WO2021139554A1 - 用于不连续接收的方法和装置 - Google Patents

用于不连续接收的方法和装置 Download PDF

Info

Publication number
WO2021139554A1
WO2021139554A1 PCT/CN2020/140153 CN2020140153W WO2021139554A1 WO 2021139554 A1 WO2021139554 A1 WO 2021139554A1 CN 2020140153 W CN2020140153 W CN 2020140153W WO 2021139554 A1 WO2021139554 A1 WO 2021139554A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
signaling
signal
resource pool
node
Prior art date
Application number
PCT/CN2020/140153
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2021139554A1 publication Critical patent/WO2021139554A1/zh
Priority to US17/851,045 priority Critical patent/US20220330210A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • the present invention relates to a method and device in a wireless communication system, and more particularly to a solution and device supporting discontinuous reception in a wireless communication system.
  • DRX Discontinuous Reception
  • the base station controls DRX-related timers through DCI (Downlink Control Information) or MAC (Medium Access Control) CE (Control Element, control unit), and then controls whether the terminal performs wireless in a given subframe receive.
  • DCI Downlink Control Information
  • MAC Medium Access Control
  • V2X Vehicle to everything, vehicle to the outside world
  • V2X Vehicle to everything, vehicle to the outside world
  • SCI Servicelink Control Information
  • PSSCH Physical Sidelink Shared Channel
  • this application discloses a solution.
  • the V2X scenario is only used as a typical application scenario or example; this application is also applicable to scenarios other than V2X that face similar problems, such as downlink transmission, and obtain similar NR V2X scenarios
  • different scenarios adopting a unified solution can also help reduce hardware complexity and cost.
  • the embodiment in any node of this application and the features in the embodiment can be applied to any other node.
  • the embodiments of the application and the features in the embodiments can be combined with each other arbitrarily.
  • This application discloses a method used in the first node of wireless communication, which includes:
  • the first signal is monitored in the first time resource pool.
  • the first bit block is used to generate the first signal.
  • the first bit block includes a MAC PDU (Protocol Data Unit).
  • the bit block includes the first identification component;
  • the first signaling is monitored on the first time-frequency resource block; when the first signal is not in the first time resource pool When it is successfully received, give up monitoring the first signaling on the first time-frequency resource block;
  • the first signaling is physical layer signaling, and the first signaling includes a second identification component; both the first identification component and the second identification component belong to the first link layer identification.
  • the first node is a UE.
  • the first node is a relay node.
  • the first bit block is transmitted on SL-SCH (SideLink Share Channel, secondary link shared channel).
  • SL-SCH SegmentLink Share Channel, secondary link shared channel
  • the foregoing embodiment can use MAC SDU (Service Data Unit, Service Data Unit) to control the DRX state, avoid introducing secondary link MAC CE, and maintain compatibility with existing standards as much as possible.
  • MAC SDU Service Data Unit, Service Data Unit
  • the first node determines whether the first signal is a useful signal, and then more accurately determines whether to perform wireless reception on the first time-frequency resource block.
  • the above method can make the scheduling signaling of the first signal need not carry the first link layer identifier, which reduces air interface overhead.
  • the method used in the first node for wireless communication includes:
  • first link layer identifier is any link layer identifier in the first link layer identifier list.
  • the method used in the first node for wireless communication includes:
  • At least one target signaling is received in the first time resource pool
  • each target signaling in the at least one target signaling is physical layer signaling, and each target signaling in the at least one target signaling includes the second identification component; when the first signal When monitored in the first time resource pool, the first signal is scheduled by one target signaling in the at least one target signaling.
  • the first node schedules a physical layer channel for any target signaling received in the first time resource pool, and the first node schedules a physical layer channel in all received target signalings.
  • the first signal is monitored in the layer channel.
  • the any target signaling is SCI
  • the first physical layer channel is PSSCH.
  • the method used in the first node for wireless communication includes:
  • the first node is a UE, and the above method can ensure that the peer UE of the first node can infer the DRX state of the first node.
  • the method used in the first node for wireless communication includes:
  • the first bit block includes a medium access control service data unit (MAC SDU) and a corresponding MAC header, and the corresponding MAC header includes the first identification component.
  • MAC SDU medium access control service data unit
  • the above method enables the first node to determine whether the first bit block is useful data according to the MAC header corresponding to the MAC SDU, and then to determine if the first timer is adjusted; the above method has minor changes to the standard, Keep compatibility as much as possible.
  • the above method avoids the introduction of MAC CE in the secondary link, reduces the implementation complexity and simplifies the design.
  • the corresponding MAC header is a MAC PDU header in the one MAC PDU in the first bit block.
  • the first bit block is transmitted on an SL-SCH (SideLink Share Channel, secondary link shared channel), and the corresponding MAC header is the one in the one MAC PDU in the first bit block.
  • SL-SCH subheader subheader
  • the first bit block is transmitted on an SL-SCH (SideLink Share Channel, secondary link shared channel), and the corresponding MAC header is the one in the one MAC PDU in the first bit block. DST domain.
  • SL-SCH SegmentLink Share Channel, secondary link shared channel
  • the method used in the first node for wireless communication includes:
  • the above method enables the first node to determine whether the first bit block is useful data according to the MAC header corresponding to the MAC SDU, and then to determine if the first timer is adjusted; the above method has minor changes to the standard, Keep compatibility as much as possible.
  • the above method avoids the introduction of MAC CE in the secondary link, reduces the implementation complexity and simplifies the design.
  • the third timer when the wireless signal scheduled by any one of the at least one target signaling is not decoded correctly, the third timer is started; when the at least one target signal is not decoded correctly, the third timer is started; When all the wireless signals scheduled by the target signaling in the command are correctly decoded, the stop state of the third timer is maintained;
  • the third timer is in a stopped state in the time slot to which the first time-frequency resource block belongs.
  • an associated HARQ-ACK is sent to indicate whether the corresponding scheduled wireless signal is correctly decoded.
  • This application discloses a method used in a second node of wireless communication, which includes:
  • a first bit block is used to generate the first signal, the first bit block includes a MAC PDU, and the first bit block includes a first identification component;
  • the first signaling is physical layer signaling, and the first signaling includes a second identification component; both the first identification component and the second identification component belong to the first link layer identification;
  • the candidate time-frequency resource pool includes a first time-frequency resource block; when the first signal is not sent in the first time resource pool When sending, the candidate time-frequency resource pool does not include the first time-frequency resource block.
  • the above method can ensure that the second node avoids the non-receiving time slot of the first node to send the first signaling, and ensures the reception of the first signaling.
  • the number of REs (Resource Elements) included in the candidate time-frequency resource pool is greater than the number of REs included in the appropriate time-frequency resource block.
  • the candidate time-frequency resource pool, the first time-frequency resource block, and the appropriate time-frequency resource block each include multiple REs.
  • the candidate time-frequency resource pool includes multiple time-frequency resource blocks, each of the multiple time-frequency resource blocks is continuous in the time domain, and the appropriate time-frequency resource A block is one time-frequency resource block in the plurality of time-frequency resource blocks, and at least two time-frequency resource blocks in the plurality of time-frequency resource blocks are discontinuous in time.
  • the suitable time-frequency resource block and the first time-frequency resource block are two different time-frequency resource blocks among the multiple time-frequency resource blocks.
  • the suitable time-frequency resource block and the first time-frequency resource block completely overlap.
  • the suitable time-frequency resource block and the first time-frequency resource block partially overlap.
  • how to select the appropriate time-frequency resource block is implementation-related.
  • the appropriate time-frequency resource block is randomly selected from the candidate time-frequency resource pool.
  • the candidate time-frequency resource pool is determined by the second node itself.
  • the candidate time-frequency resource pool is configured by downlink signaling.
  • the candidate time-frequency resource pool is a V2X resource pool (Resource Pool).
  • the method in the LTE (Long Term Evolution) standard TS36.213 is used to select the appropriate time-frequency resource block, and the available time-frequency resource is selected according to the measured channel quality and the priority in the SCI Block set, and then a higher layer selects the appropriate time-frequency resource block from the available set of time-frequency resource blocks.
  • the method used in the second node for wireless communication includes:
  • the second node receives application layer signaling to determine the second link layer identification list.
  • the second node receives RRC layer signaling to determine the second link layer identifier list.
  • the second node receives MAC layer signaling to determine the second link layer identification list.
  • the second node determines the second link layer identification list by itself at the MAC layer.
  • the application layer signaling is generated by the second node itself.
  • the application layer signaling is sent by the first node to the second node.
  • the MAC layer signaling is sent by the first node to the second node.
  • the application layer signaling is sent to the second node by the network side device.
  • the application layer signaling is sent to the second node by the application server.
  • the method used in the second node for wireless communication includes:
  • each target signaling in the at least one target signaling is physical layer signaling, and each target signaling in the at least one target signaling includes the second identification component; the first signal is Scheduled by one of the at least one target signaling.
  • the method used in the second node for wireless communication includes:
  • the second signaling indicates a first parameter set; the first parameter set indicates the first time resource pool.
  • the method used in the second node for wireless communication includes:
  • the count of the first reference timer is maintained; when the time domain resource occupied by the first signal is in the first time resource pool; When in the time resource pool, restart the first reference timer.
  • the method used in the second node for wireless communication includes: when the time domain resource occupied by the first signal is not in the first time resource pool, Maintain the stopped state of the first reference timer; when the time domain resource occupied by the first signal is in the first time resource pool, start the first reference timer.
  • the method used in the second node for wireless communication includes: when an ACK associated with any target signaling in the at least one target signaling is not received , The third reference timer is started; when the ACKs associated with all target signaling in the at least one target signaling are received, the stop state of the third reference timer is maintained.
  • the third reference timer is in a stopped state in the time slot to which the first time-frequency resource block belongs.
  • This application discloses the first node used for wireless communication, which includes:
  • the first receiver monitors the first signal in the first time resource pool, the first bit block is used to generate the first signal, the first bit block includes one MAC PDU, and the first bit block includes the first bit block.
  • An identification component ;
  • the second receiver when the first signal is successfully received in the first time resource pool, monitors the first signaling on the first time-frequency resource block; when the first signal is in the first When the time resource pool is not successfully received, give up monitoring the first signaling on the first time-frequency resource block;
  • the first signaling is physical layer signaling, and the first signaling includes a second identification component; both the first identification component and the second identification component belong to the first link layer identification.
  • This application discloses a second node used for wireless communication, which includes:
  • a second transmitter sending a first signal, a first bit block is used to generate the first signal, the first bit block includes a MAC PDU, and the first bit block includes a first identification component;
  • the third transmitter when the first signal is sent in the first time resource pool, sends the first signaling on the first time-frequency resource block; when the first signal is not in the first time-frequency resource block; When being sent in the time resource pool, give up sending the first signaling on the first time-frequency resource block;
  • the first signaling is physical layer signaling, and the first signaling includes a second identification component; both the first identification component and the second identification component belong to the first link layer identification.
  • Fig. 1 shows a flowchart of determining whether to monitor first signaling according to a first signal according to an embodiment of the present invention
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present invention
  • Fig. 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to an embodiment of the present invention
  • Fig. 4 shows a schematic diagram of hardware modules of a communication node according to an embodiment of the present invention
  • Figure 5 shows a flow chart of transmission between a first node and a second node according to an embodiment of the present invention
  • Fig. 6 shows a flow chart of the transmission of the first message according to an embodiment of the present invention
  • Fig. 7 shows a schematic diagram of a first time resource pool according to an embodiment of the present invention.
  • FIG. 8 shows a schematic diagram of a first time resource pool according to another embodiment of the present invention.
  • Figure 9 shows a flow chart of timing with a fourth timer according to an embodiment of the present invention.
  • Fig. 10 shows a flow chart of timing with a first timer according to an embodiment of the present invention
  • FIG. 11 shows a flowchart of updating the first timer according to an embodiment of the present invention
  • Figure 12 shows a schematic diagram of a first link layer identifier according to an embodiment of the present invention
  • Fig. 13 shows a schematic diagram of a first bit block according to an embodiment of the present invention
  • Fig. 14 shows a structural block diagram of a processing device used in a first node according to an embodiment of the present invention
  • Fig. 15 shows a structural block diagram of a processing device used in a second node according to an embodiment of the present invention.
  • Embodiment 1 illustrates a flowchart of determining whether to monitor the first signaling according to the first signal according to an embodiment of the present application, as shown in FIG. 1.
  • the first node 100 monitors the first signal in the first time resource pool in step 101, the first bit block is used to generate the first signal, and the first bit block includes a MAC PDU , The first bit block includes a first identification component; in step S102, when the first signal is successfully received in the first time resource pool, the first signal is monitored on the first time-frequency resource block Let, when the first signal is not successfully received in the first time resource pool, give up monitoring the first signaling on the first time-frequency resource block;
  • the first signaling is physical layer signaling, and the first signaling includes a second identification component; both the first identification component and the second identification component belong to the first link layer identification .
  • the format of the first signaling is SCI format (format) 0-2.
  • the format of the first signaling is SCI format 0.
  • the time-frequency resource occupied by the first signal is indicated by the first stage (1st stage) SCI; the HARQ process number and NDI (New Data Indicator) of the first signal are indicated by the second stage. 2nd stage SCI instructions.
  • the first signal is obtained after the first bit block sequentially undergoes channel coding, scrambling, modulation, layer mapping, precoding, and resource mapping to generate multi-carrier symbols.
  • the first signal is obtained by adding CRC, channel coding, scrambling, modulation, and resource mapping in sequence to the first bit block to generate multi-carrier symbols.
  • the first signal is obtained after the first bit block undergoes scrambling, CRC encoding, channel encoding, re-scrambling, modulation, resource mapping, and multi-carrier symbol generation.
  • the phrase monitoring the first signal includes: performing channel decoding in the scheduled time-frequency resources, and judging whether the channel decoding is correct according to CRC (Cyclic Redundancy Check).
  • CRC Cyclic Redundancy Check
  • this monitoring fails to receive the first signal; if it passes the CRC verification, the information bits after channel decoding are passed to the higher layer for judgment by the higher layer Whether the first signal is successfully received.
  • the CRC verification fails, the first signal is not successfully received in this monitoring; if the CRC verification is passed, the first signal is successfully received in this monitoring.
  • the scheduled time-frequency resource includes multiple REs (Resource Elements, resource particles).
  • the first bit block is transmitted on SL-SCH (SideLink Shared Channel), and the scheduled time-frequency resource is controlled by SCI (Sidelink Control Information, secondary link control information). ) Scheduled.
  • the first bit block is transmitted on DL-SCH (DownLink Shared Channel), and the scheduled time-frequency resource is scheduled by DCI (Downlink Control Information, downlink control information).
  • DCI Downlink Control Information, downlink control information
  • the phrase monitoring the first signal includes: decoding the information bit block transmitted from the physical layer at the MAC layer, and determining whether the first signal is correctly received according to the meaning of the information bit block.
  • the information bit block includes the first identification component, it is determined that the first signal is successfully received.
  • the information bit block is successfully decoded by a MAC entity (entity) and when the information bit block includes the first identification component, it is determined that the first signal is successfully received.
  • the information bit block is successfully decoded by a MAC entity (entity) and when the information bit block includes the first identification component, it is determined that the first signal is successfully received.
  • the information bit block is the first bit block.
  • the phrase monitoring first signaling includes: performing blind decoding (Blind Decoding).
  • the phrase monitoring first signaling includes: performing energy detection.
  • the phrase monitoring first signaling includes: performing CRC verification.
  • the phrase monitoring first signaling includes: performing blind decoding on each RE set in a plurality of RE (Resource Element) sets, and for each blind decoding, judging according to CRC Whether the decoding is correct, if it is correctly decoded and the first bit field in the decoded SCI is equal to the second identification component, the first signaling is received and the first signaling is the decoded SCI: If the first bit field in the SCI decoded incorrectly or decoded is not equal to the second identification component, the first signaling is not received.
  • the multiple RE sets are respectively reserved for one PSCCH (Physical Sidelink Control Channel, physical secondary link control channel).
  • PSCCH Physical Sidelink Control Channel, physical secondary link control channel
  • the first field includes a destination ID (Destination ID) field.
  • the first field includes a Source ID field.
  • the first field includes a group destination ID (Group Destination ID) field.
  • the phrase monitoring first signaling includes: performing blind decoding on each RE set in a plurality of RE (Resource Element) sets, and for each blind decoding, judging according to CRC Whether the decoding is correct, if it is correctly decoded and the first bit field in the decoded DCI is equal to the second identification component, the first signaling is received and the first signaling is the decoded DCI; if the first bit field in the erroneously decoded or decoded DCI is not equal to the second identification component, the first signaling is not received.
  • the multiple RE sets are respectively reserved for one PDCCH (Physical Downlink Control Channel).
  • the first link layer identifier consists of X bits
  • the second identifier component consists of Y1 bits
  • the first identifier component consists of Y2 bits
  • the X, the Y1 And Y2 are positive integers respectively.
  • the sum of the Y1 plus the Y2 is equal to the X.
  • the sum of the Y1 plus the Y2 is smaller than the X.
  • the X bits are composed of the Y1 bits and the Y2 bits.
  • the Y1 bits and the Y2 bits are respectively the Y1 least significant bit (LSB, Least Significant Bit) and Y2 most significant bit (MSB, Most Significant Bit) of the X bits. .
  • the X, the Y1 and the Y2 are respectively multiples of 8.
  • the X, the Y1, and the Y2 are 24, 16, and 8, respectively.
  • the X, the Y1, and the Y2 are 24, 8, and 16, respectively.
  • the X, the Y1 and the Y2 are 32, 8, and 16, respectively.
  • the X, Y1, and Y2 are 32, 8, and 24, respectively.
  • the first signaling includes SCI (Sidelink Control Information, secondary link control information).
  • the first signaling includes DCI (Downlink Control Information, downlink control information).
  • DCI Downlink Control Information, downlink control information
  • the first time-frequency resource block includes multiple REs (Resource Elements).
  • the first time-frequency resource block belongs to one carrier in the frequency domain.
  • the first time-frequency resource block includes a positive integer number of multi-carrier symbols in the time domain.
  • the first time-frequency resource block is reserved for physical layer control signaling.
  • the first time-frequency resource block is reserved for the SCI.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol is an SC-FDMA (Single-carrier Frequency-Division Multiple Access, single-carrier frequency division multiple access) symbol.
  • SC-FDMA Single-carrier Frequency-Division Multiple Access, single-carrier frequency division multiple access
  • the multi-carrier symbol is an FBMC (Filterbank Multicarrier, filter bank multicarrier) symbol.
  • FBMC Finterbank Multicarrier, filter bank multicarrier
  • the first link layer identifier is a Prose UE ID.
  • the first link layer identifier is a Destination-Layer-2 (Layer-2) identifier.
  • the first node 100 determines a first link layer identifier list, and the first link layer identifier is any link layer identifier in the first link layer identifier list.
  • the first receiver receives application layer signaling to determine the first link layer identification list.
  • the first receiver receives RRC (Radio Resource Control, radio resource control) layer signaling to determine the first link layer identifier list.
  • RRC Radio Resource Control, radio resource control
  • the first receiver determines at least one link layer identifier in the first link layer identifier list at the MAC layer by itself.
  • the application layer signaling is generated by the first node itself.
  • the application layer signaling is sent to the first node by the network side device.
  • the application layer signaling is sent to the first node by the application server.
  • the first link layer identification list is completely indicated by the application layer signaling.
  • the application layer signaling indicates Q link layer identifiers, each of the Q link layer identifiers corresponds to a physical layer identifier, and the Q is a positive integer greater than 1.
  • the first link layer identifier list is composed of those link layer identifiers that are monitored in the physical layer control channel of the first time resource pool in the corresponding physical layer identifiers in the Q link layer identifiers.
  • the physical layer control channel is PSCCH (Physical Sidelink Control Channel, physical secondary link control channel).
  • the physical layer control channel is PDCCH (Physical Downlink Control CHannel, physical secondary link control channel).
  • the first link layer identifier list only includes the first link layer identifier.
  • the first link layer identifier list includes multiple link layer identifiers, and the first link layer identifier is one link layer identifier among the multiple link layer identifiers.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG. 2.
  • Figure 2 illustrates the V2X communication architecture under 5G NR (New Radio), LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) system architectures.
  • the 5G NR or LTE network architecture can be called 5GS (5G System)/EPS (Evolved Packet System) some other suitable terminology.
  • the V2X communication architecture of Embodiment 2 includes UE (User Equipment) 201, UE 241, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved packet core) 210, HSS (Home Subscriber Server)/UDM (Unified Data Management, unified data management) 220, ProSe function 250, and ProSe application server 230.
  • the V2X communication architecture can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in the figure, the V2X communication architecture provides packet switching services.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an Xn interface (for example, backhaul).
  • the gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive node), or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , Video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine-type communication devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices Video devices
  • digital audio players for example, MP3 players
  • cameras game consoles
  • drones aircraft
  • narrowband IoT devices machine-type communication devices
  • machine-type communication devices land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE201 can also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway)/UPF (User Plane Function, user plane function) 212, and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is a control node that processes the signaling between UE201 and 5GC/EPC210. In general, MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. The P-GW provides UE IP address allocation and other functions.
  • the P-GW/UPF 213 is connected to the Internet service 230.
  • the Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching streaming service.
  • the ProSe function 250 is a logical function for network-related behaviors required for ProSe (Proximity-based Service); it includes DPF (Direct Provisioning Function), and directly discovers the name management function (Direct Discovery Name). Management Function), EPC-level Discovery ProSe Function (EPC-level Discovery ProSe Function), etc.
  • the ProSe application server 230 has functions such as storing EPC ProSe user IDs, mapping between application layer user IDs and EPC ProSe user IDs, and allocating ProSe restricted code suffix pools.
  • the UE 201 and the UE 241 are connected through a PC5 reference point (Reference Point).
  • PC5 reference point Reference Point
  • the ProSe function 250 is connected to the UE 201 and the UE 241 through a PC3 reference point, respectively.
  • the ProSe function 250 is connected to the ProSe application server 230 through the PC2 reference point.
  • the ProSe application server 230 is connected to the ProSe application of the UE 201 and the ProSe application of the UE 241 through the PC1 reference point, respectively.
  • the first node in this application is the UE201.
  • the second node in this application is the UE201.
  • the first node in this application is the UE241.
  • the second node in this application is the UE241.
  • the first node and the second node in this application are the UE201 and the UE241 respectively.
  • the radio link between the UE201 and the UE241 corresponds to a side link (Sidelink, SL) in this application.
  • the radio link from the UE 201 to the NR Node B is an uplink.
  • the radio link from the NR Node B to the UE 201 is the downlink.
  • the UE 201 supports DRX transmission.
  • the UE 241 supports DRX transmission.
  • the gNB203 is a Macro Cellular (MarcoCellular) base station.
  • the gNB203 is a micro cell (Micro Cell) base station.
  • the gNB203 is a picocell (PicoCell) base station.
  • the gNB203 is a Femtocell.
  • the gNB203 is a base station device that supports a large delay difference.
  • the gNB203 is a flight platform device.
  • the gNB203 is a satellite device.
  • Fig. 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane and the control plane.
  • Fig. 3 shows the radio protocol architecture for UE and gNB with three layers: layer 1, layer 2, and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY301, or physical layer.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between UE and gNB through PHY301.
  • the L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol), packet data Convergence protocol) sublayers 304, which terminate at the gNB on the network side.
  • the UE may have several protocol layers above the L2 layer 305, including a network layer (e.g., IP layer) terminating at the P-GW 213 on the network side and a network layer terminating at the other end of the connection (e.g., Remote UE, server, etc.) at the application layer.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper-layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handover support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper-layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception caused by HARQ (Hybrid Automatic Repeat reQuest).
  • HARQ Hybrid Automatic Repeat reQuest.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architectures for the UE and gNB are substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and using RRC signaling between the gNB and the UE to configure the lower layer.
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the L2 layer 305 belongs to a higher layer.
  • the RRC sublayer 306 in the L3 layer belongs to a higher layer.
  • Embodiment 4 shows a schematic diagram of hardware modules of a communication node according to an embodiment of the present application, as shown in FIG. 4.
  • 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in an access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmitting processor 468, a receiving processor 456, a multi-antenna transmitting processor 457, a multi-antenna receiving processor 458, and a transmitter/receiver 454 And antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the upper layer data packet from the core network is provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels. Multiplexing, and allocation of radio resources to the first communication device 450 based on various priority measures.
  • the controller/processor 475 is also responsible for retransmission of lost packets and signaling to the first communication device 450.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements coding and interleaving to facilitate forward error correction (FEC) at the second communication device 410, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M phase shift keying (M-PSK), and M quadrature amplitude modulation (M-QAM)).
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmission processor 471 performs digital spatial precoding on the encoded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes it with a reference signal (e.g., pilot) in the time domain and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate The physical channel that carries the multi-carrier symbol stream in the time domain.
  • IFFT inverse fast Fourier transform
  • the multi-antenna transmission processor 471 performs transmission simulation precoding/beamforming operations on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated on the radio frequency carrier, and converts the radio frequency stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna reception processor 458 performs reception analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a Fast Fourier Transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the physical layer data signal and reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after the multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial flow of the destination. The symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by the second communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, Control signal processing to recover upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements the header based on the radio resource allocation Compression, encryption, packet segmentation and reordering, as well as multiplexing between logic and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets and signaling to the second communication device 410.
  • the transmission processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmission processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is subjected to an analog precoding/beamforming operation in the multi-antenna transmission processor 457 and then provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then supplies it to the antenna 452.
  • the function at the second communication device 410 is similar to that in the transmission from the second communication device 410 to the first communication device 450.
  • Each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to the multi-antenna receiving processor 472 and the receiving processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • the memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 In the transmission from the first communication device 450 to the second communication device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, and header decompression. , Control signal processing to recover upper layer data packets from UE450.
  • the upper layer data packet from the controller/processor 475 may be provided to the core network.
  • the first communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to The at least one processor is used together, the first communication device 450 means at least: monitoring a first signal in a first time resource pool, a first bit block is used to generate the first signal, and the first bit block It includes a MAC PDU, and the first bit block includes a first identification component; when the first signal is successfully received in the first time resource pool, the first signal is monitored on the first time-frequency resource block When the first signal is not successfully received in the first time resource pool, give up monitoring the first signaling on the first time-frequency resource block; wherein, the first signaling is physical layer signaling , The first signaling includes a second identification component; both the first identification component and the second identification component belong to the first link layer identification.
  • the first communication device 450 includes: a memory storing a program of computer-readable instructions, the program of computer-readable instructions generates actions when executed by at least one processor, and the actions include: A first signal is monitored in a time resource pool, a first bit block is used to generate the first signal, the first bit block includes a MAC PDU, and the first bit block includes a first identification component; when the When the first signal is successfully received in the first time resource pool, monitor the first signaling on the first time-frequency resource block; when the first signal is not successfully received in the first time resource pool When the time, the monitoring of the first signaling on the first time-frequency resource block is abandoned; wherein, the first signaling is physical layer signaling, and the first signaling includes a second identification component; the first identification component and The second identification components all belong to the first link layer identification.
  • the second communication device 410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to Use at least one processor together.
  • the second communication device 410 means at least: sending a first signal, a first bit block is used to generate the first signal, the first bit block includes a MAC PDU, and the first bit block includes a first identifier Component; select an appropriate time-frequency resource block from the candidate time-frequency resource pool, and send the first signaling in the appropriate time-frequency resource block; wherein, the first signaling is physical layer signaling, the The first signaling includes a second identification component; both the first identification component and the second identification component belong to the first link layer identification; when the first signal is sent in the first time resource pool ,
  • the candidate time-frequency resource pool includes a first time-frequency resource block; when the first signal is not sent in the first time resource pool, the candidate time-frequency resource pool does not include the first time Frequency resource block.
  • the second communication device 410 device includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending The first signal, the first bit block is used to generate the first signal, the first bit block includes a MAC PDU, and the first bit block includes the first identification component; select the appropriate time-frequency resource pool from the candidate time-frequency resource pool And send the first signaling in the appropriate time-frequency resource block; wherein, the first signaling is physical layer signaling, and the first signaling includes a second identification component; The first identification component and the second identification component both belong to the first link layer identification; when the first signal is sent in the first time resource pool, the candidate time-frequency resource pool includes the first A time-frequency resource block; when the first signal is not sent in the first time resource pool, the candidate time-frequency resource pool does not include the first time-frequency resource block.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a UE.
  • the second communication device 410 is a UE.
  • the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to monitor the first signal and the first signal.
  • Signaling; the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475 is used to send the first signal and the first signaling .
  • Embodiment 5 illustrates a flow chart of transmission between the first node and the second node according to an embodiment of the present application, as shown in FIG. 5.
  • the steps in block F0 and block F1 are respectively optional.
  • the second signaling is sent in step S101; the target signaling is received in the first time resource pool in step S102; the first signal is monitored in the first time resource pool in step S103,
  • the bit block is used to generate the first signal, the first bit block includes a MAC PDU, and the first bit block includes a first identification component; in step S104, when the first signal is in the first signal When successfully received in a time resource pool, monitor the first signaling on the first time-frequency resource block; when the first signal is not successfully received in the first time resource pool, give up at the first time Monitoring the first signaling on the frequency resource block;
  • the second signaling is received in step S201; the target signaling is sent in the first time resource pool in step S202; the first signal is sent in step S203; in step S204, the candidate Selecting an appropriate time-frequency resource block from the time-frequency resource pool, and sending the first signaling in the appropriate time-frequency resource block;
  • the first signaling is physical layer signaling, and the first signaling includes a second identification component; both the first identification component and the second identification component belong to the first link layer identification
  • the second signaling indicates the first parameter set; the first parameter set indicates the first time resource pool; the target signaling is physical layer signaling, and the target signaling includes the second identifier Component; when the first signal is monitored in the first time resource pool, the first signal is scheduled by the target signaling.
  • the candidate time-frequency resource pool includes a first time-frequency resource block; when the first signal is not in the first time resource pool When it is sent, the candidate time-frequency resource pool does not include the first time-frequency resource block.
  • the first node U1 receives multiple target signalings in the first time resource pool, and any one of the multiple target signalings includes the second identification component;
  • the target signaling in step S201 is one of the multiple target signalings.
  • the first receiver when the wireless signal scheduled by any one of the multiple target signalings is not correctly decoded, the first receiver starts a third timer; when the at least one target signaling When all wireless signals scheduled by the target signaling in the signaling are correctly decoded, the first receiver maintains the stop state of the third timer;
  • the third timer is in a stopped state in the time slot to which the first time-frequency resource block belongs.
  • the first parameter set includes the initial value of the third timer.
  • the first node when the third timer is running, the first node is in a continuous receiving state.
  • the first node when the third timer is running, the first node is in an active time (Active Time).
  • the first node monitors physical layer signaling in all D2D resource pools.
  • the first node monitors physical layer signaling in all V2X resource pools.
  • the first node monitors DCI in all downlink time slots.
  • the wireless signal scheduled by each target signaling of the multiple target signalings is correctly decoded before the first time-frequency resource block (that is, no retransmission is required) .
  • At least one of the multiple target signalings is not sent by the second node U2.
  • the second node U2 sends multiple target signalings in the first time resource pool, and any target signaling of the multiple target signalings includes the second identification component;
  • the target signaling in step S202 is one target signaling among the multiple target signalings.
  • the first node U1 and the second node U2 are each UE.
  • the first time resource pool includes a first time interval and a second time interval; in the first time resource, the monitoring of the first signal is performed at least during the first time interval. carried out.
  • monitoring of the first signal is not performed in the second time interval.
  • the monitoring of the first signal is performed in the second time interval.
  • the first time-frequency resource block belongs to the first time slot of the second time interval in the time domain.
  • the first time-frequency resource block belongs to a time slot of the second time interval in the time domain.
  • the first node is in an active time (Active time) in the first time interval.
  • the DRX retransmission timer (drx-RetransmissionTimer) of the HARQ process corresponding to the first bit block is not started.
  • the first signaling indicates the HARQ process number corresponding to the first bit block.
  • the first signaling is any physical layer signaling that carries Y1 bits in the first link layer identifier, and the Y1 is a positive integer greater than 1.
  • the first signaling is any physical layer signaling that is sent by the second node and carries Y1 bits in the first link layer identifier, and the Y1 is a positive integer greater than 1.
  • the second node U2 and the first node U1 establish an RRC (Radio Resource Control, radio resource control) connection.
  • RRC Radio Resource Control, radio resource control
  • the identity of the second node U2 is indicated by the first signaling.
  • the identifier of the second node U2 is used for the scrambling code of the first signaling.
  • the identifier of the second node U2 is used for the scrambling code of the first signal.
  • the identifier of the second node U2 is used to generate the CRC of the first signaling.
  • the identifier of the second node U2 is used to generate the CRC of the first signal.
  • the first link identifier is generated by the ProSe function, and then transmitted to the first node U1 and the second node U2 respectively.
  • the first link identifier is generated by the ProSe application server, and then transmitted to the first node U1 and the second node U2 respectively.
  • the first link identifier is generated by the first node U1.
  • the first link identifier is transmitted by the first node U1 to the second node U2 through the ProSe function.
  • the first link identifier is transferred by the MAC layer of the first node U1 to the MAC layer of the second node U2.
  • the first link identifier is generated at the MAC layer of the first node U1.
  • the MAC layer of the first node U1 generates the first link identifier according to the application layer identifier passed by the ProSe application of the first node.
  • the number of bits identified by the application layer is greater than the number of bits identified by the first link layer.
  • Embodiment 6 illustrates the transmission flowchart of the first message according to an embodiment of the present application, as shown in FIG. 6.
  • the third entity E3 sends the first message to the fourth entity E4.
  • the fourth entity E4 determines a first link layer identifier list according to the first message, and the first link layer identifier is a link layer identifier in the first link layer identifier list.
  • the first link layer identifier list includes only one link layer identifier.
  • the first link layer identifier list includes multiple link layer identifiers.
  • the first link layer identifier is any link layer identifier in the first link layer identifier list, that is, the first node performs all link layer identifiers in the first link layer identifier list. Must monitor the corresponding wireless signal.
  • the first message indicates a first application layer identification list, and each application layer identification in the first application layer identification list is mapped to a chain in the first link layer identification list.
  • Road layer identification is mapped to a chain in the first link layer identification list.
  • the first message indicates a first application layer identifier list, and each application layer identifier in the first application layer identifier list is mapped to a link layer identifier; if the one link layer The target signaling corresponding to the identifier is received in the first time resource pool, and the one link layer identifier belongs to the first link layer identifier list.
  • the third entity E3 and the fourth entity E4 belong to the first node and the second node, respectively.
  • the third entity E3 and the fourth entity E4 belong to the ProSe application of the first node and the ProSe application of the second node, respectively.
  • the third entity E3 and the fourth entity E4 belong to the ProSe function and the ProSe application of the first node, respectively.
  • the third entity E3 and the fourth entity E4 belong to the ProSe function and the ProSe application of the second node, respectively.
  • the third entity E3 and the fourth entity E4 belong to the ProSe application server and the ProSe application of the first node, respectively.
  • the third entity E3 and the fourth entity E4 belong to the ProSe application of the first node and the MAC layer of the first node, respectively.
  • the third entity E3 and the fourth entity E4 belong to the ProSe application of the first node and the MAC layer of the first node, respectively.
  • Embodiment 7 illustrates a schematic diagram of the first-time resource pool, as shown in FIG. 7.
  • Figure 7
  • the first time resource pool is continuous in the time domain.
  • the first time resource pool includes a positive integer number of time slots.
  • one slot includes 14 multi-carrier symbols.
  • one slot includes 12 multi-carrier symbols.
  • one time slot includes one SCI search space.
  • the first time-frequency resource block belongs to the first time slot in the time domain; the first time slot is after the first time resource pool.
  • Embodiment 8 illustrates another schematic diagram of the first-time resource pool, as shown in FIG. 8.
  • the first time resource pool is discontinuous in the time domain.
  • the first time resource pool includes a positive integer number of time slots.
  • the time slot in the first time resource pool is reserved for V2X.
  • the time slot in the first time resource pool is reserved for a V2X resource pool (Resource Pool).
  • the first time-frequency resource block belongs to the first time slot in the time domain; the first time slot is after the first time resource pool.
  • the first time slot is reserved for V2X.
  • the first time resource pool and the first time slot are reserved for the same V2X resource pool.
  • Embodiment 9 illustrates a flow chart of timing with a fourth timer according to an embodiment of the present application, as shown in FIG. 9. The steps in Fig. 9 are executed in the first node.
  • step S901 the fourth timer is started; in step S902, the target signaling is monitored in the next candidate time slot, and the fourth timer is updated; in step S903, it is determined whether the target signaling is received; if so, In step S904, the first signal is monitored in the time-frequency resource scheduled by the received target signaling. If not, it is determined in step S905 whether the fourth timer has expired; if so, in step S906, stop The fourth timer; if not, skip to step S902.
  • step S904 is executed at least once.
  • the fourth timer is onduration timer.
  • the start of the fourth timer is to set the fourth timer to 0, and the update of the fourth timer is to add 1 to the value of the fourth timer; if the fourth timer is equal to the first integer, The fourth timer expires, otherwise the fourth timer does not expire.
  • the start of the fourth timer is to set the fourth timer to a first integer, and the update of the fourth timer is to subtract 1 from the value of the fourth timer; if the fourth timer is equal to 0, The fourth timer expires, otherwise the fourth timer does not expire.
  • the first integer is fixed.
  • the first integer is configured by downlink signaling.
  • the downlink signaling is higher-layer signaling.
  • the downlink signaling is broadcast.
  • the next candidate time slot is the nearest upcoming time slot.
  • the next candidate time slot is the upcoming nearest time slot reserved for V2X.
  • next candidate time slot is the nearest upcoming time slot reserved for the same V2X resource pool (Resource Pool).
  • the fourth timer is maintained at the MAC layer.
  • the fourth timer is maintained by a MAC entity (entity).
  • the first node when the fourth timer is running, the first node is in a continuous receiving state.
  • the first node when the fourth timer is running, the first node is in an active time (Active Time).
  • the first node monitors physical layer signaling in all D2D resource pools.
  • the first node monitors physical layer signaling in all V2X resource pools.
  • the first node monitors DCI in all downlink time slots.
  • the first parameter set includes the first integer.
  • Embodiment 10 illustrates a flow chart of timing using the first timer according to an embodiment of the present application, as shown in FIG. 10. The steps in Figure 10 are executed in the first node.
  • step S1001 it is determined whether the first signal is received, if yes, the first timer is started in step S1002, if not, it ends; in step S1003, the first signal is monitored in the next candidate time slot, And update the first timer; in step S1004, it is judged whether the first timer expires, if yes, end, if not, skip back to step S1003.
  • the first timer is DRX inactivity timer.
  • the start of the first timer is to set the first timer to 0, and the update of the first timer is to add 1 to the value of the first timer; if the first timer is equal to the second integer, The first timer expires, otherwise the first timer does not expire.
  • the starting of the first timer is to set the first timer to a second integer
  • the updating of the first timer is to subtract 1 from the value of the first timer; if the first timer is equal to 0, The first timer expires, otherwise the first timer does not expire.
  • the second integer is fixed.
  • the second integer is configured by downlink signaling.
  • the downlink signaling is higher-layer signaling.
  • the downlink signaling is broadcast.
  • the next candidate time slot is the nearest upcoming time slot.
  • the next candidate time slot is the upcoming nearest time slot reserved for V2X.
  • next candidate time slot is the nearest upcoming time slot reserved for the same V2X resource pool (Resource Pool).
  • the first time-frequency resource block belongs to the first time resource pool in the time domain.
  • the first timer is maintained at the MAC layer.
  • the first timer is maintained by a MAC entity (entity).
  • the first node when the first timer is running, the first node is in a continuous receiving state.
  • the first node when the first timer is running, the first node is in an active time (Active Time).
  • the first node monitors physical layer signaling in all D2D resource pools.
  • the first node monitors physical layer signaling in all V2X resource pools.
  • the first node monitors DCI in all downlink time slots.
  • the first parameter set includes the second integer.
  • the count of the first timer is maintained (that is, the first timer In operation); in the step S1002 (that is, when the first signal is successfully received in the first time resource pool), restart the first timer.
  • step S1001 that is, when the first signal is not successfully received in the first time resource pool
  • the stop state of the first timer is maintained
  • step S1002 That is, when the first signal is successfully received in the first time resource pool
  • a first timer is started.
  • a second timer is started; when the first bit block is successfully decoded When decoding and the first link layer identifier includes the first identifier component, the stop state of the second timer is maintained.
  • the first signaling is received in the first time resource pool.
  • the second timer is a DRX short cycle timer.
  • the first node when the first timer is running, the first node is in a continuous receiving state; when the second timer is running, the first node is in a discontinuous receiving state.
  • the first node when the first timer is running, the first node is in a short DRX cycle; when the second timer is running, the first node is in a long DRX cycle.
  • the first parameter set includes the initial value of the second timer.
  • the initial value of the second timer is the same as the number of time slots included in the first time resource pool.
  • Embodiment 11 illustrates a flowchart of updating the first timer according to an embodiment of the present application, as shown in FIG. 11.
  • Embodiment 11 can be regarded as a specific implementation of step S1003 in embodiment 10.
  • step S1101 it is determined whether the first signaling is received, if yes, the first timer is set to 0 in step S1102, and if not, the value of the first timer is increased by 1 in step S1103.
  • Embodiment 12 illustrates a schematic diagram of the first link layer identifier according to an embodiment of the present application, as shown in FIG. 11.
  • the first link layer identity is composed of a first identity component and a second identity component.
  • the first identification component and the second identification component are composed of 16 and 8 bits, respectively.
  • Embodiment 13 illustrates a schematic diagram of the first bit block according to an embodiment of the present application, as shown in FIG. 13.
  • the first bit block includes one MAC header, and at least one MAC SDU, and optional padding bits;
  • the MAC header includes one SL-SCH subheader and at least one MAC PDU subheader.
  • the SL-SCH subheader includes a first identification component.
  • Embodiment 14 illustrates a structural block diagram of a processing device used in the first node according to an embodiment of the present application; as shown in FIG. 14.
  • the processing device 1400 in the first node includes a first transmitter 1401, a first receiver 1402, and a second receiver 1403; the first transmitter 1401 is optional.
  • the first transmitter 1401 sends second signaling, the second signaling indicates a first parameter set, the first parameter set indicates the first time resource pool; the first receiver 1402 is in the first time resource
  • the first signal is monitored in the pool, the first bit block is used to generate the first signal, the first bit block includes a MAC PDU, and the first bit block includes the first identification component; when the first signal When successfully received in the first time resource pool, the second receiver 1403 monitors the first signaling on the first time-frequency resource block; when the first signal is in the first time resource pool When it is not successfully received, the second receiver 1403 gives up monitoring the first signaling on the first time-frequency resource block;
  • the first signaling is physical layer signaling, and the first signaling includes a second identification component; both the first identification component and the second identification component belong to the first link layer identification .
  • the abandoning of the second receiver 1403 to monitor the first signaling on the first time-frequency resource block includes: the second receiver 1403 remains off in the time slot of the first time-frequency resource block status.
  • the second receiver 1403 abandoning the monitoring of the first signaling on the first time-frequency resource block includes: turning off the radio frequency module in the time slot of the first time-frequency resource block.
  • the first receiver 1402 determines a first link layer identifier list, and the first link layer identifier is any link layer identifier in the first link layer identifier list.
  • the second receiver 1403 receives at least one target signaling in the first time resource pool; wherein, each target signaling in the at least one target signaling is physical layer signaling , Each target signaling in the at least one target signaling includes the second identification component; when the first signal is monitored in the first time resource pool, the first signal is One of the at least one target signaling is scheduled.
  • the first receiver 1402 when the first signal is not successfully received in the first time resource pool, the first receiver 1402 maintains the count of the first timer; when the first signal is in the When the first time resource pool is successfully received, the first receiver 1402 restarts the first timer.
  • the phrase maintaining the count of the first timer includes adding 1 to the value of the first timer every time a time slot passes.
  • the phrase maintaining the count of the first timer includes: adding 1 to the value of the first timer every time a time slot reserved for V2X passes.
  • the phrase restarting the first timer includes: setting the value of the first timer to 0 and keeping it running.
  • the first receiver 1402 when the first signal is not successfully received in the first time resource pool, the first receiver 1402 maintains the stop state of the first timer; When the first time resource pool is successfully received, the first receiver 1402 starts a first timer.
  • the phrase starting the first timer includes: setting the value of the first timer to 0 and keeping it running.
  • the first receiver 1402 when the wireless signal scheduled by any one of the at least one target signaling is not correctly decoded, the first receiver 1402 starts a third timer; when the at least one target signaling When all the wireless signals scheduled by the target signaling in the target signaling are correctly decoded, the first receiver maintains the stop state of the third timer; wherein, the third timer is at the first time.
  • the time slot to which the frequency resource block belongs is in a stopped state.
  • the first node 1200 is a user equipment.
  • the first transmitter 1401 includes the antenna 452, transmitter/receiver 454, multi-antenna transmitter processor 457, transmission processor 468, and controller/processor 459 in Figure 4 of the present application. At least one of the storage 460 and the data source 467.
  • the first transmitter 1401 includes the antenna 452, transmitter/receiver 454, multi-antenna transmitter processor 457, transmission processor 468, and controller/processor 459 shown in Figure 4 of the present application.
  • the first receiver 1402 includes the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and the data shown in FIG. 4 of the present application. At least the top five in source 467.
  • the first receiver 1402 includes the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and the data shown in FIG. 4 of the present application. At least the first four of Source 467.
  • the first receiver 1403 includes the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and the data shown in FIG. 4 of the present application. At least the first three of Source 467.
  • Embodiment 15 illustrates a structural block diagram of a processing device used in the second node according to an embodiment of the present application; as shown in FIG. 15.
  • the processing device 1500 in the second node includes a third receiver 1501, a second transmitter 1502, and a third transmitter 1503; wherein the third receiver 1501 is optional.
  • the third receiver 1501 receives the second signaling; the second signaling indicates a first parameter set; the first parameter set indicates the first time resource pool; the second transmitter 1502 sends a first Signal, the first bit block is used to generate the first signal, the first bit block includes a MAC PDU, the first bit block includes the first identification component; the third transmitter 1503 obtains the information from the candidate time-frequency Selecting a suitable time-frequency resource block from the resource pool, and sending the first signaling in the suitable time-frequency resource block;
  • the first signaling is physical layer signaling, and the first signaling includes a second identification component; both the first identification component and the second identification component belong to the first link layer identification
  • the candidate time-frequency resource pool includes a first time-frequency resource block; when the first signal is not in the first time resource When sent in the pool, the candidate time-frequency resource pool does not include the first time-frequency resource block.
  • the second transmitter 1502 determines a second link layer identifier list, and the first link layer identifier is a link layer identifier in the second link layer identifier list.
  • the third transmitter 1503 sends at least one target signaling in the first time resource pool; wherein, each target signaling in the at least one target signaling is physical layer signaling, Each target signaling in the at least one target signaling includes the second identification component; the first signal is scheduled by one target signaling in the at least one target signaling.
  • the third transmitter 1503 when the time domain resource occupied by the first signal is not in the first time resource pool, the third transmitter 1503 maintains the count of the first reference timer; when the first signal When the time domain resource occupied by the signal is in the first time resource pool, the third transmitter 1503 restarts the first reference timer.
  • the first reference timer is the equivalent of the first timer, which can ensure that the second node and the first node have the same understanding of the DRX state.
  • the third transmitter 1503 when the time domain resource occupied by the first signal is not in the first time resource pool, the third transmitter 1503 maintains the stop state of the first reference timer; When the time domain resource occupied by a signal is in the first time resource pool, the third transmitter 1503 starts a first reference timer.
  • the third transmitter 1503 when the ACK associated with any target signaling in the at least one target signaling is not received, the third transmitter 1503 starts a third reference timer; when the at least one target signaling When all the ACKs associated with the target signaling in the signaling are received, the third transmitter 1503 maintains the stop state of the third reference timer; wherein, the third reference timer is at the first time.
  • the time slot to which the frequency resource block belongs is in a stopped state.
  • the second node 1500 is a user equipment.
  • the second transmitter 1502 includes the antenna 420, the transmitter 418, the transmission processor 416, and the controller/processor 475.
  • the second transmitter 1502 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475.
  • the second transmitter 1503 includes the antenna 420, the transmitter 418, the transmission processor 416, and the controller/processor 475.
  • the second transmitter 1503 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, and the controller/processor 475.
  • the third receiver 1501 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, and the controller/processor 475.
  • the third receiver 1501 includes the controller/processor 475.
  • User equipment, terminals and UE in this application include, but are not limited to, drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication devices, wireless sensors, network cards, Internet of Things terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC) terminal, data card, internet card, in-vehicle communication equipment, low-cost mobile phone, low cost Cost of wireless communication equipment such as tablets.
  • MTC Machine Type Communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes, but is not limited to, macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B), NR Node B, TRP (Transmitter Receiver Point) and other wireless communications equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了用于不连续接收的方法和装置。第一节点在第一时间资源池中监测第一信号,第一比特块被用于生成所述第一信号,所述第一比特块包括一个MAC PDU,所述第一比特块包括第一标识分量;第二接收模块,当所述第一信号在所述第一时间资源池中被成功接收时,在第一时频资源块上监测第一信令;当所述第一信号在所述第一时间资源池中未被成功接收时,放弃在第一时频资源块上监测第一信令;其中,所述第一信令是物理层信令,所述第一信令包括第二标识分量;所述第一标识分量和所述第二标识分量都属于第一链路层标识。本申请能避免引入副链路MAC CE,尽可能和现有标准保持兼容;此外,本申请能降低空口开销。

Description

用于不连续接收的方法和装置 技术领域
本发明涉及无线通信系统中的方法和装置,尤其涉及无线通信系统中的支持不连续接收的方案和装置。
背景技术
DRX(Discontinuous Reception,不连续接收)是蜂窝通信中的常用方法,能减少通信终端的功耗,提高待机时间。基站通过DCI(Downlink Control Information,下行控制信息)或者MAC(Medium Access Control,媒体接入控制)CE(Control Element,控制单元)控制与DRX有关的计时器,进而控制终端在给定子帧是否进行无线接收。
V2X(Vehicle to everything,车对外界)是蜂窝通信中的重要应用场景,能实现两个通信终端之间的直接通信。
在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#86次全会中,V2X DRX被正式立项。
发明内容
发明人通过研究发现,V2X中,SCI(Sidelink Control Information,副链路控制信息)仅能携带完整的MAC层的接收者标识的一部分,即UE(User Equipment,用户设备)接收到SCI以后并不能确定PSSCH(Physical Sidelink Shared CHannel,物理副链路共享信道)上传输的数据是否是有用数据。因此,UE根据SCI可能无法精确调整与DRX有关的计时器。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在本申请的描述中,只是采用V2X场景作为一个典型应用场景或者例子;本申请也同样适用于面临相似问题的V2X之外的例如下行传输等场景,并取得类似NR V2X场景中的技术效果。此外,不同场景(包括但不限于V2X,下行通信等场景)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了被用于无线通信的第一节点中的方法,其中,包括:
在第一时间资源池中监测第一信号,第一比特块被用于生成所述第一信号,所述第一比特块包括一个MAC PDU(Protocol Data Unit,协议数据单元),所述第一比特块包括第一标识分量;
当所述第一信号在所述第一时间资源池中被成功接收时,在第一时频资源块上监测第一信令;当所述第一信号在所述第一时间资源池中未被成功接收时,放弃在第一时频资源块上监测第一信令;
其中,所述第一信令是物理层信令,所述第一信令包括第二标识分量;所述第一标识分量和所述第二标识分量都属于第一链路层标识。
作为一个实施例,所述第一节点是UE。
作为一个实施例,所述第一节点是中继节点。
作为一个实施例,所述第一比特块在SL-SCH(SideLink Share CHannel,副链路共享信道)上传输。
作为上述实施例的子实施例,上述实施例能利用MAC SDU(Service Data Unit,服务数据单元)控制DRX状态,避免引入副链路MAC CE,尽可能和现有标准保持兼容。
作为一个实施例,第一节点判断第一信号是否是有用信号,进而更准确判断在所述第一时频资源块上是否执行无线接收。
作为一个实施例,上述方法能使得第一信号的调度信令无需携带所述第一链路层标识,降低了空口开销。
具体的,根据本发明的一个方面,所述被用于无线通信的第一节点中的方法包括:
确定第一链路层标识列表,所述第一链路层标识是所述第一链路层标识列表中的任一链路层标识。
具体的,根据本发明的一个方面,所述被用于无线通信的第一节点中的方法包括:
在所述第一时间资源池中接收到至少一个目标信令;
其中,所述至少一个目标信令中的每个目标信令是物理层信令,所述至少一个目标信令中的每个目标信令包括所述第二标识分量;当所述第一信号在所述第一时间资源池中被监测到时,所述第一信号被所述至少一个目标信令中的一个目标信令所调度。
作为一个实施例,所述第一节点在所述第一时间资源池中接收到的任一目标信令调度一个物理层信道,所述第一节点在所有接收到的目标信令所调度的物理层信道中监测所述第一信号。
作为一个实施例,所述任一目标信令是SCI,所述第一物理层信道是PSSCH。
具体的,根据本发明的一个方面,所述被用于无线通信的第一节点中的方法包括:
发送第二信令;所述第二信令指示第一参数集合;所述第一参数集合指示所述第一时间资源池。
作为一个实施例,所述第一节点是UE,上述方法能确保所述第一节点的对端UE能推断所述第一节点的DRX状态。
具体的,根据本发明的一个方面,所述被用于无线通信的第一节点中的方法包括:
当所述第一信号在所述第一时间资源池中未被成功接收时,维持第一计时器的计数;当所述第一信号在所述第一时间资源池中被成功接收时,重新开始第一计时器。
作为一个实施例,所述第一比特块包括一个媒体接入控制服务数据单元(MAC SDU)以及相应的MAC头,所述相应的MAC头包括所述第一标识分量。
作为一个实施例,上述方法使得所述第一节点能根据MAC SDU对应的MAC头确定第一比特块是否为有用数据,进而确定如果调整所述第一计时器;上述方法对标准改动较小,尽可能的保持兼容性。
作为一个实施例,上述方法避免在副链路引入MAC CE,降低了实现复杂度,简化设计。
作为一个实施例,所述相应的MAC头是第一比特块中的所述一个MAC PDU中的MAC PDU头(head)。
作为一个实施例,所述第一比特块在一个SL-SCH(SideLink Share CHannel,副链路共享信道)上传输,所述相应的MAC头是第一比特块中的所述一个MAC PDU中的SL-SCH子头(subheader)。
作为一个实施例,所述第一比特块在一个SL-SCH(SideLink Share CHannel,副链路共享信道)上传输,所述相应的MAC头是第一比特块中的所述一个MAC PDU中的DST域。
具体的,根据本发明的一个方面,所述被用于无线通信的第一节点中的方法包括:
当所述第一信号在所述第一时间资源池中未被成功接收时,维持第一计时器的停止状态;当所述第一信号在所述第一时间资源池中被成功接收时,开始第一计时器。
作为一个实施例,上述方法使得所述第一节点能根据MAC SDU对应的MAC头确定第一比特块是否为有用数据,进而确定如果调整所述第一计时器;上述方法对标准改动较小,尽可能的保持兼容性。
作为一个实施例,上述方法避免在副链路引入MAC CE,降低了实现复杂度,简化设 计。
具体的,根据本发明的一个方面,当所述至少一个目标信令中的任一目标信令所调度的无线信号未被正确译码时,开始第三计时器;当所述至少一个目标信令中的所有目标信令所调度的无线信号都被正确译码时,维持第三计时器的停止状态;
其中,所述第三计时器在所述第一时频资源块所属的时隙中处于停止状态。
作为一个实施例,对于所述至少一个目标信令中的任一目标信令,发送相关联的HARQ-ACK指示相应调度的无线信号是否被正确译码。
本申请公开了一种被用于无线通信的第二节点中的方法,其中,包括:
发送第一信号,第一比特块被用于生成所述第一信号,所述第一比特块包括一个MAC PDU,所述第一比特块包括第一标识分量;
从候选时频资源池中选择合适的时频资源块,并在所述合适的时频资源块中发送第一信令;
其中,所述第一信令是物理层信令,所述第一信令包括第二标识分量;所述第一标识分量和所述第二标识分量都属于第一链路层标识;当所述第一信号在所述第一时间资源池中被发送时,所述候选的时频资源池包括第一时频资源块;当所述第一信号未在所述第一时间资源池中被发送时,所述候选的时频资源池不包括第一时频资源块。
作为一个实施例,上述方法能确保所述第二节点避开第一节点的不接收时隙发送第一信令,确保第一信令的接收。
作为一个实施例,所述候选时频资源池中包括的RE(Resource Element,资源粒子)的数量大于所述合适的时频资源块中所包括的RE的数量。
作为一个实施例,所述候选时频资源池、所述第一时频资源块和所述合适的时频资源块分别包括多个RE。
作为一个实施例,所述候选时频资源池包括多个时频资源块,所述多个时频资源块中每个时频资源块在时域上是连续的,所述合适的时频资源块是所述多个时频资源块中的一个时频资源块,所述多个时频资源块中之少有2个时频资源块在时间上不连续。
作为一个实施例,所述合适的时频资源块和所述第一时频资源块是所述多个时频资源块中的两个不同的时频资源块。
作为一个实施例,所述合适的时频资源块和所述第一时频资源块完全重叠。
作为一个实施例,所述合适的时频资源块和所述第一时频资源块部分重叠。
作为一个实施例,如何选择所述合适的时频资源块是实现相关的。
作为一个实施例,从所述候选时频资源池中随机选择所述合适的时频资源块。
作为一个实施例,所述候选时频资源池是由所述第二节点自行确定的。
作为一个实施例,所述候选时频资源池是由下行信令配置的。
作为一个实施例,所述候选时频资源池是一个V2X资源池(Resource Pool)。
作为一个实施例,采用LTE(Long Term Evolution,长期演进)标准TS36.213中的方法选择所述合适的时频资源块,根据测量到的信道质量和SCI中的优先级选择可用的时频资源块集合,然后由更高层从所述可用的时频资源块集合中选择所述合适的时频资源块。具体的,根据本发明的一个方面,所述被用于无线通信的第二节点中的方法包括:
确定第二链路层标识列表,所述第一链路层标识是所述第二链路层标识列表中的一个链路层标识。
作为一个实施例,所述第二节点接收应用层信令以确定第二链路层标识列表。
作为一个实施例,所述第二节点接收RRC层信令以确定第二链路层标识列表。
作为一个实施例,所述第二节点接收MAC层信令以确定第二链路层标识列表。
作为一个实施例,所述第二节点在MAC层自行确定第二链路层标识列表。
作为一个实施例,所述应用层信令是由所述第二节点自行生成的。
作为一个实施例,所述应用层信令是被第一节点发送给所述第二节点的。
作为一个实施例,所述MAC层信令是被第一节点发送给所述第二节点的。
作为一个实施例,所述应用层信令是被网络侧设备发送给所述第二节点的。
作为一个实施例,所述应用层信令是被应用服务器发送给所述第二节点的。
具体的,根据本发明的一个方面,所述被用于无线通信的第二节点中的方法包括:
在所述第一时间资源池中发送至少一个目标信令;
其中,所述至少一个目标信令中的每个目标信令是物理层信令,所述至少一个目标信令中的每个目标信令包括所述第二标识分量;所述第一信号被所述至少一个目标信令中的一个目标信令所调度。
具体的,根据本发明的一个方面,所述被用于无线通信的第二节点中的方法包括:
接收第二信令;所述第二信令指示第一参数集合;所述第一参数集合指示所述第一时间资源池。
具体的,根据本发明的一个方面,所述被用于无线通信的第二节点中的方法包括:
当所述第一信号所占用的时域资源未在所述第一时间资源池中时,维持第一参考计时器的计数;当所述第一信号所占用的时域资源在所述第一时间资源池中时,重新开始第一参考计时器。
具体的,根据本发明的一个方面,所述被用于无线通信的第二节点中的方法包括:当所述第一信号所占用的时域资源未在所述第一时间资源池中时,维持第一参考计时器的停止状态;当所述第一信号所占用的时域资源在所述第一时间资源池中时,开始第一参考计时器。
具体的,根据本发明的一个方面,所述被用于无线通信的第二节点中的方法包括:当所述至少一个目标信令中的任一目标信令所关联的ACK未被接收到时,开始第三参考计时器;当所述至少一个目标信令中的所有目标信令所关联的ACK都被接收到时,维持第三参考计时器的停止状态。
其中,所述第三参考计时器在所述第一时频资源块所属的时隙中处于停止状态。
本申请公开了被用于无线通信的第一节点,其中,包括:
第一接收机,在第一时间资源池中监测第一信号,第一比特块被用于生成所述第一信号,所述第一比特块包括一个MAC PDU,所述第一比特块包括第一标识分量;
第二接收机,当所述第一信号在所述第一时间资源池中被成功接收时,在第一时频资源块上监测第一信令;当所述第一信号在所述第一时间资源池中未被成功接收时,放弃在第一时频资源块上监测第一信令;
其中,所述第一信令是物理层信令,所述第一信令包括第二标识分量;所述第一标识分量和所述第二标识分量都属于第一链路层标识。
本申请公开了被用于无线通信的第二节点,其中,包括:
第二发送机,发送第一信号,第一比特块被用于生成所述第一信号,所述第一比特块包括一个MAC PDU,所述第一比特块包括第一标识分量;
第三发送机,当所述第一信号在所述第一时间资源池中被发送时,在第一时频资源块上发送第一信令;当所述第一信号未在所述第一时间资源池中被发送时,放弃在第一时频资源块上发送第一信令;
其中,所述第一信令是物理层信令,所述第一信令包括第二标识分量;所述第一标识分量和所述第二标识分量都属于第一链路层标识。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更加明显:
图1示出了根据本发明的一个实施例的根据第一信号确定是否监测第一信令的流程图;
图2示出了根据本发明的一个实施例的网络架构的示意图;
图3示出了根据本发明的一个实施例的用户平面和控制平面的无线电协议架构的实施例的示意图;
图4示出了根据本发明的一个实施例的通信节点的硬件模块示意图;
图5示出了根据本发明的一个实施例的第一节点和第二节点之间的传输流程图;
图6示出了根据本发明的一个实施例的第一消息的传输流程图;
图7示出了根据本发明的一个实施例的第一时间资源池的示意图;
图8示出了根据本发明的又一个实施例的第一时间资源池的示意图;
图9示出了根据本发明的一个实施例的利用第四计时器计时的流程图;
图10示出了根据本发明的一个实施例的利用第一计时器计时的流程图;
图11示出了根据本发明的一个实施例的更新第一计时器的流程图;
图12示出了根据本发明的一个实施例的第一链路层标识的示意图;
图13示出了根据本发明的一个实施例的第一比特块的示意图;
图14示出了根据本发明的一个实施例的用于第一节点中的处理装置的结构框图;
图15示出了根据本发明的一个实施例的用于第二节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的根据第一信号确定是否监测第一信令的流程图,如附图1所示。
在实施例1中,第一节点100在步骤101中在第一时间资源池中监测第一信号,第一比特块被用于生成所述第一信号,所述第一比特块包括一个MAC PDU,所述第一比特块包括第一标识分量;在步骤S102中,当所述第一信号在所述第一时间资源池中被成功接收时,在第一时频资源块上监测第一信令,当所述第一信号在所述第一时间资源池中未被成功接收时,放弃在第一时频资源块上监测第一信令;
实施例1中,所述第一信令是物理层信令,所述第一信令包括第二标识分量;所述第一标识分量和所述第二标识分量都属于第一链路层标识。
作为一个实施例,所述第一信令的格式为SCI格式(format)0-2。
作为一个实施例,所述第一信令的格式为SCI格式0。
作为一个实施例,所述第一信号所占用的时频资源被第一阶(1st stage)SCI指示;所述第一信号的HARQ进程号、NDI(New Data Indicator,新数据指示)游第二阶(2nd stage)SCI指示。
作为一个实施例,所述第一信号是所述第一比特块依次经过信道编码,加扰,调制,层映射,预编码,资源映射,生成多载波符号之后得到的。
作为一个实施例,所述第一信号是所述第一比特块依次经过添加CRC,信道编码,加扰,调制,资源映射,生成多载波符号之后得到的。
作为一个实施例,所述第一信号是所述第一比特块经过加扰,CRC编码,信道编码,再次加扰,调制,资源映射,多载波符号生成之后得到的。
作为一个实施例,所述短语监测第一信号包括:在被调度的时频资源中执行信道译码,根据CRC(Cyclic Redundancy Check,循环冗余校验)判断信道译码是否正确。
作为上述实施例的一个子实施例,如果未能通过CRC验证,本次监测未能成功接收第一信号;如果通过CRC验证,将信道译码之后的信息比特传递给更高层,由更高层判断是否成功接收所述第一信号。
作为上述实施例的一个子实施例,如果未能通过CRC验证,本次监测未能成功接收第一信号;如果通过CRC验证,本次监测成功接收第一信号。
作为一个实施例,所述被调度的时频资源包括多个RE(Resource Element,资源粒子)。
作为一个实施例,所述第一比特块在SL-SCH(SideLink Shared CHannel,副链路共享信道)上被传输,所述被调度的时频资源被SCI(Sidelink Control Information,副链路控制信息)所调度。
作为一个实施例,所述第一比特块在DL-SCH(DownLink Shared CHannel,下行共享信道)上被传输,所述被调度的时频资源被DCI(Downlink Control Information,下行控制信息)所调度。
作为一个实施例,所述短语监测第一信号包括:在MAC层对物理层传过来的信息比特块进行译码,根据所述信息比特块的含义确定是否正确接收第一信号。
作为一个实施例,当所述信息比特块中包括所述第一标识分量,判断成功接收所述第一信号。
作为一个实施例,当所述信息比特块被MAC实体(entity)成功译码并且当所述信息比特块中包括所述第一标识分量,判断成功接收所述第一信号。
作为一个实施例,当所述信息比特块被MAC实体(entity)成功译码并且当所述信息比特块中包括所述第一标识分量,判断成功接收所述第一信号。
作为一个实施例,当判断成功接收所述第一信号时,所述信息比特块是所述第一比特块。
作为一个实施例,所述短语监测第一信令包括:执行盲译码(Blind Decoding)。
作为一个实施例,所述短语监测第一信令包括:执行能量检测。
作为一个实施例,所述短语监测第一信令包括:执行CRC验证。
作为一个实施例,所述短语监测第一信令包括:在多个RE(Resource Element,资源粒子)集合中的每个RE集合上分别执行盲译码,针对每次盲译码,根据CRC判断是否译码正确,如果正确译码并且译码的SCI中的第一比特域等于所述第二标识分量,所述第一信令被接收到并且所述第一信令是所述译码的SCI;如果错误译码或者译码的SCI中的第一比特域不等于所述第二标识分量,所述第一信令未被接收到。
作为上述实施例的一个子实施例,所述多个RE集合分别被预留给一个PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)。
作为上述实施例的一个子实施例,所述第一域包括目的地身份(Destination ID)域(field)。
作为上述实施例的一个子实施例,所述第一域包括原身份(Source ID)域(field)。
作为上述实施例的一个子实施例,所述第一域包括组目的地身份(Group Destination ID)域(field)。
作为一个实施例,所述短语监测第一信令包括:在多个RE(Resource Element,资源粒子)集合中的每个RE集合上分别执行盲译码,针对每次盲译码,根据CRC判断是否译码正确,如果正确译码并且译码的DCI中的第一比特域等于所述第二标识分量,所述第一信令被接收到并且所述第一信令是所述译码的DCI;如果错误译码或者译码的DCI中的第一比特域不等于所述第二标识分量,所述第一信令未被接收到。
作为上述实施例的一个子实施例,所述多个RE集合分别被预留给一个PDCCH (Physical Downlink Control Channel,物理下行控制信道)。
作为一个实施例,所述第一链路层标识由X个比特组成,所述第二标识分量由Y1个比特组成,所述第一标识分量由Y2个比特组成,所述X、所述Y1和所述Y2分别是正整数。
作为一个实施例,所述Y1加上所述Y2的和与所述X相等。
作为一个实施例,所述Y1加上所述Y2的和小于所述X。
作为一个实施例,所述X个比特由所述Y1个比特和所述Y2个比特组成。
作为一个实施例,所述Y1个比特和所述Y2个比特分别是所述X个比特中的Y1个最低位比特(LSB,Least Significant Bit)和Y2个最高位比特(MSB,Most Significant Bit)。
作为一个实施例,所述X、所述Y1和所述Y2分别是8的倍数。
作为一个实施例,所述X、所述Y1和所述Y2分别为24,16和8。
作为一个实施例,所述X、所述Y1和所述Y2分别为24,8和16。
作为一个实施例,所述X、所述Y1和所述Y2分别为32,8和16。
作为一个实施例,所述X、所述Y1和所述Y2分别为32,8和24。
作为一个实施例,所述第一信令包括SCI(Sidelink Control Information,副链路控制信息)。
作为一个实施例,所述第一信令包括DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第一时频资源块包括多个RE(Resource Element,资源单元)。
作为一个实施例,所述第一时频资源块在频域上属于一个载波。
作为一个实施例,所述第一时频资源块在时域上包括正整数个多载波符号。
作为一个实施例,所述第一时频资源块被预留给物理层控制信令。
作为一个实施例,所述第一时频资源块被预留给SCI。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single-carrier Frequency-Division Multiple Access,单载波频分多址)符号。
作为一个实施例,所述多载波符号是FBMC(Filterbank Multicarrier,滤波器组多载波)符号。
作为一个实施例,所述第一链路层标识是一个Prose UE ID。
作为一个实施例,所述第一链路层标识是一个目的地(Destination)-层2(Layer-2)标识。
作为一个实施例,所述第一节点100确定第一链路层标识列表,所述第一链路层标识是所述第一链路层标识列表中的任一链路层标识。
作为一个实施例,所述第一接收机接收应用层信令以确定第一链路层标识列表。
作为一个实施例,所述第一接收机接收RRC(Radio Resource Control,无线资源控制)层信令以确定第一链路层标识列表。
作为一个实施例,所述第一接收机在MAC层自行确定所述第一链路层标识列表中的至少一个链路层标识。
作为一个实施例,所述应用层信令是由所述第一节点自行生成的。
作为一个实施例,所述应用层信令是被网络侧设备发送给所述第一节点的。
作为一个实施例,所述应用层信令是被应用服务器发送给所述第一节点的。
作为一个实施例,所述第一链路层标识列表完全由所述应用层信令指示。
作为一个实施例,所述应用层信令指示Q个链路层标识,所述Q个链路层标识中的 每个链路层标识对应一个物理层标识,所述Q是大于1的正整数;所述第一链路层标识列表由所述Q个链路层标识中相应的物理层标识在所述第一时间资源池的物理层控制信道中被监测到的那些链路层标识组成。
作为一个实施例,所述物理层控制信道是PSCCH(Physical Sidelink Control CHannel,物理副链路控制信道)。
作为一个实施例,所述物理层控制信道是PDCCH(Physical Downlink Control CHannel,物理副链路控制信道)。
作为一个实施例,所述第一链路层标识列表仅包括所述第一链路层标识。
作为一个实施例,所述第一链路层标识列表包括多个链路层标识,所述第一链路层标识是所述多个链路层标识中的一个链路层标识。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。附图2说明了5G NR(NewRadio,新空口),LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统架构下的V2X通信架构。5G NR或LTE网络架构可称为5GS(5GSystem)/EPS(Evolved Packet System,演进分组系统)某种其它合适术语。
实施例2的V2X通信架构包括UE(User Equipment,用户设备)201,UE241,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220,ProSe功能250和ProSe应用服务器230。所述V2X通信架构可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,所述V2X通信架构提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(UserPlaneFunction,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。所述ProSe功能 250是用于适地服务(ProSe,Proximity-based Service)所需的网络相关行为的逻辑功能;包括DPF(Direct Provisioning Function,直接供应功能),直接发现名称管理功能(Direct Discovery Name Management Function),EPC水平发现ProSe功能(EPC-level Discovery ProSe Function)等。所述ProSe应用服务器230具备存储EPC ProSe用户标识,在应用层用户标识和EPC ProSe用户标识之间映射,分配ProSe限制的码后缀池等功能。
作为一个实施例,所述UE201和所述UE241之间通过PC5参考点(Reference Point)连接。
作为一个实施例,所述ProSe功能250分别通过PC3参考点与所述UE201和所述UE241连接。
作为一个实施例,所述ProSe功能250通过PC2参考点与所述ProSe应用服务器230连接。
作为一个实施例,所述ProSe应用服务器230连接分别通过PC1参考点与所述UE201的ProSe应用和所述UE241的ProSe应用连接。
作为一个实施例,本申请中的所述第一节点是所述UE201。
作为一个实施例,本申请中的所述第二节点是所述UE201。
作为一个实施例,本申请中的所述第一节点是所述UE241。
作为一个实施例,本申请中的所述第二节点是所述UE241。
作为一个实施例,本申请中的所述第一节点和所述第二节点分别是所述UE201和所述UE241。
作为一个实施例,所述UE201和所述UE241之间的无线链路对应本申请中的副链路(Sidelink,SL)。
作为一个实施例,从所述UE201到NR节点B的无线链路是上行链路。
作为一个实施例,从NR节点B到UE201的无线链路是下行链路。
作为一个实施例,所述UE201支持DRX传输。
作为一个实施例,所述UE241支持DRX传输。
作为一个实施例,所述gNB203是宏蜂窝(MarcoCellular)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(PicoCell)基站。
作为一个实施例,所述gNB203是家庭基站(Femtocell)。
作为一个实施例,所述gNB203是支持大时延差的基站设备。
作为一个实施例,所述gNB203是一个飞行平台设备。
作为一个实施例,所述gNB203是卫星设备。
实施例3
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,附图3用三个层展示用于UE和gNB的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301,或者物理层。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干协议层,包括终止于网络侧上的P-GW213处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及 提供gNB之间的对UE的越区移交支持。RLC子层303提供上层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的第二节点。
作为一个实施例,所述L2层305属于更高层。
作为一个实施例,所述L3层中的RRC子层306属于更高层。
实施例4
实施例4示出了根据本申请的一个实施例的通信节点的硬件模块示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450 为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二节点450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:在第一时间资源池中监测第一信号,第一比特块被用于生成所述第一信号,所述第一比特块包括一个MAC PDU,所述第一比特块包括第一标识分量;当所述第一信号在所述第一时间资源池中被成功接收时,在第一时频资源块上监测第一信令;当所述第一信号在所述第一时间资源池中未被成功接收时,放弃在第一时频资源块上监测第一信令;其中,所述第一信令是物理层信令,所述第一信令包括第二标识分量;所述第一标识分量和所述第二标识分量都属于第一链路层标识。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一时间资源池中监测第一信号,第一比特块被用于生成所述第一信号,所述第一比特块包括一个MAC PDU,所述第一比特块包括第一标识分量;当所述第一信号在所述第一时间资源池中被成功接收时,在第一时频资源块上监测第一信令;当所述第一信号在所述第一时间资源池中未被成功接收时,放弃在第一时频资源块上监测第一信令;其中,所述第一信令是物理层信令,所述第一信令包括第二标识分量;所述第一标识分量和所述第二标识分量都属于第一链路层标识。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:发送第一信号,第一比特块被用于生成所述第一信号,所述第一比特块包括一个MAC PDU,所述第一比特块包括第一标识分量;从候选时频资源池中选择合适的时频资源块,并在所述合适的时频资源块中发送第一信令;其中,所述第一信令是物理层信令,所述第一信令包括第二标识分量;所述第一标识分量和所述第二标识分量都属于第一链路层标识;当所述第一信号在所述第一时间资源池中被发送时,所述候选的时频资源池包括第一时频资源块;当所述第一信号未在所述第一时间资源池中被发送时,所述候选的时频资源池不包括第一时频资源块。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信号,第一比特块被用于生成所述第一信号,所述第一比特块包括一个MAC PDU,所述第一比特块包括第一标识分量;从候选时频资源池中选择合适的时频资源块,并在所述合适的时频资源块中发送第一信令;其中,所述第一信令是物理层信令,所述第一信令包括第二标识分量;所述第一标识分量和所述第二标识分量都属于第一链路层标识;当所述第一信号在所述第一时间资源池中被发送时,所述候选的时频资源池包括第一时频资源块;当所述第一信号未在所述第一时间资源池中被发送时,所述候选的时频资源池不包括第一时频资源块。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第二通信设备410是一个UE。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459被用于监测第一信号和第一信令;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475被用于发送第一信号和第一信令。
实施例5
实施例5示例了根据本申请的一个实施例的第一节点和第二节点之间的传输流程图,如附图5所示。附图5中,方框F0和方框F1中的步骤分别是可选的。
对于第一节点U1,在步骤S101中发送第二信令;在步骤S102中在第一时间资源池中接收目标信令;在步骤S103中在第一时间资源池中监测第一信号,第一比特块被用于生成所述第一信号,所述第一比特块包括一个MAC PDU,所述第一比特块包括第一标识分量;在步骤S104中,当所述第一信号在所述第一时间资源池中被成功接收时,在第一时频资源块上监测第一信令;当所述第一信号在所述第一时间资源池中未被成功接收时,放弃在第一时频资源块上监测第一信令;
对于第二节点U2,在步骤S201中接收第二信令;在步骤S202中在第一时间资源池中发送目标信令;在步骤S203中发送所述第一信号;在步骤S204中,从候选时频资源池中选择合适的时频资源块,并在所述合适的时频资源块中发送第一信令;
实施例5中,所述第一信令是物理层信令,所述第一信令包括第二标识分量;所述第一标识分量和所述第二标识分量都属于第一链路层标识;所述第二信令指示第一参数集合;所述第一参数集合指示所述第一时间资源池;所述目标信令是物理层信令,所述目标信令包括所述第二标识分量;当所述第一信号在所述第一时间资源池中被监测到时,所述第一信号被所述目标信令所调度。当所述第一信号在所述第一时间资源池中被发送时,所述候选的时频资源池包括第一时频资源块;当所述第一信号未在所述第一时间资 源池中被发送时,所述候选的时频资源池不包括第一时频资源块。
作为一个实施例,所述第一节点U1在所述第一时间资源池中接收到多个目标信令,所述多个目标信令中任一目标信令包括所述第二标识分量;所述步骤S201中的目标信令是所述多个目标信令中的一个目标信令。
作为一个实施例,当所述多个目标信令中的任一目标信令所调度的无线信号未被正确译码时,所述第一接收机开始第三计时器;当所述至少一个目标信令中的所有目标信令所调度的无线信号都被正确译码时,所述第一接收机维持第三计时器的停止状态;
其中,所述第三计时器在所述第一时频资源块所属的时隙中处于停止状态。
作为一个实施例,所述第一参数集合包括所述第三计时器的初始值。
作为一个实施例,当所述第三计时器在运行时,所述第一节点处于连续接收状态。
作为一个实施例,当所述第三计时器在运行时,所述第一节点处于活跃时间(Active Time)。
作为一个实施例,当所述第三计时器在运行时,所述第一节点在所有D2D资源池中监测物理层信令。
作为一个实施例,当所述第三计时器在运行时,所述第一节点在所有V2X资源池中监测物理层信令。
作为一个实施例,当所述第三计时器在运行时,所述第一节点在所有下行时隙中监测DCI。
作为上述实施例的一个子实施例,所述多个目标信令中的每个目标信令所调度的无线信号在所述第一时频资源块之前被正确译码(即不需要重传)。
作为上述实施例的一个子实施例,所述多个目标信令中至少有一个目标信令不是所述第二节点U2发送的。
作为一个实施例,所述第二节点U2在所述第一时间资源池中发送了多个目标信令,所述多个目标信令中任一目标信令包括所述第二标识分量;所述步骤S202中的目标信令是所述多个目标信令中的一个目标信令。
作为一个实施例,所述第一节点U1和所述第二节点U2分别是一个UE。
作为一个实施例,所述第一时间资源池包括第一时间间隔和第二时间间隔;在所述第一时间资源中,针对所述第一信号的监测至少在所述第一时间间隔中被执行。
作为一个实施例,在所述第一时间资源中,针对所述第一信号的监测不在所述第二时间间隔中被执行。
作为一个实施例,在所述第一时间资源中,针对所述第一信号的监测在所述第二时间间隔中被执行。
作为一个实施例,所述第一时频资源块在时域上属于所述第二时间间隔的第一个时隙。
作为一个实施例,所述第一时频资源块在时域上属于所述第二时间间隔的一个时隙。
作为上述实施例的一个子实施例,所述第一节点在所述第一时间间隔中处于活跃时间(Active time)。
作为一个实施例,在所述第一时频资源块所属的时隙中,所述第一比特块对应的HARQ进程的DRX重传计时器(drx-RetransmissionTimer)未启动。
作为一个实施例,所述第一信令指示所述第一比特块对应的HARQ进程号。
作为一个实施例,所述第一信令是任一携带了所述第一链路层标识中Y1个比特的物理层信令,所述Y1是大于1的正整数。
作为一个实施例,所述第一信令是被第二节点发送的任一携带了所述第一链路层标识中Y1个比特的物理层信令,所述Y1是大于1的正整数。
作为一个实施例,所述第二节点U2和所述第一节点U1建立了RRC(Radio Resource Control,无线资源控制)连接。
作为一个实施例,所述第二节点U2的标识被所述第一信令指示。
作为一个实施例,所述第二节点U2的标识被用于所述第一信令的扰码。
作为一个实施例,所述第二节点U2的标识被用于所述第一信号的扰码。
作为一个实施例,所述第二节点U2的标识被用于生成所述第一信令的CRC。
作为一个实施例,所述第二节点U2的标识被用于生成所述第一信号的CRC。
作为一个实施例,所述第一链路标识是被ProSe功能生成,然后分别传递给所述第一节点U1和所述第二节点U2的。
作为一个实施例,所述第一链路标识是被ProSe应用服务器生成,然后分别传递给所述第一节点U1和所述第二节点U2的。
作为一个实施例,所述第一链路标识是被所述第一节点U1生成。
作为上述实施例的一个子实施例,所述第一链路标识是被所述第一节点U1通过ProSe功能传递给所述第二节点U2的。
作为上述实施例的一个子实施例,所述第一链路标识是被所述第一节点U1的MAC层传递给所述第二节点U2的MAC层。
作为上述实施例的一个子实施例,所述第一链路标识是在所述第一节点U1的MAC层被生成的。
作为上述实施例的一个子实施例,所述第一节点U1的MAC层根据所述第一节点的ProSe应用传递下来的应用层标识生成所述第一链路标识。
作为一个实施例,所述应用层标识的比特的数量大于所述第一链路层标识的比特的数量。
实施例6
实施例6示例了根据本申请的一个实施例的第一消息的传输流程图,如附图6所示。
实施例6中,第三实体E3发送第一消息给第四实体E4。
作为一个实施例,所述第四实体E4根据所述第一消息确定第一链路层标识列表,第一链路层标识是所述第一链路层标识列表中的一个链路层标识。
作为一个实施例,所述第一链路层标识列表只包括一个链路层标识。
作为一个实施例,所述第一链路层标识列表包括多个链路层标识。
作为一个实施例,第一链路层标识是所述第一链路层标识列表中的任一链路层标识,即第一节点对所述第一链路层标识列表中的所有的链路层标识都要监测相应的无线信号。
作为一个实施例,所述第一消息指示第一应用层标识列表,所述第一应用层标识列表中的每个应用层表识被映射为所述第一链路层标识列表中的一个链路层标识。
作为一个实施例,所述第一消息指示第一应用层标识列表,所述第一应用层标识列表中的每个应用层表识被映射为一个链路层标识;如果所述一个链路层标识对应的目标信令在所述第一时间资源池中被接收到,所述一个链路层标识属于所述第一链路层标识列表。
作为一个实施例,所述第三实体E3和所述第四实体E4分别属于第一节点和第二节点。
作为一个实施例,所述第三实体E3和所述第四实体E4分别属于第一节点的ProSe应用和第二节点的ProSe应用。
作为一个实施例,所述第三实体E3和所述第四实体E4分别属于ProSe功能和第一节点的ProSe应用。
作为一个实施例,所述第三实体E3和所述第四实体E4分别属于ProSe功能和第二节点的ProSe应用。
作为一个实施例,所述第三实体E3和所述第四实体E4分别属于ProSe应用服务器和第一节点的ProSe应用。
作为一个实施例,所述第三实体E3和所述第四实体E4分别属于第一节点的ProSe应用和第一节点的MAC层。
作为一个实施例,所述第三实体E3和所述第四实体E4分别属于第一节点的ProSe应用和第一节点的MAC层。
实施例7
实施例7示例了第一时间资源池的示意图,如附图7所示。附图7中,
实施例7中,第一时间资源池在时域上是连续的。
作为一个实施例,所述第一时间资源池包括正整数个时隙。
作为一个实施例,一个时隙包括14个多载波符号。
作为一个实施例,一个时隙包括12个多载波符号。
作为一个实施例,一个时隙包括一个SCI的搜索空间。
作为一个实施例,第一时频资源块在时域上属于第一时隙;所述第一时隙在所述第一时间资源池之后。
实施例8
实施例8示例了又一个第一时间资源池的示意图,如附图8所示。
实施例8中,第一时间资源池在时域上是不连续的。
作为一个实施例,所述第一时间资源池包括正整数个时隙。
作为一个实施例,所述第一时间资源池中的时隙被预留给V2X。
作为一个实施例,所述第一时间资源池中的时隙被预留给一个V2X资源池(Resource Pool)。
作为一个实施例,第一时频资源块在时域上属于第一时隙;所述第一时隙在所述第一时间资源池之后。
作为一个实施例,所述第一时隙被预留给V2X。
作为一个实施例,所述第一时间资源池和所述第一时隙被预留给同一个V2X资源池。
实施例9
实施例9示例了根据本申请的一个实施例的利用第四计时器计时的流程图,如附图9所示。附图9中的步骤在第一节点中被执行。
在步骤S901中开始第四计时器;在步骤S902中在接下来的一个候选时隙中监测目标信令,并更新第四计时器;在步骤S903中判断是否接收到目标信令;如果是,在步骤S904中在接收到的目标信令所调度的时频资源中监测第一信号,如果否,在步骤S905中判断所述第四计时器是否期满;如果是,在步骤S906中,停止所述第四计时器;如果否,跳到所述步骤S902。
作为一个实施例,在实施例9中,所述步骤S904至少被执行一次。
作为一个实施例,所述第四计时器是onduration timer。
作为一个实施例,所述开始第四计时器是将第四计时器设置为0,所述更新第四计时器是将第四计时器的值加1;如果第四计时器等于第一整数,所述第四计时器期满,否则所述第四计时器不期满。
作为一个实施例,所述开始第四计时器是将第四计时器设置为第一整数,所述更新第四计时器是将第四计时器的值减1;如果第四计时器等于0,所述第四计时器期满,否则所述第四计时器不期满。
作为一个实施例,所述第一整数是固定的。
作为一个实施例,所述第一整数是被下行信令配置的。
作为一个实施例,所述下行信令是更高层信令。
作为一个实施例,所述下行信令是广播的。
作为一个实施例,所述接下来的一个候选时隙是即将到来的最近的一个时隙。
作为一个实施例,所述接下来的一个候选时隙是即将到来的最近的一个预留给V2X的时隙。
作为一个实施例,所述接下来的一个候选时隙是即将到来的最近的一个预留给同一个V2X资源池(Resource Pool)的时隙。
作为一个实施例,所述第四计时器在MAC层被维护。
作为一个实施例,所述第四计时器被一个MAC实体(entity)被维护。
作为一个实施例,当所述第四计时器在运行时,所述第一节点处于连续接收状态。
作为一个实施例,当所述第四计时器在运行时,所述第一节点处于活跃时间(Active Time)。
作为一个实施例,当所述第四计时器在运行时,所述第一节点在所有D2D资源池中监测物理层信令。
作为一个实施例,当所述第四计时器在运行时,所述第一节点在所有V2X资源池中监测物理层信令。
作为一个实施例,当所述第四计时器在运行时,所述第一节点在所有下行时隙中监测DCI。
作为一个实施例,所述第一参数集合包括所述第一整数。
实施例10
实施例10示例了根据本申请的一个实施例的利用第一计时器计时的流程图,如附图10所示。附图10中的步骤在第一节点中被执行。
在步骤S1001中判断是否接收到第一信号,如果是,在步骤S1002中开始第一计时器,如果否,结束;在步骤S1003中,在接下来的一个候选时隙中监测第一信令,并更新第一计时器;在步骤S1004中判断第一计时器是否期满,如果是,结束,如果否,跳回步骤S1003。
作为一个实施例,所述第一计时器是DRX inactivity timer。
作为一个实施例,所述开始第一计时器是将第一计时器设置为0,所述更新第一计时器是将第一计时器的值加1;如果第一计时器等于第二整数,所述第一计时器期满,否则所述第一计时器不期满。
作为一个实施例,所述开始第一计时器是将第一计时器设置为第二整数,所述更新第一计时器是将第一计时器的值减1;如果第一计时器等于0,所述第一计时器期满,否则所述第一计时器不期满。
作为一个实施例,所述第二整数是固定的。
作为一个实施例,所述第二整数是被下行信令配置的。
作为一个实施例,所述下行信令是更高层信令。
作为一个实施例,所述下行信令是广播的。
作为一个实施例,所述接下来的一个候选时隙是即将到来的最近的一个时隙。
作为一个实施例,所述接下来的一个候选时隙是即将到来的最近的一个预留给V2X的时隙。
作为一个实施例,所述接下来的一个候选时隙是即将到来的最近的一个预留给同一个V2X资源池(Resource Pool)的时隙。
作为一个实施例,第一时频资源块在时域上属于所述第一时间资源池。
作为一个实施例,所述第一计时器在MAC层被维护。
作为一个实施例,所述第一计时器被一个MAC实体(entity)被维护。
作为一个实施例,当所述第一计时器在运行时,所述第一节点处于连续接收状态。
作为一个实施例,当所述第一计时器在运行时,所述第一节点处于活跃时间(Active Time)。
作为一个实施例,当所述第一计时器在运行时,所述第一节点在所有D2D资源池中监测物理层信令。
作为一个实施例,当所述第一计时器在运行时,所述第一节点在所有V2X资源池中监测物理层信令。
作为一个实施例,当所述第一计时器在运行时,所述第一节点在所有下行时隙中监测DCI。
作为一个实施例,所述第一参数集合包括所述第二整数。
作为一个实施例,在所述步骤S1001中(即当所述第一信号在所述第一时间资源池中未被成功接收时),维持第一计时器的计数(即所述第一计时器在运行中);在所述步骤S1002中(即当所述第一信号在所述第一时间资源池中被成功接收时),重新开始第一计时器。
作为一个实施例,在所述步骤S1001中(即当所述第一信号在所述第一时间资源池中未被成功接收时),维持第一计时器的停止状态;在所述步骤S1002中(即当所述第一信号在所述第一时间资源池中被成功接收时),开始第一计时器。
作为一个实施例,当所述第一比特块被成功译码并且所述第一链路层标识不包括所述第一标识分量时,开始第二计时器;当所述第一比特块被成功译码并且所述第一链路层标识包括所述第一标识分量时,维持第二计时器的停止状态。
作为上述实施例的一个子实施例,所述第一信令在所述第一时间资源池中被接收到。
作为一个实施例,所述第二计时器是DRX short cycle timer。
作为一个实施例,当所述第一计时器在运行时,所述第一节点处于连续接收状态;当所述第二计时器在运行时,所述第一节点处于不连续接收状态。
作为一个实施例,当所述第一计时器在运行时,所述第一节点处于DRX短周期;当所述第二计时器在运行时,所述第一节点处于DRX长周期。
作为一个实施例,所述第一参数集合包括所述第二计时器的初始值。
作为一个实施例,所述第二计时器的初始值与所述第一时间资源池中包括的时隙的数量相同。
实施例11
实施例11示例了根据本申请的一个实施例的更新第一计时器的流程图,如附图11所示。实施例11可以被看成实施例10中的步骤S1003的一个具体实施方式。
在步骤S1101中判断是否接收到第一信令,如果是,在步骤S1102中将第一计时器设置为0,如果否,在步骤S1103中将第一计时器的值加1。
实施例12
实施例12示例了根据本申请的一个实施例的第一链路层标识的示意图,如附图11所示。
实施例12中,所述第一链路层标识由第一标识分量和第二标识分量组成。
作为一个实施例,所述第一标识分量和所述第二标识分量分别由16个和8个比特组成。
实施例13
实施例13示例了根据本申请的一个实施例的第一比特块的示意图,如附图13所示。
实施例13中,所述第一比特块包括一个MAC头,和至少一个MAC SDU,以及可选的填充比特;所述MAC头包括一个SL-SCH子头,以及至少一个MAC PDU子头。所述SL-SCH 子头包括第一标识分量。
实施例14
实施例14示例了根据本申请的一个实施例的用于第一节点中的处理装置的结构框图;如附图14所示。在附图14中,第一节点中的处理装置1400包括第一发送机1401,第一接收机1402,以及第二接收机1403;其中第一发送机1401是可选的。
所述第一发送机1401发送第二信令,所述第二信令指示第一参数集合,所述第一参数集合指示所述第一时间资源池;第一接收机1402在第一时间资源池中监测第一信号,第一比特块被用于生成所述第一信号,所述第一比特块包括一个MAC PDU,所述第一比特块包括第一标识分量;当所述第一信号在所述第一时间资源池中被成功接收时,所述第二接收机1403在第一时频资源块上监测第一信令;当所述第一信号在所述第一时间资源池中未被成功接收时,所述第二接收机1403放弃在第一时频资源块上监测第一信令;
实施例14中,所述第一信令是物理层信令,所述第一信令包括第二标识分量;所述第一标识分量和所述第二标识分量都属于第一链路层标识。
作为一个实施例,所述第二接收机1403放弃在第一时频资源块上监测第一信令包括:所述第二接收机1403在第一时频资源块所述的时隙中保持关闭状态。
作为一个实施例,所述第二接收机1403放弃在第一时频资源块上监测第一信令包括:在第一时频资源块所述的时隙中关闭射频模块。
作为一个实施例,所述第一接收机1402确定第一链路层标识列表,所述第一链路层标识是所述第一链路层标识列表中的任一链路层标识。
作为一个实施例,所述第二接收机1403在所述第一时间资源池中接收到至少一个目标信令;其中,所述至少一个目标信令中的每个目标信令是物理层信令,所述至少一个目标信令中的每个目标信令包括所述第二标识分量;当所述第一信号在所述第一时间资源池中被监测到时,所述第一信号被所述至少一个目标信令中的一个目标信令所调度。
作为一个实施例,当所述第一信号在所述第一时间资源池中未被成功接收时,所述第一接收机1402维持第一计时器的计数;当所述第一信号在所述第一时间资源池中被成功接收时,所述第一接收机1402重新开始第一计时器。
作为一个实施例,所述短语维持第一计时器的计数包括,每过一个时隙所述第一计时器的值加1。
作为一个实施例,所述短语维持第一计时器的计数包括:每过一个预留给V2X的时隙所述第一计时器的值加1。
作为一个实施例,所述短语重新开始第一计时器包括:将所述第一计时器的值设置为0,并维持运行。
作为一个实施例,当所述第一信号在所述第一时间资源池中未被成功接收时,所述第一接收机1402维持第一计时器的停止状态;当所述第一信号在所述第一时间资源池中被成功接收时,所述第一接收机1402开始第一计时器。
作为一个实施例,所述短语开始第一计时器包括:将所述第一计时器的值设置为0,并维持运行。
作为一个实施例,当所述至少一个目标信令中的任一目标信令所调度的无线信号未被正确译码时,所述第一接收机1402开始第三计时器;当所述至少一个目标信令中的所有目标信令所调度的无线信号都被正确译码时,所述第一接收机维持第三计时器的停止状态;其中,所述第三计时器在所述第一时频资源块所属的时隙中处于停止状态。
作为一个实施例,所述第一节点1200是一个用户设备。
作为一个实施例,所述第一发送机1401包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一发送机1401包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467。
作为一个实施例,所述第一接收机1402包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一接收机1402包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一接收机1403包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前三者。
实施例15
实施例15示例了根据本申请的一个实施例的用于第二节点中的处理装置的结构框图;如附图15所示。在附图15中,第二节点中的处理装置1500包括第三接收机1501,第二发送机1502,以及第三发送机1503;其中所述第三接收机1501是可选的。
所述第三接收机1501接收第二信令;所述第二信令指示第一参数集合;所述第一参数集合指示所述第一时间资源池;所述第二发送机1502发送第一信号,第一比特块被用于生成所述第一信号,所述第一比特块包括一个MAC PDU,所述第一比特块包括第一标识分量;所述第三发送机1503从候选时频资源池中选择合适的时频资源块,并在所述合适的时频资源块中发送第一信令;
实施例15中,所述第一信令是物理层信令,所述第一信令包括第二标识分量;所述第一标识分量和所述第二标识分量都属于第一链路层标识;当所述第一信号在所述第一时间资源池中被发送时,所述候选的时频资源池包括第一时频资源块;当所述第一信号未在所述第一时间资源池中被发送时,所述候选的时频资源池不包括第一时频资源块。
作为一个实施例,所述第二发送机1502确定第二链路层标识列表,所述第一链路层标识是所述第二链路层标识列表中的一个链路层标识。
作为一个实施例,所述第三发送机1503在所述第一时间资源池中发送至少一个目标信令;其中,所述至少一个目标信令中的每个目标信令是物理层信令,所述至少一个目标信令中的每个目标信令包括所述第二标识分量;所述第一信号被所述至少一个目标信令中的一个目标信令所调度。
作为一个实施例,当所述第一信号所占用的时域资源未在所述第一时间资源池中时,所述第三发送机1503维持第一参考计时器的计数;当所述第一信号所占用的时域资源在所述第一时间资源池中时,所述第三发送机1503重新开始第一参考计时器。
作为一个实施例,所述第一参考计时器是第一计时器的对等物,能确保第二节点和第一节点对于DRX状态的理解是一致的。
作为一个实施例,当所述第一信号所占用的时域资源未在所述第一时间资源池中时,所述第三发送机1503维持第一参考计时器的停止状态;当所述第一信号所占用的时域资源在所述第一时间资源池中时,所述第三发送机1503开始第一参考计时器。
作为一个实施例,当所述至少一个目标信令中的任一目标信令所关联的ACK未被接收到时,所述第三发送机1503开始第三参考计时器;当所述至少一个目标信令中的所有目标信令所关联的ACK都被接收到时,所述第三发送机1503维持第三参考计时器的停止状态;其中,所述第三参考计时器在所述第一时频资源块所属的时隙中处于停止状态。
作为一个实施例,所述第二节点1500是一个用户设备。
作为一个实施例,所述第二发送机1502包括所述天线420,所述发射器418,所述 发射处理器416,所述控制器/处理器475。
作为一个实施例,所述第二发送机1502包括所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475。
作为一个实施例,所述第二发送机1503包括所述天线420,所述发射器418,所述发射处理器416,所述控制器/处理器475。
作为一个实施例,所述第二发送机1503包括所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475。
作为一个实施例,所述第三接收机1501包括所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475。
作为一个实施例,所述第三接收机1501包括所述控制器/处理器475。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (36)

  1. 一种被用于无线通信的第一节点,其中,包括:
    第一接收机,在第一时间资源池中监测第一信号,第一比特块被用于生成所述第一信号,所述第一比特块包括一个MAC PDU,所述第一比特块包括第一标识分量;
    第二接收机,当所述第一信号在所述第一时间资源池中被成功接收时,在第一时频资源块上监测第一信令;当所述第一信号在所述第一时间资源池中未被成功接收时,放弃在第一时频资源块上监测第一信令;
    其中,所述第一信令是物理层信令,所述第一信令包括第二标识分量;所述第一标识分量和所述第二标识分量都属于第一链路层标识。
  2. 根据权利要求1所述的第一节点,其特征在于,包括:
    所述第一接收机,确定第一链路层标识列表,所述第一链路层标识是所述第一链路层标识列表中的任一链路层标识。
  3. 根据权利要求1或2所述的第一节点,其特征在于,包括:
    所述第二接收机,在所述第一时间资源池中接收到至少一个目标信令;
    其中,所述至少一个目标信令中的每个目标信令是物理层信令,所述至少一个目标信令中的每个目标信令包括所述第二标识分量;当所述第一信号在所述第一时间资源池中被监测到时,所述第一信号被所述至少一个目标信令中的一个目标信令所调度。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,包括:
    第一发送机,发送第二信令;所述第二信令指示第一参数集合;所述第一参数集合指示所述第一时间资源池。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,包括:
    当所述第一信号在所述第一时间资源池中未被成功接收时,所述第一接收机维持第一计时器的计数;当所述第一信号在所述第一时间资源池中被成功接收时,所述第一接收机重新开始第一计时器。
  6. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,包括:
    当所述第一信号在所述第一时间资源池中未被成功接收时,所述第一接收机维持第一计时器的停止状态;当所述第一信号在所述第一时间资源池中被成功接收时,所述第一接收机开始第一计时器。
  7. 根据权利要求3至6中任一权利要求所述的第一节点,其特征在于,包括:当所述至少一个目标信令中的任一目标信令所调度的无线信号未被正确译码时,所述第一接收机开始第三计时器;当所述至少一个目标信令中的所有目标信令所调度的无线信号都被正确译码时,所述第一接收机维持第三计时器的停止状态;
    其中,所述第三计时器在所述第一时频资源块所属的时隙中处于停止状态。
  8. 根据权利要求2至7中任一权利要求所述的第一节点,其特征在于,第一消息被第三实体E3发送给第四实体E4,所述第三实体E3和所述第四实体E4分别属于所述第一节点和所述第一信号的发送者,所述第一消息被用于指示所述第一链路层标识列表;所述第一链路层标识列表包括多个链路层标识,所述第一链路层标识是所述多个链路层标识中的一个链路层标识。
  9. 根据权利要求1至8中任一权利要求所述的第一节点,其特征在于,所述第一比特块包括一个媒体接入控制服务数据单元(MAC SDU)以及相应的MAC头,所述相应的MAC头包括所述第一标识分量。
  10. 一种被用于无线通信的第二节点,其中,包括:
    第二发送机,发送第一信号,第一比特块被用于生成所述第一信号,所述第一比特块包括一个MAC PDU,所述第一比特块包括第一标识分量;
    第三发送机,从候选时频资源池中选择合适的时频资源块,并在所述合适的时频资源块中发送第一信令;
    其中,所述第一信令是物理层信令,所述第一信令包括第二标识分量;所述第一标 识分量和所述第二标识分量都属于第一链路层标识;当所述第一信号在所述第一时间资源池中被发送时,所述候选的时频资源池包括第一时频资源块;当所述第一信号未在所述第一时间资源池中被发送时,所述候选的时频资源池不包括第一时频资源块。
  11. 根据权利要求10所述的第二节点,其特征在于,包括:
    所述第二发送机,确定第二链路层标识列表,所述第一链路层标识是所述第二链路层标识列表中的一个链路层标识。
  12. 根据权利要求10所述的第二节点,其特征在于,包括:
    所述第三发送机,在所述第一时间资源池中发送至少一个目标信令;
    其中,所述至少一个目标信令中的每个目标信令是物理层信令,所述至少一个目标信令中的每个目标信令包括所述第二标识分量;所述第一信号被所述至少一个目标信令中的一个目标信令所调度。
  13. 根据权利要求10至12中任一权利要求所述的第二节点,其特征在于,包括:
    第三接收机,接收第二信令;所述第二信令指示第一参数集合;所述第一参数集合指示所述第一时间资源池。
  14. 根据权利要求10至13中任一权利要求所述的第二节点,其特征在于,包括:
    当所述第一信号在所述第一时间资源池中未被成功接收时,当所述第一信号所占用的时域资源未在所述第一时间资源池中时,所述第三发送机维持第一参考计时器的计数;当所述第一信号所占用的时域资源在所述第一时间资源池中时,所述第三发送机重新开始第一参考计时器。
  15. 根据权利要求10至13中任一权利要求所述的第二节点,其特征在于,包括:
    当所述第一信号所占用的时域资源未在所述第一时间资源池中时,所述第三发送机维持第一参考计时器的停止状态;当所述第一信号所占用的时域资源在所述第一时间资源池中时,所述第三发送机开始第一参考计时器。
  16. 根据权利要求12至15中任一权利要求所述的第二节点,其特征在于,包括:当所述至少一个目标信令中的任一目标信令所关联的ACK未被接收到时,所述第三发送机开始第三参考计时器;当所述至少一个目标信令中的所有目标信令所关联的ACK都被接收到时,所述第三发送机维持第三参考计时器的停止状态;
    其中,所述第三参考计时器在所述第一时频资源块所属的时隙中处于停止状态。
  17. 根据权利要求10至16中任一权利要求所述的第一节点,其特征在于,第一消息被第三实体E3发送给第四实体E4,所述第三实体E3和所述第四实体E4分别属于所述所述第一信号的接收者和所述第二节点,所述第一消息被用于指示所述第一链路层标识列表;所述第一链路层标识列表包括多个链路层标识,所述第一链路层标识是所述多个链路层标识中的一个链路层标识。
  18. 根据权利要求10至17中任一权利要求所述的第二节点,其特征在于,所述第一比特块包括一个媒体接入控制服务数据单元(MAC SDU)以及相应的MAC头,所述相应的MAC头包括所述第一标识分量。
  19. 一种被用于无线通信的第一节点中的方法,其中,包括:
    在第一时间资源池中监测第一信号,第一比特块被用于生成所述第一信号,所述第一比特块包括一个MAC PDU,所述第一比特块包括第一标识分量;
    当所述第一信号在所述第一时间资源池中被成功接收时,在第一时频资源块上监测第一信令;当所述第一信号在所述第一时间资源池中未被成功接收时,放弃在第一时频资源块上监测第一信令;
    其中,所述第一信令是物理层信令,所述第一信令包括第二标识分量;所述第一标识分量和所述第二标识分量都属于第一链路层标识。
  20. 根据权利要求19所述的被用于无线通信的第一节点中的方法,其特征在于,包括:
    确定第一链路层标识列表,所述第一链路层标识是所述第一链路层标识列表中的任一链路层标识。
  21. [根据细则91更正 20.01.2021]
    根据权利要求19或20所述的被用于无线通信的第一节点中的方法,其特征在于,包括:
    在所述第一时间资源池中接收到至少一个目标信令;
    其中,所述至少一个目标信令中的每个目标信令是物理层信令,所述至少一个目标信令中的每个目标信令包括所述第二标识分量;当所述第一信号在所述第一时间资源池中被监测到时,所述第一信号被所述至少一个目标信令中的一个目标信令所调度。
  22. [根据细则91更正 20.01.2021] 
    根据权利要求19至21中任一权利要求所述的第一节点,其特征在于,包括:
    第一发送机,发送第二信令;所述第二信令指示第一参数集合;所述第一参数集合指示所述第一时间资源池。
  23. 根据权利要求19至22中任一权利要求所述的被用于无线通信的第一节点中的方法,其特征在于,包括:
    当所述第一信号在所述第一时间资源池中未被成功接收时,维持第一计时器的计数;当所述第一信号在所述第一时间资源池中被成功接收时,重新开始第一计时器。
  24. 根据权利要求19至22中任一权利要求所述的被用于无线通信的第一节点中的方法,其特征在于,包括:
    当所述第一信号在所述第一时间资源池中未被成功接收时,维持第一计时器的停止状态;当所述第一信号在所述第一时间资源池中被成功接收时,开始第一计时器。
  25. 根据权利要求21至24中任一权利要求所述的被用于无线通信的第一节点中的方法,其特征在于,包括:当所述至少一个目标信令中的任一目标信令所调度的无线信号未被正确译码时,所述第一接收机开始第三计时器;当所述至少一个目标信令中的所有目标信令所调度的无线信号都被正确译码时,所述第一接收机维持第三计时器的停止状态;
    其中,所述第三计时器在所述第一时频资源块所属的时隙中处于停止状态。
  26. 根据权利要求20至25中任一权利要求所述的被用于无线通信的第一节点中的方法,其特征在于,第一消息被第三实体E3发送给第四实体E4,所述第三实体E3和所述第四实体E4分别属于所述第一节点和所述第一信号的发送者,所述第一消息被用于指示所述第一链路层标识列表;所述第一链路层标识列表包括多个链路层标识,所述第一链路层标识是所述多个链路层标识中的一个链路层标识。
  27. 根据权利要求19至26中任一权利要求所述的被用于无线通信的第一节点中的方法,其特征在于,所述第一比特块包括一个媒体接入控制服务数据单元(MAC SDU)以及相应的MAC头,所述相应的MAC头包括所述第一标识分量。
  28. 一种被用于无线通信的第二节点中的方法,其中,包括:
    发送第一信号,第一比特块被用于生成所述第一信号,所述第一比特块包括一个MAC PDU,所述第一比特块包括第一标识分量;
    从候选时频资源池中选择合适的时频资源块,并在所述合适的时频资源块中发送第一信令;
    其中,所述第一信令是物理层信令,所述第一信令包括第二标识分量;所述第一标识分量和所述第二标识分量都属于第一链路层标识;当所述第一信号在所述第一时间资源池中被发送时,所述候选的时频资源池包括第一时频资源块;当所述第一信号未在所述第一时间资源池中被发送时,所述候选的时频资源池不包括第一时频资源块。
  29. 根据权利要求28所述的被用于无线通信的第二节点中的方法,其特征在于,包括:
    确定第二链路层标识列表,所述第一链路层标识是所述第二链路层标识列表中的一个链路层标识。
  30. 根据权利要求28所述的被用于无线通信的第二节点中的方法,其特征在于,包括:
    在所述第一时间资源池中发送至少一个目标信令;
    其中,所述至少一个目标信令中的每个目标信令是物理层信令,所述至少一个目标信令中的每个目标信令包括所述第二标识分量;所述第一信号被所述至少一个目标信令中的一个目标信令所调度。
  31. 根据权利要求28至30中任一权利要求所述的被用于无线通信的第二节点中的方法,其特征在于,包括:
    接收第二信令;所述第二信令指示第一参数集合;所述第一参数集合指示所述第一时间资源池。
  32. 根据权利要求28至31中任一权利要求所述的被用于无线通信的第二节点中的方法,其特征在于,包括:
    当所述第一信号在所述第一时间资源池中未被成功接收时,当所述第一信号所占用的时域资源未在所述第一时间资源池中时,维持第一参考计时器的计数;当所述第一信号所占用的时域资源在所述第一时间资源池中时,重新开始第一参考计时器。
  33. 根据权利要求28至31中任一权利要求所述的被用于无线通信的第二节点中的方法,其特征在于,包括:
    当所述第一信号所占用的时域资源未在所述第一时间资源池中时,维持第一参考计时器的停止状态;当所述第一信号所占用的时域资源在所述第一时间资源池中时,开始第一参考计时器。
  34. 根据权利要求30至33中任一权利要求所述的被用于无线通信的第二节点中的方法,其特征在于,包括:当所述至少一个目标信令中的任一目标信令所关联的ACK未被接收到时,开始第三参考计时器;当所述至少一个目标信令中的所有目标信令所关联的ACK都被接收到时,维持第三参考计时器的停止状态;
    其中,所述第三参考计时器在所述第一时频资源块所属的时隙中处于停止状态。
  35. 根据权利要求28至34中任一权利要求所述的被用于无线通信的第二节点中的方法,其特征在于,第一消息被第三实体E3发送给第四实体E4,所述第三实体E3和所述第四实体E4分别属于所述所述第一信号的接收者和所述第二节点,所述第一消息被用于指示所述第一链路层标识列表;所述第一链路层标识列表包括多个链路层标识,所述第一链路层标识是所述多个链路层标识中的一个链路层标识。
  36. 根据权利要求28至35中任一权利要求所述的被用于无线通信的第二节点中的方法,其特征在于,所述第一比特块包括一个媒体接入控制服务数据单元(MAC SDU)以及相应的MAC头,所述相应的MAC头包括所述第一标识分量。
PCT/CN2020/140153 2020-01-10 2020-12-28 用于不连续接收的方法和装置 WO2021139554A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/851,045 US20220330210A1 (en) 2020-01-10 2022-06-28 Method and device for discontinuous reception

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010027655.3 2020-01-10
CN202010027655 2020-01-10
CN202010053379.8 2020-01-17
CN202010053379.8A CN113115485B (zh) 2020-01-10 2020-01-17 用于不连续接收的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/851,045 Continuation US20220330210A1 (en) 2020-01-10 2022-06-28 Method and device for discontinuous reception

Publications (1)

Publication Number Publication Date
WO2021139554A1 true WO2021139554A1 (zh) 2021-07-15

Family

ID=76709975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140153 WO2021139554A1 (zh) 2020-01-10 2020-12-28 用于不连续接收的方法和装置

Country Status (3)

Country Link
US (1) US20220330210A1 (zh)
CN (2) CN115226254A (zh)
WO (1) WO2021139554A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138378A1 (ja) * 2016-02-08 2017-08-17 京セラ株式会社 無線端末
CN108923896A (zh) * 2017-04-19 2018-11-30 上海朗帛通信技术有限公司 一种被用于寻呼的用户设备、基站中的方法和装置
CN109699074A (zh) * 2017-10-20 2019-04-30 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110149183A (zh) * 2018-02-13 2019-08-20 华为技术有限公司 通信设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104620515B (zh) * 2012-11-29 2018-02-16 Lg电子株式会社 用于无线通信中的drx操作的方法和装置
US20160119943A1 (en) * 2013-05-14 2016-04-28 Nokia Solutions And Networks Oy Discontinuous Reception in Communications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138378A1 (ja) * 2016-02-08 2017-08-17 京セラ株式会社 無線端末
CN108923896A (zh) * 2017-04-19 2018-11-30 上海朗帛通信技术有限公司 一种被用于寻呼的用户设备、基站中的方法和装置
CN109699074A (zh) * 2017-10-20 2019-04-30 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110149183A (zh) * 2018-02-13 2019-08-20 华为技术有限公司 通信设备

Also Published As

Publication number Publication date
CN115226254A (zh) 2022-10-21
CN113115485A (zh) 2021-07-13
CN113115485B (zh) 2022-07-05
US20220330210A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
WO2021185227A1 (zh) 一种非连续无线通信的方法和装置
WO2021103926A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020134909A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113259898B (zh) 一种用于不连续接收的无线通信的方法和装置
US12028832B2 (en) Method and device for discontinuous reception
CN114339881A (zh) 一种被用于无线通信中的方法和装置
US20210392622A1 (en) Method and device used for discontinuous reception
CN113411888B (zh) 一种被用于无线通信的节点中的方法和装置
CN113365223B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021139554A1 (zh) 用于不连续接收的方法和装置
WO2021164557A1 (zh) 用于不连续接收的方法和装置
WO2023246673A1 (zh) 一种被用于无线通信的方法和装置
WO2023185520A1 (zh) 一种被用于无线通信的方法和装置
CN115413067B (zh) 一种副链路无线通信的方法和装置
WO2024183668A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024125277A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024183670A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024032425A1 (zh) 一种用于无线通信的方法和装置
WO2024083054A1 (zh) 一种被用于无线通信中的方法和装置
WO2022068747A1 (zh) 一种被用于无线通信的方法和设备
WO2022214048A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN115633415A (zh) 一种副链路无线通信的方法和装置
CN115551119A (zh) 一种副链路无线通信的方法和装置
CN115379593A (zh) 一种被用于副链路无线通信中的方法和装置
CN116981110A (zh) 一种被用于无线通信的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912429

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20912429

Country of ref document: EP

Kind code of ref document: A1