WO2019153928A1 - Rrc状态转换方法、终端、cu、du和计算机可读存储介质 - Google Patents

Rrc状态转换方法、终端、cu、du和计算机可读存储介质 Download PDF

Info

Publication number
WO2019153928A1
WO2019153928A1 PCT/CN2018/124017 CN2018124017W WO2019153928A1 WO 2019153928 A1 WO2019153928 A1 WO 2019153928A1 CN 2018124017 W CN2018124017 W CN 2018124017W WO 2019153928 A1 WO2019153928 A1 WO 2019153928A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration
rrc
terminal
state transition
srb
Prior art date
Application number
PCT/CN2018/124017
Other languages
English (en)
French (fr)
Inventor
刘娜
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020207025686A priority Critical patent/KR102379104B1/ko
Priority to JP2020542876A priority patent/JP7157813B2/ja
Priority to EP18905835.7A priority patent/EP3751953A4/en
Priority to RU2020129669A priority patent/RU2749422C1/ru
Publication of WO2019153928A1 publication Critical patent/WO2019153928A1/zh
Priority to US16/987,522 priority patent/US11483893B2/en
Priority to US17/971,928 priority patent/US11917711B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of wireless communication technologies, but is not limited to the field of wireless communication technologies, and in particular, to a radio resource control (RRC) state transition method, a terminal, a centralized control unit (CU), and a distributed control unit ( Distributed Unit, DU) and computer readable storage medium.
  • RRC radio resource control
  • CU centralized control unit
  • DU distributed control unit
  • 5G NR New Radio
  • 3GPP 3rd Generation Partnership Project
  • eMBB Enhanced Mobile BroadBand
  • URLLC Ultra-Reliable and Low Latency Communications
  • mMTC Massive Machine Type Communications
  • eMBB emphasizes high peak transmission rate, low latency requirements, and medium reliability requirements
  • URLLC emphasizes low latency and High reliability transmission
  • mMTC emphasizes a large number of terminals, which has a high connection density and requires a larger transmission coverage, and has almost no requirement for delay.
  • the 5G system introduces a new RRC state, namely RRC Inactive.
  • the RRC inactive state is invisible to the 5G core network (NG-Core).
  • the core network considers that the terminal is still in the connected state, and the 5G base station (gNB) can release the RRC connection of the UE, so that the terminal does not need to monitor the downlink control channel at any time.
  • the connection between the user plane and the control plane is maintained between the gNB and the NG-Core, and the UE side saves the necessary context information, so that when the data is transmitted and received, the air interface connection can be restored as quickly as possible.
  • the 5G system introduces a centralized control unit-distributed control unit separation technology, and reconstructs the gNB into two logical network elements, CU and DU.
  • the RRC entity, the Packet Data Convergence Protocol (PDCP) entity, the Service Data Adaptation Protocol (SDAP) entity, and the DU are placed on the CU side.
  • the radio link control (RLC) entity, the medium access control (MAC) entity, and the physical layer entity are placed on the side, and the CU and the DU side respectively perform maintenance and processing of the terminal context.
  • the application provides an RRC state transition method, a terminal, a centralized control unit, a distributed control unit, and a computer readable storage medium.
  • the embodiment of the present application provides a radio resource control RRC state transition method, including:
  • the terminal When the terminal transitions from the current state to the RRC connected state, the terminal restores the RRC connection by using the existing signaling radio bearer SRB configuration request;
  • the terminal When the terminal receives a response from the DU for the request to restore the RRC connection, if the response includes a newly allocated SRB configuration, the terminal replaces the existing SRB configuration with the newly allocated SRB configuration, To restore the RRC connection.
  • the embodiment of the present application further provides a terminal, including a processor and a memory connected to the processor;
  • the processor is configured to execute an RRC state transition procedure stored in the memory to implement the steps of the RRC state transition method of any of the above.
  • the embodiment of the present application further provides a computer readable storage medium storing one or more programs, the one or more programs being executable by one or more processors to implement, for example, The steps of the RRC state transition method described in any of the above.
  • the embodiment of the present application further provides an RRC state transition method, including:
  • the DU When the DU receives the recovery RRC connection request of the terminal, the DU allocates a new SRB configuration to the terminal, and forwards the request to the CU;
  • the DU returns a second response to the terminal by using a default SRB configuration and/or a SRB configuration saved in advance by the CU;
  • the DU uses the SRB configuration in the first response to restore the RRC connection of the terminal.
  • the embodiment of the present application further provides a distributed control unit, including a processor and a memory connected to the processor;
  • the processor is configured to execute an RRC state transition procedure stored in the memory to implement the steps of the RRC state transition method of any of the above.
  • the embodiment of the present application further provides a computer readable storage medium storing one or more programs, the one or more programs being executable by one or more processors to implement, for example, The steps of the RRC state transition method described in any of the above.
  • the embodiment of the present application further provides an RRC state transition method, including:
  • the CU receives an RRC connection request notification from the recovery terminal of the DU;
  • the CU allocates a new PDCP configuration to the terminal and sends the newly assigned PDCP configuration to the DU.
  • the embodiment of the present application further provides a centralized control unit, including a processor and a memory connected to the processor;
  • the processor is configured to execute an RRC state transition procedure stored in the memory to implement the steps of the RRC state transition method of any of the above.
  • the embodiment of the present application further provides a computer readable storage medium storing one or more programs, the one or more programs being executable by one or more processors to implement, for example, The steps of the RRC state transition method described in any of the above.
  • the RRC state transition method, the terminal, the centralized control unit, the distributed control unit, and the computer readable storage medium provided by the present application restore the RRC connection by using an existing SRB configuration request, and are a network element such as a DU or a next-generation base station (gNB).
  • the RRC inactive state of the terminal may be implemented in the case where the CU-DU is separated, and the RRC connection is restored by using the newly allocated SRB configuration, and the RRC connection is restored. Conversion between connected states.
  • FIG. 1 is a schematic flowchart diagram of an RRC state transition method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart diagram of an RRC state transition method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart diagram of an RRC state transition method according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart diagram of an RRC state transition method according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of an RRC state transition process according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an RRC state transition process according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an RRC state transition process according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an RRC state transition process according to an embodiment of the present application.
  • an RRC state transition method includes the following steps:
  • Step 101 When the terminal is switched from the current state to the RRC connected state, the terminal uses the existing Signaling Radio Bearer (SRB) configuration request to restore the RRC connection; for example, the terminal may request, but does not include, request recovery from the DU. RRC connection;
  • SRB Signaling Radio Bearer
  • the current state is an RRC inactive state.
  • the terminal in the Long Term Evolution (LTE), the terminal is divided into two states: an idle state (IDLE) and a connected state according to whether the RRC connection is established.
  • an idle state IDL
  • a connected state according to whether the RRC connection is established.
  • a new RRC state namely the RRC inactive state, is introduced.
  • the SRB is configured as an SRB1.
  • SRB is used as a special radio bearer (RB), which is only used to transmit RRC and Non-Access Stratum (NAS) messages.
  • RB radio bearer
  • NAS Non-Access Stratum
  • SRB0 is used to transmit RRC messages, and SRB0 is transmitted on the Common Control Channel (CCCH);
  • CCCH Common Control Channel
  • SRB1 is used to transmit RRC messages (may include Piggybacked NAS messages). Before the establishment of the SRB2 bearer, it has a higher priority than SRB2, and SRB1 is transmitted on the Dedicated Control Channel (DCCH).
  • DCCH Dedicated Control Channel
  • SRB2 is used to transmit NAS messages, has a lower priority than SRB1, and always configures SRB2 after the security mode is activated.
  • SRB2 is transmitted on the logical channel DCCH.
  • the method further includes:
  • the terminal When the terminal transitions from the current state to the RRC inactive state, the terminal performs one of the following operations:
  • the existing SRB configuration includes: a default PDCP configuration, a default RLC configuration, and a default logical channel configuration; or the existing SRB configuration includes: the saved PDCP configuration, the The saved RLC configuration and the saved logical channel configuration; or the existing SRB configuration includes: the saved PDCP configuration, a default RLC configuration, and a default logical channel configuration.
  • the existing SRB configuration when the terminal releases the PDCP configuration, the RLC configuration, and the logical channel configuration, the existing SRB configuration includes: a default PDCP configuration, a default RLC configuration, and a default logical channel configuration;
  • the existing SRB configuration when the terminal saves the PDCP configuration, the RLC configuration, and the logical channel configuration, the existing SRB configuration includes: the saved PDCP configuration, the saved RLC configuration, and the saved logical channel configuration;
  • the existing SRB configuration when the PDCP configuration is saved, and the RLC configuration and the logical channel configuration are released, the existing SRB configuration includes: the saved PDCP configuration, a default RLC configuration, and a default logical channel configuration.
  • Step 102 When the terminal receives a response from the DU for the request for restoring an RRC connection, if the response includes a newly allocated SRB configuration, the terminal replaces the already-used SRB configuration with the newly allocated SRB configuration. There are SRB configurations to restore RRC connections.
  • the method further includes:
  • Step 103 If the newly allocated SRB configuration is not included in the response, the terminal restores the RRC connection by using the existing SRB configuration.
  • the response sent by the DU to the request for restoring the RRC connection of the terminal is a response of the CU forwarded by the DU to the request for restoring the RRC connection of the terminal.
  • the response does not include the newly allocated SRB configuration
  • the response includes a newly allocated partial SRB configuration or all SRB configurations.
  • the response is an RRC Connection Resume message.
  • the newly allocated SRB configuration includes any one of the following or any combination thereof:
  • a PDCP configuration newly allocated by the CU an RLC configuration newly allocated by the DU, or a logical channel newly allocated by the DU.
  • the embodiment of the present application further provides a terminal, including a processor and a memory; the memory is connected to the processor, for example, the memory can be connected to the memory through a bus or the like.
  • the processor is configured to execute an RRC state transition procedure stored in the memory to implement the steps of the RRC state transition method of any of the above.
  • the embodiment of the present application further provides a computer readable storage medium storing one or more programs, the one or more programs being executable by one or more processors to implement, for example, The steps of the RRC state transition method described in any of the above.
  • an RRC state transition method includes the following steps:
  • Step 201 When the DU receives the recovery RRC connection request of the terminal, the DU allocates a new SRB configuration to the terminal, and forwards the request to the CU;
  • the DU forwards the request to the CU by using an initial UL RRC message.
  • the DU since the DU releases the SRB configuration of the terminal when the terminal is switched from the current state to the RRC inactive state, when the terminal requests to restore the RRC connection, the DU needs to re-allocate the new SRB configuration for the terminal.
  • Step 202 The DU receives a first response returned by the CU, where the first response includes a newly allocated and/or a SRB configuration saved in advance by the CU.
  • the first response is a UE Context Setup Request message and/or a DL RRC Message Transfer message.
  • the CU when the CU saves a partial SRB configuration (for example, a PDCP configuration), the CU sends the saved SRB configuration to the DU by using a downlink RRC transmission message, where the downlink RRC transmission message includes an RRC connection recovery message, where The RRC connection recovery message includes an SRB configuration saved by the CU, and after receiving the downlink RRC transmission message sent by the CU, the DU acquires an RRC connection recovery message in the downlink RRC transmission message, and sends an RRC connection recovery message to the terminal;
  • a partial SRB configuration for example, a PDCP configuration
  • the CU sends the saved SRB configuration to the DU by using a downlink RRC transmission message, where the downlink RRC transmission message includes an RRC connection recovery message, where The RRC connection recovery message includes an SRB configuration saved by the CU, and after receiving the downlink RRC transmission message sent by the CU, the DU acquires an RRC connection recovery message in the downlink RRC transmission message, and sends an RRC
  • the CU When the CU saves all SRB configurations (ie, PDCP configuration, RLC configuration, and logical channel configuration), the CU sends all saved SRB configurations to the DU through the UE Context Setup Request message.
  • SRB configurations ie, PDCP configuration, RLC configuration, and logical channel configuration
  • the SRB configuration in the first response includes at least one of the following:
  • a partial SRB configuration newly allocated by the CU a partial SRB configuration newly allocated by the DU, a partial SRB configuration previously reserved by the CU, and all SRB configurations previously reserved by the CU.
  • Step 203 The DU returns a second response to the terminal by using the default SRB configuration and/or the SRB configuration saved by the CU.
  • the DU uses a default SRB configuration (including a default RLC configuration and a default logical channel configuration) and the CU returns a second response to the terminal using a default SRB configuration.
  • a default SRB configuration including a default RLC configuration and a default logical channel configuration
  • the DU returns a second response to the terminal using a default SRB configuration (including a default RLC configuration and a default logical channel configuration) and a CU pre-stored PDCP configuration.
  • the DU returns a second response to the terminal by using the PDCP configuration, the RLC configuration, and the logical channel configuration saved by the CU.
  • the second response may include a newly allocated SRB configuration of the CU or the DU, or Does not include the newly assigned SRB configuration of the CU or DU).
  • the DU when the CU does not pre-store any SRB configuration of the terminal, the DU returns a second response to the terminal using the default SRB configuration (including the default PDCP configuration, the default RLC configuration, and the default logical channel configuration).
  • the DU when the CU only saves the PDCP configuration of the terminal in advance, the DU returns a second response to the terminal using the default SRB configuration (including the default RLC configuration and the default logical channel configuration) and the CU pre-stored PDCP configuration.
  • the DU When the CU pre-stores the PDCP configuration, the RLC configuration, and the logical channel configuration of the terminal, the DU returns the second response to the terminal using the PDCP configuration, the RLC configuration, and the logical channel configuration saved in advance by the CU (in this case, the CU may be included in the second response) Or the newly allocated SRB configuration of the DU may not include the newly allocated SRB configuration of the CU or the DU).
  • the second response is an RRC Connection Resume message.
  • the second response comprises any one of the following or any combination thereof:
  • the CU newly allocated packet data convergence protocol PDCP configuration, the DU newly allocated radio link control RLC configuration, or the DU newly allocated logical channel configuration.
  • Step 204 The DU restores the RRC connection of the terminal by using the SRB configuration in the first response.
  • the DU uses a partial SRB configuration newly allocated by the DU to restore an RRC connection of the terminal.
  • the DU restores the RRC connection of the terminal by using part or all of the SRB configurations previously saved by the CU.
  • the embodiment of the present application further provides a distributed control unit DU, including a processor and a memory connected to the processor;
  • the processor is configured to execute an RRC state transition procedure stored in the memory to implement the steps of the RRC state transition method of any of the above.
  • the embodiment of the present application further provides a computer readable storage medium storing one or more programs, the one or more programs being executable by one or more processors to implement, for example, The steps of the RRC state transition method described in any of the above.
  • an RRC state transition method includes the following steps:
  • Step 301 The CU receives an RRC connection request notification from the recovery terminal of the DU.
  • the method further includes:
  • the PDCP configuration of the terminal is released.
  • Step 302 The CU allocates a new PDCP configuration to the terminal, and sends the newly allocated PDCP configuration to the DU.
  • the CU sends the newly allocated PDCP configuration to the DU by using a downlink RRC transmission message.
  • an RRC state transition method includes the following steps:
  • Step 401 The CU receives an RRC connection request notification from the recovery terminal of the DU.
  • the method further includes:
  • the saved SRB configuration includes any one of the following or any combination thereof:
  • PDCP configuration PDCP configuration, RLC configuration, or logical channel configuration.
  • Step 402 The CU sends the SRB configuration of the terminal saved in advance to the DU.
  • the CU when the CU saves a part of the SRB configuration (for example, a PDCP configuration), the CU sends all the saved SRB configurations to the DU by using a downlink RRC transmission message, where the downlink RRC transmission message is included.
  • An RRC connection recovery message where the RRC connection recovery message includes an SRB configuration saved by the CU, and after receiving the downlink RRC transmission message sent by the CU, the DU acquires an RRC connection recovery message in the downlink RRC transmission message, and RRC A connection recovery message is sent to the terminal;
  • the CU when the CU saves all SRB configurations (ie, PDCP configuration, RLC configuration, and logical channel configuration), the CU configures the saved DU-related SRB by using a UE context setup request message (ie, RLC configuration, logical channel configuration) is sent to the DU.
  • a UE context setup request message ie, RLC configuration, logical channel configuration
  • the embodiment of the present application further provides a CU, including a processor and a memory;
  • the processor is configured to execute an RRC state transition procedure stored in a memory to implement the steps of the RRC state transition method according to any of the above.
  • the embodiment of the present application further provides a computer readable storage medium storing one or more programs, the one or more programs being executable by one or more processors to implement, for example, The steps of the RRC state transition method described in any of the above.
  • UE user equipment
  • the RRC state transition process includes the following steps:
  • Step 501 When the base station side decides to release the UE to the RRC inactive state, the CU side reserves the SRB1PDCP related configuration and resources, and sends a downlink RRC transmission message to the DU, where the downlink RRC transmission message carries the RRC connection release. Message
  • Step 502 The DU sends an RRC Connection Release message to the UE. After receiving the message, the UE enters an RRC inactive state, and only reserves the PDCP related configuration and resources for the SRB1.
  • Step 503 The CU sends a UE Context Release Command (UE Context Release Command) message to the DU, where the UE Context Release Command message is used to indicate that the DU releases the UE context information.
  • UE Context Release Command UE Context Release Command
  • Step 504 After receiving the message of step 503, the DU releases the SRB1 related configuration and resources, and other context information, and sends a UE Context Release Complete message to the CU.
  • Step 505 When the UE needs to transition from the RRC inactive state to the RRC connected state, a random access channel (RACH) process needs to be performed with the base station side.
  • RACH random access channel
  • Step 506 After the RACH process, the UE sends an RRC Connection Resume Request message to the base station side.
  • Step 507 After receiving the RRC connection recovery request message sent by the UE, the DU allocates a new SRB1 resource (including an RLC configuration, a logical channel configuration) to the UE, and sends an initial uplink RRC to the CU.
  • a new SRB1 resource including an RLC configuration, a logical channel configuration
  • Step 508 The CU triggers the DU to establish a UE context.
  • Step 509 The DU allocates other corresponding configurations and resources to the UE, and notifies the CU.
  • Step 510 The CU encodes the resource that is re-allocated by the UE, and then sends the message to the DU by using a downlink RRC transmission message, where the DL RRC Transfer Message carries an RRC Connection Resume message;
  • Step 511 After receiving the message, the DU sends an RRC Connection Resume message to the terminal by using the protocol default SRB1RLC, the configuration of the Logic channel, and the resource.
  • the RRC Connection Resume message carries the new SRB1 resource (including the RLC) allocated by the DU. Config, Logical Channel Config);
  • Step 512 The UE parses the RRC Connection Resume message sent by the base station side according to the configuration of the reserved SRB1 PDCP and the default SRB1RLC and the Logic Channel, and replaces the default SRB1 by using the new SRB1 resource (including RLC Config and Logical Channel Config) carried in the message. Configuring a resource, and transmitting an RRC Connection Resume Complete message using the new SRB1 resource (including RLC Config, Logical Channel Config) and the reserved SRB1PDCP Config configuration;
  • Step 513 After receiving the RRC Connection Resume Complete message by using the newly allocated SRB1 resource, the DU side sends the RRC Connection Resume Complete message to the CU through an uplink RRC Transfer Message.
  • the DL RRC Message Transfer message in step 501 and the UE Context Release Command message in step 503 may also be combined into one message, and the merged message may directly indicate that the current message is
  • the UE context release complete message is released, and the UE context release complete message in step 504 may determine whether the message exists according to the message synthesis situation in step 501 and step 503. That is, when the message merged in step 501 and step 503 is the UE Context Release Command, the UE Context Release Command Complete message of step 504 is required; when the message merged in step 501 and step 503 is DL RRC Message Transfer, step 504 is not needed.
  • UE Context Release Command Complete message when the message merged in step 501 and step 503 is DL RRC Message Transfer, step 504 is not needed.
  • the RRC state transition process includes the following steps:
  • Step 601 When the base station side decides to release the UE to the RRC inactive state, the CU side releases the SRB1PDCP related configuration and resources, and sends a DL RRC Message Transfer message to the DU to carry the RRC Connection Release message;
  • Step 602 The DU sends an RRC Connection Release message to the UE. After receiving the message, the UE enters an RRC inactive state and releases all configurations and resources of the SRB1.
  • Step 603 The CU sends a UE Context Release Command message for instructing the DU to release the UE context information to the DU.
  • Step 604 After receiving the message of step 603, the DU releases the SRB1 related configuration and resources, and other context information, and sends a UE Context Release Complete message to the CU.
  • Step 605 When the UE needs to transition from the RRC inactive state to the RRC connected state, the RACH process needs to be performed with the base station side.
  • Step 606 After the RACH process, the UE sends an RRC Connection Resume Request message to the base station side.
  • Step 607 After receiving the RRC Connection Resume Request message sent by the UE, the DU allocates a new SRB1 resource (including RLC Config and Logical Channel Config) to the UE, and sends an Initial UL RRC Message to the CU.
  • a new SRB1 resource including RLC Config and Logical Channel Config
  • Step 608 The CU triggers the DU to establish a UE context.
  • Step 609 The DU allocates other corresponding configurations and resources to the UE, and notifies the CU.
  • Step 610 The CU allocates a new SRB1 PDCP resource (including the PDCP Config) to the UE, and encodes the resource that is re-allocated by the UE, and then sends the resource to the DU through a DL RRC Transfer Message message, where the message carries an RRC Connection Resume message;
  • Step 611 After receiving the message, the DU sends an RRC Connection Resume message to the terminal by using the protocol default SRB1RLC, the configuration of the Logic channel, and the resource.
  • the RRC Connection Resume message carries the new SRB1 resource (including the RLC) allocated by the DU. Config, Logical Channel Config);
  • Step 612 The UE parses the RRC Connection Resume message sent by the base station side according to the configuration of the default SRB1PDCP, RLC, and Logic channel, and replaces the protocol default by using the newly allocated SRB1 configuration resource (including PDCP Config, RLC Config, and Logical Channel Config) carried in the message.
  • the SRB1 configuration resource, and the RRC Connection Resume Complete message is sent by using the newly allocated SRB1 configuration resource (including PDCP Config, RLC Config, Logical Channel Config);
  • Step 613 The DU side receives the RRC Connection Resume Complete message by using the newly allocated SRB1 resource, and sends the RRC Connection Resume Complete message to the CU through the UL RRC Transfer Message.
  • the DL RRC Message Transfer message in step 601 and the UE Context Release Command message in step 603 may also be combined into one message, and the merged message may directly indicate that the current message is
  • the UE context release complete message is released, and the UE context release complete message in step 604 may determine whether the message exists according to the message synthesis situation in step 601 and step 603. That is, when the message merged in step 601 and step 603 is the UE Context Release Command, the UE Context Release Command Complete message of step 604 is required; when the message merged in step 601 and step 603 is DL RRC Message Transfer, step 604 is not needed.
  • UE Context Release Command Complete message when the message merged in step 601 and step 603 is DL RRC Message Transfer, step 604 is not needed.
  • the RRC state transition process includes the following steps:
  • Step 701 When the base station side decides to release the UE to the RRC inactive state, the CU side reserves the SRB1PDCP related configuration and resources, and stores the configuration and resources (including the RLC Config and the Logical Channel Config) of the SRB1 allocated by the DU, and sends the same to the DU.
  • the DL RRC Message Transfer message carries an RRC Connection Release message;
  • Step 702 The DU sends an RRC Connection Release message to the UE. After receiving the message, the UE enters an RRC inactive state, and retains all related configurations and resources of the SRB1 (including PDCP Config, RLC Config, and Logical Channel Config).
  • Step 703 The CU sends a UE Context Release Command message for instructing the DU to release the UE context information to the DU.
  • Step 704 After receiving the UE Context Release Command message of step 703, the DU releases the SRB1 related configuration and resources, and other context information, and sends a UE Context Release Complete message to the CU.
  • Step 705 When the UE needs to transition from the RRC inactive state to the RRC connected state, the RACH process needs to be performed with the base station side.
  • Step 706 After the RACH process, the UE sends an RRC Connection Resume Request message to the base station side.
  • Step 707 After receiving the RRC Connection Resume Request message sent by the UE, the DU allocates a new SRB1 resource (including RLC Config and Logical Channel Config) to the UE, and sends an Initial UL RRC Message to the CU.
  • a new SRB1 resource including RLC Config and Logical Channel Config
  • Step 708 The CU triggers the DU to establish the UE context, and carries the SRB1 resource reserved when the UE suspends (Suspend);
  • Step 709 The DU replaces the newly allocated SRB1 resource with the reserved SRB1 resource; and allocates other corresponding configurations and resources to the UE, and sends the message to the CU through the UE Context Setup Response message;
  • Step 710 The CU encodes the resource that is re-allocated by the UE, and then sends the resource to the DU by using a DL RRC Transfer Message message, where the message carries an RRC Connection Resume message;
  • Step 711 After receiving the message, the DU sends an RRC Connection Resume message to the terminal by using the SRB1 configuration and the resource reserved by the UE Suspend.
  • Step 712 The UE parses the RRC Connection Resume message sent by the base station side according to the configuration of the reserved SRB1PDCP, RLC, and Logic channel, and sends an RRC Connection Resume Complete message.
  • Step 713 After receiving the RRC Connection Resume Complete message, the DU side sends the message to the CU through the UL RRC Transfer Message.
  • the DL RRC Message Transfer message in step 701 and the UE Context Release Command message in step 703 may also be merged into one message.
  • the current message may be directly indicated.
  • the UE context release complete message is released, and the UE context release complete message in step 704 may determine whether the message exists according to the message synthesis situation in step 701 and step 703. That is, when the message merged in step 701 and step 703 is the UE Context Release Command, the UE Context Release Command Complete message of step 704 is required; when the message merged in step 701 and step 703 is DL RRC Message Transfer, step 704 is not required.
  • UE Context Release Command Complete message when the message merged in step 701 and step 703 is DL RRC Message Transfer, step 704 is not required.
  • the RRC state transition process includes the following steps:
  • Step 801 When the base station side decides to release the UE to the RRC inactive state, the CU side reserves the SRB1PDCP related configuration and resources, and stores the configuration and resources (including the RLC Config and the Logical Channel Config) of the SRB1 allocated by the DU, and sends the same to the DU.
  • the DL RRC Message Transfer message carries an RRC Connection Release message;
  • Step 802 The DU sends an RRC Connection Release message to the UE. After receiving the message, the UE enters an RRC inactive state, and retains all related configurations and resources of the SRB1 (including PDCP Config, RLC Config, and Logical Channel Config);
  • Step 803 The CU sends a UE Context Release Command message for instructing the DU to release the UE context information to the DU.
  • Step 804 After receiving the UE Context Release Command message in step 803, the DU releases the SRB1 related configuration and resources, and other context information, and sends a UE Context Release Complete message to the CU.
  • Step 805 When the UE needs to transition from the RRC inactive state to the RRC connected state, the RACH process needs to be performed with the base station side.
  • Step 806 After the RACH process, the UE sends an RRC Connection Resume Request message to the base station side.
  • Step 807 After receiving the RRC Connection Resume Request message sent by the UE, the DU allocates a new SRB1 resource (including RLC Config and Logical Channel Config) to the UE, and sends an Initial UL RRC Message to the CU.
  • a new SRB1 resource including RLC Config and Logical Channel Config
  • Step 808 The CU triggers the DU to establish the UE context, and carries the SRB1 resource retained by the UE Suspend.
  • Step 809 The DU stores the reserved SRB1 resource and the newly allocated SRB1 resource; and allocates other corresponding configurations and resources to the UE, and sends the message to the CU through the UE Context Setup Response message;
  • Step 810 The CU encodes the resource that is re-allocated by the UE, and then sends the resource to the DU by using a DL RRC Transfer Message message, where the message carries an RRC Connection Resume message.
  • Step 811 After receiving the message, the DU uses the SRB1 configuration and the resource scheduling RRC Connection Resume message reserved by the UE Suspend.
  • the RRC Connection Resume message carries the new SRB1 resource allocated by the DU to the UE (including RLC Config and Logical). Channel Config);
  • Step 812 The UE parses the RRC Connection Resume message sent by the base station side according to the configuration of the reserved SRB1PDCP, RLC, and Logic channel, and replaces the reservation with the newly allocated SRB1 configuration resource (including PDCP Config, RLC Config, and Logical Channel Config) carried in the message.
  • the SRB1 configuration resource, and the RRC Connection Resume Complete message is sent by using the newly allocated SRB1 configuration resource (including PDCP Config, RLC Config, Logical Channel Config);
  • Step 813 After receiving the RRC Connection Resume Complete message by using the newly allocated SRB1 resource, the DU side sends the RRC Connection Resume Complete message to the CU through the UL RRC Transfer Message.
  • the DL RRC Message Transfer message in step 801 and the UE Context Release Command message in step 803 may also be combined into one message, and the merged message may directly indicate that the current message is
  • the UE context release complete message is released, and the UE context release complete message in step 804 may determine whether the message exists according to the message synthesis situation in step 801 and step 803. That is, when the message merged in step 801 and step 803 is the UE Context Release Command, the UE Context Release Command Complete message of step 804 is required; when the message merged in step 801 and step 803 is DL RRC Message Transfer, step 804 is not needed.
  • UE Context Release Command Complete message when the message merged in step 801 and step 803 is DL RRC Message Transfer, step 804 is not needed.
  • the RRC state transition method provided by the present application can implement conversion between the RRC inactive state and the connected state in the case of CU-DU separation.
  • the present application is also applicable to the case where the UE acquires UE context information between the base station side stations due to the location movement.
  • the new base station acquires the UE from the original base station.
  • the context information may be converted using the RRC state transition method of the present application when the new base station decides to release the UE from the RRC connected state to the RRC inactive state or from the RRC inactive state to the RRC connected state.
  • each module/unit in the above embodiment may be implemented in the form of hardware or may be implemented in software. The form of the module is implemented. This application is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线资源控制RRC状态转换方法、终端、集中控制单元CU、分布式控制单元DU和计算机可读存储介质,所述RRC状态转换方法包括:当终端由当前状态向RRC连接态转换时,终端使用已有的信令无线承载SRB配置请求恢复RRC连接(101);当终端接收到来自DU的针对所述恢复RRC连接的请求的响应时,如果所述响应中包括新分配的SRB配置,则终端使用所述新分配的SRB配置替换所述已有的SRB配置,以恢复RRC连接(102)。

Description

RRC状态转换方法、终端、CU、DU和计算机可读存储介质
相关申请的交叉引用
本申请基于申请号为201810135890.5、申请日为2018年02月09日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种无线资源控制(Radio Resource Control,RRC)状态转换方法、终端、集中控制单元(Centralized Unit,CU)、分布式控制单元(Distributed Unit,DU)和计算机可读存储介质。
背景技术
5G NR(New Radio)是正在进行的第三代合作伙伴(3rd Generation Partnership Project,3GPP)的研究项目,它确定了基于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)的新无线空口标准,并将成为下一代移动网络的基础。3GPP定义的5G应用场景主要包括:增强移动宽带(enhanced Mobile BroadBand,eMBB)、低时延高可靠连接(Ultra-Reliable and Low Latency Communications,URLLC)和大规模物联网(massive Machine Type Communications,mMTC)。三种应用场景对时延、覆盖和可靠性等要求各不相同:eMBB强调的是高峰值传输速率,对时延的要求不高,对可靠性的要求中等;URLLC强调的是低时延与高可靠性传输;mMTC强调的是大量终端,连接密度大,要求更大的传输覆盖,对时延几乎没有要求。
为了尽可能降低数据传输时延,降低用户状态迁移所带来的信令开销,同时降低终端功耗,5G系统引入了一种新的RRC状态,即RRC非激活态(RRC Inactive)。RRC非激活态对于5G核心网(NG-Core)是不可见的,核心网认为终端仍旧在连接态,而5G基站(gNB)可以释放UE的RRC连接,这样终端无需再时刻监听下行控制信道。在该状态下,gNB和NG-Core之间会维持用户面和控制面的连接,UE侧会保存必要的上下文信息,便于有数据收发时,可以最快程度的恢复空口连接。
同时,从传输容量、传输时延、方便部署等几方面综合考虑,5G系统引入了集中控制单元-分布式控制单元分离的技术,将gNB重构为CU和DU两个逻辑网元,根据场景和需求可以合一部署、也可以分开部署,其中,CU侧放置RRC实体、分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)实体、业务数据适配协议(Service Data Adaptation Protocol,SDAP)实体;DU侧放置无线链路控制(Radio Link Control,RLC)实体、媒体接入控制(Medium Access Control,MAC)实体、物理层实体,CU和DU侧分别进行终端上下文的维护和处理。
目前,在NR的标准讨论中,如何在CU-DU分离情况下实现RRC非激活态和连接态之间的转换,尚未提出有效的解决方案。
发明内容
本申请提供了一种RRC状态转换方法、终端、集中控制单元、分布式控制单元和计算机可读存储介质。
本申请实施例提供了一种无线资源控制RRC状态转换方法,包括:
当终端由当前状态向RRC连接态转换时,终端使用已有的信令无线承载SRB配置请求恢复RRC连接;
当终端接收到来自DU的针对所述恢复RRC连接的请求的响应时,如 果所述响应中包括新分配的SRB配置,则终端使用所述新分配的SRB配置替换所述已有的SRB配置,以恢复RRC连接。
本申请实施例还提供了一种终端,包括处理器及与所述处理器连接的存储器;
所述处理器配置为执行所述存储器中存储的RRC状态转换程序,以实现如以上任一项所述的RRC状态转换方法的步骤。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如以上任一项所述的RRC状态转换方法的步骤。
本申请实施例还提供了一种RRC状态转换方法,包括:
当DU接收到终端的恢复RRC连接请求时,DU为终端分配新的SRB配置,并将所述请求转发至CU;
所述DU接收所述CU返回的第一响应,所述第一响应中包括新分配的和/或CU预先保存的SRB配置;
所述DU使用默认的SRB配置和/或所述CU预先保存的SRB配置,返回第二响应至终端;
所述DU使用所述第一响应中的SRB配置,恢复终端的RRC连接。
本申请实施例还提供了一种分布式控制单元,包括处理器及与所述处理器连接的存储器;
所述处理器配置为执行所述存储器中存储的RRC状态转换程序,以实现如以上任一项所述的RRC状态转换方法的步骤。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如以上任一项所述的RRC状态转换方法的步骤。
本申请实施例还提供了一种RRC状态转换方法,包括:
CU接收来自DU的恢复终端的RRC连接请求通知;
所述CU为所述终端分配新的PDCP配置,并将新分配的PDCP配置发送至所述DU。
本申请实施例还提供了一种集中控制单元,包括处理器及与所述处理器连接的存储器;
所述处理器配置为执行所述存储器中存储的RRC状态转换程序,以实现如以上任一项所述的RRC状态转换方法的步骤。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如以上任一项所述的RRC状态转换方法的步骤。
本申请提供的RRC状态转换方法、终端、集中控制单元、分布式控制单元和计算机可读存储介质,通过使用已有的SRB配置请求恢复RRC连接,当DU或下一代基站(gNB)等网元基于恢复RRC连接返回的响应中包括新分配的SRB配置时,使用新分配的SRB配置替换已有的SRB配置,恢复RRC连接,可以实现在CU-DU分离的情况下终端的RRC非激活态和连接态之间的转换。
附图说明
图1为本申请实施例提供的一种RRC状态转换方法的流程示意图;
图2为本申请实施例提供的一种RRC状态转换方法的流程示意图;
图3为本申请实施例提供的一种RRC状态转换方法的流程示意图;
图4为本申请实施例提供的一种RRC状态转换方法的流程示意图;
图5为本申请实施例提供的RRC状态转换过程示意图;
图6为本申请实施例提供的RRC状态转换过程示意图;
图7为本申请实施例提供的RRC状态转换过程示意图;
图8为本申请实施例提供的RRC状态转换过程示意图。
具体实施方式
为使本申请的技术方案更加清楚明白,下文中将结合附图对本申请的实施例进行详细说明。
如图1所示,根据本申请的一种RRC状态转换方法,包括如下步骤:
步骤101:当终端由当前状态向RRC连接态转换时,终端使用已有的信令无线承载(Signaling Radio Bearer,SRB)配置请求恢复RRC连接;例如,该终端可向但不包括向DU请求恢复RRC连接;
在本申请一实施例中,所述当前状态为RRC非激活态。
需要说明的是,在长期演进(Long Term Evolution,LTE)中,终端根据RRC连接是否建立分为空闲态(IDLE)与连接态两种状态。在5G系统中,引入了一种新的RRC状态,即RRC非激活态。
在本申请一实施例中,所述SRB配置为SRB1配置。
需要说明的是,LTE中,SRB作为一种特殊的无线承载(Radio Bearer,RB),其仅仅用来传输RRC和非接入层(Non-access Stratum,NAS)消息,在3GPP协议36.331中,定义了SRBs的传输信道:
——SRB0用来传输RRC消息,SRB0在公共(通用)控制信道(Common Control Channel,CCCH)上传输;
——SRB1用来传输RRC消息(也许会包含Piggybacked NAS消息),在SRB2承载的建立之前,比SRB2具有更高的优先级,SRB1在专用控制信道(Dedicated Control Channel,DCCH)上传输;
——SRB2用来传输NAS消息,比SRB1具有更低的优先级,并且总是在安全模式激活之后才配置SRB2,SRB2在逻辑信道DCCH上传输。
在一些实施例中,所述方法还包括:
当所述终端由当前状态向RRC非激活态转换时,所述终端进行以下任 意之一操作:
释放PDCP配置、RLC配置和逻辑信道配置;
保存PDCP配置、RLC配置和逻辑信道配置;
保存PDCP配置,释放RLC配置和逻辑信道配置。
在一些实施例中,所述已有的SRB配置包括:默认的PDCP配置、默认的RLC配置和默认的逻辑信道配置;或者,所述已有的SRB配置包括:所述保存的PDCP配置、所述保存的RLC配置和所述保存的逻辑信道配置;或者,所述已有的SRB配置包括:所述保存的PDCP配置、默认的RLC配置和默认的逻辑信道配置。
例如,在一些实施例中,当所述终端释放PDCP配置、RLC配置和逻辑信道配置时,所述已有的SRB配置包括:默认的PDCP配置、默认的RLC配置和默认的逻辑信道配置;当所述终端保存PDCP配置、RLC配置和逻辑信道配置时,所述已有的SRB配置包括:所述保存的PDCP配置、所述保存的RLC配置和所述保存的逻辑信道配置;当所述终端保存PDCP配置,释放RLC配置和逻辑信道配置时,所述已有的SRB配置包括:所述保存的PDCP配置、默认的RLC配置和默认的逻辑信道配置。
步骤102:当终端接收到来自所述DU的针对所述恢复RRC连接的请求的响应时,如果所述响应中包括新分配的SRB配置,则终端使用所述新分配的SRB配置替换所述已有的SRB配置,以恢复RRC连接。
在一些实施例中,所述方法还包括:
步骤103:如果所述响应中不包括新分配的SRB配置,则终端使用已有的SRB配置,恢复RRC连接。
需要说明的是,所述DU发送的针对终端的恢复RRC连接的请求的响应,为DU转发的CU针对所述终端的恢复RRC连接的请求的响应。
当终端和CU分别预先保存了终端的PDCP配置、RLC配置和逻辑信 道配置时,所述响应中不包括新分配的SRB配置;
当终端和CU分别预先保存了终端的部分SRB配置时,或者当终端和CU没有预先保存终端的任何SRB配置时,所述响应中包括新分配的部分SRB配置或全部SRB配置。
在本申请一实施例中,所述响应为RRC连接恢复(RRC Connection Resume)消息。
在一些实施例中,所述新分配的SRB配置包括以下任意一项或其任意组合:
由CU新分配的PDCP配置、由所述DU新分配的RLC配置或由所述DU新分配的逻辑信道配置。
本申请实施例还提供了一种终端,包括处理器及存储器;该存储器与处理器连接,例如,该存储器可以通过总线等与存储器连接。
所述处理器配置为执行所述存储器中存储的RRC状态转换程序,以实现如以上任一项所述的RRC状态转换方法的步骤。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如以上任一项所述的RRC状态转换方法的步骤。
如图2所示,根据本申请的一种RRC状态转换方法,包括如下步骤:
步骤201:当DU接收到终端的恢复RRC连接请求时,DU为终端分配新的SRB配置,并将所述请求转发至CU;
在本申请一实施例中,所述DU通过初始上行RRC消息(Initial UL RRC Message),将所述请求转发至所述CU。
需要说明的是,由于在终端由当前状态向RRC非激活态转换时,DU释放了终端的SRB配置,因此当终端请求恢复RRC连接时,DU需要为终端重新分配新的SRB配置。
步骤202:DU接收CU返回的第一响应,所述第一响应中包括新分配的和/或CU预先保存的SRB配置;
在本申请一实施例中,所述第一响应为UE上下文建立请求(UE Context Setup Request)消息和/或下行RRC传输(DL RRC Message Transfer)消息。
例如,当所述CU保存了部分SRB配置(例如PDCP配置)时,所述CU通过下行RRC传输消息将保存的SRB配置发送至DU,所述下行RRC传输消息中包括RRC连接恢复消息,所述RRC连接恢复消息中包括CU保存的SRB配置,所述DU接收到所述CU发送的下行RRC传输消息后,获取下行RRC传输消息中的RRC连接恢复消息,并将RRC连接恢复消息发送至终端;
当所述CU保存了所有SRB配置(即PDCP配置、RLC配置和逻辑信道配置)时,所述CU通过UE上下文建立请求消息将保存的所有SRB配置发送至DU。
在一些实施例中,所述第一响应中的SRB配置包括以下至少之一:
由所述CU新分配的部分SRB配置、由所述DU新分配的部分SRB配置、由所述CU预先保存的部分SRB配置、由所述CU预先保存的全部SRB配置。
步骤203:DU使用默认的SRB配置和/或所述CU预先保存的SRB配置,返回第二响应至终端;
在本申请一实施例中,DU使用默认的SRB配置(包括默认的RLC配置和默认的逻辑信道配置)和CU使用默认的SRB配置返回第二响应至终端。
在本申请一实施例中,DU使用默认的SRB配置(包括默认的RLC配置和默认的逻辑信道配置)和CU预先保存的PDCP配置返回第二响应至终端。
在本申请一实施例中,DU使用CU预先保存的PDCP配置、RLC配置和逻辑信道配置返回第二响应至终端(此时,第二响应中可以包括CU或DU新分配的SRB配置,也可以不包括CU或DU新分配的SRB配置)。
例如,当CU没有预先保存终端的任何SRB配置时,DU使用默认的SRB配置(包括默认的PDCP配置、默认的RLC配置和默认的逻辑信道配置)返回第二响应至终端。当CU仅预先保存终端的PDCP配置时,DU使用默认的SRB配置(包括默认的RLC配置和默认的逻辑信道配置)和CU预先保存的PDCP配置返回第二响应至终端。当CU预先保存了终端的PDCP配置、RLC配置和逻辑信道配置时,DU使用CU预先保存的PDCP配置、RLC配置和逻辑信道配置返回第二响应至终端(此时,第二响应中可以包括CU或DU新分配的SRB配置,也可以不包括CU或DU新分配的SRB配置)。
在本申请一实施例中,所述第二响应为RRC连接恢复(RRC Connection Resume)消息。
在一些实施例中,所述第二响应包括以下任意一项或其任意组合:
所述CU新分配的分组数据汇聚协议PDCP配置、所述DU新分配的无线链路控制RLC配置或所述DU新分配的逻辑信道配置。
步骤204:DU使用所述第一响应中的SRB配置,恢复终端的RRC连接。
在本申请一实施例中,所述DU使用所述DU新分配的部分SRB配置,恢复终端的RRC连接。
在本申请另一实施例中,所述DU使用所述CU预先保存的部分或全部SRB配置,恢复终端的RRC连接。
本申请实施例还提供了一种分布式控制单元DU,包括处理器及与所述处理器连接的存储器;
所述处理器配置为执行所述存储器中存储的RRC状态转换程序,以实现如以上任一项所述的RRC状态转换方法的步骤。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如以上任一项所述的RRC状态转换方法的步骤。
如图3所示,根据本申请的一种RRC状态转换方法,包括如下步骤:
步骤301:CU接收来自DU的恢复终端的RRC连接请求通知;
在一些实施例中,所述方法还包括:
当所述CU将终端转为RRC非激活态时,释放所述终端的PDCP配置。
步骤302:所述CU为所述终端分配新的PDCP配置,并将新分配的PDCP配置发送至DU。
在本申请一实施例中,所述CU通过下行RRC传输消息将新分配的PDCP配置发送至DU。
如图4所示,根据本申请的一种RRC状态转换方法,包括如下步骤:
步骤401:CU接收来自DU的恢复终端的RRC连接请求通知;
在一些实施例中,所述方法之前还包括:
当所述CU将终端转为RRC非激活态时,保存所述终端的SRB配置。
在一些实施例中,所述保存的SRB配置包括以下任意一项或其任意组合:
PDCP配置、RLC配置或逻辑信道配置。
步骤402:所述CU将预先保存的所述终端的SRB配置发送至所述DU。
在本申请一实施例中,当所述CU保存了部分SRB配置(例如PDCP配置)时,所述CU通过下行RRC传输消息将保存的所有SRB配置发送至DU,所述下行RRC传输消息中包括RRC连接恢复消息,所述RRC连接恢复消息中包括CU保存的SRB配置,所述DU接收到所述CU发送的下 行RRC传输消息后,获取下行RRC传输消息中的RRC连接恢复消息,并将RRC连接恢复消息发送至终端;
在本申请一实施例中,当所述CU保存了所有SRB配置(即PDCP配置、RLC配置和逻辑信道配置)时,所述CU通过UE上下文建立请求消息将保存的DU相关的SRB配置(即RLC配置、逻辑信道配置)发送至DU。xia
本申请实施例还提供了一种CU,包括处理器及存储器;
所述处理器用于执行存储器中存储的RRC状态转换程序,以实现如以上任一项所述的RRC状态转换方法的步骤。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如以上任一项所述的RRC状态转换方法的步骤。
以下还提供了几个实例对本申请进行进一步解释,但是值得注意的是,该实例只是为了更好的描述本申请,并不构成对本申请不当的限定。需要指出的是,以下各个实例中的用户设备(User Equipment,UE)可以理解为终端。
如图5所示,本实例中,RRC状态转换过程包括如下步骤:
步骤501、当基站侧决策将UE释放到RRC非激活态时,CU侧保留SRB1PDCP相关配置和资源,并向DU发送下行RRC传输消息,所述下行RRC传输消息携带RRC连接释放(RRC Connection Release)消息;
步骤502、DU将RRC Connection Release消息发送给UE;UE收到该消息后,进入RRC非激活态,对于SRB1仅保留PDCP相关配置和资源;
步骤503、CU向DU发送UE上下文释放命令(UE Context Release Command)消息,所述UE Context Release Command消息用于指示DU释放UE上下文信息;
步骤504、DU收到步骤503的消息后,释放SRB1相关配置和资源,及其它上下文信息;并向CU发送UE上下文释放完成(UE Context Release Complete)消息;
步骤505、当UE需要从RRC非激活态转换到RRC连接态时,需要与基站侧进行随机接入(Random Access Channel,RACH)过程;
步骤506、UE在RACH过程后,向基站侧发送RRC连接恢复请求(RRC Connection Resume Request)消息;
步骤507、DU收到UE发送的RRC连接恢复请求消息后,若接纳成功,则为该UE分配新的SRB1资源(包括RLC配置、逻辑信道(Logical Channel)配置),并给CU发送初始上行RRC消息;
步骤508、CU触发DU进行UE上下文的建立;
步骤509、DU为UE分配其它相应的配置和资源,并通知给CU;
步骤510、CU将为UE重新分配的资源进行编码后通过下行RRC传输消息发送给DU,该DL RRC Transfer Message携带RRC连接恢复(RRC Connection Resume)消息;
步骤511、DU收到该消息后,使用协议默认SRB1RLC、Logic channel的配置和资源发送RRC Connection Resume消息至终端;其中,该RRC Connection Resume消息携带DU为该UE分配的新的SRB1资源(包括RLC Config、Logical Channel Config);
步骤512、UE按照保留的SRB1PDCP配置和默认SRB1RLC、Logic Channel的配置解析基站侧发送的RRC Connection Resume消息,并用消息中携带的新的SRB1资源(包括RLC Config、Logical Channel Config)替换协议默认的SRB1配置资源,同时使用新的SRB1资源(包括RLC Config、Logical Channel Config)和保留的SRB1PDCP Config配置发送RRC连接恢复完成(RRC Connection Resume Complete)消息;
步骤513、DU侧使用新分配的SRB1资源接收RRC Connection Resume Complete消息后,并通过上行RRC传输消息(UL RRC Transfer Message)发送给CU。
需要说明的是,以上流程中,步骤501中的DL RRC Message Transfer消息和步骤503中的UE Context Release Command消息也可以合并为一条消息,在合并的这条消息中可以直接指示当前消息的作用是释放UE上下文信息,步骤504中的UE上下文释放完成消息可以根据步骤501和步骤503消息合成情况确定是否存在。即当步骤501和步骤503合并的消息为UE Context Release Command时,则需要步骤504的UE Context Release Command Complete消息;当步骤501和步骤503合并的消息为DL RRC Message Transfer时,则不需要步骤504的UE Context Release Command Complete消息。
如图6所示,本实例中,RRC状态转换过程包括如下步骤:
步骤601、当基站侧决策将UE释放到RRC非激活态时,CU侧释放SRB1PDCP相关配置和资源,并向DU发送DL RRC Message Transfer消息携带RRC Connection Release消息;
步骤602、DU将RRC Connection Release消息发送给UE;UE收到该消息后,进入RRC非激活态,释放SRB1所有配置和资源;
步骤603、CU向DU发送用于指示DU释放UE上下文信息的UE Context Release Command消息;
步骤604、DU收到步骤603的消息后,释放SRB1相关配置和资源,及其它上下文信息;并向CU发送UE Context Release Complete消息;
步骤605、当UE需要从RRC非激活态转换到RRC连接态时,需要与基站侧进行RACH过程;
步骤606、UE在RACH过程后,向基站侧发送RRC Connection Resume Request消息;
步骤607、DU收到UE发送的RRC Connection Resume Request消息后,若接纳成功,则为该UE分配新的SRB1资源(包括RLC Config、Logical Channel Config),并给CU发送Initial UL RRC Message消息;
步骤608、CU触发DU进行UE上下文的建立;
步骤609、DU为UE分配其它相应的配置和资源,并通知给CU;
步骤610、CU为该UE分配新的SRB1PDCP资源(包括PDCP Config),并将为UE重新分配的资源进行编码后通过DL RRC Transfer Message消息发送给DU,该消息携带RRC Connection Resume消息;
步骤611、DU收到该消息后,使用协议默认SRB1RLC、Logic channel的配置和资源发送RRC Connection Resume消息至终端;其中,该RRC Connection Resume消息携带DU为该UE分配的新的SRB1资源(包括RLC Config、Logical Channel Config);
步骤612、UE按照默认SRB1PDCP、RLC、Logic channel的配置解析基站侧发送的RRC Connection Resume消息,并用消息中携带的新分配的SRB1配置资源(包括PDCP Config、RLC Config、Logical Channel Config)替换协议默认的SRB1配置资源,同时使用新分配的SRB1配置资源(包括PDCP Config、RLC Config、Logical Channel Config)发送RRC Connection Resume Complete消息;
步骤613、DU侧使用新分配的SRB1资源接收RRC Connection Resume Complete消息后,并通过UL RRC Transfer Message发送给CU。
需要说明的是,以上流程中,步骤601中的DL RRC Message Transfer消息和步骤603中的UE Context Release Command消息也可以合并为一条消息,在合并的这条消息中可以直接指示当前消息的作用是释放UE上下文 信息,步骤604中的UE上下文释放完成消息可以根据步骤601和步骤603消息合成情况确定是否存在。即当步骤601和步骤603合并的消息为UE Context Release Command时,则需要步骤604的UE Context Release Command Complete消息;当步骤601和步骤603合并的消息为DL RRC Message Transfer时,则不需要步骤604的UE Context Release Command Complete消息。
如图7所示,本实例中,RRC状态转换过程包括如下步骤:
步骤701、当基站侧决策将UE释放到RRC非激活态时,CU侧保留SRB1PDCP相关配置和资源,并存储DU分配的SRB1的配置和资源(包括RLC Config、Logical Channel Config),同时向DU发送DL RRC Message Transfer消息携带RRC Connection Release消息;
步骤702、DU将RRC Connection Release消息发送给UE;UE收到该消息后,进入RRC非激活态,并保留SRB1所有相关配置和资源(包括PDCP Config、RLC Config、Logical Channel Config);
步骤703、CU向DU发送用于指示DU释放UE上下文信息的UE Context Release Command消息;
步骤704、DU收到步骤703的UE Context Release Command消息后,释放SRB1相关配置和资源,及其它上下文信息;并向CU发送UE Context Release Complete消息;
步骤705、当UE需要从RRC非激活态转换到RRC连接态时,需要与基站侧进行RACH过程;
步骤706、UE在RACH过程后,向基站侧发送RRC Connection Resume Request消息;
步骤707、DU收到UE发送的RRC Connection Resume Request消息后, 若接纳成功,则为该UE分配新的SRB1资源(包括RLC Config、Logical Channel Config),并给CU发送Initial UL RRC Message消息;
步骤708、CU触发DU进行UE上下文的建立,同时携带UE挂起(Suspend)时保留的SRB1资源;
步骤709、DU用保留的SRB1资源代替新分配的SRB1资源;并为UE分配其它相应的配置和资源,通过UE Context Setup Response消息发送给CU;
步骤710、CU将为UE重新分配的资源进行编码后通过DL RRC Transfer Message消息发送给DU,该消息携带RRC Connection Resume消息;
步骤711、DU收到该消息后,使用UE Suspend时保留的SRB1配置和资源发送RRC Connection Resume消息至终端;
步骤712、UE按照保留的SRB1PDCP、RLC、Logic channel的配置解析基站侧发送的RRC Connection Resume消息,并发送RRC Connection Resume Complete消息;
步骤713、DU侧收到RRC Connection Resume Complete消息后,通过UL RRC Transfer Message发送给CU。
需要说明的是,以上流程中,步骤701中的DL RRC Message Transfer消息和步骤703中的UE Context Release Command消息也可以合并为一条消息,在合并的这条消息中可以直接指示当前消息的作用是释放UE上下文信息,步骤704中的UE上下文释放完成消息可以根据步骤701和步骤703消息合成情况确定是否存在。即当步骤701和步骤703合并的消息为UE Context Release Command时,则需要步骤704的UE Context Release Command Complete消息;当步骤701和步骤703合并的消息为DL RRC Message Transfer时,则不需要步骤704的UE Context Release Command Complete消息。
如图8所示,本实例中,RRC状态转换过程包括如下步骤:
步骤801、当基站侧决策将UE释放到RRC非激活态时,CU侧保留SRB1PDCP相关配置和资源,并存储DU分配的SRB1的配置和资源(包括RLC Config、Logical Channel Config),同时向DU发送DL RRC Message Transfer消息携带RRC Connection Release消息;
步骤802、DU将RRC Connection Release消息发送给UE;UE收到该消息后,进入RRC非激活态,并保留SRB1所有相关配置和资源(包括PDCP Config、RLC Config、Logical Channel Config);
步骤803、CU向DU发送用于指示DU释放UE上下文信息的UE Context Release Command消息;
步骤804、DU收到步骤803的UE Context Release Command消息后,释放SRB1相关配置和资源,及其它上下文信息;并向CU发送UE Context Release Complete消息;
步骤805、当UE需要从RRC非激活态转换到RRC连接态时,需要与基站侧进行RACH过程;
步骤806、UE在RACH过程后,向基站侧发送RRC Connection Resume Request消息;
步骤807、DU收到UE发送的RRC Connection Resume Request消息后,若接纳成功,则为该UE分配新的SRB1资源(包括RLC Config、Logical Channel Config),并给CU发送Initial UL RRC Message消息;
步骤808、CU触发DU进行UE上下文的建立,同时携带UE Suspend时保留的SRB1资源;
步骤809、DU存储保留的SRB1资源和新分配的SRB1资源;同时为UE分配其它相应的配置和资源,通过UE Context Setup Response消息发送给CU;
步骤810、CU将为UE重新分配的资源进行编码后通过DL RRC Transfer Message消息发送给DU,该消息携带RRC Connection Resume消息;
步骤811、DU收到该消息后,使用UE Suspend时保留的SRB1配置和资源调度RRC Connection Resume消息;其中,该RRC Connection Resume消息携带DU为该UE分配的新的SRB1资源(包括RLC Config、Logical Channel Config);
步骤812、UE按照保留的SRB1PDCP、RLC、Logic channel的配置解析基站侧发送的RRC Connection Resume消息,并用消息中携带的新分配的SRB1配置资源(包括PDCP Config、RLC Config、Logical Channel Config)替换保留的SRB1配置资源,同时使用新分配的SRB1配置资源(包括PDCP Config、RLC Config、Logical Channel Config)发送RRC Connection Resume Complete消息;
步骤813、DU侧使用新分配的SRB1资源接收RRC Connection Resume Complete消息后,通过UL RRC Transfer Message发送给CU。
需要说明的是,以上流程中,步骤801中的DL RRC Message Transfer消息和步骤803中的UE Context Release Command消息也可以合并为一条消息,在合并的这条消息中可以直接指示当前消息的作用是释放UE上下文信息,步骤804中的UE上下文释放完成消息可以根据步骤801和步骤803消息合成情况确定是否存在。即当步骤801和步骤803合并的消息为UE Context Release Command时,则需要步骤804的UE Context Release Command Complete消息;当步骤801和步骤803合并的消息为DL RRC Message Transfer时,则不需要步骤804的UE Context Release Command Complete消息。
本申请提供的RRC状态转换方法,可以实现在CU-DU分离情况下RRC非激活态和连接态之间的转换。同时,本申请也适用于UE由于位置移动, 使得基站侧站间获取UE上下文信息的情况,当UE从原基站的覆盖区域移动到一个新基站的覆盖区域时,新基站从原基站获取UE的上下文信息,当新基站决策将UE从RRC连接态释放到RRC非激活态或从RRC非激活态转换至RRC连接态时,可以使用本申请的RRC状态转换方法进行转换。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。在一些实施例中,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现,相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本申请不限制于任何特定形式的硬件和软件的结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种无线资源控制RRC状态转换方法,包括:
    当终端由当前状态向RRC连接态转换时,终端使用已有的信令无线承载SRB配置请求恢复RRC连接;
    当终端接收到来自分布式控制单元DU的针对所述恢复RRC连接的请求的响应时,如果所述响应中包括新分配的SRB配置,则终端使用所述新分配的SRB配置替换所述已有的SRB配置,以恢复RRC连接。
  2. 根据权利要求1所述的RRC状态转换方法,其中,所述方法还包括:
    当所述终端由当前状态向RRC非激活态转换时,所述终端进行以下任意之一操作:
    释放分组数据汇聚协议PDCP配置、无线链路控制RLC配置和逻辑信道配置;
    保存PDCP配置、RLC配置和逻辑信道配置;
    保存PDCP配置,释放RLC配置和逻辑信道配置。
  3. 根据权利要求2所述的RRC状态转换方法,其中,
    所述已有的SRB配置包括:默认的PDCP配置、默认的RLC配置和默认的逻辑信道配置;
    或者,
    所述已有的SRB配置包括:所述保存的PDCP配置、所述保存的RLC配置和所述保存的逻辑信道配置;
    或者,
    所述已有的SRB配置包括:所述保存的PDCP配置、默认的RLC配置和默认的逻辑信道配置。
  4. 根据权利要求1所述的RRC状态转换方法,其中,所述新分配的 SRB配置包括以下任意一项或其任意组合:
    由集中控制单元CU新分配的PDCP配置、由所述DU新分配的RLC配置或由所述DU新分配的逻辑信道配置。
  5. 一种终端,包括处理器及与所述处理器连接的存储器;
    所述处理器配置为执行所述存储器中存储的RRC状态转换程序,以实现如权利要求1至权利要求4中任一项所述的RRC状态转换方法的步骤。
  6. 一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如权利要求1至权利要求4中任一项所述的RRC状态转换方法的步骤。
  7. 一种RRC状态转换方法,包括:
    当DU接收到终端的恢复RRC连接请求时,DU为终端分配新的SRB配置,并将所述请求转发至CU;
    所述DU接收所述CU返回的第一响应,所述第一响应中包括新分配的和/或CU预先保存的SRB配置;
    所述DU使用默认的SRB配置和/或所述CU预先保存的SRB配置,返回第二响应至终端;
    所述DU使用所述第一响应中的SRB配置,恢复终端的RRC连接。
  8. 根据权利要求7所述的RRC状态转换方法,其中,所述第一响应中的SRB配置包括以下至少之一:
    由所述CU新分配的部分SRB配置、由所述DU新分配的部分SRB配置、由所述CU预先保存的部分SRB配置、由所述CU预先保存的全部SRB配置。
  9. 根据权利要求7所述的RRC状态转换方法,其中,所述第二响应包括以下任意一项或其任意组合:
    由所述CU新分配的PDCP配置、由所述DU新分配的RLC配置或由 所述DU新分配的逻辑信道配置。
  10. 一种分布式控制单元,包括处理器及与所述处理器连接的存储器;
    所述处理器配置为执行所述存储器中存储的RRC状态转换程序,以实现如权利要求7至权利要求9中任一项所述的RRC状态转换方法的步骤。
  11. 一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如权利要求7至权利要求9中任一项所述的RRC状态转换方法的步骤。
  12. 一种RRC状态转换方法,包括:
    CU接收来自DU的恢复终端的RRC连接请求通知;
    所述CU为所述终端分配新的PDCP配置,并将新分配的PDCP配置发送至所述DU。
  13. 根据权利要求12所述的RRC状态转换方法,其中,所述方法还包括:
    当所述CU将所述终端转为RRC非激活态时,释放所述终端的PDCP配置。
  14. 一种RRC状态转换方法,包括:
    CU接收来自DU的恢复终端的RRC连接请求通知;
    所述CU将预先保存的所述终端的SRB配置发送至所述DU。
  15. 根据权利要求14所述的RRC状态转换方法,其中,所述方法还包括:
    当所述CU将所述终端转为RRC非激活态时,保存所述终端的SRB配置。
  16. 根据权利要求15所述的RRC状态转换方法,其中,所述保存的SRB配置包括以下任意一项或其任意组合:
    PDCP配置、RLC配置或逻辑信道配置。
  17. 一种集中控制单元,包括处理器及存储器;
    所述处理器用于执行所述存储器中存储的RRC状态转换程序,以实现如权利要求12至权利要求16中任一项所述的RRC状态转换方法的步骤。
  18. 一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如权利要求12至权利要求16中任一项所述的RRC状态转换方法的步骤。
PCT/CN2018/124017 2018-02-09 2018-12-26 Rrc状态转换方法、终端、cu、du和计算机可读存储介质 WO2019153928A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020207025686A KR102379104B1 (ko) 2018-02-09 2018-12-26 Rrc 상태 전환 방법, 단말기, cu, du 및 컴퓨터 판독 가능 저장 매체
JP2020542876A JP7157813B2 (ja) 2018-02-09 2018-12-26 Rrc状態遷移方法、端末、cu、du、およびコンピュータ可読記憶媒体
EP18905835.7A EP3751953A4 (en) 2018-02-09 2018-12-26 RRC, TERMINAL, CU, DU, STATE TRANSITION PROCESS, AND COMPUTER READABLE STORAGE MEDIA
RU2020129669A RU2749422C1 (ru) 2018-02-09 2018-12-26 Способ изменения состояния rrc, оконечное устройство, центральный блок (cu), распределительный блок (du) и машиночитаемый носитель информации
US16/987,522 US11483893B2 (en) 2018-02-09 2020-08-07 RRC state transition method, terminal, CU, DU, and computer-readable storage medium
US17/971,928 US11917711B2 (en) 2018-02-09 2022-10-24 RRC state transition method, terminal, CU, DU, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810135890.5A CN110139396B (zh) 2018-02-09 2018-02-09 Rrc状态转换方法、终端、cu、du和计算机可读存储介质
CN201810135890.5 2018-02-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/987,522 Continuation US11483893B2 (en) 2018-02-09 2020-08-07 RRC state transition method, terminal, CU, DU, and computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2019153928A1 true WO2019153928A1 (zh) 2019-08-15

Family

ID=67547895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124017 WO2019153928A1 (zh) 2018-02-09 2018-12-26 Rrc状态转换方法、终端、cu、du和计算机可读存储介质

Country Status (7)

Country Link
US (2) US11483893B2 (zh)
EP (1) EP3751953A4 (zh)
JP (1) JP7157813B2 (zh)
KR (1) KR102379104B1 (zh)
CN (2) CN116017785A (zh)
RU (1) RU2749422C1 (zh)
WO (1) WO2019153928A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112637906A (zh) * 2019-08-16 2021-04-09 华为技术有限公司 寻呼的方法和装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112543515B (zh) * 2019-09-20 2024-04-26 大唐移动通信设备有限公司 一种直接通信接口承载配置变更方法及终端
CN116171631B (zh) * 2020-08-03 2024-05-07 荣耀终端有限公司 用于上行链路资源配置的方法、装置和系统
CN116830780A (zh) * 2021-01-14 2023-09-29 欧芬诺有限责任公司 非活动上下文管理
KR102595322B1 (ko) * 2021-11-03 2023-10-30 주식회사 블랙핀 무선 이동 통신 시스템에서 중앙 유닛이 분할된 상향링크 무선자원제어 메시지를 수신하는 방법 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102202405A (zh) * 2010-03-23 2011-09-28 中兴通讯股份有限公司 一种切换时无线资源的配置方法及装置
CN106538037A (zh) * 2016-09-26 2017-03-22 北京小米移动软件有限公司 无线承载的配置方法、装置及系统
CN107046735A (zh) * 2016-02-05 2017-08-15 中兴通讯股份有限公司 终端与网络间连接处理方法和装置

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101077598B1 (ko) * 2004-06-21 2011-10-27 노키아 코포레이션 Hsdpa/단편적 dpch를 통한 끊어진 시그날링 접속의 복구 방법
US20080101609A1 (en) * 2006-10-31 2008-05-01 Innovative Sonic Limited Method and apparatus for handling protocol error in a wireless communications system
EP2381713A1 (en) * 2010-04-26 2011-10-26 Research In Motion Limited Apparatus and method for implementing a security mode configuration in a wireless communication device
US9295095B2 (en) * 2012-03-27 2016-03-22 Blackberry Limited UE preference indicator for suspension
EP3668181A1 (en) * 2012-08-02 2020-06-17 Telefonaktiebolaget LM Ericsson (publ) A node and method for handing over a sub-set of bearers to enable multiple connectivity of a terminal towards several base stations
CN115474245A (zh) * 2015-06-30 2022-12-13 华为技术有限公司 一种数据传输方法、无线网络节点和通信系统
CN106937238B (zh) * 2015-12-30 2021-02-23 夏普株式会社 基于非访问层消息的数据传输方法、基站和用户设备
US20190297661A1 (en) * 2016-01-21 2019-09-26 Lg Electronics Inc. Method for recovering failure of connection resuming procedure at ue in wireless communication system and apparatus therefor
CN107360561B (zh) * 2016-05-03 2020-09-11 株式会社Kt 改变连接状态的方法及其设备
CN107343299B (zh) * 2016-05-03 2021-01-05 株式会社Kt 用于改变ue的连接状态的方法和装置
CN109804569B (zh) * 2016-05-11 2021-12-07 索尼公司 无线系统中的分布式控制
KR102183826B1 (ko) * 2016-05-12 2020-11-30 주식회사 케이티 단말의 듀얼 커넥티비티 구성 방법 및 그 장치
EP3471493B1 (en) * 2016-07-04 2020-09-02 Huawei Technologies Co., Ltd. Radio link failure processing method and related device
EP3282806B1 (en) * 2016-08-10 2020-05-27 HTC Corporation Device and method of handling a signaling radio bearer for narrowband internet of things communication
US10917786B2 (en) * 2016-08-11 2021-02-09 Samsung Electronics Co., Ltd. Low power RRC operating method and device
US10959178B2 (en) * 2016-08-12 2021-03-23 Nokia Technologies Oy Long term evolution (LTE) light connection enhancements for long term evolution (LTE)-new radio access technology (NR) interworking
CN109792347B (zh) * 2016-09-26 2022-08-09 三星电子株式会社 用于在下一代移动通信系统中通信的方法和装置
US11076442B2 (en) * 2016-09-28 2021-07-27 Lg Electronics Inc. Method and apparatus for controlling SRB
KR20180035638A (ko) * 2016-09-29 2018-04-06 삼성전자주식회사 RRC Inactive 및 active 상태에서 data 전송 결정 및 방법 및 장치
WO2018131956A1 (en) * 2017-01-16 2018-07-19 Samsung Electronics Co., Ltd. Method and apparatus for communication in wireless mobile communication system
KR20180093454A (ko) * 2017-02-13 2018-08-22 삼성전자주식회사 무선 통신 시스템에서 기지국 종류에 따른 핸드오버 수행 방법 및 장치
WO2018165995A1 (zh) * 2017-03-13 2018-09-20 华为技术有限公司 一种数据处理方法及终端设备、基站
WO2018174627A1 (ko) * 2017-03-23 2018-09-27 엘지전자 주식회사 무선 통신 시스템에서 다음 메시지를 위하여 사용되는 베어러의 타입을 지시하는 방법 및 장치
US10904941B2 (en) * 2017-07-30 2021-01-26 Lg Electronics Inc. Method and apparatus for resuming RRC connection in CU-DU division scenario
US10873479B2 (en) * 2017-08-03 2020-12-22 Qualcomm Incorporated Techniques and apparatuses for forwarding in multi-hop wireless networks via multi-layer tunneling and centralized control
WO2019032002A1 (en) * 2017-08-10 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) METHODS OF RESPONSE TO SCG FAILURE IN WIRELESS DC AND TERMINAL COMMUNICATIONS AND ASSOCIATED TERMINALS AND NETWORK NODES
US20190124715A1 (en) * 2017-10-24 2019-04-25 Asustek Computer Inc. Method and apparatus of performing msg3-based system information request in a wireless communication system
CN111434131B (zh) * 2017-11-13 2023-06-20 Lg电子株式会社 管理ue上下文的方法以及支持该方法的装置
US11202331B2 (en) * 2017-11-16 2021-12-14 Samsung Electronics Co., Ltd. Device and method for managing connections in wireless communication system
US10972932B2 (en) * 2017-11-17 2021-04-06 Telefonaktiebolaget Lm Ericsson (Publ) Methods, apparatus and systems relating to data radio bearer inactivity
JP6744853B2 (ja) * 2017-12-20 2020-08-19 株式会社Subaru 外部ヒータ稼働判定システム及び車両用制御システム
US10849181B2 (en) * 2018-01-11 2020-11-24 Apple Inc. NR RRC connection setup optimisation
US11533773B2 (en) * 2020-03-31 2022-12-20 Ofinno, Llc Early data transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102202405A (zh) * 2010-03-23 2011-09-28 中兴通讯股份有限公司 一种切换时无线资源的配置方法及装置
CN107046735A (zh) * 2016-02-05 2017-08-15 中兴通讯股份有限公司 终端与网络间连接处理方法和装置
CN106538037A (zh) * 2016-09-26 2017-03-22 北京小米移动软件有限公司 无线承载的配置方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3751953A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112637906A (zh) * 2019-08-16 2021-04-09 华为技术有限公司 寻呼的方法和装置

Also Published As

Publication number Publication date
JP7157813B2 (ja) 2022-10-20
CN116017785A (zh) 2023-04-25
EP3751953A1 (en) 2020-12-16
US20230042377A1 (en) 2023-02-09
JP2021513283A (ja) 2021-05-20
CN110139396A (zh) 2019-08-16
EP3751953A4 (en) 2021-05-26
US11917711B2 (en) 2024-02-27
CN110139396B (zh) 2022-12-02
RU2749422C1 (ru) 2021-06-10
KR102379104B1 (ko) 2022-03-25
US20210007170A1 (en) 2021-01-07
KR20200118154A (ko) 2020-10-14
US11483893B2 (en) 2022-10-25

Similar Documents

Publication Publication Date Title
US11477703B2 (en) Method for establishing a fronthaul interface, method for performing access for a UE, method and apparatus for performing a handover for a UE, data forwarding method, user equipment and base station
CN108541032B (zh) 无线基站分离架构下的通信方法、功能实体及无线基站
US11240699B2 (en) Insufficient resources in the UE during PDU session establishment procedure
WO2019153928A1 (zh) Rrc状态转换方法、终端、cu、du和计算机可读存储介质
RU2749847C2 (ru) Способ и система для управления информацией пользователя
WO2018059268A1 (zh) 网络切片的建立方法和装置
CN110381554B (zh) 通信方法、装置、系统和计算机存储介质
CN113873478B (zh) 通信方法及装置
CN107454636B (zh) 处理用户端存取层上下文的装置及方法
WO2017133295A1 (zh) 数据传输方法、装置和系统
CN110636572A (zh) 通信方法及装置
KR20200004386A (ko) 통신 방법 및 장치
KR102480610B1 (ko) 주소 송신 방법, 장치 및 저장매체
CN114902745A (zh) 一种上下文管理方法及装置
WO2010105410A1 (zh) 一种建立无线承载的方法、装置及系统
CN115734313A (zh) 多路径配置方法、装置及系统
CN114026929A (zh) 一种f1接口管理方法及装置
US20240080926A1 (en) Method and device for wireless communication
WO2023116336A1 (zh) 指示方法、数据传输方法、通信节点及存储介质
WO2023185520A1 (zh) 一种被用于无线通信的方法和装置
CN106559778A (zh) 基站及其lte和wlan汇聚时数据传输控制方法
KR20230046953A (ko) 통신시스템에서 rrc 연결 유보/재개 방법 및 장치
CN117177387A (zh) 数据传输方法及相关设备
KR20210128302A (ko) 차세대 이동 통신 시스템에서 휴면 부분 대역폭을 고려한 부분 대역폭 스위칭 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905835

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020542876

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207025686

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018905835

Country of ref document: EP

Effective date: 20200909