WO2023207708A1 - 一种被用于无线通信的方法和装置 - Google Patents

一种被用于无线通信的方法和装置 Download PDF

Info

Publication number
WO2023207708A1
WO2023207708A1 PCT/CN2023/089214 CN2023089214W WO2023207708A1 WO 2023207708 A1 WO2023207708 A1 WO 2023207708A1 CN 2023089214 W CN2023089214 W CN 2023089214W WO 2023207708 A1 WO2023207708 A1 WO 2023207708A1
Authority
WO
WIPO (PCT)
Prior art keywords
signaling
cell
scheduling
schedule
operations
Prior art date
Application number
PCT/CN2023/089214
Other languages
English (en)
French (fr)
Inventor
张锦芳
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2023207708A1 publication Critical patent/WO2023207708A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows

Definitions

  • the present application relates to methods and devices in wireless communication systems, and in particular to methods and devices that support scheduling when L1/L2 (Layer 1/Layer 2, Layer 1/Layer 2) mobility enhancement is provided in wireless communications.
  • L1/L2 Layer 1/Layer 2, Layer 1/Layer 2
  • L3 Layer 3, Layer 3
  • RRC Radio Resource Control, Radio Resource Control
  • 3GPP (3rd Generation Partner Project, 3rd Generation Partner Project) RAN Radio Access Network, Radio Access Network
  • DC Dual Connectivity, DC
  • PSCell change Conditional PSCell (Primary SCG (Secondary Cell Group) Cell) change, CPC
  • conditional PSCell increase CPC
  • conditional switching Conditional Handover, CHO
  • WI Work Item
  • Non-dynamic scheduling includes Semi-Persistent Scheduling (SPS) and Configuration Grant (Configured Grant, CG). Transmissions that are not dynamically scheduled are suitable for periodic services.
  • SPS Semi-Persistent Scheduling
  • CG Configuration Grant
  • the inventor found through research that for the scenario of rapidly changing the serving cell of the UE, when the UE leaves a cell, if the semi-persistent scheduling and/or configuration grant type 2 (type 2) is cleared, when the UE returns to the cell soon, Reconfiguration and activation are required, which will introduce additional signaling overhead and increase service interruption time.
  • type 2 semi-persistent scheduling and/or configuration grant type 2
  • this application discloses a solution for maintaining transmissions that are not dynamically scheduled, especially semi-persistent scheduling and configuration grant type 2, in scenarios where the serving cell of a UE is rapidly changed.
  • the embodiments and features in the embodiments of the first node of the present application can be applied to the second node, and vice versa.
  • the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily without conflict.
  • the original intention of this application is for the Uu air interface, this application can also be used for the PC5 interface.
  • this application is also applicable to the V2X (Vehicle-to-Everything, Internet of Vehicles) scenario, the communication scenario between the terminal and the relay, and the relay and the base station. , achieving similar technical effects in terminal and base station scenarios.
  • V2X Vehicle-to-Everything, Internet of Vehicles
  • using unified solutions for different scenarios can also help reduce hardware complexity and costs.
  • nouns, functions, and variables in this application if not otherwise specified
  • This application discloses a method used in a first node of wireless communication, which is characterized by including:
  • Receive first signaling the first signaling being used to instruct to stop performing a first set of operations for the first cell, the first signaling being signaling of a protocol layer below the RRC layer;
  • the first scheduling indicates periodic time domain resources and first frequency domain resources;
  • the first operation set includes monitoring PDCCH (physical downlink control channel) on the corresponding cell, monitoring the PDCCH used to schedule the corresponding cell, and sending at least one of PRACH (Physical Random Access Channel) on the corresponding cell; whether the stopping of performing the first set of operations for the first cell includes clearing the first scheduling and the first signaling related to the signaling; when the first signaling is used to deactivate the first cell, the stopping of performing the first set of operations for the first cell includes clearing the first scheduling; when the first signaling When used in a cell switch, the stopping of performing the first set of operations for the first cell does not include clearing the first schedule.
  • PDCCH physical downlink control channel
  • PRACH Physical Random Access Channel
  • the above method can implement fast cell activation or fast cell switching through the first signaling.
  • the above method can quickly change the serving cell of the UE through the first signaling.
  • the above method can provide a unified solution through the first signaling.
  • the above method does not include clearing the first schedule, which can save signaling.
  • the above method does not include clearing the first schedule, which can reduce service interruption time.
  • the first scheduling is executed on the first cell after being activated and before being deactivated.
  • the uplink grant and associated HARQ (Hybrid Automatic Repeat Request, Hybrid Automatic Repeat Request) information for the first cell are saved as a configured uplink grant; wherein, the first schedule is configured grant (CG).
  • CG configured grant
  • the downlink allocation and associated HARQ information for the first cell are saved as configured downlink allocation; wherein the first scheduling is semi-persistent scheduling (semi-persistent scheduling). persistent scheduling (SPS).
  • SPS persistent scheduling
  • the clearing the first schedule includes: clearing the configured uplink grant type 2 indicated by the first schedule;
  • the configured uplink grant type 2 includes associated hybrid automatic repeat request (HARQ) information, and the first scheduling is configured grant type 2.
  • HARQ hybrid automatic repeat request
  • the clearing the first schedule includes: clearing the configured downlink allocation indicated by the first schedule;
  • the configured downlink allocation includes associated hybrid automatic repeat request information; the first scheduling is semi-persistent scheduling.
  • the stopping of performing the first set of operations for the first cell does not include clearing the first schedule and includes: suspending the first schedule.
  • the above method can save reconfiguration signaling.
  • Suspending the first schedule includes: saving period information of the time domain resource indicated by the first schedule, or saving at least one of hybrid automatic repeat request information associated with the first schedule. .
  • the above method can save reconfiguration signaling.
  • the reception of the second signaling is later than the reception of the first signaling; the second signaling is used for cell switching.
  • the second signaling indicates a second frequency domain resource
  • the second frequency domain resource is used to perform the first scheduling; the second frequency domain resource is the same as the first frequency domain resource, or the second frequency domain resource is the same as the first frequency domain resource. Frequency domain resources are at least partially different.
  • the above method can save signaling.
  • the above method can quickly resume transmission.
  • the first message includes periodic information of the time domain resources indicated by the first scheduling; and the third signaling includes the first frequency domain resources indicated by the first scheduling.
  • This application discloses a method used in a second node of wireless communication, which is characterized by including:
  • Send first signaling the first signaling being used to indicate that execution of the first set of operations for the first cell is stopped, the first signaling being signaling of a protocol layer below the RRC layer;
  • the first scheduling is executed by the recipient of the first signaling on the first cell; the first scheduling indicates periodic time domain resources and first frequency domain resources; the first operation set includes At least one of monitoring the PDCCH (Physical Downlink Control Channel) on the corresponding cell, monitoring the PDCCH used to schedule the corresponding cell, and transmitting the PRACH (Physical Random Access Channel) on the corresponding cell; the above is for the first cell Whether execution of the first set of operations is stopped includes whether the first schedule is cleared by the recipient of the first signaling and the related to the first signaling; when the first signaling is used to deactivate the first cell, the execution of the first set of operations for the first cell is stopped including the first scheduling being cleared; when the When the first signaling is used for cell switching (switch), the execution of the first set of operations for the first cell is stopped excluding the first scheduling being cleared.
  • PDCCH Physical Downlink Control Channel
  • PRACH Physical Random Access Channel
  • the first schedule being cleared includes: the configured uplink grant type 2 indicated by the first schedule is cleared;
  • the configured uplink grant type 2 includes associated hybrid automatic repeat request (HARQ) information, and the first scheduling is configured grant type 2.
  • HARQ hybrid automatic repeat request
  • the first scheduling being cleared includes: the configured downlink allocation indicated by the first scheduling is cleared;
  • the configured downlink allocation includes associated hybrid automatic repeat request information; the first scheduling is semi-persistent scheduling.
  • the stopping of performing the first set of operations on the first cell does not include the clearing of the first scheduling, including: the first scheduling being suspended.
  • the suspension of the first schedule includes: periodic information of the time domain resource indicated by the first schedule, or at least one of the hybrid automatic repeat request information associated with the first schedule is saved. .
  • the first message includes periodic information of the time domain resources indicated by the first scheduling; and the third signaling includes the first frequency domain resources indicated by the first scheduling.
  • This application discloses a first node used for wireless communication, which is characterized by including:
  • the first processor performs the first scheduling on the first cell
  • the first receiver receives first signaling, which is used to instruct to stop executing the first set of operations for the first cell, where the first signaling is the signaling of the protocol layer below the RRC layer.
  • the first scheduling indicates periodic time domain resources and first frequency domain resources;
  • the first operation set includes monitoring the PDCCH (physical downlink control channel) on the corresponding cell, monitoring the PDCCH used to schedule the corresponding cell.
  • PRACH Physical Random Access Channel
  • This application discloses a second node used for wireless communication, which is characterized in that it includes:
  • the first transmitter sends first signaling, the first signaling is used to indicate that execution of the first set of operations for the first cell is stopped, and the first signaling is the signaling of the protocol layer below the RRC layer. ;
  • the first scheduling is executed by the recipient of the first signaling on the first cell; the first scheduling indicates periodic time domain resources and first frequency domain resources; the first operation set includes At least one of monitoring the PDCCH (Physical Downlink Control Channel) on the corresponding cell, monitoring the PDCCH used to schedule the corresponding cell, and transmitting the PRACH (Physical Random Access Channel) on the corresponding cell; the above is for the first cell Whether execution of the first set of operations is stopped includes the first schedule being cleared by the recipient of the first signaling is related to the first signaling; when the first signaling is used to deactivate the When the first cell is the first cell, the execution of the first set of operations for the first cell is stopped including the first scheduling being cleared; when the first signaling is used for cell switching, the execution of the first set of operations for the first cell is stopped. Stopping execution of the first set of operations does not include the first schedule being cleared.
  • Figure 1 illustrates a signal processing flow chart in a first node according to an embodiment of the present application
  • Figure 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 illustrates a schematic diagram of the wireless protocol architecture of the user plane and control plane according to one embodiment of the present application
  • Figure 4 illustrates a schematic diagram of a hardware module of a communication device according to an embodiment of the present application
  • Figure 5 illustrates a wireless signal transmission flow chart according to an embodiment of the present application
  • Figure 6 illustrates a schematic format diagram of first signaling according to an embodiment of the present application
  • Figure 7 illustrates another format diagram of first signaling according to an embodiment of the present application.
  • Figure 8 illustrates a schematic format diagram of second signaling according to an embodiment of the present application
  • Figure 9 illustrates a schematic diagram of the relationship between first signaling, second signaling and first scheduling according to an embodiment of the present application.
  • Figure 10 illustrates a structural block diagram of a processing device in a first node according to an embodiment of the present application
  • Figure 11 illustrates a structural block diagram of a processing device in the second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a signal processing flow chart in the first node according to an embodiment of the present application, as shown in FIG. 1 .
  • the first node 100 performs the first scheduling on the first cell in step 101; and receives first signaling in step 102, where the first signaling is used to indicate to stop targeting the first cell.
  • the cell performs a first set of operations, and the first signaling is the signaling of the protocol layer below the RRC layer; wherein the first scheduling indicates periodic time domain resources and occupies the first frequency domain resources;
  • the first An operation set includes at least one of monitoring the PDCCH (Physical Downlink Control Channel) on the corresponding cell, monitoring the PDCCH used to schedule the corresponding cell, and transmitting the PRACH (Physical Random Access Channel) on the corresponding cell; said Whether stopping performing the first set of operations for the first cell includes clearing the first schedule is related to the first signaling; when the first signaling is used to deactivate the first cell, the Stopping performing the first set of operations for the first cell includes clearing the first schedule; stopping performing the first operation for the first cell when the first signaling is used for cell switching (switch) The set does not include clearing the P
  • the first scheduling is performed on the first cell.
  • the first cell is a serving cell of the first node.
  • the first scheduling is performed on the first cell before receiving the first signaling.
  • performing the first scheduling includes transmitting on the first cell according to the first scheduling.
  • performing the first scheduling includes performing reception on the first cell according to the first scheduling.
  • sending the phrase on the first cell includes: sending the phrase using air interface resources of the first cell.
  • receiving the phrase on the first cell includes: using air interface resources of the first cell for reception.
  • the first scheduling indicates air interface resources of the first cell.
  • the first scheduling indicates the air interface resources of the first cell; the first node performs uplink transmission on the air interface resources of the first cell indicated by the first scheduling, or, The first node performs downlink reception on the air interface resource of the first cell indicated by the first scheduling.
  • the air interface resources include at least one of time domain resources, frequency domain resources, or air domain resources.
  • the first scheduling is not dynamic scheduling (without dynamic scheduling).
  • the first schedule is not configuration grant type 1.
  • the first scheduling is semi-persistent scheduling.
  • the first schedule is configuration grant type 2.
  • the first scheduling indicates periodic time domain resources and first frequency domain resources, and the periodic time domain resources and the first frequency domain resources constitute periodic time-frequency resources.
  • the performing the first scheduling includes transmitting according to the periodic time-frequency resources indicated by the first scheduling, or the performing the first scheduling includes transmitting according to the periodic time-frequency resources indicated by the first scheduling. time-frequency resources for reception.
  • the time domain resource includes at least one OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal frequency division multiplexing) symbol.
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal frequency division multiplexing
  • the time domain resource includes at least one time slot.
  • the first frequency domain resource includes at least one subcarrier.
  • the first frequency domain resource includes at least one resource block (RB).
  • RB resource block
  • the first frequency domain resource includes at least one physical resource block (PRB).
  • PRB physical resource block
  • the first schedule includes multiple downlink assignments (downlink assignments) or multiple uplink grants (uplink grants).
  • each downlink allocation in the plurality of downlink allocations is one of the periodic time-frequency resources indicated by the first scheduling.
  • each of the plurality of uplink grants is a time-frequency resource among the periodic time-frequency resources indicated by the first scheduling.
  • first signaling is received on the first cell.
  • the first signaling is used to instruct to stop performing the first set of operations for the first cell.
  • the first signaling is used to instruct the first state of the first cell to be switched to the second state of the first cell.
  • the first node performs a first set of operations for the cell in the first state, and the first node does not perform the first set of operations for the cell in the second state.
  • the first state is an activated state
  • the second state is a deactivated state
  • the first state is a service state
  • the second state is a candidate service state
  • the first state is a service state
  • the second state is a candidate state
  • the first state is a service state
  • the second state is a switched off state
  • the first signaling is signaling of a protocol layer below the RRC layer.
  • the first signaling is MAC (Medium Access Control, media access control) sublayer (sublayer) signaling.
  • MAC Medium Access Control, media access control sublayer
  • the first signaling is MAC CE (Control Element, control element).
  • the first signaling is PHY (physical) layer signaling.
  • the first signaling is DCI (Downlink Control Information).
  • the DCI format of the first signaling is 2_X, and the X is a positive integer greater than 7 and less than 32.
  • the first set of operations includes receiving according to the first schedule, or transmitting according to the first schedule.
  • the first set of operations includes monitoring PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel) on the corresponding cell, monitoring the PDCCH used to schedule the corresponding cell, and sending PRACH (Physical Random Access) on the corresponding cell.
  • PDCCH Physical Downlink Control Channel
  • PRACH Physical Random Access
  • the phrase "monitoring the PDCCH on the corresponding cell” includes: monitoring the PDCCH on the air interface resource of the corresponding cell.
  • the phrase monitoring the PDCCH used to schedule the corresponding cell includes: monitoring the PDCCH used to schedule the air interface resources of the corresponding cell.
  • the phrase sending PRACH on the corresponding cell includes: sending PRACH on the air interface resource of the corresponding cell.
  • the stopping of performing the first set of operations on the first cell includes not monitoring (monitoring) PDCCH on the first cell.
  • the stopping of performing the first set of operations for the first cell includes: not monitoring the PDCCH for the first cell.
  • the stopping of performing the first set of operations for the first cell includes: not monitoring the PDCCH used for scheduling the first cell.
  • the stopping of performing the first set of operations on the first cell includes: not sending RACH (Random Access CHannel, random access channel) on the first cell.
  • RACH Random Access CHannel, random access channel
  • the stopping of performing the first set of operations on the first cell includes: not transmitting on the first cell PRACH.
  • the stopping of performing the first set of operations on the first cell includes not sending a PUCCH (Physical Uplink Control Channel) to the first cell.
  • PUCCH Physical Uplink Control Channel
  • the stopping of performing the first set of operations on the first cell includes: not sending UL-SCH (Uplink Shared Channel, Uplink Shared Channel) in the first cell.
  • UL-SCH Uplink Shared Channel, Uplink Shared Channel
  • the stopping of performing the first set of operations on the first cell includes: not sending SRS (Sounding Reference Signal, sounding reference signal) in the first cell.
  • SRS Sounding Reference Signal, sounding reference signal
  • the stopping of performing the first set of operations for the first cell includes: not sending CSI (Channel Status Information, channel state information) for the first cell.
  • the stopping of performing the first set of operations for the first cell includes: clearing the PUSCH (Physical) associated with the semi-persistent CSI (Channel Status Information) report of the first cell. Uplink Shared Channel, physical uplink shared channel) resource.
  • PUSCH Physical
  • semi-persistent CSI Channel Status Information
  • the stopping of performing the first set of operations on the first cell includes: flushing HARQ buffers (buffers) associated with the first cell.
  • the stopping of performing the first set of operations on the first cell includes: deactivating the BWP (BandWidth Part, bandwidth part) associated with the first cell.
  • BWP BandWidth Part, bandwidth part
  • the stopping of performing the first set of operations on the first cell includes: stopping association with a bwp-inactivitytimer (bandwidth partial inactivity timer) of the first cell.
  • the stopping of performing the first set of operations for the first cell includes: suspending the configured uplink grant type 1 associated with the first cell.
  • whether the stopping of performing the first set of operations for the first cell includes clearing the first scheduling is related to the first signaling; when the first signaling is used to deactivate the When the first cell is the first cell, the stopping of performing the first set of operations for the first cell includes clearing the first schedule; when the first signaling is used for cell switching (switch), the stopping of performing the first operation set for the first cell includes clearing the first schedule.
  • the first cell performing the first set of operations does not include clearing the first schedule.
  • the name of the first signaling includes Deactivation.
  • the first signaling when used to deactivate the first cell, the first signaling is SCell (Secondary Cell) Deactivation MAC CE.
  • SCell Secondary Cell
  • clearing the first schedule means releasing the first schedule.
  • clearing the first schedule means that when the first cell is activated, the first schedule will not be activated.
  • the name of the first signaling includes change.
  • the name of the first signaling includes switch.
  • the name of the first signaling includes handover.
  • the name of the first signaling includes CCell (candidate cell, candidate cell).
  • the name of the first signaling includes CSCell (candidate serving cell, candidate serving cell).
  • the name of the first signaling includes Serving Cell.
  • the phrase cell switching includes: cell switching or switching based on non-high layer.
  • the phrase cell switching includes: non-L3 based cell switching or switching.
  • the phrase cell switching includes: cell switching or switching based on L1/L2.
  • the phrase cell switching includes: inter-cell mobility support based on L1/L2.
  • the phrase cell switching includes: fast inter-cell switching or switching.
  • the phrase cell switching includes: inter-cell mobility management.
  • the phrase cell switching includes: L1/L2-based serving cell switching or switching.
  • the phrase cell switching includes: candidate cell activation based on L1/L2.
  • the first signaling when used to deactivate the first cell, the first signaling does not necessarily activate a cell other than the first cell.
  • the first signaling when used for cell switching, the first signaling indicates switching to a cell other than the first cell.
  • the first signaling when used for cell switching, the first signaling indicates a second cell, and the second cell is a cell other than the first cell.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in Figure 2.
  • Figure 2 illustrates a diagram of the network architecture 200 of NR 5G, LTE (Long-Term Evolution, Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced, Enhanced Long-Term Evolution) systems.
  • the NR 5G, LTE or LTE-A network architecture 200 may be called 5GS (5G System)/EPS (Evolved Packet System) 200 or some other suitable term.
  • 5GS 5G System
  • EPS Evolved Packet System
  • 5GS/EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Server)/UDM (Unified Data Management, Unified Data Management) 220 and Internet Services 230.
  • 5GS/EPS can be interconnected with other access networks, but for simplicity it is not Expose these entities/interfaces. As shown, 5GS/EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks that provide circuit-switched services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB 203 may connect to other gNBs 204 via the Xn interface (eg, backhaul).
  • gNB203 can also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmission Reception Point, Transmitting and receiving node) or some other suitable terminology, in an NTN (Non Terrestrial Network, non-terrestrial/satellite network) network, gNB203 can be a satellite, an aircraft or a ground base station relayed through a satellite. gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, Personal Digital Assistants (Personal Digital Assistants, PDAs), satellite radios, global positioning systems, multimedia devices, Video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, vehicle-mounted equipment, vehicle-mounted communication units, Wearable devices, or any other similarly functional device.
  • SIP Session Initiation Protocol
  • PDAs Personal Digital Assistants
  • satellite radios global positioning systems
  • multimedia devices Video devices
  • digital audio players e.g., MP3 players
  • game consoles e.g., drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, vehicle-mounted equipment, vehicle-mounted communication units, Wearable devices, or any other similarly functional device.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management field)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management field
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway)/UPF (User Plane Function) 212 and P-GW (Packet Date Network Gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles signaling between UE201 and 5GC/EPC210. Basically, MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and PS (Packet Switching, packet switching) streaming services.
  • IMS IP Multimedia Subsystem
  • IP Multimedia Subsystem IP Multimedia Subsystem
  • PS Packet Switching,
  • the UE201 corresponds to the first node in this application.
  • the NR node B 203 corresponds to the second node in this application.
  • the other NR Node B 204 corresponds to the third node in this application.
  • the gNB 203 is a macro cell (Marco Cell) base station.
  • the gNB 203 is a Micro Cell base station.
  • the gNB 203 is a Pico Cell base station.
  • the gNB 203 is a home base station (Femtocell).
  • the gNB 203 is a base station device that supports a large delay difference.
  • the gNB 203 is a flying platform device.
  • the gNB 203 is a satellite device.
  • the gNB 203 is a test equipment (for example, a transceiver device that simulates part of the functions of a base station, a signaling tester).
  • a test equipment for example, a transceiver device that simulates part of the functions of a base station, a signaling tester.
  • the gNB 204 is a macro cell (Marco Cell) base station.
  • the gNB 204 is a Micro Cell base station.
  • the gNB 204 is a Pico Cell base station.
  • the gNB 204 is a home base station (Femtocell).
  • the gNB 204 is a base station device that supports a large delay difference.
  • the gNB 204 is a flying platform device.
  • the gNB 204 is a satellite device.
  • the gNB 204 is a test equipment (for example, a transceiver device that simulates part of the functions of a base station, a signaling tester).
  • a test equipment for example, a transceiver device that simulates part of the functions of a base station, a signaling tester.
  • the wireless link from the UE 201 to the gNB 203/gNB 204 is an uplink, and the uplink is used to perform uplink transmission.
  • the wireless link from the gNB203/gNB204 to the UE201 is a downlink, and the downlink is used to perform downlink transmission.
  • the UE201 and the gNB203/gNB204 are respectively connected through a Uu interface.
  • Embodiment 3 illustrates a schematic diagram of the wireless protocol architecture of the user plane and control plane according to an embodiment of the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
  • Figure 3 shows the radio protocol architecture of the control plane 300 of a UE and a gNB using three layers: Layer 1, Layer 2 and Layer 3. .
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions. The L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the UE and the gNB through the PHY 301.
  • L2 layer 305 includes MAC (Medium Access Control, media access control) sublayer 302, RLC (Radio Link Control, wireless link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304, these sub-layers terminate at the gNB on the network side.
  • the PDCP sublayer 304 provides data encryption and integrity protection.
  • the PDCP sublayer 304 also provides handover support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of data packets, and realizes retransmission of lost data packets through ARQ.
  • the RLC sublayer 303 also provides duplicate data packet detection and protocol error detection.
  • the MAC sublayer 302 provides mapping between logical and transport channels and multiplexing of logical channel identities.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among UEs.
  • the MAC sublayer 302 is also responsible for HARQ (Hybrid Automatic Repeat Request, Hybrid Automatic Repeat Request) operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower part using RRC signaling between gNB and UE. layer.
  • radio resources ie, radio bearers
  • the V2X layer is responsible for generating PC5 QoS parameter groups and QoS rules based on received service data or service requests, corresponding to the PC5 QoS parameter group. Generate a PC5 QoS flow and send the PC5 QoS flow identifier and the corresponding PC5 QoS parameter group to the AS (Access Stratum, access layer) layer for QoS processing of the data packets belonging to the PC5 QoS flow identifier; the V2X layer also Including the PC5-S Signaling Protocol (PC5-Signaling Protocol) sub-layer, the V2X layer is responsible for indicating whether each AS layer transmission is PC5-S transmission or V2X service data transmission.
  • PC5-Signaling Protocol PC5-Signaling Protocol
  • the wireless protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the wireless protocol architecture in the user plane 350 is for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, and the PDCP sublayer 354 in the L2 layer 355.
  • the RLC sublayer 353 and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides header compression for upper layer packets to reduce wireless Send overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol, service data adaptation protocol) sublayer 356.
  • SDAP Service Data Adaptation Protocol, service data adaptation protocol
  • the SDAP sublayer 356 is responsible for QoS (Quality of Service, quality of service) flow and data radio bearer (DRB, Data Radio Bearer) to support business diversity.
  • the wireless protocol architecture of the UE in the user plane 350 may include part or all of the protocol sublayers of the SDAP sublayer 356, the PDCP sublayer 354, the RLC sublayer 353 and the MAC sublayer 352 at the L2 layer.
  • the UE may also have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side and a network layer terminating at the P-GW on the network side.
  • the application layer at the other end eg, remote UE, server, etc.
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the third node in this application.
  • the first signaling in this application is generated by the MAC302 or the MAC352.
  • the first signaling in this application is generated by the PHY301 or the PHY351.
  • the second signaling in this application is generated in the RRC306.
  • the second signaling in this application is generated by the PHY301 or the PHY351.
  • the first schedule in this application is generated by the RRC306.
  • the first schedule in this application is generated from the PHY301 or the PHY351.
  • the first message in this application is generated in the RRC306.
  • the second message in this application is generated by the RRC306.
  • the third signaling in this application is generated by the PHY301 or the PHY351.
  • the fourth signaling in this application is generated by the PHY301 or the PHY351.
  • the L2 layer 305 or 355 belongs to a higher layer.
  • the RRC sublayer 306 in the L3 layer belongs to a higher layer.
  • Embodiment 4 illustrates a schematic diagram of a hardware module of a communication device according to an embodiment of the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in the access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a data source 477, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, and a transmitter/receiver 418 and antenna 420.
  • Controller/Processor 475 In transmission from the second communication device 410 to the first communication device 450, at the second communication device 410, upper layer data packets from the core network or upper layer data packets from the data source 477 are provided to Controller/Processor 475. Core network and data sources 477 represent all protocol layers above the L2 layer. Controller/processor 475 implements the functionality of the L2 layer. In transmission from the second communications device 410 to the first communications device 450, the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and radio resource allocation to the first communication device 450 based on various priority metrics. The controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer). Transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 410, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M-phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for M-phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams. Transmit processor 416 then maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the first communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial stream that is the destination. The symbols on each spatial stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • Post-receive processor 456 decodes and deinterleaves the soft decisions to recover upper layer data and control signals transmitted by the second communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media.
  • the controller/processor 459 In transmission from the second communication device 410 to the first communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from the second communication device 410. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • upper layer data packets are provided at the first communications device 450 to a controller/processor 459 using a data source 467.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet Segmentation and reordering and multiplexing between logical and transport channels implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 In transmission from the first communications device 450 to the second communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from the first communication device 450.
  • Upper layer packets from the controller/processor 475 may be provided to the core network or all protocol layers above the L2 layer, and various control signals may also be provided to the core network or L3 for L3 processing.
  • the first communication device 450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Using the at least one processor together, the first communication device 450 at least: performs the first scheduling on the first cell; receives the first signaling, the first signaling is used to indicate to stop targeting the first The cell performs a first set of operations, and the first signaling is signaling of a protocol layer below the RRC layer; wherein the first scheduling indicates periodic time domain resources and first frequency domain resources; the first The operation set includes at least one of monitoring the PDCCH (Physical Downlink Control Channel) on the corresponding cell, monitoring the PDCCH used to schedule the corresponding cell, and transmitting the PRACH (Physical Random Access Channel) on the corresponding cell; the stopping Whether performing the first set of operations for the first cell includes clearing the first schedule is related to the first signaling; when the first signaling is used to deactivate the first cell, the stopping Executing the first set
  • the first communication device 450 device includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: Perform the first scheduling on the first cell; receive the first signaling, the first signaling is used to indicate to stop performing the first set of operations for the first cell, the first signaling is under the RRC layer Signaling at the protocol layer; wherein the first scheduling indicates periodic time domain resources and first frequency domain resources; the first operation set includes monitoring PDCCH (physical downlink control channel) on the corresponding cell, monitoring for At least one of scheduling the PDCCH of the corresponding cell and sending the PRACH (Physical Random Access Channel) on the corresponding cell; whether the stopping of performing the first set of operations for the first cell includes clearing the first scheduling related to the first signaling; when the first signaling is used to deactivate the first cell, the stopping of performing a first set of operations for the first cell includes clearing the first schedule; When the first signaling is used for a cell switch, the stopping of performing the first set of operations for
  • the second communication device 410 includes: at least one processor and at least one memory, and the At least one memory includes computer program code; the at least one memory and the computer program code are configured for use with the at least one processor.
  • the second communication device 410 at least: sends a first signaling, the first signaling is used to indicate that execution of the first set of operations for the first cell is stopped, the first signaling is under the RRC layer.
  • the first scheduling is performed by the recipient of the first signaling on the first cell; the first scheduling indicates periodic time domain resources and first frequency domain resources; the The first set of operations includes at least one of monitoring the PDCCH (Physical Downlink Control Channel) on the corresponding cell, monitoring the PDCCH used to schedule the corresponding cell, and transmitting the PRACH (Physical Random Access Channel) on the corresponding cell; Whether the execution of the first set of operations for the first cell is stopped includes the first scheduling being cleared by the recipient of the first signaling, which is related to the first signaling; when the first signaling is When used to deactivate the first cell, the execution of the first set of operations for the first cell is stopped including the first scheduling being cleared; when the first signaling is used for cell switching (switch), The stopping of performing the first set of operations for the first cell does not include the clearing of the first schedule.
  • PDCCH Physical Downlink Control Channel
  • PRACH Physical Random Access Channel
  • the second communication device 410 device includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: sending First signaling, the first signaling is used to indicate that execution of the first operation set for the first cell is stopped, the first signaling is signaling of the protocol layer below the RRC layer; wherein, the first scheduling Performed by the recipient of the first signaling on the first cell; the first scheduling indicates periodic time domain resources and first frequency domain resources; the first operation set includes monitoring on the corresponding cell At least one of PDCCH (Physical Downlink Control Channel), monitoring the PDCCH used to schedule the corresponding cell, and sending PRACH (Physical Random Access Channel) on the corresponding cell; the first set of operations are performed for the first cell Whether being stopped includes the first scheduling being cleared by the recipient of the first signaling is related to the first signaling; when the first signaling is used to deactivate the first cell, The execution of the first set of operations for the first cell is stopped including the first scheduling being cleared;
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the used with at least one of the above processors.
  • the second communication device 410 at least: sends second signaling, the second signaling is used to indicate that execution of the first set of operations for the first cell is started; wherein, the second signaling The reception of is later than the reception of the first signaling; the second signaling is used for cell switching.
  • the second communication device 410 device includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: sending Second signaling, the second signaling is used to indicate that execution of the first set of operations for the first cell is started; wherein the second signaling is received later than the first signaling. Receive; the second signaling is used for cell switching.
  • the first communication device 450 corresponds to the first node in this application
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 corresponds to the first node in this application
  • the second communication device 410 corresponds to the third node in this application.
  • the first communication device 450 is a UE.
  • the second communication device 410 is a base station device.
  • At least one of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416 or the controller/processor 475 is used to transmit this First signaling in the application.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456 or the controller/processor 459 is used to receive this First signaling in the application.
  • At least one of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416 or the controller/processor 475 is used to transmit this Second signaling in application.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456 or the controller/processor 459 is used to receive this Second signaling in application.
  • At least one of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416 or the controller/processor 475 is used to transmit this First news in application.
  • the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456 or at least one of the controller/processor 459 is used to receive the first message in this application.
  • At least one of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416 or the controller/processor 475 is used to transmit this Third signaling in application.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456 or the controller/processor 459 is used to receive this Third signaling in application.
  • At least one of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416 or the controller/processor 475 is used to transmit this Second message in application.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456 or the controller/processor 459 is used to receive this Second message in application.
  • At least one of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416 or the controller/processor 475 is used to transmit this Fourth signaling in application.
  • At least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456 or the controller/processor 459 is used to receive this Fourth signaling in application.
  • At least one of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416 or the controller/processor 475 is used to perform the first One dispatch.
  • At least one of the antenna 452, the receiver 454, the multi-antenna reception processor 458, the reception processor 456 or the controller/processor 459 is used to perform the first One dispatch.
  • Embodiment 5 illustrates a wireless signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 5 .
  • the first node N51 and the second node N52 communicate through the wireless interface; the first node N51 and the third node N53 communicate through the wireless interface. It is particularly noted that the order in this example does not limit the signal transmission order and implementation order in this application.
  • the first node N51 receive the first message in step S511; receive the third signaling in step S512; perform the first scheduling in step S513; receive the first signaling in step S514; and stop targeting the first node N51 in step S515.
  • the first cell performs the first operation set; receives the second signaling in step S516; and performs the first scheduling in step S517.
  • the first message is sent in step S521; the third signaling is sent in step S522; the first scheduling is performed in step S523; the first signaling is sent in step S524; and the third signaling is performed in step S525.
  • step S53 For the second node N53 , second signaling is sent in step S531.
  • the first scheduling is performed on the first cell; the first signaling is received, the first signaling is used to indicate to stop performing the first set of operations for the first cell, the first signaling is Let be the signaling of the protocol layer below the RRC layer; wherein the first scheduling indicates periodic time domain resources and the first frequency domain resources; the first operation set includes monitoring PDCCH (physical downlink) on the corresponding cell Control channel), monitor the PDCCH used to schedule the corresponding cell, and send at least one of the PRACH (physical random access channel) on the corresponding cell; whether the stop performing the first set of operations for the first cell including clearing the first scheduling related to the first signaling; when the first signaling is used to deactivate the first cell, the stopping of performing the first set of operations for the first cell includes clearing the first schedule; when the first signaling is used for cell switching (switch), the stopping of performing the first set of operations for the first cell does not include clearing the first schedule; the clearing The first schedule includes: clearing the configured uplink grant type 2 indicated by the first schedule; wherein
  • Periodic information of the time domain resource of a scheduling indication, or at least one of the hybrid automatic repeat request information associated with the first scheduling is saved; second signaling is received on the second cell, and the first The second signaling is used to indicate starting to perform the first operation set for the first cell; wherein the reception of the second signaling is later than the reception of the first signaling; the second signaling is used for cell switching; the second signaling indicates a second frequency domain resource; wherein the second frequency domain resource is used to perform the first scheduling; the second frequency domain resource and the first frequency domain resource are The domain resources are the same, or the second frequency domain resource is at least partially different from the first frequency domain resource; receiving a first message, the first message being used to configure the first scheduling; receiving third signaling , the third signaling is used to activate the first scheduling; Wherein, the first message includes periodic information of the time domain resources indicated by the first scheduling; and the third signaling includes the first frequency domain resources indicated by the first scheduling.
  • the first scheduling in the dotted box F50 and the first scheduling in the dotted box F51 are both executed in the first cell.
  • the second node is the base station of the first cell.
  • the second node is a transceiver of the first cell.
  • the third node is the base station of the second cell.
  • the third node is a transceiver of the second cell.
  • the second node and the third node are respectively base stations of the serving cell of the first node.
  • the second node and the third node share a site address.
  • the second node and the third node are located at different site addresses.
  • a first message is received, and the first message is used to configure the first schedule.
  • the first message is received on the first cell.
  • the first message is an RRC message.
  • the first message is an RRC reconfiguration message.
  • the first message includes all or part of the IE (Information element) in an RRC signaling.
  • the first message includes all or part of the fields in an IE in an RRC signaling.
  • the first message includes a ConfiguredGrantConfig (configuration grant configuration) IE.
  • ConfiguredGrantConfig configuration grant configuration
  • the first message includes SPS-Config (Semi-Persistent Scheduling Configuration) IE.
  • the first message includes a first scheduling index, and the first scheduling index is used to indicate the first scheduling.
  • the first message includes period information of the time domain resource indicated by the first scheduling.
  • the first message includes the HARQ information associated with the first scheduling.
  • the HARQ information associated with the first scheduling includes the number of HARQ processes used for the first scheduling.
  • the HARQ information associated with the first scheduling includes a HARQ process number offset for the first scheduling.
  • the HARQ information associated with the first scheduling includes a HARQ-ACK (ACKnowledgement, determination) codebook index for the first scheduling.
  • HARQ-ACK acknowledgement, determination
  • third signaling is received, and the third signaling is used to activate the first schedule.
  • the third signaling is received on the first cell.
  • the third signaling is received later than the first message.
  • the third signaling is physical layer signaling.
  • the third signaling is PDCCH (Physical Downlink Control Channel).
  • the third signaling is DCI (Downlink Control Information).
  • the third signaling is scrambled by CS (Configured Scheduling)-RNTI (Radio Network Temporary Identifier, Radio Network Temporary Identifier).
  • CS Configured Scheduling
  • RTI Radio Network Temporary Identifier, Radio Network Temporary Identifier
  • the CRC (Cyclic Redundancy Check) of the third signaling is scrambled by the CS-RNTI.
  • the CS-RNTI is used to identify the first node.
  • the third signaling is scrambled by G-CS-RNTI (Group-CS-RNTI, Group CS-RNTI).
  • the CRC of the third signaling is scrambled by the G-CS-RNTI.
  • the target recipient of the third signaling includes at least one node other than the first node.
  • the third signaling is received through multicast.
  • the G-CS-RNTI is used to identify an MBS (multicast/broadcast service, multicast broadcast service) session.
  • the phrase activating the first scheduling includes storing the downlink allocation and associated HARQ information for the first cell to configure the downlink allocation; wherein the first scheduling is semi-persistent scheduling.
  • the phrase activating the first schedule includes storing the uplink grant and associated HARQ information for the first cell as configuring uplink grant type 2; wherein the first schedule is configuring grant type 2.
  • the third signaling when the following three conditions are met, the third signaling is used to activate the first scheduling, the three conditions include: the format of the third signaling is DCI format (format) 0_0, or one of DCI format 0_1, or DCI format 0_2; the value of the HARQ process number field (field) included in the third signaling is all 0; in the third signaling The included redundancy version field has a value of all zeros.
  • the third signaling is used to activate the first scheduling when the following three conditions are met, the three conditions include: the format of the third signaling is DCI format 1_0 or DCI One of formats 1_2; the value of the HARQ process number (process number) field included in the third signaling is all 0; the value of the redundancy version (redundancy version) field included in the third signaling is all 0.
  • the third signaling is used to activate the first scheduling when the following three conditions are met, the three conditions include: the format of the third signaling is DCI format 1_1; The value of the HARQ process number (process number) field included in the third signaling is all 0; for the enabled (enabled) transport block (transport block), the redundancy version (redundancy version) included in the third signaling is ) field is all zeros.
  • the first node is only provided with the first node in the scheduled active DL/UL (Downlink/Uplink, downlink/uplink) BWP (BandWidth Part, bandwidth part). Scheduling.
  • the third signaling is used to activate the first scheduling when the following two conditions are met, the two conditions include: the format of the third signaling is DCI format 0_0, or One of DCI format 0_1 or DCI format 0_2; the value of the redundancy version field included in the third signaling is all 0s.
  • the third signaling is used to activate the first scheduling when the following two conditions are met, the two conditions include: the format of the third signaling is DCI format 1_0 or DCI One of formats 1_2; the value of the redundancy version field included in the third signaling is all 0s.
  • the third signaling is used to activate the first scheduling when the following two conditions are met, the two conditions include: the format of the third signaling is DCI format 1_1; The value of the redundancy version field included in the third signaling of the enabled transport block is all 0s.
  • the first node is provided with multiple semi-persistent scheduling in the active DL/ULBWP of the scheduled cell or the first node is provided with multiple configuration grant types 2; so The first schedule is one of the plurality of semi-persistent schedules or the plurality of configuration grant types 2.
  • the value of the HARQ process number field included in the third signaling is a first scheduling index, and the first scheduling index is used to indicate the first scheduling. .
  • the third signaling is used to activate the first scheduling.
  • the third signaling includes the first frequency domain resource of the first scheduling indication.
  • the first schedule is executed after being activated and before being deactivated.
  • performing the first scheduling includes monitoring wireless signals on time-frequency resources indicated by the first scheduling.
  • the first node stops monitoring wireless signals on the time-frequency resources indicated by the first scheduling.
  • the wireless signal is scrambled by the G-CS-RNTI.
  • the wireless signal is scrambled by the CS-RNTI.
  • the first scheduling is not deactivated before receiving the first signaling.
  • clearing the first schedule includes clearing multiple uplink grants indicated by the first schedule; wherein the first schedule is configuration grant type 2.
  • clearing the first schedule includes: clearing periodic time-frequency resources indicated by the first schedule.
  • clearing the first schedule includes: clearing periodic time domain resources and the first frequency domain resources indicated by the first schedule.
  • clearing the first schedule includes: clearing the configured uplink grant indicated by the first schedule. Type 2; wherein the first schedule is configuration grant type 2.
  • the configured uplink grant type 2 includes multiple uplink grants.
  • the configured uplink grant type 2 includes the HARQ information associated with the first scheduling.
  • clearing the first scheduling includes clearing multiple downlink allocations indicated by the first scheduling; wherein the first scheduling is semi-persistent scheduling.
  • clearing the first scheduling includes clearing the configured downlink allocation indicated by the first scheduling; wherein the first scheduling is semi-persistent scheduling.
  • the configured downlink allocation includes multiple downlink allocations.
  • the configured downlink allocation includes hybrid automatic repeat request information associated with the first scheduling.
  • stopping the execution of the first set of operations for the first cell does not include clearing the first schedule means: suspending the first schedule.
  • stopping to perform the first set of operations for the first cell does not include clearing the first schedule means: maintaining the first schedule.
  • stopping the execution of the first set of operations for the first cell does not include clearing the first schedule means: pausing the first schedule.
  • the suspension of the first scheduling includes: saving the period information of the time domain resource indicated by the first scheduling, or saving at least one of the HARQ information associated with the first scheduling. one.
  • suspending the first schedule includes: saving the configuration information of the first schedule included in the first message.
  • suspending the first schedule includes: stopping transmitting on the air interface resources of the first cell according to the first schedule; or stopping transmitting on the air interface resources of the first cell according to the first schedule. Received on the air interface resource.
  • suspending the first scheduling includes: stopping HARQ-ACK feedback for the first scheduling.
  • the first receiver receives a second message, the second message indicates a first cell set, and the first cell set includes at least the second cell.
  • the second message is received on the first cell.
  • the second message is a high-level message.
  • the second message is RRC signaling.
  • the second message is an RRC reconfiguration (reconfiguration) message.
  • the second message includes all or part of the IEs in an RRC signaling.
  • the second message includes all or part of the fields in an IE in an RRC signaling.
  • any cell included in the first cell set is configured as a candidate serving cell for the first node.
  • second signaling is received on the second cell, and the second signaling is used to indicate starting to perform the first set of operations for the first cell; wherein the second signaling The signaling is received later than the first signaling, and the first signaling and the second signaling are respectively used for cell switching.
  • the second signaling and the first signaling are the same type of signaling.
  • the first signaling and the second signaling are respectively used for cell switching.
  • the second signaling is signaling of a protocol layer below the RRC layer.
  • the second signaling is MAC sublayer signaling.
  • the second signaling is MAC CE (Control Element).
  • the second signaling is PHY (physical) layer signaling.
  • the second signaling is DCI (Downlink Control Information).
  • the DCI format of the second signaling is 2_X, and the X is a positive integer greater than 7 and less than 32.
  • the second signaling indicates the first cell.
  • the second signaling is used to instruct the second state of the first cell to switch to the first state of the first cell.
  • receiving the time domain resource of the second signaling is later than the first time, and the first time is not later than receiving the first
  • the signaling time domain resource passes through the time domain resource of the first time interval.
  • the first time is a time slot.
  • the first time is the starting time of a time slot.
  • the first time is the end time of a time slot.
  • the first time is an OFDM symbol.
  • the first time is the starting time of an OFDM symbol.
  • the first time is the end time of an OFDM symbol.
  • the first time is later than the time domain resource occupied by the first signaling.
  • the first node after receiving the first signaling, determines a time by itself no later than the time domain resource of the first time interval after receiving the first signaling. Said first time.
  • the time domain resource is a time slot.
  • the time domain resource is OFDM compliant.
  • the time domain resource is a subframe.
  • the first time interval is at least related to time domain resources for sending HARQ-ACK for the first signaling.
  • the HARQ-ACK is one of ACK or NACK (Negative ACKnowledgment, negative).
  • the first time interval is greater than the HARQ feedback time interval.
  • the HARQ feedback time interval is the time interval between the time domain resource for receiving the first signaling and the time domain resource for sending the HARQ-ACK for the first signaling.
  • the first time interval is specified by 3GPP standards.
  • the first time interval is determined according to the definition in the 3GPP standard TS 38.133 protocol.
  • the first time interval is ( THARQ + m1) milliseconds; wherein the T HARQ milliseconds is the HARQ feedback time interval, and m1 is a positive integer not less than 1.
  • the first time interval is time slots; where n is the time slot for receiving the first signaling, is the time slot for PUCCH transmission of HARQ-ACK of the first signaling, the m1 is a positive integer not less than 1, and the NR slot length (new air interface slot length) is SCS (SubCarrier Spacing, subcarrier interval) is the duration of the slot included in a subframe when ⁇ .
  • n is the time slot for receiving the first signaling
  • m1 is a positive integer not less than 1
  • the NR slot length new air interface slot length
  • SCS SubCarrier Spacing, subcarrier interval
  • the value of m1 is 1.
  • the value of m1 is 3.
  • the value of m1 is specified by the standard.
  • the value of m1 is configured by the network.
  • the value of m1 is pre-configured.
  • the duration of a subframe is 1 millisecond, and a subframe includes 2 ⁇ time slots.
  • the duration of each time slot is 1/2 ⁇ millisecond, and the corresponding SCS is 2 ⁇ ⁇ 15 kHz (kilohertz).
  • a subframe when ⁇ is 0, a subframe includes one time slot, the duration of a time slot is 1 millisecond, and the corresponding SCS is 15kHz; when ⁇ is 1, a subframe includes 2 time slots, each time slot The duration is 0.5 milliseconds, corresponding to SCS is 30kHz, and so on, so I won’t go into details one by one.
  • the first time interval is related to the processing capability of the first node.
  • the first time interval is related to the subcarrier interval of PUCCH transmission by the first node.
  • the first time interval includes the time for decoding the first signaling.
  • the second signaling is used to resume the first scheduling; wherein the first signaling is used for cell switching.
  • the second signaling is used to activate the first scheduling; wherein the first signaling is used for cell switching.
  • the second signaling is used to initialize the first scheduling; wherein the first signaling is used for cell switching.
  • the second signaling implicitly indicates the second frequency domain resource.
  • the second frequency domain resource is the same as the first frequency domain resource.
  • the second signaling explicitly indicates the second frequency domain resource.
  • the second frequency domain resource is used to perform the first scheduling.
  • the phrase that the second frequency domain resource is used to perform the first scheduling includes: the second frequency domain resource is the frequency domain of the periodic time-frequency resource indicated by the first scheduling. resource.
  • the second frequency domain resource includes at least one subcarrier.
  • the second frequency domain resource includes at least one resource block (RB).
  • RB resource block
  • the second frequency domain resource includes at least one physical resource block (PRB).
  • PRB physical resource block
  • the second frequency domain resource is the same as the first frequency domain resource, or the second frequency domain resource is at least partially different from the first frequency domain resource.
  • the second frequency domain resource being the same as the first frequency domain resource includes: the number of resource blocks included in the second frequency domain resource is the same as the number of resource blocks included in the first frequency domain resource, And the starting position of the second frequency domain resource is the same as the starting position of the first frequency domain resource.
  • the difference between the second frequency domain resource and the first frequency domain resource includes: the number of resource blocks included in the second frequency domain resource is different from the number of resource blocks included in the first frequency domain resource, Alternatively, the starting position of the second frequency domain resource is at least one different from the starting position of the first frequency domain resource.
  • the first scheduling continues to be performed on the first cell.
  • the above method can save RRC configuration signaling by reactivating the first scheduling through the second signaling.
  • the first receiver when the second signaling is not used to activate the first scheduling, receives a fourth signal on the first cell after receiving the second signaling. Signaling, the fourth signaling is used to activate the first scheduling; wherein the fourth signaling indicates a third frequency domain resource, and the third frequency domain resource is used to execute the first scheduling .
  • the fourth signaling and the third signaling are the same type of signaling.
  • the third frequency domain resource is the same as the first frequency domain resource, or the third frequency domain resource is at least partially different from the first frequency domain resource.
  • the first scheduling continues to be performed on the first cell.
  • the above method can save RRC configuration signaling by reactivating the first scheduling through the fourth signaling.
  • Embodiment 6 illustrates a schematic format diagram of the first signaling according to an embodiment of the present application, as shown in FIG. 6 .
  • the first signaling is used to instruct to stop performing the first set of operations for the first cell.
  • the first signaling is MAC CE.
  • the first signaling includes a single octet.
  • one byte included in the first signaling includes 7 C fields and 1 R field; the R field is reserved.
  • the seven C fields are used to indicate whether to perform the first set of operations for the corresponding cell; when a C field is set to 0, the cell indicated by the C field stops Execute the first set of operations; when a C field is set to 1, the cell indicated by the C field begins to execute the first set of operations; wherein the index of the C field is used to indicate cells with the same index. .
  • the cell index corresponds to the cell one-to-one.
  • the corresponding relationship between the cell index and the cell is pre-configured.
  • the above method can save bits.
  • a cell is identified by a cell identifier.
  • the cell identifier is PCI (Physical Cell Identifier, physical cell identifier).
  • the cell identifier is NCGI (NR Cell Global Identifier, physical cell identifier).
  • the cell identifier is NCI (NR Cell Identifier, NR cell identifier).
  • the C field included in the first signaling corresponding to the index of at least one cell except the first cell is set to 1; wherein the first signaling is used for cell switching.
  • the C field corresponding to the index of the second cell included in the first signaling is set to 1.
  • the first signaling includes four bytes (four octets).
  • the four bytes included in the first signaling include 31 C fields and 1 R field; the R field is reserved.
  • the four bytes include the interpretation of each of the 31 C fields, and the same byte includes the interpretation of each of the 7 C fields, which will not be described again.
  • the logical channel identity of the first signaling is a positive integer between 35 and 46, including 35 and 46.
  • the first signaling includes 1 byte.
  • the first signaling includes 4 bytes.
  • Embodiment 7 illustrates another format diagram of the first signaling according to an embodiment of the present application, as shown in FIG. 7 .
  • the first signaling is MAC CE.
  • the first signaling includes the second cell identity.
  • the first signaling includes one byte, and the first signaling includes an index of the second cell.
  • the index of the second cell includes 3 bits.
  • the index of the second cell includes 5 bits.
  • Embodiment 7 show a situation where the first signaling includes an index of the second cell, the index of the second cell includes 5 bits, and the remaining bits included in the first signaling are reserved bits. R. It should be noted that the drawings of Embodiment 7 only show that the reserved bits occupy the upper 3 bits and the index of the second cell occupies the lower 5 bits. This patent does not limit the reserved bits and Other combinations of the index bits of the second cell in one byte.
  • Embodiment 8 illustrates a schematic format diagram of the second signaling according to an embodiment of the present application, as shown in FIG. 8 .
  • Figure 8 further illustrates the first signaling format shown in Figure 7.
  • the first signaling in Figure 7 can also be It has the same fields as the second signaling in Figure 8.
  • the second signaling is of variable size.
  • the second signaling includes an index of the first cell.
  • the second signaling includes a first scheduling index, and the first scheduling index is used to indicate the first scheduling.
  • the second signaling includes the second frequency domain resource.
  • the second signaling includes configuration information of the first schedule, and the configuration information at least includes the second frequency domain resource.
  • the configuration information includes MCS (Modulation and Coding Scheme).
  • the configuration information includes information for receiving on the first cell, or for transmitting on the first cell.
  • the configuration information optionally includes a time domain resource offset.
  • the time domain resource for receiving the second signaling plus the time domain resource offset is the periodic timing of the first scheduling indication.
  • the first scheduling index includes 4 bits
  • the time domain resource offset includes 6 bits
  • the number of bits of the second frequency domain resource is related to the frequency domain resources included in the first cell.
  • Figure 8 uses 12 bits as an example. Other configuration information is represented by ellipses and is not listed one by one.
  • Embodiment 9 illustrates a schematic diagram of the relationship between first signaling, second signaling and first scheduling according to an embodiment of the present application, as shown in Figure 9 shown.
  • the first scheduling is executed on the first cell; when the first signaling is received and the first signaling is used for cell switching, the first signaling is suspended.
  • a scheduling when receiving the second signaling, reactivate the first scheduling and continue to execute the first scheduling on the first cell.
  • the first scheduling when the first scheduling is not activated or is suspended, save the period information of the time domain resource indicated by the first scheduling; when the first scheduling is activated, configure all The frequency domain resources indicated by the first scheduling.
  • Figure 9 does not show the reception and processing delays of the first signaling and the second signaling, nor does it show the suspension of the first scheduling and the resumption of execution of the second signaling.
  • the processing delay of a schedule is for example only.
  • Embodiment 10 illustrates a structural block diagram of a processing device in a first node according to an embodiment of the present application, as shown in FIG. 10 .
  • the first node processing device 1000 includes a first receiver 1001 and a first processor 1002; the first node 1000 is a UE.
  • the first processor 1002 performs the first scheduling on the first cell; the first receiver 1001 receives the first signaling, and the first signaling is used to indicate to stop targeting the first The cell performs a first set of operations, and the first signaling is signaling of a protocol layer below the RRC layer; wherein the first scheduling indicates periodic time domain resources and first frequency domain resources; the first The operation set includes at least one of monitoring the PDCCH (Physical Downlink Control Channel) on the corresponding cell, monitoring the PDCCH used to schedule the corresponding cell, and transmitting the PRACH (Physical Random Access Channel) on the corresponding cell; the stopping Whether performing the first set of operations for the first cell includes clearing the first schedule is related to the first signaling; when the first signaling is used to deactivate the first cell, the stopping Executing the first set of operations for the first cell includes clearing the first schedule; and when the first signaling is used for cell switching, stopping performing the first set of operations for the first cell. Clearing the first schedule is not included.
  • clearing the first schedule includes clearing the configured uplink grant type 2 indicated by the first schedule; wherein the configured uplink grant type 2 includes associated Hybrid Automatic Repeat Request (HARQ) information.
  • the first schedule is configuration grant type 2.
  • clearing the first schedule includes: clearing the configured downlink allocation indicated by the first scheduling; wherein the configured downlink allocation includes associated hybrid automatic repeat request information; the first schedule is Semi-continuous scheduling.
  • the stopping of performing the first set of operations for the first cell does not include clearing the first schedule, including: suspending the first schedule.
  • stopping the execution of the first set of operations for the first cell does not include clearing the first schedule including: suspending the first schedule; and suspending the first schedule includes: saving all Periodic information of the time domain resource indicated by the first scheduling, or saving at least one of hybrid automatic repeat request information associated with the first scheduling.
  • the first receiver 1001 receives second signaling on the second cell, and the second signaling is used to indicate starting to perform the first operation set for the first cell; wherein , the second signaling is received later than the first signaling; the second signaling is used for cell switching.
  • the first receiver 1001 receives second signaling on the second cell, and the second signaling is used to indicate starting to perform the first operation set for the first cell; wherein , the reception of the second signaling is later than the reception of the first signaling; the second signaling is used for cell switching; the second signaling indicates a second frequency domain resource; wherein, the second signaling Two frequency domain resources are used to perform the first scheduling; the second frequency domain resource is the same as the first frequency domain resource, or at least part of the second frequency domain resource and the first frequency domain resource are different.
  • the first receiver 1001 receives a first message, which is used to configure the first schedule; and receives a third signaling, which is used to activate all The first scheduling; wherein the first message includes periodic information of the time domain resources indicated by the first scheduling; and the third signaling includes the first frequency domain resources indicated by the first scheduling .
  • the first receiver 1001 includes the receiver 454 (including the antenna 452), the receiving processor 456, the multi-antenna receiving processor 458 and the controller/processor 459 in Figure 4 of this application.
  • the first receiver 1001 includes at least one of the receiver 454 (including the antenna 452), the receiving processor 456, the multi-antenna receiving processor 458 or the controller/processor 459 in Figure 4 of this application. one.
  • the first processor 1002 includes the receiver 454 (including the antenna 452) in Figure 4 of this application.
  • the first processor 1002 includes at least one of the receiver 454 (including the antenna 452), the receiving processor 456, the multi-antenna receiving processor 458 or the controller/processor 459 in Figure 4 of this application. one.
  • the first processor 1002 includes the transmitter 454 (including the antenna 452), the transmission processor 468, the multi-antenna transmission processor 457 and the controller/processor 459 in Figure 4 of this application.
  • the first processor 1002 includes at least one of the transmitter 454 (including the antenna 452), the transmission processor 468, the multi-antenna transmission processor 457 or the controller/processor 459 in Figure 4 of this application. one.
  • the first processor 1002 includes the controller/processor 459 in Figure 4 of this application.
  • Embodiment 11 illustrates a structural block diagram of the processing device in the second node according to an embodiment of the present application, as shown in Figure 11.
  • the second node processing device 1100 includes a first transmitter 1101; the second node 1100 is a base station.
  • the first transmitter 1101 sends the first signaling.
  • the first signaling is used to indicate that execution of the first set of operations for the first cell is stopped.
  • the first signaling is one of the RRC layers. Signaling at the underlying protocol layer;
  • the first scheduling is executed by the recipient of the first signaling on the first cell; the first scheduling indicates periodic time domain resources and first frequency domain resources; the first operation set includes At least one of monitoring the PDCCH (Physical Downlink Control Channel) on the corresponding cell, monitoring the PDCCH used to schedule the corresponding cell, and sending the PRACH (Physical Random Access Channel) on the corresponding cell; the above is for the first cell Whether execution of the first set of operations is stopped includes the first schedule being cleared by the recipient of the first signaling is related to the first signaling; when the first signaling is used to deactivate the When the first cell is the first cell, the execution of the first set of operations for the first cell is stopped including the first scheduling being cleared; when the first signaling is used for cell switching, the execution of the first set of operations for the first cell is stopped. Stopping execution of the first set of operations does not include the first schedule being cleared.
  • the first schedule being cleared includes: the configured uplink grant type 2 indicated by the first schedule is cleared; wherein the configured uplink grant type 2 includes associated hybrid automatic repeat request (HARQ) information , the first schedule is configuration grant type 2.
  • HARQ hybrid automatic repeat request
  • the first schedule being cleared includes: the configured downlink allocation indicated by the first schedule is cleared; wherein the configured downlink allocation includes associated hybrid automatic repeat request information; the first schedule is Semi-continuous scheduling.
  • the stopping of performing the first set of operations on the first cell does not include the clearing of the first scheduling, including: the first scheduling being suspended.
  • the stopping of executing the first set of operations for the first cell does not include the first scheduling being cleared, including: the first scheduling being suspended; the suspending the first scheduling including: the At least one of the period information of the time domain resource indicated by the first scheduling, or the hybrid automatic repeat request information associated with the first scheduling is saved.
  • the first transmitter 1101 sends a first message, which is used to configure the first schedule; and sends third signaling, which is used to activate all The first scheduling; wherein the first message includes periodic information of the time domain resources indicated by the first scheduling; and the third signaling includes the first frequency domain resources indicated by the first scheduling .
  • the first transmitter 1101 includes the transmitter 418 (including the antenna 420), the transmit processor 416, the multi-antenna transmit processor 471 and the controller/processor 475 in Figure 4 of this application.
  • the first transmitter 1101 includes at least one of the transmitter 418 (including the antenna 420), the transmit processor 416, the multi-antenna transmit processor 471 or the controller/processor 475 in Figure 4 of this application. one.
  • the first type of communication node or UE or terminal in this application includes but is not limited to mobile phones, tablets, laptops, network cards, low-power devices, eMTC (enhanced Machine Type Communication) devices, and NB-IoT devices , vehicle-mounted communication equipment, aircraft, aircraft, drones, remote control aircraft and other wireless communication equipment.
  • Category 2 in this application Signal nodes or base stations or network side equipment include but are not limited to macro cell base stations, micro cell base stations, home base stations, relay base stations, eNB, gNB, transmission and reception nodes TRP (Transmission and Reception Point, transmission and reception points), relay satellites , satellite base stations, air base stations and other wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的方法和装置。第一节点在第一小区上执行第一调度;接收第一信令,所述第一信令被用于指示停止针对所述第一小区执行第一操作集合,所述第一信令是RRC层之下的协议层的信令;其中,所述第一调度指示周期性的时域资源和第一频域资源;所述第一操作集合包括在相应小区上监听PDCCH、监听用于调度相应小区的PDCCH、和在相应小区上发送PRACH三者中的至少之一;当所述第一信令被用于去激活所述第一小区时,所述停止针对所述第一小区执行第一操作集合包括清除所述第一调度;当所述第一信令被用于小区转换(switch)时,所述停止针对所述第一小区执行第一操作集合不包括清除所述第一调度。本申请可以有效节省信令开销。

Description

一种被用于无线通信的方法和装置 技术领域
本申请涉及无线通信系统中的方法和装置,尤其涉及无线通信中支持L1/L2(Layer 1/Layer 2,层1/层2)移动性增强时的调度的方法和装置。
背景技术
当UE(User Equipment,用户设备)从一个小区的覆盖范围移动到另一个小区的覆盖范围时,需要改变UE的服务小区。现有服务小区改变通常由L3(Layer 3,层3)测量触发,通过RRC(Radio Resource Control,无线资源控制)信令触发的包括同步的重配置(Reconfiguration with Synchronization)来实现。在L3实现的服务小区改变具有延时长,信令开销大和中断时间长的特性。为克服上述缺点,3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)在Rel(版本)-17中引入了双连接(Dual Connectivity,DC),条件PSCell改变(Conditional PSCell(Primary SCG(Secondary Cell Group)Cell)change,CPC),条件PSCell增加(CPA),条件切换(Conditional Handover,CHO)等技术,但这些技术仍然都基于L3实现,无法完全解决上述问题。在3GPP RAN#94e次全会上决定对基于L1/L2的移动性增强技术启动WI(Work Item,工作项目)标准化工作,基于L1/L2的移动性增强技术的设计目标是实现UE的服务小区的快速改变。
传统通信中有两种传输方法,一种是动态调度(dynamic scheduling)的传输,即每次传输都是基于网络实时分配的空口资源;一种不是动态调度(without dynamic scheduling)的传输,即网络提前配置好空口资源,UE在配置好的空口资源上传输。不是动态调度包括半持续调度(Semi-Persistent Scheduling,SPS)和配置授予(Configured Grant,CG),不是动态调度的传输适用于周期性业务。
发明内容
发明人通过研究发现,针对快速改变UE的服务小区的场景,当UE离开一个小区时,如果将半持续调度和/或配置授予类型2(type 2)清除,当UE很快又返回该小区,需要进行重新配置激活,会引入额外的信令开销,同时增加业务中断的时间。
针对上述问题,本申请公开了一种针对快速改变UE的服务小区场景中针对不是动态调度的传输,特别是半持续调度和配置授予类型2,进行维护的解决方案。在不冲突的情况下,本申请的第一节点中的实施例和实施例中的特征可以应用到第二节点中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。进一步的,虽然本申请的初衷是针对Uu空口,但本申请也能被用于PC5口。进一步的,虽然本申请的初衷是针对终端与基站场景,但本申请也同样适用于V2X(Vehicle-to-Everything,车联网)场景,终端与中继,以及中继与基站之间的通信场景,取得类似的终端与基站场景中的技术效果。此外,不同场景(包括但不限于V2X场景和终端与基站的通信场景)采用统一的解决方案还有助于降低硬件复杂度和成本。特别的,对本申请中的术语(Terminology)、名词、函数、变量的解释(如果未加特别说明)可以参考3GPP的规范协议TS36系列、TS38系列、TS37系列中的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
在第一小区上执行第一调度;
接收第一信令,所述第一信令被用于指示停止针对所述第一小区执行第一操作集合,所述第一信令是RRC层之下的协议层的信令;
其中,所述第一调度指示周期性的时域资源和第一频域资源;所述第一操作集合包括在相应小区上监听PDCCH(物理下行控制信道)、监听用于调度相应小区的PDCCH、和在相应小区上发送PRACH(物理随机接入信道)三者中的至少之一;所述停止针对所述第一小区执行第一操作集合是否包括清除所述第一调度与所述第一信令有关;当所述第一信令被用于去激活所述第一小区时,所述停止针对所述第一小区执行第一操作集合包括清除所述第一调度;当所述第一信令被用于小区转换(switch)时,所述停止针对所述第一小区执行第一操作集合不包括清除所述第一调度。
作为一个实施例,上述方法通过所述第一信令可以实现快速小区激活,或者,快速小区转换。
作为一个实施例,上述方法通过所述第一信令可以快速改变UE的服务小区。
作为一个实施例,上述方法通过所述第一信令可以统一解决方案。
作为一个实施例,上述方法不包括清除所述第一调度可以节省信令。
作为一个实施例,上述方法不包括清除所述第一调度可以减少业务中断时间。
作为一个实施例,所述第一调度在被激活之后且被去激活之前在所述第一小区上被执行。
作为一个实施例,当所述第一调度被激活时,将针对所述第一小区的上行授予和关联的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)信息保存为配置上行授予;其中,所述第一调度为配置授予(configured grant,CG)。
作为一个实施例,当所述第一调度被激活时,将针对所述第一小区的下行分配和关联的HARQ信息保存为配置下行分配;其中,所述第一调度为半持续调度(semi-persistent scheduling,SPS)。
根据本申请的一个方面,包括:
所述清除所述第一调度包括:清除所述第一调度指示的配置上行授予类型2;
其中,所述配置上行授予类型2包括关联的混合自动重传请求(HARQ)信息,所述第一调度为配置授予类型2。
根据本申请的一个方面,包括:
所述清除所述第一调度包括:清除所述第一调度指示的配置下行分配;
其中,所述配置下行分配包括关联的混合自动重传请求信息;所述第一调度为半持续调度。
根据本申请的一个方面,包括:
所述停止针对所述第一小区执行第一操作集合不包括清除所述第一调度包括:挂起所述第一调度。
作为一个实施例,上述方法可以节省重配置信令。
根据本申请的一个方面,包括:
所述挂起所述第一调度包括:保存所述第一调度指示的所述时域资源的周期信息,或者,保存所述第一调度关联的混合自动重传请求信息二者中至少之一。
作为一个实施例,上述方法可以节省重配置信令。
根据本申请的一个方面,包括:
在第二小区上接收第二信令,所述第二信令被用于指示开始针对所述第一小区执行所述第一操作集合;
其中,所述第二信令的接收晚于所述第一信令的接收;所述第二信令被用于小区转换。
根据本申请的一个方面,包括:
所述第二信令指示第二频域资源;
其中,所述第二频域资源被用于执行所述第一调度;所述第二频域资源与所述第一频域资源相同,或者,所述第二频域资源与所述第一频域资源至少部分不同。
作为一个实施例,上述方法可以节省信令。
作为一个实施例,上述方法可以快速恢复传输。
根据本申请的一个方面,包括:
接收第一消息,所述第一消息被用于配置所述第一调度;
接收第三信令,所述第三信令被用于激活所述第一调度;
其中,所述第一消息包括所述第一调度指示的所述时域资源的周期信息;所述第三信令包括所述第一调度指示的所述第一频域资源。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信令,所述第一信令被用于指示针对第一小区执行第一操作集合被停止,所述第一信令是RRC层之下的协议层的信令;
其中,第一调度在所述第一小区上被所述第一信令的接收者执行;所述第一调度指示周期性的时域资源和第一频域资源;所述第一操作集合包括在相应小区上监听PDCCH(物理下行控制信道)、监听用于调度相应小区的PDCCH、和在相应小区上发送PRACH(物理随机接入信道)三者中的至少之一;所述针对第一小区执行第一操作集合被停止是否包括所述第一调度被所述第一信令的所述接收者清除与所 述第一信令有关;当所述第一信令被用于去激活所述第一小区时,所述针对第一小区执行第一操作集合被停止包括所述第一调度被清除;当所述第一信令被用于小区转换(switch)时,所述针对第一小区执行第一操作集合被停止不包括所述第一调度被清除。
根据本申请的一个方面,包括:
所述第一调度被清除包括:所述第一调度指示的配置上行授予类型2被清除;
其中,所述配置上行授予类型2包括关联的混合自动重传请求(HARQ)信息,所述第一调度为配置授予类型2。
根据本申请的一个方面,包括:
所述第一调度被清除包括:所述第一调度指示的配置下行分配被清除;
其中,所述配置下行分配包括关联的混合自动重传请求信息;所述第一调度为半持续调度。
根据本申请的一个方面,包括:
所述针对第一小区执行第一操作集合被停止不包括所述第一调度被清除包括:所述第一调度被挂起。
根据本申请的一个方面,包括:
所述第一调度被挂起包括:所述第一调度指示的所述时域资源的周期信息,或者,保存所述第一调度关联的混合自动重传请求信息二者中至少之一被保存。
根据本申请的一个方面,包括:
发送第一消息,所述第一消息被用于配置所述第一调度;
发送第三信令,所述第三信令被用于激活所述第一调度;
其中,所述第一消息包括所述第一调度指示的所述时域资源的周期信息;所述第三信令包括所述第一调度指示的所述第一频域资源。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一处理机,在第一小区上执行第一调度;
第一接收机,接收第一信令,所述第一信令被用于指示停止针对所述第一小区执行第一操作集合,所述第一信令是RRC层之下的协议层的信令;其中,所述第一调度指示周期性的时域资源和第一频域资源;所述第一操作集合包括在相应小区上监听PDCCH(物理下行控制信道)、监听用于调度相应小区的PDCCH、和在相应小区上发送PRACH(物理随机接入信道)三者中的至少之一;所述停止针对所述第一小区执行第一操作集合是否包括清除所述第一调度与所述第一信令有关;当所述第一信令被用于去激活所述第一小区时,所述停止针对所述第一小区执行第一操作集合包括清除所述第一调度;当所述第一信令被用于小区转换(switch)时,所述停止针对所述第一小区执行第一操作集合不包括清除所述第一调度。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第一发射机,发送第一信令,所述第一信令被用于指示针对第一小区执行第一操作集合被停止,所述第一信令是RRC层之下的协议层的信令;
其中,第一调度在所述第一小区上被所述第一信令的接收者执行;所述第一调度指示周期性的时域资源和第一频域资源;所述第一操作集合包括在相应小区上监听PDCCH(物理下行控制信道)、监听用于调度相应小区的PDCCH、和在相应小区上发送PRACH(物理随机接入信道)三者中的至少之一;所述针对第一小区执行第一操作集合被停止是否包括所述第一调度被所述第一信令的所述接收者清除与所述第一信令有关;当所述第一信令被用于去激活所述第一小区时,所述针对第一小区执行第一操作集合被停止包括所述第一调度被清除;当所述第一信令被用于小区转换(switch)时,所述针对第一小区执行第一操作集合被停止不包括所述第一调度被清除。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示例了根据本申请的一个实施例的第一节点中的信号处理流程图;
图2示例了根据本申请的一个实施例的网络架构的示意图;
图3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示例了根据本申请的一个实施例的通信设备的硬件模块示意图;
图5示例了根据本申请的一个实施例的无线信号传输流程图;
图6示例了根据本申请的一个实施例的第一信令的格式示意图;
图7示例了根据本申请的一个实施例的第一信令的另一格式示意图;
图8示例了根据本申请的一个实施例的第二信令的格式示意图;
图9示例了根据本申请的一个实施例的第一信令,第二信令与第一调度的关系示意图;
图10示例了根据本申请的一个实施例的第一节点中的处理装置的结构框图;
图11示例了根据本申请的一个实施例的第二节点中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一节点中的信号处理流程图,如附图1所示。
在实施例1中,第一节点100在步骤101中在第一小区上执行第一调度;在步骤102中接收第一信令,所述第一信令被用于指示停止针对所述第一小区执行第一操作集合,所述第一信令是RRC层之下的协议层的信令;其中,所述第一调度指示周期性的时域资源且占用第一频域资源;所述第一操作集合包括在相应小区上监听PDCCH(物理下行控制信道)、监听用于调度相应小区的PDCCH、和在相应小区上发送PRACH(物理随机接入信道)三者中的至少之一;所述停止针对所述第一小区执行第一操作集合是否包括清除所述第一调度与所述第一信令有关;当所述第一信令被用于去激活所述第一小区时,所述停止针对所述第一小区执行第一操作集合包括清除所述第一调度;当所述第一信令被用于小区转换(switch)时,所述停止针对所述第一小区执行第一操作集合不包括清除所述第一调度。
作为一个实施例,在第一小区上执行第一调度。
作为一个实施例,所述第一小区为所述第一节点的服务小区(serving cell)。
作为一个实施例,接收第一信令之前在所述第一小区上执行所述第一调度。
作为一个实施例,所述执行第一调度包括根据所述第一调度在所述第一小区上进行发送。
作为一个实施例,所述执行第一调度包括根据所述第一调度在所述第一小区上进行接收。
作为一个实施例,所述短语在所述第一小区上进行发送包括:使用所述第一小区的空口资源进行发送。
作为一个实施例,所述短语在所述第一小区上进行接收包括:使用所述第一小区的空口资源进行接收。
作为一个实施例,所述第一调度指示所述第一小区的空口资源。
作为一个实施例,所述第一调度指示所述第一小区的空口资源;所述第一节点在所述第一调度指示的所述第一小区的所述空口资源上进行上行发送,或者,所述第一节点在所述第一调度指示的所述第一小区的所述空口资源上进行下行接收。
作为一个实施例,所述空口资源包括时域资源,频域资源,或空域资源中的至少之一。
作为一个实施例,所述第一调度不是动态调度(without dynamic scheduling)。
作为一个实施例,所述第一调度不是配置授予类型1。
作为一个实施例,所述第一调度是半持续调度。
作为一个实施例,所述第一调度是配置授予类型2。
作为一个实施例,所述第一调度指示周期性的时域资源和第一频域资源,所述周期性的时域资源和所述第一频域资源组成周期性的时频资源。
作为一个实施例,所述执行第一调度包括根据所述第一调度指示的所述周期性的时频资源进行发送或者所述执行第一调度包括根据所述第一调度指示的所述周期性的时频资源进行接收。
作为一个实施例,所述时域资源包括至少一个OFDM(Orthogonal Frequency Division Multiplexing, 正交频分复用)符号(symbol)。
作为一个实施例,所述时域资源包括至少一个时隙(slot)。
作为一个实施例,所述第一频域资源包括至少一个子载波(subcarrier)。
作为一个实施例,所述第一频域资源包括至少一个资源块(resource block,RB)。
作为一个实施例,所述第一频域资源包括至少一个物理资源块(physical resource block,PRB)。
作为一个实施例,所述第一调度包括多个下行分配(downlink assignments)或多个上行授予(uplink grants)。
作为上述实施例的一个子实施例,所述多个下行分配中的每个下行分配为所述第一调度指示的所述周期性时频资源中的一个时频资源。
作为上述实施例的一个子实施例,所述多个上行授予中的每个上行授予为所述第一调度指示的所述周期性时频资源中的一个时频资源。
作为一个实施例,在所述第一小区上接收第一信令。
作为一个实施例,所述第一信令被用于指示停止针对所述第一小区执行第一操作集合。
作为一个实施例,所述第一信令被用于指示所述第一小区的第一状态切换为所述第一小区的第二状态。
作为一个实施例,所述第一节点针对所述第一状态的小区执行第一操作集合,所述第一节点针对所述第二状态的小区不执行所述第一操作集合。
作为一个实施例,所述第一状态为激活状态,所述第二状态为去激活状态。
作为一个实施例,所述第一状态为服务状态,所述第二状态为候选服务状态。
作为一个实施例,所述第一状态为服务状态,所述第二状态为候选状态。
作为一个实施例,所述第一状态为服务状态,所述第二状态为关闭(switched off)状态。
作为一个实施例,所述第一信令是RRC层之下的协议层的信令。
作为一个实施例,所述第一信令为MAC(Medium Access Control,媒体接入控制)子层(sublayer)信令。
作为一个实施例,所述第一信令为MAC CE(Control Element,控制元素)。
作为一个实施例,所述第一信令为PHY(物理)层信令。
作为一个实施例,所述第一信令为DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第一信令的DCI格式为2_X,所述X为大于7小于32的正整数。
作为一个实施例,所述第一操作集合包括根据所述第一调度进行接收,或者,根据所述第一调度进行发送。
作为一个实施例,所述第一操作集合包括在相应小区上监听PDCCH(Physical Downlink Control Channel,物理下行控制信道)、监听用于调度相应小区的PDCCH、和在相应小区上发送PRACH(Physical Random Access CHannel,物理随机接入信道)三者中的至少之一。
作为一个实施例,所述短语在相应小区上监听PDCCH包括:在相应小区的空口资源上监听PDCCH。
作为一个实施例,所述短语监听用于调度相应小区的PDCCH包括:监听PDCCH,所述PDCCH被用于调度相应小区的空口资源。
作为一个实施例,所述短语在相应小区上发送PRACH包括:在相应小区的空口资源上发送PRACH。
作为一个实施例,所述停止针对所述第一小区执行第一操作集合包括:不在所述第一小区监听(monitor)PDCCH。
作为一个实施例,所述停止针对所述第一小区执行第一操作集合包括:不为所述第一小区监听PDCCH。
作为一个实施例,所述停止针对所述第一小区执行第一操作集合包括:不监听用于调度所述第一小区的PDCCH。
作为一个实施例,所述停止针对所述第一小区执行第一操作集合包括:不在所述第一小区上发送RACH(Random Access CHannel,随机接入信道)。
作为一个实施例,所述停止针对所述第一小区执行第一操作集合包括:不在所述第一小区上发送 PRACH。
作为一个实施例,所述停止针对所述第一小区执行第一操作集合包括:不在所述第一小区发送PUCCH(Physical Uplink Control Channel,物理上行控制信道)。
作为一个实施例,所述停止针对所述第一小区执行第一操作集合包括:不在所述第一小区发送UL-SCH(Uplink Shared Channel,上行共享信道)。
作为一个实施例,所述停止针对所述第一小区执行第一操作集合包括:不在所述第一小区发送SRS(Sounding Reference Signal,探测参考信号)。
作为一个实施例,所述停止针对所述第一小区执行第一操作集合包括:不为所述第一小区发送CSI(Channel Status Information,信道状态信息)。
作为一个实施例,所述停止针对所述第一小区执行第一操作集合包括:清除(clear)关联所述第一小区的半持续(semi-persistent)CSI(Channel Status Information)报告的PUSCH(Physical Uplink Shared Channel,物理上行共享信道)资源。
作为一个实施例,所述停止针对所述第一小区执行第一操作集合包括:清空(flush)关联所述第一小区的HARQ缓存器(buffers)。
作为一个实施例,所述停止针对所述第一小区执行第一操作集合包括:去激活所述第一小区关联的BWP(BandWidth Part,带宽部分)。
作为一个实施例,所述停止针对所述第一小区执行第一操作集合包括:停止关联所述第一小区的bwp-inactivitytimer(带宽部分不活跃计时器)。
作为一个实施例,所述停止针对所述第一小区执行第一操作集合包括:挂起关联所述第一小区的配置上行授予类型1。
作为一个实施例,所述停止针对所述第一小区执行第一操作集合是否包括清除所述第一调度与所述第一信令有关;当所述第一信令被用于去激活所述第一小区时,所述停止针对所述第一小区执行第一操作集合包括清除所述第一调度;当所述第一信令被用于小区转换(switch)时,所述停止针对所述第一小区执行第一操作集合不包括清除所述第一调度。
作为一个实施例,当所述第一信令被用于去激活所述第一小区时,所述第一信令的名字包括Deactivation(去激活)。
作为一个实施例,当所述第一信令被用于去激活所述第一小区时,所述第一信令为SCell(Secondary Cell,辅小区)Deactivation MAC CE。
作为一个实施例,清除所述第一调度的意思是释放所述第一调度。
作为一个实施例,清除所述第一调度的意思是当所述第一小区被激活时,所述第一调度不会被激活。
作为一个实施例,当所述第一信令被用于小区转换时,所述第一信令的名字包括change(改变)。
作为一个实施例,当所述第一信令被用于小区转换时,所述第一信令的名字包括switch(交换)。
作为一个实施例,当所述第一信令被用于小区转换时,所述第一信令的名字包括handover(切换)。
作为一个实施例,当所述第一信令被用于小区转换时,所述第一信令的名字包括CCell(candidate cell,候选小区)。
作为一个实施例,当所述第一信令被用于小区转换时,所述第一信令的名字包括CSCell(candidate serving cell,候选服务小区)。
作为一个实施例,当所述第一信令被用于小区转换时,所述第一信令的名字包括Serving Cell(服务小区)。
作为一个实施例,所述短语小区转换包括:基于非高层的小区切换或转换。
作为一个实施例,所述短语小区转换包括:基于非L3的小区切换或转换。
作为一个实施例,所述短语小区转换包括:基于L1/L2的小区切换或转换。
作为一个实施例,所述短语小区转换包括:基于L1/L2的小区间移动性支持。
作为一个实施例,所述短语小区转换包括:快速小区间切换或转换。
作为一个实施例,所述短语小区转换包括:小区间(inter-cell)移动管理(mobility management)。
作为一个实施例,所述短语小区转换包括:基于L1/L2的服务小区切换或转换。
作为一个实施例,所述短语小区转换包括:基于L1/L2的候选小区激活。
作为一个实施例,当所述第一信令被用于去激活所述第一小区时,所述第一信令不必然激活所述第一小区之外的一个小区。
作为一个实施例,当所述第一信令被用于小区转换时,所述第一信令指示转换至所述第一小区之外的一个小区。
作为一个实施例,当所述第一信令被用于小区转换时,所述第一信令指示第二小区,所述第二小区为所述第一小区之外的一个小区。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构示意图,如附图2所示。图2说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。NR 5G,LTE或LTE-A网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200或某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(Basic Service Set,BSS)、扩展服务集合(Extended Service Set,ESS)、TRP(Transmission Reception Point,发送接收节点)或某种其它合适术语,在NTN(Non Terrestrial Network,非陆地/卫星网络)网络中,gNB203可以是卫星,飞行器或通过卫星中继的地面基站。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(Session Initiation Protocol,SIP)电话、膝上型计算机、个人数字助理(Personal Digital Assistant,PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、车载设备、车载通信单元、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocol,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS(Packet Switching,包交换)串流服务。
作为一个实施例,所述UE201对应本申请中的第一节点。
作为一个实施例,所述NR节点B203对应本申请中的第二节点。
作为一个实施例,所述其它NR节点B204对应本申请中的第三节点。
作为一个实施例,所述gNB203是宏蜂窝(Marco Cell)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(Pico Cell)基站。
作为一个实施例,所述gNB203是家庭基站(Femtocell)。
作为一个实施例,所述gNB203是支持大时延差的基站设备。
作为一个实施例,所述gNB203是一个飞行平台设备。
作为一个实施例,所述gNB203是卫星设备。
作为一个实施例,所述gNB203是测试设备(例如模拟基站部分功能的收发装置,信令测试仪)。
作为一个实施例,所述gNB204是宏蜂窝(Marco Cell)基站。
作为一个实施例,所述gNB204是微小区(Micro Cell)基站。
作为一个实施例,所述gNB204是微微小区(Pico Cell)基站。
作为一个实施例,所述gNB204是家庭基站(Femtocell)。
作为一个实施例,所述gNB204是支持大时延差的基站设备。
作为一个实施例,所述gNB204是一个飞行平台设备。
作为一个实施例,所述gNB204是卫星设备。
作为一个实施例,所述gNB204是测试设备(例如模拟基站部分功能的收发装置,信令测试仪)。
作为一个实施例,从所述UE201到所述gNB203/所述gNB204的无线链路是上行链路,所述上行链路被用于执行上行传输。
作为一个实施例,从所述gNB203/所述gNB204到所述UE201的无线链路是下行链路,所述下行链路被用于执行下行传输。
作为一个实施例,所述UE201和所述gNB203/所述gNB204之间分别通过Uu接口连接。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线协议架构的实施例的示意图,图3用三个层展示UE和gNB的控制平面300的无线协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,通过PHY301负责在UE和gNB之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧的gNB处。PDCP子层304提供数据加密和完整性保护,PDCP子层304还提供gNB之间的对UE的越区移动支持。RLC子层303提供数据包的分段和重组,通过ARQ实现丢失数据包的重传,RLC子层303还提供重复数据包检测和协议错误检测。MAC子层302提供逻辑与传输信道之间的映射和逻辑信道身份的复用。MAC子层302还负责在UE之间分配一个小区中的各种无线资源(例如,资源块)。MAC子层302还负责HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线资源控制)子层306负责获得无线资源(即,无线承载)且使用gNB与UE之间的RRC信令来配置下部层。虽然未图示,UE的控制平面300中的RRC子层306之上还可以具有V2X层,V2X层负责根据接收到的业务数据或业务请求生成PC5 QoS参数组和QoS规则,对应PC5 QoS参数组生成一条PC5 QoS流并将PC5 QoS流标识和对应的PC5 QoS参数组发送给AS(Access Stratum,接入层)层用于AS层对属于PC5 QoS流标识的数据包的QoS处理;V2X层还包括PC5-S信令协议(PC5-Signaling Protocol)子层,V2X层负责指示AS层每一次传输是PC5-S传输还是V2X业务数据传输。用户平面350的无线协议架构包括层1(L1层)和层2(L2层),在用户平面350中的无线协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的包头压缩以减少无线发送开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS(Quality of Service,业务质量)流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。UE在用户平面350中的无线协议架构在L2层可包括SDAP子层356,PDCP子层354,RLC子层353和MAC子层352的部分协议子层或者全部协议子层。虽然未图示,但UE还可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的 另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的第二节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的第三节点。
作为一个实施例,本申请中的所述第一信令生成于所述MAC302或者所述MAC352。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301或者所述PHY351。
作为一个实施例,本申请中的所述第二信令生成于所述RRC306。
作为一个实施例,本申请中的所述第二信令生成于所述PHY301或者所述PHY351。
作为一个实施例,本申请中的所述第一调度生成于所述RRC306。
作为一个实施例,本申请中的所述第一调度生成于所述PHY301或者所述PHY351。
作为一个实施例,本申请中的所述第一消息生成于所述RRC306。
作为一个实施例,本申请中的所述第二消息生成于所述RRC306。
作为一个实施例,本申请中的所述第三信令生成于所述PHY301或者所述PHY351。
作为一个实施例,本申请中的所述第四信令生成于所述PHY301或者所述PHY351。
作为一个实施例,所述L2层305或者355属于更高层。
作为一个实施例,所述L3层中的RRC子层306属于更高层。
实施例4
实施例4示例了根据本申请的一个实施例的通信设备的硬件模块示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,数据源477,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网的上层数据包或者来自数据源477的上层数据包被提供到控制器/处理器475。核心网和数据源477表示L2层之上的所有协议层。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随 后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备410的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第一通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网或者L2层之上的所有协议层,也可将各种控制信号提供到核心网或者L3以用于L3处理。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:在第一小区上执行第一调度;接收第一信令,所述第一信令被用于指示停止针对所述第一小区执行第一操作集合,所述第一信令是RRC层之下的协议层的信令;其中,所述第一调度指示周期性的时域资源和第一频域资源;所述第一操作集合包括在相应小区上监听PDCCH(物理下行控制信道)、监听用于调度相应小区的PDCCH、和在相应小区上发送PRACH(物理随机接入信道)三者中的至少之一;所述停止针对所述第一小区执行第一操作集合是否包括清除所述第一调度与所述第一信令有关;当所述第一信令被用于去激活所述第一小区时,所述停止针对所述第一小区执行第一操作集合包括清除所述第一调度;当所述第一信令被用于小区转换(switch)时,所述停止针对所述第一小区执行第一操作集合不包括清除所述第一调度。
作为一个实施例,所述第一通信设备450装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一小区上执行第一调度;接收第一信令,所述第一信令被用于指示停止针对所述第一小区执行第一操作集合,所述第一信令是RRC层之下的协议层的信令;其中,所述第一调度指示周期性的时域资源和第一频域资源;所述第一操作集合包括在相应小区上监听PDCCH(物理下行控制信道)、监听用于调度相应小区的PDCCH、和在相应小区上发送PRACH(物理随机接入信道)三者中的至少之一;所述停止针对所述第一小区执行第一操作集合是否包括清除所述第一调度与所述第一信令有关;当所述第一信令被用于去激活所述第一小区时,所述停止针对所述第一小区执行第一操作集合包括清除所述第一调度;当所述第一信令被用于小区转换(switch)时,所述停止针对所述第一小区执行第一操作集合不包括清除所述第一调度。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至 少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:发送第一信令,所述第一信令被用于指示针对第一小区执行第一操作集合被停止,所述第一信令是RRC层之下的协议层的信令;其中,第一调度在所述第一小区上被所述第一信令的接收者执行;所述第一调度指示周期性的时域资源和第一频域资源;所述第一操作集合包括在相应小区上监听PDCCH(物理下行控制信道)、监听用于调度相应小区的PDCCH、和在相应小区上发送PRACH(物理随机接入信道)三者中的至少之一;所述针对第一小区执行第一操作集合被停止是否包括所述第一调度被所述第一信令的所述接收者清除与所述第一信令有关;当所述第一信令被用于去激活所述第一小区时,所述针对第一小区执行第一操作集合被停止包括所述第一调度被清除;当所述第一信令被用于小区转换(switch)时,所述针对第一小区执行第一操作集合被停止不包括所述第一调度被清除。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信令,所述第一信令被用于指示针对第一小区执行第一操作集合被停止,所述第一信令是RRC层之下的协议层的信令;其中,第一调度在所述第一小区上被所述第一信令的接收者执行;所述第一调度指示周期性的时域资源和第一频域资源;所述第一操作集合包括在相应小区上监听PDCCH(物理下行控制信道)、监听用于调度相应小区的PDCCH、和在相应小区上发送PRACH(物理随机接入信道)三者中的至少之一;所述针对第一小区执行第一操作集合被停止是否包括所述第一调度被所述第一信令的所述接收者清除与所述第一信令有关;当所述第一信令被用于去激活所述第一小区时,所述针对第一小区执行第一操作集合被停止包括所述第一调度被清除;当所述第一信令被用于小区转换(switch)时,所述针对第一小区执行第一操作集合被停止不包括所述第一调度被清除。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:发送第二信令,所述第二信令被用于指示针对所述第一小区执行所述第一操作集合被开始;其中,所述第二信令的接收晚于所述第一信令的接收;所述第二信令被用于小区转换。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第二信令,所述第二信令被用于指示针对所述第一小区执行所述第一操作集合被开始;其中,所述第二信令的接收晚于所述第一信令的接收;所述第二信令被用于小区转换。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点,所述第二通信设备410对应本申请中的第三节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第二通信设备410是一个基站设备。
作为一个实施例,所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416或所述控制器/处理器475中的至少之一被用于发送本申请中的第一信令。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456或所述控制器/处理器459中的至少之一被用于接收本申请中的第一信令。
作为一个实施例,所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416或所述控制器/处理器475中的至少之一被用于发送本申请中的第二信令。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456或所述控制器/处理器459中的至少之一被用于接收本申请中的第二信令。
作为一个实施例,所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416或所述控制器/处理器475中的至少之一被用于发送本申请中的第一消息。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器 456或所述控制器/处理器459中的至少之一被用于接收本申请中的第一消息。
作为一个实施例,所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416或所述控制器/处理器475中的至少之一被用于发送本申请中的第三信令。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456或所述控制器/处理器459中的至少之一被用于接收本申请中的第三信令。
作为一个实施例,所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416或所述控制器/处理器475中的至少之一被用于发送本申请中的第二消息。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456或所述控制器/处理器459中的至少之一被用于接收本申请中的第二消息。
作为一个实施例,所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416或所述控制器/处理器475中的至少之一被用于发送本申请中的第四信令。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456或所述控制器/处理器459中的至少之一被用于接收本申请中的第四信令。
作为一个实施例,所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416或所述控制器/处理器475中的至少之一被用于执行第一调度。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456或所述控制器/处理器459中的至少之一被用于执行第一调度。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。在附图5中,第一节点N51和第二节点N52通过无线接口通信;第一节点N51和第三节点N53通过无线接口通信。特别说明的是本示例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。
对于第一节点N51,在步骤S511中接收第一消息;在步骤S512中接收第三信令;在步骤S513中执行第一调度;在步骤S514中接收第一信令;在步骤S515中停止针对第一小区执行第一操作集合;在步骤S516中接收第二信令;在步骤S517中执行第一调度。
对于第二节点N52,在步骤S521中发送第一消息;在步骤S522中发送第三信令;在步骤S523中执行第一调度;在步骤S524中发送第一信令;在步骤S525中执行第一调度。
对于第二节点N53,在步骤S531中发送第二信令。
在实施例5中,在第一小区上执行第一调度;接收第一信令,所述第一信令被用于指示停止针对所述第一小区执行第一操作集合,所述第一信令是RRC层之下的协议层的信令;其中,所述第一调度指示周期性的时域资源和第一频域资源;所述第一操作集合包括在相应小区上监听PDCCH(物理下行控制信道)、监听用于调度相应小区的PDCCH、和在相应小区上发送PRACH(物理随机接入信道)三者中的至少之一;所述停止针对所述第一小区执行第一操作集合是否包括清除所述第一调度与所述第一信令有关;当所述第一信令被用于去激活所述第一小区时,所述停止针对所述第一小区执行第一操作集合包括清除所述第一调度;当所述第一信令被用于小区转换(switch)时,所述停止针对所述第一小区执行第一操作集合不包括清除所述第一调度;所述清除所述第一调度包括:清除所述第一调度指示的配置上行授予类型2;其中,所述配置上行授予类型2包括关联的混合自动重传请求(HARQ)信息,所述第一调度为配置授予类型2;所述清除所述第一调度包括:清除所述第一调度指示的配置下行分配;其中,所述配置下行分配包括关联的混合自动重传请求信息;所述第一调度为半持续调度;所述停止针对所述第一小区执行第一操作集合不包括清除所述第一调度包括:挂起所述第一调度;所述挂起所述第一调度包括:保存所述第一调度指示的所述时域资源的周期信息,或者,保存所述第一调度关联的混合自动重传请求信息二者中至少之一;在第二小区上接收第二信令,所述第二信令被用于指示开始针对所述第一小区执行所述第一操作集合;其中,所述第二信令的接收晚于所述第一信令的接收;所述第二信令被用于小区转换;所述第二信令指示第二频域资源;其中,所述第二频域资源被用于执行所述第一调度;所述第二频域资源与所述第一频域资源相同,或者,所述第二频域资源与所述第一频域资源至少部分不同;接收第一消息,所述第一消息被用于配置所述第一调度;接收第三信令,所述第三信令被用于激活所述第一调度; 其中,所述第一消息包括所述第一调度指示的所述时域资源的周期信息;所述第三信令包括所述第一调度指示的所述第一频域资源。
实施例5中,虚线框F50中的第一调度和虚线框F51中的第一调度都在第一小区中被执行。
作为一个实施例,所述第二节点为所述第一小区的基站。
作为一个实施例,所述第二节点为所述第一小区的收发器(transceiver)。
作为一个实施例,所述第三节点为所述第二小区的基站。
作为一个实施例,所述第三节点为所述第二小区的收发器(transceiver)。
作为一个实施例,所述第二节点和所述第三节点分别为所述第一节点的服务小区的基站。
作为一个实施例,所述第二节点和所述第三节点共站址。
作为一个实施例,所述第二节点和所述第三节点位于不同的站址。
作为一个实施例,接收第一消息,所述第一消息被用于配置所述第一调度。
作为一个实施例,在所述第一小区上接收所述第一消息。
作为一个实施例,所述第一消息为RRC消息。
作为一个实施例,所述第一消息为RRC重配置(reconfiguration)消息。
作为一个实施例,所述第一消息包括了一个RRC信令中的全部或部分IE(Information element,信息元素)。
作为一个实施例,所述第一消息包括了一个RRC信令中的一个IE中的全部或部分域(field)。
作为一个实施例,所述第一消息包括ConfiguredGrantConfig(配置授予配置)IE。
作为一个实施例,所述第一消息包括SPS-Config(半持续调度配置)IE。
作为一个实施例,所述第一消息包括第一调度索引,所述第一调度索引被用于指示所述第一调度。
作为一个实施例,所述第一消息包括所述第一调度指示的所述时域资源的周期信息。
作为一个实施例,所述第一消息包括所述第一调度关联的HARQ信息。
作为一个实施例,所述第一调度关联的HARQ信息包括用于所述第一调度的HARQ进程数。
作为一个实施例,所述第一调度关联的HARQ信息包括用于所述第一调度的HARQ进程号偏移。
作为一个实施例,所述第一调度关联的HARQ信息包括用于所述第一调度的HARQ-ACK(ACKnowledgement,确定)码本(codebook)索引。
作为一个实施例,接收第三信令,所述第三信令被用于激活所述第一调度。
作为一个实施例,在所述第一小区上接收所述第三信令。
作为一个实施例,所述第三信令的接收晚于所述第一消息的接收。
作为一个实施例,所述第三信令为物理层信令。
作为一个实施例,所述第三信令为PDCCH(Physical Downlink Control Channel,物理下行控制信道)。
作为一个实施例,所述第三信令为DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第三信令被CS(Configured Scheduling,配置调度)-RNTI(Radio Network Temporary Identifier,无线网络临时标识)加扰。
作为一个实施例,所述第三信令的CRC(Cyclic Redundancy Check,循环冗余校验)被所述CS-RNTI加扰。
作为一个实施例,所述CS-RNTI被用于标识所述第一节点。
作为一个实施例,所述第三信令被G-CS-RNTI(Group-CS-RNTI,分组CS-RNTI)加扰。
作为一个实施例,所述第三信令的CRC被所述G-CS-RNTI加扰。
作为上述两个实施例的一个子实施例,所述第三信令的目标接收者包括除所述第一节点之外的至少一个节点。
作为上述两个实施例的一个子实施例,通过多播接收所述第三信令。
作为一个实施例,所述G-CS-RNTI被用于标识MBS(multicast/broadcast service,多播广播业务)会话(session)。
作为一个实施例,所述短语激活所述第一调度包括存储针对所述第一小区的下行分配和关联的HARQ信息为配置下行分配;其中,所述第一调度为半持续调度。
作为一个实施例,所述短语激活所述第一调度包括存储针对所述第一小区的上行授予和关联的HARQ信息为配置上行授予类型2;其中,所述第一调度为配置授予类型2。
作为一个实施例,当满足如下三个条件时,所述第三信令被用于激活所述第一调度,所述三个条件包括:所述第三信令的格式为DCI格式(format)0_0,或DCI格式0_1,或DCI格式0_2三者中之一;所述第三信令中包括的HARQ进程号(process number)域(field)的值为全0;所述第三信令中包括的冗余版本(redundancy version)域的值为全0。
作为一个实施例,当满足如下三个条件时,所述第三信令被用于激活所述第一调度,所述三个条件包括:所述第三信令的格式为DCI格式1_0或DCI格式1_2两者中之一;所述第三信令中包括的HARQ进程号(process number)域的值为全0;所述第三信令中包括的冗余版本(redundancy version)域的值为全0。
作为一个实施例,当满足如下三个条件时,所述第三信令被用于激活所述第一调度,所述三个条件包括:所述第三信令的格式为DCI格式1_1;所述第三信令中包括的HARQ进程号(process number)域的值为全0;针对使能(enabled)的传输块(transport block)所述第三信令中包括的冗余版本(redundancy version)域的值为全0。
作为上述三个实施例的一个子实施例,所述第一节点在被调度的活跃DL/UL(Downlink/Uplink,下行/上行)BWP(BandWidth Part,带宽部分)中仅被提供所述第一调度。
作为一个实施例,当满足如下两个条件时,所述第三信令被用于激活所述第一调度,所述两个条件包括:所述第三信令的格式为DCI格式0_0,或DCI格式0_1,或DCI格式0_2三者中之一;所述第三信令中包括的冗余版本(redundancy version)域的值为全0。
作为一个实施例,当满足如下两个条件时,所述第三信令被用于激活所述第一调度,所述两个条件包括:所述第三信令的格式为DCI格式1_0或DCI格式1_2两者中之一;所述第三信令中包括的冗余版本(redundancy version)域的值为全0。
作为一个实施例,当满足如下两个条件时,所述第三信令被用于激活所述第一调度,所述两个条件包括:所述第三信令的格式为DCI格式1_1;针对使能(enabled)的传输块(transport block)所述第三信令中包括的冗余版本(redundancy version)域的值为全0。
作为上述三个实施例的一个子实施例,所述第一节点在被调度小区的活跃DL/ULBWP中被提供多个半持续调度或者所述第一节点被提供多个配置授予类型2;所述第一调度为所述多个半持续调度或者所述多个配置授予类型2中之一。
作为上述三个实施例的一个子实施例,所述第三信令中包括的所述HARQ进程号域的值为第一调度索引,所述第一调度索引被用于指示所述第一调度。
作为一个实施例,当满足3GPP TS38.213中第10.2章节中描述的条件时,所述第三信令被用于激活所述第一调度。
作为一个实施例,所述第三信令包括所述第一调度指示的所述第一频域资源。
作为一个实施例,所述第一调度在被激活之后且被去激活之前被执行。
作为一个实施例,所述执行第一调度包括在所述第一调度指示的时频资源上监测无线信号。
作为一个实施例,所述第一调度被去激活之后所述第一节点停止在所述第一调度指示的时频资源上监测无线信号。
作为上述两个实施例的一个子实施例,所述无线信号被所述G-CS-RNTI加扰。
作为上述两个实施例的一个子实施例,所述无线信号被所述CS-RNTI加扰。
作为一个实施例,所述第一调度在接收所述第一信令之前未被去激活。
作为一个实施例,所述清除所述第一调度包括:清除所述第一调度指示的多个上行授予;其中,所述第一调度为配置授予类型2。
作为一个实施例,所述清除所述第一调度包括:清除(clear)所述第一调度指示的周期性时频资源。
作为一个实施例,所述清除所述第一调度包括:清除(clear)所述第一调度指示的周期性的时域资源和所述第一频域资源。
作为一个实施例,所述清除所述第一调度包括:清除(clear)所述第一调度指示的所述配置上行授 予类型2;其中,所述第一调度为配置授予类型2。
作为一个实施例,所述配置上行授予类型2包括多个上行授予。
作为一个实施例,所述配置上行授予类型2包括所述第一调度关联的HARQ信息。
作为一个实施例,所述清除所述第一调度包括:清除所述第一调度指示的多个下行分配;其中,所述第一调度为半持续调度。
作为一个实施例,所述清除所述第一调度包括:清除所述第一调度指示的配置下行分配;其中,所述第一调度为半持续调度。
作为一个实施例,所述配置下行分配包括多个下行分配。
作为一个实施例,所述配置下行分配包括所述第一调度关联的混合自动重传请求信息。
作为一个实施例,所述停止针对所述第一小区执行第一操作集合不包括清除所述第一调度的意思是:挂起(suspend)所述第一调度。
作为一个实施例,所述停止针对所述第一小区执行第一操作集合不包括清除所述第一调度的意思是:维持(maintain)所述第一调度。
作为一个实施例,所述停止针对所述第一小区执行第一操作集合不包括清除所述第一调度的意思是:暂停(pause)所述第一调度。
作为一个实施例,所述挂起所述第一调度包括:保存所述第一调度指示的所述时域资源的周期信息,或者,保存所述第一调度关联的HARQ信息二者中至少之一。
作为一个实施例,所述挂起所述第一调度包括:保存所述第一消息包括的所述第一调度的配置信息。
作为一个实施例,所述挂起所述第一调度包括:停止根据所述第一调度在所述第一小区的空口资源上发送;或者,停止根据所述第一调度在所述第一小区的空口资源上接收。
作为一个实施例,所述挂起所述第一调度包括:停止针对所述第一调度的HARQ-ACK反馈。
作为一个实施例,所述第一接收机,接收第二消息,所述第二消息指示第一小区集合,所述第一小区集合中至少包括所述第二小区。
作为一个实施例,在所述第一小区上接收所述第二消息。
作为一个实施例,所述第二消息为高层消息。
作为一个实施例,所述第二消息为RRC信令。
作为一个实施例,所述第二消息为RRC重配置(reconfiguration)消息。
作为一个实施例,所述第二消息包括了一个RRC信令中的全部或部分IE。
作为一个实施例,所述第二消息包括了一个RRC信令中的一个IE中的全部或部分域(field)。
作为一个实施例,所述第一小区集合中包括的任一小区被配置为所述第一节点的候选服务小区。
作为一个实施例,所述候选服务小区被用于小区转换。
作为一个实施例,在所述第二小区上接收第二信令,所述第二信令被用于指示开始针对所述第一小区执行所述第一操作集合;其中,所述第二信令的接收晚于所述第一信令的接收,所述第一信令和所述第二信令分别被用于小区转换。
作为一个实施例,所述第二信令与所述第一信令是同一类信令。
作为上述实施例的一个子实施例,所述第一信令和所述第二信令分别被用于小区转换。
作为一个实施例,所述第二信令是RRC层之下的协议层的信令。
作为一个实施例,所述第二信令为MAC子层信令。
作为一个实施例,所述第二信令为MAC CE(Control Element,控制元素)。
作为一个实施例,所述第二信令为PHY(物理)层信令。
作为一个实施例,所述第二信令为DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第二信令的DCI格式为2_X,所述X为大于7小于32的正整数。
作为一个实施例,所述第二信令指示所述第一小区。
作为一个实施例,所述第二信令被用于指示所述第一小区的所述第二状态切换为所述第一小区的所述第一状态。
作为一个实施例,接收所述第二信令的时域资源晚于第一时间,所述第一时间不晚于接收所述第一 信令的时域资源经过第一时间间隔的时域资源。
作为一个实施例,所述第一时间是一个时隙。
作为一个实施例,所述第一时间是一个时隙的起始时刻。
作为一个实施例,所述第一时间是一个时隙的结束时刻。
作为一个实施例,所述第一时间是一个OFDM符号(symbol)。
作为一个实施例,所述第一时间是一个OFDM符号的起始时刻。
作为一个实施例,所述第一时间是一个OFDM符号的结束时刻。
作为一个实施例,所述第一时间晚于所述第一信令占用的时域资源。
作为一个实施例,接收所述第一信令之后,所述第一节点在不晚于接收所述第一信令的时域资源经过所述第一时间间隔的时域资源自行确定一个时间为所述第一时间。
作为一个实施例,所述时域资源为时隙。
作为一个实施例,所述时域资源为OFDM符合。
作为一个实施例,所述时域资源为子帧。
作为一个实施例,所述第一时间间隔至少与发送针对所述第一信令的HARQ-ACK的时域资源有关。
作为一个实施例,所述HARQ-ACK为ACK或NACK(Negative ACKnowledgment,否定)二者中之一。
作为一个实施例,所述第一时间间隔大于HARQ反馈时间间隔。
作为一个实施例,所述HARQ反馈时间间隔为接收所述第一信令的时域资源距离发送针对所述第一信令的HARQ-ACK的时域资源之间的时间间隔。
作为一个实施例,所述第一时间间隔由3GPP标准规定。
作为一个实施例,根据3GPP标准TS 38.133协议中的定义确定所述第一时间间隔。
作为一个实施例,所述第一时间间隔为(THARQ+m1)毫秒;其中,所述THARQ毫秒为所述HARQ反馈时间间隔,所述m1为不小于1的正整数。
作为一个实施例,所述第一时间间隔为个时隙;其中,n为接收所述第一信令的时隙, 为针对所述第一信令的HARQ-ACK的PUCCH发送的时隙,所述m1为不小于1的正整数,所述NR slot length(新空口时隙长度)为SCS(SubCarrier Spacing,子载波间隔)为μ时一个子帧中包括的时隙的时长。
作为一个实施例,所述m1的值为1。
作为一个实施例,所述m1的值为3。
作为一个实施例,所述m1的值为标准规定的(specified)。
作为一个实施例,所述m1的值为网络配置的(configured)。
作为一个实施例,所述m1的值为预配置的(pre-configured)。
作为一个实施例,一个子帧时长为1毫秒,一个子帧包括2μ个时隙,每个时隙的时长为1/2μ毫秒,对应SCS为2μ·15kHz(千赫兹)。
具体的,当μ为0时,一个子帧包括一个时隙,一个时隙的时长为1毫秒,对应SCS为15kHz;当μ为1时,一个子帧包括2个时隙,每个时隙的时长为0.5毫秒,对应SCS为30kHz,以此类推,不一一赘述。
作为一个实施例,所述第一时间间隔与所述第一节点的处理能力相关。
作为一个实施例,所述第一时间间隔与所述第一节点的PUCCH发送的子载波间隔有关。
作为一个实施例,所述第一时间间隔包括译码所述第一信令的时间。
作为一个实施例,所述第二信令被用于恢复(resume)所述第一调度;其中,所述第一信令被用于小区转换。
作为一个实施例,所述第二信令被用于激活(activate)所述第一调度;其中,所述第一信令被用于小区转换。
作为一个实施例,所述第二信令被用于初始化(initialize)所述第一调度;其中,所述第一信令被用于小区转换。
作为一个实施例,所述第二信令隐式指示所述第二频域资源。
作为上述实施例的一个子实施例,所述第二频域资源与所述第一频域资源相同。
作为一个实施例,所述第二信令显式指示所述第二频域资源。
作为一个实施例,所述第二频域资源被用于执行所述第一调度。
作为一个实施例,所述短语所述第二频域资源被用于执行所述第一调度包括:所述第二频域资源为所述第一调度指示的周期性的时频资源的频域资源。
作为一个实施例,所述第二频域资源包括至少一个子载波(subcarrier)。
作为一个实施例,所述第二频域资源包括至少一个资源块(resource block,RB)。
作为一个实施例,所述第二频域资源包括至少一个物理资源块(physical resource block,PRB)。
作为一个实施例,所述第二频域资源与所述第一频域资源相同,或者,所述第二频域资源与所述第一频域资源至少部分不同。
作为一个实施例,所述第二频域资源与所述第一频域资源相同包括:所述第二频域资源包括的资源块数与所述第一频域资源包括的资源块数相同,且所述第二频域资源的起始位置与所述第一频域资源的起始位置相同。
作为一个实施例,所述第二频域资源与所述第一频域资源不同包括:所述第二频域资源包括的资源块数与所述第一频域资源包括的资源块数不同,或者,所述第二频域资源的起始位置与所述第一频域资源的起始位置不同二者至少之一。
作为一个实施例,接收所述第二信令之后,在所述第一小区上继续执行所述第一调度。
作为一个实施例,上述方法通过所述第二信令重新激活所述第一调度可以节省RRC配置信令。
作为一个实施例,所述第一接收机,当所述第二信令不被用于激活所述第一调度时,在接收所述第二信令之后在所述第一小区上接收第四信令,所述第四信令被用于激活所述第一调度;其中,所述第四信令指示第三频域资源,所述第三频域资源被用于执行所述第一调度。
作为一个实施例,所述第四信令与所述第三信令是同一类信令。
作为一个实施例,所述第三频域资源与所述第一频域资源相同,或者,所述第三频域资源与所述第一频域资源至少部分不同。
作为一个实施例,接收所述第四信令之后,在所述第一小区上继续执行所述第一调度。
作为一个实施例,上述方法通过所述第四信令重新激活所述第一调度可以节省RRC配置信令。
实施例6
实施例6示例了根据本申请的一个实施例的第一信令的格式示意图,如附图6所示。
作为一个实施例,所述第一信令被用于指示停止针对所述第一小区执行第一操作集合。
作为一个实施例,所述第一信令为MAC CE。
作为一个实施例,所述第一信令包括一个字节(single octet)。
作为一个实施例,所述第一信令包括的一个字节包括7个C域与1个R域;所述R域被预留。
作为上述实施例的一个子实施例,所述7个C域分别被用于指示针对对应小区是否执行所述第一操作集合;当一个C域被置0时,所述C域指示的小区停止执行所述第一操作集合;当一个C域被置1时,所述C域指示的小区开始执行所述第一操作集合;其中,所述C域的索引被用于指示具有相同索引的小区。
作为一个实施例,小区的索引与小区一一对应。
作为上述实施例的一个子实施例,小区的索引与小区的对应关系被预先配置。
作为一个实施例,上述方法可以节省比特数。
作为一个实施例,小区被小区标识(identifier)所标识(identify)。
作为一个实施例,小区标识为PCI(Physical Cell Identifier,物理小区标识)。
作为一个实施例,小区标识为NCGI(NR Cell Global Identifier,物理小区标识)。
作为一个实施例,小区标识为NCI(NR Cell Identifier,NR小区标识)。
作为一个实施例,所述第一信令包括的对应除所述第一小区之外的至少一个小区的索引的C域被置1;其中,所述第一信令被用于小区转换。
作为一个实施例,所述第一信令包括的对应所述第二小区的索引的C域被置1。
作为一个实施例,所述第一信令包括四个字节(four octet)。
作为一个实施例,所述第一信令包括的四个字节包括31个C域与1个R域;所述R域被预留。
具体的,所述四个字节包括31个C域中对每个C域的解释同一个字节包括7个C域中对每个C域的解释,在此不再赘述。
作为一个实施例,所述第一信令的逻辑信道身份为35-46之间包括35和46的正整数。
实施例6的情况A中,所述第一信令包括1个字节。
实施例6的情况B中,所述第一信令包括4个字节。
实施例7
实施例7示例了根据本申请的一个实施例的第一信令的另一格式示意图,如附图7所示。
作为一个实施例,所述第一信令为MAC CE。
作为一个实施例,所述第一信令包括所述第二小区标识。
作为一个实施例,所述第一信令包括一个字节,所述第一信令包括所述第二小区的索引。
作为一个实施例,所述第二小区的所述索引包括3比特。
作为一个实施例,所述第二小区的所述索引包括5比特。
实施例7的附图中示出了第一信令包括第二小区的索引,所述第二小区的所述索引包括5比特的情况,所述第一信令包括的剩余比特为预留比特R。需要说明的是,实施例7的附图仅示出所述预留比特占用高3比特,所述第二小区的所述索引占用低5比特的情况,本专利不限制所述预留比特和所述第二小区的所述索引比特在一个字节中的其它组合排列。
实施例8
实施例8示例了根据本申请的一个实施例的第二信令的格式示意图,如附图8所示。
需要说明的是,第二信令与第一信令是同一类信令,附图8以附图7中示出的第一信令格式进一步说明,附图7中的第一信令也可以具有与附图8中的第二信令相同的域。
作为一个实施例,所述第二信令是可变尺寸(variable size)。
作为一个实施例,所述第二信令包括所述第一小区的索引。
作为一个实施例,所述第二信令包括第一调度索引,所述第一调度索引被用于指示所述第一调度。
作为一个实施例,所述第二信令包括所述第二频域资源。
作为一个实施例,所述第二信令包括所述第一调度的配置信息,所述配置信息至少包括所述第二频域资源。
作为一个实施例,所述配置信息包括MCS(Modulation and Coding Scheme,调制编码方案)。
作为一个实施例,所述配置信息包括用于在所述第一小区上接收,或者,用于在所述第一小区上发送的信息。
作为一个实施例,所述配置信息可选的包括时域资源偏移,接收所述第二信令的时域资源加上所述时域资源偏移为所述第一调度指示的周期性时域资源的第一个时域资源;其中,所述时域资源偏移为大于0的正整数,所述时域资源为时隙。
附图8中,所述第一调度索引包括4比特,所述时域资源偏移包括6比特,所述第二频域资源的比特数与所述第一小区包括的频域资源有关,附图8中以12比特示例,其它配置信息以省略号表示,没有一一列出。
实施例9
实施例9示例了根据本申请的一个实施例的第一信令,第二信令与第一调度的关系示意图,如附图9 所示。
所述第一调度被激活之后,在所述第一小区上执行所述第一调度;在接收所述第一信令且所述第一信令被用于小区转换时,挂起所述第一调度;当接收到所述第二信令时,重新激活所述第一调度并在所述第一小区上继续执行所述第一调度。
作为一个实施例,当所述第一调度未被激活时或者被挂起时,保存所述第一调度指示的所述时域资源的周期信息;当所述第一调度被激活时,配置所述第一调度指示的频域资源。
为简化附图,附图9中未示出所述第一信令和所述第二信令的接收及处理时延,亦未示出挂起所述第一调度和重新开始执行所述第一调度的处理时延,仅作示例用。
实施例10
实施例10示例了根据本申请的一个实施例的第一节点中的处理装置的结构框图,如附图10所示。在附图10中,第一节点处理装置1000包括第一接收机1001和第一处理机1002;所述第一节点1000是一个UE。
在实施例10中,第一处理机1002,在第一小区上执行第一调度;第一接收机1001,接收第一信令,所述第一信令被用于指示停止针对所述第一小区执行第一操作集合,所述第一信令是RRC层之下的协议层的信令;其中,所述第一调度指示周期性的时域资源和第一频域资源;所述第一操作集合包括在相应小区上监听PDCCH(物理下行控制信道)、监听用于调度相应小区的PDCCH、和在相应小区上发送PRACH(物理随机接入信道)三者中的至少之一;所述停止针对所述第一小区执行第一操作集合是否包括清除所述第一调度与所述第一信令有关;当所述第一信令被用于去激活所述第一小区时,所述停止针对所述第一小区执行第一操作集合包括清除所述第一调度;当所述第一信令被用于小区转换(switch)时,所述停止针对所述第一小区执行第一操作集合不包括清除所述第一调度。
作为一个实施例,所述清除所述第一调度包括:清除所述第一调度指示的配置上行授予类型2;其中,所述配置上行授予类型2包括关联的混合自动重传请求(HARQ)信息,所述第一调度为配置授予类型2。
作为一个实施例,所述清除所述第一调度包括:清除所述第一调度指示的配置下行分配;其中,所述配置下行分配包括关联的混合自动重传请求信息;所述第一调度为半持续调度。
作为一个实施例,所述停止针对所述第一小区执行第一操作集合不包括清除所述第一调度包括:挂起所述第一调度。
作为一个实施例,所述停止针对所述第一小区执行第一操作集合不包括清除所述第一调度包括:挂起所述第一调度;所述挂起所述第一调度包括:保存所述第一调度指示的所述时域资源的周期信息,或者,保存所述第一调度关联的混合自动重传请求信息二者中至少之一。
作为一个实施例,所述第一接收机1001,在第二小区上接收第二信令,所述第二信令被用于指示开始针对所述第一小区执行所述第一操作集合;其中,所述第二信令的接收晚于所述第一信令的接收;所述第二信令被用于小区转换。
作为一个实施例,所述第一接收机1001,在第二小区上接收第二信令,所述第二信令被用于指示开始针对所述第一小区执行所述第一操作集合;其中,所述第二信令的接收晚于所述第一信令的接收;所述第二信令被用于小区转换;所述第二信令指示第二频域资源;其中,所述第二频域资源被用于执行所述第一调度;所述第二频域资源与所述第一频域资源相同,或者,所述第二频域资源与所述第一频域资源至少部分不同。
作为一个实施例,所述第一接收机1001,接收第一消息,所述第一消息被用于配置所述第一调度;接收第三信令,所述第三信令被用于激活所述第一调度;其中,所述第一消息包括所述第一调度指示的所述时域资源的周期信息;所述第三信令包括所述第一调度指示的所述第一频域资源。
作为一个实施例,所述第一接收机1001包括本申请附图4中的接收器454(包括天线452),接收处理器456,多天线接收处理器458和控制器/处理器459。
作为一个实施例,所述第一接收机1001包括本申请附图4中的接收器454(包括天线452),接收处理器456,多天线接收处理器458或控制器/处理器459中的至少之一。
作为一个实施例,所述第一处理机1002包括本申请附图4中的接收器454(包括天线452),接收处 理器456,多天线接收处理器458和控制器/处理器459。
作为一个实施例,所述第一处理机1002包括本申请附图4中的接收器454(包括天线452),接收处理器456,多天线接收处理器458或控制器/处理器459中的至少之一。
作为一个实施例,所述第一处理机1002包括本申请附图4中的发射器454(包括天线452),发射处理器468,多天线发射处理器457和控制器/处理器459。
作为一个实施例,所述第一处理机1002包括本申请附图4中的发射器454(包括天线452),发射处理器468,多天线发射处理器457或控制器/处理器459中的至少之一。
作为一个实施例,所述第一处理机1002包括本申请附图4中的控制器/处理器459。
实施例11
实施例11示例了根据本申请的一个实施例的第二节点中的处理装置的结构框图,如附图11所示。在附图11中,第二节点处理装置1100包括第一发射机1101;所述第二节点1100是一个基站。
在实施例11中,第一发射机1101,发送第一信令,所述第一信令被用于指示针对第一小区执行第一操作集合被停止,所述第一信令是RRC层之下的协议层的信令;
其中,第一调度在所述第一小区上被所述第一信令的接收者执行;所述第一调度指示周期性的时域资源和第一频域资源;所述第一操作集合包括在相应小区上监听PDCCH(物理下行控制信道)、监听用于调度相应小区的PDCCH、和在相应小区上发送PRACH(物理随机接入信道)三者中的至少之一;所述针对第一小区执行第一操作集合被停止是否包括所述第一调度被所述第一信令的所述接收者清除与所述第一信令有关;当所述第一信令被用于去激活所述第一小区时,所述针对第一小区执行第一操作集合被停止包括所述第一调度被清除;当所述第一信令被用于小区转换(switch)时,所述针对第一小区执行第一操作集合被停止不包括所述第一调度被清除。
作为一个实施例,所述第一调度被清除包括:所述第一调度指示的配置上行授予类型2被清除;其中,所述配置上行授予类型2包括关联的混合自动重传请求(HARQ)信息,所述第一调度为配置授予类型2。
作为一个实施例,所述第一调度被清除包括:所述第一调度指示的配置下行分配被清除;其中,所述配置下行分配包括关联的混合自动重传请求信息;所述第一调度为半持续调度。
作为一个实施例,所述针对第一小区执行第一操作集合被停止不包括所述第一调度被清除包括:所述第一调度被挂起。
作为一个实施例,所述针对第一小区执行第一操作集合被停止不包括所述第一调度被清除包括:所述第一调度被挂起;所述第一调度被挂起包括:所述第一调度指示的所述时域资源的周期信息,或者,保存所述第一调度关联的混合自动重传请求信息二者中至少之一被保存。
作为一个实施例,所述第一发射机1101,发送第一消息,所述第一消息被用于配置所述第一调度;发送第三信令,所述第三信令被用于激活所述第一调度;其中,所述第一消息包括所述第一调度指示的所述时域资源的周期信息;所述第三信令包括所述第一调度指示的所述第一频域资源。
作为一个实施例,所述第一发射机1101包括本申请附图4中的发射器418(包括天线420),发射处理器416,多天线发射处理器471和控制器/处理器475。
作为一个实施例,所述第一发射机1101包括本申请附图4中的发射器418(包括天线420),发射处理器416,多天线发射处理器471或控制器/处理器475中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一类通信节点或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC(enhanced Machine Type Communication,增强机器类通信)设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二类通 信节点或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP(Transmission and Reception Point,发射和接收点),中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一处理机,在第一小区上执行第一调度;
    第一接收机,接收第一信令,所述第一信令被用于指示停止针对所述第一小区执行第一操作集合,所述第一信令是RRC层之下的协议层的信令;
    其中,所述第一调度指示周期性的时域资源和第一频域资源;所述第一操作集合包括在相应小区上监听PDCCH(物理下行控制信道)、监听用于调度相应小区的PDCCH、和在相应小区上发送PRACH(物理随机接入信道)三者中的至少之一;所述停止针对所述第一小区执行第一操作集合是否包括清除所述第一调度与所述第一信令有关;当所述第一信令被用于去激活所述第一小区时,所述停止针对所述第一小区执行第一操作集合包括清除所述第一调度;当所述第一信令被用于小区转换(switch)时,所述停止针对所述第一小区执行第一操作集合不包括清除所述第一调度。
  2. 根据权利要求1所述的第一节点,其特征在于,所述清除所述第一调度包括:清除所述第一调度指示的配置上行授予类型2;
    其中,所述配置上行授予类型2包括关联的混合自动重传请求(HARQ)信息,所述第一调度为配置授予类型2。
  3. 根据权利要求1所述的第一节点,其特征在于,所述清除所述第一调度包括:清除所述第一调度指示的配置下行分配;
    其中,所述配置下行分配包括关联的混合自动重传请求信息;所述第一调度为半持续调度。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于,所述停止针对所述第一小区执行第一操作集合不包括清除所述第一调度包括:挂起所述第一调度。
  5. 根据权利要求4所述的第一节点,其特征在于,所述挂起所述第一调度包括:保存所述第一调度指示的所述时域资源的周期信息,或者,保存所述第一调度关联的混合自动重传请求信息二者中至少之一。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一接收机,在第二小区上接收第二信令,所述第二信令被用于指示开始针对所述第一小区执行所述第一操作集合;
    其中,所述第二信令的接收晚于所述第一信令的接收;所述第二信令被用于小区转换。
  7. 根据权利要求6所述的第一节点,其特征在于,所述第二信令指示第二频域资源;
    其中,所述第二频域资源被用于执行所述第一调度;所述第二频域资源与所述第一频域资源相同,或者,所述第二频域资源与所述第一频域资源至少部分不同。
  8. 根据权利要求1至7中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第一消息,所述第一消息被用于配置所述第一调度;接收第三信令,所述第三信令被用于激活所述第一调度;
    其中,所述第一消息包括所述第一调度指示的所述时域资源的周期信息;所述第三信令包括所述第一调度指示的所述第一频域资源。
  9. 一种被用于无线通信的第二节点,其特征在于,包括:
    第一发射机,发送第一信令,所述第一信令被用于指示针对第一小区执行第一操作集合被停止,所述第一信令是RRC层之下的协议层的信令;
    其中,第一调度在所述第一小区上被所述第一信令的接收者执行;所述第一调度指示周期性的时域资源和第一频域资源;所述第一操作集合包括在相应小区上监听PDCCH(物理下行控制信道)、监听用于调度相应小区的PDCCH、和在相应小区上发送PRACH(物理随机接入信道)三者中的至少之一;所述针对第一小区执行第一操作集合被停止是否包括所述第一调度被所述第一信令的所述接收者清除与所述第一信令有关;当所述第一信令被用于去激活所述第一小区时,所述针对第一小区执行第一操作集合被停止包 括所述第一调度被清除;当所述第一信令被用于小区转换(switch)时,所述针对第一小区执行第一操作集合被停止不包括所述第一调度被清除。
  10. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    在第一小区上执行第一调度;
    接收第一信令,所述第一信令被用于指示停止针对所述第一小区执行第一操作集合,所述第一信令是RRC层之下的协议层的信令;
    其中,所述第一调度指示周期性的时域资源和第一频域资源;所述第一操作集合包括在相应小区上监听PDCCH(物理下行控制信道)、监听用于调度相应小区的PDCCH、和在相应小区上发送PRACH(物理随机接入信道)三者中的至少之一;所述停止针对所述第一小区执行第一操作集合是否包括清除所述第一调度与所述第一信令有关;当所述第一信令被用于去激活所述第一小区时,所述停止针对所述第一小区执行第一操作集合包括清除所述第一调度;当所述第一信令被用于小区转换(switch)时,所述停止针对所述第一小区执行第一操作集合不包括清除所述第一调度。
  11. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信令,所述第一信令被用于指示针对第一小区执行第一操作集合被停止,所述第一信令是RRC层之下的协议层的信令;
    其中,第一调度在所述第一小区上被所述第一信令的接收者执行;所述第一调度指示周期性的时域资源和第一频域资源;所述第一操作集合包括在相应小区上监听PDCCH(物理下行控制信道)、监听用于调度相应小区的PDCCH、和在相应小区上发送PRACH(物理随机接入信道)三者中的至少之一;所述针对第一小区执行第一操作集合被停止是否包括所述第一调度被所述第一信令的所述接收者清除与所述第一信令有关;当所述第一信令被用于去激活所述第一小区时,所述针对第一小区执行第一操作集合被停止包括所述第一调度被清除;当所述第一信令被用于小区转换(switch)时,所述针对第一小区执行第一操作集合被停止不包括所述第一调度被清除。
PCT/CN2023/089214 2022-04-28 2023-04-19 一种被用于无线通信的方法和装置 WO2023207708A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210461186.5A CN117040699A (zh) 2022-04-28 2022-04-28 一种被用于无线通信的方法和装置
CN202210461186.5 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023207708A1 true WO2023207708A1 (zh) 2023-11-02

Family

ID=88517709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089214 WO2023207708A1 (zh) 2022-04-28 2023-04-19 一种被用于无线通信的方法和装置

Country Status (2)

Country Link
CN (1) CN117040699A (zh)
WO (1) WO2023207708A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107360562A (zh) * 2016-05-09 2017-11-17 宏达国际电子股份有限公司 处理无线资源控制状态改变的装置及方法
WO2019050352A1 (en) * 2017-09-08 2019-03-14 Lg Electronics Inc. METHOD AND USER EQUIPMENT FOR PERFORMING WIRELESS COMMUNICATION
CN112970307A (zh) * 2018-11-02 2021-06-15 上海诺基亚贝尔股份有限公司 用于调度服务小区的方法、设备和计算机可读介质
CN114223311A (zh) * 2019-07-08 2022-03-22 弗劳恩霍夫应用研究促进协会 用于增强移动场景中的可靠性的无线电资源管理

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107360562A (zh) * 2016-05-09 2017-11-17 宏达国际电子股份有限公司 处理无线资源控制状态改变的装置及方法
WO2019050352A1 (en) * 2017-09-08 2019-03-14 Lg Electronics Inc. METHOD AND USER EQUIPMENT FOR PERFORMING WIRELESS COMMUNICATION
CN112970307A (zh) * 2018-11-02 2021-06-15 上海诺基亚贝尔股份有限公司 用于调度服务小区的方法、设备和计算机可读介质
CN114223311A (zh) * 2019-07-08 2022-03-22 弗劳恩霍夫应用研究促进协会 用于增强移动场景中的可靠性的无线电资源管理

Also Published As

Publication number Publication date
CN117040699A (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
WO2018103444A1 (zh) 一种用于功率调整的用户设备、基站中的方法和装置
WO2020034848A1 (zh) 一种被用于无线通信节点中的方法和装置
WO2021043105A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020125402A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021103926A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023207708A1 (zh) 一种被用于无线通信的方法和装置
WO2023202450A1 (zh) 一种被用于无线通信的方法和装置
WO2024007879A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024083054A1 (zh) 一种被用于无线通信中的方法和装置
WO2024051558A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024001935A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20230292307A1 (en) Method and device used for wireless communication
WO2023217075A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023246672A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024022344A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023185520A1 (zh) 一种被用于无线通信的方法和装置
WO2024037474A1 (zh) 一种用于无线通信的方法和装置
CN115396822B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023246742A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023045794A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024088397A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023103925A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023186163A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024022094A1 (zh) 用于无线通信的的方法和装置
WO2023143500A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795141

Country of ref document: EP

Kind code of ref document: A1