • the primary base station may send the configuration information of the N secondary base stations to the terminal device.
  • the configuration information of the N secondary base stations may be carried in one message sent by the primary base station to the terminal device, or may be carried in multiple messages sent by the primary base station to the terminal device.
  • the method includes:
  • Step 601 The primary base station sends indication information #A to the terminal device, and the indication information #A instructs the terminal device to select multiple secondary base stations from the N secondary base stations configured for the terminal device when a link problem of the primary base station is detected.
  • the primary base station notifies the terminal device of the indication information #A by displaying the indication.
  • the main base station sends a first information element to the terminal equipment, and the first information element includes 1 bit.
  • the first information element indicates that the terminal equipment is allowed to detect the link problem of the main base station.
  • select multiple secondary base stations from the N secondary base stations configured for the terminal device select multiple secondary base stations from the N secondary base stations configured for the terminal device.
  • the first information element indicates that the terminal device is not allowed to select multiple secondary base stations from the N secondary base stations configured for the terminal device when a link problem of the primary base station is detected.
  • the primary base station notifies the terminal device of the indication information #A in an implicit indication manner.
  • the primary base station has configured N secondary base stations for the terminal device, and the terminal device obtains the indication information #A according to a predefined rule (for example, the content of the indication information #A is stipulated in the protocol).
  • Step 602 When the terminal device detects a link problem of the primary base station, the terminal device determines the secondary base station #A and the secondary base station #B from the N secondary base stations configured for the terminal device according to the indication information #A.
  • the terminal device determining SeNB #A and SeNB #B as an example. It can be understood that the terminal device can also determine three or more SeNBs.
  • the terminal device may determine Q secondary base stations from the N secondary base stations configured for the terminal device, where 2 ⁇ Q ⁇ N.
  • the terminal device determines multiple secondary base stations from the N secondary base stations configured for the terminal device is not limited here.
  • the terminal device selects multiple secondary base stations that meet certain conditions, such as secondary base stations whose signal quality is better than a certain threshold; or the terminal device selects multiple secondary base stations that have not detected SCG link problems; or the terminal device selects multiple secondary base stations that have not detected Multiple secondary base stations in an activated state; or as shown in the embodiment shown in FIG. 5 , the primary base station may also indicate a first rule to the terminal device, and the terminal device may determine multiple secondary base stations according to the first rule.
  • the indication information #A may also indicate the number of secondary base stations selected by the terminal device, or other conditions, which are not limited in this embodiment of the present application.
  • the terminal device does not need to obtain the indication information #A from the master base station.
  • the secondary base station #A and the secondary base station #B are determined from the N secondary base stations configured for the terminal device. That is to say, in this embodiment, step 601 does not need to be executed, and step 602 can be replaced by: when the terminal device detects a link problem with the master base station, the terminal device configures the slave terminal device according to a predefined rule Determine the secondary base station #A and the secondary base station #B among the N secondary base stations.
  • Step 603a the terminal device sends the first information to the secondary base station #A.
  • Step 603b The terminal device sends the first information to the secondary base station #B.
  • the terminal device may simultaneously send the first information to the secondary base station #A and the secondary base station #B respectively, and the terminal device may not simultaneously send the first information to the secondary base station #A and the secondary base station #B respectively, for example, the terminal device may The first information is sent sequentially according to the preset order of the SeNB #A and the SeNB #B, or the terminal device sends the first information to the SeNB #A and the SeNB #B in an arbitrary order. It should be noted that the terminal device does not need to wait for the response to the previously sent first information before sending the next first information.
  • the terminal device If the state of the terminal device in the secondary base station #A is in the deactivated state, the terminal device also needs to trigger the switching of the state of the terminal device in the secondary base station #A from the deactivated state to the activated state. And/or, if the state of the terminal device in the secondary base station #B is in the deactivated state, the terminal device also needs to trigger the state of the terminal device in the secondary base station #B to switch from the deactivated state to the activated state.
  • the specific implementation manner for the terminal device to send the first information to the secondary base station #A and the secondary base station #B can refer to the above step 503, and the repetition will not be repeated.
  • Step 604a the secondary base station #A sends the first information to the primary base station.
  • Step 604b the secondary base station #B sends the first information to the primary base station.
  • the specific implementation manner of sending the first information from the secondary base station #A to the primary base station and from the secondary base station #B to the primary base station can refer to the above step 504, and the repetition will not be repeated.
  • Step 605 The primary base station sends a response to the first information to the secondary base station #A.
  • the master base station may adopt, but not limited to, the following ways to process the received first information:
  • the main base station may start processing after receiving the first information for the first time, and generate a response to the first information.
  • the primary base station receives the first information again from other secondary base stations, it discards or ignores the first information received from these other secondary base stations.
  • the terminal device can only receive one response to the first information.
  • the primary base station if the primary base station receives the first information from the secondary base station #A for the first time, the primary base station sends a response to the first information to the secondary base station #A. After receiving the first information from the secondary base station #A, the primary base station also receives the first information from the secondary base station #B, then discards or ignores or does not process the first information, and does not send a response to the first information to the secondary base station #B.
  • the master base station can only send the first information to a secondary base station that sends the first information (for example, the secondary base station that the master base station receives the first information first, or a secondary base station that the master base station selects according to its own algorithm to send the first information) A response to the first message.
  • the terminal device can only receive one response to the first information.
  • the primary base station only sends a response to the first information to the secondary base station #A or the secondary base station #B.
  • the master base station sends a response to the first information each time the first information is received.
  • the terminal device may receive multiple responses to the first information.
  • the primary base station may send a response to the first information to the secondary base station #A, and send a response to the first information to the secondary base station #B.
  • sending the response to the first information to the secondary base station #A and sending the response to the first information to the secondary base station #B may be the same or different.
  • step 605 is only illustrated by taking the primary base station sending a response to the first information to the secondary base station #A, but the primary base station does not send a response to the first information to the secondary base station #B (corresponding to the above method 1 or method 2) . It can be understood that the primary base station may also send a response to the first information to the secondary base station #B (corresponding to the above manner 3).
  • Step 606 The secondary base station #A sends a response to the first information to the terminal device.
  • the secondary base station #B also sends a response to the first information to the terminal device.
  • the specific implementation manners of the SeNB #A sending the response of the first information to the terminal device and the SeNB #B sending the response of the first information to the terminal device can refer to the above step 506, and the repetition will not be repeated.
  • the method further includes step 607: the terminal device resumes communication with the master base station according to the response to the first information.
  • the specific implementation manner of resuming communication with the main base station by the terminal device according to the response to the first information may refer to the above step 507, and repeated descriptions will not be repeated.
  • the primary base station may also send configuration information to the terminal device.
  • the configuration information is used to configure fast recovery of the primary cell group for the terminal equipment.
  • the configuration information and indication information #A primary base station can be sent simultaneously or separately.
  • the configuration information is carried by an RRC dedicated message, and when the configuration information and the indication information #A can be sent by the primary base station at the same time, the indication information #A can be included in the configuration information or outside the configuration information.
  • the terminal device may start the third timer.
  • the specific meaning of the third timer can refer to the specific meaning of the above-mentioned first timer, the repetition will not be repeated, and the duration of the third timer can be the same as or different from that of the first timer.
  • the above configuration information may also indicate the duration of the third timer.
  • the terminal device if the terminal device first receives a response to the first information from the secondary base station #A, the terminal device resumes communication with the primary base station according to the response to the first information, and discards or ignores or does not process the secondary base station #A.
  • the secondary base station #B receives a response to the first information.
  • the terminal device first receives a response to the first information from the secondary base station #B, the terminal device resumes communication with the primary base station according to the response to the first information, and discards or ignores or does not process the response from the secondary base station #A A response to the first message is received.
  • the terminal device can send the first information to multiple secondary base stations respectively according to the indication information #A indicated by the primary base station, thereby improving the transmission reliability of the first information and reducing the transmission cost of the first information.
  • the time delay is used for the main base station to realize MCG fast recovery, and the terminal device does not need to initiate the RRC reconstruction process for the main base station, which improves the communication efficiency in the multi-connection scenario.
  • Fig. 7 shows a possible exemplary block diagram of an apparatus involved in the embodiment of the present application.
  • the apparatus 700 includes: a transceiver module 710 and a processing module 720, and the transceiver module 710 may include a receiving unit and a sending unit.
  • the processing module 720 is used to control and manage the actions of the device 700 .
  • the transceiver module 710 is used to support communication between the device 700 and other network entities.
  • the device 700 may also include a storage unit for storing program codes and data of the device 700.
  • each module in the apparatus 700 may be implemented by software.
  • the processing module 720 may be a processor or a controller, such as a general-purpose central processing unit (central processing unit, CPU), a general-purpose processor, digital signal processing (digital signal processing, DSP), an application-specific integrated circuit (application specific integrated circuits, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It can realize or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosed content of the embodiments of the present application.
  • the processor may also be a combination of computing functions, for example, a combination of one or more microprocessors, a combination of DSP and a microprocessor, and so on.
  • the transceiver module 710 may be a communication interface, a transceiver or a transceiver circuit, etc., wherein the communication interface is collectively referred to as, in a specific implementation, the communication interface may include multiple interfaces, and the storage unit may be a memory.
  • the processing module 720 in the device 700 can support the device 700 to execute the actions of the terminal device in the above method examples, for example, it can support the device 700 to execute steps 502 and 5 in FIG. Step 507, step 602 and step 607 in FIG. 6 .
  • the transceiver module 710 may support the communication between the device 700 and the first secondary base station.
  • the transceiver module 710 may support the device 700 to execute steps 501, 503, and 506 in FIG. 5, steps 601 and 603a in FIG. 6, Step 603b, step 606.
  • the device 700 includes:
  • the transceiving module 710 is configured to obtain a first rule from the primary base station; the processing module 720 is configured to obtain the first rule from the terminal device according to the first rule when a link problem of the primary base station is detected. Determining a first secondary base station among the configured N secondary base stations, where N ⁇ 2; the transceiver module 710 is configured to send first information to the primary base station through the first secondary base station, and the first information is used for Instructing the terminal device to detect the link problem of the primary base station.
  • the apparatus 700 may correspond to the terminal device in the foregoing method embodiments, and the operations and/or functions of each module in the apparatus 700 are to realize corresponding steps of the method of the terminal device in the foregoing method embodiments , so the beneficial effects of the foregoing method embodiments can also be achieved, and for the sake of brevity, details are not described here.
  • the processing module 720 in the device 700 can support the device 700 to execute the actions of the primary base station in the above method examples.
  • the transceiver module 710 may support the communication between the apparatus 700 and the terminal device or the first secondary base station or the second secondary base station.
  • the transceiver module 710 may support the apparatus 700 to execute step 501, step 504, step 505 in FIG. In step 601, step 604a, step 604b, step 605, step 606.
  • the processing module 720 calls the transceiver module 710 to execute:
  • the terminal device indicating to the terminal device a first rule, where the first rule is used for the terminal device to select a first secondary base station from the N secondary base stations configured for the terminal device when a link problem of the primary base station is detected.
  • a base station where the first secondary base station is configured to forward the first information received from the terminal device to the master base station, where the first information is used to indicate that the terminal device detects a link of the master base station Question: receiving the first information from the first SeNB; sending a response to the first information to the first SeNB.
  • the device 700 may correspond to the method of the master base station in the foregoing method embodiments, and the operations and/or functions of each module in the device 700 are to implement the methods of the master base station in the foregoing method embodiments
  • the corresponding steps can therefore also achieve the beneficial effects of the foregoing method embodiments, and for the sake of brevity, details are not described here.
  • Fig. 8 shows a schematic structural diagram of a communication device 800 according to an embodiment of the present application.
  • the apparatus 800 includes: a processor 801 .
  • apparatus 800 may also be used to perform other steps and/or operations on the terminal device side in the foregoing embodiments, and details are not described here for brevity.
  • the terminal device indicating to the terminal device a first rule, where the first rule is used for the terminal device to select a first secondary base station from the N secondary base stations configured for the terminal device when a link problem of the primary base station is detected.
  • a base station where the first secondary base station is configured to forward the first information received from the terminal device to the master base station, where the first information is used to indicate that the terminal device detects a link of the master base station Question: receiving the first information from the first SeNB; sending a response to the first information to the first SeNB.
  • apparatus 800 may also be used to perform other steps and/or operations on the master base station side in the foregoing embodiments, and details are not described here for brevity.
  • the processor 801 may call an interface to perform the above sending and receiving actions, where the called interface may be a logical interface or a physical interface, which is not limited.
  • the physical interface can be implemented through a transceiver.
  • the apparatus 800 further includes a transceiver 803 .
  • the apparatus 800 further includes a memory 802, and the memory 802 may store the program codes in the foregoing method embodiments, so as to be called by the processor 801.
  • the apparatus 800 includes a processor 801, a memory 802, and a transceiver 803, the processor 801, the memory 802, and the transceiver 803 communicate with each other through an internal connection path to transmit control and/or data signals.
  • the processor 801, the memory 802, and the transceiver 803 may be implemented by a chip, and the processor 801, the memory 802, and the transceiver 803 may be implemented in the same chip, or may be implemented in different chips respectively, Or a combination of any two of these functions can be implemented in one chip.
  • the memory 802 may store program codes, and the processor 801 invokes the program codes stored in the memory 802 to implement corresponding functions of the apparatus 800 .
  • a processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC), an off-the-shelf programmable gate array (field programmable gate array, FPGA) or other available Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, system on chip (system on chip, SoC), central processor unit (central processor unit, CPU), or network processor (network processor, NP), can also be a digital signal processing circuit (digital signal processor, DSP), can also be a microcontroller (micro controller unit, MCU), can also be a programmable controller (programmable logic device, PLD) or other Integrated chip.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • FPGA field programmable gate array
  • Programmable logic devices discrete gate or transistor logic devices, discrete hardware components, system on chip (system on chip, SoC), central processor unit
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the order of execution of the processes should be determined by their functions and internal logic.
  • the various numerical numbers or serial numbers involved in the above-mentioned various processes are only for convenience of description, and shall not constitute any limitation to the implementation process of the embodiment of the present application.
  • the above is an example of the three elements of A, B and C to illustrate the optional items of the project.
  • the expression includes at least one of the following: A, B, ..., and X"
  • the applicable entries for this item can also be obtained according to the aforementioned rules.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory ROM, random access memory RAM, magnetic disk or optical disk, and other media capable of storing program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种多连接下的通信方法及装置,该方法包括:终端设备从主基站获取第一规则,在终端设备检测到主基站的链路问题的情况下,终端设备根据第一规则从终端设备被配置的N个辅基站中确定第一辅基站,N≥2。终端设备通过第一辅基站向主基站发送第一信息,第一信息用于指示终端设备检测到主基站的链路问题。通过选择合适的辅基站,进而终端设备可以尽快将主基站的链路问题通知给主基站,用于主基站实现MCG快速恢复,提高多连接场景下的通信效率。

Description

一种多连接下的通信方法及装置
相关申请的交叉引用
本申请要求在2021年07月01日提交中国专利局、申请号为202110744528.X、申请名称为“一种多连接下的通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及无线通信领域,尤其涉及一种多连接下的通信方法及装置。
背景技术
在无线网络中,一个终端设备可能与多个基站进行通信。当与两个基站进行通信时,可以称为双连接(dual-connectivity,DC),也称为多空口双连接(multi-radio dual connectivity,MR-DC)。当与两个以上基站进行通信时,可以称为多连接(Multi-connectivity),也称为多空口多连接(multi-radio multi-connectivity,MR-MC)。上述多个基站的资源可以用于为该终端设备提供通信服务,从而为终端设备提供高速率传输。其中,在上述多个基站中,与核心网有控制面信令交互的基站称为主基站(master node,MN),其他基站称为辅基站(secondary node,SN)。
由于一个基站下可以多个小区(cell)为终端设备提供服务,因此,MN为终端设备提供服务的小区组也可以称为主小区组(master cell group,MCG)。当终端设备检测到MCG的链路问题时,如果终端设备发起无线资源控制(radio resource control,RRC)重建流程,则将会导致数据传输发生中断,且一般而言RRC重建流程时间较长,因此,数据传输恢复所需时间也较长,进而影响通信效率。
发明内容
本申请实施例提供一种多连接下的通信方法及装置,用以实现MCG快速恢复。
第一方面,本申请提供一种多连接下的通信方法,该方法包括:终端设备可以从主基站获取第一规则。在所述终端设备检测到所述主基站的链路问题的情况下,所述终端设备可以根据所述第一规则从所述终端设备被配置的N个辅基站中确定第一辅基站,N≥2,进而所述终端设备可以通过所述第一辅基站向所述主基站发送第一信息,所述第一信息用于指示所述终端设备检测到所述主基站的链路问题。
采用上述方法,终端设备根据主基站指示的第一规则从终端设备被配置的N个辅基站中确定第一辅基站,并向第一辅基站发送第一信息,以使第一辅基站将第一信息转发至主基站,通过选择合适的辅基站,进而终端设备可以尽快将主基站的链路问题通知给主基站,用于主基站实现MCG快速恢复,而无需由终端设备针对主基站发起RRC重建流程,提高了多连接场景下的通信效率。
在一种可能的设计中,所述第一规则指示所述N个辅基站中的M个辅基站,M≤N。
在一种可能的设计中,所述第一规则包括M个小区的标识,所述M个小区与所述M 个辅基站存在对应关系。例如,第一规则包括M个辅基站分别对应的辅基站的标识或M个辅基站分别对应的SCG的标识,或M个辅基站分别对应的PSCell的标识。
在一种可能的设计中,所述终端设备根据所述第一规则从所述终端设备被配置的N个辅基站中确定第一辅基站可以采用以下方法:所述终端设备从所述M个辅基站中确定所述第一辅基站。
在一种可能的设计中,在所述终端设备从所述M个辅基站中确定所述第一辅基站时,所述终端设备可以将所述M个辅基站中未检测到链路问题的辅基站作为所述第一辅基站;或者,所述终端设备可以将所述M个辅基站中未检测到链路问题且信号质量高于第一信号质量门限的辅基站作为所述第一辅基站,其中,所述第一信号质量门限为预配置的或所述第一规则携带的。
采用上述方法,终端设备根据第一规则,可以结合辅基站的链路检测结果和辅基站的信号质量确定第一辅基站。
在一种可能的设计中,在所述终端设备根据所述第一规则从所述终端设备被配置的N个辅基站中确定第一辅基站时,在所述M个辅基站均存在链路问题或所述M个辅基站的信号质量均低于第二信号质量门限时,所述终端设备可以从所述N个辅基站中除所述M个辅基站之外的辅基站中确定所述第一辅基站。
采用上述方法,终端设备可以优先从M个辅基站中确定第一辅基站,当M个辅基站中无法确定除第一辅基站时,终端设备可以从N个辅基站中除M个辅基站之外的辅基站中确定第一辅基站。
在一种可能的设计中,所述第一规则指示第三信号质量门限;在所述终端设备根据所述第一规则从所述终端设备被配置的N个辅基站中确定第一辅基站时,所述终端设备可以根据所述第三信号质量门限从所述N个辅基站中确定所述第一辅基站,其中,所述第一辅基站的信号质量高于所述第三信号质量门限。
采用上述方法,终端设备可以根据N个辅基站分别对应的信号质量和第三信号质量门限确定第一辅基站。
在一种可能的设计中,在所述终端设备在所述第一辅基站的状态处于去激活状态时,所述终端设备触发所述终端设备在所述第一辅基站的状态从所述去激活状态切换为激活状态。
在一种可能的设计中,在所述终端设备检测到所述主基站的链路问题之后,所述终端设备可以启动第一定时器;在所述第一定时器超时且所述终端设备未从所述第一辅基站接收到针对所述第一信息的响应的情况下,所述终端设备可以向第二辅基站发送所述第一信息,所述第二辅基站属于所述N个辅基站。
采用上述设计,通过终端设备向第二辅基站发送第一信息,可以提高将第一信息通知给主基站的成功率。
在一种可能的设计中,所述终端设备可以从所述主基站接收第一指示信息,终端设备可以根据第一指示信息向第二辅基站发送所述第一信息。其中,所述第一指示信息指示允许所述终端设备发送所述第一信息的次数,和/或,所述第一指示信息指示允许所述终端设备在未接收到针对所述第一信息的响应的情况下选择所述N个辅基站中除所述第一辅基站之外的其他辅基站发送所述第一信息,和/或,所述第一指示信息指示第一时长,在所述第一时长内允许所述终端设备发送所述第一信息。
采用上述设计,可以保证终端设备多次发送第一信息,进而可以提高将第一信息通知给主基站的成功率。
在一种可能的设计中,在所述终端设备从所述第一辅基站接收针对所述第一信息的响应之前,所述终端设备根据所述第一规则在所述N个辅基站中确定第三辅基站,所述终端设备向所述第三辅基站发送所述第一信息。
采用上述设计,通过终端设备向第二辅基站发送第一信息,可以提高将第一信息通知给主基站的成功率。
在一种可能的设计中,在所述终端设备检测到所述主基站的链路问题之后,所述终端设备可以启动第二定时器。在所述终端设备接收到第一响应时,所述终端设备停止所述第二定时器,所述第一响应为所述终端设备首次接收到的针对所述第一信息的响应。所述终端设备根据所述第一响应,恢复与所述主基站的通信。
采用上述设计,终端设备可以根据首次接收到的针对所述第一信息的响应恢复与所述主基站的通信,进而实现MCG快速恢复,提升恢复效率缩短恢复时间。
在一种可能的设计中,所述终端设备可以丢弃在所述第一响应之后接收到的针对所述第一信息的响应。
采用上述设计,终端设备可以丢弃或不处理或忽略在所述第一响应之后接收到的针对所述第一信息的响应。
在一种可能的设计中,还包括:所述终端设备可以根据以下一项或多项确定所述主基站存在链路问题:主小区组无线链路失败,主小区组切换失败,无线资源控制重配失败和所述终端设备的无线资源控制层接收到信令无线承载SRB1或SRB2完整性校验失败的指示信息。
在一种可能的设计中,所述第一信息包括主小区组失败消息。
在一种可能的设计中,还包括:所述终端设备可以从所述主基站接收配置信息,所述配置信息用于为所述终端设备配置主小区组快速恢复。示例性地,配置信息可以指示第一定时器和/或第二定时器的时长。
第二方面,本申请提供一种多连接下的通信方法,该方法包括:主基站可以向终端设备指示第一规则,所述第一规则用于所述终端设备在检测到所述主基站的链路问题的情况下从所述终端设备被配置的N个辅基站中选择第一辅基站,所述第一辅基站用于将从所述终端设备接收到的第一信息转发至所述主基站,所述第一信息用于指示所述终端设备检测到所述主基站的链路问题。所述主基站可以从所述第一辅基站接收所述第一信息,响应于第一信息,所述主基站向所述第一辅基站发送针对所述第一信息的响应。
采用上述方法,主基站通过向终端设备指示的第一规则,使终端设备确定第一辅基站,以使第一辅基站将第一信息转发至主基站,主基站向第一辅基站发送针对第一信息的响应。因此,通过向终端设备指示第一规则,进而主基站可以尽快收到针对主基站的链路问题的通知,主基站可以根据针对主基站的链路问题的通知实现MCG快速恢复,且无需由终端设备针对主基站发起RRC重建流程,提高了多连接场景下的通信效率。
在一种可能的设计中所述第一规则指示所述N个辅基站中的M个辅基站,M≤N。
在一种可能的设计中所述第一规则包括M个小区的标识,所述M个小区与所述M个辅基站存在对应关系。
在一种可能的设计中所述第一规则指示第三信号质量门限。
在一种可能的设计中,所述主基站可以向所述终端设备发送第一指示信息,所述第一指示信息指示允许所述终端设备发送所述第一信息的次数,和/或,所述第一指示信息指示允许所述终端设备在未接收到针对所述第一信息的响应的情况下选择所述N个辅基站中除所述第一辅基站之外的其他辅基站发送所述第一信息,和/或,所述第一指示信息指示第一时长,在第一时长内允许所述终端设备发送所述第一信息。
采用上述设计,可以保证终端设备多次发送第一信息,进而可以提高将第一信息通知给主基站的成功率。
在一种可能的设计中,所述主基站可以从第二辅基站接收所述第一信息,响应于第一信息,所述主基站向所述第二辅基站发送针对所述第一信息的响应。
在一种可能的设计中,所述第一信息包括主小区组失败消息。
在一种可能的设计中,所述主基站向所述终端设备发送配置信息,所述配置信息用于为所述终端设备配置主小区组快速恢复。
第三方面,本申请提供一种通信装置,所述通信装置为终端设备或用于实现所述终端设备的功能的装置;该装置包括:收发单元和处理单元;
收发单元,用于从主基站获取第一规则;处理单元,用于在检测到所述主基站的链路问题的情况下,根据所述第一规则从所述终端设备被配置的N个辅基站中确定第一辅基站,N≥2;所述收发单元,用于通过所述第一辅基站向所述主基站发送第一信息,所述第一信息用于指示所述终端设备检测到所述主基站的链路问题。
在一种可能的设计中,所述第一规则指示所述N个辅基站中的M个辅基站,M≤N。
在一种可能的设计中,所述第一规则包括M个小区的标识,所述M个小区与所述M个辅基站存在对应关系。
在一种可能的设计中,所述处理单元,用于根据所述第一规则从所述终端设备被配置的N个辅基站中确定第一辅基站时,从所述M个辅基站中确定所述第一辅基站。
在一种可能的设计中,所述处理单元,用于在从所述M个辅基站中确定所述第一辅基站时,将所述M个辅基站中未检测到链路问题的辅基站作为所述第一辅基站;或者,将所述M个辅基站中未检测到链路问题且信号质量高于第一信号质量门限的辅基站作为所述第一辅基站,其中,所述第一信号质量门限为预配置的或所述第一规则携带的。
在一种可能的设计中,所述处理单元,用于根据所述第一规则从所述终端设备被配置的N个辅基站中确定第一辅基站时,在所述M个辅基站均存在链路问题或所述M个辅基站的信号质量均低于第二信号质量门限时,所述终端设备从所述N个辅基站中除所述M个辅基站之外的辅基站中确定所述第一辅基站。
在一种可能的设计中,所述第一规则指示第三信号质量门限;所述处理单元,用于在根据所述第一规则从所述终端设备被配置的N个辅基站中确定第一辅基站时,根据所述第三信号质量门限从所述N个辅基站中确定所述第一辅基站,其中,所述第一辅基站的信号质量高于所述第三信号质量门限。
在一种可能的设计中,所述终端设备在所述第一辅基站的状态处于去激活状态;所述处理单元调用所述收发单元执行:触发所述终端设备在所述第一辅基站的状态从所述去激活状态切换为激活状态。
在一种可能的设计中,所述处理单元,用于在检测到所述主基站的链路问题之后,启动第一定时器;在所述第一定时器超时且所述终端设备未从所述第一辅基站接收到针对所 述第一信息的响应的情况下,所述收发单元,用于向第二辅基站发送所述第一信息,所述第二辅基站属于所述N个辅基站。
在一种可能的设计中,所述收发单元,用于从所述主基站接收第一指示信息,所述第一指示信息指示允许所述终端设备发送所述第一信息的次数,和/或,所述第一指示信息指示允许所述终端设备在未接收到针对所述第一信息的响应的情况下选择所述N个辅基站中除所述第一辅基站之外的其他辅基站发送所述第一信息,和/或,所述第一指示信息指示第一时长,在所述第一时长内允许所述终端设备发送所述第一信息。
在一种可能的设计中,所述处理单元,用于在从所述第一辅基站接收针对所述第一信息的响应之前,根据所述第一规则在所述N个辅基站中确定第三辅基站;所述收发单元,用于向所述第三辅基站发送所述第一信息。
在一种可能的设计中,所述处理单元,用于在检测到所述主基站的链路问题之后,启动第二定时器;在所述收发单元接收到第一响应时,停止所述第二定时器,所述第一响应为所述终端设备首次接收到的针对所述第一信息的响应;根据所述第一响应通过所述收发单元恢复与所述主基站的通信。
在一种可能的设计中,所述处理单元,用于丢弃在所述第一响应之后接收到的针对所述第一信息的响应。
在一种可能的设计中,所述处理单元,用于根据以下一项或多项确定所述主基站存在链路问题:
主小区组无线链路失败,主小区组切换失败,无线资源控制重配失败和所述终端设备的无线资源控制层接收到信令无线承载SRB1或SRB2完整性校验失败的指示信息。
在一种可能的设计中,所述第一信息包括主小区组失败消息。
在一种可能的设计中,所述收发单元,用于从所述主基站接收配置信息,所述配置信息用于为所述终端设备配置主小区组快速恢复。
第四方面,本申请提供一种通信装置,所述通信装置为主基站设备或用于实现所述主基站的功能的装置;该装置包括:收发单元和处理单元;
所述处理单元调用所述收发单元执行:向终端设备指示第一规则,所述第一规则用于所述终端设备在检测到所述主基站的链路问题的情况下从所述终端设备被配置的N个辅基站中选择第一辅基站,所述第一辅基站用于将从所述终端设备接收到的第一信息转发至所述主基站,所述第一信息用于指示所述终端设备检测到所述主基站的链路问题;从所述第一辅基站接收所述第一信息;向所述第一辅基站发送针对所述第一信息的响应。
在一种可能的设计中所述第一规则指示所述N个辅基站中的M个辅基站,M≤N。
在一种可能的设计中所述第一规则包括M个小区的标识,所述M个小区与所述M个辅基站存在对应关系。
在一种可能的设计中所述第一规则指示第三信号质量门限。
在一种可能的设计中,所述收发单元,用于向所述终端设备发送第一指示信息,所述第一指示信息指示允许所述终端设备发送所述第一信息的次数,和/或,所述第一指示信息指示允许所述终端设备在未接收到针对所述第一信息的响应的情况下选择所述N个辅基站中除所述第一辅基站之外的其他辅基站发送所述第一信息,和/或,所述第一指示信息指示第一时长,在第一时长内允许所述终端设备发送所述第一信息。
在一种可能的设计中,所述收发单元,用于从第二辅基站接收所述第一信息,向所述 第二辅基站发送针对所述第一信息的响应。
在一种可能的设计中,所述第一信息包括主小区组失败消息。
在一种可能的设计中,所述收发单元,用于向所述终端设备发送配置信息,所述配置信息用于为所述终端设备配置主小区组快速恢复。
第五方面,本申请还提供一种装置。该装置可以执行上述方法设计。该装置可以是能够执行上述方法对应的功能的芯片或电路,或者是包括该芯片或电路的设备。
在一种可能的实现方式中,该装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使该装置或者安装有该装置的设备执行上述任意一种可能的设计中的方法。
其中,该装置还可以包括通信接口,该通信接口可以是收发器,或者,如果该装置为芯片或电路,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
在一种可能的设计中,该装置包括相应的功能单元,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
第六方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,当所述计算机程序在装置上运行时,执行上述任意一种可能的设计中的方法。
第七方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在装置上运行时,执行上述任意一种可能的设计中的方法。
第八方面,本申请提供一种通信系统,所述系统包括用于实现第三方面及第三方面中的任意一种可能的设计的通信装置,以及用于实现第四方面及第四方面中的任意一种可能的设计的通信装置。
附图说明
图1为本申请的实施例应用的一种移动通信系统的架构示意图;
图2为本申请的实施例中接入网设备包括CU和DU的结构示意图;
图3为本申请的实施例中MR-DC控制面架构图;
图4A为本申请的实施例中EN-DC中网络侧的对于MCG承载、SCG承载和分离承载的协议栈示意图;
图4B为本申请的实施例中NGEN-DC或NE-DC或NR-DC中网络侧的对于MCG承载、SCG承载和分离承载的协议栈示意图;
图5为本申请的实施例中一种多连接下的通信方法的概述流程图之一;
图6为本申请的实施例中一种多连接下的通信方法的概述流程图之二;
图7为本申请的实施例中一种装置的结构示意图之一;
图8为本申请的实施例中一种装置的结构示意图之二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。本申请的说明书和权利要求书及上述附图中的术语“第一”、第二”以及相应术语标号等是用于区别 类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请的描述中,“至少一项”是指一项或者多项,“多项”是指两项或两项以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请的实施例主要涉及网元包括终端、核心网、接入网设备。如图1是本申请的实施例应用的一种移动通信系统的架构示意图,包括UE1,节点(node)1和节点2,以及核心网(core network,CN)。
1)终端,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是指向用户提供语音和/或数据连通性的设备。例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
2)接入网设备,是指将终端接入到网络的接入网(access network,AN)节点(或设备),又可以称为基站。例如,这里的接入网设计可以为有线接入网设备或无线接入网设备。目前,一些无线接入网(radio access network,RAN)设备的举例为:继续演进的节点B(gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。
另外,在一种网络结构中,接入网设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。其中包括CU节点和DU节点的RAN设备将NR系统中gNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU,如图2所示。更进一步,CU还可以划分为控制面(CU-CP)和用户面(CU-UP)。其中CU-CP负责控制面功能,主要包含RRC和控制面对应的包数据汇聚协议(packet data convergence protocol,PDCP)(即PDCP-C)。PDCP-C主要负责控制面数据的加解密,完整性保护,数据传输等。CU-UP负责用户面功能,主要包含服务数据适配协议(service data  adaptation protocol,SDAP)和用户面对应的PDCP(即PDCP-U)。其中SDAP主要负责将核心网的数据进行处理并将流(flow)映射到承载。PDCP-U主要负责数据面的加解密,完整性保护,头压缩,序列号维护,数据传输等。其中CU-CP和CU-UP通过E1接口连接。CU-CP代表gNB通过NG接口和核心网连接,通过F1接口控制面(即F1-C)和DU连接。CU-UP通过F1接口用户面(即F1-U)和DU连接。当然还有一种可能的实现是PDCP-C也在CU-UP。
3)核心网设备,是指为终端提供业务支持的核心网中的设备。目前,一些核心网设备的举例为:接入和移动性管理功能(access and mobility management function,AMF)实体、会话管理功能(session management function,SMF)实体、用户面功能(user plane function,UPF)实体等等,此处不一一列举。其中,所述AMF实体可以负责终端的接入管理和移动性管理;所述SMF实体可以负责会话管理,如用户的会话建立等;所述UPF实体可以是用户面的功能实体,主要负责连接外部网络。需要说明的是,本申请中实体也可以称为网元或功能实体,例如,AMF实体也可以称为AMF网元或AMF功能实体,又例如,SMF实体也可以称为SMF网元或SMF功能实体等。
本申请实施例提供的技术方案可以应用于各种通信系统。例如:可以适用于长期演进(long term evolution,LTE)系统或5G系统,也可以适用于其它面向未来的新系统等,例如可编程用户面系统,本申请实施例对此不作具体限定。此外,术语“系统”可以和“网络”相互替换。
以下对本申请实施例涉及的技术概念进行简要说明:
1.DC或MR-DC
在无线网络中,一个终端设备可能和多个基站通信,即DC或MR-DC。这里的多个基站可能是属于同一无线接入技术(radio access technology,RAT)的基站(比如都是4G基站,或者都是5G基站),也可能是不同RAT的基站(比如一个是4G基站,一个是5G基站)。
各个基站具有不同的无线链路控制(radio link control,RLC)和介质访问控制(medium access control,MAC)实体。在DC中,数据无线承载(data radio bearer,DRB)分为MCG承载(Bearer)、辅小区组(secondary cell group,SCG)承载和分离承载(split Bearer)。其中,MCG承载是指该DRB的RLC/MAC实体只在主基站上,SCG承载是指该DRB的RLC/MAC实体只在辅基站上,分离承载是指该DRB的RLC/MAC实体在主基站和辅基站上都有。对于PDCP终结在主基站上的承载,可以称为MN终止的(MN terminated)承载,即下行(downlink,DL)数据从核心网直接到达主基站,经由主基站的PDCP处理(例如,可能会先经过SDAP,再经过PDCP处理)后再经过RLC/MAC发送给终端设备,上行(uplink,UL)数据从主基站的PDCP处理(可能会先经过PDCP,再经过SDAP处理)后发送给核心网。类似的,对于PDCP终结在辅基站上的承载,可以称为SN terminated(SN终止的)承载,即DL数据从核心网直接到达辅基站,经由辅基站的PDCP处理(例如,可能会先经过SDAP,再经过PDCP处理)后再经过RLC/MAC发送给终端设备,UL数据从辅基站的PDCP处理(例如,可能会先经过PDCP,再经过SDAP处理)后发送给核心网。
另外,在DC中,主基站和辅基站都具有RRC实体,都可以产生RRC消息(即控制消息,比如测量消息等),如图3所示。辅基站可以直接把辅基站产生的RRC消息发给终 端设备。在这种情况下,终端设备给辅基站发送的RRC消息也是直接发给辅基站。辅基站与终端设备之间直接交互的RRC消息称为信令无线承载(signalling radio bearers,SRB)3。此外,也可以把辅基站产生的RRC消息通知主基站,主基站再发送给终端设备。在这种情况下,终端设备也是把给辅基站的RRC消息通过主基站转给辅基站,即终端设备把这些RRC消息发给主基站,主基站再把消息转给辅基站。
MR-DC有不同类型,比如与4G核心网对接的4G无线接入网与5G新无线(new radio,NR)的双连接(E-UTRA NR-dual connectivity,EN-DC),与5G核心网对接的4G无线接入网与5G NR的双连接(NG-RAN E-UTRA-NR Dual Connectivity,NGEN-DC),与5G核心网对接的5G NR与4G无线接入网的双连接(NR EUTRA-dual connectivity,NE-DC),与5G核心网对接的5G NR与5G NR的双连接(NR-NR Dual Connectivity,NR-DC)。
其中,EN-DC中主基站为连接到4G核心网(evolved packet core,EPC)的长期演进(long term evolution,LTE)基站(eNB),辅基站为NR基站。EN-DC有时也称为5G非独立组网(Non-Standalone,NSA),如图4A所示为EN-DC中网络侧的对于MCG承载、SCG承载和分离承载的协议栈示意图。
NGEN-DC中主基站为连接到5G核心(5generation core 5GC)的LTE基站(ng-eNB),辅基站为NR基站。NE-DC中主基站为连接到5G核心网的NR基站,辅基站为LTE基站。NR-DC中主基站为连接到5G核心网的NR基站,辅基站为NR基站。如图4B所示为NGEN-DC或NE-DC或NR-DC中网络侧的对于MCG承载、SCG承载和分离承载的协议栈示意图。
对于一个MR-DC的终端设备而言,辅基站的用户面可能和主基站连接的核心网有连接(即核心网可以直接通过辅基站给UE发送数据)。
在MR-DC中主基站中存在一个主小区,辅基站中存在一个主辅小区。主小区是指部署在主频点,且终端设备在小区发起初始连接建立过程或发起连接重建过程,或者在切换过程中指示为主小区的小区。主辅小区是指终端设备在辅基站发起随机接入过程的小区或者当终端设备在辅基站改变过程中跳过随机接入过程发起数据传输的小区,或者执行同步的重配过程中发起随机接入的辅基站的小区。
由于终端设备在一个基站下可以同时接收多个小区的服务,因此,主基站为终端设备提供的服务小区组也可以MCG,类似的辅基站为终端设备提供的服务小区组称为SCG。MCG和SCG其中分别包含至少一个小区。当MCG中仅有一个小区时,该小区为终端设备的主小区(rimary cell,PCell)。当SCG中仅有一个小区时,该小区为终端设备的主辅小区(primary second cell,PSCell)。NR中为了归一化各种名词,将PCell和PSCell统称为特别小区(Special Cell,SpCell)。当MCG或SCG中有多个小区时,除了SpCell的小区称为辅小区(Secondary Cell,SCell)。此时各个小区组(cell group)中的SCell与SpCell进行载波聚合,共同为终端设备提供传输资源。
需要说明的是,在本申请实施例中,一个终端设备可能与多个基站进行通信。其中一个基站为主基站,另外的基站为辅基站,例如,网络侧可以为终端设备配置N个辅基站,N≥2。
终端设备与主基站存在通信连接。在一些实施方式中,终端设备可以与N个辅基站均建立通信连接,也可能是终端设备与N个辅基站中的部分辅基站建立通信连接,部分辅基站未建立通信连接。
例如,某个时刻终端设备可以触发终端设备在一个辅基站的状态从去激活态切换为激活状态,即只激活一个辅基站,此时,终端设备在其他N-1个辅基站的状态处于去激活态,即终端设备仅与一个辅基站建立通信连接,与其他N-1个辅基站未建立通信连接。此外,终端设备还可以触发在N个辅基站中的多个辅基站的状态从去激活态切换为激活状态,即激活多个辅基站。
例如,主基站为终端设备预配置了N个辅基站对应的相关配置参数,每个辅基站对应的相关配置参数用于终端设备与该辅基站建立通信连接。主基站可以通知终端设备与N个辅基站中一个或多个辅基站建立通信连接。例如,主基站可以通知终端设备与N个辅基站中一个辅基站建立通信连接,则某个时刻终端设备可以仅与该辅基站进行通信。或者,主基站还可以通知终端设备与N个辅基站中多个辅基站建立通信连接,则终端设备可以同时和上述多个辅基站存在通信连接,则某个时刻终端设备可以和上述多个辅基站进行通信。
在一些实施方式中,终端设备可以同时在多个基站进行数据传输,也可能是终端设备在N个辅基站中并不同时进行数据的传输或发送。例如,终端设备在N个辅基站之间进行时分发送或者接收。
以上关于DC或MR-DC中一些术语的概念可以扩展到多连接场景中。
2.载波聚合(Carrier Aggregation,CA)技术:
CA具体指为单个终端设备配置多个载波(小区)共同进行数据传输。
主小区:是工作在主载波上的小区。终端设备在该小区进行初始连接建立过程,或开始连接重建立过程。在切换过程中该小区被指示为主小区。
主辅小区:属于SCG的小区中,终端设备被指示进行随机接入或者初始物理上行共享信道(physical uplink shared channel,PUSCH)传输。(例如,进行SCG改变流程时省略了随机接入过程时)的小区。
辅小区:是工作在辅载波上的小区。一旦RRC连接建立,辅小区就可能被配置以提供额外的无线资源。
服务小区(Serving Cell):处于RRC连接态(RRC_CONNECTED)态的终端设备,如果没有配置CA和/或DC,如果仅有一个Serving Cell,即PCell;如果配置了CA和/或DC,则Serving Cell集合是由主小区和辅小区组成。每个载波(component carrier,CC)对应一个独立的小区。配置了CA和/或DC的终端设备与1个主小区和至多31个辅小区相连。其中,某终端设备的主小区和所有辅小区组成了该终端设备的服务小区Serving Cell集合。服务小区可指代主小区,也可指代辅小区。
3.主基站的链路问题(又可称为MCG链路问题)
示例性地,终端设备可以根据以下一个或多个确定主基站存在链路问题:
终端设备检测到MCG RLF(radio link failure,无线链路失败),或者MCG发生切换失败,或者RRC重配失败(比如,终端设备无法遵从收到的RRC重配消息中的部分配置),或者终端设备的RRC从底层接收SRB1或SRB2完整性校验失败的指示信息(其中,不包括RRC重建消息的完整性校验失败的指示信息)。
具体的,MCG RLF的触发条件可以包括以下一个或多个:终端设备检测到MCG的下行信号质量比较差,或终端设备的RRC层从MCG MAC收到随机接入问题指示,或从MCG RLC收到某个SRB或DRB的数据包达到了最大重传次数。示例性地,终端设备的RRC层从物理层收到PCell的N310个连续的失步指示,终端设备启动一个定时器T310,如果 在T310超时之前,终端设备的RRC层没有从物理层收到PCell的N311个连续的同步指示,则终端设备确定MCG的下行信号质量比较差。
4.辅基站的链路问题(又可称为SCG链路问题)
示例性地,终端设备可以根据以下一个或多个确定辅基站存在链路问题:
终端设备检测到SCG的下行信号质量比较差,或终端设备的RRC层从SCG MAC收到随机接入问题指示,或终端设备从SCG RLC收到某个SRB或DRB的数据包达到了最大重传次数,或者SCG发生切换失败(比如PSCell发生切换失败),或者SN通过SRB3发送的RRC重配失败(比如终端设备无法遵从收到的从SRB3收到的RRC重配消息中的部分配置),或者终端设备的RRC从低层收到SRB3完整性校验失败的指示信息。示例性地,终端设备的RRC层从物理层收到PSCell的N310个连续的失步指示,终端设备启动一个定时器T310,如果在T310超时之前,终端设备的RRC层没有从物理层收到PSCell的N311个连续的同步指示,则终端设备认为SCG发生了RLF,则终端设备定SCG的下行信号质量比较差。
5.第一信息以及针对第一信息的响应
其中,第一信息用于指示终端设备检测到主基站的链路问题,示例性地,第一信息可以包括MCG失败信息,第一信息可以是终端设备中对应主基站的RRC生成的。例如,第一信息可以携带在终端设备中对应主基站的RRC生成的RRC消息,比如称为MCG失败信息消息。
具体的,第一信息可以包括以下至少一项:失败类型(比如t310超时、随机接入失败,RLC的数据包达到了最大重传次数等)、主基站下发的一些测量配置中的一些测量频点对应的小区的测量结果、辅基站下发的一些测量配置中的一些测量频点对应的小区的测量结果等。
针对第一信息的响应可以携带在主基站通过第一辅基站发送给终端设备的RRC重配消息或者RRC连接释放消息中。例如,针对第一信息的响应可以通知终端设备改变主小区或修改一些配置信息。
6.MCG快速恢复(fast MCG link recovery)机制
在双连接中,当终端设备检测到MCG的一些链路问题(具体可以参考上述主基站的链路问题)时,如果终端设备发起RRC重建流程,则将会导致数据传输发生中断,且一般而言RRC重建流程时间较长,因此,数据传输恢复所需时间也较长。具体的,终端设备会选择一个小区进行RRC重建流程,终端设备会释放之前的SCG配置,辅基站侧的数据传输会发生中断。其中,辅基站侧的数据传输包括主基站终止的承载或主基站终止的分离承载中辅基站侧的数据传输,以及辅基站终止的承载或辅基站终止的分离承载中辅基站侧的数据传输。因此,后续需要重新为终端设备配置SCG配置,而RRC重建流程需要恢复上述承载的时间会比较长,也就是说,辅基站侧的数据传输需要比较长的时间才能恢复。此外,主基站侧的数据传输也会发生中断。具体的,在RRC重建流程过程中或之后,主基站需要向终端设备发送RRC重配消息以重新建立DRB,之后主基站才能和终端设备之间进行数据传输。
为了避免发生上述数据传输中断,可以采用MCG快速恢复流程。具体地,当终端设备检测到MCG的一些链路问题时,终端设备会判断SCG是否检测到SCG RLF。如果没有检测到SCG RLF,则终端设备还可以通过辅基站来发送MCG失败信息给主基站,从而 主基站可以进行一定的操作(例如,切换或重配主基站)来恢复MCG。因此,终端设备无需发起RRC重建流程,此时,SCG配置还可以被保留,从而缩短了辅基站侧的数据传输中断时间。同时,主基站可以直接在针对MCG失败信息的响应中携带主基站对应的DRB配置,之后主基站和终端设备就可以恢复数据传输,从而缩短了主基站侧的数据传输中断时间。
进一步地,在多连接情况下,终端设备如何从多个辅基站中选择辅基站用于MCG快速恢复,是一个需要解决的问题。
本申请实施例提供一种多连接下的通信方法,可以用于实现MCG快速恢复,提高通信效率。
在本申请实施例中,主基站和N个(N≥2)辅基站可以为终端设备提供服务,N个辅基站是主基站为终端设备配置的。其中,N个辅基站可以包括第一辅基站和第二辅基站。主基站可以向终端设备发送所述N个辅基站对应的相关配置参数,例如N个SCG配置信息,每个SCG配置可以包括RLC参数和/或MAC参数等。所述N个辅基站的相关配置参数可能是在一条主基站向终端设备发送的消息中携带,也可能是多条主基站向终端设备发送的消息中携带。
如图5所示,该方法包括:
步骤501:主基站向终端设备指示第一规则,第一规则用于终端设备在检测到主基站的链路问题的情况下从终端设备被配置的N个辅基站中选择第一辅基站,第一辅基站用于将从终端设备接收到的第一信息转发至主基站。
示例性地,主基站通过显示指示的方式通知终端设备第一规则。例如,主基站向终端设备指示第一规则。或者,主基站通过隐式指示的方式向终端设备通知第一规则。例如,主基站已经向终端设备配置了N个辅基站,则终端设备按照预定义的规则(比如协议中规定了第一规则的内容)获取第一规则。
步骤502:在终端设备检测到主基站的链路问题的情况下,终端设备根据第一规则从终端设备被配置的N个辅基站中确定第一辅基站,N≥2。
在另一个实施方式中,主基站无需向终端设备指示第一规则,也就是说,无需执行步骤501。当在终端设备检测到主基站的链路问题时,终端设备可以根据预定义的规则从被配置的N个辅基站中确定第一辅基站。
其中,关于主基站的链路问题可以参考上述相关内容,重复之处不再赘述。
以下结合第一规则的几种可能的实现方式说明终端设备根据第一规则从终端设备被配置的N个辅基站中确定第一辅基站的具体过程。
方式1:第一规则指示N个辅基站中的M个辅基站,M≤N。
示例性地,第一规则包括M个辅基站的标识或者M个小区的标识,其中M个小区与M个辅基站存在对应关系。例如,第一规则包括M个辅基站的标识或M个辅基站分别对应的SCG的标识,或M个辅基站分别对应的PSCell的标识。
在一种实现方式中,若第一规则包括1个辅基站的标识或者1个辅基站对应的小区的标识,此时,M=1,则该第一规则中指示的辅基站就是第一辅基站,终端设备可以直接确定第一辅基站。这种情况下,主基站可以根据网络侧的情况来指示第一辅基站。例如,主基站可以根据主基站和各个辅基站之间的传输时延来确认第一辅基站。比如主基站选择主基站和辅基站之间的传输时延最短的那个辅基站作为第一辅基站。又例如,主基站可以根 据各个辅基站和终端设备之间的传输时延来确定第一辅基站。比如主基站选择和终端设备之间的传输时延最短的一个辅基站作为第一辅基站。通过上述方案能保证终端设备可以最快实现MCG快速恢复。
在一种实现方式中,若第一规则包括M个辅基站的标识,且M>1,终端设备可以从M个辅基站中确定第一辅基站。
在一示例中,终端设备将M个辅基站中未检测到SCG的链路问题的辅基站作为第一辅基站。例如,终端设备可以首先判断一下M个辅基站中是否有存在链路问题的辅基站,若有一个或多个辅基站存在链路问题,则排除存在链路问题的辅基站,然后从没有链路问题的辅基站中确定第一辅基站。例如,在终端设备确定从没有链路问题的辅基站的数量大于等于2的情况下,终端设备可以任意选择一个辅基站作为第一辅基站或终端设备可以选择信号质量最好的辅基站作为第一辅基站。
在另一示例中,终端设备将M个辅基站中未检测到SCG的链路问题且信号质量高于第一信号质量门限的辅基站作为第一辅基站。其中,第一信号质量门限为预配置的或第一规则携带的。例如,在没有链路问题的辅基站中信号质量高于第一信号质量门限的辅基站的数量大于等于2的情况下,终端设备任意选择一个辅基站作为第一辅基站或终端设备可以选择信号质量最好的辅基站作为第一辅基站。因此,终端设备通过信号质量对辅基站进行筛选,可以将信号质量较好的辅基站作为第一辅基站,从而提高第一信息的传输可靠性,以实现MCG的快速恢复。
此外,在一些实施方式中,在M个辅基站均存在链路问题或M个辅基站的信号质量均低于第二信号质量门限的情况下,终端设备从N个辅基站中除M个辅基站之外的辅基站中确定第一辅基站,也就是说,终端设备可以在主基站指示的辅基站之外的辅基站中来确定第一辅基站,以排除由于链路问题或者信号质量较差而可能无法从终端设备接收到所述第一信息的辅基站。其中,第二信号质量门限可以与第一信号质量门限相同或不同,例如,第二信号质量门限可以小于第一信号质量门限。此时,终端设备可以从N个辅基站中除M个辅基站之外的辅基站中选择信号质量高于第一信号质量门限或第二信号质量门限的辅基站作为第一辅基站,或者从N个辅基站中除M个辅基站之外的辅基站中选择没有检测到链路问题的辅基站作为第一辅基站,或者终端设备不发送第一信息。
因此,终端设备可以根据第一规则指示的M个辅基站优先选择用于将从终端设备接收到的第一信息转发至主基站的辅基站,若M个辅基站均不可选,则终端设备从N个辅基站中除M个辅基站之外的辅基站中确定第一辅基站,通过选择合适的第一辅基站,提高第一信息的传输可靠性,以实现MCG的快速恢复。
方式2:第一规则指示第三信号质量门限。
其中,第三信号质量门限可以与上述第一信号质量门限、第二信号质量门限相同或不同,本申请实施例对此不作限定。
在一种实现方式中,终端设备可以根据第三信号质量门限从N个辅基站中确定第一辅基站,其中,第一辅基站的信号质量高于第三信号质量门限。
其中,在N个辅基站中信号质量高于第三信号质量门限的辅基站的数量大于等于2时,则终端设备可以选择一个信号质量最好的辅基站作为第一辅基站,或者终端设备从高于第三信号质量门限的辅基站中任意选择一个辅基站作为第一辅基站。
方式3:第一规则指示终端设备优先选择终端设备在辅基站的状态处于激活状态的辅 基站。
示例性地,主基站可以通过隐式指示的方式通知终端设备优先选择终端设备在辅基站的状态处于激活状态的辅基站。例如,主基站已经向终端设备配置了N个辅基站,则终端设备可以按照预定义的规则获取第一规则。例如,协议中规定了终端设备优先选择终端设备在辅基站的状态处于激活状态的辅基站。因此,在终端设备检测到主基站的链路问题的情况下,终端设备优先选择终端设备在辅基站的状态处于激活状态的辅基站。需要说明的是,这里的处于激活状态的辅基站是指在终端设备检测到主基站的链路问题时,处于激活状态的辅基站。因此,在终端设备检测到主基站的链路问题时,终端设备需要首先确定N个辅基站中哪些辅基站是处于激活状态的辅基站,根据第一规则从处于激活状态的辅基站中优先确定第一辅基站。
其中,在本申请实施例中,终端设备在一个辅基站的状态处于激活状态,可以理解为终端设备可以通过该辅基站的SCG的通信链路进行信令传输和/或数据传输。终端设备在一个辅基站的状态处于去激活状态,可以理解为终端设备暂停通过该辅基站的SCG的通信链路进行信令传输和/或数据传输,但终端设备保留或存储该辅基站的SCG的部分或全部配置,以用于快速恢复所述SCG的通信链路。终端设备在一个辅基站的状态处于去激活状态,还可以理解为主基站只是为终端设备配置了该辅基站,但主基站还没有通知终端设备接入该辅基站。在本申请实施例中,“激活状态”也可以称为非挂起状态或者非休眠状态或活跃状态。“去激活状态”也可以称为挂起状态或者休眠状态或非活跃状态。
在一示例中,终端设备可以将N个辅基站中处于激活状态的辅基站作为第一辅基站。例如,终端设备还可以首先判断一下N个辅基站中是否有处于激活状态的辅基站,若有,从中确定第一辅基站。例如,在终端设备确定处于激活状态的辅基站的数量大于等于2的情况下,终端设备可以任意选择一个辅基站作为第一辅基站或终端设备可以选择信号质量最好的辅基站作为第一辅基站。若没有处于激活状态的辅基站,则终端设备可以任意选择一个辅基站作为第一辅基站或终端设备可以选择信号质量最好的辅基站作为第一辅基站。
在另一示例中,终端设备将N个辅基站中处于激活状态的辅基站且信号质量高于第四信号质量门限的辅基站作为第一辅基站。其中,第四信号质量门限为预配置的或第一规则携带的。例如,在处于激活状态的辅基站中信号质量高于第四信号质量门限的辅基站的数量大于等于2的情况下,终端设备任意选择一个辅基站作为第一辅基站或终端设备可以选择信号质量最好的辅基站作为第一辅基站。
在另一示例中,若N个辅基站中没有处于激活状态的辅基站,则终端设备可以任意选择一个辅基站作为第一辅基站或终端设备可以选择信号质量最好的辅基站作为第一辅基站。
因此,若终端设备选择终端设备在辅基站的状态为去激活态的辅基站作为第一辅基站,则终端设备需要在向第一辅基站发送第一信息之前,触发激活终端设备在第一辅基站的状态从去激活态切换为激活态,进而带来一定的信令开销。而若终端设备选择终端设备在辅基站的状态处于激活状态的辅基站作为第一辅基站,则可以节省这部分信令开销,且由于节省了这部分信令开销可以实现终端设备尽快将第一信息发送至第一辅基站,因此,通过选择合适的第一辅基站,降低了第一信息的传输时延,以实现MCG的快速恢复。
可以理解的是,上述方式1、方式2和方式3可以互相结合。例如,第一规则指示N个辅基站中的M个辅基站且指示终端设备优先选择终端设备在辅基站的状态处于激活状 态的辅基站,即方式1和方式3结合。又例如,第一规则指示第三信号质量门限且指示终端设备优先选择终端设备在辅基站的状态处于激活状态的辅基站,即方式2和方式3结合。又例如,第一规则指示N个辅基站中的M个辅基站且指示第三信号质量门限,即方式1和方式2结合。
此外,结合上述方式1、方式2和方式3,终端设备在决定哪个辅基站为第一辅基站时,终端设备还可以考虑以下一个或多个因素:主基站与辅基站之间的传输时延、辅基站与终端设备之间的传输时延等。
例如,在终端设备确定没有链路问题的辅基站的数量大于等于2的情况下,终端设备可以选择没有链路问题的辅基站中与主基站的传输时延最短的辅基站作为第一辅基站,或选择没有链路问题的辅基站中与终端设备之间的传输时延最短的辅基站作为第一辅基站。
例如,在终端设备确定信号质量高于第三信号质量门限的辅基站的数量大于等于2的情况下,终端设备可以选择信号质量高于第三信号质量门限的辅基站中与主基站的传输时延最短的辅基站作为第一辅基站,或选择信号质量高于第三信号质量门限的辅基站中与终端设备之间的传输时延最短的辅基站作为第一辅基站。
例如,在终端设备确定处于激活状态的辅基站的数量大于等于2的情况下,终端设备可以选择处于激活状态的辅基站中与主基站的传输时延最短的辅基站作为第一辅基站,或选择处于激活状态的辅基站中与终端设备之间的传输时延最短的辅基站作为第一辅基站。
此外,可以理解的是,终端设备还可以参考其他因素选择确定第一辅基站,本申请实施例对此不作限定。
步骤503:终端设备向第一辅基站发送第一信息。
在一些实施方式中,若终端设备在第一辅基站的状态处于去激活状态,终端设备还触发终端设备在第一辅基站的状态从去激活状态切换为激活状态。
示例性地,终端设备还可以执行以下至少一项内容(这里下述各项内容并不限定其先后关系):
1.终端设备向第一辅基站发起随机接入(random access)过程。例如终端设备向第一辅基站发送随机接入信道(random access channel,RACH)。可选的,在第一辅基站对应的上行定时对齐定时器(例如timeAlignmentTimer)超时的情况下,终端设备才向第一辅基站发起RACH过程。
2.终端设备恢复与第一辅基站的数据传输。
终端设备可以采用以下方式向第一辅基站发送第一信息。示例性地,第一信息可以为MCG失败信息,或者第一信息包括MCG失败信息。
在一种实现方式中,终端设备可以通过分离SRB(split SRB)或SRB3把第一信息发送给第一辅基站。
示例性地,对于分离SRB而言,终端设备的RRC实体将第一信息以PDCP协议数据单元(protocol data unit,PDU)的形式发送给分离SRB中对应第一辅基站的RLC实体。可选的,如果分离SRB具有对应多个辅基站的RLC实体,终端设备的RRC实体可以将第一信息以PDCP PDU的形式发送给分离SRB中对应的所有辅基站(包括第一辅基站)的RLC实体。
示例性地,对于SRB3而言,终端设备在发送给第一辅基站的SRB3RRC消息(比如多连接上行传输信息消息)中携带第一信息,终端设备的RRC将发送给第一辅基站的SRB3  RRC消息以PDCP PDU的形式发送给SRB3中对应第一辅基站的RLC实体。
步骤504:第一辅基站向主基站发送第一信息。
示例性地,第一辅基站是通过第一辅基站与主基站之间的接口把第一信息发送给主基站。
在一种实现方式中,如果第一辅基站通过分离SRB接收第一信息,第一辅基站将从终端设备接收的第一信息转给主基站(即把从终端设备收到的PDCP PDU发送给主基站),因此,第一辅基站是通过第一辅基站与主基站之间的用户面连接把第一信息发送给主基站的。可选的,如果分离SRB具有对应多个辅基站的RLC实体,终端设备的RRC可以将第一信息以PDCP PDU的形式发送给分离SRB中对应的所有辅基站(包括第一辅基站)的RLC实体。包括第一辅基站在内的该分离SRB对应的辅基站都向主基站发送第一信息。此时,终端设备向分离SRB对应的所有辅基站发送第一信息,分离SRB对应的所有辅基站都向主基站发送第一信息。
在另一种实现方式中,如果第一辅基站通过SRB3接收第一信息,第一辅基站需要解码终端设备发送的RRC消息,获得其中的第一信息,然后第一辅基站将该第一信息发送给主基站,此时第一辅基站是通过第一辅基站与主基站之间的控制面连接把第一信息发送给主基站。
步骤505:主基站向第一辅基站发送针对第一信息的响应。
在一种实现方式中,如果终端设备通过分离SRB发送第一信息,针对第一信息的响应可以为PDCP PDU的形式,主基站通过与第一辅基站之间的用户面连接将针对第一信息的响应发送给第一辅基站的。
在另一种实现方式中,如果终端设备通过SRB3发送第一信息,主基站通过主基站与第一辅基站之间的控制面连接将针对第一信息的响应发送给第一辅基站。
步骤506:第一辅基站向终端设备发送针对第一信息的响应。
在一种实现方式中,如果终端设备通过分离SRB发送第一信息,第一辅基站将从主基站收到的PDCP PDU发送给终端设备。
在另一种实现方式中,如果终端设备通过SRB3发送第一信息,第一辅基站将从主基站收到的针对第一信息的响应封装在一个SRB3对应的RRC消息(比如多连接下行传输信息消息)中,第一辅基站将这个SRB3对应的RRC消息发送给终端设备。
可选地,在一个实施方式中,所述方法还包括步骤507:终端设备根据针对第一信息的响应恢复主基站的通信。
例如,针对第一信息的响应可以通知终端设备切换主小区。终端设备可以根据针对第一信息的响应从原来的主小区切换至根据针对第一信息的响应确定的主小区,其中,切换后的主小区与原来的主小区可以是同一基站下的不同小区或不同基站下的不同小区。
又例如,针对第一信息的响应可以通知终端设备修改一些配置信息。终端设备可以根据针对第一信息的响应修改配置信息,进而恢复与原来的主小区的通信。示例性地,这里的配置新可以是上行最大重传次数等,例如,上行最大重传次数从10次提高至20次。
此外,在一些实施方式中,主基站还可以向终端设备发送配置信息。其中,配置信息用于为终端设备配置主小区组快速恢复。示例性地,主基站可以同时向终端设备发送配置信息和第一规则,或者,在主基站向终端设备发送第一规则之前,主基站向终端设备发送配置信息。例如,配置信息通过RRC专用消息携带。
可选的,在一些实施方式中,在终端设备检测到主基站的链路问题之后,终端设备可以启动第一定时器。示例性地,上述配置信息可以指示第一定时器(比如T316,又可以称为MCG快速恢复定时器)的时长。其中,第一定时器的作用是:在终端设备检测到主基站的链路问题的情况下,终端设备生成第一信息,终端设备启动第一定时器,终端设备发送第一信息,在第一定时器超时之前,终端设备接收到针对第一信息的响应,终端设备停止第一定时器。而在第一定时器超时且终端设备未从第一辅基站接收到针对第一信息的响应的情况下,可以包括以下几种实现方式:
方式1:在第一定时器超时且终端设备未从第一辅基站接收到针对第一信息的响应的情况下,终端设备可以发起RRC重建流程。
方式2:在第一定时器超时且终端设备未从第一辅基站接收到针对第一信息的响应的情况下,终端设备可以向第二辅基站发送第一信息,第二辅基站属于N个辅基站。第二辅基站与第一辅基站不同。示例性地,终端设备可以根据第一规则确定第二辅基站,或者终端设备可以根据第一指示信息确定第二辅基站,这里不限定确定第二辅基站的具体方式。例如,第二辅基站可以为不存在链路问题的辅基站。采用上述方式2可以提高将第一信息通知给主基站的成功率。
可选的,在一些实施方式中,终端设备还可以从主基站接收第一指示信息。在第一定时器超时且终端设备未从第一辅基站接收到针对第一信息的响应的情况下,终端设备根据第一指示信息向第二辅基站发送第一信息。示例性地,第一指示信息、配置信息和第一规则可以同时发送或者分开发送,本申请实施例对此不作限定。
示例性地,第一指示信息指示允许终端设备发送第一信息的次数。例如,第一指示信息指示允许终端设备发送第一信息的次数为K,K≥2。
和/或,第一指示信息指示允许终端设备在未接收到针对第一信息的响应的情况下选择N个辅基站中除第一辅基站之外的其他辅基站发送第一信息。例如,第一指示信息可以指示允许终端设备在未接收到针对第一信息的响应的情况下选择除第一辅基站之外的其他M-1辅基站中的辅基站发送第一信息。例如,第一指示信息可以指示N个辅基站中的S个辅基站,允许终端设备在未接收到针对第一信息的响应的情况下选择S个辅基站中的辅基站发送第一信息,其中,S个辅基站可以与M个辅基站完全相同,完全不同,或者部分相同部分不同。
和/或,第一指示信息指示第一时长,在第一时长内允许终端设备发送第一信息。其中,在第一时长内,终端设备可以选择再次向第一辅基站发送第一信息,或者终端设备可以选择向N个辅基站中除第一辅基站之外的其他辅基站或者除第一辅基站之外的其他M-1辅基站中的辅基站发送第一信息。
此外,终端设备生成发送给第二辅基站的消息,终端设备可以重启第一定时器,其中,发送给第二辅基站的消息包括第一信息。可选的,如果在第一定时器超时且终端设备未从第二辅基站接收到针对第一信息的响应的情况下,终端设备可以发起RRC重建流程或者向N个辅基站中除第一辅基站和第二辅基站之外的其他辅基站发送第一信息。
需要说明的是,在方式2中,终端设备向第二辅基站发送第一信息,需要首先确定第一定时器超时且终端设备未从第一辅基站接收到针对第一信息的响应。而在另外一些实施例中,终端设备也可以在第一定时器未超时且终端设备未从第一辅基站接收到针对第一信息的响应的情况下,向除第一辅基站之外的其他辅基站发送第一信息。因此,也可以提升 将第一信息通知给主基站的成功率。
示例性地,在终端设备从第一辅基站接收针对第一信息的响应之前,终端设备还根据第一规则在N个辅基站中确定第三辅基站,并向第三辅基站发送第一信息。也就是说,终端设备可以根据第一规则在N个辅基站中确定多个辅基站,多个辅基站包括第一辅基站和第三辅基站。终端设备可以同时向多个辅基站分别发送第一信息,或者终端设备可以不同时向多个辅基站分别发送第一信息,例如,终端设备可以按照多个辅基站的预设次序依次发送第一信息,或者终端设备按照任意的次序向多个辅基站发送第一信息。这里的多个辅基站的预设次序可以为多个辅基站与终端设备建立连接的次序,或者,主基站可以为终端设备配置多个辅基站的次序。
终端设备根据接收到的针对第一信息的响应恢复与主基站的通信。可以理解的是,由于终端设备发送了多个第一信息,因此可能收到一个或多个针对第一信息的响应。其中,多个针对第一信息的响应可以相同,也可以不同。
在一示例中,终端设备向第一辅基站和第三辅基站分别发送第一信息,第一辅基站将第一信息转发至主基站,并接收主基站恢复的针对第一信息的响应,第一辅基站向终端设备发送接收到的针对第一信息的响应。以及第三辅基站将第一信息转发至主基站,并接收主基站恢复的针对第一信息的响应,第三辅基站向终端设备发送接收到的针对第一信息的响应。此时,终端设备可以从第一辅基站接收针对第一信息的响应,以及从第三辅基站接收针对第一信息的响应,即终端设备可以接收多个针对第一信息的响应。示例性地,主基站向第一辅基站发送针对第一信息的响应和主基站向第三辅基站发送针对第一信息的响应可以相同,也可以不同。
可选的,在终端设备检测到主基站的链路问题之后,终端设备可以启动第二定时器。其中,第二定时器的具体含义可以参考上述第一定时器的具体含义,重复之处不在赘述,第二定时器的时长可以与第一定时器的时长相同或不同。进一步地,在终端设备接收到第一响应时,终端设备停止第二定时器,第一响应为终端设备首次接收到的针对第一信息的响应。终端设备根据第一响应,恢复与主基站的通信。终端设备丢弃或忽略或者不处理在第一响应之后接收到的针对第一信息的响应。因此,若终端设备先从第一辅基站接收针对第一信息的响应,则终端设备根据该针对第一信息的响应恢复与主基站的通信,并丢弃或忽略或者不处理从第三辅基站接收针对第一信息的响应。同理,若终端设备先从第三辅基站接收针对第一信息的响应,则终端设备根据该针对第一信息的响应恢复与主基站的通信,并丢弃或忽略或者不处理从第一辅基站接收针对第一信息的响应。
在另一示例中,终端设备向第一辅基站和第三辅基站分别发送第一信息,第一辅基站将第一信息转发至主基站以及第三辅基站将第一信息转发至主基站。主基站可以只针对首次接收到的第一信息,发送针对第一信息的响应,并丢弃或忽略或者不处理之后接收到的第一信息。或者,在从第一辅基站接收第一信息以及从第三辅基站接收第一信息(即接收多个第一信息)的情况下,主基站选择一个辅基站发送针对第一信息的响应,例如,主基站只向第一辅基站或第三辅基站发送针对第一信息的响应。此时,终端设备只可以接收到一个针对第一信息的响应。
例如,若主基站首次从第一辅基站接收第一信息,主基站向第一辅基站发送针对第一信息的响应。在从第一辅基站接收第一信息之后,主基站还从第三辅基站接收第一信息,则丢弃或忽略或者不处理第一信息,不向第三辅基站发送针对第一信息的响应。
采用上述图5所示的实施例,终端设备可以根据主基站指示的第一规则从终端设备被配置的N个辅基站中确定第一辅基站,并向第一辅基站发送第一信息,以使第一辅基站将第一信息转发至主基站,通过选择合适的辅基站,进而终端设备可以尽快将主基站的链路问题通知给主基站,用于主基站实现MCG快速恢复,而无需由终端设备针对主基站发起RRC重建流程,提高了多连接场景下的通信效率。
本申请实施例还提供一种多连接下的通信方法,可以用于实现MCG快速恢复,提高通信效率。在图6所示的实施例侧中,当终端设备检测到主基站的链路问题时,终端设备向多个辅基站分别发送第一信息,进而可以有效保障第一信息被主基站收到。在图6所示实施例中,不限定终端设备是如何从终端设备被配置的N个辅基站中确定多个辅基站的,终端设备可以向N个辅基站分别发送第一信息,或者终端设备可以任意选择多个辅基站分别发送第一信息,或者终端设备选择满足一定条件的多个辅基站,例如,这里的条件可以是第一规则也可以不是第一规则。可以理解,图6所示实施例是在图5所示实施例基础上对本申请提供的通信方法的进一步说明,图6所示实施例可以与图5所示实施例相互参考或结合,图5所示实施例中已描述的内容在图6所示实施例中将不再赘述。
其中,主基站和N个辅基站可以为终端设备提供服务,N个辅基站是网络侧为终端设备配置的,N≥2。N个辅基站可以包括辅基站#A和辅基站#B。主基站可以向终端设备发送所述N个辅基站的配置信息。例如,所述N个辅基站的配置信息可能是在一条主基站向终端设备发送的消息中携带,也可能是多条主基站向终端设备发送的消息中携带。
如图6所示,该方法包括:
步骤601:主基站向终端设备发送指示信息#A,指示信息#A指示终端设备在检测到主基站的链路问题的情况下从终端设备被配置的N个辅基站中选择多个辅基站。
示例性地,主基站通过显示指示的方式通知终端设备指示信息#A。例如,主基站向终端设备发送第一信元,第一信元包括1比特,当第一信元的取值为1时,第一信元指示允许终端设备在检测到主基站的链路问题的情况下从终端设备被配置的N个辅基站中选择多个辅基站。当第一信元的取值为0时,第一信元指示不允许终端设备在检测到主基站的链路问题的情况下从终端设备被配置的N个辅基站中选择多个辅基站。
或者,主基站通过隐式指示的方式向终端设备通知指示信息#A。例如,主基站已经向终端设备配置了N个辅基站,则终端设备按照预定义的规则(比如协议中规定了指示信息#A的内容)获取指示信息#A。
步骤602:在终端设备检测到主基站的链路问题的情况下,终端设备根据指示信息#A从终端设备被配置的N个辅基站中确定辅基站#A和辅基站#B。
可以理解的是,以下仅以终端设备确定辅基站#A和辅基站#B为例进行说明,可以理解的是,终端设备还可以确定三个或三个以上辅基站。
示例性地,终端设备可以从终端设备被配置的N个辅基站中确定Q个辅基站,2≤Q≤N。
可以理解的是,这里不限定终端设备从终端设备被配置的N个辅基站中确定多个辅基站的具体方式。例如,终端设备选择满足一定条件的多个辅基站,比如信号质量好于一定门限的辅基站;或者终端设备选择未检测到SCG的链路问题的多个辅基站;或者终端设备选择未检测到处于激活状态的多个辅基站;或者如图5所示实施例所示,主基站可以还指示终端设备第一规则,终端设备可以根据第一规则确定多个辅基站。
例如,指示信息#A还可以指示终端设备选择辅基站的数量,或者其他条件,本申请实施例对此不作限定。
在另外一些实施方式中,终端设备无需从主基站获取指示信息#A,当端设备检测到主基站的链路问题的情况下,终端设备可以按照预定义的规则(例如协议中的规定)从终端设备被配置的N个辅基站中确定辅基站#A和辅基站#B。也就是说,在该实施方式中,步骤601无需执行,且步骤602可以被替换为:在终端设备检测到主基站的链路问题的情况下,终端设备根据预定义的规则从终端设备被配置的N个辅基站中确定辅基站#A和辅基站#B。
步骤603a:终端设备向辅基站#A发送第一信息。
步骤603b:终端设备向辅基站#B发送第一信息。
可以理解的是,本实施例中所描述的第一信息的具体含义可以参考与上述图5所示实施例中的第一信息的具体含义。
示例性地,终端设备可以同时向辅基站#A和辅基站#B分别发送第一信息,终端设备可以不同时向辅基站#A和辅基站#B分别发送第一信息,例如,终端设备可以按照辅基站#A和辅基站#B的预设次序依次发送第一信息,或者终端设备按照任意的次序向辅基站#A和辅基站#B发送第一信息。需要说明的是,终端设备不需要等待收到针对前一个发送的第一信息的响应后,再发送下一个第一信息。
若终端设备在辅基站#A的状态处于去激活状态,终端设备还需触发终端设备在辅基站#A的状态从去激活状态切换为激活状态。和/或,若终端设备在辅基站#B的状态处于去激活状态,终端设备还需触发终端设备在辅基站#B的状态从去激活状态切换为激活状态。
其中,终端设备向辅基站#A和辅基站#B发送第一信息的具体实现方式可以参考上述步骤503,重复之处不在赘述。
步骤604a:辅基站#A向主基站发送第一信息。
步骤604b:辅基站#B向主基站发送第一信息。
其中,辅基站#A向主基站发送第一信息以及辅基站#B向主基站发送第一信息的具体实现方式可以参考上述步骤504,重复之处不在赘述。
步骤605:主基站向辅基站#A发送针对第一信息的响应。
可以理解的是,这里的针对第一信息的响应的具体含义可以参考与上述图5所示实施例中的针对第一信息的响应的具体含义。
其中,主基站处理接收到第一信息可以采用但不限于一下几种方式:
方式1,主基站可以在首次接收到第一信息后就开始进行处理,生成针对第一信息的响应。当主基站从其他辅基站再次接收到第一信息时,就丢弃或忽略从这些其他辅基站接收到的第一信息。此时,终端设备只可以接收到一个针对第一信息的响应。
示例性地,若主基站首次从辅基站#A接收第一信息,主基站向辅基站#A发送针对第一信息的响应。在从辅基站#A接收第一信息之后,主基站还从辅基站#B接收第一信息,则丢弃或忽略或者不处理第一信息,不向辅基站#B发送针对第一信息的响应。
方式2,主基站可以只向一个发送第一信息的辅基站(比如,主基站最早收到第一信息的辅基站,或者主基站按照自己的算法选择的一个发送第一信息的辅基站)发送针对第一信息的响应。此时,终端设备只可以接收到一个针对第一信息的响应。
示例性地,主基站只向辅基站#A或辅基站#B发送针对第一信息的响应。
方式3,主基站针对每次接收到第一信息发送针对第一信息的响应。此时,终端设备可以接收到多个针对第一信息的响应。
示例性地,主基站可以向辅基站#A发送针对第一信息的响应,以及向辅基站#B发送针对第一信息的响应。可选的,向辅基站#A发送针对第一信息的响应和向辅基站#B发送针对第一信息的响应可以相同,也可以不同。
须知,步骤605仅以主基站向辅基站#A发送针对第一信息的响应,但主基站未向辅基站#B发送针对第一信息的响应(对应上述方式1或方式2)为例进行说明。可以理解的是,主基站还可以向辅基站#B发送针对第一信息的响应(对应上述方式3)。
步骤606:辅基站#A向终端设备发送针对第一信息的响应。
对于上述方式3而言,辅基站#B也向终端设备发送针对第一信息的响应。
其中,辅基站#A向终端设备发送第一信息的响应以及辅基站#B向终端设备发送第一信息的响应的具体实现方式可以参考上述步骤506,重复之处不在赘述。
可选地,在一个实施方式中,所述方法还包括步骤607:终端设备根据针对第一信息的响应恢复与主基站的通信。
其中,终端设备根据针对第一信息的响应恢复与主基站的通信的具体实现方式可以参考上述步骤507,重复之处不在赘述。
此外,在一些实施方式中,主基站还可以向终端设备发送配置信息。其中,配置信息用于为终端设备配置主小区组快速恢复。示例性地,配置信息和指示信息#A主基站可以同时被发送或分开被发送。例如,配置信息通过RRC专用消息携带,当配置信息和指示信息#A主基站可以同时被发送时,指示信息#A可以在配置信息内或配置信息外。
可选的,在终端设备检测到主基站的链路问题之后,终端设备可以启动第三定时器。其中,第三定时器的具体含义可以参考上述第一定时器的具体含义,重复之处不在赘述,第三定时器的时长可以与第一定时器的时长可以相同或不同。示例性地,上述配置信息还可以指示第三定时器的时长。进一步地,在终端设备接收到第一响应时,终端设备停止第三定时器,第一响应为终端设备首次接收到的针对第一信息的响应。终端设备根据第一响应,恢复与主基站的通信。终端设备丢弃或忽略或者不处理在第一响应之后接收到的针对第一信息的响应。例如,对应上述方式3,若终端设备先从辅基站#A接收针对第一信息的响应,则终端设备根据该针对第一信息的响应恢复与主基站的通信,并丢弃或忽略或者不处理从辅基站#B接收针对第一信息的响应。同理,若终端设备先从辅基站#B接收针对第一信息的响应,则终端设备根据该针对第一信息的响应恢复与主基站的通信,并丢弃或忽略或者不处理从辅基站#A接收针对第一信息的响应。
采用上述图6所示的实施例,终端设备可以根据主基站指示的指示信息#A向多个辅基站分别发送第一信息,进而可以提高第一信息的传输可靠性,减少第一信息传输的时延,以用于主基站实现MCG快速恢复,且终端设备无需针对主基站发起RRC重建流程,提高了多连接场景下的通信效率。
图7示出了本申请实施例中所涉及的一种装置的可能的示例性框图,该装置700包括:收发模块710和处理模块720,收发模块710可以包括接收单元和发送单元。处理模块720用于对装置700的动作进行控制管理。收发模块710用于支持装置700与其他网络实体的通信。可选地,装置700还可以包括存储单元,所述存储单元用于存储装置700的程序代 码和数据。
可选地,所述装置700中各个模块可以是通过软件来实现。
可选地,处理模块720可以是处理器或控制器,例如可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。收发模块710可以是通信接口、收发器或收发电路等,其中,该通信接口是统称,在具体实现中,该通信接口可以包括多个接口,存储单元可以是存储器。
当装置700为终端设备或终端设备中的芯片时,装置700中的处理模块720可以支持装置700执行上文中各方法示例中终端设备的动作,例如可以支持装置700执行图5中的步骤502和步骤507,图6中的步骤602和步骤607。
收发模块710可以支持装置700与第一辅基站之间的通信,例如,收发模块710可以支持装置700执行图5中的步骤501,步骤503,步骤506,图6中的步骤601,步骤603a,步骤603b,步骤606。
例如,可以如下:
在一种实现方式中,所述装置700包括:
所述收发模块710,用于从主基站获取第一规则;所述处理模块720,用于在检测到所述主基站的链路问题的情况下,根据所述第一规则从所述终端设备被配置的N个辅基站中确定第一辅基站,N≥2;所述收发模块710,用于通过所述第一辅基站向所述主基站发送第一信息,所述第一信息用于指示所述终端设备检测到所述主基站的链路问题。
应理解,根据本申请实施例的装置700可对应于前述方法实施例中终端设备,并且装置700中的各个模块的操作和/或功能分别为了实现前述方法实施例中终端设备的方法的相应步骤,因此也可以实现前述方法实施例中的有益效果,为了简洁,这里不作赘述。
当装置700为主基站或主基站中的芯片时,装置700中的处理模块720可以支持装置700执行上文中各方法示例中主基站的动作。
收发模块710可以支持装置700与终端设备或第一辅基站或者第二辅基站之间的通信,例如,收发模块710可以支持装置700执行图5中的步骤501,步骤504,步骤505,图6中的步骤601,步骤604a,步骤604b,步骤605,步骤606。
例如,可以如下:
在一种实现方式,所述处理模块720调用所述收发模块710执行:
向终端设备指示第一规则,所述第一规则用于所述终端设备在检测到所述主基站的链路问题的情况下从所述终端设备被配置的N个辅基站中选择第一辅基站,所述第一辅基站用于将从所述终端设备接收到的第一信息转发至所述主基站,所述第一信息用于指示所述终端设备检测到所述主基站的链路问题;从所述第一辅基站接收所述第一信息;向所述第一辅基站发送针对所述第一信息的响应。
应理解,根据本申请实施例的装置700可对应于前述方法实施例中主基站的方法,并且装置700中的各个模块的操作和/或功能分别为了实现前述方法实施例中主基站的方法 的相应步骤,因此也可以实现前述方法实施例中的有益效果,为了简洁,这里不作赘述。
图8示出了根据本申请实施例的通信装置800的示意性结构图。如图8所示,所述装置800包括:处理器801。
[根据细则91更正 12.08.2022] 
当装置800为终端设备或终端设备中的芯片时,一种可能的实现方式中,当所述处理器801用于调用接口执行以下动作:
从主基站获取第一规则;在检测到所述主基站的链路问题的情况下,根据所述第一规则从所述终端设备被配置的N个辅基站中确定第一辅基站,N≥2;通过所述第一辅基站向所述主基站发送第一信息,所述第一信息用于指示所述终端设备检测到所述主基站的链路问题。
应理解,所述装置800还可用于执行前文实施例中终端设备侧的其他步骤和/或操作,为了简洁,这里不作赘述。
[根据细则91更正 12.08.2022] 
当装置800为主基站或主基站中的芯片时,一种可能的实现方式中,当所述处理器801用于调用接口执行以下动作:
向终端设备指示第一规则,所述第一规则用于所述终端设备在检测到所述主基站的链路问题的情况下从所述终端设备被配置的N个辅基站中选择第一辅基站,所述第一辅基站用于将从所述终端设备接收到的第一信息转发至所述主基站,所述第一信息用于指示所述终端设备检测到所述主基站的链路问题;从所述第一辅基站接收所述第一信息;向所述第一辅基站发送针对所述第一信息的响应。
应理解,所述装置800还可用于执行前文实施例中主基站侧的其他步骤和/或操作,为了简洁,这里不作赘述。
应理解,所述处理器801可以调用接口执行上述收发动作,其中,调用的接口可以是逻辑接口或物理接口,对此不作限定。可选地,物理接口可以通过收发器实现。可选地,所述装置800还包括收发器803。
可选地,所述装置800还包括存储器802,存储器802中可以存储上述方法实施例中的程序代码,以便于处理器801调用。
具体地,若所述装置800包括处理器801、存储器802和收发器803,则处理器801、存储器802和收发器803之间通过内部连接通路互相通信,传递控制和/或数据信号。在一个可能的设计中,处理器801、存储器802和收发器803可以通过芯片实现,处理器801、存储器802和收发器803可以是在同一个芯片中实现,也可能分别在不同的芯片实现,或者其中任意两个功能组合在一个芯片中实现。该存储器802可以存储程序代码,处理器801调用存储器802存储的程序代码,以实现装置800的相应功能。
上述本申请实施例揭示的方法可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器 (programmable logic device,PLD)或其他集成芯片。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请实施例中,编号“第一”、“第二”…仅仅为了区分不同的对象,比如为了区分不同的参数信息或者消息,并不对本申请实施例的范围构成限制,本申请实施例并不限于此。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。上述各个过程涉及的各种数字编号或序号仅为描述方便进行的区分,而不应对本申请实施例的实施过程构成任何限定。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的类似于“项目包括如下中的一项或多项:A,B,以及C”表述的含义,如无特别说明,通常是指该项目可以为如下中任一个:A;B;C;A和B;A和C;B和C;A,B和C;A和A;A,A和A;A,A和B;A,A和C,A,B和B;A,C和C;B和B,B,B和B,B,B和C,C和C;C,C和C,以及其他A,B和C的组合。以上是以A,B和C共3个元素进行举例来说明该项目的可选用条目,当表达为“项目包括如下中至少一种:A,B,……,以及X”时,即表达中具有更多元素时,那么该项目可以适用的条目也可以按照前述规则获得。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (74)

  1. 一种多连接下的通信方法,其特征在于,该方法包括:
    终端设备从主基站获取第一规则;
    在所述终端设备检测到所述主基站的链路问题的情况下,所述终端设备根据所述第一规则从所述终端设备被配置的N个辅基站中确定第一辅基站,N≥2;
    所述终端设备通过所述第一辅基站向所述主基站发送第一信息,所述第一信息用于指示所述终端设备检测到所述主基站的链路问题。
  2. 如权利要求1所述的方法,其特征在于,所述第一规则指示所述N个辅基站中的M个辅基站,M≤N。
  3. 如权利要求2所述的方法,其特征在于,所述第一规则包括M个小区的标识,所述M个小区与所述M个辅基站存在对应关系。
  4. 如权利要求2或3所述的方法,其特征在于,所述终端设备根据所述第一规则从所述终端设备被配置的N个辅基站中确定第一辅基站,包括:
    所述终端设备从所述M个辅基站中确定所述第一辅基站。
  5. 如权利要求4所述的方法,其特征在于,所述终端设备从所述M个辅基站中确定所述第一辅基站,包括:
    所述终端设备将所述M个辅基站中未检测到链路问题的辅基站作为所述第一辅基站;
    或者,所述终端设备将所述M个辅基站中未检测到链路问题且信号质量高于第一信号质量门限的辅基站作为所述第一辅基站,其中,所述第一信号质量门限为预配置的或所述第一规则携带的。
  6. 如权利要求2或3所述的方法,其特征在于,所述终端设备根据所述第一规则从所述终端设备被配置的N个辅基站中确定第一辅基站,包括:
    在所述M个辅基站均存在链路问题或所述M个辅基站的信号质量均低于第二信号质量门限时,所述终端设备从所述N个辅基站中除所述M个辅基站之外的辅基站中确定所述第一辅基站。
  7. 如权利要求1所述的方法,其特征在于,所述第一规则指示第三信号质量门限;
    所述终端设备根据所述第一规则从所述终端设备被配置的N个辅基站中确定第一辅基站,包括:
    所述终端设备根据所述第三信号质量门限从所述N个辅基站中确定所述第一辅基站,其中,所述第一辅基站的信号质量高于所述第三信号质量门限。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述终端设备在所述第一辅基站的状态处于去激活状态,所述方法还包括:
    所述终端设备触发所述终端设备在所述第一辅基站的状态从所述去激活状态切换为激活状态。
  9. 如权利要求1-8任一项所述的方法,其特征在于,还包括:
    在所述终端设备检测到所述主基站的链路问题之后,所述终端设备启动第一定时器;
    在所述第一定时器超时且所述终端设备未从所述第一辅基站接收到针对所述第一信息的响应的情况下,所述终端设备向第二辅基站发送所述第一信息,所述第二辅基站属于所述N个辅基站。
  10. 如权利要求9所述的方法,其特征在于,还包括:
    所述终端设备从所述主基站接收第一指示信息,所述第一指示信息指示允许所述终端设备发送所述第一信息的次数,和/或,所述第一指示信息指示允许所述终端设备在未接收到针对所述第一信息的响应的情况下选择所述N个辅基站中除所述第一辅基站之外的其他辅基站发送所述第一信息,和/或,所述第一指示信息指示第一时长,在所述第一时长内允许所述终端设备发送所述第一信息。
  11. 如权利要求1-8任一项所述的方法,其特征在于,还包括:
    在所述终端设备从所述第一辅基站接收针对所述第一信息的响应之前,所述终端设备根据所述第一规则在所述N个辅基站中确定第三辅基站;
    所述终端设备向所述第三辅基站发送所述第一信息。
  12. 如权利要求11所述的方法,其特征在于,还包括:
    在所述终端设备检测到所述主基站的链路问题之后,所述终端设备启动第二定时器;
    在所述终端设备接收到第一响应时,所述终端设备停止所述第二定时器,所述第一响应为所述终端设备首次接收到的针对所述第一信息的响应;
    所述终端设备根据所述第一响应,恢复与所述主基站的通信。
  13. 如权利要求12所述的方法,其特征在于,还包括:
    所述终端设备丢弃在所述第一响应之后接收到的针对所述第一信息的响应。
  14. 如权利要求1-13任一项所述的方法,其特征在于,还包括:
    所述终端设备根据以下一项或多项确定所述主基站存在链路问题:
    主小区组无线链路失败,主小区组切换失败,无线资源控制重配失败和所述终端设备的无线资源控制层接收到信令无线承载SRB1或SRB2完整性校验失败的指示信息。
  15. 如权利要求1-14任一项所述的方法,其特征在于,所述第一信息包括主小区组失败消息。
  16. 如权利要求1-15任一项所述的方法,其特征在于,还包括:
    所述终端设备从所述主基站接收配置信息,所述配置信息用于为所述终端设备配置主小区组快速恢复。
  17. 一种多连接下的通信方法,其特征在于,该方法包括:
    主基站向终端设备指示第一规则,所述第一规则用于所述终端设备在检测到所述主基站的链路问题的情况下从所述终端设备被配置的N个辅基站中选择第一辅基站,所述第一辅基站用于将从所述终端设备接收到的第一信息转发至所述主基站,所述第一信息用于指示所述终端设备检测到所述主基站的链路问题;
    所述主基站从所述第一辅基站接收所述第一信息;
    所述主基站向所述第一辅基站发送针对所述第一信息的响应。
  18. 如权利要求17所述的方法,其特征在于,所述第一规则指示所述N个辅基站中的M个辅基站,M≤N。
  19. 如权利要求18所述的方法,其特征在于,所述第一规则包括M个小区的标识,所述M个小区与所述M个辅基站存在对应关系。
  20. 如权利要求17所述的方法,其特征在于,所述第一规则指示第三信号质量门限。
  21. 如权利要求17-20任一项所述的方法,其特征在于,还包括:
    所述主基站向所述终端设备发送第一指示信息,所述第一指示信息指示允许所述终端 设备发送所述第一信息的次数,和/或,所述第一指示信息指示允许所述终端设备在未接收到针对所述第一信息的响应的情况下选择所述N个辅基站中除所述第一辅基站之外的其他辅基站发送所述第一信息,和/或,所述第一指示信息指示第一时长,在第一时长内允许所述终端设备发送所述第一信息。
  22. 如权利要求17-21任一项所述的方法,其特征在于,还包括:
    所述主基站从第二辅基站接收所述第一信息;
    所述主基站向所述第二辅基站发送针对所述第一信息的响应。
  23. 如权利要求17-22任一项所述的方法,其特征在于,所述第一信息包括主小区组失败消息。
  24. 如权利要求17-23任一项所述的方法,其特征在于,还包括:
    所述主基站向所述终端设备发送配置信息,所述配置信息用于为所述终端设备配置主小区组快速恢复。
  25. 一种多连接下的通信方法,其特征在于,该方法包括:
    主基站向终端设备发送指示信息,所述指示信息指示所述终端设备在检测到所述主基站的链路问题的情况下从所述终端设备被配置的N个辅基站中选择多个辅基站,N为正整数;
    所述主基站从所述多个辅基站接收第一信息,所述第一信息用于指示所述终端设备检测到所述主基站的链路问题;
    所述主基站向所述多个辅基站中的至少一个辅基站发送针对所述第一信息的响应。
  26. 如权利要求25所述的方法,其特征在于,所述指示信息还指示所述终端设备选择辅基站的数量。
  27. 如权利要求25或26所述的方法,其特征在于,所述第一信息包括主小区组失败消息。
  28. 如权利要求25-27任一项所述的方法,其特征在于,还包括:
    所述主基站向所述终端设备发送配置信息,所述配置信息用于为所述终端设备配置主小区组快速恢复。
  29. 一种多连接下的通信方法,其特征在于,该方法包括:
    终端设备从主基站接收指示信息,所述指示信息指示所述终端设备在检测到所述主基站的链路问题的情况下从所述终端设备被配置的N个辅基站中选择多个辅基站,N≥2;
    在所述终端设备检测到所述主基站的链路问题的情况下,所述终端设备根据所述指示信息从所述N个辅基站中确定所述多个辅基站;
    所述终端设备通过所述多个辅基站分别向所述主基站发送第一信息,所述第一信息用于指示所述终端设备检测到所述主基站的链路问题。
  30. 如权利要求29所述的方法,其特征在于,所述指示信息还指示所述终端设备选择辅基站的数量。
  31. 如权利要求29或30所述的方法,其特征在于,所述终端设备在辅基站A的状态处于去激活状态,所述辅基站A为所述多个辅基站中的任意一个基站;
    所述方法还包括:
    所述终端设备触发所述终端设备在所述辅基站A的状态从所述去激活状态切换为激活状态。
  32. 如权利要求29-31任一项所述的方法,其特征在于,还包括:
    在所述终端设备检测到所述主基站的链路问题之后,所述终端设备启动第三定时器;
    在所述终端设备接收到第一响应时,所述终端设备停止所述第三定时器,所述第一响应为所述终端设备首次接收到的针对所述第一信息的响应;
    所述终端设备根据所述第一响应,恢复与所述主基站的通信。
  33. 如权利要求32所述的方法,其特征在于,还包括:
    所述终端设备丢弃在所述第一响应之后接收到的针对所述第一信息的响应。
  34. 如权利要求29-33任一项所述的方法,其特征在于,还包括:
    所述终端设备根据以下一项或多项确定所述主基站存在链路问题:
    主小区组无线链路失败,主小区组切换失败,无线资源控制重配失败和所述终端设备的无线资源控制层接收到信令无线承载SRB1或SRB2完整性校验失败的指示信息。
  35. 如权利要求29-34任一项所述的方法,其特征在于,所述第一信息包括主小区组失败消息。
  36. 如权利要求29-35任一项所述的方法,其特征在于,还包括:
    所述终端设备从所述主基站接收配置信息,所述配置信息用于为所述终端设备配置主小区组快速恢复。
  37. 一种通信装置,其特征在于,所述通信装置为终端设备或用于实现所述终端设备的功能的装置;该装置包括:收发单元和处理单元;
    所述收发单元,用于从主基站获取第一规则;所述处理单元,用于在检测到所述主基站的链路问题的情况下,根据所述第一规则从所述终端设备被配置的N个辅基站中确定第一辅基站,N≥2;所述收发单元,用于通过所述第一辅基站向所述主基站发送第一信息,所述第一信息用于指示所述终端设备检测到所述主基站的链路问题。
  38. 如权利要求37所述的装置,其特征在于,所述第一规则指示所述N个辅基站中的M个辅基站,M≤N。
  39. 如权利要求38所述的装置,其特征在于,所述第一规则包括M个小区的标识,所述M个小区与所述M个辅基站存在对应关系。
  40. 如权利要求38或39所述的装置,其特征在于,所述处理单元,用于根据所述第一规则从所述终端设备被配置的N个辅基站中确定第一辅基站时,从所述M个辅基站中确定所述第一辅基站。
  41. 如权利要求40所述的装置,其特征在于,所述处理单元,用于在从所述M个辅基站中确定所述第一辅基站时,将所述M个辅基站中未检测到链路问题的辅基站作为所述第一辅基站;或者,将所述M个辅基站中未检测到链路问题且信号质量高于第一信号质量门限的辅基站作为所述第一辅基站,其中,所述第一信号质量门限为预配置的或所述第一规则携带的。
  42. 如权利要求38或39所述的装置,其特征在于,所述处理单元,用于根据所述第一规则从所述终端设备被配置的N个辅基站中确定第一辅基站时,在所述M个辅基站均存在链路问题或所述M个辅基站的信号质量均低于第二信号质量门限时,从所述N个辅基站中除所述M个辅基站之外的辅基站中确定所述第一辅基站。
  43. 如权利要求37所述的装置,其特征在于,所述第一规则指示第三信号质量门限;所述处理单元,用于在根据所述第一规则从所述终端设备被配置的N个辅基站中确定第一 辅基站时,根据所述第三信号质量门限从所述N个辅基站中确定所述第一辅基站,其中,所述第一辅基站的信号质量高于所述第三信号质量门限。
  44. 如权利要求37-43任一项所述的装置,其特征在于,所述终端设备在所述第一辅基站的状态处于去激活状态;所述处理单元调用所述收发单元执行:触发所述终端设备在所述第一辅基站的状态从所述去激活状态切换为激活状态。
  45. 如权利要求37-44任一项所述的装置,其特征在于,所述处理单元,用于在检测到所述主基站的链路问题之后,启动第一定时器;在所述第一定时器超时且未从所述第一辅基站接收到针对所述第一信息的响应的情况下,所述收发单元,用于向第二辅基站发送所述第一信息,所述第二辅基站属于所述N个辅基站。
  46. 如权利要求45所述的装置,其特征在于,所述收发单元,用于从所述主基站接收第一指示信息,所述第一指示信息指示允许发送所述第一信息的次数,和/或,所述第一指示信息指示允许在未接收到针对所述第一信息的响应的情况下选择所述N个辅基站中除所述第一辅基站之外的其他辅基站发送所述第一信息,和/或,所述第一指示信息指示第一时长,在所述第一时长内允许发送所述第一信息。
  47. 如权利要求37-44任一项所述的装置,其特征在于,所述处理单元,用于在从所述第一辅基站接收针对所述第一信息的响应之前,根据所述第一规则在所述N个辅基站中确定第三辅基站;所述收发单元,用于向所述第三辅基站发送所述第一信息。
  48. 如权利要求47所述的装置,其特征在于,所述处理单元,用于在检测到所述主基站的链路问题之后,启动第二定时器;在所述收发单元接收到第一响应时,停止所述第二定时器,所述第一响应为首次接收到的针对所述第一信息的响应;根据所述第一响应通过所述收发单元恢复与所述主基站的通信。
  49. 如权利要求48所述的装置,其特征在于,所述处理单元,用于丢弃在所述第一响应之后接收到的针对所述第一信息的响应。
  50. 如权利要求37-49任一项所述的装置,其特征在于,所述处理单元,用于根据以下一项或多项确定所述主基站存在链路问题:
    主小区组无线链路失败,主小区组切换失败,无线资源控制重配失败和所述终端设备的无线资源控制层接收到信令无线承载SRB1或SRB2完整性校验失败的指示信息。
  51. 如权利要求37-50任一项所述的装置,其特征在于,所述第一信息包括主小区组失败消息。
  52. 如权利要求37-51任一项所述的装置,其特征在于,所述收发单元,用于从所述主基站接收配置信息,所述配置信息用于为所述终端设备配置主小区组快速恢复。
  53. 一种通信装置,其特征在于,所述通信装置为主基站设备或用于实现所述主基站的功能的装置;该装置包括:收发单元和处理单元;
    所述处理单元调用所述收发单元执行:向终端设备指示第一规则,所述第一规则用于所述终端设备在检测到所述主基站的链路问题的情况下从所述终端设备被配置的N个辅基站中选择第一辅基站,所述第一辅基站用于将从所述终端设备接收到的第一信息转发至所述主基站,所述第一信息用于指示所述终端设备检测到所述主基站的链路问题;从所述第一辅基站接收所述第一信息;向所述第一辅基站发送针对所述第一信息的响应。
  54. 如权利要求53所述的装置,其特征在于,所述第一规则指示所述N个辅基站中的M个辅基站,M≤N。
  55. 如权利要求54所述的装置,其特征在于,所述第一规则包括M个小区的标识,所述M个小区与所述M个辅基站存在对应关系。
  56. 如权利要求53所述的装置,其特征在于,所述第一规则指示第三信号质量门限。
  57. 如权利要求53-56任一项所述的装置,其特征在于,所述收发单元,用于向所述终端设备发送第一指示信息,所述第一指示信息指示允许所述终端设备发送所述第一信息的次数,和/或,所述第一指示信息指示允许所述终端设备在未接收到针对所述第一信息的响应的情况下选择所述N个辅基站中除所述第一辅基站之外的其他辅基站发送所述第一信息,和/或,所述第一指示信息指示第一时长,在第一时长内允许所述终端设备发送所述第一信息。
  58. 如权利要求53-57任一项所述的装置,其特征在于,所述收发单元,用于从第二辅基站接收所述第一信息,向所述第二辅基站发送针对所述第一信息的响应。
  59. 如权利要求53-58任一项所述的装置,其特征在于,所述第一信息包括主小区组失败消息。
  60. 如权利要求53-59任一项所述的装置,其特征在于,所述收发单元,用于向所述终端设备发送配置信息,所述配置信息用于为所述终端设备配置主小区组快速恢复。
  61. 一种通信装置,其特征在于,所述通信装置为主基站设备或用于实现所述主基站的功能的装置;该装置包括:收发单元和处理单元;
    所述处理单元调用所述收发单元执行:向终端设备发送指示信息,所述指示信息指示所述终端设备在检测到所述主基站的链路问题的情况下从所述终端设备被配置的N个辅基站中选择多个辅基站,N为正整数;从所述多个辅基站接收第一信息,所述第一信息用于指示所述终端设备检测到所述主基站的链路问题;向所述多个辅基站中的至少一个辅基站发送针对所述第一信息的响应。
  62. 如权利要求61所述的装置,其特征在于,所述指示信息还指示所述终端设备选择辅基站的数量。
  63. 如权利要求61或62所述的装置,其特征在于,所述第一信息包括主小区组失败消息。
  64. 如权利要求61-63任一项所述的装置,其特征在于,所述收发单元,用于向所述终端设备发送配置信息,所述配置信息用于为所述终端设备配置主小区组快速恢复。
  65. 一种通信装置,其特征在于,所述通信装置为终端设备或用于实现所述终端设备的功能的装置;该装置包括:收发单元和处理单元;
    所述收发单元,用于从主基站接收指示信息,所述指示信息指示在检测到所述主基站的链路问题的情况下从被配置的N个辅基站中选择多个辅基站,N≥2;
    所述处理单元,用于在检测到所述主基站的链路问题的情况下,根据所述指示信息从所述N个辅基站中确定所述多个辅基站;
    所述收发单元,用于通过所述多个辅基站分别向所述主基站发送第一信息,所述第一信息用于指示检测到所述主基站的链路问题。
  66. 如权利要求65所述的装置,其特征在于,所述指示信息还指示选择辅基站的数量。
  67. 如权利要求65或66所述的装置,其特征在于,所述终端设备在辅基站A的状态处于去激活状态,所述辅基站A为所述多个辅基站中的任意一个基站;
    所述处理单元调用所述收发单元执行:触发所述终端设备在所述辅基站A的状态从所 述去激活状态切换为激活状态。
  68. 如权利要求65-67任一项所述的装置,其特征在于,所述处理单元,用于在检测到所述主基站的链路问题之后,启动第三定时器;在接收到第一响应时,停止所述第三定时器,所述第一响应为首次接收到的针对所述第一信息的响应;根据所述第一响应,恢复与所述主基站的通信。
  69. 如权利要求68所述的装置,其特征在于,所述处理单元,用于丢弃在所述第一响应之后接收到的针对所述第一信息的响应。
  70. 如权利要求61-69任一项所述的装置,其特征在于,所述处理单元,用于根据以下一项或多项确定所述主基站存在链路问题:
    主小区组无线链路失败,主小区组切换失败,无线资源控制重配失败和所述终端设备的无线资源控制层接收到信令无线承载SRB1或SRB2完整性校验失败的指示信息。
  71. 如权利要求61-70任一项所述的装置,其特征在于,所述第一信息包括主小区组失败消息。
  72. 如权利要求61-71任一项所述的装置,其特征在于,所述收发单元,用于从所述主基站接收配置信息,所述配置信息用于为所述终端设备配置主小区组快速恢复。
  73. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至36中任一项所述的方法。
  74. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至36中任一项所述的方法。
PCT/CN2022/099583 2021-07-01 2022-06-17 一种多连接下的通信方法及装置 WO2023273926A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22831744.2A EP4344289A1 (en) 2021-07-01 2022-06-17 Communication method and apparatus under multi-connectivity
US18/400,712 US20240236719A9 (en) 2021-07-01 2023-12-29 Multi-connectivity communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110744528.X 2021-07-01
CN202110744528.XA CN115567963A (zh) 2021-07-01 2021-07-01 一种多连接下的通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/400,712 Continuation US20240236719A9 (en) 2021-07-01 2023-12-29 Multi-connectivity communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2023273926A1 true WO2023273926A1 (zh) 2023-01-05

Family

ID=84690743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099583 WO2023273926A1 (zh) 2021-07-01 2022-06-17 一种多连接下的通信方法及装置

Country Status (4)

Country Link
US (1) US20240236719A9 (zh)
EP (1) EP4344289A1 (zh)
CN (1) CN115567963A (zh)
WO (1) WO2023273926A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108924866A (zh) * 2017-03-24 2018-11-30 夏普株式会社 基站、用户设备和相关方法
US20200045764A1 (en) * 2017-04-01 2020-02-06 Lg Electronics Inc. Method for performing mcg recovery in dual connectivity in wireless communication system and a device therefor
CN110798903A (zh) * 2018-08-01 2020-02-14 维沃移动通信有限公司 重配方法及终端
CN111050419A (zh) * 2018-10-11 2020-04-21 维沃移动通信有限公司 一种无线链路恢复方法、终端及辅基站
WO2020165624A1 (en) * 2019-02-11 2020-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Master cell group failure handling by a secondary node
WO2021062839A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 通信方法和通信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108924866A (zh) * 2017-03-24 2018-11-30 夏普株式会社 基站、用户设备和相关方法
US20200045764A1 (en) * 2017-04-01 2020-02-06 Lg Electronics Inc. Method for performing mcg recovery in dual connectivity in wireless communication system and a device therefor
CN110798903A (zh) * 2018-08-01 2020-02-14 维沃移动通信有限公司 重配方法及终端
CN111050419A (zh) * 2018-10-11 2020-04-21 维沃移动通信有限公司 一种无线链路恢复方法、终端及辅基站
WO2020165624A1 (en) * 2019-02-11 2020-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Master cell group failure handling by a secondary node
WO2021062839A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 通信方法和通信装置

Also Published As

Publication number Publication date
US20240137786A1 (en) 2024-04-25
CN115567963A (zh) 2023-01-03
US20240236719A9 (en) 2024-07-11
EP4344289A1 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
US11917463B2 (en) Cell handover with minimum mobility interruption
EP3837908B1 (en) Reporting master node radio link failure
EP3611995B1 (en) Communication method, communication device and communication system therefor
CN110169192B (zh) 无线电网络节点、无线设备、以及其中执行的用于处理无线通信网络中的连接的方法
CN111602462A (zh) 用户设备、节点以及在其中执行的方法
WO2020151653A1 (zh) 由用户设备执行的切换方法以及用户设备
CN113678568B (zh) 管理mcg快速恢复
JP2020511842A (ja) ネットワーク接続の復旧方法、装置及び通信システム
CN111149419A (zh) 用于rrc恢复/暂停时的nr pdcp保留的方法和设备
WO2020088305A1 (zh) 一种通信方法、通信装置及系统
KR20150055535A (ko) 단말이 복수의 기지국에 이중으로 연결될 수 있는 네트워크 환경에서의 통신 방법 및 장치
US20210377758A1 (en) Communication control method
TW201935993A (zh) 與基地台處理一雙連結的裝置及方法
US20220007259A1 (en) Communication control method
US20230199578A1 (en) Managing configurations
WO2022063512A1 (en) Reconfiguration procedure in multi connectivity communication
US20230354136A1 (en) Integrated access and backhaul communication method and apparatus
WO2017219959A1 (zh) 一种语音调度方法及装置
US20230328607A1 (en) Communication control method
WO2021062677A1 (zh) 通信方法和装置
WO2023273926A1 (zh) 一种多连接下的通信方法及装置
WO2022120744A1 (zh) 数据传输处理方法及相关装置
WO2023160706A1 (zh) 一种通信方法及装置
WO2023010298A1 (zh) 信息发送方法,信息处理方法以及装置
JP7426383B2 (ja) 通信制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831744

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022831744

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022831744

Country of ref document: EP

Effective date: 20231222

NENP Non-entry into the national phase

Ref country code: DE