WO2023185520A1 - 一种被用于无线通信的方法和装置 - Google Patents

一种被用于无线通信的方法和装置 Download PDF

Info

Publication number
WO2023185520A1
WO2023185520A1 PCT/CN2023/082442 CN2023082442W WO2023185520A1 WO 2023185520 A1 WO2023185520 A1 WO 2023185520A1 CN 2023082442 W CN2023082442 W CN 2023082442W WO 2023185520 A1 WO2023185520 A1 WO 2023185520A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio bearer
message
subset
mac
rrc
Prior art date
Application number
PCT/CN2023/082442
Other languages
English (en)
French (fr)
Inventor
张锦芳
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2023185520A1 publication Critical patent/WO2023185520A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present application relates to methods and devices in wireless communication systems, and in particular to methods and devices in wireless communication that support the transmission of downlink-triggered small data (DL-triggered small data) in the RRC inactive state.
  • DL-triggered small data downlink-triggered small data
  • the RRC (radio resource control, radio resource control) inactive (RRC_INACTIVE) state is a newly introduced RRC state in NR (New Radio, new air interface).
  • NR New Radio, new air interface
  • RRC_CONNECTED New Radio, new air interface
  • Small data services have the characteristics of small data volume and low transmission frequency.
  • the signaling overhead of RRC state transition is greater than the transmission overhead of small data. It also increases the power consumption overhead of UE (User Equipment). Therefore, at the 3GPP RAN#88e plenary meeting, it was decided to start WI (Work Item, work item) standardization work for small data transmission when RRC is inactive.
  • the network instructs the UE to access the network for data communication by paging the UE.
  • the UE Before accessing the network, the UE cannot determine whether the downlink data to be received can be sent through small data, so it cannot determine whether to enter the RRC connection state or maintain the RRC inactive state for data communication.
  • this application discloses a solution that supports downlink-triggered small data transmission in the RRC inactive state.
  • the network sends a message to instruct the UE whether to maintain the RRC inactive state to perform small data transmission or to enter the RRC connected state to perform data transmission. transmission, the beneficial effects of saving signaling overhead and power saving can be obtained.
  • the embodiments and features in the embodiments of the first node of the present application can be applied to the second node, and vice versa.
  • the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily without conflict.
  • the original intention of this application is for the Uu air interface, this application can also be used for the PC5 interface.
  • this application is also applicable to the V2X (Vehicle-to-Everything, Internet of Vehicles) scenario, the communication scenario between the terminal and the relay, and the relay and the base station. , achieving similar technical effects in terminal and base station scenarios.
  • V2X Vehicle-to-Everything, Internet of Vehicles
  • using unified solutions for different scenarios can also help reduce hardware complexity and costs.
  • nouns, functions, and variables in this application if not otherwise specified
  • This application discloses a method used in a first node of wireless communication, which is characterized by including:
  • a first set of radio bearers is restored, the first set of radio bearers including a first subset of radio bearers, any radio bearer in the first subset of radio bearers being used for at least Data transmission in RRC inactive state;
  • the first random access procedure is executed before receiving the first message; the first message is used to determine whether the first radio bearer set includes a second radio bearer subset, and the second The radio bearer subset includes at least one radio bearer that can only be used for data transmission in the RRC connection state; the first radio bearer subset and the second radio bearer subset include at least one radio bearer respectively.
  • the above method is suitable for downlink triggered small data transmission.
  • the above method uses the first message to indicate whether the second radio bearer subset is included in the first radio bearer set, which can improve system design flexibility.
  • the first node when the first message indicates that the second radio bearer subset is not included in the first radio bearer set, the first node performs downlink triggered small data in the RRC inactive state. Sending can significantly reduce signaling overhead, while users set Prepare to obtain the beneficial effect of saving electricity.
  • the first node transitions to the RRC connection state to perform data transmission, which can be backward compatible. Technologies exist to help reduce hardware complexity and cost.
  • any radio bearer in the first radio bearer subset is configured for data transmission in an RRC inactive state.
  • any radio bearer in the first radio bearer subset is configured for downlink-triggered small data transmission.
  • any radio bearer in the first radio bearer subset is configured for data transmission in the RRC connected state.
  • any radio bearer in the second radio bearer subset is not configured for data transmission in the RRC inactive state.
  • any radio bearer in the second radio bearer subset remains in a suspended state.
  • the message format of the first message implicitly indicates whether the first radio bearer set includes the second radio bearer subset.
  • the first message includes at least one MAC subPDU, each MAC subPDU in the at least one MAC subPDU includes a MAC subheader, and the at least one MAC subheader included in the at least one MAC subPDU is used to indicate the first Whether a radio bearer set includes the second radio bearer subset;
  • the at least one MAC subheader included in the at least one MAC subPDU indicates the message format of the first message.
  • a MAC (Medium Access Control, media access control) subPDU (subprotocol data unit) only includes one MAC subheader (subheader).
  • a MAC subPDU includes a MAC subheader and a MAC CE (Control Element).
  • a MAC subPDU includes a MAC subheader and a MAC SDU (Service Data Unit).
  • a MAC subPDU includes a MAC subheader and padding.
  • a MAC sub-header includes at least one byte.
  • the first message indicates that the first radio bearer set does not include the second radio bearer subset
  • the first logical channel identity is used to indicate a MAC CE.
  • the first message indicates that the first radio bearer The bearer set does not include the second radio bearer subset
  • the at least one MAC subPDU includes at least one MAC SDU.
  • the MAC subPDUs including MAC SDU in the at least one MAC subPDU form a first MAC subPDU set; when the MAC subheader corresponding to the MAC SDU included in the first MAC subPDU indicates that the MAC SDU belongs to the first
  • the first message indicates that the first radio bearer set does not include the second radio bearer subset; wherein the first MAC subPDU is the first MAC subPDU set Any MAC subPDU.
  • the first message is first RRC signaling.
  • the first radio bearer set includes the second radio bearer subset; when the first RRC signaling When the instruction is to suspend the RRC connection, the first radio bearer set does not include the second radio bearer subset;
  • the first RRC signaling indicates the message format of the first message.
  • the first RRC signaling includes a first domain and a second domain, and the first domain included in the first RRC signaling is used to indicate that any radio bearer included in the first radio bearer subset is used. For data transmission in the RRC inactive state; the second domain included in the first RRC signaling is used to indicate resumption of the first radio bearer subset;
  • the first RRC signaling indicates suspending the RRC connection.
  • the behavior of performing the first random access procedure includes sending a first random access preamble on the first time-frequency resource block;
  • the first time-frequency resource block is reserved for a non-SDT triggered random access process.
  • the first node does not send uplink small data before sending the first random access preamble.
  • the random access process triggered by SDT is the random access (random access) process triggered by SDT in the RRC inactive state.
  • the SDT is an uplink triggered SDT.
  • the SDT is MO (mobile originated)-SDT.
  • the non-SDT triggered random access process includes a random access process triggered from an RRC connection recovery process in an RRC inactive state.
  • the non-SDT triggered random access process includes a random access process triggered from initial access (initial access) in RRC idle (RRC_IDLE) state.
  • the non-SDT triggered random access process includes a random access process triggered by requesting other system information (System Information, SI).
  • SI System Information
  • Receive second RRC signaling the second RRC signaling being used to indicate maintaining or entering the RRC inactive state
  • the second RRC signaling includes a first domain
  • the first domain included in the second RRC signaling is used to indicate that any radio bearer included in the first radio bearer subset is used for Data transmission in the inactive state of the RRC.
  • This application discloses a method used in a second node of wireless communication, which is characterized by including:
  • a first radio bearer set is restored, the first radio bearer set includes a first radio bearer subset, and any radio bearer in the first radio bearer subset is used when at least RRC is inactive. Data transmission in the state;
  • a first random access procedure is performed after sending the first paging message and before sending the first message; the first message is used to determine whether the first radio bearer set includes a second Radio bearer subset, the second radio bearer subset includes at least one radio bearer that can only be used for data transmission in the RRC connection state; the first radio bearer subset and the second radio bearer subset respectively include At least one radio bearer.
  • the message format of the first message implicitly indicates whether the first radio bearer set includes the second radio bearer subset.
  • the first message includes at least one MAC subPDU, each MAC subPDU in the at least one MAC subPDU includes a MAC subheader, and the at least one MAC subheader included in the at least one MAC subPDU is used to indicate the first Whether a radio bearer set includes the second radio bearer subset;
  • the at least one MAC subheader included in the at least one MAC subPDU indicates the message format of the first message.
  • the first message indicates that the first radio bearer set does not include the second radio bearer subset
  • the first logical channel identity is used to indicate a MAC CE.
  • the MAC subheader corresponding to each MAC SDU included in the at least one MAC subPDU indicates that the MAC SDU belongs to
  • the first message indicates that the first radio bearer set does not include the second radio bearer subset
  • the at least one MAC subPDU includes at least one MAC SDU.
  • the first message is first RRC signaling.
  • the first radio bearer set includes the second radio bearer subset; when the first RRC signaling When the instruction is to suspend the RRC connection, the first radio bearer set does not include the second radio bearer subset;
  • the first RRC signaling indicates the message format of the first message.
  • the first RRC signaling includes a first domain and a second domain, and the first domain included in the first RRC signaling is used to indicate that any radio bearer included in the first radio bearer subset is used. For data transmission in the RRC inactive state; the second domain included in the first RRC signaling is used to indicate resumption of the first radio bearer subset;
  • the first RRC signaling indicates suspending the RRC connection.
  • the first random access preamble belongs to the first random access process; the first time-frequency resource block is reserved for a non-SDT triggered random access process.
  • the second RRC signaling is used to indicate maintaining or entering the RRC inactive state;
  • the second RRC signaling includes a first domain
  • the first domain included in the second RRC signaling is used to indicate that any radio bearer included in the first radio bearer subset is used for Data transmission in the inactive state of the RRC.
  • This application discloses a first node used for wireless communication, which is characterized by including:
  • a first receiver receiving a first paging message indicating the first node; receiving the first message through the air interface; and in response to receiving the first message, restoring a first radio bearer set , the first radio bearer set includes a first radio bearer subset, and any radio bearer in the first radio bearer subset is used for data transmission in at least RRC inactive state;
  • the first processor before receiving the first message, performs a first random access procedure in response to receiving the first paging message;
  • the first message is used to determine whether the first radio bearer set includes a second radio bearer subset, and the second radio bearer subset includes at least one radio bearer that can only be used for data transmission in the RRC connection state.
  • Radio bearers; the first radio bearer subset and the second radio bearer subset each include at least one radio bearer.
  • This application discloses a second node used for wireless communication, which is characterized in that it includes:
  • the first transmitter sends a first paging message, the first paging message indicates the first node; sends the first message through the air interface; along with the first message, restores the first radio bearer set, the The first radio bearer set includes a first radio bearer subset, and any radio bearer in the first radio bearer subset is used for data transmission in at least the RRC inactive state;
  • a first random access procedure is performed after sending the first paging message and before sending the first message; the first message is used to determine whether the first radio bearer set includes a second Radio bearer subset, the second radio bearer subset includes at least one radio bearer that can only be used for data transmission in the RRC connection state; the first radio bearer subset and the second radio bearer subset respectively include At least one radio bearer.
  • Figure 1 illustrates a transmission flow chart of a first node according to an embodiment of the present application
  • Figure 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 illustrates a schematic diagram of the wireless protocol architecture of the user plane and control plane according to one embodiment of the present application
  • Figure 4 illustrates a schematic diagram of a hardware module of a communication device according to an embodiment of the present application
  • Figure 5 illustrates a wireless signal transmission flow chart according to an embodiment of the present application
  • Figure 6 illustrates a schematic diagram of a message format indicating a first message through a MAC subheader included in a MAC subPDU according to an embodiment of the present application
  • Figure 7 illustrates another schematic diagram of indicating the message format of the first message through a MAC sub-header included in a MAC subPDU according to an embodiment of the present application
  • Figure 8 illustrates a schematic diagram of a message format indicating a first message through first RRC signaling according to an embodiment of the present application
  • Figure 9 illustrates a schematic diagram of the first domain and the second domain included in RRCRelease according to one embodiment of the present application.
  • Figure 10 illustrates a structural block diagram of a processing device in a first node according to an embodiment of the present application
  • Figure 11 illustrates a structural block diagram of a processing device in the second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a transmission flow chart of the first node according to an embodiment of the present application, as shown in Figure 1.
  • the first node 100 receives a first paging message in step 101, the first paging message indicating the first node; in step 102 as a response to receiving the first paging message , perform the first random access process; receive the first message through the air interface in step 103; in step 104, as a response to receiving the first message, restore the first radio bearer set; wherein, the first radio bearer The set includes a first radio bearer subset, and any radio bearer in the first radio bearer subset is used for data transmission in at least RRC inactive state; the first message is used to determine the first radio bearer Whether the bearer set includes a second radio bearer subset, the second radio bearer subset includes at least one radio bearer that can only be used for data transmission in the RRC connection state; the first radio bearer subset and the second radio bearer subset Each radio bearer subset includes at least one radio bearer.
  • the first node is in an RRC inactive state before receiving the first paging message.
  • a first paging message is received, and the first paging message indicates the first node.
  • the first paging message is received in a paging occasion of the first node.
  • the first paging message includes the identity of the first node.
  • the first paging message is a RAN paging message.
  • the first paging message is not a CN (core network, core network) paging message.
  • the first paging message is not used to change the RRC state of the first node.
  • the first identity is allocated by RAN.
  • the first identifier is not assigned by an upper layer.
  • the upper layer is a core network.
  • the upper layer is NAS (Non-access stratum).
  • the first identifier is I (Inactive, inactive)-RNTI (Radio Network Temporary Identifier, wireless network temporary identifier).
  • I Inactive, inactive
  • RTI Radio Network Temporary Identifier, wireless network temporary identifier
  • the first identifier includes a complete I-RNTI value.
  • the first identifier includes 40 bits.
  • a first random access procedure is performed before receiving the first message.
  • the first random access process is a 4-step random access process.
  • the first random access process is a 2-step random access process.
  • the behavior of performing the first random access procedure includes sending a second message, where the second message is used to request to restore the RRC connection.
  • the second message is carried in Msg3 (Message 3) of the four-step random access process.
  • the second message is carried in MsgA (Message A) of the 2-step random access procedure.
  • the second message is RRC signaling.
  • the second message is RRCResumeRequest (RRC recovery request).
  • the second message is RRCResumeRequest1 (RRC recovery request 1).
  • the second message includes at least some bits of the first identifier; wherein the first identifier is I-RNTI.
  • the second message includes the first identification.
  • the first identifier includes 40 bits
  • the second message includes 24 bits of the first identifier
  • the first identifier includes 40 bits
  • the second message includes the lower 24 bits of the first identifier.
  • the first message is received over an air interface.
  • the air interface includes an interface for wireless signal transmission.
  • the air interface includes Uu.
  • the air interface includes PC5.
  • the first message is a high-level message.
  • the first message is RRC signaling.
  • the first message is carried in all or part of IE (Information element) in RRC signaling.
  • IE Information element
  • the first message is carried in all or part of a field in an IE in RRC signaling.
  • the first message is a MAC sublayer message.
  • the behavior of performing the first random access process includes receiving a third message, the third message being used to indicate that the first random access process is successfully completed; the third message is the same as the first random access process.
  • a message belongs to the same MAC PDU.
  • the third message is parsed earlier than the first message.
  • the behavior of performing the first random access process includes receiving a third message, the third message being used to indicate that the first random access process is successfully completed; the third message is the same as the first random access process.
  • One message belongs to a different MAC PDU; the MAC PDU to which the third message belongs is received earlier than the MAC PDU to which the first message belongs.
  • the behavior of performing the first random access process includes receiving a third message, the third message being used to indicate that the first random access process is successfully completed; all data radio bearers (data radio bearers, DRB) maintains a suspended state between the time domain resources occupied by the third message and the time domain resources occupied by the first message.
  • data radio bearers data radio bearers
  • the behavior of performing the first random access process includes receiving a third message, the third message being used to indicate that the first random access process is successfully completed; the first node performs the first random access process in the first random access process. No RRC signaling is received between the time domain resources occupied by the three messages and the time domain resources occupied by the first message.
  • the behavior of performing the first random access process includes receiving a third message, the third message being used to indicate that the first random access process is successfully completed;
  • the first radio bearer subset includes All radio bearers and all radio bearers included in the second radio bearer subset remain in a suspended state between the time domain resources occupied by the third message and the time domain resources occupied by the first message.
  • the third message is Msg4 (Message 4) in the 4-step random access process.
  • the third message is MsgB (Message B) in the 2-step random access process.
  • the third message is MAC subPDU.
  • the third message is MAC CE.
  • the third message is UE Contention Resolution Identity (contention resolution identification) MAC CE.
  • the third message is successRAR (successful random access response).
  • the first message explicitly indicates whether the first radio bearer set includes the second radio bearer subset.
  • the first message includes radio bearer identities of all radio bearers included in the second radio bearer subset; wherein the first message is used to restore the first message The indicated radio bearer.
  • the first radio bearer set is restored.
  • the phrase restoring the first radio bearer set includes: for each radio bearer included in the first radio bearer set, restoring from the UE InactiveAS (User Equipment Inactive Access Stratum) context the same as the primary cell group (masterCellGroup) and pdcp (Packet Data Convergence Protocol, packet data convergence protocol)-Config (PDCP configuration) RLC (Radio Link Control, wireless Link Control) carries the associated configuration.
  • UE InactiveAS User Equipment Inactive Access Stratum
  • masterCellGroup primary cell group
  • pdcp Packet Data Convergence Protocol, packet data convergence protocol
  • PDCP configuration Radio Link Control, wireless Link Control
  • the phrase restoring the first radio bearer set includes: re-establishing a PDCP entity (entity) for each radio bearer included in the first radio bearer set.
  • the phrase restoring the first radio bearer set includes: for each radio bearer included in the first radio bearer set, reestablishing a PDCP entity for the radio bearer without triggering a PDCP status report.
  • the first radio bearer set includes signaling radio bearer (SRB).
  • SRB signaling radio bearer
  • the first radio bearer set does not include signaling radio bearer 1 (SRB1).
  • SRB1 signaling radio bearer 1
  • the first radio bearer set includes signaling radio bearer 2 (SRB2).
  • SRB2 signaling radio bearer 2
  • the first radio bearer set includes signaling radio bearer 3 (SRB3).
  • SRB3 signaling radio bearer 3
  • the first radio bearer set includes data radio bearer (DRB).
  • DRB data radio bearer
  • the first radio bearer set includes MBS (multicast/broadcast service, multicast/broadcast service) radio bearer (MBS radio bearer, MRB).
  • MBS multicast/broadcast service, multicast/broadcast service
  • MRB radio bearer
  • any radio bearer included in the first radio bearer subset remains in a suspended state before receiving the first message.
  • any radio bearer included in the second radio bearer subset remains in a suspended state before receiving the first message.
  • the first radio bearer set includes a first radio bearer subset, and any radio bearer in the first radio bearer subset is used for data transmission in at least an RRC inactive state.
  • any radio bearer included in the first radio bearer subset is configured for SDT transmission.
  • any radio bearer included in the first radio bearer subset is configured for downlink triggered SDT transmission.
  • any radio bearer included in the first radio bearer subset is configured for data transmission in the RRC connected state.
  • any radio bearer included in the first radio bearer subset belongs to the first radio bearer set.
  • the first message is used to determine whether the first radio bearer set includes a second radio bearer subset.
  • the first message is a physical layer message.
  • the first message when the first message includes a third domain, it is determined that the first radio bearer set does not include the second radio bearer subset; wherein the first message is DCI (Downlink Control Information, Downlink control information).
  • DCI Downlink Control Information, Downlink control information
  • the first radio bearer set does not include the A second radio bearer subset; wherein the first message is DCI.
  • the name of the third domain included in the first message includes SDT.
  • the third field included in the first message includes 1 bit.
  • the first message when the first message includes a third field and the value of the third field included in the first message is 1, it indicates that the downlink-triggered small data transmission is performed.
  • the first message when the first message includes a third field and the value of the third field included in the first message is 0, it indicates that the downlink-triggered small data transmission is performed.
  • the third field included in the first message is used to indicate the message format of the first message.
  • physical layer bits are used to indicate the message format of the first message.
  • the first node when it is determined that the first radio bearer set does not include the second radio bearer subset, the first node maintains the RRC inactive state; when it is determined that the first radio bearer set includes all When entering the second radio bearer subset, the first node enters the RRC connection state.
  • any radio bearer included in the second radio bearer subset is not configured for SDT transmission.
  • any radio bearer included in the second radio bearer subset is not configured for downlink SDT transmission.
  • the first radio bearer subset and the second radio bearer subset are orthogonal.
  • any radio bearer included in the second radio bearer subset is configured only for data transmission in the RRC connected state.
  • any radio bearer included in the second radio bearer subset is not configured for use in the RRC inactive state. data transmission.
  • the first radio bearer subset and the second radio bearer subset each include at least one radio bearer.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in Figure 2.
  • Figure 2 illustrates a diagram of the network architecture 200 of NR 5G, LTE (Long-Term Evolution, Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced, Enhanced Long-Term Evolution) systems.
  • the NR 5G, LTE or LTE-A network architecture 200 may be called 5GS (5G System)/EPS (Evolved Packet System) 200 or some other suitable term.
  • 5GS 5G System
  • EPS Evolved Packet System
  • 5GS/EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Server)/UDM (Unified Data Management, Unified Data Management) 220 and Internet Services 230.
  • 5GS/EPS can be interconnected with other access networks, but for simplicity it is not Expose these entities/interfaces. As shown, 5GS/EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks that provide circuit-switched services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB 203 may connect to other gNBs 204 via the Xn interface (eg, backhaul).
  • gNB203 can also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmission Reception Point, Transmitting and receiving node) or some other suitable terminology, in an NTN (Non Terrestrial Network, non-terrestrial/satellite network) network, gNB203 can be a satellite, an aircraft or a ground base station relayed through a satellite. gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, Personal Digital Assistants (Personal Digital Assistants, PDAs), satellite radios, global positioning systems, multimedia devices, Video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, vehicle-mounted equipment, vehicle-mounted communication units, Wearable devices, or any other similarly functional device.
  • SIP Session Initiation Protocol
  • PDAs Personal Digital Assistants
  • satellite radios global positioning systems
  • multimedia devices Video devices
  • digital audio players e.g., MP3 players
  • game consoles e.g., drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, vehicle-mounted equipment, vehicle-mounted communication units, Wearable devices, or any other similarly functional device.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management field)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management field
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway)/UPF (User Plane Function) 212 and P-GW (Packet Date Network Gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210. Basically, MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and PS (Packet Switching, packet switching) streaming services.
  • IMS IP Multimedia Subsystem
  • IP Multimedia Subsystem IP Multimedia Subsystem
  • PS Packet Switching,
  • the UE201 corresponds to the first node in this application.
  • the NR node B 203 corresponds to the second node in this application.
  • the gNB 203 is a macro cell (Marco Cell) base station.
  • the gNB 203 is a Micro Cell base station.
  • the gNB 203 is a Pico Cell base station.
  • the gNB 203 is a home base station (Femtocell).
  • the gNB 203 is a base station device that supports a large delay difference.
  • the gNB 203 is a flying platform device.
  • the gNB 203 is a satellite device.
  • the gNB 203 is a test equipment (for example, a transceiver device that simulates part of the functions of a base station, a signaling tester).
  • a test equipment for example, a transceiver device that simulates part of the functions of a base station, a signaling tester.
  • the wireless link from the UE 201 to the gNB 203 is an uplink, and the uplink is used to perform uplink transmission.
  • the wireless link from the gNB 203 to the UE 201 is a downlink, and the downlink is used to perform downlink transmission.
  • the UE201 and the gNB203 are connected through a Uu interface.
  • Embodiment 3 illustrates a schematic diagram of the wireless protocol architecture of the user plane and control plane according to an embodiment of the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
  • Figure 3 shows the radio protocol architecture of the control plane 300 of a UE and a gNB using three layers: Layer 1, Layer 2 and Layer 3. .
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions. The L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the UE and the gNB through the PHY 301.
  • L2 layer 305 includes MAC (Medium Access Control, media access control) sublayer 302, RLC (Radio Link Control, wireless link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304, these sub-layers terminate at the gNB on the network side.
  • the PDCP sublayer 304 provides data encryption and integrity protection.
  • the PDCP sublayer 304 also provides handover support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of data packets, and realizes retransmission of lost data packets through ARQ.
  • the RLC sublayer 303 also provides duplicate data packet detection and protocol error detection.
  • the MAC sublayer 302 provides mapping between logical and transport channels and multiplexing of logical channel identities.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among UEs.
  • MAC sublayer 302 is also responsible for HARQ (Hybrid Automatic Repeat Request, Hybrid Automatic Repeat Request) operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (i.e., radio bearers) and using RRC signaling between gNB and UE to configure the lower part layer.
  • radio resources i.e., radio bearers
  • the V2X layer is responsible for generating PC5QoS parameter groups and QoS rules based on received service data or service requests, and generating a PC5QoS parameter group corresponding to The PC5QoS flow sends the PC5QoS flow identifier and the corresponding PC5QoS parameter group to the AS (Access Stratum, access layer) layer for QoS processing of data packets belonging to the PC5QoS flow identifier at the AS layer; the V2X layer also includes PC5-S signaling Protocol (PC5-Signaling Protocol) sublayer, the V2X layer is responsible for indicating whether each AS layer transmission is PC5-S transmission or V2X service data transmission.
  • PC5-Signaling Protocol PC5-Signaling Protocol
  • the wireless protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the wireless protocol architecture in the user plane 350 is for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, and the PDCP sublayer 354 in the L2 layer 355.
  • the RLC sublayer 353 and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides header compression for upper layer packets to reduce wireless Send overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol, service data adaptation protocol) sublayer 356.
  • SDAP Service Data Adaptation Protocol, service data adaptation protocol
  • the SDAP sublayer 356 is responsible for QoS (Quality of Service, quality of service) flow and data radio bearer (DRB, Data Radio Bearer) to support business diversity.
  • the wireless protocol architecture of the UE in the user plane 350 may include part or all of the protocol sublayers of the SDAP sublayer 356, the PDCP sublayer 354, the RLC sublayer 353 and the MAC sublayer 352 at the L2 layer.
  • the UE may also have several upper layers above the L2 layer 355, including a network layer that terminates at the P-GW on the network side (eg, an IP layer) and one that terminates at the other end of the connection (eg, , the application layer at the remote UE, server, etc.).
  • entities of multiple sub-layers of the control plane in Figure 3 form an SRB in the vertical direction.
  • entities of multiple sub-layers of the user plane in Figure 3 form a DRB in the vertical direction.
  • entities of multiple sub-layers of the user plane in Figure 3 form an MRB in the vertical direction.
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the first paging message in this application is generated in the RRC306.
  • the first random access preamble in this application is generated in the PHY301 or PHY351.
  • the first message in this application is generated in the RRC306.
  • the first message in this application is generated by the MAC302 or MAC352.
  • the first message in this application is generated by the PHY301 or PHY351.
  • the second message in this application is generated by the RRC306.
  • the third message in this application is generated by the MAC302 or MAC352.
  • the first RRC signaling in this application is generated in the RRC 306.
  • the second RRC signaling in this application is generated in the RRC 306.
  • the L2 layer 305 or 355 belongs to a higher layer.
  • the RRC sublayer 306 in the L3 layer belongs to a higher layer.
  • Embodiment 4 illustrates a schematic diagram of a hardware module of a communication device according to an embodiment of the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in the access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a data source 477, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, and a transmitter/receiver 418 and antenna 420.
  • Controller/Processor 475 In transmission from the second communication device 410 to the first communication device 450, at the second communication device 410, upper layer data packets from the core network or upper layer data packets from the data source 477 are provided to Controller/Processor 475. Core network and data sources 477 represent all protocol layers above the L2 layer. Controller/processor 475 implements the functionality of the L2 layer. In transmission from the second communications device 410 to the first communications device 450, the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and radio resource allocation to the first communication device 450 based on various priority metrics. The controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer). Transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 410, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M-phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for M-phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams. Transmit processor 416 then maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the first communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial stream that is the destination. The symbols on each spatial stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover upper layer data and control signals transmitted by the second communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media.
  • the controller/processor 459 In transmission from the second communication device 410 to the first communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from the second communication device 410. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • upper layer data packets are provided at the first communications device 450 to a controller/processor 459 using a data source 467.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet Segmentation and reordering and multiplexing between logical and transport channels implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is transmitted via Receiver 454 is provided to a different antenna 452.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 In transmission from the first communications device 450 to the second communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from the first communication device 450.
  • Upper layer packets from the controller/processor 475 may be provided to the core network or all protocol layers above the L2 layer, and various control signals may also be provided to the core network or L3 for L3 processing.
  • the first communication device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Using the at least one processor together, the first communication device 450 at least: receives a first paging message indicating the first node; receives the first message through the air interface; In response to the first message, the first radio bearer set is restored, the first radio bearer set includes a first radio bearer subset, and any radio bearer in the first radio bearer subset is used when at least RRC is inactive.
  • the radio bearer set includes a second radio bearer subset
  • the second radio bearer subset includes at least one radio bearer that can only be used for data transmission in the RRC connection state
  • the first radio bearer subset and the third radio bearer subset The two radio bearer subsets each include at least one radio bearer.
  • the first communication device 450 device includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: receiving a first paging message, the first paging message indicating the first node; receiving the first message through the air interface; in response to receiving the first message, restoring a first radio bearer set, the first radio
  • the bearer set includes a first radio bearer subset, and any radio bearer in the first radio bearer subset is used for data transmission in at least an RRC inactive state; before receiving the first message, as receiving the In response to the first paging message, perform a first random access procedure; wherein the first message is used to determine whether the first radio bearer set includes a second radio bearer subset, and the second radio bearer subset
  • the set includes at least one radio bearer that can only be used for data transmission in the RRC connection state; the first radio bearer subset and the second radio bearer subset include at least one radio bearer respectively.
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the used with at least one of the above processors.
  • the second communication device 410 at least: sends a first paging message, the first paging message indicates the first node; sends a first message through the air interface; along with the first message, restores the first wireless Bearer set, the first radio bearer set includes a first radio bearer subset, and any radio bearer in the first radio bearer subset is used for data transmission in at least RRC inactive state; wherein, when sending A first random access procedure is performed after the first paging message and before sending the first message; the first message is used to determine whether the first radio bearer set includes a second radio bearer subset,
  • the second radio bearer subset includes at least one radio bearer that can only be used for data transmission in the RRC connection state; the first radio bearer subset and the second radio bearer subset include
  • the second communication device 410 device includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: sending A first paging message, the first paging message indicates the first node; sending the first message through the air interface; accompanying the first message, restoring a first radio bearer set, the first radio bearer set includes A first radio bearer subset, any radio bearer in the first radio bearer subset is used for data transmission in at least RRC inactive state; wherein, after sending the first paging message and after sending the The first random access procedure is performed before the first message; the first message is used to determine whether the first radio bearer set includes a second radio bearer subset, and the second radio bearer subset includes at least one Radio bearers that can only be used for data transmission in the RRC connection state; the first radio bearer subset and the second radio bearer subset each include at least one radio bearer.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a UE.
  • the second communication device 410 is a base station device.
  • At least one of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416 or the controller/processor 475 is used to transmit this The first paging message in the application.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456 or the controller/processor 459 is used to receive this The first paging message in the application.
  • At least one of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416 or the controller/processor 475 is used to transmit this First news in application.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456 or the controller/processor 459 is used to receive this First news in application.
  • At least one of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468 or the controller/processor 459 is used to transmit this The first random access preamble in the application.
  • At least one of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470 or the controller/processor 475 is used to receive this The first random access preamble in the application.
  • At least one of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468 or the controller/processor 459 is used to transmit this Second message in application.
  • At least one of the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470 or the controller/processor 475 is used to receive this Second message in application.
  • At least one of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416 or the controller/processor 475 is used to transmit this Third message in application.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456 or the controller/processor 459 is used to receive this Third message in application.
  • At least one of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416 or the controller/processor 475 is used to transmit this Second RRC signaling in application.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456 or the controller/processor 459 is used to receive this Second RRC signaling in application.
  • Embodiment 5 illustrates a wireless signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 5 .
  • the first node N51 and the second node N52 communicate through a wireless interface. It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • step S511 For the first node N51 , receive the second RRC signaling in step S511; maintain or enter the RRC inactive state in step S512; receive the first paging message in step S513; perform the first random access in step S514. Process; receive the first message in step S515; restore the first radio bearer set in step S516.
  • the second RRC signaling is sent in step S521; the first paging message is sent in step S522; and the first message is sent in step S523.
  • a first paging message is received, the first paging message indicates the first node; the first message is received through the air interface; in response to receiving the first message, the first radio bearer is restored Set, the first radio bearer set includes a first radio bearer subset, and any radio bearer in the first radio bearer subset is used for data transmission in at least RRC inactive state; after receiving the first radio bearer Before the message, in response to receiving the first paging message, perform a first random access procedure; wherein the first message is used to determine whether the first radio bearer set includes a second radio bearer subset, The second radio bearer subset includes at least one radio bearer that can only be used for data transmission in the RRC connection state; the first radio bearer subset and the second radio bearer subset include at least one radio bearer respectively; The message format of the first message implicitly indicates whether the first radio bearer set includes the second radio bearer subset; the first message includes at least one MAC subPDU, each of the at least one MAC subPDU.
  • the first domain included in the first RRC signaling is used to indicate that any radio bearer included in the first radio bearer subset is used for the RRC inactive state. Data transmission; the second domain included in the first RRC signaling is used to indicate resumption of the first radio bearer subset; wherein the first RRC signaling indicates suspending the RRC connection;
  • the action of performing the first random access process includes sending a first random access preamble on a first time-frequency resource block; wherein the first time-frequency resource block is reserved for a non-SDT-triggered random access process; receiving the first time-frequency resource block;
  • Two RRC signaling, the second RRC signaling is used to indicate maintaining or entering the RRC inactive state; wherein the second RRC signaling includes a first domain, and the second RRC signaling includes all
  • the first field is used to indicate that any radio bearer included in the first radio bearer subset is used for data transmission in the RRC inactive state.
  • the execution of the first random access process by the first node includes wireless signal interaction between the first node and the second node.
  • the second node is the base station of the serving cell of the first node.
  • the second node is the base station of the primary cell of the first node.
  • the second node is a base station of a secondary cell of the first node.
  • the second node is a base station of a cell where the first node resides.
  • second RRC signaling is received, and the second RRC signaling is used to indicate suspending the RRC connection.
  • the second RRC signaling is received earlier than the first paging message.
  • the second RRC signaling includes the first identifier.
  • the first identifier is used to identify the first node in the RRC inactive state.
  • the first receiver in response to receiving the second RRC signaling, maintains or enters the RRC inactive state.
  • the RRC inactive state when the first node is in the RRC inactive state when receiving the second RRC signaling, the RRC inactive state is maintained.
  • the first node when the first node is in the RRC connected state when receiving the second RRC signaling, it enters the RRC inactive state.
  • the behavior of maintaining or entering the RRC inactive state includes: suspending (suspending) all radio bearers included in the first radio bearer subset and the second radio bearer subset.
  • the behavior of maintaining or entering the RRC inactive state includes: indicating PDCP to the lower layer of all radio bearers included in the first radio bearer subset and the second radio bearer subset. hang.
  • the behavior of maintaining or entering the RRC inactive state includes: re-establishing the RLC entity of SRB1.
  • the behavior to maintain or enter the RRC inactive state includes: resetting MAC and if there is a default MAC Cell Group configuration (MAC Cell Group configuration), releasing the default MAC Cell Group configuration. .
  • the behavior of maintaining or entering the RRC inactive state includes: indicating to the upper layer (upper layer) to suspend the RRC connection.
  • the behavior of maintaining or entering the RRC inactive state includes: performing cell selection (cell selection).
  • the second RRC signaling is RRCRelease (RRC release).
  • the second RRC signaling includes suspend configuration (suspendConfig).
  • the second RRC signaling is used to indicate suspending all radio bearers included in the first radio bearer subset and the second radio bearer subset.
  • the radio bearer when a radio bearer is suspended, the radio bearer is not used for data transmission.
  • the radio bearer identity of the radio bearer is not released.
  • the second RRC signaling is used to indicate suspending the first radio bearer subset and the second radio bearer subset. All radio bearers included in the set; the second RRC signaling includes a first domain, and the first domain included in the second RRC signaling is used to indicate any radio included in the first radio bearer subset. Bearers are used for data transmission in the RRC inactive state; the second RRC signaling does not explicitly indicate the second radio bearer subset.
  • the first domain included in the second RRC signaling includes radio bearer identities of all radio bearers included in the first radio bearer subset.
  • the first domain included in the second RRC signaling is included in the suspendConfig domain.
  • the first domain included in the second RRC signaling is SDT configuration (sdt-config).
  • the first domain included in the second RRC signaling is downlink triggered SDT configuration (dl-sdt-config).
  • the first domain included in the second RRC signaling is mobile-terminated SDT configuration (mt-sdt-config).
  • the second RRC signaling is used to indicate suspending all radio bearers included in the first radio bearer subset and the second radio bearer subset;
  • the second RRC signaling includes a A domain and a second domain;
  • the first domain included in the second RRC signaling is used to indicate that any radio bearer included in the first radio bearer subset is used in the RRC inactive state. data transmission;
  • the second domain included in the second RRC signaling is used to indicate suspending the first radio bearer subset; the second RRC signaling does not explicitly indicate the second radio bearer Subset.
  • the behavior of performing the first random access process includes sending a first random access preamble on the first time-frequency resource block.
  • the first time-frequency resource block includes at least one frequency domain resource and at least one time domain resource.
  • a frequency domain resource is a subcarrier.
  • a frequency domain resource is a resource block (RB), and the resource block includes 12 subcarriers.
  • a time domain resource is a symbol.
  • a time domain resource is a multi-carrier symbol.
  • a time domain resource is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol.
  • a time domain resource is a time slot.
  • a time domain resource is a subframe.
  • the first random access preamble is a characteristic sequence.
  • a characteristic sequence is a pseudo-random sequence.
  • a characteristic sequence is a Gold sequence.
  • a characteristic sequence is an M sequence.
  • a characteristic sequence is a ZC (Zadoff-chu) sequence.
  • the first time-frequency resource block is reserved for a non-SDT triggered random access process.
  • the first time-frequency resource block is only used for non-SDT triggered random access processes.
  • At least one of the time domain resources or the frequency domain resources in the first time-frequency resource block is the same as the time-frequency resource reserved for the random access preamble included in the SDT-triggered random access process. different.
  • the first radio bearer set is restored along with the first message.
  • the phrase accompanies the first message, and restoring the first radio bearer set includes: restoring the first radio bearer set and sending the first message are indivisible (atomic).
  • the phrase accompanies the first message, and restoring the first radio bearer set includes: sending the first message and restoring the first radio bearer set are associated with each other.
  • the phrase accompanies the first message, and restoring the first radio bearer set includes: sending the first message is used to restore the first radio bearer set.
  • the phrase accompanies the first message, and restoring the first radio bearer set includes: upon sending the first message (Upon transmission of the first message), restoring the first radio bearer set.
  • the phrase accompanies the first message, and restoring the first radio bearer set includes: following the transmission of the first message, restoring the first radio bearer set gather.
  • the phrase accompanies the first message, and restoring the first radio bearer set includes: sending the first message immediately following restoring the first radio bearer set.
  • the message format of the first message implicitly indicates whether the first radio bearer set includes the second radio bearer subset.
  • the message format of the first message is one of L candidate formats
  • the L candidate formats include at least a first candidate format and a second candidate format.
  • the first candidate format is RRC signaling.
  • the second candidate format is a MAC subheader included in the MAC subPDU.
  • the message format of the first message includes MAC bytes.
  • the message format of the first message includes the logical channel identity (Logical Channel Identity, LCID) in the MAC subheader included in the MAC subPDU.
  • LCID Logical Channel Identity
  • the message format of the first message includes physical layer bits.
  • the message format of the first message includes the third domain included in the first message.
  • the first message includes at least one MAC subPDU, and each MAC subPDU in the at least one MAC subPDU includes a MAC subheader.
  • the at least one MAC subPDU belongs to the same MAC PDU.
  • the first message includes at least one MAC subPDU, and at least one MAC subheader included in the at least one MAC subPDU is used to indicate whether the first radio bearer set includes the second radio bearer sub-header.
  • the at least one MAC subheader included in the at least one MAC subPDU indicates the message format of the first message.
  • the phrase the at least one MAC subheader included in the at least one MAC subPDU indicates that the message format of the first message includes: the at least one MAC subheader included in the at least one MAC subPDU.
  • At least one logical channel identity included in the MAC sub-header indicates the message format of the first message.
  • the phrase the at least one MAC subheader included in the at least one MAC subPDU indicates the message format of the first message includes: a MAC byte indicating the message of the first message Format.
  • the first message includes at least one MAC subPDU, and at least one logical channel identity included in at least one MAC subheader included in the at least one MAC subPDU is used to indicate whether the first radio bearer set The second radio bearer subset is included; wherein the at least one logical channel identity included in the at least one MAC subheader included in the at least one MAC subPDU indicates the message format of the first message.
  • the first message is first RRC signaling.
  • the radio bearer that carries the first RRC signaling is SRB1.
  • the first RRC signaling is sent through DCCH (Dedicated Control Channel).
  • DCCH Dedicated Control Channel
  • the first RRC signaling indicates the message format of the first message.
  • the first radio bearer set when the first RRC signaling indicates resumption of RRC connection, the first radio bearer set includes the second radio bearer subset; when the first RRC signaling indicates suspension of the RRC When connected, the first radio bearer set does not include the second radio bearer subset.
  • the first RRC signaling indicates resumption of the RRC connection; wherein the first RRC signaling is RRCResume (RRC recovery).
  • the first RRC signaling indicates suspending the RRC connection; wherein the first RRC signaling is RRCRelease.
  • the first RRC signaling includes suspend configuration (suspendConfig).
  • the first RRC signaling includes resume configuration (resumeConfig).
  • the first RRC signaling when the first RRC signaling indicates suspending the RRC connection, the first RRC signaling includes a first domain and a second domain; the first RRC signaling includes the third One domain is used to indicate that any radio bearer included in the first radio bearer subset is used for data transmission in the RRC inactive state; the second domain included in the first RRC signaling is Used to instruct to restore the first radio bearer subset.
  • the first RRC signaling when the first RRC signaling includes the second domain, the first RRC signaling is used to indicate restoration of the first radio bearer subset.
  • the first RRC signaling when the first RRC signaling includes the second domain and the second domain included in the first RRC signaling indicates the restoration of all radio bearers included in the first radio bearer subset, the first RRC signaling is used to indicate restoration of the first radio bearer subset.
  • the first domain included in the first RRC signaling is SDT configuration (sdt-config).
  • the first domain included in the first RRC signaling is downlink triggered SDT configuration (dl-sdt-config).
  • the first domain included in the first RRC signaling is mobile device terminated SDT configuration (mt-sdt-config).
  • the first domain included in the first RRC signaling includes a configuration
  • the second domain included in the first RRC signaling is used to restore the configuration included in the first RRC signaling. Configuration of the first domain.
  • the first receiver receives a first MAC PDU after receiving the first message, the first MAC PDU includes at least one MAC SDU, and each MAC included in the at least one MAC SDU The SDU belongs to a radio bearer in the first radio bearer subset; wherein the first message is used to determine that the first radio bearer set does not include the second radio bearer subset.
  • the first receiver receives a first MAC PDU after receiving the first message, the first MAC PDU includes at least one MAC SDU, and each MAC included in the at least one MAC SDU The SDU belongs to a radio bearer in the first radio bearer subset or to a radio bearer in the second radio bearer subset; wherein the first message is used to determine that the first radio bearer set includes the A second subset of radio bearers.
  • the first receiver receives third RRC signaling after receiving the first message, and the third RRC signaling is used to indicate releasing or suspending the RRC connection.
  • the third RRC signaling is received later than the first MAC PDU.
  • the RRC inactive state is maintained or entered.
  • the third RRC signaling is RRCRelease.
  • the third RRC signaling is used to release the RRC connection; wherein the third RRC signaling does not include a suspend configuration (suspendConfig).
  • the third RRC signaling is used to suspend the RRC connection; wherein the third RRC signaling includes a suspend configuration (suspendConfig).
  • the third RRC signaling is used to suspend all radio bearers included in the first radio bearer set.
  • Embodiment 6 illustrates a schematic diagram of indicating the message format of the first message through a MAC sub-header included in a MAC subPDU according to an embodiment of the present application, as shown in Figure 6.
  • the first message indicates that the first radio bearer set does not include the second radio bearer subset.
  • the first message indicates that the first radio bearer set includes the second radio Host subset.
  • the first logical channel identity is used to indicate a MAC CE.
  • the MAC CE is used to indicate that only radio bearers included in the first radio bearer subset are restored.
  • the MAC CE is used to instruct the execution of the SDT process.
  • the MAC CE is used to instruct the execution of a downlink triggered SDT process.
  • the name of the MAC CE includes SDT.
  • the name of the MAC CE includes DL (downlink)-SDT.
  • the name of the MAC CE includes MT (mobile-terminated, terminated at a mobile device)-SDT.
  • the name of the MAC CE includes SDT Activation.
  • the MAC CE is a 0-bit fixed size MAC CE.
  • the MAC CE includes at least one byte.
  • the value of the first logical channel identity is a positive integer between 35 and 46, inclusive.
  • the value of the first logical channel identity is a positive integer between 64 and 308, including 64 and 308.
  • the MAC CE includes 0 bits.
  • the MAC CE includes at least one byte.
  • LCID logical channel identity
  • a domain may include more than one domain without limitation.
  • Embodiment 7 illustrates another schematic diagram of indicating the message format of the first message through a MAC sub-header included in a MAC subPDU according to an embodiment of the present application, as shown in Figure 7.
  • the first message indicates The first radio bearer set does not include the second radio bearer subset; wherein the at least one MAC subPDU includes at least one MAC SDU.
  • the first message indicates that the first set of radio bearers includes the second subset of radio bearers.
  • the first message indicates that the first radio bearer set includes the second A subset of radio bearers.
  • the MAC SDU is used for RRC reconfiguration (RRCReconfiguration).
  • the first message indicates that the first wireless
  • the set of bearers includes the second subset of radio bearers.
  • the logical channel identity included in the MAC subheader is used to indicate the radio bearer to which the MAC SDU corresponding to the MAC subheader belongs.
  • an RLC bearer serves a radio bearer
  • the RLC bearer is identified by a logical channel identity
  • the logical channel identity is associated with the radio bearer.
  • the first message indicates that the first radio bearer set includes the A second subset of radio bearers.
  • the first message indicates that the first radio bearer set includes the second radio bearer subset.
  • the first message indicates that the first radio bearer set includes the second radio bearer sub set.
  • the first message indicates that the first radio bearer set does not include all The second radio bearer subset.
  • the sum of the data volume (data volume) of each MAC SDU included in the at least one MAC subPDU is less than the first threshold.
  • the sum of the data amount of each MAC SDU included in the at least one MAC subPDU is equal to the first threshold.
  • the data amount of a MAC SDU is the number of bytes included in the MAC SDU.
  • the first threshold is configured by the network.
  • the first threshold is set by the network itself.
  • the first threshold is used by the network to determine whether to perform downlink-triggered small data transmission.
  • the first message when it is determined to perform downlink-triggered small data transmission, the first message indicates that the first radio bearer set does not include the second radio bearer subset; when it is determined not to perform downlink-triggered small data transmission When, the first message indicates that the first wireless bearer The bearer set includes the second radio bearer subset.
  • Embodiment 8 illustrates a schematic diagram of indicating the message format of the first message through the first RRC signaling according to an embodiment of the present application, as shown in FIG. 8 .
  • the phrase the first RRC signaling indicates the message format of the first message includes: all or part of the IEs in the first RRC signaling indicates the message format of the first message.
  • the phrase the first RRC signaling indicating the message format of the first message includes: all or part of the field (field) in an IE in the first RRC signaling indicates the The message format of a message.
  • the first RRC signaling is RRCRelease
  • the first RRC signaling includes RRCRelease-IEs
  • the first RRC signaling is used to indicate suspending the RRC connection;
  • the first RRC signaling indicates that the second radio bearer subset is not included in the first radio bearer set.
  • the first RRC signaling is RRCResume
  • the first RRC signaling includes RRCResume-IEs
  • the first RRC signaling is used to indicate resumption of the RRC connection
  • An RRC signaling indicates that the first radio bearer set includes the second radio bearer subset.
  • Embodiment 9 illustrates a schematic diagram of the first domain and the second domain included in RRCRelease according to an embodiment of the present application, as shown in FIG. 9 .
  • the RRCRelease is used to indicate a pending RRC connection. It should be noted that only the first domain and the second domain included in RRCRelease are shown in FIG. 9 , and the remaining domains are not shown.
  • the first field included in the RRC Release is used to indicate that any radio bearer included in a radio bearer set is used for data transmission in the RRC inactive state.
  • the second field in the RRCRelease is optional, and the second field in the RRCRelease is used to indicate the restoration of the radio bearer included in the one radio bearer set. All wireless bearers.
  • the RRCRelease when the RRCRelease does not include the second domain, the RRCRelease is used to indicate suspending all radio bearers included in the one radio bearer set; when the RRCRelease includes the second domain , the RRCRelease is used to indicate the restoration of all radio bearers included in the one radio bearer set.
  • the second field in the RRCRelease is mandatory, and the second field in the RRCRelease is used to indicate suspension, or to resume the one radio bearer. All radio bearers included in the set.
  • the second field in the RRCRelease is a1
  • the second field in the RRCRelease is used to indicate the restoration of all radio bearers included in the one radio bearer set
  • the second field in RRCRelease is used to indicate suspending all radio bearers included in the one radio bearer set.
  • a1 is setup; a2 is release.
  • a1 is resume; a2 is suspend.
  • the a1 is enabled; the a2 is disabled.
  • the RRCRelease does not explicitly indicate a radio bearer that can only be used for data transmission in the RRC connected state.
  • radio bearers other than the radio bearers in the radio bearer set indicated by the first domain included in the RRCRelease can only be used in the RRC connection state. data transmission below.
  • the second RRC signaling adopts the format in case A of Embodiment 9
  • the second RRC signaling does not include the second domain.
  • the second RRC signaling when the second RRC signaling adopts the format in case B of Embodiment 9, the second RRC signaling includes the second domain, and the second RRC signaling includes the The second field is used to indicate suspending all radio bearers included in the first set of radio bearers.
  • the first RRC signaling indicates suspending the RRC connection.
  • the first RRC signaling adopts the format in case A of Embodiment 9
  • the first RRC signaling includes the Second domain.
  • the first RRC signaling indicates suspending the RRC connection.
  • the first RRC signaling adopts the format in case B of Embodiment 9
  • the first RRC signaling includes the The second domain included in the first RRC signaling is used to indicate the restoration of all radio bearers included in the first radio bearer subset.
  • the third RRC signaling indicates suspending the RRC connection.
  • the third RRC signaling adopts the format in case A of Embodiment 9
  • the third RRC signaling does not include the Describe the second domain.
  • the third RRC signaling indicates suspending the RRC connection.
  • the third RRC signaling adopts the format in case B of Embodiment 9
  • the third RRC signaling includes the The second domain included in the third RRC signaling is used to indicate suspending all radio bearers included in the first radio bearer subset.
  • Embodiment 10 illustrates a structural block diagram of a processing device in a first node according to an embodiment of the present application, as shown in FIG. 10 .
  • the first node processing device 1000 includes a first receiver 1001 and a first processor 1002; the first node 1000 is a UE.
  • the first receiver 1001 receives a first paging message, the first paging message indicates the first node; receives the first message through the air interface; as a response to receiving the first message , restore the first radio bearer set, the first radio bearer set includes a first radio bearer subset, and any radio bearer in the first radio bearer subset is used for data transmission in at least the RRC inactive state;
  • the first processor 1002 before receiving the first message, performs a first random access process in response to receiving the first paging message; wherein the first message is used to determine the first Whether the radio bearer set includes a second radio bearer subset, the second radio bearer subset includes at least one radio bearer that can only be used for data transmission in the RRC connection state; the first radio bearer subset and the third radio bearer subset
  • the two radio bearer subsets each include at least one radio bearer.
  • the message format of the first message implicitly indicates whether the first radio bearer set includes the second radio bearer subset.
  • the message format of the first message implicitly indicates whether the first radio bearer set includes the second radio bearer subset; the first message includes at least one MAC subPDU, and the at least one MAC Each MAC subPDU in the subPDU includes a MAC subheader, and the at least one MAC subheader included in the at least one MAC subPDU is used to indicate whether the first radio bearer set includes the second radio bearer subset; wherein , the at least one MAC subheader included in the at least one MAC subPDU indicates the message format of the first message.
  • the message format of the first message implicitly indicates whether the first radio bearer set includes the second radio bearer subset; the first message includes at least one MAC subPDU, and the at least one MAC Each MAC subPDU in the subPDU includes a MAC subheader, and the at least one MAC subheader included in the at least one MAC subPDU is used to indicate whether the first radio bearer set includes the second radio bearer subset; wherein , the at least one MAC subheader included in the at least one MAC subPDU indicates the message format of the first message; when a MAC subheader included in the at least one MAC subPDU indicates the first logical channel identity , the first message indicates that the first radio bearer set does not include the second radio bearer subset; wherein the first logical channel identity is used to indicate a MAC CE.
  • the message format of the first message implicitly indicates whether the first radio bearer set includes the second radio bearer subset; the first message includes at least one MAC subPDU, and the at least one MAC Each MAC subPDU in the subPDU includes a MAC subheader, and the at least one MAC subheader included in the at least one MAC subPDU is used to indicate whether the first radio bearer set includes the second radio bearer subset; wherein , the at least one MAC subheader included in the at least one MAC subPDU indicates the message format of the first message; when the MAC subheader corresponding to each MAC SDU included in the at least one MAC subPDU indicates the When the MAC SDU belongs to a radio bearer in the first radio bearer subset, the first message indicates that the first radio bearer set does not include the second radio bearer subset; wherein the at least one MAC subPDU Include at least one MAC SDU.
  • the message format of the first message implicitly indicates whether the first radio bearer set includes the second radio bearer subset; the first message is first RRC signaling.
  • the first radio bearer set includes When an RRC signaling indicates to resume the RRC connection, the first radio bearer set includes the second radio bearer subset; when the first RRC signaling indicates to suspend the RRC connection, the first radio bearer set The set does not include the second radio bearer subset; wherein the first RRC signaling indicates the message format of the first message.
  • the message format of the first message implicitly indicates whether the first radio bearer set includes the second radio bearer subset; the first message is first RRC signaling.
  • the first radio bearer set includes When an RRC signaling indicates to resume the RRC connection, the first radio bearer set includes the second radio bearer subset; when the first RRC signaling indicates to suspend the RRC connection, the first radio bearer set The set does not include the second radio bearer subset; wherein the first RRC signaling indicates the message format of the first message; the first RRC signaling includes a first domain and a second domain, so The first domain included in the first RRC signaling is used to indicate that any radio bearer included in the first radio bearer subset is used for data transmission in the RRC inactive state; the first The second field included in the RRC signaling is used to indicate resumption of the first radio bearer subset; wherein the first RRC signaling indicates suspending the RRC connection.
  • the behavior of performing the first random access process includes sending a first random access preamble on a first time-frequency resource block; wherein the first time-frequency resource block is reserved for non-SDT triggered Random access process.
  • the first receiver 1001 receives second RRC signaling, and the second RRC signaling is used to indicate maintaining or entering the RRC inactive state; wherein, the second RRC signaling Comprising a first field, the first field included in the second RRC signaling is used to indicate that any radio bearer included in the first radio bearer subset is used for data in the RRC inactive state. transmission.
  • the first receiver 1001 includes the receiver 454 (including the antenna 452), the receiving processor 456, the multi-antenna receiving processor 458 and the controller/processor 459 in Figure 4 of this application.
  • the first receiver 1001 includes at least one of the receiver 454 (including the antenna 452), the receiving processor 456, the multi-antenna receiving processor 458 or the controller/processor 459 in Figure 4 of this application. one.
  • the first receiver 1001 includes the controller/processor 459 in Figure 4 of this application.
  • the first processor 1002 includes the receiver 454 (including the antenna 452), the receiving processor 456, the multi-antenna receiving processor 458 and the controller/processor 459 in Figure 4 of this application.
  • the first processor 1002 includes at least one of the receiver 454 (including the antenna 452), the receiving processor 456, the multi-antenna receiving processor 458 or the controller/processor 459 in Figure 4 of this application. one.
  • the first processor 1002 includes the transmitter 454 (including the antenna 452), the transmission processor 468, the multi-antenna transmission processor 457 and the controller/processor 459 in Figure 4 of this application.
  • the first processor 1002 includes at least one of the transmitter 454 (including the antenna 452), the transmission processor 468, the multi-antenna transmission processor 457 or the controller/processor 459 in Figure 4 of this application. one.
  • the first processor 1002 includes the controller/processor 459 in Figure 4 of this application.
  • Embodiment 11 illustrates a structural block diagram of the processing device in the second node according to an embodiment of the present application, as shown in Figure 11.
  • the second node processing device 1100 includes a second receiver 1101 and a first transmitter 1102; the second node 1100 is a base station.
  • the first transmitter 1102 sends a first paging message, the first paging message indicates the first node; sends the first message through the air interface; along with the first message, restores the first A radio bearer set, the first radio bearer set includes a first radio bearer subset, and any radio bearer in the first radio bearer subset is used for data transmission in at least RRC inactive state; wherein, in A first random access procedure is performed after sending the first paging message and before sending the first message; the first message is used to determine whether the first radio bearer set includes a second radio bearer sub-
  • the second radio bearer subset includes at least one radio bearer that can only be used for data transmission in the RRC connection state; the first radio bearer subset and the second radio bearer subset respectively include at least one radio bearer. carry.
  • the message format of the first message implicitly indicates whether the first radio bearer set includes the second radio bearer subset.
  • the message format of the first message implicitly indicates whether the first radio bearer set includes the second radio bearer subset; the first message includes at least one MAC subPDU, and the at least one MAC Each MAC subPDU in the subPDU includes a MAC subheader, and the at least one MAC subheader included in the at least one MAC subPDU is used to indicate whether the first radio bearer set includes the second radio bearer subset; wherein , the at least one MAC subheader included in the at least one MAC subPDU indicates the message format of the first message.
  • the message format of the first message implicitly indicates whether the first radio bearer set includes the second radio bearer.
  • Carrier set; the first message includes at least one MAC subPDU, each MAC subPDU in the at least one MAC subPDU includes a MAC subheader, and the at least one MAC subheader included in the at least one MAC subPDU is used for Indicate whether the first radio bearer set includes the second radio bearer subset; wherein the at least one MAC subheader included in the at least one MAC subPDU indicates the message format of the first message; when When a MAC subheader included in the at least one MAC subPDU indicates a first logical channel identity, the first message indicates that the first radio bearer set does not include the second radio bearer subset; wherein, the first radio bearer set does not include the second radio bearer subset; A logical channel identity is used to indicate a MAC CE.
  • the message format of the first message implicitly indicates whether the first radio bearer set includes the second radio bearer subset; the first message includes at least one MAC subPDU, and the at least one MAC Each MAC subPDU in the subPDU includes a MAC subheader, and the at least one MAC subheader included in the at least one MAC subPDU is used to indicate whether the first radio bearer set includes the second radio bearer subset; wherein , the at least one MAC subheader included in the at least one MAC subPDU indicates the message format of the first message; when the MAC subheader corresponding to each MAC SDU included in the at least one MAC subPDU indicates the When the MAC SDU belongs to a radio bearer in the first radio bearer subset, the first message indicates that the first radio bearer set does not include the second radio bearer subset; wherein the at least one MAC subPDU Include at least one MAC SDU.
  • the message format of the first message implicitly indicates whether the first radio bearer set includes the second radio bearer subset; the first message is first RRC signaling.
  • the first radio bearer set includes When an RRC signaling indicates to resume the RRC connection, the first radio bearer set includes the second radio bearer subset; when the first RRC signaling indicates to suspend the RRC connection, the first radio bearer set The set does not include the second radio bearer subset; wherein the first RRC signaling indicates the message format of the first message.
  • the message format of the first message implicitly indicates whether the first radio bearer set includes the second radio bearer subset; the first message is first RRC signaling.
  • the first radio bearer set includes When an RRC signaling indicates to resume the RRC connection, the first radio bearer set includes the second radio bearer subset; when the first RRC signaling indicates to suspend the RRC connection, the first radio bearer set The set does not include the second radio bearer subset; wherein the first RRC signaling indicates the message format of the first message; the first RRC signaling includes a first domain and a second domain, so The first domain included in the first RRC signaling is used to indicate that any radio bearer included in the first radio bearer subset is used for data transmission in the RRC inactive state; the first The second field included in the RRC signaling is used to indicate resumption of the first radio bearer subset; wherein the first RRC signaling indicates suspending the RRC connection.
  • the second receiver 1101 receives the first random access preamble on the first time-frequency resource block; wherein the first random access preamble belongs to the first random access process; the third random access preamble belongs to the first random access process; One time-frequency resource block is reserved for non-SDT triggered random access procedures.
  • the first transmitter 1001 sends second RRC signaling, and the second RRC signaling is used to indicate maintaining or entering the RRC inactive state; the second RRC signaling includes: A field, the first field included in the second RRC signaling is used to indicate that any radio bearer included in the first radio bearer subset is used for data transmission in the RRC inactive state.
  • the second receiver 1101 includes the receiver 418 (including the antenna 420), the receiving processor 470, the multi-antenna receiving processor 472 and the controller/processor 475 in Figure 4 of this application.
  • the second receiver 1101 includes at least one of the receiver 418 (including the antenna 420), the receiving processor 470, the multi-antenna receiving processor 472 or the controller/processor 475 in Figure 4 of this application. one.
  • the second receiver 1101 includes the controller/processor 475 in Figure 4 of this application.
  • the first transmitter 1102 includes the transmitter 418 (including the antenna 420), the transmit processor 416, the multi-antenna transmit processor 471 and the controller/processor 475 in Figure 4 of this application.
  • the first transmitter 1102 includes at least one of the transmitter 418 (including the antenna 420), the transmit processor 416, the multi-antenna transmit processor 471 or the controller/processor 475 in Figure 4 of this application. one.
  • the first transmitter 1102 includes the controller/processor 475 in Figure 4 of this application.
  • each module unit in the above embodiments can be implemented in the form of hardware or in the form of software function modules. This application is not limited to any specific form of combination of software and hardware.
  • the first type of communication node or UE or terminal in this application includes but is not limited to mobile phones, tablets, notebooks, etc.
  • the second type of communication node or base station or network side equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, eNB, gNB, transmission and reception node TRP (Transmission and Reception Point, transmitting and Receiving point), relay satellite, satellite base station, air base station and other wireless communication equipment.
  • eMTC enhanced Machine Type Communication
  • NB-IoT vehicle communication equipment
  • aircraft aircraft
  • drones remote control aircraft and other wireless communication equipment.
  • the second type of communication node or base station or network side equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, eNB, gNB, transmission and reception node TRP (Transmission and Reception Point, transmitting and Receiving point), relay satellite, satellite base station, air base station and other wireless communication equipment.
  • TRP Transmission and Reception Point, transmitting and Receiving point

Abstract

本申请公开了一种被用于无线通信的方法和装置。第一节点接收第一寻呼消息,所述第一寻呼消息指示所述第一节点;通过空中接口接收第一消息;作为接收所述第一消息的响应,恢复第一无线承载集合,所述第一无线承载集合包括第一无线承载子集,所述第一无线承载子集中的任一无线承载被用于在至少RRC非活跃状态下的数据传输;在接收所述第一消息之前,作为接收所述第一寻呼消息的响应,执行第一随机接入过程;其中,所述第一消息被用于确定所述第一无线承载集合是否包括第二无线承载子集,所述第二无线承载子集包括至少一个仅能用于RRC连接状态下的数据传输的无线承载。本申请可以有效支持RRC非活跃状态下由下行触发的小数据发送。

Description

一种被用于无线通信的方法和装置 技术领域
本申请涉及无线通信系统中的方法和装置,尤其涉及无线通信中在RRC非活跃状态下支持下行触发的小数据(DL-triggered small data)发送的方法和装置。
背景技术
RRC(radio resource control,无线资源控制)非活跃(RRC_INACTIVE)状态是NR(New Radio,新空口)中新引入的一个RRC状态。当用户进入RRC非活跃状态时,用户可以保留部分网络配置信息。当有业务到达时,用户可以通过重新进入RRC连接(RRC_CONNECTED)状态后进行数据传输。直到Rel(版本)-16,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)中不支持在RRC非活跃状态进行数据传输。
未来无线通信系统的应用场景越来越多样化,随着物联网的飞速发展,小数据业务将是未来无线通信中的一个重要业务。小数据业务具有数据量小且发送频率低的特点,针对小数据发送,RRC状态转换的信令开销要大于小数据的传输开销,同时也增加了UE(UserEquipment,用户设备)的功耗开销。因此,在3GPP RAN#88e次全会上决定对RRC不活跃状态下小数据发送启动WI(Work Item,工作项目)标准化工作。
发明内容
发明人通过研究发现,UE处于RRC非活跃状态,当有下行数据到达时,网络通过寻呼UE指示UE接入网络进行数据通信。在接入网络之前UE对即将接收的下行数据是否可以通过小数据发送无法确定,因此无法确定是进入RRC连接状态还是维持在RRC非活跃状态进行数据通信。
针对上述问题,本申请公开了一种RRC非活跃状态下支持下行触发的小数据发送的解决方案,网络通过发送消息指示UE是维持在RRC非活跃状态执行小数据传输还是进入RRC连接状态执行数据传输,可以获得节省信令开销和节电的有益效果。在不冲突的情况下,本申请的第一节点中的实施例和实施例中的特征可以应用到第二节点中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。进一步的,虽然本申请的初衷是针对Uu空口,但本申请也能被用于PC5口。进一步的,虽然本申请的初衷是针对终端与基站场景,但本申请也同样适用于V2X(Vehicle-to-Everything,车联网)场景,终端与中继,以及中继与基站之间的通信场景,取得类似的终端与基站场景中的技术效果。此外,不同场景(包括但不限于V2X场景和终端与基站的通信场景)采用统一的解决方案还有助于降低硬件复杂度和成本。特别的,对本申请中的术语(Terminology)、名词、函数、变量的解释(如果未加特别说明)可以参考3GPP的规范协议TS36系列、TS38系列、TS37系列中的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一寻呼消息,所述第一寻呼消息指示所述第一节点;
作为接收所述第一寻呼消息的响应,执行第一随机接入过程;
通过空中接口接收第一消息;
作为接收所述第一消息的响应,恢复第一无线承载集合,所述第一无线承载集合包括第一无线承载子集,所述第一无线承载子集中的任一无线承载被用于在至少RRC非活跃状态下的数据传输;
其中,所述第一随机接入过程在接收所述第一消息之前被执行;所述第一消息被用于确定所述第一无线承载集合是否包括第二无线承载子集,所述第二无线承载子集包括至少一个仅能用于RRC连接状态下的数据传输的无线承载;所述第一无线承载子集和所述第二无线承载子集分别包括至少一个无线承载。
作为一个实施例,上述方法适用于下行触发的小数据发送。
作为一个实施例,上述方法通过所述第一消息指示所述第一无线承载集合中是否包括所述第二无线承载子集可以提高系统设计灵活性。
作为一个实施例,上诉方法当所述第一消息指示所述第一无线承载集合中不包括所述第二无线承载子集时,所述第一节点在RRC非活跃状态执行下行触发的小数据发送可以显著减少信令开销,同时用户设 备获得节电的有益效果。
作为一个实施例,上诉方法当所述第一消息指示所述第一无线承载集合中包括所述第二无线承载子集时,所述第一节点转换至RRC连接状态执行数据传输可以后向兼容已有技术,有助于降低硬件复杂度和成本。
作为一个实施例,所述第一无线承载子集中的任一无线承载被配置用于RRC非活跃状态下的数据传输。
作为一个实施例,所述第一无线承载子集中的任一无线承载被配置用于下行触发的小数据发送。
作为一个实施例,所述第一无线承载子集中的任一无线承载被配置用于RRC连接状态下的数据传输。
作为一个实施例,所述第二无线承载子集中的任一无线承载不被配置用于RRC非活跃状态下的数据传输。
作为一个实施例,在RRC非活跃状态下,所述第二无线承载子集中的任一无线承载保持挂起(suspended)状态。
根据本申请的一个方面,包括:
所述第一消息的消息格式隐式指示所述第一无线承载集合是否包括所述第二无线承载子集。
根据本申请的一个方面,包括:
所述第一消息包括至少一个MAC subPDU,所述至少一个MAC subPDU中的每个MAC subPDU包括一个MAC子头,所述至少一个MAC subPDU中包括的至少一个MAC子头被用于指示所述第一无线承载集合是否包括所述第二无线承载子集;
其中,所述至少一个MAC subPDU中包括的所述至少一个MAC子头指示所述第一消息的所述消息格式。
作为一个实施例,一个MAC(MediumAccess Control,媒体接入控制)subPDU(子协议数据单元)仅包括一个MAC子头(subheader)。
作为一个实施例,一个MAC subPDU包括一个MAC子头和一个MAC CE(Control Element,控制元素)。
作为一个实施例,一个MAC subPDU包括一个MAC子头和一个MAC SDU(Service Data Unit,业务数据单元)。
作为一个实施例,一个MAC subPDU包括一个MAC子头和填充(padding)。
作为一个实施例,一个MAC子头包括至少一个字节。
根据本申请的一个方面,包括:
当所述至少一个MAC subPDU中包括的一个MAC子头指示第一逻辑信道身份时,所述第一消息指示所述第一无线承载集合不包括所述第二无线承载子集;
其中,所述第一逻辑信道身份被用于指示一个MAC CE。
根据本申请的一个方面,包括:
当所述至少一个MAC subPDU中包括的每个MAC SDU对应的MAC子头指示所述MAC SDU属于所述第一无线承载子集中的一个无线承载时,所述第一消息指示所述第一无线承载集合不包括所述第二无线承载子集;
其中,所述至少一个MAC subPDU中包括至少一个MAC SDU。
作为一个实施例,所述至少一个MAC subPDU中包括MAC SDU的MAC subPDU组成第一MAC subPDU集合;当第一MAC subPDU中包括的MAC SDU对应的MAC子头指示所述MAC SDU属于所述第一无线承载子集中的一个无线承载时,所述第一消息指示所述第一无线承载集合不包括所述第二无线承载子集;其中,所述第一MAC subPDU为所述第一MAC subPDU集合中的任一MAC subPDU。
根据本申请的一个方面,包括:
所述第一消息为第一RRC信令,当所述第一RRC信令指示恢复RRC连接时,所述第一无线承载集合包括所述第二无线承载子集;当所述第一RRC信令指示挂起所述RRC连接时,所述第一无线承载集合不包括所述第二无线承载子集;
其中,所述第一RRC信令指示所述第一消息的所述消息格式。
根据本申请的一个方面,包括:
所述第一RRC信令包括第一域和第二域,所述第一RRC信令包括的所述第一域被用于指示所述第一无线承载子集包括的任一无线承载被用于在所述RRC非活跃状态下的数据传输;所述第一RRC信令包括的所述第二域被用于指示恢复所述第一无线承载子集;
其中,所述第一RRC信令指示挂起所述RRC连接。
根据本申请的一个方面,包括:
所述行为执行第一随机接入过程包括在第一时频资源块上发送第一随机接入前导;
其中,所述第一时频资源块被预留给非SDT触发的随机接入过程。
作为一个实施例,上述方法所述第一节点在发送所述第一随机接入前导之前没有上行小数据发送。
作为一个实施例,SDT(small data transmission,小数据发送)触发的随机接入过程为RRC非活跃状态下的SDT触发的随机接入(random access)过程。
作为上述实施例的一个子实施例,所述SDT为上行触发的SDT。
作为上述实施例的一个子实施例,所述SDT为MO(mobile originated,起源于移动设备的)-SDT。
作为一个实施例,所述非SDT触发的随机接入过程包括从RRC非活跃状态的RRC连接恢复过程触发的随机接入过程。
作为一个实施例,所述非SDT触发的随机接入过程包括从RRC空闲(RRC_IDLE)状态的初始接入(initial access)触发的随机接入过程。
作为一个实施例,所述非SDT触发的随机接入过程包括请求其它系统信息(System Information,SI)触发的随机接入过程。
根据本申请的一个方面,包括:
接收第二RRC信令,所述第二RRC信令被用于指示维持或进入所述RRC非活跃状态;
其中,所述第二RRC信令包括第一域,所述第二RRC信令包括的所述第一域被用于指示所述第一无线承载子集包括的任一无线承载被用于在所述RRC非活跃状态下的数据传输。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一寻呼消息,所述第一寻呼消息指示所述第一节点;
通过空中接口发送第一消息;
伴随所述第一消息,恢复第一无线承载集合,所述第一无线承载集合包括第一无线承载子集,所述第一无线承载子集中的任一无线承载被用于在至少RRC非活跃状态下的数据传输;
其中,在发送所述第一寻呼消息之后且在发送所述第一消息之前第一随机接入过程被执行;所述第一消息被用于确定所述第一无线承载集合是否包括第二无线承载子集,所述第二无线承载子集包括至少一个仅能用于RRC连接状态下的数据传输的无线承载;所述第一无线承载子集和所述第二无线承载子集分别包括至少一个无线承载。
根据本申请的一个方面,包括:
所述第一消息的消息格式隐式指示所述第一无线承载集合是否包括所述第二无线承载子集。
根据本申请的一个方面,包括:
所述第一消息包括至少一个MAC subPDU,所述至少一个MAC subPDU中的每个MAC subPDU包括一个MAC子头,所述至少一个MAC subPDU中包括的至少一个MAC子头被用于指示所述第一无线承载集合是否包括所述第二无线承载子集;
其中,所述至少一个MAC subPDU中包括的所述至少一个MAC子头指示所述第一消息的所述消息格式。
根据本申请的一个方面,包括:
当所述至少一个MAC subPDU中包括的一个MAC子头指示第一逻辑信道身份时,所述第一消息指示所述第一无线承载集合不包括所述第二无线承载子集;
其中,所述第一逻辑信道身份被用于指示一个MAC CE。
根据本申请的一个方面,包括:
当所述至少一个MAC subPDU中包括的每个MAC SDU对应的MAC子头指示所述MAC SDU属于所 述第一无线承载子集中的一个无线承载时,所述第一消息指示所述第一无线承载集合不包括所述第二无线承载子集;
其中,所述至少一个MAC subPDU中包括至少一个MAC SDU。
根据本申请的一个方面,包括:
所述第一消息为第一RRC信令,当所述第一RRC信令指示恢复RRC连接时,所述第一无线承载集合包括所述第二无线承载子集;当所述第一RRC信令指示挂起所述RRC连接时,所述第一无线承载集合不包括所述第二无线承载子集;
其中,所述第一RRC信令指示所述第一消息的所述消息格式。
根据本申请的一个方面,包括:
所述第一RRC信令包括第一域和第二域,所述第一RRC信令包括的所述第一域被用于指示所述第一无线承载子集包括的任一无线承载被用于在所述RRC非活跃状态下的数据传输;所述第一RRC信令包括的所述第二域被用于指示恢复所述第一无线承载子集;
其中,所述第一RRC信令指示挂起所述RRC连接。
根据本申请的一个方面,包括:
在第一时频资源块上接收第一随机接入前导;
其中,所述第一随机接入前导属于所述第一随机接入过程;所述第一时频资源块被预留给非SDT触发的随机接入过程。
根据本申请的一个方面,包括:
发送第二RRC信令,所述第二RRC信令被用于指示维持或进入所述RRC非活跃状态;;
其中,所述第二RRC信令包括第一域,所述第二RRC信令包括的所述第一域被用于指示所述第一无线承载子集包括的任一无线承载被用于在所述RRC非活跃状态下的数据传输。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一接收机,接收第一寻呼消息,所述第一寻呼消息指示所述第一节点;通过空中接口接收第一消息;作为接收所述第一消息的响应,恢复第一无线承载集合,所述第一无线承载集合包括第一无线承载子集,所述第一无线承载子集中的任一无线承载被用于在至少RRC非活跃状态下的数据传输;
第一处理机,在接收所述第一消息之前,作为接收所述第一寻呼消息的响应,执行第一随机接入过程;
其中,所述第一消息被用于确定所述第一无线承载集合是否包括第二无线承载子集,所述第二无线承载子集包括至少一个仅能用于RRC连接状态下的数据传输的无线承载;所述第一无线承载子集和所述第二无线承载子集分别包括至少一个无线承载。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第一发射机,发送第一寻呼消息,所述第一寻呼消息指示所述第一节点;通过空中接口发送第一消息;伴随所述第一消息,恢复第一无线承载集合,所述第一无线承载集合包括第一无线承载子集,所述第一无线承载子集中的任一无线承载被用于在至少RRC非活跃状态下的数据传输;
其中,在发送所述第一寻呼消息之后且在发送所述第一消息之前第一随机接入过程被执行;所述第一消息被用于确定所述第一无线承载集合是否包括第二无线承载子集,所述第二无线承载子集包括至少一个仅能用于RRC连接状态下的数据传输的无线承载;所述第一无线承载子集和所述第二无线承载子集分别包括至少一个无线承载。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示例了根据本申请的一个实施例的第一节点的传输流程图;
图2示例了根据本申请的一个实施例的网络架构的示意图;
图3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示例了根据本申请的一个实施例的通信设备的硬件模块示意图;
图5示例了根据本申请的一个实施例的无线信号传输流程图;
图6示例了根据本申请的一个实施例的通过一个MAC subPDU中包括的MAC子头指示第一消息的消息格式的示意图;
图7示例了根据本申请的一个实施例的通过一个MAC subPDU中包括的MAC子头指示第一消息的消息格式的又一示意图;
图8示例了根据本申请的一个实施例的通过第一RRC信令指示第一消息的消息格式的示意图;
图9示例了根据本申请的一个实施例的RRCRelease中包括的第一域和第二域的示意图;
图10示例了根据本申请的一个实施例的第一节点中的处理装置的结构框图;
图11示例了根据本申请的一个实施例的第二节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一节点的传输流程图,如附图1所示。
在实施例1中,第一节点100在步骤101中接收第一寻呼消息,所述第一寻呼消息指示所述第一节点;在步骤102中作为接收所述第一寻呼消息的响应,执行第一随机接入过程;在步骤103中通过空中接口接收第一消息;在步骤104中作为接收所述第一消息的响应,恢复第一无线承载集合;其中,所述第一无线承载集合包括第一无线承载子集,所述第一无线承载子集中的任一无线承载被用于在至少RRC非活跃状态下的数据传输;所述第一消息被用于确定所述第一无线承载集合是否包括第二无线承载子集,所述第二无线承载子集包括至少一个仅能用于RRC连接状态下的数据传输的无线承载;所述第一无线承载子集和所述第二无线承载子集分别包括至少一个无线承载。
作为一个实施例,接收所述第一寻呼消息之前所述第一节点处于RRC非活跃状态。
作为一个实施例,接收第一寻呼消息,所述第一寻呼消息指示所述第一节点。
作为一个实施例,在所述第一节点的寻呼时机(paging occasion)中接收所述第一寻呼消息。
作为一个实施例,所述第一寻呼消息包括所述第一节点的标识。
作为一个实施例,所述第一寻呼消息为RAN寻呼消息。
作为一个实施例,所述第一寻呼消息不是CN(core network,核心网)寻呼消息。
作为一个实施例,所述第一寻呼消息不被用于改变所述第一节点所处的RRC状态。
作为一个实施例,所述第一标识是由RAN分配的。
作为一个实施例,所述第一标识不是上层(upper layer)分配的。
作为一个实施例,所述上层为核心网。
作为一个实施例,所述上层为NAS(Non-access stratum,非接入层)。
作为一个实施例,所述第一标识为I(Inactive,非活跃)-RNTI(Radio Network Temporary Identifier,无线网络临时标识)。
作为一个实施例,所述第一标识包括完整的I-RNTI值。
作为一个实施例,所述第一标识包括40比特。
作为一个实施例,在接收所述第一消息之前,作为接收所述第一寻呼消息的响应,执行第一随机接入过程。
作为一个实施例,所述第一随机接入过程为4步(4-step)随机接入过程。
作为一个实施例,所述第一随机接入过程为2步(2-step)随机接入过程。
作为一个实施例,所述行为执行第一随机接入过程包括发送第二消息,所述第二消息被用于请求恢复RRC连接。
作为一个实施例,所述第二消息被携带在所述4步随机接入过程的Msg3(消息3)中。
作为一个实施例,所述第二消息被携带在所述2步随机接入过程的MsgA(消息A)中。
作为一个实施例,所述第二消息为RRC信令。
作为一个实施例,所述第二消息为RRCResumeRequest(RRC恢复请求)。
作为一个实施例,所述第二消息为RRCResumeRequest1(RRC恢复请求1)。
作为一个实施例,所述第二消息包括所述第一标识的至少部分比特;其中,所述第一标识为I-RNTI。
作为一个实施例,所述第二消息包括所述第一标识。
作为一个实施例,所述第一标识包括40比特,所述第二消息包括所述第一标识的24比特。
作为一个实施例,所述第一标识包括40比特,所述第二消息包括所述第一标识的低24比特。
作为一个实施例,通过空中接口接收第一消息。
作为一个实施例,所述空中接口包括无线信号传输的接口。
作为一个实施例,所述空中接口包括Uu。
作为一个实施例,所述空中接口包括PC5。
作为一个实施例,所述第一消息为高层消息。
作为一个实施例,所述第一消息为RRC信令。
作为一个实施例,所述第一消息携带在RRC信令中的全部或部分IE(Information element,信息元素)中。
作为一个实施例,所述第一消息携带在RRC信令中的一个IE中的全部或部分域(field)中。
作为一个实施例,所述第一消息为MAC子层消息。
作为一个实施例,所述行为执行第一随机接入过程包括接收第三消息,所述第三消息被用于指示所述第一随机接入过程成功完成;所述第三消息与所述第一消息属于同一个MAC PDU。
作为上述实施例的一个子实施例,所述第三消息早于所述第一消息被解析。
作为上述实施例的一个子实施例,接收所述第三消息之后完成所述MAC PDU的分解(disassembly)和解复用(demultiplexing)获得所述第一消息。
作为一个实施例,所述行为执行第一随机接入过程包括接收第三消息,所述第三消息被用于指示所述第一随机接入过程成功完成;所述第三消息与所述第一消息属于不同的MAC PDU;所述第三消息所属的MAC PDU早于所述第一消息所属的MAC PDU的接收。
作为一个实施例,所述行为执行第一随机接入过程包括接收第三消息,所述第三消息被用于指示所述第一随机接入过程成功完成;所有数据无线承载(data radio bearer,DRB)在所述第三消息所占用的时域资源与所述第一消息所占用的时域资源之间保持挂起状态。
作为一个实施例,所述行为执行第一随机接入过程包括接收第三消息,所述第三消息被用于指示所述第一随机接入过程成功完成;所述第一节点在所述第三消息所占用的时域资源与所述第一消息所占用的时域资源之间未接收到RRC信令。
作为一个实施例,所述行为执行第一随机接入过程包括接收第三消息,所述第三消息被用于指示所述第一随机接入过程成功完成;所述第一无线承载子集中包括的所有无线承载和所述第二无线承载子集中包括的所有无线承载在所述第三消息所占用的时域资源与所述第一消息所占用的时域资源之间保持挂起状态。
作为一个实施例,所述第三消息为4步随机接入过程中的Msg4(消息4)。
作为一个实施例,所述第三消息为2步随机接入过程中的MsgB(消息B)。
作为一个实施例,所述第三消息为MAC subPDU。
作为一个实施例,所述第三消息为MAC CE。
作为一个实施例,所述第三消息为UE Contention Resolution Identity(竞争解决标识)MAC CE。
作为一个实施例,所述第三消息为successRAR(成功随机接入响应)。
作为一个实施例,所述第一消息显式的指示所述第一无线承载集合是否包括所述第二无线承载子集。
作为上述实施例的一个子实施例,所述第一消息包括所述第二无线承载子集中包括的所有无线承载的无线承载标识;其中,所述第一消息被用于恢复所述第一消息所指示的无线承载。
作为一个实施例,作为接收所述第一消息的响应,恢复第一无线承载集合。
作为一个实施例,所述短语恢复第一无线承载集合包括:针对第一无线承载集合中包括的每个无线承载,从UE InactiveAS(用户设备非活跃接入层)上下文中恢复与主小区组(masterCellGroup)和pdcp(Packet Data Convergence Protocol,分组数据汇聚协议)-Config(PDCP配置)的RLC(Radio Link Control,无线 链路控制)承载关联的配置。
作为一个实施例,所述短语恢复第一无线承载集合包括:针对第一无线承载集合中包括的每个无线承载,重建(re-establish)PDCP实体(entity)。
作为一个实施例,所述短语恢复第一无线承载集合包括:针对第一无线承载集合中包括的每个无线承载,在不触发PDCP状态报告的情况下为无线承载重建PDCP实体。
作为一个实施例,所述第一无线承载集合包括信令无线承载(signaling radio bearer,SRB)。
作为一个实施例,所述第一无线承载集合不包括信令无线承载1(SRB1)。
作为一个实施例,所述第一无线承载集合包括信令无线承载2(SRB2)。
作为一个实施例,所述第一无线承载集合包括信令无线承载3(SRB3)。
作为一个实施例,所述第一无线承载集合包括数据无线承载(dataradio bearer,DRB)。
作为一个实施例,所述第一无线承载集合包括MBS(multicast/broadcast service,多播/广播业务)无线承载(MBS radio bearer,MRB)。
作为一个实施例,所述第一无线承载子集中包括的任一无线承载在接收所述第一消息之前保持挂起状态。
作为一个实施例,所述第二无线承载子集中包括的任一无线承载在接收所述第一消息之前保持挂起状态。
作为一个实施例,所述第一无线承载集合包括第一无线承载子集,所述第一无线承载子集中的任一无线承载被用于在至少RRC非活跃状态下的数据传输。
作为一个实施例,所述第一无线承载子集中包括的任一无线承载被配置用于SDT传输。
作为一个实施例,所述第一无线承载子集中包括的任一无线承载被配置用于下行触发的SDT传输。
作为一个实施例,所述第一无线承载子集中包括的任一无线承载被配置用于在RRC连接状态下的数据传输。
作为一个实施例,所述第一无线承载子集中包括的任一无线承载属于所述第一无线承载集合。
作为一个实施例,所述第一消息被用于确定所述第一无线承载集合是否包括第二无线承载子集。
作为一个实施例,所述第一消息为物理层消息。
作为一个实施例,当所述第一消息包括第三域时,确定所述第一无线承载集合不包括所述第二无线承载子集;其中,所述第一消息为DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,当所述第一消息包括第三域且所述第一消息包括的所述第三域指示执行下行触发的小数据发送时,确定所述第一无线承载集合不包括所述第二无线承载子集;其中,所述第一消息为DCI。
作为一个实施例,所述第一消息包括的所述第三域的名字包括SDT。
作为一个实施例,所述第一消息包括的所述第三域包括1比特。
作为一个实施例,所述第一消息包括第三域且所述第一消息包括的所述第三域的值为1时,指示执行所述下行触发的小数据发送。
作为一个实施例,所述第一消息包括第三域且所述第一消息包括的所述第三域的值为0时,指示执行所述下行触发的小数据发送。
作为一个实施例,所述第一消息包括的所述第三域被用于指示所述第一消息的消息格式。
作为一个实施例,物理层比特被用于指示所述第一消息的所述消息格式。
作为一个实施例,当确定所述第一无线承载集合中不包括所述第二无线承载子集时,所述第一节点维持RRC非活跃状态;当确定所述第一无线承载集合中包括所述第二无线承载子集时,所述第一节点进入RRC连接状态。
作为一个实施例,所述第二无线承载子集中包括的任一无线承载不被配置用于SDT传输。
作为一个实施例,所述第二无线承载子集中包括的任一无线承载不被配置用于下行SDT传输。
作为一个实施例,所述第一无线承载子集和所述第二无线承载子集正交。
作为一个实施例,所述第二无线承载子集中包括的任一无线承载仅被配置用于在RRC连接状态下的数据传输。
作为一个实施例,所述第二无线承载子集中包括的任一无线承载不被配置用于在RRC非活跃状态下 的数据传输。
作为一个实施例,所述第一无线承载子集和所述第二无线承载子集分别包括至少一个无线承载。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构示意图,如附图2所示。图2说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。NR 5G,LTE或LTE-A网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200或某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(Basic Service Set,BSS)、扩展服务集合(Extended Service Set,ESS)、TRP(Transmission Reception Point,发送接收节点)或某种其它合适术语,在NTN(Non Terrestrial Network,非陆地/卫星网络)网络中,gNB203可以是卫星,飞行器或通过卫星中继的地面基站。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(Session Initiation Protocol,SIP)电话、膝上型计算机、个人数字助理(Personal Digital Assistant,PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、车载设备、车载通信单元、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocol,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS(Packet Switching,包交换)串流服务。
作为一个实施例,所述UE201对应本申请中的第一节点。
作为一个实施例,所述NR节点B203对应本申请中的第二节点。
作为一个实施例,所述gNB203是宏蜂窝(Marco Cell)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(Pico Cell)基站。
作为一个实施例,所述gNB203是家庭基站(Femtocell)。
作为一个实施例,所述gNB203是支持大时延差的基站设备。
作为一个实施例,所述gNB203是一个飞行平台设备。
作为一个实施例,所述gNB203是卫星设备。
作为一个实施例,所述gNB203是测试设备(例如模拟基站部分功能的收发装置,信令测试仪)。
作为一个实施例,从所述UE201到所述gNB203的无线链路是上行链路,所述上行链路被用于执行上行传输。
作为一个实施例,从所述gNB203到所述UE201的无线链路是下行链路,所述下行链路被用于执行下行传输。
作为一个实施例,所述UE201和所述gNB203之间通过Uu接口连接。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线协议架构的实施例的示意图,图3用三个层展示UE和gNB的控制平面300的无线协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,通过PHY301负责在UE和gNB之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧的gNB处。PDCP子层304提供数据加密和完整性保护,PDCP子层304还提供gNB之间的对UE的越区移动支持。RLC子层303提供数据包的分段和重组,通过ARQ实现丢失数据包的重传,RLC子层303还提供重复数据包检测和协议错误检测。MAC子层302提供逻辑与传输信道之间的映射和逻辑信道身份的复用。MAC子层302还负责在UE之间分配一个小区中的各种无线资源(例如,资源块)。MAC子层302还负责HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线资源控制)子层306负责获得无线资源(即,无线承载)且使用gNB与UE之间的RRC信令来配置下部层。虽然未图示,UE的控制平面300中的RRC子层306之上还可以具有V2X层,V2X层负责根据接收到的业务数据或业务请求生成PC5QoS参数组和QoS规则,对应PC5QoS参数组生成一条PC5QoS流并将PC5QoS流标识和对应的PC5QoS参数组发送给AS(Access Stratum,接入层)层用于AS层对属于PC5QoS流标识的数据包的QoS处理;V2X层还包括PC5-S信令协议(PC5-Signaling Protocol)子层,V2X层负责指示AS层每一次传输是PC5-S传输还是V2X业务数据传输。用户平面350的无线协议架构包括层1(L1层)和层2(L2层),在用户平面350中的无线协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的包头压缩以减少无线发送开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS(Quality of Service,业务质量)流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。UE在用户平面350中的无线协议架构在L2层可包括SDAP子层356,PDCP子层354,RLC子层353和MAC子层352的部分协议子层或者全部协议子层。虽然未图示,但UE还可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的控制平面的多个子层的实体在垂直方向组成SRB。
作为一个实施例,附图3中的用户平面的多个子层的实体在垂直方向组成DRB。
作为一个实施例,附图3中的用户平面的多个子层的实体在垂直方向组成MRB。
作为一个实施例,附图3中的无线协议架构适用于本申请中的第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的第二节点。
作为一个实施例,本申请中的所述第一寻呼消息生成于所述RRC306。
作为一个实施例,本申请中的所述第一随机接入前导生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第一消息生成于所述RRC306。
作为一个实施例,本申请中的所述第一消息生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一消息生成于所述PHY301或者PHY351。
作为一个实施例,本申请中的所述第二消息生成于所述RRC306。
作为一个实施例,本申请中的所述第三消息生成于所述MAC302或者MAC352。
作为一个实施例,本申请中的所述第一RRC信令生成于所述RRC306。
作为一个实施例,本申请中的所述第二RRC信令生成于所述RRC306。
作为一个实施例,所述L2层305或者355属于更高层。
作为一个实施例,所述L3层中的RRC子层306属于更高层。
实施例4
实施例4示例了根据本申请的一个实施例的通信设备的硬件模块示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,数据源477,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网的上层数据包或者来自数据源477的上层数据包被提供到控制器/处理器475。核心网和数据源477表示L2层之上的所有协议层。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备410的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射 器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第一通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网或者L2层之上的所有协议层,也可将各种控制信号提供到核心网或者L3以用于L3处理。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:接收第一寻呼消息,所述第一寻呼消息指示所述第一节点;通过空中接口接收第一消息;作为接收所述第一消息的响应,恢复第一无线承载集合,所述第一无线承载集合包括第一无线承载子集,所述第一无线承载子集中的任一无线承载被用于在至少RRC非活跃状态下的数据传输;在接收所述第一消息之前,作为接收所述第一寻呼消息的响应,执行第一随机接入过程;其中,所述第一消息被用于确定所述第一无线承载集合是否包括第二无线承载子集,所述第二无线承载子集包括至少一个仅能用于RRC连接状态下的数据传输的无线承载;所述第一无线承载子集和所述第二无线承载子集分别包括至少一个无线承载。
作为一个实施例,所述第一通信设备450装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一寻呼消息,所述第一寻呼消息指示所述第一节点;通过空中接口接收第一消息;作为接收所述第一消息的响应,恢复第一无线承载集合,所述第一无线承载集合包括第一无线承载子集,所述第一无线承载子集中的任一无线承载被用于在至少RRC非活跃状态下的数据传输;在接收所述第一消息之前,作为接收所述第一寻呼消息的响应,执行第一随机接入过程;其中,所述第一消息被用于确定所述第一无线承载集合是否包括第二无线承载子集,所述第二无线承载子集包括至少一个仅能用于RRC连接状态下的数据传输的无线承载;所述第一无线承载子集和所述第二无线承载子集分别包括至少一个无线承载。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:发送第一寻呼消息,所述第一寻呼消息指示所述第一节点;通过空中接口发送第一消息;伴随所述第一消息,恢复第一无线承载集合,所述第一无线承载集合包括第一无线承载子集,所述第一无线承载子集中的任一无线承载被用于在至少RRC非活跃状态下的数据传输;其中,在发送所述第一寻呼消息之后且在发送所述第一消息之前第一随机接入过程被执行;所述第一消息被用于确定所述第一无线承载集合是否包括第二无线承载子集,所述第二无线承载子集包括至少一个仅能用于RRC连接状态下的数据传输的无线承载;所述第一无线承载子集和所述第二无线承载子集分别包括至少一个无线承载。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一寻呼消息,所述第一寻呼消息指示所述第一节点;通过空中接口发送第一消息;伴随所述第一消息,恢复第一无线承载集合,所述第一无线承载集合包括第一无线承载子集,所述第一无线承载子集中的任一无线承载被用于在至少RRC非活跃状态下的数据传输;其中,在发送所述第一寻呼消息之后且在发送所述第一消息之前第一随机接入过程被执行;所述第一消息被用于确定所述第一无线承载集合是否包括第二无线承载子集,所述第二无线承载子集包括至少一个仅能用于RRC连接状态下的数据传输的无线承载;所述第一无线承载子集和所述第二无线承载子集分别包括至少一个无线承载。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第二通信设备410是一个基站设备。
作为一个实施例,所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416或所述控制器/处理器475中的至少之一被用于发送本申请中的第一寻呼消息。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456或所述控制器/处理器459中的至少之一被用于接收本申请中的第一寻呼消息。
作为一个实施例,所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416或所述控制器/处理器475中的至少之一被用于发送本申请中的第一消息。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456或所述控制器/处理器459中的至少之一被用于接收本申请中的第一消息。
作为一个实施例,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468或所述控制器/处理器459中的至少之一被用于发送本申请中的第一随机接入前导。
作为一个实施例,所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470或所述控制器/处理器475中的至少之一被用于接收本申请中的第一随机接入前导。
作为一个实施例,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468或所述控制器/处理器459中的至少之一被用于发送本申请中的第二消息。
作为一个实施例,所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470或所述控制器/处理器475中的至少之一被用于接收本申请中的第二消息。
作为一个实施例,所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416或所述控制器/处理器475中的至少之一被用于发送本申请中的第三消息。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456或所述控制器/处理器459中的至少之一被用于接收本申请中的第三消息。
作为一个实施例,所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416或所述控制器/处理器475中的至少之一被用于发送本申请中的第二RRC信令。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456或所述控制器/处理器459中的至少之一被用于接收本申请中的第二RRC信令。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。在附图5中,第一节点N51和第二节点N52通过无线接口通信。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点N51,在步骤S511中接收第二RRC信令;在步骤S512中维持或进入RRC非活跃状态;在步骤S513中接收第一寻呼消息;在步骤S514中执行第一随机接入过程;在步骤S515中接收第一消息;在步骤S516中恢复第一无线承载集合。
对于第二节点N52,在步骤S521中发送第二RRC信令;在步骤S522中发送第一寻呼消息;在步骤S523中发送第一消息。
在实施例5中,接收第一寻呼消息,所述第一寻呼消息指示所述第一节点;通过空中接口接收第一消息;作为接收所述第一消息的响应,恢复第一无线承载集合,所述第一无线承载集合包括第一无线承载子集,所述第一无线承载子集中的任一无线承载被用于在至少RRC非活跃状态下的数据传输;在接收所述第一消息之前,作为接收所述第一寻呼消息的响应,执行第一随机接入过程;其中,所述第一消息被用于确定所述第一无线承载集合是否包括第二无线承载子集,所述第二无线承载子集包括至少一个仅能用于RRC连接状态下的数据传输的无线承载;所述第一无线承载子集和所述第二无线承载子集分别包括至少一个无线承载;所述第一消息的消息格式隐式指示所述第一无线承载集合是否包括所述第二无线承载子集;所述第一消息包括至少一个MAC subPDU,所述至少一个MAC subPDU中的每个MAC subPDU包括一个MAC子头,所述至少一个MAC subPDU中包括的至少一个MAC子头被用于指示所述第一无线承载集合 是否包括所述第二无线承载子集;其中,所述至少一个MAC subPDU中包括的所述至少一个MAC子头指示所述第一消息的所述消息格式;所述第一消息为第一RRC信令,当所述第一RRC信令指示恢复RRC连接时,所述第一无线承载集合包括所述第二无线承载子集;当所述第一RRC信令指示挂起所述RRC连接时,所述第一无线承载集合不包括所述第二无线承载子集;其中,所述第一RRC信令指示所述第一消息的所述消息格式;所述第一RRC信令包括第一域和第二域,所述第一RRC信令包括的所述第一域被用于指示所述第一无线承载子集包括的任一无线承载被用于在所述RRC非活跃状态下的数据传输;所述第一RRC信令包括的所述第二域被用于指示恢复所述第一无线承载子集;其中,所述第一RRC信令指示挂起所述RRC连接;所述行为执行第一随机接入过程包括在第一时频资源块上发送第一随机接入前导;其中,所述第一时频资源块被预留给非SDT触发的随机接入过程;接收第二RRC信令,所述第二RRC信令被用于指示维持或进入所述RRC非活跃状态;其中,所述第二RRC信令包括第一域,所述第二RRC信令包括的所述第一域被用于指示所述第一无线承载子集包括的任一无线承载被用于在所述RRC非活跃状态下的数据传输。
需要说明的是,附图5中未详细示出,但所述第一节点执行所述第一随机接入过程包括所述第一节点和所述第二节点之间的无线信号交互。
作为一个实施例,所述第二节点为所述第一节点的服务小区的基站。
作为一个实施例,所述第二节点为所述第一节点的主小区(primary cell)的基站。
作为一个实施例,所述第二节点为所述第一节点的辅小区(secondary cell)的基站。
作为一个实施例,所述第二节点为所述第一节点的驻留小区的基站。
作为一个实施例,接收第二RRC信令,所述第二RRC信令被用于指示挂起RRC连接。
作为一个实施例,所述第二RRC信令早于所述第一寻呼消息接收。
作为一个实施例,所述第二RRC信令中包括所述第一标识。
作为一个实施例,所述第一标识被用于在RRC非活跃状态下标识所述第一节点。
作为一个实施例,所述第一接收机,作为接收所述第二RRC信令的响应,维持或进入所述RRC非活跃状态。
作为一个实施例,当所述第一节点接收所述第二RRC信令时处于RRC非活跃状态时,维持所述RRC非活跃状态。
作为一个实施例,当所述第一节点接收所述第二RRC信令时处于RRC连接状态时,进入所述RRC非活跃状态。
作为一个实施例,所述行为维持或进入所述RRC非活跃状态包括:挂起(suspend)所述第一无线承载子集和所述第二无线承载子集中包括的所有无线承载。
作为一个实施例,所述行为维持或进入所述RRC非活跃状态包括:向所述第一无线承载子集和所述第二无线承载子集中包括的所有无线承载的底层(lower layer)指示PDCP挂起。
作为一个实施例,所述行为维持或进入所述RRC非活跃状态包括:重建(re-establish)SRB1的RLC实体。
作为一个实施例,所述行为维持或进入所述RRC非活跃状态包括:复位(reset)MAC并如果有默认(default)MAC小区组配置(MAC Cell Group configuration),释放所述默认MAC小区组配置。
作为一个实施例,所述行为维持或进入所述RRC非活跃状态包括:向上层(upper layer)指示挂起RRC连接。
作为一个实施例,所述行为维持或进入所述RRC非活跃状态包括:执行小区选择(cell selection)。
作为一个实施例,所述第二RRC信令为RRCRelease(RRC释放)。
作为一个实施例,所述第二RRC信令包括挂起配置(suspendConfig)。
作为一个实施例,所述第二RRC信令被用于指示挂起所述第一无线承载子集和所述第二无线承载子集中包括的所有无线承载。
作为一个实施例,当一个无线承载被挂起后,所述无线承载不被用于数据传输。
作为一个实施例,当一个无线承载被挂起后,所述无线承载的无线承载标识不被释放。
作为一个实施例,所述第二RRC信令被用于指示挂起所述第一无线承载子集和所述第二无线承载子 集中包括的所有无线承载;所述第二RRC信令包括第一域,所述第二RRC信令包括的所述第一域被用于指示所述第一无线承载子集包括的任一无线承载被用于在所述RRC非活跃状态下的数据传输;所述第二RRC信令不显式指示所述第二无线承载子集。
作为一个实施例,所述第二RRC信令包括的所述第一域包括所述第一无线承载子集中包括的所有无线承载的无线承载标识。
作为一个实施例,所述第二RRC信令包括的所述第一域包括在suspendConfig域中。
作为一个实施例,所述第二RRC信令包括的所述第一域为SDT配置(sdt-config)。
作为一个实施例,所述第二RRC信令包括的所述第一域为下行触发的SDT配置(dl-sdt-config)。
作为一个实施例,所述第二RRC信令包括的所述第一域为终止于移动设备的(mobile-terminated)SDT配置(mt-sdt-config)。
作为一个实施例,所述第二RRC信令被用于指示挂起所述第一无线承载子集和所述第二无线承载子集中包括的所有无线承载;所述第二RRC信令包括第一域和第二域;所述第二RRC信令包括的所述第一域被用于指示所述第一无线承载子集包括的任一无线承载被用于在所述RRC非活跃状态下的数据传输;所述第二RRC信令包括的所述第二域被用于指示挂起所述第一无线承载子集;所述第二RRC信令不显式指示所述第二无线承载子集。
作为一个实施例,所述行为执行第一随机接入过程包括在第一时频资源块上发送第一随机接入前导。
作为一个实施例,所述第一时频资源块包括至少一个频域资源和至少一个时域资源。
作为一个实施例,一个频域资源为一个子载波(subcarrier)。
作为一个实施例,一个频域资源为一个资源块(resource block,RB),所述一个资源块包括12个子载波。
作为一个实施例,一个时域资源为一个符号(symbol)。
作为一个实施例,一个时域资源为一个多载波符号。
作为一个实施例,一个时域资源为一个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,一个时域资源为一个时隙(slot)。
作为一个实施例,一个时域资源为一个子帧(subframe)。
作为一个实施例,所述第一随机接入前导为一个特征序列。
作为一个实施例,一个特征序列是伪随机序列。
作为一个实施例,一个特征序列是Gold序列。
作为一个实施例,一个特征序列是M序列。
作为一个实施例,一个特征序列是ZC(Zadoff-chu)序列。
作为一个实施例,所述第一时频资源块被预留给非SDT触发的随机接入过程。
作为一个实施例,所述第一时频资源块仅被用于非SDT触发的随机接入过程。
作为一个实施例,所述第一时频资源块中的时域资源或频域资源二者中的至少之一与预留给SDT触发的随机接入过程包括的随机接入前导的时频资源不同。
作为一个实施例,在所述第二节点,伴随所述第一消息,恢复所述第一无线承载集合。
作为一个实施例,所述短语伴随所述第一消息,恢复所述第一无线承载集合包括:恢复所述第一无线承载集合和发送所述第一消息是不可拆分的(原子的)。
作为一个实施例,所述短语伴随所述第一消息,恢复所述第一无线承载集合包括:发送所述第一消息和恢复所述第一无线承载集合是相互伴生的。
作为一个实施例,所述短语伴随所述第一消息,恢复所述第一无线承载集合包括:发送所述第一消息被用于恢复所述第一无线承载集合。
作为一个实施例,所述短语伴随所述第一消息,恢复所述第一无线承载集合包括:发送所述第一消息时(Upon transmission of the first message),恢复所述第一无线承载集合。
作为一个实施例,所述短语伴随所述第一消息,恢复所述第一无线承载集合包括:紧跟发送所述第一消息(Following the transmission of the first message),恢复所述第一无线承载集合。
作为一个实施例,所述短语伴随所述第一消息,恢复所述第一无线承载集合包括:紧跟恢复所述第一无线承载集合,发送所述第一消息。
作为一个实施例,所述第一消息的消息格式隐式指示所述第一无线承载集合是否包括所述第二无线承载子集。
作为一个实施例,所述第一消息的消息格式是L种候选格式之一,所述L种候选格式至少包括第一候选格式和第二候选格式。
作为一个实施例,所述第一候选格式为RRC信令。
作为一个实施例,所述第二候选格式为MAC subPDU中包括的MAC子头。
作为一个实施例,所述第一消息的所述消息格式包括MAC字节(byte)。
作为一个实施例,所述第一消息的所述消息格式包括MAC subPDU中包括的MAC子头中的逻辑信道身份(Logical Channel Identity,LCID)。
作为一个实施例,所述第一消息的所述消息格式包括物理层比特(bit)。
作为一个实施例,所述第一消息的所述消息格式包括所述第一消息包括的所述第三域。
作为一个实施例,所述第一消息包括至少一个MAC subPDU,所述至少一个MAC subPDU中的每个MAC subPDU包括一个MAC子头。
作为一个实施例,所述至少一个MAC subPDU属于同一个MAC PDU。
作为一个实施例,所述第一消息包括至少一个MAC subPDU,所述至少一个MAC subPDU中包括的至少一个MAC子头被用于指示所述第一无线承载集合是否包括所述第二无线承载子集;其中,所述至少一个MAC subPDU中包括的所述至少一个MAC子头指示所述第一消息的所述消息格式。
作为一个实施例,所述短语所述至少一个MAC subPDU中包括的所述至少一个MAC子头指示所述第一消息的所述消息格式包括:所述至少一个MAC subPDU中包括的所述至少一个MAC子头中包括的至少一个逻辑信道身份指示所述第一消息的所述消息格式。
作为一个实施例,所述短语所述至少一个MAC subPDU中包括的所述至少一个MAC子头指示所述第一消息的所述消息格式包括:MAC字节指示所述第一消息的所述消息格式。
作为一个实施例,所述第一消息包括至少一个MAC subPDU,所述至少一个MAC subPDU中包括的至少一个MAC子头中包括的至少一个逻辑信道身份被用于指示所述第一无线承载集合是否包括所述第二无线承载子集;其中,所述至少一个MAC subPDU中包括的所述至少一个MAC子头中包括的所述至少一个逻辑信道身份指示所述第一消息的所述消息格式。
作为一个实施例,所述第一消息为第一RRC信令。
作为一个实施例,承载(carry)所述第一RRC信令的无线承载为SRB1。
作为一个实施例,所述第一RRC信令通过DCCH(Dedicated Control Channel,专用控制信道)发送。
作为一个实施例,所述第一RRC信令指示所述第一消息的所述消息格式。
作为一个实施例,当所述第一RRC信令指示恢复RRC连接时,所述第一无线承载集合包括所述第二无线承载子集;当所述第一RRC信令指示挂起所述RRC连接时,所述第一无线承载集合不包括所述第二无线承载子集。
作为一个实施例,所述第一RRC信令指示恢复所述RRC连接;其中,所述第一RRC信令为RRCResume(RRC恢复)。
作为一个实施例,所述第一RRC信令指示挂起所述RRC连接;其中,所述第一RRC信令为RRCRelease。
作为上述实施例的一个子实施例,所述第一RRC信令包括挂起配置(suspendConfig)。
作为上述实施例的一个子实施例,所述第一RRC信令包括恢复配置(resumeConfig)。
作为一个实施例,当所述第一RRC信令指示挂起所述RRC连接时,所述第一RRC信令包括第一域和第二域;所述第一RRC信令包括的所述第一域被用于指示所述第一无线承载子集包括的任一无线承载被用于在所述RRC非活跃状态下的数据传输;所述第一RRC信令包括的所述第二域被用于指示恢复所述第一无线承载子集。
作为一个实施例,当所述第一RRC信令包括所述第二域时,所述第一RRC信令被用于指示恢复所述第一无线承载子集。
作为一个实施例,当所述第一RRC信令包括所述第二域且所述第一RRC信令包括的所述第二域指示恢复所述第一无线承载子集包括的所有无线承载,所述第一RRC信令被用于指示恢复所述第一无线承载子集。
作为一个实施例,所述第一RRC信令包括的所述第一域为SDT配置(sdt-config)。
作为一个实施例,所述第一RRC信令包括的所述第一域为下行触发的SDT配置(dl-sdt-config)。
作为一个实施例,所述第一RRC信令包括的所述第一域为移动设备终止的SDT配置(mt-sdt-config)。
作为一个实施例,所述第一RRC信令包括的所述第一域包括一个配置,所述第一RRC信令包括的所述第二域被用于恢复所述第一RRC信令包括的所述第一域的配置。
作为一个实施例,所述第一接收机,接收所述第一消息之后接收第一MAC PDU,所述第一MAC PDU中包括至少一个MAC SDU,所述至少一个MAC SDU中包括的每个MAC SDU属于所述第一无线承载子集中的一个无线承载;其中,所述第一消息被用于确定所述第一无线承载集合不包括所述第二无线承载子集。
作为一个实施例,所述第一接收机,接收所述第一消息之后接收第一MAC PDU,所述第一MAC PDU中包括至少一个MAC SDU,所述至少一个MAC SDU中包括的每个MAC SDU属于所述第一无线承载子集中的一个无线承载或者属于所述第二无线承载子集中的一个无线承载;其中,所述第一消息被用于确定所述第一无线承载集合包括所述第二无线承载子集。
作为一个实施例,所述第一接收机,在接收所述第一消息之后接收第三RRC信令,所述第三RRC信令被用于指示释放或挂起所述RRC连接。
作为上述实施例的一个子实施例,所述第三RRC信令晚于所述第一MAC PDU接收。
作为一个实施例,作为接收所述第三RRC信令的响应,维持或进入所述RRC非活跃状态。
作为一个实施例,所述第三RRC信令为RRCRelease。
作为一个实施例,所述第三RRC信令被用于释放所述RRC连接;其中,所述第三RRC信令不包括挂起配置(suspendConfig)。
作为一个实施例,所述第三RRC信令被用于挂起所述RRC连接;其中,所述第三RRC信令包括挂起配置(suspendConfig)。
作为上述实施例的一个子实施例,所述第三RRC信令被用于挂起所述第一无线承载集合中包括的所有无线承载。
实施例6
实施例6示例了根据本申请的一个实施例的通过一个MAC subPDU中包括的MAC子头指示第一消息的消息格式的示意图,如附图6所示。
作为一个实施例,当所述至少一个MAC subPDU中包括的一个MAC子头指示第一逻辑信道身份时,所述第一消息指示所述第一无线承载集合不包括所述第二无线承载子集。
作为一个实施例,当所述至少一个MAC subPDU中包括的任一MAC子头不指示所述第一逻辑信道身份时,所述第一消息指示所述第一无线承载集合包括所述第二无线承载子集。
作为一个实施例,所述第一逻辑信道身份被用于指示一个MAC CE。
作为一个实施例,所述MAC CE被用于指示仅恢复所述第一无线承载子集中包括的无线承载。
作为一个实施例,所述MAC CE被用于指示执行SDT过程。
作为一个实施例,所述MAC CE被用于指示执行下行触发的SDT过程。
作为一个实施例,所述MAC CE的名字包括SDT。
作为一个实施例,所述MAC CE的名字包括DL(downlink,下行)-SDT。
作为一个实施例,所述MAC CE的名字包括MT(mobile-terminated,终止于移动设备的)-SDT。
作为一个实施例,所述MAC CE的名字包括SDT Activation(激活)。
作为一个实施例,所述MAC CE为一个0比特固定尺寸(fixed size)的MAC CE。
作为一个实施例,所述MAC CE包括至少一个字节。
作为一个实施例,所述第一逻辑信道身份的值为35-46之间包括35和46的正整数。
作为一个实施例,所述第一逻辑信道身份的值为64-308之间包括64和308的正整数。
实施例6的情况A中,所述MAC CE包括0比特。
实施例6的情况B中,所述MAC CE包括至少一个字节。
需要说明的是,附图6中的MAC子头中包括的逻辑信道身份(LCID)和其它域的位置关系仅作示意用,不限定,即LCID在MAC子头中的位置不作限定,同时其它域可以包括多于一个域,不作限定。
实施例7
实施例7示例了根据本申请的一个实施例的通过一个MAC subPDU中包括的MAC子头指示第一消息的消息格式的又一示意图,如附图7所示。
作为一个实施例,当所述至少一个MAC subPDU中包括的每个MAC SDU对应的MAC子头指示所述MAC SDU属于所述第一无线承载子集中的一个无线承载时,所述第一消息指示所述第一无线承载集合不包括所述第二无线承载子集;其中,所述至少一个MAC subPDU中包括至少一个MAC SDU。
作为一个实施例,当所述至少一个MAC subPDU中包括的所述至少一个MAC SDU对应的至少一个MAC子头指示所述至少一个MAC SDU属于所述第二无线承载子集中的一个无线承载时,所述第一消息指示所述第一无线承载集合包括所述第二无线承载子集。
作为一个实施例,当所述至少一个MAC subPDU中包括的一个MAC SDU对应的MAC子头指示所述MAC SDU属于SRB1时,所述第一消息指示所述第一无线承载集合包括所述第二无线承载子集。
作为上述实施例的一个子实施例,所述MAC SDU被用于RRC重配置(RRCReconfiguration)。
作为一个实施例,当所述至少一个MAC subPDU中包括的每个MAC SDU对应的MAC子头指示所述MAC SDU不属于DRB或MRB二者之一时,所述第一消息指示所述第一无线承载集合包括所述第二无线承载子集。
作为一个实施例,MAC子头中包括的逻辑信道身份被用于指示所述MAC子头对应的MAC SDU所属的无线承载。
作为一个实施例,一个RLC承载服务(serve)一个无线承载,所述RLC承载由逻辑信道身份所标识,所述逻辑信道身份和所述无线承载关联。
作为一个实施例,当所述至少一个MAC subPDU中包括的至少一个MAC SDU属于所述第二无线承载子集中的一个无线承载时,所述第一消息指示所述第一无线承载集合包括所述第二无线承载子集。
作为一个实施例,当所述至少一个MAC subPDU中包括的一个MAC SDU属于SRB1时,所述第一消息指示所述第一无线承载集合包括所述第二无线承载子集。
作为一个实施例,当所述至少一个MAC subPDU中包括的每个MAC SDU既不属于DRB也不属于MRB时,所述第一消息指示所述第一无线承载集合包括所述第二无线承载子集。
作为一个实施例,当所述至少一个MAC subPDU中包括的每个MAC SDU属于所述第一无线承载子集中的一个无线承载时,所述第一消息指示所述第一无线承载集合不包括所述第二无线承载子集。
作为上述实施例的一个子实施例,所述至少一个MAC subPDU中包括的每个MAC SDU的数据量(data volume)之和小于第一阈值。
作为上述实施例的一个子实施例,所述至少一个MAC subPDU中包括的每个MAC SDU的数据量之和等于第一阈值。
作为一个实施例,一个MAC SDU的数据量为所述MAC SDU中包括的字节数。
作为一个实施例,所述第一阈值由网络配置。
作为一个实施例,所述第一阈值由网络自行设置。
作为一个实施例,所述第一阈值被网络用于确定是否执行下行触发的小数据发送。
作为上述实施例的一个子实施例,当等待发送的属于所述第一无线承载子集的下行数据的数据量大于所述第一阈值时,确定不执行下行触发的小数据发送;当等待发送的属于所述第一无线承载子集的下行数据的数据量不大于所述第一阈值时,确定执行下行触发的小数据发送。
作为一个实施例,当确定执行下行触发的小数据发送时,所述第一消息指示所述第一无线承载集合不包括所述第二无线承载子集;当确定不执行下行触发的小数据发送时,所述第一消息指示所述第一无线承 载集合包括所述第二无线承载子集。
实施例8
实施例8示例了根据本申请的一个实施例的通过第一RRC信令指示第一消息的消息格式的示意图,如附图8所示。
作为一个实施例,所述短语所述第一RRC信令指示所述第一消息的所述消息格式包括:所述第一RRC信令中的全部或部分IE指示第一消息的消息格式。
作为一个实施例,所述短语所述第一RRC信令指示所述第一消息的所述消息格式包括:所述第一RRC信令中的一个IE中的全部或部分域(field)指示第一消息的消息格式。
实施例8的情况A中,所述第一RRC信令为RRCRelease,所述第一RRC信令包括RRCRelease-IEs,所述第一RRC信令被用于指示挂起所述RRC连接;所述第一RRC信令指示所述第一无线承载集合中不包括所述第二无线承载子集。
实施例8的情况B中,所述第一RRC信令为RRCResume,所述第一RRC信令包括RRCResume-IEs,所述第一RRC信令被用于指示恢复所述RRC连接;所述第一RRC信令指示所述第一无线承载集合中包括所述第二无线承载子集。
实施例9
实施例9示例了根据本申请的一个实施例的RRCRelease中包括的第一域和第二域的示意图,如附图9所示。所述RRCRelease被用于指示挂起RRC连接。需要说明的是,附图9中仅示出RRCRelease中包括的第一域和第二域,其余域未示出。
作为一个实施例,所述RRCRelease包括的所述第一域被用于指示一个无线承载集合中包括的任一无线承载被用于在所述RRC非活跃状态下的数据传输。
实施例9的情况A中,所述RRCRelease中的所述第二域是可选的(optional),所述RRCRelease中的所述第二域被用于指示恢复所述一个无线承载集合中包括的所有无线承载。
具体的,当所述RRCRelease中不包括所述第二域时,所述RRCRelease被用于指示挂起所述一个无线承载集合中包括的所有无线承载;当所述RRCRelease中包括所述第二域时,所述RRCRelease被用于指示恢复所述一个无线承载集合中包括的所有无线承载。
实施例9的情况B中,所述RRCRelease中的所述第二域是强制的(mandatory),所述RRCRelease中的所述第二域被用于指示挂起,或者,恢复所述一个无线承载集合中包括的所有无线承载。
具体的,当所述RRCRelease中的所述第二域为a1时,所述RRCRelease中的所述第二域被用于指示恢复所述一个无线承载集合中包括的所有无线承载;当所述RRCRelease中的所述第二域为a2时,所述RRCRelease中的所述第二域被用于指示挂起所述一个无线承载集合中包括的所有无线承载。
作为一个实施例,所述a1为1;所述a2为0。
作为一个实施例,所述a1为setup(建立);所述a2为release(释放)。
作为一个实施例,所述a1为resume(恢复);所述a2为suspend(挂起)。
作为一个实施例,所述a1为enabled(使能);所述a2为disabled(不使能)。
作为一个实施例,所述RRCRelease不显式指示仅能用于在RRC连接状态下的数据传输的无线承载。
作为一个实施例,所述第一节点维护的无线承载中除所述RRCRelease包括的所述第一域指示的所述无线承载集合中的无线承载之外的无线承载仅能用于在RRC连接状态下的数据传输。
作为一个实施例,当所述第二RRC信令采用实施例9的情况A中的格式时,所述第二RRC信令不包括所述第二域。
作为一个实施例,当所述第二RRC信令采用实施例9的情况B中的格式时,所述第二RRC信令包括所述第二域,所述第二RRC信令包括的所述第二域被用于指示挂起所述第一无线承载集合中包括的所有无线承载。
作为一个实施例,所述第一RRC信令指示挂起所述RRC连接,当所述第一RRC信令采用实施例9的情况A中的格式时,所述第一RRC信令包括所述第二域。
作为一个实施例,所述第一RRC信令指示挂起所述RRC连接,当所述第一RRC信令采用实施例9的情况B中的格式时,所述第一RRC信令包括所述第二域,所述第一RRC信令包括的所述第二域被用于指示恢复所述第一无线承载子集中包括的所有无线承载。
作为一个实施例,所述第三RRC信令指示挂起所述RRC连接,当所述第三RRC信令采用实施例9的情况A中的格式时,所述第三RRC信令不包括所述第二域。
作为一个实施例,所述第三RRC信令指示挂起所述RRC连接,当所述第三RRC信令采用实施例9的情况B中的格式时,所述第三RRC信令包括所述第二域,所述第三RRC信令包括的所述第二域被用于指示挂起所述第一无线承载子集中包括的所有无线承载。
实施例10
实施例10示例了根据本申请的一个实施例的第一节点中的处理装置的结构框图,如附图10所示。在附图10中,第一节点处理装置1000包括第一接收机1001和第一处理机1002;所述第一节点1000是一个UE。
在实施例10中,第一接收机1001,接收第一寻呼消息,所述第一寻呼消息指示所述第一节点;通过空中接口接收第一消息;作为接收所述第一消息的响应,恢复第一无线承载集合,所述第一无线承载集合包括第一无线承载子集,所述第一无线承载子集中的任一无线承载被用于在至少RRC非活跃状态下的数据传输;第一处理机1002,在接收所述第一消息之前,作为接收所述第一寻呼消息的响应,执行第一随机接入过程;其中,所述第一消息被用于确定所述第一无线承载集合是否包括第二无线承载子集,所述第二无线承载子集包括至少一个仅能用于RRC连接状态下的数据传输的无线承载;所述第一无线承载子集和所述第二无线承载子集分别包括至少一个无线承载。
作为一个实施例,所述第一消息的消息格式隐式指示所述第一无线承载集合是否包括所述第二无线承载子集。
作为一个实施例,所述第一消息的消息格式隐式指示所述第一无线承载集合是否包括所述第二无线承载子集;所述第一消息包括至少一个MAC subPDU,所述至少一个MAC subPDU中的每个MAC subPDU包括一个MAC子头,所述至少一个MAC subPDU中包括的至少一个MAC子头被用于指示所述第一无线承载集合是否包括所述第二无线承载子集;其中,所述至少一个MAC subPDU中包括的所述至少一个MAC子头指示所述第一消息的所述消息格式。
作为一个实施例,所述第一消息的消息格式隐式指示所述第一无线承载集合是否包括所述第二无线承载子集;所述第一消息包括至少一个MAC subPDU,所述至少一个MAC subPDU中的每个MAC subPDU包括一个MAC子头,所述至少一个MAC subPDU中包括的至少一个MAC子头被用于指示所述第一无线承载集合是否包括所述第二无线承载子集;其中,所述至少一个MAC subPDU中包括的所述至少一个MAC子头指示所述第一消息的所述消息格式;当所述至少一个MAC subPDU中包括的一个MAC子头指示第一逻辑信道身份时,所述第一消息指示所述第一无线承载集合不包括所述第二无线承载子集;其中,所述第一逻辑信道身份被用于指示一个MAC CE。
作为一个实施例,所述第一消息的消息格式隐式指示所述第一无线承载集合是否包括所述第二无线承载子集;所述第一消息包括至少一个MAC subPDU,所述至少一个MAC subPDU中的每个MAC subPDU包括一个MAC子头,所述至少一个MAC subPDU中包括的至少一个MAC子头被用于指示所述第一无线承载集合是否包括所述第二无线承载子集;其中,所述至少一个MAC subPDU中包括的所述至少一个MAC子头指示所述第一消息的所述消息格式;当所述至少一个MAC subPDU中包括的每个MAC SDU对应的MAC子头指示所述MAC SDU属于所述第一无线承载子集中的一个无线承载时,所述第一消息指示所述第一无线承载集合不包括所述第二无线承载子集;其中,所述至少一个MAC subPDU中包括至少一个MAC SDU。
作为一个实施例,所述第一消息的消息格式隐式指示所述第一无线承载集合是否包括所述第二无线承载子集;所述第一消息为第一RRC信令,当所述第一RRC信令指示恢复RRC连接时,所述第一无线承载集合包括所述第二无线承载子集;当所述第一RRC信令指示挂起所述RRC连接时,所述第一无线承载集合不包括所述第二无线承载子集;其中,所述第一RRC信令指示所述第一消息的所述消息格式。
作为一个实施例,所述第一消息的消息格式隐式指示所述第一无线承载集合是否包括所述第二无线承载子集;所述第一消息为第一RRC信令,当所述第一RRC信令指示恢复RRC连接时,所述第一无线承载集合包括所述第二无线承载子集;当所述第一RRC信令指示挂起所述RRC连接时,所述第一无线承载集合不包括所述第二无线承载子集;其中,所述第一RRC信令指示所述第一消息的所述消息格式;所述第一RRC信令包括第一域和第二域,所述第一RRC信令包括的所述第一域被用于指示所述第一无线承载子集包括的任一无线承载被用于在所述RRC非活跃状态下的数据传输;所述第一RRC信令包括的所述第二域被用于指示恢复所述第一无线承载子集;其中,所述第一RRC信令指示挂起所述RRC连接。
作为一个实施例,所述行为执行第一随机接入过程包括在第一时频资源块上发送第一随机接入前导;其中,所述第一时频资源块被预留给非SDT触发的随机接入过程。
作为一个实施例,所述第一接收机1001,接收第二RRC信令,所述第二RRC信令被用于指示维持或进入所述RRC非活跃状态;其中,所述第二RRC信令包括第一域,所述第二RRC信令包括的所述第一域被用于指示所述第一无线承载子集包括的任一无线承载被用于在所述RRC非活跃状态下的数据传输。
作为一个实施例,所述第一接收机1001包括本申请附图4中的接收器454(包括天线452),接收处理器456,多天线接收处理器458和控制器/处理器459。
作为一个实施例,所述第一接收机1001包括本申请附图4中的接收器454(包括天线452),接收处理器456,多天线接收处理器458或控制器/处理器459中的至少之一。
作为一个实施例,所述第一接收机1001包括本申请附图4中控制器/处理器459。
作为一个实施例,所述第一处理机1002包括本申请附图4中的接收器454(包括天线452),接收处理器456,多天线接收处理器458和控制器/处理器459。
作为一个实施例,所述第一处理机1002包括本申请附图4中的接收器454(包括天线452),接收处理器456,多天线接收处理器458或控制器/处理器459中的至少之一。
作为一个实施例,所述第一处理机1002包括本申请附图4中的发射器454(包括天线452),发射处理器468,多天线发射处理器457和控制器/处理器459。
作为一个实施例,所述第一处理机1002包括本申请附图4中的发射器454(包括天线452),发射处理器468,多天线发射处理器457或控制器/处理器459中的至少之一。
作为一个实施例,所述第一处理机1002包括本申请附图4中的控制器/处理器459。
实施例11
实施例11示例了根据本申请的一个实施例的第二节点中的处理装置的结构框图,如附图11所示。在附图11中,第二节点处理装置1100包括第二接收机1101和第一发射机1102;所述第二节点1100是一个基站。
在实施例11中,第一发射机1102,发送第一寻呼消息,所述第一寻呼消息指示所述第一节点;通过空中接口发送第一消息;伴随所述第一消息,恢复第一无线承载集合,所述第一无线承载集合包括第一无线承载子集,所述第一无线承载子集中的任一无线承载被用于在至少RRC非活跃状态下的数据传输;其中,在发送所述第一寻呼消息之后且在发送所述第一消息之前第一随机接入过程被执行;所述第一消息被用于确定所述第一无线承载集合是否包括第二无线承载子集,所述第二无线承载子集包括至少一个仅能用于RRC连接状态下的数据传输的无线承载;所述第一无线承载子集和所述第二无线承载子集分别包括至少一个无线承载。
作为一个实施例,所述第一消息的消息格式隐式指示所述第一无线承载集合是否包括所述第二无线承载子集。
作为一个实施例,所述第一消息的消息格式隐式指示所述第一无线承载集合是否包括所述第二无线承载子集;所述第一消息包括至少一个MAC subPDU,所述至少一个MAC subPDU中的每个MAC subPDU包括一个MAC子头,所述至少一个MAC subPDU中包括的至少一个MAC子头被用于指示所述第一无线承载集合是否包括所述第二无线承载子集;其中,所述至少一个MAC subPDU中包括的所述至少一个MAC子头指示所述第一消息的所述消息格式。
作为一个实施例,所述第一消息的消息格式隐式指示所述第一无线承载集合是否包括所述第二无线承 载子集;所述第一消息包括至少一个MAC subPDU,所述至少一个MAC subPDU中的每个MAC subPDU包括一个MAC子头,所述至少一个MAC subPDU中包括的至少一个MAC子头被用于指示所述第一无线承载集合是否包括所述第二无线承载子集;其中,所述至少一个MAC subPDU中包括的所述至少一个MAC子头指示所述第一消息的所述消息格式;当所述至少一个MAC subPDU中包括的一个MAC子头指示第一逻辑信道身份时,所述第一消息指示所述第一无线承载集合不包括所述第二无线承载子集;其中,所述第一逻辑信道身份被用于指示一个MAC CE。
作为一个实施例,所述第一消息的消息格式隐式指示所述第一无线承载集合是否包括所述第二无线承载子集;所述第一消息包括至少一个MAC subPDU,所述至少一个MAC subPDU中的每个MAC subPDU包括一个MAC子头,所述至少一个MAC subPDU中包括的至少一个MAC子头被用于指示所述第一无线承载集合是否包括所述第二无线承载子集;其中,所述至少一个MAC subPDU中包括的所述至少一个MAC子头指示所述第一消息的所述消息格式;当所述至少一个MAC subPDU中包括的每个MAC SDU对应的MAC子头指示所述MAC SDU属于所述第一无线承载子集中的一个无线承载时,所述第一消息指示所述第一无线承载集合不包括所述第二无线承载子集;其中,所述至少一个MAC subPDU中包括至少一个MAC SDU。
作为一个实施例,所述第一消息的消息格式隐式指示所述第一无线承载集合是否包括所述第二无线承载子集;所述第一消息为第一RRC信令,当所述第一RRC信令指示恢复RRC连接时,所述第一无线承载集合包括所述第二无线承载子集;当所述第一RRC信令指示挂起所述RRC连接时,所述第一无线承载集合不包括所述第二无线承载子集;其中,所述第一RRC信令指示所述第一消息的所述消息格式。
作为一个实施例,所述第一消息的消息格式隐式指示所述第一无线承载集合是否包括所述第二无线承载子集;所述第一消息为第一RRC信令,当所述第一RRC信令指示恢复RRC连接时,所述第一无线承载集合包括所述第二无线承载子集;当所述第一RRC信令指示挂起所述RRC连接时,所述第一无线承载集合不包括所述第二无线承载子集;其中,所述第一RRC信令指示所述第一消息的所述消息格式;所述第一RRC信令包括第一域和第二域,所述第一RRC信令包括的所述第一域被用于指示所述第一无线承载子集包括的任一无线承载被用于在所述RRC非活跃状态下的数据传输;所述第一RRC信令包括的所述第二域被用于指示恢复所述第一无线承载子集;其中,所述第一RRC信令指示挂起所述RRC连接。
作为一个实施例,第二接收机1101,在第一时频资源块上接收第一随机接入前导;其中,所述第一随机接入前导属于所述第一随机接入过程;所述第一时频资源块被预留给非SDT触发的随机接入过程。
作为一个实施例,所述第一发射机1001,发送第二RRC信令,所述第二RRC信令被用于指示维持或进入所述RRC非活跃状态;所述第二RRC信令包括第一域,所述第二RRC信令包括的所述第一域被用于指示所述第一无线承载子集包括的任一无线承载被用于在所述RRC非活跃状态下的数据传输。
作为一个实施例,所述第二接收机1101包括本申请附图4中的接收器418(包括天线420),接收处理器470,多天线接收处理器472和控制器/处理器475。
作为一个实施例,所述第二接收机1101包括本申请附图4中的接收器418(包括天线420),接收处理器470,多天线接收处理器472或控制器/处理器475中的至少之一。
作为一个实施例,所述第二接收机1101包括本申请附图4中的控制器/处理器475。
作为一个实施例,所述第一发射机1102包括本申请附图4中的发射器418(包括天线420),发射处理器416,多天线发射处理器471和控制器/处理器475。
作为一个实施例,所述第一发射机1102包括本申请附图4中的发射器418(包括天线420),发射处理器416,多天线发射处理器471或控制器/处理器475中的至少之一。
作为一个实施例,所述第一发射机1102包括本申请附图4中的控制器/处理器475。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一类通信节点或者UE或者终端包括但不限于手机,平板电脑,笔记 本,上网卡,低功耗设备,eMTC(enhanced Machine Type Communication,增强机器类通信)设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二类通信节点或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP(Transmission and Reception Point,发射和接收点),中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一接收机,接收第一寻呼消息,所述第一寻呼消息指示所述第一节点;通过空中接口接收第一消息;作为接收所述第一消息的响应,恢复第一无线承载集合,所述第一无线承载集合包括第一无线承载子集,所述第一无线承载子集中的任一无线承载被用于在至少RRC非活跃状态下的数据传输;
    第一处理机,在接收所述第一消息之前,作为接收所述第一寻呼消息的响应,执行第一随机接入过程;
    其中,所述第一消息被用于确定所述第一无线承载集合是否包括第二无线承载子集,所述第二无线承载子集包括至少一个仅能用于RRC连接状态下的数据传输的无线承载;所述第一无线承载子集和所述第二无线承载子集分别包括至少一个无线承载。
  2. 根据权利要求1所述的第一节点,其特征在于,所述第一消息的消息格式隐式指示所述第一无线承载集合是否包括所述第二无线承载子集。
  3. 根据权利要求2所述的第一节点,其特征在于,所述第一消息包括至少一个MAC subPDU,所述至少一个MAC subPDU中的每个MAC subPDU包括一个MAC子头,所述至少一个MAC subPDU中包括的至少一个MAC子头被用于指示所述第一无线承载集合是否包括所述第二无线承载子集;
    其中,所述至少一个MAC subPDU中包括的所述至少一个MAC子头指示所述第一消息的所述消息格式。
  4. 根据权利要求3所述的第一节点,其特征在于,当所述至少一个MAC subPDU中包括的一个MAC子头指示第一逻辑信道身份时,所述第一消息指示所述第一无线承载集合不包括所述第二无线承载子集;
    其中,所述第一逻辑信道身份被用于指示一个MAC CE。
  5. 根据权利要求3所述的第一节点,其特征在于,当所述至少一个MAC subPDU中包括的每个MAC SDU对应的MAC子头指示所述MAC SDU属于所述第一无线承载子集中的一个无线承载时,所述第一消息指示所述第一无线承载集合不包括所述第二无线承载子集;
    其中,所述至少一个MAC subPDU中包括至少一个MAC SDU。
  6. 根据权利要求2所述的第一节点,其特征在于,所述第一消息为第一RRC信令,当所述第一RRC信令指示恢复RRC连接时,所述第一无线承载集合包括所述第二无线承载子集;当所述第一RRC信令指示挂起所述RRC连接时,所述第一无线承载集合不包括所述第二无线承载子集;
    其中,所述第一RRC信令指示所述第一消息的所述消息格式。
  7. 根据权利要求6所述的第一节点,其特征在于,所述第一RRC信令包括第一域和第二域,所述第一RRC信令包括的所述第一域被用于指示所述第一无线承载子集包括的任一无线承载被用于在所述RRC非活跃状态下的数据传输;所述第一RRC信令包括的所述第二域被用于指示恢复所述第一无线承载子集;
    其中,所述第一RRC信令指示挂起所述RRC连接。
  8. 根据权利要求1至7中任一权利要求所述的第一节点,其特征在于,所述行为执行第一随机接入过程包括在第一时频资源块上发送第一随机接入前导;
    其中,所述第一时频资源块被预留给非SDT触发的随机接入过程。
  9. 根据权利要求1至8中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第二RRC信令,所述第二RRC信令被用于指示维持或进入所述RRC非活跃状态;
    其中,所述第二RRC信令包括第一域,所述第二RRC信令包括的所述第一域被用于指示所述第一无线承载子集包括的任一无线承载被用于在所述RRC非活跃状态下的数据传输。
  10. 一种被用于无线通信的第二节点,其特征在于,包括:
    第一发射机,发送第一寻呼消息,所述第一寻呼消息指示所述第一节点;通过空中接口发送第一消息;伴随所述第一消息,恢复第一无线承载集合,所述第一无线承载集合包括第一无线承载子集,所述第一无线承载子集中的任一无线承载被用于在至少RRC非活跃状态下的数据传输;
    其中,在发送所述第一寻呼消息之后且在发送所述第一消息之前,第一随机接入过程被执行;所述第一消息被用于确定所述第一无线承载集合是否包括第二无线承载子集,所述第二无线承载子集包括至少一个仅能用于RRC连接状态下的数据传输的无线承载;所述第一无线承载子集和所述第二无线承载子集分别包括至少一个无线承载。
  11. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一寻呼消息,所述第一寻呼消息指示所述第一节点;
    作为接收所述第一寻呼消息的响应,执行第一随机接入过程;
    通过空中接口接收第一消息;
    作为接收所述第一消息的响应,恢复第一无线承载集合,所述第一无线承载集合包括第一无线承载子集,所述第一无线承载子集中的任一无线承载被用于在至少RRC非活跃状态下的数据传输;
    其中,所述第一随机接入过程在接收所述第一消息之前被执行;所述第一消息被用于确定所述第一无线承载集合是否包括第二无线承载子集,所述第二无线承载子集包括至少一个仅能用于RRC连接状态下的数据传输的无线承载;所述第一无线承载子集和所述第二无线承载子集分别包括至少一个无线承载。
  12. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一寻呼消息,所述第一寻呼消息指示所述第一节点;
    通过空中接口发送第一消息;
    伴随所述第一消息,恢复第一无线承载集合,所述第一无线承载集合包括第一无线承载子集,所述第一无线承载子集中的任一无线承载被用于在至少RRC非活跃状态下的数据传输;
    其中,在发送所述第一寻呼消息之后且在发送所述第一消息之前第一随机接入过程被执行;所述第一消息被用于确定所述第一无线承载集合是否包括第二无线承载子集,所述第二无线承载子集包括至少一个仅能用于RRC连接状态下的数据传输的无线承载;所述第一无线承载子集和所述第二无线承载子集分别包括至少一个无线承载。
PCT/CN2023/082442 2022-03-28 2023-03-20 一种被用于无线通信的方法和装置 WO2023185520A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210317087.XA CN116867115A (zh) 2022-03-28 2022-03-28 一种被用于无线通信的方法和装置
CN202210317087.X 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023185520A1 true WO2023185520A1 (zh) 2023-10-05

Family

ID=88199088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082442 WO2023185520A1 (zh) 2022-03-28 2023-03-20 一种被用于无线通信的方法和装置

Country Status (2)

Country Link
CN (1) CN116867115A (zh)
WO (1) WO2023185520A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112218369A (zh) * 2019-07-10 2021-01-12 苹果公司 处于rrc非活动状态下时的数据通信
CN112534901A (zh) * 2018-08-13 2021-03-19 高通股份有限公司 Rrc不活动模式下的下行链路数据传输
CN113498221A (zh) * 2020-04-02 2021-10-12 大唐移动通信设备有限公司 非激活态ue进行状态转换方法和用户终端及网络侧设备
CN114071804A (zh) * 2020-07-31 2022-02-18 联发科技(新加坡)私人有限公司 非活跃状态下的无连接数据传输方法和用户设备
CN114245992A (zh) * 2019-08-20 2022-03-25 高通股份有限公司 在空闲和/或非活动模式下针对移动台终止的小数据接收的寻呼

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112534901A (zh) * 2018-08-13 2021-03-19 高通股份有限公司 Rrc不活动模式下的下行链路数据传输
CN112218369A (zh) * 2019-07-10 2021-01-12 苹果公司 处于rrc非活动状态下时的数据通信
CN114245992A (zh) * 2019-08-20 2022-03-25 高通股份有限公司 在空闲和/或非活动模式下针对移动台终止的小数据接收的寻呼
CN113498221A (zh) * 2020-04-02 2021-10-12 大唐移动通信设备有限公司 非激活态ue进行状态转换方法和用户终端及网络侧设备
CN114071804A (zh) * 2020-07-31 2022-02-18 联发科技(新加坡)私人有限公司 非活跃状态下的无连接数据传输方法和用户设备

Also Published As

Publication number Publication date
CN116867115A (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
WO2021175188A1 (zh) 一种被用于无线通信的方法和设备
WO2023217076A1 (zh) 一种被用于无线通信的方法和装置
CN114339881A (zh) 一种被用于无线通信中的方法和装置
US20220141698A1 (en) Method and device used for relay wireless communication
CN113365223B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023185520A1 (zh) 一种被用于无线通信的方法和装置
CN115379530A (zh) 一种被用于无线通信的方法和设备
CN114679686A (zh) 一种被用于无线通信的通信节点中的方法和装置
US11943745B2 (en) Method and device for sidelink wireless communication
WO2023109736A1 (zh) 一种被用于无线通信中的方法和装置
WO2023165345A1 (zh) 一种被用于无线通信中的方法和装置
US20230246975A1 (en) Method and device for wireless communication
US20230379881A1 (en) Method and device used for wireless communication
WO2023246671A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023207708A1 (zh) 一种被用于无线通信的方法和装置
WO2023246673A1 (zh) 一种被用于无线通信的方法和装置
WO2021139554A1 (zh) 用于不连续接收的方法和装置
WO2023125177A1 (zh) 一种被用于无线通信中的方法和装置
WO2022194113A1 (zh) 一种被用于无线通信的方法和设备
WO2022171165A1 (zh) 一种被用于中继无线通信中的方法和装置
CN118055429A (zh) 一种被用于无线通信中的方法和装置
CN117998453A (zh) 一种被用于无线通信中的方法和装置
CN113965960A (zh) 一种副链路中继无线通信的方法和装置
CN115551119A (zh) 一种副链路无线通信的方法和装置
CN115633415A (zh) 一种副链路无线通信的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23777894

Country of ref document: EP

Kind code of ref document: A1