WO2023010298A1 - 信息发送方法,信息处理方法以及装置 - Google Patents

信息发送方法,信息处理方法以及装置 Download PDF

Info

Publication number
WO2023010298A1
WO2023010298A1 PCT/CN2021/110406 CN2021110406W WO2023010298A1 WO 2023010298 A1 WO2023010298 A1 WO 2023010298A1 CN 2021110406 W CN2021110406 W CN 2021110406W WO 2023010298 A1 WO2023010298 A1 WO 2023010298A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
signaling
information
cell group
iab
Prior art date
Application number
PCT/CN2021/110406
Other languages
English (en)
French (fr)
Inventor
易粟
贾美艺
李国荣
相川慎一郎
Original Assignee
富士通株式会社
易粟
贾美艺
李国荣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 易粟, 贾美艺, 李国荣 filed Critical 富士通株式会社
Priority to PCT/CN2021/110406 priority Critical patent/WO2023010298A1/zh
Priority to CN202180101109.2A priority patent/CN117751678A/zh
Publication of WO2023010298A1 publication Critical patent/WO2023010298A1/zh
Priority to US18/419,705 priority patent/US20240163951A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the embodiment of the present application relates to the technical field of communications.
  • IAB Integrated access and backhaul
  • NG-RAN next generation radio access network
  • IAB-node This relay node
  • NR New Radio
  • the IAB node can connect to an IAB host (IAB-donor) through one or more hops. These multi-hop connections form a directed acyclic graph (DAG, Directed Acyclic Graph) topology with the IAB host as the root node.
  • DAG directed acyclic graph
  • the IAB host is responsible for performing centralized resource management, topology management, and routing management in the IAB network topology.
  • IAB-node supports the function of gNB-DU (distributed unit, distributed unit). IAB-node DU is also called IAB-DU. IAB-DU can serve common terminal equipment (user equipment, UE) and IAB sub-nodes. In addition to the gNB-DU function, IAB-node also supports some UE functions, which is called IAB-MT (mobile termination). IAB-MT can support UE physical layer, access stratum (AS) layer, radio resource control ( radio resource control (RRC) layer and non-access (non-access stratum, NAS) layer functions, can be connected to the IAB parent node. The termination node on the network side is called IAB-donor, which is accessed by the IAB-MT or UE through the network through the backhaul or access link.
  • IAB-donor The termination node on the network side is called IAB-donor, which is accessed by the IAB-MT or UE through the network through the backhaul or access link.
  • IAB-donor is further divided into IAB-donor-CU (central unit) and IAB-donor-DU.
  • IAB-DU and IAB-donor-CU are connected through F1 interface.
  • the gNB and the IAB-donor-CU are connected through the Xn interface.
  • eNB evolved NodeB
  • en-gNB can be IAB-donor
  • FIG. 1 is a schematic diagram of the IAB topology.
  • the 5G multi-hop IAB network is deployed, and multiple UEs connect to the IAB-donor through the multi-hop IAB node, and finally access the 5G network.
  • the IAB-node 100 includes the IAB-MT functional unit 101 and the IAB-DU functional unit 102, and the last neighbor node of the IAB-MT is called the IAB parent node (parent node), as shown in Figure 1
  • the parent nodes 301, 302 shown, the IAB-MT functional unit 101 and the parent nodes 301, 302 can communicate through the air interface (Uu), and the next hop neighbor node of the IAB-DU is called an IAB child node (child node ), the sub-nodes 201, 202, and 203 shown in FIG.
  • IAB-donor (not shown) performs centralized resource, topology and routing management for the IAB topology 10 .
  • BAP Backhaul Adaptation Protocol
  • the BAP sublayer is located under the network protocol IP layer above the RLC sublayer, and supports functions such as data packet destination node and path selection, data packet routing and forwarding, bearer mapping, flow control feedback, and return link failure notification.
  • FIG. 2 shows a simple IAB network deployment. Multiple UEs connect to the IAB-donor through multi-hop IAB nodes, and finally access the 5G network, which includes four IAB nodes and one IAB host.
  • RLF radio link failure
  • BH backhaul
  • the IAB node 3 When the IAB node 3 detects that the link between the IAB-donor has a radio link failure (RLF) and fails to recover the RLF, the IAB node 3 (IAB node3) will send a BH RLF indication (BH RLF indication) to the child Node IAB node 2 (IAB node 2). This BH RLF indication is sent via the BAP Control Protocol Data Unit (Control PDU). If no RRC reconstruction is initiated, the IAB node 2 will switch the uplink BAP routing path from path 1 (path id#1) to path 2 (path id#2).
  • RLF radio link failure
  • the inventors have found that for the uplink forwarding data of the IAB node (for example, the data of F1-U and F1-C), the uplink backhaul link can be switched by local rerouting (local re-routing), thereby avoiding Develop the parent node that sent the BH RLF notification.
  • Local rerouting happens at the BAP sublayer of the IAB node.
  • IAB-MT's own control plane data such as RRC (radio resource control, radio resource control), NAS (non-access stratum, non-access stratum) data, they pass through the access link (access link), and they are in This IAB node does not pass through the BAP sublayer, so local rerouting does not apply to these data.
  • the IAB-MT can perform the fast MCG recovery (fast MCG recovery) process through the secondary cell group (secondary cell group, SCG) to continue the RRC connection without the need for the RRC reconstruction process .
  • MCG master cell group
  • SRB split signaling radio bearer
  • the inventors found that when the MCG wireless link fails at the IAB node, if the IAB-MT is not configured to split SRB1 or SRB3, the fast MCG recovery process cannot be performed, and only RRC reconstruction can be performed.
  • the reconstruction process is time-consuming and may cause data service interruption.
  • the behavior of the control plane is unspecified when an IAB node receives a new type of BH RLF. If the IAB-MT still sends the uplink RRC message according to the original method, the RRC uplink message may fail to be sent because the wireless link of the parent node fails.
  • embodiments of the present application provide an information sending method, an information processing method, and an apparatus.
  • an information sending device which is applied to a first node, where the device includes:
  • the first processing unit is connected to a plurality of parent nodes, and a radio link failure occurs in a master cell group (MCG);
  • MCG master cell group
  • a first sending unit configured to send failure information to an F1-terminating (F1-terminating) node of the first node through a first F1 application protocol (F1AP) signaling.
  • F1AP F1 application protocol
  • an information processing device applied to a first node wherein the device includes:
  • a first receiving unit which receives the second type of backhaul wireless link failure indication information sent by the parent node corresponding to the first cell group;
  • the second processing unit, the first signaling radio bearer of the first node is configured as a split signaling radio bearer, and the main path of the packet data convergence protocol PDCP entity of the first signaling radio bearer points to the first In the case of a cell group, the primary path of the signaling radio bearer is set to point to a second cell group different from the first cell group.
  • an information sending device which is applied to a first node, where the device includes:
  • an information sending device which is applied to a first node, where the device includes:
  • a third receiving unit which receives the second type of backhaul wireless link failure indication information sent by the parent node corresponding to the first cell group;
  • the second sending unit sends the first RRC message to the network device connected to the second cell group on the signaling radio bearer corresponding to the second cell group or sends the first RRC message to the F1 termination node through the first F1AP signaling.
  • One of the beneficial effects of the embodiments of the present application is: when the MCG wireless link fails, the failure information is transmitted through the F1-C signaling, thereby realizing the rapid recovery of the MCG, avoiding connection interruption, and reducing data loss, thereby realizing network Performance optimization.
  • the RRC message carried by the SRB that satisfies the conditions can be migrated from the first cell group link to the second cell group link, so as to realize the non-interrupted transmission of the control plane and ensure that the IAB node is in the Normal communication during the restoration of the link of the parent node of the first cell group.
  • One of the beneficial effects of the embodiment of the present application is: after the node receives the BH RLF indication of the detected radio link failure from the parent node corresponding to a certain cell group, it transmits the content of the SRB through another cell group, thereby , which can support the path reselection of the control plane when the parent node fails, avoiding connection interruption and reducing data loss, thereby achieving network performance optimization.
  • Fig. 1 is a schematic diagram of the IAB topology of the embodiment of the present application.
  • Fig. 2 is the IAB network deployment diagram of the embodiment of the present application.
  • FIG. 3 is a schematic diagram of an information sending method according to an embodiment of the present application.
  • 4A to 4D are schematic diagrams of a dual-connection network architecture according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an information processing method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an information processing method according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an information sending method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an information sending method according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an RRC transfer process according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an information sending method according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of the RRC transfer process of the embodiment of the present application.
  • 12A to 12D are schematic diagrams of a dual-connection network architecture according to an embodiment of the present application.
  • FIG. 13 is another schematic diagram of the information processing method of the embodiment of the present application.
  • FIG. 14 is another schematic diagram of the information sending method of the embodiment of the present application.
  • FIG. 15 is a schematic diagram of an information sending device according to an embodiment of the present application.
  • FIG. 16 is a schematic diagram of an information processing device according to an embodiment of the present application.
  • FIG. 17 is another schematic diagram of an information sending device according to an embodiment of the present application.
  • FIG. 18 is another schematic diagram of a data sending device according to an embodiment of the present application.
  • FIG. 19 is another schematic diagram of an information processing device according to an embodiment of the present application.
  • FIG. 20 is another schematic diagram of an information processing device according to an embodiment of the present application.
  • FIG. 21 is another schematic diagram of an information processing device according to an embodiment of the present application.
  • FIG. 22 is another schematic diagram of an information processing device according to an embodiment of the present application.
  • FIG. 23 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • FIG. 24 is a schematic diagram of the IAB node protocol stack of the embodiment of the present application.
  • Fig. 25 is another schematic diagram of the information processing method of the embodiment of the present application.
  • Fig. 26 is a schematic diagram of a network device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or time order of these elements, and these elements should not be referred to by these terms restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • the terms “comprising”, “including”, “having” and the like refer to the presence of stated features, elements, elements or components, but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term “communication network” or “wireless communication network” may refer to a network conforming to any of the following communication standards, such as Long Term Evolution (LTE, Long Term Evolution), Enhanced Long Term Evolution (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-A Long Term Evolution-A
  • LTE- Advanced Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to any stage of communication protocols, such as but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and 5G , New Radio (NR, New Radio), etc., and/or other communication protocols that are currently known or will be developed in the future.
  • Network device refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • Network equipment may include but not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller) and so on.
  • the base station may include but not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), and 5G base station (gNB), etc., and may also include Remote Radio Head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay (relay) or low-power node (such as femeto, pico, etc.), IAB (Integrated Access and Backhaul) node or IAB-DU or IAB-donor.
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low-power node such as femeto, pico, etc.
  • IAB Integrated Access and Backhaul
  • base station may include some or all of their functions, each base station may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a base station and/or its coverage area depending on the context in which the term is used.
  • the terms “cell” and “base station” are interchangeable, and the terms “sign
  • the term "User Equipment” (UE, User Equipment) or “terminal equipment” (TE, Terminal Equipment or Terminal Device), for example, refers to a device that accesses a communication network through a network device and receives network services.
  • a terminal device may be fixed or mobile, and may also be called a mobile station (MS, Mobile Station), a terminal, a subscriber station (SS, Subscriber Station), an access terminal (AT, Access Terminal), an IAB-MT, a station (station), and so on.
  • the terminal equipment may include but not limited to the following equipment: Cellular Phone (Cellular Phone), Personal Digital Assistant (PDA, Personal Digital Assistant), wireless modem, wireless communication equipment, handheld equipment, machine-type communication equipment, laptop computer, Cordless phones, smartphones, smart watches, digital cameras, and more.
  • Cellular Phone Cellular Phone
  • PDA Personal Digital Assistant
  • wireless modem wireless communication equipment
  • handheld equipment machine-type communication equipment
  • laptop computer Cordless phones
  • Cordless phones smartphones, smart watches, digital cameras, and more.
  • the terminal device can also be a machine or device for monitoring or measurement, such as but not limited to: a machine type communication (MTC, Machine Type Communication) terminal, Vehicle communication terminal, device to device (D2D, Device to Device) terminal, machine to machine (M2M, Machine to Machine) terminal, etc.
  • MTC Machine Type Communication
  • Vehicle communication terminal device to device (D2D, Device to Device) terminal
  • M2M Machine to Machine
  • network side refers to one side of the network, which may be a certain base station, or may include one or more network devices as above.
  • user side or “terminal side” or “terminal device side” refers to a side of a user or a terminal, which may be a certain UE, or may include one or more terminal devices as above.
  • device may refer to network devices or terminal devices.
  • FIG 24 is an example diagram of the IAB node control plane protocol stack in the embodiment of the present application.
  • the IAB-MT can support UE physical layer, medium access control layer (MAC), radio link layer control (RLC) , packet data convergence protocol (PDCP), radio resource control (radio resource control, RRC) layer and non-access (non-access stratum, NAS) layer functions, can be connected to the IAB parent node, these RRC and NAS are controlled by the IAB-MT
  • the signaling radio bearer (Signaling radio bearer, SRB) established to the IAB-donor-CU is carried. These SRBs are transmitted over the Uu interface between the IAB-MT and its parent node.
  • the following control plane data of the IAB node refers to the signaling carried by the IAB-MT to the SRB established by the IAB-donor, such as RRC, NAS, etc.
  • the embodiment of the present application provides a set of mechanisms for realizing the reselection of the IAB node control plane link, so as to avoid the loss of control plane data and maintain the normal connection of the network.
  • the following first describes how to implement fast MCG recovery when the MCG radio link failure of the IAB node occurs in conjunction with the embodiment of the first aspect, if no split SRB1 or SRB3 is configured.
  • FIG. 3 is a schematic diagram of the method for sending information of the IAB of the embodiment of the present application. As shown in FIG. 3 , the method includes:
  • the first node is connected to multiple parent nodes, and a wireless link failure occurs in the master cell group (MCG);
  • MCG master cell group
  • the first node sends failure information to the F1 termination node of the first node through the first F1AP signaling.
  • the first node is connected to multiple parent nodes.
  • the first node is a dual-connection node.
  • the first node is an IAB node, it can be dual-connection to the same host node or different host nodes.
  • the first node may also be another dual-connectivity node in the communication network, which is not limited in this embodiment of the present application.
  • Figures 4A to 4D show schematic diagrams of four dual-connection network architectures.
  • Figures 4A to 4D show the DU (IAB-DU3 in the accompanying drawings) of the first node to the CU (donor-DU3) of the IAB host node in Figures 4A to 4D, respectively.
  • F1-C F1 control plane
  • MN master node
  • IAB -C The F1 of DU3 is terminated (terminated) to the secondary node (secondary node, SN), which is NR-NR dual connection (NR-DC) in Figures 4A to 4C, and E-UTRA-NR dual connection (EN) in Figure 4D.
  • NR-DC NR-NR dual connection
  • EN E-UTRA-NR dual connection
  • the first node in Figure 4A, the first node is dual-connected to the same donor node donor-CU, and in Figures 4B and 4C, the first node is dual-connected to two different donor nodes donor-CU1 and donor-CU2.
  • the first node can also support more than two connections, which will not be described one by one here.
  • the dual connectivity scenario includes the primary cell group MCG and the secondary cell group SCG
  • the radio link failure of the first node in the primary cell group MCG includes that the first node itself detects a radio link failure RLF or receives
  • RLF radio link failure indication information
  • the parent node will send the return wireless link failure indication information (for example, type-4BH RLF indication, transmitted by BAP control PDU).
  • the signaling radio bearers SRB include SRB0, SRB1, SRB2, and SRB3, wherein SRB0, SRB1, and SRB2 are directed to the MN, and SRB3 is directed to the SN.
  • a signaling radio bearer is a radio bearer used to transmit RRC and NAS messages.
  • SRB0 transmits RRC messages using a common control channel (common control channel, CCCH) logical channel.
  • SRB1 transmits RRC messages (possibly including piggybacked NAS messages) and NAS messages before SRB2 is established, using a dedicated control channel (dedicated control channel, DCCH) logical channel.
  • SRB2 transmits the NAS message and the RRC message including the log measurement message, using the DCCH logical channel.
  • SRB2 has a lower priority than SRB1 and can be configured by the network after access stratum (AS) security activation.
  • SRB3 is used for specific RRC messages when UE is in (NG)EN-DC or NR-DC, using DCCH logical channel.
  • All MR-DC (multi-radio dual connectivity) options of SRB1 and SRB2 support split signaling radio bearers.
  • the SRB between the MN and the UE and the RLC (radio link control) bearer in both the MCG and the SCG is called split signaling radio bearer (split SRB), also called signaling radio bearer splitting.
  • the T316 timer when the MCG radio link fails at the first node, the T316 timer can be started.
  • the IAB-MT is configured with a split signaling radio bearer (SRB) )1 or signaling radio bearer 3 (SRB3), RRC messages related to fast MCG link recovery can be sent through split SRB1 or SRB3, such as MCG failure information.
  • SRB split signaling radio bearer
  • SRB3 signaling radio bearer 3
  • the MT of the first node (such as IAB- When MT) is not configured to split SRB1 or SRB3, when the DU (such as IAB-DU) and IAB-donor-CU of the first node establish an F1 interface control plane (F1-C) connection in the direction of the SCG link , in 302, the DU (such as IAB-DU) of the first node may send an RRC message related to fast MCG link recovery through the first F1AP signaling, such as MCG failure information, where the first F1AP signaling is located The F1-C connection is via the SCG link.
  • the DU such as IAB-DU
  • F1-C F1 interface control plane
  • the F1 interface is a connection interface between gNB-DU (including IAB-DU) and gNB-CU (including IAB-donor-CU).
  • the F1-C application layer signaling protocol is called F1 application protocol (F1application protocol, F1AP).
  • F1 application protocol F1application protocol, F1AP.
  • MCG Failure Information MCG Failure Information
  • the first F1AP signaling may reuse existing F1AP signaling, or may use newly created F1AP signaling.
  • the first F1AP signaling can reuse the UL RRC MESSAGE TRANSFER message (hereinafter referred to as the first signaling) in the uplink RRC message transfer (UL RRC message transfer) process in the existing F1AP signaling.
  • -DU is sent to gNB-CU, the message may contain an RRC container information element (RRC-container IE), and the RRC-container is used to carry the failure information MCGFailureInformation, that is, the RRC-container IE is used to carry and encapsulate the RRC message ( That is, the packet data convergence protocol (PDCP) protocol data unit (protocol data unit, PDU) of UL-DCCH-Message).
  • PDCP packet data convergence protocol
  • PDU protocol data unit of UL-DCCH-Message
  • the first signaling is UE-associated F1AP signaling, and the first signaling includes UE-related identifiers, such as gNB-CU UE F1AP ID and gNB-DU UE F1AP ID.
  • UE-related identifiers such as gNB-CU UE F1AP ID and gNB-DU UE F1AP ID.
  • the first F1AP signaling may be a new F1AP signaling, for example, a new second signaling, for example, the name of the message is called UL RRC message transfer IAB, and the message may contain an RRC container information element (RRC-container IE ), use the RRC-container to carry the failure information MCGFailureInformation, that is, use the RRC-container IE to carry the PDCP PDU encapsulating the failure information.
  • RRC-container IE RRC container information element
  • This message will correspond to a new message type.
  • the message type is used to uniquely identify the message, including a process code and the message type in the process, that is, each message name corresponds to a different message type.
  • the second signaling is non-UE-associated F1AP signaling, that is, the second signaling does not need to include UE-related identifiers, and the second signaling may also include signaling radio bearer identifiers (SRB IDs), transaction identifiers ( transaction ID) at least one of the information.
  • SRB IDs signaling radio bearer identifiers
  • transaction ID transaction identifiers
  • the first F1AP signaling may be a new F1AP signaling, for example, a new third signaling, for example, the message name of the third signaling is called UL RRC message transfer MRDC, and the message may contain an RRC container information element (RRC-container IE), use the RRC-container to carry the failure information MCGFailureInformation, that is, use the RRC-container IE to carry the PDCP PDU that encapsulates the failure information.
  • the third signaling is the same as the RRC-container bearer information in the first signaling.
  • the third signaling is UE-associated F1AP signaling, for details refer to the first signaling.
  • the third signaling is also used to indicate that the F1 termination node needs to further forward the information carried by the RRC-container, for example, to the master node.
  • the message type of the third signaling is different from the message type of the first signaling. That is to say, the contents of the third signaling and the first signaling are the same except for the message type.
  • the message type is used to distinguish whether the F1 terminal node needs to further forward the information carried by the RRC-container, or to distinguish whether the RRC container information element is sent to the F1 terminal node or needs to be forwarded.
  • the first F1AP signaling may be a new F1AP signaling, for example, a new fourth signaling, for example, the message name of the fourth signaling is called UL RRC message transfer IAB MRDC, and the message may include an RRC container information Element (RRC-container IE), use the RRC-container to carry the failure information MCGFailureInformation, that is, use the RRC-container IE to carry the PDCP PDU that encapsulates the failure information.
  • RRC-container IE RRC container information Element
  • the fourth signaling is the same as the information carried by the RRC-container in the second signaling.
  • the fourth signaling is non-UE-associated F1AP signaling, for details refer to the second signaling.
  • the fourth signaling is also used to indicate that the F1 termination node needs to further forward the information carried by the RRC-container, for example, to the master node.
  • the message type of the fourth signaling is different from the message type of the second signaling. That is to say, the message content of the fourth signaling and the second signaling are the same except for the message type.
  • the message type is used to distinguish whether the F1 terminal node needs to further forward the information carried by the RRC-container, or to distinguish whether the RRC container information element is sent to the F1 terminal node or needs to be forwarded.
  • the F1 termination node may parse or forward the failure information carried by the first F1AP signaling after receiving it. For a specific implementation, refer to FIG. 5 described later, which will not be repeated here.
  • the F1 termination node can determine whether it is the message destination node according to the received first F1AP signaling, and then determine whether the corresponding action is forwarding or parsing, wherein, when it is not a message destination node (such as a secondary node), forwarding is performed, and When it is the destination node (such as the master node), analyze it.
  • the first indication information may be added to the first signaling or the second signaling, and the first indication information is used to indicate whether the F1 termination node is a message destination node; or, the F1 termination node may also Whether it is the destination node of the message is determined by whether the first F1AP signaling is the third signaling or the fourth signaling, which will be described separately below.
  • the first signaling or the second signaling may include the first indication information, for example, using an information element, such as Transfer MRDC, to indicate the first indication information, the value of the information element is true or false, and in F1
  • an information element such as Transfer MRDC
  • the value of this information element is set to true; when the F1 terminal node is a primary node, the value of this information element is set to false, and vice versa; or, this information element can also be represented by a bit value
  • the F1 terminal node is a secondary node, the value of this information element is set to 1, and when the F1 terminal node is a primary node, the value of this information element is set to 0, and vice versa
  • this embodiment of the present application is not limited by this
  • the F1 termination node includes the first indication information in the first signaling or the second signaling, and the first indication information is false, it determines that it is the destination node, and can directly resolve it.
  • the F1 terminal node can also determine whether it is the destination node of the message by whether the first F1AP signaling is the third signaling.
  • the first signaling UL RRC MESSAGE TRANSFER message bearer fails Information
  • the F1 terminal node is a secondary node, use the third signaling to carry the failure information, that is to say, when the F1 terminal node receives the first signaling, it determines that it is the destination node and can directly analyze it. In the case of three signaling, it is determined that it is not the destination node, and needs to forward the failure information to the master node.
  • the F1 terminal node can also determine whether it is the message destination node by whether the first F1AP signaling is the fourth signaling.
  • the second signaling UL RRC MESSAGE TRANSFER message bearer fails Information
  • the F1 terminal node is a secondary node, use the fourth signaling to carry failure information, that is to say, when the F1 terminal node receives the second signaling, it determines that it is the destination node, and can directly analyze it. In four-signaling, it is determined that it is not the destination node, and needs to forward the failure information to the master node.
  • the F1 termination node may also send or forward the failure recovery information to the first node by carrying the failure recovery information through the second F1AP signaling. Therefore, the method may also include (not shown):
  • the first node receives the failure recovery information sent or forwarded by the F1 terminating node, and the failure recovery information is carried by the second F1AP signaling.
  • the failure recovery information is MCG failure recovery information, including at least one of a handover command, an RRC reconfiguration message, and an RRC connection release message.
  • MCG failure recovery information including at least one of a handover command, an RRC reconfiguration message, and an RRC connection release message.
  • the DU of the first node when the IAB-DU and the IAB-donor-CU of the first node establish an F1 interface control plane (F1-C) connection in the direction of the SCG link, the DU of the first node (for example, the IAB -DU) can receive the MCG failure recovery information through the second F1AP signaling, the F1-C connection where the second F1AP signaling is located is the same as the F1-C connection where the first F1AP signaling is located, both via the SCG link.
  • F1-C F1 interface control plane
  • the second F1AP signaling may reuse existing F1AP signaling, or may use newly created F1AP signaling.
  • the second F1AP signaling can reuse the DL RRC MESSAGE TRANSFER message (fifth signaling) in the downlink RRC message transfer (DL RRC message transfer) process in the existing F1AP signaling, and the message can include an RRC container
  • the information element uses the RRC-container to carry the failure recovery information, that is, uses the RRC-container IE to carry the PDCP PDU that encapsulates the RRC message (that is, the DL-DCCH-Message).
  • the second F1AP signaling is UE-associated F1AP signaling
  • the second F1AP signaling includes a UE-related identifier, which is similar to the UE-related identifier in the first F1AP signaling, and will not be repeated here.
  • the second F1AP signaling may be a new F1AP signaling, such as a new DL RRC message transfer IAB signaling (sixth signaling), which may include an RRC container information element (RRC-container IE), Use the RRC-container to carry the failure recovery information, that is, use the RRC-container IE to carry the PDCP PDU encapsulating the failure recovery information.
  • the second F1AP signaling is non-UE-associated F1AP signaling, that is, the second F1AP signaling does not need to include UE-related identifiers.
  • FIG. 5 is a schematic diagram of the information processing method at the F1 terminal node side. As shown in FIG. 5, the method includes:
  • the F1 termination node of the first node receives failure information sent by the first node, where the failure information is carried by the first F1AP signaling;
  • the F1 terminal node parses or forwards the failure information.
  • 501 corresponds to 302, and reference may be made to 302 for the implementation of the failure information and the first F1AP signaling, which will not be repeated here.
  • the secondary node forwards the failure information to the primary node. Since the content in the RRC-Container is transparently transmitted, the F1 terminating node is When it is a secondary node, it is not necessary to parse the content in the RRC-Container.
  • the secondary node After receiving the failure message, the secondary node carries the failure information in the RRC-Container in the X2 or Xn interface message and forwards it to the primary node, for example, using the RRC Transfer message.
  • the F1 terminal node is the primary node or the primary node receives the failure information forwarded by the secondary node, it can directly parse out the failure information.
  • the implementation of the first F1AP signaling is as described above, and the F1 termination node can determine whether it is the destination node of the message according to the received first F1AP signaling, and then determine whether the corresponding action is forwarding or Analysis, wherein, when the message is not a destination node (such as a secondary node), forwarding is performed, and when it is a destination node (such as a primary node), analysis is performed.
  • a destination node such as a secondary node
  • forwarding is performed
  • a destination node such as a primary node
  • the first indication information may be added to the first signaling or the second signaling, and the first indication information is used to indicate whether the F1 termination node is a message destination node; or, the F1 termination node may also Whether it is the destination node of the message is determined by whether the first F1AP signaling is the third signaling or the fourth signaling. The details are as described above and will not be repeated here.
  • the master node after receiving the RRC-Container carried in F1-C or forwarded by the secondary node, the master node generates (MCG) failure recovery information after parsing the failure information.
  • the method may also include: (not shown in the figure Show)
  • the F1 termination node sends or forwards failure recovery information to the first node, and the failure recovery information is carried by the second F1AP signaling.
  • the failure recovery information is sent to the DU (such as IAB-DU) of the first node through the same F1-C connection as sending the failure information;
  • the F1 terminating node is For the secondary node, the primary node first sends the failure recovery information to the secondary node through the X2 or Xn interface, and the secondary node forwards it to the DU (such as IAB-DU) of the first node through the same F1-C connection as sending the failure information.
  • the second F1AP signaling is as described above, and will not be repeated here.
  • the method may also include: (not shown)
  • the F1 termination node receives second indication information sent by the third network device, where the second indication information is used to indicate to forward the received RRC message to the first node through the second F1AP signaling.
  • the secondary node may also receive the second indication information sent by the third network device (master node) and the failure recovery information sent by the master node (the second indication information and the The failure recovery information is carried by the same or different X2AP/XnAP signaling), the second indication information is used to instruct the secondary node to forward the received RRC message (failure recovery information) to the first node through the second F1AP signaling, After receiving the second indication information and the failure recovery information, the secondary node sends the failure recovery information to the first node (IAB-DU) through the same F1-C connection as sending the failure information.
  • the failure recovery information is carried by the same or different X2AP/XnAP signaling
  • the second indication information may include configuring the secondary node during the process of modifying and preparing the secondary node for X2AP or XnAP initiated by the primary node, or it may be sent to the secondary node together with the RRC message during the RRC transfer (RRC Transfer) X2AP or XnAP process secondary node.
  • RRC Transfer RRC Transfer
  • the failure information is transmitted through the F1-C signaling, thereby realizing fast recovery of the MCG, avoiding connection interruption, reducing data loss, and realizing network performance optimization.
  • the embodiment of the present application provides an information processing method, which is described from the side of the first node for a scenario where SRB1 or SRB2 is configured as a split SRB.
  • the same content as the embodiment of the first aspect will not be repeated.
  • FIG. 6 is a schematic diagram of the information processing method of this embodiment. As shown in FIG. 6, the method includes:
  • the first node receives the second type of feedback wireless link failure indication information sent by the parent node corresponding to the first cell group;
  • the first signaling radio bearer of the first node is configured as a split signaling radio bearer, and the main path of the PDCP entity of the first signaling radio bearer points to the first cell group, the first node The main path is set to point to a second cell group different from the first cell group.
  • the second type of return wireless link failure indication information is sent by the parent node when a wireless link failure is detected, for example, type 2 return wireless link failure indication information, through BAP control PDU transmission.
  • the first signaling radio bearer is SRB1 or SRB2, but the first SRB is not configured with PDCP duplication (pdcp-Dupplication).
  • PDCP duplication pdcp-Dupplication
  • the first node when the first cell group is the primary cell group and the second cell group is the secondary cell group, the first node (such as IAB-MT) receives the second type BH RLF indication information from the MCG, and in the second
  • the SRB1 of a node eg IAB-MT
  • the SRB1 of a node eg IAB-MT
  • the primaryPath of the PDCP entity of the SRB1 points to the MCG, set the primaryPath to point to the SCG.
  • the first node when the first cell group is the primary cell group and the second cell group is the secondary cell group, the first node (such as IAB-MT) receives the second type BH RLF indication information from the MCG, and in the second
  • the SRB2 of a node eg IAB-MT
  • the SRB2 of a node eg IAB-MT
  • the primaryPath of the PDCP entity of the SRB2 points to the MCG, set the primaryPath to point to the SCG.
  • the RRC and NAS messages carried by the SRB satisfying the above conditions can be migrated from the MCG link to the SCG link, so as to realize the non-interrupted transmission of the control plane, and ensure the IAB node during the restoration of the MCG parent node link. Normal communication.
  • the first IAB node sends an uplink RRC message or NAS message through the second cell group, and the RRC message or NAS message originally needs to be sent through the first cell group.
  • the first node when the first cell group is a secondary cell group and the second cell group is a primary cell group, the first node (such as IAB-MT) receives the second type BH RLF indication information from the SCG, and in the second When the SRB1 of a node (eg IAB-MT) is configured as a split signaling radio bearer, when the primaryPath of the PDCP entity of the SRB1 points to the SCG, set the primaryPath to point to the MCG.
  • the SRB1 of a node eg IAB-MT
  • the first node when the first cell group is a secondary cell group and the second cell group is a primary cell group, the first node (such as IAB-MT) receives the second type BH RLF indication information from the SCG, and in the second When the SRB2 of a node (eg IAB-MT) is configured as a split signaling radio bearer, when the primaryPath of the PDCP entity of the SRB2 points to the SCG, set the primaryPath to point to the MCG.
  • the SRB2 of a node eg IAB-MT
  • the RRC message carried by the SRB meeting the above conditions can be migrated from the SCG link to the MCG link, so as to realize the non-interrupted transmission of the control plane and ensure the normal communication of the IAB node during the restoration of the SCG parent node link .
  • the method further includes: (not shown) the first node receives the third type of return wireless link failure indication information sent by the parent node; the first node sets the main path to point to the First cell group.
  • the third type of return wireless link failure indication information (type 3 return wireless link failure indication information, transmitted by BAP control PDU) is sent by the parent node to the first node when the RLF recovery is successful (eg IAB-MT).
  • the first node such as IAB-MT
  • the first node can migrate the control plane transmission path that was originally migrated to another parent node link back, and also It is to resume using the transmission path before receiving the wireless link failure indication information sent back by the parent node of the second type. For example, restore the primaryPath of the split SRB to the original setting (pointing to the original cell group).
  • the first node when the first cell group is the primary cell group and the second cell group is the secondary cell group, the first node (such as IAB-MT) receives the third type BH RLF indication information, and the SRB1 or SRB2 The primaryPath of the PDCP entity is restored to point to the MCG.
  • the embodiment of the present application provides an information sending method, which can be described from the side of the first node for a scenario where SRB1 or SRB2 is not configured as a split SRB.
  • the same content as the embodiment of the first or second aspect will not be repeated.
  • the embodiments of the third aspect can be implemented in combination with the embodiments of the first and second aspects, or can be implemented separately.
  • FIG. 7 is a schematic diagram of a method for sending information in this embodiment. As shown in FIG. 7, the method includes:
  • the first node receives the second type of feedback wireless link failure indication information sent by the parent node corresponding to the first cell group;
  • the first node sends the first RRC message to the network device connected to the second cell group on the signaling radio bearer corresponding to the second cell group or sends the first RRC message to the F1 termination node through the first F1AP signaling.
  • the second type of backhaul wireless link failure indication information is sent by the parent node when the backhaul wireless link failure is detected, for example, type 2 backhaul wireless link failure indication information, the first
  • type 2 backhaul wireless link failure indication information the first
  • the first RRC message carried by the SRB1 may be migrated in the following manner.
  • the first node migrates the first RRC message on the signaling radio bearer (SRB1) corresponding to the primary cell group to the signaling radio bearer (SRB3) corresponding to the secondary cell group for transmission. That is, when the first node (such as IAB-MT) configures the SRB (ie SRB3) corresponding to the secondary cell group, the first node (such as IAB-MT) sends to the SN on the SRB (ie SRB3) corresponding to the secondary cell group
  • the first RRC message (the RRC message originally carried by SRB1).
  • the first RRC message includes reply information of the RRC message received from the primary cell group.
  • the first RRC message includes, for example, at least one of measurement information MeasurementReport, failure information FailureInformation, assistance information UEAssistanceInformation, and re-establishment completion information RRCReconfigurationComplete.
  • the first RRC message is carried in the second RRC message ULInformationTransferMRDC.
  • the secondary node SN receives the first RRC message sent through SRB3 (the content in the RRC message is transparently transmitted), the secondary node needs to forward the first RRC message to the primary node, for example, through the RRC Transfer process The first RRC message.
  • Fig. 8 is a schematic diagram of the method for sending information on the secondary node side. As shown in Fig. 8, the method for sending information includes:
  • the secondary node receives the first RRC message sent by the first node on SRB3;
  • the secondary node forwards the first RRC message to the primary node.
  • Figure 9 is a schematic diagram of the RRC transfer process, as shown in Figure 9: in 901, the secondary node receives the first RRC message (for example carried by ULInformationTransferMRDC) sent by the first node (for example IAB-MT) on SRB3, in 902 , the secondary node sends the first RRC message to the primary node through the RRC transfer process.
  • the process may also include, 903, the MN initiates the RRC Transfer process , transmit the RRC reply message to the secondary node as an octet string.
  • the secondary node puts the received RRC reply message in a third RRC message, such as a transparent container DLInformationTransferMRDC, and sends it to the IAB-MT.
  • a third RRC message such as a transparent container DLInformationTransferMRDC
  • the RRC transfer process is implemented in the Xn or X2 interface protocol.
  • the first RRC message may be sent to the F1 termination node through the first F1AP signaling.
  • the first RRC message includes reply information of the RRC message received from the primary cell group.
  • the first RRC message includes, for example, at least one of measurement information MeasurementReport, failure information FailureInformation, assistance information UEAssistanceInformation, and re-establishment completion information RRCReconfigurationComplete.
  • the first F1AP signaling may be the first to fourth signaling.
  • the embodiment of the first aspect is different from the embodiment of the first aspect in that the RRC message contained in the RRC container information element is different, and the rest of the implementation is the same, and will not be repeated here.
  • the first RRC message carried by SRB2 may be migrated in the following manner.
  • the first node migrates the first RRC message on the signaling radio bearer (SRB2) corresponding to the primary cell group to the signaling radio bearer (SRB3) corresponding to the secondary cell group for transmission. That is, when the first node (such as IAB-MT) configures the SRB (ie SRB3) corresponding to the secondary cell group, the first node (such as IAB-MT) sends to the SN on the SRB (ie SRB3) corresponding to the secondary cell group
  • the first RRC message (the RRC message originally carried by SRB2).
  • the first RRC message includes NAS information or non-3GPP specific information.
  • the first RRC message includes, for example, UEInformationResponse (when log measurement information is included) information and ULInformationTransfer information.
  • the first RRC message is carried in the second RRC message ULInformationTransferMRDC.
  • the secondary node SN receives the first RRC message sent through SRB3 (the content in the RRC message is transparently transmitted)
  • the secondary node needs to forward the first RRC message to the primary node, for example, through the RRC Transfer process
  • the first RRC message Refer to FIG. 9 for the specific process.
  • the difference from the embodiment of SRB1 lies in the content in the first RRC message.
  • the first node sends the first RRC message to the F1 termination node through the first F1AP signaling on the secondary cell group link.
  • the first RRC message includes NAS information or non-3GPP-specific information, such as UEInformationResponse (when log measurement information is included) information, ULInformationTransfer information, for details, refer to the prior art
  • the first F1AP signaling can be the first to fourth signaling
  • the first RRC message carried by the SRB3 may be migrated in the following manner.
  • the first node migrates the first RRC message on the signaling radio bearer (SRB3) corresponding to the secondary cell group to the signaling radio bearer (SRB1) corresponding to the primary cell group for transmission. That is, the first node (eg, IAB-MT) sends the first RRC message (the RRC message originally carried by SRB3) to the MN on the SRB (ie, SRB1) corresponding to the primary cell group.
  • the first RRC message includes at least one of measurement information MeasurementReport of the secondary cell group, failure information FailureInformation, assistance information UEAssistanceInformation, and other IAB information IABOtherInformation.
  • the first RRC message is carried in the second RRC message ULInformationTransferMRDC.
  • the master node MN after the master node MN receives the first RRC message sent through SRB1 (the content in the RRC message is transparently transmitted), it can also forward the first RRC message to the secondary node, such as carrying the RRC message through the RRC Transfer process. First RRC message.
  • Fig. 10 is a schematic diagram of the method for sending information on the master node side. As shown in Fig. 10, the method for sending information includes:
  • the master node receives the first RRC message sent by the first node on SRB1;
  • the primary node forwards the first RRC message to the secondary node.
  • Figure 11 is a schematic diagram of the RRC transfer process, as shown in Figure 11: in 1101, the master node receives the first RRC message (for example carried by ULInformationTransferMRDC) sent by the first node (for example IAB-MT) on SRB1, in 1102 , the primary node sends the first RRC message to the secondary node through the RRC transfer process.
  • the master node receives the first RRC message (for example carried by ULInformationTransferMRDC) sent by the first node (for example IAB-MT) on SRB1
  • the primary node sends the first RRC message to the secondary node through the RRC transfer process.
  • the process may also include, 1103, the SN initiates the RRC Transfer process , transmit the RRC reply message to the master node as an octet string, 1104, the master node puts the received RRC reply message in a third RRC message, such as a transparent container DLInformationTransferMRDC, and sends it to the IAB-MT.
  • the RRC transfer process is implemented in the Xn or X2 interface protocol.
  • the F1-C connection of the DU of the first node may send the first RRC message to the F1 termination node through the first F1AP signaling via the primary cell group link of the MT.
  • the first RRC message includes at least one of measurement information MeasurementReport of the secondary cell group, failure information FailureInformation, assistance information UEAssistanceInformation, and other IAB information IABOtherInformation, and the first F1AP signaling may be the first to fourth signaling, specifically, Referring to the embodiment of the first aspect, details are not repeated here.
  • the difference from the first aspect is that when the DU (such as IAB-DU) and the IAB-donor-CU of the first node establish an F1 interface control plane (F1-C) connection in the direction of the MCG link,
  • the F1-C channel where the first F1AP signaling is located is through the MCG link. That is to say, the first RRC message of the SN carried by the first F1AP signaling is the RRC message that originally needs to be transmitted through the SRB3.
  • the behavior of the master node and the slave node in the embodiment of the first aspect will be interchanged.
  • Figures 12A to 12D show schematic diagrams of four dual-connection network architectures, and Figures 12A to 12D respectively show the DU (IAB-DU3 in the figure) from the first node to the CU (donor-DU3) of the IAB host node.
  • CU F1 control plane (F1-C) transmission path, as shown in Figure 12B and Figure 12D, F1 of IAB-DU3 is terminated (terminated) to the secondary node (secondary node, SN); as shown in Figure 12C, IAB-DU3
  • the F1 of DU3 is terminated (terminated) to the master node (master node, MN).
  • the F1 termination node donor-CU is both the master node and the slave node.
  • Figures 12A to 12C it is NR-NR dual connection (NR -DC), in Figure 12D is E-UTRA-NR dual connectivity (EN-DC), in Figure 12A, the first node is dual connected to the same donor node donor-CU, in Figures 12B and 12C, the first node Dual connections to two different host nodes, donor-CU1 and donor-CU2.
  • the first RRC message of the IAB-MT is first sent to the master node through the RRC container in the F1-C signaling (the first F1AP signaling).
  • the master node After the master node receives the first RRC message, it passes the RRC The transmission (RRC transfer) process transmits the first RRC message encapsulated in the PDCP PDU to the secondary node, and the first RRC message is transparently transmitted twice.
  • the first RRC message of the IAB-MT can be sent to the secondary node through the RRC container (container) in the F1-C signaling (the first F1AP signaling), and the first RRC message has passed through One pass through.
  • the first node can also support more than two connections, which will not be described one by one here.
  • the network device side can configure which method is used to transmit the first RRC message, and the method can also Includes: (not shown)
  • the first node receives path reselection method configuration information sent by the network device, and the path reselection method configuration information is used to indicate whether the first node sends the first RRC message on the signaling radio bearer corresponding to the second cell group or through the second An F1AP signaling sends the first RRC message.
  • the existing RRCReconfiguration message to configure the UE that is, the IAB-MT
  • the path reselection method configuration information that is, add an IE to the RRCReconfiguration message, such as the path reselection method configuration information pathReselectionMethod
  • the type of IE can be It is an enumeration type, and the value can be ulInformationTransferMRDC (the first node sends the first RRC message on the signaling radio bearer corresponding to the second cell group), f1-c (transmits the first RRC message through the first F1AP signaling) wait.
  • the method further includes: (not shown) receiving, by the first node, the third type of backhaul radio link failure indication information sent by the parent node; on the signaling radio bearer of the first cell group Send the first RRC message.
  • the third type of returned wireless link failure indication information (type 3 returned wireless link failure indication information) is sent by the parent node to the first node (such as IAB- MT).
  • the first node such as IAB-MT
  • the first node receives the third type of return wireless link failure indication information sent by the parent node, it can migrate the control plane transmission path that was originally migrated to another parent node link back, and also It is to resume using the transmission path before receiving the wireless link failure indication information sent back by the parent node of the second type.
  • the first RRC message is transmitted using the original signaling radio bearer of the first cell group, instead of using ULInformationTransferMRDC or the first F1AP signaling to carry the first RRC message.
  • the first node when the first cell group is the primary cell group and the second cell group is the secondary cell group, the first node (for example, IAB-MT) receives the third type BH RLF indication information, and resumes in SRB1 or SRB2 to send the first RRC message.
  • the first node when the first cell group is a secondary cell group and the second cell group is a primary cell group, the first node (such as IAB-MT) receives the third type BH RLF indication information, and resumes sending on SRB3 First RRC message.
  • the node after receiving the BH RLF indication of the detected radio link failure from the parent node corresponding to a certain cell group, the node transmits the content of the SRB through another cell group, thus, it can support The path reselection of the control plane when a link failure occurs on a node avoids connection interruption, reduces data loss, and optimizes network performance.
  • the embodiment of the present application provides an information processing method, which is described from the side of the first node.
  • the same content as the first, second and third embodiments will not be repeated.
  • the embodiment of the fourth aspect can be implemented in combination with the embodiments of the first, second, and third aspects, or can be implemented separately.
  • Figure 13 is a schematic diagram of the information processing method of this embodiment, as shown in Figure 13, the method includes:
  • the first node receives the third type of returned wireless link failure indication information sent by the parent node corresponding to the first cell group;
  • the first node When the first signaling radio bearer of the first node is configured as a split signaling radio bearer, and the main path of the PDCP entity of the first signaling radio bearer points to the second cell group, the first node The main path is set to point to the first cell group.
  • the third type of returned wireless link failure indication information (type 3 returned wireless link failure indication information) is sent by the parent node to the first node (such as IAB- MT).
  • the first node such as IAB-MT
  • the first node can migrate the control plane transmission path that was originally migrated to another parent node link back, and also It is to resume using the transmission path before receiving the wireless link failure indication information sent back by the parent node of the second type. For example, restore the primaryPath of the split SRB to the original setting (pointing to the original cell group).
  • the first node when the first cell group is the primary cell group and the second cell group is the secondary cell group, the first node (for example, IAB-MT) receives the third type BH RLF indication information, and the SRB1 or SRB2 The primaryPath of the PDCP entity is restored to point to the MCG.
  • Figure 14 is a schematic diagram of the information sending method of this embodiment, as shown in Figure 14, the method includes:
  • the first node receives the third type of returned wireless link failure indication information sent by the parent node corresponding to the first cell group;
  • the first node sends a first RRC message on a signaling radio bearer of the first cell group.
  • the third type of return radio link failure indication information (type 3 return radio link failure indication information) is sent by the parent node to the first node (such as IAB-MT) when the RLF recovery is successful of.
  • the first node such as IAB-MT
  • the first node receives the third type of return wireless link failure indication information sent by the parent node, it can migrate the control plane transmission path that was originally migrated to another parent node link back, and also It is to resume using the transmission path before receiving the wireless link failure indication information sent back by the parent node of the second type.
  • the first RRC message is transmitted using the original signaling radio bearer of the first cell group, without using ULInformationTransferMRDC and the first F1AP signaling to carry the first RRC message.
  • the first node when the first cell group is the primary cell group and the second cell group is the secondary cell group, the first node (for example, IAB-MT) receives the third type BH RLF indication information, and resumes in SRB1 or SRB2 to send the first RRC message.
  • the first node when the first cell group is a secondary cell group and the second cell group is a primary cell group, the first node (such as IAB-MT) receives the third type BH RLF indication information, and resumes sending on SRB3 First RRC message.
  • the embodiment of the present application provides an information processing method, which is described from the side of the first node.
  • the same content as the first, second and third embodiments will not be repeated.
  • the embodiment of the fifth aspect can be implemented in combination with the embodiments of the first, second, and third aspects, or can be implemented separately.
  • Figure 25 is a schematic diagram of the information processing method of this embodiment, as shown in Figure 25, the method includes:
  • the first node receives the second type of return wireless link failure indication information sent by the parent node corresponding to the first cell group;
  • the second type of backhaul wireless link failure indication information is sent by the parent node when the backhaul wireless link failure is detected, for example, type 2 backhaul wireless link failure indication information, the first
  • type 2 backhaul wireless link failure indication information the first
  • the SRB is suspended.
  • the method further includes: (not shown) receiving, by the first node, the third type of return wireless link failure indication information sent by the parent node; Pending SRBs.
  • the third type of returned wireless link failure indication information (type 3 returned wireless link failure indication information) is sent by the parent node to the first node (such as IAB- MT).
  • the first node for example, IAB-MT
  • the suspended SRB may be restored.
  • the first node when the first cell group is the primary cell group, the first node (such as IAB-MT) receives the second type BH RLF indication information, suspends SRB1 and/or SRB2, and after receiving the third type Resume pending SRB1 and/or SRB2 when BH RLF indicates information.
  • the first node when the first cell group is a secondary cell group, the first node (such as IAB-MT) receives the second type BH RLF indication information, suspends SRB3, and receives the third type BH RLF indication information , resume the suspended SRB3.
  • An embodiment of the present application provides an information sending device or an information processing device.
  • the device is applied to a first node, such as an IAB node (for example, not limited to this, it may also be configured on one or some components or components of the IAB node or other types of nodes), the same as the embodiment of the first aspect The content will not be repeated.
  • a first node such as an IAB node (for example, not limited to this, it may also be configured on one or some components or components of the IAB node or other types of nodes), the same as the embodiment of the first aspect The content will not be repeated.
  • FIG. 15 is a schematic diagram of an information sending device according to an embodiment of the present application. As shown in FIG. 15 , the information sending device 1500 includes:
  • the first processing unit 1501 is connected to multiple parent nodes, and a wireless link failure occurs in a master cell group (MCG);
  • MCG master cell group
  • the first sending unit 1502 is configured to send failure information to the F1 termination node of the first node through the first F1AP signaling.
  • the first F1AP signaling is UE-associated F1AP signaling.
  • the first F1AP signaling is non-UE associated F1AP signaling.
  • the first F1AP signaling is used for uplink RRC messaging.
  • the first F1AP signaling further includes at least one of a signaling radio bearer identifier and a transaction identifier.
  • the first node is not configured with split Signaling Radio Bearer 1 (SRB1) and Signaling Radio Bearer 3.
  • SRB1 Signaling Radio Bearer 1
  • SRB3 Signaling Radio Bearer 3.
  • the first node is dual-connected to the same donor node or different donor nodes, the F1-C channel where the first F1AP signaling is located is via a secondary cell group (SCG) link, and the failure Information is MCG failure information.
  • SCG secondary cell group
  • the first F1AP signaling further includes first indication information, where the first indication information is used to indicate whether the F1 terminating node is a message destination node.
  • the first F1AP signaling corresponding to different types of F1 termination nodes is different.
  • the device may also include (not shown, optional):
  • the fourth receiving unit is configured to receive failure recovery information sent or forwarded by the F1 termination node, where the failure recovery information is carried by the second F1AP signaling.
  • the failure recovery information is at least one of a handover command, an RRC reconfiguration message, and an RRC connection release message.
  • FIG. 16 is a schematic diagram of an information processing device according to an embodiment of the present application. As shown in FIG. 16 , the information processing device 1600 includes:
  • the first receiving unit 1601 receives the second type of return wireless link failure indication information sent by the parent node corresponding to the first cell group;
  • the second processing unit 1602 when the first signaling radio bearer of the first node is configured as a split signaling radio bearer, and the main path of the PDCP entity of the first signaling radio bearer points to the first cell group, The primary path of the signaling radio bearer is set to point to a second cell group different from the first cell group.
  • the first signaling radio bearer of the first node is not configured with PDCP repeated transmission.
  • the second type of backhaul wireless link failure indication information is sent by the parent node when detecting a backhaul wireless link failure.
  • the device may also include (not shown, optional):
  • a second receiving unit configured to receive the third type of backhaul wireless link failure indication information sent by the parent node
  • a third processing unit which sets the main path to point to the first cell group.
  • the third type of backhaul radio link failure indication information is sent by the parent node when the backhaul RLF recovery is successful.
  • Fig. 17 is a schematic diagram of an information sending device according to an embodiment of the present application. As shown in Fig. 17, the information sending device 1700 includes:
  • the third receiving unit 1701 is configured to receive the second type of return wireless link failure indication information sent by the parent node corresponding to the first cell group;
  • the second sending unit 1702 which sends the first RRC message to the network equipment connected to the second cell group on the signaling radio bearer corresponding to the second cell group or sends the first RRC message to the F1 termination node through the first F1AP signaling .
  • the first node is dual connected to the same host node or to different host nodes.
  • the first node migrates the first RRC message on the signaling radio bearer corresponding to the first cell group to the signaling radio bearer corresponding to the second cell group for transmission.
  • the signaling radio bearer corresponding to the first cell group is not configured as a split signaling radio bearer.
  • the first RRC message includes at least one of measurement information, failure information, assistance information, and re-establishment completion information; or, includes NAS information or non-3GPP specific information.
  • the first RRC message is carried in the second RRC message.
  • the first F1AP signaling is UE-associated F1AP signaling.
  • the first F1AP signaling is non-UE associated F1AP signaling.
  • the first F1AP signaling is used for uplink RRC messaging.
  • the first F1AP signaling further includes at least one of a signaling radio bearer identifier and a transaction identifier.
  • the first F1AP signaling further includes first indication information, where the first indication information is used to indicate whether the F1 terminating node is a message destination node.
  • the first F1AP signaling corresponding to different types of F1 termination nodes is different.
  • the second type of backhaul wireless link failure indication information is sent by the parent node when detecting a backhaul wireless link failure.
  • the device also includes: (not shown, optional):
  • a fifth receiving unit which receives path reselection method configuration information sent by the network device, where the path reselection method configuration information is used to indicate whether the first node sends the first RRC message on the signaling radio bearer corresponding to the second cell group or Send the first RRC message through the first F1AP signaling.
  • FIG. 18 is a schematic diagram of an information sending device according to an embodiment of the present application. As shown in FIG. 18 , the information sending device 1800 includes:
  • a sixth receiving unit 1801 which receives the third type of backhaul wireless link failure indication information sent by the parent node corresponding to the first cell group;
  • a third sending unit 1802 configured to send the first RRC message on the signaling radio bearer of the first cell group.
  • Fig. 19 is a schematic diagram of an information processing device according to an embodiment of the present application. As shown in Fig. 19, the information processing device 1900 includes:
  • the seventh receiving unit 1901 is configured to receive the third type of return wireless link failure indication information sent by the parent node corresponding to the first cell group;
  • the fourth processing unit 1902 when the first signaling radio bearer of the first node is configured as a split signaling radio bearer, and the main path of the PDCP entity of the first signaling radio bearer points to the second cell group, The main path is set to point to the first cell group.
  • the third type of backhaul radio link failure indication information is sent by the parent node when the backhaul RLF recovery is successful.
  • FIG. 20 is a schematic diagram of an information processing device according to an embodiment of the present application. As shown in FIG. 20 , the information processing device 2000 includes:
  • the eighth receiving unit 2001 which receives the second type of backhaul wireless link failure indication information sent by the parent node corresponding to the first cell group;
  • the fifth processing unit 2002 suspends (suspend) the SRB passing through the link of the first cell group.
  • the first node suspends the SRB.
  • the device also includes: (not shown, optional):
  • a seventh receiving unit which receives the third type of backhaul wireless link failure indication information sent by the parent node;
  • a sixth processing unit that resumes the suspended SRBs passing through the first cell group link.
  • An embodiment of the present application provides an information processing device.
  • the device is applied to a network node, and the same contents as those in the embodiments of the first to fourth aspects are not repeated here.
  • FIG. 21 is a schematic diagram of an information processing device according to an embodiment of the present application, which is applied to the F1 termination node of the first node. As shown in FIG. 21 , the information processing device 2100 includes:
  • a ninth receiving unit 2101 configured to receive failure information sent by the first node, where the failure information is carried by the first F1AP signaling;
  • the seventh processing unit 2102 parses or forwards the failure information.
  • the device may also include: (optional, not shown)
  • a fourth sending unit which sends or forwards failure recovery information to the first node, where the failure recovery information is carried by the second F1AP signaling.
  • a tenth receiving unit which receives the second indication information and the failure recovery information sent by the third network device, where the second indication information is used to instruct the F1 termination node to receive the failure recovery information through the second F1AP signaling forwarded to the first node.
  • the failure information is forwarded to the primary node.
  • the first F1AP signaling further includes first indication information, where the first indication information is used to indicate whether the F1 terminating node is a message destination node.
  • the F1 termination node determines to resolve the failure information or forward the failure information according to the first indication information.
  • the first F1AP signaling corresponding to different types of F1 termination nodes is different.
  • FIG. 22 is a schematic diagram of an information processing device according to an embodiment of the present application, which is applied to a second network device. As shown in FIG. 22 , the information processing device 2200 includes:
  • the eleventh receiving unit 2201 is configured to receive the RRC message sent by the first node on the signaling radio bearer corresponding to the second cell group or the first RRC message sent through the first F1AP signaling;
  • the forwarding unit 2202 is to forward the first RRC message to the first network device.
  • the apparatus when the second network device is the primary network device of the first node, and the first network device is the secondary network device of the first node, the apparatus further includes:
  • a twelfth receiving unit configured to receive an RRC reply message sent by the first network device when the first network device initiates an RRC transfer process.
  • FIG. 15 to FIG. 22 may also include other components or modules, and for the specific content of these components or modules, reference may be made to related technologies.
  • connection relationship or signal direction between the various components or modules is only shown in Fig. 15 to Fig. 22 exemplarily, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used .
  • the above-mentioned components or modules may be implemented by hardware facilities such as processors, memories, transmitters, receivers, etc.; the implementation of the present application is not limited thereto.
  • the embodiment of the present application also provides a communication system, and the same content as the embodiments of the first aspect to the seventh aspect will not be described again.
  • the communication system may include: a first node, including the information sending device 1500 described in the embodiment of the sixth aspect, which executes the information sending method described in the embodiment of the first aspect;
  • the communication system may include: a first node, including the information processing apparatus 1600 described in the embodiment of the sixth aspect, which executes the information processing method described in the embodiment of the second aspect.
  • the communication system may include: a first node, including the information sending apparatus 1700 described in the embodiment of the sixth aspect, which executes the information sending method described in the embodiment of the third aspect.
  • the communication system may include: a first node, including the information sending device 1800 or the information processing device 1900 described in the embodiment of the sixth aspect, which executes the information sending method described in the embodiment of the fourth aspect or information processing methods.
  • the communication system may include: a first node, including the information processing apparatus 2000 described in the embodiment of the sixth aspect, which executes the information processing method described in the embodiment of the fifth aspect.
  • the communication system may include: a network node, including the information processing device described in the embodiment of the first or third aspect, which executes the information processing method described in the embodiment of the first or third aspect.
  • a network node including the information processing device described in the embodiment of the first or third aspect, which executes the information processing method described in the embodiment of the first or third aspect.
  • the first node may include an IAB-DU functional unit, and may further include an IAB-MT functional unit.
  • the IAB-MT functional unit may have the same structure as that of the terminal equipment.
  • the IAB-DU/donor-CU functional unit may have the same structure as the network device.
  • FIG. 26 is a schematic diagram of a network device according to an embodiment of the present application.
  • a network device 2600 may include: a processor 2610 (such as a central processing unit CPU) and a memory 2620 ; the memory 2620 is coupled to the processor 2610 .
  • the memory 2620 can store various data; in addition, it also stores a program 2630 for information processing, and executes the program 2630 under the control of the processor 2610 .
  • the processor 2610 may be configured to execute a program to implement the method performed by the parent node of the first node or the network device or the network node or the F1 termination node in the embodiment of the first or third aspect.
  • the network device 2600 may further include: a transceiver 2640 and an antenna 2650 ; wherein, the functions of the above components are similar to those of the prior art, and will not be repeated here. It should be noted that the network device 2600 does not necessarily include all the components shown in FIG. 26 ; in addition, the network device 2600 may also include components not shown in FIG. 26 , and reference may be made to the prior art.
  • FIG. 23 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 2300 may include a processor 2310 and a memory 2320 ; the memory 2320 stores data and programs, and is coupled to the processor 2310 .
  • the processor 2310 may be configured to execute a program to implement the method performed by the first node as described in the embodiment of the first or second or third or fourth or fifth aspect.
  • the terminal device 2300 may further include: a communication module 2330 , an input unit 2340 , a display 2350 , and a power supply 2350 .
  • a communication module 2330 the terminal device 2300 may further include: a communication module 2330 , an input unit 2340 , a display 2350 , and a power supply 2350 .
  • the functions of the above components are similar to those of the prior art, and will not be repeated here. It should be noted that the terminal device 2300 does not necessarily include all the components shown in FIG. have technology.
  • the embodiment of the present application also provides a computer program, wherein when the program is executed in the first node, the program causes the first node to perform the information sending or information processing methods.
  • the embodiment of the present application also provides a storage medium storing a computer program, wherein the computer program enables the first node to execute the information sending or information processing method described in any one of the first to fifth embodiments.
  • An embodiment of the present application further provides a computer program, wherein when the program is executed in a network node, the program causes the network node to execute the information processing method described in the embodiment of the first or third aspect.
  • An embodiment of the present application further provides a storage medium storing a computer program, wherein the computer program causes a network node to execute the information processing method described in the embodiment of the first or third aspect.
  • the above devices and methods in this application can be implemented by hardware, or by combining hardware and software.
  • the present application relates to a computer-readable program that, when executed by a logic component, enables the logic component to realize the above-mentioned device or constituent component, or enables the logic component to realize the above-mentioned various methods or steps.
  • the present application also relates to storage media for storing the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memories, and the like.
  • the method/device described in conjunction with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams shown in the figure and/or one or more combinations of the functional block diagrams may correspond to each software module or each hardware module of the computer program flow.
  • These software modules may respectively correspond to the steps shown in the figure.
  • These hardware modules for example, can be realized by solidifying these software modules by using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor such that the processor can read information from, and write information to, the storage medium, or it can be an integral part of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or large-capacity flash memory device.
  • One or more of the functional blocks described in the accompanying drawings and/or one or more combinations of the functional blocks can be implemented as a general-purpose processor or a digital signal processor (DSP) for performing the functions described in the present application. ), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or any suitable combination thereof.
  • DSP digital signal processor
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • One or more of the functional blocks described in the drawings and/or one or more combinations of the functional blocks can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, a plurality of microprocessors processor, one or more microprocessors in communication with a DSP, or any other such configuration.
  • a method for sending information characterized in that the method comprises:
  • the first node is connected to multiple parent nodes, and a wireless link failure occurs in the master cell group (MCG);
  • MCG master cell group
  • the first node sends failure information to the F1 termination node of the first node through the first F1AP signaling.
  • the first F1AP signaling further includes at least one of a signaling radio bearer identifier and a transaction identifier.
  • the failure information is MCG failure information.
  • the first F1AP signaling further includes first indication information, and the first indication information is used to indicate whether the F1 termination node is a message destination node.
  • the first node receives the failure recovery information sent or forwarded by the F1 termination node, and the failure recovery information is carried by the second F1AP signaling.
  • failure recovery information is at least one of a handover command, an RRC reconfiguration message, and an RRC connection release message.
  • An information processing method characterized in that the method comprises:
  • the F1 termination node of the first node receives the failure information sent by the first node, and the failure information is carried by the first F1AP signaling;
  • the F1 terminal node parses or forwards the failure information.
  • the F1 termination node sends or forwards failure recovery information to the first node, and the failure recovery information is carried by the second F1AP signaling.
  • the F1 termination node receives the second indication information and the failure recovery information sent by the third network device, and the second indication information is used to instruct the F1 termination node to pass the received failure recovery information through the The second F1AP signaling is forwarded to the first node.
  • first F1AP signaling further includes first indication information, and the first indication information is used to indicate whether the F1 termination node is a message destination node.
  • An information processing method characterized in that the method comprises:
  • the first node receives the second type of return wireless link failure indication information sent by the parent node corresponding to the first cell group;
  • the second A node sets the primary path of the signaling radio bearer to point to a second cell group different from the first cell group.
  • the first node receives the third type of backhaul wireless link failure indication information sent by the parent node;
  • the first node sets the main path to point to the first group of cells.
  • a method for sending information characterized in that the method comprises:
  • the first node receives the second type of return wireless link failure indication information sent by the parent node corresponding to the first cell group;
  • the first node sends the first RRC message to the network device connected to the second cell group on the signaling radio bearer corresponding to the second cell group or sends the first RRC message to the F1 termination node through the first F1AP signaling.
  • the first RRC message includes at least one of measurement information, failure information, assistance information, and re-establishment completion information; or, includes NAS information or non-3GPP-specific information.
  • the first F1AP signaling further includes at least one of a signaling radio bearer identifier and a transaction identifier.
  • first F1AP signaling further includes first indication information, and the first indication information is used to indicate whether the F1 termination node is a message destination node.
  • the first node receives path reselection method configuration information sent by the network device, and the path reselection method configuration information is used to instruct the first node to send the first RRC message on the signaling radio bearer corresponding to the second cell group
  • the first RRC message is still sent through the first F1AP signaling.
  • the first node receives the third type of backhaul wireless link failure indication information sent by the parent node;
  • the first node sends the first RRC message on a signaling radio bearer of the first cell group.
  • a method for sending information characterized in that the method comprises:
  • the second network device receives the first RRC message sent by the first node on the signaling radio bearer corresponding to the second cell group or the first RRC message sent through the first F1AP signaling;
  • the second network device forwards the first RRC message to the first network device.
  • the method according to supplementary note 40 wherein when the second network device is the primary network device of the first node, and the first network device is a secondary network device of the first node, the The method also includes:
  • the first network device initiates an RRC transfer process, and the second network device receives the RRC reply message sent by the first network device.
  • a method for sending information characterized in that the method comprises:
  • the first node receives the third type of return wireless link failure indication information sent by the parent node corresponding to the first cell group;
  • the first node sends a first RRC message on a signaling radio bearer of the first cell group.
  • An information processing method characterized in that the method comprises:
  • the first node receives the third type of return wireless link failure indication information sent by the parent node corresponding to the first cell group;
  • the first signaling radio bearer of the first node When the first signaling radio bearer of the first node is configured as a split signaling radio bearer, and the main path of the PDCP entity of the first signaling radio bearer points to the second cell group, the first signaling radio bearer A node sets the main path to point to the first group of cells.
  • An information processing method characterized in that the method comprises:
  • the first node receives the second type of return wireless link failure indication information sent by the parent node corresponding to the first cell group;
  • the first node suspends the SRB passing through the link of the first cell group.
  • the first node suspends the SRB.
  • the first node receives the third type of backhaul wireless link failure indication information sent by the parent node;
  • the first node resumes the suspended SRB through the first cell group link.
  • a first node comprising a memory and a processor
  • the memory stores a computer program
  • the processor is configured to execute the computer program to implement the following items as in Supplementary Notes 1 to 11, 19-39, 42-47 any one of the methods described.
  • a network node including a memory and a processor, the memory stores a computer program, and the processor is configured to execute the computer program to realize the Methods.
  • a communication system comprising:
  • a first node which executes the method described in any one of Supplementary Notes 1 to 11, 19-39, 42-47.
  • a communication system comprising:
  • a network node which executes the method described in any one of Supplementary Notes 12-18, 40-41.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种信息发送方法,信息处理方法以及装置。该信息发送方法包括:第一节点接收第一小区组对应的父节点发送的第二类型回传无线链路失败指示信息;该第一节点在对应第二小区组的信令无线承载上向所述第二小区组连接的网络设备发送第一RRC消息或通过第一F1AP信令向F1终结节点发送第一RRC消息。

Description

信息发送方法,信息处理方法以及装置 技术领域
本申请实施例涉及通信技术领域。
背景技术
接入和回传一体化(Integrated access and backhaul,IAB)在下一代无线接入网络(NG-RAN:next generation radio access network)中实现了无线中继的功能。这个中继节点叫做IAB节点(IAB-node),它通过新无线(New Radio,NR)同时支持接入和回传。IAB节点可以通过一跳或者多跳来连接到一个IAB宿主(IAB-donor)。这些多跳连接形成了一个以IAB宿主为根节点的有向无环图(DAG,Directed Acyclic Graph)拓扑结构。IAB宿主负责执行IAB网络拓扑中集中式的资源管理、拓扑管理和路由管理。
IAB-node支持gNB-DU(distributed unit,分布式单元)的功能,IAB-node DU也被称为IAB-DU,IAB-DU可以服务普通的终端设备(user equipment,UE)和IAB子节点。除了gNB-DU功能,IAB-node也支持一部分UE的功能,被称为IAB-MT(mobile termination),IAB-MT可支持UE物理层、接入(access stratum,AS)层、无线资源控制(radio resource control,RRC)层和非接入(non-access stratum,NAS)层功能,可以连接到IAB父节点。在网络侧的终结节点称之为IAB-donor,其通过回传或接入链路为IAB-MT或UE通过网络接入。
IAB-donor又进一步分为IAB-donor-CU(central unit)和IAB-donor-DU。IAB-DU和IAB-donor-CU之间通过F1接口连接。在独立组网场景下,gNB与IAB-donor-CU之间通过Xn接口连接。在非独立组网的部署下,eNB(evolved NodeB)和en-gNB(可以是IAB-donor)之间通过X2接口连接。
图1是IAB拓扑结构的一个示意图。如图1所示,5G多跳IAB网络部署,多个UE通过多跳的IAB节点,连接到IAB-donor,最后接入5G网络。在IAB拓扑结构10中,IAB-node 100包括IAB-MT功能单元101和IAB-DU功能单元102,IAB-MT的上一条邻居节点被称为IAB父节点(parent node),如图1中所示的父节点301、302,IAB-MT功能单元101与父节点301、302之间可以通过空中接口(Uu)进行通 信,IAB-DU的下一跳邻居节点被称为IAB子节点(child node),如图1中所示的子节点201、202、203,IAB-DU功能单元102与子节点201、202、203之间可以通过空中接口(Uu)进行通信。
如图1所示,IAB-node 100到子节点201、202、203的方向被称为下游(downstream)方向,IAB-node 100到父节点301、302的方向被称为上游(upstream)方向。IAB-donor(未图示)为该IAB拓扑结构10执行集中式的资源、拓扑和路由管理。
为了支持数据包的多跳路由转发,IAB引入了回传适配协议(Backhaul Adaptation Protocol,BAP)子层。BAP子层位于无线链路控制RLC子层之上网络协议IP层之下,支持数据包目的节点及路径选择、数据包路由转发、承载映射、流控反馈、回传链路失败通知等功能。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
在现有标准(3GPP Rel-16)中,当IAB节点发生无线链路失败(RLF,radio link failure),包括收到回传(BH,backhaul)无线链路失败指示时,该IAB节点可以在BAP子层选择另一条路径来实现BAP路由重选(re-routing)。图2示出了一个简单的IAB网络部署,多个UE通过多跳的IAB节点,连接到IAB-donor,最后接入5G网络,其中包含四个IAB节点和一个IAB宿主。当IAB节点3检测到和IAB-donor之间的链路发生了无线链路失败(RLF)并进行RLF恢复失败时,IAB节点3(IAB node3)会发送BH RLF指示(BH RLF indication)给子节点IAB节点2(IAB node 2)。这个BH RLF指示通过BAP控制协议数据单元(Control PDU)来发送。如果没有发起RRC重建,IAB节点2会将上行BAP路由路径从路径1(path id#1)切换到路径2(path id#2)。
但是发明人发现,对于IAB节点的上行转发数据(例如F1-U,F1-C的数据)来讲,可以通过本地重新路由(local re-routing)来将上行回传链路进行切换,从而避开发送了BH RLF通知的父节点。本地重新路由发生在IAB节点的BAP子层。然而对于IAB-MT自身的控制平面数据,例如RRC(radio resource control,无线资源控制), NAS(non-access stratum,非接入层)数据,它们经过接入链路(access link),它们在本IAB节点并没有经过BAP子层,所以本地重新路由对这些数据不适用。
另外,在控制平面,如果IAB-MT在主小区组(master cell group,MCG)发生了无线链路失败,并且IAB-MT被配置了分裂信令无线承载(signal radio bear,SRB)1或SRB3,配置了定时器T316且不在运行状态,则IAB-MT可以通过辅小区组(secondary cell group,SCG)做快速MCG恢复(fast MCG recovery)过程来实现继续进行RRC连接,不需要进行RRC重建过程。
但发明人发现,在IAB节点发生MCG无线链路失败时,如果IAB-MT没有配置分裂SRB1或者SRB3,则无法进行快速MCG恢复过程,只能进行RRC重建。重建过程会比较耗时,有可能导致数据业务中断。
另外,在IAB节点收到新类型的BH RLF时,控制平面的行为没有指定。如果IAB-MT仍然按照原有的方法发送上行RRC消息,有可能会因为父节点的无线链路失败而导致RRC上行消息发送失败。
针对上述问题的至少之一,本申请实施例提供一种信息发送方法,信息处理方法以及装置。
根据本申请实施例的一个方面,提供一种信息发送装置,应用于第一节点,其中,该装置包括:
第一处理单元,其连接了多个父节点,在主小区组(master cell group,MCG)发生无线链路失败;
第一发送单元,其用于通过第一F1应用协议(F1AP)信令向该第一节点的F1终结(F1-terminating)节点发送失败信息。
根据本申请实施例的一个方面,提供一种信息处理装置,应用于第一节点,其中,该装置包括:
第一接收单元,其接收其第一小区组对应的父节点发送的第二类型回传无线链路失败指示信息;
第二处理单元,其在该第一节点的第一信令无线承载被配置成分裂的信令无线承载,且该第一信令无线承载的分组数据汇聚协议PDCP实体的主路径指向该第一小区组时,将该信令无线承载的主路径设置为指向与该第一小区组不同的第二小区组。
根据本申请实施例的一个方面,提供一种信息发送装置,应用于第一节点,其中, 该装置包括:
根据本申请实施例的一个方面,提供一种信息发送装置,应用于第一节点,其中,该装置包括:
第三接收单元,其接收第一小区组对应的父节点发送的第二类型回传无线链路失败指示信息;
第二发送单元,其在对应第二小区组的信令无线承载上向该第二小区组连接的网络设备发送第一RRC消息或通过第一F1AP信令向F1终结节点发送第一RRC消息。
本申请实施例的有益效果之一在于:在发生MCG无线链路失败时,通过F1-C信令来传输失败信息,由此实现MCG的快速恢复,避免连接中断,减少数据丢失,从而实现网络性能优化。
本申请实施例的有益效果之一在于:可以将满足条件的SRB承载的RRC消息从第一小区组链路迁移到第二小区组链路,从而实现控制平面的非中断传输,保证IAB节点在第一小区组父节点链路恢复期间的正常通信。
本申请实施例的有益效果之一在于:节点在收到某个小区组对应的父节点的检测到无线链路失败的BH RLF指示后,将SRB的内容通过另外一个小区组进行传输,由此,能支持在父节点发生链路失败时的控制平面的路径重选,避免连接中断,减少数据丢失,从而实现网络性能优化。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标 号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是本申请实施例的IAB拓扑结构的一个示意图;
图2是本申请实施例的IAB网络部署示意图;
图3是本申请实施例的信息发送方法的一示意图;
图4A至图4D是本申请实施例的双连接网络架构示意图;
图5是本申请实施例的信息处理方法的一示意图;
图6是本申请实施例的信息处理方法的一示意图;
图7是本申请实施例的信息发送方法的一示意图;
图8是本申请实施例的信息发送方法的一示意图;
图9是本申请实施例的RRC传递过程一示意图;
图10是本申请实施例的信息发送方法的一示意图;
图11是本申请实施例的RRC传递过程的一示意图;
图12A至图12D是本申请实施例的双连接网络架构示意图;
图13是本申请实施例的信息处理方法的另一示意图;
图14是本申请实施例的信息发送方法的另一示意图;
图15是本申请实施例的信息发送装置的一示意图;
图16是本申请实施例的信息处理装置的一示意图;
图17是本申请实施例的信息发送装置的另一示意图;
图18是本申请实施例的数据发送装置的另一示意图;
图19是本申请实施例的信息处理装置的另一示意图;
图20是本申请实施例的信息处理装置的另一示意图;
图21是本申请实施例的信息处理装置的另一示意图;
图22是本申请实施例的信息处理装置的另一示意图;
图23是本申请实施例的终端设备的示意图;
图24是本申请实施例IAB节点协议栈示意图;
图25是本申请实施例的信息处理方法的另一示意图;
图26是本申请实施例的网络设备的示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio  Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femeto、pico等等)、IAB(Integrated Access and Backhaul)节点或IAB-DU或IAB-donor。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。在不引起混淆的情况下,术语“小区”和“基站”可以互换,术语“信令”和“消息”可以互换。
在本申请实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment或Terminal Device)例如是指通过网络设备接入通信网络并接收网络服务的设备。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、IAB-MT、站(station),等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
此外,术语“网络侧”或“网络设备侧”是指网络的一侧,可以是某一基站,也可以包括如上的一个或多个网络设备。术语“用户侧”或“终端侧”或“终端设备侧”是指用户或终端的一侧,可以是某一UE,也可以包括如上的一个或多个终端设备。本文在没有特别指出的情况下,“设备”可以指网络设备,也可以指终端设备。
图24是本申请实施例中IAB节点控制平面协议栈一示例图,如图24所示,IAB-MT可支持UE物理层、介质接入控制层(MAC),无线链路层控制(RLC),分组数据汇聚协议(PDCP),无线资源控制(radio resource control,RRC)层和非接入(non-access stratum,NAS)层功能,可以连接到IAB父节点,这些RRC和NAS由IAB-MT向IAB-donor-CU建立的信令无线承载(signaling radio bearer,SRB)来承载。这些SRB在IAB-MT和其父节点之间通过Uu接口进行传输。以下IAB节点的控制 平面数据是指IAB-MT向IAB-donor建立的SRB中携带的信令,例如RRC,NAS等。
本申请实施例提供了一套实现IAB节点控制平面链路重新选择的机制,来避免控制平面数据丢失,保持网络正常连接。
以下对本申请实施例进行进一步说明。在本申请实施例中,“当……时”、“在……情况下”、“对于……的情况”以及“如果……”表示基于某个或某些条件或状态等,另外,这些表述方式可以互相替换。此外,“指示”可以是显式地包含某些信息以进行通知,也可以是隐式地通过某些特征进行通知等。
以下先结合第一方面的实施例说明IAB节点发生MCG无线链路失败时,如果没有配置分裂的SRB1或者SRB3,如何实现快速MCG恢复。
第一方面的实施例
本申请实施例提供一种信息发送方法,图3是本申请实施例的IAB的信息发送方法的一示意图,如图3所示,该方法包括:
301,第一节点连接多个父节点,在主小区组(master cell group,MCG)发生无线链路失败;
302,该第一节点通过第一F1AP信令向该第一节点的F1终结节点发送失败信息。
在一些实施例中,该第一节点连接多个父节点,例如第一节点为双连接节点,在第一节点是IAB节点时,可以双连接到同一宿主节点或不同的宿主节点。此处仅为示例说明,该第一节点还可以是通信网络中的其他双连接节点,本申请实施例并不以此作为限制。
图4A至图4D示出了4种双连接网络架构示意图,在图4A至4D中分别示出了从第一节点的DU(附图中的IAB-DU3)到IAB宿主节点的CU(donor-CU)的F1控制面(F1-C)传输路径,如图4A和4B所示,IAB-DU3的F1终结(terminated)到主节点(master node,MN);如图4C和4D所示,IAB-DU3的F1终结(terminated)到辅节点(secondary node,SN),在图4A至4C中是NR-NR双连接(NR-DC),在图4D中是E-UTRA-NR双连接(EN-DC),在图4A中,第一节点双连接到同一宿主节点donor-CU,在图4B和4C中,第一节点双连接到不同的两个宿主节点donor-CU1和donor-CU2。以上仅为示例说明,该双连接网络还有其他场景,此处不再一一赘述, 此外,该第一节点还可以支持两个以上的连接,此处不再一一举例。
在一些实施例中,在双连接场景中包括主小区组MCG和辅小区组SCG,第一节点在主小区组MCG发生无线链路失败包括该第一节点自身检测到无线链路失败RLF或者收到其MCG侧的父节点发送的回传无线链路失败指示信息,其中,其父节点在检测到和IAB-donor之间的链路发生了回传无线链路失败并进行RLF恢复失败时,父节点会发送该回传无线链路失败指示信息(例如type-4BH RLF indication,由BAP control PDU传输)。关于如何确定发生无线链路失败以及无线链路失败的类型具体可参考现有技术,此处不再赘述。
在一些实施例中,信令无线承载SRB包括SRB0,SRB1,SRB2,SRB3,其中,SRB0,SRB1,SRB2是通向MN的,SRB3是通向SN的。信令无线承载是用来传输RRC和NAS消息的无线承载。SRB0传输使用公共控制信道(common control channel,CCCH)逻辑信道的RRC消息。SRB1传输RRC消息(可能包含附着(piggybacked)的NAS消息)和SRB2建立之前的NAS消息,使用专用控制信道(dedicated control channel,DCCH)逻辑信道。SRB2传输NAS消息和包含了日志测量消息的RRC消息,使用DCCH逻辑信道。SRB2比SRB1的优先级低,可以在接入层(access stratum,AS)安全激活之后由网络配置。SRB3用于当UE在(NG)EN-DC或NR-DC时的特定RRC消息,使用DCCH逻辑信道。SRB1和SRB2的所有MR-DC(multi-radio dual connectivity)选项都支持分裂信令无线承载。在MR-DC场景下,MN和UE之间且在MCG和SCG都有RLC(radio link control)承载的SRB叫分裂信令无线承载(split SRB),也叫信令无线承载分割。
在一些实施例中,在第一节点发生MCG无线链路失败时,可以启动T316定时器,在现有技术中,IAB-MT被配置了分裂(split)信令无线承载(signal radio bear,SRB)1或信令无线承载3(SRB3)时,可以通过split SRB1或SRB3发送进行快速MCG链路恢复相关的RRC消息,例如MCG失败信息,在302中,在第一节点的MT(例如IAB-MT)没有被配置分裂SRB1或SRB3时,在该第一节点的DU(例如IAB-DU)和IAB-donor-CU在经过SCG链路的方向建立了F1接口控制平面(F1-C)连接时,在302中,该第一节点的DU(例如IAB-DU)可以通过第一F1AP信令来发送进行快速MCG链路恢复相关的RRC消息,例如MCG失败信息,该第一F1AP信令所在的F1-C连接经由SCG链路。
在一些实施例中,F1接口是gNB-DU(包括IAB-DU)到gNB-CU(包括IAB-donor-CU)之间的连接接口。F1-C应用层信令协议称为F1应用协议(F1application protocol,F1AP)。以下详细说明如何使用第一F1AP信令来传递进行快速MCG链路恢复相关的RRC消息,其中,该进行快速MCG链路恢复相关的RRC消息包括失败信息,该失败信息是MCG失败信息(MCGFailureInformation),可以用于上报给主节点,由主节点生成MCG失败恢复信息。
在一些实施例中,该第一F1AP信令可以重用现有的F1AP信令,也可以使用新建的F1AP信令。
例如,该第一F1AP信令可以重用现有的F1AP信令中的上行RRC消息传递(UL RRC message transfer)过程中的UL RRC MESSAGE TRANSFER消息(以下称为第一信令),该消息从gNB-DU发送至gNB-CU,该消息中可以包含一个RRC容器信息元素(RRC-container IE),使用该RRC-container承载该失败信息MCGFailureInformation,也就是使用RRC-container IE携带封装了该RRC消息(也就是UL-DCCH-Message)的分组数据汇聚协议(packet data convergence protocol,PDCP)协议数据单元(protocol data unit,PDU)。另外,该第一信令是UE关联F1AP信令,第一信令中包含UE相关的标识,比如gNB-CU UE F1AP ID,gNB-DU UE F1AP ID。因为MCG失败信息和IAB节点下面的UE无关,所以可以使用任意已经获得F1AP ID的UE的标识信息来放入相应的消息内IE(information element,信息元素),也可以使用虚设的(dummy)信息来放入。本申请实施例并不以此作为限制。donor-CU收到该消息时会忽略该UE标识。
例如,该第一F1AP信令可以是新建的F1AP信令,例如新建一个第二信令,比如该消息名称叫做UL RRC message transfer IAB,该消息中可以包含一个RRC容器信息元素(RRC-container IE),使用该RRC-container承载该失败信息MCGFailureInformation,也就是使用RRC-container IE携带封装了该失败信息的PDCP PDU。该消息会对应一个新的消息类型。消息类型是用来唯一标识消息的,包括一个过程代码和过程内的消息类型,也就是每个消息名称对应不同的消息类型。另外,该第二信令是非UE关联F1AP信令,即该第二信令中不需要包含UE相关的标识,该第二信令还可以包括信令无线承载标识(SRB ID)、交易标识(transaction ID)中的至少一种信息。第一信令和第二信令中RRC-container承载的失败信息是相同的,不 同之处在于,第二信令使用非UE相关F1AP信令,其中不包含UE标识,但可以包含交易标识。
例如,该第一F1AP信令可以是新建的F1AP信令,例如新建一个第三信令,比如该第三信令的消息名称叫做UL RRC message transfer MRDC,该消息中可以包含一个RRC容器信息元素(RRC-container IE),使用该RRC-container承载该失败信息MCGFailureInformation,也就是使用RRC-container IE携带封装了该失败信息的PDCP PDU。另外,该第三信令与该第一信令中RRC-container承载信息是相同的。该第三信令是UE关联F1AP信令,具体参考第一信令。该第三信令还用于指示F1终结节点需要进一步将该RRC-container承载的信息进行转发,例如转发给主节点。另外该第三信令的消息类型与第一信令的消息类型不同。也就是说,第三信令和第一信令消息内容除了消息类型,其余都是一样的。消息类型用于区分F1终结节点是否需要进一步将该RRC-container承载的信息进行转发,或者说用于区分该RRC容器信息元素是发给F1终结节点的还是需要进行转发。
例如,该第一F1AP信令可以是新建的F1AP信令,例如新建一个第四信令,比如该第四信令的消息名称叫做UL RRC message transfer IAB MRDC,该消息中可以包含一个RRC容器信息元素(RRC-container IE),使用该RRC-container承载该失败信息MCGFailureInformation,也就是使用RRC-container IE携带封装了该失败信息的PDCP PDU。另外,该第四信令与该第二信令中RRC-container承载的信息是相同的。该第四信令是非UE关联F1AP信令,具体参考第二信令。该第四信令还用于指示F1终结节点需要进一步将该RRC-container承载的信息进行转发,例如转发给主节点。另外该第四信令的消息类型与第二信令的消息类型不同。也就是说,第四信令和第二信令消息内容除了消息类型,其余都是一样的。消息类型用于区分F1终结节点是否需要进一步将该RRC-container承载的信息进行转发,或者说用于区分该RRC容器信息元素是发给F1终结节点的还是需要进行转发。
在一些实施例中,F1终结节点在接收到该第一F1AP信令承载的失败信息后可以解析或转发,具体实施方式可以参考后述图5,此处不再赘述。该F1终结节点可以根据接收的第一F1AP信令确定其自身是否是消息目的节点,进而确定相应的动作是转发还是解析,其中,在不是消息目的节点(例如辅节点)时,进行转发,在是目的节点(例如主节点)时,进行解析。
在一些实施例中,可以通过在第一信令或第二信令中增加第一指示信息,该第一指示信息用于指示该F1终结节点是否为消息目的节点;或者,F1终结节点还可以通过第一F1AP信令是否为第三信令或第四信令来确定其自身是否是消息目的节点,以下分别说明。
例如,该第一信令或第二信令中可以包括第一指示信息,例如使用信息元素,比如叫做Transfer MRDC表示该第一指示信息,该信息元素的值为真true或假false,在F1终结节点是辅节点时,该信息元素的值设为真,在F1终结节点是主节点时,该信息元素的值设为假,反之亦可;或者,该信息元素还可以使用比特值表示,在F1终结节点是辅节点时,该信息元素的值设为1,在F1终结节点是主节点时,该信息元素的值设为0,反之亦可,本申请实施例并不以此作为限制,例如,F1终结节点在第一信令或第二信令中包括第一指示信息,且第一指示信息为假时,确定其自身是目的节点,可以直接解析,在第一指示信息为真时,确定其自身不是目的节点,需要向主节点转发该失败信息,以上仅为示例说明,本申请并不限制于此,此处不再一一举例。
例如,F1终结节点还可以通过第一F1AP信令是否是第三信令来确定其自身是否是消息目的节点,在F1终结节点是主节点时,使用第一信令UL RRC MESSAGE TRANSFER消息承载失败信息,在F1终结节点是辅节点时,使用第三信令承载失败信息,也就是说F1终结节点在收到第一信令时,确定其自身是目的节点,可以直接解析,在收到第三信令时,确定其自身不是目的节点,需要向主节点转发该失败信息,以上仅为示例说明,本申请并不限制于此,此处不再一一举例。
例如,F1终结节点还可以通过第一F1AP信令是否是第四信令来确定其自身是否是消息目的节点,在F1终结节点是主节点时,使用第二信令UL RRC MESSAGE TRANSFER消息承载失败信息,在F1终结节点是辅节点时,使用第四信令承载失败信息,也就是说F1终结节点在收到第二信令时,确定其自身是目的节点,可以直接解析,在收到第四信令时,确定其自身不是目的节点,需要向主节点转发该失败信息,以上仅为示例说明,本申请并不限制于此,此处不再一一举例。
在一些实施例中,主节点根据该失败信息生成失败恢复信息后,F1终结节点还可以通过第二F1AP信令承载该失败恢复信息发送或转发给该第一节点。因此,该方法还可以包括(未图示):
该第一节点接收该F1终结节点发送或转发的失败恢复信息,该失败恢复信息通过第二F1AP信令承载。
在一些实施例中,该失败恢复信息是MCG失败恢复信息,包括切换命令、RRC重配置消息、RRC连接释放消息中的至少一种,具体可以参考现有技术。
在一些实施例中,在该第一节点的IAB-DU和IAB-donor-CU在经过SCG链路的方向建立了F1接口控制平面(F1-C)连接时,第一节点的DU(例如IAB-DU)可以通过第二F1AP信令来接收MCG失败恢复信息,该第二F1AP信令所在的F1-C连接与第一F1AP信令所在的F1-C连接相同,都是经由SCG链路。
在一些实施例中,该第二F1AP信令可以重用现有的F1AP信令,也可以使用新建的F1AP信令。
例如,该第二F1AP信令可以重用现有的F1AP信令中的下行RRC消息传递(DL RRC message transfer)过程中的DL RRC MESSAGE TRANSFER消息(第五信令),该消息可以包含一个RRC容器信息元素(RRC-container IE),使用该RRC-container承载该失败恢复信息,也就是使用RRC-container IE携带封装了该RRC消息(也就是DL-DCCH-Message)的PDCP PDU。另外,该第二F1AP信令是UE关联F1AP信令,第二F1AP信令中包含UE相关的标识,具体与第一F1AP信令中UE相关的标识类似,此处不再赘述。
例如,该第二F1AP信令可以是新建的F1AP信令,例如新建一个DL RRC message transfer IAB信令(第六信令),该消息中可以包含一个RRC容器信息元素(RRC-container IE),使用该RRC-container承载该失败恢复信息,也就是使用RRC-container IE携带封装了该失败恢复信息的PDCP PDU。另外,该第二F1AP信令是非UE关联F1AP信令,即该第二F1AP信令中不需要包含UE相关的标识。
以上从第一节点侧对该信息发送方法进行了说明,以下从F1终结节点侧进行说明,图5是F1终结节点侧信息处理方法示意图,如图5所示,该方法包括:
501,第一节点的F1终结节点接收该第一节点发送的失败信息,该失败信息通过第一F1AP信令承载;
502,该F1终结节点解析或转发该失败信息。
在一些实施例中,501与302对应,该失败信息和第一F1AP信令的实施方式可以参考302,此处不再赘述。
在一些实施例中,在502中,在该F1终结节点是辅节点时,该辅节点将该失败信息转发给主节点,由于RRC-Container里面的内容是透明传输,因此,在F1终结节点是辅节点时,不需要解析RRC-Container里面的内容。辅节点收到了该失败消息后,将RRC-Container里的失败信息携带在X2或Xn接口消息中转发给主节点,例如,使用RRC Transfer消息,具体消息定义参考3GPP TS36.423和TS38.423,此处不再赘述。在该F1终结节点是主节点或者主节点接收到辅节点转发的失败信息时,可以直接解析出失败信息。
在一些实施例中,该第一F1AP信令的实施方式如前所述,该F1终结节点可以根据接收的第一F1AP信令确定其自身是否是消息目的节点,进而确定相应的动作是转发还是解析,其中,在不是消息目的节点(例如辅节点)时,进行转发,在是目的节点(例如主节点)时,进行解析。
在一些实施例中,可以通过在第一信令或第二信令中增加第一指示信息,该第一指示信息用于指示该F1终结节点是否为消息目的节点;或者,F1终结节点还可以通过第一F1AP信令是否为第三信令或第四信令来确定其自身是否是消息目的节点,具体如前所述,此处不再赘述。
在一些实施例中,主节点收到F1-C里携带的或者辅节点转发过来的RRC-Container,并解析出失败信息之后,生成(MCG)失败恢复信息,该方法还可以包括:(未图示)
该F1终结节点向该第一节点发送或转发失败恢复信息,该失败恢复信息通过第二F1AP信令承载。
在一些实施例中,在该F1终结节点是主节点时,通过与发送失败信息相同的F1-C连接向第一节点的DU(例如IAB-DU)发送失败恢复信息;在该F1终结节点是辅节点时,主节点先通过X2或Xn接口将失败恢复信息发送给辅节点,由辅节点通过与发送失败信息相同的F1-C连接转发给第一节点的DU(例如IAB-DU)。该第二F1AP信令如前所述,此处不再赘述。
在一些实施例中,该方法还可以包括:(未图示)
该F1终结节点收到第三网络设备发送的第二指示信息,该第二指示信息用于指示将收到的RRC消息通过该第二F1AP信令转发给该第一节点。
在一些实施例中,在该F1终结节点是辅节点时,该辅节点还可以接收第三网络 设备(主节点)发送的第二指示信息以及主节点发送的失败恢复信息(第二指示信息和失败恢复信息通过相同或不同X2AP/XnAP信令承载),该第二指示信息用于指示辅节点将接收到的RRC消息(失败恢复信息)通过该第二F1AP信令转发给该第一节点,该辅节点在接收到该第二指示信息和失败恢复信息后,将该失败恢复信息通过与发送失败信息相同的F1-C连接发给第一节点(IAB-DU)。该第二指示信息可以包含在主节点发起的辅节点修改准备X2AP或XnAP过程中对该辅节点进行配置,也可以放在RRC传递(RRC Transfer)X2AP或XnAP过程中和RRC消息一起发送给该辅节点。
值得注意的是,以上附图3-5仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图3-5的记载。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,在发生MCG无线链路失败时,通过F1-C信令来传输失败信息,由此实现MCG的快速恢复,避免连接中断,减少数据丢失,从而实现网络性能优化。
以下结合第二方面和第三方面的实施例说明当第一节点接收到第二类型回传RLF指示信息时,如何实现信息上传和进行小区组的重选。
第二方面的实施例
本申请实施例提供一种信息处理方法,针对SRB1或SRB2被配置成分裂的SRB的场景,从第一节点侧进行说明。与第一方面的实施例相同的内容不再赘述。
图6是本实施例信息处理方法示意图,如图6所示,该方法包括:
601,第一节点接收其第一小区组对应的父节点发送的第二类型回传无线链路失败指示信息;
602,在该第一节点的第一信令无线承载被配置成分裂的信令无线承载,且该第一信令无线承载的PDCP实体的主路径指向该第一小区组时,该第一节点将该主路径 设置为指向与该第一小区组不同的第二小区组。
在一些实施例中,该第二类型回传无线链路失败指示信息是该父节点在检测到无线链路失败时发送的,例如是type 2回传无线链路失败指示信息,通过BAP control PDU传输。该第一信令无线承载是SRB1或SRB2,但该第一SRB没有被配置PDCP重复传输(pdcp-Duplication),该第一节点的含义请参考第一方面的实施例,此处不再赘述。
在一些实施例中,在第一小区组是主小区组,第二小区组是辅小区组时,该第一节点(例如IAB-MT)从MCG接收第二类型BH RLF指示信息,在该第一节点(例如IAB-MT)的SRB1被配置成分裂的信令无线承载时,在SRB1的PDCP实体的主路径primaryPath指向MCG时,则将primaryPath设为指向SCG。
在一些实施例中,在第一小区组是主小区组,第二小区组是辅小区组时,该第一节点(例如IAB-MT)从MCG接收第二类型BH RLF指示信息,在该第一节点(例如IAB-MT)的SRB2被配置成分裂的信令无线承载时,在SRB2的PDCP实体的主路径primaryPath指向MCG时,则将primaryPath设为指向SCG。
由上述实施例可知,可以将满足以上条件的SRB承载的RRC和NAS消息从MCG链路迁移到SCG链路,从而实现控制平面的非中断传输,保证IAB节点在MCG父节点链路恢复期间的正常通信。
在一些实施例中,该第一IAB节点通过所述第二小区组发送上行RRC消息或NAS消息,该RRC消息或NAS消息原本需要通过第一小区组发送。
在一些实施例中,在第一小区组是辅小区组,第二小区组是主小区组时,该第一节点(例如IAB-MT)从SCG接收第二类型BH RLF指示信息,在该第一节点(例如IAB-MT)的SRB1被配置成分裂的信令无线承载时,在SRB1的PDCP实体的主路径primaryPath指向SCG时,则将primaryPath设为指向MCG。
在一些实施例中,在第一小区组是辅小区组,第二小区组是主小区组时,该第一节点(例如IAB-MT)从SCG接收第二类型BH RLF指示信息,在该第一节点(例如IAB-MT)的SRB2被配置成分裂的信令无线承载时,在SRB2的PDCP实体的主路径primaryPath指向SCG时,则将primaryPath设为指向MCG。
由上述实施例可知,可以将满足以上条件的SRB承载的RRC消息从SCG链路迁移到MCG链路,从而实现控制平面的非中断传输,保证IAB节点在SCG父节点 链路恢复期间的正常通信。
在一些实施例中,该方法还包括:(未图示)该第一节点接收该父节点发送的第三类型回传无线链路失败指示信息;该第一节点将该主路径设置为指向该第一小区组。
在一些实施例中,该第三类型回传无线链路失败指示信息(type 3回传无线链路失败指示信息,由BAP control PDU传输)是该父节点在RLF恢复成功时发送给第一节点(例如IAB-MT)的。在第一节点(例如IAB-MT)收到父节点发送的第三类型回传无线链路失败指示信息时,可以将原来迁移到另外一条父节点链路的控制平面传输路径再迁移回来,也就是恢复使用收到该父节点第二类型回传无线链路失败指示信息之前的传输路径。例如,将分裂SRB的primaryPath恢复到原来的设置(指向原来的小区组)。
在一些实施例中,在第一小区组是主小区组,第二小区组是辅小区组时,该第一节点(例如IAB-MT)接收第三类型BH RLF指示信息,在SRB1或SRB2的PDCP实体的主路径primaryPath恢复为指向MCG。
值得注意的是,以上附图6仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图6的记载。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
第三方面的实施例
本申请实施例提供一种信息发送方法,可以针对SRB1或SRB2未被配置成分裂的SRB的场景,从第一节点侧进行说明。与第一或第二方面的实施例相同的内容不再赘述。此外,第三方面的实施例可以与第一、二方面的实施例结合起来实施,也可以单独地实施。
图7是本实施例信息发送方法一示意图,如图7所示,该方法包括:
701,第一节点接收第一小区组对应的父节点发送的第二类型回传无线链路失败指示信息;
702,该第一节点在对应第二小区组的信令无线承载上向该第二小区组连接的网络设备发送第一RRC消息或通过第一F1AP信令向F1终结节点发送第一RRC消息。
在一些实施例中,该第二类型回传无线链路失败指示信息是该父节点在检测到回传无线链路失败时发送的,例如是type 2回传无线链路失败指示信息,该第一节点的含义请参考第一方面的实施例,此处不再赘述。
在一些实施例中,701的实施方式可以参考601,此处不再赘述。
在第一小区组是主小区组,第二小区组是辅小区组时,针对SRB1未被配置成分裂的SRB的场景,可以采用如下方式将SRB1承载的第一RRC消息进行迁移。
在一些实施例中,该第一节点将对应主小区组的信令无线承载(SRB1)上的该第一RRC消息迁移至对应该辅小区组的信令无线承载(SRB3)上发送。即在第一节点(例如IAB-MT)配置了对应辅小区组的SRB(即SRB3)时,该第一节点(例如IAB-MT)在对应辅小区组的SRB(即SRB3)上向SN发送该第一RRC消息(原本由SRB1承载的RRC消息)。该第一RRC消息包括从主小区组收到的RRC消息的回复信息。该第一RRC消息例如包括测量信息MeasurementReport、失败信息FailureInformation、辅助信息UEAssistanceInformation、重建立完成信息RRCReconfigurationComplete中的至少一种。该第一RRC消息被携带在第二RRC消息ULInformationTransferMRDC中。另外,辅节点SN在接收到通过SRB3发送的该第一RRC消息后(RRC消息中的内容是透明传输的),辅节点需要将该第一RRC消息转发给主节点,例如通过RRC Transfer过程承载该第一RRC消息。
图8是该辅节点侧信息发送方法示意图,如图8所示,该信息发送方法包括:
801,辅节点接收第一节点在SRB3上发送的第一RRC消息;
802,该辅节点将该第一RRC消息转发给主节点。
图9是该RRC传递过程示意图,如图9所示:在901中,辅节点接收第一节点(例如IAB-MT)在SRB3上发送的第一RRC消息(例如由ULInformationTransferMRDC携带),在902中,辅节点通过RRC transfer过程承载该第一RRC消息发送至主节点,可选的,如果主节点需要对收到的第一RRC消息做回应,该过程还可以包括,903,MN发起RRC Transfer过程,将RRC回复消息作为八位字节串传送给辅节点,904,辅节点将收到的RRC回复消息放在第三RRC消息,例如透明容器DLInformationTransferMRDC中发给IAB-MT。RRC transfer过程是在 Xn或X2接口协议实现。
在一些实施例中,如果该第一节点的DU的F1-C链路经由MT的辅小区组链路,可以通过第一F1AP信令向F1终结节点发送第一RRC消息。该第一RRC消息包括从主小区组收到的RRC消息的回复信息。该第一RRC消息例如包括测量信息MeasurementReport、失败信息FailureInformation、辅助信息UEAssistanceInformation、重建立完成信息RRCReconfigurationComplete中的至少一种,该第一F1AP信令可以是第一到第四信令,具体可以参考第一方面的实施例,和第一方面的实施例不同之处是RRC容器信息元素里包含的RRC消息不同,其余实施部分相同,此处不再赘述。
在第一小区组是主小区组,第二小区组是辅小区组时,针对SRB2未被配置成分裂的SRB的场景,可以采用如下方式将SRB2承载的第一RRC消息进行迁移。
在一些实施例中,该第一节点将对应主小区组的信令无线承载(SRB2)上的该第一RRC消息迁移至对应该辅小区组的信令无线承载(SRB3)上发送。即在第一节点(例如IAB-MT)配置了对应辅小区组的SRB(即SRB3)时,该第一节点(例如IAB-MT)在对应辅小区组的SRB(即SRB3)上向SN发送该第一RRC消息(原本由SRB2承载的RRC消息)。该第一RRC消息包括NAS信息或非3GPP专用信息。该第一RRC消息包括例如UEInformationResponse(当包含日志测量信息时)信息,ULInformationTransfer信息,具体可以参考现有技术。该第一RRC消息被携带在第二RRC消息ULInformationTransferMRDC中。另外,辅节点SN在接收到通过SRB3发送的该第一RRC消息后(RRC消息中的内容是透明传输的),辅节点需要将该第一RRC消息转发给主节点,例如通过RRC Transfer过程承载该第一RRC消息。具体流程可以参考图9,和关于SRB1的实施例的区别在于第一RRC消息中的内容不同。
在一些实施例中,该第一节点在辅小区组链路上通过第一F1AP信令向F1终结节点发送第一RRC消息。该第一RRC消息包括NAS信息或非3GPP专用信息,例如UEInformationResponse(当包含日志测量信息时)信息,ULInformationTransfer信息,具体可以参考现有技术,该第一F1AP信令可以是第一到第四信令,具体可以参考第一方面的实施例,和第一方面的实施例不同之处是RRC容器信息元素里包含的RRC消息不同,其余实施部分相同,此处不再赘述。
在第一小区组是辅小区组,第二小区组是主小区组时,可以采用如下方式将SRB3承载的第一RRC消息进行迁移。
在一些实施例中,该第一节点将对应辅小区组的信令无线承载(SRB3)上的该第一RRC消息迁移至对应该主小区组的信令无线承载(SRB1)上发送。即该第一节点(例如IAB-MT)在对应主小区组的SRB(即SRB1)上向MN发送该第一RRC消息(原本由SRB3承载的RRC消息)。该第一RRC消息包括辅小区组的测量信息MeasurementReport、失败信息FailureInformation、辅助信息UEAssistanceInformation、其他IAB信息IABOtherInformation中的至少一种。该第一RRC消息被携带在第二RRC消息ULInformationTransferMRDC中。另外,主节点MN在接收到通过SRB1发送的该第一RRC消息后(RRC消息中的内容是透明传输的),还可以将该第一RRC消息转发给辅节点,例如通过RRC Transfer过程承载该第一RRC消息。
图10是该主节点侧信息发送方法示意图,如图10所示,该信息发送方法包括:
1001,主节点接收第一节点在SRB1上发送的第一RRC消息;
1002,该主节点将该第一RRC消息转发给辅节点。
图11是该RRC传递过程示意图,如图11所示:在1101中,主节点接收第一节点(例如IAB-MT)在SRB1上发送的第一RRC消息(例如由ULInformationTransferMRDC携带),在1102中,主节点通过RRC transfer过程承载该第一RRC消息发送至辅节点,可选的,如果辅节点需要对收到的第一RRC消息做回应,该过程还可以包括,1103,SN发起RRC Transfer过程,将RRC回复消息作为八位字节串传送给主节点,1104,主节点将收到的RRC回复消息放在第三RRC消息,例如透明容器DLInformationTransferMRDC中发给IAB-MT。RRC transfer过程是在Xn或X2接口协议实现。
在一些实施例中,该第一节点的DU的F1-C连接经由MT的主小区组链路,可通过第一F1AP信令向F1终结节点发送第一RRC消息。该第一RRC消息包括辅小区组的测量信息MeasurementReport、失败信息FailureInformation、辅助信息UEAssistanceInformation、其他IAB信息IABOtherInformation中的至少一种,该第一F1AP信令可以是第一到第四信令,具体可以参考第一方面的实施例,此处不再赘述。与第一方面的不同之处在于,在该第一节点的DU(例如IAB-DU)和IAB-donor-CU在经过MCG链路的方向建立了F1接口控制平面(F1-C)连接时,该第一F1AP信令所在的F1-C通道经由MCG链路。也就是说通过该第一F1AP信令来承载SN的第一RRC消息,就是原本需要通过SRB3传递的RRC消息。第一方面的实施例里的主 节点和辅节点的行为会互换。
图12A至图12D示出了4种双连接网络架构示意图,在图12A至12D中分别示出了从第一节点的DU(附图中的IAB-DU3)到IAB宿主节点的CU(donor-CU)的F1控制面(F1-C)传输路径,如图12B和图12D所示,IAB-DU3的F1终结(terminated)到辅节点(secondary node,SN);如图12C所示,IAB-DU3的F1终结(terminated)到主节点(master node,MN),在图12A中,F1终结节点donor-CU既是主节点又是辅节点,在图12A至12C中是NR-NR双连接(NR-DC),在图12D中是E-UTRA-NR双连接(EN-DC),在图12A中,第一节点双连接到同一宿主节点donor-CU,在图12B和12C中,第一节点双连接到不同的两个宿主节点donor-CU1和donor-CU2。如图12C所示,IAB-MT的第一RRC消息先通过F1-C信令(第一F1AP信令)中的RRC容器发给主节点,主节点收到第一RRC消息之后,再通过RRC传输(RRC transfer)过程把封装在PDCP PDU之中的第一RRC消息传送给辅节点,第一RRC消息经过了两次透传。如图12A,12B和12D所示,IAB-MT的第一RRC消息可通过F1-C信令(第一F1AP信令)中的RRC容器(container)发给辅节点,第一RRC消息经过了一次透传。以上仅为示例说明,该双连接网络还有其他场景,此处不再一一赘述,此外,该第一节点还可以支持两个以上的连接,此处不再一一举例。
在一些实施例中,在既存在SRB传递第一RRC消息,也存在F1-C信令携带第一RRC消息时,可以由网络设备侧配置使用哪种方式传递第一RRC消息,该方法还可以包括:(未图示)
该第一节点接收网络设备发送的路径重选择方法配置信息,该路径重选择方法配置信息用于指示该第一节点在对应第二小区组的信令无线承载上发送第一RRC消息还是通过第一F1AP信令发送第一RRC消息。
例如,以使用现有的RRCReconfiguration消息对UE也就是IAB-MT进行配置,承载该路径重选择方法配置信息,即在RRCReconfiguration消息增加一个IE,比如叫做路径重选择方法配置信息pathReselectionMethod,IE的类型可以是枚举型,取值可以是ulInformationTransferMRDC(该第一节点在对应第二小区组的信令无线承载上发送第一RRC消息),f1-c(通过第一F1AP信令发送第一RRC消息)等。
在一些实施例中,该方法还包括:(未图示)该第一节点接收该父节点发送的第三类型回传无线链路失败指示信息;在该第一小区组的信令无线承载上发送该第一 RRC消息。
在一些实施例中,该第三类型回传无线链路失败指示信息(type 3回传无线链路失败指示信息)是该父节点在回传RLF恢复成功时发送给第一节点(例如IAB-MT)的。在第一节点(例如IAB-MT)收到父节点发送的第三类型回传无线链路失败指示信息时,可以将原来迁移到另外一条父节点链路的控制平面传输路径再迁移回来,也就是恢复使用收到该父节点第二类型回传无线链路失败指示信息之前的传输路径。例如,将第一RRC消息使用原有的第一小区组的信令无线承载进行传输,不使用ULInformationTransferMRDC或第一F1AP信令携带第一RRC消息。
在一些实施例中,在第一小区组是主小区组,第二小区组是辅小区组时,该第一节点(例如IAB-MT)接收第三类型BH RLF指示信息,恢复在SRB1或SRB2上发送第一RRC消息。
在一些实施例中,在第一小区组是辅小区组,第二小区组是主小区组时,该第一节点(例如IAB-MT)接收第三类型BH RLF指示信息,恢复在SRB3上发送第一RRC消息。
值得注意的是,以上附图7-12仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图7-12的记载。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,节点在收到某个小区组对应的父节点的检测到无线链路失败的BH RLF指示后,将SRB的内容通过另外一个小区组进行传输,由此,能支持在父节点发生链路失败时的控制平面的路径重选,避免连接中断,减少数据丢失,从而实现网络性能优化。
第四方面的实施例
本申请实施例提供一种信息处理方法,从第一节点侧进行说明。与第一、二、三方面的实施例相同的内容不再赘述。此外,第四方面的实施例可以与第一、二、三方 面的实施例结合起来实施,也可以单独地实施。
图13是本实施例信息处理方法示意图,如图13所示,该方法包括:
1301,第一节点接收其第一小区组对应的父节点发送的第三类型回传无线链路失败指示信息;
1302,在该第一节点的第一信令无线承载被配置成分裂的信令无线承载,且该第一信令无线承载的PDCP实体的主路径指向该第二小区组时,该第一节点将该主路径设置为指向该第一小区组。
在一些实施例中,该第三类型回传无线链路失败指示信息(type 3回传无线链路失败指示信息)是该父节点在回传RLF恢复成功时发送给第一节点(例如IAB-MT)的。在第一节点(例如IAB-MT)收到父节点发送的第三类型回传无线链路失败指示信息时,可以将原来迁移到另外一条父节点链路的控制平面传输路径再迁移回来,也就是恢复使用收到该父节点第二类型回传无线链路失败指示信息之前的传输路径。例如,将分裂SRB的primaryPath恢复到原来的设置(指向原来的小区组)。
在一些实施例中,在第一小区组是主小区组,第二小区组是辅小区组时,该第一节点(例如IAB-MT)接收第三类型BH RLF指示信息,将SRB1或SRB2的PDCP实体的主路径primaryPath恢复为指向MCG。
图14是本实施例信息发送方法示意图,如图14所示,该方法包括:
1401,第一节点接收第一小区组对应的父节点发送的第三类型回传无线链路失败指示信息;
1402,该第一节点在该第一小区组的信令无线承载上发送第一RRC消息。
在一些实施例中,该第三类型回传无线链路失败指示信息(type 3回传无线链路失败指示信息)是该父节点在RLF恢复成功时发送给第一节点(例如IAB-MT)的。在第一节点(例如IAB-MT)收到父节点发送的第三类型回传无线链路失败指示信息时,可以将原来迁移到另外一条父节点链路的控制平面传输路径再迁移回来,也就是恢复使用收到该父节点第二类型回传无线链路失败指示信息之前的传输路径。例如,将第一RRC消息使用原有的第一小区组的信令无线承载进行传输,不使用ULInformationTransferMRDC和第一F1AP信令携带第一RRC消息。
在一些实施例中,在第一小区组是主小区组,第二小区组是辅小区组时,该第一节点(例如IAB-MT)接收第三类型BH RLF指示信息,恢复在SRB1或SRB2上发 送第一RRC消息。
在一些实施例中,在第一小区组是辅小区组,第二小区组是主小区组时,该第一节点(例如IAB-MT)接收第三类型BH RLF指示信息,恢复在SRB3上发送第一RRC消息。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
第五方面的实施例
本申请实施例提供一种信息处理方法,从第一节点侧进行说明。与第一、二、三方面的实施例相同的内容不再赘述。此外,第五方面的实施例可以与第一、二、三方面的实施例结合起来实施,也可以单独地实施。
图25是本实施例信息处理方法示意图,如图25所示,该方法包括:
2501,第一节点接收其第一小区组对应的父节点发送的第二类型回传无线链路失败指示信息;
2502,将经过第一小区组链路的SRB挂起(suspend)。
在一些实施例中,该第二类型回传无线链路失败指示信息是该父节点在检测到回传无线链路失败时发送的,例如是type 2回传无线链路失败指示信息,该第一节点的含义请参考第一方面的实施例,此处不再赘述。
在一些实施例中,2501的实施方式可以参考601,此处不再赘述。
在一些实施例中,在2502中,在经过该第一小区链路(父节点链路)的SRB1或SRB2没有被配置成split SRB时,将该SRB挂起。
在一些实施例中,该方法还包括:(未图示)该第一节点接收该父节点发送的第三类型回传无线链路失败指示信息;恢复(resume)经过第一小区组链路的挂起的SRB。
在一些实施例中,该第三类型回传无线链路失败指示信息(type 3回传无线链路失败指示信息)是该父节点在回传RLF恢复成功时发送给第一节点(例如IAB-MT)的。在第一节点(例如IAB-MT)收到父节点发送的第三类型回传无线链路失败指示信息时,可以恢复挂起的该SRB。
在一些实施例中,在第一小区组是主小区组,该第一节点(例如IAB-MT)接收第二类型BH RLF指示信息,将SRB1和/或SRB2挂起,在接收到第三类型BH RLF指示信息时,恢复挂起的SRB1和/或SRB2。
在一些实施例中,在第一小区组是辅小区组,该第一节点(例如IAB-MT)接收第二类型BH RLF指示信息,将SRB3挂起,在接收到第三类型BH RLF指示信息时,恢复挂起的SRB3。
值得注意的是,以上附图25仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图25的记载。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
第六方面的实施例
本申请实施例提供一种信息发送装置或信息处理装置。该装置应用于第一节点,例如IAB节点(示例,不限制于此,也可以是配置于IAB节点的某个或某些部件或者组件或其他类型节点),与第一方面的实施例相同的内容不再赘述。
图15是本申请实施例的信息发送装置的一示意图,如图15所示,信息发送装置1500包括:
第一处理单元1501,其连接了多个父节点,在主小区组(master cell group,MCG)发生无线链路失败;
第一发送单元1502,其用于通过第一F1AP信令向所述第一节点的F1终结节点发送失败信息。
在一些实施例中,第一处理单元1501和第一发送单元1502的实施方式请参考301-302,此处不再赘述。
在一些实施例中,该第一F1AP信令是UE关联F1AP信令。
在一些实施例中,该第一F1AP信令是非UE关联F1AP信令。
在一些实施例中,该第一F1AP信令用于上行RRC消息传递。
在一些实施例中,该第一F1AP信令还包括信令无线承载标识、交易标识中的至少一种信息。
在一些实施例中,该第一节点没有被配置分裂的信令无线承载1(SRB1)和信令无线承载3。
在一些实施例中,该第一节点双连接到同一宿主节点或不同的宿主节点,该第一F1AP信令所在的F1-C通道经由辅小区组(secondary cell group,SCG)链路,该失败信息是MCG失败信息。
在一些实施例中,该第一F1AP信令还包括第一指示信息,该第一指示信息用于指示该F1终结节点是否为消息目的节点。
在一些实施例中,不同类型的F1终结节点对应的第一F1AP信令不同。
在一些实施例中,该装置还可以包括(未图示,可选):
第四接收单元,其接收该F1终结节点发送或转发的失败恢复信息,该失败恢复信息通过第二F1AP信令承载。
在一些实施例中,该失败恢复信息是切换命令、RRC重配置消息、RRC连接释放消息中的至少一种。
图16是本申请实施例的信息处理装置的一示意图,如图16所示,信息处理装置1600包括:
第一接收单元1601,接收其第一小区组对应的父节点发送的第二类型回传无线链路失败指示信息;
第二处理单元1602,在第一节点的第一信令无线承载被配置成分裂的信令无线承载,且该第一信令无线承载的PDCP实体的主路径指向该第一小区组时,将该信令无线承载的主路径设置为指向与该第一小区组不同的第二小区组。
在一些实施例中,第一接收单元1601和第二处理单元1602的实施方式请参考601-602,此处不再赘述。
在一些实施例中,该第一节点的第一信令无线承载没有被配置PDCP重复传输。
在一些实施例中,该第二类型回传无线链路失败指示信息是该父节点在检测到回传无线链路失败时发送的。
在一些实施例中,该装置还可以包括(未图示,可选):
第二接收单元,其用于接收该父节点发送的第三类型回传无线链路失败指示信息;
第三处理单元,其将该主路径设置为指向该第一小区组。
在一些实施例中,该第三类型回传无线链路失败指示信息是该父节点在回传RLF恢复成功时发送的。
图17是本申请实施例的信息发送装置的一示意图,如图17所示,信息发送装置1700包括:
第三接收单元1701,其接收第一小区组对应的父节点发送的第二类型回传无线链路失败指示信息;
第二发送单元1702,其在对应第二小区组的信令无线承载上向该第二小区组连接的网络设备发送第一RRC消息或通过第一F1AP信令向F1终结节点发送第一RRC消息。
在一些实施例中,第三接收单元1701和第二发送单元1702的实施方式请参考701-702,此处不再赘述。
在一些实施例中,该第一节点双连接到同一宿主节点或不同的宿主节点。
在一些实施例中,该第一节点将对应第一小区组的信令无线承载上的该第一RRC消息迁移至对应该第二小区组的信令无线承载上发送。
在一些实施例中,该对应第一小区组的信令无线承载没有被配置成分裂的信令无线承载。
在一些实施例中,该第一RRC消息包括测量信息、失败信息、辅助信息、重建立完成信息中的至少一种;或者,包括NAS信息或非3GPP专用信息。
在一些实施例中,该第一RRC消息被携带在第二RRC消息中。
在一些实施例中,该第一F1AP信令是UE关联F1AP信令。
在一些实施例中,该第一F1AP信令是非UE关联F1AP信令。
在一些实施例中,该第一F1AP信令用于上行RRC消息传递。
在一些实施例中,该第一F1AP信令还包括信令无线承载标识、交易标识中的至少一种信息。
在一些实施例中,该第一F1AP信令还包括第一指示信息,该第一指示信息用于指示该F1终结节点是否为消息目的节点。
在一些实施例中,不同类型的F1终结节点对应的第一F1AP信令不同。
在一些实施例中,该第二类型回传无线链路失败指示信息是该父节点在检测到回 传无线链路失败时发送的。
在一些实施例中,该装置还包括:(未图示,可选):
第五接收单元,其接收网络设备发送的路径重选择方法配置信息,该路径重选择方法配置信息用于指示该第一节点在对应第二小区组的信令无线承载上发送第一RRC消息还是通过第一F1AP信令发送第一RRC消息。
图18是本申请实施例的信息发送装置的一示意图,如图18所示,信息发送装置1800包括:
第六接收单元1801,其接收第一小区组对应的父节点发送的第三类型回传无线链路失败指示信息;
第三发送单元1802,其在该第一小区组的信令无线承载上发送第一RRC消息。
在一些实施例中,第六接收单元1801和第三发送单元1802的实施方式请参考1401-1402,此处不再赘述。
图19是本申请实施例的信息处理装置的一示意图,如图19所示,信息处理装置1900包括:
第七接收单元1901,接收其第一小区组对应的父节点发送的第三类型回传无线链路失败指示信息;
第四处理单元1902,在该第一节点的第一信令无线承载被配置成分裂的信令无线承载,且该第一信令无线承载的PDCP实体的主路径指向该第二小区组时,将该主路径设置为指向该第一小区组。
在一些实施例中,第七接收单元1901和第四处理单元1902的实施方式请参考1301-1302,此处不再赘述。
在一些实施例中,该第三类型回传无线链路失败指示信息是该父节点在回传RLF恢复成功时发送的。
图20是本申请实施例的信息处理装置的一示意图,如图20所示,信息处理装置2000包括:
第八接收单元2001,其接收其第一小区组对应的父节点发送的第二类型回传无线链路失败指示信息;
第五处理单元2002,将经过第一小区组链路的SRB挂起(suspend)。
在一些实施例中,第八接收单元2001和第五处理单元2002的实施方式请参考 2501-2502,此处不再赘述。
在一些实施例中,第五处理单元2002在经过该第一小区链路(父节点链路)的SRB1或SRB2没有被配置成split SRB时,该第一节点将该SRB挂起。
在一些实施例中,该装置还包括:(未图示,可选):
第七接收单元,其接收该父节点发送的第三类型回传无线链路失败指示信息;
第六处理单元,其恢复(resume)经过第一小区组链路的挂起的SRB。
第七方面的实施例
本申请实施例提供一种信息处理装置。该装置应用于网络节点,与第一至第四方面的实施例相同的内容不再赘述。
图21是本申请实施例的信息处理装置的一示意图,应用于第一节点的F1终结节点,如图21所示,信息处理装置2100包括:
第九接收单元2101,其接收该第一节点发送的失败信息,该失败信息通过第一F1AP信令承载;
第七处理单元2102,解析或转发该失败信息。
在一些实施例中,该装置还可以包括:(可选,未图示)
第四发送单元,其向该第一节点发送或转发失败恢复信息,该失败恢复信息通过第二F1AP信令承载。
第十接收单元,其接收第三网络设备发送的第二指示信息和该失败恢复信息,该第二指示信息用于指示该F1终结节点将收到的该失败恢复信息通过该第二F1AP信令转发给该第一节点。
在一些实施例中,在该F1终结节点是辅节点时,将该失败信息转发给主节点。
在一些实施例中,该第一F1AP信令还包括第一指示信息,该第一指示信息用于指示该F1终结节点是否为消息目的节点。
在一些实施例中,该F1终结节点根据该第一指示信息确定解析该失败信息或转发该失败信息。
在一些实施例中,不同类型的F1终结节点对应的第一F1AP信令不同。
图22是本申请实施例的信息处理装置的一示意图,应用于第二网络设备,如图22所示,信息处理装置2200包括:
第十一接收单元2201,其接收第一节点在对应第二小区组的信令无线承载上发送RRC的消息或者通过第一F1AP信令发送的第一RRC消息;
转发单元2202,向第一网络设备转发该第一RRC消息。
在一些实施例中,在该第二网络设备是该第一节点的主网络设备,该第一网络设备是该第一节点的辅网络设备时,该装置还包括:
第十二接收单元,其用于在该第一网络设备发起RRC传递过程时,接收该第一网络设备发送的RRC回复消息。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。图15至图22中的装置还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图15至图22中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
第八方面的实施例
本申请实施例还提供一种通信系统,与第一方面至第七方面的实施例相同的内容不再赘述。
在一些实施例中,该通信系统可以包括:第一节点,包括第六方面的实施例所述的信息发送装置1500,其执行第一方面的实施例所述的信息发送方法;
在一些实施例中,该通信系统可以包括:第一节点,包括第六方面的实施例所述的信息处理装置1600,其执行第二方面的实施例所述的信息处理方法。
在一些实施例中,该通信系统可以包括:第一节点,包括第六方面的实施例所述的信息发送装置1700,其执行第三方面的实施例所述的信息发送方法。
在一些实施例中,该通信系统可以包括:第一节点,包括第六方面的实施例所述的信息发送装置1800或信息处理装置1900,其执行第四方面的实施例所述的信息发 送方法或信息处理方法。
在一些实施例中,该通信系统可以包括:第一节点,包括第六方面的实施例所述的信息处理装置2000,其执行第五方面的实施例所述的信息处理方法。
在一些实施例中,该通信系统可以包括:网络节点,包括第一或第三方面的实施例所述的信息处理装置,其执行第一或第三方面的实施例所述的信息处理方法。以上实施方式可以单独实施,也可以组合实施,本申请实施例并不以此作为限制。
其中,第一节点可以包括IAB-DU功能单元,此外,也可以进一步包括IAB-MT的功能单元。其中,IAB-MT功能单元可以具有与终端设备相同的结构。IAB-DU/donor-CU功能单元可以具有与网络设备相同的结构。
图26是本申请实施例的网络设备的构成示意图。如图26所示,网络设备2600可以包括:处理器2610(例如中央处理器CPU)和存储器2620;存储器2620耦合到处理器2610。其中该存储器2620可存储各种数据;此外还存储信息处理的程序2630,并且在处理器2610的控制下执行该程序2630。
例如,处理器2610可以被配置为执行程序而实现如第一或第三方面的实施例中第一节点的父节点或网络设备或网络节点或F1终结节点执行的方法。
此外,如图26所示,网络设备2600还可以包括:收发机2640和天线2650等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备2600也并不是必须要包括图26中所示的所有部件;此外,网络设备2600还可以包括图26中没有示出的部件,可以参考现有技术。
图23是本申请实施例的终端设备的示意图。如图23所示,该终端设备2300可以包括处理器2310和存储器2320;存储器2320存储有数据和程序,并耦合到处理器2310。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。例如,处理器2310可以被配置为执行程序而实现如第一或第二或第三或第四或第五方面的实施例所述的由第一节点执行的方法。
如图23所示,该终端设备2300还可以包括:通信模块2330、输入单元2340、显示器2350、电源2350。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,终端设备2300也并不是必须要包括图23中所示的所有部件,上述部件并不是必需的;此外,终端设备2300还可以包括图23中没有示出的部件,可以参 考现有技术。
本申请实施例还提供一种计算机程序,其中当在第一节点中执行所述程序时,所述程序使得所述第一节点执行第一至五任一方面的实施例所述的信息发送或信息处理方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得第一节点执行第一至五任一方面的实施例所述的信息发送或信息处理方法。
本申请实施例还提供一种计算机程序,其中当在网络节点中执行所述程序时,所述程序使得所述网络节点执行第一或第三方面的实施例所述的信息处理方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得网络节点执行第一或第三方面的实施例所述的信息处理方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合, 可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于包括以上实施例的实施方式,还公开下述的附记:
1.一种信息发送方法,其特征在于,所述方法包括:
第一节点连接了多个父节点,在主小区组(master cell group,MCG)发生无线链路失败;
所述第一节点通过第一F1AP信令向所述第一节点的F1终结节点发送失败信息。
2.根据附记1所述的方法,其中,所述第一F1AP信令是UE关联F1AP信令。
3.根据附记1所述的方法,其中,所述第一F1AP信令是非UE关联F1AP信令。
4.根据附记1所述的方法,其中,所述第一F1AP信令用于上行RRC消息传递。
5.根据附记3所述的方法,其中,所述第一F1AP信令还包括信令无线承载标识、交易标识中的至少一种信息。
6.根据附记1所述的方法,其中,所述第一节点没有被配置分裂的信令无线承载1(SRB1)和信令无线承载3。
7.根据附记1所述的方法,其中,所述第一节点双连接到同一宿主节点或不同的宿主节点,所述第一F1AP信令所在的F1-C通道经由辅小区组(secondary cell group,SCG)链路,所述失败信息是MCG失败信息。
8.根据附记1所述的方法,其中,所述第一F1AP信令还包括第一指示信息,所述第一指示信息用于指示所述F1终结节点是否为消息目的节点。
9.根据附记1所述的方法,其中,不同类型的F1终结节点对应的第一F1AP信令不同。
10.根据附记1所述的方法,其中,所述方法还包括:
所述第一节点接收所述F1终结节点发送或转发的失败恢复信息,所述失败恢复信息通过第二F1AP信令承载。
11.根据附记10所述的方法,其中,所述失败恢复信息是切换命令、RRC重配置消息、RRC连接释放消息中的至少一种。
12.一种信息处理方法,其特征在于,所述方法包括:
第一节点的F1终结节点接收所述第一节点发送的失败信息,所述失败信息通过第一F1AP信令承载;
所述F1终结节点解析或转发所述失败信息。
13.根据附记12所述的方法,其中,所述方法还包括:
所述F1终结节点向所述第一节点发送或转发失败恢复信息,所述失败恢复信息通过第二F1AP信令承载。
14.根据附记13所述的方法,其中,所述方法还包括:
所述F1终结节点收到第三网络设备发送的第二指示信息和所述失败恢复信息,所述第二指示信息用于指示所述F1终结节点将收到的所述失败恢复信息通过所述第二F1AP信令转发给所述第一节点。
15.根据附记12所述的方法,其中,在所述F1终结节点是辅节点时,将所述失败信息转发给主节点。
16.根据附记12所述的方法,其中,所述第一F1AP信令还包括第一指示信息,所述第一指示信息用于指示所述F1终结节点是否为消息目的节点。
17.根据附记16所述的方法,其中,所述F1终结节点根据所述第一指示信息确定解析所述失败信息或转发所述失败信息。
18.根据附记12所述的方法,其中,不同类型的F1终结节点对应的第一F1AP信令不同。
19.一种信息处理方法,其特征在于,所述方法包括:
第一节点接收其第一小区组对应的父节点发送的第二类型回传无线链路失败指示信息;
在所述第一节点的第一信令无线承载被配置成分裂的信令无线承载,且所述第一信令无线承载的PDCP实体的主路径指向所述第一小区组时,所述第一节点将所述信令无线承载的主路径设置为指向与所述第一小区组不同的第二小区组。
20.根据附记19所述的方法,其中,所述第一节点的第一信令无线承载没有被配置PDCP重复传输。
21.根据附记19所述的方法,其中,所述第二类型回传无线链路失败指示信息是所述父节点在检测到无线链路失败时发送的。
22.根据附记19至21任一项所述的方法,其中,所述方法还包括:
所述第一节点接收所述父节点发送的第三类型回传无线链路失败指示信息;
所述第一节点将所述主路径设置为指向所述第一小区组。
23.根据附记22所述的方法,其中,所述第三类型回传无线链路失败指示信息是所述父节点在RLF恢复成功时发送的。
24.一种信息发送方法,其特征在于,所述方法包括:
第一节点接收第一小区组对应的父节点发送的第二类型回传无线链路失败指示信息;
所述第一节点在对应第二小区组的信令无线承载上向所述第二小区组连接的网络设备发送第一RRC消息或通过第一F1AP信令向F1终结节点发送第一RRC消息。
25.根据附记24所述的方法,其中,所述第一节点双连接到同一宿主节点或不同的宿主节点。
26.根据附记24所述的方法,其中,所述第一节点将对应第一小区组的信令无线承载上的所述第一RRC消息迁移至对应所述第二小区组的信令无线承载上发送。
27.根据附记26所述的方法,其中,所述对应第一小区组的信令无线承载没有被配置成分裂的信令无线承载。
28.根据附记24所述的方法,其中,所述第一RRC消息包括测量信息、失败信息、辅助信息、重建立完成信息中的至少一种;或者,包括NAS信息或非3GPP专用信息。
29.根据权利要求26所述的方法,其中,所述第一RRC消息被携带在第二RRC消息中。
30.根据权利要求24所述的方法,其中,所述第一F1AP信令是UE关联F1AP信令。
31.根据权利要求24所述的方法,其中,所述第一F1AP信令是非UE关联F1AP信令。
32.根据附记24所述的方法,其中,所述第一F1AP信令用于上行RRC消息传递。
33.根据附记31所述的方法,其中,所述第一F1AP信令还包括信令无线承载标识、交易标识中的至少一种信息。
34.根据附记24所述的方法,其中,所述第一F1AP信令还包括第一指示信息,所述第一指示信息用于指示所述F1终结节点是否为消息目的节点。
35.根据附记24所述的方法,其中,不同类型的F1终结节点对应的第一F1AP信令不同。
36.根据附记24所述的方法,其中,所述第二类型回传无线链路失败指示信息是所述父节点在检测到回传无线链路失败时发送的。
37.根据附记24所述的方法,其中,所述方法还包括:
所述第一节点接收网络设备发送的路径重选择方法配置信息,所述路径重选择方法配置信息用于指示所述第一节点在对应第二小区组的信令无线承载上发送第一RRC消息还是通过第一F1AP信令发送第一RRC消息。
38.根据附记24所述的方法,其中,所述方法还包括:
所述第一节点接收所述父节点发送的第三类型回传无线链路失败指示信息;
所述第一节点在所述第一小区组的信令无线承载上发送所述第一RRC消息。
39.根据附记24所述的方法,其中,所述第三类型回传无线链路失败指示信息是所述父节点在RLF恢复成功时发送的。
40.一种信息发送方法,其特征在于,所述方法包括:
第二网络设备接收第一节点在对应第二小区组的信令无线承载上发送RRC的消息或者通过第一F1AP信令发送的第一RRC消息;
所述第二网络设备向第一网络设备转发所述第一RRC消息。
41.根据附记40所述的方法,其中,在所述第二网络设备是所述第一节点的主网络设备,所述第一网络设备是所述第一节点的辅网络设备时,所述方法还包括:
所述第一网络设备发起RRC传递过程,所述第二网络设备接收所述第一网络设备发送的RRC回复消息。
42.一种信息发送方法,其特征在于,所述方法包括:
第一节点接收第一小区组对应的父节点发送的第三类型回传无线链路失败指示 信息;
所述第一节点在所述第一小区组的信令无线承载上发送第一RRC消息。
43.一种信息处理方法,其特征在于,所述方法包括:
第一节点接收其第一小区组对应的父节点发送的第三类型回传无线链路失败指示信息;
在所述第一节点的第一信令无线承载被配置成分裂的信令无线承载,且所述第一信令无线承载的PDCP实体的主路径指向所述第二小区组时,所述第一节点将所述主路径设置为指向所述第一小区组。
44.根据权利要求43所述的方法,其中,所述第三类型回传无线链路失败指示信息是所述父节点在RLF恢复成功时发送的。
45.一种信息处理方法,其特征在于,所述方法包括:
第一节点接收其第一小区组对应的父节点发送的第二类型回传无线链路失败指示信息;
所述第一节点将经过第一小区组链路的SRB挂起(suspend)。
46.根据权利要求45所述的方法,所述方法包括:
在经过所述第一小区链路(父节点链路)的SRB没有被配置成split SRB时,所述第一节点将所述SRB挂起。
47.根据权利要求45所述的方法,所述方法包括:
所述第一节点接收所述父节点发送的第三类型回传无线链路失败指示信息;
所述第一节点恢复(resume)经过第一小区组链路的挂起的SRB。
48.一种第一节点,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至11,19-39,42-47任一项所述的方法。
49.一种网络节点,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记12-18,40-41任一项所述的方法。
50.一种通信系统,包括:
第一节点,其执行如附记1至11,19-39,42-47任一项所述的方法。
51.一种通信系统,包括:
网络节点,其执行如附记12-18,40-41任一项所述的方法。

Claims (20)

  1. 一种信息发送装置,应用于第一节点,其特征在于,所述装置包括:
    第一处理单元,其连接了多个父节点,在主小区组(master cell group,MCG)发生无线链路失败;
    第一发送单元,其用于通过第一F1应用协议(F1AP)信令向所述第一节点的F1终结节点发送失败信息。
  2. 根据权利要求1所述的装置,其中,所述第一F1AP信令是非UE关联F1AP信令。
  3. 根据权利要求1所述的装置,其中,所述第一F1AP信令用于上行RRC消息传递。
  4. 根据权利要求1所述的装置,其中,所述第一节点没有被配置分裂的信令无线承载1和信令无线承载3。
  5. 根据权利要求1所述的装置,其中,所述第一节点双连接到同一宿主节点或不同的宿主节点,所述第一F1AP信令所在的F1-C通道经由辅小区组(secondary cell group,SCG)链路,所述失败信息是MCG失败信息。
  6. 一种信息处理装置,应用于第一节点,其特征在于,所述装置包括:
    第一接收单元,其接收其第一小区组对应的父节点发送的第二类型回传无线链路失败指示信息;
    第二处理单元,其在所述第一节点的第一信令无线承载被配置成分裂的信令无线承载,且所述第一信令无线承载的分组数据汇聚协议PDCP实体的主路径指向所述第一小区组时,将所述信令无线承载的主路径设置为指向与所述第一小区组不同的第二小区组。
  7. 根据权利要求6所述的装置,其中,所述第一节点的第一信令无线承载没有被配置PDCP重复传输。
  8. 根据权利要求6所述的装置,其中,所述第二类型回传无线链路失败指示信息是所述父节点在检测到回传无线链路失败时发送的。
  9. 根据权利要求6所述的装置,其中,所述装置还包括:
    第二接收单元,其接收所述父节点发送的第三类型回传无线链路失败指示信息;
    第三处理单元,其将所述主路径设置为指向所述第一小区组。
  10. 根据权利要求9所述的装置,其中,所述第三类型回传无线链路失败指示信息是所述父节点在回传RLF恢复成功时发送的。
  11. 一种信息发送装置,应用于第一节点,其特征在于,所述装置包括:
    第三接收单元,其接收第一小区组对应的父节点发送的第二类型回传无线链路失败指示信息;
    第二发送单元,其在对应第二小区组的信令无线承载上向所述第二小区组连接的网络设备发送第一RRC消息或通过第一F1AP信令向F1终结节点发送第一RRC消息。
  12. 根据权利要求11所述的装置,其中,所述第二发送单元将对应第一小区组的信令无线承载上的所述第一RRC消息迁移至对应所述第二小区组的信令无线承载上发送。
  13. 根据权利要求11所述的装置,其中,所述对应第一小区组的信令无线承载没有被配置成分裂的信令无线承载。
  14. 根据权利要求11所述的装置,其中,所述第一RRC消息包括测量信息、失败信息、辅助信息、重建立完成信息中的至少一种;或者,包括NAS信息或非3GPP专用信息。
  15. 根据权利要求12所述的装置,其中,所述第一RRC消息被携带在第二RRC消息中。
  16. 根据权利要求11所述的装置,其中,所述第一F1AP信令是非UE关联F1AP信令。
  17. 根据权利要求11所述的装置,其中,所述第一F1AP信令用于上行RRC消息传递。
  18. 根据权利要求11所述的装置,其中,所述第一F1AP信令还包括第一指示信息,所述第一指示信息用于指示所述F1终结节点是否为消息目的节点。
  19. 根据权利要求11所述的装置,其中,不同类型的F1终结节点对应的第一F1AP信令不同。
  20. 根据权利要求11所述的装置,其中,所述第二类型回传无线链路失败指示信息是所述父节点在检测到回传无线链路失败时发送的。
PCT/CN2021/110406 2021-08-03 2021-08-03 信息发送方法,信息处理方法以及装置 WO2023010298A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/110406 WO2023010298A1 (zh) 2021-08-03 2021-08-03 信息发送方法,信息处理方法以及装置
CN202180101109.2A CN117751678A (zh) 2021-08-03 2021-08-03 信息发送方法,信息处理方法以及装置
US18/419,705 US20240163951A1 (en) 2021-08-03 2024-01-23 Method for transmitting information, method for processing information and apparatuses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/110406 WO2023010298A1 (zh) 2021-08-03 2021-08-03 信息发送方法,信息处理方法以及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/419,705 Continuation US20240163951A1 (en) 2021-08-03 2024-01-23 Method for transmitting information, method for processing information and apparatuses thereof

Publications (1)

Publication Number Publication Date
WO2023010298A1 true WO2023010298A1 (zh) 2023-02-09

Family

ID=85155020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110406 WO2023010298A1 (zh) 2021-08-03 2021-08-03 信息发送方法,信息处理方法以及装置

Country Status (3)

Country Link
US (1) US20240163951A1 (zh)
CN (1) CN117751678A (zh)
WO (1) WO2023010298A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757398A (zh) * 2019-03-28 2020-10-09 华为技术有限公司 一种通信方法与装置
US20200351968A1 (en) * 2019-02-11 2020-11-05 Telefonaktiebolaget Lm Ericsson (Publ) Master cell group failure handling by a master node

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200351968A1 (en) * 2019-02-11 2020-11-05 Telefonaktiebolaget Lm Ericsson (Publ) Master cell group failure handling by a master node
CN111757398A (zh) * 2019-03-28 2020-10-09 华为技术有限公司 一种通信方法与装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Dual-parent IAB-node topology adaptation enhancement", 3GPP DRAFT; R2-2104879, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic meeting; 20210519 - 20210527, 11 May 2021 (2021-05-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052006622 *

Also Published As

Publication number Publication date
US20240163951A1 (en) 2024-05-16
CN117751678A (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
US20220132337A1 (en) Using alternative paths of descendant nodes for backhaul-link failure reporting in integrated access
CN111149419A (zh) 用于rrc恢复/暂停时的nr pdcp保留的方法和设备
WO2017173612A1 (zh) 数据传输方法、用户设备及接入网设备
WO2020088305A1 (zh) 一种通信方法、通信装置及系统
WO2022011496A1 (zh) 一种通信方法和通信装置
US20230354136A1 (en) Integrated access and backhaul communication method and apparatus
WO2021169412A1 (zh) 信息同步方法和装置、电子设备、计算机可读存储介质
US20230254729A1 (en) Migration method and apparatus for iab-node
WO2023010298A1 (zh) 信息发送方法,信息处理方法以及装置
EP3145221A1 (en) Methods, apparatuses, mobile communication system and computer programs for updating forwarding information
WO2023150968A1 (zh) 收发信号的方法、装置和通信系统
WO2023130260A1 (zh) Rrc消息的配置方法、装置和系统
WO2023010364A1 (zh) 集成的接入和回传的通信装置以及方法
WO2023019527A1 (zh) 针对无线链路失败的通信装置以及方法
US20230308975A1 (en) Group migration method and apparatus and system
WO2023150975A1 (zh) Iab宿主设备以及传输迁移回退方法
WO2022233008A1 (zh) 消息发送方法、装置和系统
WO2022205252A1 (zh) 发送和接收信号的方法、装置和通信系统
WO2023184542A1 (zh) 配置信息的方法、装置和通信系统
US20240015098A1 (en) Method and apparatus for transmitting and receiving signal and communication system
WO2023065109A1 (zh) 信息发送方法、信息接收方法、装置和系统
WO2023205941A1 (zh) 信息的发送、接收、配置方法以及装置和通信系统
WO2022082691A1 (zh) Iab网络的rlf恢复方法、装置以及相关设备
WO2022205485A1 (zh) 信息收发方法以及装置
WO2022236644A1 (zh) 发送和接收信号的方法、装置和通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952207

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180101109.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE