WO2021026906A1 - 通信方法、通信装置、计算机存储介质及通信系统 - Google Patents

通信方法、通信装置、计算机存储介质及通信系统 Download PDF

Info

Publication number
WO2021026906A1
WO2021026906A1 PCT/CN2019/100853 CN2019100853W WO2021026906A1 WO 2021026906 A1 WO2021026906 A1 WO 2021026906A1 CN 2019100853 W CN2019100853 W CN 2019100853W WO 2021026906 A1 WO2021026906 A1 WO 2021026906A1
Authority
WO
WIPO (PCT)
Prior art keywords
access network
network device
cell group
terminal
secondary cell
Prior art date
Application number
PCT/CN2019/100853
Other languages
English (en)
French (fr)
Inventor
王瑞
戴明增
曾清海
徐海博
赵旸
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/100853 priority Critical patent/WO2021026906A1/zh
Priority to CN201980098934.4A priority patent/CN114175842A/zh
Priority to EP19941378.2A priority patent/EP4017202A4/en
Publication of WO2021026906A1 publication Critical patent/WO2021026906A1/zh
Priority to US17/669,692 priority patent/US20220167445A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • This application relates to the field of communication, and in particular to a communication method, communication device, computer storage medium, and communication system.
  • Next generation (NG) communication systems can support shorter delays, larger bandwidths, and support a large number of connections.
  • DC dual connectivity
  • the use of dual connectivity (DC) technology enables the terminal to simultaneously obtain transmission resources from the master node (MN) and the secondary node (SN) located on the network side, thereby improving wireless Resource utilization, improve transmission rate.
  • MN master node
  • SN secondary node
  • the terminal when the terminal is configured for DC operation, the terminal needs to simultaneously monitor and transmit data on the two air interface links of the master cell group (MCG) and secondary cell group (SCG), which consumes a lot of energy.
  • MCG master cell group
  • SCG secondary cell group
  • the operating condition of the terminal changes, for example, in a low data rate state, if the terminal is always in the DC working mode, continuing to maintain the SCG link will cause high energy consumption between the terminal and the network side equipment.
  • the embodiments of the present application provide a communication method, a communication device, a storage medium, and a communication system, which can save the energy consumption of the terminal and the network side device in the DC communication process.
  • this application provides a communication method, including: receiving a deactivation indication from an access network device, the deactivation indication is used to indicate that a primary and secondary cell in a secondary cell group is in a deactivated state, wherein the The access network equipment is the primary node or secondary node of the terminal, the primary node manages the primary cell group, the secondary node manages the secondary cell group, and the primary cell group and/or secondary cell group are used for the Data communication of the terminal; performing a deactivation operation on the secondary cell group according to the deactivation instruction.
  • the communication method can be executed by the terminal or a chip for the terminal.
  • the terminal deactivates the secondary cell group according to the instructions of the primary node or the secondary node, thereby suspending the link communication of the secondary cell group, saving energy consumption on the terminal and the network side, and without performing secondary The node release process saves signaling overhead.
  • the performing a deactivation operation on the secondary cell group according to the deactivation instruction includes: determining that the primary and secondary cells are in a deactivated state according to the deactivation instruction.
  • the performing a deactivation operation on the secondary cell group according to the deactivation instruction includes:
  • the deactivation instruction it is determined that all the secondary cells except the primary and secondary cells are in a deactivated state, or it is determined that all the secondary cells are released.
  • the performing the deactivation operation on the secondary cell group according to the deactivation instruction includes: retaining the configuration of the secondary cell group.
  • the configuration of the secondary cell group may be used for dual connectivity communication between the secondary node and the terminal.
  • the configuration of the secondary cell group includes any one or a combination of the following information: a secondary cell group radio link control bearer configuration, and a packet data convergence protocol (Packet Data Convergence Protocol) that terminates the bearer of the secondary node Protocol, PDCP) or Service Data Adaptation Protocol (SDAP) configuration, primary and secondary cell configuration, secondary cell configuration, physical layer configuration of the secondary cell group, media access control of the secondary cell group) media access control, MAC) layer configuration, the security context of the secondary node.
  • Packet Data Convergence Protocol Packet Data Convergence Protocol
  • SDAP Service Data Adaptation Protocol
  • the terminal can directly use the previously retained configuration when it needs to reuse the secondary cell group link to transmit data, without performing the process of adding secondary nodes, and quickly restore the secondary cell group link, saving signaling overhead , Improve communication efficiency.
  • the performing a deactivation operation on the secondary cell group according to the deactivation instruction includes: suspending data transmission on a radio link control bearer of the secondary cell group.
  • the performing the deactivation operation on the secondary cell group according to the deactivation instruction includes: suspending data communication through the PDCP entity or the SDAP entity in the secondary node.
  • the PDCP/SDAP entity can be frozen or restored.
  • the performing a deactivation operation on the secondary cell group according to the deactivation instruction includes: suspending all or part of the physical layer operations of the primary and secondary cells.
  • the deactivating operation of the secondary cell group according to the deactivation instruction includes: suspending the radio link failure (radio link failure, RLF) of the primary and secondary cell ) Detect or suspend radio link monitoring (RLM) based on channel state information reference signal (channel state information-reference signal, CSI-RS).
  • RLF radio link failure
  • RLM radio link monitoring
  • the energy consumption of the terminal and the network side can be saved, and the link communication of the secondary cell can be suspended without performing the secondary node release process, thereby saving signaling overhead.
  • the performing a deactivation operation on the secondary cell group according to the deactivation instruction includes: wirelessly using the primary and secondary cell as a serving cell or a neighboring cell of the serving cell. Resource measurement.
  • the performing the deactivation operation on the secondary cell group according to the deactivation instruction includes: passing the measurement result of the measurement configured by the secondary node through the primary cell The group is sent to the primary node, and the measurement configured by the secondary node is configured through the signaling radio bearer configuration between the secondary node and the terminal.
  • One or more of the above deactivation operations can be implemented in any combination or single.
  • the method further includes: receiving, from the access network device, configuration parameters for the deactivated secondary cell group, where the configuration parameters include Power parameters.
  • this application provides a communication method, including: receiving an activation indication from an access network device, the activation indication being used to indicate that a primary and secondary cell in a secondary cell group is in an active state, wherein the access network The device is the primary node or secondary node of the terminal, the primary node manages the primary cell group, the secondary node manages the secondary cell group, and the primary cell group and/or secondary cell group is used for data communication of the terminal; The activation indication activates the secondary cell group.
  • the communication method can be executed by the terminal or a chip for the terminal.
  • the activating the secondary cell group according to the activation instruction includes: using a configuration of the secondary cell group that is reserved when the secondary cell group is deactivated Specifically, the configuration of the reserved secondary cell group may be used in the dual connectivity communication between the secondary node and the terminal.
  • the activating the group of secondary cells according to the activation instruction includes: determining that the primary and secondary cells are in an activated state according to the activation instruction.
  • the activating the group of secondary cells according to the activation indication includes: determining, according to the activation indication, that one or more secondary cells other than the primary and secondary cells are activated status.
  • the activating the secondary cell group according to the activation instruction includes: resuming data transmission on the radio link control bearer of the secondary cell group.
  • the activating the secondary cell group according to the activation instruction includes: resuming data communication through a PDCP entity or an SDAP entity in the secondary node.
  • the activating the secondary cell group according to the activation instruction includes: restoring the physical layer operation of the primary and secondary cells in the secondary cell group.
  • the activating the secondary cell group according to the activation instruction includes: restoring RLF detection of primary and secondary cells in the secondary cell group or restoring CSI-RS-based RLM .
  • the activating the secondary cell group according to the activation instruction includes: sending the measurement result of the measurement configured by the secondary node to the secondary cell group through the secondary cell group
  • the secondary node, the measurement of the configuration of the secondary node is configured through the signaling radio bearer configuration between the secondary node and the terminal.
  • the method further includes: receiving configuration parameters for the secondary cell group after activation from the access network device, the configuration parameters including the power of the terminal parameter.
  • the activating the secondary cell group according to the activation instruction includes: the terminal initiates random access on the primary and secondary cells.
  • the terminal activates the secondary cell group according to the instructions of the master node or the secondary node, and quickly restores the link communication of the secondary cell group without initiating the process of adding the secondary cell group, saving the terminal and the network side Energy consumption, save signaling overhead, and improve communication efficiency.
  • this application provides a communication method, including: a first access network device determines to deactivate a secondary cell group, the first access network device is a primary node or a secondary node of a terminal, and the primary node manages Primary cell group, the secondary node manages the secondary cell group, the primary cell group and/or secondary cell group is used for data communication of the terminal; the first access network device sends deactivation to the terminal Indication, the deactivation indication is used to indicate that the primary and secondary cells in the secondary cell group are in a deactivated state.
  • the first access network device determining to deactivate the secondary cell group includes: the first access network device according to the auxiliary information provided by the terminal, the The data transmission activity of the terminal in the first access network device, and any one or more of the auxiliary information provided by the second access network device determines to deactivate the secondary cell group.
  • the second access network device is a secondary node; or when the first access network device is a secondary node, the second access network device The device is the master node.
  • the first access network device determining to deactivate the secondary cell group includes: the first access network device suspends the radio link control bearer of the secondary cell group Data transfer.
  • the first access network device determining to deactivate the secondary cell group includes: the first access network device suspends passing PDCP in the first access network device
  • the entity or SDAP entity processes the data of the terminal.
  • the first access network device Determining the deactivation of the secondary cell group includes: the first access network device sends the downlink data processed by the PDCP entity or the SDAP entity to the second access network device, so that the second access network device passes through the primary cell
  • the group bearer sends the downlink data to the terminal, and/or the first access network device receives the uplink data from the second access network device, and after processing it by the PDCP entity or SDAP entity, The uplink data is sent to the core network.
  • the method further includes: The first access network device respectively instructs the second access network device and the terminal to suspend transmission of data terminated on the bearer of the secondary node through the primary cell group radio link control bearer.
  • the determining by the first access network device to deactivate the secondary cell group includes: the first access network device suspends all or part of the transmission in the primary and secondary cells.
  • the method further includes: the first access network device sends instruction information to the second access network device, where the instruction information is used to indicate the secondary cell group Has been deactivated.
  • the indication information is used to instruct the second access network device to deactivate and terminate the secondary cell group radio link control bearer corresponding to the bearer of the primary node. Data transmission tunnel.
  • the sending of the deactivation instruction by the first access network device to the terminal includes: the first access network device sends the deactivation instruction to the terminal through the second access network device. Send the deactivation instruction.
  • the primary node or secondary node decides to deactivate the secondary cell group and instructs the terminal to perform the deactivation operation, so that the link communication of the secondary cell group can be quickly suspended, and the energy consumption of the network side and the terminal can be saved. And there is no need to initiate a secondary node release process, saving signaling overhead.
  • the present application provides a communication method, including: a first access network device determines to activate a secondary cell group in an inactive state, the first access network device is a primary node or a secondary node of a terminal, and The primary node manages the primary cell group, the secondary node manages the secondary cell group, and the primary cell group and/or secondary cell group are used for data communication of the terminal; the first access network device sends the The terminal sends an activation indication, where the activation indication is used to indicate that the primary and secondary cells in the secondary cell group are in an activated state.
  • the determining by the first access network device to activate the secondary cell group includes: the first access network device according to the auxiliary information provided by the terminal, the terminal Any one or more of the data transmission activity of the first access network device and the auxiliary information provided by the second access network device determines to activate the secondary cell group.
  • the determining by the first access network device to activate the secondary cell group includes: the first access network device recovers the radio link control bearer of the secondary cell group data transmission.
  • the determining by the first access network device to activate the secondary cell group includes: the first access network device resumes passing through the PDCP entity in the first access network entity Or the SDAP entity performs data communication with the terminal.
  • the method further includes: The first access network device respectively instructs the second access network device and the terminal to resume transmission of the data terminated on the bearer of the secondary node through the primary cell group radio link control bearer.
  • the determining by the first access network device to activate the secondary cell group includes: the first access network device resumes transmitting the first access in the primary and secondary cell The signal transmitted between the networked device and the terminal.
  • the first access network device sends indication information to the second access network device, where the indication information is used to indicate that the secondary cell group has been activated.
  • the indication information is used to instruct the second access network device to activate and terminate the interface corresponding to the secondary cell group radio link control bearer corresponding to the bearer of the primary node.
  • the sending of the activation instruction by the first access network device to the terminal includes: the first access network device sends to the terminal through the second access network device The activation indication.
  • the primary node or secondary node decides to activate the secondary cell group, and instructs the terminal to perform the activation operation, so that the link communication of the secondary cell group can be quickly restored, and the energy consumption of the network side and the terminal is saved without the need Initiate the process of adding auxiliary nodes to save signaling overhead.
  • the deactivation indication or activation indication in the above aspects may be included in the physical layer signaling, or included in the MAC control element (control element, CE), or included in the radio resource control (radio resource control, RRC) message in.
  • CE control element
  • RRC radio resource control
  • the deactivation indication may be one or more bits in the MAC CE.
  • the deactivation indication corresponds to the serving cell identity of the primary and secondary cell.
  • the MAC CE not only includes an indication indicating that the primary and secondary cells are in the deactivated state, but also can be used to indicate the activation or deactivation state of other secondary cells. Each secondary cell has a corresponding bit in the MAC CE. Bit.
  • embodiments of the present application provide a communication device, which has a function of implementing the behavior of the terminal in the communication method shown in the first aspect or the second aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or means corresponding to the above-mentioned functions.
  • the device includes a processor configured to support the device to perform the corresponding functions of the terminal in the communication method shown above.
  • the device may also include a memory, which may be coupled with the processor, which stores program instructions and data necessary for the device.
  • the device further includes a transceiver, and the transceiver is used to support communication between the device and network elements such as relay equipment and access network equipment.
  • the transceiver may be an independent receiver, an independent transmitter, or a transceiver with integrated transceiver functions.
  • the communication device may be a terminal, or a component that can be used in a terminal, such as a chip or a chip system or a circuit.
  • embodiments of the present application provide a communication device, which has a function of implementing the behavior of the access network device in the communication method shown in the third or fourth aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or means corresponding to the above-mentioned functions.
  • the device includes a processor configured to support the device to perform corresponding functions of the access network device in the communication method shown above.
  • the device may also include a memory, which may be coupled with the processor, which stores program instructions and data necessary for the device.
  • the communication device may be an access network device, such as a base station, or a component that can be used in an access network device, such as a chip or a chip system or circuit.
  • the device further includes a transceiver, which may be used to support communication between the access network device and the terminal, and send the information or instructions involved in the above communication method to the terminal.
  • the transceiver may be an independent receiver, an independent transmitter, or a transceiver with integrated transceiver functions.
  • an embodiment of the present application provides a communication system, including a first access network device as a master node, a second access network device as a secondary node, and a terminal.
  • the terminal can simultaneously access the first access network device and the second access network device.
  • an embodiment of the present application provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the instructions run on a computer, the computer executes any of the foregoing Communication method.
  • embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the communication method described in any of the foregoing aspects.
  • FIG. 1 is a schematic diagram of a communication system 100 provided by an embodiment of the present application.
  • Figure 2(a) is a schematic diagram of an NR-NR dual connection scenario provided by an embodiment of the present application
  • Figure 2(b) is a schematic diagram of an LTE-NR dual connection scenario provided by an embodiment of the present application.
  • Figure 2(c) is a schematic diagram of an LTE-NR dual connection scenario provided by an embodiment of the present application.
  • Figure 2(d) is a schematic diagram of an LTE-NR dual connection scenario provided by an embodiment of the present application
  • Fig. 3(a) is a schematic diagram of a dual-connection wireless protocol architecture provided by an embodiment of the present application.
  • Figure 3(b) is a schematic diagram of a dual-connected wireless protocol architecture provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a MAC CE provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a signaling flow of a communication method provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the signaling flow of a communication method provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device 1100 provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication device 1200 provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a terminal 1300 provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a base station 1400 according to an embodiment of the present application.
  • Fig. 1 is a schematic diagram of a communication system 100 provided by an embodiment of the present application.
  • the terminal 130 supports dual connectivity (DC), and the access network device 110 and the access network device 120 jointly provide data transmission services for the terminal 130.
  • the access network device 110 is the master node (Master Node). , MN), and the access network device 110 is a secondary node (secondary node, SN).
  • the MN 110 and the Core Network (CN) 140 have a control plane connection or a user plane connection; the SN 120 and the core network 140 can have a user plane connection or no user plane connection.
  • S1-U stands for user plane connection
  • S1-C stands for control plane connection.
  • the user plane connection between the MN 110 and the core network 140 and the user plane connection between the SN 120 and the core network 140 may exist at the same time, or only any one of them may exist.
  • the data of the terminal 130 can be offloaded to the SN 120 by the MN 110 at the packet data convergence protocol (PDCP) layer.
  • PDCP packet data convergence protocol
  • the data of the terminal 130 can be offloaded to the MN 110 by the SN 120 at the PDCP layer.
  • the above MN can be called a primary base station or a primary access network device, and the SN can also be called a secondary base station or a secondary access network device.
  • the terminal 130 may be various types of devices that provide users with voice and/or data connectivity, such as a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal can communicate with the core network via an access network, such as a radio access network (RAN), and exchange voice and/or data with the RAN.
  • the terminal may refer to user equipment (UE), wireless terminal, mobile terminal, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station ( remote station, access point (AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user device) Wait.
  • the terminal 130 may include mobile phones (or “cellular” phones), computers with mobile terminals, portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices, and smart wearable devices.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • smart bracelets smart watches and other equipment.
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • the terminal 130 may also be a drone device.
  • the chip applied in the above-mentioned device may also be called a terminal.
  • the communication system in this application may be a long term evolution (LTE) wireless communication system, or a fifth generation (5G) mobile communication system such as a new radio (NR) system, or other Other next generation (NG) communication systems, etc., are not limited in this application.
  • LTE long term evolution
  • 5G fifth generation
  • NR new radio
  • NG next generation
  • the access network device 110 and the access network device 120 may be base stations defined by the 3rd generation partnership project (3GPP).
  • 3GPP 3rd generation partnership project
  • it can be the base station equipment in the LTE system, that is, evolved NodeB (eNB/eNodeB); it can also be the access network side equipment in the NR system, including gNB, transmission point (trasmission/reception point, TRP). )Wait.
  • the aforementioned access network device 110 or access network device 120 may be composed of a centralized unit (CU) and a distributed unit (DU), where the CU may also be referred to as a control unit (control unit), Using the CU-DU structure, the protocol layer of the base station can be separated, part of the protocol layer functions are placed under the centralized control of the CU, and some or all of the protocol layer functions are distributed in the DU, and the CU is centrally controlled by the DU.
  • CU centralized unit
  • DU distributed unit
  • control unit control unit
  • Radio Resource Control Radio Resource Control
  • service data adaptation protocol Service Data Adaptation Protocol, SDAP
  • packet data convergence protocol Packet Data Convergence Protocol
  • PDCP Packet Data Convergence Protocol
  • CU and DU are connected through F1 interface.
  • CU stands for gNB to connect to the core network through the NG interface.
  • the CU may also adopt a structure in which a control plane (control plane) entity and a user plane (UP) entity are separated, and one control plane entity manages multiple user plane entities.
  • control plane control plane
  • UP user plane
  • one gNB may have one gNB-CU-CP, multiple gNB-CU-UPs, and multiple gNB-DUs.
  • One gNB-CU-CP connects to multiple gNB-CU-UPs through the E1 interface
  • one gNB-CU-CP can connect to multiple gNB-DUs through the F1-C interface
  • one gNB-DU can connect to multiple gNB-DUs through the F1-U interface gNB-CU-UP.
  • the LTE eNB may also be called an eLTE eNB.
  • the eLTE eNB is an evolved LTE base station equipment based on the LTE eNB, and can be directly connected to the 5G CN.
  • the eLTE eNB also belongs to the base station equipment in the NR.
  • the access network device 101 or the access network device 102 may also be a wireless terminal (wireless terminal, WT), such as an access point (AP) or an access controller (AC), or other devices with a terminal , and network devices with core network communication capabilities, such as relay devices, vehicle-mounted devices, smart wearable devices, etc.
  • WT wireless terminal
  • AP access point
  • AC access controller
  • network devices with core network communication capabilities such as relay devices, vehicle-mounted devices, smart wearable devices, etc.
  • the embodiments of this application do not limit the types of network devices.
  • Dual connectivity can be implemented between access network devices of the same standard.
  • both MN110 and SN120 are NR gNB, and there is an Xn interface between MN110 and SN120.
  • There is an NG interface between MN110 and NGC at least there is a control plane connection, and there may be a user plane connection;
  • there is an NG-U interface between SN120 and 5GC that is, there can only be a user plane connection.
  • NGC may include functional entities such as core access and mobility management function (AMF) network elements and user plane function (UPF) network elements.
  • AMF core access and mobility management function
  • UPF user plane function
  • Dual connectivity can also be implemented between different access network devices, which can be called Multi-RAT DC (MR-DC).
  • MN and SN use different radio access technologies (radio access tenology, RAT). ).
  • the multi-RAT DC (MR-DC) architecture supports multiple bearer types. Different types of bearers can be distinguished by using the MN or SN as the anchor point at the Packet Data Convergence Protocol (PDCP) layer. And the bearer types can be switched.
  • dual connectivity can be implemented in the scenario of LTE and NR joint networking, called LTE-NR dual connectivity, so that the terminal can simultaneously obtain wireless resources from the LTE and NR air interfaces for data transmission, and obtain a gain in transmission rate.
  • the LTE-NR dual connectivity can include the following three architectures, which are described below with reference to Figure 2(b), Figure 2(c) and Figure 2(d) respectively.
  • FIG. 2(b) is a schematic diagram of an LTE-NR dual connection scenario provided by an embodiment of the application.
  • LTE eNB serves as MN
  • NR gNB serves as SN.
  • EPC evolved Packet Core
  • FIG. 2(c) is a schematic diagram of another LTE-NR dual connection scenario provided by an embodiment of the application.
  • the difference from Figure 2(b) is that NR gNB is used as the anchor point, and the NR gNB is connected to the NGC, and the NR gNB is used as the MN.
  • LTE eNB as an SN, has an NG-U interface with NGC, which only establishes user plane connections for terminals.
  • FIG. 2(d) is a schematic diagram of another LTE-NR dual connection scenario provided by an embodiment of this application. It uses the LTE eNB as the anchor as in Figure 2(b), and the difference is that the LTE eNB accesses the NGC. That is, as the MN, the LTE eNB has an NG interface with the NGC, which can establish a control plane connection and a user plane connection for the terminal; the NR gNB, as an SN, has an NG-U interface with the NGC, which only establishes a user plane connection for the terminal.
  • the SN and the core network may not establish a user plane connection, but transmit data via the MN.
  • the terminal data arrives at the MN first, and the MN splits the terminal data at the PDCP layer
  • the form of the offloaded data is, for example, a PDCP protocol data unit (Protocol Data Unit, PDU).
  • PDU Protocol Data Unit
  • the data radio bearer (DRB) established by the terminal and the access network side can be independently provided by the MN or the SN, or can be provided by the MN and the SN at the same time.
  • the bearer provided by the MN is called the master cell group bearer (MCG bearer), where MCG includes at least one cell managed by the MN for providing air interface transmission resources for the terminal;
  • the bearer provided by the SN is called the secondary cell Group bearer (secondary cell group bearer, SCG bearer), where the SCG includes at least one SN-managed cell used to provide air interface transmission resources for the terminal.
  • the bearer provided by the MN and SN at the same time is called a split bearer.
  • the cell When there is only one cell in the MCG, the cell is the primary cell (PCell) of the terminal. When there is only one cell in the SCG, the cell is the primary and secondary cell (PSCell) of the terminal.
  • PCell and PSCell can be collectively referred to as a special cell (SpCell).
  • SpCell When there are multiple cells in the MCG or SCG, all cells other than SpCell may be called secondary cells (SCell).
  • SCells and SpCells in each cell group perform carrier aggregation (carrier aggregation, CA) to jointly provide transmission resources for the terminal.
  • the PSCell belongs to the cells of the SCG, and the UE is instructed to perform random access or initial PUSCH transmission.
  • the SCell is a cell working on the secondary carrier. Once the RRC connection is established, the SCell may be configured to provide additional radio resources.
  • FIG. 3(a) and FIG. 3(b) are respectively schematic diagrams of a dual-connection wireless protocol architecture provided by an embodiment of the application.
  • the bearer when the bearer is only provided by the MN, that is, when the data flow is only flowed from the core network to the MN, the bearer is an MCG bearer.
  • the bearer when the bearer is only provided by the SN, that is, when the data stream is only flowed from the core network to the SN, the bearer is an SCG bearer.
  • the bearer When the bearer is provided by both the MN and the SN, that is, when the data stream is split between the MN or the SN, the bearer is a split bearer.
  • the split bearer in the MN can be called MCG split bearer ( Figure 3(a))
  • the split bearer in the SN can be called the SCG split bearer (as shown in Figure 3(b)).
  • each bearer type has corresponding PDCP layer processing and RLC layer processing.
  • SCG bearer/SCG split bearer corresponds to SCG RLC bearer and SN terminated PDCP bearer.
  • the bearers in DC can be divided into the following types, including: MCG bearer terminated at MN (MN terminated MCG bearer), SCG bearer terminated at MN (MN terminated SCG bearer), Terminate the split bearer in the MN (MN terminated split bearer), terminate the MCG bearer in the SN (SN terminated MCG bearer), terminate the SCG bearer in the SN (SN terminated SCG bearer), and terminate the split bearer in the SN (SN terminated split bearer) ), where the PDCP entity is established in the MN for the bearer that terminates in the MN, and the user plane connection with the core network is terminated in the MN, that is, the MN is used as the anchor; for the bearer that is terminated in the SN, the PDCP entity is established in the SN , The user plane connection with the core network is terminated at the SN, that is, the SN is the anchor point.
  • MN terminated MCG bearer MN terminated MCG bearer
  • the bearer terminates at the MN or the SN indicates whether the data transmission with the core network is performed through the MN or the SN.
  • the MCG or SCG is provided.
  • the MN terminated SCG bearer the downlink issued by the core network
  • all the data is transferred to the RLC layer and the MAC layer of the SN for further processing and sent to the terminal through the SCG; correspondingly, the uplink data sent by the terminal is processed by the MAC layer and the RLC layer of the SN and all transferred to the MN.
  • the PDCP layer processes and sends to the core network device through the interface between the MN and the core network.
  • the downlink data sent by the core network is processed by the PDCP layer of the MN, and part of the data is transferred to the SN and sent to the terminal through the SCG, while the rest is still sent by the MN to the terminal through the MCG; correspondingly, the terminal sends Part of the uplink data is sent to the MN through MCG, and the other part is sent to the SN through SCG.
  • the two parts of data are aggregated to the PDCP layer of the MN for processing and sent to the core network device through the interface between the MN and the core network.
  • the network side can configure the terminal 130 to release the DC operation.
  • the network side can configure the DC operation for the terminal 130 again.
  • the SN release process is used for the terminal 130 to release the DC operation
  • the SN addition process is used for the terminal 130 to add SN120 or other access network equipment as SN
  • Due to the SN increase and SN release The process involves the exchange of multiple pieces of information between MN110 and SN120/other access network equipment, and MN110 needs to reconfigure the UE on the air interface, which brings additional signaling overhead and delay, and reduces communication efficiency.
  • the embodiment of this application defines the one-way communication link from the access network to the terminal as the downlink, the data transmitted on the downlink is the downlink data, and the transmission direction of the downlink data is called the downlink direction; and the one from the terminal to the access network
  • the unidirectional communication link is the uplink, and the data transmitted on the uplink is the uplink data, and the transmission direction of the uplink data is called the uplink direction.
  • the resources described in the embodiments of the present application may also be referred to as transmission resources, including one or more of time domain resources, frequency domain resources, and code channel resources, and may be used to carry data in the uplink communication process or the downlink communication process. Or signaling.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean that B is determined only according to A, and B can also be determined according to A and/or other information.
  • connection appearing in the embodiments of this application refers to various connection modes such as direct connection or indirect connection to realize communication between devices, which is not limited in the embodiments of this application.
  • transmission in the embodiments of this application refers to two-way transmission, including sending and/or receiving actions.
  • transmission in the embodiments of the present application includes the sending of data, the receiving of data, or the sending of data and the receiving of data.
  • the data transmission here includes uplink and/or downlink data transmission.
  • Data may include channels and/or signals.
  • Uplink data transmission means uplink channel and/or uplink signal transmission
  • downlink data transmission means downlink channel and/or downlink signal transmission.
  • the services appearing in the embodiments of this application refer to the communication services obtained by the terminal from the network side, including control plane services and/or data plane services, such as voice services, data traffic services, and so on.
  • the sending or receiving of a service includes the sending or receiving of service-related data (data) or signaling (signaling).
  • the terminal and/or the access network device can perform some or all of the steps in the embodiments of the present application. These steps or operations are only examples. In the embodiments of the present application, other operations may also be performed. Or the deformation of various operations. In addition, each step may be executed in a different order presented in the embodiment of the present application, and it may not be necessary to perform all the operations in the embodiment of the present application.
  • the present application provides a communication method, which can be used in the DC communication architecture shown above.
  • the method may be implemented by a terminal or a device for the terminal, such as a chip.
  • the terminal executes the communication method as an example for description.
  • the method includes:
  • the terminal receives a deactivation (deactivation) indication from the access network device, where the deactivation indication is used to indicate that the PScell in the SCG is in a deactivated state.
  • the access network device is the MN or SN of the terminal, the master node manages the MCG, the secondary node manages the SCG, and the MCG and/or SCG are used for data communication of the terminal.
  • the terminal is in the DC communication process. Specifically, the terminal supports DC communication, the terminal first accesses the MN, and the MN determines to add an SN for DC communication. In the DC communication process, the terminal can perform data transmission with the MN and/or SN through different types of radio bearers.
  • the MN and the SN may respectively provide air interface transmission resources for data transmission between the terminal and the core network.
  • the communication method provided in this application can be applied to any DC architecture, and there are no restrictions on the types of MN and SN.
  • MN and SN can be access network equipment of the same standard (RAT), for example, both MN and SN are gNB It may also be an access network device of a different standard, for example, MN is eNB and SN is gNB.
  • the deactivation instruction described in this application may also be referred to as a deactivation command (command).
  • Deactivation may mean that the terminal temporarily stops data transmission through the communication link of the SCG, but the terminal retains or stores part or all of the configuration of the SN to quickly restore the communication link of the SCG.
  • the PScell being in the deactivated state means that the configuration of the PScell can be retained but the data transmission through the PScell is suspended.
  • deactive/deactivation may also be called suspend/suspension or hibernation.
  • the deactive state (deactived state) may also be referred to as a suspended state, a dormant state, or an inactive state.
  • the deactivation instruction is included in a media access control (MAC) control element (CE), and the deactivation instruction is the MAC CE One or more bits in.
  • the MAC CE may be a MAC CE used to indicate the activation/deactivation status of the SCell, or a MAC CE specially designed for the deactivation indication.
  • the specially designed MAC CE corresponds to an independent logical channel identifier (Logical Channel Identity, LCID).
  • the SCell refers to a secondary cell managed by the MN or SN other than the PSCell.
  • the reserved bit in the MAC CE may be used as the deactivation indication; or The bit corresponding to the serving cell ID (serving cell ID) or the serving cell index (index) of the PScell is used as the deactivation indication.
  • One or more bits in the MAC CE except for reserved bits may be used to indicate the activation/inactivation status of one or more corresponding SCells.
  • FIG. 5 is a schematic diagram of a 4-byte MAC CE format.
  • the MAC CE includes 1 reserved bit (represented as R in the figure) and 31 activation/deactivation bits.
  • the network side can provide the UE with a PSCell configuration through a radio resource control (Radio Resource Control, RRC) message, which includes the PSCell's serving cell identifier or index (ServCellIndex).
  • RRC Radio Resource Control
  • the network side may also provide the UE with the configuration of the SCell through the radio resource control message, which includes the corresponding relationship between the SCell identifier and the index indicating the SCell.
  • RRC Radio Resource Control
  • component carriers component carriers
  • the terminal when the terminal receives the MAC CE containing the deactivation indication, and the terminal reads that the PSCell is in the deactivated state, the terminal defaults that all SCells of the SCG are also in the deactivated state, without reading the bits corresponding to each SCell Bit.
  • the terminal if the terminal reads that the PSCell is in the deactivated state, it defaults that all SCells of the SCG have been released, and the RRC entity of the terminal releases the configuration of the SCell.
  • the deactivation instruction may also be included in other messages/signaling sent by the access network device to the terminal, and the message/signaling may be an existing or newly-added message/signaling, for example, It is an RRC message, or physical layer signaling such as downlink control information (DCI).
  • the deactivation indication may be added to the RRC reconfiguration message, or the special value in the existing message or information element may be reused.
  • S402 The terminal performs a deactivation operation on the secondary cell group according to the deactivation instruction.
  • the terminal may perform any one or more of the following operations:
  • Operation 1 The terminal retains the configuration of the SCG.
  • the SCG configuration may be SCG RRC configuration.
  • the configuration may include any one or a combination of the following information: secondary cell group radio link control bearer (SCG RLC bearer) configuration, PDCP configuration or service data adaptation protocol (service data adaptation protocol) terminated on the SN bearer protocol, SDAP) configuration, the PSCell configuration, the configuration of other Scells except the PSCell, the physical layer configuration of the SCG, the MAC layer configuration of the SCG, and the security context of the SN.
  • SCG RLC bearer secondary cell group radio link control bearer
  • PDCP configuration or service data adaptation protocol (service data adaptation protocol) terminated on the SN bearer protocol, SDAP) configuration
  • PSCell configuration the configuration of other Scells except the PSCell
  • the physical layer configuration of the SCG the MAC layer configuration of the SCG
  • the security context of the SN the security context of the SN.
  • the security context of the SN may include one or a combination of the following information: secondary base station key (secondary key), SN integrity protection key, SN encryption key, SN integrity protection algorithm, SN Encryption algorithm, secondary base station secret key derivative parameters, such as secondary cell group counter (SCG counter) or secondary key counter (secondary key counter, SK counter).
  • secondary base station key secondary key
  • SCG counter secondary cell group counter
  • secondary key counter secondary key counter
  • Operation 2 The terminal determines that the primary and secondary cells are in the deactivated state according to the deactivation instruction.
  • the terminal after receiving the deactivation instruction, the terminal reads the content of the instruction indicating that the PScell is in the deactivated state, and the PSCell can be defaulted to be in the deactivated state.
  • the terminal may also default that SCells of other SCGs except for the PSCell are also in a deactivated state.
  • Operation 3 The terminal suspends the SCG RLC bearer associated with the SN's bearer.
  • the SN bearer is a bearer established between the terminal and the SN, and can be any type of bearer that uses the air interface transmission resources of the SN, including SN terminated bearer and/or MN terminated bearer, where: SN terminated bearer can be SN terminated SCG bearer or SN terminated split beamer; MN terminated bearer can be MN terminated split bearer or MN terminated SCG bearer.
  • the suspending of the SCG RLC bearer may include not passing/suspending the SCG RLC bearer for data transmission, or that the terminal suspends the use of SN air interface transmission resources.
  • notify the PDCP entity corresponding to the SCG RLC bearer that is, PDCP belonging to the same DRB/Logical Channel (LC)) not to continue sending downlink data to the RLC entity of the SCG RLC bearer.
  • the PDCP entity performs a recovery (recovery) operation.
  • the terminal does not use SCG RLC bearer to transmit data through any one of the following methods or a combination of multiple methods:
  • Method 1 Freeze the RLC entity. That is, only the RLC action is stopped, SCG RLC re-establishment is not performed, and the RLC entity is not deleted.
  • Method 2 If the bearer corresponding to the SCG RLC bearer is split bearer, then the primary cell group RLC bearer (MCG RLC bearer) corresponding to the split beaer is set as the primary path, and the shunt threshold is set to infinity, then Subsequent uplink data can be transmitted through the MCG RLC bearer.
  • MCG RLC bearer primary cell group RLC bearer
  • Manner 3 Perform a bearer type change. For example, when the bearer type corresponding to the SCG RLC bearer is split bearer or SCG bearer, the bearer type is changed to MCG bearer, and the MN's air interface transmission resources are used to transmit terminal data.
  • the RLC entity and/or LCID of the SCG RLC bearer is not deleted at this time, but the SCG RLC bearer is in the suspended state by default. It can be understood that the change of the bearer type at this time is a virtual change, which is different from deleting the SCG RLC bearer when the traditional bearer type changes.
  • the terminal no longer uses the air interface transmission resources of the SN, the user plane connection with the core network can still be maintained on the SN.
  • Operation 4 The terminal suspends the PDCP/SDAP entity of the SN, that is, does not perform data processing and data transmission through the PDCP/SDAP entity of the SN.
  • the PDCP/SDAP entity of the SN may be the PDCP/SDAP entity of the SN terminated bearer. Specifically, suspending the PDCP/SDAP entity can be implemented by freezing PDCP/SDAP or PDCP/SDAP recovery (recovery). It can be understood that the PDCP/SDAP entity of the SN can be shared with the MN or used independently by the SN, which is not limited.
  • the PDCP/SDAP entity of the SN may also be referred to as the PDCP/SDAP entity terminated on the SN or the PDCP/SDAP entity terminated on the bearer of the SN.
  • the terminal suspends the PDCP/SDAP entity of the above SN after suspending the SCG RLC bearer, so that data transmission is suspended on the entire SN terminated bearer.
  • the terminal only suspends the PDCP/SDAP entity of the above SN, and maintains the SCG RLC bearer. Therefore, although the data allocated to the SN is temporarily processed by the PDCP/SDAP entity of the SN, the SCG RLC bearer can still be used For example, the downlink data is offloaded from the MN, or the SN receives the uplink data sent by the terminal through the SCG RLC bearer and transmits it to the MN, which is processed by the PDCP/SDAP entity of the MN. It can be understood that the suspension of the PDCP/SDAP entity of the SN implies that there is no data on the SCG RLC bearer that should be processed by the PDCP/SDAP entity to be transmitted.
  • Operation 5 The terminal suspends all or part of the physical layer operations of the PSCell.
  • the terminal suspends any one or more of the following physical layer operations for the PSCell: physical downlink control channel (physical downlink control channel, PDCCH) monitoring (monitoring); CSI-RS measurement; channel quality indicator (Channel Quality Indicator, CQI) reporting; sending uplink channel sounding reference signal (sounding reference signal, SRS); beam management; SCG timing advance (TA) maintenance.
  • PDCCH physical downlink control channel
  • CQI Channel Quality Indicator
  • SRS sounding reference signal
  • TA SCG timing advance
  • Operation 6 the terminal stops performing radio link failure (radio link failure, RLF) detection on the PScell.
  • RLM radio link monitoring
  • the terminal stops performing CSI-RS-based radio link monitoring (RLM) on the PSCell, but performs RLM based on synchronization signal block (sychronization signal and PBCH block), thereby performing RLF judgment.
  • Operation 7 When the terminal performs RRM measurement, the PSCell that has been in a deactivated state may still be used as a serving cell for measurement; or the PSCell may also be used as a neighbor cell of the serving cell for measurement.
  • Operation 8 If the terminal is configured with SRB3, the terminal can suspend the SRB3.
  • SRB3 refers to the signaling bearer established directly between the terminal and the SN. Suspending the SRB3 may refer to suspending the transmission of the RRC message between the SN and the UE through the SRB3, for example, including: clearing the RRC message that was not successfully sent to the secondary node.
  • Operation 9 The terminal performs a reset operation of the MAC of the SCG.
  • the method further includes S400: The terminal receives configuration parameters used by the terminal after the SCG is deactivated from the access network device.
  • the configuration parameters may include power parameters of the terminal.
  • the terminal After receiving the configuration parameter, the terminal can directly use the configuration parameter after the SCG is deactivated.
  • the access network device configures two types of different parameters for the terminal in advance before deciding to deactivate the SCG.
  • One type of parameter is used for terminal communication after the SCG is suspended. After the terminal receives the deactivation instruction, it can be automatically applied Such parameters.
  • the other is used for normal DC communication or terminal communication after SCG recovery.
  • S400 is executed before S402, and there is no order of execution of S400 and S401.
  • S400 can be executed first and then S401, or S401 can be executed before S400, or S400 and S401 can be executed at the same time.
  • the execution sequence is not particularly limited in this application. For example, you can perform operation 9 first, and then perform operation 3.
  • the terminal deactivates the SCG according to the instructions of the MN or SN.
  • the SCG link communication is suspended and the SCG configuration is retained, which saves both the terminal and the network side. Energy consumption, without the need to perform the auxiliary node release process, saving signaling overhead.
  • the terminal can quickly restore the SCG link communication without performing the auxiliary node adding process, saving signaling overhead. Improve communication efficiency.
  • the terminal After the terminal deactivates the SCG, it can resume communication through the SCG according to the instructions from the network side, that is, the terminal continues DC communication.
  • the present application provides a communication method, which can be used in a DC communication architecture. The method may be implemented by a terminal or a device for the terminal, such as a chip. In the embodiment of the present application, the terminal executes the communication method as an example for description.
  • the method includes:
  • the terminal receives an activation (activitation) indication from the access network device, where the activation indication indicates that the PSCell in the SCG is in an activated state.
  • the access network device is the MN or SN of the terminal
  • the master node manages the MCG
  • the secondary node manages the SCG
  • the MCG and/or SCG is used for data communication of the terminal
  • the SCG is in an inactive state.
  • S602 The terminal activates (active) the secondary cell group according to the activation instruction.
  • the activation instruction may also be referred to as an activation command, recovery/resumption instruction/command, etc.
  • the activation state may also be referred to as a recovery state, an active state, and so on.
  • the activation indication may be included in the MAC CE or RRC message or physical layer signaling sent by the access network device to the terminal, and reference may be made to the related description in the embodiment shown in FIG. 4, which will not be repeated.
  • the activation indication When the activation indication is included in the MAC CE, one or more bits in the MAC CE may be used as the activation indication.
  • the design of the MAC CE can refer to the MAC CE shown in FIG. 4 and related text descriptions, which will not be repeated here. It should be pointed out that when the MAC CE is also used to instruct to activate one or more SCells other than the PSCell, the terminal can activate one or more SCells according to the MAC CE instructions, or it can default to all SCG SCells Both need to be activated without reading the bits corresponding to each SCell.
  • the terminal activating the SCG according to the activation instruction includes any one or more of the following operations:
  • Operation 1 The terminal uses the configuration of the SCG retained during the deactivation operation of the secondary cell group in the DC communication between the SN and the terminal. That is, the terminal re-applies (restores) the stored configuration of the SCG for DC.
  • Operation 2 The terminal determines that the primary and secondary cell Pscell in the secondary cell group is in the activated state according to the activation instruction.
  • Operation 3 The terminal resumes (resume) the SCG RLC bearer associated with the bearer of the SN, including: continuing to perform data transmission through the SCG RLC bearer.
  • the bearer may include SN terminated bearer and/or MN terminated bearer. Do not repeat it.
  • notify the SCG RLC bearer that the PDCP entity corresponding to the RLC entity that is, the PDCP entity belonging to the same DRB/LC
  • the PDCP entity re-establishes it.
  • data transmission through SCG RLC bearer can be implemented in any of the following ways or a combination of multiple ways:
  • Method 1 Resuming the processing of the frozen RLC entity.
  • Method 2 If the bearer corresponding to the SCG RLC bearer is a split bearer, the primary path configuration and offload threshold before deactivation can be applied, and subsequent uplink data can continue to be transmitted through the SCG RLC bearer.
  • Manner 3 Perform a bearer type change, for example, change the MCG bearer to split bearer or SCG bearer, and SCG RLC bearer is available by default, so that the terminal can reuse the air interface transmission resources of the SN.
  • a bearer type change for example, change the MCG bearer to split bearer or SCG bearer, and SCG RLC bearer is available by default, so that the terminal can reuse the air interface transmission resources of the SN.
  • Operation 4 The terminal resumes the suspended PDCP/SDAP entity, and then performs data processing and data transmission through the PDCP/SDAP entity.
  • Operation 5 The terminal resumes part or all of the physical layer operations on the PSCell.
  • the terminal may start to perform PDCCH monitoring, or perform various physical layer operations such as CSI-RS measurement and continue CQI reporting, which will not be repeated.
  • Operation 6 The terminal restarts the RLF detection of the PSCell.
  • Operation 7 The terminal uses the deactivated PSCell as a serving cell to perform measurement during RRM measurement.
  • Operation 8 The terminal resumes the suspended SRB3.
  • the terminal continues to perform measurement according to the measurement configuration of the SN, and reports the measurement result to the SN through SRB3.
  • Operation 9 The terminal performs a reset operation of the MAC of the SCG.
  • Operation 10 The terminal initiates random access on the PSCell.
  • the random access may be contention-based random access or non-contention random access.
  • the UE can monitor the PDCCH order on the PSCell.
  • Operation 11 The terminal derives a new secondary base station key (secondary key), and further derives the encryption and/or integrity protection key, and configures it to the PDCP entity.
  • the secret key derivative parameters can be configured together when the network sends an activation (activitation) instruction, or they can be configured together when the network sends an activon instruction.
  • the deactivation operation in this application corresponds to the activation operation.
  • the terminal After the terminal performs a deactivation operation for the SCG, when the SCG is activated, the corresponding activation (recovery) operation is performed, for example, deactivation ( Suspend) SCG RLC bearer activates (resume) SCG RLC bearer correspondingly.
  • the various activation (recovery) operations performed by the terminal reference may be made to the corresponding deactivation operations described above, and similar content will not be repeated.
  • the terminal when the terminal defaults all SCells to the deactivated state according to the deactivation instruction, the terminal can activate (restore) all SCells during the SCG activation operation, or only activate (restore) one or more of them as required SCell.
  • the execution order is not particularly limited in this application. For example, you can perform operation 11 first, and then perform operation 4.
  • the terminal activates the SCG according to the instructions of the MN or SN, and quickly restores the link communication of the SCG without initiating the SCG adding process, which saves the energy consumption of the terminal and the network side, and saves signaling overhead. Improve communication efficiency.
  • FIG. 7 to 8 describe the communication method provided by this application from the side of the access network device.
  • the present application provides a communication method, which can use a DC communication architecture.
  • the method includes:
  • S701 The first access network device determines to deactive the secondary cell group.
  • the first access network device is the MN or SN of the terminal, the primary node manages the MCG, the secondary node manages the SCG, and the MCG and/or SCG is used for data communication of the terminal.
  • the terminal when the first access network device is the MN of the terminal, the terminal also communicates with the second access network device that is the SN.
  • the terminal when the first access network device is the SN of the terminal, the terminal also communicates with the second access network device as the MN.
  • the first access network device determining to deactivate the secondary cell group includes: the first access network device according to the auxiliary information provided by the terminal, the The data transmission activity of the terminal in the first access network device, and any one or more of the auxiliary information provided by the second access network device determines to deactivate the secondary cell group.
  • the auxiliary information provided by the terminal may indicate that the data transmitted by the terminal through the SCG is not active, or that the terminal has a power saving requirement, or that the terminal wishes to suspend the SCG.
  • the data transmission activity may also be referred to as the data transmission activity, which may be measured by the amount of data transmitted on the bearer between the terminal and the first access network device.
  • the data transmission activity can be indicated by indications such as high, medium and low data amount, "data" or "no data".
  • the amount of data may be determined by the first access network device itself, for example, counting data transmitted from the core network to the first access network device, or data offloaded by the second access network device as a PDCP anchor node.
  • the first access network device may also determine the data volume based on the user plane indication information.
  • the core network sends user plane indication information to the first access network device through the S1/NG interface, indicating the amount of data transmitted on the data bearer
  • the data bearer can be an E-UTRAN radio access bearer (E-UTRAN radio access bearer, E-RAB) or a packet data unit session (packet data unit session, PDU session) or a quality of service flow (quality of service) ,QoS flow); or the second access network device sends user plane indication information to the first access network device through the X2/Xn interface, indicating the amount of data transmitted on the SCG RLC bearer on the SN.
  • the first access network device may also determine the data volume based on the control plane indication information.
  • the core network sends control plane indication information to the first access network device through the S1/NG interface, indicating the QoS parameters related to the data bearer
  • the data bearer may be an E-UTRAN radio access bearer (E-UTRAN radio access bearer, E-RAB) or a packet data unit session (packet data unit session, PDU session) or a quality of service flow (quality of service). QoS flow); or the second access network device (MN at this time) forwards the control plane indication information from the core network to the first access network device through the X2/Xn interface, indicating the QoS parameters related to the data bearer or the QoS parameters corresponding to SCG RLC bearer on SN.
  • E-UTRAN radio access bearer E-RAB
  • a packet data unit session packet data unit session, PDU session
  • QoS flow quality of service
  • the data transmission activity may be the activity of the PDCP bearer (SN terminatd PDCP bearer) terminated in the SN, or the activity of the SCG RLC bearer, or the activity of the SCG RLC bearer associated with the MN terminated bearer.
  • the data transmission activity of the terminal is high, providing a data transmission service for the terminal through the SN can improve the data transmission rate and reliability; when the data transmission activity of the terminal is low, the normal operation of the terminal can be satisfied without using SN. Data transmission needs, so SCG can be deactivated.
  • the first access network device may decide to deactivate the SCG; accordingly, when the data volume is less than one Threshold, the first access network device can decide to continue to maintain SCG link transmission.
  • the auxiliary information provided by the second access network device may include information such as a power saving instruction or a power saving request, information requesting to deactivate the SCG, and data activity of the terminal on the second access network device.
  • the SN learns that the SCG will be deactivated, and the SN retains or deletes the SCG configuration of the terminal. If it is retained, the SN does not need to newly generate the SCG configuration of the terminal after the subsequent SCG activation, but can continue to use the SCG configuration retained before activation, or perform the delta configuration; if deleted, the SN may be required after the subsequent activation of the SCG Newly generated SCG configuration.
  • the SN sends an indication message to the MN, which may carry the SCG configuration of the terminal, for the MN to save the SCG configuration. Further optionally, when the SCG is activated subsequently, the MN sends the saved SCG configuration to the SN for the SN to perform incremental configuration based on the SCG configuration.
  • the MN learns that the SCG will be deactivated, and the MN sends configuration information to the terminal to indicate that the terminal is in the SCG Use this configuration information after deactivation.
  • the configuration information is an RRC reconfiguration message, and the configuration information may include one or a combination of the following information: power parameters, secondary base station secret key derivative parameters, random access related configurations, and so on.
  • the power parameter is used in the SCG deactivation state; the secondary base station secret key derivative parameter is used to derive a new secondary base station secret key after the SCG is activated; the random access related configuration is used to perform random access on the PSCell after the SCG is activated.
  • part or all of the above configuration information is generated by the SN.
  • the SN generates part or all of the configuration information after learning that the SCG is deactivated, and sends part or all of the configuration information to the MN, and then the MN composes the configuration information and sends it to the terminal.
  • the first access network device sends a deactivation instruction to the terminal, where the deactivation instruction is used to indicate that the PSCell in the SCG is in a deactivated state.
  • the deactivation indication is included in the physical layer signaling, or included in the MAC CE, or included in the RRC message.
  • the deactivation instruction reference may be made to other embodiments of the present application, such as related content in the embodiment shown in FIG. 4, which is not repeated here.
  • the first access network device may send the deactivation instruction to the terminal through the second access network device; or the first access network device may directly send the deactivation instruction to the terminal.
  • the first access network device determining to deactivate the SCG includes the first access network device suspending the SCG RLC bearer owned by the terminal, specifically, the first The access network device may suspend data transmission at any SCG or RLC bearer associated with the terminal.
  • the SCG RLC bearer associated with the terminal refers to the SCG RLC bearer associated with the bearer established by the first access network device and the terminal, and the bearer may be, for example, SN terminated SCG/split bearer or MN terminated split/SCG bearer, etc. .
  • the first access network device may also determine to suspend the first access according to the active status of the PDCP/SDAP entity of the SN terminated bearer associated with the terminal
  • the PDCP/SDAP entity of the network device includes: suspending the processing of the terminal's data through the PDCP/SDAP entity.
  • the SN may continue to perform data processing through the PDCP entity of the SN terminated bearer, but the data transmission with the terminal is performed through the MCG bearer.
  • the SN may suspend the transmission of all or part of the signal transmitted between the first access network device and the terminal in the PSCell, where the signal may include data and/or signaling.
  • the SN suspends scheduling the terminal's data transmission in the PSCell; or the SN suspends the signaling transmission related to the terminal, for example, stops sending the terminal-specific CSI-RS.
  • the first access network device is an SN
  • the second access network device is an MN.
  • the SN has suspended SCG RLC bearer
  • suspended SN The PDCP entity of the terminated bearer means that the entire SN terminated bearer is suspended.
  • the method further includes: the SN respectively instructs the MN and the terminal to suspend the transmission of data on the SN terminated bearer through the MCG RLC bearer, that is, indicates that the air interface transmission resources of the MN are not available for transmitting the data on the SN terminated bearer.
  • the SN may adopt a display indication or an implicit indication, where the implicit indication may be the PDCP entity that is performing the operation of deactivating the SCG and implicitly executing the suspended SN terminated bearer and the corresponding MCG RLC bearer.
  • the implicit indication may be the PDCP entity that is performing the operation of deactivating the SCG and implicitly executing the suspended SN terminated bearer and the corresponding MCG RLC bearer.
  • the first access network device when the first access network device considers that each SCG RLC bearer corresponding to the bearer associated with the terminal is not active, and the terminal has a power saving requirement, the first access network device decides to send a deactivation instruction to the terminal. At this time, the SN stops scheduling the data transmission of the terminal through the SCG. However, the terminal can still use MCG RLC bearer, that is, use the air interface transmission resources of the MN and the PDCP entity of the SN to perform data transmission with the core network.
  • the SN can receive downlink data from the core network, and send it to the MN after PDCP processing, and send the downlink data to the terminal through MCG RLC bearer, that is, using the MN’s air interface transmission resources; in the uplink direction, the terminal The uplink data can be sent to the MN through MCG RLC bearer, and then sent by the MN to the SN, and the SN sends the uplink data to the core network after being processed by the PDCP entity.
  • the network side can configure the MCG RLC bearer for each SN terminated bearer in advance.
  • the method further includes S703: the first access network device sends instruction information to the second access network device, where the instruction information is used to indicate that the SCG has Is deactivated.
  • the indication information is any kind of message or signaling sent by the first access network device to the second access network device or is included in the message or signaling.
  • the indication information is an SN modification request (SN modification request) message
  • the indication information is an SN modification request (SN modification request) message. required) message.
  • the first access network device informs the second access network device to deactivate and terminate the data transmission tunnel of the X2/Xn interface corresponding to the bearer associated with the MN's bearer through the instruction information.
  • the bearer of MN can be MN terminated split bearer or MN terminated SCG bearer.
  • the MN may also suspend the corresponding SN terminated bearer The data transmission tunnel of the X2/Xn interface corresponding to the MCG RLC bearer.
  • the indication information is also used to instruct the MN to modify MCG QoS parameters; when the first access network device It is an MN and the second access network device is an SN, and the indication information is also used to indicate to the SN the MCG QoS parameters modified by the MN. If the UE still has data transmission on this bearer, since the SCG RLC bearer is deactivated, all data will be carried on the MCG RLC bearer, so the QoS parameters corresponding to the MCG RLC bearer need to be modified accordingly. The purpose is to enable the MN or SN to adjust the scheduling strategy, etc., so as to adjust the amount of data transmitted for the terminal.
  • the MN or SN decides to deactivate the SCG and instructs the terminal to perform the deactivation operation, which can quickly suspend the SCG link communication, save energy consumption between the network side and the terminal, and does not need to initiate a secondary node release process, saving information Order overhead.
  • this application provides a communication method, which can be used in a DC communication architecture.
  • the method includes:
  • the first access network device determines to activate the SCG in the inactive state.
  • the first access network device is the MN or SN of the terminal, the MN manages the MCG, the SN manages the SCG, and the MCG and/or SCG is used for data communication of the terminal.
  • the SN learns that the SCG will be activated, and the SN generates the SCG configuration of the terminal.
  • the SCG configuration can be a source configuration or a delta configuration.
  • the SN sends an indication message to the MN, which may carry the SCG configuration of the terminal, for the MN to send the SCG configuration to the terminal.
  • the MN learns that the SCG will be activated, and the MN sends configuration information to the UE to instruct the UE to activate the SCG Use this configuration information.
  • the configuration information is an RRC reconfiguration message, and the configuration information may include one or a combination of the following information: power parameters, secondary base station secret key derivative parameters, random access related configuration, SCG configuration, etc.
  • the power parameter is used in the SCG activation state; the secondary base station secret key derivative parameter is used to derive a new secondary base station secret key after the SCG is activated; the random access related configuration is used to perform random access on the PSCell after the SCG is activated; SCG configuration It is used on the SN air interface after the terminal activates the SCG.
  • part or all of the above configuration information is generated by the SN.
  • the SN generates part or all of the configuration information after learning that the SCG is activated, and sends part or all of the configuration information to the MN, and then the MN composes the configuration information and sends it to the terminal.
  • the first access network device sends an activation instruction to the terminal, where the activation instruction indicates that the PSCell in the SCG is in an activated state.
  • the activation indication is included in the physical layer signaling, or included in the MAC CE, or included in the RRC message.
  • the activation indication refer to other embodiments of this application, for example, in the embodiment shown in FIG. 6 Relevant content will not be repeated here.
  • the first access network device may send the activation instruction to the terminal through the second access network device; or the first access network device may directly send the activation instruction to the terminal.
  • the determining by the first access network device to activate the SCG includes: the first access network device according to the auxiliary information provided by the terminal and the data of the terminal on the first access network device Transmission activity, any one or more of the auxiliary information provided by the second access network device determines to activate the SCG.
  • the auxiliary information provided by the terminal may indicate that the terminal has data that needs to be transmitted through the SCG, or that the terminal cancels the power saving requirement, or that the terminal wants the SCG to recover.
  • the auxiliary information provided by the second access network device may include: power saving instructions or cancellation of power saving requests, information requesting to activate the SCG, and information such as data activity of the terminal on the second access network device.
  • the determination by the first access network device to activate the secondary cell group includes: the first access network device resumes data transmission on the SCG RLC bearer associated with the terminal associated with the terminal. Similarly, the first access network device may also resume data communication with the terminal through the PDCP/SDAP entity in the first access network device.
  • the method further includes: the SN instructs the MN and the terminal to resume passing MCG RLC bearer The data terminated on the bearer of the SN is transmitted.
  • SN can adopt display indication or implicit indication, so I won’t repeat it.
  • the first access network device resumes scheduling data/signal transmission of the terminal in the PSCell.
  • the method further includes S803: the first access network device sends instruction information to the second access network device, where the instruction information is used to indicate that the SCG has been activated.
  • the indication information is used to instruct the second access network device to activate and terminate the data transmission tunnel of the X2/Xn interface corresponding to the SCG RLC bearer associated with the bearer of the MN.
  • the indication information corresponds to the indication information described in step S703 in the embodiment shown in FIG. 7.
  • instructing the terminal to perform the operation of deactivating the SCG by the access network device in this application corresponds to instructing the terminal to perform the operation of activating the SCG.
  • the access network device determining to activate (resuming) the SCG and sending the activation instruction reference may be made to the aforementioned corresponding content related to deactivating the SCG, which will not be repeated.
  • the MN or SN decides to activate the SCG and instructs the terminal to perform the activation operation, which can quickly restore the SCG link communication, save energy consumption between the network side and the terminal, and does not need to initiate a secondary node addition process, saving signaling overhead .
  • Fig. 9 is a schematic diagram of a signaling flow of a communication method provided by the present application.
  • FIG. 9 is a further explanation of the embodiment shown in FIG. 4 to FIG. 8, and the content already introduced in the foregoing will not be repeated.
  • the first access network device is the SN
  • the second access network device is the MN
  • the terminal is the UE.
  • the UE can be performed through the MCG managed by the MN and/or the SCG managed by the SN.
  • DC communication includes:
  • S901 The SN determines to deactivate the SCG.
  • the SN can determine whether to deactivate the SCG according to any one or more of the auxiliary information provided by the UE, the data transmission activity of the terminal in the SN, or the auxiliary information provided by the MN, where the auxiliary information provided by the MN may include a power saving indication .
  • the auxiliary information provided by the UE may be directly sent by the UE to the SN through SRB3, or sent by the UE to the MN and then sent by the MN to the SN.
  • S902 The SN sends a deactivation instruction to the UE.
  • the SN may directly send the above deactivation indication to the UE.
  • the SN may send the aforementioned deactivation instruction to the UE through the MN.
  • S902 may include S902-1: the SN sends a deactivation instruction to the MN; and S902-2: the MN sends the deactivation instruction to the UE.
  • the MN may parse the deactivation instruction and include the deactivation instruction in the message/signaling sent by the MN to the UE; or the MN may transparently transmit the deactivation instruction to the UE, that is, the MN does not parse the deactivation instruction Instead, the deactivation indication is encapsulated in a container (contanier) and sent to the UE through message/signaling.
  • S903 the SN sends the first indication information to the MN to inform the MN that the SCG of the UE has been suspended.
  • S902 can be executed first, and then S903; S903 can also be executed first, and then S902; or S902 and S903 can be executed simultaneously, which is not limited.
  • S904 The UE performs an operation of deactivating the SCG according to the deactivation instruction.
  • the SN may decide to activate the SCG to continue to provide communication services for the UE.
  • the method further includes: S905: the SN determines to activate the SCG.
  • S906 The SN sends an activation indication to the UE.
  • the activation instruction may also be directly sent by the SN to the UE or sent by the SN to the MN and then forwarded by the MN.
  • S907 the SN sends second indication information to the MN, where the indication information is used to inform the MN that the SCG of the UE has been activated.
  • S908 The UE performs an operation of activating the SCG according to the activation instruction.
  • S906 can be executed first, and then S907; S907 can also be executed first, and then S906; or S906 and S907 can be executed simultaneously, which is not limited.
  • the UE deactivates/activates the SCG according to the instructions of the SN, and does not need to perform the secondary node release/add process, and can quickly interrupt or resume the link communication of the UE through the SCG, saving signaling overhead and saving
  • the power consumption of the UE and the network side improves communication efficiency.
  • FIG. 10 is a schematic diagram of a signaling flow of a communication method provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the signaling flow of a communication method provided by the present application.
  • FIG. 9 is a further explanation of the embodiment shown in FIG. 4 to FIG. 8, and the content already introduced in the foregoing will not be repeated.
  • the first access network device is the MN
  • the second access network device is the SN
  • the terminal is the UE for example.
  • the UE can perform an example through MCG managed by MN and/or SCG managed by SN.
  • DC communication includes:
  • S1001 The MN determines to deactivate the SCG.
  • the MN can determine whether to deactivate the SCG according to any one or more of the auxiliary information provided by the UE, the data transmission activity of the UE in the MN, or the auxiliary information provided by the SN.
  • the auxiliary information provided by the UE may be information directly sent by the UE to the MN through SRB1, or sent by the UE to the SN and then sent by the SN to the MN.
  • the auxiliary information provided by the SN may include the data transmission activity of the UE in the SN, and the request information that the SN needs to save power.
  • the MN sends a deactivation instruction to the UE.
  • the MN may directly send the aforementioned deactivation instruction to the UE.
  • the MN may send the aforementioned deactivation instruction to the UE through the SN.
  • S1002 may include S1002-1: the MN sends a deactivation instruction to the SN; and S1002-2: the SN sends the deactivation instruction to the UE.
  • the MN sends first indication information to the SN, which is used to inform the SN that the SCG of the UE has been suspended.
  • S1002 can be executed first, and then S1003; S1003 can also be executed first, and then S1002; or S1002 and S1003 can be executed simultaneously, which is not limited.
  • S1004 The UE performs an operation of deactivating the SCG according to the deactivation instruction.
  • the MN may decide to activate the SCG to continue to provide communication services for the UE.
  • the method further includes: S1005: The MN determines to activate the SCG.
  • S1006 The MN sends an activation indication to the UE.
  • the MN sends second indication information to the SN to inform the SN that the SCG of the UE has been activated.
  • the UE performs an operation of activating the SCG according to the activation instruction.
  • S1006 can be executed first, and then S1007; S1007 can also be executed first, and then S1006; or S1006 and S1007 can be executed simultaneously, which is not limited.
  • the UE deactivates/activates the SCG according to the instructions of the MN, without the need to perform the secondary node release/add process, and can quickly interrupt or resume the UE’s link communication through the SCG, saving signaling overhead and saving
  • the power consumption of the UE and the network side improves communication efficiency.
  • the method of determining deactivation/activation of SCG by SN shown in FIG. 9 and the method of determining deactivation/activation of SCG by MN shown in FIG. 10 are only examples.
  • the methods of deactivating SCG and activating SCG shown in this application can be implemented independently and in combination.
  • the MN can also determine the activation of the SCG; similarly, the MN can also determine the deactivation of the SCG.
  • the SN determines the activation of the SCG, which is not limited.
  • the communication device includes a hardware structure and/or software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the present application may divide the communication device into functional units according to the foregoing method examples.
  • each function may be divided into each functional unit, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in this application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the communication device 1100 shown in FIG. 11 includes a processing unit 1101 and a transceiver unit 1102.
  • the communication device 1100 is used to support the terminal device to implement the functions of the terminal in the communication method provided in the embodiment of the present application.
  • the transceiver unit 1102 may be used to receive a deactivation instruction from an access network device.
  • the deactivation instruction is used to indicate that the primary and secondary cell (PSCell) in the secondary cell group (SCG) is in a deactivated state;
  • the processing unit 1101 is used to perform a deactivation operation on the secondary cell group according to the deactivation instruction.
  • the transceiver unit 1102 is configured to receive a deactivation instruction from an access network device, where the activation instruction indicates that the primary and secondary cells in the secondary cell group are active; the processing unit 1101 is configured to activate according to the activation instruction The secondary cell group.
  • the access network equipment is the primary node (MN) or secondary node (SN) of the terminal during DC communication, the primary node manages a primary cell group (MCG), and the secondary node manages the secondary cell Group, the primary cell group and/or secondary cell group are used for data communication of the terminal.
  • the processing unit 1101 may be used to perform one or more deactivation operations on the secondary cell group, such as retaining the configuration of the secondary cell, and suspending the bearer corresponding to the secondary node.
  • deactivation operations such as data transmission on the SCG RLC bearer, for detailed description of each deactivation operation, please refer to other embodiments of this application, such as related content in the embodiment shown in FIG. 4, which will not be repeated.
  • the processing unit 1101 may be configured to perform one or more operations for activating the secondary cell group, such as reusing the reserved secondary cell group when deactivating the secondary cell group.
  • each activation operation please refer to the relevant content of other embodiments of this application, such as the implementation shown in Figure 6. The relevant content in the example will not be repeated.
  • the communication device 1100 is used to support an access network device, such as a base station, to implement the function of the access network device in the communication method provided in the embodiment of this application.
  • the access network device may be a terminal communicating in DC
  • the primary node or secondary node at a time, the primary node manages the primary cell group, the secondary node manages the secondary cell group, and the primary cell group and/or secondary cell group are used for data communication of the terminal.
  • the processing unit 1101 is configured to determine the deactivation of a secondary cell group
  • the transceiver unit 1102 is configured to send a deactivation instruction to the terminal, and the deactivation instruction is used to indicate that the primary and secondary cells in the secondary cell group are in deactivation.
  • the processing unit 1101 is configured to determine to activate a secondary cell group in an inactive state, and the transceiving unit 1102 is configured to send an activation instruction to the terminal, where the activation instruction indicates the primary and secondary cell groups in the secondary cell group.
  • the cell is active.
  • the processing unit 1101 is specifically configured to use the auxiliary information provided by the terminal, the data transmission activity of the terminal in the access network device, and the auxiliary information provided by the second access network device according to Any one or more items are determined to deactivate or activate the secondary cell group.
  • auxiliary information and data transmission activity reference may be made to other embodiments of this application, such as related content in the embodiments shown in FIGS. 7-8, which will not be repeated.
  • the processing unit 1101 may be configured to perform one or more operations for determining the deactivation of the secondary cell group, such as suspending data transmission on the SCG RLC bearer corresponding to the secondary node’s bearer and suspending the
  • the PDCP/SDAP entity of the access network device processes the data of the terminal.
  • the processing unit 1101 may be configured to perform one or more operations for determining the activation of the secondary cell group, such as restoring data transmission on the SCG RLC bearer corresponding to the secondary node’s bearer and restoring through the
  • the PDCP/SDAP entity of the access network device processes the data of the terminal.
  • each activation operation refer to other embodiments of the present application, such as related content in the embodiment shown in FIG. 8, which will not be repeated.
  • the processing unit 1101 is further configured to send indication information to the second access network device, where the indication information is used to indicate that the secondary cell group has been deactivated.
  • the processing unit 1101 is further configured to send indication information to the second access network device, where the indication information is used to indicate that the secondary cell group has been activated.
  • the above-mentioned deactivation indication or activation indication may be included in the MAC CE or physical layer signaling or RRC message.
  • the design of MAC CE can refer to the related description in FIG. 5.
  • the primary node when the access network device is the secondary node, the primary node is the second access network device; or, when the access network device is the primary node, the secondary node is the first 2. Access network equipment.
  • each functional unit of the above-mentioned communication device 1100 for example, refer to the behavior of the terminal or the access network device (primary node/secondary node) in the embodiment of the communication method provided in this application, such as Figure 4- Figure 10 shows the relevant content in the embodiment.
  • a processor may perform the functions of the processing unit 1101, and a transceiver (transmitter/receiver) and/or a communication interface may perform the functions of the transceiver unit 1102,
  • the processing unit 1101 may be embedded in the processor of the terminal or independent of the terminal in the form of hardware, or stored in the memory of the terminal or the base station in the form of software, so that the processor can call and execute the operations corresponding to the above functional units.
  • FIG. 12 shows a schematic structural diagram of a communication device 1200 provided in this application.
  • the communication device 1200 may be used to implement the communication method described in the foregoing method embodiment.
  • the communication device 1200 may be a chip, a terminal, an access network device, or other wireless communication devices.
  • the communication device 1200 includes one or more processors 1201, and the one or more processors 1201 can support the communication device 1000 to implement the communication method executed by the terminal (UE) described in the embodiments of the present application, for example, FIGS. 4-10 The method executed by the terminal in the illustrated embodiment; or, the one or more processors 1201 may support the communication device 1200 to implement the method executed by the access network device described in the embodiment of the present application, for example, FIG. 4 The method executed by the access network device (including the first access network device or the second access network device) in the embodiment shown in 10.
  • the processor 1201 may be a general-purpose processor or a special-purpose processor.
  • the processor 1201 may include a central processing unit (CPU) and/or a baseband processor.
  • the baseband processor can be used to process communication data (for example, the first message mentioned above), and the CPU can be used to implement corresponding control and processing functions, execute software programs, and process data of the software programs.
  • the communication device 1200 may further include a transceiving unit 1205 to implement signal input (reception) and output (transmission).
  • the communication device 1200 may be a chip, and the transceiver unit 1205 may be an input and/or output circuit of the chip, or the transceiver unit 1205 may be an interface circuit of the chip, and the chip may be used as a UE or a base station or other wireless communication device. component.
  • the communication apparatus 1200 may be a UE or a base station.
  • the transceiver unit 1205 may include a transceiver or a radio frequency chip.
  • the transceiving unit 1205 may also include a communication interface.
  • the communication device 1200 may further include an antenna 1206, which may be used to support the transceiver unit 1205 to implement the transceiver function of the communication device 1200.
  • the communication device 1200 may include one or more memories 1202, on which a program (or an instruction or code) 1203 is stored, and the program 1203 may be executed by the processor 1201, so that the processor 1201 executes the foregoing method embodiments Method described in.
  • the memory 1202 may also store data.
  • the processor 1201 may also read data (for example, predefined information) stored in the memory 1202. The data may be stored in the same storage address as the program 1203, or the data may be stored in a different storage address from the program 1203. Storage address.
  • the processor 1201 and the memory 1202 may be separately provided, or may be integrated together, for example, integrated on a single board or a system-on-chip (SOC).
  • SOC system-on-chip
  • the communication device 1200 is a terminal or a chip that can be used in a terminal.
  • the terminal has a DC communication function.
  • the transceiver unit 1205 may be used to receive a deactivation instruction from an access network device.
  • the indication is used to indicate that a primary and secondary cell (PSCell) in a secondary cell group (SCG) is in a deactivated state; the processor 1201 may be configured to perform a deactivation operation on the secondary cell group according to the deactivation instruction.
  • PSCell primary and secondary cell
  • SCG secondary cell group
  • the transceiver unit 1205 may be configured to receive a deactivation instruction from an access network device, where the activation instruction indicates that the primary and secondary cells in the secondary cell group are active; the processor 1201 may be configured to activate Indicate to activate the secondary cell group.
  • the access network equipment is the primary node (MN) or secondary node (SN) of the terminal during DC communication, the primary node manages a primary cell group (MCG), and the secondary node manages the secondary cell Group, the primary cell group and/or secondary cell group are used for data communication of the terminal.
  • the communication device 1200 is an access network device or a chip that can be used for an access network device.
  • the access network device can be used as a primary node or a secondary node in DC communication, and the primary node manages the primary cell. Group, the secondary node manages the secondary cell group, and the primary cell group and/or secondary cell group are used for data communication of the terminal.
  • the processor 1201 may be used to determine the deactivation of a secondary cell group, and the transceiver unit 1205 may be used to send a deactivation instruction to the terminal, where the deactivation instruction is used to indicate that the primary and secondary cells in the secondary cell group are in deactivation. Active state.
  • the processor 1205 may be configured to determine to activate a secondary cell group in an inactive state, and the transceiver unit 1205 may be configured to send an activation instruction to the terminal, where the activation instruction indicates the primary and secondary cell groups in the secondary cell group.
  • the cell is active.
  • each step of the foregoing method embodiment may be completed by a logic circuit in the form of hardware or instructions in the form of software in the processor 1201.
  • the processor 1201 may be a CPU, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), a field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices , For example, discrete gates, transistor logic devices, or discrete hardware components.
  • This application also provides a computer program product, which, when executed by the processor 1201, implements the communication method described in any method embodiment in this application.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the computer program product may be stored in the memory 1202, for example, a program 1204.
  • the program 1204 is finally converted into an executable object file that can be executed by the processor 1201 after preprocessing, compilation, assembly, and connection.
  • This application also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a computer, the communication method described in any method embodiment in this application is implemented.
  • the computer program can be a high-level language program or an executable target program.
  • the computer-readable storage medium is, for example, the memory 1202.
  • the memory 1202 may be a volatile memory or a non-volatile memory, or the memory 1202 may include both a volatile memory and a non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • FIG. 13 shows a schematic structural diagram of a terminal provided in this application.
  • the terminal 1300 may be applicable to the system shown in FIG. 1 to realize the functions of the terminal in the foregoing method embodiment.
  • FIG. 13 only shows the main components of the terminal.
  • the terminal 1300 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal. For example, the processor generates the first message, and then transmits the first message through the control circuit and the antenna.
  • the memory is mainly used to store programs and data, such as storing communication protocols and the above configuration information.
  • the control circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the input and output device is, for example, a touch screen, a display screen, or a keyboard, and is mainly used to receive data input by the user and output data to the user.
  • the processor can read the program in the memory, interpret and execute the instructions contained in the program, and process the data in the program.
  • the processor When information needs to be sent through an antenna, the processor performs baseband processing on the information to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal to obtain a radio frequency signal, and transmits the radio frequency signal to the antenna in the form of electromagnetic waves. Send outside.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into information and Process this information.
  • FIG. 13 only shows one memory and one processor. In an actual terminal, there may be multiple processors and multiple memories.
  • the memory may also be called a storage medium or a storage device, etc., which is not limited in this application.
  • the processor in FIG. 13 can integrate the functions of the baseband processor and the CPU.
  • the baseband processor and the CPU can also be independent processors, using technologies such as buses. interconnected.
  • the terminal may include multiple baseband processors to adapt to different network standards, the terminal may include multiple CPUs to enhance its processing capabilities, and various components of the terminal may be connected through various buses.
  • the baseband processor may also be referred to as a baseband processing circuit or a baseband processing chip.
  • the CPU may also be called a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data may be built in the processor, or stored in the memory in the form of a program, and the processor executes the program in the memory to realize the baseband processing function.
  • the antenna and control circuit with transceiving functions can be regarded as the transceiving unit 1301 of the terminal 1300, which is used to support the terminal to implement the receiving function in the method embodiment, or to support the terminal to implement the transmission in the method embodiment.
  • the processor having processing functions is regarded as the processing unit 1302 of the terminal 1300.
  • the terminal 1300 includes a transceiver unit 1301 and a processing unit 1302.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the device for implementing the receiving function in the transceiver unit 1301 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1301 can be regarded as the sending unit, that is, the transceiver unit 1301 includes a receiving unit and a sending unit,
  • the receiving unit may also be called a receiver, an input port, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the processor 1302 may be used to execute a program stored in the memory to control the transceiver unit 1301 to receive signals and/or send signals, and complete the functions of the terminal in the foregoing method embodiments.
  • the function of the transceiver unit 1301 may be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • the processor 1302 can execute the functions of the processing unit 1101 in the communication device 1100 shown in FIG. 11 or the processor 1201 in the communication device 1200 shown in FIG. 12; the transceiving unit 1301 can execute the communication device 1100 shown in FIG.
  • the functions of the transceiver unit 1102 in the transceiver unit 1102 or the transceiver unit 1205 in the communication device 1200 shown in FIG. 12 will not be described in detail.
  • FIG. 14 is a schematic structural diagram of a base station provided in an embodiment of the present application.
  • the base station can be applied to the system shown in FIG. 1 to perform the function of the access network device in the above method embodiment, and the base station has the function of being a primary node or a secondary node in DC communication.
  • the base station 1400 may include one or more DU 1401 and one or more CU 1402.
  • the DU 1401 may include at least one antenna 14011, at least one radio frequency unit 14012, at least one processor 14013, and at least one memory 14014.
  • the DU 1401 part is mainly used for the transceiver of radio frequency signals, the conversion of radio frequency signals and baseband signals, and part of baseband processing.
  • the CU 1402 may include at least one processor 14022 and at least one memory 14021.
  • CU1402 and DU1401 can communicate through interfaces, where the control plane interface can be Fs-C, such as F1-C, and the user plane (User Plane) interface can be Fs-U, such as F1-U.
  • the CU 1402 part is mainly used for baseband processing, control of base stations, and so on.
  • the DU 1401 and the CU 1402 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the CU 1402 is the control center of the base station, which may also be referred to as a processing unit, and is mainly used to complete baseband processing functions.
  • the CU 1402 may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the baseband processing on the CU and DU can be divided according to the protocol layer of the wireless network, for example, the packet data convergence protocol (PDCP) layer and the functions of the above protocol layers are set in the CU, the protocol layer below PDCP, For example, functions such as the radio link control (RLC) layer and the media access control (MAC) layer are set in the DU.
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • CU implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements radio link control (radio link control, RLC), media access Control (media access control, MAC) and physical (physical, PHY) layer functions.
  • the base station 1400 may include one or more radio frequency units (RU), one or more DUs, and one or more CUs.
  • the DU may include at least one processor 14013 and at least one memory 14014
  • the RU may include at least one antenna 14011 and at least one radio frequency unit 14012
  • the CU may include at least one processor 14022 and at least one memory 14021.
  • the CU1402 can be composed of one or more single boards, and multiple single boards can jointly support a wireless access network (such as a 5G network) with a single access indication, or can support wireless access networks of different access standards.
  • Access network (such as LTE network, 5G network or other networks).
  • the memory 14021 and the processor 14022 may serve one or more boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the DU1401 can be composed of one or more single boards.
  • Multiple single boards can jointly support a wireless access network with a single access indication (such as a 5G network), or can support wireless access networks with different access standards (such as LTE network, 5G network or other network).
  • the memory 14014 and the processor 14013 may serve one or more boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the DU and the CU can jointly execute the functions of the processing unit 1101 in the communication device 1100 shown in FIG. 11 or the processor 1201 in the communication device 1200 shown in FIG. 12; the RU can execute the functions of the communication device 1100 shown in FIG.
  • the functions of the transceiver unit 1102 or the transceiver unit 1205 in the communication device 1200 shown in FIG. 12 will not be described in detail.
  • the present application also provides a communication system, including a first access network device and a second access network device.
  • the first access network device may serve as a master node, and the second access network device may serve as a secondary node.
  • the communication system further includes a terminal, and the terminal can simultaneously access the first access network device and the second access network device.
  • the terminal can simultaneously access the first access network device and the second access network device.
  • the disclosed system, device, and method may be implemented in other ways. For example, some features of the method embodiments described above may be ignored or not implemented.
  • the device embodiments described above are merely illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods, and multiple units or components may be combined or integrated into another system.
  • the coupling between the units or the coupling between the components may be direct coupling or indirect coupling, and the foregoing coupling includes electrical, mechanical, or other forms of connection.
  • the size of the sequence number of each process does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the terminal and/or network device can perform some or all of the steps in the embodiments of the present application. These steps or operations are only examples. The embodiments of the present application may also perform other operations or variations of various operations. .
  • each step may be executed in a different order presented in the embodiment of the present application, and it may not be necessary to perform all the operations in the embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法、通信装置、计算机存储介质及通信系统,所述通信方法包括:接入网设备向终端发送去激活指示/激活指示,所述去激活指示用于指示辅小区组中的主辅小区为去激活状态,所述激活指示用于指示所述主辅小区为激活状态,其中,所述接入网设备为终端的主节点或者辅节点,所述主节点管理主小区组,所述辅节点管理所述辅小区组,所述主小区组和/或辅小区组用于所述终端的数据通信,使得终端根据所述去激活指示对所述辅小区组进行去激活操作或者根据所述激活指示激活所述辅小区组,从而实现终端快速中止或恢复辅小区链路的数据传输,节约终端与网络侧的能耗,节约信令开销,提升通信效率。

Description

通信方法、通信装置、计算机存储介质及通信系统 技术领域
本申请涉及通信领域,尤其涉及一种通信方法、通信装置、计算机存储介质及通信系统。
背景技术
下一代(next generation,NG)通信系统能够支持更短的时延,更大的带宽,并且支持大量连接。在下一代通信系统中,使用双连接(dual connectivity,DC)技术能够使终端同时从位于网络侧的主节点(master node,MN)与辅节点(secondary node,SN)分别获得传输资源,提高无线资源利用率,提高传输速率。
然而,当终端配置了DC操作,就需要终端同时进行主小区组(master cell group,MCG)和辅小区组(secondary cell group,SCG)两个空口链路的监听和数据传输,能耗较大。当终端的运行情况变化,例如处于低数据速率状态时,若终端一直在DC工作模式,继续维持SCG链路会造成终端与网络侧设备的高能耗。
发明内容
本申请实施例提供了一种通信方法、通信装置、存储介质及通信系统,可以节约DC通信过程中终端与网络侧设备的能耗。
第一方面,本申请提供了一种通信方法,包括:从接入网设备接收去激活指示,所述去激活指示用于指示辅小区组中的主辅小区为去激活状态,其中,所述接入网设备为所述终端的主节点或者辅节点,所述主节点管理主小区组,所述辅节点管理所述辅小区组,所述主小区组和/或辅小区组用于所述终端的数据通信;根据所述去激活指示对所述辅小区组进行去激活操作。
该通信方法可以由终端或者用于终端的芯片执行。
采用第一方面提供的通信方法,终端根据主节点或者辅节点的指示对辅小区组进行去激活操作,从而暂停辅小区组的链路通信,节约终端和网络侧的能耗,又无需执行辅节点释放流程,节约信令开销。
在第一方面的一种可能的实现方式中,所述根据所述去激活指示对所述辅小区组进行去激活操作包括:根据所述去激活指示确定所述主辅小区为去激活状态。
在第一方面的一种可能的实现方式中,所述根据所述去激活指示对所述辅小区组进行去激活操作包括:
根据所述去激活指示确定除所述主辅小区以外的所有辅小区为去激活状态,或 者,确定所述所有辅小区被释放。
在第一方面的一种可能的实现方式中,所述根据所述去激活指示对所述辅小区组进行去激活操作包括:保留所述辅小区组的配置。所述辅小区组的配置可以用于所述辅节点与所述终端的双连接通信。
可选地,所述辅小区组的配置包括以下任何一种或多种信息的组合:辅小区组无线链路控制承载配置,终结在所述辅节点的承载的分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)或业务数据适应协议(Service Data Adaptation Protocol,SDAP)配置,主辅小区配置,辅小区配置,所述辅小区组的物理层配置,所述辅小区组的媒体访问控制)media access control,MAC)层配置,所述辅节点的安全上下文。
通过保留辅小区组的配置可以使终端能够在需要重新使用辅小区组链路传输数据时,直接使用之前保留的配置,无需执行辅节点添加过程,快速恢复辅小区组链路,节约信令开销,提升通信效率。
在第一方面的一种可能的实现方式中,所述根据所述去激活指示对所述辅小区组进行去激活操作包括:中止所述辅小区组的无线链路控制承载上的数据传输。
在第一方面的一种可能的实现方式中,所述根据所述去激活指示对所述辅小区组进行去激活操作包括:中止通过所述辅节点中的PDCP实体或SDAP实体进行数据通信。例如,可以冻结或者恢复所述PDCP/SDAP实体。
在第一方面的一种可能的实现方式中,所述根据所述去激活指示对所述辅小区组进行去激活操作包括:中止所述主辅小区的全部或部分物理层操作。
在第一方面的一种可能的实现方式中,所述根据所述去激活指示对所述辅小区组进行去激活操作包括:中止所述主辅小区的无线链路失败(radio link failure,RLF)检测,或者中止基于信道状态信息参考信号(channel state information-reference signal,CSI-RS)的无线链路监测(radio link monitoring,RLM)。
通过上述几种中止某个终端行为的去激活操作,可以节约终端和网络侧的能耗,且无需执行辅节点释放流程就能中止辅小区的链路通信,节约信令开销。
在第一方面的一种可能的实现方式中,所述根据所述去激活指示对所述辅小区组进行去激活操作包括:将所述主辅小区作为服务小区或者服务小区的邻区进行无线资源测量。
在第一方面的一种可能的实现方式中,所述根据所述去激活指示对所述辅小区组进行去激活操作包括:将根据所述辅节点配置的测量的测量结果通过所述主小区组发送给所述主节点,所述辅节点配置的测量通过所述辅节点与所述终端间的信令无线承载配置。
上述一种或多种去激活操作可以任意组合或单一实施。
在第一方面的一种可能的实现方式中,所述方法还包括:从所述接入网设备接收 用于所述辅小区组去激活后的配置参数,所述配置参数包括所述终端的功率参数。
第二方面,本申请提供了一种通信方法,包括:从接入网设备接收激活指示,所述激活指示用于指示辅小区组中的主辅小区为激活状态,其中,所述接入网设备为终端的主节点或者辅节点,所述主节点管理主小区组,所述辅节点管理辅小区组,所述主小区组和/或辅小区组用于所述终端的数据通信;根据所述激活指示激活所述辅小区组。
该通信方法可以由终端或者用于终端的芯片执行。
在第二方面的一种可能的实施方式中,所述根据所述激活指示激活所述辅小区组包括:使用在对所述辅小区组进行去激活操作时保留的所述辅小区组的配置,具体地,可以将所述保留的辅小区组的配置用于所述辅节点与所述终端的双连接通信中。
在第二方面的一种可能的实施方式中,所述根据所述激活指示激活所述辅小区组包括:根据所述激活指示确定所述主辅小区为激活状态。
在第二方面的一种可能的实施方式中,所述根据所述激活指示激活所述辅小区组包括:根据所述激活指示确定除所述主辅小区以外的一个或多个辅小区为激活状态。
在第二方面的一种可能的实施方式中,所述根据所述激活指示激活所述辅小区组包括:恢复在所述辅小区组的无线链路控制承载上传输数据。
在第二方面的一种可能的实施方式中,所述根据所述激活指示激活所述辅小区组包括:恢复通过所述辅节点中的PDCP实体或SDAP实体进行数据通信。
在第二方面的一种可能的实施方式中,所述根据所述激活指示激活所述辅小区组包括:恢复所述辅小区组中的主辅小区的物理层操作。
在第二方面的一种可能的实施方式中,所述根据所述激活指示激活所述辅小区组包括:恢复所述辅小区组中的主辅小区的RLF检测或恢复基于CSI-RS的RLM。
在第二方面的一种可能的实施方式中,所述根据所述激活指示激活所述辅小区组包括:将根据所述辅节点配置的测量的测量结果通过所述辅小区组发送给所述辅节点,所述辅节点配置的测量通过所述辅节点与所述终端间的信令无线承载配置。
在第二方面的一种可能的实施方式中,所述方法还包括:从所述接入网设备接收用于所述辅小区组激活后的配置参数,所述配置参数包括所述终端的功率参数。
在第二方面的一种可能的实施方式中,所述根据所述激活指示激活所述辅小区组包括:所述终端在主辅小区上发起随机接入。
采用第二方面提供的通信方法,终端根据主节点或者辅节点的指示对辅小区组进行激活操作,快速恢复该辅小区组的链路通信,无需发起辅小区组添加过程,节约终端与网络侧的能耗,节约信令开销,提升通信效率。
第三方面,本申请提供了一种通信方法,包括:第一接入网设备确定去激活辅小区组,所述第一接入网设备为终端的主节点或者辅节点,所述主节点管理主小区组,所述辅节点管理所述辅小区组,所述主小区组和/或辅小区组用于所述终端的数据通信;所述第一接入网设备向所述终端发送去激活指示,所述去激活指示用于指示所述辅小区组中的主辅小区处于去激活状态。
在第三方面的一种可能的实施方式中,所述第一接入网设备确定去激活所述辅小区组包括:所述第一接入网设备根据所述终端提供的辅助信息、所述终端在所述第一接入网设备的数据传输活跃度,所述第二接入网设备提供的辅助信息中的任意一项或多项确定去激活所述辅小区组。其中,当所述第一接入网设备为主节点时,所述第二接入网设备为辅节点;或者当所述第一接入网设备为辅节点时,所述第二接入网设备为主节点。
在第三方面的一种可能的实施方式中,所述第一接入网设备确定去激活辅小区组包括:所述第一接入网设备中止所述辅小区组的无线链路控制承载上的数据传输。
在第三方面的一种可能的实施方式中,所述第一接入网设备确定去激活辅小区组包括:所述第一接入网设备中止通过所述第一接入网设备中的PDCP实体或SDAP实体处理所述终端的数据。
在第三方面的一种可能的实施方式中,当所述第一接入网设备为所述辅节点,且所述第二接入网设备为所述主节点时,第一接入网设备确定去激活辅小区组包括:所述第一接入网设备将通过PDCP实体或SDAP实体处理后的下行数据发送给所述第二接入网设备,以使得第二接入网设备通过主小区组承载将所述下行数据发送给所述终端,和/或,所述第一接入网设备从所述第二接入网设备接收上行数据,通过所述PDCP实体或SDAP实体处理后,将所述上行数据发送给核心网。
在第三方面的一种可能的实施方式中,当所述第一接入网设备为所述辅节点,且所述第二接入网设备为所述主节点时,所述方法还包括:所述第一接入网设备分别指示所述第二接入网设备与所述终端中止通过主小区组无线链路控制承载传输终结在所述辅节点的承载上的数据。
在第三方面的一种可能的实施方式中,所述第一接入网设备确定去激活辅小区组包括:所述第一接入网设备中止在所述主辅小区传输全部或者部分在第一接入网设备与终端之间传输的信号。所述信号包括数据和/或信令。
在第三方面的一种可能的实施方式中,所述方法还包括:所述第一接入网设备向第二接入网设备发送指示信息,所述指示信息用于指示所述辅小区组已被去激活。
在第三方面的一种可能的实施方式中,所述指示信息用于指示所述第二接入网设备去激活终结在所述主节点的承载对应的辅小区组无线链路控制承载对应的数据传输隧道。
在第三方面的一种可能的实施方式中,所述第一接入网设备向所述终端发送去激活指示包括:所述第一接入网设备通过第二接入网设备向所述终端发送所述去激活指 示。
采用第三方面提供的通信方法,主节点或者辅节点决定去激活辅小区组,并指示终端进行去激活操作,从而能够快速中止辅小区组的链路通信,节约网络侧与终端的能耗,且无需发起辅节点释放流程,节约信令开销。
第四方面,本申请提供了一种通信方法,包括:第一接入网设备确定激活处于非激活状态的辅小区组,所述第一接入网设备为终端的主节点或者辅节点,所述主节点管理主小区组,所述辅节点管理所述辅小区组,所述主小区组和/或辅小区组用于所述终端的数据通信;所述第一接入网设备向所述终端发送激活指示,所述激活指示用于指示所述辅小区组中的主辅小区为激活状态。
在第四方面的一种可能的实施方式中,所述第一接入网设备确定激活所述辅小区组包括:所述第一接入网设备根据所述终端提供的辅助信息、所述终端在所述第一接入网设备的数据传输活跃度、所述第二接入网设备提供的辅助信息中的任意一项或多项确定激活所述辅小区组。
在第四方面的一种可能的实施方式中,所述第一接入网设备确定激活辅小区组包括:所述第一接入网设备恢复所述辅小区组的无线链路控制承载上的数据传输。
在第四方面的一种可能的实施方式中,所述第一接入网设备确定激活辅小区组包括:所述第一接入网设备恢复通过所述第一接入网实体中的PDCP实体或SDAP实体与所述终端进行数据通信。
在第四方面的一种可能的实施方式中,当所述第一接入网设备为所述辅节点,且所述第二接入网设备为所述主节点时,所述方法还包括:所述第一接入网设备分别指示所述第二接入网设备与所述终端恢复通过主小区组无线链路控制承载传输终结在所述辅节点的承载上的数据。
在第四方面的一种可能的实施方式中,所述第一接入网设备确定激活辅小区组包括:所述第一接入网设备恢复在所述主辅小区中传输所述第一接入网设备与所述终端之间传输的信号。
在第四方面的一种可能的实施方式中,所述第一接入网设备向第二接入网设备发送指示信息,所述指示信息用于指示所述辅小区组已被激活。
在第四方面的一种可能的实施方式中,所述指示信息用于指示所述第二接入网设备激活终结在所述主节点的承载对应的辅小区组无线链路控制承载对应的接入网设备间接口的数据传输隧道。
在第四方面的一种可能的实施方式中,所述第一接入网设备向所述终端发送激活指示包括:所述第一接入网设备通过第二接入网设备向所述终端发送所述激活指示。
采用第四方面提供的通信方法,主节点或者辅节点决定激活辅小区组,并指示终端进行激活操作,从而能够快速恢复辅小区组的链路通信,节约网络侧与终端的能耗, 且无需发起辅节点添加流程,节约信令开销。
上述各方面中所述的去激活指示或者激活指示可以包含在物理层信令中,或者包含在MAC控制元素(control element,CE)中,或者包含在无线资源控制(radio resource control,RRC)消息中。
当所述去激活指示包含在MAC CE中,所述去激活指示可以是所述MAC CE中的一个或多个比特位。可选地,所述去激活指示与所述主辅小区的服务小区标识对应。可选地,所述MAC CE除了包含指示主辅小区为去激活状态的指示之外,还可以用于指示其他辅小区的激活或者去激活状态,每一个辅小区有对应的MAC CE中的比特位。
第五方面,本申请实施例提供了一种通信装置,该装置具有实现以上第一方面或第二方面所示通信方法中终端的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或手段(means)。
在一种可能的设计中,该装置包括处理器,该处理器被配置为支持该装置执行以上所示通信方法中终端的相应功能。该装置还可以包括存储器,该存储可以与处理器耦合,其保存该装置必要的程序指令和数据。可选地,该装置还包括收发器,该收发器用于支持该装置与中继设备、接入网设备等网元之间的通信。其中,所述收发器可以为独立的接收器、独立的发射器或者集成收发功能的收发器。
在一个可能的实现方式中,该通信装置可以是终端,或者可用于终端的部件,例如芯片或芯片系统或者电路。
第六方面,本申请实施例提供了一种通信装置,该装置具有实现以上第三或第四方面所示通信方法中接入网设备的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或手段(means)。
在一种可能的设计中,该装置包括处理器,该处理器被配置为支持该装置执行以上所示通信方法中接入网设备的相应功能。该装置还可以包括存储器,该存储器可以与处理器耦合,其保存该装置必要的程序指令和数据。
在一个可能的实现方式中,该通信装置可以是接入网设备,例如,基站,或者可用于接入网设备的部件,例如芯片或芯片系统或者电路。
可选地,该装置还包括收发器,所述收发器可以用于支持接入网设备与终端之间的通信,向终端发送上述通信方法中所涉及的信息或者指令。所述收发器可以为独立的接收器、独立的发射器或者集成收发功能的收发器。
第七方面,本申请实施例提供了一种通信系统,包括作为主节点的第一接入网设备,作为辅节点的第二接入网设备及终端。终端可以同时接入第一接入网设备与第二接入网设备。
第八面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得计算机执行上述任一方面所述的通信方法。
第九方面,本申请实施例提供了一种包含指令的计算机程序产品,当所述指令在计算机上运行时,使得计算机执行上述任一方面所述的通信方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种通信系统100的示意图;
图2(a)是本申请实施例提供的一种NR-NR双连接场景示意图;
图2(b)是本申请实施例提供的一种LTE-NR双连接场景示意图;
图2(c)是本申请实施例提供的一种LTE-NR双连接场景示意图;
图2(d)是本申请实施例提供的一种LTE-NR双连接场景示意图
图3(a)是本申请实施例提供的双连接的无线协议架构示意图;
图3(b)是本申请实施例提供的双连接的无线协议架构示意图;
图4是本申请实施例提供的一种通信方法的流程示意图;
图5是本申请实施例提供的一种MAC CE的示意图;
图6是本申请实施例提供的一种通信方法的流程示意图;
图7是本申请实施例提供的一种通信方法的流程示意图;
图8是本申请实施例提供的一种通信方法的流程示意图;
图9是本申请实施例提供的一种通信方法的信令流程示意图;
图10是本申请实施例提供的一种通信方法的信令流程示意图
图11是本申请实施例提供的一种通信装置1100的结构示意图;
图12是本申请实施例提供的一种通信装置1200的结构示意图;
图13是本申请实施例提供的一种终端1300的结构示意图;
图14是本申请实施例提供的一种基站1400的结构示意图。
具体实施方式
图1是本申请实施例提供的一种通信系统100的示意图。如图1所示,终端130支持双连接(dual connectivity,DC),接入网设备110和接入网设备120共同为终端130提供数据传输服务,其中接入网设备110为主节点(Master Node,MN),接入网设备110为辅节点(secondary node,SN)。MN 110与核心网(Core Network,CN)140之间具有控制面连接,也可以有用户面连接;SN 120与核心网140之间可以具有用户面连接,也可以不具有用户面连接,其中用S1-U代表用户面连接,用S1-C代表控制面连接。可以理解,MN110与核心网140的用户面连接以及SN120与核心网140的用户面连接可以同时存在,也可以只存在其中的任意一个。在SN 120与核心网140之间不具有用户面连接时,终端130的数据可以由MN 110在分组数据汇聚协议(packet data convergence protocol,PDCP)层分流给SN 120。在MN 110与核心网140之间不具有用户面连接时,终端130的数据可以由SN 120在PDCP层分流给MN 110。以上MN又可被称为主基站或主接入网设备,SN又可被称为辅基站或辅接入网设备。
在本申请中,终端130可以是向用户提供语音和/或数据连通性的各类设备,例如可以是具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。终端可以经接入网,例如无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端可以是指用户设备(user equipment,UE)、无线终端、移动终端、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、智能手环、智能手表等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。此外,终端130还可以是无人机设备。在本申请实施例中,应用于上述设备中的芯片也可以称为终端。
本申请中的通信系统可以是长期演进(long term evolution,LTE)无线通信系统,或者是新无线(new radio,NR)系统等第五代(5th generation,5G)移动通信系统、还可以是其他其他下一代(next generation,NG)通信系统等,本申请不做限定。
在本申请中,接入网设备110、接入网设备120可以是第三代合作伙伴计划(3rd generation partnership project,3GPP)所定义的基站。例如,可以是LTE系统中的基站设备,即演进型节点B(evolved NodeB,eNB/eNodeB);还可以是NR系统中的接入网侧设备,包括gNB、传输点(trasmission/reception point,TRP)等。上述接入网设备110或者接入网设备120可以是由集中单元(central unit,CU)与分布式单元 (distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU,例如,可以将无线资源控制(Radio Resource Control,RRC),业务数据适应协议(Service Data Adaptation Protocol,SDAP)以及分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层部署在CU,其余的无线链路控制(Radio Link Control,RLC)层、介质访问控制(Media Access Control,MAC)层以及物理层(Physical)部署在DU。CU和DU之间通过F1接口连接。CU代表gNB通过NG接口和核心网连接。可选地,CU还可以采用控制面(control plane)实体和用户面(user plane,UP)实体分离的结构,由一个控制面实体管理多个用户面实体。在一个示例中,一个gNB可以有一个gNB-CU-CP,多个gNB-CU-UP和多个gNB-DU。一个gNB-CU-CP通过E1接口连接多个gNB-CU-UP,一个gNB-CU-CP可以通过F1-C接口连接多个gNB-DU,一个gNB-DU可以通过F1-U接口连接多个gNB-CU-UP。
此外,当eNB接入NR的核心网或者称为下一代核心网(Next Genaeration Core,NGC)或者5G核心网(5th Generation Core Network,5GC)时,LTE eNB也可以称为eLTE eNB。具体地,eLTE eNB是在LTE eNB基础上演进的LTE基站设备,可以直接连接5G CN,eLTE eNB也属于NR中的基站设备。接入网设备101或接入网设备102还可以是无线端点(wireless terminal,WT),例如接入点(access point,AP)或者接入控制器(access controller,AC),或者其他具有与终端、及核心网通信能力的网络设备,例如,中继设备、车载设备、智能穿戴设备等,本申请实施例对网络设备的类型不做限定。
双连接可以在同制式的接入网设备之间实现,如图2(a)所示,在NR单独组网的场景中,MN110与SN120均为NR gNB,MN110与SN120之间存在Xn接口。MN110和NGC之间存在NG接口,至少有控制面连接,可以还有用户面连接;SN120和5GC之间存在NG-U接口,即只可以有用户面连接。其中,NGC可以包括移动性管理功能(core access and mobility management function,AMF)网元以及用户面功能(user plane function,UPF)网元等功能实体。
双连接也可以在异制式接入网设备之间实现,可以称为多制式DC(Multi-RAT DC,MR-DC),其中,MN与SN采用不同的无线接入技术(radio access tenology,RAT)。多制式双连接(multi RAT DC,MR-DC)架构支持多种承载类型,不同类型的承载可以通过分组数据汇聚层协议(Packet Data Convergence Protocol,PDCP)层以MN还是SN为锚点进行区分,且承载类型之间可以切换。例如,可以在LTE和NR联合组网的场景下实现双连接,称为LTE-NR双连接,从而终端可以同时从LTE和NR空口获得无线资源进行数据传输,获得传输速率的增益。LTE-NR双连接可以包括如下三种架构,下面分别结合图2(b),图2(c)和图2(d)进行说明。
请参考图2(b),其为本申请实施例提供的一种LTE-NR双连接场景示意图。如图2(b)所示,LTE eNB作为MN,NR gNB作为SN。LTE eNB与NR gNB之间存在X2接口。LTE eNB与LTE系统的演进型分组核心网(evolved Packet Core,EPC)之间 存在S1接口,至少有控制面连接,可以还有用户面连接;NR gNB和EPC之间存在S1-U接口,即只可以有用户面连接。可见,在图2(b)所示的场景中,以LTE eNB为锚点,且该LTE eNB接入LTE的核心网。
请参考图2(c),其为本申请实施例提供的另一种LTE-NR双连接场景示意图。其与图2(b)的区别在于,以NR gNB为锚点,且该NR gNB接入NGC,NR gNB作为MN,与NGC之间存在NG接口,可以为终端建立控制面连接和用户面连接;LTE eNB作为SN,与NGC之间存在NG-U接口,仅为终端建立用户面连接。
请参考图2(d),其为本申请实施例提供的又一种LTE-NR双连接场景示意图。其与图2(b)同样以LTE eNB为锚点,区别在于该LTE eNB接入NGC。即,LTE eNB作为MN,与NGC之间存在NG接口,可以为终端建立控制面连接和用户面连接;NR gNB作为SN,与NGC之间存在NG-U接口,仅为终端建立用户面连接。
在以上四种场景中,SN和核心网之间也可以不建立用户面连接,而是经由MN传递数据,例如,在下行方向上,终端的数据先到达MN,MN在PDCP层将终端的数据分流给SN,其中分流的数据的形式例如为PDCP协议数据单元(Protocol Data Unit,PDU PDU)。当MN与核心网之间没有用户面连接而SN与核心网之前有用户面连接时,终端的数据也可以由核心网传输至SN,由SN分流给MN,不做赘述。
在双连接中,终端与接入网侧建立的数据无线承载(Data Radio Bearer,DRB)可以由MN或者SN独立提供,也可由MN和SN同时提供。由MN提供的承载称为主小区组承载(master cell group bearer,MCG bearer),其中,MCG包含用于为终端提供空口传输资源的至少一个MN管理的小区;由SN提供的承载称为辅小区组承载(secondary cell group bearer,SCG bearer),其中,SCG包含用于为终端提供空口传输资源的至少一个SN管理的小区。此外,同时由MN和SN提供的承载称为分离承载(split bearer)。
当MCG中仅有一个小区时,该小区为终端的主小区(primary cell,PCell)。当SCG中仅一个小区时,该小区为终端的主辅小区(primary secondary cell,PSCell)。PCell和PSCell可以统称为特别小区(special cell,SpCell)。当MCG或SCG中各有多个小区时,除了SpCell的小区都可以称为辅小区(secondary cell,SCell)。此时各个小区组中的SCell与SpCell进行载波聚合(carrier aggregation,CA),共同为终端提供传输资源。其中,PSCell属于SCG的小区中,UE被指示进行随机接入或者初始PUSCH传输的小区。SCell是工作在辅载波上的小区,一旦RRC连接建立,SCell就可能被配置以提供额外的无线资源。
下面结合图3(a)和图3(b)进行说明,图3(a)和图3(b)分别为本申请实施例提供的双连接的无线协议架构示意图。如图3(a)和图3(b)所示,当承载仅由MN提供,即数据流仅由核心网流向MN时,该承载为MCG承载(bearer)。当承载仅由SN提供,即数据流仅由核心网流向SN时,该承载为SCG承载。当承载同时由MN和SN提供,即数据流在MN或SN分流时,该承载为分离承载(split bearer),为了区别起见,在MN分流的可以称为MCG split bearer(如图3(a)),在SN分流的可以称为SCG split  bearer(如图3(b))。从图3(a)和图3(b)可知,每一种承载类型都有相应的PDCP层处理和RLC层处理,例如,SCG bearer/SCG split bearer对应有SCG RLC bearer和SN terminated PDCP bearer。
根据PDCP实体建立在MN还是SN,DC中的承载又可以分为如下几种类型,包括:终结在MN的MCG承载(MN terminated MCG bearer),终结在MN的SCG承载(MN terminated SCG bearer),终结在MN的split承载(MN terminated split bearer),终结在SN的MCG承载(SN terminated MCG bearer),终结在SN的SCG承载(SN terminated SCG bearer),终结在SN的split承载(SN terminated split bearer),其中,对于终结在MN的承载,PDCP实体建立在MN,与核心网的用户面连接终结在MN,即以MN为锚点(anchor);对于终结在SN的承载,PDCP实体建立在SN,与核心网的用户面连接终结在SN,即以SN为锚点。可以理解,承载终结在MN还是SN表示与核心网的数据传输通过MN进行还是SN进行,至于空口传输资源则由MCG或者SCG提供,例如,若采用MN terminated SCG bearer,则核心网下发的下行数据通过MN的PDCP层处理后全部转到SN的RLC层、MAC层进一步处理并通过SCG发送给终端;对应地,终端发送的上行数据通过SN的MAC层、RLC层处理后全部转到MN的PDCP层处理并通过MN与核心网的接口发送给核心网设备。若采用MN terminated split bearer,则核心网下发的下行数据通过MN的PDCP层处理后一部分数据转到SN,通过SCG发送给终端,其余部分仍由MN通过MCG发送给终端;对应地,终端发送的上行数据一部分通过MCG发送到MN,另一部分通过SCG发送到SN,两部分数据汇聚到MN的PDCP层处理并通过MN与核心网的接口发送给核心网设备。
在终端130与MN110与SN120的双连接通信过程中,若终端130的数据速率降低,即终端130进入低数据速率状态,若终端维持DC工作模式,则SCG链路的能量消耗是一种浪费。此时,为了网络侧省电以及UE省电,网络侧可以配置终端130释放DC操作,当终端130的数据速率提升,网络侧可以再次为终端130配置DC操作。但是,当采用SN释放(SN release)流程为终端130释放DC操作,以及采用SN增加(SN addition)流程为终端130再次添加SN120或者其他接入网设备为SN时,由于进行SN增加和SN释放的过程涉及MN110和SN120/其他接入网设备的多条信息交互,以及MN110需要在空口上为UE进行重配,带来了额外的信令开销和时延,导致通信效率降低。
本申请实施例定义接入网到终端的单向通信链路为下行链路,在下行链路上传输的数据为下行数据,下行数据的传输方向称为下行方向;而终端到接入网的单向通信链路为上行链路,在上行链路上传输的数据为上行数据,上行数据的传输方向称为上行方向。
本申请实施例中所述的资源也可以称为传输资源,包括时域资源、频域资源、码道资源中的一种或多种,可以用于在上行通信过程或者下行通信过程中承载数据或信令。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存 在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,表示前后关联对象是一种“或”的关系。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本申请实施例中出现的“多个”是指两个或两个以上。
本申请实施例中出现的第一、第二等描述,仅作示意与区分描述对象之用,没有次序之分,也不表示本申请实施例中对设备个数的特别限定,不能构成对本申请实施例的任何限制。
本申请实施例中出现的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,本申请实施例对此不做任何限定。
本申请实施例中出现的“传输”(transmit/transmission)如无特别说明,是指双向传输,包含发送和/或接收的动作。具体地,本申请实施例中的“传输”包含数据的发送,数据的接收,或者数据的发送和数据的接收。或者说,这里的数据传输包括上行和/或下行数据传输。数据可以包括信道和/或信号,上行数据传输即上行信道和/或上行信号传输,下行数据传输即下行信道和/或下行信号传输。
本申请实施例中出现的业务(service)是指终端从网络侧获取的通信服务,包括控制面业务和/或数据面业务,例如语音业务、数据流量业务等。业务的发送或接收包括业务相关的数据(data)或信令(signaling)的发送或接收。
本申请实施例中出现的“网络”与“系统”表达的是同一概念,通信系统即为通信网络。
可以理解的,本申请实施例中,终端和/或接入网设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例中,还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
为了实现去激活SCG,如图4所示,本申请提供了一种通信方法,该方法可以用于以上所示的DC通信架构。该方法可以由终端或者用于终端的装置例如芯片实现,本申请实施例中以终端执行该通信方法为例进行说明。
该方法包括:
S401:终端从接入网设备接收去激活(deactivation)指示,所述去激活指示用于指示SCG中的PScell处于去激活状态。
其中,所述接入网设备为所述终端的MN或者SN,所述主节点管理MCG,所述辅节点管理所述SCG,所述MCG和/或SCG用于所述终端的数据通信。
所述终端处于DC通信过程中。具体地,所述终端支持DC通信,终端首先接入MN,通过MN确定添加SN进行DC通信。在DC通信过程中,终端可以通过不同类 型的无线承载与MN和/或SN进行数据传输。所述MN与所述SN可以分别为所述终端与核心网之间的数据传输提供空口传输资源。本申请提供的通信方法可以适用于任意一种DC架构,对MN与SN的类型不做任何限定,例如MN与SN可以是同制式(RAT)的接入网设备,例如MN和SN均为gNB,也可以是异制式的接入网设备,例如MN为eNB且SN为gNB。关于各类DC架构的详细描述,可以参见前文描述,在此不做赘述。
本申请中所述的去激活指示也可以称为去激活命令(command)。去激活可以是指终端暂时停止通过SCG的通信链路进行数据传输,但终端保留或存储SN的部分或全部配置,以用于快速恢复所述SCG的通信链路。类似地,PScell为去激活状态表示PScell的配置可以被保留但通过该PScell的数据传输暂停。在本申请中,去激活(deactive/deactivation)也可以称为挂起(suspend/suspension)或者休眠。去激活状态(deactived state)也可以称为挂起状态或休眠状态或非活跃状态等。
可选地,在本申请的一个实现方式中,所述去激活指示包含在媒体访问控制(media access control,MAC)控制元素(CE,control element)中,所述去激活指示为所述MAC CE中的一个或多个比特位。可选地,该MAC CE可以是用于指示SCell激活/去激活状态的MAC CE,也可以是专门为所述去激活指示设计的MAC CE,该专门设计的MAC CE对应有独立的逻辑信道标识(Logical Channel Identity,LCID)。其中,SCell是指除了所述PSCell之外的MN或者SN管理的辅小区。
在一个实施方式中,当采用了用于指示SCell激活/去激活状态的MAC CE携带上述去激活指示时,可以采用该MAC CE中的保留(reserved)比特作为该去激活指示;也可以采用与PScell的服务小区标识(serving cell ID)或服务小区索引(index)对应的比特作为该去激活指示。该MAC CE中除了保留比特之外的一个或多个比特可以分别用于指示一个或多个对应的SCell的激活/非激活状态。
图5是一种4字节的MAC CE的格式的示意图。该MAC CE中包含1个保留比特位(图中表示为R)和31个激活/去激活比特位。网络侧可以通过无线资源控制(radio resource control,RRC)消息给UE提供PSCell的配置,其中包含PSCell的服务小区标识或索引(ServCellIndex)。此外,网络侧还可以通过无线资源控制消息给UE提供SCell的配置,其中包含SCell标识与指示SCell的索引(index)的对应关系。如图5所示,对于index为i的SCell,Ci表示该SCell的激活/去激活状态,例如Ci=0表示SCell i为去激活,Ci=1表示SCell i为激活。由于终端的能力为最多支持32个单元载波(component carrier,CC),其中包含PCell、PSCell和所有MCG和SCG的SCell。若采用保留比特位作为上述去激活指示,则可以设置R=0。若采用与PScell的serving cell ID对应的比特位(假设为图中的C 20)作为上述去激活指示,则可以设置C 20=0。
可选地,当终端收到包含该去激活指示的MAC CE,且终端读取到PSCell为去激活状态,则终端默认所有SCG的SCell也为去激活状态,而无需读取各个SCell对应的比特位。或者,若终端读取PSCell为去激活状态,则默认所有SCG的SCell已被释放(release),并由该终端的RRC实体释放SCell的配置。
可选地,所述去激活指示也可以包含在接入网设备向终端发送的其他消息/信令中,所述消息/信令可以是现有的或者新增的消息/信令,例如可以是RRC消息,或者下行控制信息(downlink control informaiton,DCI)等物理层信令等。示例性地,所述去激活指示可以添加在RRC重配置消息中,或者复用现有的消息或者信元中的特殊取值。
S402:所述终端根据所述去激活指示对所述辅小区组进行去激活操作。
可选地,所述终端可以进行如下任意一种或多种操作:
操作1:所述终端保留所述SCG的配置。
所述SCG的配置可以是SCG RRC配置。所述配置可以包括以下任何一种或多种信息的组合:辅小区组无线链路控制承载(SCG RLC bearer)配置,终结在所述SN的承载的PDCP配置或业务数据适应协议(service data adaption protocol,SDAP)配置,所述PSCell的配置,除PSCell之外的其他Scell的配置,所述SCG的物理层配置,所述SCG的MAC层配置,所述SN的安全上下文。其中,所述SN的安全上下文可以包括以下信息中的一种或多种的组合:辅基站秘钥(secondary key),SN完整性保护秘钥,SN加密秘钥,SN完整性保护算法,SN加密算法,辅基站秘钥衍生参数,例如辅小区组计数器(SCG counter)或辅密钥计数器(secondary key counter,SK counter)。
操作2:所述终端根据所述去激活指示确定所述主辅小区为去激活状态。
具体地,终端接收到所述去激活指示后,读取到该指示中关于指示所述PScell为去激活状态的内容,则可以默认PSCell为去激活状态。可选地,终端还可以默认除了PSCell之外的其他SCG的SCell也均为去激活状态。
操作3:所述终端挂起所述SN的承载关联的SCG RLC bearer。
其中,所述SN的承载是建立在所述终端与所述SN之间的承载,可以是任意一种利用了SN的空口传输资源的承载,包括SN terminated bearer和/或MN terminated bearer,其中,SN terminated bearer可以是SN terminated SCG bearer或者SN terminated split beaer;MN terminated bearer可以是MN terminated split bearer或者MN terminated SCG bearer。所述挂起SCG RLC bearer可以包括不通过/中止该SCG RLC bearer进行数据传输,或者说终端中止使用SN的空口传输资源。可选地,通知该SCG RLC bearer对应的PDCP实体(即属于同一个DRB/逻辑信道(Logical Channel,LC)的PDCP)不继续向该SCG RLC bearer的RLC实体发送下行数据。可选地,该PDCP实体进行恢复(recovery)操作。
可选地,终端不通过SCG RLC bearer进行数据传输可以通过如下任意一种方式或多种方式的组合来实现:
方式一:冻结RLC实体。即仅停止RLC的动作,不进行SCG RLC重建立,也不删除RLC实体。
方式二:若该SCG RLC bearer对应的承载为split bearer,则将该split beaer对应的主小区组RLC承载(MCG RLC bearer)设置为主路径(primary path),同时分流门限设置为无限大,则后续上行数据可以通过该MCG RLC bearer传输。
方式三:进行一个承载类型变化,例如当该SCG RLC bearer对应的承载类型为split bearer或者SCG beaer时,将承载类型变为MCG bearer,利用MN的空口传输资源传输终端的数据。可选地,此时不删除SCG RLC bearer的RLC实体和/或LCID,而是默认SCG RLC bearer为挂起状态。可以理解,此时的承载类型变化是一个虚拟的变化,与传统的承载类型变化时删除SCG RLC bearer是有差别的。可选地,虽然终端不再使用SN的空口传输资源,但与核心网的用户面连接仍然可以维持在SN上。
方式四:可以进行SCG RLC重建立(re-establishment)。可选地,可以仅对E-UTRA的RLC进行重建立。可选地,保留该SCG RLC bearer的RLC实体。采用SCG RLC重建立的方式,可以将存储的数据包交由PDCP实体处理,且清空缓存的分段数据。
操作4:终端挂起该SN的PDCP/SDAP实体,即不通过SN的PDCP/SDAP实体进行数据处理和数据传输。该SN的PDCP/SDAP实体可以是SN terminated bearer的PDCP/SDAP实体。具体地,挂起PDCP/SDAP实体可以由冻结PDCP/SDAP或者PDCP/SDAP恢复(recovery)的操作实现。可以理解,该SN的PDCP/SDAP实体可以是与MN共用的或者SN独立使用的,不做限定。所述SN的PDCP/SDAP实体也可以称为终结在该SN上的PDCP/SDAP实体或者终结在SN的承载的PDCP/SDAP实体。
可选地,终端在挂起SCG RLC bearer的基础上再挂起上述SN的PDCP/SDAP实体,从而在整个SN terminated bearer上都暂停了数据传输。可选地,终端只挂起上述SN的PDCP/SDAP实体,而维持SCG RLC bearer,从而,虽然分配给SN的数据暂停通过SN的PDCP/SDAP实体处理,但利用该SCG RLC bearer仍然可以向终端发送例如从MN分流来的下行数据,或者SN通过该SCG RLC bearer接收终端发送的上行数据并传输给MN,由MN的PDCP/SDAP实体处理。可以理解,挂起SN的PDCP/SDAP实体隐含说明SCG RLC bearer上没有原本应该通过PDCP/SDAP实体处理的数据需要传输。
操作5:所述终端中止所述PSCell的全部或者部分物理层操作。
可选地,终端中止如下任意一项或多项针对PSCell的物理层操作:物理下行控制信道(physical downlink control channel,PDCCH)监控(monitoring);CSI-RS测量;信道质量指示(Channel Quality Indicator,CQI)上报;发送上行信道探测参考信号(sounding reference signal,SRS);波束(beam)管理;SCG的时间提前量(timing advance,TA)的维护。可以理解的,当停止上述物理层操作的其中一项或多项时,其他未停止的物理层操作还继续进行。例如,终端终止PDCCH监控,但是持续进行CQI上报。
操作6:可选地所述终端中止对所述PScell进行无线链路失败(radio link failure,RLF)检测。可选地或者,终端中止对所述PSCell上进行基于CSI-RS的无线链路监测(radio link  monitoring,RLM),但是进行基于同步信号块(sychronization signal and PBCH block)的RLM,从而进行RLF的判断。
操作7:所述终端在进行RRM测量时,可以将已处于去激活状态的PSCell仍然作为服务小区进行测量;或者也可以将该PSCell作为服务小区的邻小区(neighbor cell)进行测量。
操作8:如果终端配置了SRB3,则终端可以挂起该SRB3。SRB3是指终端与SN之间直接建立的信令承载。挂起SRB3可以是指中止通过该SRB3传输SN与UE之间的RRC消息,例如包括:清空未成功向辅节点发送的RRC消息。
操作9:终端进行SCG的MAC的重置(reset)操作。
可选地,在本申请的一个实施方式中,所述方法还包括S400:所述终端从所述接入网设备接收用于所述SCG去激活后终端使用的配置参数。
其中,所述配置参数可以包括所述终端的功率参数。
终端在收到该配置参数后,可以直接在SCG去激活后使用该配置参数。
可选地,所述接入网设备在决定去激活SCG之前提前为终端配置两类不同的参数,一类参数用于SCG挂起后的终端通信,终端收到去激活指示后,可以自动应用该类参数。另一类用于正常的DC通信或者SCG恢复后的终端通信。
可以理解,S400在S402之前执行,且S400与S401没有执行的先后顺序区分,可以先执行S400再执行S401,也可以先执行S401再执行S400,也可以同时执行S400与S401,本申请对此不做特别限定。S402中,若终端执行多种操作的组合,执行顺序本申请也不做特别限定。例如,可以先执行操作9,再执行操作3。
采用本申请提供的通信方法,终端根据MN或者SN的指示对SCG进行去激活操作,当终端处于低数据速率状态,通过暂停SCG链路通信,且保留SCG的配置,既节约终端和网络侧的能耗,又无需执行辅节点释放流程,节约信令开销,进一步地,由于SCG的配置被保留,终端能够快速恢复该SCG的链路通信,而不用执行辅节点添加流程,节约信令开销,提升通信效率。
终端对SCG进行去激活操作后,可以根据网络侧的指示恢复通过SCG进行通信,即终端继续DC通信。为了实现激活SCG,如图6所示,本申请提供了一种通信方法,该方法可以用于DC通信架构。该方法可以由终端或者用于终端的装置例如芯片实现,本申请实施例中以终端执行该通信方法为例进行说明。
该方法包括:
S601:终端从接入网设备接收激活(activitation)指示,所述激活指示中指示了所述SCG中的PSCell为激活状态。
其中,所述接入网设备为所述终端的MN或者SN,所述主节点管理MCG,所述辅节点管理所述SCG,所述MCG和/或SCG用于所述终端的数据通信,且所述SCG处于非激活状态。
S602:所述终端根据所述激活指示激活(active)所述辅小区组。
其中,所述激活指示也可以称为激活命令,恢复(recovery/resumption)指示/命令等。所述激活状态也可以称为恢复状态、活跃态等。
所述激活指示可以包含在接入网设备向终端发送的MAC CE中或者RRC消息中或者物理层信令中,可以参照图4所示实施例中的相关描述,不做赘述。
当所述激活指示包含在MAC CE中,可以用该MAC CE中的一个或多个比特作为该激活指示。该MAC CE的设计可以参照图4所示的MAC CE以及相关的文字说明,在此不做赘述。需要指出的是,当该MAC CE还用于指示激活除该PSCell之外的其他一个或多个SCell,则终端可以按照该MAC CE的指示激活一个或多个SCell,也可以默认所有SCG的SCell都需要被激活而无需读取每个SCell对应的比特位。
可选地,所述终端根据所述激活指示激活所述SCG包括如下任意一种或多种操作:
操作1:所述终端将在对所述辅小区组进行去激活操作时保留的所述SCG的配置用于所述SN与所述终端的DC通信中。即终端重新应用(restore)已存储的用于DC的SCG的配置。
操作2:所述终端根据所述激活指示确定所述辅小区组中的主辅小区Pscell为激活状态。
操作3:所述终端恢复(resume)所述SN的承载关联的SCG RLC bearer,包括:继续通过SCG RLC bearer进行数据传输。换言之,终端可以重新利用SN的空口传输资源。所述承载可以包括SN terminated bearer和/或MN terminated bearer。不做赘述。可选地,通知该SCG RLC bearer的RLC实体对应的PDCP实体(即属于同一个DRB/LC的PDCP实体)继续向该RLC实体发送上行数据。可选地,若此时需要应用新的Secondary key,则PDCP实体进行重建立。
可选地,通过SCG RLC bearer进行数据传输可以通过如下任意一种方式或多种方式的组合来实现:
方式一:恢复冻结的RLC实体的处理。
方式二:若该SCG RLC bearer对应的承载为split承载,则可以应用去激活前的主路径配置和分流门限,则后续的上行数据可以继续通过SCG RLC bearer传输。
方式三:进行一个承载类型变化,例如将MCG bearer变成split bearer或者SCG bearer,默认SCG RLC bearer为可用状态,从而终端能够重新使用SN的空口传输资源。
操作4:所述终端恢复挂起的PDCP/SDAP实体,进而通过该PDCP/SDAP实体进行数据处理和数据传输。
操作5:所述终端恢复PSCell上的部分或全部物理层操作。
例如,终端可以开始进行PDCCH monitoring、或者进行CSI-RS测量并继续CQI上报等各类物理层操作,不做赘述。
操作6:所述终端重新开始PSCell的RLF检测。
操作7:所述终端在RRM测量时,将已处于去激活状态的PSCell作为服务小区进行测量。
操作8:所述终端恢复挂起的SRB3。
可选地,若SN通过SRB3配置了测量,终端继续依据SN的测量配置进行测量,将测量结果通过SRB3上报给SN。
操作9:所述终端进行SCG的MAC的重置(reset)操作。
操作10:所述终端在PSCell上发起随机接入。可选地,随机接入可以为基于竞争的随机接入,或者为非竞争的随机接入。可选的,若为非竞争的随机接入,UE可以在PSCell上监听PDCCH order。
操作11:所述终端衍生新的辅基站秘钥(secondary key),并进一步衍生加密和/或完整性保护的秘钥,并配置给PDCP实体。可选的,秘钥衍生参数可以在网络下发激活(activitation)指示时一起配置的,也可以为网络下发去激活(activitation)指示时一起配置的。
可以理解,本申请中的去激活操作与激活操作是对应的,当终端进行一项针对SCG的去激活操作后,在激活SCG时,则进行相应的激活(恢复)操作,例如,去激活(挂起)SCG RLC bearer对应激活(恢复)SCG RLC bearer。关于终端进行的各项激活(恢复)操作的描述可以参照前述对应的去激活操作,相似内容不做赘述。需要指出的是,当终端根据去激活指示默认所有SCell为去激活状态,在进行SCG激活操作时,终端可以激活(恢复)所有SCell,也可以根据需求只激活(恢复)其中的一个或多个SCell。S602中,若终端执行多种操作的组合,执行顺序本申请也不做特别限定。例如,可以先执行操作11,再执行操作4。
采用本申请提供的通信方法,终端根据MN或者SN的指示对SCG进行激活操作,快速恢复该SCG的链路通信,无需发起SCG添加过程,节约终端与网络侧的能耗,节约信令开销,提升通信效率。
图7-图8所示实施例是从接入网设备侧描述本申请提供的通信方法。
为了实现去激活SCG,如图7所示,本申请提供了一种通信方法,该方法可以用DC通信架构。该方法包括:
S701:第一接入网设备确定去激活(deactive)辅小区组。
其中,所述第一接入网设备为所述终端的MN或者SN,所述主节点管理MCG,所述辅节点管理SCG,所述MCG和/或SCG用于所述终端的数据通信。
可选地,当所述第一接入网设备为终端的MN时,所述终端还与作为SN的第二 接入网设备通信。
可选地,当所述第一接入网设备为终端的SN时,所述终端还与作为MN的第二接入网设备通信。
可选地,在本申请的一个实施方式中,所述第一接入网设备确定去激活所述辅小区组包括:所述第一接入网设备根据所述终端提供的辅助信息、所述终端在所述第一接入网设备的数据传输活跃度,所述第二接入网设备提供的辅助信息中的任意一项或多项确定去激活所述辅小区组。
其中,终端提供的辅助信息可以表示终端通过SCG传输的数据不活跃,或者表示终端有节电需求,或者表示终端希望将SCG挂起。
所述数据传输活跃度也可以称为数据传输活跃情况,可以通过终端与所述第一接入网设备之间的承载上传输的数据量来衡量。通过数据量的高中低、“有数据”或“无数据”等指示可以表示所述数据传输活跃度。数据量可以由第一接入网设备自己确定,例如统计核心网传输到第一接入网设备的数据、或者由作为PDCP锚节点(anchor node)的第二接入网设备分流来的数据。第一接入网设备也可以基于用户面指示信息来确定所述数据量,例如核心网通过S1/NG接口向第一接入网设备发送用户面指示信息,指示了数据承载上传输的数据量,其中,所述数据承载可以是E-UTRAN无线接入承载(E-UTRAN radio access bearer,E-RAB)或者分组数据单元会话(packet data unit session,PDU session)或者业务质量流(quality of service,QoS flow);或者第二接入网设备通过X2/Xn接口向第一接入网设备发送用户面指示信息,指示了该SN上的SCG RLC bearer上传输的数据量。第一接入网设备也可以基于控制面指示信息来确定所述数据量,例如核心网通过S1/NG接口向第一接入网设备发送控制面指示信息,指示了数据承载相关的QoS参数,其中,所述数据承载可以是E-UTRAN无线接入承载(E-UTRAN radio access bearer,E-RAB)或者分组数据单元会话(packet data unit session,PDU session)或者业务质量流(quality of service,QoS flow);或者第二接入网设备(此时为MN)通过X2/Xn接口向第一接入网设备转发来自核心网的控制面指示信息,指示了该数据承载相关的QoS参数或该SN上的SCG RLC bearer对应的QoS参数。可选地,所述数据传输活跃度可以是终结在SN的PDCP承载(SN terminatd PDCP bearer)的活跃情况,或者为SCG RLC bearer的活跃情况,还可以为MN terminated bearer关联的SCG RLC bearer的活跃情况。当所述终端的数据传输活跃度高时,通过SN为终端提供数据传输服务可以提高数据传输速率与可靠性;当所述终端的数据传输活跃度低时,无需采用SN也能满足终端正常的数据传输需求,因此可以去激活SCG。在一个示例中,当所述终端的数据传输活跃度以终端的数据量衡量时,当数据量小于一个阈值,则第一接入网设备可以决定去激活SCG;相应地,当数据量小于一个阈值,则第一接入网设备可以决定继续维持SCG的链路传输。
第二接入网设备提供的辅助信息可以包括:节电指示或节电请求、请求去激活SCG的信息、终端在第二接入网设备的数据活跃度等信息。
可选地,在本申请的一个实施方式中,当所述第一接入网设备决定将SCG去激 活后,SN获知SCG将被去激活,SN保留或者删除该终端的SCG配置。若保留,则后续进行SCG激活后SN无需新生成该终端的SCG配置,而是可以沿用激活前保留的SCG配置,或者进行增量(delta)配置;若删除,则后续激活SCG后可能需要SN新生成SCG配置。可选的,SN向MN发送指示消息,其中可以携带该终端的SCG配置,用于MN保存SCG配置。进一步可选的,后续进行SCG激活时,MN将保存的SCG配置发送给SN,用于SN基于该SCG配置进行增量配置。
可选地,在本申请的一个实施方式中,当所述第一接入网设备决定将SCG去激活后,MN获知SCG将被去激活,MN向终端发送配置信息,用于指示终端在SCG去激活后使用该配置信息。可选的,该配置信息为RRC重配置消息,该配置信息可以包含以下信息中的一种或多种的组合:功率参数、辅基站秘钥衍生参数、随机接入相关配置等。其中,功率参数用于SCG去激活状态;辅基站秘钥衍生参数用于SCG激活后衍生新的辅基站秘钥;随机接入相关配置用于SCG激活后,在PSCell上进行随机接入。进一步可选的,上述配置信息中的部分或全部由SN生成。一种示例是,SN获知SCG被去激活后生成上述配置信息中的部分或全部,并将上述上述配置信息中的部分或全部发送给MN,进而由MN组成上述配置信息,发送给终端。
S702:第一接入网设备向终端发送去激活指示,所述去激活指示用于指示所述SCG中的PSCell处于去激活状态。
所述去激活指示包含在物理层信令中,或者包含在MAC CE中,或者包含在RRC消息中。关于所述去激活指示的具体描述可以参照本申请其他实施例,例如图4所示实施例中的相关内容,在此不做赘述。
关于终端接收到所述去激活指示后的操作可以参照参照本申请其他实施例,例如图4所示实施例中的相关内容,在此不做赘述。
所述第一接入网设备可以通过第二接入网设备向终端发送所述去激活指示;或者所述第一接入网设备可以直接向终端发送所述去激活指示。
可选地,在本申请的一个实施方式中,所述第一接入网设备确定去激活所述SCG包括第一接入网设备挂起所述终端所有的SCG RLC bearer,具体地,第一接入网设备可以中止在所述终端关联(associated)的任意一个SCG RLC bearer进行数据传输。其中,所述终端关联的SCG RLC bearer是指第一接入网设备与该终端建立的承载关联的SCG RLC bearer,所述承载例如可以是SN terminated SCG/split bearer或者MN terminated split/SCG bearer等。
可选地,在挂起终端的SCG RLC bearer之后,所述第一接入网设备还可以根据该终端关联的SN terminated bearer的PDCP/SDAP实体的活跃情况,确定挂起所述第一接入网设备的PDCP/SDAP实体,包括:中止通过所述PDCP/SDAP实体处理该终端的数据。在另一个实施方式中,当所述第一接入网设备为SN时,SN可以继续通过SN terminated bearer的PDCP实体进行数据处理,但与终端之间的数据传输通过MCG  bearer进行。
此外,挂起SCG RLC bearer后,SN可以中止在PSCell传输全部或者部分在第一接入网设备与终端之间传输的信号,其中,所述信号可以包括数据和/或信令。可选地,SN中止在该PSCell调度该终端的数据传输;或者SN中止与该终端相关的信令发送,例如停止发送该终端专用的CSI-RS。
可选地,在本申请的一个实施方式中,所述第一接入网设备为SN,所述第二接入网设备为MN,若SN已经挂起了SCG RLC bearer,并挂起了SN terminated bearer的PDCP实体,表示整个SN terminated bearer挂起。所述方法还包括:SN分别指示MN与所述终端中止通过MCG RLC bearer传输该SN terminated bearer上的数据,即指示MN的空口传输资源对传输该SN terminated bearer上的数据不可用。可选地,SN可以采用显示指示或者隐式指示,其中,隐式指示可以是在以执行去激活SCG的操作隐含执行挂起SN terminated bearer的PDCP实体以及对应的MCG RLC bearer。
作为一个示例,当第一接入网设备认为终端关联的承载对应的各个SCG RLC bearer均不活跃,且终端有节电需求时,第一接入网设备决定向终端发送去激活指示。此时,SN停止通过SCG调度该终端的数据传输。但终端仍然可以通过MCG RLC bearer,即利用MN的空口传输资源,以及该SN的PDCP实体与核心网进行数据传输。具体地,在下行方向,SN可以从核心网接收下行数据,并经过PDCP处理后发送给MN,通过MCG RLC bearer,即利用MN的空口传输资源,将下行数据发给终端;在上行方向,终端可以通过MCG RLC bearer将上行数据发送给MN,再由MN发送给SN,SN经过PDCP实体处理后将上行数据发送给核心网。在该实施方式中,网络侧可以提前为每一个SN terminated bearer配置MCG RLC bearer。
可选地,在本申请的一个实施方式中,所述方法还包括S703:所述第一接入网设备向第二接入网设备发送指示信息,所述指示信息用于指示所述SCG已被去激活。
可选地,所述指示信息是任意一种第一接入网设备向第二接入网设备发送的消息或者信令或者包含在所述消息或者信令中。例如,当第一接入网设备为MN时,所述指示信息是SN修改请求(SN modification request)消息;当第一接入网设备为SN时,所述指示信息是SN修改需求(SN modification required)消息。
可选地,第一接入网设备通过该指示信息告知第二接入网设备去激活终结在该MN的承载关联的SCG RLC bearer对应的X2/Xn接口的数据传输隧道,其中,终结在该MN的承载可以是MN terminated split bearer或者MN terminated SCG bearer。可选地,当所述第一接入网设备为SN且所述第二接入网设备为MN时,若SN挂起了SN terminated bearer的PDCP实体,MN还可以挂起该SN terminated bearer对应的MCG RLC bearer对应的X2/Xn接口的数据传输隧道。
可选地,当所述第一接入网设备为SN且所述第二接入网设备为MN,所述指示信息还用于指示MN修改MCG QoS参数;当所述第一接入网设备为MN且所述第二接入网设备为SN,所述指示信息还用于向SN指示MN修改的MCG QoS参数。若UE在该承载上还有数据传输,由于去激活了SCG RLC bearer,所有的数据都会承载 在MCG RLC bearer上,因此MCG RLC bearer对应的QoS参数需要进行相应修改。目的在于可以令MN或者SN调整调整调度策略等,从而调整为终端传输的数据量。
采用上述通信方法,MN或者SN决定去激活SCG,并指示终端进行去激活操作,从而能够快速中止SCG的链路通信,节约网络侧与终端的能耗,且无需发起辅节点释放流程,节约信令开销。
为了实现激活SCG,如图8所示,本申请提供了一种通信方法,该方法可以用于DC通信架构。该方法包括:
S801:第一接入网设备确定激活处于非激活状态的SCG。
其中,所述第一接入网设备为终端的MN或者SN,所述MN管理MCG,所述SN管理所述SCG,所述MCG和/或SCG用于所述终端的数据通信。
可选地,在本申请的一个实施方式中,当所述第一接入网设备决定将SCG激活后,SN获知SCG将被激活,SN生成该终端的SCG配置。可选的,该SCG配置可以为沿用源配置,或者进行增量(delta)配置。可选的,SN向MN发送指示消息,其中可以携带该终端的SCG配置,用于MN将SCG配置发送给终端。
可选地,在本申请的一个实施方式中,当所述第一接入网设备决定将SCG激活后,MN获知SCG将被激活,MN向UE发送配置信息,用于指示UE在SCG激活后使用该配置信息。可选的,该配置信息为RRC重配置消息,该配置信息可以包含以下信息中的一种或多种的组合:功率参数、辅基站秘钥衍生参数、随机接入相关配置、SCG配置等。其中,功率参数用于SCG激活状态;辅基站秘钥衍生参数用于SCG激活后衍生新的辅基站秘钥;随机接入相关配置用于SCG激活后,在PSCell上进行随机接入;SCG配置用于终端激活SCG后在SN空口上使用。可选地,上述配置信息中的部分或全部信息由SN生成。一种示例是,SN获知SCG被激活后生成上述配置信息中的部分或全部信息,并将上述上述配置信息中的部分或全部发送给MN,进而由MN组成上述配置信息,发送给终端。
S802:所述第一接入网设备向所述终端发送激活指示,所述激活指示中指示了所述SCG中的PSCell为激活状态。
所述激活指示包含在物理层信令中,或者包含在MAC CE中,或者包含在RRC消息中关于所述激活指示的具体描述可以参照本申请其他实施例,例如图6所示实施例中的相关内容,在此不做赘述。
关于终端接收到所述激活指示后的操作可以参照参照本申请其他实施例,例如图6所示实施例中的相关内容,在此不做赘述。
所述第一接入网设备可以通过第二接入网设备向终端发送所述激活指示;或者所述第一接入网设备可以直接向终端发送所述激活指示。
可选地,所述第一接入网设备确定激活所述SCG包括:所述第一接入网设备根 据所述终端提供的辅助信息、所述终端在所述第一接入网设备的数据传输活跃度,第二接入网设备提供的辅助信息中的任意一项或多项确定激活所述SCG。
其中,终端提供的辅助信息可以表示终端有需要通过SCG传输的数据,或者表示终端取消节电需求,或者表示终端希望SCG恢复。
第二接入网设备提供的辅助信息可以包括:节电指示或取消节电请求、请求激活SCG的信息、终端在第二接入网设备的数据活跃度等信息。
关于所述数据传输活跃度的具体描述可以参照本申请其他实施例,例如图7所示实施例中的相关内容,在此不做赘述。
可选地,所述第一接入网设备确定激活辅小区组包括:所述第一接入网设备恢复该终端关联的承载关联的SCG RLC bearer上的数据传输。类似地,所述第一接入网设备还可以恢复通过所述第一接入网设备中的PDCP/SDAP实体与所述终端进行数据通信。
可选地,当所述第一接入网设备为SN,且所述第二接入网设备为MN时,所述方法还包括:SN分别指示所述MN与所述终端恢复通过MCG RLC bearer传输终结在该SN的承载上的数据。SN可以采用显示指示或隐式指示,不做赘述。
可选地,所述第一接入网设备恢复在所述PSCell调度所述终端的数据/信号传输。
可选地,所述方法还包括S803:所述第一接入网设备向第二接入网设备发送指示信息,所述指示信息用于指示所述SCG已被激活。
可选地,所述指示信息用于指示所述第二接入网设备激活终结在该MN的承载关联的SCG RLC bearer对应的X2/Xn接口的数据传输隧道。该指示信息与图7所示实施例中步骤S703中描述的指示信息是对应的。
可以理解,本申请中的接入网设备指示终端进行去激活SCG的操作与指示终端进行激活SCG的操作是对应的。关于接入网设备确定激活(恢复)SCG以及发送激活指示的具体描述可以参照前述对应的去激活SCG相关的内容,不做赘述。
采用上述通信方法,MN或者SN决定激活SCG,并指示终端进行激活操作,从而能够快速恢复SCG的链路通信,节约网络侧与终端的能耗,且无需发起辅节点添加流程,节约信令开销。
图9是本申请提供的一种通信方法的信令流程示意图。图9是对图4-图8所示实施例的进一步解释说明,前文已经介绍的内容不做赘述。在图9所示实施例中,以第一接入网设备为SN,第二接入网设备为MN,终端为UE进行举例说明,UE可以通过MN管理的MCG和/或SN管理的SCG进行DC通信。该方法包括:
S901:SN确定去激活SCG。
SN可以根据UE提供的辅助信息,终端在SN的数据传输活跃度,或者MN提供 的辅助信息中的任意一项或多项确定是否去激活SCG,其中,MN提供的辅助信息可以包括节电指示。其中,UE提供的辅助信息可以是由UE通过SRB3直接发给SN的,或者由UE先发送给MN再由MN发送给SN的。
S902:SN向UE发送去激活指示。
可选地,SN可以直接向UE发送上述去激活指示。
可选地,SN可以通过MN向UE发送上述去激活指示。在该实施方式中,S902可以包括S902-1:SN向MN发送去激活指示;以及S902-2:MN向UE发送该去激活指示。
可选地,MN可以解析该去激活指示并将该去激活指示包含在MN向UE发送的消息/信令中;或者MN可以向UE透传该去激活指示,即MN不解析该去激活指示,而是将该去激活指示封装在容器(contanier)中通过消息/信令发送给UE。
可选地,S903:SN向MN发送第一指示信息,用于告知MN该UE的SCG已经被挂起。
可以理解,S902与S903没有执行的先后顺序区分,可以先执行S902,再执行S903;也可以先执行S903,再执行S902;或者同时执行S902与S903,不做限定。
S904:UE根据所述去激活指示执行去激活所述SCG的操作。
关于去激活SCG的操作的具体描述可以参照本申请其他实施例,例如图4所示实施例的相关内容,在此不做赘述。
当UE的数据量增加,SN可以决定激活SCG为UE继续提供通信服务,所述方法还包括:S905:SN确定激活所述SCG。
S906:SN向UE发送激活指示。
所述激活指示也可以是SN直接发送给UE或者由SN发送给MN再由MN转发的。
可选地,S907:SN向MN发送第二指示信息,所述指示信息用于告知MN该UE的SCG已被激活。
S908:UE根据所述激活指示进行激活所述SCG的操作。
关于激活SCG的操作的具体描述可以参照本申请其他实施例,例如图5所示实施例的相关内容,在此不做赘述。
可以理解,S906与S907没有执行的先后顺序区分,可以先执行S906,再执行S907;也可以先执行S907,再执行S906;或者同时执行S906与S907,不做限定。
采用本申请实施例提供的通信方法,UE根据SN的指示去激活/激活SCG,无需进行辅节点释放/添加流程,就能快速中断或者恢复UE通过SCG的链路通信,节约信令开销,节约UE和网络侧的电耗,提升通信效率。
图10是本申请实施例提供的一种通信方法的信令流程示意图。图10是本申请提供的一种通信方法的信令流程示意图。图9是对图4-图8所示实施例的进一步解释说明,前文已经介绍的内容不做赘述。在图10所示实施例中,以第一接入网设备为MN,第二接入网设备为SN,终端为UE进行举例说明,UE可以通过MN管理的MCG和/或SN管理的SCG进行DC通信。该方法包括:
S1001:MN确定去激活SCG。
MN可以根据UE提供的辅助信息,UE在MN的数据传输活跃度,或者SN提供的辅助信息中的任意一项或多项确定是否去激活SCG。其中,UE提供的辅助信息可以是由UE通过SRB1直接发给MN的信息,或者为UE发送给SN再由SN发送给MN的。所述SN提供的辅助信息可以包括:UE在SN的数据传输活跃度,SN需要节电的请求信息等。
S1002:MN向UE发送去激活指示。
可选地,MN可以直接向UE发送上述去激活指示。
可选地,MN可以通过SN向UE发送上述去激活指示。在该实施方式中,S1002可以包括S1002-1:MN向SN发送去激活指示;以及S1002-2:SN向UE发送该去激活指示。
S1003:MN向SN发送第一指示信息,用于告知SN该UE的SCG已经被挂起。
可以理解,S1002与S1003没有执行的先后顺序区分,可以先执行S1002,再执行S1003;也可以先执行S1003,再执行S1002;或者同时执行S1002与S1003,不做限定。
S1004:UE根据所述去激活指示执行去激活所述SCG的操作。
关于去激活SCG的操作的具体描述可以参照本申请其他实施例,例如图4所示实施例的相关内容,在此不做赘述。
当UE的数据量增加,MN可以决定激活SCG为UE继续提供通信服务,所述方法还包括:S1005:MN确定激活所述SCG。
S1006:MN向UE发送激活指示。
S1007:MN向SN发送第二指示信息,用于告知SN该UE的SCG已被激活。
S1008:UE根据所述激活指示进行激活所述SCG的操作。
关于激活SCG的操作的具体描述可以参照本申请其他实施例,例如图5所示实施例的相关内容,在此不做赘述。
可以理解,S1006与S1007没有执行的先后顺序区分,可以先执行S1006,再执行S1007;也可以先执行S1007,再执行S1006;或者同时执行S1006与S1007,不做限定。
采用本申请实施例提供的通信方法,UE根据MN的指示去激活/激活SCG,无需进行辅节点释放/添加流程,就能快速中断或者恢复UE通过SCG的链路通信,节约信令开销,节约UE和网络侧的电耗,提升通信效率。
需要说明的是,上述图9所示的由SN确定去激活/激活SCG的方法、与图10所示的由MN确定去激活/激活SCG的方法仅为举例。本申请所示的去激活SCG与激活SCG的方法是可以独立实施并组合实施的,比如由SN确定去激活SCG后也可以由MN确定激活SCG;类似的,由MN确定去激活SCG后也可以由SN确定激活SCG,不做限定。
上文详细介绍了本申请提供的通信方法的示例。可以理解的是,通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请可以根据上述方法示例对通信装置进行功能单元的划分,例如,可以将各个功能划分为各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
例如,图11所示的通信装置1100中包括处理单元1101与收发单元1102。
在本申请的一个实施方式中,通信装置1100用于支持终端设备实现本申请实施例提供的通信方法中终端的功能,例如,收发单元1102可以用于接收来自于接入网设备的去激活指示,所述去激活指示用于指示辅小区组(SCG)中的主辅小区(PSCell)为去激活状态;处理单元1101用于根据所述去激活指示对所述辅小区组进行去激活操作。又例如,收发单元1102用于接收来自于接入网设备的去激活指示,所述激活指示中指示了辅小区组中的主辅小区为激活状态;处理单元1101用于根据所述激活指示激活所述辅小区组。其中,所述接入网设备为所述终端在DC通信时的主节点(MN)或者辅节点(SN),所述主节点管理主小区组(MCG),所述辅节点管理所述辅小区组,所述主小区组和/或辅小区组用于所述终端的数据通信。
在一个可能的实现方式中,所述处理单元1101可以用于执行对所述辅小区组的一项或多项去激活操作,例如保留所述辅小区的配置,以及中止辅节点的承载对应的SCG RLC bearer上的数据传输等操作,关于各项去激活操作的详细描述可以参照本申请其他实施例,例如图4所示实施例中的相关内容,不做赘述。
在一个可能的实现方式中,所述处理单元1101可以用于执行激活所述辅小区组 的一项或多项操作,例如重新使用在对所述辅小区组进行去激活操作时保留的所述辅小区组的配置,以及恢复在辅节点的承载对应的SCG RLC bearer上进行数据传输等操作,关于各项激活操作的详细描述可以参照本申请其他实施例的相关内容,例如图6所示实施例中的相关内容,不做赘述。
在本申请的另一个实施方式中,通信装置1100用于支持接入网设备例如基站实现本申请实施例提供的通信方法中接入网设备的功能,该接入网设备可以是终端在DC通信时的主节点或者辅节点,所述主节点管理主小区组,所述辅节点管理所述辅小区组,所述主小区组和/或辅小区组用于所述终端的数据通信。例如,处理单元1101用于确定去激活辅小区组,所述收发单元1102用于向所述终端发送去激活指示,所述去激活指示用于指示所述辅小区组中的主辅小区处于去激活状态。又例如,处理单元1101用于确定激活处于非激活状态的辅小区组,所述收发单元1102用于向所述终端发送激活指示,所述激活指示中指示了所述辅小区组中的主辅小区为激活状态。
在一个可能的实现方式中,处理单元1101具体用于根据所述终端提供的辅助信息、所述终端在该接入网设备的数据传输活跃度,第二接入网设备提供的辅助信息中的任意一项或多项确定去激活或激活所述辅小区组。关于辅助信息以及数据传输活跃度的具体描述可以参照本申请其他实施例,例如图7-图8所示实施例中的相关内容,不做赘述。
在一个可能的实现方式中,处理单元1101可以用于执行确定去激活所述辅小区组的一项或多项操作,例如中止辅节点的承载对应的SCG RLC bearer上的数据传输以及中止通过该接入网设备的PDCP/SDAP实体处理该终端的数据,关于各项去激活操作的详细描述可以参照本申请其他实施例,例如图7所示实施例中的相关内容,不做赘述。
在一个可能的实现方式中,处理单元1101可以用于执行确定激活所述辅小区组的一项或多项操作,例如恢复在辅节点的承载对应的SCG RLC bearer上进行数据传输及恢复通过该接入网设备的PDCP/SDAP实体处理该终端的数据,关于各项激活操作的详细描述可以参照本申请其他实施例,例如图8所示实施例中的相关内容,不做赘述。
可选地,所述处理单元1101还用于向第二接入网设备发送指示信息,所述指示信息用于指示所述辅小区组已被去激活。
可选地,所述处理单元1101还用于向第二接入网设备发送指示信息,所述指示信息用于指示所述辅小区组已被激活。
关于上述指示信息的具体描述可以参照本申请其他实施,例如图7-图8实施例的相关内容,在此不做赘述。
其中,上述去激活指示或者激活指示可以包含在MAC CE或者物理层信令或者RRC消息中,详细描述可以参照本申请其他实施例,例如图4-图6所示实施例中的相关内容,不做赘述,例如关于MAC CE的设计可以参照图5相关描述。
其中,当所述接入网设备为所述辅节点时,所述主节点为第二接入网设备;或者,当所述接入网设备为所述主节点时,所述辅节点为第二接入网设备。
关于上述通信装置1100的各个功能单元执行的操作的详细描述,例如,可以参照本申请提供的通信方法的实施例中终端或接入网设备(主节点/辅节点)的行为,例如图4-图10所示实施例中的相关内容。
在本申请的另一个实施方式中,在硬件实现上,可以由一个处理器执行处理单元1101的功能,可以由收发器(发送器/接收器)和/或通信接口执行收发单元1102的功能,其中,处理单元1101可以以硬件形式内嵌于或独立于终端的处理器中,也可以以软件形式存储于终端、基站的存储器中,以便于处理器调用执行以上各个功能单元对应的操作。
图12示出了本申请提供的一种通信装置1200的结构示意图。通信装置1200可用于实现上述方法实施例中描述的通信方法。该通信装置1200可以是芯片、终端、接入网设备或者其它无线通信设备等。
通信装置1200包括一个或多个处理器1201,该一个或多个处理器1201可支持通信装置1000实现本申请实施例中所述的由终端(UE)执行的通信方法,例如图4-图10所示的实施例中由终端执行的方法;或者,该一个或多个处理器1201可支持通信装置1200实现本申请实施例中所述的由接入网设备执行的方法,例如图4-图10所示的实施例中由接入网设备(包括第一接入网设备或第二接入网设备)执行的方法。
该处理器1201可以是通用处理器或者专用处理器。例如,处理器1201可以包括中央处理器(central processing unit,CPU)和/或基带处理器。其中,基带处理器可以用于处理通信数据(例如,上文所述第一消息),CPU可以用于实现相应的控制和处理功能,执行软件程序,处理软件程序的数据。
进一步的,通信装置1200还可以包括收发单元1205,用以实现信号的输入(接收)和输出(发送)。
例如,通信装置1200可以是芯片,收发单元1205可以是该芯片的输入和/或输出电路,或者,收发单元1205可以是该芯片的接口电路,该芯片可以作为UE或基站或其它无线通信设备的组成部分。
又例如,通信装置1200可以为UE或基站。收发单元1205可以包括收发器或射频芯片。收发单元1205还可以包括通信接口。
可选地,通信装置1200还可以包括天线1206,可以用于支持收发单元1205实现通信装置1200的收发功能。
可选地,通信装置1200中可以包括一个或多个存储器1202,其上存有程序(也可以是指令或者代码)1203,程序1203可被处理器1201运行,使得处理器1201执行上述方法实施例中描述的方法。可选地,存储器1202中还可以存储有数据。可选 地,处理器1201还可以读取存储器1202中存储的数据(例如,预定义的信息),该数据可以与程序1203存储在相同的存储地址,该数据也可以与程序1203存储在不同的存储地址。
处理器1201和存储器1202可以单独设置,也可以集成在一起,例如,集成在单板或者系统级芯片(system on chip,SOC)上。
在一种可能的设计中,通信装置1200是终端或者可用于终端的芯片,该终端具有DC通信的功能,收发单元1205可以用于接收来自于接入网设备的去激活指示,所述去激活指示用于指示辅小区组(SCG)中的主辅小区(PSCell)为去激活状态;处理器1201可以用于根据所述去激活指示对所述辅小区组进行去激活操作。又例如,收发单元1205可以用于接收来自于接入网设备的去激活指示,所述激活指示中指示了辅小区组中的主辅小区为激活状态;处理器1201可以用于根据所述激活指示激活所述辅小区组。其中,所述接入网设备为所述终端在DC通信时的主节点(MN)或者辅节点(SN),所述主节点管理主小区组(MCG),所述辅节点管理所述辅小区组,所述主小区组和/或辅小区组用于所述终端的数据通信。
在一种可能的设计中,通信装置1200是接入网设备或者可用于接入网设备的芯片,该接入网设备可以作为DC通信中的主节点或辅节点,所述主节点管理主小区组,所述辅节点管理所述辅小区组,所述主小区组和/或辅小区组用于所述终端的数据通信。例如,处理器1201可以用于确定去激活辅小区组,收发单元1205可以用于向所述终端发送去激活指示,所述去激活指示用于指示所述辅小区组中的主辅小区处于去激活状态。又例如,处理器1205可以用于确定激活处于非激活状态的辅小区组,收发单元1205可以用于向所述终端发送激活指示,所述激活指示中指示了所述辅小区组中的主辅小区为激活状态。
关于通信装置1200在上述各种可能的设计中执行的操作的详细描述可以参照本申请提供的通信方法的实施例中终端或接入网设备(主节点/辅节点)的行为,例如图4-图10所示实施例中的相关内容,不做赘述。
应理解,上述方法实施例的各步骤可以通过处理器1201中的硬件形式的逻辑电路或者软件形式的指令完成。处理器1201可以是CPU、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件,例如,分立门、晶体管逻辑器件或分立硬件组件。
本申请还提供了一种计算机程序产品,该计算机程序产品被处理器1201执行时实现本申请中任一方法实施例所述的通信方法。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、 光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。
该计算机程序产品可以存储在存储器1202中,例如是程序1204,程序1204经过预处理、编译、汇编和连接等处理过程最终被转换为能够被处理器1201执行的可执行目标文件。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现本申请中任一方法实施例所述的通信方法。该计算机程序可以是高级语言程序,也可以是可执行目标程序。
该计算机可读存储介质例如是存储器1202。存储器1202可以是易失性存储器或非易失性存储器,或者,存储器1202可以同时包括易失性存储器和非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
在通信装置1200为终端的情况下,图13示出了本申请提供的一种终端的结构示意图。该终端1300可适用于图1所示的系统中,实现上述方法实施例中终端的功能。为了便于说明,图13仅示出了终端的主要部件。
如图13所示,终端1300包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及用于对整个终端进行控制。例如,处理器生成第一消息,随后通过控制电路和天线发送第一消息。存储器主要用于存储程序和数据,例如存储通信协议和上述配置信息。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置例如是触摸屏、显示屏或键盘,主要用于接收用户输入的数据以及对用户输出数据。
处理器可以读取存储器中的程序,解释并执行该程序所包含的指令,处理程序中的数据。当需要通过天线发送信息时,处理器对待发送的信息进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后得到射频信号,并将射频信号通过天线以电磁波的形式向外发送。当承载信息的电磁波(即,射频信号)到达终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带 信号输出至处理器,处理器将基带信号转换为信息并对该信息进行处理。
本领域技术人员可以理解,为了便于说明,图13仅示出了一个存储器和一个处理器。在实际的终端中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请对此不做限定。
作为一种可选的实现方式,图13中的处理器可以集成基带处理器和CPU的功能,本领域技术人员可以理解,基带处理器和CPU也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端可以包括多个基带处理器以适应不同的网络制式,终端可以包括多个CPU以增强其处理能力,终端的各个部件可以通过各种总线连接。基带处理器也可以被称为基带处理电路或者基带处理芯片。CPU也可以被称为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以程序的形式存储在存储器中,由处理器执行存储器中的程序以实现基带处理功能。
在本申请中,可以将具有收发功能的天线和控制电路视为终端1300的收发单元1301,用于支持终端实现方法实施例中的接收功能,或者,用于支持终端实现方法实施例中的发送功能。将具有处理功能的处理器视为终端1300的处理单元1302。如图13所示,终端1300包括收发单元1301和处理单元1302。收发单元也可以称为收发器、收发机、收发装置等。可选地,可以将收发单元1301中用于实现接收功能的器件视为接收单元,将收发单元1301中用于实现发送功能的器件视为发送单元,即收发单元1301包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理器1302可用于执行存储器存储的程序,以控制收发单元1301接收信号和/或发送信号,完成上述方法实施例中终端的功能。作为一种实现方式,收发单元1301的功能可以考虑通过收发电路或者收发专用芯片实现。
其中,处理器1302可以执行图11所示的通信装置1100中的处理单元1101或者图12所示的通信装置1200中的处理器1201的功能;收发单元1301可以执行图11所示的通信装置1100中的收发单元1102或者图12所示的通信装置1200中的收发单元1205的功能,不做赘述。
在通信装置1200为接入网设备的情况下,图14是本申请实施例提供的一种基站的结构示意图。如图14所示,该基站可应用于如图1所示的系统中,执行上述方法实施例中接入网设备的功能,该基站具有作为DC通信时主节点或者辅节点的功能。基站1400可包括一个或多个DU 1401和一个或多个CU 1402。所述DU 1401可以包括至少一个天线14011,至少一个射频单元14012,至少一个处理器14013和至少一个存储器14014。所述DU 1401部分主要用于射频信号的收发以及射频信号与基带信号的转换,以及部分基带处理。CU1402可以包括至少一个处理器14022和至少一个存储器14021。CU1402和DU1401之间可以通过接口进行通信,其中,控制面(Control plane)接口可以为Fs-C,比如F1-C,用户面(User Plane)接口可以为Fs-U,比如F1-U。
所述CU 1402部分主要用于进行基带处理,对基站进行控制等。所述DU 1401与CU 1402可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。所述CU 1402为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能。例如所述CU 1402可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
具体的,CU和DU上的基带处理可以根据无线网络的协议层划分,例如分组数据汇聚层协议(packet data convergence protocol,PDCP)层及以上协议层的功能设置在CU,PDCP以下的协议层,例如无线链路控制(radio link control,RLC)层和媒体接入控制(media access control,MAC)层等的功能设置在DU。又例如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。
此外,可选地,基站1400可以包括一个或多个射频单元(RU),一个或多个DU和一个或多个CU。其中,DU可以包括至少一个处理器14013和至少一个存储器14014,RU可以包括至少一个天线14011和至少一个射频单元14012,CU可以包括至少一个处理器14022和至少一个存储器14021。
在一个实例中,所述CU1402可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器14021和处理器14022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。所述DU1401可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器14014和处理器14013可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
其中,DU与CU可以共同执行图11所示的通信装置1100中的处理单元1101或者图12所示的通信装置1200中的处理器1201的功能;RU可以执行图11所示的通信装置1100中的收发单元1102或者图12所示的通信装置1200中的收发单元1205的功能,不做赘述。
本申请还提供一种通信系统,包括第一接入网设备以及第二接入网设备,所述第一接入网设备可以作为主节点,所述第二接入网设备可以作为辅节点。
可选地,所述通信系统还包括终端,所述终端可以同时接入所述第一接入网设备以及所述第二接入网设备。关于该通信系统中各设备的功能可以参照本申请其他实施例的相关描述,不做赘述。
本所属领域的技术人员可以清楚地了解到,本申请提供的各实施例的描述可以相 互参照,为描述的方便和简洁,例如关于本申请实施例提供的各装置、设备的功能以及执行的步骤可以参照本申请方法实施例的相关描述,各方法实施例之间、各装置实施例之间也可以互相参考、结合或引用。
在本申请所提供的几个实施例中,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的方法实施例的一些特征可以忽略,或不执行。以上所描述的装置实施例仅仅是示意性的,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,多个单元或组件可以结合或者可以集成到另一个系统。另外,各单元之间的耦合或各个组件之间的耦合可以是直接耦合,也可以是间接耦合,上述耦合包括电的、机械的或其它形式的连接。
应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。此外,本申请实施例中,终端和/或网络设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。

Claims (61)

  1. 一种通信方法,其特征在于,包括:
    从接入网设备接收去激活指示,所述去激活指示用于指示辅小区组中的主辅小区为去激活状态,其中,所述接入网设备为终端的主节点或者辅节点,所述主节点管理主小区组,所述辅节点管理所述辅小区组,所述主小区组和/或辅小区组用于所述终端的数据通信;
    根据所述去激活指示对所述辅小区组进行去激活操作。
  2. 根据权利要求1所述的方法,其特征在于,所述去激活指示包含在媒体访问控制MAC控制元素CE中,所述去激活指示为所述MAC CE中的一个或多个比特位。
  3. 根据权利要求2所述的方法,其特征在于,所述去激活指示与所述主辅小区的服务小区标识对应。
  4. 根据权利要求2或3所述的方法,其特征在于,所述根据所述去激活指示对所述辅小区组进行去激活操作包括:
    根据所述去激活指示确定所述主辅小区为去激活状态。
  5. 根据权利要求1-4所述的方法,其特征在于,所述根据所述去激活指示对所述辅小区组进行去激活操作包括:
    根据所述去激活指示确定除所述主辅小区以外的所有辅小区为去激活状态,或者,确定所述所有辅小区被释放。
  6. 根据权利要求1-5任一所述的方法,其特征在于,所述根据所述去激活指示对所述辅小区组进行去激活操作包括:
    保留所述辅小区组的配置。
  7. 根据权利要求6所述的方法,其特征在于,所述辅小区组的配置包括以下任何一种或多种信息的组合:
    辅小区组无线链路控制承载SCG RLC bearer配置,终结在所述辅节点的承载的分组数据汇聚层协议PDCP或业务数据适应协议SDAP配置,主辅小区配置,辅小区配置,所述辅小区组的物理层配置,所述辅小区组的MAC层配置,所述辅节点的安全上下文。
  8. 根据权利要求1-7任一所述的方法,其特征在于,所述根据所述去激活指示对所述辅小区组进行去激活操作包括:
    中止所述辅小区组的无线链路控制承载上的数据传输。
  9. 根据权利要求1-8所述的方法,其特征在于,所述根据所述去激活指示对所述辅小区组进行去激活操作包括:
    中止通过所述辅节点中的PDCP实体或SDAP实体进行数据通信。
  10. 根据权利要求1-9任一所述的方法,其特征在于,所述根据所述去激活指示对所述辅小区组进行去激活操作包括:
    中止所述主辅小区的物理层操作。
  11. 根据权利要求1-10任一所述的方法,其特征在于,所述根据所述去激活指示对所述辅小区组进行去激活操作包括:
    中止所述主辅小区的无线链路失败RLF检测。
  12. 根据根据权利要求1-11任一所述的方法,其特征在于,所述根据所述去激活指示对所述辅小区组进行去激活操作包括:
    将所述主辅小区作为服务小区或者服务小区的邻区进行无线资源测量。
  13. 根据根据权利要求1-12任一所述的方法,其特征在于,所述根据所述去激活指示对所述辅小区组进行去激活操作包括:
    将根据所述辅节点配置的测量的测量结果通过所述主小区组发送给所述主节点,所述辅节点配置的测量通过所述辅节点与所述终端间的信令无线承载配置。
  14. 根据权利要求1-13任一所述的方法,其特征在于,所述方法还包括:
    从所述接入网设备接收用于所述辅小区组去激活后的配置参数,所述配置参数包括所述终端的功率参数。
  15. 一种通信方法,其特征在于,包括:
    从接入网设备接收激活指示,所述激活指示用于指示辅小区组中的主辅小区为激活状态,其中,所述接入网设备为终端的主节点或者辅节点,所述主节点管理主小区组,所述辅节点管理辅小区组,所述主小区组和/或辅小区组用于所述终端的数据通信;
    根据所述激活指示激活所述辅小区组。
  16. 根据权利要求15所述的方法,其特征在于,所述根据所述激活指示激活所述辅小区组包括:
    使用对所述辅小区组进行去激活操作时保留的所述辅小区组的配置。
  17. 根据权利要求15或16所述的方法,其特征在于,所述根据所述激活指示激活所述辅小区组包括:
    根据所述激活指示确定所述主辅小区为激活状态。
  18. 根据根据权利要求15-17任一所述的方法,其特征在于,所述根据所述激活指示激活所述辅小区组包括:
    根据所述激活指示确定除所述主辅小区以外的一个或多个辅小区为激活状态。
  19. 根据根据权利要求15-18任一所述的方法,其特征在于,所述根据所述激活 指示激活所述辅小区组包括:
    恢复在所述辅小区组的无线链路控制承载上传输数据。
  20. 根据权利要求15-19任一所述的方法,其特征在于,所述根据所述激活指示激活所述辅小区组包括:
    恢复通过所述辅节点中的分组数据汇聚层协议PDCP实体或业务数据适应协议SDAP实体进行数据通信。
  21. 根据权利要求15-20任一所述的方法,其特征在于,所述根据所述激活指示激活所述辅小区组包括:
    恢复所述主辅小区的物理层操作。
  22. 根据权利要求15-21任一所述的方法,其特征在于,所述根据所述激活指示激活所述辅小区组包括:
    恢复所述主辅小区的无线链路失败RLF检测。
  23. 根据权利要求15-22任一所述的方法,其特征在于,所述根据所述激活指示激活所述辅小区组包括:
    将根据所述辅节点配置的测量的测量结果通过所述辅小区组发送给所述辅节点,所述辅节点配置的测量通过所述辅节点与所述终端间的信令无线承载配置。
  24. 根据权利要求15-23任一所述的方法,其特征在于,所述方法还包括:
    从所述接入网设备接收用于所述辅小区组激活后的配置参数,所述配置参数包括所述终端的功率参数。
  25. 根据权利要求15-24任一所述的方法,其特征在于,所述激活指示包含在媒体访问控制MAC控制元素CE中,所述激活指示为所述MAC CE中的一个或多个比特位。
  26. 一种通信方法,其特征在于,包括:
    第一接入网设备确定去激活辅小区组,所述第一接入网设备为终端的主节点或者辅节点,所述主节点管理主小区组,所述辅节点管理所述辅小区组,所述主小区组和/或辅小区组用于所述终端的数据通信;
    所述第一接入网设备向所述终端发送去激活指示,所述去激活指示用于指示所述辅小区组中的主辅小区处于去激活状态。
  27. 根据权利要求26所述的方法,其特征在于,
    当所述第一接入网设备为所述辅节点时,所述主节点为第二接入网设备;或者,
    当所述第一接入网设备为所述主节点时,所述辅节点为第二接入网设备。
  28. 根据权利要求27所述的方法,其特征在于,所述第一接入网设备确定去激活所述辅小区组包括:
    所述第一接入网设备根据所述终端提供的辅助信息、所述终端在所述第一接入网设备的数据传输活跃度,所述第二接入网设备提供的辅助信息中的任意一项或多项确定去激活所述辅小区组。
  29. 根据权利要求27或28所述的方法,其特征在于,所述第一接入网设备确定去激活辅小区组包括:
    所述第一接入网设备中止所述辅小区组的无线链路控制承载上的数据传输。
  30. 根据权利要求27-29任一所述的方法,其特征在于,所述第一接入网设备确定去激活辅小区组包括:
    所述第一接入网设备中止通过所述第一接入网设备中的分组数据汇聚层协议PDCP实体或业务数据适应协议SDAP实体处理所述终端的数据。
  31. 根据权利要要求29所述的方法,其特征在于,当所述第一接入网设备为所述辅节点,且所述第二接入网设备为所述主节点时,第一接入网设备确定去激活辅小区组包括:
    所述第一接入网设备将通过PDCP实体或SDAP实体处理后的下行数据发送给所述第二接入网设备,以使得第二接入网设备通过主小区组承载将所述下行数据发送给所述终端,和/或
    所述第一接入网设备从所述第二接入网设备接收上行数据,通过所述PDCP实体或SDAP实体处理后,将所述上行数据发送给核心网。
  32. 根据权利要求30所述的方法,其特征在于,当所述第一接入网设备为所述辅节点,且所述第二接入网设备为所述主节点时,所述方法还包括:
    所述第一接入网设备分别指示所述第二接入网设备与所述终端中止通过主小区组无线链路控制承载MCG RLC bearer传输终结在所述辅节点的承载上的数据。
  33. 根据权利要求26-32任一所述的方法,其特征在于,所述第一接入网设备确定去激活辅小区组包括:
    所述第一接入网设备中止在所述主辅小区传输全部或者部分在第一接入网设备与终端之间传输的信号。
  34. 根据权利要求27-33任一所述的方法,其特征在于,所述方法还包括:
    所述第一接入网设备向所述第二接入网设备发送指示信息,所述指示信息用于指示所述辅小区组已被去激活。
  35. 根据权利要求34所述的方法,其特征在于,所述指示信息用于指示所述第二接入网设备去激活终结在所述主节点的承载对应的辅小区组无线链路控制承载SCG RLC bearer对应的数据传输隧道。
  36. 根据权利要求27-35任一所述的方法,其特征在于,所述第一接入网设备向所述终端发送去激活指示包括:
    所述第一接入网设备通过所述第二接入网设备向所述终端发送所述去激活指示。
  37. 根据权利要求26-36任一所述的方法,其特征在于,
    所述去激活指示包含在物理层信令中,或者包含在媒体访问控制MAC控制元素CE中,或者包含在无线资源控制RRC消息中。
  38. 一种通信方法,其特征在于,包括:
    第一接入网设备确定激活处于非激活状态的辅小区组,所述第一接入网设备为终端的主节点或者辅节点,所述主节点管理主小区组,所述辅节点管理所述辅小区组,所述主小区组和/或辅小区组用于所述终端的数据通信;
    所述第一接入网设备向所述终端发送激活指示,所述激活指示用于指示所述辅小区组中的主辅小区为激活状态。
  39. 根据权利要求38所述的方法,其特征在于,
    当所述第一接入网设备为所述辅节点时,所述主节点为第二接入网设备;或者,
    当所述第一接入网设备为所述主节点时,所述辅节点为第二接入网设备。
  40. 根据权利要求39所述的方法,其特征在于,
    所述第一接入网设备确定激活所述辅小区组包括:
    所述第一接入网设备根据所述终端提供的辅助信息、所述终端在所述第一接入网设备的数据传输活跃度、所述第二接入网设备提供的辅助信息中的任意一项或多项确定激活所述辅小区组。
  41. 根据权利要求39或40所述的方法,其特征在于,所述第一接入网设备确定激活辅小区组包括:
    所述第一接入网设备恢复所述辅小区组的无线链路控制承载上的数据传输。
  42. 根据权利要求38-41任一所述的方法,其特征在于,所述第一接入网设备确定激活辅小区组包括:
    所述第一接入网设备恢复通过所述第一接入网实体中的分组数据汇聚层协议PDCP实体或业务数据适应协议SDAP实体与所述终端进行数据通信。
  43. 根据权利要求42所述的方法,其特征在于,当所述第一接入网设备为所述辅节点,且所述第二接入网设备为所述主节点时,所述方法还包括:
    所述第一接入网设备分别指示所述第二接入网设备与所述终端恢复通过主小区组无线链路控制承载MCG RLC bearer传输终结在所述辅节点的承载上的数据。
  44. 根据权利要求38-43任一所述的方法,其特征在于,所述第一接入网设备确定激活辅小区组包括:
    所述第一接入网设备恢复在所述主辅小区中传输所述第一接入网设备与所述终端之间传输的信号。
  45. 根据权利要求39-44任一所述的方法,其特征在于,所述方法还包括:
    所述第一接入网设备向所述第二接入网设备发送指示信息,所述指示信息用于指示所述辅小区组已被激活。
  46. 根据权利要求44所述的方法,其特征在于,所述指示信息用于指示所述第二接入网设备激活终结在所述主节点的承载对应的辅小区组无线链路控制承载SCG RLC bearer对应的数据传输隧道。
  47. 根据权利要求39-46任一所述的方法,其特征在于,所述第一接入网设备向所述终端发送激活指示包括:
    所述第一接入网设备通过所述第二接入网设备向所述终端发送所述激活指示。
  48. 根据权利要求38-47任一所述的方法,其特征在于,
    所述激活指示包含在物理层信令中,或者包含在媒体访问控制MAC控制元素CE,或者包含在无线资源控制RRC消息中。
  49. 一种通信装置,包括用于执行如权利要求1-14任一所述方法的一个或多个单元。
  50. 一种通信装置,包括用于执行如权利要求15-25任一所述方法的一个或多个单元。
  51. 一种通信装置,包括用于执行如权利要求26-37任一所述方法的一个或多个单元。
  52. 一种通信装置,包括用于执行如权利要求38-48任一所述方法的一个或多个单元。
  53. 一种通信装置,包括至少一个处理器,所述处理器用于执行存储器中存储的指令,以使得终端执行如权利要求1-14任一所述的方法。
  54. 一种通信装置,包括至少一个处理器,所述处理器用于执行存储器中存储的指令,以使得终端执行如权利要求15-25任一所述的方法。
  55. 一种通信装置,包括至少一个处理器,所述处理器用于执行存储器中存储的指令,以使得接入网设备执行如权利要求26-37任一所述的方法。
  56. 一种通信装置,包括至少一个处理器,所述处理器用于执行存储器中存储的指令,以使得接入网设备执行如权利要求38-48任一所述的方法。
  57. 一种终端,用于执行如权利要求1-14或15-25任一所述方法。
  58. 一种接入网设备,用于执行如权利要求26-37或38-48任一所述方法。
  59. 一种计算机存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1-48任一所述的方法。
  60. 一种包含指令的计算机程序产品,当所述指令在计算机上运行时,使得所述 计算机执行如权利要求1-48任一所述的方法。
  61. 一种通信系统,包括第一接入网设备,第二接入网设备以及终端,其中,所述第一接入网设备作为终端的主节点,所述第二接入网设备作为终端的辅节点,所述第一接入网设备或所述第二接入网设备用于执行如权利要求26-37或38-48任一所述的方法,所述终端用于执行如权利要求1-14或15-25任一所述的方法。
PCT/CN2019/100853 2019-08-15 2019-08-15 通信方法、通信装置、计算机存储介质及通信系统 WO2021026906A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/100853 WO2021026906A1 (zh) 2019-08-15 2019-08-15 通信方法、通信装置、计算机存储介质及通信系统
CN201980098934.4A CN114175842A (zh) 2019-08-15 2019-08-15 通信方法、通信装置、计算机存储介质及通信系统
EP19941378.2A EP4017202A4 (en) 2019-08-15 2019-08-15 COMMUNICATION METHOD, COMMUNICATION DEVICE, COMPUTER INFORMATION MEDIA AND COMMUNICATION SYSTEM
US17/669,692 US20220167445A1 (en) 2019-08-15 2022-02-11 Communication method, communications apparatus, computer storage medium, and communications system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/100853 WO2021026906A1 (zh) 2019-08-15 2019-08-15 通信方法、通信装置、计算机存储介质及通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/669,692 Continuation US20220167445A1 (en) 2019-08-15 2022-02-11 Communication method, communications apparatus, computer storage medium, and communications system

Publications (1)

Publication Number Publication Date
WO2021026906A1 true WO2021026906A1 (zh) 2021-02-18

Family

ID=74570445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100853 WO2021026906A1 (zh) 2019-08-15 2019-08-15 通信方法、通信装置、计算机存储介质及通信系统

Country Status (4)

Country Link
US (1) US20220167445A1 (zh)
EP (1) EP4017202A4 (zh)
CN (1) CN114175842A (zh)
WO (1) WO2021026906A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220271899A1 (en) * 2019-10-04 2022-08-25 Mediatek Inc. Techniques of reducing scell activation delay
WO2022194113A1 (zh) * 2021-03-17 2022-09-22 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备
WO2022193128A1 (en) * 2021-03-16 2022-09-22 Lenovo (Beijing) Limited Methods and apparatuses for a rlf processing procedure and a phr procedure in a deactivated sn case
CN115150044A (zh) * 2021-03-31 2022-10-04 展讯通信(上海)有限公司 测量间隙gap的处理方法及相关产品
CN115550958A (zh) * 2021-06-30 2022-12-30 中国电信股份有限公司 小区组的激活和去激活方法、系统以及存储介质
WO2023001191A1 (zh) * 2021-07-22 2023-01-26 夏普株式会社 由用户设备执行的方法及用户设备
WO2023005895A1 (zh) * 2021-07-27 2023-02-02 夏普株式会社 执行用户设备辅助信息发送过程的方法及用户设备
WO2023011457A1 (zh) * 2021-08-03 2023-02-09 维沃移动通信有限公司 辅小区组状态控制方法、装置、网元及终端
WO2023016318A1 (zh) * 2021-08-10 2023-02-16 中国电信股份有限公司 基于双连接配置的通信方法及相关设备
WO2023143271A1 (zh) * 2022-01-28 2023-08-03 大唐移动通信设备有限公司 一种信息处理方法、用户设备和存储介质
WO2024031400A1 (zh) * 2022-08-09 2024-02-15 北京小米移动软件有限公司 确定激活或去激活辅小区的方法、装置及存储介质
EP4287755A4 (en) * 2021-05-14 2024-04-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD AND DEVICE FOR DETERMINING THE BEHAVIOR OF A TERMINAL DEVICE AND TERMINAL DEVICE AND NETWORK DEVICE
EP4320993A4 (en) * 2021-05-10 2024-05-08 Apple Inc. CARRIER RECONFIGURATION FOR SCG ACTIVATION/DEACTIVATION

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021077277A1 (en) * 2019-10-22 2021-04-29 Qualcomm Incorporated Secondary cell dormancy using dormancy profile
US20220007256A1 (en) * 2020-07-01 2022-01-06 Qualcomm Incorporated Activation of a secondary cell group using a user equipment configured for dual connectivity with multiple radio access technologies
GB202016706D0 (en) * 2020-10-21 2020-12-02 Samsung Electronics Co Ltd Signalling enhancements
US11985519B2 (en) * 2020-10-22 2024-05-14 Samsung Electronics Co., Ltd. Method and system for UE actions upon SCG activation and deactivation
WO2023201498A1 (zh) * 2022-04-18 2023-10-26 北京小米移动软件有限公司 一种信息存储方法/装置/设备及存储介质
WO2023201499A1 (zh) * 2022-04-18 2023-10-26 北京小米移动软件有限公司 一种小区激活方法/装置/设备及存储介质
WO2023206297A1 (zh) * 2022-04-28 2023-11-02 北京小米移动软件有限公司 一种小区激活方法/装置/设备及存储介质
CN117062147A (zh) * 2022-05-07 2023-11-14 华为技术有限公司 数据传输方法及装置
CN117425231A (zh) * 2022-07-07 2024-01-19 夏普株式会社 由用户设备执行的方法以及用户设备
WO2024145855A1 (zh) * 2023-01-04 2024-07-11 北京小米移动软件有限公司 小区接入控制方法、系统及装置、通信设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104936175A (zh) * 2014-03-21 2015-09-23 上海贝尔股份有限公司 在双连接的通信环境下进行密钥更新的方法和装置
WO2015197904A1 (en) * 2014-06-24 2015-12-30 Nokia Technologies Oy Dual connectivity management
CN105451364A (zh) * 2014-08-07 2016-03-30 上海贝尔股份有限公司 用于双连接系统的特殊辅小区开启/关闭的方法和基站
CN109246824A (zh) * 2017-05-04 2019-01-18 维沃移动通信有限公司 一种传输反馈信息的方法和设备
US20190215899A1 (en) * 2018-01-10 2019-07-11 Zte Corporation Releasing signaling radio bearers for cell groups

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3116259B1 (en) * 2014-03-06 2019-05-08 Sharp Kabushiki Kaisha Terminal device, base station device, communication system, control method, and integrated circuit
CN106134240B (zh) * 2014-03-21 2019-12-13 三星电子株式会社 用于在支持多个载波的移动通信系统中发送/接收信号的方法和装置
JP6628365B2 (ja) * 2014-04-28 2020-01-08 シャープ株式会社 端末装置、基地局装置および通信方法
US9820332B2 (en) * 2014-08-07 2017-11-14 Lg Electronics Inc. Method for deactivating SCells during SCG change procedure and a device therefor
WO2018174038A1 (ja) * 2017-03-23 2018-09-27 株式会社Nttドコモ 無線通信システム及び無線基地局
CN110022224B (zh) * 2018-01-10 2020-09-01 维沃移动通信有限公司 一种数据的处理方法、用户侧设备及网络侧设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104936175A (zh) * 2014-03-21 2015-09-23 上海贝尔股份有限公司 在双连接的通信环境下进行密钥更新的方法和装置
WO2015197904A1 (en) * 2014-06-24 2015-12-30 Nokia Technologies Oy Dual connectivity management
CN105451364A (zh) * 2014-08-07 2016-03-30 上海贝尔股份有限公司 用于双连接系统的特殊辅小区开启/关闭的方法和基站
CN109246824A (zh) * 2017-05-04 2019-01-18 维沃移动通信有限公司 一种传输反馈信息的方法和设备
US20190215899A1 (en) * 2018-01-10 2019-07-11 Zte Corporation Releasing signaling radio bearers for cell groups

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4017202A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11533149B2 (en) * 2019-10-04 2022-12-20 Mediatek Inc. Techniques of reducing SCell activation delay
US20220271899A1 (en) * 2019-10-04 2022-08-25 Mediatek Inc. Techniques of reducing scell activation delay
WO2022193128A1 (en) * 2021-03-16 2022-09-22 Lenovo (Beijing) Limited Methods and apparatuses for a rlf processing procedure and a phr procedure in a deactivated sn case
WO2022194113A1 (zh) * 2021-03-17 2022-09-22 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备
CN115118400A (zh) * 2021-03-17 2022-09-27 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备
CN115118400B (zh) * 2021-03-17 2024-07-09 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备
CN115150044A (zh) * 2021-03-31 2022-10-04 展讯通信(上海)有限公司 测量间隙gap的处理方法及相关产品
WO2022206341A1 (zh) * 2021-03-31 2022-10-06 展讯通信(上海)有限公司 测量间隙gap的处理方法及相关产品
CN115208545A (zh) * 2021-03-31 2022-10-18 展讯通信(上海)有限公司 测量间隙gap的处理方法及相关产品
EP4320993A4 (en) * 2021-05-10 2024-05-08 Apple Inc. CARRIER RECONFIGURATION FOR SCG ACTIVATION/DEACTIVATION
EP4287755A4 (en) * 2021-05-14 2024-04-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD AND DEVICE FOR DETERMINING THE BEHAVIOR OF A TERMINAL DEVICE AND TERMINAL DEVICE AND NETWORK DEVICE
CN115550958A (zh) * 2021-06-30 2022-12-30 中国电信股份有限公司 小区组的激活和去激活方法、系统以及存储介质
WO2023001191A1 (zh) * 2021-07-22 2023-01-26 夏普株式会社 由用户设备执行的方法及用户设备
WO2023005895A1 (zh) * 2021-07-27 2023-02-02 夏普株式会社 执行用户设备辅助信息发送过程的方法及用户设备
CN115915094A (zh) * 2021-08-03 2023-04-04 维沃移动通信有限公司 辅小区组状态控制方法、装置、网元及终端
WO2023011457A1 (zh) * 2021-08-03 2023-02-09 维沃移动通信有限公司 辅小区组状态控制方法、装置、网元及终端
WO2023016318A1 (zh) * 2021-08-10 2023-02-16 中国电信股份有限公司 基于双连接配置的通信方法及相关设备
WO2023143271A1 (zh) * 2022-01-28 2023-08-03 大唐移动通信设备有限公司 一种信息处理方法、用户设备和存储介质
WO2024031400A1 (zh) * 2022-08-09 2024-02-15 北京小米移动软件有限公司 确定激活或去激活辅小区的方法、装置及存储介质

Also Published As

Publication number Publication date
EP4017202A1 (en) 2022-06-22
US20220167445A1 (en) 2022-05-26
CN114175842A (zh) 2022-03-11
EP4017202A4 (en) 2022-08-10

Similar Documents

Publication Publication Date Title
WO2021026906A1 (zh) 通信方法、通信装置、计算机存储介质及通信系统
WO2021057389A1 (zh) 一种双连接管理方法和通信装置
WO2018006253A1 (zh) 一种无线链路失败处理方法、相关设备及通信系统
US11553546B2 (en) Methods and systems for radio access network aggregation and uniform control of multi-RAT networks
CN113475109A (zh) 随着rrc恢复完成之类的消息的早期测量报告
US20230143942A1 (en) Managing a ue preferred configuration
US11799968B2 (en) Communications method and apparatus
WO2022083544A1 (zh) 辅小区状态的配置方法、激活辅小区的方法、设备及介质
WO2021164747A1 (zh) 通信方法及装置
CN111866963B (zh) 通信方法、通信装置、计算机存储介质及通信系统
EP4005276B1 (en) Efficient use of physical and logical resources in dual connectivity
WO2019153928A1 (zh) Rrc状态转换方法、终端、cu、du和计算机可读存储介质
WO2019196833A1 (zh) 一种通信方法、装置、系统及存储介质
WO2022040873A1 (zh) 一种通信方法、设备和装置
CN109691066B (zh) 数据复制下的处理方法及相关设备
WO2022082690A1 (zh) 群组切换的方法、装置和系统
WO2018145292A1 (zh) 通信方法、装置和系统
WO2021062677A1 (zh) 通信方法和装置
CN111491370B (zh) 一种通信方法、网元、系统及存储介质
WO2019062794A1 (zh) 一种建立承载的方法及设备
WO2021217379A1 (zh) 中继装置的状态转换方法及装置
WO2021134763A1 (zh) 一种恢复传输的方法、装置及设备
WO2022228446A1 (zh) 无线链路失败的处理方法、装置、设备及可读存储介质
US20240205985A1 (en) Radio Network Service Configuration Method, Terminal, and Network Side Device
WO2021228240A1 (zh) 一种数据业务切换方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019941378

Country of ref document: EP

Effective date: 20220314